]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
(windows) GDB/MI crash when using "-list-thread-groups --available"
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
e2882c85 3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
76727919 51#include "observable.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
14bc53a8 63#include "common/function-view.h"
d5722aa2 64#include "common/byte-vector.h"
ab816a27 65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
14f9c5c9 113
22cee43f 114static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
22cee43f 117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
e9d9f57e 127static struct value *resolve_subexp (expression_up *, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
e9d9f57e 130static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
a121b7c1 135static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
a121b7c1 155static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 156 int, int);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
73589123
PH
204static int advance_wild_match (const char **, const char *, int);
205
b5ec771e 206static bool wild_match (const char *name, const char *patn);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
108d56a4 219static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
0d5cff50 225static int find_struct_field (const char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2 227
d12307c1 228static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
229 struct value **, int, const char *,
230 struct type *);
231
4c4b4cd2
PH
232static int ada_is_direct_array_type (struct type *);
233
72d5681a
PH
234static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
714e53ab 236
52ce6436
PH
237static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
241 struct expression *,
242 int *, enum noside);
52ce6436
PH
243
244static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
852dff6c
JB
268
269static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
270
271static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
4c4b4cd2
PH
274\f
275
ee01b665
JB
276/* The result of a symbol lookup to be stored in our symbol cache. */
277
278struct cache_entry
279{
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
fe978cb0 283 domain_enum domain;
ee01b665
JB
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292};
293
294/* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303#define HASH_SIZE 1009
304
305struct ada_symbol_cache
306{
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312};
313
314static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 315
4c4b4cd2 316/* Maximum-sized dynamic type. */
14f9c5c9
AS
317static unsigned int varsize_limit;
318
67cb5b2d 319static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
c6044dd1
JB
345/* Maintenance-related settings for this module. */
346
347static struct cmd_list_element *maint_set_ada_cmdlist;
348static struct cmd_list_element *maint_show_ada_cmdlist;
349
350/* Implement the "maintenance set ada" (prefix) command. */
351
352static void
981a3fb3 353maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 354{
635c7e8a
TT
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
c6044dd1
JB
357}
358
359/* Implement the "maintenance show ada" (prefix) command. */
360
361static void
981a3fb3 362maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
363{
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365}
366
367/* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369static int ada_ignore_descriptive_types_p = 0;
370
e802dbe0
JB
371 /* Inferior-specific data. */
372
373/* Per-inferior data for this module. */
374
375struct ada_inferior_data
376{
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
3eecfa55
JB
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
386 const struct exception_support_info *exception_info;
e802dbe0
JB
387};
388
389/* Our key to this module's inferior data. */
390static const struct inferior_data *ada_inferior_data;
391
392/* A cleanup routine for our inferior data. */
393static void
394ada_inferior_data_cleanup (struct inferior *inf, void *arg)
395{
396 struct ada_inferior_data *data;
397
9a3c8263 398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
399 if (data != NULL)
400 xfree (data);
401}
402
403/* Return our inferior data for the given inferior (INF).
404
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
410
411static struct ada_inferior_data *
412get_ada_inferior_data (struct inferior *inf)
413{
414 struct ada_inferior_data *data;
415
9a3c8263 416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
417 if (data == NULL)
418 {
41bf6aca 419 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
420 set_inferior_data (inf, ada_inferior_data, data);
421 }
422
423 return data;
424}
425
426/* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
428
429static void
430ada_inferior_exit (struct inferior *inf)
431{
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
434}
435
ee01b665
JB
436
437 /* program-space-specific data. */
438
439/* This module's per-program-space data. */
440struct ada_pspace_data
441{
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
444};
445
446/* Key to our per-program-space data. */
447static const struct program_space_data *ada_pspace_data_handle;
448
449/* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
451
452 This function always returns a valid object. */
453
454static struct ada_pspace_data *
455get_ada_pspace_data (struct program_space *pspace)
456{
457 struct ada_pspace_data *data;
458
9a3c8263
SM
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468}
469
470/* The cleanup callback for this module's per-program-space data. */
471
472static void
473ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474{
9a3c8263 475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480}
481
4c4b4cd2
PH
482 /* Utilities */
483
720d1a40 484/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 485 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511static struct type *
512ada_typedef_target_type (struct type *type)
513{
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517}
518
41d27058
JB
519/* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523static const char *
524ada_unqualified_name (const char *decoded_name)
525{
2b0f535a
JB
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
41d27058
JB
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542}
543
544/* Return a string starting with '<', followed by STR, and '>'.
545 The result is good until the next call. */
546
547static char *
548add_angle_brackets (const char *str)
549{
550 static char *result = NULL;
551
552 xfree (result);
88c15c34 553 result = xstrprintf ("<%s>", str);
41d27058
JB
554 return result;
555}
96d887e8 556
67cb5b2d 557static const char *
4c4b4cd2
PH
558ada_get_gdb_completer_word_break_characters (void)
559{
560 return ada_completer_word_break_characters;
561}
562
e79af960
JB
563/* Print an array element index using the Ada syntax. */
564
565static void
566ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 567 const struct value_print_options *options)
e79af960 568{
79a45b7d 569 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
570 fprintf_filtered (stream, " => ");
571}
572
f27cf670 573/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 574 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 575 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 576
f27cf670
AS
577void *
578grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 579{
d2e4a39e
AS
580 if (*size < min_size)
581 {
582 *size *= 2;
583 if (*size < min_size)
4c4b4cd2 584 *size = min_size;
f27cf670 585 vect = xrealloc (vect, *size * element_size);
d2e4a39e 586 }
f27cf670 587 return vect;
14f9c5c9
AS
588}
589
590/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 591 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
592
593static int
ebf56fd3 594field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
595{
596 int len = strlen (target);
5b4ee69b 597
d2e4a39e 598 return
4c4b4cd2
PH
599 (strncmp (field_name, target, len) == 0
600 && (field_name[len] == '\0'
61012eef 601 || (startswith (field_name + len, "___")
76a01679
JB
602 && strcmp (field_name + strlen (field_name) - 6,
603 "___XVN") != 0)));
14f9c5c9
AS
604}
605
606
872c8b51
JB
607/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
608 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
609 and return its index. This function also handles fields whose name
610 have ___ suffixes because the compiler sometimes alters their name
611 by adding such a suffix to represent fields with certain constraints.
612 If the field could not be found, return a negative number if
613 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
614
615int
616ada_get_field_index (const struct type *type, const char *field_name,
617 int maybe_missing)
618{
619 int fieldno;
872c8b51
JB
620 struct type *struct_type = check_typedef ((struct type *) type);
621
622 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
623 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
624 return fieldno;
625
626 if (!maybe_missing)
323e0a4a 627 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 628 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
629
630 return -1;
631}
632
633/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
634
635int
d2e4a39e 636ada_name_prefix_len (const char *name)
14f9c5c9
AS
637{
638 if (name == NULL)
639 return 0;
d2e4a39e 640 else
14f9c5c9 641 {
d2e4a39e 642 const char *p = strstr (name, "___");
5b4ee69b 643
14f9c5c9 644 if (p == NULL)
4c4b4cd2 645 return strlen (name);
14f9c5c9 646 else
4c4b4cd2 647 return p - name;
14f9c5c9
AS
648 }
649}
650
4c4b4cd2
PH
651/* Return non-zero if SUFFIX is a suffix of STR.
652 Return zero if STR is null. */
653
14f9c5c9 654static int
d2e4a39e 655is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
656{
657 int len1, len2;
5b4ee69b 658
14f9c5c9
AS
659 if (str == NULL)
660 return 0;
661 len1 = strlen (str);
662 len2 = strlen (suffix);
4c4b4cd2 663 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
664}
665
4c4b4cd2
PH
666/* The contents of value VAL, treated as a value of type TYPE. The
667 result is an lval in memory if VAL is. */
14f9c5c9 668
d2e4a39e 669static struct value *
4c4b4cd2 670coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 671{
61ee279c 672 type = ada_check_typedef (type);
df407dfe 673 if (value_type (val) == type)
4c4b4cd2 674 return val;
d2e4a39e 675 else
14f9c5c9 676 {
4c4b4cd2
PH
677 struct value *result;
678
679 /* Make sure that the object size is not unreasonable before
680 trying to allocate some memory for it. */
c1b5a1a6 681 ada_ensure_varsize_limit (type);
4c4b4cd2 682
41e8491f
JK
683 if (value_lazy (val)
684 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
685 result = allocate_value_lazy (type);
686 else
687 {
688 result = allocate_value (type);
9a0dc9e3 689 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 690 }
74bcbdf3 691 set_value_component_location (result, val);
9bbda503
AC
692 set_value_bitsize (result, value_bitsize (val));
693 set_value_bitpos (result, value_bitpos (val));
42ae5230 694 set_value_address (result, value_address (val));
14f9c5c9
AS
695 return result;
696 }
697}
698
fc1a4b47
AC
699static const gdb_byte *
700cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
701{
702 if (valaddr == NULL)
703 return NULL;
704 else
705 return valaddr + offset;
706}
707
708static CORE_ADDR
ebf56fd3 709cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
710{
711 if (address == 0)
712 return 0;
d2e4a39e 713 else
14f9c5c9
AS
714 return address + offset;
715}
716
4c4b4cd2
PH
717/* Issue a warning (as for the definition of warning in utils.c, but
718 with exactly one argument rather than ...), unless the limit on the
719 number of warnings has passed during the evaluation of the current
720 expression. */
a2249542 721
77109804
AC
722/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
723 provided by "complaint". */
a0b31db1 724static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 725
14f9c5c9 726static void
a2249542 727lim_warning (const char *format, ...)
14f9c5c9 728{
a2249542 729 va_list args;
a2249542 730
5b4ee69b 731 va_start (args, format);
4c4b4cd2
PH
732 warnings_issued += 1;
733 if (warnings_issued <= warning_limit)
a2249542
MK
734 vwarning (format, args);
735
736 va_end (args);
4c4b4cd2
PH
737}
738
714e53ab
PH
739/* Issue an error if the size of an object of type T is unreasonable,
740 i.e. if it would be a bad idea to allocate a value of this type in
741 GDB. */
742
c1b5a1a6
JB
743void
744ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
745{
746 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 747 error (_("object size is larger than varsize-limit"));
714e53ab
PH
748}
749
0963b4bd 750/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 751static LONGEST
c3e5cd34 752max_of_size (int size)
4c4b4cd2 753{
76a01679 754 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 755
76a01679 756 return top_bit | (top_bit - 1);
4c4b4cd2
PH
757}
758
0963b4bd 759/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 760static LONGEST
c3e5cd34 761min_of_size (int size)
4c4b4cd2 762{
c3e5cd34 763 return -max_of_size (size) - 1;
4c4b4cd2
PH
764}
765
0963b4bd 766/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 767static ULONGEST
c3e5cd34 768umax_of_size (int size)
4c4b4cd2 769{
76a01679 770 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 771
76a01679 772 return top_bit | (top_bit - 1);
4c4b4cd2
PH
773}
774
0963b4bd 775/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
776static LONGEST
777max_of_type (struct type *t)
4c4b4cd2 778{
c3e5cd34
PH
779 if (TYPE_UNSIGNED (t))
780 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
781 else
782 return max_of_size (TYPE_LENGTH (t));
783}
784
0963b4bd 785/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
786static LONGEST
787min_of_type (struct type *t)
788{
789 if (TYPE_UNSIGNED (t))
790 return 0;
791 else
792 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
793}
794
795/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
796LONGEST
797ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 798{
c3345124 799 type = resolve_dynamic_type (type, NULL, 0);
76a01679 800 switch (TYPE_CODE (type))
4c4b4cd2
PH
801 {
802 case TYPE_CODE_RANGE:
690cc4eb 803 return TYPE_HIGH_BOUND (type);
4c4b4cd2 804 case TYPE_CODE_ENUM:
14e75d8e 805 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
806 case TYPE_CODE_BOOL:
807 return 1;
808 case TYPE_CODE_CHAR:
76a01679 809 case TYPE_CODE_INT:
690cc4eb 810 return max_of_type (type);
4c4b4cd2 811 default:
43bbcdc2 812 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
813 }
814}
815
14e75d8e 816/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
817LONGEST
818ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 819{
c3345124 820 type = resolve_dynamic_type (type, NULL, 0);
76a01679 821 switch (TYPE_CODE (type))
4c4b4cd2
PH
822 {
823 case TYPE_CODE_RANGE:
690cc4eb 824 return TYPE_LOW_BOUND (type);
4c4b4cd2 825 case TYPE_CODE_ENUM:
14e75d8e 826 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
827 case TYPE_CODE_BOOL:
828 return 0;
829 case TYPE_CODE_CHAR:
76a01679 830 case TYPE_CODE_INT:
690cc4eb 831 return min_of_type (type);
4c4b4cd2 832 default:
43bbcdc2 833 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
834 }
835}
836
837/* The identity on non-range types. For range types, the underlying
76a01679 838 non-range scalar type. */
4c4b4cd2
PH
839
840static struct type *
18af8284 841get_base_type (struct type *type)
4c4b4cd2
PH
842{
843 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
844 {
76a01679
JB
845 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
846 return type;
4c4b4cd2
PH
847 type = TYPE_TARGET_TYPE (type);
848 }
849 return type;
14f9c5c9 850}
41246937
JB
851
852/* Return a decoded version of the given VALUE. This means returning
853 a value whose type is obtained by applying all the GNAT-specific
854 encondings, making the resulting type a static but standard description
855 of the initial type. */
856
857struct value *
858ada_get_decoded_value (struct value *value)
859{
860 struct type *type = ada_check_typedef (value_type (value));
861
862 if (ada_is_array_descriptor_type (type)
863 || (ada_is_constrained_packed_array_type (type)
864 && TYPE_CODE (type) != TYPE_CODE_PTR))
865 {
866 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
867 value = ada_coerce_to_simple_array_ptr (value);
868 else
869 value = ada_coerce_to_simple_array (value);
870 }
871 else
872 value = ada_to_fixed_value (value);
873
874 return value;
875}
876
877/* Same as ada_get_decoded_value, but with the given TYPE.
878 Because there is no associated actual value for this type,
879 the resulting type might be a best-effort approximation in
880 the case of dynamic types. */
881
882struct type *
883ada_get_decoded_type (struct type *type)
884{
885 type = to_static_fixed_type (type);
886 if (ada_is_constrained_packed_array_type (type))
887 type = ada_coerce_to_simple_array_type (type);
888 return type;
889}
890
4c4b4cd2 891\f
76a01679 892
4c4b4cd2 893 /* Language Selection */
14f9c5c9
AS
894
895/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 896 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 897
14f9c5c9 898enum language
ccefe4c4 899ada_update_initial_language (enum language lang)
14f9c5c9 900{
d2e4a39e 901 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 902 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 903 return language_ada;
14f9c5c9
AS
904
905 return lang;
906}
96d887e8
PH
907
908/* If the main procedure is written in Ada, then return its name.
909 The result is good until the next call. Return NULL if the main
910 procedure doesn't appear to be in Ada. */
911
912char *
913ada_main_name (void)
914{
3b7344d5 915 struct bound_minimal_symbol msym;
e83e4e24 916 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 917
96d887e8
PH
918 /* For Ada, the name of the main procedure is stored in a specific
919 string constant, generated by the binder. Look for that symbol,
920 extract its address, and then read that string. If we didn't find
921 that string, then most probably the main procedure is not written
922 in Ada. */
923 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
924
3b7344d5 925 if (msym.minsym != NULL)
96d887e8 926 {
f9bc20b9
JB
927 CORE_ADDR main_program_name_addr;
928 int err_code;
929
77e371c0 930 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 931 if (main_program_name_addr == 0)
323e0a4a 932 error (_("Invalid address for Ada main program name."));
96d887e8 933
f9bc20b9
JB
934 target_read_string (main_program_name_addr, &main_program_name,
935 1024, &err_code);
936
937 if (err_code != 0)
938 return NULL;
e83e4e24 939 return main_program_name.get ();
96d887e8
PH
940 }
941
942 /* The main procedure doesn't seem to be in Ada. */
943 return NULL;
944}
14f9c5c9 945\f
4c4b4cd2 946 /* Symbols */
d2e4a39e 947
4c4b4cd2
PH
948/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
949 of NULLs. */
14f9c5c9 950
d2e4a39e
AS
951const struct ada_opname_map ada_opname_table[] = {
952 {"Oadd", "\"+\"", BINOP_ADD},
953 {"Osubtract", "\"-\"", BINOP_SUB},
954 {"Omultiply", "\"*\"", BINOP_MUL},
955 {"Odivide", "\"/\"", BINOP_DIV},
956 {"Omod", "\"mod\"", BINOP_MOD},
957 {"Orem", "\"rem\"", BINOP_REM},
958 {"Oexpon", "\"**\"", BINOP_EXP},
959 {"Olt", "\"<\"", BINOP_LESS},
960 {"Ole", "\"<=\"", BINOP_LEQ},
961 {"Ogt", "\">\"", BINOP_GTR},
962 {"Oge", "\">=\"", BINOP_GEQ},
963 {"Oeq", "\"=\"", BINOP_EQUAL},
964 {"One", "\"/=\"", BINOP_NOTEQUAL},
965 {"Oand", "\"and\"", BINOP_BITWISE_AND},
966 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
967 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
968 {"Oconcat", "\"&\"", BINOP_CONCAT},
969 {"Oabs", "\"abs\"", UNOP_ABS},
970 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
971 {"Oadd", "\"+\"", UNOP_PLUS},
972 {"Osubtract", "\"-\"", UNOP_NEG},
973 {NULL, NULL}
14f9c5c9
AS
974};
975
b5ec771e
PA
976/* The "encoded" form of DECODED, according to GNAT conventions. The
977 result is valid until the next call to ada_encode. If
978 THROW_ERRORS, throw an error if invalid operator name is found.
979 Otherwise, return NULL in that case. */
4c4b4cd2 980
b5ec771e
PA
981static char *
982ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 983{
4c4b4cd2
PH
984 static char *encoding_buffer = NULL;
985 static size_t encoding_buffer_size = 0;
d2e4a39e 986 const char *p;
14f9c5c9 987 int k;
d2e4a39e 988
4c4b4cd2 989 if (decoded == NULL)
14f9c5c9
AS
990 return NULL;
991
4c4b4cd2
PH
992 GROW_VECT (encoding_buffer, encoding_buffer_size,
993 2 * strlen (decoded) + 10);
14f9c5c9
AS
994
995 k = 0;
4c4b4cd2 996 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 997 {
cdc7bb92 998 if (*p == '.')
4c4b4cd2
PH
999 {
1000 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1001 k += 2;
1002 }
14f9c5c9 1003 else if (*p == '"')
4c4b4cd2
PH
1004 {
1005 const struct ada_opname_map *mapping;
1006
1007 for (mapping = ada_opname_table;
1265e4aa 1008 mapping->encoded != NULL
61012eef 1009 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1010 ;
1011 if (mapping->encoded == NULL)
b5ec771e
PA
1012 {
1013 if (throw_errors)
1014 error (_("invalid Ada operator name: %s"), p);
1015 else
1016 return NULL;
1017 }
4c4b4cd2
PH
1018 strcpy (encoding_buffer + k, mapping->encoded);
1019 k += strlen (mapping->encoded);
1020 break;
1021 }
d2e4a39e 1022 else
4c4b4cd2
PH
1023 {
1024 encoding_buffer[k] = *p;
1025 k += 1;
1026 }
14f9c5c9
AS
1027 }
1028
4c4b4cd2
PH
1029 encoding_buffer[k] = '\0';
1030 return encoding_buffer;
14f9c5c9
AS
1031}
1032
b5ec771e
PA
1033/* The "encoded" form of DECODED, according to GNAT conventions.
1034 The result is valid until the next call to ada_encode. */
1035
1036char *
1037ada_encode (const char *decoded)
1038{
1039 return ada_encode_1 (decoded, true);
1040}
1041
14f9c5c9 1042/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1043 quotes, unfolded, but with the quotes stripped away. Result good
1044 to next call. */
1045
d2e4a39e
AS
1046char *
1047ada_fold_name (const char *name)
14f9c5c9 1048{
d2e4a39e 1049 static char *fold_buffer = NULL;
14f9c5c9
AS
1050 static size_t fold_buffer_size = 0;
1051
1052 int len = strlen (name);
d2e4a39e 1053 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1054
1055 if (name[0] == '\'')
1056 {
d2e4a39e
AS
1057 strncpy (fold_buffer, name + 1, len - 2);
1058 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1059 }
1060 else
1061 {
1062 int i;
5b4ee69b 1063
14f9c5c9 1064 for (i = 0; i <= len; i += 1)
4c4b4cd2 1065 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1066 }
1067
1068 return fold_buffer;
1069}
1070
529cad9c
PH
1071/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1072
1073static int
1074is_lower_alphanum (const char c)
1075{
1076 return (isdigit (c) || (isalpha (c) && islower (c)));
1077}
1078
c90092fe
JB
1079/* ENCODED is the linkage name of a symbol and LEN contains its length.
1080 This function saves in LEN the length of that same symbol name but
1081 without either of these suffixes:
29480c32
JB
1082 . .{DIGIT}+
1083 . ${DIGIT}+
1084 . ___{DIGIT}+
1085 . __{DIGIT}+.
c90092fe 1086
29480c32
JB
1087 These are suffixes introduced by the compiler for entities such as
1088 nested subprogram for instance, in order to avoid name clashes.
1089 They do not serve any purpose for the debugger. */
1090
1091static void
1092ada_remove_trailing_digits (const char *encoded, int *len)
1093{
1094 if (*len > 1 && isdigit (encoded[*len - 1]))
1095 {
1096 int i = *len - 2;
5b4ee69b 1097
29480c32
JB
1098 while (i > 0 && isdigit (encoded[i]))
1099 i--;
1100 if (i >= 0 && encoded[i] == '.')
1101 *len = i;
1102 else if (i >= 0 && encoded[i] == '$')
1103 *len = i;
61012eef 1104 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1105 *len = i - 2;
61012eef 1106 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1107 *len = i - 1;
1108 }
1109}
1110
1111/* Remove the suffix introduced by the compiler for protected object
1112 subprograms. */
1113
1114static void
1115ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1116{
1117 /* Remove trailing N. */
1118
1119 /* Protected entry subprograms are broken into two
1120 separate subprograms: The first one is unprotected, and has
1121 a 'N' suffix; the second is the protected version, and has
0963b4bd 1122 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1123 the protection. Since the P subprograms are internally generated,
1124 we leave these names undecoded, giving the user a clue that this
1125 entity is internal. */
1126
1127 if (*len > 1
1128 && encoded[*len - 1] == 'N'
1129 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1130 *len = *len - 1;
1131}
1132
69fadcdf
JB
1133/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1134
1135static void
1136ada_remove_Xbn_suffix (const char *encoded, int *len)
1137{
1138 int i = *len - 1;
1139
1140 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1141 i--;
1142
1143 if (encoded[i] != 'X')
1144 return;
1145
1146 if (i == 0)
1147 return;
1148
1149 if (isalnum (encoded[i-1]))
1150 *len = i;
1151}
1152
29480c32
JB
1153/* If ENCODED follows the GNAT entity encoding conventions, then return
1154 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1155 replaced by ENCODED.
14f9c5c9 1156
4c4b4cd2 1157 The resulting string is valid until the next call of ada_decode.
29480c32 1158 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1159 is returned. */
1160
1161const char *
1162ada_decode (const char *encoded)
14f9c5c9
AS
1163{
1164 int i, j;
1165 int len0;
d2e4a39e 1166 const char *p;
4c4b4cd2 1167 char *decoded;
14f9c5c9 1168 int at_start_name;
4c4b4cd2
PH
1169 static char *decoding_buffer = NULL;
1170 static size_t decoding_buffer_size = 0;
d2e4a39e 1171
29480c32
JB
1172 /* The name of the Ada main procedure starts with "_ada_".
1173 This prefix is not part of the decoded name, so skip this part
1174 if we see this prefix. */
61012eef 1175 if (startswith (encoded, "_ada_"))
4c4b4cd2 1176 encoded += 5;
14f9c5c9 1177
29480c32
JB
1178 /* If the name starts with '_', then it is not a properly encoded
1179 name, so do not attempt to decode it. Similarly, if the name
1180 starts with '<', the name should not be decoded. */
4c4b4cd2 1181 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1182 goto Suppress;
1183
4c4b4cd2 1184 len0 = strlen (encoded);
4c4b4cd2 1185
29480c32
JB
1186 ada_remove_trailing_digits (encoded, &len0);
1187 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1188
4c4b4cd2
PH
1189 /* Remove the ___X.* suffix if present. Do not forget to verify that
1190 the suffix is located before the current "end" of ENCODED. We want
1191 to avoid re-matching parts of ENCODED that have previously been
1192 marked as discarded (by decrementing LEN0). */
1193 p = strstr (encoded, "___");
1194 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1195 {
1196 if (p[3] == 'X')
4c4b4cd2 1197 len0 = p - encoded;
14f9c5c9 1198 else
4c4b4cd2 1199 goto Suppress;
14f9c5c9 1200 }
4c4b4cd2 1201
29480c32
JB
1202 /* Remove any trailing TKB suffix. It tells us that this symbol
1203 is for the body of a task, but that information does not actually
1204 appear in the decoded name. */
1205
61012eef 1206 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1207 len0 -= 3;
76a01679 1208
a10967fa
JB
1209 /* Remove any trailing TB suffix. The TB suffix is slightly different
1210 from the TKB suffix because it is used for non-anonymous task
1211 bodies. */
1212
61012eef 1213 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1214 len0 -= 2;
1215
29480c32
JB
1216 /* Remove trailing "B" suffixes. */
1217 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1218
61012eef 1219 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1220 len0 -= 1;
1221
4c4b4cd2 1222 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1223
4c4b4cd2
PH
1224 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1225 decoded = decoding_buffer;
14f9c5c9 1226
29480c32
JB
1227 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1228
4c4b4cd2 1229 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1230 {
4c4b4cd2
PH
1231 i = len0 - 2;
1232 while ((i >= 0 && isdigit (encoded[i]))
1233 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1234 i -= 1;
1235 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1236 len0 = i - 1;
1237 else if (encoded[i] == '$')
1238 len0 = i;
d2e4a39e 1239 }
14f9c5c9 1240
29480c32
JB
1241 /* The first few characters that are not alphabetic are not part
1242 of any encoding we use, so we can copy them over verbatim. */
1243
4c4b4cd2
PH
1244 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1245 decoded[j] = encoded[i];
14f9c5c9
AS
1246
1247 at_start_name = 1;
1248 while (i < len0)
1249 {
29480c32 1250 /* Is this a symbol function? */
4c4b4cd2
PH
1251 if (at_start_name && encoded[i] == 'O')
1252 {
1253 int k;
5b4ee69b 1254
4c4b4cd2
PH
1255 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1256 {
1257 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1258 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1259 op_len - 1) == 0)
1260 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1261 {
1262 strcpy (decoded + j, ada_opname_table[k].decoded);
1263 at_start_name = 0;
1264 i += op_len;
1265 j += strlen (ada_opname_table[k].decoded);
1266 break;
1267 }
1268 }
1269 if (ada_opname_table[k].encoded != NULL)
1270 continue;
1271 }
14f9c5c9
AS
1272 at_start_name = 0;
1273
529cad9c
PH
1274 /* Replace "TK__" with "__", which will eventually be translated
1275 into "." (just below). */
1276
61012eef 1277 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1278 i += 2;
529cad9c 1279
29480c32
JB
1280 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1281 be translated into "." (just below). These are internal names
1282 generated for anonymous blocks inside which our symbol is nested. */
1283
1284 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1285 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1286 && isdigit (encoded [i+4]))
1287 {
1288 int k = i + 5;
1289
1290 while (k < len0 && isdigit (encoded[k]))
1291 k++; /* Skip any extra digit. */
1292
1293 /* Double-check that the "__B_{DIGITS}+" sequence we found
1294 is indeed followed by "__". */
1295 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1296 i = k;
1297 }
1298
529cad9c
PH
1299 /* Remove _E{DIGITS}+[sb] */
1300
1301 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1302 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1303 one implements the actual entry code, and has a suffix following
1304 the convention above; the second one implements the barrier and
1305 uses the same convention as above, except that the 'E' is replaced
1306 by a 'B'.
1307
1308 Just as above, we do not decode the name of barrier functions
1309 to give the user a clue that the code he is debugging has been
1310 internally generated. */
1311
1312 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1313 && isdigit (encoded[i+2]))
1314 {
1315 int k = i + 3;
1316
1317 while (k < len0 && isdigit (encoded[k]))
1318 k++;
1319
1320 if (k < len0
1321 && (encoded[k] == 'b' || encoded[k] == 's'))
1322 {
1323 k++;
1324 /* Just as an extra precaution, make sure that if this
1325 suffix is followed by anything else, it is a '_'.
1326 Otherwise, we matched this sequence by accident. */
1327 if (k == len0
1328 || (k < len0 && encoded[k] == '_'))
1329 i = k;
1330 }
1331 }
1332
1333 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1334 the GNAT front-end in protected object subprograms. */
1335
1336 if (i < len0 + 3
1337 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1338 {
1339 /* Backtrack a bit up until we reach either the begining of
1340 the encoded name, or "__". Make sure that we only find
1341 digits or lowercase characters. */
1342 const char *ptr = encoded + i - 1;
1343
1344 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1345 ptr--;
1346 if (ptr < encoded
1347 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1348 i++;
1349 }
1350
4c4b4cd2
PH
1351 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1352 {
29480c32
JB
1353 /* This is a X[bn]* sequence not separated from the previous
1354 part of the name with a non-alpha-numeric character (in other
1355 words, immediately following an alpha-numeric character), then
1356 verify that it is placed at the end of the encoded name. If
1357 not, then the encoding is not valid and we should abort the
1358 decoding. Otherwise, just skip it, it is used in body-nested
1359 package names. */
4c4b4cd2
PH
1360 do
1361 i += 1;
1362 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1363 if (i < len0)
1364 goto Suppress;
1365 }
cdc7bb92 1366 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1367 {
29480c32 1368 /* Replace '__' by '.'. */
4c4b4cd2
PH
1369 decoded[j] = '.';
1370 at_start_name = 1;
1371 i += 2;
1372 j += 1;
1373 }
14f9c5c9 1374 else
4c4b4cd2 1375 {
29480c32
JB
1376 /* It's a character part of the decoded name, so just copy it
1377 over. */
4c4b4cd2
PH
1378 decoded[j] = encoded[i];
1379 i += 1;
1380 j += 1;
1381 }
14f9c5c9 1382 }
4c4b4cd2 1383 decoded[j] = '\000';
14f9c5c9 1384
29480c32
JB
1385 /* Decoded names should never contain any uppercase character.
1386 Double-check this, and abort the decoding if we find one. */
1387
4c4b4cd2
PH
1388 for (i = 0; decoded[i] != '\0'; i += 1)
1389 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1390 goto Suppress;
1391
4c4b4cd2
PH
1392 if (strcmp (decoded, encoded) == 0)
1393 return encoded;
1394 else
1395 return decoded;
14f9c5c9
AS
1396
1397Suppress:
4c4b4cd2
PH
1398 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1399 decoded = decoding_buffer;
1400 if (encoded[0] == '<')
1401 strcpy (decoded, encoded);
14f9c5c9 1402 else
88c15c34 1403 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1404 return decoded;
1405
1406}
1407
1408/* Table for keeping permanent unique copies of decoded names. Once
1409 allocated, names in this table are never released. While this is a
1410 storage leak, it should not be significant unless there are massive
1411 changes in the set of decoded names in successive versions of a
1412 symbol table loaded during a single session. */
1413static struct htab *decoded_names_store;
1414
1415/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1416 in the language-specific part of GSYMBOL, if it has not been
1417 previously computed. Tries to save the decoded name in the same
1418 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1419 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1420 GSYMBOL).
4c4b4cd2
PH
1421 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1422 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1423 when a decoded name is cached in it. */
4c4b4cd2 1424
45e6c716 1425const char *
f85f34ed 1426ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1427{
f85f34ed
TT
1428 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1429 const char **resultp =
615b3f62 1430 &gsymbol->language_specific.demangled_name;
5b4ee69b 1431
f85f34ed 1432 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1433 {
1434 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1435 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1436
f85f34ed 1437 gsymbol->ada_mangled = 1;
5b4ee69b 1438
f85f34ed 1439 if (obstack != NULL)
224c3ddb
SM
1440 *resultp
1441 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1442 else
76a01679 1443 {
f85f34ed
TT
1444 /* Sometimes, we can't find a corresponding objfile, in
1445 which case, we put the result on the heap. Since we only
1446 decode when needed, we hope this usually does not cause a
1447 significant memory leak (FIXME). */
1448
76a01679
JB
1449 char **slot = (char **) htab_find_slot (decoded_names_store,
1450 decoded, INSERT);
5b4ee69b 1451
76a01679
JB
1452 if (*slot == NULL)
1453 *slot = xstrdup (decoded);
1454 *resultp = *slot;
1455 }
4c4b4cd2 1456 }
14f9c5c9 1457
4c4b4cd2
PH
1458 return *resultp;
1459}
76a01679 1460
2c0b251b 1461static char *
76a01679 1462ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1463{
1464 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1465}
1466
8b302db8
TT
1467/* Implement la_sniff_from_mangled_name for Ada. */
1468
1469static int
1470ada_sniff_from_mangled_name (const char *mangled, char **out)
1471{
1472 const char *demangled = ada_decode (mangled);
1473
1474 *out = NULL;
1475
1476 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1477 {
1478 /* Set the gsymbol language to Ada, but still return 0.
1479 Two reasons for that:
1480
1481 1. For Ada, we prefer computing the symbol's decoded name
1482 on the fly rather than pre-compute it, in order to save
1483 memory (Ada projects are typically very large).
1484
1485 2. There are some areas in the definition of the GNAT
1486 encoding where, with a bit of bad luck, we might be able
1487 to decode a non-Ada symbol, generating an incorrect
1488 demangled name (Eg: names ending with "TB" for instance
1489 are identified as task bodies and so stripped from
1490 the decoded name returned).
1491
1492 Returning 1, here, but not setting *DEMANGLED, helps us get a
1493 little bit of the best of both worlds. Because we're last,
1494 we should not affect any of the other languages that were
1495 able to demangle the symbol before us; we get to correctly
1496 tag Ada symbols as such; and even if we incorrectly tagged a
1497 non-Ada symbol, which should be rare, any routing through the
1498 Ada language should be transparent (Ada tries to behave much
1499 like C/C++ with non-Ada symbols). */
1500 return 1;
1501 }
1502
1503 return 0;
1504}
1505
14f9c5c9 1506\f
d2e4a39e 1507
4c4b4cd2 1508 /* Arrays */
14f9c5c9 1509
28c85d6c
JB
1510/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1511 generated by the GNAT compiler to describe the index type used
1512 for each dimension of an array, check whether it follows the latest
1513 known encoding. If not, fix it up to conform to the latest encoding.
1514 Otherwise, do nothing. This function also does nothing if
1515 INDEX_DESC_TYPE is NULL.
1516
1517 The GNAT encoding used to describle the array index type evolved a bit.
1518 Initially, the information would be provided through the name of each
1519 field of the structure type only, while the type of these fields was
1520 described as unspecified and irrelevant. The debugger was then expected
1521 to perform a global type lookup using the name of that field in order
1522 to get access to the full index type description. Because these global
1523 lookups can be very expensive, the encoding was later enhanced to make
1524 the global lookup unnecessary by defining the field type as being
1525 the full index type description.
1526
1527 The purpose of this routine is to allow us to support older versions
1528 of the compiler by detecting the use of the older encoding, and by
1529 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1530 we essentially replace each field's meaningless type by the associated
1531 index subtype). */
1532
1533void
1534ada_fixup_array_indexes_type (struct type *index_desc_type)
1535{
1536 int i;
1537
1538 if (index_desc_type == NULL)
1539 return;
1540 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1541
1542 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1543 to check one field only, no need to check them all). If not, return
1544 now.
1545
1546 If our INDEX_DESC_TYPE was generated using the older encoding,
1547 the field type should be a meaningless integer type whose name
1548 is not equal to the field name. */
1549 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1550 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1551 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1552 return;
1553
1554 /* Fixup each field of INDEX_DESC_TYPE. */
1555 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1556 {
0d5cff50 1557 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1558 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1559
1560 if (raw_type)
1561 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1562 }
1563}
1564
4c4b4cd2 1565/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1566
a121b7c1 1567static const char *bound_name[] = {
d2e4a39e 1568 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1569 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1570};
1571
1572/* Maximum number of array dimensions we are prepared to handle. */
1573
4c4b4cd2 1574#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1575
14f9c5c9 1576
4c4b4cd2
PH
1577/* The desc_* routines return primitive portions of array descriptors
1578 (fat pointers). */
14f9c5c9
AS
1579
1580/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1581 level of indirection, if needed. */
1582
d2e4a39e
AS
1583static struct type *
1584desc_base_type (struct type *type)
14f9c5c9
AS
1585{
1586 if (type == NULL)
1587 return NULL;
61ee279c 1588 type = ada_check_typedef (type);
720d1a40
JB
1589 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1590 type = ada_typedef_target_type (type);
1591
1265e4aa
JB
1592 if (type != NULL
1593 && (TYPE_CODE (type) == TYPE_CODE_PTR
1594 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1595 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1596 else
1597 return type;
1598}
1599
4c4b4cd2
PH
1600/* True iff TYPE indicates a "thin" array pointer type. */
1601
14f9c5c9 1602static int
d2e4a39e 1603is_thin_pntr (struct type *type)
14f9c5c9 1604{
d2e4a39e 1605 return
14f9c5c9
AS
1606 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1607 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1608}
1609
4c4b4cd2
PH
1610/* The descriptor type for thin pointer type TYPE. */
1611
d2e4a39e
AS
1612static struct type *
1613thin_descriptor_type (struct type *type)
14f9c5c9 1614{
d2e4a39e 1615 struct type *base_type = desc_base_type (type);
5b4ee69b 1616
14f9c5c9
AS
1617 if (base_type == NULL)
1618 return NULL;
1619 if (is_suffix (ada_type_name (base_type), "___XVE"))
1620 return base_type;
d2e4a39e 1621 else
14f9c5c9 1622 {
d2e4a39e 1623 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1624
14f9c5c9 1625 if (alt_type == NULL)
4c4b4cd2 1626 return base_type;
14f9c5c9 1627 else
4c4b4cd2 1628 return alt_type;
14f9c5c9
AS
1629 }
1630}
1631
4c4b4cd2
PH
1632/* A pointer to the array data for thin-pointer value VAL. */
1633
d2e4a39e
AS
1634static struct value *
1635thin_data_pntr (struct value *val)
14f9c5c9 1636{
828292f2 1637 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1638 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1639
556bdfd4
UW
1640 data_type = lookup_pointer_type (data_type);
1641
14f9c5c9 1642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1643 return value_cast (data_type, value_copy (val));
d2e4a39e 1644 else
42ae5230 1645 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1646}
1647
4c4b4cd2
PH
1648/* True iff TYPE indicates a "thick" array pointer type. */
1649
14f9c5c9 1650static int
d2e4a39e 1651is_thick_pntr (struct type *type)
14f9c5c9
AS
1652{
1653 type = desc_base_type (type);
1654 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1655 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1656}
1657
4c4b4cd2
PH
1658/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1659 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1660
d2e4a39e
AS
1661static struct type *
1662desc_bounds_type (struct type *type)
14f9c5c9 1663{
d2e4a39e 1664 struct type *r;
14f9c5c9
AS
1665
1666 type = desc_base_type (type);
1667
1668 if (type == NULL)
1669 return NULL;
1670 else if (is_thin_pntr (type))
1671 {
1672 type = thin_descriptor_type (type);
1673 if (type == NULL)
4c4b4cd2 1674 return NULL;
14f9c5c9
AS
1675 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1676 if (r != NULL)
61ee279c 1677 return ada_check_typedef (r);
14f9c5c9
AS
1678 }
1679 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1680 {
1681 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1682 if (r != NULL)
61ee279c 1683 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1684 }
1685 return NULL;
1686}
1687
1688/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1689 one, a pointer to its bounds data. Otherwise NULL. */
1690
d2e4a39e
AS
1691static struct value *
1692desc_bounds (struct value *arr)
14f9c5c9 1693{
df407dfe 1694 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1695
d2e4a39e 1696 if (is_thin_pntr (type))
14f9c5c9 1697 {
d2e4a39e 1698 struct type *bounds_type =
4c4b4cd2 1699 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1700 LONGEST addr;
1701
4cdfadb1 1702 if (bounds_type == NULL)
323e0a4a 1703 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1704
1705 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1706 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1707 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1708 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1709 addr = value_as_long (arr);
d2e4a39e 1710 else
42ae5230 1711 addr = value_address (arr);
14f9c5c9 1712
d2e4a39e 1713 return
4c4b4cd2
PH
1714 value_from_longest (lookup_pointer_type (bounds_type),
1715 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1716 }
1717
1718 else if (is_thick_pntr (type))
05e522ef
JB
1719 {
1720 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1721 _("Bad GNAT array descriptor"));
1722 struct type *p_bounds_type = value_type (p_bounds);
1723
1724 if (p_bounds_type
1725 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1726 {
1727 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1728
1729 if (TYPE_STUB (target_type))
1730 p_bounds = value_cast (lookup_pointer_type
1731 (ada_check_typedef (target_type)),
1732 p_bounds);
1733 }
1734 else
1735 error (_("Bad GNAT array descriptor"));
1736
1737 return p_bounds;
1738 }
14f9c5c9
AS
1739 else
1740 return NULL;
1741}
1742
4c4b4cd2
PH
1743/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1744 position of the field containing the address of the bounds data. */
1745
14f9c5c9 1746static int
d2e4a39e 1747fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1748{
1749 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1750}
1751
1752/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1753 size of the field containing the address of the bounds data. */
1754
14f9c5c9 1755static int
d2e4a39e 1756fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1757{
1758 type = desc_base_type (type);
1759
d2e4a39e 1760 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1761 return TYPE_FIELD_BITSIZE (type, 1);
1762 else
61ee279c 1763 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1764}
1765
4c4b4cd2 1766/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1767 pointer to one, the type of its array data (a array-with-no-bounds type);
1768 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1769 data. */
4c4b4cd2 1770
d2e4a39e 1771static struct type *
556bdfd4 1772desc_data_target_type (struct type *type)
14f9c5c9
AS
1773{
1774 type = desc_base_type (type);
1775
4c4b4cd2 1776 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1777 if (is_thin_pntr (type))
556bdfd4 1778 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1779 else if (is_thick_pntr (type))
556bdfd4
UW
1780 {
1781 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1782
1783 if (data_type
1784 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1785 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1786 }
1787
1788 return NULL;
14f9c5c9
AS
1789}
1790
1791/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1792 its array data. */
4c4b4cd2 1793
d2e4a39e
AS
1794static struct value *
1795desc_data (struct value *arr)
14f9c5c9 1796{
df407dfe 1797 struct type *type = value_type (arr);
5b4ee69b 1798
14f9c5c9
AS
1799 if (is_thin_pntr (type))
1800 return thin_data_pntr (arr);
1801 else if (is_thick_pntr (type))
d2e4a39e 1802 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1803 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1804 else
1805 return NULL;
1806}
1807
1808
1809/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1810 position of the field containing the address of the data. */
1811
14f9c5c9 1812static int
d2e4a39e 1813fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1814{
1815 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1816}
1817
1818/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1819 size of the field containing the address of the data. */
1820
14f9c5c9 1821static int
d2e4a39e 1822fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1823{
1824 type = desc_base_type (type);
1825
1826 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1828 else
14f9c5c9
AS
1829 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1830}
1831
4c4b4cd2 1832/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1833 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1834 bound, if WHICH is 1. The first bound is I=1. */
1835
d2e4a39e
AS
1836static struct value *
1837desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1838{
d2e4a39e 1839 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1840 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1841}
1842
1843/* If BOUNDS is an array-bounds structure type, return the bit position
1844 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1845 bound, if WHICH is 1. The first bound is I=1. */
1846
14f9c5c9 1847static int
d2e4a39e 1848desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1849{
d2e4a39e 1850 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1851}
1852
1853/* If BOUNDS is an array-bounds structure type, return the bit field size
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1855 bound, if WHICH is 1. The first bound is I=1. */
1856
76a01679 1857static int
d2e4a39e 1858desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1859{
1860 type = desc_base_type (type);
1861
d2e4a39e
AS
1862 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1863 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1864 else
1865 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1866}
1867
1868/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1869 Ith bound (numbering from 1). Otherwise, NULL. */
1870
d2e4a39e
AS
1871static struct type *
1872desc_index_type (struct type *type, int i)
14f9c5c9
AS
1873{
1874 type = desc_base_type (type);
1875
1876 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1877 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1878 else
14f9c5c9
AS
1879 return NULL;
1880}
1881
4c4b4cd2
PH
1882/* The number of index positions in the array-bounds type TYPE.
