]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Fix execution_direction's type
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
32d0add0 3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
ccefe4c4 63
4c4b4cd2 64/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 65 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
40658b94
PH
104static int full_match (const char *, const char *);
105
40bc484c 106static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 107
4c4b4cd2 108static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 109 const struct block *, const char *,
2570f2b7 110 domain_enum, struct objfile *, int);
14f9c5c9 111
22cee43f
PMR
112static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
d12307c1 115static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 116
76a01679 117static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 118 const struct block *);
14f9c5c9 119
4c4b4cd2
PH
120static int num_defns_collected (struct obstack *);
121
d12307c1 122static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 123
4c4b4cd2 124static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 125 struct type *);
14f9c5c9 126
d2e4a39e 127static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 128 struct symbol *, const struct block *);
14f9c5c9 129
d2e4a39e 130static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 131
4c4b4cd2
PH
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 135
d2e4a39e 136static int numeric_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int integer_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int scalar_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int discrete_type_p (struct type *);
14f9c5c9 143
aeb5907d
JB
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 150 const struct block *);
aeb5907d 151
4c4b4cd2 152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 153 int, int, int *);
4c4b4cd2 154
d2e4a39e 155static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 156
b4ba55a1
JB
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
28c85d6c 168static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 169
d2e4a39e 170static struct type *to_static_fixed_type (struct type *);
f192137b 171static struct type *static_unwrap_type (struct type *type);
14f9c5c9 172
d2e4a39e 173static struct value *unwrap_value (struct value *);
14f9c5c9 174
ad82864c 175static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 176
ad82864c 177static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 178
ad82864c
JB
179static long decode_packed_array_bitsize (struct type *);
180
181static struct value *decode_constrained_packed_array (struct value *);
182
183static int ada_is_packed_array_type (struct type *);
184
185static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 188 struct value **);
14f9c5c9 189
50810684 190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 191
4c4b4cd2
PH
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
14f9c5c9 194
d2e4a39e 195static struct value *get_var_value (char *, char *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
73589123
PH
203static int advance_wild_match (const char **, const char *, int);
204
205static int wild_match (const char *, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
108d56a4 218static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
0d5cff50 224static int find_struct_field (const char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
d12307c1 230static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
231 struct value **, int, const char *,
232 struct type *);
233
4c4b4cd2
PH
234static int ada_is_direct_array_type (struct type *);
235
72d5681a
PH
236static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
714e53ab 238
52ce6436
PH
239static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
243 struct expression *,
244 int *, enum noside);
52ce6436
PH
245
246static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
852dff6c
JB
270
271static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
272\f
273
ee01b665
JB
274/* The result of a symbol lookup to be stored in our symbol cache. */
275
276struct cache_entry
277{
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
fe978cb0 281 domain_enum domain;
ee01b665
JB
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290};
291
292/* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301#define HASH_SIZE 1009
302
303struct ada_symbol_cache
304{
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310};
311
312static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 313
4c4b4cd2 314/* Maximum-sized dynamic type. */
14f9c5c9
AS
315static unsigned int varsize_limit;
316
4c4b4cd2
PH
317/* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319static char *ada_completer_word_break_characters =
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
345/* Space for allocating results of ada_lookup_symbol_list. */
346static struct obstack symbol_list_obstack;
347
c6044dd1
JB
348/* Maintenance-related settings for this module. */
349
350static struct cmd_list_element *maint_set_ada_cmdlist;
351static struct cmd_list_element *maint_show_ada_cmdlist;
352
353/* Implement the "maintenance set ada" (prefix) command. */
354
355static void
356maint_set_ada_cmd (char *args, int from_tty)
357{
635c7e8a
TT
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
c6044dd1
JB
360}
361
362/* Implement the "maintenance show ada" (prefix) command. */
363
364static void
365maint_show_ada_cmd (char *args, int from_tty)
366{
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368}
369
370/* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372static int ada_ignore_descriptive_types_p = 0;
373
e802dbe0
JB
374 /* Inferior-specific data. */
375
376/* Per-inferior data for this module. */
377
378struct ada_inferior_data
379{
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
3eecfa55
JB
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
e802dbe0
JB
390};
391
392/* Our key to this module's inferior data. */
393static const struct inferior_data *ada_inferior_data;
394
395/* A cleanup routine for our inferior data. */
396static void
397ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398{
399 struct ada_inferior_data *data;
400
9a3c8263 401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
402 if (data != NULL)
403 xfree (data);
404}
405
406/* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414static struct ada_inferior_data *
415get_ada_inferior_data (struct inferior *inf)
416{
417 struct ada_inferior_data *data;
418
9a3c8263 419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
420 if (data == NULL)
421 {
41bf6aca 422 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427}
428
429/* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432static void
433ada_inferior_exit (struct inferior *inf)
434{
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437}
438
ee01b665
JB
439
440 /* program-space-specific data. */
441
442/* This module's per-program-space data. */
443struct ada_pspace_data
444{
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447};
448
449/* Key to our per-program-space data. */
450static const struct program_space_data *ada_pspace_data_handle;
451
452/* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457static struct ada_pspace_data *
458get_ada_pspace_data (struct program_space *pspace)
459{
460 struct ada_pspace_data *data;
461
9a3c8263
SM
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471}
472
473/* The cleanup callback for this module's per-program-space data. */
474
475static void
476ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477{
9a3c8263 478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483}
484
4c4b4cd2
PH
485 /* Utilities */
486
720d1a40 487/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 488 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514static struct type *
515ada_typedef_target_type (struct type *type)
516{
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520}
521
41d27058
JB
522/* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526static const char *
527ada_unqualified_name (const char *decoded_name)
528{
2b0f535a
JB
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
41d27058
JB
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545}
546
547/* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550static char *
551add_angle_brackets (const char *str)
552{
553 static char *result = NULL;
554
555 xfree (result);
88c15c34 556 result = xstrprintf ("<%s>", str);
41d27058
JB
557 return result;
558}
96d887e8 559
4c4b4cd2
PH
560static char *
561ada_get_gdb_completer_word_break_characters (void)
562{
563 return ada_completer_word_break_characters;
564}
565
e79af960
JB
566/* Print an array element index using the Ada syntax. */
567
568static void
569ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 570 const struct value_print_options *options)
e79af960 571{
79a45b7d 572 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
573 fprintf_filtered (stream, " => ");
574}
575
f27cf670 576/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 578 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 579
f27cf670
AS
580void *
581grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 582{
d2e4a39e
AS
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
4c4b4cd2 587 *size = min_size;
f27cf670 588 vect = xrealloc (vect, *size * element_size);
d2e4a39e 589 }
f27cf670 590 return vect;
14f9c5c9
AS
591}
592
593/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 594 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
595
596static int
ebf56fd3 597field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
598{
599 int len = strlen (target);
5b4ee69b 600
d2e4a39e 601 return
4c4b4cd2
PH
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
61012eef 604 || (startswith (field_name + len, "___")
76a01679
JB
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
14f9c5c9
AS
607}
608
609
872c8b51
JB
610/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
617
618int
619ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621{
622 int fieldno;
872c8b51
JB
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
627 return fieldno;
628
629 if (!maybe_missing)
323e0a4a 630 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 631 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
632
633 return -1;
634}
635
636/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
637
638int
d2e4a39e 639ada_name_prefix_len (const char *name)
14f9c5c9
AS
640{
641 if (name == NULL)
642 return 0;
d2e4a39e 643 else
14f9c5c9 644 {
d2e4a39e 645 const char *p = strstr (name, "___");
5b4ee69b 646
14f9c5c9 647 if (p == NULL)
4c4b4cd2 648 return strlen (name);
14f9c5c9 649 else
4c4b4cd2 650 return p - name;
14f9c5c9
AS
651 }
652}
653
4c4b4cd2
PH
654/* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
14f9c5c9 657static int
d2e4a39e 658is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
659{
660 int len1, len2;
5b4ee69b 661
14f9c5c9
AS
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
4c4b4cd2 666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
667}
668
4c4b4cd2
PH
669/* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
14f9c5c9 671
d2e4a39e 672static struct value *
4c4b4cd2 673coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 674{
61ee279c 675 type = ada_check_typedef (type);
df407dfe 676 if (value_type (val) == type)
4c4b4cd2 677 return val;
d2e4a39e 678 else
14f9c5c9 679 {
4c4b4cd2
PH
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
c1b5a1a6 684 ada_ensure_varsize_limit (type);
4c4b4cd2 685
41e8491f
JK
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
9a0dc9e3 692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 693 }
74bcbdf3 694 set_value_component_location (result, val);
9bbda503
AC
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
42ae5230 697 set_value_address (result, value_address (val));
14f9c5c9
AS
698 return result;
699 }
700}
701
fc1a4b47
AC
702static const gdb_byte *
703cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
704{
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709}
710
711static CORE_ADDR
ebf56fd3 712cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
713{
714 if (address == 0)
715 return 0;
d2e4a39e 716 else
14f9c5c9
AS
717 return address + offset;
718}
719
4c4b4cd2
PH
720/* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
a2249542 724
77109804
AC
725/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
a0b31db1 727static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 728
14f9c5c9 729static void
a2249542 730lim_warning (const char *format, ...)
14f9c5c9 731{
a2249542 732 va_list args;
a2249542 733
5b4ee69b 734 va_start (args, format);
4c4b4cd2
PH
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
a2249542
MK
737 vwarning (format, args);
738
739 va_end (args);
4c4b4cd2
PH
740}
741
714e53ab
PH
742/* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
c1b5a1a6
JB
746void
747ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
748{
749 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 750 error (_("object size is larger than varsize-limit"));
714e53ab
PH
751}
752
0963b4bd 753/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 754static LONGEST
c3e5cd34 755max_of_size (int size)
4c4b4cd2 756{
76a01679 757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 758
76a01679 759 return top_bit | (top_bit - 1);
4c4b4cd2
PH
760}
761
0963b4bd 762/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 763static LONGEST
c3e5cd34 764min_of_size (int size)
4c4b4cd2 765{
c3e5cd34 766 return -max_of_size (size) - 1;
4c4b4cd2
PH
767}
768
0963b4bd 769/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 770static ULONGEST
c3e5cd34 771umax_of_size (int size)
4c4b4cd2 772{
76a01679 773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 774
76a01679 775 return top_bit | (top_bit - 1);
4c4b4cd2
PH
776}
777
0963b4bd 778/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
779static LONGEST
780max_of_type (struct type *t)
4c4b4cd2 781{
c3e5cd34
PH
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786}
787
0963b4bd 788/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
789static LONGEST
790min_of_type (struct type *t)
791{
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
796}
797
798/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
799LONGEST
800ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 801{
c3345124 802 type = resolve_dynamic_type (type, NULL, 0);
76a01679 803 switch (TYPE_CODE (type))
4c4b4cd2
PH
804 {
805 case TYPE_CODE_RANGE:
690cc4eb 806 return TYPE_HIGH_BOUND (type);
4c4b4cd2 807 case TYPE_CODE_ENUM:
14e75d8e 808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
76a01679 812 case TYPE_CODE_INT:
690cc4eb 813 return max_of_type (type);
4c4b4cd2 814 default:
43bbcdc2 815 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
816 }
817}
818
14e75d8e 819/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
820LONGEST
821ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 822{
c3345124 823 type = resolve_dynamic_type (type, NULL, 0);
76a01679 824 switch (TYPE_CODE (type))
4c4b4cd2
PH
825 {
826 case TYPE_CODE_RANGE:
690cc4eb 827 return TYPE_LOW_BOUND (type);
4c4b4cd2 828 case TYPE_CODE_ENUM:
14e75d8e 829 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
76a01679 833 case TYPE_CODE_INT:
690cc4eb 834 return min_of_type (type);
4c4b4cd2 835 default:
43bbcdc2 836 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
837 }
838}
839
840/* The identity on non-range types. For range types, the underlying
76a01679 841 non-range scalar type. */
4c4b4cd2
PH
842
843static struct type *
18af8284 844get_base_type (struct type *type)
4c4b4cd2
PH
845{
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
76a01679
JB
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
4c4b4cd2
PH
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
14f9c5c9 853}
41246937
JB
854
855/* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860struct value *
861ada_get_decoded_value (struct value *value)
862{
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878}
879
880/* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885struct type *
886ada_get_decoded_type (struct type *type)
887{
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892}
893
4c4b4cd2 894\f
76a01679 895
4c4b4cd2 896 /* Language Selection */
14f9c5c9
AS
897
898/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 899 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 900
14f9c5c9 901enum language
ccefe4c4 902ada_update_initial_language (enum language lang)
14f9c5c9 903{
d2e4a39e 904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 905 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 906 return language_ada;
14f9c5c9
AS
907
908 return lang;
909}
96d887e8
PH
910
911/* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915char *
916ada_main_name (void)
917{
3b7344d5 918 struct bound_minimal_symbol msym;
f9bc20b9 919 static char *main_program_name = NULL;
6c038f32 920
96d887e8
PH
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
3b7344d5 928 if (msym.minsym != NULL)
96d887e8 929 {
f9bc20b9
JB
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
77e371c0 933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 934 if (main_program_name_addr == 0)
323e0a4a 935 error (_("Invalid address for Ada main program name."));
96d887e8 936
f9bc20b9
JB
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
96d887e8
PH
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948}
14f9c5c9 949\f
4c4b4cd2 950 /* Symbols */
d2e4a39e 951
4c4b4cd2
PH
952/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
14f9c5c9 954
d2e4a39e
AS
955const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
14f9c5c9
AS
978};
979
4c4b4cd2
PH
980/* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
14f9c5c9 983char *
4c4b4cd2 984ada_encode (const char *decoded)
14f9c5c9 985{
4c4b4cd2
PH
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
d2e4a39e 988 const char *p;
14f9c5c9 989 int k;
d2e4a39e 990
4c4b4cd2 991 if (decoded == NULL)
14f9c5c9
AS
992 return NULL;
993
4c4b4cd2
PH
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
14f9c5c9
AS
996
997 k = 0;
4c4b4cd2 998 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 999 {
cdc7bb92 1000 if (*p == '.')
4c4b4cd2
PH
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
14f9c5c9 1005 else if (*p == '"')
4c4b4cd2
PH
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1265e4aa 1010 mapping->encoded != NULL
61012eef 1011 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1012 ;
1013 if (mapping->encoded == NULL)
323e0a4a 1014 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
d2e4a39e 1019 else
4c4b4cd2
PH
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
14f9c5c9
AS
1024 }
1025
4c4b4cd2
PH
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
14f9c5c9
AS
1028}
1029
1030/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
d2e4a39e
AS
1034char *
1035ada_fold_name (const char *name)
14f9c5c9 1036{
d2e4a39e 1037 static char *fold_buffer = NULL;
14f9c5c9
AS
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
d2e4a39e 1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1042
1043 if (name[0] == '\'')
1044 {
d2e4a39e
AS
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1047 }
1048 else
1049 {
1050 int i;
5b4ee69b 1051
14f9c5c9 1052 for (i = 0; i <= len; i += 1)
4c4b4cd2 1053 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1054 }
1055
1056 return fold_buffer;
1057}
1058
529cad9c
PH
1059/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061static int
1062is_lower_alphanum (const char c)
1063{
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065}
1066
c90092fe
JB
1067/* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
29480c32
JB
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
c90092fe 1074
29480c32
JB
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079static void
1080ada_remove_trailing_digits (const char *encoded, int *len)
1081{
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
5b4ee69b 1085
29480c32
JB
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
61012eef 1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1093 *len = i - 2;
61012eef 1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1095 *len = i - 1;
1096 }
1097}
1098
1099/* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102static void
1103ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104{
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
0963b4bd 1110 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119}
1120
69fadcdf
JB
1121/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123static void
1124ada_remove_Xbn_suffix (const char *encoded, int *len)
1125{
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139}
1140
29480c32
JB
1141/* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
14f9c5c9 1144
4c4b4cd2 1145 The resulting string is valid until the next call of ada_decode.
29480c32 1146 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1147 is returned. */
1148
1149const char *
1150ada_decode (const char *encoded)
14f9c5c9
AS
1151{
1152 int i, j;
1153 int len0;
d2e4a39e 1154 const char *p;
4c4b4cd2 1155 char *decoded;
14f9c5c9 1156 int at_start_name;
4c4b4cd2
PH
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
d2e4a39e 1159
29480c32
JB
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
61012eef 1163 if (startswith (encoded, "_ada_"))
4c4b4cd2 1164 encoded += 5;
14f9c5c9 1165
29480c32
JB
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
4c4b4cd2 1169 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1170 goto Suppress;
1171
4c4b4cd2 1172 len0 = strlen (encoded);
4c4b4cd2 1173
29480c32
JB
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1176
4c4b4cd2
PH
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1183 {
1184 if (p[3] == 'X')
4c4b4cd2 1185 len0 = p - encoded;
14f9c5c9 1186 else
4c4b4cd2 1187 goto Suppress;
14f9c5c9 1188 }
4c4b4cd2 1189
29480c32
JB
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
61012eef 1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1195 len0 -= 3;
76a01679 1196
a10967fa
JB
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
61012eef 1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1202 len0 -= 2;
1203
29480c32
JB
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
61012eef 1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1208 len0 -= 1;
1209
4c4b4cd2 1210 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1211
4c4b4cd2
PH
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
14f9c5c9 1214
29480c32
JB
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
4c4b4cd2 1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1218 {
4c4b4cd2
PH
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
d2e4a39e 1227 }
14f9c5c9 1228
29480c32
JB
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
4c4b4cd2
PH
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
14f9c5c9
AS
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
29480c32 1238 /* Is this a symbol function? */
4c4b4cd2
PH
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
5b4ee69b 1242
4c4b4cd2
PH
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
14f9c5c9
AS
1260 at_start_name = 0;
1261
529cad9c
PH
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
61012eef 1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1266 i += 2;
529cad9c 1267
29480c32
JB
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
529cad9c
PH
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1290 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
4c4b4cd2
PH
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
29480c32
JB
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
4c4b4cd2
PH
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
cdc7bb92 1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1355 {
29480c32 1356 /* Replace '__' by '.'. */
4c4b4cd2
PH
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
14f9c5c9 1362 else
4c4b4cd2 1363 {
29480c32
JB
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
4c4b4cd2
PH
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
14f9c5c9 1370 }
4c4b4cd2 1371 decoded[j] = '\000';
14f9c5c9 1372
29480c32
JB
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
4c4b4cd2
PH
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1378 goto Suppress;
1379
4c4b4cd2
PH
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
14f9c5c9
AS
1384
1385Suppress:
4c4b4cd2
PH
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
14f9c5c9 1390 else
88c15c34 1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1392 return decoded;
1393
1394}
1395
1396/* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401static struct htab *decoded_names_store;
1402
1403/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1408 GSYMBOL).
4c4b4cd2
PH
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1411 when a decoded name is cached in it. */
4c4b4cd2 1412
45e6c716 1413const char *
f85f34ed 1414ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1415{
f85f34ed
TT
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
615b3f62 1418 &gsymbol->language_specific.demangled_name;
5b4ee69b 1419
f85f34ed 1420 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1423 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1424
f85f34ed 1425 gsymbol->ada_mangled = 1;
5b4ee69b 1426
f85f34ed 1427 if (obstack != NULL)
224c3ddb
SM
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1430 else
76a01679 1431 {
f85f34ed
TT
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
76a01679
JB
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
5b4ee69b 1439
76a01679
JB
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
4c4b4cd2 1444 }
14f9c5c9 1445
4c4b4cd2
PH
1446 return *resultp;
1447}
76a01679 1448
2c0b251b 1449static char *
76a01679 1450ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1451{
1452 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1453}
1454
1455/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1456 suffixes that encode debugging information or leading _ada_ on
1457 SYM_NAME (see is_name_suffix commentary for the debugging
1458 information that is ignored). If WILD, then NAME need only match a
1459 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1460 either argument is NULL. */
14f9c5c9 1461
2c0b251b 1462static int
40658b94 1463match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1464{
1465 if (sym_name == NULL || name == NULL)
1466 return 0;
1467 else if (wild)
73589123 1468 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1469 else
1470 {
1471 int len_name = strlen (name);
5b4ee69b 1472
4c4b4cd2
PH
1473 return (strncmp (sym_name, name, len_name) == 0
1474 && is_name_suffix (sym_name + len_name))
61012eef 1475 || (startswith (sym_name, "_ada_")
4c4b4cd2
PH
1476 && strncmp (sym_name + 5, name, len_name) == 0
1477 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1478 }
14f9c5c9 1479}
14f9c5c9 1480\f
d2e4a39e 1481
4c4b4cd2 1482 /* Arrays */
14f9c5c9 1483
28c85d6c
JB
1484/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1485 generated by the GNAT compiler to describe the index type used
1486 for each dimension of an array, check whether it follows the latest
1487 known encoding. If not, fix it up to conform to the latest encoding.
1488 Otherwise, do nothing. This function also does nothing if
1489 INDEX_DESC_TYPE is NULL.
1490
1491 The GNAT encoding used to describle the array index type evolved a bit.
1492 Initially, the information would be provided through the name of each
1493 field of the structure type only, while the type of these fields was
1494 described as unspecified and irrelevant. The debugger was then expected
1495 to perform a global type lookup using the name of that field in order
1496 to get access to the full index type description. Because these global
1497 lookups can be very expensive, the encoding was later enhanced to make
1498 the global lookup unnecessary by defining the field type as being
1499 the full index type description.
1500
1501 The purpose of this routine is to allow us to support older versions
1502 of the compiler by detecting the use of the older encoding, and by
1503 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1504 we essentially replace each field's meaningless type by the associated
1505 index subtype). */
1506
1507void
1508ada_fixup_array_indexes_type (struct type *index_desc_type)
1509{
1510 int i;
1511
1512 if (index_desc_type == NULL)
1513 return;
1514 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1515
1516 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1517 to check one field only, no need to check them all). If not, return
1518 now.
1519
1520 If our INDEX_DESC_TYPE was generated using the older encoding,
1521 the field type should be a meaningless integer type whose name
1522 is not equal to the field name. */
1523 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1524 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1525 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1526 return;
1527
1528 /* Fixup each field of INDEX_DESC_TYPE. */
1529 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1530 {
0d5cff50 1531 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1532 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1533
1534 if (raw_type)
1535 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1536 }
1537}
1538
4c4b4cd2 1539/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1540
d2e4a39e
AS
1541static char *bound_name[] = {
1542 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1543 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1544};
1545
1546/* Maximum number of array dimensions we are prepared to handle. */
1547
4c4b4cd2 1548#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1549
14f9c5c9 1550
4c4b4cd2
PH
1551/* The desc_* routines return primitive portions of array descriptors
1552 (fat pointers). */
14f9c5c9
AS
1553
1554/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1555 level of indirection, if needed. */
1556
d2e4a39e
AS
1557static struct type *
1558desc_base_type (struct type *type)
14f9c5c9
AS
1559{
1560 if (type == NULL)
1561 return NULL;
61ee279c 1562 type = ada_check_typedef (type);
720d1a40
JB
1563 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1564 type = ada_typedef_target_type (type);
1565
1265e4aa
JB
1566 if (type != NULL
1567 && (TYPE_CODE (type) == TYPE_CODE_PTR
1568 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1569 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1570 else
1571 return type;
1572}
1573
4c4b4cd2
PH
1574/* True iff TYPE indicates a "thin" array pointer type. */
1575
14f9c5c9 1576static int
d2e4a39e 1577is_thin_pntr (struct type *type)
14f9c5c9 1578{
d2e4a39e 1579 return
14f9c5c9
AS
1580 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1581 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1582}
1583
4c4b4cd2
PH
1584/* The descriptor type for thin pointer type TYPE. */
1585
d2e4a39e
AS
1586static struct type *
1587thin_descriptor_type (struct type *type)
14f9c5c9 1588{
d2e4a39e 1589 struct type *base_type = desc_base_type (type);
5b4ee69b 1590
14f9c5c9
AS
1591 if (base_type == NULL)
1592 return NULL;
1593 if (is_suffix (ada_type_name (base_type), "___XVE"))
1594 return base_type;
d2e4a39e 1595 else
14f9c5c9 1596 {
d2e4a39e 1597 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1598
14f9c5c9 1599 if (alt_type == NULL)
4c4b4cd2 1600 return base_type;
14f9c5c9 1601 else
4c4b4cd2 1602 return alt_type;
14f9c5c9
AS
1603 }
1604}
1605
4c4b4cd2
PH
1606/* A pointer to the array data for thin-pointer value VAL. */
1607
d2e4a39e
AS
1608static struct value *
1609thin_data_pntr (struct value *val)
14f9c5c9 1610{
828292f2 1611 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1612 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1613
556bdfd4
UW
1614 data_type = lookup_pointer_type (data_type);
1615
14f9c5c9 1616 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1617 return value_cast (data_type, value_copy (val));
d2e4a39e 1618 else
42ae5230 1619 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1620}
1621
4c4b4cd2
PH
1622/* True iff TYPE indicates a "thick" array pointer type. */
1623
14f9c5c9 1624static int
d2e4a39e 1625is_thick_pntr (struct type *type)
14f9c5c9
AS
1626{
1627 type = desc_base_type (type);
1628 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1629 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1630}
1631
4c4b4cd2
PH
1632/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1633 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1634
d2e4a39e
AS
1635static struct type *
1636desc_bounds_type (struct type *type)
14f9c5c9 1637{
d2e4a39e 1638 struct type *r;
14f9c5c9
AS
1639
1640 type = desc_base_type (type);
1641
1642 if (type == NULL)
1643 return NULL;
1644 else if (is_thin_pntr (type))
1645 {
1646 type = thin_descriptor_type (type);
1647 if (type == NULL)
4c4b4cd2 1648 return NULL;
14f9c5c9
AS
1649 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1650 if (r != NULL)
61ee279c 1651 return ada_check_typedef (r);
14f9c5c9
AS
1652 }
1653 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1654 {
1655 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1656 if (r != NULL)
61ee279c 1657 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1658 }
1659 return NULL;
1660}
1661
1662/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1663 one, a pointer to its bounds data. Otherwise NULL. */
1664
d2e4a39e
AS
1665static struct value *
1666desc_bounds (struct value *arr)
14f9c5c9 1667{
df407dfe 1668 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1669
d2e4a39e 1670 if (is_thin_pntr (type))
14f9c5c9 1671 {
d2e4a39e 1672 struct type *bounds_type =
4c4b4cd2 1673 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1674 LONGEST addr;
1675
4cdfadb1 1676 if (bounds_type == NULL)
323e0a4a 1677 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1678
1679 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1680 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1681 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1682 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1683 addr = value_as_long (arr);
d2e4a39e 1684 else
42ae5230 1685 addr = value_address (arr);
14f9c5c9 1686
d2e4a39e 1687 return
4c4b4cd2
PH
1688 value_from_longest (lookup_pointer_type (bounds_type),
1689 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1690 }
1691
1692 else if (is_thick_pntr (type))
05e522ef
JB
1693 {
1694 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1695 _("Bad GNAT array descriptor"));
1696 struct type *p_bounds_type = value_type (p_bounds);
1697
1698 if (p_bounds_type
1699 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1700 {
1701 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1702
1703 if (TYPE_STUB (target_type))
1704 p_bounds = value_cast (lookup_pointer_type
1705 (ada_check_typedef (target_type)),
1706 p_bounds);
1707 }
1708 else
1709 error (_("Bad GNAT array descriptor"));
1710
1711 return p_bounds;
1712 }
14f9c5c9
AS
1713 else
1714 return NULL;
1715}
1716
4c4b4cd2
PH
1717/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1718 position of the field containing the address of the bounds data. */
1719
14f9c5c9 1720static int
d2e4a39e 1721fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1722{
1723 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1724}
1725
1726/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1727 size of the field containing the address of the bounds data. */
1728
14f9c5c9 1729static int
d2e4a39e 1730fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1731{
1732 type = desc_base_type (type);
1733
d2e4a39e 1734 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1735 return TYPE_FIELD_BITSIZE (type, 1);
1736 else
61ee279c 1737 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1738}
1739
4c4b4cd2 1740/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1741 pointer to one, the type of its array data (a array-with-no-bounds type);
1742 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1743 data. */
4c4b4cd2 1744
d2e4a39e 1745static struct type *
556bdfd4 1746desc_data_target_type (struct type *type)
14f9c5c9
AS
1747{
1748 type = desc_base_type (type);
1749
4c4b4cd2 1750 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1751 if (is_thin_pntr (type))
556bdfd4 1752 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1753 else if (is_thick_pntr (type))
556bdfd4
UW
1754 {
1755 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1756
1757 if (data_type
1758 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1759 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1760 }
1761
1762 return NULL;
14f9c5c9
AS
1763}
1764
1765/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1766 its array data. */
4c4b4cd2 1767
d2e4a39e
AS
1768static struct value *
1769desc_data (struct value *arr)
14f9c5c9 1770{
df407dfe 1771 struct type *type = value_type (arr);
5b4ee69b 1772
14f9c5c9
AS
1773 if (is_thin_pntr (type))
1774 return thin_data_pntr (arr);
1775 else if (is_thick_pntr (type))
d2e4a39e 1776 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1777 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1778 else
1779 return NULL;
1780}
1781
1782
1783/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1784 position of the field containing the address of the data. */
1785
14f9c5c9 1786static int
d2e4a39e 1787fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1788{
1789 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1790}
1791
1792/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1793 size of the field containing the address of the data. */
1794
14f9c5c9 1795static int
d2e4a39e 1796fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1797{
1798 type = desc_base_type (type);
1799
1800 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1801 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1802 else
14f9c5c9
AS
1803 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1804}
1805
4c4b4cd2 1806/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1807 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1808 bound, if WHICH is 1. The first bound is I=1. */
1809
d2e4a39e
AS
1810static struct value *
1811desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1812{
d2e4a39e 1813 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1814 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1815}
1816
1817/* If BOUNDS is an array-bounds structure type, return the bit position
1818 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1819 bound, if WHICH is 1. The first bound is I=1. */
1820
14f9c5c9 1821static int
d2e4a39e 1822desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1823{
d2e4a39e 1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1825}
1826
1827/* If BOUNDS is an array-bounds structure type, return the bit field size
1828 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1829 bound, if WHICH is 1. The first bound is I=1. */
1830
76a01679 1831static int
d2e4a39e 1832desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1833{
1834 type = desc_base_type (type);
1835
d2e4a39e
AS
1836 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1837 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1838 else
1839 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1840}
1841
1842/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1843 Ith bound (numbering from 1). Otherwise, NULL. */
1844
d2e4a39e
AS
1845static struct type *
1846desc_index_type (struct type *type, int i)
14f9c5c9
AS
1847{
1848 type = desc_base_type (type);
1849
1850 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1851 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1852 else
14f9c5c9
AS
1853 return NULL;
1854}
1855
4c4b4cd2
PH
1856/* The number of index positions in the array-bounds type TYPE.
1857 Return 0 if TYPE is NULL. */
1858
14f9c5c9 1859static int
d2e4a39e 1860desc_arity (struct type *type)
14f9c5c9
AS
1861{
1862 type = desc_base_type (type);
1863
1864 if (type != NULL)
1865 return TYPE_NFIELDS (type) / 2;
1866 return 0;
1867}
1868
4c4b4cd2
PH
1869/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1870 an array descriptor type (representing an unconstrained array
1871 type). */
1872
76a01679
JB
1873static int
1874ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1875{
1876 if (type == NULL)
1877 return 0;
61ee279c 1878 type = ada_check_typedef (type);
4c4b4cd2 1879 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1880 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1881}
1882
52ce6436 1883/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1884 * to one. */
52ce6436 1885
2c0b251b 1886static int
52ce6436
PH
1887ada_is_array_type (struct type *type)
1888{
1889 while (type != NULL
1890 && (TYPE_CODE (type) == TYPE_CODE_PTR
1891 || TYPE_CODE (type) == TYPE_CODE_REF))
1892 type = TYPE_TARGET_TYPE (type);
1893 return ada_is_direct_array_type (type);
1894}
1895
4c4b4cd2 1896/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1897
14f9c5c9 1898int
4c4b4cd2 1899ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1900{
1901 if (type == NULL)
1902 return 0;
61ee279c 1903 type = ada_check_typedef (type);
14f9c5c9 1904 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1905 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1906 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1907 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1908}
1909
4c4b4cd2
PH
1910/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1911
14f9c5c9 1912int
4c4b4cd2 1913ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1914{
556bdfd4 1915 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1916
1917 if (type == NULL)
1918 return 0;
61ee279c 1919 type = ada_check_typedef (type);
556bdfd4
UW
1920 return (data_type != NULL
1921 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1922 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1923}
1924
1925/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1926 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1927 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1928 is still needed. */
1929
14f9c5c9 1930int
ebf56fd3 1931ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1932{
d2e4a39e 1933 return
14f9c5c9
AS
1934 type != NULL
1935 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1936 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1937 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1938 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1939}
1940
1941
4c4b4cd2 1942/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1943 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1944 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1945 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1946 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1947 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1948 a descriptor. */
d2e4a39e
AS
1949struct type *
1950ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1951{
ad82864c
JB
1952 if (ada_is_constrained_packed_array_type (value_type (arr)))
1953 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1954
df407dfe
AC
1955 if (!ada_is_array_descriptor_type (value_type (arr)))
1956 return value_type (arr);
d2e4a39e
AS
1957
1958 if (!bounds)
ad82864c
JB
1959 {
1960 struct type *array_type =
1961 ada_check_typedef (desc_data_target_type (value_type (arr)));
1962
1963 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1964 TYPE_FIELD_BITSIZE (array_type, 0) =
1965 decode_packed_array_bitsize (value_type (arr));
1966
1967 return array_type;
1968 }
14f9c5c9
AS
1969 else
1970 {
d2e4a39e 1971 struct type *elt_type;
14f9c5c9 1972 int arity;
d2e4a39e 1973 struct value *descriptor;
14f9c5c9 1974
df407dfe
AC
1975 elt_type = ada_array_element_type (value_type (arr), -1);
1976 arity = ada_array_arity (value_type (arr));
14f9c5c9 1977
d2e4a39e 1978 if (elt_type == NULL || arity == 0)
df407dfe 1979 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1980
1981 descriptor = desc_bounds (arr);
d2e4a39e 1982 if (value_as_long (descriptor) == 0)
4c4b4cd2 1983 return NULL;
d2e4a39e 1984 while (arity > 0)
4c4b4cd2 1985 {
e9bb382b
UW
1986 struct type *range_type = alloc_type_copy (value_type (arr));
1987 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1988 struct value *low = desc_one_bound (descriptor, arity, 0);
1989 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1990
5b4ee69b 1991 arity -= 1;
0c9c3474
SA
1992 create_static_range_type (range_type, value_type (low),
1993 longest_to_int (value_as_long (low)),
1994 longest_to_int (value_as_long (high)));
4c4b4cd2 1995 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1996
1997 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1998 {
1999 /* We need to store the element packed bitsize, as well as
2000 recompute the array size, because it was previously
2001 computed based on the unpacked element size. */
2002 LONGEST lo = value_as_long (low);
2003 LONGEST hi = value_as_long (high);
2004
2005 TYPE_FIELD_BITSIZE (elt_type, 0) =
2006 decode_packed_array_bitsize (value_type (arr));
2007 /* If the array has no element, then the size is already
2008 zero, and does not need to be recomputed. */
2009 if (lo < hi)
2010 {
2011 int array_bitsize =
2012 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2013
2014 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2015 }
2016 }
4c4b4cd2 2017 }
14f9c5c9
AS
2018
2019 return lookup_pointer_type (elt_type);
2020 }
2021}
2022
2023/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2024 Otherwise, returns either a standard GDB array with bounds set
2025 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2026 GDB array. Returns NULL if ARR is a null fat pointer. */
2027
d2e4a39e
AS
2028struct value *
2029ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2030{
df407dfe 2031 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2032 {
d2e4a39e 2033 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2034
14f9c5c9 2035 if (arrType == NULL)
4c4b4cd2 2036 return NULL;
14f9c5c9
AS
2037 return value_cast (arrType, value_copy (desc_data (arr)));
2038 }
ad82864c
JB
2039 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2040 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2041 else
2042 return arr;
2043}
2044
2045/* If ARR does not represent an array, returns ARR unchanged.
2046 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2047 be ARR itself if it already is in the proper form). */
2048
720d1a40 2049struct value *
d2e4a39e 2050ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2051{
df407dfe 2052 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2053 {
d2e4a39e 2054 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2055
14f9c5c9 2056 if (arrVal == NULL)
323e0a4a 2057 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2058 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2059 return value_ind (arrVal);
2060 }
ad82864c
JB
2061 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2062 return decode_constrained_packed_array (arr);
d2e4a39e 2063 else
14f9c5c9
AS
2064 return arr;
2065}
2066
2067/* If TYPE represents a GNAT array type, return it translated to an
2068 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2069 packing). For other types, is the identity. */
2070
d2e4a39e
AS
2071struct type *
2072ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2073{
ad82864c
JB
2074 if (ada_is_constrained_packed_array_type (type))
2075 return decode_constrained_packed_array_type (type);
17280b9f
UW
2076
2077 if (ada_is_array_descriptor_type (type))
556bdfd4 2078 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2079
2080 return type;
14f9c5c9
AS
2081}
2082
4c4b4cd2
PH
2083/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2084
ad82864c
JB
2085static int
2086ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2087{
2088 if (type == NULL)
2089 return 0;
4c4b4cd2 2090 type = desc_base_type (type);
61ee279c 2091 type = ada_check_typedef (type);
d2e4a39e 2092 return
14f9c5c9
AS
2093 ada_type_name (type) != NULL
2094 && strstr (ada_type_name (type), "___XP") != NULL;
2095}
2096
ad82864c
JB
2097/* Non-zero iff TYPE represents a standard GNAT constrained
2098 packed-array type. */
2099
2100int
2101ada_is_constrained_packed_array_type (struct type *type)
2102{
2103 return ada_is_packed_array_type (type)
2104 && !ada_is_array_descriptor_type (type);
2105}
2106
2107/* Non-zero iff TYPE represents an array descriptor for a
2108 unconstrained packed-array type. */
2109
2110static int
2111ada_is_unconstrained_packed_array_type (struct type *type)
2112{
2113 return ada_is_packed_array_type (type)
2114 && ada_is_array_descriptor_type (type);
2115}
2116
2117/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2118 return the size of its elements in bits. */
2119
2120static long
2121decode_packed_array_bitsize (struct type *type)
2122{
0d5cff50
DE
2123 const char *raw_name;
2124 const char *tail;
ad82864c
JB
2125 long bits;
2126
720d1a40
JB
2127 /* Access to arrays implemented as fat pointers are encoded as a typedef
2128 of the fat pointer type. We need the name of the fat pointer type
2129 to do the decoding, so strip the typedef layer. */
2130 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2131 type = ada_typedef_target_type (type);
2132
2133 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2134 if (!raw_name)
2135 raw_name = ada_type_name (desc_base_type (type));
2136
2137 if (!raw_name)
2138 return 0;
2139
2140 tail = strstr (raw_name, "___XP");
720d1a40 2141 gdb_assert (tail != NULL);
ad82864c
JB
2142
2143 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2144 {
2145 lim_warning
2146 (_("could not understand bit size information on packed array"));
2147 return 0;
2148 }
2149
2150 return bits;
2151}
2152
14f9c5c9
AS
2153/* Given that TYPE is a standard GDB array type with all bounds filled
2154 in, and that the element size of its ultimate scalar constituents
2155 (that is, either its elements, or, if it is an array of arrays, its
2156 elements' elements, etc.) is *ELT_BITS, return an identical type,
2157 but with the bit sizes of its elements (and those of any
2158 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2159 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2160 in bits.
2161
2162 Note that, for arrays whose index type has an XA encoding where
2163 a bound references a record discriminant, getting that discriminant,
2164 and therefore the actual value of that bound, is not possible
2165 because none of the given parameters gives us access to the record.
2166 This function assumes that it is OK in the context where it is being
2167 used to return an array whose bounds are still dynamic and where
2168 the length is arbitrary. */
4c4b4cd2 2169
d2e4a39e 2170static struct type *
ad82864c 2171constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2172{
d2e4a39e
AS
2173 struct type *new_elt_type;
2174 struct type *new_type;
99b1c762
JB
2175 struct type *index_type_desc;
2176 struct type *index_type;
14f9c5c9
AS
2177 LONGEST low_bound, high_bound;
2178
61ee279c 2179 type = ada_check_typedef (type);
14f9c5c9
AS
2180 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2181 return type;
2182
99b1c762
JB
2183 index_type_desc = ada_find_parallel_type (type, "___XA");
2184 if (index_type_desc)
2185 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2186 NULL);
2187 else
2188 index_type = TYPE_INDEX_TYPE (type);
2189
e9bb382b 2190 new_type = alloc_type_copy (type);
ad82864c
JB
2191 new_elt_type =
2192 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2193 elt_bits);
99b1c762 2194 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2195 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2196 TYPE_NAME (new_type) = ada_type_name (type);
2197
4a46959e
JB
2198 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2199 && is_dynamic_type (check_typedef (index_type)))
2200 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2201 low_bound = high_bound = 0;
2202 if (high_bound < low_bound)
2203 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2204 else
14f9c5c9
AS
2205 {
2206 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2207 TYPE_LENGTH (new_type) =
4c4b4cd2 2208 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2209 }
2210
876cecd0 2211 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2212 return new_type;
2213}
2214
ad82864c
JB
2215/* The array type encoded by TYPE, where
2216 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2217
d2e4a39e 2218static struct type *
ad82864c 2219decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2220{
0d5cff50 2221 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2222 char *name;
0d5cff50 2223 const char *tail;
d2e4a39e 2224 struct type *shadow_type;
14f9c5c9 2225 long bits;
14f9c5c9 2226
727e3d2e
JB
2227 if (!raw_name)
2228 raw_name = ada_type_name (desc_base_type (type));
2229
2230 if (!raw_name)
2231 return NULL;
2232
2233 name = (char *) alloca (strlen (raw_name) + 1);
2234 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2235 type = desc_base_type (type);
2236
14f9c5c9
AS
2237 memcpy (name, raw_name, tail - raw_name);
2238 name[tail - raw_name] = '\000';
2239
b4ba55a1
JB
2240 shadow_type = ada_find_parallel_type_with_name (type, name);
2241
2242 if (shadow_type == NULL)
14f9c5c9 2243 {
323e0a4a 2244 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2245 return NULL;
2246 }
f168693b 2247 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2248
2249 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2250 {
0963b4bd
MS
2251 lim_warning (_("could not understand bounds "
2252 "information on packed array"));
14f9c5c9
AS
2253 return NULL;
2254 }
d2e4a39e 2255
ad82864c
JB
2256 bits = decode_packed_array_bitsize (type);
2257 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2258}
2259
ad82864c
JB
2260/* Given that ARR is a struct value *indicating a GNAT constrained packed
2261 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2262 standard GDB array type except that the BITSIZEs of the array
2263 target types are set to the number of bits in each element, and the
4c4b4cd2 2264 type length is set appropriately. */
14f9c5c9 2265
d2e4a39e 2266static struct value *
ad82864c 2267decode_constrained_packed_array (struct value *arr)
14f9c5c9 2268{
4c4b4cd2 2269 struct type *type;
14f9c5c9 2270
11aa919a
PMR
2271 /* If our value is a pointer, then dereference it. Likewise if
2272 the value is a reference. Make sure that this operation does not
2273 cause the target type to be fixed, as this would indirectly cause
2274 this array to be decoded. The rest of the routine assumes that
2275 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2276 and "value_ind" routines to perform the dereferencing, as opposed
2277 to using "ada_coerce_ref" or "ada_value_ind". */
2278 arr = coerce_ref (arr);
828292f2 2279 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2280 arr = value_ind (arr);
4c4b4cd2 2281
ad82864c 2282 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2283 if (type == NULL)
2284 {
323e0a4a 2285 error (_("can't unpack array"));
14f9c5c9
AS
2286 return NULL;
2287 }
61ee279c 2288
50810684 2289 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2290 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2291 {
2292 /* This is a (right-justified) modular type representing a packed
2293 array with no wrapper. In order to interpret the value through
2294 the (left-justified) packed array type we just built, we must
2295 first left-justify it. */
2296 int bit_size, bit_pos;
2297 ULONGEST mod;
2298
df407dfe 2299 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2300 bit_size = 0;
2301 while (mod > 0)
2302 {
2303 bit_size += 1;
2304 mod >>= 1;
2305 }
df407dfe 2306 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2307 arr = ada_value_primitive_packed_val (arr, NULL,
2308 bit_pos / HOST_CHAR_BIT,
2309 bit_pos % HOST_CHAR_BIT,
2310 bit_size,
2311 type);
2312 }
2313
4c4b4cd2 2314 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2315}
2316
2317
2318/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2319 given in IND. ARR must be a simple array. */
14f9c5c9 2320
d2e4a39e
AS
2321static struct value *
2322value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2323{
2324 int i;
2325 int bits, elt_off, bit_off;
2326 long elt_total_bit_offset;
d2e4a39e
AS
2327 struct type *elt_type;
2328 struct value *v;
14f9c5c9
AS
2329
2330 bits = 0;
2331 elt_total_bit_offset = 0;
df407dfe 2332 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2333 for (i = 0; i < arity; i += 1)
14f9c5c9 2334 {
d2e4a39e 2335 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2336 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2337 error
0963b4bd
MS
2338 (_("attempt to do packed indexing of "
2339 "something other than a packed array"));
14f9c5c9 2340 else
4c4b4cd2
PH
2341 {
2342 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2343 LONGEST lowerbound, upperbound;
2344 LONGEST idx;
2345
2346 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2347 {
323e0a4a 2348 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2349 lowerbound = upperbound = 0;
2350 }
2351
3cb382c9 2352 idx = pos_atr (ind[i]);
4c4b4cd2 2353 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2354 lim_warning (_("packed array index %ld out of bounds"),
2355 (long) idx);
4c4b4cd2
PH
2356 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2357 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2358 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2359 }
14f9c5c9
AS
2360 }
2361 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2362 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2363
2364 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2365 bits, elt_type);
14f9c5c9
AS
2366 return v;
2367}
2368
4c4b4cd2 2369/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2370
2371static int
d2e4a39e 2372has_negatives (struct type *type)
14f9c5c9 2373{
d2e4a39e
AS
2374 switch (TYPE_CODE (type))
2375 {
2376 default:
2377 return 0;
2378 case TYPE_CODE_INT:
2379 return !TYPE_UNSIGNED (type);
2380 case TYPE_CODE_RANGE:
2381 return TYPE_LOW_BOUND (type) < 0;
2382 }
14f9c5c9 2383}
d2e4a39e 2384
f93fca70 2385/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2386 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2387 the unpacked buffer.
14f9c5c9 2388
5b639dea
JB
2389 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2390 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2391
f93fca70
JB
2392 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2393 zero otherwise.
14f9c5c9 2394
f93fca70 2395 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2396
f93fca70
JB
2397 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2398
2399static void
2400ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2401 gdb_byte *unpacked, int unpacked_len,
2402 int is_big_endian, int is_signed_type,
2403 int is_scalar)
2404{
a1c95e6b
JB
2405 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2406 int src_idx; /* Index into the source area */
2407 int src_bytes_left; /* Number of source bytes left to process. */
2408 int srcBitsLeft; /* Number of source bits left to move */
2409 int unusedLS; /* Number of bits in next significant
2410 byte of source that are unused */
2411
a1c95e6b
JB
2412 int unpacked_idx; /* Index into the unpacked buffer */
2413 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2414
4c4b4cd2 2415 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2416 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2417 unsigned char sign;
a1c95e6b 2418
4c4b4cd2
PH
2419 /* Transmit bytes from least to most significant; delta is the direction
2420 the indices move. */
f93fca70 2421 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2422
5b639dea
JB
2423 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2424 bits from SRC. .*/
2425 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2426 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2427 bit_size, unpacked_len);
2428
14f9c5c9 2429 srcBitsLeft = bit_size;
086ca51f 2430 src_bytes_left = src_len;
f93fca70 2431 unpacked_bytes_left = unpacked_len;
14f9c5c9 2432 sign = 0;
f93fca70
JB
2433
2434 if (is_big_endian)
14f9c5c9 2435 {
086ca51f 2436 src_idx = src_len - 1;
f93fca70
JB
2437 if (is_signed_type
2438 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2439 sign = ~0;
d2e4a39e
AS
2440
2441 unusedLS =
4c4b4cd2
PH
2442 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2443 % HOST_CHAR_BIT;
14f9c5c9 2444
f93fca70
JB
2445 if (is_scalar)
2446 {
2447 accumSize = 0;
2448 unpacked_idx = unpacked_len - 1;
2449 }
2450 else
2451 {
4c4b4cd2
PH
2452 /* Non-scalar values must be aligned at a byte boundary... */
2453 accumSize =
2454 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2455 /* ... And are placed at the beginning (most-significant) bytes
2456 of the target. */
086ca51f
JB
2457 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2458 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2459 }
14f9c5c9 2460 }
d2e4a39e 2461 else
14f9c5c9
AS
2462 {
2463 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2464
086ca51f 2465 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2466 unusedLS = bit_offset;
2467 accumSize = 0;
2468
f93fca70 2469 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2470 sign = ~0;
14f9c5c9 2471 }
d2e4a39e 2472
14f9c5c9 2473 accum = 0;
086ca51f 2474 while (src_bytes_left > 0)
14f9c5c9
AS
2475 {
2476 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2477 part of the value. */
d2e4a39e 2478 unsigned int unusedMSMask =
4c4b4cd2
PH
2479 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2480 1;
2481 /* Sign-extend bits for this byte. */
14f9c5c9 2482 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2483
d2e4a39e 2484 accum |=
086ca51f 2485 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2486 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2487 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2488 {
086ca51f 2489 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
4c4b4cd2
PH
2490 accumSize -= HOST_CHAR_BIT;
2491 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2492 unpacked_bytes_left -= 1;
2493 unpacked_idx += delta;
4c4b4cd2 2494 }
14f9c5c9
AS
2495 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2496 unusedLS = 0;
086ca51f
JB
2497 src_bytes_left -= 1;
2498 src_idx += delta;
14f9c5c9 2499 }
086ca51f 2500 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2501 {
2502 accum |= sign << accumSize;
086ca51f 2503 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
14f9c5c9 2504 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2505 if (accumSize < 0)
2506 accumSize = 0;
14f9c5c9 2507 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2508 unpacked_bytes_left -= 1;
2509 unpacked_idx += delta;
14f9c5c9 2510 }
f93fca70
JB
2511}
2512
2513/* Create a new value of type TYPE from the contents of OBJ starting
2514 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2515 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2516 assigning through the result will set the field fetched from.
2517 VALADDR is ignored unless OBJ is NULL, in which case,
2518 VALADDR+OFFSET must address the start of storage containing the
2519 packed value. The value returned in this case is never an lval.
2520 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2521
2522struct value *
2523ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2524 long offset, int bit_offset, int bit_size,
2525 struct type *type)
2526{
2527 struct value *v;
bfb1c796 2528 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2529 gdb_byte *unpacked;
220475ed 2530 const int is_scalar = is_scalar_type (type);
d0a9e810
JB
2531 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2532 gdb_byte *staging = NULL;
2533 int staging_len = 0;
2534 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
f93fca70
JB
2535
2536 type = ada_check_typedef (type);
2537
d0a9e810 2538 if (obj == NULL)
bfb1c796 2539 src = valaddr + offset;
d0a9e810 2540 else
bfb1c796 2541 src = value_contents (obj) + offset;
d0a9e810
JB
2542
2543 if (is_dynamic_type (type))
2544 {
2545 /* The length of TYPE might by dynamic, so we need to resolve
2546 TYPE in order to know its actual size, which we then use
2547 to create the contents buffer of the value we return.
2548 The difficulty is that the data containing our object is
2549 packed, and therefore maybe not at a byte boundary. So, what
2550 we do, is unpack the data into a byte-aligned buffer, and then
2551 use that buffer as our object's value for resolving the type. */
2552 staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aa5c10ce 2553 staging = (gdb_byte *) malloc (staging_len);
d0a9e810
JB
2554 make_cleanup (xfree, staging);
2555
2556 ada_unpack_from_contents (src, bit_offset, bit_size,
2557 staging, staging_len,
2558 is_big_endian, has_negatives (type),
2559 is_scalar);
2560 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2561 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2562 {
2563 /* This happens when the length of the object is dynamic,
2564 and is actually smaller than the space reserved for it.