1883 Return 0 if TYPE is NULL. */
1884
14f9c5c9 1885static int
d2e4a39e 1886desc_arity (struct type *type)
14f9c5c9
AS
1887{
1888 type = desc_base_type (type);
1889
1890 if (type != NULL)
1891 return TYPE_NFIELDS (type) / 2;
1892 return 0;
1893}
1894
4c4b4cd2
PH
1895/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1896 an array descriptor type (representing an unconstrained array
1897 type). */
1898
76a01679
JB
1899static int
1900ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1901{
1902 if (type == NULL)
1903 return 0;
61ee279c 1904 type = ada_check_typedef (type);
4c4b4cd2 1905 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1906 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1907}
1908
52ce6436 1909/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1910 * to one. */
52ce6436 1911
2c0b251b 1912static int
52ce6436
PH
1913ada_is_array_type (struct type *type)
1914{
1915 while (type != NULL
1916 && (TYPE_CODE (type) == TYPE_CODE_PTR
1917 || TYPE_CODE (type) == TYPE_CODE_REF))
1918 type = TYPE_TARGET_TYPE (type);
1919 return ada_is_direct_array_type (type);
1920}
1921
4c4b4cd2 1922/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1923
14f9c5c9 1924int
4c4b4cd2 1925ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1926{
1927 if (type == NULL)
1928 return 0;
61ee279c 1929 type = ada_check_typedef (type);
14f9c5c9 1930 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1931 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1932 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1933 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1934}
1935
4c4b4cd2
PH
1936/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1937
14f9c5c9 1938int
4c4b4cd2 1939ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1940{
556bdfd4 1941 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1942
1943 if (type == NULL)
1944 return 0;
61ee279c 1945 type = ada_check_typedef (type);
556bdfd4
UW
1946 return (data_type != NULL
1947 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1948 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1949}
1950
1951/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1952 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1953 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1954 is still needed. */
1955
14f9c5c9 1956int
ebf56fd3 1957ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1958{
d2e4a39e 1959 return
14f9c5c9
AS
1960 type != NULL
1961 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1962 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1963 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1964 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1965}
1966
1967
4c4b4cd2 1968/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1969 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1970 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1971 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1972 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1973 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1974 a descriptor. */
d2e4a39e
AS
1975struct type *
1976ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1977{
ad82864c
JB
1978 if (ada_is_constrained_packed_array_type (value_type (arr)))
1979 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1980
df407dfe
AC
1981 if (!ada_is_array_descriptor_type (value_type (arr)))
1982 return value_type (arr);
d2e4a39e
AS
1983
1984 if (!bounds)
ad82864c
JB
1985 {
1986 struct type *array_type =
1987 ada_check_typedef (desc_data_target_type (value_type (arr)));
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 TYPE_FIELD_BITSIZE (array_type, 0) =
1991 decode_packed_array_bitsize (value_type (arr));
1992
1993 return array_type;
1994 }
14f9c5c9
AS
1995 else
1996 {
d2e4a39e 1997 struct type *elt_type;
14f9c5c9 1998 int arity;
d2e4a39e 1999 struct value *descriptor;
14f9c5c9 2000
df407dfe
AC
2001 elt_type = ada_array_element_type (value_type (arr), -1);
2002 arity = ada_array_arity (value_type (arr));
14f9c5c9 2003
d2e4a39e 2004 if (elt_type == NULL || arity == 0)
df407dfe 2005 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2006
2007 descriptor = desc_bounds (arr);
d2e4a39e 2008 if (value_as_long (descriptor) == 0)
4c4b4cd2 2009 return NULL;
d2e4a39e 2010 while (arity > 0)
4c4b4cd2 2011 {
e9bb382b
UW
2012 struct type *range_type = alloc_type_copy (value_type (arr));
2013 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2014 struct value *low = desc_one_bound (descriptor, arity, 0);
2015 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2016
5b4ee69b 2017 arity -= 1;
0c9c3474
SA
2018 create_static_range_type (range_type, value_type (low),
2019 longest_to_int (value_as_long (low)),
2020 longest_to_int (value_as_long (high)));
4c4b4cd2 2021 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2022
2023 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2024 {
2025 /* We need to store the element packed bitsize, as well as
2026 recompute the array size, because it was previously
2027 computed based on the unpacked element size. */
2028 LONGEST lo = value_as_long (low);
2029 LONGEST hi = value_as_long (high);
2030
2031 TYPE_FIELD_BITSIZE (elt_type, 0) =
2032 decode_packed_array_bitsize (value_type (arr));
2033 /* If the array has no element, then the size is already
2034 zero, and does not need to be recomputed. */
2035 if (lo < hi)
2036 {
2037 int array_bitsize =
2038 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2039
2040 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2041 }
2042 }
4c4b4cd2 2043 }
14f9c5c9
AS
2044
2045 return lookup_pointer_type (elt_type);
2046 }
2047}
2048
2049/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2050 Otherwise, returns either a standard GDB array with bounds set
2051 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2052 GDB array. Returns NULL if ARR is a null fat pointer. */
2053
d2e4a39e
AS
2054struct value *
2055ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2056{
df407dfe 2057 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2058 {
d2e4a39e 2059 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2060
14f9c5c9 2061 if (arrType == NULL)
4c4b4cd2 2062 return NULL;
14f9c5c9
AS
2063 return value_cast (arrType, value_copy (desc_data (arr)));
2064 }
ad82864c
JB
2065 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2066 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2067 else
2068 return arr;
2069}
2070
2071/* If ARR does not represent an array, returns ARR unchanged.
2072 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2073 be ARR itself if it already is in the proper form). */
2074
720d1a40 2075struct value *
d2e4a39e 2076ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2077{
df407dfe 2078 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2079 {
d2e4a39e 2080 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2081
14f9c5c9 2082 if (arrVal == NULL)
323e0a4a 2083 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2084 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2085 return value_ind (arrVal);
2086 }
ad82864c
JB
2087 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2088 return decode_constrained_packed_array (arr);
d2e4a39e 2089 else
14f9c5c9
AS
2090 return arr;
2091}
2092
2093/* If TYPE represents a GNAT array type, return it translated to an
2094 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2095 packing). For other types, is the identity. */
2096
d2e4a39e
AS
2097struct type *
2098ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2099{
ad82864c
JB
2100 if (ada_is_constrained_packed_array_type (type))
2101 return decode_constrained_packed_array_type (type);
17280b9f
UW
2102
2103 if (ada_is_array_descriptor_type (type))
556bdfd4 2104 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2105
2106 return type;
14f9c5c9
AS
2107}
2108
4c4b4cd2
PH
2109/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2110
ad82864c
JB
2111static int
2112ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2113{
2114 if (type == NULL)
2115 return 0;
4c4b4cd2 2116 type = desc_base_type (type);
61ee279c 2117 type = ada_check_typedef (type);
d2e4a39e 2118 return
14f9c5c9
AS
2119 ada_type_name (type) != NULL
2120 && strstr (ada_type_name (type), "___XP") != NULL;
2121}
2122
ad82864c
JB
2123/* Non-zero iff TYPE represents a standard GNAT constrained
2124 packed-array type. */
2125
2126int
2127ada_is_constrained_packed_array_type (struct type *type)
2128{
2129 return ada_is_packed_array_type (type)
2130 && !ada_is_array_descriptor_type (type);
2131}
2132
2133/* Non-zero iff TYPE represents an array descriptor for a
2134 unconstrained packed-array type. */
2135
2136static int
2137ada_is_unconstrained_packed_array_type (struct type *type)
2138{
2139 return ada_is_packed_array_type (type)
2140 && ada_is_array_descriptor_type (type);
2141}
2142
2143/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2144 return the size of its elements in bits. */
2145
2146static long
2147decode_packed_array_bitsize (struct type *type)
2148{
0d5cff50
DE
2149 const char *raw_name;
2150 const char *tail;
ad82864c
JB
2151 long bits;
2152
720d1a40
JB
2153 /* Access to arrays implemented as fat pointers are encoded as a typedef
2154 of the fat pointer type. We need the name of the fat pointer type
2155 to do the decoding, so strip the typedef layer. */
2156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2157 type = ada_typedef_target_type (type);
2158
2159 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2160 if (!raw_name)
2161 raw_name = ada_type_name (desc_base_type (type));
2162
2163 if (!raw_name)
2164 return 0;
2165
2166 tail = strstr (raw_name, "___XP");
720d1a40 2167 gdb_assert (tail != NULL);
ad82864c
JB
2168
2169 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2170 {
2171 lim_warning
2172 (_("could not understand bit size information on packed array"));
2173 return 0;
2174 }
2175
2176 return bits;
2177}
2178
14f9c5c9
AS
2179/* Given that TYPE is a standard GDB array type with all bounds filled
2180 in, and that the element size of its ultimate scalar constituents
2181 (that is, either its elements, or, if it is an array of arrays, its
2182 elements' elements, etc.) is *ELT_BITS, return an identical type,
2183 but with the bit sizes of its elements (and those of any
2184 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2185 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2186 in bits.
2187
2188 Note that, for arrays whose index type has an XA encoding where
2189 a bound references a record discriminant, getting that discriminant,
2190 and therefore the actual value of that bound, is not possible
2191 because none of the given parameters gives us access to the record.
2192 This function assumes that it is OK in the context where it is being
2193 used to return an array whose bounds are still dynamic and where
2194 the length is arbitrary. */
4c4b4cd2 2195
d2e4a39e 2196static struct type *
ad82864c 2197constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2198{
d2e4a39e
AS
2199 struct type *new_elt_type;
2200 struct type *new_type;
99b1c762
JB
2201 struct type *index_type_desc;
2202 struct type *index_type;
14f9c5c9
AS
2203 LONGEST low_bound, high_bound;
2204
61ee279c 2205 type = ada_check_typedef (type);
14f9c5c9
AS
2206 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2207 return type;
2208
99b1c762
JB
2209 index_type_desc = ada_find_parallel_type (type, "___XA");
2210 if (index_type_desc)
2211 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2212 NULL);
2213 else
2214 index_type = TYPE_INDEX_TYPE (type);
2215
e9bb382b 2216 new_type = alloc_type_copy (type);
ad82864c
JB
2217 new_elt_type =
2218 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2219 elt_bits);
99b1c762 2220 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2221 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2222 TYPE_NAME (new_type) = ada_type_name (type);
2223
4a46959e
JB
2224 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2225 && is_dynamic_type (check_typedef (index_type)))
2226 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2227 low_bound = high_bound = 0;
2228 if (high_bound < low_bound)
2229 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2230 else
14f9c5c9
AS
2231 {
2232 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2233 TYPE_LENGTH (new_type) =
4c4b4cd2 2234 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2235 }
2236
876cecd0 2237 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2238 return new_type;
2239}
2240
ad82864c
JB
2241/* The array type encoded by TYPE, where
2242 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2243
d2e4a39e 2244static struct type *
ad82864c 2245decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2246{
0d5cff50 2247 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2248 char *name;
0d5cff50 2249 const char *tail;
d2e4a39e 2250 struct type *shadow_type;
14f9c5c9 2251 long bits;
14f9c5c9 2252
727e3d2e
JB
2253 if (!raw_name)
2254 raw_name = ada_type_name (desc_base_type (type));
2255
2256 if (!raw_name)
2257 return NULL;
2258
2259 name = (char *) alloca (strlen (raw_name) + 1);
2260 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2261 type = desc_base_type (type);
2262
14f9c5c9
AS
2263 memcpy (name, raw_name, tail - raw_name);
2264 name[tail - raw_name] = '\000';
2265
b4ba55a1
JB
2266 shadow_type = ada_find_parallel_type_with_name (type, name);
2267
2268 if (shadow_type == NULL)
14f9c5c9 2269 {
323e0a4a 2270 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2271 return NULL;
2272 }
f168693b 2273 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2274
2275 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2276 {
0963b4bd
MS
2277 lim_warning (_("could not understand bounds "
2278 "information on packed array"));
14f9c5c9
AS
2279 return NULL;
2280 }
d2e4a39e 2281
ad82864c
JB
2282 bits = decode_packed_array_bitsize (type);
2283 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2284}
2285
ad82864c
JB
2286/* Given that ARR is a struct value *indicating a GNAT constrained packed
2287 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2288 standard GDB array type except that the BITSIZEs of the array
2289 target types are set to the number of bits in each element, and the
4c4b4cd2 2290 type length is set appropriately. */
14f9c5c9 2291
d2e4a39e 2292static struct value *
ad82864c 2293decode_constrained_packed_array (struct value *arr)
14f9c5c9 2294{
4c4b4cd2 2295 struct type *type;
14f9c5c9 2296
11aa919a
PMR
2297 /* If our value is a pointer, then dereference it. Likewise if
2298 the value is a reference. Make sure that this operation does not
2299 cause the target type to be fixed, as this would indirectly cause
2300 this array to be decoded. The rest of the routine assumes that
2301 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2302 and "value_ind" routines to perform the dereferencing, as opposed
2303 to using "ada_coerce_ref" or "ada_value_ind". */
2304 arr = coerce_ref (arr);
828292f2 2305 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2306 arr = value_ind (arr);
4c4b4cd2 2307
ad82864c 2308 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2309 if (type == NULL)
2310 {
323e0a4a 2311 error (_("can't unpack array"));
14f9c5c9
AS
2312 return NULL;
2313 }
61ee279c 2314
50810684 2315 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2316 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2317 {
2318 /* This is a (right-justified) modular type representing a packed
2319 array with no wrapper. In order to interpret the value through
2320 the (left-justified) packed array type we just built, we must
2321 first left-justify it. */
2322 int bit_size, bit_pos;
2323 ULONGEST mod;
2324
df407dfe 2325 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2326 bit_size = 0;
2327 while (mod > 0)
2328 {
2329 bit_size += 1;
2330 mod >>= 1;
2331 }
df407dfe 2332 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2333 arr = ada_value_primitive_packed_val (arr, NULL,
2334 bit_pos / HOST_CHAR_BIT,
2335 bit_pos % HOST_CHAR_BIT,
2336 bit_size,
2337 type);
2338 }
2339
4c4b4cd2 2340 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2341}
2342
2343
2344/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2345 given in IND. ARR must be a simple array. */
14f9c5c9 2346
d2e4a39e
AS
2347static struct value *
2348value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2349{
2350 int i;
2351 int bits, elt_off, bit_off;
2352 long elt_total_bit_offset;
d2e4a39e
AS
2353 struct type *elt_type;
2354 struct value *v;
14f9c5c9
AS
2355
2356 bits = 0;
2357 elt_total_bit_offset = 0;
df407dfe 2358 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2359 for (i = 0; i < arity; i += 1)
14f9c5c9 2360 {
d2e4a39e 2361 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2362 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2363 error
0963b4bd
MS
2364 (_("attempt to do packed indexing of "
2365 "something other than a packed array"));
14f9c5c9 2366 else
4c4b4cd2
PH
2367 {
2368 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2369 LONGEST lowerbound, upperbound;
2370 LONGEST idx;
2371
2372 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2373 {
323e0a4a 2374 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2375 lowerbound = upperbound = 0;
2376 }
2377
3cb382c9 2378 idx = pos_atr (ind[i]);
4c4b4cd2 2379 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2380 lim_warning (_("packed array index %ld out of bounds"),
2381 (long) idx);
4c4b4cd2
PH
2382 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2383 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2384 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2385 }
14f9c5c9
AS
2386 }
2387 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2388 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2389
2390 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2391 bits, elt_type);
14f9c5c9
AS
2392 return v;
2393}
2394
4c4b4cd2 2395/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2396
2397static int
d2e4a39e 2398has_negatives (struct type *type)
14f9c5c9 2399{
d2e4a39e
AS
2400 switch (TYPE_CODE (type))
2401 {
2402 default:
2403 return 0;
2404 case TYPE_CODE_INT:
2405 return !TYPE_UNSIGNED (type);
2406 case TYPE_CODE_RANGE:
2407 return TYPE_LOW_BOUND (type) < 0;
2408 }
14f9c5c9 2409}
d2e4a39e 2410
f93fca70 2411/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2412 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2413 the unpacked buffer.
14f9c5c9 2414
5b639dea
JB
2415 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2416 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2417
f93fca70
JB
2418 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2419 zero otherwise.
14f9c5c9 2420
f93fca70 2421 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2422
f93fca70
JB
2423 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2424
2425static void
2426ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2427 gdb_byte *unpacked, int unpacked_len,
2428 int is_big_endian, int is_signed_type,
2429 int is_scalar)
2430{
a1c95e6b
JB
2431 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2432 int src_idx; /* Index into the source area */
2433 int src_bytes_left; /* Number of source bytes left to process. */
2434 int srcBitsLeft; /* Number of source bits left to move */
2435 int unusedLS; /* Number of bits in next significant
2436 byte of source that are unused */
2437
a1c95e6b
JB
2438 int unpacked_idx; /* Index into the unpacked buffer */
2439 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2440
4c4b4cd2 2441 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2442 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2443 unsigned char sign;
a1c95e6b 2444
4c4b4cd2
PH
2445 /* Transmit bytes from least to most significant; delta is the direction
2446 the indices move. */
f93fca70 2447 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2448
5b639dea
JB
2449 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2450 bits from SRC. .*/
2451 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2452 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2453 bit_size, unpacked_len);
2454
14f9c5c9 2455 srcBitsLeft = bit_size;
086ca51f 2456 src_bytes_left = src_len;
f93fca70 2457 unpacked_bytes_left = unpacked_len;
14f9c5c9 2458 sign = 0;
f93fca70
JB
2459
2460 if (is_big_endian)
14f9c5c9 2461 {
086ca51f 2462 src_idx = src_len - 1;
f93fca70
JB
2463 if (is_signed_type
2464 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2465 sign = ~0;
d2e4a39e
AS
2466
2467 unusedLS =
4c4b4cd2
PH
2468 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2469 % HOST_CHAR_BIT;
14f9c5c9 2470
f93fca70
JB
2471 if (is_scalar)
2472 {
2473 accumSize = 0;
2474 unpacked_idx = unpacked_len - 1;
2475 }
2476 else
2477 {
4c4b4cd2
PH
2478 /* Non-scalar values must be aligned at a byte boundary... */
2479 accumSize =
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2482 of the target. */
086ca51f
JB
2483 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2484 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2485 }
14f9c5c9 2486 }
d2e4a39e 2487 else
14f9c5c9
AS
2488 {
2489 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2490
086ca51f 2491 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2492 unusedLS = bit_offset;
2493 accumSize = 0;
2494
f93fca70 2495 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2496 sign = ~0;
14f9c5c9 2497 }
d2e4a39e 2498
14f9c5c9 2499 accum = 0;
086ca51f 2500 while (src_bytes_left > 0)
14f9c5c9
AS
2501 {
2502 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2503 part of the value. */
d2e4a39e 2504 unsigned int unusedMSMask =
4c4b4cd2
PH
2505 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2506 1;
2507 /* Sign-extend bits for this byte. */
14f9c5c9 2508 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2509
d2e4a39e 2510 accum |=
086ca51f 2511 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2512 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2513 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2514 {
db297a65 2515 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2516 accumSize -= HOST_CHAR_BIT;
2517 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2518 unpacked_bytes_left -= 1;
2519 unpacked_idx += delta;
4c4b4cd2 2520 }
14f9c5c9
AS
2521 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2522 unusedLS = 0;
086ca51f
JB
2523 src_bytes_left -= 1;
2524 src_idx += delta;
14f9c5c9 2525 }
086ca51f 2526 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2527 {
2528 accum |= sign << accumSize;
db297a65 2529 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2530 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2531 if (accumSize < 0)
2532 accumSize = 0;
14f9c5c9 2533 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2534 unpacked_bytes_left -= 1;
2535 unpacked_idx += delta;
14f9c5c9 2536 }
f93fca70
JB
2537}
2538
2539/* Create a new value of type TYPE from the contents of OBJ starting
2540 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2541 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2542 assigning through the result will set the field fetched from.
2543 VALADDR is ignored unless OBJ is NULL, in which case,
2544 VALADDR+OFFSET must address the start of storage containing the
2545 packed value. The value returned in this case is never an lval.
2546 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2547
2548struct value *
2549ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2550 long offset, int bit_offset, int bit_size,
2551 struct type *type)
2552{
2553 struct value *v;
bfb1c796 2554 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2555 gdb_byte *unpacked;
220475ed 2556 const int is_scalar = is_scalar_type (type);
d0a9e810 2557 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2558 gdb::byte_vector staging;
f93fca70
JB
2559
2560 type = ada_check_typedef (type);
2561
d0a9e810 2562 if (obj == NULL)
bfb1c796 2563 src = valaddr + offset;
d0a9e810 2564 else
bfb1c796 2565 src = value_contents (obj) + offset;
d0a9e810
JB
2566
2567 if (is_dynamic_type (type))
2568 {
2569 /* The length of TYPE might by dynamic, so we need to resolve
2570 TYPE in order to know its actual size, which we then use
2571 to create the contents buffer of the value we return.
2572 The difficulty is that the data containing our object is
2573 packed, and therefore maybe not at a byte boundary. So, what
2574 we do, is unpack the data into a byte-aligned buffer, and then
2575 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2576 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2577 staging.resize (staging_len);
d0a9e810
JB
2578
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2580 staging.data (), staging.size (),
d0a9e810
JB
2581 is_big_endian, has_negatives (type),
2582 is_scalar);
d5722aa2 2583 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2584 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2585 {
2586 /* This happens when the length of the object is dynamic,
2587 and is actually smaller than the space reserved for it.
2588 For instance, in an array of variant records, the bit_size
2589 we're given is the array stride, which is constant and
2590 normally equal to the maximum size of its element.
2591 But, in reality, each element only actually spans a portion
2592 of that stride. */
2593 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2594 }
d0a9e810
JB
2595 }
2596
f93fca70
JB
2597 if (obj == NULL)
2598 {
2599 v = allocate_value (type);
bfb1c796 2600 src = valaddr + offset;
f93fca70
JB
2601 }
2602 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2603 {
0cafa88c 2604 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2605 gdb_byte *buf;
0cafa88c 2606
f93fca70 2607 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2608 buf = (gdb_byte *) alloca (src_len);
2609 read_memory (value_address (v), buf, src_len);
2610 src = buf;
f93fca70
JB
2611 }
2612 else
2613 {
2614 v = allocate_value (type);
bfb1c796 2615 src = value_contents (obj) + offset;
f93fca70
JB
2616 }
2617
2618 if (obj != NULL)
2619 {
2620 long new_offset = offset;
2621
2622 set_value_component_location (v, obj);
2623 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2624 set_value_bitsize (v, bit_size);
2625 if (value_bitpos (v) >= HOST_CHAR_BIT)
2626 {
2627 ++new_offset;
2628 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2629 }
2630 set_value_offset (v, new_offset);
2631
2632 /* Also set the parent value. This is needed when trying to
2633 assign a new value (in inferior memory). */
2634 set_value_parent (v, obj);
2635 }
2636 else
2637 set_value_bitsize (v, bit_size);
bfb1c796 2638 unpacked = value_contents_writeable (v);
f93fca70
JB
2639
2640 if (bit_size == 0)
2641 {
2642 memset (unpacked, 0, TYPE_LENGTH (type));
2643 return v;
2644 }
2645
d5722aa2 2646 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2647 {
d0a9e810
JB
2648 /* Small short-cut: If we've unpacked the data into a buffer
2649 of the same size as TYPE's length, then we can reuse that,
2650 instead of doing the unpacking again. */
d5722aa2 2651 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2652 }
d0a9e810
JB
2653 else
2654 ada_unpack_from_contents (src, bit_offset, bit_size,
2655 unpacked, TYPE_LENGTH (type),
2656 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2657
14f9c5c9
AS
2658 return v;
2659}
d2e4a39e 2660
14f9c5c9
AS
2661/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2662 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2663 not overlap. */
14f9c5c9 2664static void
fc1a4b47 2665move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2666 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2667{
2668 unsigned int accum, mask;
2669 int accum_bits, chunk_size;
2670
2671 target += targ_offset / HOST_CHAR_BIT;
2672 targ_offset %= HOST_CHAR_BIT;
2673 source += src_offset / HOST_CHAR_BIT;
2674 src_offset %= HOST_CHAR_BIT;
50810684 2675 if (bits_big_endian_p)
14f9c5c9
AS
2676 {
2677 accum = (unsigned char) *source;
2678 source += 1;
2679 accum_bits = HOST_CHAR_BIT - src_offset;
2680
d2e4a39e 2681 while (n > 0)
4c4b4cd2
PH
2682 {
2683 int unused_right;
5b4ee69b 2684
4c4b4cd2
PH
2685 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2686 accum_bits += HOST_CHAR_BIT;
2687 source += 1;
2688 chunk_size = HOST_CHAR_BIT - targ_offset;
2689 if (chunk_size > n)
2690 chunk_size = n;
2691 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2692 mask = ((1 << chunk_size) - 1) << unused_right;
2693 *target =
2694 (*target & ~mask)
2695 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2696 n -= chunk_size;
2697 accum_bits -= chunk_size;
2698 target += 1;
2699 targ_offset = 0;
2700 }
14f9c5c9
AS
2701 }
2702 else
2703 {
2704 accum = (unsigned char) *source >> src_offset;
2705 source += 1;
2706 accum_bits = HOST_CHAR_BIT - src_offset;
2707
d2e4a39e 2708 while (n > 0)
4c4b4cd2
PH
2709 {
2710 accum = accum + ((unsigned char) *source << accum_bits);
2711 accum_bits += HOST_CHAR_BIT;
2712 source += 1;
2713 chunk_size = HOST_CHAR_BIT - targ_offset;
2714 if (chunk_size > n)
2715 chunk_size = n;
2716 mask = ((1 << chunk_size) - 1) << targ_offset;
2717 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2718 n -= chunk_size;
2719 accum_bits -= chunk_size;
2720 accum >>= chunk_size;
2721 target += 1;
2722 targ_offset = 0;
2723 }
14f9c5c9
AS
2724 }
2725}
2726
14f9c5c9
AS
2727/* Store the contents of FROMVAL into the location of TOVAL.
2728 Return a new value with the location of TOVAL and contents of
2729 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2730 floating-point or non-scalar types. */
14f9c5c9 2731
d2e4a39e
AS
2732static struct value *
2733ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2734{
df407dfe
AC
2735 struct type *type = value_type (toval);
2736 int bits = value_bitsize (toval);
14f9c5c9 2737
52ce6436
PH
2738 toval = ada_coerce_ref (toval);
2739 fromval = ada_coerce_ref (fromval);
2740
2741 if (ada_is_direct_array_type (value_type (toval)))
2742 toval = ada_coerce_to_simple_array (toval);
2743 if (ada_is_direct_array_type (value_type (fromval)))
2744 fromval = ada_coerce_to_simple_array (fromval);
2745
88e3b34b 2746 if (!deprecated_value_modifiable (toval))
323e0a4a 2747 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2748
d2e4a39e 2749 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2750 && bits > 0
d2e4a39e 2751 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2752 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2753 {
df407dfe
AC
2754 int len = (value_bitpos (toval)
2755 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2756 int from_size;
224c3ddb 2757 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2758 struct value *val;
42ae5230 2759 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2760
2761 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2762 fromval = value_cast (type, fromval);
14f9c5c9 2763
52ce6436 2764 read_memory (to_addr, buffer, len);
aced2898
PH
2765 from_size = value_bitsize (fromval);
2766 if (from_size == 0)
2767 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2768 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2769 move_bits (buffer, value_bitpos (toval),
50810684 2770 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2771 else
50810684
UW
2772 move_bits (buffer, value_bitpos (toval),
2773 value_contents (fromval), 0, bits, 0);
972daa01 2774 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2775
14f9c5c9 2776 val = value_copy (toval);
0fd88904 2777 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2778 TYPE_LENGTH (type));
04624583 2779 deprecated_set_value_type (val, type);
d2e4a39e 2780
14f9c5c9
AS
2781 return val;
2782 }
2783
2784 return value_assign (toval, fromval);
2785}
2786
2787
7c512744
JB
2788/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2789 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2790 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2791 COMPONENT, and not the inferior's memory. The current contents
2792 of COMPONENT are ignored.
2793
2794 Although not part of the initial design, this function also works
2795 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2796 had a null address, and COMPONENT had an address which is equal to
2797 its offset inside CONTAINER. */
2798
52ce6436
PH
2799static void
2800value_assign_to_component (struct value *container, struct value *component,
2801 struct value *val)
2802{
2803 LONGEST offset_in_container =
42ae5230 2804 (LONGEST) (value_address (component) - value_address (container));
7c512744 2805 int bit_offset_in_container =
52ce6436
PH
2806 value_bitpos (component) - value_bitpos (container);
2807 int bits;
7c512744 2808
52ce6436
PH
2809 val = value_cast (value_type (component), val);
2810
2811 if (value_bitsize (component) == 0)
2812 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2813 else
2814 bits = value_bitsize (component);
2815
50810684 2816 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2817 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2818 value_bitpos (container) + bit_offset_in_container,
2819 value_contents (val),
2820 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2821 bits, 1);
52ce6436 2822 else
7c512744 2823 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2824 value_bitpos (container) + bit_offset_in_container,
50810684 2825 value_contents (val), 0, bits, 0);
7c512744
JB
2826}
2827
4c4b4cd2
PH
2828/* The value of the element of array ARR at the ARITY indices given in IND.
2829 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2830 thereto. */
2831
d2e4a39e
AS
2832struct value *
2833ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2834{
2835 int k;
d2e4a39e
AS
2836 struct value *elt;
2837 struct type *elt_type;
14f9c5c9
AS
2838
2839 elt = ada_coerce_to_simple_array (arr);
2840
df407dfe 2841 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2842 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2843 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2844 return value_subscript_packed (elt, arity, ind);
2845
2846 for (k = 0; k < arity; k += 1)
2847 {
2848 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2849 error (_("too many subscripts (%d expected)"), k);
2497b498 2850 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2851 }
2852 return elt;
2853}
2854
deede10c
JB
2855/* Assuming ARR is a pointer to a GDB array, the value of the element
2856 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2857 Does not read the entire array into memory.
2858
2859 Note: Unlike what one would expect, this function is used instead of
2860 ada_value_subscript for basically all non-packed array types. The reason
2861 for this is that a side effect of doing our own pointer arithmetics instead
2862 of relying on value_subscript is that there is no implicit typedef peeling.