2565 For instance, in an array of variant records, the bit_size
2566 we're given is the array stride, which is constant and
2567 normally equal to the maximum size of its element.
2568 But, in reality, each element only actually spans a portion
2569 of that stride. */
2570 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2571 }
d0a9e810
JB
2572 }
2573
f93fca70
JB
2574 if (obj == NULL)
2575 {
2576 v = allocate_value (type);
bfb1c796 2577 src = valaddr + offset;
f93fca70
JB
2578 }
2579 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2580 {
0cafa88c 2581 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2582 gdb_byte *buf;
0cafa88c 2583
f93fca70 2584 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2585 buf = (gdb_byte *) alloca (src_len);
2586 read_memory (value_address (v), buf, src_len);
2587 src = buf;
f93fca70
JB
2588 }
2589 else
2590 {
2591 v = allocate_value (type);
bfb1c796 2592 src = value_contents (obj) + offset;
f93fca70
JB
2593 }
2594
2595 if (obj != NULL)
2596 {
2597 long new_offset = offset;
2598
2599 set_value_component_location (v, obj);
2600 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2601 set_value_bitsize (v, bit_size);
2602 if (value_bitpos (v) >= HOST_CHAR_BIT)
2603 {
2604 ++new_offset;
2605 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2606 }
2607 set_value_offset (v, new_offset);
2608
2609 /* Also set the parent value. This is needed when trying to
2610 assign a new value (in inferior memory). */
2611 set_value_parent (v, obj);
2612 }
2613 else
2614 set_value_bitsize (v, bit_size);
bfb1c796 2615 unpacked = value_contents_writeable (v);
f93fca70
JB
2616
2617 if (bit_size == 0)
2618 {
2619 memset (unpacked, 0, TYPE_LENGTH (type));
d0a9e810 2620 do_cleanups (old_chain);
f93fca70
JB
2621 return v;
2622 }
2623
d0a9e810 2624 if (staging != NULL && staging_len == TYPE_LENGTH (type))
f93fca70 2625 {
d0a9e810
JB
2626 /* Small short-cut: If we've unpacked the data into a buffer
2627 of the same size as TYPE's length, then we can reuse that,
2628 instead of doing the unpacking again. */
2629 memcpy (unpacked, staging, staging_len);
f93fca70 2630 }
d0a9e810
JB
2631 else
2632 ada_unpack_from_contents (src, bit_offset, bit_size,
2633 unpacked, TYPE_LENGTH (type),
2634 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2635
d0a9e810 2636 do_cleanups (old_chain);
14f9c5c9
AS
2637 return v;
2638}
d2e4a39e 2639
14f9c5c9
AS
2640/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2641 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2642 not overlap. */
14f9c5c9 2643static void
fc1a4b47 2644move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2645 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2646{
2647 unsigned int accum, mask;
2648 int accum_bits, chunk_size;
2649
2650 target += targ_offset / HOST_CHAR_BIT;
2651 targ_offset %= HOST_CHAR_BIT;
2652 source += src_offset / HOST_CHAR_BIT;
2653 src_offset %= HOST_CHAR_BIT;
50810684 2654 if (bits_big_endian_p)
14f9c5c9
AS
2655 {
2656 accum = (unsigned char) *source;
2657 source += 1;
2658 accum_bits = HOST_CHAR_BIT - src_offset;
2659
d2e4a39e 2660 while (n > 0)
4c4b4cd2
PH
2661 {
2662 int unused_right;
5b4ee69b 2663
4c4b4cd2
PH
2664 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2665 accum_bits += HOST_CHAR_BIT;
2666 source += 1;
2667 chunk_size = HOST_CHAR_BIT - targ_offset;
2668 if (chunk_size > n)
2669 chunk_size = n;
2670 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2671 mask = ((1 << chunk_size) - 1) << unused_right;
2672 *target =
2673 (*target & ~mask)
2674 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2675 n -= chunk_size;
2676 accum_bits -= chunk_size;
2677 target += 1;
2678 targ_offset = 0;
2679 }
14f9c5c9
AS
2680 }
2681 else
2682 {
2683 accum = (unsigned char) *source >> src_offset;
2684 source += 1;
2685 accum_bits = HOST_CHAR_BIT - src_offset;
2686
d2e4a39e 2687 while (n > 0)
4c4b4cd2
PH
2688 {
2689 accum = accum + ((unsigned char) *source << accum_bits);
2690 accum_bits += HOST_CHAR_BIT;
2691 source += 1;
2692 chunk_size = HOST_CHAR_BIT - targ_offset;
2693 if (chunk_size > n)
2694 chunk_size = n;
2695 mask = ((1 << chunk_size) - 1) << targ_offset;
2696 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2697 n -= chunk_size;
2698 accum_bits -= chunk_size;
2699 accum >>= chunk_size;
2700 target += 1;
2701 targ_offset = 0;
2702 }
14f9c5c9
AS
2703 }
2704}
2705
14f9c5c9
AS
2706/* Store the contents of FROMVAL into the location of TOVAL.
2707 Return a new value with the location of TOVAL and contents of
2708 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2709 floating-point or non-scalar types. */
14f9c5c9 2710
d2e4a39e
AS
2711static struct value *
2712ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2713{
df407dfe
AC
2714 struct type *type = value_type (toval);
2715 int bits = value_bitsize (toval);
14f9c5c9 2716
52ce6436
PH
2717 toval = ada_coerce_ref (toval);
2718 fromval = ada_coerce_ref (fromval);
2719
2720 if (ada_is_direct_array_type (value_type (toval)))
2721 toval = ada_coerce_to_simple_array (toval);
2722 if (ada_is_direct_array_type (value_type (fromval)))
2723 fromval = ada_coerce_to_simple_array (fromval);
2724
88e3b34b 2725 if (!deprecated_value_modifiable (toval))
323e0a4a 2726 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2727
d2e4a39e 2728 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2729 && bits > 0
d2e4a39e 2730 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2731 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2732 {
df407dfe
AC
2733 int len = (value_bitpos (toval)
2734 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2735 int from_size;
224c3ddb 2736 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2737 struct value *val;
42ae5230 2738 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2739
2740 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2741 fromval = value_cast (type, fromval);
14f9c5c9 2742
52ce6436 2743 read_memory (to_addr, buffer, len);
aced2898
PH
2744 from_size = value_bitsize (fromval);
2745 if (from_size == 0)
2746 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2747 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2748 move_bits (buffer, value_bitpos (toval),
50810684 2749 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2750 else
50810684
UW
2751 move_bits (buffer, value_bitpos (toval),
2752 value_contents (fromval), 0, bits, 0);
972daa01 2753 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2754
14f9c5c9 2755 val = value_copy (toval);
0fd88904 2756 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2757 TYPE_LENGTH (type));
04624583 2758 deprecated_set_value_type (val, type);
d2e4a39e 2759
14f9c5c9
AS
2760 return val;
2761 }
2762
2763 return value_assign (toval, fromval);
2764}
2765
2766
7c512744
JB
2767/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2768 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2769 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2770 COMPONENT, and not the inferior's memory. The current contents
2771 of COMPONENT are ignored.
2772
2773 Although not part of the initial design, this function also works
2774 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2775 had a null address, and COMPONENT had an address which is equal to
2776 its offset inside CONTAINER. */
2777
52ce6436
PH
2778static void
2779value_assign_to_component (struct value *container, struct value *component,
2780 struct value *val)
2781{
2782 LONGEST offset_in_container =
42ae5230 2783 (LONGEST) (value_address (component) - value_address (container));
7c512744 2784 int bit_offset_in_container =
52ce6436
PH
2785 value_bitpos (component) - value_bitpos (container);
2786 int bits;
7c512744 2787
52ce6436
PH
2788 val = value_cast (value_type (component), val);
2789
2790 if (value_bitsize (component) == 0)
2791 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2792 else
2793 bits = value_bitsize (component);
2794
50810684 2795 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2796 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2797 value_bitpos (container) + bit_offset_in_container,
2798 value_contents (val),
2799 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2800 bits, 1);
52ce6436 2801 else
7c512744 2802 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2803 value_bitpos (container) + bit_offset_in_container,
50810684 2804 value_contents (val), 0, bits, 0);
7c512744
JB
2805}
2806
4c4b4cd2
PH
2807/* The value of the element of array ARR at the ARITY indices given in IND.
2808 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2809 thereto. */
2810
d2e4a39e
AS
2811struct value *
2812ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2813{
2814 int k;
d2e4a39e
AS
2815 struct value *elt;
2816 struct type *elt_type;
14f9c5c9
AS
2817
2818 elt = ada_coerce_to_simple_array (arr);
2819
df407dfe 2820 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2821 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2822 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2823 return value_subscript_packed (elt, arity, ind);
2824
2825 for (k = 0; k < arity; k += 1)
2826 {
2827 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2828 error (_("too many subscripts (%d expected)"), k);
2497b498 2829 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2830 }
2831 return elt;
2832}
2833
deede10c
JB
2834/* Assuming ARR is a pointer to a GDB array, the value of the element
2835 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2836 Does not read the entire array into memory.
2837
2838 Note: Unlike what one would expect, this function is used instead of
2839 ada_value_subscript for basically all non-packed array types. The reason
2840 for this is that a side effect of doing our own pointer arithmetics instead
2841 of relying on value_subscript is that there is no implicit typedef peeling.
2842 This is important for arrays of array accesses, where it allows us to
2843 preserve the fact that the array's element is an array access, where the
2844 access part os encoded in a typedef layer. */
14f9c5c9 2845
2c0b251b 2846static struct value *
deede10c 2847ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2848{
2849 int k;
919e6dbe 2850 struct value *array_ind = ada_value_ind (arr);
deede10c 2851 struct type *type
919e6dbe
PMR
2852 = check_typedef (value_enclosing_type (array_ind));
2853
2854 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2855 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2856 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2857
2858 for (k = 0; k < arity; k += 1)
2859 {
2860 LONGEST lwb, upb;
aa715135 2861 struct value *lwb_value;
14f9c5c9
AS
2862
2863 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2864 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2865 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2866 value_copy (arr));
14f9c5c9 2867 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2868 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2869 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2870 type = TYPE_TARGET_TYPE (type);
2871 }
2872
2873 return value_ind (arr);
2874}
2875
0b5d8877 2876/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2877 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2878 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2879 this array is LOW, as per Ada rules. */
0b5d8877 2880static struct value *
f5938064
JG
2881ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2882 int low, int high)
0b5d8877 2883{
b0dd7688 2884 struct type *type0 = ada_check_typedef (type);
aa715135 2885 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2886 struct type *index_type
aa715135 2887 = create_static_range_type (NULL, base_index_type, low, high);
6c038f32 2888 struct type *slice_type =
b0dd7688 2889 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
aa715135
JG
2890 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2891 LONGEST base_low_pos, low_pos;
2892 CORE_ADDR base;
2893
2894 if (!discrete_position (base_index_type, low, &low_pos)
2895 || !discrete_position (base_index_type, base_low, &base_low_pos))
2896 {
2897 warning (_("unable to get positions in slice, use bounds instead"));
2898 low_pos = low;
2899 base_low_pos = base_low;
2900 }
5b4ee69b 2901
aa715135
JG
2902 base = value_as_address (array_ptr)
2903 + ((low_pos - base_low_pos)
2904 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2905 return value_at_lazy (slice_type, base);
0b5d8877
PH
2906}
2907
2908
2909static struct value *
2910ada_value_slice (struct value *array, int low, int high)
2911{
b0dd7688 2912 struct type *type = ada_check_typedef (value_type (array));
aa715135 2913 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2914 struct type *index_type
2915 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2916 struct type *slice_type =
0b5d8877 2917 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
aa715135 2918 LONGEST low_pos, high_pos;
5b4ee69b 2919
aa715135
JG
2920 if (!discrete_position (base_index_type, low, &low_pos)
2921 || !discrete_position (base_index_type, high, &high_pos))
2922 {
2923 warning (_("unable to get positions in slice, use bounds instead"));
2924 low_pos = low;
2925 high_pos = high;
2926 }
2927
2928 return value_cast (slice_type,
2929 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2930}
2931
14f9c5c9
AS
2932/* If type is a record type in the form of a standard GNAT array
2933 descriptor, returns the number of dimensions for type. If arr is a
2934 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2935 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2936
2937int
d2e4a39e 2938ada_array_arity (struct type *type)
14f9c5c9
AS
2939{
2940 int arity;
2941
2942 if (type == NULL)
2943 return 0;
2944
2945 type = desc_base_type (type);
2946
2947 arity = 0;
d2e4a39e 2948 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2949 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2950 else
2951 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2952 {
4c4b4cd2 2953 arity += 1;
61ee279c 2954 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2955 }
d2e4a39e 2956
14f9c5c9
AS
2957 return arity;
2958}
2959
2960/* If TYPE is a record type in the form of a standard GNAT array
2961 descriptor or a simple array type, returns the element type for
2962 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2963 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2964
d2e4a39e
AS
2965struct type *
2966ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2967{
2968 type = desc_base_type (type);
2969
d2e4a39e 2970 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2971 {
2972 int k;
d2e4a39e 2973 struct type *p_array_type;
14f9c5c9 2974
556bdfd4 2975 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2976
2977 k = ada_array_arity (type);
2978 if (k == 0)
4c4b4cd2 2979 return NULL;
d2e4a39e 2980
4c4b4cd2 2981 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2982 if (nindices >= 0 && k > nindices)
4c4b4cd2 2983 k = nindices;
d2e4a39e 2984 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2985 {
61ee279c 2986 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2987 k -= 1;
2988 }
14f9c5c9
AS
2989 return p_array_type;
2990 }
2991 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2992 {
2993 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2994 {
2995 type = TYPE_TARGET_TYPE (type);
2996 nindices -= 1;
2997 }
14f9c5c9
AS
2998 return type;
2999 }
3000
3001 return NULL;
3002}
3003
4c4b4cd2 3004/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3005 Does not examine memory. Throws an error if N is invalid or TYPE
3006 is not an array type. NAME is the name of the Ada attribute being
3007 evaluated ('range, 'first, 'last, or 'length); it is used in building
3008 the error message. */
14f9c5c9 3009
1eea4ebd
UW
3010static struct type *
3011ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3012{
4c4b4cd2
PH
3013 struct type *result_type;
3014
14f9c5c9
AS
3015 type = desc_base_type (type);
3016
1eea4ebd
UW
3017 if (n < 0 || n > ada_array_arity (type))
3018 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3019
4c4b4cd2 3020 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3021 {
3022 int i;
3023
3024 for (i = 1; i < n; i += 1)
4c4b4cd2 3025 type = TYPE_TARGET_TYPE (type);
262452ec 3026 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3027 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3028 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3029 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3030 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3031 result_type = NULL;
14f9c5c9 3032 }
d2e4a39e 3033 else
1eea4ebd
UW
3034 {
3035 result_type = desc_index_type (desc_bounds_type (type), n);
3036 if (result_type == NULL)
3037 error (_("attempt to take bound of something that is not an array"));
3038 }
3039
3040 return result_type;
14f9c5c9
AS
3041}
3042
3043/* Given that arr is an array type, returns the lower bound of the
3044 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3045 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3046 array-descriptor type. It works for other arrays with bounds supplied
3047 by run-time quantities other than discriminants. */
14f9c5c9 3048
abb68b3e 3049static LONGEST
fb5e3d5c 3050ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3051{
8a48ac95 3052 struct type *type, *index_type_desc, *index_type;
1ce677a4 3053 int i;
262452ec
JK
3054
3055 gdb_assert (which == 0 || which == 1);
14f9c5c9 3056
ad82864c
JB
3057 if (ada_is_constrained_packed_array_type (arr_type))
3058 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3059
4c4b4cd2 3060 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3061 return (LONGEST) - which;
14f9c5c9
AS
3062
3063 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3064 type = TYPE_TARGET_TYPE (arr_type);
3065 else
3066 type = arr_type;
3067
bafffb51
JB
3068 if (TYPE_FIXED_INSTANCE (type))
3069 {
3070 /* The array has already been fixed, so we do not need to
3071 check the parallel ___XA type again. That encoding has
3072 already been applied, so ignore it now. */
3073 index_type_desc = NULL;
3074 }
3075 else
3076 {
3077 index_type_desc = ada_find_parallel_type (type, "___XA");
3078 ada_fixup_array_indexes_type (index_type_desc);
3079 }
3080
262452ec 3081 if (index_type_desc != NULL)
28c85d6c
JB
3082 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3083 NULL);
262452ec 3084 else
8a48ac95
JB
3085 {
3086 struct type *elt_type = check_typedef (type);
3087
3088 for (i = 1; i < n; i++)
3089 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3090
3091 index_type = TYPE_INDEX_TYPE (elt_type);
3092 }
262452ec 3093
43bbcdc2
PH
3094 return
3095 (LONGEST) (which == 0
3096 ? ada_discrete_type_low_bound (index_type)
3097 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3098}
3099
3100/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3101 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3102 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3103 supplied by run-time quantities other than discriminants. */
14f9c5c9 3104
1eea4ebd 3105static LONGEST
4dc81987 3106ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3107{
eb479039
JB
3108 struct type *arr_type;
3109
3110 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3111 arr = value_ind (arr);
3112 arr_type = value_enclosing_type (arr);
14f9c5c9 3113
ad82864c
JB
3114 if (ada_is_constrained_packed_array_type (arr_type))
3115 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3116 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3117 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3118 else
1eea4ebd 3119 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3120}
3121
3122/* Given that arr is an array value, returns the length of the
3123 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3124 supplied by run-time quantities other than discriminants.
3125 Does not work for arrays indexed by enumeration types with representation
3126 clauses at the moment. */
14f9c5c9 3127
1eea4ebd 3128static LONGEST
d2e4a39e 3129ada_array_length (struct value *arr, int n)
14f9c5c9 3130{
aa715135
JG
3131 struct type *arr_type, *index_type;
3132 int low, high;
eb479039
JB
3133
3134 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3135 arr = value_ind (arr);
3136 arr_type = value_enclosing_type (arr);
14f9c5c9 3137
ad82864c
JB
3138 if (ada_is_constrained_packed_array_type (arr_type))
3139 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3140
4c4b4cd2 3141 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3142 {
3143 low = ada_array_bound_from_type (arr_type, n, 0);
3144 high = ada_array_bound_from_type (arr_type, n, 1);
3145 }
14f9c5c9 3146 else
aa715135
JG
3147 {
3148 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3149 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3150 }
3151
f168693b 3152 arr_type = check_typedef (arr_type);
aa715135
JG
3153 index_type = TYPE_INDEX_TYPE (arr_type);
3154 if (index_type != NULL)
3155 {
3156 struct type *base_type;
3157 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3158 base_type = TYPE_TARGET_TYPE (index_type);
3159 else
3160 base_type = index_type;
3161
3162 low = pos_atr (value_from_longest (base_type, low));
3163 high = pos_atr (value_from_longest (base_type, high));
3164 }
3165 return high - low + 1;
4c4b4cd2
PH
3166}
3167
3168/* An empty array whose type is that of ARR_TYPE (an array type),
3169 with bounds LOW to LOW-1. */
3170
3171static struct value *
3172empty_array (struct type *arr_type, int low)
3173{
b0dd7688 3174 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3175 struct type *index_type
3176 = create_static_range_type
3177 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3178 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3179
0b5d8877 3180 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3181}
14f9c5c9 3182\f
d2e4a39e 3183
4c4b4cd2 3184 /* Name resolution */
14f9c5c9 3185
4c4b4cd2
PH
3186/* The "decoded" name for the user-definable Ada operator corresponding
3187 to OP. */
14f9c5c9 3188
d2e4a39e 3189static const char *
4c4b4cd2 3190ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3191{
3192 int i;
3193
4c4b4cd2 3194 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3195 {
3196 if (ada_opname_table[i].op == op)
4c4b4cd2 3197 return ada_opname_table[i].decoded;
14f9c5c9 3198 }
323e0a4a 3199 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3200}
3201
3202
4c4b4cd2
PH
3203/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3204 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3205 undefined namespace) and converts operators that are
3206 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3207 non-null, it provides a preferred result type [at the moment, only
3208 type void has any effect---causing procedures to be preferred over
3209 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3210 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3211
4c4b4cd2
PH
3212static void
3213resolve (struct expression **expp, int void_context_p)
14f9c5c9 3214{
30b15541
UW
3215 struct type *context_type = NULL;
3216 int pc = 0;
3217
3218 if (void_context_p)
3219 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3220
3221 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3222}
3223
4c4b4cd2
PH
3224/* Resolve the operator of the subexpression beginning at
3225 position *POS of *EXPP. "Resolving" consists of replacing
3226 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3227 with their resolutions, replacing built-in operators with
3228 function calls to user-defined operators, where appropriate, and,
3229 when DEPROCEDURE_P is non-zero, converting function-valued variables
3230 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3231 are as in ada_resolve, above. */
14f9c5c9 3232
d2e4a39e 3233static struct value *
4c4b4cd2 3234resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3235 struct type *context_type)
14f9c5c9
AS
3236{
3237 int pc = *pos;
3238 int i;
4c4b4cd2 3239 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3240 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3241 struct value **argvec; /* Vector of operand types (alloca'ed). */
3242 int nargs; /* Number of operands. */
52ce6436 3243 int oplen;
14f9c5c9
AS
3244
3245 argvec = NULL;
3246 nargs = 0;
3247 exp = *expp;
3248
52ce6436
PH
3249 /* Pass one: resolve operands, saving their types and updating *pos,
3250 if needed. */
14f9c5c9
AS
3251 switch (op)
3252 {
4c4b4cd2
PH
3253 case OP_FUNCALL:
3254 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3255 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3256 *pos += 7;
4c4b4cd2
PH
3257 else
3258 {
3259 *pos += 3;
3260 resolve_subexp (expp, pos, 0, NULL);
3261 }
3262 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3263 break;
3264
14f9c5c9 3265 case UNOP_ADDR:
4c4b4cd2
PH
3266 *pos += 1;
3267 resolve_subexp (expp, pos, 0, NULL);
3268 break;
3269
52ce6436
PH
3270 case UNOP_QUAL:
3271 *pos += 3;
17466c1a 3272 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3273 break;
3274
52ce6436 3275 case OP_ATR_MODULUS:
4c4b4cd2
PH
3276 case OP_ATR_SIZE:
3277 case OP_ATR_TAG:
4c4b4cd2
PH
3278 case OP_ATR_FIRST:
3279 case OP_ATR_LAST:
3280 case OP_ATR_LENGTH:
3281 case OP_ATR_POS:
3282 case OP_ATR_VAL:
4c4b4cd2
PH
3283 case OP_ATR_MIN:
3284 case OP_ATR_MAX:
52ce6436
PH
3285 case TERNOP_IN_RANGE:
3286 case BINOP_IN_BOUNDS:
3287 case UNOP_IN_RANGE:
3288 case OP_AGGREGATE:
3289 case OP_OTHERS:
3290 case OP_CHOICES:
3291 case OP_POSITIONAL:
3292 case OP_DISCRETE_RANGE:
3293 case OP_NAME:
3294 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3295 *pos += oplen;
14f9c5c9
AS
3296 break;
3297
3298 case BINOP_ASSIGN:
3299 {
4c4b4cd2
PH
3300 struct value *arg1;
3301
3302 *pos += 1;
3303 arg1 = resolve_subexp (expp, pos, 0, NULL);
3304 if (arg1 == NULL)
3305 resolve_subexp (expp, pos, 1, NULL);
3306 else
df407dfe 3307 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3308 break;
14f9c5c9
AS
3309 }
3310
4c4b4cd2 3311 case UNOP_CAST:
4c4b4cd2
PH
3312 *pos += 3;
3313 nargs = 1;
3314 break;
14f9c5c9 3315
4c4b4cd2
PH
3316 case BINOP_ADD:
3317 case BINOP_SUB:
3318 case BINOP_MUL:
3319 case BINOP_DIV:
3320 case BINOP_REM:
3321 case BINOP_MOD:
3322 case BINOP_EXP:
3323 case BINOP_CONCAT:
3324 case BINOP_LOGICAL_AND:
3325 case BINOP_LOGICAL_OR:
3326 case BINOP_BITWISE_AND:
3327 case BINOP_BITWISE_IOR:
3328 case BINOP_BITWISE_XOR:
14f9c5c9 3329
4c4b4cd2
PH
3330 case BINOP_EQUAL:
3331 case BINOP_NOTEQUAL:
3332 case BINOP_LESS:
3333 case BINOP_GTR:
3334 case BINOP_LEQ:
3335 case BINOP_GEQ:
14f9c5c9 3336
4c4b4cd2
PH
3337 case BINOP_REPEAT:
3338 case BINOP_SUBSCRIPT:
3339 case BINOP_COMMA:
40c8aaa9
JB
3340 *pos += 1;
3341 nargs = 2;
3342 break;
14f9c5c9 3343
4c4b4cd2
PH
3344 case UNOP_NEG:
3345 case UNOP_PLUS:
3346 case UNOP_LOGICAL_NOT:
3347 case UNOP_ABS:
3348 case UNOP_IND:
3349 *pos += 1;
3350 nargs = 1;
3351 break;
14f9c5c9 3352
4c4b4cd2
PH
3353 case OP_LONG:
3354 case OP_DOUBLE:
3355 case OP_VAR_VALUE:
3356 *pos += 4;
3357 break;
14f9c5c9 3358
4c4b4cd2
PH
3359 case OP_TYPE:
3360 case OP_BOOL:
3361 case OP_LAST:
4c4b4cd2
PH
3362 case OP_INTERNALVAR:
3363 *pos += 3;
3364 break;
14f9c5c9 3365
4c4b4cd2
PH
3366 case UNOP_MEMVAL:
3367 *pos += 3;
3368 nargs = 1;
3369 break;
3370
67f3407f
DJ
3371 case OP_REGISTER:
3372 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3373 break;
3374
4c4b4cd2
PH
3375 case STRUCTOP_STRUCT:
3376 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3377 nargs = 1;
3378 break;
3379
4c4b4cd2 3380 case TERNOP_SLICE:
4c4b4cd2
PH
3381 *pos += 1;
3382 nargs = 3;
3383 break;
3384
52ce6436 3385 case OP_STRING:
14f9c5c9 3386 break;
4c4b4cd2
PH
3387
3388 default:
323e0a4a 3389 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3390 }
3391
8d749320 3392 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3393 for (i = 0; i < nargs; i += 1)
3394 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3395 argvec[i] = NULL;
3396 exp = *expp;
3397
3398 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3399 switch (op)
3400 {
3401 default:
3402 break;
3403
14f9c5c9 3404 case OP_VAR_VALUE:
4c4b4cd2 3405 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3406 {
d12307c1 3407 struct block_symbol *candidates;
76a01679
JB
3408 int n_candidates;
3409
3410 n_candidates =
3411 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3412 (exp->elts[pc + 2].symbol),
3413 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3414 &candidates);
76a01679
JB
3415
3416 if (n_candidates > 1)
3417 {
3418 /* Types tend to get re-introduced locally, so if there
3419 are any local symbols that are not types, first filter
3420 out all types. */
3421 int j;
3422 for (j = 0; j < n_candidates; j += 1)
d12307c1 3423 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3424 {
3425 case LOC_REGISTER:
3426 case LOC_ARG:
3427 case LOC_REF_ARG:
76a01679
JB
3428 case LOC_REGPARM_ADDR:
3429 case LOC_LOCAL:
76a01679 3430 case LOC_COMPUTED:
76a01679
JB
3431 goto FoundNonType;
3432 default:
3433 break;
3434 }
3435 FoundNonType:
3436 if (j < n_candidates)
3437 {
3438 j = 0;
3439 while (j < n_candidates)
3440 {
d12307c1 3441 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3442 {
3443 candidates[j] = candidates[n_candidates - 1];
3444 n_candidates -= 1;
3445 }
3446 else
3447 j += 1;
3448 }
3449 }
3450 }
3451
3452 if (n_candidates == 0)
323e0a4a 3453 error (_("No definition found for %s"),
76a01679
JB
3454 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3455 else if (n_candidates == 1)
3456 i = 0;
3457 else if (deprocedure_p
3458 && !is_nonfunction (candidates, n_candidates))
3459 {
06d5cf63
JB
3460 i = ada_resolve_function
3461 (candidates, n_candidates, NULL, 0,
3462 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3463 context_type);
76a01679 3464 if (i < 0)
323e0a4a 3465 error (_("Could not find a match for %s"),
76a01679
JB
3466 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3467 }
3468 else
3469 {
323e0a4a 3470 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3471 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3472 user_select_syms (candidates, n_candidates, 1);
3473 i = 0;
3474 }
3475
3476 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3477 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3478 if (innermost_block == NULL
3479 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3480 innermost_block = candidates[i].block;
3481 }
3482
3483 if (deprocedure_p
3484 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3485 == TYPE_CODE_FUNC))
3486 {
3487 replace_operator_with_call (expp, pc, 0, 0,
3488 exp->elts[pc + 2].symbol,
3489 exp->elts[pc + 1].block);
3490 exp = *expp;
3491 }
14f9c5c9
AS
3492 break;
3493
3494 case OP_FUNCALL:
3495 {
4c4b4cd2 3496 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3497 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3498 {
d12307c1 3499 struct block_symbol *candidates;
4c4b4cd2
PH
3500 int n_candidates;
3501
3502 n_candidates =
76a01679
JB
3503 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3504 (exp->elts[pc + 5].symbol),
3505 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3506 &candidates);
4c4b4cd2
PH
3507 if (n_candidates == 1)
3508 i = 0;
3509 else
3510 {
06d5cf63
JB
3511 i = ada_resolve_function
3512 (candidates, n_candidates,
3513 argvec, nargs,
3514 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3515 context_type);
4c4b4cd2 3516 if (i < 0)
323e0a4a 3517 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3518 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3519 }
3520
3521 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3522 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3523 if (innermost_block == NULL
3524 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3525 innermost_block = candidates[i].block;
3526 }
14f9c5c9
AS
3527 }
3528 break;
3529 case BINOP_ADD:
3530 case BINOP_SUB:
3531 case BINOP_MUL:
3532 case BINOP_DIV:
3533 case BINOP_REM:
3534 case BINOP_MOD:
3535 case BINOP_CONCAT:
3536 case BINOP_BITWISE_AND:
3537 case BINOP_BITWISE_IOR:
3538 case BINOP_BITWISE_XOR:
3539 case BINOP_EQUAL:
3540 case BINOP_NOTEQUAL:
3541 case BINOP_LESS:
3542 case BINOP_GTR:
3543 case BINOP_LEQ:
3544 case BINOP_GEQ:
3545 case BINOP_EXP:
3546 case UNOP_NEG:
3547 case UNOP_PLUS:
3548 case UNOP_LOGICAL_NOT:
3549 case UNOP_ABS:
3550 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3551 {
d12307c1 3552 struct block_symbol *candidates;
4c4b4cd2
PH
3553 int n_candidates;
3554
3555 n_candidates =
3556 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3557 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3558 &candidates);
4c4b4cd2 3559 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3560 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3561 if (i < 0)
3562 break;
3563
d12307c1
PMR
3564 replace_operator_with_call (expp, pc, nargs, 1,
3565 candidates[i].symbol,
3566 candidates[i].block);
4c4b4cd2
PH
3567 exp = *expp;
3568 }
14f9c5c9 3569 break;
4c4b4cd2
PH
3570
3571 case OP_TYPE:
b3dbf008 3572 case OP_REGISTER:
4c4b4cd2 3573 return NULL;
14f9c5c9
AS
3574 }
3575
3576 *pos = pc;
3577 return evaluate_subexp_type (exp, pos);
3578}
3579
3580/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3581 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3582 a non-pointer. */
14f9c5c9 3583/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3584 liberal. */
14f9c5c9
AS
3585
3586static int
4dc81987 3587ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3588{
61ee279c
PH
3589 ftype = ada_check_typedef (ftype);
3590 atype = ada_check_typedef (atype);
14f9c5c9
AS
3591
3592 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3593 ftype = TYPE_TARGET_TYPE (ftype);
3594 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3595 atype = TYPE_TARGET_TYPE (atype);
3596
d2e4a39e 3597 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3598 {
3599 default:
5b3d5b7d 3600 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3601 case TYPE_CODE_PTR:
3602 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3603 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3604 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3605 else
1265e4aa
JB
3606 return (may_deref
3607 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3608 case TYPE_CODE_INT:
3609 case TYPE_CODE_ENUM:
3610 case TYPE_CODE_RANGE:
3611 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3612 {
3613 case TYPE_CODE_INT:
3614 case TYPE_CODE_ENUM:
3615 case TYPE_CODE_RANGE:
3616 return 1;
3617 default:
3618 return 0;
3619 }
14f9c5c9
AS
3620
3621 case TYPE_CODE_ARRAY:
d2e4a39e 3622 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3623 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3624
3625 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3626 if (ada_is_array_descriptor_type (ftype))
3627 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3628 || ada_is_array_descriptor_type (atype));
14f9c5c9 3629 else
4c4b4cd2
PH
3630 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3631 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3632
3633 case TYPE_CODE_UNION:
3634 case TYPE_CODE_FLT:
3635 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3636 }
3637}
3638
3639/* Return non-zero if the formals of FUNC "sufficiently match" the
3640 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3641 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3642 argument function. */
14f9c5c9
AS
3643
3644static int
d2e4a39e 3645ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3646{
3647 int i;
d2e4a39e 3648 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3649
1265e4aa
JB
3650 if (SYMBOL_CLASS (func) == LOC_CONST
3651 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3652 return (n_actuals == 0);
3653 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3654 return 0;
3655
3656 if (TYPE_NFIELDS (func_type) != n_actuals)
3657 return 0;
3658
3659 for (i = 0; i < n_actuals; i += 1)
3660 {
4c4b4cd2 3661 if (actuals[i] == NULL)
76a01679
JB
3662 return 0;
3663 else
3664 {
5b4ee69b
MS
3665 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3666 i));
df407dfe 3667 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3668
76a01679
JB
3669 if (!ada_type_match (ftype, atype, 1))
3670 return 0;
3671 }
14f9c5c9
AS
3672 }
3673 return 1;
3674}
3675
3676/* False iff function type FUNC_TYPE definitely does not produce a value
3677 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3678 FUNC_TYPE is not a valid function type with a non-null return type
3679 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3680
3681static int
d2e4a39e 3682return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3683{
d2e4a39e 3684 struct type *return_type;
14f9c5c9
AS
3685
3686 if (func_type == NULL)
3687 return 1;
3688
4c4b4cd2 3689 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3690 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3691 else
18af8284 3692 return_type = get_base_type (func_type);
14f9c5c9
AS
3693 if (return_type == NULL)
3694 return 1;
3695
18af8284 3696 context_type = get_base_type (context_type);
14f9c5c9
AS
3697
3698 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3699 return context_type == NULL || return_type == context_type;
3700 else if (context_type == NULL)
3701 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3702 else
3703 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3704}
3705
3706
4c4b4cd2 3707/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3708 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3709 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3710 that returns that type, then eliminate matches that don't. If
3711 CONTEXT_TYPE is void and there is at least one match that does not
3712 return void, eliminate all matches that do.
3713
14f9c5c9
AS
3714 Asks the user if there is more than one match remaining. Returns -1
3715 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3716 solely for messages. May re-arrange and modify SYMS in
3717 the process; the index returned is for the modified vector. */
14f9c5c9 3718
4c4b4cd2 3719static int
d12307c1 3720ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3721 int nsyms, struct value **args, int nargs,
3722 const char *name, struct type *context_type)
14f9c5c9 3723{
30b15541 3724 int fallback;
14f9c5c9 3725 int k;
4c4b4cd2 3726 int m; /* Number of hits */
14f9c5c9 3727
d2e4a39e 3728 m = 0;
30b15541
UW
3729 /* In the first pass of the loop, we only accept functions matching
3730 context_type. If none are found, we add a second pass of the loop
3731 where every function is accepted. */
3732 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3733 {
3734 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3735 {
d12307c1 3736 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3737
d12307c1 3738 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3739 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3740 {
3741 syms[m] = syms[k];
3742 m += 1;
3743 }
3744 }
14f9c5c9
AS
3745 }
3746
dc5c8746
PMR
3747 /* If we got multiple matches, ask the user which one to use. Don't do this
3748 interactive thing during completion, though, as the purpose of the
3749 completion is providing a list of all possible matches. Prompting the
3750 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3751 if (m == 0)
3752 return -1;
dc5c8746 3753 else if (m > 1 && !parse_completion)
14f9c5c9 3754 {
323e0a4a 3755 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3756 user_select_syms (syms, m, 1);
14f9c5c9
AS
3757 return 0;
3758 }
3759 return 0;
3760}
3761
4c4b4cd2
PH
3762/* Returns true (non-zero) iff decoded name N0 should appear before N1
3763 in a listing of choices during disambiguation (see sort_choices, below).
3764 The idea is that overloadings of a subprogram name from the
3765 same package should sort in their source order. We settle for ordering
3766 such symbols by their trailing number (__N or $N). */
3767
14f9c5c9 3768static int
0d5cff50 3769encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3770{
3771 if (N1 == NULL)
3772 return 0;
3773 else if (N0 == NULL)
3774 return 1;
3775 else
3776 {
3777 int k0, k1;
5b4ee69b 3778
d2e4a39e 3779 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3780 ;
d2e4a39e 3781 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3782 ;
d2e4a39e 3783 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3784 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3785 {
3786 int n0, n1;
5b4ee69b 3787
4c4b4cd2
PH
3788 n0 = k0;
3789 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3790 n0 -= 1;
3791 n1 = k1;
3792 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3793 n1 -= 1;
3794 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3795 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3796 }
14f9c5c9
AS
3797 return (strcmp (N0, N1) < 0);
3798 }
3799}
d2e4a39e 3800
4c4b4cd2
PH
3801/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3802 encoded names. */
3803
d2e4a39e 3804static void
d12307c1 3805sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3806{
4c4b4cd2 3807 int i;
5b4ee69b 3808
d2e4a39e 3809 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3810 {
d12307c1 3811 struct block_symbol sym = syms[i];
14f9c5c9
AS
3812 int j;
3813
d2e4a39e 3814 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3815 {
d12307c1
PMR
3816 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3817 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3818 break;
3819 syms[j + 1] = syms[j];
3820 }
d2e4a39e 3821 syms[j + 1] = sym;
14f9c5c9
AS
3822 }
3823}
3824
4c4b4cd2
PH
3825/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3826 by asking the user (if necessary), returning the number selected,
3827 and setting the first elements of SYMS items. Error if no symbols
3828 selected. */
14f9c5c9
AS
3829
3830/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3831 to be re-integrated one of these days. */
14f9c5c9
AS
3832
3833int
d12307c1 3834user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3835{
3836 int i;
8d749320 3837 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3838 int n_chosen;
3839 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3840 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3841
3842 if (max_results < 1)
323e0a4a 3843 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3844 if (nsyms <= 1)
3845 return nsyms;
3846
717d2f5a
JB
3847 if (select_mode == multiple_symbols_cancel)
3848 error (_("\
3849canceled because the command is ambiguous\n\
3850See set/show multiple-symbol."));
3851
3852 /* If select_mode is "all", then return all possible symbols.
3853 Only do that if more than one symbol can be selected, of course.
3854 Otherwise, display the menu as usual. */
3855 if (select_mode == multiple_symbols_all && max_results > 1)
3856 return nsyms;
3857
323e0a4a 3858 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3859 if (max_results > 1)
323e0a4a 3860 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3861
4c4b4cd2 3862 sort_choices (syms, nsyms);
14f9c5c9
AS
3863
3864 for (i = 0; i < nsyms; i += 1)
3865 {
d12307c1 3866 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3867 continue;
3868
d12307c1 3869 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3870 {
76a01679 3871 struct symtab_and_line sal =
d12307c1 3872 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3873
323e0a4a
AC
3874 if (sal.symtab == NULL)
3875 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3876 i + first_choice,
d12307c1 3877 SYMBOL_PRINT_NAME (syms[i].symbol),
323e0a4a
AC
3878 sal.line);
3879 else
3880 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
d12307c1 3881 SYMBOL_PRINT_NAME (syms[i].symbol),
05cba821
JK
3882 symtab_to_filename_for_display (sal.symtab),
3883 sal.line);
4c4b4cd2
PH
3884 continue;
3885 }
d2e4a39e 3886 else
4c4b4cd2
PH
3887 {
3888 int is_enumeral =
d12307c1
PMR
3889 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3890 && SYMBOL_TYPE (syms[i].symbol) != NULL
3891 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3892 struct symtab *symtab = NULL;
3893
d12307c1
PMR
3894 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3895 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3896
d12307c1 3897 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
323e0a4a 3898 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2 3899 i + first_choice,
d12307c1 3900 SYMBOL_PRINT_NAME (syms[i].symbol),
05cba821 3901 symtab_to_filename_for_display (symtab),
d12307c1 3902 SYMBOL_LINE (syms[i].symbol));
76a01679 3903 else if (is_enumeral
d12307c1 3904 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3905 {
a3f17187 3906 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3907 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3908 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3909 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3910 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2
PH
3911 }
3912 else if (symtab != NULL)
3913 printf_unfiltered (is_enumeral
323e0a4a
AC
3914 ? _("[%d] %s in %s (enumeral)\n")
3915 : _("[%d] %s at %s:?\n"),
4c4b4cd2 3916 i + first_choice,
d12307c1 3917 SYMBOL_PRINT_NAME (syms[i].symbol),
05cba821 3918 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3919 else
3920 printf_unfiltered (is_enumeral
323e0a4a
AC
3921 ? _("[%d] %s (enumeral)\n")
3922 : _("[%d] %s at ?\n"),
4c4b4cd2 3923 i + first_choice,
d12307c1 3924 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3925 }
14f9c5c9 3926 }
d2e4a39e 3927
14f9c5c9 3928 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3929 "overload-choice");
14f9c5c9
AS
3930
3931 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3932 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3933
3934 return n_chosen;
3935}
3936
3937/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3938 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3939 order in CHOICES[0 .. N-1], and return N.
3940
3941 The user types choices as a sequence of numbers on one line
3942 separated by blanks, encoding them as follows:
3943
4c4b4cd2 3944 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3945 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3946 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3947
4c4b4cd2 3948 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3949
3950 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3951 prompts (for use with the -f switch). */
14f9c5c9
AS
3952
3953int
d2e4a39e 3954get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3955 int is_all_choice, char *annotation_suffix)
14f9c5c9 3956{
d2e4a39e 3957 char *args;
0bcd0149 3958 char *prompt;
14f9c5c9
AS
3959 int n_chosen;
3960 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3961
14f9c5c9
AS
3962 prompt = getenv ("PS2");
3963 if (prompt == NULL)
0bcd0149 3964 prompt = "> ";
14f9c5c9 3965
0bcd0149 3966 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3967
14f9c5c9 3968 if (args == NULL)
323e0a4a 3969 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3970
3971 n_chosen = 0;
76a01679 3972
4c4b4cd2
PH
3973 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3974 order, as given in args. Choices are validated. */
14f9c5c9
AS
3975 while (1)
3976 {
d2e4a39e 3977 char *args2;
14f9c5c9
AS
3978 int choice, j;
3979
0fcd72ba 3980 args = skip_spaces (args);
14f9c5c9 3981 if (*args == '\0' && n_chosen == 0)
323e0a4a 3982 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3983 else if (*args == '\0')
4c4b4cd2 3984 break;
14f9c5c9
AS
3985
3986 choice = strtol (args, &args2, 10);
d2e4a39e 3987 if (args == args2 || choice < 0
4c4b4cd2 3988 || choice > n_choices + first_choice - 1)
323e0a4a 3989 error (_("Argument must be choice number"));
14f9c5c9
AS
3990 args = args2;
3991
d2e4a39e 3992 if (choice == 0)
323e0a4a 3993 error (_("cancelled"));
14f9c5c9
AS
3994
3995 if (choice < first_choice)
4c4b4cd2
PH
3996 {
3997 n_chosen = n_choices;
3998 for (j = 0; j < n_choices; j += 1)
3999 choices[j] = j;
4000 break;
4001 }
14f9c5c9
AS
4002 choice -= first_choice;
4003
d2e4a39e 4004 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4005 {
4006 }
14f9c5c9
AS
4007
4008 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4009 {
4010 int k;
5b4ee69b 4011
4c4b4cd2
PH
4012 for (k = n_chosen - 1; k > j; k -= 1)
4013 choices[k + 1] = choices[k];
4014 choices[j + 1] = choice;
4015 n_chosen += 1;
4016 }
14f9c5c9
AS
4017 }
4018
4019 if (n_chosen > max_results)
323e0a4a 4020 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4021
14f9c5c9
AS
4022 return n_chosen;
4023}
4024
4c4b4cd2
PH
4025/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4026 on the function identified by SYM and BLOCK, and taking NARGS
4027 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4028
4029static void
d2e4a39e 4030replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 4031 int oplen, struct symbol *sym,
270140bd 4032 const struct block *block)
14f9c5c9
AS
4033{
4034 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4035 symbol, -oplen for operator being replaced). */
d2e4a39e 4036 struct expression *newexp = (struct expression *)
8c1a34e7 4037 xzalloc (sizeof (struct expression)
4c4b4cd2 4038 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 4039 struct expression *exp = *expp;
14f9c5c9
AS
4040
4041 newexp->nelts = exp->nelts + 7 - oplen;
4042 newexp->language_defn = exp->language_defn;
3489610d 4043 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4044 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4045 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4046 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4047
4048 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4049 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4050
4051 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4052 newexp->elts[pc + 4].block = block;
4053 newexp->elts[pc + 5].symbol = sym;
4054
4055 *expp = newexp;
aacb1f0a 4056 xfree (exp);
d2e4a39e 4057}
14f9c5c9
AS
4058
4059/* Type-class predicates */
4060
4c4b4cd2
PH
4061/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4062 or FLOAT). */
14f9c5c9
AS
4063
4064static int
d2e4a39e 4065numeric_type_p (struct type *type)
14f9c5c9
AS
4066{
4067 if (type == NULL)
4068 return 0;
d2e4a39e
AS
4069 else
4070 {
4071 switch (TYPE_CODE (type))
4c4b4cd2
PH
4072 {
4073 case TYPE_CODE_INT:
4074 case TYPE_CODE_FLT:
4075 return 1;
4076 case TYPE_CODE_RANGE:
4077 return (type == TYPE_TARGET_TYPE (type)
4078 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4079 default:
4080 return 0;
4081 }
d2e4a39e 4082 }
14f9c5c9
AS
4083}
4084
4c4b4cd2 4085/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4086
4087static int
d2e4a39e 4088integer_type_p (struct type *type)
14f9c5c9
AS
4089{
4090 if (type == NULL)
4091 return 0;
d2e4a39e
AS
4092 else
4093 {
4094 switch (TYPE_CODE (type))
4c4b4cd2
PH
4095 {
4096 case TYPE_CODE_INT:
4097 return 1;
4098 case TYPE_CODE_RANGE:
4099 return (type == TYPE_TARGET_TYPE (type)
4100 || integer_type_p (TYPE_TARGET_TYPE (type)));
4101 default:
4102 return 0;
4103 }
d2e4a39e 4104 }
14f9c5c9
AS
4105}
4106
4c4b4cd2 4107/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4108
4109static int
d2e4a39e 4110scalar_type_p (struct type *type)
14f9c5c9
AS
4111{
4112 if (type == NULL)
4113 return 0;
d2e4a39e
AS
4114 else
4115 {
4116 switch (TYPE_CODE (type))
4c4b4cd2
PH
4117 {
4118 case TYPE_CODE_INT:
4119 case TYPE_CODE_RANGE:
4120 case TYPE_CODE_ENUM:
4121 case TYPE_CODE_FLT:
4122 return 1;
4123 default:
4124 return 0;
4125 }
d2e4a39e 4126 }
14f9c5c9
AS
4127}
4128
4c4b4cd2 4129/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4130
4131static int
d2e4a39e 4132discrete_type_p (struct type *type)
14f9c5c9
AS
4133{
4134 if (type == NULL)
4135 return 0;
d2e4a39e
AS
4136 else
4137 {
4138 switch (TYPE_CODE (type))
4c4b4cd2
PH
4139 {
4140 case TYPE_CODE_INT:
4141 case TYPE_CODE_RANGE:
4142 case TYPE_CODE_ENUM:
872f0337 4143 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4144 return 1;
4145 default:
4146 return 0;
4147 }
d2e4a39e 4148 }
14f9c5c9
AS
4149}
4150
4c4b4cd2
PH
4151/* Returns non-zero if OP with operands in the vector ARGS could be
4152 a user-defined function. Errs on the side of pre-defined operators
4153 (i.e., result 0). */
14f9c5c9
AS
4154
4155static int
d2e4a39e 4156possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4157{
76a01679 4158 struct type *type0 =
df407dfe 4159 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4160 struct type *type1 =
df407dfe 4161 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4162
4c4b4cd2
PH
4163 if (type0 == NULL)
4164 return 0;
4165
14f9c5c9
AS
4166 switch (op)
4167 {
4168 default:
4169 return 0;
4170
4171 case BINOP_ADD:
4172 case BINOP_SUB:
4173 case BINOP_MUL:
4174 case BINOP_DIV:
d2e4a39e 4175 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4176
4177 case BINOP_REM:
4178 case BINOP_MOD:
4179 case BINOP_BITWISE_AND:
4180 case BINOP_BITWISE_IOR:
4181 case BINOP_BITWISE_XOR:
d2e4a39e 4182 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4183
4184 case BINOP_EQUAL:
4185 case BINOP_NOTEQUAL:
4186 case BINOP_LESS:
4187 case BINOP_GTR:
4188 case BINOP_LEQ:
4189 case BINOP_GEQ:
d2e4a39e 4190 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4191
4192 case BINOP_CONCAT:
ee90b9ab 4193 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4194
4195 case BINOP_EXP:
d2e4a39e 4196 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4197
4198 case UNOP_NEG:
4199 case UNOP_PLUS:
4200 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4201 case UNOP_ABS:
4202 return (!numeric_type_p (type0));
14f9c5c9
AS
4203
4204 }
4205}
4206\f
4c4b4cd2 4207 /* Renaming */
14f9c5c9 4208
aeb5907d
JB
4209/* NOTES:
4210
4211 1. In the following, we assume that a renaming type's name may
4212 have an ___XD suffix. It would be nice if this went away at some
4213 point.
4214 2. We handle both the (old) purely type-based representation of
4215 renamings and the (new) variable-based encoding. At some point,
4216 it is devoutly to be hoped that the former goes away
4217 (FIXME: hilfinger-2007-07-09).
4218 3. Subprogram renamings are not implemented, although the XRS
4219 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4220
4221/* If SYM encodes a renaming,
4222
4223 <renaming> renames <renamed entity>,
4224
4225 sets *LEN to the length of the renamed entity's name,
4226 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4227 the string describing the subcomponent selected from the renamed
0963b4bd 4228 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4229 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4230 are undefined). Otherwise, returns a value indicating the category
4231 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4232 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4233 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4234 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4235 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4236 may be NULL, in which case they are not assigned.
4237
4238 [Currently, however, GCC does not generate subprogram renamings.] */
4239
4240enum ada_renaming_category
4241ada_parse_renaming (struct symbol *sym,
4242 const char **renamed_entity, int *len,
4243 const char **renaming_expr)
4244{
4245 enum ada_renaming_category kind;
4246 const char *info;
4247 const char *suffix;
4248
4249 if (sym == NULL)
4250 return ADA_NOT_RENAMING;
4251 switch (SYMBOL_CLASS (sym))
14f9c5c9 4252 {
aeb5907d
JB
4253 default:
4254 return ADA_NOT_RENAMING;
4255 case LOC_TYPEDEF:
4256 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4257 renamed_entity, len, renaming_expr);
4258 case LOC_LOCAL:
4259 case LOC_STATIC:
4260 case LOC_COMPUTED:
4261 case LOC_OPTIMIZED_OUT:
4262 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4263 if (info == NULL)
4264 return ADA_NOT_RENAMING;
4265 switch (info[5])
4266 {
4267 case '_':
4268 kind = ADA_OBJECT_RENAMING;
4269 info += 6;
4270 break;
4271 case 'E':
4272 kind = ADA_EXCEPTION_RENAMING;
4273 info += 7;
4274 break;
4275 case 'P':
4276 kind = ADA_PACKAGE_RENAMING;
4277 info += 7;
4278 break;
4279 case 'S':
4280 kind = ADA_SUBPROGRAM_RENAMING;
4281 info += 7;
4282 break;
4283 default:
4284 return ADA_NOT_RENAMING;
4285 }
14f9c5c9 4286 }
4c4b4cd2 4287
aeb5907d
JB
4288 if (renamed_entity != NULL)
4289 *renamed_entity = info;
4290 suffix = strstr (info, "___XE");
4291 if (suffix == NULL || suffix == info)
4292 return ADA_NOT_RENAMING;
4293 if (len != NULL)
4294 *len = strlen (info) - strlen (suffix);
4295 suffix += 5;
4296 if (renaming_expr != NULL)
4297 *renaming_expr = suffix;
4298 return kind;
4299}
4300
4301/* Assuming TYPE encodes a renaming according to the old encoding in
4302 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4303 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4304 ADA_NOT_RENAMING otherwise. */
4305static enum ada_renaming_category
4306parse_old_style_renaming (struct type *type,
4307 const char **renamed_entity, int *len,
4308 const char **renaming_expr)
4309{
4310 enum ada_renaming_category kind;
4311 const char *name;
4312 const char *info;
4313 const char *suffix;
14f9c5c9 4314
aeb5907d
JB
4315 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4316 || TYPE_NFIELDS (type) != 1)
4317 return ADA_NOT_RENAMING;
14f9c5c9 4318
aeb5907d
JB
4319 name = type_name_no_tag (type);
4320 if (name == NULL)
4321 return ADA_NOT_RENAMING;
4322
4323 name = strstr (name, "___XR");
4324 if (name == NULL)
4325 return ADA_NOT_RENAMING;
4326 switch (name[5])
4327 {
4328 case '\0':
4329 case '_':
4330 kind = ADA_OBJECT_RENAMING;
4331 break;
4332 case 'E':
4333 kind = ADA_EXCEPTION_RENAMING;
4334 break;
4335 case 'P':
4336 kind = ADA_PACKAGE_RENAMING;
4337 break;
4338 case 'S':
4339 kind = ADA_SUBPROGRAM_RENAMING;
4340 break;
4341 default:
4342 return ADA_NOT_RENAMING;
4343 }
14f9c5c9 4344
aeb5907d
JB
4345 info = TYPE_FIELD_NAME (type, 0);
4346 if (info == NULL)
4347 return ADA_NOT_RENAMING;
4348 if (renamed_entity != NULL)
4349 *renamed_entity = info;
4350 suffix = strstr (info, "___XE");
4351 if (renaming_expr != NULL)
4352 *renaming_expr = suffix + 5;
4353 if (suffix == NULL || suffix == info)
4354 return ADA_NOT_RENAMING;
4355 if (len != NULL)
4356 *len = suffix - info;
4357 return kind;
a5ee536b
JB
4358}
4359
4360/* Compute the value of the given RENAMING_SYM, which is expected to
4361 be a symbol encoding a renaming expression. BLOCK is the block
4362 used to evaluate the renaming. */
52ce6436 4363
a5ee536b
JB
4364static struct value *
4365ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4366 const struct block *block)
a5ee536b 4367{
bbc13ae3 4368 const char *sym_name;
a5ee536b
JB
4369 struct expression *expr;
4370 struct value *value;
4371 struct cleanup *old_chain = NULL;
4372
bbc13ae3 4373 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4374 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4375 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4376 value = evaluate_expression (expr);
4377
4378 do_cleanups (old_chain);
4379 return value;
4380}
14f9c5c9 4381\f
d2e4a39e 4382
4c4b4cd2 4383 /* Evaluation: Function Calls */
14f9c5c9 4384
4c4b4cd2 4385/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4386 lvalues, and otherwise has the side-effect of allocating memory
4387 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4388
d2e4a39e 4389static struct value *
40bc484c 4390ensure_lval (struct value *val)
14f9c5c9 4391{
40bc484c
JB
4392 if (VALUE_LVAL (val) == not_lval
4393 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4394 {
df407dfe 4395 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4396 const CORE_ADDR addr =
4397 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4398
40bc484c 4399 set_value_address (val, addr);
a84a8a0d 4400 VALUE_LVAL (val) = lval_memory;
40bc484c 4401 write_memory (addr, value_contents (val), len);
c3e5cd34 4402 }
14f9c5c9
AS
4403
4404 return val;
4405}
4406
4407/* Return the value ACTUAL, converted to be an appropriate value for a
4408 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4409 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4410 values not residing in memory, updating it as needed. */
14f9c5c9 4411
a93c0eb6 4412struct value *
40bc484c 4413ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4414{
df407dfe 4415 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4416 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4417 struct type *formal_target =
4418 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4419 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4420 struct type *actual_target =
4421 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4422 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4423
4c4b4cd2 4424 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4425 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4426 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4427 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4428 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4429 {
a84a8a0d 4430 struct value *result;
5b4ee69b 4431
14f9c5c9 4432 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4433 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4434 result = desc_data (actual);
14f9c5c9 4435 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4436 {
4437 if (VALUE_LVAL (actual) != lval_memory)
4438 {
4439 struct value *val;
5b4ee69b 4440
df407dfe 4441 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4442 val = allocate_value (actual_type);
990a07ab 4443 memcpy ((char *) value_contents_raw (val),
0fd88904 4444 (char *) value_contents (actual),
4c4b4cd2 4445 TYPE_LENGTH (actual_type));
40bc484c 4446 actual = ensure_lval (val);
4c4b4cd2 4447 }
a84a8a0d 4448 result = value_addr (actual);
4c4b4cd2 4449 }
a84a8a0d
JB
4450 else
4451 return actual;
b1af9e97 4452 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4453 }
4454 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4455 return ada_value_ind (actual);
8344af1e
JB
4456 else if (ada_is_aligner_type (formal_type))
4457 {
4458 /* We need to turn this parameter into an aligner type
4459 as well. */
4460 struct value *aligner = allocate_value (formal_type);
4461 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4462
4463 value_assign_to_component (aligner, component, actual);
4464 return aligner;
4465 }
14f9c5c9
AS
4466
4467 return actual;
4468}
4469
438c98a1
JB
4470/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4471 type TYPE. This is usually an inefficient no-op except on some targets
4472 (such as AVR) where the representation of a pointer and an address
4473 differs. */
4474
4475static CORE_ADDR
4476value_pointer (struct value *value, struct type *type)
4477{
4478 struct gdbarch *gdbarch = get_type_arch (type);
4479 unsigned len = TYPE_LENGTH (type);
224c3ddb 4480 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4481 CORE_ADDR addr;
4482
4483 addr = value_address (value);
4484 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4485 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4486 return addr;
4487}
4488
14f9c5c9 4489
4c4b4cd2
PH
4490/* Push a descriptor of type TYPE for array value ARR on the stack at
4491 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4492 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4493 to-descriptor type rather than a descriptor type), a struct value *
4494 representing a pointer to this descriptor. */
14f9c5c9 4495
d2e4a39e 4496static struct value *
40bc484c 4497make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4498{
d2e4a39e
AS
4499 struct type *bounds_type = desc_bounds_type (type);
4500 struct type *desc_type = desc_base_type (type);
4501 struct value *descriptor = allocate_value (desc_type);
4502 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4503 int i;
d2e4a39e 4504
0963b4bd
MS
4505 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4506 i > 0; i -= 1)
14f9c5c9 4507 {
19f220c3
JK
4508 modify_field (value_type (bounds), value_contents_writeable (bounds),
4509 ada_array_bound (arr, i, 0),
4510 desc_bound_bitpos (bounds_type, i, 0),
4511 desc_bound_bitsize (bounds_type, i, 0));
4512 modify_field (value_type (bounds), value_contents_writeable (bounds),
4513 ada_array_bound (arr, i, 1),
4514 desc_bound_bitpos (bounds_type, i, 1),
4515 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4516 }
d2e4a39e 4517
40bc484c 4518 bounds = ensure_lval (bounds);
d2e4a39e 4519
19f220c3
JK
4520 modify_field (value_type (descriptor),
4521 value_contents_writeable (descriptor),
4522 value_pointer (ensure_lval (arr),
4523 TYPE_FIELD_TYPE (desc_type, 0)),
4524 fat_pntr_data_bitpos (desc_type),
4525 fat_pntr_data_bitsize (desc_type));
4526
4527 modify_field (value_type (descriptor),
4528 value_contents_writeable (descriptor),
4529 value_pointer (bounds,
4530 TYPE_FIELD_TYPE (desc_type, 1)),
4531 fat_pntr_bounds_bitpos (desc_type),
4532 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4533
40bc484c 4534 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4535
4536 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4537 return value_addr (descriptor);
4538 else
4539 return descriptor;
4540}
14f9c5c9 4541\f
3d9434b5
JB
4542 /* Symbol Cache Module */
4543
3d9434b5 4544/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4545 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4546 on the type of entity being printed, the cache can make it as much
4547 as an order of magnitude faster than without it.
4548
4549 The descriptive type DWARF extension has significantly reduced
4550 the need for this cache, at least when DWARF is being used. However,
4551 even in this case, some expensive name-based symbol searches are still
4552 sometimes necessary - to find an XVZ variable, mostly. */
4553
ee01b665 4554/* Initialize the contents of SYM_CACHE. */
3d9434b5 4555
ee01b665
JB
4556static void
4557ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4558{
4559 obstack_init (&sym_cache->cache_space);
4560 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4561}
3d9434b5 4562
ee01b665
JB
4563/* Free the memory used by SYM_CACHE. */
4564
4565static void
4566ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4567{
ee01b665
JB
4568 obstack_free (&sym_cache->cache_space, NULL);
4569 xfree (sym_cache);
4570}
3d9434b5 4571
ee01b665
JB
4572/* Return the symbol cache associated to the given program space PSPACE.
4573 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4574
ee01b665
JB
4575static struct ada_symbol_cache *
4576ada_get_symbol_cache (struct program_space *pspace)
4577{
4578 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4579
66c168ae 4580 if (pspace_data->sym_cache == NULL)
ee01b665 4581 {
66c168ae
JB
4582 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4583 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4584 }
4585
66c168ae 4586 return pspace_data->sym_cache;
ee01b665 4587}
3d9434b5
JB
4588
4589/* Clear all entries from the symbol cache. */
4590
4591static void
4592ada_clear_symbol_cache (void)
4593{
ee01b665
JB
4594 struct ada_symbol_cache *sym_cache
4595 = ada_get_symbol_cache (current_program_space);
4596
4597 obstack_free (&sym_cache->cache_space, NULL);
4598 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4599}
4600
fe978cb0 4601/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4602 Return it if found, or NULL otherwise. */
4603
4604static struct cache_entry **
fe978cb0 4605find_entry (const char *name, domain_enum domain)
3d9434b5 4606{
ee01b665
JB
4607 struct ada_symbol_cache *sym_cache
4608 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4609 int h = msymbol_hash (name) % HASH_SIZE;
4610 struct cache_entry **e;
4611
ee01b665 4612 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4613 {
fe978cb0 4614 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4615 return e;
4616 }
4617 return NULL;
4618}
4619
fe978cb0 4620/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4621 Return 1 if found, 0 otherwise.
4622
4623 If an entry was found and SYM is not NULL, set *SYM to the entry's
4624 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4625
96d887e8 4626static int
fe978cb0 4627lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4628 struct symbol **sym, const struct block **block)
96d887e8 4629{
fe978cb0 4630 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4631
4632 if (e == NULL)
4633 return 0;
4634 if (sym != NULL)
4635 *sym = (*e)->sym;
4636 if (block != NULL)
4637 *block = (*e)->block;
4638 return 1;
96d887e8
PH
4639}
4640
3d9434b5 4641/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4642 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4643
96d887e8 4644static void
fe978cb0 4645cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4646 const struct block *block)
96d887e8 4647{
ee01b665
JB
4648 struct ada_symbol_cache *sym_cache
4649 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4650 int h;
4651 char *copy;
4652 struct cache_entry *e;
4653
1994afbf
DE
4654 /* Symbols for builtin types don't have a block.
4655 For now don't cache such symbols. */
4656 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4657 return;
4658
3d9434b5
JB
4659 /* If the symbol is a local symbol, then do not cache it, as a search
4660 for that symbol depends on the context. To determine whether
4661 the symbol is local or not, we check the block where we found it
4662 against the global and static blocks of its associated symtab. */
4663 if (sym
08be3fe3 4664 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4665 GLOBAL_BLOCK) != block
08be3fe3 4666 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4667 STATIC_BLOCK) != block)
3d9434b5
JB
4668 return;
4669
4670 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4671 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4672 sizeof (*e));
4673 e->next = sym_cache->root[h];
4674 sym_cache->root[h] = e;
224c3ddb
SM
4675 e->name = copy
4676 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4677 strcpy (copy, name);
4678 e->sym = sym;
fe978cb0 4679 e->domain = domain;
3d9434b5 4680 e->block = block;
96d887e8 4681}
4c4b4cd2
PH
4682\f
4683 /* Symbol Lookup */
4684
c0431670
JB
4685/* Return nonzero if wild matching should be used when searching for
4686 all symbols matching LOOKUP_NAME.
4687
4688 LOOKUP_NAME is expected to be a symbol name after transformation
4689 for Ada lookups (see ada_name_for_lookup). */
4690
4691static int
4692should_use_wild_match (const char *lookup_name)
4693{
4694 return (strstr (lookup_name, "__") == NULL);
4695}
4696
4c4b4cd2
PH
4697/* Return the result of a standard (literal, C-like) lookup of NAME in
4698 given DOMAIN, visible from lexical block BLOCK. */
4699
4700static struct symbol *
4701standard_lookup (const char *name, const struct block *block,
4702 domain_enum domain)
4703{
acbd605d 4704 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4705 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4706
d12307c1
PMR
4707 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4708 return sym.symbol;
2570f2b7 4709 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4710 cache_symbol (name, domain, sym.symbol, sym.block);
4711 return sym.symbol;
4c4b4cd2
PH
4712}
4713
4714
4715/* Non-zero iff there is at least one non-function/non-enumeral symbol
4716 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4717 since they contend in overloading in the same way. */
4718static int
d12307c1 4719is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4720{
4721 int i;
4722
4723 for (i = 0; i < n; i += 1)
d12307c1
PMR
4724 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4725 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4726 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4727 return 1;
4728
4729 return 0;
4730}
4731
4732/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4733 struct types. Otherwise, they may not. */
14f9c5c9
AS
4734
4735static int
d2e4a39e 4736equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4737{
d2e4a39e 4738 if (type0 == type1)
14f9c5c9 4739 return 1;
d2e4a39e 4740 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4741 || TYPE_CODE (type0) != TYPE_CODE (type1))
4742 return 0;
d2e4a39e 4743 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4744 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4745 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4746 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4747 return 1;
d2e4a39e 4748
14f9c5c9
AS
4749 return 0;
4750}
4751
4752/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4753 no more defined than that of SYM1. */
14f9c5c9
AS
4754
4755static int
d2e4a39e 4756lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4757{
4758 if (sym0 == sym1)
4759 return 1;
176620f1 4760 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4761 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4762 return 0;
4763
d2e4a39e 4764 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4765 {
4766 case LOC_UNDEF:
4767 return 1;
4768 case LOC_TYPEDEF:
4769 {
4c4b4cd2
PH
4770 struct type *type0 = SYMBOL_TYPE (sym0);
4771 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4772 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4773 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4774 int len0 = strlen (name0);
5b4ee69b 4775
4c4b4cd2
PH
4776 return
4777 TYPE_CODE (type0) == TYPE_CODE (type1)
4778 && (equiv_types (type0, type1)
4779 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4780 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4781 }
4782 case LOC_CONST:
4783 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4784 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4785 default:
4786 return 0;
14f9c5c9
AS
4787 }
4788}
4789
d12307c1 4790/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4791 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4792
4793static void
76a01679
JB
4794add_defn_to_vec (struct obstack *obstackp,
4795 struct symbol *sym,
f0c5f9b2 4796 const struct block *block)
14f9c5c9
AS
4797{
4798 int i;
d12307c1 4799 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4800
529cad9c
PH
4801 /* Do not try to complete stub types, as the debugger is probably
4802 already scanning all symbols matching a certain name at the
4803 time when this function is called. Trying to replace the stub
4804 type by its associated full type will cause us to restart a scan
4805 which may lead to an infinite recursion. Instead, the client
4806 collecting the matching symbols will end up collecting several
4807 matches, with at least one of them complete. It can then filter
4808 out the stub ones if needed. */
4809
4c4b4cd2
PH
4810 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4811 {
d12307c1 4812 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4813 return;
d12307c1 4814 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4815 {
d12307c1 4816 prevDefns[i].symbol = sym;
4c4b4cd2 4817 prevDefns[i].block = block;
4c4b4cd2 4818 return;
76a01679 4819 }
4c4b4cd2
PH
4820 }
4821
4822 {
d12307c1 4823 struct block_symbol info;
4c4b4cd2 4824
d12307c1 4825 info.symbol = sym;
4c4b4cd2 4826 info.block = block;
d12307c1 4827 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4828 }
4829}
4830
d12307c1
PMR
4831/* Number of block_symbol structures currently collected in current vector in
4832 OBSTACKP. */
4c4b4cd2 4833
76a01679
JB
4834static int
4835num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4836{
d12307c1 4837 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4838}
4839
d12307c1
PMR
4840/* Vector of block_symbol structures currently collected in current vector in
4841 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4842
d12307c1 4843static struct block_symbol *
4c4b4cd2
PH
4844defns_collected (struct obstack *obstackp, int finish)
4845{
4846 if (finish)
224c3ddb 4847 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4848 else
d12307c1 4849 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4850}
4851
7c7b6655
TT
4852/* Return a bound minimal symbol matching NAME according to Ada
4853 decoding rules. Returns an invalid symbol if there is no such
4854 minimal symbol. Names prefixed with "standard__" are handled
4855 specially: "standard__" is first stripped off, and only static and
4856 global symbols are searched. */
4c4b4cd2 4857
7c7b6655 4858struct bound_minimal_symbol
96d887e8 4859ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4860{
7c7b6655 4861 struct bound_minimal_symbol result;
4c4b4cd2 4862 struct objfile *objfile;
96d887e8 4863 struct minimal_symbol *msymbol;
dc4024cd 4864 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4865
7c7b6655
TT
4866 memset (&result, 0, sizeof (result));
4867
c0431670
JB
4868 /* Special case: If the user specifies a symbol name inside package
4869 Standard, do a non-wild matching of the symbol name without
4870 the "standard__" prefix. This was primarily introduced in order
4871 to allow the user to specifically access the standard exceptions
4872 using, for instance, Standard.Constraint_Error when Constraint_Error
4873 is ambiguous (due to the user defining its own Constraint_Error
4874 entity inside its program). */
61012eef 4875 if (startswith (name, "standard__"))
c0431670 4876 name += sizeof ("standard__") - 1;
4c4b4cd2 4877
96d887e8
PH
4878 ALL_MSYMBOLS (objfile, msymbol)
4879 {
efd66ac6 4880 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4881 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4882 {
4883 result.minsym = msymbol;
4884 result.objfile = objfile;
4885 break;
4886 }
96d887e8 4887 }
4c4b4cd2 4888
7c7b6655 4889 return result;
96d887e8 4890}
4c4b4cd2 4891
96d887e8
PH
4892/* For all subprograms that statically enclose the subprogram of the
4893 selected frame, add symbols matching identifier NAME in DOMAIN
4894 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4895 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4896 with a wildcard prefix. */
4c4b4cd2 4897
96d887e8
PH
4898static void
4899add_symbols_from_enclosing_procs (struct obstack *obstackp,
fe978cb0 4900 const char *name, domain_enum domain,
48b78332 4901 int wild_match_p)
96d887e8 4902{
96d887e8 4903}
14f9c5c9 4904
96d887e8
PH
4905/* True if TYPE is definitely an artificial type supplied to a symbol
4906 for which no debugging information was given in the symbol file. */
14f9c5c9 4907
96d887e8
PH
4908static int
4909is_nondebugging_type (struct type *type)
4910{
0d5cff50 4911 const char *name = ada_type_name (type);
5b4ee69b 4912
96d887e8
PH
4913 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4914}
4c4b4cd2 4915
8f17729f
JB
4916/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4917 that are deemed "identical" for practical purposes.
4918
4919 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4920 types and that their number of enumerals is identical (in other
4921 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4922
4923static int
4924ada_identical_enum_types_p (struct type *type1, struct type *type2)
4925{
4926 int i;
4927
4928 /* The heuristic we use here is fairly conservative. We consider
4929 that 2 enumerate types are identical if they have the same
4930 number of enumerals and that all enumerals have the same
4931 underlying value and name. */
4932
4933 /* All enums in the type should have an identical underlying value. */
4934 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4935 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4936 return 0;
4937
4938 /* All enumerals should also have the same name (modulo any numerical
4939 suffix). */
4940 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4941 {
0d5cff50
DE
4942 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4943 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4944 int len_1 = strlen (name_1);
4945 int len_2 = strlen (name_2);
4946
4947 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4948 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4949 if (len_1 != len_2
4950 || strncmp (TYPE_FIELD_NAME (type1, i),
4951 TYPE_FIELD_NAME (type2, i),
4952 len_1) != 0)
4953 return 0;
4954 }
4955
4956 return 1;
4957}
4958
4959/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4960 that are deemed "identical" for practical purposes. Sometimes,
4961 enumerals are not strictly identical, but their types are so similar
4962 that they can be considered identical.
4963
4964 For instance, consider the following code:
4965
4966 type Color is (Black, Red, Green, Blue, White);
4967 type RGB_Color is new Color range Red .. Blue;
4968
4969 Type RGB_Color is a subrange of an implicit type which is a copy
4970 of type Color. If we call that implicit type RGB_ColorB ("B" is
4971 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4972 As a result, when an expression references any of the enumeral
4973 by name (Eg. "print green"), the expression is technically
4974 ambiguous and the user should be asked to disambiguate. But
4975 doing so would only hinder the user, since it wouldn't matter
4976 what choice he makes, the outcome would always be the same.
4977 So, for practical purposes, we consider them as the same. */
4978
4979static int
d12307c1 4980symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
4981{
4982 int i;
4983
4984 /* Before performing a thorough comparison check of each type,
4985 we perform a series of inexpensive checks. We expect that these
4986 checks will quickly fail in the vast majority of cases, and thus
4987 help prevent the unnecessary use of a more expensive comparison.
4988 Said comparison also expects us to make some of these checks
4989 (see ada_identical_enum_types_p). */
4990
4991 /* Quick check: All symbols should have an enum type. */
4992 for (i = 0; i < nsyms; i++)
d12307c1 4993 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
4994 return 0;
4995
4996 /* Quick check: They should all have the same value. */
4997 for (i = 1; i < nsyms; i++)
d12307c1 4998 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4999 return 0;
5000
5001 /* Quick check: They should all have the same number of enumerals. */
5002 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5003 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5004 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5005 return 0;
5006
5007 /* All the sanity checks passed, so we might have a set of
5008 identical enumeration types. Perform a more complete
5009 comparison of the type of each symbol. */
5010 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5011 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5012 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5013 return 0;
5014
5015 return 1;
5016}
5017
96d887e8
PH
5018/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5019 duplicate other symbols in the list (The only case I know of where
5020 this happens is when object files containing stabs-in-ecoff are
5021 linked with files containing ordinary ecoff debugging symbols (or no
5022 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5023 Returns the number of items in the modified list. */
4c4b4cd2 5024
96d887e8 5025static int
d12307c1 5026remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5027{
5028 int i, j;
4c4b4cd2 5029
8f17729f
JB
5030 /* We should never be called with less than 2 symbols, as there
5031 cannot be any extra symbol in that case. But it's easy to
5032 handle, since we have nothing to do in that case. */
5033 if (nsyms < 2)
5034 return nsyms;
5035
96d887e8
PH
5036 i = 0;
5037 while (i < nsyms)
5038 {
a35ddb44 5039 int remove_p = 0;
339c13b6
JB
5040
5041 /* If two symbols have the same name and one of them is a stub type,
5042 the get rid of the stub. */
5043
d12307c1
PMR
5044 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5045 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5046 {
5047 for (j = 0; j < nsyms; j++)
5048 {
5049 if (j != i
d12307c1
PMR
5050 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5051 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5052 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5053 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5054 remove_p = 1;
339c13b6
JB
5055 }
5056 }
5057
5058 /* Two symbols with the same name, same class and same address
5059 should be identical. */
5060
d12307c1
PMR
5061 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5062 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5063 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5064 {
5065 for (j = 0; j < nsyms; j += 1)
5066 {
5067 if (i != j
d12307c1
PMR
5068 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5069 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5070 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5071 && SYMBOL_CLASS (syms[i].symbol)
5072 == SYMBOL_CLASS (syms[j].symbol)
5073 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5074 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5075 remove_p = 1;
4c4b4cd2 5076 }
4c4b4cd2 5077 }
339c13b6 5078
a35ddb44 5079 if (remove_p)
339c13b6
JB
5080 {
5081 for (j = i + 1; j < nsyms; j += 1)
5082 syms[j - 1] = syms[j];
5083 nsyms -= 1;
5084 }
5085
96d887e8 5086 i += 1;
14f9c5c9 5087 }
8f17729f
JB
5088
5089 /* If all the remaining symbols are identical enumerals, then
5090 just keep the first one and discard the rest.
5091
5092 Unlike what we did previously, we do not discard any entry
5093 unless they are ALL identical. This is because the symbol
5094 comparison is not a strict comparison, but rather a practical
5095 comparison. If all symbols are considered identical, then
5096 we can just go ahead and use the first one and discard the rest.
5097 But if we cannot reduce the list to a single element, we have
5098 to ask the user to disambiguate anyways. And if we have to
5099 present a multiple-choice menu, it's less confusing if the list
5100 isn't missing some choices that were identical and yet distinct. */
5101 if (symbols_are_identical_enums (syms, nsyms))
5102 nsyms = 1;
5103
96d887e8 5104 return nsyms;
14f9c5c9
AS
5105}
5106
96d887e8
PH
5107/* Given a type that corresponds to a renaming entity, use the type name
5108 to extract the scope (package name or function name, fully qualified,
5109 and following the GNAT encoding convention) where this renaming has been
5110 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5111
96d887e8
PH
5112static char *
5113xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5114{
96d887e8 5115 /* The renaming types adhere to the following convention:
0963b4bd 5116 <scope>__<rename>___<XR extension>.
96d887e8
PH
5117 So, to extract the scope, we search for the "___XR" extension,
5118 and then backtrack until we find the first "__". */
76a01679 5119
96d887e8 5120 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5121 const char *suffix = strstr (name, "___XR");
5122 const char *last;
96d887e8
PH
5123 int scope_len;
5124 char *scope;
14f9c5c9 5125
96d887e8
PH
5126 /* Now, backtrack a bit until we find the first "__". Start looking
5127 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5128
96d887e8
PH
5129 for (last = suffix - 3; last > name; last--)
5130 if (last[0] == '_' && last[1] == '_')
5131 break;
76a01679 5132
96d887e8 5133 /* Make a copy of scope and return it. */
14f9c5c9 5134
96d887e8
PH
5135 scope_len = last - name;
5136 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5137
96d887e8
PH
5138 strncpy (scope, name, scope_len);
5139 scope[scope_len] = '\0';
4c4b4cd2 5140
96d887e8 5141 return scope;
4c4b4cd2
PH
5142}
5143
96d887e8 5144/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5145
96d887e8
PH
5146static int
5147is_package_name (const char *name)
4c4b4cd2 5148{
96d887e8
PH
5149 /* Here, We take advantage of the fact that no symbols are generated
5150 for packages, while symbols are generated for each function.
5151 So the condition for NAME represent a package becomes equivalent
5152 to NAME not existing in our list of symbols. There is only one
5153 small complication with library-level functions (see below). */
4c4b4cd2 5154
96d887e8 5155 char *fun_name;
76a01679 5156
96d887e8
PH
5157 /* If it is a function that has not been defined at library level,
5158 then we should be able to look it up in the symbols. */
5159 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5160 return 0;
14f9c5c9 5161
96d887e8
PH
5162 /* Library-level function names start with "_ada_". See if function
5163 "_ada_" followed by NAME can be found. */
14f9c5c9 5164
96d887e8 5165 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5166 functions names cannot contain "__" in them. */
96d887e8
PH
5167 if (strstr (name, "__") != NULL)
5168 return 0;
4c4b4cd2 5169
b435e160 5170 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5171
96d887e8
PH
5172 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5173}
14f9c5c9 5174
96d887e8 5175/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5176 not visible from FUNCTION_NAME. */
14f9c5c9 5177
96d887e8 5178static int
0d5cff50 5179old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5180{
aeb5907d 5181 char *scope;
1509e573 5182 struct cleanup *old_chain;
aeb5907d
JB
5183
5184 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5185 return 0;
5186
5187 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5188 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5189
96d887e8
PH
5190 /* If the rename has been defined in a package, then it is visible. */
5191 if (is_package_name (scope))
1509e573
JB
5192 {
5193 do_cleanups (old_chain);
5194 return 0;
5195 }
14f9c5c9 5196
96d887e8
PH
5197 /* Check that the rename is in the current function scope by checking
5198 that its name starts with SCOPE. */
76a01679 5199
96d887e8
PH
5200 /* If the function name starts with "_ada_", it means that it is
5201 a library-level function. Strip this prefix before doing the
5202 comparison, as the encoding for the renaming does not contain
5203 this prefix. */
61012eef 5204 if (startswith (function_name, "_ada_"))
96d887e8 5205 function_name += 5;
f26caa11 5206
1509e573 5207 {
61012eef 5208 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5209
5210 do_cleanups (old_chain);
5211 return is_invisible;
5212 }
f26caa11
PH
5213}
5214
aeb5907d
JB
5215/* Remove entries from SYMS that corresponds to a renaming entity that
5216 is not visible from the function associated with CURRENT_BLOCK or
5217 that is superfluous due to the presence of more specific renaming
5218 information. Places surviving symbols in the initial entries of
5219 SYMS and returns the number of surviving symbols.
96d887e8
PH
5220
5221 Rationale:
aeb5907d
JB
5222 First, in cases where an object renaming is implemented as a
5223 reference variable, GNAT may produce both the actual reference
5224 variable and the renaming encoding. In this case, we discard the
5225 latter.
5226
5227 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5228 entity. Unfortunately, STABS currently does not support the definition
5229 of types that are local to a given lexical block, so all renamings types
5230 are emitted at library level. As a consequence, if an application
5231 contains two renaming entities using the same name, and a user tries to
5232 print the value of one of these entities, the result of the ada symbol
5233 lookup will also contain the wrong renaming type.
f26caa11 5234
96d887e8
PH
5235 This function partially covers for this limitation by attempting to
5236 remove from the SYMS list renaming symbols that should be visible
5237 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5238 method with the current information available. The implementation
5239 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5240
5241 - When the user tries to print a rename in a function while there
5242 is another rename entity defined in a package: Normally, the
5243 rename in the function has precedence over the rename in the
5244 package, so the latter should be removed from the list. This is
5245 currently not the case.
5246
5247 - This function will incorrectly remove valid renames if
5248 the CURRENT_BLOCK corresponds to a function which symbol name
5249 has been changed by an "Export" pragma. As a consequence,
5250 the user will be unable to print such rename entities. */
4c4b4cd2 5251
14f9c5c9 5252static int
d12307c1 5253remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5254 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5255{
5256 struct symbol *current_function;
0d5cff50 5257 const char *current_function_name;
4c4b4cd2 5258 int i;
aeb5907d
JB
5259 int is_new_style_renaming;
5260
5261 /* If there is both a renaming foo___XR... encoded as a variable and
5262 a simple variable foo in the same block, discard the latter.
0963b4bd 5263 First, zero out such symbols, then compress. */
aeb5907d
JB
5264 is_new_style_renaming = 0;
5265 for (i = 0; i < nsyms; i += 1)
5266 {
d12307c1 5267 struct symbol *sym = syms[i].symbol;
270140bd 5268 const struct block *block = syms[i].block;
aeb5907d
JB
5269 const char *name;
5270 const char *suffix;
5271
5272 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5273 continue;
5274 name = SYMBOL_LINKAGE_NAME (sym);
5275 suffix = strstr (name, "___XR");
5276
5277 if (suffix != NULL)
5278 {
5279 int name_len = suffix - name;
5280 int j;
5b4ee69b 5281
aeb5907d
JB
5282 is_new_style_renaming = 1;
5283 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5284 if (i != j && syms[j].symbol != NULL
5285 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5286 name_len) == 0
5287 && block == syms[j].block)
d12307c1 5288 syms[j].symbol = NULL;
aeb5907d
JB
5289 }
5290 }
5291 if (is_new_style_renaming)
5292 {
5293 int j, k;
5294
5295 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5296 if (syms[j].symbol != NULL)
aeb5907d
JB
5297 {
5298 syms[k] = syms[j];
5299 k += 1;
5300 }
5301 return k;
5302 }
4c4b4cd2
PH
5303
5304 /* Extract the function name associated to CURRENT_BLOCK.
5305 Abort if unable to do so. */
76a01679 5306
4c4b4cd2
PH
5307 if (current_block == NULL)
5308 return nsyms;
76a01679 5309
7f0df278 5310 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5311 if (current_function == NULL)
5312 return nsyms;
5313
5314 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5315 if (current_function_name == NULL)
5316 return nsyms;
5317
5318 /* Check each of the symbols, and remove it from the list if it is
5319 a type corresponding to a renaming that is out of the scope of
5320 the current block. */
5321
5322 i = 0;
5323 while (i < nsyms)
5324 {
d12307c1 5325 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5326 == ADA_OBJECT_RENAMING
d12307c1 5327 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5328 {
5329 int j;
5b4ee69b 5330
aeb5907d 5331 for (j = i + 1; j < nsyms; j += 1)
76a01679 5332 syms[j - 1] = syms[j];
4c4b4cd2
PH
5333 nsyms -= 1;
5334 }
5335 else
5336 i += 1;
5337 }
5338
5339 return nsyms;
5340}
5341
339c13b6
JB
5342/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5343 whose name and domain match NAME and DOMAIN respectively.
5344 If no match was found, then extend the search to "enclosing"
5345 routines (in other words, if we're inside a nested function,
5346 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5347 If WILD_MATCH_P is nonzero, perform the naming matching in
5348 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5349
5350 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5351
5352static void
5353ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5354 const struct block *block, domain_enum domain,
d0a8ab18 5355 int wild_match_p)
339c13b6
JB
5356{
5357 int block_depth = 0;
5358
5359 while (block != NULL)
5360 {
5361 block_depth += 1;
d0a8ab18
JB
5362 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5363 wild_match_p);
339c13b6
JB
5364
5365 /* If we found a non-function match, assume that's the one. */
5366 if (is_nonfunction (defns_collected (obstackp, 0),
5367 num_defns_collected (obstackp)))
5368 return;
5369
5370 block = BLOCK_SUPERBLOCK (block);
5371 }
5372
5373 /* If no luck so far, try to find NAME as a local symbol in some lexically
5374 enclosing subprogram. */
5375 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5376 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5377}
5378
ccefe4c4 5379/* An object of this type is used as the user_data argument when
40658b94 5380 calling the map_matching_symbols method. */
ccefe4c4 5381
40658b94 5382struct match_data
ccefe4c4 5383{
40658b94 5384 struct objfile *objfile;
ccefe4c4 5385 struct obstack *obstackp;
40658b94
PH
5386 struct symbol *arg_sym;
5387 int found_sym;
ccefe4c4
TT
5388};
5389
22cee43f 5390/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5391 to a list of symbols. DATA0 is a pointer to a struct match_data *
5392 containing the obstack that collects the symbol list, the file that SYM
5393 must come from, a flag indicating whether a non-argument symbol has
5394 been found in the current block, and the last argument symbol
5395 passed in SYM within the current block (if any). When SYM is null,
5396 marking the end of a block, the argument symbol is added if no
5397 other has been found. */
ccefe4c4 5398
40658b94
PH
5399static int
5400aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5401{
40658b94
PH
5402 struct match_data *data = (struct match_data *) data0;
5403
5404 if (sym == NULL)
5405 {
5406 if (!data->found_sym && data->arg_sym != NULL)
5407 add_defn_to_vec (data->obstackp,
5408 fixup_symbol_section (data->arg_sym, data->objfile),
5409 block);
5410 data->found_sym = 0;
5411 data->arg_sym = NULL;
5412 }
5413 else
5414 {
5415 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5416 return 0;
5417 else if (SYMBOL_IS_ARGUMENT (sym))
5418 data->arg_sym = sym;
5419 else
5420 {
5421 data->found_sym = 1;
5422 add_defn_to_vec (data->obstackp,
5423 fixup_symbol_section (sym, data->objfile),
5424 block);
5425 }
5426 }
5427 return 0;
5428}
5429
22cee43f
PMR
5430/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5431 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5432 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5433 function "wild_match" for more information). Return whether we found such
5434 symbols. */
5435
5436static int
5437ada_add_block_renamings (struct obstack *obstackp,
5438 const struct block *block,
5439 const char *name,
5440 domain_enum domain,
5441 int wild_match_p)
5442{
5443 struct using_direct *renaming;
5444 int defns_mark = num_defns_collected (obstackp);
5445
5446 for (renaming = block_using (block);
5447 renaming != NULL;
5448 renaming = renaming->next)
5449 {
5450 const char *r_name;
5451 int name_match;
5452
5453 /* Avoid infinite recursions: skip this renaming if we are actually
5454 already traversing it.
5455
5456 Currently, symbol lookup in Ada don't use the namespace machinery from
5457 C++/Fortran support: skip namespace imports that use them. */
5458 if (renaming->searched
5459 || (renaming->import_src != NULL
5460 && renaming->import_src[0] != '\0')
5461 || (renaming->import_dest != NULL
5462 && renaming->import_dest[0] != '\0'))
5463 continue;
5464 renaming->searched = 1;
5465
5466 /* TODO: here, we perform another name-based symbol lookup, which can
5467 pull its own multiple overloads. In theory, we should be able to do
5468 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5469 not a simple name. But in order to do this, we would need to enhance
5470 the DWARF reader to associate a symbol to this renaming, instead of a
5471 name. So, for now, we do something simpler: re-use the C++/Fortran
5472 namespace machinery. */
5473 r_name = (renaming->alias != NULL
5474 ? renaming->alias
5475 : renaming->declaration);
5476 name_match
5477 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5478 if (name_match == 0)
5479 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5480 1, NULL);
5481 renaming->searched = 0;
5482 }
5483 return num_defns_collected (obstackp) != defns_mark;
5484}
5485
db230ce3
JB
5486/* Implements compare_names, but only applying the comparision using
5487 the given CASING. */
5b4ee69b 5488
40658b94 5489static int
db230ce3
JB
5490compare_names_with_case (const char *string1, const char *string2,
5491 enum case_sensitivity casing)
40658b94
PH
5492{
5493 while (*string1 != '\0' && *string2 != '\0')
5494 {
db230ce3
JB
5495 char c1, c2;
5496
40658b94
PH
5497 if (isspace (*string1) || isspace (*string2))
5498 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5499
5500 if (casing == case_sensitive_off)
5501 {
5502 c1 = tolower (*string1);
5503 c2 = tolower (*string2);
5504 }
5505 else
5506 {
5507 c1 = *string1;
5508 c2 = *string2;
5509 }
5510 if (c1 != c2)
40658b94 5511 break;
db230ce3 5512
40658b94
PH
5513 string1 += 1;
5514 string2 += 1;
5515 }
db230ce3 5516
40658b94
PH
5517 switch (*string1)
5518 {
5519 case '(':
5520 return strcmp_iw_ordered (string1, string2);
5521 case '_':
5522 if (*string2 == '\0')
5523 {
052874e8 5524 if (is_name_suffix (string1))
40658b94
PH
5525 return 0;
5526 else
1a1d5513 5527 return 1;
40658b94 5528 }
dbb8534f 5529 /* FALLTHROUGH */
40658b94
PH
5530 default:
5531 if (*string2 == '(')
5532 return strcmp_iw_ordered (string1, string2);
5533 else
db230ce3
JB
5534 {
5535 if (casing == case_sensitive_off)
5536 return tolower (*string1) - tolower (*string2);
5537 else
5538 return *string1 - *string2;
5539 }
40658b94 5540 }
ccefe4c4
TT
5541}
5542
db230ce3
JB
5543/* Compare STRING1 to STRING2, with results as for strcmp.
5544 Compatible with strcmp_iw_ordered in that...
5545
5546 strcmp_iw_ordered (STRING1, STRING2) <= 0
5547
5548 ... implies...
5549
5550 compare_names (STRING1, STRING2) <= 0
5551
5552 (they may differ as to what symbols compare equal). */
5553
5554static int
5555compare_names (const char *string1, const char *string2)
5556{
5557 int result;
5558
5559 /* Similar to what strcmp_iw_ordered does, we need to perform
5560 a case-insensitive comparison first, and only resort to
5561 a second, case-sensitive, comparison if the first one was
5562 not sufficient to differentiate the two strings. */
5563
5564 result = compare_names_with_case (string1, string2, case_sensitive_off);
5565 if (result == 0)
5566 result = compare_names_with_case (string1, string2, case_sensitive_on);
5567
5568 return result;
5569}
5570
339c13b6
JB
5571/* Add to OBSTACKP all non-local symbols whose name and domain match
5572 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5573 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5574
5575static void
40658b94
PH
5576add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5577 domain_enum domain, int global,
5578 int is_wild_match)
339c13b6
JB
5579{
5580 struct objfile *objfile;
22cee43f 5581 struct compunit_symtab *cu;
40658b94 5582 struct match_data data;
339c13b6 5583
6475f2fe 5584 memset (&data, 0, sizeof data);
ccefe4c4 5585 data.obstackp = obstackp;
339c13b6 5586
ccefe4c4 5587 ALL_OBJFILES (objfile)
40658b94
PH
5588 {
5589 data.objfile = objfile;
5590
5591 if (is_wild_match)
4186eb54
KS
5592 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5593 aux_add_nonlocal_symbols, &data,
5594 wild_match, NULL);
40658b94 5595 else
4186eb54
KS
5596 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5597 aux_add_nonlocal_symbols, &data,
5598 full_match, compare_names);
22cee43f
PMR
5599
5600 ALL_OBJFILE_COMPUNITS (objfile, cu)
5601 {
5602 const struct block *global_block
5603 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5604
5605 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5606 is_wild_match))
5607 data.found_sym = 1;
5608 }
40658b94
PH
5609 }
5610
5611 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5612 {
5613 ALL_OBJFILES (objfile)
5614 {
224c3ddb 5615 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
40658b94
PH
5616 strcpy (name1, "_ada_");
5617 strcpy (name1 + sizeof ("_ada_") - 1, name);
5618 data.objfile = objfile;
ade7ed9e
DE
5619 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5620 global,
0963b4bd
MS
5621 aux_add_nonlocal_symbols,
5622 &data,
40658b94
PH
5623 full_match, compare_names);
5624 }
5625 }
339c13b6
JB
5626}
5627
22cee43f 5628/* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
4eeaa230 5629 non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5630 matches. Add these to OBSTACKP.
4eeaa230 5631
22cee43f
PMR
5632 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5633 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5634 is the one match returned (no other matches in that or
d9680e73 5635 enclosing blocks is returned). If there are any matches in or
22cee43f 5636 surrounding BLOCK, then these alone are returned.
4eeaa230 5637
9f88c959 5638 Names prefixed with "standard__" are handled specially: "standard__"
22cee43f 5639 is first stripped off, and only static and global symbols are searched.
14f9c5c9 5640
22cee43f
PMR
5641 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5642 to lookup global symbols. */
5643
5644static void
5645ada_add_all_symbols (struct obstack *obstackp,
5646 const struct block *block,
5647 const char *name,
5648 domain_enum domain,
5649 int full_search,
5650 int *made_global_lookup_p)
14f9c5c9
AS
5651{
5652 struct symbol *sym;
22cee43f 5653 const int wild_match_p = should_use_wild_match (name);
14f9c5c9 5654
22cee43f
PMR
5655 if (made_global_lookup_p)
5656 *made_global_lookup_p = 0;
339c13b6
JB
5657
5658 /* Special case: If the user specifies a symbol name inside package
5659 Standard, do a non-wild matching of the symbol name without
5660 the "standard__" prefix. This was primarily introduced in order
5661 to allow the user to specifically access the standard exceptions
5662 using, for instance, Standard.Constraint_Error when Constraint_Error
5663 is ambiguous (due to the user defining its own Constraint_Error
5664 entity inside its program). */
22cee43f 5665 if (startswith (name, "standard__"))
4c4b4cd2 5666 {
4c4b4cd2 5667 block = NULL;
22cee43f 5668 name = name + sizeof ("standard__") - 1;
4c4b4cd2
PH
5669 }
5670
339c13b6 5671 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5672
4eeaa230
DE
5673 if (block != NULL)
5674 {
5675 if (full_search)
22cee43f 5676 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
4eeaa230
DE
5677 else
5678 {
5679 /* In the !full_search case we're are being called by
5680 ada_iterate_over_symbols, and we don't want to search
5681 superblocks. */
22cee43f
PMR
5682 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5683 wild_match_p);
4eeaa230 5684 }
22cee43f
PMR
5685 if (num_defns_collected (obstackp) > 0 || !full_search)
5686 return;
4eeaa230 5687 }
d2e4a39e 5688
339c13b6
JB
5689 /* No non-global symbols found. Check our cache to see if we have
5690 already performed this search before. If we have, then return
5691 the same result. */
5692
22cee43f 5693 if (lookup_cached_symbol (name, domain, &sym, &block))
4c4b4cd2
PH
5694 {
5695 if (sym != NULL)
22cee43f
PMR
5696 add_defn_to_vec (obstackp, sym, block);
5697 return;
4c4b4cd2 5698 }
14f9c5c9 5699
22cee43f
PMR
5700 if (made_global_lookup_p)
5701 *made_global_lookup_p = 1;
b1eedac9 5702
339c13b6
JB
5703 /* Search symbols from all global blocks. */
5704
22cee43f 5705 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
d2e4a39e 5706
4c4b4cd2 5707 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5708 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5709
22cee43f
PMR
5710 if (num_defns_collected (obstackp) == 0)
5711 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5712}
5713
5714/* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5715 non-zero, enclosing scope and in global scopes, returning the number of
5716 matches.
5717 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5718 indicating the symbols found and the blocks and symbol tables (if
5719 any) in which they were found. This vector is transient---good only to
5720 the next call of ada_lookup_symbol_list.
5721
5722 When full_search is non-zero, any non-function/non-enumeral
5723 symbol match within the nest of blocks whose innermost member is BLOCK,
5724 is the one match returned (no other matches in that or
5725 enclosing blocks is returned). If there are any matches in or
5726 surrounding BLOCK, then these alone are returned.
5727
5728 Names prefixed with "standard__" are handled specially: "standard__"
5729 is first stripped off, and only static and global symbols are searched. */
5730
5731static int
5732ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5733 domain_enum domain,
5734 struct block_symbol **results,
5735 int full_search)
5736{
5737 const int wild_match_p = should_use_wild_match (name);
5738 int syms_from_global_search;
5739 int ndefns;
5740
5741 obstack_free (&symbol_list_obstack, NULL);
5742 obstack_init (&symbol_list_obstack);
5743 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5744 full_search, &syms_from_global_search);
14f9c5c9 5745
4c4b4cd2
PH
5746 ndefns = num_defns_collected (&symbol_list_obstack);
5747 *results = defns_collected (&symbol_list_obstack, 1);
5748
5749 ndefns = remove_extra_symbols (*results, ndefns);
5750
b1eedac9 5751 if (ndefns == 0 && full_search && syms_from_global_search)
22cee43f 5752 cache_symbol (name, domain, NULL, NULL);
14f9c5c9 5753
b1eedac9 5754 if (ndefns == 1 && full_search && syms_from_global_search)
22cee43f 5755 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5756
22cee43f 5757 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
14f9c5c9
AS
5758 return ndefns;
5759}
5760
4eeaa230
DE
5761/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5762 in global scopes, returning the number of matches, and setting *RESULTS
5763 to a vector of (SYM,BLOCK) tuples.
5764 See ada_lookup_symbol_list_worker for further details. */
5765
5766int
5767ada_lookup_symbol_list (const char *name0, const struct block *block0,
d12307c1 5768 domain_enum domain, struct block_symbol **results)
4eeaa230
DE
5769{
5770 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5771}
5772
5773/* Implementation of the la_iterate_over_symbols method. */
5774
5775static void
5776ada_iterate_over_symbols (const struct block *block,
5777 const char *name, domain_enum domain,
5778 symbol_found_callback_ftype *callback,
5779 void *data)
5780{
5781 int ndefs, i;
d12307c1 5782 struct block_symbol *results;
4eeaa230
DE
5783
5784 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5785 for (i = 0; i < ndefs; ++i)
5786 {
d12307c1 5787 if (! (*callback) (results[i].symbol, data))
4eeaa230
DE
5788 break;
5789 }
5790}
5791
f8eba3c6
TT
5792/* If NAME is the name of an entity, return a string that should
5793 be used to look that entity up in Ada units. This string should
5794 be deallocated after use using xfree.
5795
5796 NAME can have any form that the "break" or "print" commands might
5797 recognize. In other words, it does not have to be the "natural"
5798 name, or the "encoded" name. */
5799
5800char *
5801ada_name_for_lookup (const char *name)
5802{
5803 char *canon;
5804 int nlen = strlen (name);
5805
5806 if (name[0] == '<' && name[nlen - 1] == '>')
5807 {
224c3ddb 5808 canon = (char *) xmalloc (nlen - 1);
f8eba3c6
TT
5809 memcpy (canon, name + 1, nlen - 2);
5810 canon[nlen - 2] = '\0';
5811 }
5812 else
5813 canon = xstrdup (ada_encode (ada_fold_name (name)));
5814 return canon;
5815}
5816
4e5c77fe
JB
5817/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5818 to 1, but choosing the first symbol found if there are multiple
5819 choices.