2863 This is important for arrays of array accesses, where it allows us to
2864 preserve the fact that the array's element is an array access, where the
2865 access part os encoded in a typedef layer. */
14f9c5c9 2866
2c0b251b 2867static struct value *
deede10c 2868ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2869{
2870 int k;
919e6dbe 2871 struct value *array_ind = ada_value_ind (arr);
deede10c 2872 struct type *type
919e6dbe
PMR
2873 = check_typedef (value_enclosing_type (array_ind));
2874
2875 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2876 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2877 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2878
2879 for (k = 0; k < arity; k += 1)
2880 {
2881 LONGEST lwb, upb;
aa715135 2882 struct value *lwb_value;
14f9c5c9
AS
2883
2884 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2885 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2886 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2887 value_copy (arr));
14f9c5c9 2888 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2889 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2890 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2891 type = TYPE_TARGET_TYPE (type);
2892 }
2893
2894 return value_ind (arr);
2895}
2896
0b5d8877 2897/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2898 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2899 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2900 this array is LOW, as per Ada rules. */
0b5d8877 2901static struct value *
f5938064
JG
2902ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2903 int low, int high)
0b5d8877 2904{
b0dd7688 2905 struct type *type0 = ada_check_typedef (type);
aa715135 2906 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2907 struct type *index_type
aa715135 2908 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2909 struct type *slice_type = create_array_type_with_stride
2910 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2911 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2912 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2913 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2914 LONGEST base_low_pos, low_pos;
2915 CORE_ADDR base;
2916
2917 if (!discrete_position (base_index_type, low, &low_pos)
2918 || !discrete_position (base_index_type, base_low, &base_low_pos))
2919 {
2920 warning (_("unable to get positions in slice, use bounds instead"));
2921 low_pos = low;
2922 base_low_pos = base_low;
2923 }
5b4ee69b 2924
aa715135
JG
2925 base = value_as_address (array_ptr)
2926 + ((low_pos - base_low_pos)
2927 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2928 return value_at_lazy (slice_type, base);
0b5d8877
PH
2929}
2930
2931
2932static struct value *
2933ada_value_slice (struct value *array, int low, int high)
2934{
b0dd7688 2935 struct type *type = ada_check_typedef (value_type (array));
aa715135 2936 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2937 struct type *index_type
2938 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2939 struct type *slice_type = create_array_type_with_stride
2940 (NULL, TYPE_TARGET_TYPE (type), index_type,
2941 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2942 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2943 LONGEST low_pos, high_pos;
5b4ee69b 2944
aa715135
JG
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2947 {
2948 warning (_("unable to get positions in slice, use bounds instead"));
2949 low_pos = low;
2950 high_pos = high;
2951 }
2952
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2955}
2956
14f9c5c9
AS
2957/* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2960 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2961
2962int
d2e4a39e 2963ada_array_arity (struct type *type)
14f9c5c9
AS
2964{
2965 int arity;
2966
2967 if (type == NULL)
2968 return 0;
2969
2970 type = desc_base_type (type);
2971
2972 arity = 0;
d2e4a39e 2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2974 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2975 else
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2977 {
4c4b4cd2 2978 arity += 1;
61ee279c 2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2980 }
d2e4a39e 2981
14f9c5c9
AS
2982 return arity;
2983}
2984
2985/* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2988 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2989
d2e4a39e
AS
2990struct type *
2991ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2992{
2993 type = desc_base_type (type);
2994
d2e4a39e 2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2996 {
2997 int k;
d2e4a39e 2998 struct type *p_array_type;
14f9c5c9 2999
556bdfd4 3000 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3001
3002 k = ada_array_arity (type);
3003 if (k == 0)
4c4b4cd2 3004 return NULL;
d2e4a39e 3005
4c4b4cd2 3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3007 if (nindices >= 0 && k > nindices)
4c4b4cd2 3008 k = nindices;
d2e4a39e 3009 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3010 {
61ee279c 3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3012 k -= 1;
3013 }
14f9c5c9
AS
3014 return p_array_type;
3015 }
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3017 {
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3019 {
3020 type = TYPE_TARGET_TYPE (type);
3021 nindices -= 1;
3022 }
14f9c5c9
AS
3023 return type;
3024 }
3025
3026 return NULL;
3027}
3028
4c4b4cd2 3029/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
14f9c5c9 3034
1eea4ebd
UW
3035static struct type *
3036ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3037{
4c4b4cd2
PH
3038 struct type *result_type;
3039
14f9c5c9
AS
3040 type = desc_base_type (type);
3041
1eea4ebd
UW
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3044
4c4b4cd2 3045 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3046 {
3047 int i;
3048
3049 for (i = 1; i < n; i += 1)
4c4b4cd2 3050 type = TYPE_TARGET_TYPE (type);
262452ec 3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3054 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3056 result_type = NULL;
14f9c5c9 3057 }
d2e4a39e 3058 else
1eea4ebd
UW
3059 {
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3063 }
3064
3065 return result_type;
14f9c5c9
AS
3066}
3067
3068/* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
14f9c5c9 3073
abb68b3e 3074static LONGEST
fb5e3d5c 3075ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3076{
8a48ac95 3077 struct type *type, *index_type_desc, *index_type;
1ce677a4 3078 int i;
262452ec
JK
3079
3080 gdb_assert (which == 0 || which == 1);
14f9c5c9 3081
ad82864c
JB
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3084
4c4b4cd2 3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3086 return (LONGEST) - which;
14f9c5c9
AS
3087
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3090 else
3091 type = arr_type;
3092
bafffb51
JB
3093 if (TYPE_FIXED_INSTANCE (type))
3094 {
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3099 }
3100 else
3101 {
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3104 }
3105
262452ec 3106 if (index_type_desc != NULL)
28c85d6c
JB
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3108 NULL);
262452ec 3109 else
8a48ac95
JB
3110 {
3111 struct type *elt_type = check_typedef (type);
3112
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3115
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3117 }
262452ec 3118
43bbcdc2
PH
3119 return
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3123}
3124
3125/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3128 supplied by run-time quantities other than discriminants. */
14f9c5c9 3129
1eea4ebd 3130static LONGEST
4dc81987 3131ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3132{
eb479039
JB
3133 struct type *arr_type;
3134
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
14f9c5c9 3138
ad82864c
JB
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3141 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3142 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3143 else
1eea4ebd 3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3145}
3146
3147/* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
14f9c5c9 3152
1eea4ebd 3153static LONGEST
d2e4a39e 3154ada_array_length (struct value *arr, int n)
14f9c5c9 3155{
aa715135
JG
3156 struct type *arr_type, *index_type;
3157 int low, high;
eb479039
JB
3158
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
14f9c5c9 3162
ad82864c
JB
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3165
4c4b4cd2 3166 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3167 {
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3170 }
14f9c5c9 3171 else
aa715135
JG
3172 {
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3175 }
3176
f168693b 3177 arr_type = check_typedef (arr_type);
7150d33c 3178 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3179 if (index_type != NULL)
3180 {
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3184 else
3185 base_type = index_type;
3186
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3189 }
3190 return high - low + 1;
4c4b4cd2
PH
3191}
3192
3193/* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3195
3196static struct value *
3197empty_array (struct type *arr_type, int low)
3198{
b0dd7688 3199 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3204
0b5d8877 3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3206}
14f9c5c9 3207\f
d2e4a39e 3208
4c4b4cd2 3209 /* Name resolution */
14f9c5c9 3210
4c4b4cd2
PH
3211/* The "decoded" name for the user-definable Ada operator corresponding
3212 to OP. */
14f9c5c9 3213
d2e4a39e 3214static const char *
4c4b4cd2 3215ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3216{
3217 int i;
3218
4c4b4cd2 3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3220 {
3221 if (ada_opname_table[i].op == op)
4c4b4cd2 3222 return ada_opname_table[i].decoded;
14f9c5c9 3223 }
323e0a4a 3224 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3225}
3226
3227
4c4b4cd2
PH
3228/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3235 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3236
4c4b4cd2 3237static void
e9d9f57e 3238resolve (expression_up *expp, int void_context_p)
14f9c5c9 3239{
30b15541
UW
3240 struct type *context_type = NULL;
3241 int pc = 0;
3242
3243 if (void_context_p)
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3245
3246 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3247}
3248
4c4b4cd2
PH
3249/* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
14f9c5c9 3257
d2e4a39e 3258static struct value *
e9d9f57e 3259resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
76a01679 3260 struct type *context_type)
14f9c5c9
AS
3261{
3262 int pc = *pos;
3263 int i;
4c4b4cd2 3264 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
52ce6436 3268 int oplen;
ec6a20c2 3269 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
14f9c5c9
AS
3270
3271 argvec = NULL;
3272 nargs = 0;
e9d9f57e 3273 exp = expp->get ();
14f9c5c9 3274
52ce6436
PH
3275 /* Pass one: resolve operands, saving their types and updating *pos,
3276 if needed. */
14f9c5c9
AS
3277 switch (op)
3278 {
4c4b4cd2
PH
3279 case OP_FUNCALL:
3280 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3281 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3282 *pos += 7;
4c4b4cd2
PH
3283 else
3284 {
3285 *pos += 3;
3286 resolve_subexp (expp, pos, 0, NULL);
3287 }
3288 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3289 break;
3290
14f9c5c9 3291 case UNOP_ADDR:
4c4b4cd2
PH
3292 *pos += 1;
3293 resolve_subexp (expp, pos, 0, NULL);
3294 break;
3295
52ce6436
PH
3296 case UNOP_QUAL:
3297 *pos += 3;
17466c1a 3298 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3299 break;
3300
52ce6436 3301 case OP_ATR_MODULUS:
4c4b4cd2
PH
3302 case OP_ATR_SIZE:
3303 case OP_ATR_TAG:
4c4b4cd2
PH
3304 case OP_ATR_FIRST:
3305 case OP_ATR_LAST:
3306 case OP_ATR_LENGTH:
3307 case OP_ATR_POS:
3308 case OP_ATR_VAL:
4c4b4cd2
PH
3309 case OP_ATR_MIN:
3310 case OP_ATR_MAX:
52ce6436
PH
3311 case TERNOP_IN_RANGE:
3312 case BINOP_IN_BOUNDS:
3313 case UNOP_IN_RANGE:
3314 case OP_AGGREGATE:
3315 case OP_OTHERS:
3316 case OP_CHOICES:
3317 case OP_POSITIONAL:
3318 case OP_DISCRETE_RANGE:
3319 case OP_NAME:
3320 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3321 *pos += oplen;
14f9c5c9
AS
3322 break;
3323
3324 case BINOP_ASSIGN:
3325 {
4c4b4cd2
PH
3326 struct value *arg1;
3327
3328 *pos += 1;
3329 arg1 = resolve_subexp (expp, pos, 0, NULL);
3330 if (arg1 == NULL)
3331 resolve_subexp (expp, pos, 1, NULL);
3332 else
df407dfe 3333 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3334 break;
14f9c5c9
AS
3335 }
3336
4c4b4cd2 3337 case UNOP_CAST:
4c4b4cd2
PH
3338 *pos += 3;
3339 nargs = 1;
3340 break;
14f9c5c9 3341
4c4b4cd2
PH
3342 case BINOP_ADD:
3343 case BINOP_SUB:
3344 case BINOP_MUL:
3345 case BINOP_DIV:
3346 case BINOP_REM:
3347 case BINOP_MOD:
3348 case BINOP_EXP:
3349 case BINOP_CONCAT:
3350 case BINOP_LOGICAL_AND:
3351 case BINOP_LOGICAL_OR:
3352 case BINOP_BITWISE_AND:
3353 case BINOP_BITWISE_IOR:
3354 case BINOP_BITWISE_XOR:
14f9c5c9 3355
4c4b4cd2
PH
3356 case BINOP_EQUAL:
3357 case BINOP_NOTEQUAL:
3358 case BINOP_LESS:
3359 case BINOP_GTR:
3360 case BINOP_LEQ:
3361 case BINOP_GEQ:
14f9c5c9 3362
4c4b4cd2
PH
3363 case BINOP_REPEAT:
3364 case BINOP_SUBSCRIPT:
3365 case BINOP_COMMA:
40c8aaa9
JB
3366 *pos += 1;
3367 nargs = 2;
3368 break;
14f9c5c9 3369
4c4b4cd2
PH
3370 case UNOP_NEG:
3371 case UNOP_PLUS:
3372 case UNOP_LOGICAL_NOT:
3373 case UNOP_ABS:
3374 case UNOP_IND:
3375 *pos += 1;
3376 nargs = 1;
3377 break;
14f9c5c9 3378
4c4b4cd2 3379 case OP_LONG:
edd079d9 3380 case OP_FLOAT:
4c4b4cd2 3381 case OP_VAR_VALUE:
74ea4be4 3382 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3383 *pos += 4;
3384 break;
14f9c5c9 3385
4c4b4cd2
PH
3386 case OP_TYPE:
3387 case OP_BOOL:
3388 case OP_LAST:
4c4b4cd2
PH
3389 case OP_INTERNALVAR:
3390 *pos += 3;
3391 break;
14f9c5c9 3392
4c4b4cd2
PH
3393 case UNOP_MEMVAL:
3394 *pos += 3;
3395 nargs = 1;
3396 break;
3397
67f3407f
DJ
3398 case OP_REGISTER:
3399 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3400 break;
3401
4c4b4cd2
PH
3402 case STRUCTOP_STRUCT:
3403 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3404 nargs = 1;
3405 break;
3406
4c4b4cd2 3407 case TERNOP_SLICE:
4c4b4cd2
PH
3408 *pos += 1;
3409 nargs = 3;
3410 break;
3411
52ce6436 3412 case OP_STRING:
14f9c5c9 3413 break;
4c4b4cd2
PH
3414
3415 default:
323e0a4a 3416 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3417 }
3418
8d749320 3419 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3420 for (i = 0; i < nargs; i += 1)
3421 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3422 argvec[i] = NULL;
e9d9f57e 3423 exp = expp->get ();
4c4b4cd2
PH
3424
3425 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3426 switch (op)
3427 {
3428 default:
3429 break;
3430
14f9c5c9 3431 case OP_VAR_VALUE:
4c4b4cd2 3432 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3433 {
d12307c1 3434 struct block_symbol *candidates;
76a01679
JB
3435 int n_candidates;
3436
3437 n_candidates =
3438 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3439 (exp->elts[pc + 2].symbol),
3440 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3441 &candidates);
ec6a20c2 3442 make_cleanup (xfree, candidates);
76a01679
JB
3443
3444 if (n_candidates > 1)
3445 {
3446 /* Types tend to get re-introduced locally, so if there
3447 are any local symbols that are not types, first filter
3448 out all types. */
3449 int j;
3450 for (j = 0; j < n_candidates; j += 1)
d12307c1 3451 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3452 {
3453 case LOC_REGISTER:
3454 case LOC_ARG:
3455 case LOC_REF_ARG:
76a01679
JB
3456 case LOC_REGPARM_ADDR:
3457 case LOC_LOCAL:
76a01679 3458 case LOC_COMPUTED:
76a01679
JB
3459 goto FoundNonType;
3460 default:
3461 break;
3462 }
3463 FoundNonType:
3464 if (j < n_candidates)
3465 {
3466 j = 0;
3467 while (j < n_candidates)
3468 {
d12307c1 3469 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3470 {
3471 candidates[j] = candidates[n_candidates - 1];
3472 n_candidates -= 1;
3473 }
3474 else
3475 j += 1;
3476 }
3477 }
3478 }
3479
3480 if (n_candidates == 0)
323e0a4a 3481 error (_("No definition found for %s"),
76a01679
JB
3482 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3483 else if (n_candidates == 1)
3484 i = 0;
3485 else if (deprocedure_p
3486 && !is_nonfunction (candidates, n_candidates))
3487 {
06d5cf63
JB
3488 i = ada_resolve_function
3489 (candidates, n_candidates, NULL, 0,
3490 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3491 context_type);
76a01679 3492 if (i < 0)
323e0a4a 3493 error (_("Could not find a match for %s"),
76a01679
JB
3494 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3495 }
3496 else
3497 {
323e0a4a 3498 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3499 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3500 user_select_syms (candidates, n_candidates, 1);
3501 i = 0;
3502 }
3503
3504 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3505 exp->elts[pc + 2].symbol = candidates[i].symbol;
aee1fcdf 3506 innermost_block.update (candidates[i]);
76a01679
JB
3507 }
3508
3509 if (deprocedure_p
3510 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3511 == TYPE_CODE_FUNC))
3512 {
3513 replace_operator_with_call (expp, pc, 0, 0,
3514 exp->elts[pc + 2].symbol,
3515 exp->elts[pc + 1].block);
e9d9f57e 3516 exp = expp->get ();
76a01679 3517 }
14f9c5c9
AS
3518 break;
3519
3520 case OP_FUNCALL:
3521 {
4c4b4cd2 3522 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3523 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3524 {
d12307c1 3525 struct block_symbol *candidates;
4c4b4cd2
PH
3526 int n_candidates;
3527
3528 n_candidates =
76a01679
JB
3529 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3530 (exp->elts[pc + 5].symbol),
3531 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3532 &candidates);
ec6a20c2
JB
3533 make_cleanup (xfree, candidates);
3534
4c4b4cd2
PH
3535 if (n_candidates == 1)
3536 i = 0;
3537 else
3538 {
06d5cf63
JB
3539 i = ada_resolve_function
3540 (candidates, n_candidates,
3541 argvec, nargs,
3542 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3543 context_type);
4c4b4cd2 3544 if (i < 0)
323e0a4a 3545 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3546 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3547 }
3548
3549 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3550 exp->elts[pc + 5].symbol = candidates[i].symbol;
aee1fcdf 3551 innermost_block.update (candidates[i]);
4c4b4cd2 3552 }
14f9c5c9
AS
3553 }
3554 break;
3555 case BINOP_ADD:
3556 case BINOP_SUB:
3557 case BINOP_MUL:
3558 case BINOP_DIV:
3559 case BINOP_REM:
3560 case BINOP_MOD:
3561 case BINOP_CONCAT:
3562 case BINOP_BITWISE_AND:
3563 case BINOP_BITWISE_IOR:
3564 case BINOP_BITWISE_XOR:
3565 case BINOP_EQUAL:
3566 case BINOP_NOTEQUAL:
3567 case BINOP_LESS:
3568 case BINOP_GTR:
3569 case BINOP_LEQ:
3570 case BINOP_GEQ:
3571 case BINOP_EXP:
3572 case UNOP_NEG:
3573 case UNOP_PLUS:
3574 case UNOP_LOGICAL_NOT:
3575 case UNOP_ABS:
3576 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3577 {
d12307c1 3578 struct block_symbol *candidates;
4c4b4cd2
PH
3579 int n_candidates;
3580
3581 n_candidates =
b5ec771e 3582 ada_lookup_symbol_list (ada_decoded_op_name (op),
4c4b4cd2 3583 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3584 &candidates);
ec6a20c2
JB
3585 make_cleanup (xfree, candidates);
3586
4c4b4cd2 3587 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3588 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3589 if (i < 0)
3590 break;
3591
d12307c1
PMR
3592 replace_operator_with_call (expp, pc, nargs, 1,
3593 candidates[i].symbol,
3594 candidates[i].block);
e9d9f57e 3595 exp = expp->get ();
4c4b4cd2 3596 }
14f9c5c9 3597 break;
4c4b4cd2
PH
3598
3599 case OP_TYPE:
b3dbf008 3600 case OP_REGISTER:
ec6a20c2 3601 do_cleanups (old_chain);
4c4b4cd2 3602 return NULL;
14f9c5c9
AS
3603 }
3604
3605 *pos = pc;
ec6a20c2 3606 do_cleanups (old_chain);
ced9779b
JB
3607 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3608 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3609 exp->elts[pc + 1].objfile,
3610 exp->elts[pc + 2].msymbol);
3611 else
3612 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3613}
3614
3615/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3616 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3617 a non-pointer. */
14f9c5c9 3618/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3619 liberal. */
14f9c5c9
AS
3620
3621static int
4dc81987 3622ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3623{
61ee279c
PH
3624 ftype = ada_check_typedef (ftype);
3625 atype = ada_check_typedef (atype);
14f9c5c9
AS
3626
3627 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3628 ftype = TYPE_TARGET_TYPE (ftype);
3629 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3630 atype = TYPE_TARGET_TYPE (atype);
3631
d2e4a39e 3632 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3633 {
3634 default:
5b3d5b7d 3635 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3636 case TYPE_CODE_PTR:
3637 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3638 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3639 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3640 else
1265e4aa
JB
3641 return (may_deref
3642 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3643 case TYPE_CODE_INT:
3644 case TYPE_CODE_ENUM:
3645 case TYPE_CODE_RANGE:
3646 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3647 {
3648 case TYPE_CODE_INT:
3649 case TYPE_CODE_ENUM:
3650 case TYPE_CODE_RANGE:
3651 return 1;
3652 default:
3653 return 0;
3654 }
14f9c5c9
AS
3655
3656 case TYPE_CODE_ARRAY:
d2e4a39e 3657 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3658 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3659
3660 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3661 if (ada_is_array_descriptor_type (ftype))
3662 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3663 || ada_is_array_descriptor_type (atype));
14f9c5c9 3664 else
4c4b4cd2
PH
3665 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3666 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3667
3668 case TYPE_CODE_UNION:
3669 case TYPE_CODE_FLT:
3670 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3671 }
3672}
3673
3674/* Return non-zero if the formals of FUNC "sufficiently match" the
3675 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3676 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3677 argument function. */
14f9c5c9
AS
3678
3679static int
d2e4a39e 3680ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3681{
3682 int i;
d2e4a39e 3683 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3684
1265e4aa
JB
3685 if (SYMBOL_CLASS (func) == LOC_CONST
3686 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3687 return (n_actuals == 0);
3688 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3689 return 0;
3690
3691 if (TYPE_NFIELDS (func_type) != n_actuals)
3692 return 0;
3693
3694 for (i = 0; i < n_actuals; i += 1)
3695 {
4c4b4cd2 3696 if (actuals[i] == NULL)
76a01679
JB
3697 return 0;
3698 else
3699 {
5b4ee69b
MS
3700 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3701 i));
df407dfe 3702 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3703
76a01679
JB
3704 if (!ada_type_match (ftype, atype, 1))
3705 return 0;
3706 }
14f9c5c9
AS
3707 }
3708 return 1;
3709}
3710
3711/* False iff function type FUNC_TYPE definitely does not produce a value
3712 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3713 FUNC_TYPE is not a valid function type with a non-null return type
3714 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3715
3716static int
d2e4a39e 3717return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3718{
d2e4a39e 3719 struct type *return_type;
14f9c5c9
AS
3720
3721 if (func_type == NULL)
3722 return 1;
3723
4c4b4cd2 3724 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3725 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3726 else
18af8284 3727 return_type = get_base_type (func_type);
14f9c5c9
AS
3728 if (return_type == NULL)
3729 return 1;
3730
18af8284 3731 context_type = get_base_type (context_type);
14f9c5c9
AS
3732
3733 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3734 return context_type == NULL || return_type == context_type;
3735 else if (context_type == NULL)
3736 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3737 else
3738 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3739}
3740
3741
4c4b4cd2 3742/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3743 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3744 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3745 that returns that type, then eliminate matches that don't. If
3746 CONTEXT_TYPE is void and there is at least one match that does not
3747 return void, eliminate all matches that do.
3748
14f9c5c9
AS
3749 Asks the user if there is more than one match remaining. Returns -1
3750 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3751 solely for messages. May re-arrange and modify SYMS in
3752 the process; the index returned is for the modified vector. */
14f9c5c9 3753
4c4b4cd2 3754static int
d12307c1 3755ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3756 int nsyms, struct value **args, int nargs,
3757 const char *name, struct type *context_type)
14f9c5c9 3758{
30b15541 3759 int fallback;
14f9c5c9 3760 int k;
4c4b4cd2 3761 int m; /* Number of hits */
14f9c5c9 3762
d2e4a39e 3763 m = 0;
30b15541
UW
3764 /* In the first pass of the loop, we only accept functions matching
3765 context_type. If none are found, we add a second pass of the loop
3766 where every function is accepted. */
3767 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3768 {
3769 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3770 {
d12307c1 3771 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3772
d12307c1 3773 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3774 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3775 {
3776 syms[m] = syms[k];
3777 m += 1;
3778 }
3779 }
14f9c5c9
AS
3780 }
3781
dc5c8746
PMR
3782 /* If we got multiple matches, ask the user which one to use. Don't do this
3783 interactive thing during completion, though, as the purpose of the
3784 completion is providing a list of all possible matches. Prompting the
3785 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3786 if (m == 0)
3787 return -1;
dc5c8746 3788 else if (m > 1 && !parse_completion)
14f9c5c9 3789 {
323e0a4a 3790 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3791 user_select_syms (syms, m, 1);
14f9c5c9
AS
3792 return 0;
3793 }
3794 return 0;
3795}
3796
4c4b4cd2
PH
3797/* Returns true (non-zero) iff decoded name N0 should appear before N1
3798 in a listing of choices during disambiguation (see sort_choices, below).
3799 The idea is that overloadings of a subprogram name from the
3800 same package should sort in their source order. We settle for ordering
3801 such symbols by their trailing number (__N or $N). */
3802
14f9c5c9 3803static int
0d5cff50 3804encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3805{
3806 if (N1 == NULL)
3807 return 0;
3808 else if (N0 == NULL)
3809 return 1;
3810 else
3811 {
3812 int k0, k1;
5b4ee69b 3813
d2e4a39e 3814 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3815 ;
d2e4a39e 3816 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3817 ;
d2e4a39e 3818 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3819 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3820 {
3821 int n0, n1;
5b4ee69b 3822
4c4b4cd2
PH
3823 n0 = k0;
3824 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3825 n0 -= 1;
3826 n1 = k1;
3827 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3828 n1 -= 1;
3829 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3830 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3831 }
14f9c5c9
AS
3832 return (strcmp (N0, N1) < 0);
3833 }
3834}
d2e4a39e 3835
4c4b4cd2
PH
3836/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3837 encoded names. */
3838
d2e4a39e 3839static void
d12307c1 3840sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3841{
4c4b4cd2 3842 int i;
5b4ee69b 3843
d2e4a39e 3844 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3845 {
d12307c1 3846 struct block_symbol sym = syms[i];
14f9c5c9
AS
3847 int j;
3848
d2e4a39e 3849 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3850 {
d12307c1
PMR
3851 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3852 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3853 break;
3854 syms[j + 1] = syms[j];
3855 }
d2e4a39e 3856 syms[j + 1] = sym;
14f9c5c9
AS
3857 }
3858}
3859
d72413e6
PMR
3860/* Whether GDB should display formals and return types for functions in the
3861 overloads selection menu. */
3862static int print_signatures = 1;
3863
3864/* Print the signature for SYM on STREAM according to the FLAGS options. For
3865 all but functions, the signature is just the name of the symbol. For
3866 functions, this is the name of the function, the list of types for formals
3867 and the return type (if any). */
3868
3869static void
3870ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3871 const struct type_print_options *flags)
3872{
3873 struct type *type = SYMBOL_TYPE (sym);
3874
3875 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3876 if (!print_signatures
3877 || type == NULL
3878 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3879 return;
3880
3881 if (TYPE_NFIELDS (type) > 0)
3882 {
3883 int i;
3884
3885 fprintf_filtered (stream, " (");
3886 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3887 {
3888 if (i > 0)
3889 fprintf_filtered (stream, "; ");
3890 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3891 flags);
3892 }
3893 fprintf_filtered (stream, ")");
3894 }
3895 if (TYPE_TARGET_TYPE (type) != NULL
3896 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3897 {
3898 fprintf_filtered (stream, " return ");
3899 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3900 }
3901}
3902
4c4b4cd2
PH
3903/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3904 by asking the user (if necessary), returning the number selected,
3905 and setting the first elements of SYMS items. Error if no symbols
3906 selected. */
14f9c5c9
AS
3907
3908/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3909 to be re-integrated one of these days. */
14f9c5c9
AS
3910
3911int
d12307c1 3912user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3913{
3914 int i;
8d749320 3915 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3916 int n_chosen;
3917 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3918 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3919
3920 if (max_results < 1)
323e0a4a 3921 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3922 if (nsyms <= 1)
3923 return nsyms;
3924
717d2f5a
JB
3925 if (select_mode == multiple_symbols_cancel)
3926 error (_("\
3927canceled because the command is ambiguous\n\
3928See set/show multiple-symbol."));
3929
3930 /* If select_mode is "all", then return all possible symbols.
3931 Only do that if more than one symbol can be selected, of course.
3932 Otherwise, display the menu as usual. */
3933 if (select_mode == multiple_symbols_all && max_results > 1)
3934 return nsyms;
3935
323e0a4a 3936 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3937 if (max_results > 1)
323e0a4a 3938 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3939
4c4b4cd2 3940 sort_choices (syms, nsyms);
14f9c5c9
AS
3941
3942 for (i = 0; i < nsyms; i += 1)
3943 {
d12307c1 3944 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3945 continue;
3946
d12307c1 3947 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3948 {
76a01679 3949 struct symtab_and_line sal =
d12307c1 3950 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3951
d72413e6
PMR
3952 printf_unfiltered ("[%d] ", i + first_choice);
3953 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3954 &type_print_raw_options);
323e0a4a 3955 if (sal.symtab == NULL)
d72413e6 3956 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3957 sal.line);
3958 else
d72413e6 3959 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3960 symtab_to_filename_for_display (sal.symtab),
3961 sal.line);
4c4b4cd2
PH
3962 continue;
3963 }
d2e4a39e 3964 else
4c4b4cd2
PH
3965 {
3966 int is_enumeral =
d12307c1
PMR
3967 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3968 && SYMBOL_TYPE (syms[i].symbol) != NULL
3969 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3970 struct symtab *symtab = NULL;
3971
d12307c1
PMR
3972 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3973 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3974
d12307c1 3975 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3976 {
3977 printf_unfiltered ("[%d] ", i + first_choice);
3978 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3979 &type_print_raw_options);
3980 printf_unfiltered (_(" at %s:%d\n"),
3981 symtab_to_filename_for_display (symtab),
3982 SYMBOL_LINE (syms[i].symbol));
3983 }
76a01679 3984 else if (is_enumeral
d12307c1 3985 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3986 {
a3f17187 3987 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3988 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3989 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3990 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3991 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3992 }
d72413e6
PMR
3993 else
3994 {
3995 printf_unfiltered ("[%d] ", i + first_choice);
3996 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3997 &type_print_raw_options);
3998
3999 if (symtab != NULL)
4000 printf_unfiltered (is_enumeral
4001 ? _(" in %s (enumeral)\n")
4002 : _(" at %s:?\n"),
4003 symtab_to_filename_for_display (symtab));
4004 else
4005 printf_unfiltered (is_enumeral
4006 ? _(" (enumeral)\n")
4007 : _(" at ?\n"));
4008 }
4c4b4cd2 4009 }
14f9c5c9 4010 }
d2e4a39e 4011
14f9c5c9 4012 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4013 "overload-choice");
14f9c5c9
AS
4014
4015 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4016 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4017
4018 return n_chosen;
4019}
4020
4021/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4022 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4023 order in CHOICES[0 .. N-1], and return N.
4024
4025 The user types choices as a sequence of numbers on one line
4026 separated by blanks, encoding them as follows:
4027
4c4b4cd2 4028 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4029 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4030 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4031
4c4b4cd2 4032 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4033
4034 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4035 prompts (for use with the -f switch). */
14f9c5c9
AS
4036
4037int
d2e4a39e 4038get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4039 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4040{
d2e4a39e 4041 char *args;
a121b7c1 4042 const char *prompt;
14f9c5c9
AS
4043 int n_chosen;
4044 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4045
14f9c5c9
AS
4046 prompt = getenv ("PS2");
4047 if (prompt == NULL)
0bcd0149 4048 prompt = "> ";
14f9c5c9 4049
0bcd0149 4050 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 4051
14f9c5c9 4052 if (args == NULL)
323e0a4a 4053 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4054
4055 n_chosen = 0;
76a01679 4056
4c4b4cd2
PH
4057 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4058 order, as given in args. Choices are validated. */
14f9c5c9
AS
4059 while (1)
4060 {
d2e4a39e 4061 char *args2;
14f9c5c9
AS
4062 int choice, j;
4063
0fcd72ba 4064 args = skip_spaces (args);
14f9c5c9 4065 if (*args == '\0' && n_chosen == 0)
323e0a4a 4066 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4067 else if (*args == '\0')
4c4b4cd2 4068 break;
14f9c5c9
AS
4069
4070 choice = strtol (args, &args2, 10);
d2e4a39e 4071 if (args == args2 || choice < 0
4c4b4cd2 4072 || choice > n_choices + first_choice - 1)
323e0a4a 4073 error (_("Argument must be choice number"));
14f9c5c9
AS
4074 args = args2;
4075
d2e4a39e 4076 if (choice == 0)
323e0a4a 4077 error (_("cancelled"));
14f9c5c9
AS
4078
4079 if (choice < first_choice)
4c4b4cd2
PH
4080 {
4081 n_chosen = n_choices;
4082 for (j = 0; j < n_choices; j += 1)
4083 choices[j] = j;
4084 break;
4085 }
14f9c5c9
AS
4086 choice -= first_choice;
4087
d2e4a39e 4088 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4089 {
4090 }
14f9c5c9
AS
4091
4092 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4093 {
4094 int k;
5b4ee69b 4095
4c4b4cd2
PH
4096 for (k = n_chosen - 1; k > j; k -= 1)
4097 choices[k + 1] = choices[k];
4098 choices[j + 1] = choice;
4099 n_chosen += 1;
4100 }
14f9c5c9
AS
4101 }
4102
4103 if (n_chosen > max_results)
323e0a4a 4104 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4105
14f9c5c9
AS
4106 return n_chosen;
4107}
4108
4c4b4cd2
PH
4109/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4110 on the function identified by SYM and BLOCK, and taking NARGS
4111 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4112
4113static void
e9d9f57e 4114replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4115 int oplen, struct symbol *sym,
270140bd 4116 const struct block *block)
14f9c5c9
AS
4117{
4118 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4119 symbol, -oplen for operator being replaced). */
d2e4a39e 4120 struct expression *newexp = (struct expression *)
8c1a34e7 4121 xzalloc (sizeof (struct expression)
4c4b4cd2 4122 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4123 struct expression *exp = expp->get ();
14f9c5c9
AS
4124
4125 newexp->nelts = exp->nelts + 7 - oplen;
4126 newexp->language_defn = exp->language_defn;
3489610d 4127 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4128 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4129 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4130 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4131
4132 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4133 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4134
4135 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4136 newexp->elts[pc + 4].block = block;
4137 newexp->elts[pc + 5].symbol = sym;
4138
e9d9f57e 4139 expp->reset (newexp);
d2e4a39e 4140}
14f9c5c9
AS
4141
4142/* Type-class predicates */
4143
4c4b4cd2
PH
4144/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4145 or FLOAT). */
14f9c5c9
AS
4146
4147static int
d2e4a39e 4148numeric_type_p (struct type *type)
14f9c5c9
AS
4149{
4150 if (type == NULL)
4151 return 0;
d2e4a39e
AS
4152 else
4153 {
4154 switch (TYPE_CODE (type))
4c4b4cd2
PH
4155 {
4156 case TYPE_CODE_INT:
4157 case TYPE_CODE_FLT:
4158 return 1;
4159 case TYPE_CODE_RANGE:
4160 return (type == TYPE_TARGET_TYPE (type)
4161 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4162 default:
4163 return 0;
4164 }
d2e4a39e 4165 }
14f9c5c9
AS
4166}
4167
4c4b4cd2 4168/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4169
4170static int
d2e4a39e 4171integer_type_p (struct type *type)
14f9c5c9
AS
4172{
4173 if (type == NULL)
4174 return 0;
d2e4a39e
AS
4175 else
4176 {
4177 switch (TYPE_CODE (type))
4c4b4cd2
PH
4178 {
4179 case TYPE_CODE_INT:
4180 return 1;
4181 case TYPE_CODE_RANGE:
4182 return (type == TYPE_TARGET_TYPE (type)
4183 || integer_type_p (TYPE_TARGET_TYPE (type)));
4184 default:
4185 return 0;
4186 }
d2e4a39e 4187 }
14f9c5c9
AS
4188}
4189
4c4b4cd2 4190/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4191
4192static int
d2e4a39e 4193scalar_type_p (struct type *type)
14f9c5c9
AS
4194{
4195 if (type == NULL)
4196 return 0;
d2e4a39e
AS
4197 else
4198 {
4199 switch (TYPE_CODE (type))
4c4b4cd2
PH
4200 {
4201 case TYPE_CODE_INT:
4202 case TYPE_CODE_RANGE:
4203 case TYPE_CODE_ENUM:
4204 case TYPE_CODE_FLT:
4205 return 1;
4206 default:
4207 return 0;
4208 }
d2e4a39e 4209 }
14f9c5c9
AS
4210}
4211
4c4b4cd2 4212/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4213
4214static int
d2e4a39e 4215discrete_type_p (struct type *type)
14f9c5c9
AS
4216{
4217 if (type == NULL)
4218 return 0;
d2e4a39e
AS
4219 else
4220 {
4221 switch (TYPE_CODE (type))
4c4b4cd2
PH
4222 {
4223 case TYPE_CODE_INT:
4224 case TYPE_CODE_RANGE:
4225 case TYPE_CODE_ENUM:
872f0337 4226 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4227 return 1;
4228 default:
4229 return 0;
4230 }
d2e4a39e 4231 }
14f9c5c9
AS
4232}
4233
4c4b4cd2
PH
4234/* Returns non-zero if OP with operands in the vector ARGS could be
4235 a user-defined function. Errs on the side of pre-defined operators
4236 (i.e., result 0). */
14f9c5c9
AS
4237
4238static int
d2e4a39e 4239possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4240{
76a01679 4241 struct type *type0 =
df407dfe 4242 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4243 struct type *type1 =
df407dfe 4244 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4245
4c4b4cd2
PH
4246 if (type0 == NULL)
4247 return 0;
4248
14f9c5c9
AS
4249 switch (op)
4250 {
4251 default:
4252 return 0;
4253
4254 case BINOP_ADD:
4255 case BINOP_SUB:
4256 case BINOP_MUL:
4257 case BINOP_DIV:
d2e4a39e 4258 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4259
4260 case BINOP_REM:
4261 case BINOP_MOD:
4262 case BINOP_BITWISE_AND:
4263 case BINOP_BITWISE_IOR:
4264 case BINOP_BITWISE_XOR:
d2e4a39e 4265 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4266
4267 case BINOP_EQUAL:
4268 case BINOP_NOTEQUAL:
4269 case BINOP_LESS:
4270 case BINOP_GTR:
4271 case BINOP_LEQ:
4272 case BINOP_GEQ:
d2e4a39e 4273 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4274
4275 case BINOP_CONCAT:
ee90b9ab 4276 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4277
4278 case BINOP_EXP:
d2e4a39e 4279 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4280
4281 case UNOP_NEG:
4282 case UNOP_PLUS:
4283 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4284 case UNOP_ABS:
4285 return (!numeric_type_p (type0));
14f9c5c9
AS
4286
4287 }
4288}
4289\f
4c4b4cd2 4290 /* Renaming */
14f9c5c9 4291
aeb5907d
JB
4292/* NOTES:
4293
4294 1. In the following, we assume that a renaming type's name may
4295 have an ___XD suffix. It would be nice if this went away at some
4296 point.
4297 2. We handle both the (old) purely type-based representation of
4298 renamings and the (new) variable-based encoding. At some point,
4299 it is devoutly to be hoped that the former goes away
4300 (FIXME: hilfinger-2007-07-09).
4301 3. Subprogram renamings are not implemented, although the XRS
4302 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4303
4304/* If SYM encodes a renaming,
4305
4306 <renaming> renames <renamed entity>,
4307
4308 sets *LEN to the length of the renamed entity's name,
4309 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4310 the string describing the subcomponent selected from the renamed
0963b4bd 4311 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4312 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4313 are undefined). Otherwise, returns a value indicating the category
4314 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4315 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4316 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4317 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4318 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4319 may be NULL, in which case they are not assigned.
4320
4321 [Currently, however, GCC does not generate subprogram renamings.] */
4322
4323enum ada_renaming_category
4324ada_parse_renaming (struct symbol *sym,
4325 const char **renamed_entity, int *len,
4326 const char **renaming_expr)
4327{
4328 enum ada_renaming_category kind;
4329 const char *info;
4330 const char *suffix;
4331
4332 if (sym == NULL)
4333 return ADA_NOT_RENAMING;
4334 switch (SYMBOL_CLASS (sym))
14f9c5c9 4335 {
aeb5907d
JB
4336 default:
4337 return ADA_NOT_RENAMING;
4338 case LOC_TYPEDEF:
4339 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4340 renamed_entity, len, renaming_expr);
4341 case LOC_LOCAL:
4342 case LOC_STATIC:
4343 case LOC_COMPUTED:
4344 case LOC_OPTIMIZED_OUT:
4345 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4346 if (info == NULL)
4347 return ADA_NOT_RENAMING;
4348 switch (info[5])
4349 {
4350 case '_':
4351 kind = ADA_OBJECT_RENAMING;
4352 info += 6;
4353 break;
4354 case 'E':
4355 kind = ADA_EXCEPTION_RENAMING;
4356 info += 7;
4357 break;
4358 case 'P':
4359 kind = ADA_PACKAGE_RENAMING;
4360 info += 7;
4361 break;
4362 case 'S':
4363 kind = ADA_SUBPROGRAM_RENAMING;
4364 info += 7;
4365 break;
4366 default:
4367 return ADA_NOT_RENAMING;
4368 }
14f9c5c9 4369 }
4c4b4cd2 4370
aeb5907d
JB
4371 if (renamed_entity != NULL)
4372 *renamed_entity = info;
4373 suffix = strstr (info, "___XE");
4374 if (suffix == NULL || suffix == info)
4375 return ADA_NOT_RENAMING;
4376 if (len != NULL)
4377 *len = strlen (info) - strlen (suffix);
4378 suffix += 5;
4379 if (renaming_expr != NULL)
4380 *renaming_expr = suffix;
4381 return kind;
4382}
4383
4384/* Assuming TYPE encodes a renaming according to the old encoding in
4385 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4386 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4387 ADA_NOT_RENAMING otherwise. */
4388static enum ada_renaming_category
4389parse_old_style_renaming (struct type *type,
4390 const char **renamed_entity, int *len,
4391 const char **renaming_expr)
4392{
4393 enum ada_renaming_category kind;
4394 const char *name;
4395 const char *info;
4396 const char *suffix;
14f9c5c9 4397
aeb5907d
JB
4398 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4399 || TYPE_NFIELDS (type) != 1)
4400 return ADA_NOT_RENAMING;
14f9c5c9 4401
a737d952 4402 name = TYPE_NAME (type);
aeb5907d
JB
4403 if (name == NULL)
4404 return ADA_NOT_RENAMING;
4405
4406 name = strstr (name, "___XR");
4407 if (name == NULL)
4408 return ADA_NOT_RENAMING;
4409 switch (name[5])
4410 {
4411 case '\0':
4412 case '_':
4413 kind = ADA_OBJECT_RENAMING;
4414 break;
4415 case 'E':
4416 kind = ADA_EXCEPTION_RENAMING;
4417 break;
4418 case 'P':
4419 kind = ADA_PACKAGE_RENAMING;
4420 break;
4421 case 'S':
4422 kind = ADA_SUBPROGRAM_RENAMING;
4423 break;
4424 default:
4425 return ADA_NOT_RENAMING;
4426 }
14f9c5c9 4427
aeb5907d
JB
4428 info = TYPE_FIELD_NAME (type, 0);
4429 if (info == NULL)
4430 return ADA_NOT_RENAMING;
4431 if (renamed_entity != NULL)
4432 *renamed_entity = info;
4433 suffix = strstr (info, "___XE");
4434 if (renaming_expr != NULL)
4435 *renaming_expr = suffix + 5;
4436 if (suffix == NULL || suffix == info)
4437 return ADA_NOT_RENAMING;
4438 if (len != NULL)
4439 *len = suffix - info;
4440 return kind;
a5ee536b
JB
4441}
4442
4443/* Compute the value of the given RENAMING_SYM, which is expected to
4444 be a symbol encoding a renaming expression. BLOCK is the block
4445 used to evaluate the renaming. */
52ce6436 4446
a5ee536b
JB
4447static struct value *
4448ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4449 const struct block *block)
a5ee536b 4450{
bbc13ae3 4451 const char *sym_name;
a5ee536b 4452
bbc13ae3 4453 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4454 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4455 return evaluate_expression (expr.get ());
a5ee536b 4456}
14f9c5c9 4457\f
d2e4a39e 4458
4c4b4cd2 4459 /* Evaluation: Function Calls */
14f9c5c9 4460
4c4b4cd2 4461/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4462 lvalues, and otherwise has the side-effect of allocating memory
4463 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4464
d2e4a39e 4465static struct value *
40bc484c 4466ensure_lval (struct value *val)
14f9c5c9 4467{
40bc484c
JB
4468 if (VALUE_LVAL (val) == not_lval
4469 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4470 {
df407dfe 4471 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4472 const CORE_ADDR addr =
4473 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4474
a84a8a0d 4475 VALUE_LVAL (val) = lval_memory;
1a088441 4476 set_value_address (val, addr);
40bc484c 4477 write_memory (addr, value_contents (val), len);
c3e5cd34 4478 }
14f9c5c9
AS
4479
4480 return val;
4481}
4482
4483/* Return the value ACTUAL, converted to be an appropriate value for a
4484 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4485 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4486 values not residing in memory, updating it as needed. */
14f9c5c9 4487
a93c0eb6 4488struct value *
40bc484c 4489ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4490{
df407dfe 4491 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4492 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4493 struct type *formal_target =
4494 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4495 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4496 struct type *actual_target =
4497 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4498 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4499
4c4b4cd2 4500 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4501 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4502 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4503 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4504 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4505 {
a84a8a0d 4506 struct value *result;
5b4ee69b 4507
14f9c5c9 4508 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4509 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4510 result = desc_data (actual);
cb923fcc 4511 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4512 {
4513 if (VALUE_LVAL (actual) != lval_memory)
4514 {
4515 struct value *val;
5b4ee69b 4516
df407dfe 4517 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4518 val = allocate_value (actual_type);
990a07ab 4519 memcpy ((char *) value_contents_raw (val),
0fd88904 4520 (char *) value_contents (actual),
4c4b4cd2 4521 TYPE_LENGTH (actual_type));
40bc484c 4522 actual = ensure_lval (val);
4c4b4cd2 4523 }
a84a8a0d 4524 result = value_addr (actual);
4c4b4cd2 4525 }
a84a8a0d
JB
4526 else
4527 return actual;
b1af9e97 4528 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4529 }
4530 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4531 return ada_value_ind (actual);
8344af1e
JB
4532 else if (ada_is_aligner_type (formal_type))
4533 {
4534 /* We need to turn this parameter into an aligner type
4535 as well. */
4536 struct value *aligner = allocate_value (formal_type);
4537 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4538
4539 value_assign_to_component (aligner, component, actual);
4540 return aligner;
4541 }
14f9c5c9
AS
4542
4543 return actual;
4544}
4545
438c98a1
JB
4546/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4547 type TYPE. This is usually an inefficient no-op except on some targets
4548 (such as AVR) where the representation of a pointer and an address
4549 differs. */
4550
4551static CORE_ADDR
4552value_pointer (struct value *value, struct type *type)
4553{
4554 struct gdbarch *gdbarch = get_type_arch (type);
4555 unsigned len = TYPE_LENGTH (type);
224c3ddb 4556 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4557 CORE_ADDR addr;
4558
4559 addr = value_address (value);
4560 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4561 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4562 return addr;
4563}
4564
14f9c5c9 4565
4c4b4cd2
PH
4566/* Push a descriptor of type TYPE for array value ARR on the stack at
4567 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4568 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4569 to-descriptor type rather than a descriptor type), a struct value *
4570 representing a pointer to this descriptor. */
14f9c5c9 4571
d2e4a39e 4572static struct value *
40bc484c 4573make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4574{
d2e4a39e
AS
4575 struct type *bounds_type = desc_bounds_type (type);
4576 struct type *desc_type = desc_base_type (type);
4577 struct value *descriptor = allocate_value (desc_type);
4578 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4579 int i;
d2e4a39e 4580
0963b4bd
MS
4581 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4582 i > 0; i -= 1)
14f9c5c9 4583 {
19f220c3
JK
4584 modify_field (value_type (bounds), value_contents_writeable (bounds),
4585 ada_array_bound (arr, i, 0),
4586 desc_bound_bitpos (bounds_type, i, 0),
4587 desc_bound_bitsize (bounds_type, i, 0));
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 1),
4590 desc_bound_bitpos (bounds_type, i, 1),
4591 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4592 }
d2e4a39e 4593
40bc484c 4594 bounds = ensure_lval (bounds);
d2e4a39e 4595
19f220c3
JK
4596 modify_field (value_type (descriptor),
4597 value_contents_writeable (descriptor),
4598 value_pointer (ensure_lval (arr),
4599 TYPE_FIELD_TYPE (desc_type, 0)),
4600 fat_pntr_data_bitpos (desc_type),
4601 fat_pntr_data_bitsize (desc_type));
4602
4603 modify_field (value_type (descriptor),
4604 value_contents_writeable (descriptor),
4605 value_pointer (bounds,
4606 TYPE_FIELD_TYPE (desc_type, 1)),
4607 fat_pntr_bounds_bitpos (desc_type),
4608 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4609
40bc484c 4610 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4611
4612 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4613 return value_addr (descriptor);
4614 else
4615 return descriptor;
4616}
14f9c5c9 4617\f
3d9434b5
JB
4618 /* Symbol Cache Module */
4619
3d9434b5 4620/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4621 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4622 on the type of entity being printed, the cache can make it as much
4623 as an order of magnitude faster than without it.