5820
5e2336be
JB
5821 The result is stored in *INFO, which must be non-NULL.
5822 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5823
5824void
5825ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5826 domain_enum domain,
d12307c1 5827 struct block_symbol *info)
14f9c5c9 5828{
d12307c1 5829 struct block_symbol *candidates;
14f9c5c9
AS
5830 int n_candidates;
5831
5e2336be 5832 gdb_assert (info != NULL);
d12307c1 5833 memset (info, 0, sizeof (struct block_symbol));
4e5c77fe 5834
fe978cb0 5835 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
14f9c5c9 5836 if (n_candidates == 0)
4e5c77fe 5837 return;
4c4b4cd2 5838
5e2336be 5839 *info = candidates[0];
d12307c1 5840 info->symbol = fixup_symbol_section (info->symbol, NULL);
4e5c77fe 5841}
aeb5907d
JB
5842
5843/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5844 scope and in global scopes, or NULL if none. NAME is folded and
5845 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5846 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5847 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5848
d12307c1 5849struct block_symbol
aeb5907d 5850ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5851 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5852{
d12307c1 5853 struct block_symbol info;
4e5c77fe 5854
aeb5907d
JB
5855 if (is_a_field_of_this != NULL)
5856 *is_a_field_of_this = 0;
5857
4e5c77fe 5858 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5859 block0, domain, &info);
d12307c1 5860 return info;
4c4b4cd2 5861}
14f9c5c9 5862
d12307c1 5863static struct block_symbol
f606139a
DE
5864ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5865 const char *name,
76a01679 5866 const struct block *block,
21b556f4 5867 const domain_enum domain)
4c4b4cd2 5868{
d12307c1 5869 struct block_symbol sym;
04dccad0
JB
5870
5871 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5872 if (sym.symbol != NULL)
04dccad0
JB
5873 return sym;
5874
5875 /* If we haven't found a match at this point, try the primitive
5876 types. In other languages, this search is performed before
5877 searching for global symbols in order to short-circuit that
5878 global-symbol search if it happens that the name corresponds
5879 to a primitive type. But we cannot do the same in Ada, because
5880 it is perfectly legitimate for a program to declare a type which
5881 has the same name as a standard type. If looking up a type in
5882 that situation, we have traditionally ignored the primitive type
5883 in favor of user-defined types. This is why, unlike most other
5884 languages, we search the primitive types this late and only after
5885 having searched the global symbols without success. */
5886
5887 if (domain == VAR_DOMAIN)
5888 {
5889 struct gdbarch *gdbarch;
5890
5891 if (block == NULL)
5892 gdbarch = target_gdbarch ();
5893 else
5894 gdbarch = block_gdbarch (block);
d12307c1
PMR
5895 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5896 if (sym.symbol != NULL)
04dccad0
JB
5897 return sym;
5898 }
5899
d12307c1 5900 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5901}
5902
5903
4c4b4cd2
PH
5904/* True iff STR is a possible encoded suffix of a normal Ada name
5905 that is to be ignored for matching purposes. Suffixes of parallel
5906 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5907 are given by any of the regular expressions:
4c4b4cd2 5908
babe1480
JB
5909 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5910 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5911 TKB [subprogram suffix for task bodies]
babe1480 5912 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5913 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5914
5915 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5916 match is performed. This sequence is used to differentiate homonyms,
5917 is an optional part of a valid name suffix. */
4c4b4cd2 5918
14f9c5c9 5919static int
d2e4a39e 5920is_name_suffix (const char *str)
14f9c5c9
AS
5921{
5922 int k;
4c4b4cd2
PH
5923 const char *matching;
5924 const int len = strlen (str);
5925
babe1480
JB
5926 /* Skip optional leading __[0-9]+. */
5927
4c4b4cd2
PH
5928 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5929 {
babe1480
JB
5930 str += 3;
5931 while (isdigit (str[0]))
5932 str += 1;
4c4b4cd2 5933 }
babe1480
JB
5934
5935 /* [.$][0-9]+ */
4c4b4cd2 5936
babe1480 5937 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5938 {
babe1480 5939 matching = str + 1;
4c4b4cd2
PH
5940 while (isdigit (matching[0]))
5941 matching += 1;
5942 if (matching[0] == '\0')
5943 return 1;
5944 }
5945
5946 /* ___[0-9]+ */
babe1480 5947
4c4b4cd2
PH
5948 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5949 {
5950 matching = str + 3;
5951 while (isdigit (matching[0]))
5952 matching += 1;
5953 if (matching[0] == '\0')
5954 return 1;
5955 }
5956
9ac7f98e
JB
5957 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5958
5959 if (strcmp (str, "TKB") == 0)
5960 return 1;
5961
529cad9c
PH
5962#if 0
5963 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5964 with a N at the end. Unfortunately, the compiler uses the same
5965 convention for other internal types it creates. So treating
529cad9c 5966 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5967 some regressions. For instance, consider the case of an enumerated
5968 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5969 name ends with N.
5970 Having a single character like this as a suffix carrying some
0963b4bd 5971 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5972 to be something like "_N" instead. In the meantime, do not do
5973 the following check. */
5974 /* Protected Object Subprograms */
5975 if (len == 1 && str [0] == 'N')
5976 return 1;
5977#endif
5978
5979 /* _E[0-9]+[bs]$ */
5980 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5981 {
5982 matching = str + 3;
5983 while (isdigit (matching[0]))
5984 matching += 1;
5985 if ((matching[0] == 'b' || matching[0] == 's')
5986 && matching [1] == '\0')
5987 return 1;
5988 }
5989
4c4b4cd2
PH
5990 /* ??? We should not modify STR directly, as we are doing below. This
5991 is fine in this case, but may become problematic later if we find
5992 that this alternative did not work, and want to try matching
5993 another one from the begining of STR. Since we modified it, we
5994 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5995 if (str[0] == 'X')
5996 {
5997 str += 1;
d2e4a39e 5998 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5999 {
6000 if (str[0] != 'n' && str[0] != 'b')
6001 return 0;
6002 str += 1;
6003 }
14f9c5c9 6004 }
babe1480 6005
14f9c5c9
AS
6006 if (str[0] == '\000')
6007 return 1;
babe1480 6008
d2e4a39e 6009 if (str[0] == '_')
14f9c5c9
AS
6010 {
6011 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6012 return 0;
d2e4a39e 6013 if (str[2] == '_')
4c4b4cd2 6014 {
61ee279c
PH
6015 if (strcmp (str + 3, "JM") == 0)
6016 return 1;
6017 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6018 the LJM suffix in favor of the JM one. But we will
6019 still accept LJM as a valid suffix for a reasonable
6020 amount of time, just to allow ourselves to debug programs
6021 compiled using an older version of GNAT. */
4c4b4cd2
PH
6022 if (strcmp (str + 3, "LJM") == 0)
6023 return 1;
6024 if (str[3] != 'X')
6025 return 0;
1265e4aa
JB
6026 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6027 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6028 return 1;
6029 if (str[4] == 'R' && str[5] != 'T')
6030 return 1;
6031 return 0;
6032 }
6033 if (!isdigit (str[2]))
6034 return 0;
6035 for (k = 3; str[k] != '\0'; k += 1)
6036 if (!isdigit (str[k]) && str[k] != '_')
6037 return 0;
14f9c5c9
AS
6038 return 1;
6039 }
4c4b4cd2 6040 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6041 {
4c4b4cd2
PH
6042 for (k = 2; str[k] != '\0'; k += 1)
6043 if (!isdigit (str[k]) && str[k] != '_')
6044 return 0;
14f9c5c9
AS
6045 return 1;
6046 }
6047 return 0;
6048}
d2e4a39e 6049
aeb5907d
JB
6050/* Return non-zero if the string starting at NAME and ending before
6051 NAME_END contains no capital letters. */
529cad9c
PH
6052
6053static int
6054is_valid_name_for_wild_match (const char *name0)
6055{
6056 const char *decoded_name = ada_decode (name0);
6057 int i;
6058
5823c3ef
JB
6059 /* If the decoded name starts with an angle bracket, it means that
6060 NAME0 does not follow the GNAT encoding format. It should then
6061 not be allowed as a possible wild match. */
6062 if (decoded_name[0] == '<')
6063 return 0;
6064
529cad9c
PH
6065 for (i=0; decoded_name[i] != '\0'; i++)
6066 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6067 return 0;
6068
6069 return 1;
6070}
6071
73589123
PH
6072/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6073 that could start a simple name. Assumes that *NAMEP points into
6074 the string beginning at NAME0. */
4c4b4cd2 6075
14f9c5c9 6076static int
73589123 6077advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6078{
73589123 6079 const char *name = *namep;
5b4ee69b 6080
5823c3ef 6081 while (1)
14f9c5c9 6082 {
aa27d0b3 6083 int t0, t1;
73589123
PH
6084
6085 t0 = *name;
6086 if (t0 == '_')
6087 {
6088 t1 = name[1];
6089 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6090 {
6091 name += 1;
61012eef 6092 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6093 break;
6094 else
6095 name += 1;
6096 }
aa27d0b3
JB
6097 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6098 || name[2] == target0))
73589123
PH
6099 {
6100 name += 2;
6101 break;
6102 }
6103 else
6104 return 0;
6105 }
6106 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6107 name += 1;
6108 else
5823c3ef 6109 return 0;
73589123
PH
6110 }
6111
6112 *namep = name;
6113 return 1;
6114}
6115
6116/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6117 informational suffixes of NAME (i.e., for which is_name_suffix is
6118 true). Assumes that PATN is a lower-cased Ada simple name. */
6119
6120static int
6121wild_match (const char *name, const char *patn)
6122{
22e048c9 6123 const char *p;
73589123
PH
6124 const char *name0 = name;
6125
6126 while (1)
6127 {
6128 const char *match = name;
6129
6130 if (*name == *patn)
6131 {
6132 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6133 if (*p != *name)
6134 break;
6135 if (*p == '\0' && is_name_suffix (name))
6136 return match != name0 && !is_valid_name_for_wild_match (name0);
6137
6138 if (name[-1] == '_')
6139 name -= 1;
6140 }
6141 if (!advance_wild_match (&name, name0, *patn))
6142 return 1;
96d887e8 6143 }
96d887e8
PH
6144}
6145
40658b94
PH
6146/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6147 informational suffix. */
6148
c4d840bd
PH
6149static int
6150full_match (const char *sym_name, const char *search_name)
6151{
40658b94 6152 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
6153}
6154
6155
96d887e8
PH
6156/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6157 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 6158 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 6159 OBJFILE is the section containing BLOCK. */
96d887e8
PH
6160
6161static void
6162ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 6163 const struct block *block, const char *name,
96d887e8 6164 domain_enum domain, struct objfile *objfile,
2570f2b7 6165 int wild)
96d887e8 6166{
8157b174 6167 struct block_iterator iter;
96d887e8
PH
6168 int name_len = strlen (name);
6169 /* A matching argument symbol, if any. */
6170 struct symbol *arg_sym;
6171 /* Set true when we find a matching non-argument symbol. */
6172 int found_sym;
6173 struct symbol *sym;
6174
6175 arg_sym = NULL;
6176 found_sym = 0;
6177 if (wild)
6178 {
8157b174
TT
6179 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6180 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 6181 {
4186eb54
KS
6182 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6183 SYMBOL_DOMAIN (sym), domain)
73589123 6184 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 6185 {
2a2d4dc3
AS
6186 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6187 continue;
6188 else if (SYMBOL_IS_ARGUMENT (sym))
6189 arg_sym = sym;
6190 else
6191 {
76a01679
JB
6192 found_sym = 1;
6193 add_defn_to_vec (obstackp,
6194 fixup_symbol_section (sym, objfile),
2570f2b7 6195 block);
76a01679
JB
6196 }
6197 }
6198 }
96d887e8
PH
6199 }
6200 else
6201 {
8157b174
TT
6202 for (sym = block_iter_match_first (block, name, full_match, &iter);
6203 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 6204 {
4186eb54
KS
6205 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6206 SYMBOL_DOMAIN (sym), domain))
76a01679 6207 {
c4d840bd
PH
6208 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6209 {
6210 if (SYMBOL_IS_ARGUMENT (sym))
6211 arg_sym = sym;
6212 else
2a2d4dc3 6213 {
c4d840bd
PH
6214 found_sym = 1;
6215 add_defn_to_vec (obstackp,
6216 fixup_symbol_section (sym, objfile),
6217 block);
2a2d4dc3 6218 }
c4d840bd 6219 }
76a01679
JB
6220 }
6221 }
96d887e8
PH
6222 }
6223
22cee43f
PMR
6224 /* Handle renamings. */
6225
6226 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6227 found_sym = 1;
6228
96d887e8
PH
6229 if (!found_sym && arg_sym != NULL)
6230 {
76a01679
JB
6231 add_defn_to_vec (obstackp,
6232 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6233 block);
96d887e8
PH
6234 }
6235
6236 if (!wild)
6237 {
6238 arg_sym = NULL;
6239 found_sym = 0;
6240
6241 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6242 {
4186eb54
KS
6243 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6244 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6245 {
6246 int cmp;
6247
6248 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6249 if (cmp == 0)
6250 {
61012eef 6251 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6252 if (cmp == 0)
6253 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6254 name_len);
6255 }
6256
6257 if (cmp == 0
6258 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6259 {
2a2d4dc3
AS
6260 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6261 {
6262 if (SYMBOL_IS_ARGUMENT (sym))
6263 arg_sym = sym;
6264 else
6265 {
6266 found_sym = 1;
6267 add_defn_to_vec (obstackp,
6268 fixup_symbol_section (sym, objfile),
6269 block);
6270 }
6271 }
76a01679
JB
6272 }
6273 }
76a01679 6274 }
96d887e8
PH
6275
6276 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6277 They aren't parameters, right? */
6278 if (!found_sym && arg_sym != NULL)
6279 {
6280 add_defn_to_vec (obstackp,
76a01679 6281 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6282 block);
96d887e8
PH
6283 }
6284 }
6285}
6286\f
41d27058
JB
6287
6288 /* Symbol Completion */
6289
6290/* If SYM_NAME is a completion candidate for TEXT, return this symbol
6291 name in a form that's appropriate for the completion. The result
6292 does not need to be deallocated, but is only good until the next call.
6293
6294 TEXT_LEN is equal to the length of TEXT.
e701b3c0 6295 Perform a wild match if WILD_MATCH_P is set.
6ea35997 6296 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
6297 in its encoded form. */
6298
6299static const char *
6300symbol_completion_match (const char *sym_name,
6301 const char *text, int text_len,
6ea35997 6302 int wild_match_p, int encoded_p)
41d27058 6303{
41d27058
JB
6304 const int verbatim_match = (text[0] == '<');
6305 int match = 0;
6306
6307 if (verbatim_match)
6308 {
6309 /* Strip the leading angle bracket. */
6310 text = text + 1;
6311 text_len--;
6312 }
6313
6314 /* First, test against the fully qualified name of the symbol. */
6315
6316 if (strncmp (sym_name, text, text_len) == 0)
6317 match = 1;
6318
6ea35997 6319 if (match && !encoded_p)
41d27058
JB
6320 {
6321 /* One needed check before declaring a positive match is to verify
6322 that iff we are doing a verbatim match, the decoded version
6323 of the symbol name starts with '<'. Otherwise, this symbol name
6324 is not a suitable completion. */
6325 const char *sym_name_copy = sym_name;
6326 int has_angle_bracket;
6327
6328 sym_name = ada_decode (sym_name);
6329 has_angle_bracket = (sym_name[0] == '<');
6330 match = (has_angle_bracket == verbatim_match);
6331 sym_name = sym_name_copy;
6332 }
6333
6334 if (match && !verbatim_match)
6335 {
6336 /* When doing non-verbatim match, another check that needs to
6337 be done is to verify that the potentially matching symbol name
6338 does not include capital letters, because the ada-mode would
6339 not be able to understand these symbol names without the
6340 angle bracket notation. */
6341 const char *tmp;
6342
6343 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6344 if (*tmp != '\0')
6345 match = 0;
6346 }
6347
6348 /* Second: Try wild matching... */
6349
e701b3c0 6350 if (!match && wild_match_p)
41d27058
JB
6351 {
6352 /* Since we are doing wild matching, this means that TEXT
6353 may represent an unqualified symbol name. We therefore must
6354 also compare TEXT against the unqualified name of the symbol. */
6355 sym_name = ada_unqualified_name (ada_decode (sym_name));
6356
6357 if (strncmp (sym_name, text, text_len) == 0)
6358 match = 1;
6359 }
6360
6361 /* Finally: If we found a mach, prepare the result to return. */
6362
6363 if (!match)
6364 return NULL;
6365
6366 if (verbatim_match)
6367 sym_name = add_angle_brackets (sym_name);
6368
6ea35997 6369 if (!encoded_p)
41d27058
JB
6370 sym_name = ada_decode (sym_name);
6371
6372 return sym_name;
6373}
6374
6375/* A companion function to ada_make_symbol_completion_list().
6376 Check if SYM_NAME represents a symbol which name would be suitable
6377 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6378 it is appended at the end of the given string vector SV.
6379
6380 ORIG_TEXT is the string original string from the user command
6381 that needs to be completed. WORD is the entire command on which
6382 completion should be performed. These two parameters are used to
6383 determine which part of the symbol name should be added to the
6384 completion vector.
c0af1706 6385 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6386 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6387 encoded formed (in which case the completion should also be
6388 encoded). */
6389
6390static void
d6565258 6391symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6392 const char *sym_name,
6393 const char *text, int text_len,
6394 const char *orig_text, const char *word,
cb8e9b97 6395 int wild_match_p, int encoded_p)
41d27058
JB
6396{
6397 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6398 wild_match_p, encoded_p);
41d27058
JB
6399 char *completion;
6400
6401 if (match == NULL)
6402 return;
6403
6404 /* We found a match, so add the appropriate completion to the given
6405 string vector. */
6406
6407 if (word == orig_text)
6408 {
224c3ddb 6409 completion = (char *) xmalloc (strlen (match) + 5);
41d27058
JB
6410 strcpy (completion, match);
6411 }
6412 else if (word > orig_text)
6413 {
6414 /* Return some portion of sym_name. */
224c3ddb 6415 completion = (char *) xmalloc (strlen (match) + 5);
41d27058
JB
6416 strcpy (completion, match + (word - orig_text));
6417 }
6418 else
6419 {
6420 /* Return some of ORIG_TEXT plus sym_name. */
224c3ddb 6421 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
41d27058
JB
6422 strncpy (completion, word, orig_text - word);
6423 completion[orig_text - word] = '\0';
6424 strcat (completion, match);
6425 }
6426
d6565258 6427 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6428}
6429
ccefe4c4 6430/* An object of this type is passed as the user_data argument to the
bb4142cf 6431 expand_symtabs_matching method. */
ccefe4c4
TT
6432struct add_partial_datum
6433{
6434 VEC(char_ptr) **completions;
6f937416 6435 const char *text;
ccefe4c4 6436 int text_len;
6f937416
PA
6437 const char *text0;
6438 const char *word;
ccefe4c4
TT
6439 int wild_match;
6440 int encoded;
6441};
6442
bb4142cf
DE
6443/* A callback for expand_symtabs_matching. */
6444
7b08b9eb 6445static int
bb4142cf 6446ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4 6447{
9a3c8263 6448 struct add_partial_datum *data = (struct add_partial_datum *) user_data;
7b08b9eb
JK
6449
6450 return symbol_completion_match (name, data->text, data->text_len,
6451 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6452}
6453
49c4e619
TT
6454/* Return a list of possible symbol names completing TEXT0. WORD is
6455 the entire command on which completion is made. */
41d27058 6456
49c4e619 6457static VEC (char_ptr) *
6f937416
PA
6458ada_make_symbol_completion_list (const char *text0, const char *word,
6459 enum type_code code)
41d27058
JB
6460{
6461 char *text;
6462 int text_len;
b1ed564a
JB
6463 int wild_match_p;
6464 int encoded_p;
2ba95b9b 6465 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058 6466 struct symbol *sym;
43f3e411 6467 struct compunit_symtab *s;
41d27058
JB
6468 struct minimal_symbol *msymbol;
6469 struct objfile *objfile;
3977b71f 6470 const struct block *b, *surrounding_static_block = 0;
41d27058 6471 int i;
8157b174 6472 struct block_iterator iter;
b8fea896 6473 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6474
2f68a895
TT
6475 gdb_assert (code == TYPE_CODE_UNDEF);
6476
41d27058
JB
6477 if (text0[0] == '<')
6478 {
6479 text = xstrdup (text0);
6480 make_cleanup (xfree, text);
6481 text_len = strlen (text);
b1ed564a
JB
6482 wild_match_p = 0;
6483 encoded_p = 1;
41d27058
JB
6484 }
6485 else
6486 {
6487 text = xstrdup (ada_encode (text0));
6488 make_cleanup (xfree, text);
6489 text_len = strlen (text);
6490 for (i = 0; i < text_len; i++)
6491 text[i] = tolower (text[i]);
6492
b1ed564a 6493 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6494 /* If the name contains a ".", then the user is entering a fully
6495 qualified entity name, and the match must not be done in wild
6496 mode. Similarly, if the user wants to complete what looks like
6497 an encoded name, the match must not be done in wild mode. */
b1ed564a 6498 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6499 }
6500
6501 /* First, look at the partial symtab symbols. */
41d27058 6502 {
ccefe4c4
TT
6503 struct add_partial_datum data;
6504
6505 data.completions = &completions;
6506 data.text = text;
6507 data.text_len = text_len;
6508 data.text0 = text0;
6509 data.word = word;
b1ed564a
JB
6510 data.wild_match = wild_match_p;
6511 data.encoded = encoded_p;
276d885b
GB
6512 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6513 ALL_DOMAIN, &data);
41d27058
JB
6514 }
6515
6516 /* At this point scan through the misc symbol vectors and add each
6517 symbol you find to the list. Eventually we want to ignore
6518 anything that isn't a text symbol (everything else will be
6519 handled by the psymtab code above). */
6520
6521 ALL_MSYMBOLS (objfile, msymbol)
6522 {
6523 QUIT;
efd66ac6 6524 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6525 text, text_len, text0, word, wild_match_p,
6526 encoded_p);
41d27058
JB
6527 }
6528
6529 /* Search upwards from currently selected frame (so that we can
6530 complete on local vars. */
6531
6532 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6533 {
6534 if (!BLOCK_SUPERBLOCK (b))
6535 surrounding_static_block = b; /* For elmin of dups */
6536
6537 ALL_BLOCK_SYMBOLS (b, iter, sym)
6538 {
d6565258 6539 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6540 text, text_len, text0, word,
b1ed564a 6541 wild_match_p, encoded_p);
41d27058
JB
6542 }
6543 }
6544
6545 /* Go through the symtabs and check the externs and statics for
43f3e411 6546 symbols which match. */
41d27058 6547
43f3e411 6548 ALL_COMPUNITS (objfile, s)
41d27058
JB
6549 {
6550 QUIT;
43f3e411 6551 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6552 ALL_BLOCK_SYMBOLS (b, iter, sym)
6553 {
d6565258 6554 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6555 text, text_len, text0, word,
b1ed564a 6556 wild_match_p, encoded_p);
41d27058
JB
6557 }
6558 }
6559
43f3e411 6560 ALL_COMPUNITS (objfile, s)
41d27058
JB
6561 {
6562 QUIT;
43f3e411 6563 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6564 /* Don't do this block twice. */
6565 if (b == surrounding_static_block)
6566 continue;
6567 ALL_BLOCK_SYMBOLS (b, iter, sym)
6568 {
d6565258 6569 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6570 text, text_len, text0, word,
b1ed564a 6571 wild_match_p, encoded_p);
41d27058
JB
6572 }
6573 }
6574
b8fea896 6575 do_cleanups (old_chain);
49c4e619 6576 return completions;
41d27058
JB
6577}
6578
963a6417 6579 /* Field Access */
96d887e8 6580
73fb9985
JB
6581/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6582 for tagged types. */
6583
6584static int
6585ada_is_dispatch_table_ptr_type (struct type *type)
6586{
0d5cff50 6587 const char *name;
73fb9985
JB
6588
6589 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6590 return 0;
6591
6592 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6593 if (name == NULL)
6594 return 0;
6595
6596 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6597}
6598
ac4a2da4
JG
6599/* Return non-zero if TYPE is an interface tag. */
6600
6601static int
6602ada_is_interface_tag (struct type *type)
6603{
6604 const char *name = TYPE_NAME (type);
6605
6606 if (name == NULL)
6607 return 0;
6608
6609 return (strcmp (name, "ada__tags__interface_tag") == 0);
6610}
6611
963a6417
PH
6612/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6613 to be invisible to users. */
96d887e8 6614
963a6417
PH
6615int
6616ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6617{
963a6417
PH
6618 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6619 return 1;
ffde82bf 6620
73fb9985
JB
6621 /* Check the name of that field. */
6622 {
6623 const char *name = TYPE_FIELD_NAME (type, field_num);
6624
6625 /* Anonymous field names should not be printed.
6626 brobecker/2007-02-20: I don't think this can actually happen
6627 but we don't want to print the value of annonymous fields anyway. */
6628 if (name == NULL)
6629 return 1;
6630
ffde82bf
JB
6631 /* Normally, fields whose name start with an underscore ("_")
6632 are fields that have been internally generated by the compiler,
6633 and thus should not be printed. The "_parent" field is special,
6634 however: This is a field internally generated by the compiler
6635 for tagged types, and it contains the components inherited from
6636 the parent type. This field should not be printed as is, but
6637 should not be ignored either. */
61012eef 6638 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6639 return 1;
6640 }
6641
ac4a2da4
JG
6642 /* If this is the dispatch table of a tagged type or an interface tag,
6643 then ignore. */
73fb9985 6644 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6645 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6646 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6647 return 1;
6648
6649 /* Not a special field, so it should not be ignored. */
6650 return 0;
963a6417 6651}
96d887e8 6652
963a6417 6653/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6654 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6655
963a6417
PH
6656int
6657ada_is_tagged_type (struct type *type, int refok)
6658{
6659 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6660}
96d887e8 6661
963a6417 6662/* True iff TYPE represents the type of X'Tag */
96d887e8 6663
963a6417
PH
6664int
6665ada_is_tag_type (struct type *type)
6666{
460efde1
JB
6667 type = ada_check_typedef (type);
6668
963a6417
PH
6669 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6670 return 0;
6671 else
96d887e8 6672 {
963a6417 6673 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6674
963a6417
PH
6675 return (name != NULL
6676 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6677 }
96d887e8
PH
6678}
6679
963a6417 6680/* The type of the tag on VAL. */
76a01679 6681
963a6417
PH
6682struct type *
6683ada_tag_type (struct value *val)
96d887e8 6684{
df407dfe 6685 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6686}
96d887e8 6687
b50d69b5
JG
6688/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6689 retired at Ada 05). */
6690
6691static int
6692is_ada95_tag (struct value *tag)
6693{
6694 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6695}
6696
963a6417 6697/* The value of the tag on VAL. */
96d887e8 6698
963a6417
PH
6699struct value *
6700ada_value_tag (struct value *val)
6701{
03ee6b2e 6702 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6703}
6704
963a6417
PH
6705/* The value of the tag on the object of type TYPE whose contents are
6706 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6707 ADDRESS. */
96d887e8 6708
963a6417 6709static struct value *
10a2c479 6710value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6711 const gdb_byte *valaddr,
963a6417 6712 CORE_ADDR address)
96d887e8 6713{
b5385fc0 6714 int tag_byte_offset;
963a6417 6715 struct type *tag_type;
5b4ee69b 6716
963a6417 6717 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6718 NULL, NULL, NULL))
96d887e8 6719 {
fc1a4b47 6720 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6721 ? NULL
6722 : valaddr + tag_byte_offset);
963a6417 6723 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6724
963a6417 6725 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6726 }
963a6417
PH
6727 return NULL;
6728}
96d887e8 6729
963a6417
PH
6730static struct type *
6731type_from_tag (struct value *tag)
6732{
6733 const char *type_name = ada_tag_name (tag);
5b4ee69b 6734
963a6417
PH
6735 if (type_name != NULL)
6736 return ada_find_any_type (ada_encode (type_name));
6737 return NULL;
6738}
96d887e8 6739
b50d69b5
JG
6740/* Given a value OBJ of a tagged type, return a value of this
6741 type at the base address of the object. The base address, as
6742 defined in Ada.Tags, it is the address of the primary tag of
6743 the object, and therefore where the field values of its full
6744 view can be fetched. */
6745
6746struct value *
6747ada_tag_value_at_base_address (struct value *obj)
6748{
b50d69b5
JG
6749 struct value *val;
6750 LONGEST offset_to_top = 0;
6751 struct type *ptr_type, *obj_type;
6752 struct value *tag;
6753 CORE_ADDR base_address;
6754
6755 obj_type = value_type (obj);
6756
6757 /* It is the responsability of the caller to deref pointers. */
6758
6759 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6760 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6761 return obj;
6762
6763 tag = ada_value_tag (obj);
6764 if (!tag)
6765 return obj;
6766
6767 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6768
6769 if (is_ada95_tag (tag))
6770 return obj;
6771
6772 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6773 ptr_type = lookup_pointer_type (ptr_type);
6774 val = value_cast (ptr_type, tag);
6775 if (!val)
6776 return obj;
6777
6778 /* It is perfectly possible that an exception be raised while
6779 trying to determine the base address, just like for the tag;
6780 see ada_tag_name for more details. We do not print the error
6781 message for the same reason. */
6782
492d29ea 6783 TRY
b50d69b5
JG
6784 {
6785 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6786 }
6787
492d29ea
PA
6788 CATCH (e, RETURN_MASK_ERROR)
6789 {
6790 return obj;
6791 }
6792 END_CATCH
b50d69b5
JG
6793
6794 /* If offset is null, nothing to do. */
6795
6796 if (offset_to_top == 0)
6797 return obj;
6798
6799 /* -1 is a special case in Ada.Tags; however, what should be done
6800 is not quite clear from the documentation. So do nothing for
6801 now. */
6802
6803 if (offset_to_top == -1)
6804 return obj;
6805
6806 base_address = value_address (obj) - offset_to_top;
6807 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6808
6809 /* Make sure that we have a proper tag at the new address.
6810 Otherwise, offset_to_top is bogus (which can happen when
6811 the object is not initialized yet). */
6812
6813 if (!tag)
6814 return obj;
6815
6816 obj_type = type_from_tag (tag);
6817
6818 if (!obj_type)
6819 return obj;
6820
6821 return value_from_contents_and_address (obj_type, NULL, base_address);
6822}
6823
1b611343
JB
6824/* Return the "ada__tags__type_specific_data" type. */
6825
6826static struct type *
6827ada_get_tsd_type (struct inferior *inf)
963a6417 6828{
1b611343 6829 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6830
1b611343
JB
6831 if (data->tsd_type == 0)
6832 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6833 return data->tsd_type;
6834}
529cad9c 6835
1b611343
JB
6836/* Return the TSD (type-specific data) associated to the given TAG.
6837 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6838
1b611343 6839 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6840
1b611343
JB
6841static struct value *
6842ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6843{
4c4b4cd2 6844 struct value *val;
1b611343 6845 struct type *type;
5b4ee69b 6846
1b611343
JB
6847 /* First option: The TSD is simply stored as a field of our TAG.
6848 Only older versions of GNAT would use this format, but we have
6849 to test it first, because there are no visible markers for
6850 the current approach except the absence of that field. */
529cad9c 6851
1b611343
JB
6852 val = ada_value_struct_elt (tag, "tsd", 1);
6853 if (val)
6854 return val;
e802dbe0 6855
1b611343
JB
6856 /* Try the second representation for the dispatch table (in which
6857 there is no explicit 'tsd' field in the referent of the tag pointer,
6858 and instead the tsd pointer is stored just before the dispatch
6859 table. */
e802dbe0 6860
1b611343
JB
6861 type = ada_get_tsd_type (current_inferior());
6862 if (type == NULL)
6863 return NULL;
6864 type = lookup_pointer_type (lookup_pointer_type (type));
6865 val = value_cast (type, tag);
6866 if (val == NULL)
6867 return NULL;
6868 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6869}
6870
1b611343
JB
6871/* Given the TSD of a tag (type-specific data), return a string
6872 containing the name of the associated type.
6873
6874 The returned value is good until the next call. May return NULL
6875 if we are unable to determine the tag name. */
6876
6877static char *
6878ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6879{
529cad9c
PH
6880 static char name[1024];
6881 char *p;
1b611343 6882 struct value *val;
529cad9c 6883
1b611343 6884 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6885 if (val == NULL)
1b611343 6886 return NULL;
4c4b4cd2
PH
6887 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6888 for (p = name; *p != '\0'; p += 1)
6889 if (isalpha (*p))
6890 *p = tolower (*p);
1b611343 6891 return name;
4c4b4cd2
PH
6892}
6893
6894/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6895 a C string.
6896
6897 Return NULL if the TAG is not an Ada tag, or if we were unable to
6898 determine the name of that tag. The result is good until the next
6899 call. */
4c4b4cd2
PH
6900
6901const char *
6902ada_tag_name (struct value *tag)
6903{
1b611343 6904 char *name = NULL;
5b4ee69b 6905
df407dfe 6906 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6907 return NULL;
1b611343
JB
6908
6909 /* It is perfectly possible that an exception be raised while trying
6910 to determine the TAG's name, even under normal circumstances:
6911 The associated variable may be uninitialized or corrupted, for
6912 instance. We do not let any exception propagate past this point.
6913 instead we return NULL.
6914
6915 We also do not print the error message either (which often is very
6916 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6917 the caller print a more meaningful message if necessary. */
492d29ea 6918 TRY
1b611343
JB
6919 {
6920 struct value *tsd = ada_get_tsd_from_tag (tag);
6921
6922 if (tsd != NULL)
6923 name = ada_tag_name_from_tsd (tsd);
6924 }
492d29ea
PA
6925 CATCH (e, RETURN_MASK_ERROR)
6926 {
6927 }
6928 END_CATCH
1b611343
JB
6929
6930 return name;
4c4b4cd2
PH
6931}
6932
6933/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6934
d2e4a39e 6935struct type *
ebf56fd3 6936ada_parent_type (struct type *type)
14f9c5c9
AS
6937{
6938 int i;
6939
61ee279c 6940 type = ada_check_typedef (type);
14f9c5c9
AS
6941
6942 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6943 return NULL;
6944
6945 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6946 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6947 {
6948 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6949
6950 /* If the _parent field is a pointer, then dereference it. */
6951 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6952 parent_type = TYPE_TARGET_TYPE (parent_type);
6953 /* If there is a parallel XVS type, get the actual base type. */
6954 parent_type = ada_get_base_type (parent_type);
6955
6956 return ada_check_typedef (parent_type);
6957 }
14f9c5c9
AS
6958
6959 return NULL;
6960}
6961
4c4b4cd2
PH
6962/* True iff field number FIELD_NUM of structure type TYPE contains the
6963 parent-type (inherited) fields of a derived type. Assumes TYPE is
6964 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6965
6966int
ebf56fd3 6967ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6968{
61ee279c 6969 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6970
4c4b4cd2 6971 return (name != NULL
61012eef
GB
6972 && (startswith (name, "PARENT")
6973 || startswith (name, "_parent")));
14f9c5c9
AS
6974}
6975
4c4b4cd2 6976/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6977 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6978 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6979 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6980 structures. */
14f9c5c9
AS
6981
6982int
ebf56fd3 6983ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6984{
d2e4a39e 6985 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6986
d2e4a39e 6987 return (name != NULL
61012eef 6988 && (startswith (name, "PARENT")
4c4b4cd2 6989 || strcmp (name, "REP") == 0
61012eef 6990 || startswith (name, "_parent")
4c4b4cd2 6991 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6992}
6993
4c4b4cd2
PH
6994/* True iff field number FIELD_NUM of structure or union type TYPE
6995 is a variant wrapper. Assumes TYPE is a structure type with at least
6996 FIELD_NUM+1 fields. */
14f9c5c9
AS
6997
6998int
ebf56fd3 6999ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 7000{
d2e4a39e 7001 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 7002
14f9c5c9 7003 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 7004 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
7005 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7006 == TYPE_CODE_UNION)));
14f9c5c9
AS
7007}
7008
7009/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 7010 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7011 returns the type of the controlling discriminant for the variant.
7012 May return NULL if the type could not be found. */
14f9c5c9 7013
d2e4a39e 7014struct type *
ebf56fd3 7015ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7016{
d2e4a39e 7017 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7018
7c964f07 7019 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
7020}
7021
4c4b4cd2 7022/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7023 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7024 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7025
7026int
ebf56fd3 7027ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7028{
d2e4a39e 7029 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7030
14f9c5c9
AS
7031 return (name != NULL && name[0] == 'O');
7032}
7033
7034/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7035 returns the name of the discriminant controlling the variant.
7036 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7037
d2e4a39e 7038char *
ebf56fd3 7039ada_variant_discrim_name (struct type *type0)
14f9c5c9 7040{
d2e4a39e 7041 static char *result = NULL;
14f9c5c9 7042 static size_t result_len = 0;
d2e4a39e
AS
7043 struct type *type;
7044 const char *name;
7045 const char *discrim_end;
7046 const char *discrim_start;
14f9c5c9
AS
7047
7048 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7049 type = TYPE_TARGET_TYPE (type0);
7050 else
7051 type = type0;
7052
7053 name = ada_type_name (type);
7054
7055 if (name == NULL || name[0] == '\000')
7056 return "";
7057
7058 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7059 discrim_end -= 1)
7060 {
61012eef 7061 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7062 break;
14f9c5c9
AS
7063 }
7064 if (discrim_end == name)
7065 return "";
7066
d2e4a39e 7067 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7068 discrim_start -= 1)
7069 {
d2e4a39e 7070 if (discrim_start == name + 1)
4c4b4cd2 7071 return "";
76a01679 7072 if ((discrim_start > name + 3
61012eef 7073 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7074 || discrim_start[-1] == '.')
7075 break;
14f9c5c9
AS
7076 }
7077
7078 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7079 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7080 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7081 return result;
7082}
7083
4c4b4cd2
PH
7084/* Scan STR for a subtype-encoded number, beginning at position K.
7085 Put the position of the character just past the number scanned in
7086 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7087 Return 1 if there was a valid number at the given position, and 0
7088 otherwise. A "subtype-encoded" number consists of the absolute value
7089 in decimal, followed by the letter 'm' to indicate a negative number.
7090 Assumes 0m does not occur. */
14f9c5c9
AS
7091
7092int
d2e4a39e 7093ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7094{
7095 ULONGEST RU;
7096
d2e4a39e 7097 if (!isdigit (str[k]))
14f9c5c9
AS
7098 return 0;
7099
4c4b4cd2 7100 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7101 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7102 LONGEST. */
14f9c5c9
AS
7103 RU = 0;
7104 while (isdigit (str[k]))
7105 {
d2e4a39e 7106 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7107 k += 1;
7108 }
7109
d2e4a39e 7110 if (str[k] == 'm')
14f9c5c9
AS
7111 {
7112 if (R != NULL)
4c4b4cd2 7113 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7114 k += 1;
7115 }
7116 else if (R != NULL)
7117 *R = (LONGEST) RU;
7118
4c4b4cd2 7119 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7120 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7121 number representable as a LONGEST (although either would probably work
7122 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7123 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7124
7125 if (new_k != NULL)
7126 *new_k = k;
7127 return 1;
7128}
7129
4c4b4cd2
PH
7130/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7131 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7132 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7133
d2e4a39e 7134int
ebf56fd3 7135ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7136{
d2e4a39e 7137 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7138 int p;
7139
7140 p = 0;
7141 while (1)
7142 {
d2e4a39e 7143 switch (name[p])
4c4b4cd2
PH
7144 {
7145 case '\0':
7146 return 0;
7147 case 'S':
7148 {
7149 LONGEST W;
5b4ee69b 7150
4c4b4cd2
PH
7151 if (!ada_scan_number (name, p + 1, &W, &p))
7152 return 0;
7153 if (val == W)
7154 return 1;
7155 break;
7156 }
7157 case 'R':
7158 {
7159 LONGEST L, U;
5b4ee69b 7160
4c4b4cd2
PH
7161 if (!ada_scan_number (name, p + 1, &L, &p)
7162 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7163 return 0;
7164 if (val >= L && val <= U)
7165 return 1;
7166 break;
7167 }
7168 case 'O':
7169 return 1;
7170 default:
7171 return 0;
7172 }
7173 }
7174}
7175
0963b4bd 7176/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7177
7178/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7179 ARG_TYPE, extract and return the value of one of its (non-static)
7180 fields. FIELDNO says which field. Differs from value_primitive_field
7181 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7182
4c4b4cd2 7183static struct value *
d2e4a39e 7184ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7185 struct type *arg_type)
14f9c5c9 7186{
14f9c5c9
AS
7187 struct type *type;
7188
61ee279c 7189 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7190 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7191
4c4b4cd2 7192 /* Handle packed fields. */
14f9c5c9
AS
7193
7194 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7195 {
7196 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7197 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7198
0fd88904 7199 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7200 offset + bit_pos / 8,
7201 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7202 }
7203 else
7204 return value_primitive_field (arg1, offset, fieldno, arg_type);
7205}
7206
52ce6436
PH
7207/* Find field with name NAME in object of type TYPE. If found,
7208 set the following for each argument that is non-null:
7209 - *FIELD_TYPE_P to the field's type;
7210 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7211 an object of that type;
7212 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7213 - *BIT_SIZE_P to its size in bits if the field is packed, and
7214 0 otherwise;
7215 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7216 fields up to but not including the desired field, or by the total
7217 number of fields if not found. A NULL value of NAME never
7218 matches; the function just counts visible fields in this case.
7219
0963b4bd 7220 Returns 1 if found, 0 otherwise. */
52ce6436 7221
4c4b4cd2 7222static int
0d5cff50 7223find_struct_field (const char *name, struct type *type, int offset,
76a01679 7224 struct type **field_type_p,
52ce6436
PH
7225 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7226 int *index_p)
4c4b4cd2
PH
7227{
7228 int i;
7229
61ee279c 7230 type = ada_check_typedef (type);
76a01679 7231
52ce6436
PH
7232 if (field_type_p != NULL)
7233 *field_type_p = NULL;
7234 if (byte_offset_p != NULL)
d5d6fca5 7235 *byte_offset_p = 0;
52ce6436
PH
7236 if (bit_offset_p != NULL)
7237 *bit_offset_p = 0;
7238 if (bit_size_p != NULL)
7239 *bit_size_p = 0;
7240
7241 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7242 {
7243 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7244 int fld_offset = offset + bit_pos / 8;
0d5cff50 7245 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7246
4c4b4cd2
PH
7247 if (t_field_name == NULL)
7248 continue;
7249
52ce6436 7250 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7251 {
7252 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7253
52ce6436
PH
7254 if (field_type_p != NULL)
7255 *field_type_p = TYPE_FIELD_TYPE (type, i);
7256 if (byte_offset_p != NULL)
7257 *byte_offset_p = fld_offset;
7258 if (bit_offset_p != NULL)
7259 *bit_offset_p = bit_pos % 8;
7260 if (bit_size_p != NULL)
7261 *bit_size_p = bit_size;
76a01679
JB
7262 return 1;
7263 }
4c4b4cd2
PH
7264 else if (ada_is_wrapper_field (type, i))
7265 {
52ce6436
PH
7266 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7267 field_type_p, byte_offset_p, bit_offset_p,
7268 bit_size_p, index_p))
76a01679
JB
7269 return 1;
7270 }
4c4b4cd2
PH
7271 else if (ada_is_variant_part (type, i))
7272 {
52ce6436
PH
7273 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7274 fixed type?? */
4c4b4cd2 7275 int j;
52ce6436
PH
7276 struct type *field_type
7277 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7278
52ce6436 7279 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7280 {
76a01679
JB
7281 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7282 fld_offset
7283 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7284 field_type_p, byte_offset_p,
52ce6436 7285 bit_offset_p, bit_size_p, index_p))
76a01679 7286 return 1;
4c4b4cd2
PH
7287 }
7288 }
52ce6436
PH
7289 else if (index_p != NULL)
7290 *index_p += 1;
4c4b4cd2
PH
7291 }
7292 return 0;
7293}
7294
0963b4bd 7295/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7296
52ce6436
PH
7297static int
7298num_visible_fields (struct type *type)
7299{
7300 int n;
5b4ee69b 7301
52ce6436
PH
7302 n = 0;
7303 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7304 return n;
7305}
14f9c5c9 7306
4c4b4cd2 7307/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7308 and search in it assuming it has (class) type TYPE.
7309 If found, return value, else return NULL.
7310
4c4b4cd2 7311 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7312
4c4b4cd2 7313static struct value *
108d56a4 7314ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7315 struct type *type)
14f9c5c9
AS
7316{
7317 int i;
14f9c5c9 7318
5b4ee69b 7319 type = ada_check_typedef (type);
52ce6436 7320 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7321 {
0d5cff50 7322 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7323
7324 if (t_field_name == NULL)
4c4b4cd2 7325 continue;
14f9c5c9
AS
7326
7327 else if (field_name_match (t_field_name, name))
4c4b4cd2 7328 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7329
7330 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7331 {
0963b4bd 7332 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7333 ada_search_struct_field (name, arg,
7334 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7335 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7336
4c4b4cd2
PH
7337 if (v != NULL)
7338 return v;
7339 }
14f9c5c9
AS
7340
7341 else if (ada_is_variant_part (type, i))
4c4b4cd2 7342 {
0963b4bd 7343 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7344 int j;
5b4ee69b
MS
7345 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7346 i));
4c4b4cd2
PH
7347 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7348
52ce6436 7349 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7350 {
0963b4bd
MS
7351 struct value *v = ada_search_struct_field /* Force line
7352 break. */
06d5cf63
JB
7353 (name, arg,
7354 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7355 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7356
4c4b4cd2
PH
7357 if (v != NULL)
7358 return v;
7359 }
7360 }
14f9c5c9
AS
7361 }
7362 return NULL;
7363}
d2e4a39e 7364
52ce6436
PH
7365static struct value *ada_index_struct_field_1 (int *, struct value *,
7366 int, struct type *);
7367
7368
7369/* Return field #INDEX in ARG, where the index is that returned by
7370 * find_struct_field through its INDEX_P argument. Adjust the address
7371 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7372 * If found, return value, else return NULL. */
52ce6436
PH
7373
7374static struct value *
7375ada_index_struct_field (int index, struct value *arg, int offset,
7376 struct type *type)
7377{
7378 return ada_index_struct_field_1 (&index, arg, offset, type);
7379}
7380
7381
7382/* Auxiliary function for ada_index_struct_field. Like
7383 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7384 * *INDEX_P. */
52ce6436
PH
7385
7386static struct value *
7387ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7388 struct type *type)
7389{
7390 int i;
7391 type = ada_check_typedef (type);
7392
7393 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7394 {
7395 if (TYPE_FIELD_NAME (type, i) == NULL)
7396 continue;
7397 else if (ada_is_wrapper_field (type, i))
7398 {
0963b4bd 7399 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7400 ada_index_struct_field_1 (index_p, arg,
7401 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7402 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7403
52ce6436
PH
7404 if (v != NULL)
7405 return v;
7406 }
7407
7408 else if (ada_is_variant_part (type, i))
7409 {
7410 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7411 find_struct_field. */
52ce6436
PH
7412 error (_("Cannot assign this kind of variant record"));
7413 }
7414 else if (*index_p == 0)
7415 return ada_value_primitive_field (arg, offset, i, type);
7416 else
7417 *index_p -= 1;
7418 }
7419 return NULL;
7420}
7421
4c4b4cd2
PH
7422/* Given ARG, a value of type (pointer or reference to a)*
7423 structure/union, extract the component named NAME from the ultimate
7424 target structure/union and return it as a value with its
f5938064 7425 appropriate type.
14f9c5c9 7426
4c4b4cd2
PH
7427 The routine searches for NAME among all members of the structure itself
7428 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7429 (e.g., '_parent').
7430
03ee6b2e
PH
7431 If NO_ERR, then simply return NULL in case of error, rather than
7432 calling error. */
14f9c5c9 7433
d2e4a39e 7434struct value *
03ee6b2e 7435ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7436{
4c4b4cd2 7437 struct type *t, *t1;
d2e4a39e 7438 struct value *v;
14f9c5c9 7439
4c4b4cd2 7440 v = NULL;
df407dfe 7441 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7442 if (TYPE_CODE (t) == TYPE_CODE_REF)
7443 {
7444 t1 = TYPE_TARGET_TYPE (t);
7445 if (t1 == NULL)
03ee6b2e 7446 goto BadValue;
61ee279c 7447 t1 = ada_check_typedef (t1);
4c4b4cd2 7448 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7449 {
994b9211 7450 arg = coerce_ref (arg);
76a01679
JB
7451 t = t1;
7452 }
4c4b4cd2 7453 }
14f9c5c9 7454
4c4b4cd2
PH
7455 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7456 {
7457 t1 = TYPE_TARGET_TYPE (t);
7458 if (t1 == NULL)
03ee6b2e 7459 goto BadValue;
61ee279c 7460 t1 = ada_check_typedef (t1);
4c4b4cd2 7461 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7462 {
7463 arg = value_ind (arg);
7464 t = t1;
7465 }
4c4b4cd2 7466 else
76a01679 7467 break;
4c4b4cd2 7468 }
14f9c5c9 7469
4c4b4cd2 7470 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7471 goto BadValue;
14f9c5c9 7472
4c4b4cd2
PH
7473 if (t1 == t)
7474 v = ada_search_struct_field (name, arg, 0, t);
7475 else
7476 {
7477 int bit_offset, bit_size, byte_offset;
7478 struct type *field_type;
7479 CORE_ADDR address;
7480
76a01679 7481 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7482 address = value_address (ada_value_ind (arg));
4c4b4cd2 7483 else
b50d69b5 7484 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7485
1ed6ede0 7486 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7487 if (find_struct_field (name, t1, 0,
7488 &field_type, &byte_offset, &bit_offset,
52ce6436 7489 &bit_size, NULL))
76a01679
JB
7490 {
7491 if (bit_size != 0)
7492 {
714e53ab
PH
7493 if (TYPE_CODE (t) == TYPE_CODE_REF)
7494 arg = ada_coerce_ref (arg);
7495 else
7496 arg = ada_value_ind (arg);
76a01679
JB
7497 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7498 bit_offset, bit_size,
7499 field_type);
7500 }
7501 else
f5938064 7502 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7503 }
7504 }
7505
03ee6b2e
PH
7506 if (v != NULL || no_err)
7507 return v;
7508 else
323e0a4a 7509 error (_("There is no member named %s."), name);
14f9c5c9 7510
03ee6b2e
PH
7511 BadValue:
7512 if (no_err)
7513 return NULL;
7514 else
0963b4bd
MS
7515 error (_("Attempt to extract a component of "
7516 "a value that is not a record."));
14f9c5c9
AS
7517}
7518
7519/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7520 If DISPP is non-null, add its byte displacement from the beginning of a
7521 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7522 work for packed fields).
7523
7524 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7525 followed by "___".
14f9c5c9 7526
0963b4bd 7527 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7528 be a (pointer or reference)+ to a struct or union, and the
7529 ultimate target type will be searched.
14f9c5c9
AS
7530
7531 Looks recursively into variant clauses and parent types.
7532
4c4b4cd2
PH
7533 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7534 TYPE is not a type of the right kind. */
14f9c5c9 7535
4c4b4cd2 7536static struct type *
76a01679
JB
7537ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7538 int noerr, int *dispp)
14f9c5c9
AS
7539{
7540 int i;
7541
7542 if (name == NULL)
7543 goto BadName;
7544
76a01679 7545 if (refok && type != NULL)
4c4b4cd2
PH
7546 while (1)
7547 {
61ee279c 7548 type = ada_check_typedef (type);
76a01679
JB
7549 if (TYPE_CODE (type) != TYPE_CODE_PTR
7550 && TYPE_CODE (type) != TYPE_CODE_REF)
7551 break;
7552 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7553 }
14f9c5c9 7554
76a01679 7555 if (type == NULL
1265e4aa
JB
7556 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7557 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7558 {
4c4b4cd2 7559 if (noerr)
76a01679 7560 return NULL;
4c4b4cd2 7561 else
76a01679
JB
7562 {
7563 target_terminal_ours ();
7564 gdb_flush (gdb_stdout);
323e0a4a
AC
7565 if (type == NULL)
7566 error (_("Type (null) is not a structure or union type"));
7567 else
7568 {
7569 /* XXX: type_sprint */
7570 fprintf_unfiltered (gdb_stderr, _("Type "));
7571 type_print (type, "", gdb_stderr, -1);
7572 error (_(" is not a structure or union type"));
7573 }
76a01679 7574 }
14f9c5c9
AS
7575 }
7576
7577 type = to_static_fixed_type (type);
7578
7579 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7580 {
0d5cff50 7581 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7582 struct type *t;
7583 int disp;
d2e4a39e 7584
14f9c5c9 7585 if (t_field_name == NULL)
4c4b4cd2 7586 continue;
14f9c5c9
AS
7587
7588 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7589 {
7590 if (dispp != NULL)
7591 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
460efde1 7592 return TYPE_FIELD_TYPE (type, i);
4c4b4cd2 7593 }
14f9c5c9
AS
7594
7595 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7596 {
7597 disp = 0;
7598 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7599 0, 1, &disp);
7600 if (t != NULL)
7601 {
7602 if (dispp != NULL)
7603 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7604 return t;
7605 }
7606 }
14f9c5c9
AS
7607
7608 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7609 {
7610 int j;
5b4ee69b
MS
7611 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7612 i));
4c4b4cd2
PH
7613
7614 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7615 {
b1f33ddd
JB
7616 /* FIXME pnh 2008/01/26: We check for a field that is
7617 NOT wrapped in a struct, since the compiler sometimes
7618 generates these for unchecked variant types. Revisit
0963b4bd 7619 if the compiler changes this practice. */
0d5cff50 7620 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7621 disp = 0;
b1f33ddd
JB
7622 if (v_field_name != NULL
7623 && field_name_match (v_field_name, name))
460efde1 7624 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7625 else
0963b4bd
MS
7626 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7627 j),
b1f33ddd
JB
7628 name, 0, 1, &disp);
7629
4c4b4cd2
PH
7630 if (t != NULL)
7631 {
7632 if (dispp != NULL)
7633 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7634 return t;
7635 }
7636 }
7637 }
14f9c5c9
AS
7638
7639 }
7640
7641BadName:
d2e4a39e 7642 if (!noerr)
14f9c5c9
AS
7643 {
7644 target_terminal_ours ();
7645 gdb_flush (gdb_stdout);
323e0a4a
AC
7646 if (name == NULL)
7647 {
7648 /* XXX: type_sprint */
7649 fprintf_unfiltered (gdb_stderr, _("Type "));
7650 type_print (type, "", gdb_stderr, -1);
7651 error (_(" has no component named <null>"));
7652 }
7653 else
7654 {
7655 /* XXX: type_sprint */
7656 fprintf_unfiltered (gdb_stderr, _("Type "));
7657 type_print (type, "", gdb_stderr, -1);
7658 error (_(" has no component named %s"), name);
7659 }
14f9c5c9
AS
7660 }
7661
7662 return NULL;
7663}
7664
b1f33ddd
JB
7665/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7666 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7667 represents an unchecked union (that is, the variant part of a
0963b4bd 7668 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7669
7670static int
7671is_unchecked_variant (struct type *var_type, struct type *outer_type)
7672{
7673 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7674
b1f33ddd
JB
7675 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7676 == NULL);
7677}
7678
7679
14f9c5c9
AS
7680/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7681 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7682 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7683 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7684
d2e4a39e 7685int
ebf56fd3 7686ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7687 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7688{
7689 int others_clause;
7690 int i;
d2e4a39e 7691 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7692 struct value *outer;
7693 struct value *discrim;
14f9c5c9
AS
7694 LONGEST discrim_val;
7695
012370f6
TT
7696 /* Using plain value_from_contents_and_address here causes problems
7697 because we will end up trying to resolve a type that is currently
7698 being constructed. */
7699 outer = value_from_contents_and_address_unresolved (outer_type,
7700 outer_valaddr, 0);
0c281816
JB
7701 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7702 if (discrim == NULL)
14f9c5c9 7703 return -1;
0c281816 7704 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7705
7706 others_clause = -1;
7707 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7708 {
7709 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7710 others_clause = i;
14f9c5c9 7711 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7712 return i;
14f9c5c9
AS
7713 }
7714
7715 return others_clause;
7716}
d2e4a39e 7717\f
14f9c5c9
AS
7718
7719
4c4b4cd2 7720 /* Dynamic-Sized Records */
14f9c5c9
AS
7721
7722/* Strategy: The type ostensibly attached to a value with dynamic size
7723 (i.e., a size that is not statically recorded in the debugging
7724 data) does not accurately reflect the size or layout of the value.