4624
4625 The descriptive type DWARF extension has significantly reduced
4626 the need for this cache, at least when DWARF is being used. However,
4627 even in this case, some expensive name-based symbol searches are still
4628 sometimes necessary - to find an XVZ variable, mostly. */
4629
ee01b665 4630/* Initialize the contents of SYM_CACHE. */
3d9434b5 4631
ee01b665
JB
4632static void
4633ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4634{
4635 obstack_init (&sym_cache->cache_space);
4636 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4637}
3d9434b5 4638
ee01b665
JB
4639/* Free the memory used by SYM_CACHE. */
4640
4641static void
4642ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4643{
ee01b665
JB
4644 obstack_free (&sym_cache->cache_space, NULL);
4645 xfree (sym_cache);
4646}
3d9434b5 4647
ee01b665
JB
4648/* Return the symbol cache associated to the given program space PSPACE.
4649 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4650
ee01b665
JB
4651static struct ada_symbol_cache *
4652ada_get_symbol_cache (struct program_space *pspace)
4653{
4654 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4655
66c168ae 4656 if (pspace_data->sym_cache == NULL)
ee01b665 4657 {
66c168ae
JB
4658 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4659 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4660 }
4661
66c168ae 4662 return pspace_data->sym_cache;
ee01b665 4663}
3d9434b5
JB
4664
4665/* Clear all entries from the symbol cache. */
4666
4667static void
4668ada_clear_symbol_cache (void)
4669{
ee01b665
JB
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
4672
4673 obstack_free (&sym_cache->cache_space, NULL);
4674 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4675}
4676
fe978cb0 4677/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4678 Return it if found, or NULL otherwise. */
4679
4680static struct cache_entry **
fe978cb0 4681find_entry (const char *name, domain_enum domain)
3d9434b5 4682{
ee01b665
JB
4683 struct ada_symbol_cache *sym_cache
4684 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4685 int h = msymbol_hash (name) % HASH_SIZE;
4686 struct cache_entry **e;
4687
ee01b665 4688 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4689 {
fe978cb0 4690 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4691 return e;
4692 }
4693 return NULL;
4694}
4695
fe978cb0 4696/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4697 Return 1 if found, 0 otherwise.
4698
4699 If an entry was found and SYM is not NULL, set *SYM to the entry's
4700 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4701
96d887e8 4702static int
fe978cb0 4703lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4704 struct symbol **sym, const struct block **block)
96d887e8 4705{
fe978cb0 4706 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4707
4708 if (e == NULL)
4709 return 0;
4710 if (sym != NULL)
4711 *sym = (*e)->sym;
4712 if (block != NULL)
4713 *block = (*e)->block;
4714 return 1;
96d887e8
PH
4715}
4716
3d9434b5 4717/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4718 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4719
96d887e8 4720static void
fe978cb0 4721cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4722 const struct block *block)
96d887e8 4723{
ee01b665
JB
4724 struct ada_symbol_cache *sym_cache
4725 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4726 int h;
4727 char *copy;
4728 struct cache_entry *e;
4729
1994afbf
DE
4730 /* Symbols for builtin types don't have a block.
4731 For now don't cache such symbols. */
4732 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4733 return;
4734
3d9434b5
JB
4735 /* If the symbol is a local symbol, then do not cache it, as a search
4736 for that symbol depends on the context. To determine whether
4737 the symbol is local or not, we check the block where we found it
4738 against the global and static blocks of its associated symtab. */
4739 if (sym
08be3fe3 4740 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4741 GLOBAL_BLOCK) != block
08be3fe3 4742 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4743 STATIC_BLOCK) != block)
3d9434b5
JB
4744 return;
4745
4746 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4747 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4748 e->next = sym_cache->root[h];
4749 sym_cache->root[h] = e;
224c3ddb
SM
4750 e->name = copy
4751 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4752 strcpy (copy, name);
4753 e->sym = sym;
fe978cb0 4754 e->domain = domain;
3d9434b5 4755 e->block = block;
96d887e8 4756}
4c4b4cd2
PH
4757\f
4758 /* Symbol Lookup */
4759
b5ec771e
PA
4760/* Return the symbol name match type that should be used used when
4761 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4762
4763 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4764 for Ada lookups. */
c0431670 4765
b5ec771e
PA
4766static symbol_name_match_type
4767name_match_type_from_name (const char *lookup_name)
c0431670 4768{
b5ec771e
PA
4769 return (strstr (lookup_name, "__") == NULL
4770 ? symbol_name_match_type::WILD
4771 : symbol_name_match_type::FULL);
c0431670
JB
4772}
4773
4c4b4cd2
PH
4774/* Return the result of a standard (literal, C-like) lookup of NAME in
4775 given DOMAIN, visible from lexical block BLOCK. */
4776
4777static struct symbol *
4778standard_lookup (const char *name, const struct block *block,
4779 domain_enum domain)
4780{
acbd605d 4781 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4782 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4783
d12307c1
PMR
4784 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4785 return sym.symbol;
2570f2b7 4786 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4787 cache_symbol (name, domain, sym.symbol, sym.block);
4788 return sym.symbol;
4c4b4cd2
PH
4789}
4790
4791
4792/* Non-zero iff there is at least one non-function/non-enumeral symbol
4793 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4794 since they contend in overloading in the same way. */
4795static int
d12307c1 4796is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4797{
4798 int i;
4799
4800 for (i = 0; i < n; i += 1)
d12307c1
PMR
4801 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4802 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4803 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4804 return 1;
4805
4806 return 0;
4807}
4808
4809/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4810 struct types. Otherwise, they may not. */
14f9c5c9
AS
4811
4812static int
d2e4a39e 4813equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4814{
d2e4a39e 4815 if (type0 == type1)
14f9c5c9 4816 return 1;
d2e4a39e 4817 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4818 || TYPE_CODE (type0) != TYPE_CODE (type1))
4819 return 0;
d2e4a39e 4820 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4821 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4822 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4823 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4824 return 1;
d2e4a39e 4825
14f9c5c9
AS
4826 return 0;
4827}
4828
4829/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4830 no more defined than that of SYM1. */
14f9c5c9
AS
4831
4832static int
d2e4a39e 4833lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4834{
4835 if (sym0 == sym1)
4836 return 1;
176620f1 4837 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4838 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4839 return 0;
4840
d2e4a39e 4841 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4842 {
4843 case LOC_UNDEF:
4844 return 1;
4845 case LOC_TYPEDEF:
4846 {
4c4b4cd2
PH
4847 struct type *type0 = SYMBOL_TYPE (sym0);
4848 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4849 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4850 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4851 int len0 = strlen (name0);
5b4ee69b 4852
4c4b4cd2
PH
4853 return
4854 TYPE_CODE (type0) == TYPE_CODE (type1)
4855 && (equiv_types (type0, type1)
4856 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4857 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4858 }
4859 case LOC_CONST:
4860 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4861 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4862 default:
4863 return 0;
14f9c5c9
AS
4864 }
4865}
4866
d12307c1 4867/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4868 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4869
4870static void
76a01679
JB
4871add_defn_to_vec (struct obstack *obstackp,
4872 struct symbol *sym,
f0c5f9b2 4873 const struct block *block)
14f9c5c9
AS
4874{
4875 int i;
d12307c1 4876 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4877
529cad9c
PH
4878 /* Do not try to complete stub types, as the debugger is probably
4879 already scanning all symbols matching a certain name at the
4880 time when this function is called. Trying to replace the stub
4881 type by its associated full type will cause us to restart a scan
4882 which may lead to an infinite recursion. Instead, the client
4883 collecting the matching symbols will end up collecting several
4884 matches, with at least one of them complete. It can then filter
4885 out the stub ones if needed. */
4886
4c4b4cd2
PH
4887 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4888 {
d12307c1 4889 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4890 return;
d12307c1 4891 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4892 {
d12307c1 4893 prevDefns[i].symbol = sym;
4c4b4cd2 4894 prevDefns[i].block = block;
4c4b4cd2 4895 return;
76a01679 4896 }
4c4b4cd2
PH
4897 }
4898
4899 {
d12307c1 4900 struct block_symbol info;
4c4b4cd2 4901
d12307c1 4902 info.symbol = sym;
4c4b4cd2 4903 info.block = block;
d12307c1 4904 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4905 }
4906}
4907
d12307c1
PMR
4908/* Number of block_symbol structures currently collected in current vector in
4909 OBSTACKP. */
4c4b4cd2 4910
76a01679
JB
4911static int
4912num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4913{
d12307c1 4914 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4915}
4916
d12307c1
PMR
4917/* Vector of block_symbol structures currently collected in current vector in
4918 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4919
d12307c1 4920static struct block_symbol *
4c4b4cd2
PH
4921defns_collected (struct obstack *obstackp, int finish)
4922{
4923 if (finish)
224c3ddb 4924 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4925 else
d12307c1 4926 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4927}
4928
7c7b6655
TT
4929/* Return a bound minimal symbol matching NAME according to Ada
4930 decoding rules. Returns an invalid symbol if there is no such
4931 minimal symbol. Names prefixed with "standard__" are handled
4932 specially: "standard__" is first stripped off, and only static and
4933 global symbols are searched. */
4c4b4cd2 4934
7c7b6655 4935struct bound_minimal_symbol
96d887e8 4936ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4937{
7c7b6655 4938 struct bound_minimal_symbol result;
4c4b4cd2 4939 struct objfile *objfile;
96d887e8 4940 struct minimal_symbol *msymbol;
4c4b4cd2 4941
7c7b6655
TT
4942 memset (&result, 0, sizeof (result));
4943
b5ec771e
PA
4944 symbol_name_match_type match_type = name_match_type_from_name (name);
4945 lookup_name_info lookup_name (name, match_type);
4946
4947 symbol_name_matcher_ftype *match_name
4948 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4949
96d887e8
PH
4950 ALL_MSYMBOLS (objfile, msymbol)
4951 {
b5ec771e 4952 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
96d887e8 4953 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4954 {
4955 result.minsym = msymbol;
4956 result.objfile = objfile;
4957 break;
4958 }
96d887e8 4959 }
4c4b4cd2 4960
7c7b6655 4961 return result;
96d887e8 4962}
4c4b4cd2 4963
96d887e8
PH
4964/* For all subprograms that statically enclose the subprogram of the
4965 selected frame, add symbols matching identifier NAME in DOMAIN
4966 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4967 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4968 with a wildcard prefix. */
4c4b4cd2 4969
96d887e8
PH
4970static void
4971add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4972 const lookup_name_info &lookup_name,
4973 domain_enum domain)
96d887e8 4974{
96d887e8 4975}
14f9c5c9 4976
96d887e8
PH
4977/* True if TYPE is definitely an artificial type supplied to a symbol
4978 for which no debugging information was given in the symbol file. */
14f9c5c9 4979
96d887e8
PH
4980static int
4981is_nondebugging_type (struct type *type)
4982{
0d5cff50 4983 const char *name = ada_type_name (type);
5b4ee69b 4984
96d887e8
PH
4985 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4986}
4c4b4cd2 4987
8f17729f
JB
4988/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4989 that are deemed "identical" for practical purposes.
4990
4991 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4992 types and that their number of enumerals is identical (in other
4993 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4994
4995static int
4996ada_identical_enum_types_p (struct type *type1, struct type *type2)
4997{
4998 int i;
4999
5000 /* The heuristic we use here is fairly conservative. We consider
5001 that 2 enumerate types are identical if they have the same
5002 number of enumerals and that all enumerals have the same
5003 underlying value and name. */
5004
5005 /* All enums in the type should have an identical underlying value. */
5006 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5007 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5008 return 0;
5009
5010 /* All enumerals should also have the same name (modulo any numerical
5011 suffix). */
5012 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5013 {
0d5cff50
DE
5014 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5015 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5016 int len_1 = strlen (name_1);
5017 int len_2 = strlen (name_2);
5018
5019 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5020 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5021 if (len_1 != len_2
5022 || strncmp (TYPE_FIELD_NAME (type1, i),
5023 TYPE_FIELD_NAME (type2, i),
5024 len_1) != 0)
5025 return 0;
5026 }
5027
5028 return 1;
5029}
5030
5031/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5032 that are deemed "identical" for practical purposes. Sometimes,
5033 enumerals are not strictly identical, but their types are so similar
5034 that they can be considered identical.
5035
5036 For instance, consider the following code:
5037
5038 type Color is (Black, Red, Green, Blue, White);
5039 type RGB_Color is new Color range Red .. Blue;
5040
5041 Type RGB_Color is a subrange of an implicit type which is a copy
5042 of type Color. If we call that implicit type RGB_ColorB ("B" is
5043 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5044 As a result, when an expression references any of the enumeral
5045 by name (Eg. "print green"), the expression is technically
5046 ambiguous and the user should be asked to disambiguate. But
5047 doing so would only hinder the user, since it wouldn't matter
5048 what choice he makes, the outcome would always be the same.
5049 So, for practical purposes, we consider them as the same. */
5050
5051static int
d12307c1 5052symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
5053{
5054 int i;
5055
5056 /* Before performing a thorough comparison check of each type,
5057 we perform a series of inexpensive checks. We expect that these
5058 checks will quickly fail in the vast majority of cases, and thus
5059 help prevent the unnecessary use of a more expensive comparison.
5060 Said comparison also expects us to make some of these checks
5061 (see ada_identical_enum_types_p). */
5062
5063 /* Quick check: All symbols should have an enum type. */
5064 for (i = 0; i < nsyms; i++)
d12307c1 5065 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5066 return 0;
5067
5068 /* Quick check: They should all have the same value. */
5069 for (i = 1; i < nsyms; i++)
d12307c1 5070 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5071 return 0;
5072
5073 /* Quick check: They should all have the same number of enumerals. */
5074 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5075 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5076 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5077 return 0;
5078
5079 /* All the sanity checks passed, so we might have a set of
5080 identical enumeration types. Perform a more complete
5081 comparison of the type of each symbol. */
5082 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5083 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5084 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5085 return 0;
5086
5087 return 1;
5088}
5089
96d887e8
PH
5090/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5091 duplicate other symbols in the list (The only case I know of where
5092 this happens is when object files containing stabs-in-ecoff are
5093 linked with files containing ordinary ecoff debugging symbols (or no
5094 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5095 Returns the number of items in the modified list. */
4c4b4cd2 5096
96d887e8 5097static int
d12307c1 5098remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5099{
5100 int i, j;
4c4b4cd2 5101
8f17729f
JB
5102 /* We should never be called with less than 2 symbols, as there
5103 cannot be any extra symbol in that case. But it's easy to
5104 handle, since we have nothing to do in that case. */
5105 if (nsyms < 2)
5106 return nsyms;
5107
96d887e8
PH
5108 i = 0;
5109 while (i < nsyms)
5110 {
a35ddb44 5111 int remove_p = 0;
339c13b6
JB
5112
5113 /* If two symbols have the same name and one of them is a stub type,
5114 the get rid of the stub. */
5115
d12307c1
PMR
5116 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5117 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5118 {
5119 for (j = 0; j < nsyms; j++)
5120 {
5121 if (j != i
d12307c1
PMR
5122 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5123 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5124 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5125 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5126 remove_p = 1;
339c13b6
JB
5127 }
5128 }
5129
5130 /* Two symbols with the same name, same class and same address
5131 should be identical. */
5132
d12307c1
PMR
5133 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5134 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5135 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5136 {
5137 for (j = 0; j < nsyms; j += 1)
5138 {
5139 if (i != j
d12307c1
PMR
5140 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5141 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5142 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5143 && SYMBOL_CLASS (syms[i].symbol)
5144 == SYMBOL_CLASS (syms[j].symbol)
5145 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5146 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5147 remove_p = 1;
4c4b4cd2 5148 }
4c4b4cd2 5149 }
339c13b6 5150
a35ddb44 5151 if (remove_p)
339c13b6
JB
5152 {
5153 for (j = i + 1; j < nsyms; j += 1)
5154 syms[j - 1] = syms[j];
5155 nsyms -= 1;
5156 }
5157
96d887e8 5158 i += 1;
14f9c5c9 5159 }
8f17729f
JB
5160
5161 /* If all the remaining symbols are identical enumerals, then
5162 just keep the first one and discard the rest.
5163
5164 Unlike what we did previously, we do not discard any entry
5165 unless they are ALL identical. This is because the symbol
5166 comparison is not a strict comparison, but rather a practical
5167 comparison. If all symbols are considered identical, then
5168 we can just go ahead and use the first one and discard the rest.
5169 But if we cannot reduce the list to a single element, we have
5170 to ask the user to disambiguate anyways. And if we have to
5171 present a multiple-choice menu, it's less confusing if the list
5172 isn't missing some choices that were identical and yet distinct. */
5173 if (symbols_are_identical_enums (syms, nsyms))
5174 nsyms = 1;
5175
96d887e8 5176 return nsyms;
14f9c5c9
AS
5177}
5178
96d887e8
PH
5179/* Given a type that corresponds to a renaming entity, use the type name
5180 to extract the scope (package name or function name, fully qualified,
5181 and following the GNAT encoding convention) where this renaming has been
49d83361 5182 defined. */
4c4b4cd2 5183
49d83361 5184static std::string
96d887e8 5185xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5186{
96d887e8 5187 /* The renaming types adhere to the following convention:
0963b4bd 5188 <scope>__<rename>___<XR extension>.
96d887e8
PH
5189 So, to extract the scope, we search for the "___XR" extension,
5190 and then backtrack until we find the first "__". */
76a01679 5191
a737d952 5192 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5193 const char *suffix = strstr (name, "___XR");
5194 const char *last;
14f9c5c9 5195
96d887e8
PH
5196 /* Now, backtrack a bit until we find the first "__". Start looking
5197 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5198
96d887e8
PH
5199 for (last = suffix - 3; last > name; last--)
5200 if (last[0] == '_' && last[1] == '_')
5201 break;
76a01679 5202
96d887e8 5203 /* Make a copy of scope and return it. */
49d83361 5204 return std::string (name, last);
4c4b4cd2
PH
5205}
5206
96d887e8 5207/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5208
96d887e8
PH
5209static int
5210is_package_name (const char *name)
4c4b4cd2 5211{
96d887e8
PH
5212 /* Here, We take advantage of the fact that no symbols are generated
5213 for packages, while symbols are generated for each function.
5214 So the condition for NAME represent a package becomes equivalent
5215 to NAME not existing in our list of symbols. There is only one
5216 small complication with library-level functions (see below). */
4c4b4cd2 5217
96d887e8 5218 char *fun_name;
76a01679 5219
96d887e8
PH
5220 /* If it is a function that has not been defined at library level,
5221 then we should be able to look it up in the symbols. */
5222 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5223 return 0;
14f9c5c9 5224
96d887e8
PH
5225 /* Library-level function names start with "_ada_". See if function
5226 "_ada_" followed by NAME can be found. */
14f9c5c9 5227
96d887e8 5228 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5229 functions names cannot contain "__" in them. */
96d887e8
PH
5230 if (strstr (name, "__") != NULL)
5231 return 0;
4c4b4cd2 5232
b435e160 5233 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5234
96d887e8
PH
5235 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5236}
14f9c5c9 5237
96d887e8 5238/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5239 not visible from FUNCTION_NAME. */
14f9c5c9 5240
96d887e8 5241static int
0d5cff50 5242old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5243{
aeb5907d
JB
5244 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5245 return 0;
5246
49d83361 5247 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5248
96d887e8 5249 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5250 if (is_package_name (scope.c_str ()))
5251 return 0;
14f9c5c9 5252
96d887e8
PH
5253 /* Check that the rename is in the current function scope by checking
5254 that its name starts with SCOPE. */
76a01679 5255
96d887e8
PH
5256 /* If the function name starts with "_ada_", it means that it is
5257 a library-level function. Strip this prefix before doing the
5258 comparison, as the encoding for the renaming does not contain
5259 this prefix. */
61012eef 5260 if (startswith (function_name, "_ada_"))
96d887e8 5261 function_name += 5;
f26caa11 5262
49d83361 5263 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5264}
5265
aeb5907d
JB
5266/* Remove entries from SYMS that corresponds to a renaming entity that
5267 is not visible from the function associated with CURRENT_BLOCK or
5268 that is superfluous due to the presence of more specific renaming
5269 information. Places surviving symbols in the initial entries of
5270 SYMS and returns the number of surviving symbols.
96d887e8
PH
5271
5272 Rationale:
aeb5907d
JB
5273 First, in cases where an object renaming is implemented as a
5274 reference variable, GNAT may produce both the actual reference
5275 variable and the renaming encoding. In this case, we discard the
5276 latter.
5277
5278 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5279 entity. Unfortunately, STABS currently does not support the definition
5280 of types that are local to a given lexical block, so all renamings types
5281 are emitted at library level. As a consequence, if an application
5282 contains two renaming entities using the same name, and a user tries to
5283 print the value of one of these entities, the result of the ada symbol
5284 lookup will also contain the wrong renaming type.
f26caa11 5285
96d887e8
PH
5286 This function partially covers for this limitation by attempting to
5287 remove from the SYMS list renaming symbols that should be visible
5288 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5289 method with the current information available. The implementation
5290 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5291
5292 - When the user tries to print a rename in a function while there
5293 is another rename entity defined in a package: Normally, the
5294 rename in the function has precedence over the rename in the
5295 package, so the latter should be removed from the list. This is
5296 currently not the case.
5297
5298 - This function will incorrectly remove valid renames if
5299 the CURRENT_BLOCK corresponds to a function which symbol name
5300 has been changed by an "Export" pragma. As a consequence,
5301 the user will be unable to print such rename entities. */
4c4b4cd2 5302
14f9c5c9 5303static int
d12307c1 5304remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5305 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5306{
5307 struct symbol *current_function;
0d5cff50 5308 const char *current_function_name;
4c4b4cd2 5309 int i;
aeb5907d
JB
5310 int is_new_style_renaming;
5311
5312 /* If there is both a renaming foo___XR... encoded as a variable and
5313 a simple variable foo in the same block, discard the latter.
0963b4bd 5314 First, zero out such symbols, then compress. */
aeb5907d
JB
5315 is_new_style_renaming = 0;
5316 for (i = 0; i < nsyms; i += 1)
5317 {
d12307c1 5318 struct symbol *sym = syms[i].symbol;
270140bd 5319 const struct block *block = syms[i].block;
aeb5907d
JB
5320 const char *name;
5321 const char *suffix;
5322
5323 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5324 continue;
5325 name = SYMBOL_LINKAGE_NAME (sym);
5326 suffix = strstr (name, "___XR");
5327
5328 if (suffix != NULL)
5329 {
5330 int name_len = suffix - name;
5331 int j;
5b4ee69b 5332
aeb5907d
JB
5333 is_new_style_renaming = 1;
5334 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5335 if (i != j && syms[j].symbol != NULL
5336 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5337 name_len) == 0
5338 && block == syms[j].block)
d12307c1 5339 syms[j].symbol = NULL;
aeb5907d
JB
5340 }
5341 }
5342 if (is_new_style_renaming)
5343 {
5344 int j, k;
5345
5346 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5347 if (syms[j].symbol != NULL)
aeb5907d
JB
5348 {
5349 syms[k] = syms[j];
5350 k += 1;
5351 }
5352 return k;
5353 }
4c4b4cd2
PH
5354
5355 /* Extract the function name associated to CURRENT_BLOCK.
5356 Abort if unable to do so. */
76a01679 5357
4c4b4cd2
PH
5358 if (current_block == NULL)
5359 return nsyms;
76a01679 5360
7f0df278 5361 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5362 if (current_function == NULL)
5363 return nsyms;
5364
5365 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5366 if (current_function_name == NULL)
5367 return nsyms;
5368
5369 /* Check each of the symbols, and remove it from the list if it is
5370 a type corresponding to a renaming that is out of the scope of
5371 the current block. */
5372
5373 i = 0;
5374 while (i < nsyms)
5375 {
d12307c1 5376 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5377 == ADA_OBJECT_RENAMING
d12307c1 5378 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5379 {
5380 int j;
5b4ee69b 5381
aeb5907d 5382 for (j = i + 1; j < nsyms; j += 1)
76a01679 5383 syms[j - 1] = syms[j];
4c4b4cd2
PH
5384 nsyms -= 1;
5385 }
5386 else
5387 i += 1;
5388 }
5389
5390 return nsyms;
5391}
5392
339c13b6
JB
5393/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5394 whose name and domain match NAME and DOMAIN respectively.
5395 If no match was found, then extend the search to "enclosing"
5396 routines (in other words, if we're inside a nested function,
5397 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5398 If WILD_MATCH_P is nonzero, perform the naming matching in
5399 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5400
5401 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5402
5403static void
b5ec771e
PA
5404ada_add_local_symbols (struct obstack *obstackp,
5405 const lookup_name_info &lookup_name,
5406 const struct block *block, domain_enum domain)
339c13b6
JB
5407{
5408 int block_depth = 0;
5409
5410 while (block != NULL)
5411 {
5412 block_depth += 1;
b5ec771e 5413 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5414
5415 /* If we found a non-function match, assume that's the one. */
5416 if (is_nonfunction (defns_collected (obstackp, 0),
5417 num_defns_collected (obstackp)))
5418 return;
5419
5420 block = BLOCK_SUPERBLOCK (block);
5421 }
5422
5423 /* If no luck so far, try to find NAME as a local symbol in some lexically
5424 enclosing subprogram. */
5425 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5426 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5427}
5428
ccefe4c4 5429/* An object of this type is used as the user_data argument when
40658b94 5430 calling the map_matching_symbols method. */
ccefe4c4 5431
40658b94 5432struct match_data
ccefe4c4 5433{
40658b94 5434 struct objfile *objfile;
ccefe4c4 5435 struct obstack *obstackp;
40658b94
PH
5436 struct symbol *arg_sym;
5437 int found_sym;
ccefe4c4
TT
5438};
5439
22cee43f 5440/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5441 to a list of symbols. DATA0 is a pointer to a struct match_data *
5442 containing the obstack that collects the symbol list, the file that SYM
5443 must come from, a flag indicating whether a non-argument symbol has
5444 been found in the current block, and the last argument symbol
5445 passed in SYM within the current block (if any). When SYM is null,
5446 marking the end of a block, the argument symbol is added if no
5447 other has been found. */
ccefe4c4 5448
40658b94
PH
5449static int
5450aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5451{
40658b94
PH
5452 struct match_data *data = (struct match_data *) data0;
5453
5454 if (sym == NULL)
5455 {
5456 if (!data->found_sym && data->arg_sym != NULL)
5457 add_defn_to_vec (data->obstackp,
5458 fixup_symbol_section (data->arg_sym, data->objfile),
5459 block);
5460 data->found_sym = 0;
5461 data->arg_sym = NULL;
5462 }
5463 else
5464 {
5465 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5466 return 0;
5467 else if (SYMBOL_IS_ARGUMENT (sym))
5468 data->arg_sym = sym;
5469 else
5470 {
5471 data->found_sym = 1;
5472 add_defn_to_vec (data->obstackp,
5473 fixup_symbol_section (sym, data->objfile),
5474 block);
5475 }
5476 }
5477 return 0;
5478}
5479
b5ec771e
PA
5480/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5481 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5482 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5483
5484static int
5485ada_add_block_renamings (struct obstack *obstackp,
5486 const struct block *block,
b5ec771e
PA
5487 const lookup_name_info &lookup_name,
5488 domain_enum domain)
22cee43f
PMR
5489{
5490 struct using_direct *renaming;
5491 int defns_mark = num_defns_collected (obstackp);
5492
b5ec771e
PA
5493 symbol_name_matcher_ftype *name_match
5494 = ada_get_symbol_name_matcher (lookup_name);
5495
22cee43f
PMR
5496 for (renaming = block_using (block);
5497 renaming != NULL;
5498 renaming = renaming->next)
5499 {
5500 const char *r_name;
22cee43f
PMR
5501
5502 /* Avoid infinite recursions: skip this renaming if we are actually
5503 already traversing it.
5504
5505 Currently, symbol lookup in Ada don't use the namespace machinery from
5506 C++/Fortran support: skip namespace imports that use them. */
5507 if (renaming->searched
5508 || (renaming->import_src != NULL
5509 && renaming->import_src[0] != '\0')
5510 || (renaming->import_dest != NULL
5511 && renaming->import_dest[0] != '\0'))
5512 continue;
5513 renaming->searched = 1;
5514
5515 /* TODO: here, we perform another name-based symbol lookup, which can
5516 pull its own multiple overloads. In theory, we should be able to do
5517 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5518 not a simple name. But in order to do this, we would need to enhance
5519 the DWARF reader to associate a symbol to this renaming, instead of a
5520 name. So, for now, we do something simpler: re-use the C++/Fortran
5521 namespace machinery. */
5522 r_name = (renaming->alias != NULL
5523 ? renaming->alias
5524 : renaming->declaration);
b5ec771e
PA
5525 if (name_match (r_name, lookup_name, NULL))
5526 {
5527 lookup_name_info decl_lookup_name (renaming->declaration,
5528 lookup_name.match_type ());
5529 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5530 1, NULL);
5531 }
22cee43f
PMR
5532 renaming->searched = 0;
5533 }
5534 return num_defns_collected (obstackp) != defns_mark;
5535}
5536
db230ce3
JB
5537/* Implements compare_names, but only applying the comparision using
5538 the given CASING. */
5b4ee69b 5539
40658b94 5540static int
db230ce3
JB
5541compare_names_with_case (const char *string1, const char *string2,
5542 enum case_sensitivity casing)
40658b94
PH
5543{
5544 while (*string1 != '\0' && *string2 != '\0')
5545 {
db230ce3
JB
5546 char c1, c2;
5547
40658b94
PH
5548 if (isspace (*string1) || isspace (*string2))
5549 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5550
5551 if (casing == case_sensitive_off)
5552 {
5553 c1 = tolower (*string1);
5554 c2 = tolower (*string2);
5555 }
5556 else
5557 {
5558 c1 = *string1;
5559 c2 = *string2;
5560 }
5561 if (c1 != c2)
40658b94 5562 break;
db230ce3 5563
40658b94
PH
5564 string1 += 1;
5565 string2 += 1;
5566 }
db230ce3 5567
40658b94
PH
5568 switch (*string1)
5569 {
5570 case '(':
5571 return strcmp_iw_ordered (string1, string2);
5572 case '_':
5573 if (*string2 == '\0')
5574 {
052874e8 5575 if (is_name_suffix (string1))
40658b94
PH
5576 return 0;
5577 else
1a1d5513 5578 return 1;
40658b94 5579 }
dbb8534f 5580 /* FALLTHROUGH */
40658b94
PH
5581 default:
5582 if (*string2 == '(')
5583 return strcmp_iw_ordered (string1, string2);
5584 else
db230ce3
JB
5585 {
5586 if (casing == case_sensitive_off)
5587 return tolower (*string1) - tolower (*string2);
5588 else
5589 return *string1 - *string2;
5590 }
40658b94 5591 }
ccefe4c4
TT
5592}
5593
db230ce3
JB
5594/* Compare STRING1 to STRING2, with results as for strcmp.
5595 Compatible with strcmp_iw_ordered in that...
5596
5597 strcmp_iw_ordered (STRING1, STRING2) <= 0
5598
5599 ... implies...
5600
5601 compare_names (STRING1, STRING2) <= 0
5602
5603 (they may differ as to what symbols compare equal). */
5604
5605static int
5606compare_names (const char *string1, const char *string2)
5607{
5608 int result;
5609
5610 /* Similar to what strcmp_iw_ordered does, we need to perform
5611 a case-insensitive comparison first, and only resort to
5612 a second, case-sensitive, comparison if the first one was
5613 not sufficient to differentiate the two strings. */
5614
5615 result = compare_names_with_case (string1, string2, case_sensitive_off);
5616 if (result == 0)
5617 result = compare_names_with_case (string1, string2, case_sensitive_on);
5618
5619 return result;
5620}
5621
b5ec771e
PA
5622/* Convenience function to get at the Ada encoded lookup name for
5623 LOOKUP_NAME, as a C string. */
5624
5625static const char *
5626ada_lookup_name (const lookup_name_info &lookup_name)
5627{
5628 return lookup_name.ada ().lookup_name ().c_str ();
5629}
5630
339c13b6 5631/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5632 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5633 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5634 symbols otherwise. */
339c13b6
JB
5635
5636static void
b5ec771e
PA
5637add_nonlocal_symbols (struct obstack *obstackp,
5638 const lookup_name_info &lookup_name,
5639 domain_enum domain, int global)
339c13b6
JB
5640{
5641 struct objfile *objfile;
22cee43f 5642 struct compunit_symtab *cu;
40658b94 5643 struct match_data data;
339c13b6 5644
6475f2fe 5645 memset (&data, 0, sizeof data);
ccefe4c4 5646 data.obstackp = obstackp;
339c13b6 5647
b5ec771e
PA
5648 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5649
ccefe4c4 5650 ALL_OBJFILES (objfile)
40658b94
PH
5651 {
5652 data.objfile = objfile;
5653
5654 if (is_wild_match)
b5ec771e
PA
5655 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5656 domain, global,
4186eb54 5657 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5658 symbol_name_match_type::WILD,
5659 NULL);
40658b94 5660 else
b5ec771e
PA
5661 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5662 domain, global,
4186eb54 5663 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5664 symbol_name_match_type::FULL,
5665 compare_names);
22cee43f
PMR
5666
5667 ALL_OBJFILE_COMPUNITS (objfile, cu)
5668 {
5669 const struct block *global_block
5670 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5671
b5ec771e
PA
5672 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5673 domain))
22cee43f
PMR
5674 data.found_sym = 1;
5675 }
40658b94
PH
5676 }
5677
5678 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5679 {
b5ec771e
PA
5680 const char *name = ada_lookup_name (lookup_name);
5681 std::string name1 = std::string ("<_ada_") + name + '>';
5682
40658b94
PH
5683 ALL_OBJFILES (objfile)
5684 {
40658b94 5685 data.objfile = objfile;
b5ec771e
PA
5686 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5687 domain, global,
0963b4bd
MS
5688 aux_add_nonlocal_symbols,
5689 &data,
b5ec771e
PA
5690 symbol_name_match_type::FULL,
5691 compare_names);
40658b94
PH
5692 }
5693 }
339c13b6
JB
5694}
5695
b5ec771e
PA
5696/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5697 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5698 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5699
22cee43f
PMR
5700 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5701 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5702 is the one match returned (no other matches in that or
d9680e73 5703 enclosing blocks is returned). If there are any matches in or
22cee43f 5704 surrounding BLOCK, then these alone are returned.
4eeaa230 5705
b5ec771e
PA
5706 Names prefixed with "standard__" are handled specially:
5707 "standard__" is first stripped off (by the lookup_name
5708 constructor), and only static and global symbols are searched.
14f9c5c9 5709
22cee43f
PMR
5710 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5711 to lookup global symbols. */
5712
5713static void
5714ada_add_all_symbols (struct obstack *obstackp,
5715 const struct block *block,
b5ec771e 5716 const lookup_name_info &lookup_name,
22cee43f
PMR
5717 domain_enum domain,
5718 int full_search,
5719 int *made_global_lookup_p)
14f9c5c9
AS
5720{
5721 struct symbol *sym;
14f9c5c9 5722
22cee43f
PMR
5723 if (made_global_lookup_p)
5724 *made_global_lookup_p = 0;
339c13b6
JB
5725
5726 /* Special case: If the user specifies a symbol name inside package
5727 Standard, do a non-wild matching of the symbol name without
5728 the "standard__" prefix. This was primarily introduced in order
5729 to allow the user to specifically access the standard exceptions
5730 using, for instance, Standard.Constraint_Error when Constraint_Error
5731 is ambiguous (due to the user defining its own Constraint_Error
5732 entity inside its program). */
b5ec771e
PA
5733 if (lookup_name.ada ().standard_p ())
5734 block = NULL;
4c4b4cd2 5735
339c13b6 5736 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5737
4eeaa230
DE
5738 if (block != NULL)
5739 {
5740 if (full_search)
b5ec771e 5741 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5742 else
5743 {
5744 /* In the !full_search case we're are being called by
5745 ada_iterate_over_symbols, and we don't want to search
5746 superblocks. */
b5ec771e 5747 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5748 }
22cee43f
PMR
5749 if (num_defns_collected (obstackp) > 0 || !full_search)
5750 return;
4eeaa230 5751 }
d2e4a39e 5752
339c13b6
JB
5753 /* No non-global symbols found. Check our cache to see if we have
5754 already performed this search before. If we have, then return
5755 the same result. */
5756
b5ec771e
PA
5757 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5758 domain, &sym, &block))
4c4b4cd2
PH
5759 {
5760 if (sym != NULL)
b5ec771e 5761 add_defn_to_vec (obstackp, sym, block);
22cee43f 5762 return;
4c4b4cd2 5763 }
14f9c5c9 5764
22cee43f
PMR
5765 if (made_global_lookup_p)
5766 *made_global_lookup_p = 1;
b1eedac9 5767
339c13b6
JB
5768 /* Search symbols from all global blocks. */
5769
b5ec771e 5770 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5771
4c4b4cd2 5772 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5773 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5774
22cee43f 5775 if (num_defns_collected (obstackp) == 0)
b5ec771e 5776 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5777}
5778
b5ec771e
PA
5779/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5780 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5781 matches.
ec6a20c2 5782 Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples,
22cee43f 5783 indicating the symbols found and the blocks and symbol tables (if
ec6a20c2
JB
5784 any) in which they were found. This vector should be freed when
5785 no longer useful.
22cee43f
PMR
5786
5787 When full_search is non-zero, any non-function/non-enumeral
5788 symbol match within the nest of blocks whose innermost member is BLOCK,
5789 is the one match returned (no other matches in that or
5790 enclosing blocks is returned). If there are any matches in or
5791 surrounding BLOCK, then these alone are returned.
5792
5793 Names prefixed with "standard__" are handled specially: "standard__"
5794 is first stripped off, and only static and global symbols are searched. */
5795
5796static int
b5ec771e
PA
5797ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5798 const struct block *block,
22cee43f
PMR
5799 domain_enum domain,
5800 struct block_symbol **results,
5801 int full_search)
5802{
22cee43f
PMR
5803 int syms_from_global_search;
5804 int ndefns;
ec6a20c2
JB
5805 int results_size;
5806 auto_obstack obstack;
22cee43f 5807
ec6a20c2 5808 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5809 domain, full_search, &syms_from_global_search);
14f9c5c9 5810
ec6a20c2
JB
5811 ndefns = num_defns_collected (&obstack);
5812
5813 results_size = obstack_object_size (&obstack);
5814 *results = (struct block_symbol *) malloc (results_size);
5815 memcpy (*results, defns_collected (&obstack, 1), results_size);
4c4b4cd2
PH
5816
5817 ndefns = remove_extra_symbols (*results, ndefns);
5818
b1eedac9 5819 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5820 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5821
b1eedac9 5822 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5823 cache_symbol (ada_lookup_name (lookup_name), domain,
5824 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5825
22cee43f 5826 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
ec6a20c2 5827
14f9c5c9
AS
5828 return ndefns;
5829}
5830
b5ec771e 5831/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
4eeaa230 5832 in global scopes, returning the number of matches, and setting *RESULTS
ec6a20c2
JB
5833 to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated
5834 vector should be freed when no longer useful.
5835
4eeaa230
DE
5836 See ada_lookup_symbol_list_worker for further details. */
5837
5838int
b5ec771e 5839ada_lookup_symbol_list (const char *name, const struct block *block,
d12307c1 5840 domain_enum domain, struct block_symbol **results)
4eeaa230 5841{
b5ec771e
PA
5842 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5843 lookup_name_info lookup_name (name, name_match_type);
5844
5845 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5846}
5847
5848/* Implementation of the la_iterate_over_symbols method. */
5849
5850static void
14bc53a8 5851ada_iterate_over_symbols
b5ec771e
PA
5852 (const struct block *block, const lookup_name_info &name,
5853 domain_enum domain,
14bc53a8 5854 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5855{
5856 int ndefs, i;
d12307c1 5857 struct block_symbol *results;
ec6a20c2 5858 struct cleanup *old_chain;
4eeaa230
DE
5859
5860 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2
JB
5861 old_chain = make_cleanup (xfree, results);
5862
4eeaa230
DE
5863 for (i = 0; i < ndefs; ++i)
5864 {
14bc53a8 5865 if (!callback (results[i].symbol))
4eeaa230
DE
5866 break;
5867 }
ec6a20c2
JB
5868
5869 do_cleanups (old_chain);
4eeaa230
DE
5870}
5871
4e5c77fe
JB
5872/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5873 to 1, but choosing the first symbol found if there are multiple
5874 choices.
5875
5e2336be
JB
5876 The result is stored in *INFO, which must be non-NULL.
5877 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5878
5879void
5880ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5881 domain_enum domain,
d12307c1 5882 struct block_symbol *info)
14f9c5c9 5883{
b5ec771e
PA
5884 /* Since we already have an encoded name, wrap it in '<>' to force a
5885 verbatim match. Otherwise, if the name happens to not look like
5886 an encoded name (because it doesn't include a "__"),
5887 ada_lookup_name_info would re-encode/fold it again, and that
5888 would e.g., incorrectly lowercase object renaming names like
5889 "R28b" -> "r28b". */
5890 std::string verbatim = std::string ("<") + name + '>';
5891
5e2336be 5892 gdb_assert (info != NULL);
f98fc17b 5893 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
4e5c77fe 5894}
aeb5907d
JB
5895
5896/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5897 scope and in global scopes, or NULL if none. NAME is folded and
5898 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5899 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5900 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5901
d12307c1 5902struct block_symbol
aeb5907d 5903ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5904 domain_enum domain, int *is_a_field_of_this)
aeb5907d
JB
5905{
5906 if (is_a_field_of_this != NULL)
5907 *is_a_field_of_this = 0;
5908
f98fc17b
PA
5909 struct block_symbol *candidates;
5910 int n_candidates;
5911 struct cleanup *old_chain;
5912
5913 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5914 old_chain = make_cleanup (xfree, candidates);
5915
5916 if (n_candidates == 0)
5917 {
5918 do_cleanups (old_chain);
5919 return {};
5920 }
5921
5922 block_symbol info = candidates[0];
5923 info.symbol = fixup_symbol_section (info.symbol, NULL);
5924
5925 do_cleanups (old_chain);
5926
d12307c1 5927 return info;
4c4b4cd2 5928}
14f9c5c9 5929
d12307c1 5930static struct block_symbol
f606139a
DE
5931ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5932 const char *name,
76a01679 5933 const struct block *block,
21b556f4 5934 const domain_enum domain)
4c4b4cd2 5935{
d12307c1 5936 struct block_symbol sym;
04dccad0
JB
5937
5938 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5939 if (sym.symbol != NULL)
04dccad0
JB
5940 return sym;
5941
5942 /* If we haven't found a match at this point, try the primitive
5943 types. In other languages, this search is performed before
5944 searching for global symbols in order to short-circuit that
5945 global-symbol search if it happens that the name corresponds
5946 to a primitive type. But we cannot do the same in Ada, because
5947 it is perfectly legitimate for a program to declare a type which
5948 has the same name as a standard type. If looking up a type in
5949 that situation, we have traditionally ignored the primitive type
5950 in favor of user-defined types. This is why, unlike most other
5951 languages, we search the primitive types this late and only after
5952 having searched the global symbols without success. */
5953
5954 if (domain == VAR_DOMAIN)
5955 {
5956 struct gdbarch *gdbarch;
5957
5958 if (block == NULL)
5959 gdbarch = target_gdbarch ();
5960 else
5961 gdbarch = block_gdbarch (block);
d12307c1
PMR
5962 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5963 if (sym.symbol != NULL)
04dccad0
JB
5964 return sym;
5965 }
5966
d12307c1 5967 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5968}
5969
5970
4c4b4cd2
PH
5971/* True iff STR is a possible encoded suffix of a normal Ada name
5972 that is to be ignored for matching purposes. Suffixes of parallel
5973 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5974 are given by any of the regular expressions:
4c4b4cd2 5975
babe1480
JB
5976 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5977 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5978 TKB [subprogram suffix for task bodies]
babe1480 5979 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5980 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5981
5982 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5983 match is performed. This sequence is used to differentiate homonyms,
5984 is an optional part of a valid name suffix. */
4c4b4cd2 5985
14f9c5c9 5986static int
d2e4a39e 5987is_name_suffix (const char *str)
14f9c5c9
AS
5988{
5989 int k;
4c4b4cd2
PH
5990 const char *matching;
5991 const int len = strlen (str);
5992
babe1480
JB
5993 /* Skip optional leading __[0-9]+. */
5994
4c4b4cd2
PH
5995 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5996 {
babe1480
JB
5997 str += 3;
5998 while (isdigit (str[0]))
5999 str += 1;
4c4b4cd2 6000 }
babe1480
JB
6001
6002 /* [.$][0-9]+ */
4c4b4cd2 6003
babe1480 6004 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 6005 {
babe1480 6006 matching = str + 1;
4c4b4cd2
PH
6007 while (isdigit (matching[0]))
6008 matching += 1;
6009 if (matching[0] == '\0')
6010 return 1;
6011 }
6012
6013 /* ___[0-9]+ */
babe1480 6014
4c4b4cd2
PH
6015 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6016 {
6017 matching = str + 3;
6018 while (isdigit (matching[0]))
6019 matching += 1;
6020 if (matching[0] == '\0')
6021 return 1;
6022 }
6023
9ac7f98e
JB
6024 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6025
6026 if (strcmp (str, "TKB") == 0)
6027 return 1;
6028
529cad9c
PH
6029#if 0
6030 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6031 with a N at the end. Unfortunately, the compiler uses the same
6032 convention for other internal types it creates. So treating
529cad9c 6033 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6034 some regressions. For instance, consider the case of an enumerated
6035 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6036 name ends with N.
6037 Having a single character like this as a suffix carrying some
0963b4bd 6038 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6039 to be something like "_N" instead. In the meantime, do not do
6040 the following check. */
6041 /* Protected Object Subprograms */
6042 if (len == 1 && str [0] == 'N')
6043 return 1;
6044#endif
6045
6046 /* _E[0-9]+[bs]$ */
6047 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6048 {
6049 matching = str + 3;
6050 while (isdigit (matching[0]))
6051 matching += 1;
6052 if ((matching[0] == 'b' || matching[0] == 's')
6053 && matching [1] == '\0')
6054 return 1;
6055 }
6056
4c4b4cd2
PH
6057 /* ??? We should not modify STR directly, as we are doing below. This
6058 is fine in this case, but may become problematic later if we find
6059 that this alternative did not work, and want to try matching
6060 another one from the begining of STR. Since we modified it, we
6061 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6062 if (str[0] == 'X')
6063 {
6064 str += 1;
d2e4a39e 6065 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6066 {
6067 if (str[0] != 'n' && str[0] != 'b')
6068 return 0;
6069 str += 1;
6070 }
14f9c5c9 6071 }
babe1480 6072
14f9c5c9
AS
6073 if (str[0] == '\000')
6074 return 1;
babe1480 6075
d2e4a39e 6076 if (str[0] == '_')
14f9c5c9
AS
6077 {
6078 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6079 return 0;
d2e4a39e 6080 if (str[2] == '_')
4c4b4cd2 6081 {
61ee279c
PH
6082 if (strcmp (str + 3, "JM") == 0)
6083 return 1;
6084 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6085 the LJM suffix in favor of the JM one. But we will
6086 still accept LJM as a valid suffix for a reasonable
6087 amount of time, just to allow ourselves to debug programs
6088 compiled using an older version of GNAT. */
4c4b4cd2
PH
6089 if (strcmp (str + 3, "LJM") == 0)
6090 return 1;
6091 if (str[3] != 'X')
6092 return 0;
1265e4aa
JB
6093 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6094 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6095 return 1;
6096 if (str[4] == 'R' && str[5] != 'T')
6097 return 1;
6098 return 0;
6099 }
6100 if (!isdigit (str[2]))
6101 return 0;
6102 for (k = 3; str[k] != '\0'; k += 1)
6103 if (!isdigit (str[k]) && str[k] != '_')
6104 return 0;
14f9c5c9
AS
6105 return 1;
6106 }
4c4b4cd2 6107 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6108 {
4c4b4cd2
PH
6109 for (k = 2; str[k] != '\0'; k += 1)
6110 if (!isdigit (str[k]) && str[k] != '_')
6111 return 0;
14f9c5c9
AS
6112 return 1;
6113 }
6114 return 0;
6115}
d2e4a39e 6116
aeb5907d
JB
6117/* Return non-zero if the string starting at NAME and ending before
6118 NAME_END contains no capital letters. */
529cad9c
PH
6119
6120static int
6121is_valid_name_for_wild_match (const char *name0)
6122{
6123 const char *decoded_name = ada_decode (name0);
6124 int i;
6125
5823c3ef
JB
6126 /* If the decoded name starts with an angle bracket, it means that
6127 NAME0 does not follow the GNAT encoding format. It should then
6128 not be allowed as a possible wild match. */
6129 if (decoded_name[0] == '<')
6130 return 0;
6131
529cad9c
PH
6132 for (i=0; decoded_name[i] != '\0'; i++)
6133 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6134 return 0;
6135
6136 return 1;
6137}
6138
73589123
PH
6139/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6140 that could start a simple name. Assumes that *NAMEP points into
6141 the string beginning at NAME0. */
4c4b4cd2 6142
14f9c5c9 6143static int
73589123 6144advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6145{
73589123 6146 const char *name = *namep;
5b4ee69b 6147
5823c3ef 6148 while (1)
14f9c5c9 6149 {
aa27d0b3 6150 int t0, t1;
73589123
PH
6151
6152 t0 = *name;
6153 if (t0 == '_')
6154 {
6155 t1 = name[1];
6156 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6157 {
6158 name += 1;
61012eef 6159 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6160 break;
6161 else
6162 name += 1;
6163 }
aa27d0b3
JB
6164 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6165 || name[2] == target0))
73589123
PH
6166 {
6167 name += 2;
6168 break;
6169 }
6170 else
6171 return 0;
6172 }
6173 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6174 name += 1;
6175 else
5823c3ef 6176 return 0;
73589123
PH
6177 }
6178
6179 *namep = name;
6180 return 1;
6181}
6182
b5ec771e
PA
6183/* Return true iff NAME encodes a name of the form prefix.PATN.
6184 Ignores any informational suffixes of NAME (i.e., for which
6185 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6186 simple name. */
73589123 6187
b5ec771e 6188static bool
73589123
PH
6189wild_match (const char *name, const char *patn)
6190{
22e048c9 6191 const char *p;
73589123
PH
6192 const char *name0 = name;
6193
6194 while (1)
6195 {
6196 const char *match = name;
6197
6198 if (*name == *patn)
6199 {
6200 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6201 if (*p != *name)
6202 break;
6203 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6204 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6205
6206 if (name[-1] == '_')
6207 name -= 1;
6208 }
6209 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6210 return false;
96d887e8 6211 }
96d887e8
PH
6212}
6213
b5ec771e
PA
6214/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6215 any trailing suffixes that encode debugging information or leading
6216 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6217 information that is ignored). */
40658b94 6218
b5ec771e 6219static bool
c4d840bd
PH
6220full_match (const char *sym_name, const char *search_name)
6221{
b5ec771e
PA
6222 size_t search_name_len = strlen (search_name);
6223
6224 if (strncmp (sym_name, search_name, search_name_len) == 0
6225 && is_name_suffix (sym_name + search_name_len))
6226 return true;
6227
6228 if (startswith (sym_name, "_ada_")
6229 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6230 && is_name_suffix (sym_name + search_name_len + 5))
6231 return true;
c4d840bd 6232
b5ec771e
PA
6233 return false;
6234}
c4d840bd 6235
b5ec771e
PA
6236/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6237 *defn_symbols, updating the list of symbols in OBSTACKP (if
6238 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6239
6240static void
6241ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6242 const struct block *block,
6243 const lookup_name_info &lookup_name,
6244 domain_enum domain, struct objfile *objfile)
96d887e8 6245{
8157b174 6246 struct block_iterator iter;
96d887e8
PH
6247 /* A matching argument symbol, if any. */
6248 struct symbol *arg_sym;
6249 /* Set true when we find a matching non-argument symbol. */
6250 int found_sym;
6251 struct symbol *sym;
6252
6253 arg_sym = NULL;
6254 found_sym = 0;
b5ec771e
PA
6255 for (sym = block_iter_match_first (block, lookup_name, &iter);
6256 sym != NULL;
6257 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6258 {
b5ec771e
PA
6259 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6260 SYMBOL_DOMAIN (sym), domain))
6261 {
6262 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6263 {
6264 if (SYMBOL_IS_ARGUMENT (sym))
6265 arg_sym = sym;
6266 else
6267 {
6268 found_sym = 1;
6269 add_defn_to_vec (obstackp,
6270 fixup_symbol_section (sym, objfile),
6271 block);
6272 }
6273 }
6274 }
96d887e8
PH
6275 }
6276
22cee43f
PMR
6277 /* Handle renamings. */
6278
b5ec771e 6279 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6280 found_sym = 1;
6281
96d887e8
PH
6282 if (!found_sym && arg_sym != NULL)
6283 {
76a01679
JB
6284 add_defn_to_vec (obstackp,
6285 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6286 block);
96d887e8
PH
6287 }
6288
b5ec771e 6289 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6290 {
6291 arg_sym = NULL;
6292 found_sym = 0;
b5ec771e
PA
6293 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6294 const char *name = ada_lookup_name.c_str ();
6295 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6296
6297 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6298 {
4186eb54
KS
6299 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6300 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6301 {
6302 int cmp;
6303
6304 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6305 if (cmp == 0)
6306 {
61012eef 6307 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6308 if (cmp == 0)
6309 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6310 name_len);
6311 }
6312
6313 if (cmp == 0
6314 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6315 {
2a2d4dc3
AS
6316 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6317 {
6318 if (SYMBOL_IS_ARGUMENT (sym))
6319 arg_sym = sym;
6320 else
6321 {
6322 found_sym = 1;
6323 add_defn_to_vec (obstackp,
6324 fixup_symbol_section (sym, objfile),
6325 block);
6326 }
6327 }
76a01679
JB
6328 }
6329 }
76a01679 6330 }
96d887e8
PH
6331
6332 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6333 They aren't parameters, right? */
6334 if (!found_sym && arg_sym != NULL)
6335 {
6336 add_defn_to_vec (obstackp,
76a01679 6337 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6338 block);
96d887e8
PH
6339 }
6340 }
6341}
6342\f
41d27058
JB
6343
6344 /* Symbol Completion */
6345
b5ec771e 6346/* See symtab.h. */
41d27058 6347
b5ec771e
PA
6348bool
6349ada_lookup_name_info::matches
6350 (const char *sym_name,
6351 symbol_name_match_type match_type,
a207cff2 6352 completion_match_result *comp_match_res) const
41d27058 6353{
b5ec771e
PA
6354 bool match = false;
6355 const char *text = m_encoded_name.c_str ();
6356 size_t text_len = m_encoded_name.size ();
41d27058
JB
6357
6358 /* First, test against the fully qualified name of the symbol. */
6359
6360 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6361 match = true;
41d27058 6362
b5ec771e 6363 if (match && !m_encoded_p)
41d27058
JB
6364 {
6365 /* One needed check before declaring a positive match is to verify
6366 that iff we are doing a verbatim match, the decoded version
6367 of the symbol name starts with '<'. Otherwise, this symbol name
6368 is not a suitable completion. */
6369 const char *sym_name_copy = sym_name;
b5ec771e 6370 bool has_angle_bracket;
41d27058
JB
6371
6372 sym_name = ada_decode (sym_name);
6373 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6374 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6375 sym_name = sym_name_copy;
6376 }
6377
b5ec771e 6378 if (match && !m_verbatim_p)
41d27058
JB
6379 {
6380 /* When doing non-verbatim match, another check that needs to
6381 be done is to verify that the potentially matching symbol name
6382 does not include capital letters, because the ada-mode would
6383 not be able to understand these symbol names without the
6384 angle bracket notation. */
6385 const char *tmp;
6386
6387 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6388 if (*tmp != '\0')
b5ec771e 6389 match = false;
41d27058
JB
6390 }
6391
6392 /* Second: Try wild matching... */
6393
b5ec771e 6394 if (!match && m_wild_match_p)
41d27058
JB
6395 {
6396 /* Since we are doing wild matching, this means that TEXT
6397 may represent an unqualified symbol name. We therefore must
6398 also compare TEXT against the unqualified name of the symbol. */
6399 sym_name = ada_unqualified_name (ada_decode (sym_name));
6400
6401 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6402 match = true;
41d27058
JB
6403 }
6404
b5ec771e 6405 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6406
6407 if (!match)
b5ec771e 6408 return false;
41d27058 6409
a207cff2 6410 if (comp_match_res != NULL)
b5ec771e 6411 {
a207cff2 6412 std::string &match_str = comp_match_res->match.storage ();
41d27058 6413
b5ec771e 6414 if (!m_encoded_p)
a207cff2 6415 match_str = ada_decode (sym_name);
b5ec771e
PA
6416 else
6417 {
6418 if (m_verbatim_p)
6419 match_str = add_angle_brackets (sym_name);
6420 else
6421 match_str = sym_name;
41d27058 6422
b5ec771e 6423 }
a207cff2
PA
6424
6425 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6426 }
6427
b5ec771e 6428 return true;
41d27058
JB
6429}
6430
b5ec771e 6431/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6432 WORD is the entire command on which completion is made. */
41d27058 6433
eb3ff9a5
PA
6434static void
6435ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6436 complete_symbol_mode mode,
b5ec771e
PA
6437 symbol_name_match_type name_match_type,
6438 const char *text, const char *word,
eb3ff9a5 6439 enum type_code code)
41d27058 6440{
41d27058 6441 struct symbol *sym;
43f3e411 6442 struct compunit_symtab *s;
41d27058
JB
6443 struct minimal_symbol *msymbol;
6444 struct objfile *objfile;
3977b71f 6445 const struct block *b, *surrounding_static_block = 0;
8157b174 6446 struct block_iterator iter;
41d27058 6447
2f68a895
TT
6448 gdb_assert (code == TYPE_CODE_UNDEF);
6449
1b026119 6450 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6451
6452 /* First, look at the partial symtab symbols. */
14bc53a8 6453 expand_symtabs_matching (NULL,
b5ec771e
PA
6454 lookup_name,
6455 NULL,
14bc53a8
PA
6456 NULL,
6457 ALL_DOMAIN);
41d27058
JB
6458
6459 /* At this point scan through the misc symbol vectors and add each
6460 symbol you find to the list. Eventually we want to ignore
6461 anything that isn't a text symbol (everything else will be
6462 handled by the psymtab code above). */
6463
6464 ALL_MSYMBOLS (objfile, msymbol)
6465 {
6466 QUIT;
b5ec771e 6467
f9d67a22
PA
6468 if (completion_skip_symbol (mode, msymbol))
6469 continue;
6470
d4c2a405
PA
6471 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6472
6473 /* Ada minimal symbols won't have their language set to Ada. If
6474 we let completion_list_add_name compare using the
6475 default/C-like matcher, then when completing e.g., symbols in a
6476 package named "pck", we'd match internal Ada symbols like
6477 "pckS", which are invalid in an Ada expression, unless you wrap
6478 them in '<' '>' to request a verbatim match.
6479
6480 Unfortunately, some Ada encoded names successfully demangle as
6481 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6482 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6483 with the wrong language set. Paper over that issue here. */
6484 if (symbol_language == language_auto
6485 || symbol_language == language_cplus)
6486 symbol_language = language_ada;
6487
b5ec771e 6488 completion_list_add_name (tracker,
d4c2a405 6489 symbol_language,
b5ec771e 6490 MSYMBOL_LINKAGE_NAME (msymbol),
1b026119 6491 lookup_name, text, word);
41d27058
JB
6492 }
6493
6494 /* Search upwards from currently selected frame (so that we can
6495 complete on local vars. */
6496
6497 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6498 {
6499 if (!BLOCK_SUPERBLOCK (b))
6500 surrounding_static_block = b; /* For elmin of dups */
6501
6502 ALL_BLOCK_SYMBOLS (b, iter, sym)
6503 {
f9d67a22
PA
6504 if (completion_skip_symbol (mode, sym))
6505 continue;
6506
b5ec771e
PA
6507 completion_list_add_name (tracker,
6508 SYMBOL_LANGUAGE (sym),
6509 SYMBOL_LINKAGE_NAME (sym),
1b026119 6510 lookup_name, text, word);
41d27058
JB
6511 }
6512 }
6513
6514 /* Go through the symtabs and check the externs and statics for
43f3e411 6515 symbols which match. */
41d27058 6516
43f3e411 6517 ALL_COMPUNITS (objfile, s)
41d27058
JB
6518 {
6519 QUIT;
43f3e411 6520 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6521 ALL_BLOCK_SYMBOLS (b, iter, sym)
6522 {
f9d67a22
PA
6523 if (completion_skip_symbol (mode, sym))
6524 continue;
6525
b5ec771e
PA
6526 completion_list_add_name (tracker,
6527 SYMBOL_LANGUAGE (sym),
6528 SYMBOL_LINKAGE_NAME (sym),
1b026119 6529 lookup_name, text, word);
41d27058
JB
6530 }
6531 }
6532
43f3e411 6533 ALL_COMPUNITS (objfile, s)
41d27058
JB
6534 {
6535 QUIT;
43f3e411 6536 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6537 /* Don't do this block twice. */
6538 if (b == surrounding_static_block)
6539 continue;
6540 ALL_BLOCK_SYMBOLS (b, iter, sym)
6541 {
f9d67a22
PA
6542 if (completion_skip_symbol (mode, sym))
6543 continue;
6544
b5ec771e
PA
6545 completion_list_add_name (tracker,
6546 SYMBOL_LANGUAGE (sym),
6547 SYMBOL_LINKAGE_NAME (sym),
1b026119 6548 lookup_name, text, word);
41d27058
JB
6549 }
6550 }
41d27058
JB
6551}
6552
963a6417 6553 /* Field Access */
96d887e8 6554
73fb9985
JB
6555/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6556 for tagged types. */
6557
6558static int
6559ada_is_dispatch_table_ptr_type (struct type *type)
6560{
0d5cff50 6561 const char *name;
73fb9985
JB
6562
6563 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6564 return 0;
6565
6566 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6567 if (name == NULL)
6568 return 0;
6569
6570 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6571}
6572
ac4a2da4
JG
6573/* Return non-zero if TYPE is an interface tag. */
6574
6575static int
6576ada_is_interface_tag (struct type *type)
6577{
6578 const char *name = TYPE_NAME (type);
6579
6580 if (name == NULL)
6581 return 0;
6582
6583 return (strcmp (name, "ada__tags__interface_tag") == 0);
6584}
6585
963a6417
PH
6586/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6587 to be invisible to users. */
96d887e8 6588
963a6417
PH
6589int
6590ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6591{
963a6417
PH
6592 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6593 return 1;
ffde82bf 6594
73fb9985
JB
6595 /* Check the name of that field. */
6596 {
6597 const char *name = TYPE_FIELD_NAME (type, field_num);
6598
6599 /* Anonymous field names should not be printed.
6600 brobecker/2007-02-20: I don't think this can actually happen
6601 but we don't want to print the value of annonymous fields anyway. */
6602 if (name == NULL)
6603 return 1;
6604
ffde82bf
JB
6605 /* Normally, fields whose name start with an underscore ("_")
6606 are fields that have been internally generated by the compiler,
6607 and thus should not be printed. The "_parent" field is special,
6608 however: This is a field internally generated by the compiler
6609 for tagged types, and it contains the components inherited from
6610 the parent type. This field should not be printed as is, but
6611 should not be ignored either. */
61012eef 6612 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6613 return 1;
6614 }
6615
ac4a2da4
JG
6616 /* If this is the dispatch table of a tagged type or an interface tag,
6617 then ignore. */
73fb9985 6618 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6619 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6620 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6621 return 1;
6622
6623 /* Not a special field, so it should not be ignored. */
6624 return 0;
963a6417 6625}
96d887e8 6626
963a6417 6627/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6628 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6629
963a6417
PH
6630int
6631ada_is_tagged_type (struct type *type, int refok)
6632{
988f6b3d 6633 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6634}
96d887e8 6635
963a6417 6636/* True iff TYPE represents the type of X'Tag */
96d887e8 6637
963a6417
PH
6638int
6639ada_is_tag_type (struct type *type)
6640{
460efde1
JB
6641 type = ada_check_typedef (type);
6642
963a6417
PH
6643 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6644 return 0;
6645 else
96d887e8 6646 {
963a6417 6647 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6648
963a6417
PH
6649 return (name != NULL
6650 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6651 }
96d887e8
PH
6652}
6653
963a6417 6654/* The type of the tag on VAL. */
76a01679 6655
963a6417
PH
6656struct type *
6657ada_tag_type (struct value *val)
96d887e8 6658{
988f6b3d 6659 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6660}
96d887e8 6661
b50d69b5
JG
6662/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6663 retired at Ada 05). */
6664
6665static int
6666is_ada95_tag (struct value *tag)
6667{
6668 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6669}
6670
963a6417 6671/* The value of the tag on VAL. */
96d887e8 6672
963a6417
PH
6673struct value *
6674ada_value_tag (struct value *val)
6675{
03ee6b2e 6676 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6677}
6678
963a6417
PH
6679/* The value of the tag on the object of type TYPE whose contents are
6680 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6681 ADDRESS. */
96d887e8 6682
963a6417 6683static struct value *
10a2c479 6684value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6685 const gdb_byte *valaddr,
963a6417 6686 CORE_ADDR address)
96d887e8 6687{
b5385fc0 6688 int tag_byte_offset;
963a6417 6689 struct type *tag_type;
5b4ee69b 6690
963a6417 6691 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6692 NULL, NULL, NULL))
96d887e8 6693 {
fc1a4b47 6694 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6695 ? NULL
6696 : valaddr + tag_byte_offset);
963a6417 6697 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6698
963a6417 6699 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6700 }
963a6417
PH
6701 return NULL;
6702}
96d887e8 6703
963a6417
PH
6704static struct type *
6705type_from_tag (struct value *tag)
6706{
6707 const char *type_name = ada_tag_name (tag);
5b4ee69b 6708
963a6417
PH
6709 if (type_name != NULL)
6710 return ada_find_any_type (ada_encode (type_name));
6711 return NULL;
6712}
96d887e8 6713
b50d69b5
JG
6714/* Given a value OBJ of a tagged type, return a value of this
6715 type at the base address of the object. The base address, as
6716 defined in Ada.Tags, it is the address of the primary tag of
6717 the object, and therefore where the field values of its full
6718 view can be fetched. */
6719
6720struct value *
6721ada_tag_value_at_base_address (struct value *obj)
6722{
b50d69b5
JG
6723 struct value *val;
6724 LONGEST offset_to_top = 0;
6725 struct type *ptr_type, *obj_type;
6726 struct value *tag;
6727 CORE_ADDR base_address;
6728
6729 obj_type = value_type (obj);
6730
6731 /* It is the responsability of the caller to deref pointers. */
6732
6733 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6734 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6735 return obj;
6736
6737 tag = ada_value_tag (obj);
6738 if (!tag)
6739 return obj;
6740
6741 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6742
6743 if (is_ada95_tag (tag))
6744 return obj;
6745
08f49010
XR
6746 ptr_type = language_lookup_primitive_type
6747 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6748 ptr_type = lookup_pointer_type (ptr_type);
6749 val = value_cast (ptr_type, tag);
6750 if (!val)
6751 return obj;
6752
6753 /* It is perfectly possible that an exception be raised while
6754 trying to determine the base address, just like for the tag;
6755 see ada_tag_name for more details. We do not print the error
6756 message for the same reason. */
6757
492d29ea 6758 TRY
b50d69b5
JG
6759 {
6760 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6761 }
6762
492d29ea
PA
6763 CATCH (e, RETURN_MASK_ERROR)
6764 {
6765 return obj;
6766 }
6767 END_CATCH
b50d69b5
JG
6768
6769 /* If offset is null, nothing to do. */
6770
6771 if (offset_to_top == 0)
6772 return obj;
6773
6774 /* -1 is a special case in Ada.Tags; however, what should be done
6775 is not quite clear from the documentation. So do nothing for
6776 now. */
6777
6778 if (offset_to_top == -1)
6779 return obj;
6780
08f49010
XR
6781 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6782 from the base address. This was however incompatible with
6783 C++ dispatch table: C++ uses a *negative* value to *add*
6784 to the base address. Ada's convention has therefore been
6785 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6786 use the same convention. Here, we support both cases by
6787 checking the sign of OFFSET_TO_TOP. */
6788
6789 if (offset_to_top > 0)
6790 offset_to_top = -offset_to_top;
6791
6792 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6793 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6794
6795 /* Make sure that we have a proper tag at the new address.
6796 Otherwise, offset_to_top is bogus (which can happen when
6797 the object is not initialized yet). */
6798
6799 if (!tag)
6800 return obj;
6801
6802 obj_type = type_from_tag (tag);
6803
6804 if (!obj_type)
6805 return obj;
6806
6807 return value_from_contents_and_address (obj_type, NULL, base_address);
6808}
6809
1b611343
JB
6810/* Return the "ada__tags__type_specific_data" type. */
6811
6812static struct type *
6813ada_get_tsd_type (struct inferior *inf)
963a6417 6814{
1b611343 6815 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6816
1b611343
JB
6817 if (data->tsd_type == 0)
6818 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6819 return data->tsd_type;
6820}
529cad9c 6821
1b611343
JB
6822/* Return the TSD (type-specific data) associated to the given TAG.
6823 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6824
1b611343 6825 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6826
1b611343
JB
6827static struct value *
6828ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6829{
4c4b4cd2 6830 struct value *val;
1b611343 6831 struct type *type;
5b4ee69b 6832
1b611343
JB
6833 /* First option: The TSD is simply stored as a field of our TAG.
6834 Only older versions of GNAT would use this format, but we have
6835 to test it first, because there are no visible markers for
6836 the current approach except the absence of that field. */
529cad9c 6837
1b611343
JB
6838 val = ada_value_struct_elt (tag, "tsd", 1);
6839 if (val)
6840 return val;
e802dbe0 6841
1b611343
JB
6842 /* Try the second representation for the dispatch table (in which
6843 there is no explicit 'tsd' field in the referent of the tag pointer,
6844 and instead the tsd pointer is stored just before the dispatch
6845 table. */
e802dbe0 6846
1b611343
JB
6847 type = ada_get_tsd_type (current_inferior());
6848 if (type == NULL)
6849 return NULL;
6850 type = lookup_pointer_type (lookup_pointer_type (type));
6851 val = value_cast (type, tag);
6852 if (val == NULL)
6853 return NULL;
6854 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6855}
6856
1b611343
JB
6857/* Given the TSD of a tag (type-specific data), return a string
6858 containing the name of the associated type.
6859
6860 The returned value is good until the next call. May return NULL
6861 if we are unable to determine the tag name. */
6862
6863static char *
6864ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6865{
529cad9c
PH
6866 static char name[1024];
6867 char *p;
1b611343 6868 struct value *val;
529cad9c 6869
1b611343 6870 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6871 if (val == NULL)
1b611343 6872 return NULL;
4c4b4cd2
PH
6873 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6874 for (p = name; *p != '\0'; p += 1)
6875 if (isalpha (*p))
6876 *p = tolower (*p);
1b611343 6877 return name;
4c4b4cd2
PH
6878}
6879
6880/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6881 a C string.
6882
6883 Return NULL if the TAG is not an Ada tag, or if we were unable to
6884 determine the name of that tag. The result is good until the next
6885 call. */
4c4b4cd2
PH
6886
6887const char *
6888ada_tag_name (struct value *tag)
6889{
1b611343 6890 char *name = NULL;
5b4ee69b 6891
df407dfe 6892 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6893 return NULL;
1b611343
JB
6894
6895 /* It is perfectly possible that an exception be raised while trying
6896 to determine the TAG's name, even under normal circumstances:
6897 The associated variable may be uninitialized or corrupted, for
6898 instance. We do not let any exception propagate past this point.
6899 instead we return NULL.
6900
6901 We also do not print the error message either (which often is very
6902 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6903 the caller print a more meaningful message if necessary. */
492d29ea 6904 TRY
1b611343
JB
6905 {
6906 struct value *tsd = ada_get_tsd_from_tag (tag);
6907
6908 if (tsd != NULL)
6909 name = ada_tag_name_from_tsd (tsd);
6910 }
492d29ea
PA
6911 CATCH (e, RETURN_MASK_ERROR)
6912 {
6913 }
6914 END_CATCH
1b611343
JB
6915
6916 return name;
4c4b4cd2
PH
6917}
6918
6919/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6920
d2e4a39e 6921struct type *
ebf56fd3 6922ada_parent_type (struct type *type)
14f9c5c9
AS
6923{
6924 int i;
6925
61ee279c 6926 type = ada_check_typedef (type);
14f9c5c9
AS
6927
6928 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6929 return NULL;
6930
6931 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6932 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6933 {
6934 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6935
6936 /* If the _parent field is a pointer, then dereference it. */
6937 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6938 parent_type = TYPE_TARGET_TYPE (parent_type);
6939 /* If there is a parallel XVS type, get the actual base type. */
6940 parent_type = ada_get_base_type (parent_type);
6941
6942 return ada_check_typedef (parent_type);
6943 }
14f9c5c9
AS
6944
6945 return NULL;
6946}
6947
4c4b4cd2
PH
6948/* True iff field number FIELD_NUM of structure type TYPE contains the
6949 parent-type (inherited) fields of a derived type. Assumes TYPE is
6950 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6951
6952int
ebf56fd3 6953ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6954{
61ee279c 6955 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6956
4c4b4cd2 6957 return (name != NULL
61012eef
GB
6958 && (startswith (name, "PARENT")
6959 || startswith (name, "_parent")));
14f9c5c9
AS
6960}
6961
4c4b4cd2 6962/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6963 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6964 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6965 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6966 structures. */
14f9c5c9
AS
6967
6968int
ebf56fd3 6969ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6970{
d2e4a39e 6971 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6972
dddc0e16
JB
6973 if (name != NULL && strcmp (name, "RETVAL") == 0)
6974 {
6975 /* This happens in functions with "out" or "in out" parameters
6976 which are passed by copy. For such functions, GNAT describes
6977 the function's return type as being a struct where the return
6978 value is in a field called RETVAL, and where the other "out"
6979 or "in out" parameters are fields of that struct. This is not
6980 a wrapper. */
6981 return 0;
6982 }
6983
d2e4a39e 6984 return (name != NULL
61012eef 6985 && (startswith (name, "PARENT")
4c4b4cd2 6986 || strcmp (name, "REP") == 0
61012eef 6987 || startswith (name, "_parent")
4c4b4cd2 6988 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6989}
6990
4c4b4cd2
PH
6991/* True iff field number FIELD_NUM of structure or union type TYPE
6992 is a variant wrapper. Assumes TYPE is a structure type with at least
6993 FIELD_NUM+1 fields. */
14f9c5c9
AS
6994
6995int
ebf56fd3 6996ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6997{
d2e4a39e 6998 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6999
14f9c5c9 7000 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 7001 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
7002 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7003 == TYPE_CODE_UNION)));
14f9c5c9
AS
7004}
7005
7006/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 7007 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7008 returns the type of the controlling discriminant for the variant.
7009 May return NULL if the type could not be found. */
14f9c5c9 7010
d2e4a39e 7011struct type *
ebf56fd3 7012ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7013{
a121b7c1 7014 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7015
988f6b3d 7016 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
7017}
7018
4c4b4cd2 7019/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7020 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7021 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7022
7023int
ebf56fd3 7024ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7025{
d2e4a39e 7026 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7027
14f9c5c9
AS
7028 return (name != NULL && name[0] == 'O');
7029}
7030
7031/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7032 returns the name of the discriminant controlling the variant.
7033 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7034
a121b7c1 7035const char *
ebf56fd3 7036ada_variant_discrim_name (struct type *type0)
14f9c5c9 7037{
d2e4a39e 7038 static char *result = NULL;
14f9c5c9 7039 static size_t result_len = 0;
d2e4a39e
AS
7040 struct type *type;
7041 const char *name;
7042 const char *discrim_end;
7043 const char *discrim_start;
14f9c5c9
AS
7044
7045 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7046 type = TYPE_TARGET_TYPE (type0);
7047 else
7048 type = type0;
7049
7050 name = ada_type_name (type);
7051
7052 if (name == NULL || name[0] == '\000')
7053 return "";
7054
7055 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7056 discrim_end -= 1)
7057 {
61012eef 7058 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7059 break;
14f9c5c9
AS
7060 }
7061 if (discrim_end == name)
7062 return "";
7063
d2e4a39e 7064 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7065 discrim_start -= 1)
7066 {
d2e4a39e 7067 if (discrim_start == name + 1)
4c4b4cd2 7068 return "";
76a01679 7069 if ((discrim_start > name + 3
61012eef 7070 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7071 || discrim_start[-1] == '.')
7072 break;
14f9c5c9
AS
7073 }
7074
7075 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7076 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7077 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7078 return result;
7079}
7080
4c4b4cd2
PH
7081/* Scan STR for a subtype-encoded number, beginning at position K.
7082 Put the position of the character just past the number scanned in
7083 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7084 Return 1 if there was a valid number at the given position, and 0
7085 otherwise. A "subtype-encoded" number consists of the absolute value
7086 in decimal, followed by the letter 'm' to indicate a negative number.
7087 Assumes 0m does not occur. */
14f9c5c9
AS
7088
7089int
d2e4a39e 7090ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7091{
7092 ULONGEST RU;
7093
d2e4a39e 7094 if (!isdigit (str[k]))
14f9c5c9
AS
7095 return 0;
7096
4c4b4cd2 7097 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7098 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7099 LONGEST. */
14f9c5c9
AS
7100 RU = 0;
7101 while (isdigit (str[k]))
7102 {
d2e4a39e 7103 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7104 k += 1;
7105 }
7106
d2e4a39e 7107 if (str[k] == 'm')
14f9c5c9
AS
7108 {
7109 if (R != NULL)
4c4b4cd2 7110 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7111 k += 1;
7112 }
7113 else if (R != NULL)
7114 *R = (LONGEST) RU;
7115
4c4b4cd2 7116 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7117 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7118 number representable as a LONGEST (although either would probably work
7119 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7120 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7121
7122 if (new_k != NULL)
7123 *new_k = k;
7124 return 1;
7125}
7126
4c4b4cd2
PH
7127/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7128 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7129 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7130
d2e4a39e 7131int
ebf56fd3 7132ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7133{
d2e4a39e 7134 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7135 int p;
7136
7137 p = 0;
7138 while (1)
7139 {
d2e4a39e 7140 switch (name[p])
4c4b4cd2
PH
7141 {
7142 case '\0':
7143 return 0;
7144 case 'S':
7145 {
7146 LONGEST W;
5b4ee69b 7147
4c4b4cd2
PH
7148 if (!ada_scan_number (name, p + 1, &W, &p))
7149 return 0;
7150 if (val == W)
7151 return 1;
7152 break;
7153 }
7154 case 'R':
7155 {
7156 LONGEST L, U;
5b4ee69b 7157
4c4b4cd2
PH
7158 if (!ada_scan_number (name, p + 1, &L, &p)
7159 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7160 return 0;
7161 if (val >= L && val <= U)
7162 return 1;
7163 break;
7164 }
7165 case 'O':
7166 return 1;
7167 default:
7168 return 0;
7169 }
7170 }
7171}
7172
0963b4bd 7173/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7174
7175/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7176 ARG_TYPE, extract and return the value of one of its (non-static)
7177 fields. FIELDNO says which field. Differs from value_primitive_field
7178 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7179
4c4b4cd2 7180static struct value *
d2e4a39e 7181ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7182 struct type *arg_type)
14f9c5c9 7183{
14f9c5c9
AS
7184 struct type *type;
7185
61ee279c 7186 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7187 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7188
4c4b4cd2 7189 /* Handle packed fields. */
14f9c5c9
AS
7190
7191 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7192 {
7193 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7194 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7195
0fd88904 7196 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7197 offset + bit_pos / 8,
7198 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7199 }
7200 else
7201 return value_primitive_field (arg1, offset, fieldno, arg_type);
7202}
7203
52ce6436
PH
7204/* Find field with name NAME in object of type TYPE. If found,
7205 set the following for each argument that is non-null:
7206 - *FIELD_TYPE_P to the field's type;
7207 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7208 an object of that type;
7209 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7210 - *BIT_SIZE_P to its size in bits if the field is packed, and
7211 0 otherwise;
7212 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7213 fields up to but not including the desired field, or by the total
7214 number of fields if not found. A NULL value of NAME never
7215 matches; the function just counts visible fields in this case.
7216
828d5846
XR
7217 Notice that we need to handle when a tagged record hierarchy
7218 has some components with the same name, like in this scenario:
7219
7220 type Top_T is tagged record
7221 N : Integer := 1;
7222 U : Integer := 974;
7223 A : Integer := 48;
7224 end record;
7225
7226 type Middle_T is new Top.Top_T with record
7227 N : Character := 'a';
7228 C : Integer := 3;
7229 end record;
7230
7231 type Bottom_T is new Middle.Middle_T with record
7232 N : Float := 4.0;
7233 C : Character := '5';
7234 X : Integer := 6;
7235 A : Character := 'J';
7236 end record;
7237
7238 Let's say we now have a variable declared and initialized as follow:
7239
7240 TC : Top_A := new Bottom_T;
7241
7242 And then we use this variable to call this function
7243
7244 procedure Assign (Obj: in out Top_T; TV : Integer);
7245
7246 as follow:
7247
7248 Assign (Top_T (B), 12);
7249
7250 Now, we're in the debugger, and we're inside that procedure
7251 then and we want to print the value of obj.c:
7252
7253 Usually, the tagged record or one of the parent type owns the
7254 component to print and there's no issue but in this particular
7255 case, what does it mean to ask for Obj.C? Since the actual
7256 type for object is type Bottom_T, it could mean two things: type
7257 component C from the Middle_T view, but also component C from
7258 Bottom_T. So in that "undefined" case, when the component is
7259 not found in the non-resolved type (which includes all the
7260 components of the parent type), then resolve it and see if we
7261 get better luck once expanded.