7725 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7726 conventional types that are constructed on the fly. */
14f9c5c9
AS
7727
7728/* There is a subtle and tricky problem here. In general, we cannot
7729 determine the size of dynamic records without its data. However,
7730 the 'struct value' data structure, which GDB uses to represent
7731 quantities in the inferior process (the target), requires the size
7732 of the type at the time of its allocation in order to reserve space
7733 for GDB's internal copy of the data. That's why the
7734 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7735 rather than struct value*s.
14f9c5c9
AS
7736
7737 However, GDB's internal history variables ($1, $2, etc.) are
7738 struct value*s containing internal copies of the data that are not, in
7739 general, the same as the data at their corresponding addresses in
7740 the target. Fortunately, the types we give to these values are all
7741 conventional, fixed-size types (as per the strategy described
7742 above), so that we don't usually have to perform the
7743 'to_fixed_xxx_type' conversions to look at their values.
7744 Unfortunately, there is one exception: if one of the internal
7745 history variables is an array whose elements are unconstrained
7746 records, then we will need to create distinct fixed types for each
7747 element selected. */
7748
7749/* The upshot of all of this is that many routines take a (type, host
7750 address, target address) triple as arguments to represent a value.
7751 The host address, if non-null, is supposed to contain an internal
7752 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7753 target at the target address. */
14f9c5c9
AS
7754
7755/* Assuming that VAL0 represents a pointer value, the result of
7756 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7757 dynamic-sized types. */
14f9c5c9 7758
d2e4a39e
AS
7759struct value *
7760ada_value_ind (struct value *val0)
14f9c5c9 7761{
c48db5ca 7762 struct value *val = value_ind (val0);
5b4ee69b 7763
b50d69b5
JG
7764 if (ada_is_tagged_type (value_type (val), 0))
7765 val = ada_tag_value_at_base_address (val);
7766
4c4b4cd2 7767 return ada_to_fixed_value (val);
14f9c5c9
AS
7768}
7769
7770/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7771 qualifiers on VAL0. */
7772
d2e4a39e
AS
7773static struct value *
7774ada_coerce_ref (struct value *val0)
7775{
df407dfe 7776 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7777 {
7778 struct value *val = val0;
5b4ee69b 7779
994b9211 7780 val = coerce_ref (val);
b50d69b5
JG
7781
7782 if (ada_is_tagged_type (value_type (val), 0))
7783 val = ada_tag_value_at_base_address (val);
7784
4c4b4cd2 7785 return ada_to_fixed_value (val);
d2e4a39e
AS
7786 }
7787 else
14f9c5c9
AS
7788 return val0;
7789}
7790
7791/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7792 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7793
7794static unsigned int
ebf56fd3 7795align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7796{
7797 return (off + alignment - 1) & ~(alignment - 1);
7798}
7799
4c4b4cd2 7800/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7801
7802static unsigned int
ebf56fd3 7803field_alignment (struct type *type, int f)
14f9c5c9 7804{
d2e4a39e 7805 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7806 int len;
14f9c5c9
AS
7807 int align_offset;
7808
64a1bf19
JB
7809 /* The field name should never be null, unless the debugging information
7810 is somehow malformed. In this case, we assume the field does not
7811 require any alignment. */
7812 if (name == NULL)
7813 return 1;
7814
7815 len = strlen (name);
7816
4c4b4cd2
PH
7817 if (!isdigit (name[len - 1]))
7818 return 1;
14f9c5c9 7819
d2e4a39e 7820 if (isdigit (name[len - 2]))
14f9c5c9
AS
7821 align_offset = len - 2;
7822 else
7823 align_offset = len - 1;
7824
61012eef 7825 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7826 return TARGET_CHAR_BIT;
7827
4c4b4cd2
PH
7828 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7829}
7830
852dff6c 7831/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7832
852dff6c
JB
7833static struct symbol *
7834ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7835{
7836 struct symbol *sym;
7837
7838 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7839 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7840 return sym;
7841
4186eb54
KS
7842 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7843 return sym;
14f9c5c9
AS
7844}
7845
dddfab26
UW
7846/* Find a type named NAME. Ignores ambiguity. This routine will look
7847 solely for types defined by debug info, it will not search the GDB
7848 primitive types. */
4c4b4cd2 7849
852dff6c 7850static struct type *
ebf56fd3 7851ada_find_any_type (const char *name)
14f9c5c9 7852{
852dff6c 7853 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7854
14f9c5c9 7855 if (sym != NULL)
dddfab26 7856 return SYMBOL_TYPE (sym);
14f9c5c9 7857
dddfab26 7858 return NULL;
14f9c5c9
AS
7859}
7860
739593e0
JB
7861/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7862 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7863 symbol, in which case it is returned. Otherwise, this looks for
7864 symbols whose name is that of NAME_SYM suffixed with "___XR".
7865 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7866
7867struct symbol *
270140bd 7868ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7869{
739593e0 7870 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7871 struct symbol *sym;
7872
739593e0
JB
7873 if (strstr (name, "___XR") != NULL)
7874 return name_sym;
7875
aeb5907d
JB
7876 sym = find_old_style_renaming_symbol (name, block);
7877
7878 if (sym != NULL)
7879 return sym;
7880
0963b4bd 7881 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7882 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7883 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7884 return sym;
7885 else
7886 return NULL;
7887}
7888
7889static struct symbol *
270140bd 7890find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7891{
7f0df278 7892 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7893 char *rename;
7894
7895 if (function_sym != NULL)
7896 {
7897 /* If the symbol is defined inside a function, NAME is not fully
7898 qualified. This means we need to prepend the function name
7899 as well as adding the ``___XR'' suffix to build the name of
7900 the associated renaming symbol. */
0d5cff50 7901 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7902 /* Function names sometimes contain suffixes used
7903 for instance to qualify nested subprograms. When building
7904 the XR type name, we need to make sure that this suffix is
7905 not included. So do not include any suffix in the function
7906 name length below. */
69fadcdf 7907 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7908 const int rename_len = function_name_len + 2 /* "__" */
7909 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7910
529cad9c 7911 /* Strip the suffix if necessary. */
69fadcdf
JB
7912 ada_remove_trailing_digits (function_name, &function_name_len);
7913 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7914 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7915
4c4b4cd2
PH
7916 /* Library-level functions are a special case, as GNAT adds
7917 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7918 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7919 have this prefix, so we need to skip this prefix if present. */
7920 if (function_name_len > 5 /* "_ada_" */
7921 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7922 {
7923 function_name += 5;
7924 function_name_len -= 5;
7925 }
4c4b4cd2
PH
7926
7927 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7928 strncpy (rename, function_name, function_name_len);
7929 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7930 "__%s___XR", name);
4c4b4cd2
PH
7931 }
7932 else
7933 {
7934 const int rename_len = strlen (name) + 6;
5b4ee69b 7935
4c4b4cd2 7936 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7937 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7938 }
7939
852dff6c 7940 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7941}
7942
14f9c5c9 7943/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7944 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7945 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7946 otherwise return 0. */
7947
14f9c5c9 7948int
d2e4a39e 7949ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7950{
7951 if (type1 == NULL)
7952 return 1;
7953 else if (type0 == NULL)
7954 return 0;
7955 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7956 return 1;
7957 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7958 return 0;
4c4b4cd2
PH
7959 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7960 return 1;
ad82864c 7961 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7962 return 1;
4c4b4cd2
PH
7963 else if (ada_is_array_descriptor_type (type0)
7964 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7965 return 1;
aeb5907d
JB
7966 else
7967 {
7968 const char *type0_name = type_name_no_tag (type0);
7969 const char *type1_name = type_name_no_tag (type1);
7970
7971 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7972 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7973 return 1;
7974 }
14f9c5c9
AS
7975 return 0;
7976}
7977
7978/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7979 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7980
0d5cff50 7981const char *
d2e4a39e 7982ada_type_name (struct type *type)
14f9c5c9 7983{
d2e4a39e 7984 if (type == NULL)
14f9c5c9
AS
7985 return NULL;
7986 else if (TYPE_NAME (type) != NULL)
7987 return TYPE_NAME (type);
7988 else
7989 return TYPE_TAG_NAME (type);
7990}
7991
b4ba55a1
JB
7992/* Search the list of "descriptive" types associated to TYPE for a type
7993 whose name is NAME. */
7994
7995static struct type *
7996find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7997{
931e5bc3 7998 struct type *result, *tmp;
b4ba55a1 7999
c6044dd1
JB
8000 if (ada_ignore_descriptive_types_p)
8001 return NULL;
8002
b4ba55a1
JB
8003 /* If there no descriptive-type info, then there is no parallel type
8004 to be found. */
8005 if (!HAVE_GNAT_AUX_INFO (type))
8006 return NULL;
8007
8008 result = TYPE_DESCRIPTIVE_TYPE (type);
8009 while (result != NULL)
8010 {
0d5cff50 8011 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8012
8013 if (result_name == NULL)
8014 {
8015 warning (_("unexpected null name on descriptive type"));
8016 return NULL;
8017 }
8018
8019 /* If the names match, stop. */
8020 if (strcmp (result_name, name) == 0)
8021 break;
8022
8023 /* Otherwise, look at the next item on the list, if any. */
8024 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8025 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8026 else
8027 tmp = NULL;
8028
8029 /* If not found either, try after having resolved the typedef. */
8030 if (tmp != NULL)
8031 result = tmp;
b4ba55a1 8032 else
931e5bc3 8033 {
f168693b 8034 result = check_typedef (result);
931e5bc3
JG
8035 if (HAVE_GNAT_AUX_INFO (result))
8036 result = TYPE_DESCRIPTIVE_TYPE (result);
8037 else
8038 result = NULL;
8039 }
b4ba55a1
JB
8040 }
8041
8042 /* If we didn't find a match, see whether this is a packed array. With
8043 older compilers, the descriptive type information is either absent or
8044 irrelevant when it comes to packed arrays so the above lookup fails.
8045 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8046 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8047 return ada_find_any_type (name);
8048
8049 return result;
8050}
8051
8052/* Find a parallel type to TYPE with the specified NAME, using the
8053 descriptive type taken from the debugging information, if available,
8054 and otherwise using the (slower) name-based method. */
8055
8056static struct type *
8057ada_find_parallel_type_with_name (struct type *type, const char *name)
8058{
8059 struct type *result = NULL;
8060
8061 if (HAVE_GNAT_AUX_INFO (type))
8062 result = find_parallel_type_by_descriptive_type (type, name);
8063 else
8064 result = ada_find_any_type (name);
8065
8066 return result;
8067}
8068
8069/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8070 SUFFIX to the name of TYPE. */
14f9c5c9 8071
d2e4a39e 8072struct type *
ebf56fd3 8073ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8074{
0d5cff50 8075 char *name;
fe978cb0 8076 const char *type_name = ada_type_name (type);
14f9c5c9 8077 int len;
d2e4a39e 8078
fe978cb0 8079 if (type_name == NULL)
14f9c5c9
AS
8080 return NULL;
8081
fe978cb0 8082 len = strlen (type_name);
14f9c5c9 8083
b4ba55a1 8084 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8085
fe978cb0 8086 strcpy (name, type_name);
14f9c5c9
AS
8087 strcpy (name + len, suffix);
8088
b4ba55a1 8089 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8090}
8091
14f9c5c9 8092/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8093 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8094
d2e4a39e
AS
8095static struct type *
8096dynamic_template_type (struct type *type)
14f9c5c9 8097{
61ee279c 8098 type = ada_check_typedef (type);
14f9c5c9
AS
8099
8100 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8101 || ada_type_name (type) == NULL)
14f9c5c9 8102 return NULL;
d2e4a39e 8103 else
14f9c5c9
AS
8104 {
8105 int len = strlen (ada_type_name (type));
5b4ee69b 8106
4c4b4cd2
PH
8107 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8108 return type;
14f9c5c9 8109 else
4c4b4cd2 8110 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8111 }
8112}
8113
8114/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8115 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8116
d2e4a39e
AS
8117static int
8118is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8119{
8120 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8121
d2e4a39e 8122 return name != NULL
14f9c5c9
AS
8123 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8124 && strstr (name, "___XVL") != NULL;
8125}
8126
4c4b4cd2
PH
8127/* The index of the variant field of TYPE, or -1 if TYPE does not
8128 represent a variant record type. */
14f9c5c9 8129
d2e4a39e 8130static int
4c4b4cd2 8131variant_field_index (struct type *type)
14f9c5c9
AS
8132{
8133 int f;
8134
4c4b4cd2
PH
8135 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8136 return -1;
8137
8138 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8139 {
8140 if (ada_is_variant_part (type, f))
8141 return f;
8142 }
8143 return -1;
14f9c5c9
AS
8144}
8145
4c4b4cd2
PH
8146/* A record type with no fields. */
8147
d2e4a39e 8148static struct type *
fe978cb0 8149empty_record (struct type *templ)
14f9c5c9 8150{
fe978cb0 8151 struct type *type = alloc_type_copy (templ);
5b4ee69b 8152
14f9c5c9
AS
8153 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8154 TYPE_NFIELDS (type) = 0;
8155 TYPE_FIELDS (type) = NULL;
b1f33ddd 8156 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8157 TYPE_NAME (type) = "<empty>";
8158 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8159 TYPE_LENGTH (type) = 0;
8160 return type;
8161}
8162
8163/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8164 the value of type TYPE at VALADDR or ADDRESS (see comments at
8165 the beginning of this section) VAL according to GNAT conventions.
8166 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8167 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8168 an outer-level type (i.e., as opposed to a branch of a variant.) A
8169 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8170 of the variant.
14f9c5c9 8171
4c4b4cd2
PH
8172 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8173 length are not statically known are discarded. As a consequence,
8174 VALADDR, ADDRESS and DVAL0 are ignored.
8175
8176 NOTE: Limitations: For now, we assume that dynamic fields and
8177 variants occupy whole numbers of bytes. However, they need not be
8178 byte-aligned. */
8179
8180struct type *
10a2c479 8181ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8182 const gdb_byte *valaddr,
4c4b4cd2
PH
8183 CORE_ADDR address, struct value *dval0,
8184 int keep_dynamic_fields)
14f9c5c9 8185{
d2e4a39e
AS
8186 struct value *mark = value_mark ();
8187 struct value *dval;
8188 struct type *rtype;
14f9c5c9 8189 int nfields, bit_len;
4c4b4cd2 8190 int variant_field;
14f9c5c9 8191 long off;
d94e4f4f 8192 int fld_bit_len;
14f9c5c9
AS
8193 int f;
8194
4c4b4cd2
PH
8195 /* Compute the number of fields in this record type that are going
8196 to be processed: unless keep_dynamic_fields, this includes only
8197 fields whose position and length are static will be processed. */
8198 if (keep_dynamic_fields)
8199 nfields = TYPE_NFIELDS (type);
8200 else
8201 {
8202 nfields = 0;
76a01679 8203 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8204 && !ada_is_variant_part (type, nfields)
8205 && !is_dynamic_field (type, nfields))
8206 nfields++;
8207 }
8208
e9bb382b 8209 rtype = alloc_type_copy (type);
14f9c5c9
AS
8210 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8211 INIT_CPLUS_SPECIFIC (rtype);
8212 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8213 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8214 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8215 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8216 TYPE_NAME (rtype) = ada_type_name (type);
8217 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8218 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8219
d2e4a39e
AS
8220 off = 0;
8221 bit_len = 0;
4c4b4cd2
PH
8222 variant_field = -1;
8223
14f9c5c9
AS
8224 for (f = 0; f < nfields; f += 1)
8225 {
6c038f32
PH
8226 off = align_value (off, field_alignment (type, f))
8227 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8228 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8229 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8230
d2e4a39e 8231 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8232 {
8233 variant_field = f;
d94e4f4f 8234 fld_bit_len = 0;
4c4b4cd2 8235 }
14f9c5c9 8236 else if (is_dynamic_field (type, f))
4c4b4cd2 8237 {
284614f0
JB
8238 const gdb_byte *field_valaddr = valaddr;
8239 CORE_ADDR field_address = address;
8240 struct type *field_type =
8241 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8242
4c4b4cd2 8243 if (dval0 == NULL)
b5304971
JG
8244 {
8245 /* rtype's length is computed based on the run-time
8246 value of discriminants. If the discriminants are not
8247 initialized, the type size may be completely bogus and
0963b4bd 8248 GDB may fail to allocate a value for it. So check the
b5304971 8249 size first before creating the value. */
c1b5a1a6 8250 ada_ensure_varsize_limit (rtype);
012370f6
TT
8251 /* Using plain value_from_contents_and_address here
8252 causes problems because we will end up trying to
8253 resolve a type that is currently being
8254 constructed. */
8255 dval = value_from_contents_and_address_unresolved (rtype,
8256 valaddr,
8257 address);
9f1f738a 8258 rtype = value_type (dval);
b5304971 8259 }
4c4b4cd2
PH
8260 else
8261 dval = dval0;
8262
284614f0
JB
8263 /* If the type referenced by this field is an aligner type, we need
8264 to unwrap that aligner type, because its size might not be set.
8265 Keeping the aligner type would cause us to compute the wrong
8266 size for this field, impacting the offset of the all the fields
8267 that follow this one. */
8268 if (ada_is_aligner_type (field_type))
8269 {
8270 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8271
8272 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8273 field_address = cond_offset_target (field_address, field_offset);
8274 field_type = ada_aligned_type (field_type);
8275 }
8276
8277 field_valaddr = cond_offset_host (field_valaddr,
8278 off / TARGET_CHAR_BIT);
8279 field_address = cond_offset_target (field_address,
8280 off / TARGET_CHAR_BIT);
8281
8282 /* Get the fixed type of the field. Note that, in this case,
8283 we do not want to get the real type out of the tag: if
8284 the current field is the parent part of a tagged record,
8285 we will get the tag of the object. Clearly wrong: the real
8286 type of the parent is not the real type of the child. We
8287 would end up in an infinite loop. */
8288 field_type = ada_get_base_type (field_type);
8289 field_type = ada_to_fixed_type (field_type, field_valaddr,
8290 field_address, dval, 0);
27f2a97b
JB
8291 /* If the field size is already larger than the maximum
8292 object size, then the record itself will necessarily
8293 be larger than the maximum object size. We need to make
8294 this check now, because the size might be so ridiculously
8295 large (due to an uninitialized variable in the inferior)
8296 that it would cause an overflow when adding it to the
8297 record size. */
c1b5a1a6 8298 ada_ensure_varsize_limit (field_type);
284614f0
JB
8299
8300 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8301 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8302 /* The multiplication can potentially overflow. But because
8303 the field length has been size-checked just above, and
8304 assuming that the maximum size is a reasonable value,
8305 an overflow should not happen in practice. So rather than
8306 adding overflow recovery code to this already complex code,
8307 we just assume that it's not going to happen. */
d94e4f4f 8308 fld_bit_len =
4c4b4cd2
PH
8309 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8310 }
14f9c5c9 8311 else
4c4b4cd2 8312 {
5ded5331
JB
8313 /* Note: If this field's type is a typedef, it is important
8314 to preserve the typedef layer.
8315
8316 Otherwise, we might be transforming a typedef to a fat
8317 pointer (encoding a pointer to an unconstrained array),
8318 into a basic fat pointer (encoding an unconstrained
8319 array). As both types are implemented using the same
8320 structure, the typedef is the only clue which allows us
8321 to distinguish between the two options. Stripping it
8322 would prevent us from printing this field appropriately. */
8323 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8324 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8325 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8326 fld_bit_len =
4c4b4cd2
PH
8327 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8328 else
5ded5331
JB
8329 {
8330 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8331
8332 /* We need to be careful of typedefs when computing
8333 the length of our field. If this is a typedef,
8334 get the length of the target type, not the length
8335 of the typedef. */
8336 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8337 field_type = ada_typedef_target_type (field_type);
8338
8339 fld_bit_len =
8340 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8341 }
4c4b4cd2 8342 }
14f9c5c9 8343 if (off + fld_bit_len > bit_len)
4c4b4cd2 8344 bit_len = off + fld_bit_len;
d94e4f4f 8345 off += fld_bit_len;
4c4b4cd2
PH
8346 TYPE_LENGTH (rtype) =
8347 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8348 }
4c4b4cd2
PH
8349
8350 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8351 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8352 the record. This can happen in the presence of representation
8353 clauses. */
8354 if (variant_field >= 0)
8355 {
8356 struct type *branch_type;
8357
8358 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8359
8360 if (dval0 == NULL)
9f1f738a 8361 {
012370f6
TT
8362 /* Using plain value_from_contents_and_address here causes
8363 problems because we will end up trying to resolve a type
8364 that is currently being constructed. */
8365 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8366 address);
9f1f738a
SA
8367 rtype = value_type (dval);
8368 }
4c4b4cd2
PH
8369 else
8370 dval = dval0;
8371
8372 branch_type =
8373 to_fixed_variant_branch_type
8374 (TYPE_FIELD_TYPE (type, variant_field),
8375 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8376 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8377 if (branch_type == NULL)
8378 {
8379 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8380 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8381 TYPE_NFIELDS (rtype) -= 1;
8382 }
8383 else
8384 {
8385 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8386 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8387 fld_bit_len =
8388 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8389 TARGET_CHAR_BIT;
8390 if (off + fld_bit_len > bit_len)
8391 bit_len = off + fld_bit_len;
8392 TYPE_LENGTH (rtype) =
8393 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8394 }
8395 }
8396
714e53ab
PH
8397 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8398 should contain the alignment of that record, which should be a strictly
8399 positive value. If null or negative, then something is wrong, most
8400 probably in the debug info. In that case, we don't round up the size
0963b4bd 8401 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8402 the current RTYPE length might be good enough for our purposes. */
8403 if (TYPE_LENGTH (type) <= 0)
8404 {
323e0a4a
AC
8405 if (TYPE_NAME (rtype))
8406 warning (_("Invalid type size for `%s' detected: %d."),
8407 TYPE_NAME (rtype), TYPE_LENGTH (type));
8408 else
8409 warning (_("Invalid type size for <unnamed> detected: %d."),
8410 TYPE_LENGTH (type));
714e53ab
PH
8411 }
8412 else
8413 {
8414 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8415 TYPE_LENGTH (type));
8416 }
14f9c5c9
AS
8417
8418 value_free_to_mark (mark);
d2e4a39e 8419 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8420 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8421 return rtype;
8422}
8423
4c4b4cd2
PH
8424/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8425 of 1. */
14f9c5c9 8426
d2e4a39e 8427static struct type *
fc1a4b47 8428template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8429 CORE_ADDR address, struct value *dval0)
8430{
8431 return ada_template_to_fixed_record_type_1 (type, valaddr,
8432 address, dval0, 1);
8433}
8434
8435/* An ordinary record type in which ___XVL-convention fields and
8436 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8437 static approximations, containing all possible fields. Uses
8438 no runtime values. Useless for use in values, but that's OK,
8439 since the results are used only for type determinations. Works on both
8440 structs and unions. Representation note: to save space, we memorize
8441 the result of this function in the TYPE_TARGET_TYPE of the
8442 template type. */
8443
8444static struct type *
8445template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8446{
8447 struct type *type;
8448 int nfields;
8449 int f;
8450
9e195661
PMR
8451 /* No need no do anything if the input type is already fixed. */
8452 if (TYPE_FIXED_INSTANCE (type0))
8453 return type0;
8454
8455 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8456 if (TYPE_TARGET_TYPE (type0) != NULL)
8457 return TYPE_TARGET_TYPE (type0);
8458
9e195661 8459 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8460 type = type0;
9e195661
PMR
8461 nfields = TYPE_NFIELDS (type0);
8462
8463 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8464 recompute all over next time. */
8465 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8466
8467 for (f = 0; f < nfields; f += 1)
8468 {
460efde1 8469 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8470 struct type *new_type;
14f9c5c9 8471
4c4b4cd2 8472 if (is_dynamic_field (type0, f))
460efde1
JB
8473 {
8474 field_type = ada_check_typedef (field_type);
8475 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8476 }
14f9c5c9 8477 else
f192137b 8478 new_type = static_unwrap_type (field_type);
9e195661
PMR
8479
8480 if (new_type != field_type)
8481 {
8482 /* Clone TYPE0 only the first time we get a new field type. */
8483 if (type == type0)
8484 {
8485 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8486 TYPE_CODE (type) = TYPE_CODE (type0);
8487 INIT_CPLUS_SPECIFIC (type);
8488 TYPE_NFIELDS (type) = nfields;
8489 TYPE_FIELDS (type) = (struct field *)
8490 TYPE_ALLOC (type, nfields * sizeof (struct field));
8491 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8492 sizeof (struct field) * nfields);
8493 TYPE_NAME (type) = ada_type_name (type0);
8494 TYPE_TAG_NAME (type) = NULL;
8495 TYPE_FIXED_INSTANCE (type) = 1;
8496 TYPE_LENGTH (type) = 0;
8497 }
8498 TYPE_FIELD_TYPE (type, f) = new_type;
8499 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8500 }
14f9c5c9 8501 }
9e195661 8502
14f9c5c9
AS
8503 return type;
8504}
8505
4c4b4cd2 8506/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8507 whose address in memory is ADDRESS, returns a revision of TYPE,
8508 which should be a non-dynamic-sized record, in which the variant
8509 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8510 for discriminant values in DVAL0, which can be NULL if the record
8511 contains the necessary discriminant values. */
8512
d2e4a39e 8513static struct type *
fc1a4b47 8514to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8515 CORE_ADDR address, struct value *dval0)
14f9c5c9 8516{
d2e4a39e 8517 struct value *mark = value_mark ();
4c4b4cd2 8518 struct value *dval;
d2e4a39e 8519 struct type *rtype;
14f9c5c9
AS
8520 struct type *branch_type;
8521 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8522 int variant_field = variant_field_index (type);
14f9c5c9 8523
4c4b4cd2 8524 if (variant_field == -1)
14f9c5c9
AS
8525 return type;
8526
4c4b4cd2 8527 if (dval0 == NULL)
9f1f738a
SA
8528 {
8529 dval = value_from_contents_and_address (type, valaddr, address);
8530 type = value_type (dval);
8531 }
4c4b4cd2
PH
8532 else
8533 dval = dval0;
8534
e9bb382b 8535 rtype = alloc_type_copy (type);
14f9c5c9 8536 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8537 INIT_CPLUS_SPECIFIC (rtype);
8538 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8539 TYPE_FIELDS (rtype) =
8540 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8541 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8542 sizeof (struct field) * nfields);
14f9c5c9
AS
8543 TYPE_NAME (rtype) = ada_type_name (type);
8544 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8545 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8546 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8547
4c4b4cd2
PH
8548 branch_type = to_fixed_variant_branch_type
8549 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8550 cond_offset_host (valaddr,
4c4b4cd2
PH
8551 TYPE_FIELD_BITPOS (type, variant_field)
8552 / TARGET_CHAR_BIT),
d2e4a39e 8553 cond_offset_target (address,
4c4b4cd2
PH
8554 TYPE_FIELD_BITPOS (type, variant_field)
8555 / TARGET_CHAR_BIT), dval);
d2e4a39e 8556 if (branch_type == NULL)
14f9c5c9 8557 {
4c4b4cd2 8558 int f;
5b4ee69b 8559
4c4b4cd2
PH
8560 for (f = variant_field + 1; f < nfields; f += 1)
8561 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8562 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8563 }
8564 else
8565 {
4c4b4cd2
PH
8566 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8567 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8568 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8569 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8570 }
4c4b4cd2 8571 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8572
4c4b4cd2 8573 value_free_to_mark (mark);
14f9c5c9
AS
8574 return rtype;
8575}
8576
8577/* An ordinary record type (with fixed-length fields) that describes
8578 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8579 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8580 should be in DVAL, a record value; it may be NULL if the object
8581 at ADDR itself contains any necessary discriminant values.
8582 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8583 values from the record are needed. Except in the case that DVAL,
8584 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8585 unchecked) is replaced by a particular branch of the variant.
8586
8587 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8588 is questionable and may be removed. It can arise during the
8589 processing of an unconstrained-array-of-record type where all the
8590 variant branches have exactly the same size. This is because in
8591 such cases, the compiler does not bother to use the XVS convention
8592 when encoding the record. I am currently dubious of this
8593 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8594
d2e4a39e 8595static struct type *
fc1a4b47 8596to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8597 CORE_ADDR address, struct value *dval)
14f9c5c9 8598{
d2e4a39e 8599 struct type *templ_type;
14f9c5c9 8600
876cecd0 8601 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8602 return type0;
8603
d2e4a39e 8604 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8605
8606 if (templ_type != NULL)
8607 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8608 else if (variant_field_index (type0) >= 0)
8609 {
8610 if (dval == NULL && valaddr == NULL && address == 0)
8611 return type0;
8612 return to_record_with_fixed_variant_part (type0, valaddr, address,
8613 dval);
8614 }
14f9c5c9
AS
8615 else
8616 {
876cecd0 8617 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8618 return type0;
8619 }
8620
8621}
8622
8623/* An ordinary record type (with fixed-length fields) that describes
8624 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8625 union type. Any necessary discriminants' values should be in DVAL,
8626 a record value. That is, this routine selects the appropriate
8627 branch of the union at ADDR according to the discriminant value
b1f33ddd 8628 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8629 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8630
d2e4a39e 8631static struct type *
fc1a4b47 8632to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8633 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8634{
8635 int which;
d2e4a39e
AS
8636 struct type *templ_type;
8637 struct type *var_type;
14f9c5c9
AS
8638
8639 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8640 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8641 else
14f9c5c9
AS
8642 var_type = var_type0;
8643
8644 templ_type = ada_find_parallel_type (var_type, "___XVU");
8645
8646 if (templ_type != NULL)
8647 var_type = templ_type;
8648
b1f33ddd
JB
8649 if (is_unchecked_variant (var_type, value_type (dval)))
8650 return var_type0;
d2e4a39e
AS
8651 which =
8652 ada_which_variant_applies (var_type,
0fd88904 8653 value_type (dval), value_contents (dval));
14f9c5c9
AS
8654
8655 if (which < 0)
e9bb382b 8656 return empty_record (var_type);
14f9c5c9 8657 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8658 return to_fixed_record_type
d2e4a39e
AS
8659 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8660 valaddr, address, dval);
4c4b4cd2 8661 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8662 return
8663 to_fixed_record_type
8664 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8665 else
8666 return TYPE_FIELD_TYPE (var_type, which);
8667}
8668
8908fca5
JB
8669/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8670 ENCODING_TYPE, a type following the GNAT conventions for discrete
8671 type encodings, only carries redundant information. */
8672
8673static int
8674ada_is_redundant_range_encoding (struct type *range_type,
8675 struct type *encoding_type)
8676{
8677 struct type *fixed_range_type;
108d56a4 8678 const char *bounds_str;
8908fca5
JB
8679 int n;
8680 LONGEST lo, hi;
8681
8682 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8683
005e2509
JB
8684 if (TYPE_CODE (get_base_type (range_type))
8685 != TYPE_CODE (get_base_type (encoding_type)))
8686 {
8687 /* The compiler probably used a simple base type to describe
8688 the range type instead of the range's actual base type,
8689 expecting us to get the real base type from the encoding
8690 anyway. In this situation, the encoding cannot be ignored
8691 as redundant. */
8692 return 0;
8693 }
8694
8908fca5
JB
8695 if (is_dynamic_type (range_type))
8696 return 0;
8697
8698 if (TYPE_NAME (encoding_type) == NULL)
8699 return 0;
8700
8701 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8702 if (bounds_str == NULL)
8703 return 0;
8704
8705 n = 8; /* Skip "___XDLU_". */
8706 if (!ada_scan_number (bounds_str, n, &lo, &n))
8707 return 0;
8708 if (TYPE_LOW_BOUND (range_type) != lo)
8709 return 0;
8710
8711 n += 2; /* Skip the "__" separator between the two bounds. */
8712 if (!ada_scan_number (bounds_str, n, &hi, &n))
8713 return 0;
8714 if (TYPE_HIGH_BOUND (range_type) != hi)
8715 return 0;
8716
8717 return 1;
8718}
8719
8720/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8721 a type following the GNAT encoding for describing array type
8722 indices, only carries redundant information. */
8723
8724static int
8725ada_is_redundant_index_type_desc (struct type *array_type,
8726 struct type *desc_type)
8727{
8728 struct type *this_layer = check_typedef (array_type);
8729 int i;
8730
8731 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8732 {
8733 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8734 TYPE_FIELD_TYPE (desc_type, i)))
8735 return 0;
8736 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8737 }
8738
8739 return 1;
8740}
8741
14f9c5c9
AS
8742/* Assuming that TYPE0 is an array type describing the type of a value
8743 at ADDR, and that DVAL describes a record containing any
8744 discriminants used in TYPE0, returns a type for the value that
8745 contains no dynamic components (that is, no components whose sizes
8746 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8747 true, gives an error message if the resulting type's size is over
4c4b4cd2 8748 varsize_limit. */
14f9c5c9 8749
d2e4a39e
AS
8750static struct type *
8751to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8752 int ignore_too_big)
14f9c5c9 8753{
d2e4a39e
AS
8754 struct type *index_type_desc;
8755 struct type *result;
ad82864c 8756 int constrained_packed_array_p;
931e5bc3 8757 static const char *xa_suffix = "___XA";
14f9c5c9 8758
b0dd7688 8759 type0 = ada_check_typedef (type0);
284614f0 8760 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8761 return type0;
14f9c5c9 8762
ad82864c
JB
8763 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8764 if (constrained_packed_array_p)
8765 type0 = decode_constrained_packed_array_type (type0);
284614f0 8766
931e5bc3
JG
8767 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8768
8769 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8770 encoding suffixed with 'P' may still be generated. If so,
8771 it should be used to find the XA type. */
8772
8773 if (index_type_desc == NULL)
8774 {
1da0522e 8775 const char *type_name = ada_type_name (type0);
931e5bc3 8776
1da0522e 8777 if (type_name != NULL)
931e5bc3 8778 {
1da0522e 8779 const int len = strlen (type_name);
931e5bc3
JG
8780 char *name = (char *) alloca (len + strlen (xa_suffix));
8781
1da0522e 8782 if (type_name[len - 1] == 'P')
931e5bc3 8783 {
1da0522e 8784 strcpy (name, type_name);
931e5bc3
JG
8785 strcpy (name + len - 1, xa_suffix);
8786 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8787 }
8788 }
8789 }
8790
28c85d6c 8791 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8792 if (index_type_desc != NULL
8793 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8794 {
8795 /* Ignore this ___XA parallel type, as it does not bring any
8796 useful information. This allows us to avoid creating fixed
8797 versions of the array's index types, which would be identical
8798 to the original ones. This, in turn, can also help avoid
8799 the creation of fixed versions of the array itself. */
8800 index_type_desc = NULL;
8801 }
8802
14f9c5c9
AS
8803 if (index_type_desc == NULL)
8804 {
61ee279c 8805 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8806
14f9c5c9 8807 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8808 depend on the contents of the array in properly constructed
8809 debugging data. */
529cad9c
PH
8810 /* Create a fixed version of the array element type.
8811 We're not providing the address of an element here,
e1d5a0d2 8812 and thus the actual object value cannot be inspected to do
529cad9c
PH
8813 the conversion. This should not be a problem, since arrays of
8814 unconstrained objects are not allowed. In particular, all
8815 the elements of an array of a tagged type should all be of
8816 the same type specified in the debugging info. No need to
8817 consult the object tag. */
1ed6ede0 8818 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8819
284614f0
JB
8820 /* Make sure we always create a new array type when dealing with
8821 packed array types, since we're going to fix-up the array
8822 type length and element bitsize a little further down. */
ad82864c 8823 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8824 result = type0;
14f9c5c9 8825 else
e9bb382b 8826 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8827 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8828 }
8829 else
8830 {
8831 int i;
8832 struct type *elt_type0;
8833
8834 elt_type0 = type0;
8835 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8836 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8837
8838 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8839 depend on the contents of the array in properly constructed
8840 debugging data. */
529cad9c
PH
8841 /* Create a fixed version of the array element type.
8842 We're not providing the address of an element here,
e1d5a0d2 8843 and thus the actual object value cannot be inspected to do
529cad9c
PH
8844 the conversion. This should not be a problem, since arrays of
8845 unconstrained objects are not allowed. In particular, all
8846 the elements of an array of a tagged type should all be of
8847 the same type specified in the debugging info. No need to
8848 consult the object tag. */
1ed6ede0
JB
8849 result =
8850 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8851
8852 elt_type0 = type0;
14f9c5c9 8853 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8854 {
8855 struct type *range_type =
28c85d6c 8856 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8857
e9bb382b 8858 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8859 result, range_type);
1ce677a4 8860 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8861 }
d2e4a39e 8862 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8863 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8864 }
8865
2e6fda7d
JB
8866 /* We want to preserve the type name. This can be useful when
8867 trying to get the type name of a value that has already been
8868 printed (for instance, if the user did "print VAR; whatis $". */
8869 TYPE_NAME (result) = TYPE_NAME (type0);
8870
ad82864c 8871 if (constrained_packed_array_p)
284614f0
JB
8872 {
8873 /* So far, the resulting type has been created as if the original
8874 type was a regular (non-packed) array type. As a result, the
8875 bitsize of the array elements needs to be set again, and the array
8876 length needs to be recomputed based on that bitsize. */
8877 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8878 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8879
8880 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8881 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8882 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8883 TYPE_LENGTH (result)++;
8884 }
8885
876cecd0 8886 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8887 return result;
d2e4a39e 8888}
14f9c5c9
AS
8889
8890
8891/* A standard type (containing no dynamically sized components)
8892 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8893 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8894 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8895 ADDRESS or in VALADDR contains these discriminants.
8896
1ed6ede0
JB
8897 If CHECK_TAG is not null, in the case of tagged types, this function
8898 attempts to locate the object's tag and use it to compute the actual
8899 type. However, when ADDRESS is null, we cannot use it to determine the
8900 location of the tag, and therefore compute the tagged type's actual type.
8901 So we return the tagged type without consulting the tag. */
529cad9c 8902
f192137b
JB
8903static struct type *
8904ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8905 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8906{
61ee279c 8907 type = ada_check_typedef (type);
d2e4a39e
AS
8908 switch (TYPE_CODE (type))
8909 {
8910 default:
14f9c5c9 8911 return type;
d2e4a39e 8912 case TYPE_CODE_STRUCT:
4c4b4cd2 8913 {
76a01679 8914 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8915 struct type *fixed_record_type =
8916 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8917
529cad9c
PH
8918 /* If STATIC_TYPE is a tagged type and we know the object's address,
8919 then we can determine its tag, and compute the object's actual
0963b4bd 8920 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8921 type (the parent part of the record may have dynamic fields
8922 and the way the location of _tag is expressed may depend on
8923 them). */
529cad9c 8924
1ed6ede0 8925 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8926 {
b50d69b5
JG
8927 struct value *tag =
8928 value_tag_from_contents_and_address
8929 (fixed_record_type,
8930 valaddr,
8931 address);
8932 struct type *real_type = type_from_tag (tag);
8933 struct value *obj =
8934 value_from_contents_and_address (fixed_record_type,
8935 valaddr,
8936 address);
9f1f738a 8937 fixed_record_type = value_type (obj);
76a01679 8938 if (real_type != NULL)
b50d69b5
JG
8939 return to_fixed_record_type
8940 (real_type, NULL,
8941 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8942 }
4af88198
JB
8943
8944 /* Check to see if there is a parallel ___XVZ variable.
8945 If there is, then it provides the actual size of our type. */
8946 else if (ada_type_name (fixed_record_type) != NULL)
8947 {
0d5cff50 8948 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8949 char *xvz_name
8950 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
4af88198
JB
8951 int xvz_found = 0;
8952 LONGEST size;
8953
88c15c34 8954 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8955 size = get_int_var_value (xvz_name, &xvz_found);
8956 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8957 {
8958 fixed_record_type = copy_type (fixed_record_type);
8959 TYPE_LENGTH (fixed_record_type) = size;
8960
8961 /* The FIXED_RECORD_TYPE may have be a stub. We have
8962 observed this when the debugging info is STABS, and
8963 apparently it is something that is hard to fix.
8964
8965 In practice, we don't need the actual type definition
8966 at all, because the presence of the XVZ variable allows us
8967 to assume that there must be a XVS type as well, which we
8968 should be able to use later, when we need the actual type
8969 definition.
8970
8971 In the meantime, pretend that the "fixed" type we are
8972 returning is NOT a stub, because this can cause trouble
8973 when using this type to create new types targeting it.
8974 Indeed, the associated creation routines often check
8975 whether the target type is a stub and will try to replace
0963b4bd 8976 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8977 might cause the new type to have the wrong size too.
8978 Consider the case of an array, for instance, where the size
8979 of the array is computed from the number of elements in
8980 our array multiplied by the size of its element. */
8981 TYPE_STUB (fixed_record_type) = 0;
8982 }
8983 }
1ed6ede0 8984 return fixed_record_type;
4c4b4cd2 8985 }
d2e4a39e 8986 case TYPE_CODE_ARRAY:
4c4b4cd2 8987 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8988 case TYPE_CODE_UNION:
8989 if (dval == NULL)
4c4b4cd2 8990 return type;
d2e4a39e 8991 else
4c4b4cd2 8992 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8993 }
14f9c5c9
AS
8994}
8995
f192137b
JB
8996/* The same as ada_to_fixed_type_1, except that it preserves the type
8997 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8998
8999 The typedef layer needs be preserved in order to differentiate between
9000 arrays and array pointers when both types are implemented using the same
9001 fat pointer. In the array pointer case, the pointer is encoded as
9002 a typedef of the pointer type. For instance, considering:
9003
9004 type String_Access is access String;
9005 S1 : String_Access := null;
9006
9007 To the debugger, S1 is defined as a typedef of type String. But
9008 to the user, it is a pointer. So if the user tries to print S1,
9009 we should not dereference the array, but print the array address
9010 instead.
9011
9012 If we didn't preserve the typedef layer, we would lose the fact that
9013 the type is to be presented as a pointer (needs de-reference before
9014 being printed). And we would also use the source-level type name. */
f192137b
JB
9015
9016struct type *
9017ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9018 CORE_ADDR address, struct value *dval, int check_tag)
9019
9020{
9021 struct type *fixed_type =
9022 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9023
96dbd2c1
JB
9024 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9025 then preserve the typedef layer.
9026
9027 Implementation note: We can only check the main-type portion of
9028 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9029 from TYPE now returns a type that has the same instance flags
9030 as TYPE. For instance, if TYPE is a "typedef const", and its
9031 target type is a "struct", then the typedef elimination will return
9032 a "const" version of the target type. See check_typedef for more
9033 details about how the typedef layer elimination is done.
9034
9035 brobecker/2010-11-19: It seems to me that the only case where it is
9036 useful to preserve the typedef layer is when dealing with fat pointers.
9037 Perhaps, we could add a check for that and preserve the typedef layer
9038 only in that situation. But this seems unecessary so far, probably
9039 because we call check_typedef/ada_check_typedef pretty much everywhere.
9040 */
f192137b 9041 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9042 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9043 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9044 return type;
9045
9046 return fixed_type;
9047}
9048
14f9c5c9 9049/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9050 TYPE0, but based on no runtime data. */
14f9c5c9 9051
d2e4a39e
AS
9052static struct type *
9053to_static_fixed_type (struct type *type0)
14f9c5c9 9054{
d2e4a39e 9055 struct type *type;
14f9c5c9
AS
9056
9057 if (type0 == NULL)
9058 return NULL;
9059
876cecd0 9060 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9061 return type0;
9062
61ee279c 9063 type0 = ada_check_typedef (type0);
d2e4a39e 9064
14f9c5c9
AS
9065 switch (TYPE_CODE (type0))
9066 {
9067 default:
9068 return type0;
9069 case TYPE_CODE_STRUCT:
9070 type = dynamic_template_type (type0);
d2e4a39e 9071 if (type != NULL)
4c4b4cd2
PH
9072 return template_to_static_fixed_type (type);
9073 else
9074 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9075 case TYPE_CODE_UNION:
9076 type = ada_find_parallel_type (type0, "___XVU");
9077 if (type != NULL)
4c4b4cd2
PH
9078 return template_to_static_fixed_type (type);
9079 else
9080 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9081 }
9082}
9083
4c4b4cd2
PH
9084/* A static approximation of TYPE with all type wrappers removed. */
9085
d2e4a39e
AS
9086static struct type *
9087static_unwrap_type (struct type *type)
14f9c5c9
AS
9088{
9089 if (ada_is_aligner_type (type))
9090 {
61ee279c 9091 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9092 if (ada_type_name (type1) == NULL)
4c4b4cd2 9093 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9094
9095 return static_unwrap_type (type1);
9096 }
d2e4a39e 9097 else
14f9c5c9 9098 {
d2e4a39e 9099 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9100
d2e4a39e 9101 if (raw_real_type == type)
4c4b4cd2 9102 return type;
14f9c5c9 9103 else
4c4b4cd2 9104 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9105 }
9106}
9107
9108/* In some cases, incomplete and private types require
4c4b4cd2 9109 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9110 type Foo;
9111 type FooP is access Foo;
9112 V: FooP;
9113 type Foo is array ...;
4c4b4cd2 9114 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9115 cross-references to such types, we instead substitute for FooP a
9116 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9117 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9118
9119/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9120 exists, otherwise TYPE. */
9121
d2e4a39e 9122struct type *
61ee279c 9123ada_check_typedef (struct type *type)
14f9c5c9 9124{
727e3d2e
JB
9125 if (type == NULL)
9126 return NULL;
9127
720d1a40
JB
9128 /* If our type is a typedef type of a fat pointer, then we're done.
9129 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9130 what allows us to distinguish between fat pointers that represent
9131 array types, and fat pointers that represent array access types
9132 (in both cases, the compiler implements them as fat pointers). */
9133 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9134 && is_thick_pntr (ada_typedef_target_type (type)))
9135 return type;
9136
f168693b 9137 type = check_typedef (type);
14f9c5c9 9138 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9139 || !TYPE_STUB (type)
14f9c5c9
AS
9140 || TYPE_TAG_NAME (type) == NULL)
9141 return type;
d2e4a39e 9142 else
14f9c5c9 9143 {
0d5cff50 9144 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9145 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9146
05e522ef
JB
9147 if (type1 == NULL)
9148 return type;
9149
9150 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9151 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9152 types, only for the typedef-to-array types). If that's the case,
9153 strip the typedef layer. */
9154 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9155 type1 = ada_check_typedef (type1);
9156
9157 return type1;
14f9c5c9
AS
9158 }
9159}
9160
9161/* A value representing the data at VALADDR/ADDRESS as described by
9162 type TYPE0, but with a standard (static-sized) type that correctly
9163 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9164 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9165 creation of struct values]. */
14f9c5c9 9166
4c4b4cd2
PH
9167static struct value *
9168ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9169 struct value *val0)
14f9c5c9 9170{
1ed6ede0 9171 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9172
14f9c5c9
AS
9173 if (type == type0 && val0 != NULL)
9174 return val0;
d2e4a39e 9175 else
4c4b4cd2
PH
9176 return value_from_contents_and_address (type, 0, address);
9177}
9178
9179/* A value representing VAL, but with a standard (static-sized) type
9180 that correctly describes it. Does not necessarily create a new
9181 value. */
9182
0c3acc09 9183struct value *
4c4b4cd2
PH
9184ada_to_fixed_value (struct value *val)
9185{
c48db5ca
JB
9186 val = unwrap_value (val);
9187 val = ada_to_fixed_value_create (value_type (val),
9188 value_address (val),
9189 val);
9190 return val;
14f9c5c9 9191}
d2e4a39e 9192\f
14f9c5c9 9193
14f9c5c9
AS
9194/* Attributes */
9195
4c4b4cd2
PH
9196/* Table mapping attribute numbers to names.
9197 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9198
d2e4a39e 9199static const char *attribute_names[] = {
14f9c5c9
AS
9200 "<?>",
9201
d2e4a39e 9202 "first",
14f9c5c9
AS
9203 "last",
9204 "length",
9205 "image",
14f9c5c9
AS
9206 "max",
9207 "min",
4c4b4cd2
PH
9208 "modulus",
9209 "pos",
9210 "size",
9211 "tag",
14f9c5c9 9212 "val",
14f9c5c9
AS
9213 0
9214};
9215
d2e4a39e 9216const char *
4c4b4cd2 9217ada_attribute_name (enum exp_opcode n)
14f9c5c9 9218{
4c4b4cd2
PH
9219 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9220 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9221 else
9222 return attribute_names[0];
9223}
9224
4c4b4cd2 9225/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9226
4c4b4cd2
PH
9227static LONGEST
9228pos_atr (struct value *arg)
14f9c5c9 9229{
24209737
PH
9230 struct value *val = coerce_ref (arg);
9231 struct type *type = value_type (val);
aa715135 9232 LONGEST result;
14f9c5c9 9233
d2e4a39e 9234 if (!discrete_type_p (type))
323e0a4a 9235 error (_("'POS only defined on discrete types"));
14f9c5c9 9236
aa715135
JG
9237 if (!discrete_position (type, value_as_long (val), &result))
9238 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9239
aa715135 9240 return result;
4c4b4cd2
PH
9241}
9242
9243static struct value *
3cb382c9 9244value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9245{
3cb382c9 9246 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9247}
9248
4c4b4cd2 9249/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9250
d2e4a39e
AS
9251static struct value *
9252value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9253{
d2e4a39e 9254 if (!discrete_type_p (type))
323e0a4a 9255 error (_("'VAL only defined on discrete types"));
df407dfe 9256 if (!integer_type_p (value_type (arg)))
323e0a4a 9257 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9258
9259 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9260 {
9261 long pos = value_as_long (arg);
5b4ee69b 9262
14f9c5c9 9263 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9264 error (_("argument to 'VAL out of range"));
14e75d8e 9265 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9266 }
9267 else
9268 return value_from_longest (type, value_as_long (arg));
9269}
14f9c5c9 9270\f
d2e4a39e 9271
4c4b4cd2 9272 /* Evaluation */
14f9c5c9 9273
4c4b4cd2
PH
9274/* True if TYPE appears to be an Ada character type.