7262
7263 In the case of homonyms in the derived tagged type, we don't
7264 guaranty anything, and pick the one that's easiest for us
7265 to program.
7266
0963b4bd 7267 Returns 1 if found, 0 otherwise. */
52ce6436 7268
4c4b4cd2 7269static int
0d5cff50 7270find_struct_field (const char *name, struct type *type, int offset,
76a01679 7271 struct type **field_type_p,
52ce6436
PH
7272 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7273 int *index_p)
4c4b4cd2
PH
7274{
7275 int i;
828d5846 7276 int parent_offset = -1;
4c4b4cd2 7277
61ee279c 7278 type = ada_check_typedef (type);
76a01679 7279
52ce6436
PH
7280 if (field_type_p != NULL)
7281 *field_type_p = NULL;
7282 if (byte_offset_p != NULL)
d5d6fca5 7283 *byte_offset_p = 0;
52ce6436
PH
7284 if (bit_offset_p != NULL)
7285 *bit_offset_p = 0;
7286 if (bit_size_p != NULL)
7287 *bit_size_p = 0;
7288
7289 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7290 {
7291 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7292 int fld_offset = offset + bit_pos / 8;
0d5cff50 7293 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7294
4c4b4cd2
PH
7295 if (t_field_name == NULL)
7296 continue;
7297
828d5846
XR
7298 else if (ada_is_parent_field (type, i))
7299 {
7300 /* This is a field pointing us to the parent type of a tagged
7301 type. As hinted in this function's documentation, we give
7302 preference to fields in the current record first, so what
7303 we do here is just record the index of this field before
7304 we skip it. If it turns out we couldn't find our field
7305 in the current record, then we'll get back to it and search
7306 inside it whether the field might exist in the parent. */
7307
7308 parent_offset = i;
7309 continue;
7310 }
7311
52ce6436 7312 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7313 {
7314 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7315
52ce6436
PH
7316 if (field_type_p != NULL)
7317 *field_type_p = TYPE_FIELD_TYPE (type, i);
7318 if (byte_offset_p != NULL)
7319 *byte_offset_p = fld_offset;
7320 if (bit_offset_p != NULL)
7321 *bit_offset_p = bit_pos % 8;
7322 if (bit_size_p != NULL)
7323 *bit_size_p = bit_size;
76a01679
JB
7324 return 1;
7325 }
4c4b4cd2
PH
7326 else if (ada_is_wrapper_field (type, i))
7327 {
52ce6436
PH
7328 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7329 field_type_p, byte_offset_p, bit_offset_p,
7330 bit_size_p, index_p))
76a01679
JB
7331 return 1;
7332 }
4c4b4cd2
PH
7333 else if (ada_is_variant_part (type, i))
7334 {
52ce6436
PH
7335 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7336 fixed type?? */
4c4b4cd2 7337 int j;
52ce6436
PH
7338 struct type *field_type
7339 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7340
52ce6436 7341 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7342 {
76a01679
JB
7343 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7344 fld_offset
7345 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7346 field_type_p, byte_offset_p,
52ce6436 7347 bit_offset_p, bit_size_p, index_p))
76a01679 7348 return 1;
4c4b4cd2
PH
7349 }
7350 }
52ce6436
PH
7351 else if (index_p != NULL)
7352 *index_p += 1;
4c4b4cd2 7353 }
828d5846
XR
7354
7355 /* Field not found so far. If this is a tagged type which
7356 has a parent, try finding that field in the parent now. */
7357
7358 if (parent_offset != -1)
7359 {
7360 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7361 int fld_offset = offset + bit_pos / 8;
7362
7363 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7364 fld_offset, field_type_p, byte_offset_p,
7365 bit_offset_p, bit_size_p, index_p))
7366 return 1;
7367 }
7368
4c4b4cd2
PH
7369 return 0;
7370}
7371
0963b4bd 7372/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7373
52ce6436
PH
7374static int
7375num_visible_fields (struct type *type)
7376{
7377 int n;
5b4ee69b 7378
52ce6436
PH
7379 n = 0;
7380 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7381 return n;
7382}
14f9c5c9 7383
4c4b4cd2 7384/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7385 and search in it assuming it has (class) type TYPE.
7386 If found, return value, else return NULL.
7387
828d5846
XR
7388 Searches recursively through wrapper fields (e.g., '_parent').
7389
7390 In the case of homonyms in the tagged types, please refer to the
7391 long explanation in find_struct_field's function documentation. */
14f9c5c9 7392
4c4b4cd2 7393static struct value *
108d56a4 7394ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7395 struct type *type)
14f9c5c9
AS
7396{
7397 int i;
828d5846 7398 int parent_offset = -1;
14f9c5c9 7399
5b4ee69b 7400 type = ada_check_typedef (type);
52ce6436 7401 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7402 {
0d5cff50 7403 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7404
7405 if (t_field_name == NULL)
4c4b4cd2 7406 continue;
14f9c5c9 7407
828d5846
XR
7408 else if (ada_is_parent_field (type, i))
7409 {
7410 /* This is a field pointing us to the parent type of a tagged
7411 type. As hinted in this function's documentation, we give
7412 preference to fields in the current record first, so what
7413 we do here is just record the index of this field before
7414 we skip it. If it turns out we couldn't find our field
7415 in the current record, then we'll get back to it and search
7416 inside it whether the field might exist in the parent. */
7417
7418 parent_offset = i;
7419 continue;
7420 }
7421
14f9c5c9 7422 else if (field_name_match (t_field_name, name))
4c4b4cd2 7423 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7424
7425 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7426 {
0963b4bd 7427 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7428 ada_search_struct_field (name, arg,
7429 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7430 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7431
4c4b4cd2
PH
7432 if (v != NULL)
7433 return v;
7434 }
14f9c5c9
AS
7435
7436 else if (ada_is_variant_part (type, i))
4c4b4cd2 7437 {
0963b4bd 7438 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7439 int j;
5b4ee69b
MS
7440 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7441 i));
4c4b4cd2
PH
7442 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7443
52ce6436 7444 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7445 {
0963b4bd
MS
7446 struct value *v = ada_search_struct_field /* Force line
7447 break. */
06d5cf63
JB
7448 (name, arg,
7449 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7450 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7451
4c4b4cd2
PH
7452 if (v != NULL)
7453 return v;
7454 }
7455 }
14f9c5c9 7456 }
828d5846
XR
7457
7458 /* Field not found so far. If this is a tagged type which
7459 has a parent, try finding that field in the parent now. */
7460
7461 if (parent_offset != -1)
7462 {
7463 struct value *v = ada_search_struct_field (
7464 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7465 TYPE_FIELD_TYPE (type, parent_offset));
7466
7467 if (v != NULL)
7468 return v;
7469 }
7470
14f9c5c9
AS
7471 return NULL;
7472}
d2e4a39e 7473
52ce6436
PH
7474static struct value *ada_index_struct_field_1 (int *, struct value *,
7475 int, struct type *);
7476
7477
7478/* Return field #INDEX in ARG, where the index is that returned by
7479 * find_struct_field through its INDEX_P argument. Adjust the address
7480 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7481 * If found, return value, else return NULL. */
52ce6436
PH
7482
7483static struct value *
7484ada_index_struct_field (int index, struct value *arg, int offset,
7485 struct type *type)
7486{
7487 return ada_index_struct_field_1 (&index, arg, offset, type);
7488}
7489
7490
7491/* Auxiliary function for ada_index_struct_field. Like
7492 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7493 * *INDEX_P. */
52ce6436
PH
7494
7495static struct value *
7496ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7497 struct type *type)
7498{
7499 int i;
7500 type = ada_check_typedef (type);
7501
7502 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7503 {
7504 if (TYPE_FIELD_NAME (type, i) == NULL)
7505 continue;
7506 else if (ada_is_wrapper_field (type, i))
7507 {
0963b4bd 7508 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7509 ada_index_struct_field_1 (index_p, arg,
7510 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7511 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7512
52ce6436
PH
7513 if (v != NULL)
7514 return v;
7515 }
7516
7517 else if (ada_is_variant_part (type, i))
7518 {
7519 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7520 find_struct_field. */
52ce6436
PH
7521 error (_("Cannot assign this kind of variant record"));
7522 }
7523 else if (*index_p == 0)
7524 return ada_value_primitive_field (arg, offset, i, type);
7525 else
7526 *index_p -= 1;
7527 }
7528 return NULL;
7529}
7530
4c4b4cd2
PH
7531/* Given ARG, a value of type (pointer or reference to a)*
7532 structure/union, extract the component named NAME from the ultimate
7533 target structure/union and return it as a value with its
f5938064 7534 appropriate type.
14f9c5c9 7535
4c4b4cd2
PH
7536 The routine searches for NAME among all members of the structure itself
7537 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7538 (e.g., '_parent').
7539
03ee6b2e
PH
7540 If NO_ERR, then simply return NULL in case of error, rather than
7541 calling error. */
14f9c5c9 7542
d2e4a39e 7543struct value *
a121b7c1 7544ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7545{
4c4b4cd2 7546 struct type *t, *t1;
d2e4a39e 7547 struct value *v;
14f9c5c9 7548
4c4b4cd2 7549 v = NULL;
df407dfe 7550 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7551 if (TYPE_CODE (t) == TYPE_CODE_REF)
7552 {
7553 t1 = TYPE_TARGET_TYPE (t);
7554 if (t1 == NULL)
03ee6b2e 7555 goto BadValue;
61ee279c 7556 t1 = ada_check_typedef (t1);
4c4b4cd2 7557 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7558 {
994b9211 7559 arg = coerce_ref (arg);
76a01679
JB
7560 t = t1;
7561 }
4c4b4cd2 7562 }
14f9c5c9 7563
4c4b4cd2
PH
7564 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7565 {
7566 t1 = TYPE_TARGET_TYPE (t);
7567 if (t1 == NULL)
03ee6b2e 7568 goto BadValue;
61ee279c 7569 t1 = ada_check_typedef (t1);
4c4b4cd2 7570 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7571 {
7572 arg = value_ind (arg);
7573 t = t1;
7574 }
4c4b4cd2 7575 else
76a01679 7576 break;
4c4b4cd2 7577 }
14f9c5c9 7578
4c4b4cd2 7579 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7580 goto BadValue;
14f9c5c9 7581
4c4b4cd2
PH
7582 if (t1 == t)
7583 v = ada_search_struct_field (name, arg, 0, t);
7584 else
7585 {
7586 int bit_offset, bit_size, byte_offset;
7587 struct type *field_type;
7588 CORE_ADDR address;
7589
76a01679 7590 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7591 address = value_address (ada_value_ind (arg));
4c4b4cd2 7592 else
b50d69b5 7593 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7594
828d5846
XR
7595 /* Check to see if this is a tagged type. We also need to handle
7596 the case where the type is a reference to a tagged type, but
7597 we have to be careful to exclude pointers to tagged types.
7598 The latter should be shown as usual (as a pointer), whereas
7599 a reference should mostly be transparent to the user. */
7600
7601 if (ada_is_tagged_type (t1, 0)
7602 || (TYPE_CODE (t1) == TYPE_CODE_REF
7603 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7604 {
7605 /* We first try to find the searched field in the current type.
7606 If not found then let's look in the fixed type. */
7607
7608 if (!find_struct_field (name, t1, 0,
7609 &field_type, &byte_offset, &bit_offset,
7610 &bit_size, NULL))
7611 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7612 address, NULL, 1);
7613 }
7614 else
7615 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7616 address, NULL, 1);
7617
76a01679
JB
7618 if (find_struct_field (name, t1, 0,
7619 &field_type, &byte_offset, &bit_offset,
52ce6436 7620 &bit_size, NULL))
76a01679
JB
7621 {
7622 if (bit_size != 0)
7623 {
714e53ab
PH
7624 if (TYPE_CODE (t) == TYPE_CODE_REF)
7625 arg = ada_coerce_ref (arg);
7626 else
7627 arg = ada_value_ind (arg);
76a01679
JB
7628 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7629 bit_offset, bit_size,
7630 field_type);
7631 }
7632 else
f5938064 7633 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7634 }
7635 }
7636
03ee6b2e
PH
7637 if (v != NULL || no_err)
7638 return v;
7639 else
323e0a4a 7640 error (_("There is no member named %s."), name);
14f9c5c9 7641
03ee6b2e
PH
7642 BadValue:
7643 if (no_err)
7644 return NULL;
7645 else
0963b4bd
MS
7646 error (_("Attempt to extract a component of "
7647 "a value that is not a record."));
14f9c5c9
AS
7648}
7649
3b4de39c 7650/* Return a string representation of type TYPE. */
99bbb428 7651
3b4de39c 7652static std::string
99bbb428
PA
7653type_as_string (struct type *type)
7654{
d7e74731 7655 string_file tmp_stream;
99bbb428 7656
d7e74731 7657 type_print (type, "", &tmp_stream, -1);
99bbb428 7658
d7e74731 7659 return std::move (tmp_stream.string ());
99bbb428
PA
7660}
7661
14f9c5c9 7662/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7663 If DISPP is non-null, add its byte displacement from the beginning of a
7664 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7665 work for packed fields).
7666
7667 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7668 followed by "___".
14f9c5c9 7669
0963b4bd 7670 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7671 be a (pointer or reference)+ to a struct or union, and the
7672 ultimate target type will be searched.
14f9c5c9
AS
7673
7674 Looks recursively into variant clauses and parent types.
7675
828d5846
XR
7676 In the case of homonyms in the tagged types, please refer to the
7677 long explanation in find_struct_field's function documentation.
7678
4c4b4cd2
PH
7679 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7680 TYPE is not a type of the right kind. */
14f9c5c9 7681
4c4b4cd2 7682static struct type *
a121b7c1 7683ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7684 int noerr)
14f9c5c9
AS
7685{
7686 int i;
828d5846 7687 int parent_offset = -1;
14f9c5c9
AS
7688
7689 if (name == NULL)
7690 goto BadName;
7691
76a01679 7692 if (refok && type != NULL)
4c4b4cd2
PH
7693 while (1)
7694 {
61ee279c 7695 type = ada_check_typedef (type);
76a01679
JB
7696 if (TYPE_CODE (type) != TYPE_CODE_PTR
7697 && TYPE_CODE (type) != TYPE_CODE_REF)
7698 break;
7699 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7700 }
14f9c5c9 7701
76a01679 7702 if (type == NULL
1265e4aa
JB
7703 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7704 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7705 {
4c4b4cd2 7706 if (noerr)
76a01679 7707 return NULL;
99bbb428 7708
3b4de39c
PA
7709 error (_("Type %s is not a structure or union type"),
7710 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7711 }
7712
7713 type = to_static_fixed_type (type);
7714
7715 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7716 {
0d5cff50 7717 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7718 struct type *t;
d2e4a39e 7719
14f9c5c9 7720 if (t_field_name == NULL)
4c4b4cd2 7721 continue;
14f9c5c9 7722
828d5846
XR
7723 else if (ada_is_parent_field (type, i))
7724 {
7725 /* This is a field pointing us to the parent type of a tagged
7726 type. As hinted in this function's documentation, we give
7727 preference to fields in the current record first, so what
7728 we do here is just record the index of this field before
7729 we skip it. If it turns out we couldn't find our field
7730 in the current record, then we'll get back to it and search
7731 inside it whether the field might exist in the parent. */
7732
7733 parent_offset = i;
7734 continue;
7735 }
7736
14f9c5c9 7737 else if (field_name_match (t_field_name, name))
988f6b3d 7738 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7739
7740 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7741 {
4c4b4cd2 7742 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7743 0, 1);
4c4b4cd2 7744 if (t != NULL)
988f6b3d 7745 return t;
4c4b4cd2 7746 }
14f9c5c9
AS
7747
7748 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7749 {
7750 int j;
5b4ee69b
MS
7751 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7752 i));
4c4b4cd2
PH
7753
7754 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7755 {
b1f33ddd
JB
7756 /* FIXME pnh 2008/01/26: We check for a field that is
7757 NOT wrapped in a struct, since the compiler sometimes
7758 generates these for unchecked variant types. Revisit
0963b4bd 7759 if the compiler changes this practice. */
0d5cff50 7760 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7761
b1f33ddd
JB
7762 if (v_field_name != NULL
7763 && field_name_match (v_field_name, name))
460efde1 7764 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7765 else
0963b4bd
MS
7766 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7767 j),
988f6b3d 7768 name, 0, 1);
b1f33ddd 7769
4c4b4cd2 7770 if (t != NULL)
988f6b3d 7771 return t;
4c4b4cd2
PH
7772 }
7773 }
14f9c5c9
AS
7774
7775 }
7776
828d5846
XR
7777 /* Field not found so far. If this is a tagged type which
7778 has a parent, try finding that field in the parent now. */
7779
7780 if (parent_offset != -1)
7781 {
7782 struct type *t;
7783
7784 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7785 name, 0, 1);
7786 if (t != NULL)
7787 return t;
7788 }
7789
14f9c5c9 7790BadName:
d2e4a39e 7791 if (!noerr)
14f9c5c9 7792 {
2b2798cc 7793 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7794
7795 error (_("Type %s has no component named %s"),
3b4de39c 7796 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7797 }
7798
7799 return NULL;
7800}
7801
b1f33ddd
JB
7802/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7803 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7804 represents an unchecked union (that is, the variant part of a
0963b4bd 7805 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7806
7807static int
7808is_unchecked_variant (struct type *var_type, struct type *outer_type)
7809{
a121b7c1 7810 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7811
988f6b3d 7812 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7813}
7814
7815
14f9c5c9
AS
7816/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7817 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7818 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7819 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7820
d2e4a39e 7821int
ebf56fd3 7822ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7823 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7824{
7825 int others_clause;
7826 int i;
a121b7c1 7827 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7828 struct value *outer;
7829 struct value *discrim;
14f9c5c9
AS
7830 LONGEST discrim_val;
7831
012370f6
TT
7832 /* Using plain value_from_contents_and_address here causes problems
7833 because we will end up trying to resolve a type that is currently
7834 being constructed. */
7835 outer = value_from_contents_and_address_unresolved (outer_type,
7836 outer_valaddr, 0);
0c281816
JB
7837 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7838 if (discrim == NULL)
14f9c5c9 7839 return -1;
0c281816 7840 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7841
7842 others_clause = -1;
7843 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7844 {
7845 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7846 others_clause = i;
14f9c5c9 7847 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7848 return i;
14f9c5c9
AS
7849 }
7850
7851 return others_clause;
7852}
d2e4a39e 7853\f
14f9c5c9
AS
7854
7855
4c4b4cd2 7856 /* Dynamic-Sized Records */
14f9c5c9
AS
7857
7858/* Strategy: The type ostensibly attached to a value with dynamic size
7859 (i.e., a size that is not statically recorded in the debugging
7860 data) does not accurately reflect the size or layout of the value.
7861 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7862 conventional types that are constructed on the fly. */
14f9c5c9
AS
7863
7864/* There is a subtle and tricky problem here. In general, we cannot
7865 determine the size of dynamic records without its data. However,
7866 the 'struct value' data structure, which GDB uses to represent
7867 quantities in the inferior process (the target), requires the size
7868 of the type at the time of its allocation in order to reserve space
7869 for GDB's internal copy of the data. That's why the
7870 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7871 rather than struct value*s.
14f9c5c9
AS
7872
7873 However, GDB's internal history variables ($1, $2, etc.) are
7874 struct value*s containing internal copies of the data that are not, in
7875 general, the same as the data at their corresponding addresses in
7876 the target. Fortunately, the types we give to these values are all
7877 conventional, fixed-size types (as per the strategy described
7878 above), so that we don't usually have to perform the
7879 'to_fixed_xxx_type' conversions to look at their values.
7880 Unfortunately, there is one exception: if one of the internal
7881 history variables is an array whose elements are unconstrained
7882 records, then we will need to create distinct fixed types for each
7883 element selected. */
7884
7885/* The upshot of all of this is that many routines take a (type, host
7886 address, target address) triple as arguments to represent a value.
7887 The host address, if non-null, is supposed to contain an internal
7888 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7889 target at the target address. */
14f9c5c9
AS
7890
7891/* Assuming that VAL0 represents a pointer value, the result of
7892 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7893 dynamic-sized types. */
14f9c5c9 7894
d2e4a39e
AS
7895struct value *
7896ada_value_ind (struct value *val0)
14f9c5c9 7897{
c48db5ca 7898 struct value *val = value_ind (val0);
5b4ee69b 7899
b50d69b5
JG
7900 if (ada_is_tagged_type (value_type (val), 0))
7901 val = ada_tag_value_at_base_address (val);
7902
4c4b4cd2 7903 return ada_to_fixed_value (val);
14f9c5c9
AS
7904}
7905
7906/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7907 qualifiers on VAL0. */
7908
d2e4a39e
AS
7909static struct value *
7910ada_coerce_ref (struct value *val0)
7911{
df407dfe 7912 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7913 {
7914 struct value *val = val0;
5b4ee69b 7915
994b9211 7916 val = coerce_ref (val);
b50d69b5
JG
7917
7918 if (ada_is_tagged_type (value_type (val), 0))
7919 val = ada_tag_value_at_base_address (val);
7920
4c4b4cd2 7921 return ada_to_fixed_value (val);
d2e4a39e
AS
7922 }
7923 else
14f9c5c9
AS
7924 return val0;
7925}
7926
7927/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7928 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7929
7930static unsigned int
ebf56fd3 7931align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7932{
7933 return (off + alignment - 1) & ~(alignment - 1);
7934}
7935
4c4b4cd2 7936/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7937
7938static unsigned int
ebf56fd3 7939field_alignment (struct type *type, int f)
14f9c5c9 7940{
d2e4a39e 7941 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7942 int len;
14f9c5c9
AS
7943 int align_offset;
7944
64a1bf19
JB
7945 /* The field name should never be null, unless the debugging information
7946 is somehow malformed. In this case, we assume the field does not
7947 require any alignment. */
7948 if (name == NULL)
7949 return 1;
7950
7951 len = strlen (name);
7952
4c4b4cd2
PH
7953 if (!isdigit (name[len - 1]))
7954 return 1;
14f9c5c9 7955
d2e4a39e 7956 if (isdigit (name[len - 2]))
14f9c5c9
AS
7957 align_offset = len - 2;
7958 else
7959 align_offset = len - 1;
7960
61012eef 7961 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7962 return TARGET_CHAR_BIT;
7963
4c4b4cd2
PH
7964 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7965}
7966
852dff6c 7967/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7968
852dff6c
JB
7969static struct symbol *
7970ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7971{
7972 struct symbol *sym;
7973
7974 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7975 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7976 return sym;
7977
4186eb54
KS
7978 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7979 return sym;
14f9c5c9
AS
7980}
7981
dddfab26
UW
7982/* Find a type named NAME. Ignores ambiguity. This routine will look
7983 solely for types defined by debug info, it will not search the GDB
7984 primitive types. */
4c4b4cd2 7985
852dff6c 7986static struct type *
ebf56fd3 7987ada_find_any_type (const char *name)
14f9c5c9 7988{
852dff6c 7989 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7990
14f9c5c9 7991 if (sym != NULL)
dddfab26 7992 return SYMBOL_TYPE (sym);
14f9c5c9 7993
dddfab26 7994 return NULL;
14f9c5c9
AS
7995}
7996
739593e0
JB
7997/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7998 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7999 symbol, in which case it is returned. Otherwise, this looks for
8000 symbols whose name is that of NAME_SYM suffixed with "___XR".
8001 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
8002
8003struct symbol *
270140bd 8004ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 8005{
739593e0 8006 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
8007 struct symbol *sym;
8008
739593e0
JB
8009 if (strstr (name, "___XR") != NULL)
8010 return name_sym;
8011
aeb5907d
JB
8012 sym = find_old_style_renaming_symbol (name, block);
8013
8014 if (sym != NULL)
8015 return sym;
8016
0963b4bd 8017 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 8018 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
8019 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8020 return sym;
8021 else
8022 return NULL;
8023}
8024
8025static struct symbol *
270140bd 8026find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 8027{
7f0df278 8028 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
8029 char *rename;
8030
8031 if (function_sym != NULL)
8032 {
8033 /* If the symbol is defined inside a function, NAME is not fully
8034 qualified. This means we need to prepend the function name
8035 as well as adding the ``___XR'' suffix to build the name of
8036 the associated renaming symbol. */
0d5cff50 8037 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
8038 /* Function names sometimes contain suffixes used
8039 for instance to qualify nested subprograms. When building
8040 the XR type name, we need to make sure that this suffix is
8041 not included. So do not include any suffix in the function
8042 name length below. */
69fadcdf 8043 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
8044 const int rename_len = function_name_len + 2 /* "__" */
8045 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 8046
529cad9c 8047 /* Strip the suffix if necessary. */
69fadcdf
JB
8048 ada_remove_trailing_digits (function_name, &function_name_len);
8049 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8050 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 8051
4c4b4cd2
PH
8052 /* Library-level functions are a special case, as GNAT adds
8053 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 8054 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
8055 have this prefix, so we need to skip this prefix if present. */
8056 if (function_name_len > 5 /* "_ada_" */
8057 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
8058 {
8059 function_name += 5;
8060 function_name_len -= 5;
8061 }
4c4b4cd2
PH
8062
8063 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8064 strncpy (rename, function_name, function_name_len);
8065 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8066 "__%s___XR", name);
4c4b4cd2
PH
8067 }
8068 else
8069 {
8070 const int rename_len = strlen (name) + 6;
5b4ee69b 8071
4c4b4cd2 8072 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8073 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8074 }
8075
852dff6c 8076 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8077}
8078
14f9c5c9 8079/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8080 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8081 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8082 otherwise return 0. */
8083
14f9c5c9 8084int
d2e4a39e 8085ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8086{
8087 if (type1 == NULL)
8088 return 1;
8089 else if (type0 == NULL)
8090 return 0;
8091 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8092 return 1;
8093 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8094 return 0;
4c4b4cd2
PH
8095 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8096 return 1;
ad82864c 8097 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8098 return 1;
4c4b4cd2
PH
8099 else if (ada_is_array_descriptor_type (type0)
8100 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8101 return 1;
aeb5907d
JB
8102 else
8103 {
a737d952
TT
8104 const char *type0_name = TYPE_NAME (type0);
8105 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
8106
8107 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8108 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8109 return 1;
8110 }
14f9c5c9
AS
8111 return 0;
8112}
8113
e86ca25f
TT
8114/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8115 null. */
4c4b4cd2 8116
0d5cff50 8117const char *
d2e4a39e 8118ada_type_name (struct type *type)
14f9c5c9 8119{
d2e4a39e 8120 if (type == NULL)
14f9c5c9 8121 return NULL;
e86ca25f 8122 return TYPE_NAME (type);
14f9c5c9
AS
8123}
8124
b4ba55a1
JB
8125/* Search the list of "descriptive" types associated to TYPE for a type
8126 whose name is NAME. */
8127
8128static struct type *
8129find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8130{
931e5bc3 8131 struct type *result, *tmp;
b4ba55a1 8132
c6044dd1
JB
8133 if (ada_ignore_descriptive_types_p)
8134 return NULL;
8135
b4ba55a1
JB
8136 /* If there no descriptive-type info, then there is no parallel type
8137 to be found. */
8138 if (!HAVE_GNAT_AUX_INFO (type))
8139 return NULL;
8140
8141 result = TYPE_DESCRIPTIVE_TYPE (type);
8142 while (result != NULL)
8143 {
0d5cff50 8144 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8145
8146 if (result_name == NULL)
8147 {
8148 warning (_("unexpected null name on descriptive type"));
8149 return NULL;
8150 }
8151
8152 /* If the names match, stop. */
8153 if (strcmp (result_name, name) == 0)
8154 break;
8155
8156 /* Otherwise, look at the next item on the list, if any. */
8157 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8158 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8159 else
8160 tmp = NULL;
8161
8162 /* If not found either, try after having resolved the typedef. */
8163 if (tmp != NULL)
8164 result = tmp;
b4ba55a1 8165 else
931e5bc3 8166 {
f168693b 8167 result = check_typedef (result);
931e5bc3
JG
8168 if (HAVE_GNAT_AUX_INFO (result))
8169 result = TYPE_DESCRIPTIVE_TYPE (result);
8170 else
8171 result = NULL;
8172 }
b4ba55a1
JB
8173 }
8174
8175 /* If we didn't find a match, see whether this is a packed array. With
8176 older compilers, the descriptive type information is either absent or
8177 irrelevant when it comes to packed arrays so the above lookup fails.
8178 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8179 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8180 return ada_find_any_type (name);
8181
8182 return result;
8183}
8184
8185/* Find a parallel type to TYPE with the specified NAME, using the
8186 descriptive type taken from the debugging information, if available,
8187 and otherwise using the (slower) name-based method. */
8188
8189static struct type *
8190ada_find_parallel_type_with_name (struct type *type, const char *name)
8191{
8192 struct type *result = NULL;
8193
8194 if (HAVE_GNAT_AUX_INFO (type))
8195 result = find_parallel_type_by_descriptive_type (type, name);
8196 else
8197 result = ada_find_any_type (name);
8198
8199 return result;
8200}
8201
8202/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8203 SUFFIX to the name of TYPE. */
14f9c5c9 8204
d2e4a39e 8205struct type *
ebf56fd3 8206ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8207{
0d5cff50 8208 char *name;
fe978cb0 8209 const char *type_name = ada_type_name (type);
14f9c5c9 8210 int len;
d2e4a39e 8211
fe978cb0 8212 if (type_name == NULL)
14f9c5c9
AS
8213 return NULL;
8214
fe978cb0 8215 len = strlen (type_name);
14f9c5c9 8216
b4ba55a1 8217 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8218
fe978cb0 8219 strcpy (name, type_name);
14f9c5c9
AS
8220 strcpy (name + len, suffix);
8221
b4ba55a1 8222 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8223}
8224
14f9c5c9 8225/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8226 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8227
d2e4a39e
AS
8228static struct type *
8229dynamic_template_type (struct type *type)
14f9c5c9 8230{
61ee279c 8231 type = ada_check_typedef (type);
14f9c5c9
AS
8232
8233 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8234 || ada_type_name (type) == NULL)
14f9c5c9 8235 return NULL;
d2e4a39e 8236 else
14f9c5c9
AS
8237 {
8238 int len = strlen (ada_type_name (type));
5b4ee69b 8239
4c4b4cd2
PH
8240 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8241 return type;
14f9c5c9 8242 else
4c4b4cd2 8243 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8244 }
8245}
8246
8247/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8248 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8249
d2e4a39e
AS
8250static int
8251is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8252{
8253 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8254
d2e4a39e 8255 return name != NULL
14f9c5c9
AS
8256 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8257 && strstr (name, "___XVL") != NULL;
8258}
8259
4c4b4cd2
PH
8260/* The index of the variant field of TYPE, or -1 if TYPE does not
8261 represent a variant record type. */
14f9c5c9 8262
d2e4a39e 8263static int
4c4b4cd2 8264variant_field_index (struct type *type)
14f9c5c9
AS
8265{
8266 int f;
8267
4c4b4cd2
PH
8268 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8269 return -1;
8270
8271 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8272 {
8273 if (ada_is_variant_part (type, f))
8274 return f;
8275 }
8276 return -1;
14f9c5c9
AS
8277}
8278
4c4b4cd2
PH
8279/* A record type with no fields. */
8280
d2e4a39e 8281static struct type *
fe978cb0 8282empty_record (struct type *templ)
14f9c5c9 8283{
fe978cb0 8284 struct type *type = alloc_type_copy (templ);
5b4ee69b 8285
14f9c5c9
AS
8286 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8287 TYPE_NFIELDS (type) = 0;
8288 TYPE_FIELDS (type) = NULL;
b1f33ddd 8289 INIT_CPLUS_SPECIFIC (type);
14f9c5c9 8290 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8291 TYPE_LENGTH (type) = 0;
8292 return type;
8293}
8294
8295/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8296 the value of type TYPE at VALADDR or ADDRESS (see comments at
8297 the beginning of this section) VAL according to GNAT conventions.
8298 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8299 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8300 an outer-level type (i.e., as opposed to a branch of a variant.) A
8301 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8302 of the variant.
14f9c5c9 8303
4c4b4cd2
PH
8304 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8305 length are not statically known are discarded. As a consequence,
8306 VALADDR, ADDRESS and DVAL0 are ignored.
8307
8308 NOTE: Limitations: For now, we assume that dynamic fields and
8309 variants occupy whole numbers of bytes. However, they need not be
8310 byte-aligned. */
8311
8312struct type *
10a2c479 8313ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8314 const gdb_byte *valaddr,
4c4b4cd2
PH
8315 CORE_ADDR address, struct value *dval0,
8316 int keep_dynamic_fields)
14f9c5c9 8317{
d2e4a39e
AS
8318 struct value *mark = value_mark ();
8319 struct value *dval;
8320 struct type *rtype;
14f9c5c9 8321 int nfields, bit_len;
4c4b4cd2 8322 int variant_field;
14f9c5c9 8323 long off;
d94e4f4f 8324 int fld_bit_len;
14f9c5c9
AS
8325 int f;
8326
4c4b4cd2
PH
8327 /* Compute the number of fields in this record type that are going
8328 to be processed: unless keep_dynamic_fields, this includes only
8329 fields whose position and length are static will be processed. */
8330 if (keep_dynamic_fields)
8331 nfields = TYPE_NFIELDS (type);
8332 else
8333 {
8334 nfields = 0;
76a01679 8335 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8336 && !ada_is_variant_part (type, nfields)
8337 && !is_dynamic_field (type, nfields))
8338 nfields++;
8339 }
8340
e9bb382b 8341 rtype = alloc_type_copy (type);
14f9c5c9
AS
8342 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8343 INIT_CPLUS_SPECIFIC (rtype);
8344 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8345 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8346 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8347 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8348 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8349 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8350
d2e4a39e
AS
8351 off = 0;
8352 bit_len = 0;
4c4b4cd2
PH
8353 variant_field = -1;
8354
14f9c5c9
AS
8355 for (f = 0; f < nfields; f += 1)
8356 {
6c038f32
PH
8357 off = align_value (off, field_alignment (type, f))
8358 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8359 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8360 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8361
d2e4a39e 8362 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8363 {
8364 variant_field = f;
d94e4f4f 8365 fld_bit_len = 0;
4c4b4cd2 8366 }
14f9c5c9 8367 else if (is_dynamic_field (type, f))
4c4b4cd2 8368 {
284614f0
JB
8369 const gdb_byte *field_valaddr = valaddr;
8370 CORE_ADDR field_address = address;
8371 struct type *field_type =
8372 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8373
4c4b4cd2 8374 if (dval0 == NULL)
b5304971
JG
8375 {
8376 /* rtype's length is computed based on the run-time
8377 value of discriminants. If the discriminants are not
8378 initialized, the type size may be completely bogus and
0963b4bd 8379 GDB may fail to allocate a value for it. So check the
b5304971 8380 size first before creating the value. */
c1b5a1a6 8381 ada_ensure_varsize_limit (rtype);
012370f6
TT
8382 /* Using plain value_from_contents_and_address here
8383 causes problems because we will end up trying to
8384 resolve a type that is currently being
8385 constructed. */
8386 dval = value_from_contents_and_address_unresolved (rtype,
8387 valaddr,
8388 address);
9f1f738a 8389 rtype = value_type (dval);
b5304971 8390 }
4c4b4cd2
PH
8391 else
8392 dval = dval0;
8393
284614f0
JB
8394 /* If the type referenced by this field is an aligner type, we need
8395 to unwrap that aligner type, because its size might not be set.
8396 Keeping the aligner type would cause us to compute the wrong
8397 size for this field, impacting the offset of the all the fields
8398 that follow this one. */
8399 if (ada_is_aligner_type (field_type))
8400 {
8401 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8402
8403 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8404 field_address = cond_offset_target (field_address, field_offset);
8405 field_type = ada_aligned_type (field_type);
8406 }
8407
8408 field_valaddr = cond_offset_host (field_valaddr,
8409 off / TARGET_CHAR_BIT);
8410 field_address = cond_offset_target (field_address,
8411 off / TARGET_CHAR_BIT);
8412
8413 /* Get the fixed type of the field. Note that, in this case,
8414 we do not want to get the real type out of the tag: if
8415 the current field is the parent part of a tagged record,
8416 we will get the tag of the object. Clearly wrong: the real
8417 type of the parent is not the real type of the child. We
8418 would end up in an infinite loop. */
8419 field_type = ada_get_base_type (field_type);
8420 field_type = ada_to_fixed_type (field_type, field_valaddr,
8421 field_address, dval, 0);
27f2a97b
JB
8422 /* If the field size is already larger than the maximum
8423 object size, then the record itself will necessarily
8424 be larger than the maximum object size. We need to make
8425 this check now, because the size might be so ridiculously
8426 large (due to an uninitialized variable in the inferior)
8427 that it would cause an overflow when adding it to the
8428 record size. */
c1b5a1a6 8429 ada_ensure_varsize_limit (field_type);
284614f0
JB
8430
8431 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8432 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8433 /* The multiplication can potentially overflow. But because
8434 the field length has been size-checked just above, and
8435 assuming that the maximum size is a reasonable value,
8436 an overflow should not happen in practice. So rather than
8437 adding overflow recovery code to this already complex code,
8438 we just assume that it's not going to happen. */
d94e4f4f 8439 fld_bit_len =
4c4b4cd2
PH
8440 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8441 }
14f9c5c9 8442 else
4c4b4cd2 8443 {
5ded5331
JB
8444 /* Note: If this field's type is a typedef, it is important
8445 to preserve the typedef layer.