9275 [At the moment, this is true only for Character and Wide_Character;
9276 It is a heuristic test that could stand improvement]. */
14f9c5c9 9277
d2e4a39e
AS
9278int
9279ada_is_character_type (struct type *type)
14f9c5c9 9280{
7b9f71f2
JB
9281 const char *name;
9282
9283 /* If the type code says it's a character, then assume it really is,
9284 and don't check any further. */
9285 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9286 return 1;
9287
9288 /* Otherwise, assume it's a character type iff it is a discrete type
9289 with a known character type name. */
9290 name = ada_type_name (type);
9291 return (name != NULL
9292 && (TYPE_CODE (type) == TYPE_CODE_INT
9293 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9294 && (strcmp (name, "character") == 0
9295 || strcmp (name, "wide_character") == 0
5a517ebd 9296 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9297 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9298}
9299
4c4b4cd2 9300/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9301
9302int
ebf56fd3 9303ada_is_string_type (struct type *type)
14f9c5c9 9304{
61ee279c 9305 type = ada_check_typedef (type);
d2e4a39e 9306 if (type != NULL
14f9c5c9 9307 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9308 && (ada_is_simple_array_type (type)
9309 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9310 && ada_array_arity (type) == 1)
9311 {
9312 struct type *elttype = ada_array_element_type (type, 1);
9313
9314 return ada_is_character_type (elttype);
9315 }
d2e4a39e 9316 else
14f9c5c9
AS
9317 return 0;
9318}
9319
5bf03f13
JB
9320/* The compiler sometimes provides a parallel XVS type for a given
9321 PAD type. Normally, it is safe to follow the PAD type directly,
9322 but older versions of the compiler have a bug that causes the offset
9323 of its "F" field to be wrong. Following that field in that case
9324 would lead to incorrect results, but this can be worked around
9325 by ignoring the PAD type and using the associated XVS type instead.
9326
9327 Set to True if the debugger should trust the contents of PAD types.
9328 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9329static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9330
9331/* True if TYPE is a struct type introduced by the compiler to force the
9332 alignment of a value. Such types have a single field with a
4c4b4cd2 9333 distinctive name. */
14f9c5c9
AS
9334
9335int
ebf56fd3 9336ada_is_aligner_type (struct type *type)
14f9c5c9 9337{
61ee279c 9338 type = ada_check_typedef (type);
714e53ab 9339
5bf03f13 9340 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9341 return 0;
9342
14f9c5c9 9343 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9344 && TYPE_NFIELDS (type) == 1
9345 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9346}
9347
9348/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9349 the parallel type. */
14f9c5c9 9350
d2e4a39e
AS
9351struct type *
9352ada_get_base_type (struct type *raw_type)
14f9c5c9 9353{
d2e4a39e
AS
9354 struct type *real_type_namer;
9355 struct type *raw_real_type;
14f9c5c9
AS
9356
9357 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9358 return raw_type;
9359
284614f0
JB
9360 if (ada_is_aligner_type (raw_type))
9361 /* The encoding specifies that we should always use the aligner type.
9362 So, even if this aligner type has an associated XVS type, we should
9363 simply ignore it.
9364
9365 According to the compiler gurus, an XVS type parallel to an aligner
9366 type may exist because of a stabs limitation. In stabs, aligner
9367 types are empty because the field has a variable-sized type, and
9368 thus cannot actually be used as an aligner type. As a result,
9369 we need the associated parallel XVS type to decode the type.
9370 Since the policy in the compiler is to not change the internal
9371 representation based on the debugging info format, we sometimes
9372 end up having a redundant XVS type parallel to the aligner type. */
9373 return raw_type;
9374
14f9c5c9 9375 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9376 if (real_type_namer == NULL
14f9c5c9
AS
9377 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9378 || TYPE_NFIELDS (real_type_namer) != 1)
9379 return raw_type;
9380
f80d3ff2
JB
9381 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9382 {
9383 /* This is an older encoding form where the base type needs to be
9384 looked up by name. We prefer the newer enconding because it is
9385 more efficient. */
9386 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9387 if (raw_real_type == NULL)
9388 return raw_type;
9389 else
9390 return raw_real_type;
9391 }
9392
9393 /* The field in our XVS type is a reference to the base type. */
9394 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9395}
14f9c5c9 9396
4c4b4cd2 9397/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9398
d2e4a39e
AS
9399struct type *
9400ada_aligned_type (struct type *type)
14f9c5c9
AS
9401{
9402 if (ada_is_aligner_type (type))
9403 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9404 else
9405 return ada_get_base_type (type);
9406}
9407
9408
9409/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9410 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9411
fc1a4b47
AC
9412const gdb_byte *
9413ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9414{
d2e4a39e 9415 if (ada_is_aligner_type (type))
14f9c5c9 9416 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9417 valaddr +
9418 TYPE_FIELD_BITPOS (type,
9419 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9420 else
9421 return valaddr;
9422}
9423
4c4b4cd2
PH
9424
9425
14f9c5c9 9426/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9427 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9428const char *
9429ada_enum_name (const char *name)
14f9c5c9 9430{
4c4b4cd2
PH
9431 static char *result;
9432 static size_t result_len = 0;
d2e4a39e 9433 char *tmp;
14f9c5c9 9434
4c4b4cd2
PH
9435 /* First, unqualify the enumeration name:
9436 1. Search for the last '.' character. If we find one, then skip
177b42fe 9437 all the preceding characters, the unqualified name starts
76a01679 9438 right after that dot.
4c4b4cd2 9439 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9440 translates dots into "__". Search forward for double underscores,
9441 but stop searching when we hit an overloading suffix, which is
9442 of the form "__" followed by digits. */
4c4b4cd2 9443
c3e5cd34
PH
9444 tmp = strrchr (name, '.');
9445 if (tmp != NULL)
4c4b4cd2
PH
9446 name = tmp + 1;
9447 else
14f9c5c9 9448 {
4c4b4cd2
PH
9449 while ((tmp = strstr (name, "__")) != NULL)
9450 {
9451 if (isdigit (tmp[2]))
9452 break;
9453 else
9454 name = tmp + 2;
9455 }
14f9c5c9
AS
9456 }
9457
9458 if (name[0] == 'Q')
9459 {
14f9c5c9 9460 int v;
5b4ee69b 9461
14f9c5c9 9462 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9463 {
9464 if (sscanf (name + 2, "%x", &v) != 1)
9465 return name;
9466 }
14f9c5c9 9467 else
4c4b4cd2 9468 return name;
14f9c5c9 9469
4c4b4cd2 9470 GROW_VECT (result, result_len, 16);
14f9c5c9 9471 if (isascii (v) && isprint (v))
88c15c34 9472 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9473 else if (name[1] == 'U')
88c15c34 9474 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9475 else
88c15c34 9476 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9477
9478 return result;
9479 }
d2e4a39e 9480 else
4c4b4cd2 9481 {
c3e5cd34
PH
9482 tmp = strstr (name, "__");
9483 if (tmp == NULL)
9484 tmp = strstr (name, "$");
9485 if (tmp != NULL)
4c4b4cd2
PH
9486 {
9487 GROW_VECT (result, result_len, tmp - name + 1);
9488 strncpy (result, name, tmp - name);
9489 result[tmp - name] = '\0';
9490 return result;
9491 }
9492
9493 return name;
9494 }
14f9c5c9
AS
9495}
9496
14f9c5c9
AS
9497/* Evaluate the subexpression of EXP starting at *POS as for
9498 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9499 expression. */
14f9c5c9 9500
d2e4a39e
AS
9501static struct value *
9502evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9503{
4b27a620 9504 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9505}
9506
9507/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9508 value it wraps. */
14f9c5c9 9509
d2e4a39e
AS
9510static struct value *
9511unwrap_value (struct value *val)
14f9c5c9 9512{
df407dfe 9513 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9514
14f9c5c9
AS
9515 if (ada_is_aligner_type (type))
9516 {
de4d072f 9517 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9518 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9519
14f9c5c9 9520 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9521 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9522
9523 return unwrap_value (v);
9524 }
d2e4a39e 9525 else
14f9c5c9 9526 {
d2e4a39e 9527 struct type *raw_real_type =
61ee279c 9528 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9529
5bf03f13
JB
9530 /* If there is no parallel XVS or XVE type, then the value is
9531 already unwrapped. Return it without further modification. */
9532 if ((type == raw_real_type)
9533 && ada_find_parallel_type (type, "___XVE") == NULL)
9534 return val;
14f9c5c9 9535
d2e4a39e 9536 return
4c4b4cd2
PH
9537 coerce_unspec_val_to_type
9538 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9539 value_address (val),
1ed6ede0 9540 NULL, 1));
14f9c5c9
AS
9541 }
9542}
d2e4a39e
AS
9543
9544static struct value *
9545cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9546{
9547 LONGEST val;
9548
df407dfe 9549 if (type == value_type (arg))
14f9c5c9 9550 return arg;
df407dfe 9551 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9552 val = ada_float_to_fixed (type,
df407dfe 9553 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9554 value_as_long (arg)));
d2e4a39e 9555 else
14f9c5c9 9556 {
a53b7a21 9557 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9558
14f9c5c9
AS
9559 val = ada_float_to_fixed (type, argd);
9560 }
9561
9562 return value_from_longest (type, val);
9563}
9564
d2e4a39e 9565static struct value *
a53b7a21 9566cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9567{
df407dfe 9568 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9569 value_as_long (arg));
5b4ee69b 9570
a53b7a21 9571 return value_from_double (type, val);
14f9c5c9
AS
9572}
9573
d99dcf51
JB
9574/* Given two array types T1 and T2, return nonzero iff both arrays
9575 contain the same number of elements. */
9576
9577static int
9578ada_same_array_size_p (struct type *t1, struct type *t2)
9579{
9580 LONGEST lo1, hi1, lo2, hi2;
9581
9582 /* Get the array bounds in order to verify that the size of
9583 the two arrays match. */
9584 if (!get_array_bounds (t1, &lo1, &hi1)
9585 || !get_array_bounds (t2, &lo2, &hi2))
9586 error (_("unable to determine array bounds"));
9587
9588 /* To make things easier for size comparison, normalize a bit
9589 the case of empty arrays by making sure that the difference
9590 between upper bound and lower bound is always -1. */
9591 if (lo1 > hi1)
9592 hi1 = lo1 - 1;
9593 if (lo2 > hi2)
9594 hi2 = lo2 - 1;
9595
9596 return (hi1 - lo1 == hi2 - lo2);
9597}
9598
9599/* Assuming that VAL is an array of integrals, and TYPE represents
9600 an array with the same number of elements, but with wider integral
9601 elements, return an array "casted" to TYPE. In practice, this
9602 means that the returned array is built by casting each element
9603 of the original array into TYPE's (wider) element type. */
9604
9605static struct value *
9606ada_promote_array_of_integrals (struct type *type, struct value *val)
9607{
9608 struct type *elt_type = TYPE_TARGET_TYPE (type);
9609 LONGEST lo, hi;
9610 struct value *res;
9611 LONGEST i;
9612
9613 /* Verify that both val and type are arrays of scalars, and
9614 that the size of val's elements is smaller than the size
9615 of type's element. */
9616 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9617 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9618 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9619 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9620 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9621 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9622
9623 if (!get_array_bounds (type, &lo, &hi))
9624 error (_("unable to determine array bounds"));
9625
9626 res = allocate_value (type);
9627
9628 /* Promote each array element. */
9629 for (i = 0; i < hi - lo + 1; i++)
9630 {
9631 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9632
9633 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9634 value_contents_all (elt), TYPE_LENGTH (elt_type));
9635 }
9636
9637 return res;
9638}
9639
4c4b4cd2
PH
9640/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9641 return the converted value. */
9642
d2e4a39e
AS
9643static struct value *
9644coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9645{
df407dfe 9646 struct type *type2 = value_type (val);
5b4ee69b 9647
14f9c5c9
AS
9648 if (type == type2)
9649 return val;
9650
61ee279c
PH
9651 type2 = ada_check_typedef (type2);
9652 type = ada_check_typedef (type);
14f9c5c9 9653
d2e4a39e
AS
9654 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9655 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9656 {
9657 val = ada_value_ind (val);
df407dfe 9658 type2 = value_type (val);
14f9c5c9
AS
9659 }
9660
d2e4a39e 9661 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9662 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9663 {
d99dcf51
JB
9664 if (!ada_same_array_size_p (type, type2))
9665 error (_("cannot assign arrays of different length"));
9666
9667 if (is_integral_type (TYPE_TARGET_TYPE (type))
9668 && is_integral_type (TYPE_TARGET_TYPE (type2))
9669 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9670 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9671 {
9672 /* Allow implicit promotion of the array elements to
9673 a wider type. */
9674 return ada_promote_array_of_integrals (type, val);
9675 }
9676
9677 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9678 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9679 error (_("Incompatible types in assignment"));
04624583 9680 deprecated_set_value_type (val, type);
14f9c5c9 9681 }
d2e4a39e 9682 return val;
14f9c5c9
AS
9683}
9684
4c4b4cd2
PH
9685static struct value *
9686ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9687{
9688 struct value *val;
9689 struct type *type1, *type2;
9690 LONGEST v, v1, v2;
9691
994b9211
AC
9692 arg1 = coerce_ref (arg1);
9693 arg2 = coerce_ref (arg2);
18af8284
JB
9694 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9695 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9696
76a01679
JB
9697 if (TYPE_CODE (type1) != TYPE_CODE_INT
9698 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9699 return value_binop (arg1, arg2, op);
9700
76a01679 9701 switch (op)
4c4b4cd2
PH
9702 {
9703 case BINOP_MOD:
9704 case BINOP_DIV:
9705 case BINOP_REM:
9706 break;
9707 default:
9708 return value_binop (arg1, arg2, op);
9709 }
9710
9711 v2 = value_as_long (arg2);
9712 if (v2 == 0)
323e0a4a 9713 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9714
9715 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9716 return value_binop (arg1, arg2, op);
9717
9718 v1 = value_as_long (arg1);
9719 switch (op)
9720 {
9721 case BINOP_DIV:
9722 v = v1 / v2;
76a01679
JB
9723 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9724 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9725 break;
9726 case BINOP_REM:
9727 v = v1 % v2;
76a01679
JB
9728 if (v * v1 < 0)
9729 v -= v2;
4c4b4cd2
PH
9730 break;
9731 default:
9732 /* Should not reach this point. */
9733 v = 0;
9734 }
9735
9736 val = allocate_value (type1);
990a07ab 9737 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9738 TYPE_LENGTH (value_type (val)),
9739 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9740 return val;
9741}
9742
9743static int
9744ada_value_equal (struct value *arg1, struct value *arg2)
9745{
df407dfe
AC
9746 if (ada_is_direct_array_type (value_type (arg1))
9747 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9748 {
f58b38bf
JB
9749 /* Automatically dereference any array reference before
9750 we attempt to perform the comparison. */
9751 arg1 = ada_coerce_ref (arg1);
9752 arg2 = ada_coerce_ref (arg2);
9753
4c4b4cd2
PH
9754 arg1 = ada_coerce_to_simple_array (arg1);
9755 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9756 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9757 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9758 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9759 /* FIXME: The following works only for types whose
76a01679
JB
9760 representations use all bits (no padding or undefined bits)
9761 and do not have user-defined equality. */
9762 return
df407dfe 9763 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9764 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9765 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9766 }
9767 return value_equal (arg1, arg2);
9768}
9769
52ce6436
PH
9770/* Total number of component associations in the aggregate starting at
9771 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9772 OP_AGGREGATE. */
52ce6436
PH
9773
9774static int
9775num_component_specs (struct expression *exp, int pc)
9776{
9777 int n, m, i;
5b4ee69b 9778
52ce6436
PH
9779 m = exp->elts[pc + 1].longconst;
9780 pc += 3;
9781 n = 0;
9782 for (i = 0; i < m; i += 1)
9783 {
9784 switch (exp->elts[pc].opcode)
9785 {
9786 default:
9787 n += 1;
9788 break;
9789 case OP_CHOICES:
9790 n += exp->elts[pc + 1].longconst;
9791 break;
9792 }
9793 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9794 }
9795 return n;
9796}
9797
9798/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9799 component of LHS (a simple array or a record), updating *POS past
9800 the expression, assuming that LHS is contained in CONTAINER. Does
9801 not modify the inferior's memory, nor does it modify LHS (unless
9802 LHS == CONTAINER). */
9803
9804static void
9805assign_component (struct value *container, struct value *lhs, LONGEST index,
9806 struct expression *exp, int *pos)
9807{
9808 struct value *mark = value_mark ();
9809 struct value *elt;
5b4ee69b 9810
52ce6436
PH
9811 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9812 {
22601c15
UW
9813 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9814 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9815
52ce6436
PH
9816 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9817 }
9818 else
9819 {
9820 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9821 elt = ada_to_fixed_value (elt);
52ce6436
PH
9822 }
9823
9824 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9825 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9826 else
9827 value_assign_to_component (container, elt,
9828 ada_evaluate_subexp (NULL, exp, pos,
9829 EVAL_NORMAL));
9830
9831 value_free_to_mark (mark);
9832}
9833
9834/* Assuming that LHS represents an lvalue having a record or array
9835 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9836 of that aggregate's value to LHS, advancing *POS past the
9837 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9838 lvalue containing LHS (possibly LHS itself). Does not modify
9839 the inferior's memory, nor does it modify the contents of
0963b4bd 9840 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9841
9842static struct value *
9843assign_aggregate (struct value *container,
9844 struct value *lhs, struct expression *exp,
9845 int *pos, enum noside noside)
9846{
9847 struct type *lhs_type;
9848 int n = exp->elts[*pos+1].longconst;
9849 LONGEST low_index, high_index;
9850 int num_specs;
9851 LONGEST *indices;
9852 int max_indices, num_indices;
52ce6436 9853 int i;
52ce6436
PH
9854
9855 *pos += 3;
9856 if (noside != EVAL_NORMAL)
9857 {
52ce6436
PH
9858 for (i = 0; i < n; i += 1)
9859 ada_evaluate_subexp (NULL, exp, pos, noside);
9860 return container;
9861 }
9862
9863 container = ada_coerce_ref (container);
9864 if (ada_is_direct_array_type (value_type (container)))
9865 container = ada_coerce_to_simple_array (container);
9866 lhs = ada_coerce_ref (lhs);
9867 if (!deprecated_value_modifiable (lhs))
9868 error (_("Left operand of assignment is not a modifiable lvalue."));
9869
9870 lhs_type = value_type (lhs);
9871 if (ada_is_direct_array_type (lhs_type))
9872 {
9873 lhs = ada_coerce_to_simple_array (lhs);
9874 lhs_type = value_type (lhs);
9875 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9876 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9877 }
9878 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9879 {
9880 low_index = 0;
9881 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9882 }
9883 else
9884 error (_("Left-hand side must be array or record."));
9885
9886 num_specs = num_component_specs (exp, *pos - 3);
9887 max_indices = 4 * num_specs + 4;
8d749320 9888 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9889 indices[0] = indices[1] = low_index - 1;
9890 indices[2] = indices[3] = high_index + 1;
9891 num_indices = 4;
9892
9893 for (i = 0; i < n; i += 1)
9894 {
9895 switch (exp->elts[*pos].opcode)
9896 {
1fbf5ada
JB
9897 case OP_CHOICES:
9898 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9899 &num_indices, max_indices,
9900 low_index, high_index);
9901 break;
9902 case OP_POSITIONAL:
9903 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9904 &num_indices, max_indices,
9905 low_index, high_index);
1fbf5ada
JB
9906 break;
9907 case OP_OTHERS:
9908 if (i != n-1)
9909 error (_("Misplaced 'others' clause"));
9910 aggregate_assign_others (container, lhs, exp, pos, indices,
9911 num_indices, low_index, high_index);
9912 break;
9913 default:
9914 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9915 }
9916 }
9917
9918 return container;
9919}
9920
9921/* Assign into the component of LHS indexed by the OP_POSITIONAL
9922 construct at *POS, updating *POS past the construct, given that
9923 the positions are relative to lower bound LOW, where HIGH is the
9924 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9925 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9926 assign_aggregate. */
52ce6436
PH
9927static void
9928aggregate_assign_positional (struct value *container,
9929 struct value *lhs, struct expression *exp,
9930 int *pos, LONGEST *indices, int *num_indices,
9931 int max_indices, LONGEST low, LONGEST high)
9932{
9933 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9934
9935 if (ind - 1 == high)
e1d5a0d2 9936 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9937 if (ind <= high)
9938 {
9939 add_component_interval (ind, ind, indices, num_indices, max_indices);
9940 *pos += 3;
9941 assign_component (container, lhs, ind, exp, pos);
9942 }
9943 else
9944 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9945}
9946
9947/* Assign into the components of LHS indexed by the OP_CHOICES
9948 construct at *POS, updating *POS past the construct, given that
9949 the allowable indices are LOW..HIGH. Record the indices assigned
9950 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9951 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9952static void
9953aggregate_assign_from_choices (struct value *container,
9954 struct value *lhs, struct expression *exp,
9955 int *pos, LONGEST *indices, int *num_indices,
9956 int max_indices, LONGEST low, LONGEST high)
9957{
9958 int j;
9959 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9960 int choice_pos, expr_pc;
9961 int is_array = ada_is_direct_array_type (value_type (lhs));
9962
9963 choice_pos = *pos += 3;
9964
9965 for (j = 0; j < n_choices; j += 1)
9966 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9967 expr_pc = *pos;
9968 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9969
9970 for (j = 0; j < n_choices; j += 1)
9971 {
9972 LONGEST lower, upper;
9973 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9974
52ce6436
PH
9975 if (op == OP_DISCRETE_RANGE)
9976 {
9977 choice_pos += 1;
9978 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9979 EVAL_NORMAL));
9980 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9981 EVAL_NORMAL));
9982 }
9983 else if (is_array)
9984 {
9985 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9986 EVAL_NORMAL));
9987 upper = lower;
9988 }
9989 else
9990 {
9991 int ind;
0d5cff50 9992 const char *name;
5b4ee69b 9993
52ce6436
PH
9994 switch (op)
9995 {
9996 case OP_NAME:
9997 name = &exp->elts[choice_pos + 2].string;
9998 break;
9999 case OP_VAR_VALUE:
10000 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10001 break;
10002 default:
10003 error (_("Invalid record component association."));
10004 }
10005 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10006 ind = 0;
10007 if (! find_struct_field (name, value_type (lhs), 0,
10008 NULL, NULL, NULL, NULL, &ind))
10009 error (_("Unknown component name: %s."), name);
10010 lower = upper = ind;
10011 }
10012
10013 if (lower <= upper && (lower < low || upper > high))
10014 error (_("Index in component association out of bounds."));
10015
10016 add_component_interval (lower, upper, indices, num_indices,
10017 max_indices);
10018 while (lower <= upper)
10019 {
10020 int pos1;
5b4ee69b 10021
52ce6436
PH
10022 pos1 = expr_pc;
10023 assign_component (container, lhs, lower, exp, &pos1);
10024 lower += 1;
10025 }
10026 }
10027}
10028
10029/* Assign the value of the expression in the OP_OTHERS construct in
10030 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10031 have not been previously assigned. The index intervals already assigned
10032 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10033 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10034static void
10035aggregate_assign_others (struct value *container,
10036 struct value *lhs, struct expression *exp,
10037 int *pos, LONGEST *indices, int num_indices,
10038 LONGEST low, LONGEST high)
10039{
10040 int i;
5ce64950 10041 int expr_pc = *pos + 1;
52ce6436
PH
10042
10043 for (i = 0; i < num_indices - 2; i += 2)
10044 {
10045 LONGEST ind;
5b4ee69b 10046
52ce6436
PH
10047 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10048 {
5ce64950 10049 int localpos;
5b4ee69b 10050
5ce64950
MS
10051 localpos = expr_pc;
10052 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10053 }
10054 }
10055 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10056}
10057
10058/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10059 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10060 modifying *SIZE as needed. It is an error if *SIZE exceeds
10061 MAX_SIZE. The resulting intervals do not overlap. */
10062static void
10063add_component_interval (LONGEST low, LONGEST high,
10064 LONGEST* indices, int *size, int max_size)
10065{
10066 int i, j;
5b4ee69b 10067
52ce6436
PH
10068 for (i = 0; i < *size; i += 2) {
10069 if (high >= indices[i] && low <= indices[i + 1])
10070 {
10071 int kh;
5b4ee69b 10072
52ce6436
PH
10073 for (kh = i + 2; kh < *size; kh += 2)
10074 if (high < indices[kh])
10075 break;
10076 if (low < indices[i])
10077 indices[i] = low;
10078 indices[i + 1] = indices[kh - 1];
10079 if (high > indices[i + 1])
10080 indices[i + 1] = high;
10081 memcpy (indices + i + 2, indices + kh, *size - kh);
10082 *size -= kh - i - 2;
10083 return;
10084 }
10085 else if (high < indices[i])
10086 break;
10087 }
10088
10089 if (*size == max_size)
10090 error (_("Internal error: miscounted aggregate components."));
10091 *size += 2;
10092 for (j = *size-1; j >= i+2; j -= 1)
10093 indices[j] = indices[j - 2];
10094 indices[i] = low;
10095 indices[i + 1] = high;
10096}
10097
6e48bd2c
JB
10098/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10099 is different. */
10100
10101static struct value *
10102ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10103{
10104 if (type == ada_check_typedef (value_type (arg2)))
10105 return arg2;
10106
10107 if (ada_is_fixed_point_type (type))
10108 return (cast_to_fixed (type, arg2));
10109
10110 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10111 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10112
10113 return value_cast (type, arg2);
10114}
10115
284614f0
JB
10116/* Evaluating Ada expressions, and printing their result.
10117 ------------------------------------------------------
10118
21649b50
JB
10119 1. Introduction:
10120 ----------------
10121
284614f0
JB
10122 We usually evaluate an Ada expression in order to print its value.
10123 We also evaluate an expression in order to print its type, which
10124 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10125 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10126 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10127 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10128 similar.
10129
10130 Evaluating expressions is a little more complicated for Ada entities
10131 than it is for entities in languages such as C. The main reason for
10132 this is that Ada provides types whose definition might be dynamic.
10133 One example of such types is variant records. Or another example
10134 would be an array whose bounds can only be known at run time.
10135
10136 The following description is a general guide as to what should be
10137 done (and what should NOT be done) in order to evaluate an expression
10138 involving such types, and when. This does not cover how the semantic
10139 information is encoded by GNAT as this is covered separatly. For the
10140 document used as the reference for the GNAT encoding, see exp_dbug.ads
10141 in the GNAT sources.
10142
10143 Ideally, we should embed each part of this description next to its
10144 associated code. Unfortunately, the amount of code is so vast right
10145 now that it's hard to see whether the code handling a particular
10146 situation might be duplicated or not. One day, when the code is
10147 cleaned up, this guide might become redundant with the comments
10148 inserted in the code, and we might want to remove it.
10149
21649b50
JB
10150 2. ``Fixing'' an Entity, the Simple Case:
10151 -----------------------------------------
10152
284614f0
JB
10153 When evaluating Ada expressions, the tricky issue is that they may
10154 reference entities whose type contents and size are not statically
10155 known. Consider for instance a variant record:
10156
10157 type Rec (Empty : Boolean := True) is record
10158 case Empty is
10159 when True => null;
10160 when False => Value : Integer;
10161 end case;
10162 end record;
10163 Yes : Rec := (Empty => False, Value => 1);
10164 No : Rec := (empty => True);
10165
10166 The size and contents of that record depends on the value of the
10167 descriminant (Rec.Empty). At this point, neither the debugging
10168 information nor the associated type structure in GDB are able to
10169 express such dynamic types. So what the debugger does is to create
10170 "fixed" versions of the type that applies to the specific object.
10171 We also informally refer to this opperation as "fixing" an object,
10172 which means creating its associated fixed type.
10173
10174 Example: when printing the value of variable "Yes" above, its fixed
10175 type would look like this:
10176
10177 type Rec is record
10178 Empty : Boolean;
10179 Value : Integer;
10180 end record;
10181
10182 On the other hand, if we printed the value of "No", its fixed type
10183 would become:
10184
10185 type Rec is record
10186 Empty : Boolean;
10187 end record;
10188
10189 Things become a little more complicated when trying to fix an entity
10190 with a dynamic type that directly contains another dynamic type,
10191 such as an array of variant records, for instance. There are
10192 two possible cases: Arrays, and records.
10193
21649b50
JB
10194 3. ``Fixing'' Arrays:
10195 ---------------------
10196
10197 The type structure in GDB describes an array in terms of its bounds,
10198 and the type of its elements. By design, all elements in the array
10199 have the same type and we cannot represent an array of variant elements
10200 using the current type structure in GDB. When fixing an array,
10201 we cannot fix the array element, as we would potentially need one
10202 fixed type per element of the array. As a result, the best we can do
10203 when fixing an array is to produce an array whose bounds and size
10204 are correct (allowing us to read it from memory), but without having
10205 touched its element type. Fixing each element will be done later,
10206 when (if) necessary.
10207
10208 Arrays are a little simpler to handle than records, because the same
10209 amount of memory is allocated for each element of the array, even if
1b536f04 10210 the amount of space actually used by each element differs from element
21649b50 10211 to element. Consider for instance the following array of type Rec:
284614f0
JB
10212
10213 type Rec_Array is array (1 .. 2) of Rec;
10214
1b536f04
JB
10215 The actual amount of memory occupied by each element might be different
10216 from element to element, depending on the value of their discriminant.
21649b50 10217 But the amount of space reserved for each element in the array remains
1b536f04 10218 fixed regardless. So we simply need to compute that size using
21649b50
JB
10219 the debugging information available, from which we can then determine
10220 the array size (we multiply the number of elements of the array by
10221 the size of each element).
10222
10223 The simplest case is when we have an array of a constrained element
10224 type. For instance, consider the following type declarations:
10225
10226 type Bounded_String (Max_Size : Integer) is
10227 Length : Integer;
10228 Buffer : String (1 .. Max_Size);
10229 end record;
10230 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10231
10232 In this case, the compiler describes the array as an array of
10233 variable-size elements (identified by its XVS suffix) for which
10234 the size can be read in the parallel XVZ variable.
10235
10236 In the case of an array of an unconstrained element type, the compiler
10237 wraps the array element inside a private PAD type. This type should not
10238 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10239 that we also use the adjective "aligner" in our code to designate
10240 these wrapper types.
10241
1b536f04 10242 In some cases, the size allocated for each element is statically
21649b50
JB
10243 known. In that case, the PAD type already has the correct size,
10244 and the array element should remain unfixed.
10245
10246 But there are cases when this size is not statically known.
10247 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10248
10249 type Dynamic is array (1 .. Five) of Integer;
10250 type Wrapper (Has_Length : Boolean := False) is record
10251 Data : Dynamic;
10252 case Has_Length is
10253 when True => Length : Integer;
10254 when False => null;
10255 end case;
10256 end record;
10257 type Wrapper_Array is array (1 .. 2) of Wrapper;
10258
10259 Hello : Wrapper_Array := (others => (Has_Length => True,
10260 Data => (others => 17),
10261 Length => 1));
10262
10263
10264 The debugging info would describe variable Hello as being an
10265 array of a PAD type. The size of that PAD type is not statically
10266 known, but can be determined using a parallel XVZ variable.
10267 In that case, a copy of the PAD type with the correct size should
10268 be used for the fixed array.
10269
21649b50
JB
10270 3. ``Fixing'' record type objects:
10271 ----------------------------------
10272
10273 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10274 record types. In this case, in order to compute the associated
10275 fixed type, we need to determine the size and offset of each of
10276 its components. This, in turn, requires us to compute the fixed
10277 type of each of these components.
10278
10279 Consider for instance the example:
10280
10281 type Bounded_String (Max_Size : Natural) is record
10282 Str : String (1 .. Max_Size);
10283 Length : Natural;
10284 end record;
10285 My_String : Bounded_String (Max_Size => 10);
10286
10287 In that case, the position of field "Length" depends on the size
10288 of field Str, which itself depends on the value of the Max_Size
21649b50 10289 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10290 we need to fix the type of field Str. Therefore, fixing a variant
10291 record requires us to fix each of its components.
10292
10293 However, if a component does not have a dynamic size, the component
10294 should not be fixed. In particular, fields that use a PAD type
10295 should not fixed. Here is an example where this might happen
10296 (assuming type Rec above):
10297
10298 type Container (Big : Boolean) is record
10299 First : Rec;
10300 After : Integer;
10301 case Big is
10302 when True => Another : Integer;
10303 when False => null;
10304 end case;
10305 end record;
10306 My_Container : Container := (Big => False,
10307 First => (Empty => True),
10308 After => 42);
10309
10310 In that example, the compiler creates a PAD type for component First,
10311 whose size is constant, and then positions the component After just
10312 right after it. The offset of component After is therefore constant
10313 in this case.
10314
10315 The debugger computes the position of each field based on an algorithm
10316 that uses, among other things, the actual position and size of the field
21649b50
JB
10317 preceding it. Let's now imagine that the user is trying to print
10318 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10319 end up computing the offset of field After based on the size of the
10320 fixed version of field First. And since in our example First has
10321 only one actual field, the size of the fixed type is actually smaller
10322 than the amount of space allocated to that field, and thus we would
10323 compute the wrong offset of field After.
10324
21649b50
JB
10325 To make things more complicated, we need to watch out for dynamic
10326 components of variant records (identified by the ___XVL suffix in
10327 the component name). Even if the target type is a PAD type, the size
10328 of that type might not be statically known. So the PAD type needs
10329 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10330 we might end up with the wrong size for our component. This can be
10331 observed with the following type declarations:
284614f0
JB
10332
10333 type Octal is new Integer range 0 .. 7;
10334 type Octal_Array is array (Positive range <>) of Octal;
10335 pragma Pack (Octal_Array);
10336
10337 type Octal_Buffer (Size : Positive) is record
10338 Buffer : Octal_Array (1 .. Size);
10339 Length : Integer;
10340 end record;
10341
10342 In that case, Buffer is a PAD type whose size is unset and needs
10343 to be computed by fixing the unwrapped type.
10344
21649b50
JB
10345 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10346 ----------------------------------------------------------
10347
10348 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10349 thus far, be actually fixed?
10350
10351 The answer is: Only when referencing that element. For instance
10352 when selecting one component of a record, this specific component
10353 should be fixed at that point in time. Or when printing the value
10354 of a record, each component should be fixed before its value gets
10355 printed. Similarly for arrays, the element of the array should be
10356 fixed when printing each element of the array, or when extracting
10357 one element out of that array. On the other hand, fixing should
10358 not be performed on the elements when taking a slice of an array!
10359
10360 Note that one of the side-effects of miscomputing the offset and
10361 size of each field is that we end up also miscomputing the size
10362 of the containing type. This can have adverse results when computing
10363 the value of an entity. GDB fetches the value of an entity based
10364 on the size of its type, and thus a wrong size causes GDB to fetch
10365 the wrong amount of memory. In the case where the computed size is
10366 too small, GDB fetches too little data to print the value of our
10367 entiry. Results in this case as unpredicatble, as we usually read
10368 past the buffer containing the data =:-o. */
10369
10370/* Implement the evaluate_exp routine in the exp_descriptor structure
10371 for the Ada language. */
10372
52ce6436 10373static struct value *
ebf56fd3 10374ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10375 int *pos, enum noside noside)
14f9c5c9
AS
10376{
10377 enum exp_opcode op;
b5385fc0 10378 int tem;
14f9c5c9 10379 int pc;
5ec18f2b 10380 int preeval_pos;
14f9c5c9
AS
10381 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10382 struct type *type;
52ce6436 10383 int nargs, oplen;
d2e4a39e 10384 struct value **argvec;
14f9c5c9 10385
d2e4a39e
AS
10386 pc = *pos;
10387 *pos += 1;
14f9c5c9
AS
10388 op = exp->elts[pc].opcode;
10389
d2e4a39e 10390 switch (op)
14f9c5c9
AS
10391 {
10392 default:
10393 *pos -= 1;
6e48bd2c 10394 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10395
10396 if (noside == EVAL_NORMAL)
10397 arg1 = unwrap_value (arg1);
6e48bd2c
JB
10398
10399 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10400 then we need to perform the conversion manually, because
10401 evaluate_subexp_standard doesn't do it. This conversion is
10402 necessary in Ada because the different kinds of float/fixed
10403 types in Ada have different representations.
10404
10405 Similarly, we need to perform the conversion from OP_LONG
10406 ourselves. */
10407 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10408 arg1 = ada_value_cast (expect_type, arg1, noside);
10409
10410 return arg1;
4c4b4cd2
PH
10411
10412 case OP_STRING:
10413 {
76a01679 10414 struct value *result;
5b4ee69b 10415
76a01679
JB
10416 *pos -= 1;
10417 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10418 /* The result type will have code OP_STRING, bashed there from
10419 OP_ARRAY. Bash it back. */
df407dfe
AC
10420 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10421 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10422 return result;
4c4b4cd2 10423 }
14f9c5c9
AS
10424
10425 case UNOP_CAST:
10426 (*pos) += 2;
10427 type = exp->elts[pc + 1].type;
10428 arg1 = evaluate_subexp (type, exp, pos, noside);
10429 if (noside == EVAL_SKIP)
4c4b4cd2 10430 goto nosideret;
6e48bd2c 10431 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
10432 return arg1;
10433
4c4b4cd2
PH
10434 case UNOP_QUAL:
10435 (*pos) += 2;
10436 type = exp->elts[pc + 1].type;
10437 return ada_evaluate_subexp (type, exp, pos, noside);
10438
14f9c5c9
AS
10439 case BINOP_ASSIGN:
10440 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10441 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10442 {
10443 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10444 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10445 return arg1;
10446 return ada_value_assign (arg1, arg1);
10447 }
003f3813
JB
10448 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10449 except if the lhs of our assignment is a convenience variable.
10450 In the case of assigning to a convenience variable, the lhs
10451 should be exactly the result of the evaluation of the rhs. */
10452 type = value_type (arg1);
10453 if (VALUE_LVAL (arg1) == lval_internalvar)
10454 type = NULL;
10455 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10456 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10457 return arg1;
df407dfe
AC
10458 if (ada_is_fixed_point_type (value_type (arg1)))
10459 arg2 = cast_to_fixed (value_type (arg1), arg2);
10460 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10461 error
323e0a4a 10462 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10463 else
df407dfe 10464 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10465 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10466
10467 case BINOP_ADD:
10468 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10469 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10470 if (noside == EVAL_SKIP)
4c4b4cd2 10471 goto nosideret;
2ac8a782
JB
10472 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10473 return (value_from_longest
10474 (value_type (arg1),
10475 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10476 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10477 return (value_from_longest
10478 (value_type (arg2),
10479 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10480 if ((ada_is_fixed_point_type (value_type (arg1))
10481 || ada_is_fixed_point_type (value_type (arg2)))
10482 && value_type (arg1) != value_type (arg2))
323e0a4a 10483 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10484 /* Do the addition, and cast the result to the type of the first
10485 argument. We cannot cast the result to a reference type, so if
10486 ARG1 is a reference type, find its underlying type. */
10487 type = value_type (arg1);
10488 while (TYPE_CODE (type) == TYPE_CODE_REF)
10489 type = TYPE_TARGET_TYPE (type);
f44316fa 10490 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10491 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10492
10493 case BINOP_SUB:
10494 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10495 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10496 if (noside == EVAL_SKIP)
4c4b4cd2 10497 goto nosideret;
2ac8a782
JB
10498 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10499 return (value_from_longest
10500 (value_type (arg1),
10501 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10502 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10503 return (value_from_longest
10504 (value_type (arg2),
10505 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10506 if ((ada_is_fixed_point_type (value_type (arg1))
10507 || ada_is_fixed_point_type (value_type (arg2)))
10508 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10509 error (_("Operands of fixed-point subtraction "
10510 "must have the same type"));
b7789565
JB
10511 /* Do the substraction, and cast the result to the type of the first
10512 argument. We cannot cast the result to a reference type, so if
10513 ARG1 is a reference type, find its underlying type. */
10514 type = value_type (arg1);
10515 while (TYPE_CODE (type) == TYPE_CODE_REF)
10516 type = TYPE_TARGET_TYPE (type);
f44316fa 10517 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10518 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10519
10520 case BINOP_MUL:
10521 case BINOP_DIV:
e1578042
JB
10522 case BINOP_REM:
10523 case BINOP_MOD:
14f9c5c9
AS
10524 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10525 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10526 if (noside == EVAL_SKIP)
4c4b4cd2 10527 goto nosideret;
e1578042 10528 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10529 {
10530 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10531 return value_zero (value_type (arg1), not_lval);
10532 }
14f9c5c9 10533 else
4c4b4cd2 10534 {
a53b7a21 10535 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10536 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10537 arg1 = cast_from_fixed (type, arg1);
df407dfe 10538 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10539 arg2 = cast_from_fixed (type, arg2);
f44316fa 10540 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10541 return ada_value_binop (arg1, arg2, op);
10542 }
10543
4c4b4cd2
PH
10544 case BINOP_EQUAL:
10545 case BINOP_NOTEQUAL:
14f9c5c9 10546 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10547 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10548 if (noside == EVAL_SKIP)
76a01679 10549 goto nosideret;
4c4b4cd2 10550 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10551 tem = 0;
4c4b4cd2 10552 else
f44316fa
UW
10553 {
10554 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10555 tem = ada_value_equal (arg1, arg2);
10556 }
4c4b4cd2 10557 if (op == BINOP_NOTEQUAL)
76a01679 10558 tem = !tem;
fbb06eb1
UW
10559 type = language_bool_type (exp->language_defn, exp->gdbarch);
10560 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10561
10562 case UNOP_NEG:
10563 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10564 if (noside == EVAL_SKIP)
10565 goto nosideret;
df407dfe
AC
10566 else if (ada_is_fixed_point_type (value_type (arg1)))
10567 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10568 else
f44316fa
UW
10569 {
10570 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10571 return value_neg (arg1);
10572 }
4c4b4cd2 10573
2330c6c6
JB
10574 case BINOP_LOGICAL_AND:
10575 case BINOP_LOGICAL_OR:
10576 case UNOP_LOGICAL_NOT:
000d5124
JB
10577 {
10578 struct value *val;
10579
10580 *pos -= 1;
10581 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10582 type = language_bool_type (exp->language_defn, exp->gdbarch);
10583 return value_cast (type, val);
000d5124 10584 }
2330c6c6
JB
10585
10586 case BINOP_BITWISE_AND:
10587 case BINOP_BITWISE_IOR:
10588 case BINOP_BITWISE_XOR:
000d5124
JB
10589 {
10590 struct value *val;
10591
10592 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10593 *pos = pc;
10594 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10595
10596 return value_cast (value_type (arg1), val);
10597 }
2330c6c6 10598
14f9c5c9
AS
10599 case OP_VAR_VALUE:
10600 *pos -= 1;
6799def4 10601
14f9c5c9 10602 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10603 {
10604 *pos += 4;
10605 goto nosideret;
10606 }
da5c522f
JB
10607
10608 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10609 /* Only encountered when an unresolved symbol occurs in a
10610 context other than a function call, in which case, it is
52ce6436 10611 invalid. */
323e0a4a 10612 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10613 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10614
10615 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10616 {
0c1f74cf 10617 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10618 /* Check to see if this is a tagged type. We also need to handle
10619 the case where the type is a reference to a tagged type, but
10620 we have to be careful to exclude pointers to tagged types.
10621 The latter should be shown as usual (as a pointer), whereas
10622 a reference should mostly be transparent to the user. */
10623 if (ada_is_tagged_type (type, 0)
023db19c 10624 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10625 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10626 {
10627 /* Tagged types are a little special in the fact that the real
10628 type is dynamic and can only be determined by inspecting the
10629 object's tag. This means that we need to get the object's
10630 value first (EVAL_NORMAL) and then extract the actual object
10631 type from its tag.
10632
10633 Note that we cannot skip the final step where we extract
10634 the object type from its tag, because the EVAL_NORMAL phase
10635 results in dynamic components being resolved into fixed ones.
10636 This can cause problems when trying to print the type
10637 description of tagged types whose parent has a dynamic size:
10638 We use the type name of the "_parent" component in order
10639 to print the name of the ancestor type in the type description.
10640 If that component had a dynamic size, the resolution into
10641 a fixed type would result in the loss of that type name,
10642 thus preventing us from printing the name of the ancestor
10643 type in the type description. */
10644 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10645
10646 if (TYPE_CODE (type) != TYPE_CODE_REF)
10647 {
10648 struct type *actual_type;
10649
10650 actual_type = type_from_tag (ada_value_tag (arg1));
10651 if (actual_type == NULL)
10652 /* If, for some reason, we were unable to determine
10653 the actual type from the tag, then use the static
10654 approximation that we just computed as a fallback.
10655 This can happen if the debugging information is
10656 incomplete, for instance. */
10657 actual_type = type;
10658 return value_zero (actual_type, not_lval);
10659 }
10660 else
10661 {
10662 /* In the case of a ref, ada_coerce_ref takes care
10663 of determining the actual type. But the evaluation
10664 should return a ref as it should be valid to ask
10665 for its address; so rebuild a ref after coerce. */
10666 arg1 = ada_coerce_ref (arg1);
10667 return value_ref (arg1);
10668 }
10669 }
0c1f74cf 10670
84754697
JB
10671 /* Records and unions for which GNAT encodings have been
10672 generated need to be statically fixed as well.
10673 Otherwise, non-static fixing produces a type where
10674 all dynamic properties are removed, which prevents "ptype"
10675 from being able to completely describe the type.
10676 For instance, a case statement in a variant record would be
10677 replaced by the relevant components based on the actual
10678 value of the discriminants. */
10679 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10680 && dynamic_template_type (type) != NULL)
10681 || (TYPE_CODE (type) == TYPE_CODE_UNION
10682 && ada_find_parallel_type (type, "___XVU") != NULL))
10683 {
10684 *pos += 4;
10685 return value_zero (to_static_fixed_type (type), not_lval);
10686 }
4c4b4cd2 10687 }
da5c522f
JB
10688
10689 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10690 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10691
10692 case OP_FUNCALL:
10693 (*pos) += 2;
10694
10695 /* Allocate arg vector, including space for the function to be
10696 called in argvec[0] and a terminating NULL. */
10697 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10698 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10699
10700 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10701 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10702 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10703 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10704 else
10705 {
10706 for (tem = 0; tem <= nargs; tem += 1)
10707 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10708 argvec[tem] = 0;
10709
10710 if (noside == EVAL_SKIP)
10711 goto nosideret;
10712 }
10713
ad82864c
JB
10714 if (ada_is_constrained_packed_array_type
10715 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10716 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10717 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10718 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10719 /* This is a packed array that has already been fixed, and
10720 therefore already coerced to a simple array. Nothing further
10721 to do. */
10722 ;
e6c2c623
PMR
10723 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10724 {
10725 /* Make sure we dereference references so that all the code below
10726 feels like it's really handling the referenced value. Wrapping
10727 types (for alignment) may be there, so make sure we strip them as
10728 well. */
10729 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10730 }
10731 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10732 && VALUE_LVAL (argvec[0]) == lval_memory)
10733 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10734
df407dfe 10735 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10736
10737 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10738 them. So, if this is an array typedef (encoding use for array
10739 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10740 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10741 type = ada_typedef_target_type (type);
10742
4c4b4cd2
PH
10743 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10744 {
61ee279c 10745 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10746 {
10747 case TYPE_CODE_FUNC:
61ee279c 10748 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10749 break;
10750 case TYPE_CODE_ARRAY:
10751 break;
10752 case TYPE_CODE_STRUCT:
10753 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10754 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10755 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10756 break;
10757 default:
323e0a4a 10758 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10759 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10760 break;
10761 }
10762 }
10763
10764 switch (TYPE_CODE (type))
10765 {
10766 case TYPE_CODE_FUNC:
10767 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10768 {
10769 struct type *rtype = TYPE_TARGET_TYPE (type);
10770
10771 if (TYPE_GNU_IFUNC (type))
10772 return allocate_value (TYPE_TARGET_TYPE (rtype));
10773 return allocate_value (rtype);
10774 }
4c4b4cd2 10775 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10776 case TYPE_CODE_INTERNAL_FUNCTION:
10777 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10778 /* We don't know anything about what the internal
10779 function might return, but we have to return
10780 something. */
10781 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10782 not_lval);
10783 else
10784 return call_internal_function (exp->gdbarch, exp->language_defn,
10785 argvec[0], nargs, argvec + 1);
10786
4c4b4cd2
PH
10787 case TYPE_CODE_STRUCT:
10788 {
10789 int arity;
10790
4c4b4cd2
PH
10791 arity = ada_array_arity (type);
10792 type = ada_array_element_type (type, nargs);
10793 if (type == NULL)
323e0a4a 10794 error (_("cannot subscript or call a record"));
4c4b4cd2 10795 if (arity != nargs)
323e0a4a 10796 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10797 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10798 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10799 return
10800 unwrap_value (ada_value_subscript
10801 (argvec[0], nargs, argvec + 1));
10802 }
10803 case TYPE_CODE_ARRAY:
10804 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10805 {
10806 type = ada_array_element_type (type, nargs);
10807 if (type == NULL)
323e0a4a 10808 error (_("element type of array unknown"));
4c4b4cd2 10809 else
0a07e705 10810 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10811 }
10812 return
10813 unwrap_value (ada_value_subscript
10814 (ada_coerce_to_simple_array (argvec[0]),
10815 nargs, argvec + 1));
10816 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10817 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10818 {
deede10c 10819 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10820 type = ada_array_element_type (type, nargs);
10821 if (type == NULL)
323e0a4a 10822 error (_("element type of array unknown"));
4c4b4cd2 10823 else
0a07e705 10824 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10825 }
10826 return
deede10c
JB
10827 unwrap_value (ada_value_ptr_subscript (argvec[0],
10828 nargs, argvec + 1));
4c4b4cd2
PH
10829
10830 default:
e1d5a0d2
PH
10831 error (_("Attempt to index or call something other than an "
10832 "array or function"));
4c4b4cd2
PH
10833 }
10834
10835 case TERNOP_SLICE:
10836 {
10837 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10838 struct value *low_bound_val =
10839 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10840 struct value *high_bound_val =
10841 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10842 LONGEST low_bound;
10843 LONGEST high_bound;
5b4ee69b 10844
994b9211
AC
10845 low_bound_val = coerce_ref (low_bound_val);
10846 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10847 low_bound = value_as_long (low_bound_val);
10848 high_bound = value_as_long (high_bound_val);
963a6417 10849
4c4b4cd2
PH
10850 if (noside == EVAL_SKIP)
10851 goto nosideret;
10852
4c4b4cd2
PH
10853 /* If this is a reference to an aligner type, then remove all
10854 the aligners. */
df407dfe
AC
10855 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10856 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10857 TYPE_TARGET_TYPE (value_type (array)) =
10858 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10859
ad82864c 10860 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10861 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10862
10863 /* If this is a reference to an array or an array lvalue,
10864 convert to a pointer. */
df407dfe
AC
10865 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10866 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10867 && VALUE_LVAL (array) == lval_memory))
10868 array = value_addr (array);
10869
1265e4aa 10870 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10871 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10872 (value_type (array))))
0b5d8877 10873 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10874
10875 array = ada_coerce_to_simple_array_ptr (array);
10876
714e53ab
PH
10877 /* If we have more than one level of pointer indirection,
10878 dereference the value until we get only one level. */
df407dfe
AC
10879 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10880 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10881 == TYPE_CODE_PTR))
10882 array = value_ind (array);
10883
10884 /* Make sure we really do have an array type before going further,
10885 to avoid a SEGV when trying to get the index type or the target
10886 type later down the road if the debug info generated by
10887 the compiler is incorrect or incomplete. */
df407dfe 10888 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10889 error (_("cannot take slice of non-array"));
714e53ab 10890
828292f2
JB
10891 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10892 == TYPE_CODE_PTR)
4c4b4cd2 10893 {
828292f2
JB
10894 struct type *type0 = ada_check_typedef (value_type (array));
10895
0b5d8877 10896 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10897 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10898 else
10899 {
10900 struct type *arr_type0 =
828292f2 10901 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10902
f5938064
JG
10903 return ada_value_slice_from_ptr (array, arr_type0,
10904 longest_to_int (low_bound),
10905 longest_to_int (high_bound));
4c4b4cd2
PH
10906 }
10907 }
10908 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10909 return array;
10910 else if (high_bound < low_bound)
df407dfe 10911 return empty_array (value_type (array), low_bound);
4c4b4cd2 10912 else
529cad9c
PH
10913 return ada_value_slice (array, longest_to_int (low_bound),
10914 longest_to_int (high_bound));
4c4b4cd2 10915 }
14f9c5c9 10916
4c4b4cd2
PH
10917 case UNOP_IN_RANGE:
10918 (*pos) += 2;
10919 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10920 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10921
14f9c5c9 10922 if (noside == EVAL_SKIP)
4c4b4cd2 10923 goto nosideret;
14f9c5c9 10924
4c4b4cd2
PH
10925 switch (TYPE_CODE (type))
10926 {
10927 default:
e1d5a0d2
PH
10928 lim_warning (_("Membership test incompletely implemented; "
10929 "always returns true"));
fbb06eb1
UW
10930 type = language_bool_type (exp->language_defn, exp->gdbarch);
10931 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10932
10933 case TYPE_CODE_RANGE:
030b4912
UW
10934 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10935 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10936 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10937 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10938 type = language_bool_type (exp->language_defn, exp->gdbarch);
10939 return
10940 value_from_longest (type,
4c4b4cd2
PH
10941 (value_less (arg1, arg3)
10942 || value_equal (arg1, arg3))
10943 && (value_less (arg2, arg1)
10944 || value_equal (arg2, arg1)));
10945 }
10946
10947 case BINOP_IN_BOUNDS:
14f9c5c9 10948 (*pos) += 2;
4c4b4cd2
PH
10949 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10950 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10951
4c4b4cd2
PH
10952 if (noside == EVAL_SKIP)
10953 goto nosideret;
14f9c5c9 10954
4c4b4cd2 10955 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10956 {
10957 type = language_bool_type (exp->language_defn, exp->gdbarch);
10958 return value_zero (type, not_lval);
10959 }
14f9c5c9 10960
4c4b4cd2 10961 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10962
1eea4ebd
UW
10963 type = ada_index_type (value_type (arg2), tem, "range");
10964 if (!type)
10965 type = value_type (arg1);
14f9c5c9 10966
1eea4ebd
UW
10967 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10968 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10969
f44316fa
UW
10970 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10971 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10972 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10973 return
fbb06eb1 10974 value_from_longest (type,
4c4b4cd2
PH
10975 (value_less (arg1, arg3)
10976 || value_equal (arg1, arg3))
10977 && (value_less (arg2, arg1)
10978 || value_equal (arg2, arg1)));
10979
10980 case TERNOP_IN_RANGE:
10981 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10982 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10983 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10984
10985 if (noside == EVAL_SKIP)
10986 goto nosideret;
10987
f44316fa
UW
10988 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10989 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10990 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10991 return
fbb06eb1 10992 value_from_longest (type,
4c4b4cd2
PH
10993 (value_less (arg1, arg3)
10994 || value_equal (arg1, arg3))
10995 && (value_less (arg2, arg1)
10996 || value_equal (arg2, arg1)));
10997
10998 case OP_ATR_FIRST:
10999 case OP_ATR_LAST:
11000 case OP_ATR_LENGTH:
11001 {
76a01679 11002 struct type *type_arg;
5b4ee69b 11003
76a01679
JB
11004 if (exp->elts[*pos].opcode == OP_TYPE)
11005 {
11006 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11007 arg1 = NULL;
5bc23cb3 11008 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11009 }
11010 else
11011 {
11012 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11013 type_arg = NULL;
11014 }
11015
11016 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11017 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11018 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11019 *pos += 4;
11020
11021 if (noside == EVAL_SKIP)
11022 goto nosideret;
11023
11024 if (type_arg == NULL)
11025 {
11026 arg1 = ada_coerce_ref (arg1);
11027
ad82864c 11028 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11029 arg1 = ada_coerce_to_simple_array (arg1);
11030
aa4fb036 11031 if (op == OP_ATR_LENGTH)
1eea4ebd 11032 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11033 else
11034 {
11035 type = ada_index_type (value_type (arg1), tem,
11036 ada_attribute_name (op));
11037 if (type == NULL)
11038 type = builtin_type (exp->gdbarch)->builtin_int;
11039 }
76a01679
JB
11040
11041 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11042 return allocate_value (type);
76a01679
JB
11043
11044 switch (op)
11045 {
11046 default: /* Should never happen. */
323e0a4a 11047 error (_("unexpected attribute encountered"));
76a01679 11048 case OP_ATR_FIRST:
1eea4ebd
UW
11049 return value_from_longest
11050 (type, ada_array_bound (arg1, tem, 0));
76a01679 11051 case OP_ATR_LAST:
1eea4ebd
UW
11052 return value_from_longest
11053 (type, ada_array_bound (arg1, tem, 1));
76a01679 11054 case OP_ATR_LENGTH:
1eea4ebd
UW
11055 return value_from_longest
11056 (type, ada_array_length (arg1, tem));
76a01679
JB
11057 }
11058 }
11059 else if (discrete_type_p (type_arg))
11060 {
11061 struct type *range_type;
0d5cff50 11062 const char *name = ada_type_name (type_arg);
5b4ee69b 11063
76a01679
JB
11064 range_type = NULL;
11065 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11066 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11067 if (range_type == NULL)
11068 range_type = type_arg;
11069 switch (op)
11070 {
11071 default:
323e0a4a 11072 error (_("unexpected attribute encountered"));
76a01679 11073 case OP_ATR_FIRST:
690cc4eb 11074 return value_from_longest
43bbcdc2 11075 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11076 case OP_ATR_LAST:
690cc4eb 11077 return value_from_longest
43bbcdc2 11078 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11079 case OP_ATR_LENGTH:
323e0a4a 11080 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11081 }
11082 }
11083 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11084 error (_("unimplemented type attribute"));
76a01679
JB
11085 else
11086 {
11087 LONGEST low, high;
11088
ad82864c
JB
11089 if (ada_is_constrained_packed_array_type (type_arg))
11090 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11091
aa4fb036 11092 if (op == OP_ATR_LENGTH)
1eea4ebd 11093 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11094 else
11095 {
11096 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11097 if (type == NULL)
11098 type = builtin_type (exp->gdbarch)->builtin_int;
11099 }
1eea4ebd 11100
76a01679
JB
11101 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11102 return allocate_value (type);
11103
11104 switch (op)
11105 {
11106 default:
323e0a4a 11107 error (_("unexpected attribute encountered"));
76a01679 11108 case OP_ATR_FIRST:
1eea4ebd 11109 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11110 return value_from_longest (type, low);
11111 case OP_ATR_LAST:
1eea4ebd 11112 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11113 return value_from_longest (type, high);
11114 case OP_ATR_LENGTH:
1eea4ebd
UW
11115 low = ada_array_bound_from_type (type_arg, tem, 0);
11116 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11117 return value_from_longest (type, high - low + 1);
11118 }
11119 }
14f9c5c9
AS
11120 }
11121
4c4b4cd2
PH
11122 case OP_ATR_TAG:
11123 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11124 if (noside == EVAL_SKIP)
76a01679 11125 goto nosideret;
4c4b4cd2
PH
11126
11127 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11128 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11129
11130 return ada_value_tag (arg1);
11131
11132 case OP_ATR_MIN:
11133 case OP_ATR_MAX:
11134 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11135 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11136 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11137 if (noside == EVAL_SKIP)
76a01679 11138 goto nosideret;
d2e4a39e 11139 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11140 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11141 else
f44316fa
UW
11142 {
11143 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11144 return value_binop (arg1, arg2,
11145 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11146 }
14f9c5c9 11147
4c4b4cd2
PH
11148 case OP_ATR_MODULUS:
11149 {
31dedfee 11150 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11151
5b4ee69b 11152 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11153 if (noside == EVAL_SKIP)
11154 goto nosideret;
4c4b4cd2 11155
76a01679 11156 if (!ada_is_modular_type (type_arg))
323e0a4a 11157 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11158
76a01679
JB
11159 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11160 ada_modulus (type_arg));
4c4b4cd2
PH
11161 }
11162
11163
11164 case OP_ATR_POS:
11165 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11166 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11167 if (noside == EVAL_SKIP)
76a01679 11168 goto nosideret;
3cb382c9
UW
11169 type = builtin_type (exp->gdbarch)->builtin_int;
11170 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11171 return value_zero (type, not_lval);
14f9c5c9 11172 else
3cb382c9 11173 return value_pos_atr (type, arg1);
14f9c5c9 11174
4c4b4cd2
PH
11175 case OP_ATR_SIZE:
11176 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11177 type = value_type (arg1);
11178
11179 /* If the argument is a reference, then dereference its type, since
11180 the user is really asking for the size of the actual object,
11181 not the size of the pointer. */
11182 if (TYPE_CODE (type) == TYPE_CODE_REF)
11183 type = TYPE_TARGET_TYPE (type);
11184
4c4b4cd2 11185 if (noside == EVAL_SKIP)
76a01679 11186 goto nosideret;
4c4b4cd2 11187 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11188 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11189 else
22601c15 11190 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11191 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11192
11193 case OP_ATR_VAL:
11194 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11195 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11196 type = exp->elts[pc + 2].type;
14f9c5c9 11197 if (noside == EVAL_SKIP)
76a01679 11198 goto nosideret;
4c4b4cd2 11199 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11200 return value_zero (type, not_lval);
4c4b4cd2 11201 else
76a01679 11202 return value_val_atr (type, arg1);
4c4b4cd2
PH
11203
11204 case BINOP_EXP:
11205 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11206 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11207 if (noside == EVAL_SKIP)
11208 goto nosideret;
11209 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11210 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11211 else
f44316fa
UW
11212 {
11213 /* For integer exponentiation operations,
11214 only promote the first argument. */
11215 if (is_integral_type (value_type (arg2)))
11216 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11217 else
11218 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11219
11220 return value_binop (arg1, arg2, op);
11221 }
4c4b4cd2
PH
11222
11223 case UNOP_PLUS:
11224 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11225 if (noside == EVAL_SKIP)
11226 goto nosideret;
11227 else
11228 return arg1;
11229
11230 case UNOP_ABS:
11231 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11232 if (noside == EVAL_SKIP)
11233 goto nosideret;
f44316fa 11234 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11235 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11236 return value_neg (arg1);
14f9c5c9 11237 else
4c4b4cd2 11238 return arg1;
14f9c5c9
AS
11239
11240 case UNOP_IND:
5ec18f2b 11241 preeval_pos = *pos;
6b0d7253 11242 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11243 if (noside == EVAL_SKIP)
4c4b4cd2 11244 goto nosideret;
df407dfe 11245 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11246 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11247 {
11248 if (ada_is_array_descriptor_type (type))
11249 /* GDB allows dereferencing GNAT array descriptors. */
11250 {
11251 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11252
4c4b4cd2 11253 if (arrType == NULL)
323e0a4a 11254 error (_("Attempt to dereference null array pointer."));
00a4c844 11255 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11256 }
11257 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11258 || TYPE_CODE (type) == TYPE_CODE_REF
11259 /* In C you can dereference an array to get the 1st elt. */
11260 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11261 {
5ec18f2b
JG
11262 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11263 only be determined by inspecting the object's tag.
11264 This means that we need to evaluate completely the
11265 expression in order to get its type. */
11266
023db19c
JB
11267 if ((TYPE_CODE (type) == TYPE_CODE_REF
11268 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11269 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11270 {
11271 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11272 EVAL_NORMAL);
11273 type = value_type (ada_value_ind (arg1));
11274 }
11275 else
11276 {
11277 type = to_static_fixed_type
11278 (ada_aligned_type
11279 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11280 }
c1b5a1a6 11281 ada_ensure_varsize_limit (type);
714e53ab
PH
11282 return value_zero (type, lval_memory);
11283 }
4c4b4cd2 11284 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11285 {
11286 /* GDB allows dereferencing an int. */
11287 if (expect_type == NULL)
11288 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11289 lval_memory);
11290 else
11291 {
11292 expect_type =
11293 to_static_fixed_type (ada_aligned_type (expect_type));
11294 return value_zero (expect_type, lval_memory);
11295 }
11296 }
4c4b4cd2 11297 else
323e0a4a 11298 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11299 }
0963b4bd 11300 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11301 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11302
96967637
JB
11303 if (TYPE_CODE (type) == TYPE_CODE_INT)
11304 /* GDB allows dereferencing an int. If we were given
11305 the expect_type, then use that as the target type.
11306 Otherwise, assume that the target type is an int. */
11307 {
11308 if (expect_type != NULL)
11309 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11310 arg1));
11311 else
11312 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11313 (CORE_ADDR) value_as_address (arg1));
11314 }
6b0d7253 11315
4c4b4cd2
PH
11316 if (ada_is_array_descriptor_type (type))
11317 /* GDB allows dereferencing GNAT array descriptors. */
11318 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11319 else
4c4b4cd2 11320 return ada_value_ind (arg1);
14f9c5c9
AS
11321
11322 case STRUCTOP_STRUCT:
11323 tem = longest_to_int (exp->elts[pc + 1].longconst);
11324 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11325 preeval_pos = *pos;
14f9c5c9
AS
11326 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11327 if (noside == EVAL_SKIP)
4c4b4cd2 11328 goto nosideret;
14f9c5c9 11329 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11330 {
df407dfe 11331 struct type *type1 = value_type (arg1);
5b4ee69b 11332
76a01679
JB
11333 if (ada_is_tagged_type (type1, 1))
11334 {
11335 type = ada_lookup_struct_elt_type (type1,
11336 &exp->elts[pc + 2].string,
11337 1, 1, NULL);
5ec18f2b
JG
11338
11339 /* If the field is not found, check if it exists in the
11340 extension of this object's type. This means that we
11341 need to evaluate completely the expression. */
11342
76a01679 11343 if (type == NULL)
5ec18f2b
JG
11344 {
11345 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11346 EVAL_NORMAL);
11347 arg1 = ada_value_struct_elt (arg1,
11348 &exp->elts[pc + 2].string,
11349 0);
11350 arg1 = unwrap_value (arg1);
11351 type = value_type (ada_to_fixed_value (arg1));
11352 }
76a01679
JB
11353 }
11354 else
11355 type =
11356 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11357 0, NULL);
11358
11359 return value_zero (ada_aligned_type (type), lval_memory);
11360 }
14f9c5c9 11361 else
284614f0
JB
11362 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11363 arg1 = unwrap_value (arg1);
11364 return ada_to_fixed_value (arg1);
11365
14f9c5c9 11366 case OP_TYPE:
4c4b4cd2
PH
11367 /* The value is not supposed to be used. This is here to make it
11368 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11369 (*pos) += 2;
11370 if (noside == EVAL_SKIP)
4c4b4cd2 11371 goto nosideret;
14f9c5c9 11372 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11373 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11374 else
323e0a4a 11375 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11376
11377 case OP_AGGREGATE:
11378 case OP_CHOICES:
11379 case OP_OTHERS:
11380 case OP_DISCRETE_RANGE:
11381 case OP_POSITIONAL:
11382 case OP_NAME:
11383 if (noside == EVAL_NORMAL)
11384 switch (op)
11385 {
11386 case OP_NAME:
11387 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11388 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11389 case OP_AGGREGATE:
11390 error (_("Aggregates only allowed on the right of an assignment"));
11391 default:
0963b4bd
MS
11392 internal_error (__FILE__, __LINE__,
11393 _("aggregate apparently mangled"));
52ce6436
PH
11394 }
11395
11396 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11397 *pos += oplen - 1;
11398 for (tem = 0; tem < nargs; tem += 1)
11399 ada_evaluate_subexp (NULL, exp, pos, noside);
11400 goto nosideret;
14f9c5c9
AS
11401 }
11402
11403nosideret:
22601c15 11404 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 11405}
14f9c5c9 11406\f
d2e4a39e 11407
4c4b4cd2 11408 /* Fixed point */
14f9c5c9
AS
11409
11410/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11411 type name that encodes the 'small and 'delta information.
4c4b4cd2 11412 Otherwise, return NULL. */
14f9c5c9 11413
d2e4a39e 11414static const char *
ebf56fd3 11415fixed_type_info (struct type *type)
14f9c5c9 11416{
d2e4a39e 11417 const char *name = ada_type_name (type);
14f9c5c9
AS
11418 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11419
d2e4a39e
AS
11420 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11421 {
14f9c5c9 11422 const char *tail = strstr (name, "___XF_");
5b4ee69b 11423
14f9c5c9 11424 if (tail == NULL)
4c4b4cd2 11425 return NULL;
d2e4a39e 11426 else
4c4b4cd2 11427 return tail + 5;
14f9c5c9
AS
11428 }
11429 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11430 return fixed_type_info (TYPE_TARGET_TYPE (type));
11431 else
11432 return NULL;
11433}
11434
4c4b4cd2 11435/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11436
11437int
ebf56fd3 11438ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11439{
11440 return fixed_type_info (type) != NULL;
11441}
11442
4c4b4cd2
PH
11443/* Return non-zero iff TYPE represents a System.Address type. */
11444
11445int
11446ada_is_system_address_type (struct type *type)
11447{
11448 return (TYPE_NAME (type)
11449 && strcmp (TYPE_NAME (type), "system__address") == 0);
11450}
11451
14f9c5c9
AS
11452/* Assuming that TYPE is the representation of an Ada fixed-point
11453 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 11454 delta cannot be determined. */
14f9c5c9
AS
11455
11456DOUBLEST
ebf56fd3 11457ada_delta (struct type *type)
14f9c5c9
AS
11458{
11459 const char *encoding = fixed_type_info (type);
facc390f 11460 DOUBLEST num, den;
14f9c5c9 11461
facc390f
JB
11462 /* Strictly speaking, num and den are encoded as integer. However,
11463 they may not fit into a long, and they will have to be converted
11464 to DOUBLEST anyway. So scan them as DOUBLEST. */
11465 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11466 &num, &den) < 2)
14f9c5c9 11467 return -1.0;
d2e4a39e 11468 else
facc390f 11469 return num / den;
14f9c5c9
AS
11470}
11471
11472/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11473 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
11474
11475static DOUBLEST
ebf56fd3 11476scaling_factor (struct type *type)
14f9c5c9
AS
11477{
11478 const char *encoding = fixed_type_info (type);
facc390f 11479 DOUBLEST num0, den0, num1, den1;
14f9c5c9 11480 int n;
d2e4a39e 11481
facc390f
JB
11482 /* Strictly speaking, num's and den's are encoded as integer. However,
11483 they may not fit into a long, and they will have to be converted
11484 to DOUBLEST anyway. So scan them as DOUBLEST. */
11485 n = sscanf (encoding,
11486 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11487 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11488 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11489
11490 if (n < 2)
11491 return 1.0;
11492 else if (n == 4)
facc390f 11493 return num1 / den1;
d2e4a39e 11494 else
facc390f 11495 return num0 / den0;
14f9c5c9
AS
11496}
11497
11498
11499/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11500 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11501
11502DOUBLEST
ebf56fd3 11503ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11504{
d2e4a39e 11505 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11506}
11507
4c4b4cd2
PH
11508/* The representation of a fixed-point value of type TYPE
11509 corresponding to the value X. */
14f9c5c9
AS
11510
11511LONGEST
ebf56fd3 11512ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11513{
11514 return (LONGEST) (x / scaling_factor (type) + 0.5);
11515}
11516
14f9c5c9 11517\f
d2e4a39e 11518
4c4b4cd2 11519 /* Range types */
14f9c5c9
AS
11520
11521/* Scan STR beginning at position K for a discriminant name, and
11522 return the value of that discriminant field of DVAL in *PX. If
11523 PNEW_K is not null, put the position of the character beyond the
11524 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11525 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11526
11527static int
108d56a4 11528scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11529 int *pnew_k)
14f9c5c9
AS
11530{
11531 static char *bound_buffer = NULL;
11532 static size_t bound_buffer_len = 0;
5da1a4d3 11533 const char *pstart, *pend, *bound;
d2e4a39e 11534 struct value *bound_val;
14f9c5c9
AS
11535
11536 if (dval == NULL || str == NULL || str[k] == '\0')
11537 return 0;
11538
5da1a4d3
SM
11539 pstart = str + k;
11540 pend = strstr (pstart, "__");
14f9c5c9
AS
11541 if (pend == NULL)
11542 {
5da1a4d3 11543 bound = pstart;
14f9c5c9
AS
11544 k += strlen (bound);
11545 }
d2e4a39e 11546 else
14f9c5c9 11547 {
5da1a4d3
SM
11548 int len = pend - pstart;
11549
11550 /* Strip __ and beyond. */
11551 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11552 strncpy (bound_buffer, pstart, len);
11553 bound_buffer[len] = '\0';
11554
14f9c5c9 11555 bound = bound_buffer;
d2e4a39e 11556 k = pend - str;
14f9c5c9 11557 }
d2e4a39e 11558
df407dfe 11559 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11560 if (bound_val == NULL)
11561 return 0;
11562
11563 *px = value_as_long (bound_val);
11564 if (pnew_k != NULL)
11565 *pnew_k = k;
11566 return 1;
11567}
11568
11569/* Value of variable named NAME in the current environment. If
11570 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11571 otherwise causes an error with message ERR_MSG. */
11572
d2e4a39e
AS
11573static struct value *
11574get_var_value (char *name, char *err_msg)
14f9c5c9 11575{
d12307c1 11576 struct block_symbol *syms;
14f9c5c9
AS
11577 int nsyms;
11578
4c4b4cd2 11579 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11580 &syms);
14f9c5c9
AS
11581
11582 if (nsyms != 1)
11583 {
11584 if (err_msg == NULL)
4c4b4cd2 11585 return 0;
14f9c5c9 11586 else
8a3fe4f8 11587 error (("%s"), err_msg);
14f9c5c9
AS
11588 }
11589
d12307c1 11590 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11591}
d2e4a39e 11592
14f9c5c9 11593/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11594 no such variable found, returns 0, and sets *FLAG to 0. If
11595 successful, sets *FLAG to 1. */
11596
14f9c5c9 11597LONGEST
4c4b4cd2 11598get_int_var_value (char *name, int *flag)
14f9c5c9 11599{
4c4b4cd2 11600 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11601
14f9c5c9
AS
11602 if (var_val == 0)
11603 {
11604 if (flag != NULL)
4c4b4cd2 11605 *flag = 0;
14f9c5c9
AS
11606 return 0;
11607 }
11608 else
11609 {
11610 if (flag != NULL)
4c4b4cd2 11611 *flag = 1;
14f9c5c9
AS
11612 return value_as_long (var_val);
11613 }
11614}
d2e4a39e 11615
14f9c5c9
AS
11616
11617/* Return a range type whose base type is that of the range type named
11618 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11619 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11620 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11621 corresponding range type from debug information; fall back to using it
11622 if symbol lookup fails. If a new type must be created, allocate it
11623 like ORIG_TYPE was. The bounds information, in general, is encoded
11624 in NAME, the base type given in the named range type. */
14f9c5c9 11625
d2e4a39e 11626static struct type *
28c85d6c 11627to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11628{
0d5cff50 11629 const char *name;
14f9c5c9 11630 struct type *base_type;
108d56a4 11631 const char *subtype_info;
14f9c5c9 11632
28c85d6c
JB
11633 gdb_assert (raw_type != NULL);
11634 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11635
1ce677a4 11636 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11637 base_type = TYPE_TARGET_TYPE (raw_type);
11638 else
11639 base_type = raw_type;
11640
28c85d6c 11641 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11642 subtype_info = strstr (name, "___XD");
11643 if (subtype_info == NULL)
690cc4eb 11644 {
43bbcdc2
PH
11645 LONGEST L = ada_discrete_type_low_bound (raw_type);
11646 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11647
690cc4eb
PH
11648 if (L < INT_MIN || U > INT_MAX)
11649 return raw_type;
11650 else
0c9c3474
SA
11651 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11652 L, U);
690cc4eb 11653 }
14f9c5c9
AS
11654 else
11655 {
11656 static char *name_buf = NULL;
11657 static size_t name_len = 0;
11658 int prefix_len = subtype_info - name;
11659 LONGEST L, U;
11660 struct type *type;
108d56a4 11661 const char *bounds_str;
14f9c5c9
AS
11662 int n;
11663
11664 GROW_VECT (name_buf, name_len, prefix_len + 5);
11665 strncpy (name_buf, name, prefix_len);
11666 name_buf[prefix_len] = '\0';
11667
11668 subtype_info += 5;
11669 bounds_str = strchr (subtype_info, '_');
11670 n = 1;
11671
d2e4a39e 11672 if (*subtype_info == 'L')
4c4b4cd2
PH
11673 {
11674 if (!ada_scan_number (bounds_str, n, &L, &n)
11675 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11676 return raw_type;
11677 if (bounds_str[n] == '_')
11678 n += 2;
0963b4bd 11679 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11680 n += 1;
11681 subtype_info += 1;
11682 }
d2e4a39e 11683 else
4c4b4cd2
PH
11684 {
11685 int ok;
5b4ee69b 11686
4c4b4cd2
PH
11687 strcpy (name_buf + prefix_len, "___L");
11688 L = get_int_var_value (name_buf, &ok);
11689 if (!ok)
11690 {
323e0a4a 11691 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11692 L = 1;
11693 }
11694 }
14f9c5c9 11695
d2e4a39e 11696 if (*subtype_info == 'U')
4c4b4cd2
PH
11697 {
11698 if (!ada_scan_number (bounds_str, n, &U, &n)
11699 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11700 return raw_type;
11701 }
d2e4a39e 11702 else
4c4b4cd2
PH
11703 {
11704 int ok;
5b4ee69b 11705
4c4b4cd2
PH
11706 strcpy (name_buf + prefix_len, "___U");
11707 U = get_int_var_value (name_buf, &ok);
11708 if (!ok)
11709 {
323e0a4a 11710 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11711 U = L;
11712 }
11713 }
14f9c5c9 11714
0c9c3474
SA
11715 type = create_static_range_type (alloc_type_copy (raw_type),
11716 base_type, L, U);
d2e4a39e 11717 TYPE_NAME (type) = name;
14f9c5c9
AS
11718 return type;
11719 }
11720}
11721
4c4b4cd2
PH
11722/* True iff NAME is the name of a range type. */
11723
14f9c5c9 11724int
d2e4a39e 11725ada_is_range_type_name (const char *name)
14f9c5c9
AS
11726{
11727 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11728}
14f9c5c9 11729\f
d2e4a39e 11730
4c4b4cd2
PH
11731 /* Modular types */
11732
11733/* True iff TYPE is an Ada modular type. */
14f9c5c9 11734
14f9c5c9 11735int
d2e4a39e 11736ada_is_modular_type (struct type *type)
14f9c5c9 11737{
18af8284 11738 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11739
11740 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11741 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11742 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11743}
11744
4c4b4cd2
PH
11745/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11746
61ee279c 11747ULONGEST
0056e4d5 11748ada_modulus (struct type *type)
14f9c5c9 11749{
43bbcdc2 11750 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11751}
d2e4a39e 11752\f
f7f9143b
JB
11753
11754/* Ada exception catchpoint support:
11755 ---------------------------------
11756
11757 We support 3 kinds of exception catchpoints:
11758 . catchpoints on Ada exceptions
11759 . catchpoints on unhandled Ada exceptions
11760 . catchpoints on failed assertions
11761
11762 Exceptions raised during failed assertions, or unhandled exceptions
11763 could perfectly be caught with the general catchpoint on Ada exceptions.
11764 However, we can easily differentiate these two special cases, and having
11765 the option to distinguish these two cases from the rest can be useful
11766 to zero-in on certain situations.
11767
11768 Exception catchpoints are a specialized form of breakpoint,
11769 since they rely on inserting breakpoints inside known routines
11770 of the GNAT runtime. The implementation therefore uses a standard
11771 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11772 of breakpoint_ops.
11773
0259addd
JB
11774 Support in the runtime for exception catchpoints have been changed
11775 a few times already, and these changes affect the implementation
11776 of these catchpoints. In order to be able to support several
11777 variants of the runtime, we use a sniffer that will determine
28010a5d 11778 the runtime variant used by the program being debugged. */
f7f9143b 11779
82eacd52
JB
11780/* Ada's standard exceptions.
11781
11782 The Ada 83 standard also defined Numeric_Error. But there so many
11783 situations where it was unclear from the Ada 83 Reference Manual
11784 (RM) whether Constraint_Error or Numeric_Error should be raised,
11785 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11786 Interpretation saying that anytime the RM says that Numeric_Error
11787 should be raised, the implementation may raise Constraint_Error.
11788 Ada 95 went one step further and pretty much removed Numeric_Error
11789 from the list of standard exceptions (it made it a renaming of
11790 Constraint_Error, to help preserve compatibility when compiling
11791 an Ada83 compiler). As such, we do not include Numeric_Error from
11792 this list of standard exceptions. */
3d0b0fa3
JB
11793
11794static char *standard_exc[] = {
11795 "constraint_error",
11796 "program_error",
11797 "storage_error",
11798 "tasking_error"
11799};
11800
0259addd
JB
11801typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11802
11803/* A structure that describes how to support exception catchpoints
11804 for a given executable. */
11805
11806struct exception_support_info
11807{
11808 /* The name of the symbol to break on in order to insert
11809 a catchpoint on exceptions. */
11810 const char *catch_exception_sym;
11811
11812 /* The name of the symbol to break on in order to insert
11813 a catchpoint on unhandled exceptions. */
11814 const char *catch_exception_unhandled_sym;
11815
11816 /* The name of the symbol to break on in order to insert
11817 a catchpoint on failed assertions. */
11818 const char *catch_assert_sym;
11819
11820 /* Assuming that the inferior just triggered an unhandled exception
11821 catchpoint, this function is responsible for returning the address
11822 in inferior memory where the name of that exception is stored.
11823 Return zero if the address could not be computed. */
11824 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11825};
11826
11827static CORE_ADDR ada_unhandled_exception_name_addr (void);
11828static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11829
11830/* The following exception support info structure describes how to
11831 implement exception catchpoints with the latest version of the
11832 Ada runtime (as of 2007-03-06). */
11833
11834static const struct exception_support_info default_exception_support_info =
11835{
11836 "__gnat_debug_raise_exception", /* catch_exception_sym */
11837 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11838 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11839 ada_unhandled_exception_name_addr
11840};
11841
11842/* The following exception support info structure describes how to
11843 implement exception catchpoints with a slightly older version
11844 of the Ada runtime. */
11845
11846static const struct exception_support_info exception_support_info_fallback =
11847{
11848 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11849 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11850 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11851 ada_unhandled_exception_name_addr_from_raise
11852};
11853
f17011e0
JB
11854/* Return nonzero if we can detect the exception support routines
11855 described in EINFO.
11856
11857 This function errors out if an abnormal situation is detected
11858 (for instance, if we find the exception support routines, but
11859 that support is found to be incomplete). */
11860
11861static int
11862ada_has_this_exception_support (const struct exception_support_info *einfo)
11863{
11864 struct symbol *sym;
11865
11866 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11867 that should be compiled with debugging information. As a result, we
11868 expect to find that symbol in the symtabs. */
11869
11870 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11871 if (sym == NULL)
a6af7abe
JB
11872 {
11873 /* Perhaps we did not find our symbol because the Ada runtime was
11874 compiled without debugging info, or simply stripped of it.
11875 It happens on some GNU/Linux distributions for instance, where
11876 users have to install a separate debug package in order to get
11877 the runtime's debugging info. In that situation, let the user
11878 know why we cannot insert an Ada exception catchpoint.
11879
11880 Note: Just for the purpose of inserting our Ada exception
11881 catchpoint, we could rely purely on the associated minimal symbol.
11882 But we would be operating in degraded mode anyway, since we are
11883 still lacking the debugging info needed later on to extract
11884 the name of the exception being raised (this name is printed in
11885 the catchpoint message, and is also used when trying to catch
11886 a specific exception). We do not handle this case for now. */
3b7344d5 11887 struct bound_minimal_symbol msym
1c8e84b0
JB
11888 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11889
3b7344d5 11890 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11891 error (_("Your Ada runtime appears to be missing some debugging "
11892 "information.\nCannot insert Ada exception catchpoint "
11893 "in this configuration."));
11894
11895 return 0;
11896 }
f17011e0
JB
11897
11898 /* Make sure that the symbol we found corresponds to a function. */
11899
11900 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11901 error (_("Symbol \"%s\" is not a function (class = %d)"),
11902 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11903
11904 return 1;
11905}
11906
0259addd
JB
11907/* Inspect the Ada runtime and determine which exception info structure
11908 should be used to provide support for exception catchpoints.
11909
3eecfa55
JB
11910 This function will always set the per-inferior exception_info,
11911 or raise an error. */
0259addd
JB
11912
11913static void
11914ada_exception_support_info_sniffer (void)
11915{
3eecfa55 11916 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11917
11918 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11919 if (data->exception_info != NULL)
0259addd
JB
11920 return;
11921
11922 /* Check the latest (default) exception support info. */
f17011e0 11923 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11924 {
3eecfa55 11925 data->exception_info = &default_exception_support_info;
0259addd
JB
11926 return;
11927 }
11928
11929 /* Try our fallback exception suport info. */
f17011e0 11930 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11931 {
3eecfa55 11932 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11933 return;
11934 }
11935
11936 /* Sometimes, it is normal for us to not be able to find the routine
11937 we are looking for. This happens when the program is linked with
11938 the shared version of the GNAT runtime, and the program has not been
11939 started yet. Inform the user of these two possible causes if
11940 applicable. */
11941
ccefe4c4 11942 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11943 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11944
11945 /* If the symbol does not exist, then check that the program is
11946 already started, to make sure that shared libraries have been
11947 loaded. If it is not started, this may mean that the symbol is
11948 in a shared library. */
11949
11950 if (ptid_get_pid (inferior_ptid) == 0)
11951 error (_("Unable to insert catchpoint. Try to start the program first."));
11952
11953 /* At this point, we know that we are debugging an Ada program and
11954 that the inferior has been started, but we still are not able to
0963b4bd 11955 find the run-time symbols. That can mean that we are in
0259addd
JB
11956 configurable run time mode, or that a-except as been optimized
11957 out by the linker... In any case, at this point it is not worth
11958 supporting this feature. */
11959
7dda8cff 11960 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11961}
11962
f7f9143b
JB
11963/* True iff FRAME is very likely to be that of a function that is
11964 part of the runtime system. This is all very heuristic, but is
11965 intended to be used as advice as to what frames are uninteresting
11966 to most users. */
11967
11968static int
11969is_known_support_routine (struct frame_info *frame)
11970{
4ed6b5be 11971 struct symtab_and_line sal;
55b87a52 11972 char *func_name;
692465f1 11973 enum language func_lang;
f7f9143b 11974 int i;
f35a17b5 11975 const char *fullname;
f7f9143b 11976
4ed6b5be
JB
11977 /* If this code does not have any debugging information (no symtab),
11978 This cannot be any user code. */
f7f9143b 11979
4ed6b5be 11980 find_frame_sal (frame, &sal);
f7f9143b
JB
11981 if (sal.symtab == NULL)
11982 return 1;
11983
4ed6b5be
JB
11984 /* If there is a symtab, but the associated source file cannot be
11985 located, then assume this is not user code: Selecting a frame
11986 for which we cannot display the code would not be very helpful
11987 for the user. This should also take care of case such as VxWorks
11988 where the kernel has some debugging info provided for a few units. */
f7f9143b 11989
f35a17b5
JK
11990 fullname = symtab_to_fullname (sal.symtab);
11991 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11992 return 1;
11993
4ed6b5be
JB
11994 /* Check the unit filename againt the Ada runtime file naming.
11995 We also check the name of the objfile against the name of some
11996 known system libraries that sometimes come with debugging info
11997 too. */
11998
f7f9143b
JB
11999 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12000 {
12001 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12002 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12003 return 1;
eb822aa6
DE
12004 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12005 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12006 return 1;
f7f9143b
JB
12007 }
12008
4ed6b5be 12009 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12010
e9e07ba6 12011 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
12012 if (func_name == NULL)
12013 return 1;
12014
12015 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12016 {
12017 re_comp (known_auxiliary_function_name_patterns[i]);
12018 if (re_exec (func_name))
55b87a52
KS
12019 {
12020 xfree (func_name);
12021 return 1;
12022 }
f7f9143b
JB
12023 }
12024
55b87a52 12025 xfree (func_name);
f7f9143b
JB
12026 return 0;
12027}
12028
12029/* Find the first frame that contains debugging information and that is not
12030 part of the Ada run-time, starting from FI and moving upward. */
12031
0ef643c8 12032void
f7f9143b
JB
12033ada_find_printable_frame (struct frame_info *fi)
12034{
12035 for (; fi != NULL; fi = get_prev_frame (fi))
12036 {
12037 if (!is_known_support_routine (fi))
12038 {
12039 select_frame (fi);
12040 break;
12041 }
12042 }
12043
12044}
12045
12046/* Assuming that the inferior just triggered an unhandled exception
12047 catchpoint, return the address in inferior memory where the name
12048 of the exception is stored.
12049
12050 Return zero if the address could not be computed. */
12051
12052static CORE_ADDR
12053ada_unhandled_exception_name_addr (void)
0259addd
JB
12054{
12055 return parse_and_eval_address ("e.full_name");
12056}
12057
12058/* Same as ada_unhandled_exception_name_addr, except that this function
12059 should be used when the inferior uses an older version of the runtime,
12060 where the exception name needs to be extracted from a specific frame
12061 several frames up in the callstack. */
12062
12063static CORE_ADDR
12064ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12065{
12066 int frame_level;
12067 struct frame_info *fi;
3eecfa55 12068 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 12069 struct cleanup *old_chain;
f7f9143b
JB
12070
12071 /* To determine the name of this exception, we need to select
12072 the frame corresponding to RAISE_SYM_NAME. This frame is
12073 at least 3 levels up, so we simply skip the first 3 frames
12074 without checking the name of their associated function. */
12075 fi = get_current_frame ();
12076 for (frame_level = 0; frame_level < 3; frame_level += 1)
12077 if (fi != NULL)
12078 fi = get_prev_frame (fi);
12079
55b87a52 12080 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
12081 while (fi != NULL)
12082 {
55b87a52 12083 char *func_name;
692465f1
JB
12084 enum language func_lang;
12085
e9e07ba6 12086 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
12087 if (func_name != NULL)
12088 {
12089 make_cleanup (xfree, func_name);
12090
12091 if (strcmp (func_name,
12092 data->exception_info->catch_exception_sym) == 0)
12093 break; /* We found the frame we were looking for... */
12094 fi = get_prev_frame (fi);
12095 }
f7f9143b 12096 }
55b87a52 12097 do_cleanups (old_chain);
f7f9143b
JB
12098
12099 if (fi == NULL)
12100 return 0;
12101
12102 select_frame (fi);
12103 return parse_and_eval_address ("id.full_name");
12104}
12105
12106/* Assuming the inferior just triggered an Ada exception catchpoint
12107 (of any type), return the address in inferior memory where the name
12108 of the exception is stored, if applicable.
12109
12110 Return zero if the address could not be computed, or if not relevant. */
12111
12112static CORE_ADDR
761269c8 12113ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12114 struct breakpoint *b)
12115{
3eecfa55
JB
12116 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12117
f7f9143b
JB
12118 switch (ex)
12119 {
761269c8 12120 case ada_catch_exception:
f7f9143b
JB
12121 return (parse_and_eval_address ("e.full_name"));
12122 break;
12123
761269c8 12124 case ada_catch_exception_unhandled:
3eecfa55 12125 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
12126 break;
12127
761269c8 12128 case ada_catch_assert:
f7f9143b
JB
12129 return 0; /* Exception name is not relevant in this case. */
12130 break;
12131
12132 default:
12133 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12134 break;
12135 }
12136
12137 return 0; /* Should never be reached. */
12138}
12139
12140/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12141 any error that ada_exception_name_addr_1 might cause to be thrown.
12142 When an error is intercepted, a warning with the error message is printed,
12143 and zero is returned. */
12144
12145static CORE_ADDR
761269c8 12146ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12147 struct breakpoint *b)
12148{
f7f9143b
JB
12149 CORE_ADDR result = 0;
12150
492d29ea 12151 TRY
f7f9143b
JB
12152 {
12153 result = ada_exception_name_addr_1 (ex, b);
12154 }
12155
492d29ea 12156 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12157 {
12158 warning (_("failed to get exception name: %s"), e.message);
12159 return 0;
12160 }
492d29ea 12161 END_CATCH
f7f9143b
JB
12162
12163 return result;
12164}
12165
28010a5d
PA
12166static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12167
12168/* Ada catchpoints.
12169
12170 In the case of catchpoints on Ada exceptions, the catchpoint will
12171 stop the target on every exception the program throws. When a user
12172 specifies the name of a specific exception, we translate this
12173 request into a condition expression (in text form), and then parse
12174 it into an expression stored in each of the catchpoint's locations.
12175 We then use this condition to check whether the exception that was
12176 raised is the one the user is interested in. If not, then the
12177 target is resumed again. We store the name of the requested
12178 exception, in order to be able to re-set the condition expression
12179 when symbols change. */
12180
12181/* An instance of this type is used to represent an Ada catchpoint
12182 breakpoint location. It includes a "struct bp_location" as a kind
12183 of base class; users downcast to "struct bp_location *" when
12184 needed. */
12185
12186struct ada_catchpoint_location
12187{
12188 /* The base class. */
12189 struct bp_location base;
12190
12191 /* The condition that checks whether the exception that was raised
12192 is the specific exception the user specified on catchpoint
12193 creation. */
12194 struct expression *excep_cond_expr;
12195};
12196
12197/* Implement the DTOR method in the bp_location_ops structure for all
12198 Ada exception catchpoint kinds. */
12199
12200static void
12201ada_catchpoint_location_dtor (struct bp_location *bl)
12202{
12203 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12204
12205 xfree (al->excep_cond_expr);
12206}
12207
12208/* The vtable to be used in Ada catchpoint locations. */
12209
12210static const struct bp_location_ops ada_catchpoint_location_ops =
12211{
12212 ada_catchpoint_location_dtor
12213};
12214
12215/* An instance of this type is used to represent an Ada catchpoint.
12216 It includes a "struct breakpoint" as a kind of base class; users
12217 downcast to "struct breakpoint *" when needed. */
12218
12219struct ada_catchpoint
12220{
12221 /* The base class. */
12222 struct breakpoint base;
12223
12224 /* The name of the specific exception the user specified. */
12225 char *excep_string;
12226};
12227
12228/* Parse the exception condition string in the context of each of the
12229 catchpoint's locations, and store them for later evaluation. */
12230
12231static void
12232create_excep_cond_exprs (struct ada_catchpoint *c)
12233{
12234 struct cleanup *old_chain;
12235 struct bp_location *bl;
12236 char *cond_string;
12237
12238 /* Nothing to do if there's no specific exception to catch. */
12239 if (c->excep_string == NULL)
12240 return;
12241
12242 /* Same if there are no locations... */
12243 if (c->base.loc == NULL)
12244 return;
12245
12246 /* Compute the condition expression in text form, from the specific
12247 expection we want to catch. */
12248 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12249 old_chain = make_cleanup (xfree, cond_string);
12250
12251 /* Iterate over all the catchpoint's locations, and parse an
12252 expression for each. */
12253 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12254 {
12255 struct ada_catchpoint_location *ada_loc
12256 = (struct ada_catchpoint_location *) bl;
12257 struct expression *exp = NULL;
12258
12259 if (!bl->shlib_disabled)
12260 {
bbc13ae3 12261 const char *s;
28010a5d
PA
12262
12263 s = cond_string;
492d29ea 12264 TRY
28010a5d 12265 {
1bb9788d
TT
12266 exp = parse_exp_1 (&s, bl->address,
12267 block_for_pc (bl->address), 0);
28010a5d 12268 }
492d29ea 12269 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12270 {
12271 warning (_("failed to reevaluate internal exception condition "
12272 "for catchpoint %d: %s"),
12273 c->base.number, e.message);
12274 /* There is a bug in GCC on sparc-solaris when building with
12275 optimization which causes EXP to change unexpectedly
12276 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
12277 The problem should be fixed starting with GCC 4.9.
12278 In the meantime, work around it by forcing EXP back
12279 to NULL. */
12280 exp = NULL;
12281 }
492d29ea 12282 END_CATCH
28010a5d
PA
12283 }
12284
12285 ada_loc->excep_cond_expr = exp;
12286 }
12287
12288 do_cleanups (old_chain);
12289}
12290
12291/* Implement the DTOR method in the breakpoint_ops structure for all
12292 exception catchpoint kinds. */
12293
12294static void
761269c8 12295dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12296{
12297 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12298
12299 xfree (c->excep_string);
348d480f 12300
2060206e 12301 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
12302}
12303
12304/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12305 structure for all exception catchpoint kinds. */
12306
12307static struct bp_location *
761269c8 12308allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12309 struct breakpoint *self)
12310{
12311 struct ada_catchpoint_location *loc;
12312
12313 loc = XNEW (struct ada_catchpoint_location);
12314 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12315 loc->excep_cond_expr = NULL;
12316 return &loc->base;
12317}
12318
12319/* Implement the RE_SET method in the breakpoint_ops structure for all
12320 exception catchpoint kinds. */
12321
12322static void
761269c8 12323re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12324{
12325 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12326
12327 /* Call the base class's method. This updates the catchpoint's
12328 locations. */
2060206e 12329 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12330
12331 /* Reparse the exception conditional expressions. One for each
12332 location. */
12333 create_excep_cond_exprs (c);
12334}
12335
12336/* Returns true if we should stop for this breakpoint hit. If the
12337 user specified a specific exception, we only want to cause a stop
12338 if the program thrown that exception. */
12339
12340static int
12341should_stop_exception (const struct bp_location *bl)
12342{
12343 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12344 const struct ada_catchpoint_location *ada_loc
12345 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12346 int stop;
12347
12348 /* With no specific exception, should always stop. */
12349 if (c->excep_string == NULL)
12350 return 1;
12351
12352 if (ada_loc->excep_cond_expr == NULL)
12353 {
12354 /* We will have a NULL expression if back when we were creating
12355 the expressions, this location's had failed to parse. */
12356 return 1;
12357 }
12358
12359 stop = 1;
492d29ea 12360 TRY
28010a5d
PA
12361 {
12362 struct value *mark;
12363
12364 mark = value_mark ();
12365 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12366 value_free_to_mark (mark);
12367 }
492d29ea
PA
12368 CATCH (ex, RETURN_MASK_ALL)
12369 {
12370 exception_fprintf (gdb_stderr, ex,
12371 _("Error in testing exception condition:\n"));
12372 }
12373 END_CATCH
12374
28010a5d
PA
12375 return stop;
12376}
12377
12378/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12379 for all exception catchpoint kinds. */
12380
12381static void
761269c8 12382check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12383{
12384 bs->stop = should_stop_exception (bs->bp_location_at);
12385}
12386
f7f9143b
JB
12387/* Implement the PRINT_IT method in the breakpoint_ops structure
12388 for all exception catchpoint kinds. */
12389
12390static enum print_stop_action
761269c8 12391print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12392{
79a45e25 12393 struct ui_out *uiout = current_uiout;
348d480f
PA
12394 struct breakpoint *b = bs->breakpoint_at;
12395
956a9fb9 12396 annotate_catchpoint (b->number);
f7f9143b 12397
956a9fb9 12398 if (ui_out_is_mi_like_p (uiout))
f7f9143b 12399 {
956a9fb9
JB
12400 ui_out_field_string (uiout, "reason",
12401 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12402 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
12403 }
12404
00eb2c4a
JB
12405 ui_out_text (uiout,
12406 b->disposition == disp_del ? "\nTemporary catchpoint "
12407 : "\nCatchpoint ");
956a9fb9
JB
12408 ui_out_field_int (uiout, "bkptno", b->number);
12409 ui_out_text (uiout, ", ");
f7f9143b 12410
f7f9143b
JB
12411 switch (ex)
12412 {
761269c8
JB
12413 case ada_catch_exception:
12414 case ada_catch_exception_unhandled:
956a9fb9
JB
12415 {
12416 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12417 char exception_name[256];
12418
12419 if (addr != 0)
12420 {
c714b426
PA
12421 read_memory (addr, (gdb_byte *) exception_name,
12422 sizeof (exception_name) - 1);
956a9fb9
JB
12423 exception_name [sizeof (exception_name) - 1] = '\0';
12424 }
12425 else
12426 {
12427 /* For some reason, we were unable to read the exception
12428 name. This could happen if the Runtime was compiled
12429 without debugging info, for instance. In that case,
12430 just replace the exception name by the generic string
12431 "exception" - it will read as "an exception" in the
12432 notification we are about to print. */
967cff16 12433 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12434 }
12435 /* In the case of unhandled exception breakpoints, we print
12436 the exception name as "unhandled EXCEPTION_NAME", to make
12437 it clearer to the user which kind of catchpoint just got
12438 hit. We used ui_out_text to make sure that this extra
12439 info does not pollute the exception name in the MI case. */
761269c8 12440 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
12441 ui_out_text (uiout, "unhandled ");
12442 ui_out_field_string (uiout, "exception-name", exception_name);
12443 }
12444 break;
761269c8 12445 case ada_catch_assert:
956a9fb9
JB
12446 /* In this case, the name of the exception is not really
12447 important. Just print "failed assertion" to make it clearer
12448 that his program just hit an assertion-failure catchpoint.