8446
8447 Otherwise, we might be transforming a typedef to a fat
8448 pointer (encoding a pointer to an unconstrained array),
8449 into a basic fat pointer (encoding an unconstrained
8450 array). As both types are implemented using the same
8451 structure, the typedef is the only clue which allows us
8452 to distinguish between the two options. Stripping it
8453 would prevent us from printing this field appropriately. */
8454 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8455 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8456 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8457 fld_bit_len =
4c4b4cd2
PH
8458 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8459 else
5ded5331
JB
8460 {
8461 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8462
8463 /* We need to be careful of typedefs when computing
8464 the length of our field. If this is a typedef,
8465 get the length of the target type, not the length
8466 of the typedef. */
8467 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8468 field_type = ada_typedef_target_type (field_type);
8469
8470 fld_bit_len =
8471 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8472 }
4c4b4cd2 8473 }
14f9c5c9 8474 if (off + fld_bit_len > bit_len)
4c4b4cd2 8475 bit_len = off + fld_bit_len;
d94e4f4f 8476 off += fld_bit_len;
4c4b4cd2
PH
8477 TYPE_LENGTH (rtype) =
8478 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8479 }
4c4b4cd2
PH
8480
8481 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8482 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8483 the record. This can happen in the presence of representation
8484 clauses. */
8485 if (variant_field >= 0)
8486 {
8487 struct type *branch_type;
8488
8489 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8490
8491 if (dval0 == NULL)
9f1f738a 8492 {
012370f6
TT
8493 /* Using plain value_from_contents_and_address here causes
8494 problems because we will end up trying to resolve a type
8495 that is currently being constructed. */
8496 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8497 address);
9f1f738a
SA
8498 rtype = value_type (dval);
8499 }
4c4b4cd2
PH
8500 else
8501 dval = dval0;
8502
8503 branch_type =
8504 to_fixed_variant_branch_type
8505 (TYPE_FIELD_TYPE (type, variant_field),
8506 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8507 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8508 if (branch_type == NULL)
8509 {
8510 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8511 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8512 TYPE_NFIELDS (rtype) -= 1;
8513 }
8514 else
8515 {
8516 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8517 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8518 fld_bit_len =
8519 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8520 TARGET_CHAR_BIT;
8521 if (off + fld_bit_len > bit_len)
8522 bit_len = off + fld_bit_len;
8523 TYPE_LENGTH (rtype) =
8524 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8525 }
8526 }
8527
714e53ab
PH
8528 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8529 should contain the alignment of that record, which should be a strictly
8530 positive value. If null or negative, then something is wrong, most
8531 probably in the debug info. In that case, we don't round up the size
0963b4bd 8532 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8533 the current RTYPE length might be good enough for our purposes. */
8534 if (TYPE_LENGTH (type) <= 0)
8535 {
323e0a4a
AC
8536 if (TYPE_NAME (rtype))
8537 warning (_("Invalid type size for `%s' detected: %d."),
8538 TYPE_NAME (rtype), TYPE_LENGTH (type));
8539 else
8540 warning (_("Invalid type size for <unnamed> detected: %d."),
8541 TYPE_LENGTH (type));
714e53ab
PH
8542 }
8543 else
8544 {
8545 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8546 TYPE_LENGTH (type));
8547 }
14f9c5c9
AS
8548
8549 value_free_to_mark (mark);
d2e4a39e 8550 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8551 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8552 return rtype;
8553}
8554
4c4b4cd2
PH
8555/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8556 of 1. */
14f9c5c9 8557
d2e4a39e 8558static struct type *
fc1a4b47 8559template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8560 CORE_ADDR address, struct value *dval0)
8561{
8562 return ada_template_to_fixed_record_type_1 (type, valaddr,
8563 address, dval0, 1);
8564}
8565
8566/* An ordinary record type in which ___XVL-convention fields and
8567 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8568 static approximations, containing all possible fields. Uses
8569 no runtime values. Useless for use in values, but that's OK,
8570 since the results are used only for type determinations. Works on both
8571 structs and unions. Representation note: to save space, we memorize
8572 the result of this function in the TYPE_TARGET_TYPE of the
8573 template type. */
8574
8575static struct type *
8576template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8577{
8578 struct type *type;
8579 int nfields;
8580 int f;
8581
9e195661
PMR
8582 /* No need no do anything if the input type is already fixed. */
8583 if (TYPE_FIXED_INSTANCE (type0))
8584 return type0;
8585
8586 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8587 if (TYPE_TARGET_TYPE (type0) != NULL)
8588 return TYPE_TARGET_TYPE (type0);
8589
9e195661 8590 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8591 type = type0;
9e195661
PMR
8592 nfields = TYPE_NFIELDS (type0);
8593
8594 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8595 recompute all over next time. */
8596 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8597
8598 for (f = 0; f < nfields; f += 1)
8599 {
460efde1 8600 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8601 struct type *new_type;
14f9c5c9 8602
4c4b4cd2 8603 if (is_dynamic_field (type0, f))
460efde1
JB
8604 {
8605 field_type = ada_check_typedef (field_type);
8606 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8607 }
14f9c5c9 8608 else
f192137b 8609 new_type = static_unwrap_type (field_type);
9e195661
PMR
8610
8611 if (new_type != field_type)
8612 {
8613 /* Clone TYPE0 only the first time we get a new field type. */
8614 if (type == type0)
8615 {
8616 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8617 TYPE_CODE (type) = TYPE_CODE (type0);
8618 INIT_CPLUS_SPECIFIC (type);
8619 TYPE_NFIELDS (type) = nfields;
8620 TYPE_FIELDS (type) = (struct field *)
8621 TYPE_ALLOC (type, nfields * sizeof (struct field));
8622 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8623 sizeof (struct field) * nfields);
8624 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8625 TYPE_FIXED_INSTANCE (type) = 1;
8626 TYPE_LENGTH (type) = 0;
8627 }
8628 TYPE_FIELD_TYPE (type, f) = new_type;
8629 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8630 }
14f9c5c9 8631 }
9e195661 8632
14f9c5c9
AS
8633 return type;
8634}
8635
4c4b4cd2 8636/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8637 whose address in memory is ADDRESS, returns a revision of TYPE,
8638 which should be a non-dynamic-sized record, in which the variant
8639 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8640 for discriminant values in DVAL0, which can be NULL if the record
8641 contains the necessary discriminant values. */
8642
d2e4a39e 8643static struct type *
fc1a4b47 8644to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8645 CORE_ADDR address, struct value *dval0)
14f9c5c9 8646{
d2e4a39e 8647 struct value *mark = value_mark ();
4c4b4cd2 8648 struct value *dval;
d2e4a39e 8649 struct type *rtype;
14f9c5c9
AS
8650 struct type *branch_type;
8651 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8652 int variant_field = variant_field_index (type);
14f9c5c9 8653
4c4b4cd2 8654 if (variant_field == -1)
14f9c5c9
AS
8655 return type;
8656
4c4b4cd2 8657 if (dval0 == NULL)
9f1f738a
SA
8658 {
8659 dval = value_from_contents_and_address (type, valaddr, address);
8660 type = value_type (dval);
8661 }
4c4b4cd2
PH
8662 else
8663 dval = dval0;
8664
e9bb382b 8665 rtype = alloc_type_copy (type);
14f9c5c9 8666 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8667 INIT_CPLUS_SPECIFIC (rtype);
8668 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8669 TYPE_FIELDS (rtype) =
8670 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8671 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8672 sizeof (struct field) * nfields);
14f9c5c9 8673 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8674 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8675 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8676
4c4b4cd2
PH
8677 branch_type = to_fixed_variant_branch_type
8678 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8679 cond_offset_host (valaddr,
4c4b4cd2
PH
8680 TYPE_FIELD_BITPOS (type, variant_field)
8681 / TARGET_CHAR_BIT),
d2e4a39e 8682 cond_offset_target (address,
4c4b4cd2
PH
8683 TYPE_FIELD_BITPOS (type, variant_field)
8684 / TARGET_CHAR_BIT), dval);
d2e4a39e 8685 if (branch_type == NULL)
14f9c5c9 8686 {
4c4b4cd2 8687 int f;
5b4ee69b 8688
4c4b4cd2
PH
8689 for (f = variant_field + 1; f < nfields; f += 1)
8690 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8691 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8692 }
8693 else
8694 {
4c4b4cd2
PH
8695 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8696 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8697 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8698 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8699 }
4c4b4cd2 8700 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8701
4c4b4cd2 8702 value_free_to_mark (mark);
14f9c5c9
AS
8703 return rtype;
8704}
8705
8706/* An ordinary record type (with fixed-length fields) that describes
8707 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8708 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8709 should be in DVAL, a record value; it may be NULL if the object
8710 at ADDR itself contains any necessary discriminant values.
8711 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8712 values from the record are needed. Except in the case that DVAL,
8713 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8714 unchecked) is replaced by a particular branch of the variant.
8715
8716 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8717 is questionable and may be removed. It can arise during the
8718 processing of an unconstrained-array-of-record type where all the
8719 variant branches have exactly the same size. This is because in
8720 such cases, the compiler does not bother to use the XVS convention
8721 when encoding the record. I am currently dubious of this
8722 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8723
d2e4a39e 8724static struct type *
fc1a4b47 8725to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8726 CORE_ADDR address, struct value *dval)
14f9c5c9 8727{
d2e4a39e 8728 struct type *templ_type;
14f9c5c9 8729
876cecd0 8730 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8731 return type0;
8732
d2e4a39e 8733 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8734
8735 if (templ_type != NULL)
8736 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8737 else if (variant_field_index (type0) >= 0)
8738 {
8739 if (dval == NULL && valaddr == NULL && address == 0)
8740 return type0;
8741 return to_record_with_fixed_variant_part (type0, valaddr, address,
8742 dval);
8743 }
14f9c5c9
AS
8744 else
8745 {
876cecd0 8746 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8747 return type0;
8748 }
8749
8750}
8751
8752/* An ordinary record type (with fixed-length fields) that describes
8753 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8754 union type. Any necessary discriminants' values should be in DVAL,
8755 a record value. That is, this routine selects the appropriate
8756 branch of the union at ADDR according to the discriminant value
b1f33ddd 8757 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8758 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8759
d2e4a39e 8760static struct type *
fc1a4b47 8761to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8762 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8763{
8764 int which;
d2e4a39e
AS
8765 struct type *templ_type;
8766 struct type *var_type;
14f9c5c9
AS
8767
8768 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8769 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8770 else
14f9c5c9
AS
8771 var_type = var_type0;
8772
8773 templ_type = ada_find_parallel_type (var_type, "___XVU");
8774
8775 if (templ_type != NULL)
8776 var_type = templ_type;
8777
b1f33ddd
JB
8778 if (is_unchecked_variant (var_type, value_type (dval)))
8779 return var_type0;
d2e4a39e
AS
8780 which =
8781 ada_which_variant_applies (var_type,
0fd88904 8782 value_type (dval), value_contents (dval));
14f9c5c9
AS
8783
8784 if (which < 0)
e9bb382b 8785 return empty_record (var_type);
14f9c5c9 8786 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8787 return to_fixed_record_type
d2e4a39e
AS
8788 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8789 valaddr, address, dval);
4c4b4cd2 8790 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8791 return
8792 to_fixed_record_type
8793 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8794 else
8795 return TYPE_FIELD_TYPE (var_type, which);
8796}
8797
8908fca5
JB
8798/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8799 ENCODING_TYPE, a type following the GNAT conventions for discrete
8800 type encodings, only carries redundant information. */
8801
8802static int
8803ada_is_redundant_range_encoding (struct type *range_type,
8804 struct type *encoding_type)
8805{
108d56a4 8806 const char *bounds_str;
8908fca5
JB
8807 int n;
8808 LONGEST lo, hi;
8809
8810 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8811
005e2509
JB
8812 if (TYPE_CODE (get_base_type (range_type))
8813 != TYPE_CODE (get_base_type (encoding_type)))
8814 {
8815 /* The compiler probably used a simple base type to describe
8816 the range type instead of the range's actual base type,
8817 expecting us to get the real base type from the encoding
8818 anyway. In this situation, the encoding cannot be ignored
8819 as redundant. */
8820 return 0;
8821 }
8822
8908fca5
JB
8823 if (is_dynamic_type (range_type))
8824 return 0;
8825
8826 if (TYPE_NAME (encoding_type) == NULL)
8827 return 0;
8828
8829 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8830 if (bounds_str == NULL)
8831 return 0;
8832
8833 n = 8; /* Skip "___XDLU_". */
8834 if (!ada_scan_number (bounds_str, n, &lo, &n))
8835 return 0;
8836 if (TYPE_LOW_BOUND (range_type) != lo)
8837 return 0;
8838
8839 n += 2; /* Skip the "__" separator between the two bounds. */
8840 if (!ada_scan_number (bounds_str, n, &hi, &n))
8841 return 0;
8842 if (TYPE_HIGH_BOUND (range_type) != hi)
8843 return 0;
8844
8845 return 1;
8846}
8847
8848/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8849 a type following the GNAT encoding for describing array type
8850 indices, only carries redundant information. */
8851
8852static int
8853ada_is_redundant_index_type_desc (struct type *array_type,
8854 struct type *desc_type)
8855{
8856 struct type *this_layer = check_typedef (array_type);
8857 int i;
8858
8859 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8860 {
8861 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8862 TYPE_FIELD_TYPE (desc_type, i)))
8863 return 0;
8864 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8865 }
8866
8867 return 1;
8868}
8869
14f9c5c9
AS
8870/* Assuming that TYPE0 is an array type describing the type of a value
8871 at ADDR, and that DVAL describes a record containing any
8872 discriminants used in TYPE0, returns a type for the value that
8873 contains no dynamic components (that is, no components whose sizes
8874 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8875 true, gives an error message if the resulting type's size is over
4c4b4cd2 8876 varsize_limit. */
14f9c5c9 8877
d2e4a39e
AS
8878static struct type *
8879to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8880 int ignore_too_big)
14f9c5c9 8881{
d2e4a39e
AS
8882 struct type *index_type_desc;
8883 struct type *result;
ad82864c 8884 int constrained_packed_array_p;
931e5bc3 8885 static const char *xa_suffix = "___XA";
14f9c5c9 8886
b0dd7688 8887 type0 = ada_check_typedef (type0);
284614f0 8888 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8889 return type0;
14f9c5c9 8890
ad82864c
JB
8891 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8892 if (constrained_packed_array_p)
8893 type0 = decode_constrained_packed_array_type (type0);
284614f0 8894
931e5bc3
JG
8895 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8896
8897 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8898 encoding suffixed with 'P' may still be generated. If so,
8899 it should be used to find the XA type. */
8900
8901 if (index_type_desc == NULL)
8902 {
1da0522e 8903 const char *type_name = ada_type_name (type0);
931e5bc3 8904
1da0522e 8905 if (type_name != NULL)
931e5bc3 8906 {
1da0522e 8907 const int len = strlen (type_name);
931e5bc3
JG
8908 char *name = (char *) alloca (len + strlen (xa_suffix));
8909
1da0522e 8910 if (type_name[len - 1] == 'P')
931e5bc3 8911 {
1da0522e 8912 strcpy (name, type_name);
931e5bc3
JG
8913 strcpy (name + len - 1, xa_suffix);
8914 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8915 }
8916 }
8917 }
8918
28c85d6c 8919 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8920 if (index_type_desc != NULL
8921 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8922 {
8923 /* Ignore this ___XA parallel type, as it does not bring any
8924 useful information. This allows us to avoid creating fixed
8925 versions of the array's index types, which would be identical
8926 to the original ones. This, in turn, can also help avoid
8927 the creation of fixed versions of the array itself. */
8928 index_type_desc = NULL;
8929 }
8930
14f9c5c9
AS
8931 if (index_type_desc == NULL)
8932 {
61ee279c 8933 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8934
14f9c5c9 8935 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8936 depend on the contents of the array in properly constructed
8937 debugging data. */
529cad9c
PH
8938 /* Create a fixed version of the array element type.
8939 We're not providing the address of an element here,
e1d5a0d2 8940 and thus the actual object value cannot be inspected to do
529cad9c
PH
8941 the conversion. This should not be a problem, since arrays of
8942 unconstrained objects are not allowed. In particular, all
8943 the elements of an array of a tagged type should all be of
8944 the same type specified in the debugging info. No need to
8945 consult the object tag. */
1ed6ede0 8946 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8947
284614f0
JB
8948 /* Make sure we always create a new array type when dealing with
8949 packed array types, since we're going to fix-up the array
8950 type length and element bitsize a little further down. */
ad82864c 8951 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8952 result = type0;
14f9c5c9 8953 else
e9bb382b 8954 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8955 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8956 }
8957 else
8958 {
8959 int i;
8960 struct type *elt_type0;
8961
8962 elt_type0 = type0;
8963 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8964 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8965
8966 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8967 depend on the contents of the array in properly constructed
8968 debugging data. */
529cad9c
PH
8969 /* Create a fixed version of the array element type.
8970 We're not providing the address of an element here,
e1d5a0d2 8971 and thus the actual object value cannot be inspected to do
529cad9c
PH
8972 the conversion. This should not be a problem, since arrays of
8973 unconstrained objects are not allowed. In particular, all
8974 the elements of an array of a tagged type should all be of
8975 the same type specified in the debugging info. No need to
8976 consult the object tag. */
1ed6ede0
JB
8977 result =
8978 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8979
8980 elt_type0 = type0;
14f9c5c9 8981 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8982 {
8983 struct type *range_type =
28c85d6c 8984 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8985
e9bb382b 8986 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8987 result, range_type);
1ce677a4 8988 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8989 }
d2e4a39e 8990 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8991 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8992 }
8993
2e6fda7d
JB
8994 /* We want to preserve the type name. This can be useful when
8995 trying to get the type name of a value that has already been
8996 printed (for instance, if the user did "print VAR; whatis $". */
8997 TYPE_NAME (result) = TYPE_NAME (type0);
8998
ad82864c 8999 if (constrained_packed_array_p)
284614f0
JB
9000 {
9001 /* So far, the resulting type has been created as if the original
9002 type was a regular (non-packed) array type. As a result, the
9003 bitsize of the array elements needs to be set again, and the array
9004 length needs to be recomputed based on that bitsize. */
9005 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9006 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9007
9008 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9009 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9010 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9011 TYPE_LENGTH (result)++;
9012 }
9013
876cecd0 9014 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 9015 return result;
d2e4a39e 9016}
14f9c5c9
AS
9017
9018
9019/* A standard type (containing no dynamically sized components)
9020 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9021 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 9022 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
9023 ADDRESS or in VALADDR contains these discriminants.
9024
1ed6ede0
JB
9025 If CHECK_TAG is not null, in the case of tagged types, this function
9026 attempts to locate the object's tag and use it to compute the actual
9027 type. However, when ADDRESS is null, we cannot use it to determine the
9028 location of the tag, and therefore compute the tagged type's actual type.
9029 So we return the tagged type without consulting the tag. */
529cad9c 9030
f192137b
JB
9031static struct type *
9032ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 9033 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 9034{
61ee279c 9035 type = ada_check_typedef (type);
d2e4a39e
AS
9036 switch (TYPE_CODE (type))
9037 {
9038 default:
14f9c5c9 9039 return type;
d2e4a39e 9040 case TYPE_CODE_STRUCT:
4c4b4cd2 9041 {
76a01679 9042 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
9043 struct type *fixed_record_type =
9044 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 9045
529cad9c
PH
9046 /* If STATIC_TYPE is a tagged type and we know the object's address,
9047 then we can determine its tag, and compute the object's actual
0963b4bd 9048 type from there. Note that we have to use the fixed record
1ed6ede0
JB
9049 type (the parent part of the record may have dynamic fields
9050 and the way the location of _tag is expressed may depend on
9051 them). */
529cad9c 9052
1ed6ede0 9053 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9054 {
b50d69b5
JG
9055 struct value *tag =
9056 value_tag_from_contents_and_address
9057 (fixed_record_type,
9058 valaddr,
9059 address);
9060 struct type *real_type = type_from_tag (tag);
9061 struct value *obj =
9062 value_from_contents_and_address (fixed_record_type,
9063 valaddr,
9064 address);
9f1f738a 9065 fixed_record_type = value_type (obj);
76a01679 9066 if (real_type != NULL)
b50d69b5
JG
9067 return to_fixed_record_type
9068 (real_type, NULL,
9069 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9070 }
4af88198
JB
9071
9072 /* Check to see if there is a parallel ___XVZ variable.
9073 If there is, then it provides the actual size of our type. */
9074 else if (ada_type_name (fixed_record_type) != NULL)
9075 {
0d5cff50 9076 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9077 char *xvz_name
9078 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 9079 bool xvz_found = false;
4af88198
JB
9080 LONGEST size;
9081
88c15c34 9082 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
eccab96d
JB
9083 TRY
9084 {
9085 xvz_found = get_int_var_value (xvz_name, size);
9086 }
9087 CATCH (except, RETURN_MASK_ERROR)
9088 {
9089 /* We found the variable, but somehow failed to read
9090 its value. Rethrow the same error, but with a little
9091 bit more information, to help the user understand
9092 what went wrong (Eg: the variable might have been
9093 optimized out). */
9094 throw_error (except.error,
9095 _("unable to read value of %s (%s)"),
9096 xvz_name, except.message);
9097 }
9098 END_CATCH
9099
9100 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
9101 {
9102 fixed_record_type = copy_type (fixed_record_type);
9103 TYPE_LENGTH (fixed_record_type) = size;
9104
9105 /* The FIXED_RECORD_TYPE may have be a stub. We have
9106 observed this when the debugging info is STABS, and
9107 apparently it is something that is hard to fix.
9108
9109 In practice, we don't need the actual type definition
9110 at all, because the presence of the XVZ variable allows us
9111 to assume that there must be a XVS type as well, which we
9112 should be able to use later, when we need the actual type
9113 definition.
9114
9115 In the meantime, pretend that the "fixed" type we are
9116 returning is NOT a stub, because this can cause trouble
9117 when using this type to create new types targeting it.
9118 Indeed, the associated creation routines often check
9119 whether the target type is a stub and will try to replace
0963b4bd 9120 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9121 might cause the new type to have the wrong size too.
9122 Consider the case of an array, for instance, where the size
9123 of the array is computed from the number of elements in
9124 our array multiplied by the size of its element. */
9125 TYPE_STUB (fixed_record_type) = 0;
9126 }
9127 }
1ed6ede0 9128 return fixed_record_type;
4c4b4cd2 9129 }
d2e4a39e 9130 case TYPE_CODE_ARRAY:
4c4b4cd2 9131 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9132 case TYPE_CODE_UNION:
9133 if (dval == NULL)
4c4b4cd2 9134 return type;
d2e4a39e 9135 else
4c4b4cd2 9136 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9137 }
14f9c5c9
AS
9138}
9139
f192137b
JB
9140/* The same as ada_to_fixed_type_1, except that it preserves the type
9141 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9142
9143 The typedef layer needs be preserved in order to differentiate between
9144 arrays and array pointers when both types are implemented using the same
9145 fat pointer. In the array pointer case, the pointer is encoded as
9146 a typedef of the pointer type. For instance, considering:
9147
9148 type String_Access is access String;
9149 S1 : String_Access := null;
9150
9151 To the debugger, S1 is defined as a typedef of type String. But
9152 to the user, it is a pointer. So if the user tries to print S1,
9153 we should not dereference the array, but print the array address
9154 instead.
9155
9156 If we didn't preserve the typedef layer, we would lose the fact that
9157 the type is to be presented as a pointer (needs de-reference before
9158 being printed). And we would also use the source-level type name. */
f192137b
JB
9159
9160struct type *
9161ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9162 CORE_ADDR address, struct value *dval, int check_tag)
9163
9164{
9165 struct type *fixed_type =
9166 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9167
96dbd2c1
JB
9168 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9169 then preserve the typedef layer.
9170
9171 Implementation note: We can only check the main-type portion of
9172 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9173 from TYPE now returns a type that has the same instance flags
9174 as TYPE. For instance, if TYPE is a "typedef const", and its
9175 target type is a "struct", then the typedef elimination will return
9176 a "const" version of the target type. See check_typedef for more
9177 details about how the typedef layer elimination is done.
9178
9179 brobecker/2010-11-19: It seems to me that the only case where it is
9180 useful to preserve the typedef layer is when dealing with fat pointers.
9181 Perhaps, we could add a check for that and preserve the typedef layer
9182 only in that situation. But this seems unecessary so far, probably
9183 because we call check_typedef/ada_check_typedef pretty much everywhere.
9184 */
f192137b 9185 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9186 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9187 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9188 return type;
9189
9190 return fixed_type;
9191}
9192
14f9c5c9 9193/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9194 TYPE0, but based on no runtime data. */
14f9c5c9 9195
d2e4a39e
AS
9196static struct type *
9197to_static_fixed_type (struct type *type0)
14f9c5c9 9198{
d2e4a39e 9199 struct type *type;
14f9c5c9
AS
9200
9201 if (type0 == NULL)
9202 return NULL;
9203
876cecd0 9204 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9205 return type0;
9206
61ee279c 9207 type0 = ada_check_typedef (type0);
d2e4a39e 9208
14f9c5c9
AS
9209 switch (TYPE_CODE (type0))
9210 {
9211 default:
9212 return type0;
9213 case TYPE_CODE_STRUCT:
9214 type = dynamic_template_type (type0);
d2e4a39e 9215 if (type != NULL)
4c4b4cd2
PH
9216 return template_to_static_fixed_type (type);
9217 else
9218 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9219 case TYPE_CODE_UNION:
9220 type = ada_find_parallel_type (type0, "___XVU");
9221 if (type != NULL)
4c4b4cd2
PH
9222 return template_to_static_fixed_type (type);
9223 else
9224 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9225 }
9226}
9227
4c4b4cd2
PH
9228/* A static approximation of TYPE with all type wrappers removed. */
9229
d2e4a39e
AS
9230static struct type *
9231static_unwrap_type (struct type *type)
14f9c5c9
AS
9232{
9233 if (ada_is_aligner_type (type))
9234 {
61ee279c 9235 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9236 if (ada_type_name (type1) == NULL)
4c4b4cd2 9237 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9238
9239 return static_unwrap_type (type1);
9240 }
d2e4a39e 9241 else
14f9c5c9 9242 {
d2e4a39e 9243 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9244
d2e4a39e 9245 if (raw_real_type == type)
4c4b4cd2 9246 return type;
14f9c5c9 9247 else
4c4b4cd2 9248 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9249 }
9250}
9251
9252/* In some cases, incomplete and private types require
4c4b4cd2 9253 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9254 type Foo;
9255 type FooP is access Foo;
9256 V: FooP;
9257 type Foo is array ...;
4c4b4cd2 9258 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9259 cross-references to such types, we instead substitute for FooP a
9260 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9261 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9262
9263/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9264 exists, otherwise TYPE. */
9265
d2e4a39e 9266struct type *
61ee279c 9267ada_check_typedef (struct type *type)
14f9c5c9 9268{
727e3d2e
JB
9269 if (type == NULL)
9270 return NULL;
9271
720d1a40
JB
9272 /* If our type is a typedef type of a fat pointer, then we're done.
9273 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9274 what allows us to distinguish between fat pointers that represent
9275 array types, and fat pointers that represent array access types
9276 (in both cases, the compiler implements them as fat pointers). */
9277 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9278 && is_thick_pntr (ada_typedef_target_type (type)))
9279 return type;
9280
f168693b 9281 type = check_typedef (type);
14f9c5c9 9282 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9283 || !TYPE_STUB (type)
e86ca25f 9284 || TYPE_NAME (type) == NULL)
14f9c5c9 9285 return type;
d2e4a39e 9286 else
14f9c5c9 9287 {
e86ca25f 9288 const char *name = TYPE_NAME (type);
d2e4a39e 9289 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9290
05e522ef
JB
9291 if (type1 == NULL)
9292 return type;
9293
9294 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9295 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9296 types, only for the typedef-to-array types). If that's the case,
9297 strip the typedef layer. */
9298 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9299 type1 = ada_check_typedef (type1);
9300
9301 return type1;
14f9c5c9
AS
9302 }
9303}
9304
9305/* A value representing the data at VALADDR/ADDRESS as described by
9306 type TYPE0, but with a standard (static-sized) type that correctly
9307 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9308 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9309 creation of struct values]. */
14f9c5c9 9310
4c4b4cd2
PH
9311static struct value *
9312ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9313 struct value *val0)
14f9c5c9 9314{
1ed6ede0 9315 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9316
14f9c5c9
AS
9317 if (type == type0 && val0 != NULL)
9318 return val0;
cc0e770c
JB
9319
9320 if (VALUE_LVAL (val0) != lval_memory)
9321 {
9322 /* Our value does not live in memory; it could be a convenience
9323 variable, for instance. Create a not_lval value using val0's
9324 contents. */
9325 return value_from_contents (type, value_contents (val0));
9326 }
9327
9328 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9329}
9330
9331/* A value representing VAL, but with a standard (static-sized) type
9332 that correctly describes it. Does not necessarily create a new
9333 value. */
9334
0c3acc09 9335struct value *
4c4b4cd2
PH
9336ada_to_fixed_value (struct value *val)
9337{
c48db5ca
JB
9338 val = unwrap_value (val);
9339 val = ada_to_fixed_value_create (value_type (val),
9340 value_address (val),
9341 val);
9342 return val;
14f9c5c9 9343}
d2e4a39e 9344\f
14f9c5c9 9345
14f9c5c9
AS
9346/* Attributes */
9347
4c4b4cd2
PH
9348/* Table mapping attribute numbers to names.
9349 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9350
d2e4a39e 9351static const char *attribute_names[] = {
14f9c5c9
AS
9352 "<?>",
9353
d2e4a39e 9354 "first",
14f9c5c9
AS
9355 "last",
9356 "length",
9357 "image",
14f9c5c9
AS
9358 "max",
9359 "min",
4c4b4cd2
PH
9360 "modulus",
9361 "pos",
9362 "size",
9363 "tag",
14f9c5c9 9364 "val",
14f9c5c9
AS
9365 0
9366};
9367
d2e4a39e 9368const char *
4c4b4cd2 9369ada_attribute_name (enum exp_opcode n)
14f9c5c9 9370{
4c4b4cd2
PH
9371 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9372 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9373 else
9374 return attribute_names[0];
9375}
9376
4c4b4cd2 9377/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9378
4c4b4cd2
PH
9379static LONGEST
9380pos_atr (struct value *arg)
14f9c5c9 9381{
24209737
PH
9382 struct value *val = coerce_ref (arg);
9383 struct type *type = value_type (val);
aa715135 9384 LONGEST result;
14f9c5c9 9385
d2e4a39e 9386 if (!discrete_type_p (type))
323e0a4a 9387 error (_("'POS only defined on discrete types"));
14f9c5c9 9388
aa715135
JG
9389 if (!discrete_position (type, value_as_long (val), &result))
9390 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9391
aa715135 9392 return result;
4c4b4cd2
PH
9393}
9394
9395static struct value *
3cb382c9 9396value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9397{
3cb382c9 9398 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9399}
9400
4c4b4cd2 9401/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9402
d2e4a39e
AS
9403static struct value *
9404value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9405{
d2e4a39e 9406 if (!discrete_type_p (type))
323e0a4a 9407 error (_("'VAL only defined on discrete types"));
df407dfe 9408 if (!integer_type_p (value_type (arg)))
323e0a4a 9409 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9410
9411 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9412 {
9413 long pos = value_as_long (arg);
5b4ee69b 9414
14f9c5c9 9415 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9416 error (_("argument to 'VAL out of range"));
14e75d8e 9417 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9418 }
9419 else
9420 return value_from_longest (type, value_as_long (arg));
9421}
14f9c5c9 9422\f
d2e4a39e 9423
4c4b4cd2 9424 /* Evaluation */
14f9c5c9 9425
4c4b4cd2
PH
9426/* True if TYPE appears to be an Ada character type.
9427 [At the moment, this is true only for Character and Wide_Character;
9428 It is a heuristic test that could stand improvement]. */
14f9c5c9 9429
d2e4a39e
AS
9430int
9431ada_is_character_type (struct type *type)
14f9c5c9 9432{
7b9f71f2
JB
9433 const char *name;
9434
9435 /* If the type code says it's a character, then assume it really is,
9436 and don't check any further. */
9437 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9438 return 1;
9439
9440 /* Otherwise, assume it's a character type iff it is a discrete type
9441 with a known character type name. */
9442 name = ada_type_name (type);
9443 return (name != NULL
9444 && (TYPE_CODE (type) == TYPE_CODE_INT
9445 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9446 && (strcmp (name, "character") == 0
9447 || strcmp (name, "wide_character") == 0
5a517ebd 9448 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9449 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9450}
9451
4c4b4cd2 9452/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9453
9454int
ebf56fd3 9455ada_is_string_type (struct type *type)
14f9c5c9 9456{
61ee279c 9457 type = ada_check_typedef (type);
d2e4a39e 9458 if (type != NULL
14f9c5c9 9459 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9460 && (ada_is_simple_array_type (type)
9461 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9462 && ada_array_arity (type) == 1)
9463 {
9464 struct type *elttype = ada_array_element_type (type, 1);
9465
9466 return ada_is_character_type (elttype);
9467 }
d2e4a39e 9468 else
14f9c5c9
AS
9469 return 0;
9470}
9471
5bf03f13
JB
9472/* The compiler sometimes provides a parallel XVS type for a given
9473 PAD type. Normally, it is safe to follow the PAD type directly,
9474 but older versions of the compiler have a bug that causes the offset
9475 of its "F" field to be wrong. Following that field in that case
9476 would lead to incorrect results, but this can be worked around
9477 by ignoring the PAD type and using the associated XVS type instead.
9478
9479 Set to True if the debugger should trust the contents of PAD types.
9480 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9481static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9482
9483/* True if TYPE is a struct type introduced by the compiler to force the
9484 alignment of a value. Such types have a single field with a
4c4b4cd2 9485 distinctive name. */
14f9c5c9
AS
9486
9487int
ebf56fd3 9488ada_is_aligner_type (struct type *type)
14f9c5c9 9489{
61ee279c 9490 type = ada_check_typedef (type);
714e53ab 9491
5bf03f13 9492 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9493 return 0;
9494
14f9c5c9 9495 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9496 && TYPE_NFIELDS (type) == 1
9497 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9498}
9499
9500/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9501 the parallel type. */
14f9c5c9 9502
d2e4a39e
AS
9503struct type *
9504ada_get_base_type (struct type *raw_type)
14f9c5c9 9505{
d2e4a39e
AS
9506 struct type *real_type_namer;
9507 struct type *raw_real_type;
14f9c5c9
AS
9508
9509 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9510 return raw_type;
9511
284614f0
JB
9512 if (ada_is_aligner_type (raw_type))
9513 /* The encoding specifies that we should always use the aligner type.
9514 So, even if this aligner type has an associated XVS type, we should
9515 simply ignore it.
9516
9517 According to the compiler gurus, an XVS type parallel to an aligner
9518 type may exist because of a stabs limitation. In stabs, aligner
9519 types are empty because the field has a variable-sized type, and
9520 thus cannot actually be used as an aligner type. As a result,
9521 we need the associated parallel XVS type to decode the type.
9522 Since the policy in the compiler is to not change the internal
9523 representation based on the debugging info format, we sometimes
9524 end up having a redundant XVS type parallel to the aligner type. */
9525 return raw_type;
9526
14f9c5c9 9527 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9528 if (real_type_namer == NULL
14f9c5c9
AS
9529 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9530 || TYPE_NFIELDS (real_type_namer) != 1)
9531 return raw_type;
9532
f80d3ff2
JB
9533 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9534 {
9535 /* This is an older encoding form where the base type needs to be
9536 looked up by name. We prefer the newer enconding because it is
9537 more efficient. */
9538 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9539 if (raw_real_type == NULL)
9540 return raw_type;
9541 else
9542 return raw_real_type;
9543 }
9544
9545 /* The field in our XVS type is a reference to the base type. */
9546 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9547}
14f9c5c9 9548
4c4b4cd2 9549/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9550
d2e4a39e
AS
9551struct type *
9552ada_aligned_type (struct type *type)
14f9c5c9
AS
9553{
9554 if (ada_is_aligner_type (type))
9555 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9556 else
9557 return ada_get_base_type (type);
9558}
9559
9560
9561/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9562 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9563
fc1a4b47
AC
9564const gdb_byte *
9565ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9566{
d2e4a39e 9567 if (ada_is_aligner_type (type))
14f9c5c9 9568 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9569 valaddr +
9570 TYPE_FIELD_BITPOS (type,
9571 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9572 else
9573 return valaddr;
9574}
9575
4c4b4cd2
PH
9576
9577
14f9c5c9 9578/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9579 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9580const char *
9581ada_enum_name (const char *name)
14f9c5c9 9582{
4c4b4cd2
PH
9583 static char *result;
9584 static size_t result_len = 0;
e6a959d6 9585 const char *tmp;
14f9c5c9 9586
4c4b4cd2
PH
9587 /* First, unqualify the enumeration name:
9588 1. Search for the last '.' character. If we find one, then skip
177b42fe 9589 all the preceding characters, the unqualified name starts
76a01679 9590 right after that dot.