12449 We used ui_out_text because this info does not belong in
12450 the MI output. */
12451 ui_out_text (uiout, "failed assertion");
12452 break;
f7f9143b 12453 }
956a9fb9
JB
12454 ui_out_text (uiout, " at ");
12455 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12456
12457 return PRINT_SRC_AND_LOC;
12458}
12459
12460/* Implement the PRINT_ONE method in the breakpoint_ops structure
12461 for all exception catchpoint kinds. */
12462
12463static void
761269c8 12464print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12465 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12466{
79a45e25 12467 struct ui_out *uiout = current_uiout;
28010a5d 12468 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12469 struct value_print_options opts;
12470
12471 get_user_print_options (&opts);
12472 if (opts.addressprint)
f7f9143b
JB
12473 {
12474 annotate_field (4);
5af949e3 12475 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12476 }
12477
12478 annotate_field (5);
a6d9a66e 12479 *last_loc = b->loc;
f7f9143b
JB
12480 switch (ex)
12481 {
761269c8 12482 case ada_catch_exception:
28010a5d 12483 if (c->excep_string != NULL)
f7f9143b 12484 {
28010a5d
PA
12485 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12486
f7f9143b
JB
12487 ui_out_field_string (uiout, "what", msg);
12488 xfree (msg);
12489 }
12490 else
12491 ui_out_field_string (uiout, "what", "all Ada exceptions");
12492
12493 break;
12494
761269c8 12495 case ada_catch_exception_unhandled:
f7f9143b
JB
12496 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12497 break;
12498
761269c8 12499 case ada_catch_assert:
f7f9143b
JB
12500 ui_out_field_string (uiout, "what", "failed Ada assertions");
12501 break;
12502
12503 default:
12504 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12505 break;
12506 }
12507}
12508
12509/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12510 for all exception catchpoint kinds. */
12511
12512static void
761269c8 12513print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12514 struct breakpoint *b)
12515{
28010a5d 12516 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12517 struct ui_out *uiout = current_uiout;
28010a5d 12518
00eb2c4a
JB
12519 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12520 : _("Catchpoint "));
12521 ui_out_field_int (uiout, "bkptno", b->number);
12522 ui_out_text (uiout, ": ");
12523
f7f9143b
JB
12524 switch (ex)
12525 {
761269c8 12526 case ada_catch_exception:
28010a5d 12527 if (c->excep_string != NULL)
00eb2c4a
JB
12528 {
12529 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12530 struct cleanup *old_chain = make_cleanup (xfree, info);
12531
12532 ui_out_text (uiout, info);
12533 do_cleanups (old_chain);
12534 }
f7f9143b 12535 else
00eb2c4a 12536 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12537 break;
12538
761269c8 12539 case ada_catch_exception_unhandled:
00eb2c4a 12540 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12541 break;
12542
761269c8 12543 case ada_catch_assert:
00eb2c4a 12544 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12545 break;
12546
12547 default:
12548 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12549 break;
12550 }
12551}
12552
6149aea9
PA
12553/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12554 for all exception catchpoint kinds. */
12555
12556static void
761269c8 12557print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12558 struct breakpoint *b, struct ui_file *fp)
12559{
28010a5d
PA
12560 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12561
6149aea9
PA
12562 switch (ex)
12563 {
761269c8 12564 case ada_catch_exception:
6149aea9 12565 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12566 if (c->excep_string != NULL)
12567 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12568 break;
12569
761269c8 12570 case ada_catch_exception_unhandled:
78076abc 12571 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12572 break;
12573
761269c8 12574 case ada_catch_assert:
6149aea9
PA
12575 fprintf_filtered (fp, "catch assert");
12576 break;
12577
12578 default:
12579 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12580 }
d9b3f62e 12581 print_recreate_thread (b, fp);
6149aea9
PA
12582}
12583
f7f9143b
JB
12584/* Virtual table for "catch exception" breakpoints. */
12585
28010a5d
PA
12586static void
12587dtor_catch_exception (struct breakpoint *b)
12588{
761269c8 12589 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12590}
12591
12592static struct bp_location *
12593allocate_location_catch_exception (struct breakpoint *self)
12594{
761269c8 12595 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12596}
12597
12598static void
12599re_set_catch_exception (struct breakpoint *b)
12600{
761269c8 12601 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12602}
12603
12604static void
12605check_status_catch_exception (bpstat bs)
12606{
761269c8 12607 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12608}
12609
f7f9143b 12610static enum print_stop_action
348d480f 12611print_it_catch_exception (bpstat bs)
f7f9143b 12612{
761269c8 12613 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12614}
12615
12616static void
a6d9a66e 12617print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12618{
761269c8 12619 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12620}
12621
12622static void
12623print_mention_catch_exception (struct breakpoint *b)
12624{
761269c8 12625 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12626}
12627
6149aea9
PA
12628static void
12629print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12630{
761269c8 12631 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12632}
12633
2060206e 12634static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12635
12636/* Virtual table for "catch exception unhandled" breakpoints. */
12637
28010a5d
PA
12638static void
12639dtor_catch_exception_unhandled (struct breakpoint *b)
12640{
761269c8 12641 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12642}
12643
12644static struct bp_location *
12645allocate_location_catch_exception_unhandled (struct breakpoint *self)
12646{
761269c8 12647 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12648}
12649
12650static void
12651re_set_catch_exception_unhandled (struct breakpoint *b)
12652{
761269c8 12653 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12654}
12655
12656static void
12657check_status_catch_exception_unhandled (bpstat bs)
12658{
761269c8 12659 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12660}
12661
f7f9143b 12662static enum print_stop_action
348d480f 12663print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12664{
761269c8 12665 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12666}
12667
12668static void
a6d9a66e
UW
12669print_one_catch_exception_unhandled (struct breakpoint *b,
12670 struct bp_location **last_loc)
f7f9143b 12671{
761269c8 12672 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12673}
12674
12675static void
12676print_mention_catch_exception_unhandled (struct breakpoint *b)
12677{
761269c8 12678 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12679}
12680
6149aea9
PA
12681static void
12682print_recreate_catch_exception_unhandled (struct breakpoint *b,
12683 struct ui_file *fp)
12684{
761269c8 12685 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12686}
12687
2060206e 12688static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12689
12690/* Virtual table for "catch assert" breakpoints. */
12691
28010a5d
PA
12692static void
12693dtor_catch_assert (struct breakpoint *b)
12694{
761269c8 12695 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12696}
12697
12698static struct bp_location *
12699allocate_location_catch_assert (struct breakpoint *self)
12700{
761269c8 12701 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12702}
12703
12704static void
12705re_set_catch_assert (struct breakpoint *b)
12706{
761269c8 12707 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12708}
12709
12710static void
12711check_status_catch_assert (bpstat bs)
12712{
761269c8 12713 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12714}
12715
f7f9143b 12716static enum print_stop_action
348d480f 12717print_it_catch_assert (bpstat bs)
f7f9143b 12718{
761269c8 12719 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12720}
12721
12722static void
a6d9a66e 12723print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12724{
761269c8 12725 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12726}
12727
12728static void
12729print_mention_catch_assert (struct breakpoint *b)
12730{
761269c8 12731 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12732}
12733
6149aea9
PA
12734static void
12735print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12736{
761269c8 12737 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12738}
12739
2060206e 12740static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12741
f7f9143b
JB
12742/* Return a newly allocated copy of the first space-separated token
12743 in ARGSP, and then adjust ARGSP to point immediately after that
12744 token.
12745
12746 Return NULL if ARGPS does not contain any more tokens. */
12747
12748static char *
12749ada_get_next_arg (char **argsp)
12750{
12751 char *args = *argsp;
12752 char *end;
12753 char *result;
12754
0fcd72ba 12755 args = skip_spaces (args);
f7f9143b
JB
12756 if (args[0] == '\0')
12757 return NULL; /* No more arguments. */
12758
12759 /* Find the end of the current argument. */
12760
0fcd72ba 12761 end = skip_to_space (args);
f7f9143b
JB
12762
12763 /* Adjust ARGSP to point to the start of the next argument. */
12764
12765 *argsp = end;
12766
12767 /* Make a copy of the current argument and return it. */
12768
224c3ddb 12769 result = (char *) xmalloc (end - args + 1);
f7f9143b
JB
12770 strncpy (result, args, end - args);
12771 result[end - args] = '\0';
12772
12773 return result;
12774}
12775
12776/* Split the arguments specified in a "catch exception" command.
12777 Set EX to the appropriate catchpoint type.
28010a5d 12778 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12779 specified by the user.
12780 If a condition is found at the end of the arguments, the condition
12781 expression is stored in COND_STRING (memory must be deallocated
12782 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12783
12784static void
12785catch_ada_exception_command_split (char *args,
761269c8 12786 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12787 char **excep_string,
12788 char **cond_string)
f7f9143b
JB
12789{
12790 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12791 char *exception_name;
5845583d 12792 char *cond = NULL;
f7f9143b
JB
12793
12794 exception_name = ada_get_next_arg (&args);
5845583d
JB
12795 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12796 {
12797 /* This is not an exception name; this is the start of a condition
12798 expression for a catchpoint on all exceptions. So, "un-get"
12799 this token, and set exception_name to NULL. */
12800 xfree (exception_name);
12801 exception_name = NULL;
12802 args -= 2;
12803 }
f7f9143b
JB
12804 make_cleanup (xfree, exception_name);
12805
5845583d 12806 /* Check to see if we have a condition. */
f7f9143b 12807
0fcd72ba 12808 args = skip_spaces (args);
61012eef 12809 if (startswith (args, "if")
5845583d
JB
12810 && (isspace (args[2]) || args[2] == '\0'))
12811 {
12812 args += 2;
12813 args = skip_spaces (args);
12814
12815 if (args[0] == '\0')
12816 error (_("Condition missing after `if' keyword"));
12817 cond = xstrdup (args);
12818 make_cleanup (xfree, cond);
12819
12820 args += strlen (args);
12821 }
12822
12823 /* Check that we do not have any more arguments. Anything else
12824 is unexpected. */
f7f9143b
JB
12825
12826 if (args[0] != '\0')
12827 error (_("Junk at end of expression"));
12828
12829 discard_cleanups (old_chain);
12830
12831 if (exception_name == NULL)
12832 {
12833 /* Catch all exceptions. */
761269c8 12834 *ex = ada_catch_exception;
28010a5d 12835 *excep_string = NULL;
f7f9143b
JB
12836 }
12837 else if (strcmp (exception_name, "unhandled") == 0)
12838 {
12839 /* Catch unhandled exceptions. */
761269c8 12840 *ex = ada_catch_exception_unhandled;
28010a5d 12841 *excep_string = NULL;
f7f9143b
JB
12842 }
12843 else
12844 {
12845 /* Catch a specific exception. */
761269c8 12846 *ex = ada_catch_exception;
28010a5d 12847 *excep_string = exception_name;
f7f9143b 12848 }
5845583d 12849 *cond_string = cond;
f7f9143b
JB
12850}
12851
12852/* Return the name of the symbol on which we should break in order to
12853 implement a catchpoint of the EX kind. */
12854
12855static const char *
761269c8 12856ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12857{
3eecfa55
JB
12858 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12859
12860 gdb_assert (data->exception_info != NULL);
0259addd 12861
f7f9143b
JB
12862 switch (ex)
12863 {
761269c8 12864 case ada_catch_exception:
3eecfa55 12865 return (data->exception_info->catch_exception_sym);
f7f9143b 12866 break;
761269c8 12867 case ada_catch_exception_unhandled:
3eecfa55 12868 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12869 break;
761269c8 12870 case ada_catch_assert:
3eecfa55 12871 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12872 break;
12873 default:
12874 internal_error (__FILE__, __LINE__,
12875 _("unexpected catchpoint kind (%d)"), ex);
12876 }
12877}
12878
12879/* Return the breakpoint ops "virtual table" used for catchpoints
12880 of the EX kind. */
12881
c0a91b2b 12882static const struct breakpoint_ops *
761269c8 12883ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12884{
12885 switch (ex)
12886 {
761269c8 12887 case ada_catch_exception:
f7f9143b
JB
12888 return (&catch_exception_breakpoint_ops);
12889 break;
761269c8 12890 case ada_catch_exception_unhandled:
f7f9143b
JB
12891 return (&catch_exception_unhandled_breakpoint_ops);
12892 break;
761269c8 12893 case ada_catch_assert:
f7f9143b
JB
12894 return (&catch_assert_breakpoint_ops);
12895 break;
12896 default:
12897 internal_error (__FILE__, __LINE__,
12898 _("unexpected catchpoint kind (%d)"), ex);
12899 }
12900}
12901
12902/* Return the condition that will be used to match the current exception
12903 being raised with the exception that the user wants to catch. This
12904 assumes that this condition is used when the inferior just triggered
12905 an exception catchpoint.
12906
12907 The string returned is a newly allocated string that needs to be
12908 deallocated later. */
12909
12910static char *
28010a5d 12911ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12912{
3d0b0fa3
JB
12913 int i;
12914
0963b4bd 12915 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12916 runtime units that have been compiled without debugging info; if
28010a5d 12917 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12918 exception (e.g. "constraint_error") then, during the evaluation
12919 of the condition expression, the symbol lookup on this name would
0963b4bd 12920 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12921 may then be set only on user-defined exceptions which have the
12922 same not-fully-qualified name (e.g. my_package.constraint_error).
12923
12924 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12925 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12926 exception constraint_error" is rewritten into "catch exception
12927 standard.constraint_error".
12928
12929 If an exception named contraint_error is defined in another package of
12930 the inferior program, then the only way to specify this exception as a
12931 breakpoint condition is to use its fully-qualified named:
12932 e.g. my_package.constraint_error. */
12933
12934 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12935 {
28010a5d 12936 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12937 {
12938 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12939 excep_string);
3d0b0fa3
JB
12940 }
12941 }
28010a5d 12942 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12943}
12944
12945/* Return the symtab_and_line that should be used to insert an exception
12946 catchpoint of the TYPE kind.
12947
28010a5d
PA
12948 EXCEP_STRING should contain the name of a specific exception that
12949 the catchpoint should catch, or NULL otherwise.
f7f9143b 12950
28010a5d
PA
12951 ADDR_STRING returns the name of the function where the real
12952 breakpoint that implements the catchpoints is set, depending on the
12953 type of catchpoint we need to create. */
f7f9143b
JB
12954
12955static struct symtab_and_line
761269c8 12956ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12957 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12958{
12959 const char *sym_name;
12960 struct symbol *sym;
f7f9143b 12961
0259addd
JB
12962 /* First, find out which exception support info to use. */
12963 ada_exception_support_info_sniffer ();
12964
12965 /* Then lookup the function on which we will break in order to catch
f7f9143b 12966 the Ada exceptions requested by the user. */
f7f9143b
JB
12967 sym_name = ada_exception_sym_name (ex);
12968 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12969
f17011e0
JB
12970 /* We can assume that SYM is not NULL at this stage. If the symbol
12971 did not exist, ada_exception_support_info_sniffer would have
12972 raised an exception.
f7f9143b 12973
f17011e0
JB
12974 Also, ada_exception_support_info_sniffer should have already
12975 verified that SYM is a function symbol. */
12976 gdb_assert (sym != NULL);
12977 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12978
12979 /* Set ADDR_STRING. */
f7f9143b
JB
12980 *addr_string = xstrdup (sym_name);
12981
f7f9143b 12982 /* Set OPS. */
4b9eee8c 12983 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12984
f17011e0 12985 return find_function_start_sal (sym, 1);
f7f9143b
JB
12986}
12987
b4a5b78b 12988/* Create an Ada exception catchpoint.
f7f9143b 12989
b4a5b78b 12990 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12991
2df4d1d5
JB
12992 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12993 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12994 of the exception to which this catchpoint applies. When not NULL,
12995 the string must be allocated on the heap, and its deallocation
12996 is no longer the responsibility of the caller.
12997
12998 COND_STRING, if not NULL, is the catchpoint condition. This string
12999 must be allocated on the heap, and its deallocation is no longer
13000 the responsibility of the caller.
f7f9143b 13001
b4a5b78b
JB
13002 TEMPFLAG, if nonzero, means that the underlying breakpoint
13003 should be temporary.
28010a5d 13004
b4a5b78b 13005 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13006
349774ef 13007void
28010a5d 13008create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13009 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 13010 char *excep_string,
5845583d 13011 char *cond_string,
28010a5d 13012 int tempflag,
349774ef 13013 int disabled,
28010a5d
PA
13014 int from_tty)
13015{
13016 struct ada_catchpoint *c;
b4a5b78b
JB
13017 char *addr_string = NULL;
13018 const struct breakpoint_ops *ops = NULL;
13019 struct symtab_and_line sal
13020 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
13021
13022 c = XNEW (struct ada_catchpoint);
13023 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 13024 ops, tempflag, disabled, from_tty);
28010a5d
PA
13025 c->excep_string = excep_string;
13026 create_excep_cond_exprs (c);
5845583d
JB
13027 if (cond_string != NULL)
13028 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 13029 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
13030}
13031
9ac4176b
PA
13032/* Implement the "catch exception" command. */
13033
13034static void
13035catch_ada_exception_command (char *arg, int from_tty,
13036 struct cmd_list_element *command)
13037{
13038 struct gdbarch *gdbarch = get_current_arch ();
13039 int tempflag;
761269c8 13040 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 13041 char *excep_string = NULL;
5845583d 13042 char *cond_string = NULL;
9ac4176b
PA
13043
13044 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13045
13046 if (!arg)
13047 arg = "";
b4a5b78b
JB
13048 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13049 &cond_string);
13050 create_ada_exception_catchpoint (gdbarch, ex_kind,
13051 excep_string, cond_string,
349774ef
JB
13052 tempflag, 1 /* enabled */,
13053 from_tty);
9ac4176b
PA
13054}
13055
b4a5b78b 13056/* Split the arguments specified in a "catch assert" command.
5845583d 13057
b4a5b78b
JB
13058 ARGS contains the command's arguments (or the empty string if
13059 no arguments were passed).
5845583d
JB
13060
13061 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13062 (the memory needs to be deallocated after use). */
5845583d 13063
b4a5b78b
JB
13064static void
13065catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 13066{
5845583d 13067 args = skip_spaces (args);
f7f9143b 13068
5845583d 13069 /* Check whether a condition was provided. */
61012eef 13070 if (startswith (args, "if")
5845583d 13071 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13072 {
5845583d 13073 args += 2;
0fcd72ba 13074 args = skip_spaces (args);
5845583d
JB
13075 if (args[0] == '\0')
13076 error (_("condition missing after `if' keyword"));
13077 *cond_string = xstrdup (args);
f7f9143b
JB
13078 }
13079
5845583d
JB
13080 /* Otherwise, there should be no other argument at the end of
13081 the command. */
13082 else if (args[0] != '\0')
13083 error (_("Junk at end of arguments."));
f7f9143b
JB
13084}
13085
9ac4176b
PA
13086/* Implement the "catch assert" command. */
13087
13088static void
13089catch_assert_command (char *arg, int from_tty,
13090 struct cmd_list_element *command)
13091{
13092 struct gdbarch *gdbarch = get_current_arch ();
13093 int tempflag;
5845583d 13094 char *cond_string = NULL;
9ac4176b
PA
13095
13096 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13097
13098 if (!arg)
13099 arg = "";
b4a5b78b 13100 catch_ada_assert_command_split (arg, &cond_string);
761269c8 13101 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 13102 NULL, cond_string,
349774ef
JB
13103 tempflag, 1 /* enabled */,
13104 from_tty);
9ac4176b 13105}
778865d3
JB
13106
13107/* Return non-zero if the symbol SYM is an Ada exception object. */
13108
13109static int
13110ada_is_exception_sym (struct symbol *sym)
13111{
13112 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13113
13114 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13115 && SYMBOL_CLASS (sym) != LOC_BLOCK
13116 && SYMBOL_CLASS (sym) != LOC_CONST
13117 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13118 && type_name != NULL && strcmp (type_name, "exception") == 0);
13119}
13120
13121/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13122 Ada exception object. This matches all exceptions except the ones
13123 defined by the Ada language. */
13124
13125static int
13126ada_is_non_standard_exception_sym (struct symbol *sym)
13127{
13128 int i;
13129
13130 if (!ada_is_exception_sym (sym))
13131 return 0;
13132
13133 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13134 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13135 return 0; /* A standard exception. */
13136
13137 /* Numeric_Error is also a standard exception, so exclude it.
13138 See the STANDARD_EXC description for more details as to why
13139 this exception is not listed in that array. */
13140 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13141 return 0;
13142
13143 return 1;
13144}
13145
13146/* A helper function for qsort, comparing two struct ada_exc_info
13147 objects.
13148
13149 The comparison is determined first by exception name, and then
13150 by exception address. */
13151
13152static int
13153compare_ada_exception_info (const void *a, const void *b)
13154{
13155 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13156 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13157 int result;
13158
13159 result = strcmp (exc_a->name, exc_b->name);
13160 if (result != 0)
13161 return result;
13162
13163 if (exc_a->addr < exc_b->addr)
13164 return -1;
13165 if (exc_a->addr > exc_b->addr)
13166 return 1;
13167
13168 return 0;
13169}
13170
13171/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13172 routine, but keeping the first SKIP elements untouched.
13173
13174 All duplicates are also removed. */
13175
13176static void
13177sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13178 int skip)
13179{
13180 struct ada_exc_info *to_sort
13181 = VEC_address (ada_exc_info, *exceptions) + skip;
13182 int to_sort_len
13183 = VEC_length (ada_exc_info, *exceptions) - skip;
13184 int i, j;
13185
13186 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13187 compare_ada_exception_info);
13188
13189 for (i = 1, j = 1; i < to_sort_len; i++)
13190 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13191 to_sort[j++] = to_sort[i];
13192 to_sort_len = j;
13193 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13194}
13195
13196/* A function intended as the "name_matcher" callback in the struct
13197 quick_symbol_functions' expand_symtabs_matching method.
13198
13199 SEARCH_NAME is the symbol's search name.
13200
13201 If USER_DATA is not NULL, it is a pointer to a regext_t object
13202 used to match the symbol (by natural name). Otherwise, when USER_DATA
13203 is null, no filtering is performed, and all symbols are a positive
13204 match. */
13205
13206static int
13207ada_exc_search_name_matches (const char *search_name, void *user_data)
13208{
9a3c8263 13209 regex_t *preg = (regex_t *) user_data;
778865d3
JB
13210
13211 if (preg == NULL)
13212 return 1;
13213
13214 /* In Ada, the symbol "search name" is a linkage name, whereas
13215 the regular expression used to do the matching refers to
13216 the natural name. So match against the decoded name. */
13217 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13218}
13219
13220/* Add all exceptions defined by the Ada standard whose name match
13221 a regular expression.
13222
13223 If PREG is not NULL, then this regexp_t object is used to
13224 perform the symbol name matching. Otherwise, no name-based
13225 filtering is performed.
13226
13227 EXCEPTIONS is a vector of exceptions to which matching exceptions
13228 gets pushed. */
13229
13230static void
13231ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13232{
13233 int i;
13234
13235 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13236 {
13237 if (preg == NULL
13238 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13239 {
13240 struct bound_minimal_symbol msymbol
13241 = ada_lookup_simple_minsym (standard_exc[i]);
13242
13243 if (msymbol.minsym != NULL)
13244 {
13245 struct ada_exc_info info
77e371c0 13246 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
13247
13248 VEC_safe_push (ada_exc_info, *exceptions, &info);
13249 }
13250 }
13251 }
13252}
13253
13254/* Add all Ada exceptions defined locally and accessible from the given
13255 FRAME.
13256
13257 If PREG is not NULL, then this regexp_t object is used to
13258 perform the symbol name matching. Otherwise, no name-based
13259 filtering is performed.
13260
13261 EXCEPTIONS is a vector of exceptions to which matching exceptions
13262 gets pushed. */
13263
13264static void
13265ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13266 VEC(ada_exc_info) **exceptions)
13267{
3977b71f 13268 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13269
13270 while (block != 0)
13271 {
13272 struct block_iterator iter;
13273 struct symbol *sym;
13274
13275 ALL_BLOCK_SYMBOLS (block, iter, sym)
13276 {
13277 switch (SYMBOL_CLASS (sym))
13278 {
13279 case LOC_TYPEDEF:
13280 case LOC_BLOCK:
13281 case LOC_CONST:
13282 break;
13283 default:
13284 if (ada_is_exception_sym (sym))
13285 {
13286 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13287 SYMBOL_VALUE_ADDRESS (sym)};
13288
13289 VEC_safe_push (ada_exc_info, *exceptions, &info);
13290 }
13291 }
13292 }
13293 if (BLOCK_FUNCTION (block) != NULL)
13294 break;
13295 block = BLOCK_SUPERBLOCK (block);
13296 }
13297}
13298
13299/* Add all exceptions defined globally whose name name match
13300 a regular expression, excluding standard exceptions.
13301
13302 The reason we exclude standard exceptions is that they need
13303 to be handled separately: Standard exceptions are defined inside
13304 a runtime unit which is normally not compiled with debugging info,
13305 and thus usually do not show up in our symbol search. However,
13306 if the unit was in fact built with debugging info, we need to
13307 exclude them because they would duplicate the entry we found
13308 during the special loop that specifically searches for those
13309 standard exceptions.
13310
13311 If PREG is not NULL, then this regexp_t object is used to
13312 perform the symbol name matching. Otherwise, no name-based
13313 filtering is performed.
13314
13315 EXCEPTIONS is a vector of exceptions to which matching exceptions
13316 gets pushed. */
13317
13318static void
13319ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13320{
13321 struct objfile *objfile;
43f3e411 13322 struct compunit_symtab *s;
778865d3 13323
276d885b 13324 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
bb4142cf 13325 VARIABLES_DOMAIN, preg);
778865d3 13326
43f3e411 13327 ALL_COMPUNITS (objfile, s)
778865d3 13328 {
43f3e411 13329 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13330 int i;
13331
13332 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13333 {
13334 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13335 struct block_iterator iter;
13336 struct symbol *sym;
13337
13338 ALL_BLOCK_SYMBOLS (b, iter, sym)
13339 if (ada_is_non_standard_exception_sym (sym)
13340 && (preg == NULL
13341 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13342 0, NULL, 0) == 0))
13343 {
13344 struct ada_exc_info info
13345 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13346
13347 VEC_safe_push (ada_exc_info, *exceptions, &info);
13348 }
13349 }
13350 }
13351}
13352
13353/* Implements ada_exceptions_list with the regular expression passed
13354 as a regex_t, rather than a string.
13355
13356 If not NULL, PREG is used to filter out exceptions whose names
13357 do not match. Otherwise, all exceptions are listed. */
13358
13359static VEC(ada_exc_info) *
13360ada_exceptions_list_1 (regex_t *preg)
13361{
13362 VEC(ada_exc_info) *result = NULL;
13363 struct cleanup *old_chain
13364 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13365 int prev_len;
13366
13367 /* First, list the known standard exceptions. These exceptions
13368 need to be handled separately, as they are usually defined in
13369 runtime units that have been compiled without debugging info. */
13370
13371 ada_add_standard_exceptions (preg, &result);
13372
13373 /* Next, find all exceptions whose scope is local and accessible
13374 from the currently selected frame. */
13375
13376 if (has_stack_frames ())
13377 {
13378 prev_len = VEC_length (ada_exc_info, result);
13379 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13380 &result);
13381 if (VEC_length (ada_exc_info, result) > prev_len)
13382 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13383 }
13384
13385 /* Add all exceptions whose scope is global. */
13386
13387 prev_len = VEC_length (ada_exc_info, result);
13388 ada_add_global_exceptions (preg, &result);
13389 if (VEC_length (ada_exc_info, result) > prev_len)
13390 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13391
13392 discard_cleanups (old_chain);
13393 return result;
13394}
13395
13396/* Return a vector of ada_exc_info.
13397
13398 If REGEXP is NULL, all exceptions are included in the result.
13399 Otherwise, it should contain a valid regular expression,
13400 and only the exceptions whose names match that regular expression
13401 are included in the result.
13402
13403 The exceptions are sorted in the following order:
13404 - Standard exceptions (defined by the Ada language), in
13405 alphabetical order;
13406 - Exceptions only visible from the current frame, in
13407 alphabetical order;
13408 - Exceptions whose scope is global, in alphabetical order. */
13409
13410VEC(ada_exc_info) *
13411ada_exceptions_list (const char *regexp)
13412{
13413 VEC(ada_exc_info) *result = NULL;
13414 struct cleanup *old_chain = NULL;
13415 regex_t reg;
13416
13417 if (regexp != NULL)
13418 old_chain = compile_rx_or_error (&reg, regexp,
13419 _("invalid regular expression"));
13420
13421 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13422
13423 if (old_chain != NULL)
13424 do_cleanups (old_chain);
13425 return result;
13426}
13427
13428/* Implement the "info exceptions" command. */
13429
13430static void
13431info_exceptions_command (char *regexp, int from_tty)
13432{
13433 VEC(ada_exc_info) *exceptions;
13434 struct cleanup *cleanup;
13435 struct gdbarch *gdbarch = get_current_arch ();
13436 int ix;
13437 struct ada_exc_info *info;
13438
13439 exceptions = ada_exceptions_list (regexp);
13440 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13441
13442 if (regexp != NULL)
13443 printf_filtered
13444 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13445 else
13446 printf_filtered (_("All defined Ada exceptions:\n"));
13447
13448 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13449 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13450
13451 do_cleanups (cleanup);
13452}
13453
4c4b4cd2
PH
13454 /* Operators */
13455/* Information about operators given special treatment in functions
13456 below. */
13457/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13458
13459#define ADA_OPERATORS \
13460 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13461 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13462 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13463 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13464 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13465 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13466 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13467 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13468 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13469 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13470 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13471 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13472 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13473 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13474 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13475 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13476 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13477 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13478 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13479
13480static void
554794dc
SDJ
13481ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13482 int *argsp)
4c4b4cd2
PH
13483{
13484 switch (exp->elts[pc - 1].opcode)
13485 {
76a01679 13486 default:
4c4b4cd2
PH
13487 operator_length_standard (exp, pc, oplenp, argsp);
13488 break;
13489
13490#define OP_DEFN(op, len, args, binop) \
13491 case op: *oplenp = len; *argsp = args; break;
13492 ADA_OPERATORS;
13493#undef OP_DEFN
52ce6436
PH
13494
13495 case OP_AGGREGATE:
13496 *oplenp = 3;
13497 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13498 break;
13499
13500 case OP_CHOICES:
13501 *oplenp = 3;
13502 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13503 break;
4c4b4cd2
PH
13504 }
13505}
13506
c0201579
JK
13507/* Implementation of the exp_descriptor method operator_check. */
13508
13509static int
13510ada_operator_check (struct expression *exp, int pos,
13511 int (*objfile_func) (struct objfile *objfile, void *data),
13512 void *data)
13513{
13514 const union exp_element *const elts = exp->elts;
13515 struct type *type = NULL;
13516
13517 switch (elts[pos].opcode)
13518 {
13519 case UNOP_IN_RANGE:
13520 case UNOP_QUAL:
13521 type = elts[pos + 1].type;
13522 break;
13523
13524 default:
13525 return operator_check_standard (exp, pos, objfile_func, data);
13526 }
13527
13528 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13529
13530 if (type && TYPE_OBJFILE (type)
13531 && (*objfile_func) (TYPE_OBJFILE (type), data))
13532 return 1;
13533
13534 return 0;
13535}
13536
4c4b4cd2
PH
13537static char *
13538ada_op_name (enum exp_opcode opcode)
13539{
13540 switch (opcode)
13541 {
76a01679 13542 default:
4c4b4cd2 13543 return op_name_standard (opcode);
52ce6436 13544
4c4b4cd2
PH
13545#define OP_DEFN(op, len, args, binop) case op: return #op;
13546 ADA_OPERATORS;
13547#undef OP_DEFN
52ce6436
PH
13548
13549 case OP_AGGREGATE:
13550 return "OP_AGGREGATE";
13551 case OP_CHOICES:
13552 return "OP_CHOICES";
13553 case OP_NAME:
13554 return "OP_NAME";
4c4b4cd2
PH
13555 }
13556}
13557
13558/* As for operator_length, but assumes PC is pointing at the first
13559 element of the operator, and gives meaningful results only for the
52ce6436 13560 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13561
13562static void
76a01679
JB
13563ada_forward_operator_length (struct expression *exp, int pc,
13564 int *oplenp, int *argsp)
4c4b4cd2 13565{
76a01679 13566 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13567 {
13568 default:
13569 *oplenp = *argsp = 0;
13570 break;
52ce6436 13571
4c4b4cd2
PH
13572#define OP_DEFN(op, len, args, binop) \
13573 case op: *oplenp = len; *argsp = args; break;
13574 ADA_OPERATORS;
13575#undef OP_DEFN
52ce6436
PH
13576
13577 case OP_AGGREGATE:
13578 *oplenp = 3;
13579 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13580 break;
13581
13582 case OP_CHOICES:
13583 *oplenp = 3;
13584 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13585 break;
13586
13587 case OP_STRING:
13588 case OP_NAME:
13589 {
13590 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13591
52ce6436
PH
13592 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13593 *argsp = 0;
13594 break;
13595 }
4c4b4cd2
PH
13596 }
13597}
13598
13599static int
13600ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13601{
13602 enum exp_opcode op = exp->elts[elt].opcode;
13603 int oplen, nargs;
13604 int pc = elt;
13605 int i;
76a01679 13606
4c4b4cd2
PH
13607 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13608
76a01679 13609 switch (op)
4c4b4cd2 13610 {
76a01679 13611 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13612 case OP_ATR_FIRST:
13613 case OP_ATR_LAST:
13614 case OP_ATR_LENGTH:
13615 case OP_ATR_IMAGE:
13616 case OP_ATR_MAX:
13617 case OP_ATR_MIN:
13618 case OP_ATR_MODULUS:
13619 case OP_ATR_POS:
13620 case OP_ATR_SIZE:
13621 case OP_ATR_TAG:
13622 case OP_ATR_VAL:
13623 break;
13624
13625 case UNOP_IN_RANGE:
13626 case UNOP_QUAL:
323e0a4a
AC
13627 /* XXX: gdb_sprint_host_address, type_sprint */
13628 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13629 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13630 fprintf_filtered (stream, " (");
13631 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13632 fprintf_filtered (stream, ")");
13633 break;
13634 case BINOP_IN_BOUNDS:
52ce6436
PH
13635 fprintf_filtered (stream, " (%d)",
13636 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13637 break;
13638 case TERNOP_IN_RANGE:
13639 break;
13640
52ce6436
PH
13641 case OP_AGGREGATE:
13642 case OP_OTHERS:
13643 case OP_DISCRETE_RANGE:
13644 case OP_POSITIONAL:
13645 case OP_CHOICES:
13646 break;
13647
13648 case OP_NAME:
13649 case OP_STRING:
13650 {
13651 char *name = &exp->elts[elt + 2].string;
13652 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13653
52ce6436
PH
13654 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13655 break;
13656 }
13657
4c4b4cd2
PH
13658 default:
13659 return dump_subexp_body_standard (exp, stream, elt);
13660 }
13661
13662 elt += oplen;
13663 for (i = 0; i < nargs; i += 1)
13664 elt = dump_subexp (exp, stream, elt);
13665
13666 return elt;
13667}
13668
13669/* The Ada extension of print_subexp (q.v.). */
13670
76a01679
JB
13671static void
13672ada_print_subexp (struct expression *exp, int *pos,
13673 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13674{
52ce6436 13675 int oplen, nargs, i;
4c4b4cd2
PH
13676 int pc = *pos;
13677 enum exp_opcode op = exp->elts[pc].opcode;
13678
13679 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13680
52ce6436 13681 *pos += oplen;
4c4b4cd2
PH
13682 switch (op)
13683 {
13684 default:
52ce6436 13685 *pos -= oplen;
4c4b4cd2
PH
13686 print_subexp_standard (exp, pos, stream, prec);
13687 return;
13688
13689 case OP_VAR_VALUE:
4c4b4cd2
PH
13690 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13691 return;
13692
13693 case BINOP_IN_BOUNDS:
323e0a4a 13694 /* XXX: sprint_subexp */
4c4b4cd2 13695 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13696 fputs_filtered (" in ", stream);
4c4b4cd2 13697 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13698 fputs_filtered ("'range", stream);
4c4b4cd2 13699 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13700 fprintf_filtered (stream, "(%ld)",
13701 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13702 return;
13703
13704 case TERNOP_IN_RANGE:
4c4b4cd2 13705 if (prec >= PREC_EQUAL)
76a01679 13706 fputs_filtered ("(", stream);
323e0a4a 13707 /* XXX: sprint_subexp */
4c4b4cd2 13708 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13709 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13710 print_subexp (exp, pos, stream, PREC_EQUAL);
13711 fputs_filtered (" .. ", stream);
13712 print_subexp (exp, pos, stream, PREC_EQUAL);
13713 if (prec >= PREC_EQUAL)
76a01679
JB
13714 fputs_filtered (")", stream);
13715 return;
4c4b4cd2
PH
13716
13717 case OP_ATR_FIRST:
13718 case OP_ATR_LAST:
13719 case OP_ATR_LENGTH:
13720 case OP_ATR_IMAGE:
13721 case OP_ATR_MAX:
13722 case OP_ATR_MIN:
13723 case OP_ATR_MODULUS:
13724 case OP_ATR_POS:
13725 case OP_ATR_SIZE:
13726 case OP_ATR_TAG:
13727 case OP_ATR_VAL:
4c4b4cd2 13728 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13729 {
13730 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13731 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13732 &type_print_raw_options);
76a01679
JB
13733 *pos += 3;
13734 }
4c4b4cd2 13735 else
76a01679 13736 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13737 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13738 if (nargs > 1)
76a01679
JB
13739 {
13740 int tem;
5b4ee69b 13741
76a01679
JB
13742 for (tem = 1; tem < nargs; tem += 1)
13743 {
13744 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13745 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13746 }
13747 fputs_filtered (")", stream);
13748 }
4c4b4cd2 13749 return;
14f9c5c9 13750
4c4b4cd2 13751 case UNOP_QUAL:
4c4b4cd2
PH
13752 type_print (exp->elts[pc + 1].type, "", stream, 0);
13753 fputs_filtered ("'(", stream);
13754 print_subexp (exp, pos, stream, PREC_PREFIX);
13755 fputs_filtered (")", stream);
13756 return;
14f9c5c9 13757
4c4b4cd2 13758 case UNOP_IN_RANGE:
323e0a4a 13759 /* XXX: sprint_subexp */
4c4b4cd2 13760 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13761 fputs_filtered (" in ", stream);
79d43c61
TT
13762 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13763 &type_print_raw_options);
4c4b4cd2 13764 return;
52ce6436
PH
13765
13766 case OP_DISCRETE_RANGE:
13767 print_subexp (exp, pos, stream, PREC_SUFFIX);
13768 fputs_filtered ("..", stream);
13769 print_subexp (exp, pos, stream, PREC_SUFFIX);
13770 return;
13771
13772 case OP_OTHERS:
13773 fputs_filtered ("others => ", stream);
13774 print_subexp (exp, pos, stream, PREC_SUFFIX);
13775 return;
13776
13777 case OP_CHOICES:
13778 for (i = 0; i < nargs-1; i += 1)
13779 {
13780 if (i > 0)
13781 fputs_filtered ("|", stream);
13782 print_subexp (exp, pos, stream, PREC_SUFFIX);
13783 }
13784 fputs_filtered (" => ", stream);
13785 print_subexp (exp, pos, stream, PREC_SUFFIX);
13786 return;
13787
13788 case OP_POSITIONAL:
13789 print_subexp (exp, pos, stream, PREC_SUFFIX);
13790 return;
13791
13792 case OP_AGGREGATE:
13793 fputs_filtered ("(", stream);
13794 for (i = 0; i < nargs; i += 1)
13795 {
13796 if (i > 0)
13797 fputs_filtered (", ", stream);
13798 print_subexp (exp, pos, stream, PREC_SUFFIX);
13799 }
13800 fputs_filtered (")", stream);
13801 return;
4c4b4cd2
PH
13802 }
13803}
14f9c5c9
AS
13804
13805/* Table mapping opcodes into strings for printing operators
13806 and precedences of the operators. */
13807
d2e4a39e
AS
13808static const struct op_print ada_op_print_tab[] = {
13809 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13810 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13811 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13812 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13813 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13814 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13815 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13816 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13817 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13818 {">=", BINOP_GEQ, PREC_ORDER, 0},
13819 {">", BINOP_GTR, PREC_ORDER, 0},
13820 {"<", BINOP_LESS, PREC_ORDER, 0},
13821 {">>", BINOP_RSH, PREC_SHIFT, 0},
13822 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13823 {"+", BINOP_ADD, PREC_ADD, 0},
13824 {"-", BINOP_SUB, PREC_ADD, 0},
13825 {"&", BINOP_CONCAT, PREC_ADD, 0},
13826 {"*", BINOP_MUL, PREC_MUL, 0},
13827 {"/", BINOP_DIV, PREC_MUL, 0},
13828 {"rem", BINOP_REM, PREC_MUL, 0},
13829 {"mod", BINOP_MOD, PREC_MUL, 0},
13830 {"**", BINOP_EXP, PREC_REPEAT, 0},
13831 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13832 {"-", UNOP_NEG, PREC_PREFIX, 0},
13833 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13834 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13835 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13836 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13837 {".all", UNOP_IND, PREC_SUFFIX, 1},
13838 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13839 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13840 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13841};
13842\f
72d5681a
PH
13843enum ada_primitive_types {
13844 ada_primitive_type_int,
13845 ada_primitive_type_long,
13846 ada_primitive_type_short,
13847 ada_primitive_type_char,
13848 ada_primitive_type_float,
13849 ada_primitive_type_double,
13850 ada_primitive_type_void,
13851 ada_primitive_type_long_long,
13852 ada_primitive_type_long_double,
13853 ada_primitive_type_natural,
13854 ada_primitive_type_positive,
13855 ada_primitive_type_system_address,
13856 nr_ada_primitive_types
13857};
6c038f32
PH
13858
13859static void
d4a9a881 13860ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13861 struct language_arch_info *lai)
13862{
d4a9a881 13863 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13864
72d5681a 13865 lai->primitive_type_vector
d4a9a881 13866 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13867 struct type *);
e9bb382b
UW
13868
13869 lai->primitive_type_vector [ada_primitive_type_int]
13870 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13871 0, "integer");
13872 lai->primitive_type_vector [ada_primitive_type_long]
13873 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13874 0, "long_integer");
13875 lai->primitive_type_vector [ada_primitive_type_short]
13876 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13877 0, "short_integer");
13878 lai->string_char_type
13879 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13880 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13881 lai->primitive_type_vector [ada_primitive_type_float]
13882 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13883 "float", NULL);
13884 lai->primitive_type_vector [ada_primitive_type_double]
13885 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13886 "long_float", NULL);
13887 lai->primitive_type_vector [ada_primitive_type_long_long]
13888 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13889 0, "long_long_integer");
13890 lai->primitive_type_vector [ada_primitive_type_long_double]
13891 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13892 "long_long_float", NULL);
13893 lai->primitive_type_vector [ada_primitive_type_natural]
13894 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13895 0, "natural");
13896 lai->primitive_type_vector [ada_primitive_type_positive]
13897 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13898 0, "positive");
13899 lai->primitive_type_vector [ada_primitive_type_void]
13900 = builtin->builtin_void;
13901
13902 lai->primitive_type_vector [ada_primitive_type_system_address]
13903 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13904 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13905 = "system__address";
fbb06eb1 13906
47e729a8 13907 lai->bool_type_symbol = NULL;
fbb06eb1 13908 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13909}
6c038f32
PH
13910\f
13911 /* Language vector */
13912
13913/* Not really used, but needed in the ada_language_defn. */
13914
13915static void
6c7a06a3 13916emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13917{
6c7a06a3 13918 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13919}
13920
13921static int
410a0ff2 13922parse (struct parser_state *ps)
6c038f32
PH
13923{
13924 warnings_issued = 0;
410a0ff2 13925 return ada_parse (ps);
6c038f32
PH
13926}
13927
13928static const struct exp_descriptor ada_exp_descriptor = {
13929 ada_print_subexp,
13930 ada_operator_length,
c0201579 13931 ada_operator_check,
6c038f32
PH
13932 ada_op_name,
13933 ada_dump_subexp_body,
13934 ada_evaluate_subexp
13935};
13936
1a119f36 13937/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13938 for Ada. */
13939
1a119f36
JB
13940static symbol_name_cmp_ftype
13941ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13942{
13943 if (should_use_wild_match (lookup_name))
13944 return wild_match;
13945 else
13946 return compare_names;
13947}
13948
a5ee536b
JB
13949/* Implement the "la_read_var_value" language_defn method for Ada. */
13950
13951static struct value *
63e43d3a
PMR
13952ada_read_var_value (struct symbol *var, const struct block *var_block,
13953 struct frame_info *frame)
a5ee536b 13954{
3977b71f 13955 const struct block *frame_block = NULL;
a5ee536b
JB
13956 struct symbol *renaming_sym = NULL;
13957
13958 /* The only case where default_read_var_value is not sufficient
13959 is when VAR is a renaming... */
13960 if (frame)
13961 frame_block = get_frame_block (frame, NULL);
13962 if (frame_block)
13963 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13964 if (renaming_sym != NULL)
13965 return ada_read_renaming_var_value (renaming_sym, frame_block);
13966
13967 /* This is a typical case where we expect the default_read_var_value
13968 function to work. */
63e43d3a 13969 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
13970}
13971
6c038f32
PH
13972const struct language_defn ada_language_defn = {
13973 "ada", /* Language name */
6abde28f 13974 "Ada",
6c038f32 13975 language_ada,
6c038f32 13976 range_check_off,
6c038f32
PH
13977 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13978 that's not quite what this means. */
6c038f32 13979 array_row_major,
9a044a89 13980 macro_expansion_no,
6c038f32
PH
13981 &ada_exp_descriptor,
13982 parse,
13983 ada_error,
13984 resolve,
13985 ada_printchar, /* Print a character constant */
13986 ada_printstr, /* Function to print string constant */
13987 emit_char, /* Function to print single char (not used) */
6c038f32 13988 ada_print_type, /* Print a type using appropriate syntax */
be942545 13989 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13990 ada_val_print, /* Print a value using appropriate syntax */
13991 ada_value_print, /* Print a top-level value */
a5ee536b 13992 ada_read_var_value, /* la_read_var_value */
6c038f32 13993 NULL, /* Language specific skip_trampoline */
2b2d9e11 13994 NULL, /* name_of_this */
6c038f32
PH
13995 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13996 basic_lookup_transparent_type, /* lookup_transparent_type */
13997 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13998 NULL, /* Language specific
13999 class_name_from_physname */
6c038f32
PH
14000 ada_op_print_tab, /* expression operators for printing */
14001 0, /* c-style arrays */
14002 1, /* String lower bound */
6c038f32 14003 ada_get_gdb_completer_word_break_characters,
41d27058 14004 ada_make_symbol_completion_list,
72d5681a 14005 ada_language_arch_info,
e79af960 14006 ada_print_array_index,
41f1b697 14007 default_pass_by_reference,
ae6a3a4c 14008 c_get_string,
1a119f36 14009 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 14010 ada_iterate_over_symbols,
a53b64ea 14011 &ada_varobj_ops,
bb2ec1b3
TT
14012 NULL,
14013 NULL,
6c038f32
PH
14014 LANG_MAGIC
14015};
14016
2c0b251b
PA
14017/* Provide a prototype to silence -Wmissing-prototypes. */
14018extern initialize_file_ftype _initialize_ada_language;
14019
5bf03f13
JB
14020/* Command-list for the "set/show ada" prefix command. */
14021static struct cmd_list_element *set_ada_list;
14022static struct cmd_list_element *show_ada_list;
14023
14024/* Implement the "set ada" prefix command. */
14025
14026static void
14027set_ada_command (char *arg, int from_tty)
14028{
14029 printf_unfiltered (_(\
14030"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14031 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14032}
14033
14034/* Implement the "show ada" prefix command. */
14035
14036static void
14037show_ada_command (char *args, int from_tty)
14038{
14039 cmd_show_list (show_ada_list, from_tty, "");
14040}
14041
2060206e
PA
14042static void
14043initialize_ada_catchpoint_ops (void)
14044{
14045 struct breakpoint_ops *ops;
14046
14047 initialize_breakpoint_ops ();
14048
14049 ops = &catch_exception_breakpoint_ops;
14050 *ops = bkpt_breakpoint_ops;
14051 ops->dtor = dtor_catch_exception;
14052 ops->allocate_location = allocate_location_catch_exception;
14053 ops->re_set = re_set_catch_exception;
14054 ops->check_status = check_status_catch_exception;
14055 ops->print_it = print_it_catch_exception;
14056 ops->print_one = print_one_catch_exception;
14057 ops->print_mention = print_mention_catch_exception;
14058 ops->print_recreate = print_recreate_catch_exception;
14059
14060 ops = &catch_exception_unhandled_breakpoint_ops;
14061 *ops = bkpt_breakpoint_ops;
14062 ops->dtor = dtor_catch_exception_unhandled;
14063 ops->allocate_location = allocate_location_catch_exception_unhandled;
14064 ops->re_set = re_set_catch_exception_unhandled;
14065 ops->check_status = check_status_catch_exception_unhandled;
14066 ops->print_it = print_it_catch_exception_unhandled;
14067 ops->print_one = print_one_catch_exception_unhandled;
14068 ops->print_mention = print_mention_catch_exception_unhandled;
14069 ops->print_recreate = print_recreate_catch_exception_unhandled;
14070
14071 ops = &catch_assert_breakpoint_ops;
14072 *ops = bkpt_breakpoint_ops;
14073 ops->dtor = dtor_catch_assert;
14074 ops->allocate_location = allocate_location_catch_assert;
14075 ops->re_set = re_set_catch_assert;
14076 ops->check_status = check_status_catch_assert;
14077 ops->print_it = print_it_catch_assert;
14078 ops->print_one = print_one_catch_assert;
14079 ops->print_mention = print_mention_catch_assert;
14080 ops->print_recreate = print_recreate_catch_assert;
14081}
14082
3d9434b5
JB
14083/* This module's 'new_objfile' observer. */
14084
14085static void
14086ada_new_objfile_observer (struct objfile *objfile)
14087{
14088 ada_clear_symbol_cache ();
14089}
14090
14091/* This module's 'free_objfile' observer. */
14092
14093static void
14094ada_free_objfile_observer (struct objfile *objfile)
14095{
14096 ada_clear_symbol_cache ();
14097}
14098
d2e4a39e 14099void
6c038f32 14100_initialize_ada_language (void)
14f9c5c9 14101{
6c038f32
PH
14102 add_language (&ada_language_defn);
14103
2060206e
PA
14104 initialize_ada_catchpoint_ops ();
14105
5bf03f13
JB
14106 add_prefix_cmd ("ada", no_class, set_ada_command,
14107 _("Prefix command for changing Ada-specfic settings"),
14108 &set_ada_list, "set ada ", 0, &setlist);
14109
14110 add_prefix_cmd ("ada", no_class, show_ada_command,
14111 _("Generic command for showing Ada-specific settings."),
14112 &show_ada_list, "show ada ", 0, &showlist);
14113
14114 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14115 &trust_pad_over_xvs, _("\
14116Enable or disable an optimization trusting PAD types over XVS types"), _("\
14117Show whether an optimization trusting PAD types over XVS types is activated"),
14118 _("\
14119This is related to the encoding used by the GNAT compiler. The debugger\n\
14120should normally trust the contents of PAD types, but certain older versions\n\
14121of GNAT have a bug that sometimes causes the information in the PAD type\n\
14122to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14123work around this bug. It is always safe to turn this option \"off\", but\n\
14124this incurs a slight performance penalty, so it is recommended to NOT change\n\
14125this option to \"off\" unless necessary."),
14126 NULL, NULL, &set_ada_list, &show_ada_list);
14127
9ac4176b
PA
14128 add_catch_command ("exception", _("\
14129Catch Ada exceptions, when raised.\n\
14130With an argument, catch only exceptions with the given name."),
14131 catch_ada_exception_command,
14132 NULL,
14133 CATCH_PERMANENT,
14134 CATCH_TEMPORARY);
14135 add_catch_command ("assert", _("\
14136Catch failed Ada assertions, when raised.\n\
14137With an argument, catch only exceptions with the given name."),
14138 catch_assert_command,
14139 NULL,
14140 CATCH_PERMANENT,
14141 CATCH_TEMPORARY);
14142
6c038f32 14143 varsize_limit = 65536;
6c038f32 14144
778865d3
JB
14145 add_info ("exceptions", info_exceptions_command,
14146 _("\
14147List all Ada exception names.\n\
14148If a regular expression is passed as an argument, only those matching\n\
14149the regular expression are listed."));
14150
c6044dd1
JB
14151 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14152 _("Set Ada maintenance-related variables."),
14153 &maint_set_ada_cmdlist, "maintenance set ada ",
14154 0/*allow-unknown*/, &maintenance_set_cmdlist);
14155
14156 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14157 _("Show Ada maintenance-related variables"),
14158 &maint_show_ada_cmdlist, "maintenance show ada ",
14159 0/*allow-unknown*/, &maintenance_show_cmdlist);
14160
14161 add_setshow_boolean_cmd
14162 ("ignore-descriptive-types", class_maintenance,
14163 &ada_ignore_descriptive_types_p,
14164 _("Set whether descriptive types generated by GNAT should be ignored."),
14165 _("Show whether descriptive types generated by GNAT should be ignored."),
14166 _("\
14167When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14168DWARF attribute."),
14169 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14170
6c038f32
PH
14171 obstack_init (&symbol_list_obstack);
14172
14173 decoded_names_store = htab_create_alloc
14174 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14175 NULL, xcalloc, xfree);
6b69afc4 14176
3d9434b5
JB
14177 /* The ada-lang observers. */
14178 observer_attach_new_objfile (ada_new_objfile_observer);
14179 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14180 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14181
14182 /* Setup various context-specific data. */
e802dbe0 14183 ada_inferior_data
8e260fc0 14184 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14185 ada_pspace_data_handle
14186 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14187}