4c4b4cd2 9591 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9592 translates dots into "__". Search forward for double underscores,
9593 but stop searching when we hit an overloading suffix, which is
9594 of the form "__" followed by digits. */
4c4b4cd2 9595
c3e5cd34
PH
9596 tmp = strrchr (name, '.');
9597 if (tmp != NULL)
4c4b4cd2
PH
9598 name = tmp + 1;
9599 else
14f9c5c9 9600 {
4c4b4cd2
PH
9601 while ((tmp = strstr (name, "__")) != NULL)
9602 {
9603 if (isdigit (tmp[2]))
9604 break;
9605 else
9606 name = tmp + 2;
9607 }
14f9c5c9
AS
9608 }
9609
9610 if (name[0] == 'Q')
9611 {
14f9c5c9 9612 int v;
5b4ee69b 9613
14f9c5c9 9614 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9615 {
9616 if (sscanf (name + 2, "%x", &v) != 1)
9617 return name;
9618 }
14f9c5c9 9619 else
4c4b4cd2 9620 return name;
14f9c5c9 9621
4c4b4cd2 9622 GROW_VECT (result, result_len, 16);
14f9c5c9 9623 if (isascii (v) && isprint (v))
88c15c34 9624 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9625 else if (name[1] == 'U')
88c15c34 9626 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9627 else
88c15c34 9628 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9629
9630 return result;
9631 }
d2e4a39e 9632 else
4c4b4cd2 9633 {
c3e5cd34
PH
9634 tmp = strstr (name, "__");
9635 if (tmp == NULL)
9636 tmp = strstr (name, "$");
9637 if (tmp != NULL)
4c4b4cd2
PH
9638 {
9639 GROW_VECT (result, result_len, tmp - name + 1);
9640 strncpy (result, name, tmp - name);
9641 result[tmp - name] = '\0';
9642 return result;
9643 }
9644
9645 return name;
9646 }
14f9c5c9
AS
9647}
9648
14f9c5c9
AS
9649/* Evaluate the subexpression of EXP starting at *POS as for
9650 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9651 expression. */
14f9c5c9 9652
d2e4a39e
AS
9653static struct value *
9654evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9655{
4b27a620 9656 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9657}
9658
9659/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9660 value it wraps. */
14f9c5c9 9661
d2e4a39e
AS
9662static struct value *
9663unwrap_value (struct value *val)
14f9c5c9 9664{
df407dfe 9665 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9666
14f9c5c9
AS
9667 if (ada_is_aligner_type (type))
9668 {
de4d072f 9669 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9670 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9671
14f9c5c9 9672 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9673 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9674
9675 return unwrap_value (v);
9676 }
d2e4a39e 9677 else
14f9c5c9 9678 {
d2e4a39e 9679 struct type *raw_real_type =
61ee279c 9680 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9681
5bf03f13
JB
9682 /* If there is no parallel XVS or XVE type, then the value is
9683 already unwrapped. Return it without further modification. */
9684 if ((type == raw_real_type)
9685 && ada_find_parallel_type (type, "___XVE") == NULL)
9686 return val;
14f9c5c9 9687
d2e4a39e 9688 return
4c4b4cd2
PH
9689 coerce_unspec_val_to_type
9690 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9691 value_address (val),
1ed6ede0 9692 NULL, 1));
14f9c5c9
AS
9693 }
9694}
d2e4a39e
AS
9695
9696static struct value *
50eff16b 9697cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9698{
50eff16b
UW
9699 struct value *scale = ada_scaling_factor (value_type (arg));
9700 arg = value_cast (value_type (scale), arg);
14f9c5c9 9701
50eff16b
UW
9702 arg = value_binop (arg, scale, BINOP_MUL);
9703 return value_cast (type, arg);
14f9c5c9
AS
9704}
9705
d2e4a39e 9706static struct value *
50eff16b 9707cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9708{
50eff16b
UW
9709 if (type == value_type (arg))
9710 return arg;
5b4ee69b 9711
50eff16b
UW
9712 struct value *scale = ada_scaling_factor (type);
9713 if (ada_is_fixed_point_type (value_type (arg)))
9714 arg = cast_from_fixed (value_type (scale), arg);
9715 else
9716 arg = value_cast (value_type (scale), arg);
9717
9718 arg = value_binop (arg, scale, BINOP_DIV);
9719 return value_cast (type, arg);
14f9c5c9
AS
9720}
9721
d99dcf51
JB
9722/* Given two array types T1 and T2, return nonzero iff both arrays
9723 contain the same number of elements. */
9724
9725static int
9726ada_same_array_size_p (struct type *t1, struct type *t2)
9727{
9728 LONGEST lo1, hi1, lo2, hi2;
9729
9730 /* Get the array bounds in order to verify that the size of
9731 the two arrays match. */
9732 if (!get_array_bounds (t1, &lo1, &hi1)
9733 || !get_array_bounds (t2, &lo2, &hi2))
9734 error (_("unable to determine array bounds"));
9735
9736 /* To make things easier for size comparison, normalize a bit
9737 the case of empty arrays by making sure that the difference
9738 between upper bound and lower bound is always -1. */
9739 if (lo1 > hi1)
9740 hi1 = lo1 - 1;
9741 if (lo2 > hi2)
9742 hi2 = lo2 - 1;
9743
9744 return (hi1 - lo1 == hi2 - lo2);
9745}
9746
9747/* Assuming that VAL is an array of integrals, and TYPE represents
9748 an array with the same number of elements, but with wider integral
9749 elements, return an array "casted" to TYPE. In practice, this
9750 means that the returned array is built by casting each element
9751 of the original array into TYPE's (wider) element type. */
9752
9753static struct value *
9754ada_promote_array_of_integrals (struct type *type, struct value *val)
9755{
9756 struct type *elt_type = TYPE_TARGET_TYPE (type);
9757 LONGEST lo, hi;
9758 struct value *res;
9759 LONGEST i;
9760
9761 /* Verify that both val and type are arrays of scalars, and
9762 that the size of val's elements is smaller than the size
9763 of type's element. */
9764 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9765 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9766 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9767 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9768 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9769 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9770
9771 if (!get_array_bounds (type, &lo, &hi))
9772 error (_("unable to determine array bounds"));
9773
9774 res = allocate_value (type);
9775
9776 /* Promote each array element. */
9777 for (i = 0; i < hi - lo + 1; i++)
9778 {
9779 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9780
9781 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9782 value_contents_all (elt), TYPE_LENGTH (elt_type));
9783 }
9784
9785 return res;
9786}
9787
4c4b4cd2
PH
9788/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9789 return the converted value. */
9790
d2e4a39e
AS
9791static struct value *
9792coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9793{
df407dfe 9794 struct type *type2 = value_type (val);
5b4ee69b 9795
14f9c5c9
AS
9796 if (type == type2)
9797 return val;
9798
61ee279c
PH
9799 type2 = ada_check_typedef (type2);
9800 type = ada_check_typedef (type);
14f9c5c9 9801
d2e4a39e
AS
9802 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9803 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9804 {
9805 val = ada_value_ind (val);
df407dfe 9806 type2 = value_type (val);
14f9c5c9
AS
9807 }
9808
d2e4a39e 9809 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9810 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9811 {
d99dcf51
JB
9812 if (!ada_same_array_size_p (type, type2))
9813 error (_("cannot assign arrays of different length"));
9814
9815 if (is_integral_type (TYPE_TARGET_TYPE (type))
9816 && is_integral_type (TYPE_TARGET_TYPE (type2))
9817 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9818 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9819 {
9820 /* Allow implicit promotion of the array elements to
9821 a wider type. */
9822 return ada_promote_array_of_integrals (type, val);
9823 }
9824
9825 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9826 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9827 error (_("Incompatible types in assignment"));
04624583 9828 deprecated_set_value_type (val, type);
14f9c5c9 9829 }
d2e4a39e 9830 return val;
14f9c5c9
AS
9831}
9832
4c4b4cd2
PH
9833static struct value *
9834ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9835{
9836 struct value *val;
9837 struct type *type1, *type2;
9838 LONGEST v, v1, v2;
9839
994b9211
AC
9840 arg1 = coerce_ref (arg1);
9841 arg2 = coerce_ref (arg2);
18af8284
JB
9842 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9843 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9844
76a01679
JB
9845 if (TYPE_CODE (type1) != TYPE_CODE_INT
9846 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9847 return value_binop (arg1, arg2, op);
9848
76a01679 9849 switch (op)
4c4b4cd2
PH
9850 {
9851 case BINOP_MOD:
9852 case BINOP_DIV:
9853 case BINOP_REM:
9854 break;
9855 default:
9856 return value_binop (arg1, arg2, op);
9857 }
9858
9859 v2 = value_as_long (arg2);
9860 if (v2 == 0)
323e0a4a 9861 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9862
9863 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9864 return value_binop (arg1, arg2, op);
9865
9866 v1 = value_as_long (arg1);
9867 switch (op)
9868 {
9869 case BINOP_DIV:
9870 v = v1 / v2;
76a01679
JB
9871 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9872 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9873 break;
9874 case BINOP_REM:
9875 v = v1 % v2;
76a01679
JB
9876 if (v * v1 < 0)
9877 v -= v2;
4c4b4cd2
PH
9878 break;
9879 default:
9880 /* Should not reach this point. */
9881 v = 0;
9882 }
9883
9884 val = allocate_value (type1);
990a07ab 9885 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9886 TYPE_LENGTH (value_type (val)),
9887 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9888 return val;
9889}
9890
9891static int
9892ada_value_equal (struct value *arg1, struct value *arg2)
9893{
df407dfe
AC
9894 if (ada_is_direct_array_type (value_type (arg1))
9895 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9896 {
79e8fcaa
JB
9897 struct type *arg1_type, *arg2_type;
9898
f58b38bf
JB
9899 /* Automatically dereference any array reference before
9900 we attempt to perform the comparison. */
9901 arg1 = ada_coerce_ref (arg1);
9902 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9903
4c4b4cd2
PH
9904 arg1 = ada_coerce_to_simple_array (arg1);
9905 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9906
9907 arg1_type = ada_check_typedef (value_type (arg1));
9908 arg2_type = ada_check_typedef (value_type (arg2));
9909
9910 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9911 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9912 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9913 /* FIXME: The following works only for types whose
76a01679
JB
9914 representations use all bits (no padding or undefined bits)
9915 and do not have user-defined equality. */
79e8fcaa
JB
9916 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9917 && memcmp (value_contents (arg1), value_contents (arg2),
9918 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9919 }
9920 return value_equal (arg1, arg2);
9921}
9922
52ce6436
PH
9923/* Total number of component associations in the aggregate starting at
9924 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9925 OP_AGGREGATE. */
52ce6436
PH
9926
9927static int
9928num_component_specs (struct expression *exp, int pc)
9929{
9930 int n, m, i;
5b4ee69b 9931
52ce6436
PH
9932 m = exp->elts[pc + 1].longconst;
9933 pc += 3;
9934 n = 0;
9935 for (i = 0; i < m; i += 1)
9936 {
9937 switch (exp->elts[pc].opcode)
9938 {
9939 default:
9940 n += 1;
9941 break;
9942 case OP_CHOICES:
9943 n += exp->elts[pc + 1].longconst;
9944 break;
9945 }
9946 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9947 }
9948 return n;
9949}
9950
9951/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9952 component of LHS (a simple array or a record), updating *POS past
9953 the expression, assuming that LHS is contained in CONTAINER. Does
9954 not modify the inferior's memory, nor does it modify LHS (unless
9955 LHS == CONTAINER). */
9956
9957static void
9958assign_component (struct value *container, struct value *lhs, LONGEST index,
9959 struct expression *exp, int *pos)
9960{
9961 struct value *mark = value_mark ();
9962 struct value *elt;
0e2da9f0 9963 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9964
0e2da9f0 9965 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9966 {
22601c15
UW
9967 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9968 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9969
52ce6436
PH
9970 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9971 }
9972 else
9973 {
9974 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9975 elt = ada_to_fixed_value (elt);
52ce6436
PH
9976 }
9977
9978 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9979 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9980 else
9981 value_assign_to_component (container, elt,
9982 ada_evaluate_subexp (NULL, exp, pos,
9983 EVAL_NORMAL));
9984
9985 value_free_to_mark (mark);
9986}
9987
9988/* Assuming that LHS represents an lvalue having a record or array
9989 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9990 of that aggregate's value to LHS, advancing *POS past the
9991 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9992 lvalue containing LHS (possibly LHS itself). Does not modify
9993 the inferior's memory, nor does it modify the contents of
0963b4bd 9994 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9995
9996static struct value *
9997assign_aggregate (struct value *container,
9998 struct value *lhs, struct expression *exp,
9999 int *pos, enum noside noside)
10000{
10001 struct type *lhs_type;
10002 int n = exp->elts[*pos+1].longconst;
10003 LONGEST low_index, high_index;
10004 int num_specs;
10005 LONGEST *indices;
10006 int max_indices, num_indices;
52ce6436 10007 int i;
52ce6436
PH
10008
10009 *pos += 3;
10010 if (noside != EVAL_NORMAL)
10011 {
52ce6436
PH
10012 for (i = 0; i < n; i += 1)
10013 ada_evaluate_subexp (NULL, exp, pos, noside);
10014 return container;
10015 }
10016
10017 container = ada_coerce_ref (container);
10018 if (ada_is_direct_array_type (value_type (container)))
10019 container = ada_coerce_to_simple_array (container);
10020 lhs = ada_coerce_ref (lhs);
10021 if (!deprecated_value_modifiable (lhs))
10022 error (_("Left operand of assignment is not a modifiable lvalue."));
10023
0e2da9f0 10024 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10025 if (ada_is_direct_array_type (lhs_type))
10026 {
10027 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 10028 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10029 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10030 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
10031 }
10032 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10033 {
10034 low_index = 0;
10035 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
10036 }
10037 else
10038 error (_("Left-hand side must be array or record."));
10039
10040 num_specs = num_component_specs (exp, *pos - 3);
10041 max_indices = 4 * num_specs + 4;
8d749320 10042 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
10043 indices[0] = indices[1] = low_index - 1;
10044 indices[2] = indices[3] = high_index + 1;
10045 num_indices = 4;
10046
10047 for (i = 0; i < n; i += 1)
10048 {
10049 switch (exp->elts[*pos].opcode)
10050 {
1fbf5ada
JB
10051 case OP_CHOICES:
10052 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10053 &num_indices, max_indices,
10054 low_index, high_index);
10055 break;
10056 case OP_POSITIONAL:
10057 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
10058 &num_indices, max_indices,
10059 low_index, high_index);
1fbf5ada
JB
10060 break;
10061 case OP_OTHERS:
10062 if (i != n-1)
10063 error (_("Misplaced 'others' clause"));
10064 aggregate_assign_others (container, lhs, exp, pos, indices,
10065 num_indices, low_index, high_index);
10066 break;
10067 default:
10068 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
10069 }
10070 }
10071
10072 return container;
10073}
10074
10075/* Assign into the component of LHS indexed by the OP_POSITIONAL
10076 construct at *POS, updating *POS past the construct, given that
10077 the positions are relative to lower bound LOW, where HIGH is the
10078 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10079 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10080 assign_aggregate. */
52ce6436
PH
10081static void
10082aggregate_assign_positional (struct value *container,
10083 struct value *lhs, struct expression *exp,
10084 int *pos, LONGEST *indices, int *num_indices,
10085 int max_indices, LONGEST low, LONGEST high)
10086{
10087 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10088
10089 if (ind - 1 == high)
e1d5a0d2 10090 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10091 if (ind <= high)
10092 {
10093 add_component_interval (ind, ind, indices, num_indices, max_indices);
10094 *pos += 3;
10095 assign_component (container, lhs, ind, exp, pos);
10096 }
10097 else
10098 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10099}
10100
10101/* Assign into the components of LHS indexed by the OP_CHOICES
10102 construct at *POS, updating *POS past the construct, given that
10103 the allowable indices are LOW..HIGH. Record the indices assigned
10104 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10105 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10106static void
10107aggregate_assign_from_choices (struct value *container,
10108 struct value *lhs, struct expression *exp,
10109 int *pos, LONGEST *indices, int *num_indices,
10110 int max_indices, LONGEST low, LONGEST high)
10111{
10112 int j;
10113 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10114 int choice_pos, expr_pc;
10115 int is_array = ada_is_direct_array_type (value_type (lhs));
10116
10117 choice_pos = *pos += 3;
10118
10119 for (j = 0; j < n_choices; j += 1)
10120 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10121 expr_pc = *pos;
10122 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10123
10124 for (j = 0; j < n_choices; j += 1)
10125 {
10126 LONGEST lower, upper;
10127 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10128
52ce6436
PH
10129 if (op == OP_DISCRETE_RANGE)
10130 {
10131 choice_pos += 1;
10132 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10133 EVAL_NORMAL));
10134 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10135 EVAL_NORMAL));
10136 }
10137 else if (is_array)
10138 {
10139 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10140 EVAL_NORMAL));
10141 upper = lower;
10142 }
10143 else
10144 {
10145 int ind;
0d5cff50 10146 const char *name;
5b4ee69b 10147
52ce6436
PH
10148 switch (op)
10149 {
10150 case OP_NAME:
10151 name = &exp->elts[choice_pos + 2].string;
10152 break;
10153 case OP_VAR_VALUE:
10154 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10155 break;
10156 default:
10157 error (_("Invalid record component association."));
10158 }
10159 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10160 ind = 0;
10161 if (! find_struct_field (name, value_type (lhs), 0,
10162 NULL, NULL, NULL, NULL, &ind))
10163 error (_("Unknown component name: %s."), name);
10164 lower = upper = ind;
10165 }
10166
10167 if (lower <= upper && (lower < low || upper > high))
10168 error (_("Index in component association out of bounds."));
10169
10170 add_component_interval (lower, upper, indices, num_indices,
10171 max_indices);
10172 while (lower <= upper)
10173 {
10174 int pos1;
5b4ee69b 10175
52ce6436
PH
10176 pos1 = expr_pc;
10177 assign_component (container, lhs, lower, exp, &pos1);
10178 lower += 1;
10179 }
10180 }
10181}
10182
10183/* Assign the value of the expression in the OP_OTHERS construct in
10184 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10185 have not been previously assigned. The index intervals already assigned
10186 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10187 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10188static void
10189aggregate_assign_others (struct value *container,
10190 struct value *lhs, struct expression *exp,
10191 int *pos, LONGEST *indices, int num_indices,
10192 LONGEST low, LONGEST high)
10193{
10194 int i;
5ce64950 10195 int expr_pc = *pos + 1;
52ce6436
PH
10196
10197 for (i = 0; i < num_indices - 2; i += 2)
10198 {
10199 LONGEST ind;
5b4ee69b 10200
52ce6436
PH
10201 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10202 {
5ce64950 10203 int localpos;
5b4ee69b 10204
5ce64950
MS
10205 localpos = expr_pc;
10206 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10207 }
10208 }
10209 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10210}
10211
10212/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10213 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10214 modifying *SIZE as needed. It is an error if *SIZE exceeds
10215 MAX_SIZE. The resulting intervals do not overlap. */
10216static void
10217add_component_interval (LONGEST low, LONGEST high,
10218 LONGEST* indices, int *size, int max_size)
10219{
10220 int i, j;
5b4ee69b 10221
52ce6436
PH
10222 for (i = 0; i < *size; i += 2) {
10223 if (high >= indices[i] && low <= indices[i + 1])
10224 {
10225 int kh;
5b4ee69b 10226
52ce6436
PH
10227 for (kh = i + 2; kh < *size; kh += 2)
10228 if (high < indices[kh])
10229 break;
10230 if (low < indices[i])
10231 indices[i] = low;
10232 indices[i + 1] = indices[kh - 1];
10233 if (high > indices[i + 1])
10234 indices[i + 1] = high;
10235 memcpy (indices + i + 2, indices + kh, *size - kh);
10236 *size -= kh - i - 2;
10237 return;
10238 }
10239 else if (high < indices[i])
10240 break;
10241 }
10242
10243 if (*size == max_size)
10244 error (_("Internal error: miscounted aggregate components."));
10245 *size += 2;
10246 for (j = *size-1; j >= i+2; j -= 1)
10247 indices[j] = indices[j - 2];
10248 indices[i] = low;
10249 indices[i + 1] = high;
10250}
10251
6e48bd2c
JB
10252/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10253 is different. */
10254
10255static struct value *
b7e22850 10256ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10257{
10258 if (type == ada_check_typedef (value_type (arg2)))
10259 return arg2;
10260
10261 if (ada_is_fixed_point_type (type))
10262 return (cast_to_fixed (type, arg2));
10263
10264 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10265 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10266
10267 return value_cast (type, arg2);
10268}
10269
284614f0
JB
10270/* Evaluating Ada expressions, and printing their result.
10271 ------------------------------------------------------
10272
21649b50
JB
10273 1. Introduction:
10274 ----------------
10275
284614f0
JB
10276 We usually evaluate an Ada expression in order to print its value.
10277 We also evaluate an expression in order to print its type, which
10278 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10279 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10280 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10281 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10282 similar.
10283
10284 Evaluating expressions is a little more complicated for Ada entities
10285 than it is for entities in languages such as C. The main reason for
10286 this is that Ada provides types whose definition might be dynamic.
10287 One example of such types is variant records. Or another example
10288 would be an array whose bounds can only be known at run time.
10289
10290 The following description is a general guide as to what should be
10291 done (and what should NOT be done) in order to evaluate an expression
10292 involving such types, and when. This does not cover how the semantic
10293 information is encoded by GNAT as this is covered separatly. For the
10294 document used as the reference for the GNAT encoding, see exp_dbug.ads
10295 in the GNAT sources.
10296
10297 Ideally, we should embed each part of this description next to its
10298 associated code. Unfortunately, the amount of code is so vast right
10299 now that it's hard to see whether the code handling a particular
10300 situation might be duplicated or not. One day, when the code is
10301 cleaned up, this guide might become redundant with the comments
10302 inserted in the code, and we might want to remove it.
10303
21649b50
JB
10304 2. ``Fixing'' an Entity, the Simple Case:
10305 -----------------------------------------
10306
284614f0
JB
10307 When evaluating Ada expressions, the tricky issue is that they may
10308 reference entities whose type contents and size are not statically
10309 known. Consider for instance a variant record:
10310
10311 type Rec (Empty : Boolean := True) is record
10312 case Empty is
10313 when True => null;
10314 when False => Value : Integer;
10315 end case;
10316 end record;
10317 Yes : Rec := (Empty => False, Value => 1);
10318 No : Rec := (empty => True);
10319
10320 The size and contents of that record depends on the value of the
10321 descriminant (Rec.Empty). At this point, neither the debugging
10322 information nor the associated type structure in GDB are able to
10323 express such dynamic types. So what the debugger does is to create
10324 "fixed" versions of the type that applies to the specific object.
10325 We also informally refer to this opperation as "fixing" an object,
10326 which means creating its associated fixed type.
10327
10328 Example: when printing the value of variable "Yes" above, its fixed
10329 type would look like this:
10330
10331 type Rec is record
10332 Empty : Boolean;
10333 Value : Integer;
10334 end record;
10335
10336 On the other hand, if we printed the value of "No", its fixed type
10337 would become:
10338
10339 type Rec is record
10340 Empty : Boolean;
10341 end record;
10342
10343 Things become a little more complicated when trying to fix an entity
10344 with a dynamic type that directly contains another dynamic type,
10345 such as an array of variant records, for instance. There are
10346 two possible cases: Arrays, and records.
10347
21649b50
JB
10348 3. ``Fixing'' Arrays:
10349 ---------------------
10350
10351 The type structure in GDB describes an array in terms of its bounds,
10352 and the type of its elements. By design, all elements in the array
10353 have the same type and we cannot represent an array of variant elements
10354 using the current type structure in GDB. When fixing an array,
10355 we cannot fix the array element, as we would potentially need one
10356 fixed type per element of the array. As a result, the best we can do
10357 when fixing an array is to produce an array whose bounds and size
10358 are correct (allowing us to read it from memory), but without having
10359 touched its element type. Fixing each element will be done later,
10360 when (if) necessary.
10361
10362 Arrays are a little simpler to handle than records, because the same
10363 amount of memory is allocated for each element of the array, even if
1b536f04 10364 the amount of space actually used by each element differs from element
21649b50 10365 to element. Consider for instance the following array of type Rec:
284614f0
JB
10366
10367 type Rec_Array is array (1 .. 2) of Rec;
10368
1b536f04
JB
10369 The actual amount of memory occupied by each element might be different
10370 from element to element, depending on the value of their discriminant.
21649b50 10371 But the amount of space reserved for each element in the array remains
1b536f04 10372 fixed regardless. So we simply need to compute that size using
21649b50
JB
10373 the debugging information available, from which we can then determine
10374 the array size (we multiply the number of elements of the array by
10375 the size of each element).
10376
10377 The simplest case is when we have an array of a constrained element
10378 type. For instance, consider the following type declarations:
10379
10380 type Bounded_String (Max_Size : Integer) is
10381 Length : Integer;
10382 Buffer : String (1 .. Max_Size);
10383 end record;
10384 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10385
10386 In this case, the compiler describes the array as an array of
10387 variable-size elements (identified by its XVS suffix) for which
10388 the size can be read in the parallel XVZ variable.
10389
10390 In the case of an array of an unconstrained element type, the compiler
10391 wraps the array element inside a private PAD type. This type should not
10392 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10393 that we also use the adjective "aligner" in our code to designate
10394 these wrapper types.
10395
1b536f04 10396 In some cases, the size allocated for each element is statically
21649b50
JB
10397 known. In that case, the PAD type already has the correct size,
10398 and the array element should remain unfixed.
10399
10400 But there are cases when this size is not statically known.
10401 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10402
10403 type Dynamic is array (1 .. Five) of Integer;
10404 type Wrapper (Has_Length : Boolean := False) is record
10405 Data : Dynamic;
10406 case Has_Length is
10407 when True => Length : Integer;
10408 when False => null;
10409 end case;
10410 end record;
10411 type Wrapper_Array is array (1 .. 2) of Wrapper;
10412
10413 Hello : Wrapper_Array := (others => (Has_Length => True,
10414 Data => (others => 17),
10415 Length => 1));
10416
10417
10418 The debugging info would describe variable Hello as being an
10419 array of a PAD type. The size of that PAD type is not statically
10420 known, but can be determined using a parallel XVZ variable.
10421 In that case, a copy of the PAD type with the correct size should
10422 be used for the fixed array.
10423
21649b50
JB
10424 3. ``Fixing'' record type objects:
10425 ----------------------------------
10426
10427 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10428 record types. In this case, in order to compute the associated
10429 fixed type, we need to determine the size and offset of each of
10430 its components. This, in turn, requires us to compute the fixed
10431 type of each of these components.
10432
10433 Consider for instance the example:
10434
10435 type Bounded_String (Max_Size : Natural) is record
10436 Str : String (1 .. Max_Size);
10437 Length : Natural;
10438 end record;
10439 My_String : Bounded_String (Max_Size => 10);
10440
10441 In that case, the position of field "Length" depends on the size
10442 of field Str, which itself depends on the value of the Max_Size
21649b50 10443 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10444 we need to fix the type of field Str. Therefore, fixing a variant
10445 record requires us to fix each of its components.
10446
10447 However, if a component does not have a dynamic size, the component
10448 should not be fixed. In particular, fields that use a PAD type
10449 should not fixed. Here is an example where this might happen
10450 (assuming type Rec above):
10451
10452 type Container (Big : Boolean) is record
10453 First : Rec;
10454 After : Integer;
10455 case Big is
10456 when True => Another : Integer;
10457 when False => null;
10458 end case;
10459 end record;
10460 My_Container : Container := (Big => False,
10461 First => (Empty => True),
10462 After => 42);
10463
10464 In that example, the compiler creates a PAD type for component First,
10465 whose size is constant, and then positions the component After just
10466 right after it. The offset of component After is therefore constant
10467 in this case.
10468
10469 The debugger computes the position of each field based on an algorithm
10470 that uses, among other things, the actual position and size of the field
21649b50
JB
10471 preceding it. Let's now imagine that the user is trying to print
10472 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10473 end up computing the offset of field After based on the size of the
10474 fixed version of field First. And since in our example First has
10475 only one actual field, the size of the fixed type is actually smaller
10476 than the amount of space allocated to that field, and thus we would
10477 compute the wrong offset of field After.
10478
21649b50
JB
10479 To make things more complicated, we need to watch out for dynamic
10480 components of variant records (identified by the ___XVL suffix in
10481 the component name). Even if the target type is a PAD type, the size
10482 of that type might not be statically known. So the PAD type needs
10483 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10484 we might end up with the wrong size for our component. This can be
10485 observed with the following type declarations:
284614f0
JB
10486
10487 type Octal is new Integer range 0 .. 7;
10488 type Octal_Array is array (Positive range <>) of Octal;
10489 pragma Pack (Octal_Array);
10490
10491 type Octal_Buffer (Size : Positive) is record
10492 Buffer : Octal_Array (1 .. Size);
10493 Length : Integer;
10494 end record;
10495
10496 In that case, Buffer is a PAD type whose size is unset and needs
10497 to be computed by fixing the unwrapped type.
10498
21649b50
JB
10499 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10500 ----------------------------------------------------------
10501
10502 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10503 thus far, be actually fixed?
10504
10505 The answer is: Only when referencing that element. For instance
10506 when selecting one component of a record, this specific component
10507 should be fixed at that point in time. Or when printing the value
10508 of a record, each component should be fixed before its value gets
10509 printed. Similarly for arrays, the element of the array should be
10510 fixed when printing each element of the array, or when extracting
10511 one element out of that array. On the other hand, fixing should
10512 not be performed on the elements when taking a slice of an array!
10513
31432a67 10514 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10515 size of each field is that we end up also miscomputing the size
10516 of the containing type. This can have adverse results when computing
10517 the value of an entity. GDB fetches the value of an entity based
10518 on the size of its type, and thus a wrong size causes GDB to fetch
10519 the wrong amount of memory. In the case where the computed size is
10520 too small, GDB fetches too little data to print the value of our
31432a67 10521 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10522 past the buffer containing the data =:-o. */
10523
ced9779b
JB
10524/* Evaluate a subexpression of EXP, at index *POS, and return a value
10525 for that subexpression cast to TO_TYPE. Advance *POS over the
10526 subexpression. */
10527
10528static value *
10529ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10530 enum noside noside, struct type *to_type)
10531{
10532 int pc = *pos;
10533
10534 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10535 || exp->elts[pc].opcode == OP_VAR_VALUE)
10536 {
10537 (*pos) += 4;
10538
10539 value *val;
10540 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10541 {
10542 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10543 return value_zero (to_type, not_lval);
10544
10545 val = evaluate_var_msym_value (noside,
10546 exp->elts[pc + 1].objfile,
10547 exp->elts[pc + 2].msymbol);
10548 }
10549 else
10550 val = evaluate_var_value (noside,
10551 exp->elts[pc + 1].block,
10552 exp->elts[pc + 2].symbol);
10553
10554 if (noside == EVAL_SKIP)
10555 return eval_skip_value (exp);
10556
10557 val = ada_value_cast (to_type, val);
10558
10559 /* Follow the Ada language semantics that do not allow taking
10560 an address of the result of a cast (view conversion in Ada). */
10561 if (VALUE_LVAL (val) == lval_memory)
10562 {
10563 if (value_lazy (val))
10564 value_fetch_lazy (val);
10565 VALUE_LVAL (val) = not_lval;
10566 }
10567 return val;
10568 }
10569
10570 value *val = evaluate_subexp (to_type, exp, pos, noside);
10571 if (noside == EVAL_SKIP)
10572 return eval_skip_value (exp);
10573 return ada_value_cast (to_type, val);
10574}
10575
284614f0
JB
10576/* Implement the evaluate_exp routine in the exp_descriptor structure
10577 for the Ada language. */
10578
52ce6436 10579static struct value *
ebf56fd3 10580ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10581 int *pos, enum noside noside)
14f9c5c9
AS
10582{
10583 enum exp_opcode op;
b5385fc0 10584 int tem;
14f9c5c9 10585 int pc;
5ec18f2b 10586 int preeval_pos;
14f9c5c9
AS
10587 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10588 struct type *type;
52ce6436 10589 int nargs, oplen;
d2e4a39e 10590 struct value **argvec;
14f9c5c9 10591
d2e4a39e
AS
10592 pc = *pos;
10593 *pos += 1;
14f9c5c9
AS
10594 op = exp->elts[pc].opcode;
10595
d2e4a39e 10596 switch (op)
14f9c5c9
AS
10597 {
10598 default:
10599 *pos -= 1;
6e48bd2c 10600 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10601
10602 if (noside == EVAL_NORMAL)
10603 arg1 = unwrap_value (arg1);
6e48bd2c 10604
edd079d9 10605 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10606 then we need to perform the conversion manually, because
10607 evaluate_subexp_standard doesn't do it. This conversion is
10608 necessary in Ada because the different kinds of float/fixed
10609 types in Ada have different representations.
10610
10611 Similarly, we need to perform the conversion from OP_LONG
10612 ourselves. */
edd079d9 10613 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10614 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10615
10616 return arg1;
4c4b4cd2
PH
10617
10618 case OP_STRING:
10619 {
76a01679 10620 struct value *result;
5b4ee69b 10621
76a01679
JB
10622 *pos -= 1;
10623 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10624 /* The result type will have code OP_STRING, bashed there from
10625 OP_ARRAY. Bash it back. */
df407dfe
AC
10626 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10627 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10628 return result;
4c4b4cd2 10629 }
14f9c5c9
AS
10630
10631 case UNOP_CAST:
10632 (*pos) += 2;
10633 type = exp->elts[pc + 1].type;
ced9779b 10634 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10635
4c4b4cd2
PH
10636 case UNOP_QUAL:
10637 (*pos) += 2;
10638 type = exp->elts[pc + 1].type;
10639 return ada_evaluate_subexp (type, exp, pos, noside);
10640
14f9c5c9
AS
10641 case BINOP_ASSIGN:
10642 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10643 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10644 {
10645 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10646 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10647 return arg1;
10648 return ada_value_assign (arg1, arg1);
10649 }
003f3813
JB
10650 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10651 except if the lhs of our assignment is a convenience variable.
10652 In the case of assigning to a convenience variable, the lhs
10653 should be exactly the result of the evaluation of the rhs. */
10654 type = value_type (arg1);
10655 if (VALUE_LVAL (arg1) == lval_internalvar)
10656 type = NULL;
10657 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10658 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10659 return arg1;
df407dfe
AC
10660 if (ada_is_fixed_point_type (value_type (arg1)))
10661 arg2 = cast_to_fixed (value_type (arg1), arg2);
10662 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10663 error
323e0a4a 10664 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10665 else
df407dfe 10666 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10667 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10668
10669 case BINOP_ADD:
10670 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10671 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10672 if (noside == EVAL_SKIP)
4c4b4cd2 10673 goto nosideret;
2ac8a782
JB
10674 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10675 return (value_from_longest
10676 (value_type (arg1),
10677 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10678 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10679 return (value_from_longest
10680 (value_type (arg2),
10681 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10682 if ((ada_is_fixed_point_type (value_type (arg1))
10683 || ada_is_fixed_point_type (value_type (arg2)))
10684 && value_type (arg1) != value_type (arg2))
323e0a4a 10685 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10686 /* Do the addition, and cast the result to the type of the first
10687 argument. We cannot cast the result to a reference type, so if
10688 ARG1 is a reference type, find its underlying type. */
10689 type = value_type (arg1);
10690 while (TYPE_CODE (type) == TYPE_CODE_REF)
10691 type = TYPE_TARGET_TYPE (type);
f44316fa 10692 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10693 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10694
10695 case BINOP_SUB:
10696 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10697 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10698 if (noside == EVAL_SKIP)
4c4b4cd2 10699 goto nosideret;
2ac8a782
JB
10700 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10701 return (value_from_longest
10702 (value_type (arg1),
10703 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10704 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10705 return (value_from_longest
10706 (value_type (arg2),
10707 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10708 if ((ada_is_fixed_point_type (value_type (arg1))
10709 || ada_is_fixed_point_type (value_type (arg2)))
10710 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10711 error (_("Operands of fixed-point subtraction "
10712 "must have the same type"));
b7789565
JB
10713 /* Do the substraction, and cast the result to the type of the first
10714 argument. We cannot cast the result to a reference type, so if
10715 ARG1 is a reference type, find its underlying type. */
10716 type = value_type (arg1);
10717 while (TYPE_CODE (type) == TYPE_CODE_REF)
10718 type = TYPE_TARGET_TYPE (type);
f44316fa 10719 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10720 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10721
10722 case BINOP_MUL:
10723 case BINOP_DIV:
e1578042
JB
10724 case BINOP_REM:
10725 case BINOP_MOD:
14f9c5c9
AS
10726 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10727 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10728 if (noside == EVAL_SKIP)
4c4b4cd2 10729 goto nosideret;
e1578042 10730 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10731 {
10732 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10733 return value_zero (value_type (arg1), not_lval);
10734 }
14f9c5c9 10735 else
4c4b4cd2 10736 {
a53b7a21 10737 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10738 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10739 arg1 = cast_from_fixed (type, arg1);
df407dfe 10740 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10741 arg2 = cast_from_fixed (type, arg2);
f44316fa 10742 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10743 return ada_value_binop (arg1, arg2, op);
10744 }
10745
4c4b4cd2
PH
10746 case BINOP_EQUAL:
10747 case BINOP_NOTEQUAL:
14f9c5c9 10748 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10749 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10750 if (noside == EVAL_SKIP)
76a01679 10751 goto nosideret;
4c4b4cd2 10752 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10753 tem = 0;
4c4b4cd2 10754 else
f44316fa
UW
10755 {
10756 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10757 tem = ada_value_equal (arg1, arg2);
10758 }
4c4b4cd2 10759 if (op == BINOP_NOTEQUAL)
76a01679 10760 tem = !tem;
fbb06eb1
UW
10761 type = language_bool_type (exp->language_defn, exp->gdbarch);
10762 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10763
10764 case UNOP_NEG:
10765 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10766 if (noside == EVAL_SKIP)
10767 goto nosideret;
df407dfe
AC
10768 else if (ada_is_fixed_point_type (value_type (arg1)))
10769 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10770 else
f44316fa
UW
10771 {
10772 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10773 return value_neg (arg1);
10774 }
4c4b4cd2 10775
2330c6c6
JB
10776 case BINOP_LOGICAL_AND:
10777 case BINOP_LOGICAL_OR:
10778 case UNOP_LOGICAL_NOT:
000d5124
JB
10779 {
10780 struct value *val;
10781
10782 *pos -= 1;
10783 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10784 type = language_bool_type (exp->language_defn, exp->gdbarch);
10785 return value_cast (type, val);
000d5124 10786 }
2330c6c6
JB
10787
10788 case BINOP_BITWISE_AND:
10789 case BINOP_BITWISE_IOR:
10790 case BINOP_BITWISE_XOR:
000d5124
JB
10791 {
10792 struct value *val;
10793
10794 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10795 *pos = pc;
10796 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10797
10798 return value_cast (value_type (arg1), val);
10799 }
2330c6c6 10800
14f9c5c9
AS
10801 case OP_VAR_VALUE:
10802 *pos -= 1;
6799def4 10803
14f9c5c9 10804 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10805 {
10806 *pos += 4;
10807 goto nosideret;
10808 }
da5c522f
JB
10809
10810 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10811 /* Only encountered when an unresolved symbol occurs in a
10812 context other than a function call, in which case, it is
52ce6436 10813 invalid. */
323e0a4a 10814 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10815 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10816
10817 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10818 {
0c1f74cf 10819 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10820 /* Check to see if this is a tagged type. We also need to handle
10821 the case where the type is a reference to a tagged type, but
10822 we have to be careful to exclude pointers to tagged types.
10823 The latter should be shown as usual (as a pointer), whereas
10824 a reference should mostly be transparent to the user. */
10825 if (ada_is_tagged_type (type, 0)
023db19c 10826 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10827 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10828 {
10829 /* Tagged types are a little special in the fact that the real
10830 type is dynamic and can only be determined by inspecting the
10831 object's tag. This means that we need to get the object's
10832 value first (EVAL_NORMAL) and then extract the actual object
10833 type from its tag.
10834
10835 Note that we cannot skip the final step where we extract
10836 the object type from its tag, because the EVAL_NORMAL phase
10837 results in dynamic components being resolved into fixed ones.
10838 This can cause problems when trying to print the type
10839 description of tagged types whose parent has a dynamic size:
10840 We use the type name of the "_parent" component in order
10841 to print the name of the ancestor type in the type description.
10842 If that component had a dynamic size, the resolution into
10843 a fixed type would result in the loss of that type name,
10844 thus preventing us from printing the name of the ancestor
10845 type in the type description. */
10846 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10847
10848 if (TYPE_CODE (type) != TYPE_CODE_REF)
10849 {
10850 struct type *actual_type;
10851
10852 actual_type = type_from_tag (ada_value_tag (arg1));
10853 if (actual_type == NULL)
10854 /* If, for some reason, we were unable to determine
10855 the actual type from the tag, then use the static
10856 approximation that we just computed as a fallback.
10857 This can happen if the debugging information is
10858 incomplete, for instance. */
10859 actual_type = type;
10860 return value_zero (actual_type, not_lval);
10861 }
10862 else
10863 {
10864 /* In the case of a ref, ada_coerce_ref takes care
10865 of determining the actual type. But the evaluation
10866 should return a ref as it should be valid to ask
10867 for its address; so rebuild a ref after coerce. */
10868 arg1 = ada_coerce_ref (arg1);
a65cfae5 10869 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10870 }
10871 }
0c1f74cf 10872
84754697
JB
10873 /* Records and unions for which GNAT encodings have been
10874 generated need to be statically fixed as well.
10875 Otherwise, non-static fixing produces a type where
10876 all dynamic properties are removed, which prevents "ptype"
10877 from being able to completely describe the type.
10878 For instance, a case statement in a variant record would be
10879 replaced by the relevant components based on the actual
10880 value of the discriminants. */
10881 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10882 && dynamic_template_type (type) != NULL)
10883 || (TYPE_CODE (type) == TYPE_CODE_UNION
10884 && ada_find_parallel_type (type, "___XVU") != NULL))
10885 {
10886 *pos += 4;
10887 return value_zero (to_static_fixed_type (type), not_lval);
10888 }
4c4b4cd2 10889 }
da5c522f
JB
10890
10891 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10892 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10893
10894 case OP_FUNCALL:
10895 (*pos) += 2;
10896
10897 /* Allocate arg vector, including space for the function to be
10898 called in argvec[0] and a terminating NULL. */
10899 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10900 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10901
10902 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10903 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10904 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10905 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10906 else
10907 {
10908 for (tem = 0; tem <= nargs; tem += 1)
10909 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10910 argvec[tem] = 0;
10911
10912 if (noside == EVAL_SKIP)
10913 goto nosideret;
10914 }
10915
ad82864c
JB
10916 if (ada_is_constrained_packed_array_type
10917 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10918 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10919 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10920 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10921 /* This is a packed array that has already been fixed, and
10922 therefore already coerced to a simple array. Nothing further
10923 to do. */
10924 ;
e6c2c623
PMR
10925 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10926 {
10927 /* Make sure we dereference references so that all the code below
10928 feels like it's really handling the referenced value. Wrapping
10929 types (for alignment) may be there, so make sure we strip them as
10930 well. */
10931 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10932 }
10933 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10934 && VALUE_LVAL (argvec[0]) == lval_memory)
10935 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10936
df407dfe 10937 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10938
10939 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10940 them. So, if this is an array typedef (encoding use for array
10941 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10942 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10943 type = ada_typedef_target_type (type);
10944
4c4b4cd2
PH
10945 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10946 {
61ee279c 10947 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10948 {
10949 case TYPE_CODE_FUNC:
61ee279c 10950 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10951 break;
10952 case TYPE_CODE_ARRAY:
10953 break;
10954 case TYPE_CODE_STRUCT:
10955 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10956 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10957 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10958 break;
10959 default:
323e0a4a 10960 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10961 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10962 break;
10963 }
10964 }
10965
10966 switch (TYPE_CODE (type))
10967 {
10968 case TYPE_CODE_FUNC:
10969 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10970 {
7022349d
PA
10971 if (TYPE_TARGET_TYPE (type) == NULL)
10972 error_call_unknown_return_type (NULL);
10973 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10974 }
7022349d 10975 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
c8ea1972
PH
10976 case TYPE_CODE_INTERNAL_FUNCTION:
10977 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10978 /* We don't know anything about what the internal
10979 function might return, but we have to return
10980 something. */
10981 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10982 not_lval);
10983 else
10984 return call_internal_function (exp->gdbarch, exp->language_defn,
10985 argvec[0], nargs, argvec + 1);
10986
4c4b4cd2
PH
10987 case TYPE_CODE_STRUCT:
10988 {
10989 int arity;
10990
4c4b4cd2
PH
10991 arity = ada_array_arity (type);
10992 type = ada_array_element_type (type, nargs);
10993 if (type == NULL)
323e0a4a 10994 error (_("cannot subscript or call a record"));
4c4b4cd2 10995 if (arity != nargs)
323e0a4a 10996 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10997 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10998 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10999 return
11000 unwrap_value (ada_value_subscript
11001 (argvec[0], nargs, argvec + 1));
11002 }
11003 case TYPE_CODE_ARRAY:
11004 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11005 {
11006 type = ada_array_element_type (type, nargs);
11007 if (type == NULL)
323e0a4a 11008 error (_("element type of array unknown"));
4c4b4cd2 11009 else
0a07e705 11010 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11011 }
11012 return
11013 unwrap_value (ada_value_subscript
11014 (ada_coerce_to_simple_array (argvec[0]),
11015 nargs, argvec + 1));
11016 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
11017 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11018 {
deede10c 11019 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
11020 type = ada_array_element_type (type, nargs);
11021 if (type == NULL)
323e0a4a 11022 error (_("element type of array unknown"));
4c4b4cd2 11023 else
0a07e705 11024 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11025 }
11026 return
deede10c
JB
11027 unwrap_value (ada_value_ptr_subscript (argvec[0],
11028 nargs, argvec + 1));
4c4b4cd2
PH
11029
11030 default:
e1d5a0d2
PH
11031 error (_("Attempt to index or call something other than an "
11032 "array or function"));
4c4b4cd2
PH
11033 }
11034
11035 case TERNOP_SLICE:
11036 {
11037 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11038 struct value *low_bound_val =
11039 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
11040 struct value *high_bound_val =
11041 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11042 LONGEST low_bound;
11043 LONGEST high_bound;
5b4ee69b 11044
994b9211
AC
11045 low_bound_val = coerce_ref (low_bound_val);
11046 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
11047 low_bound = value_as_long (low_bound_val);
11048 high_bound = value_as_long (high_bound_val);
963a6417 11049
4c4b4cd2
PH
11050 if (noside == EVAL_SKIP)
11051 goto nosideret;
11052
4c4b4cd2
PH
11053 /* If this is a reference to an aligner type, then remove all
11054 the aligners. */
df407dfe
AC
11055 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11056 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11057 TYPE_TARGET_TYPE (value_type (array)) =
11058 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 11059
ad82864c 11060 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 11061 error (_("cannot slice a packed array"));
4c4b4cd2
PH
11062
11063 /* If this is a reference to an array or an array lvalue,
11064 convert to a pointer. */
df407dfe
AC
11065 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11066 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
11067 && VALUE_LVAL (array) == lval_memory))
11068 array = value_addr (array);
11069
1265e4aa 11070 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 11071 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 11072 (value_type (array))))
0b5d8877 11073 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
11074
11075 array = ada_coerce_to_simple_array_ptr (array);
11076
714e53ab
PH
11077 /* If we have more than one level of pointer indirection,
11078 dereference the value until we get only one level. */
df407dfe
AC
11079 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11080 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
11081 == TYPE_CODE_PTR))
11082 array = value_ind (array);
11083
11084 /* Make sure we really do have an array type before going further,
11085 to avoid a SEGV when trying to get the index type or the target
11086 type later down the road if the debug info generated by
11087 the compiler is incorrect or incomplete. */
df407dfe 11088 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 11089 error (_("cannot take slice of non-array"));
714e53ab 11090
828292f2
JB
11091 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11092 == TYPE_CODE_PTR)
4c4b4cd2 11093 {
828292f2
JB
11094 struct type *type0 = ada_check_typedef (value_type (array));
11095
0b5d8877 11096 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 11097 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
11098 else
11099 {
11100 struct type *arr_type0 =
828292f2 11101 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 11102
f5938064
JG
11103 return ada_value_slice_from_ptr (array, arr_type0,
11104 longest_to_int (low_bound),
11105 longest_to_int (high_bound));
4c4b4cd2
PH
11106 }
11107 }
11108 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11109 return array;
11110 else if (high_bound < low_bound)
df407dfe 11111 return empty_array (value_type (array), low_bound);
4c4b4cd2 11112 else
529cad9c
PH
11113 return ada_value_slice (array, longest_to_int (low_bound),
11114 longest_to_int (high_bound));
4c4b4cd2 11115 }
14f9c5c9 11116
4c4b4cd2
PH
11117 case UNOP_IN_RANGE:
11118 (*pos) += 2;
11119 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 11120 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 11121
14f9c5c9 11122 if (noside == EVAL_SKIP)
4c4b4cd2 11123 goto nosideret;
14f9c5c9 11124
4c4b4cd2
PH
11125 switch (TYPE_CODE (type))
11126 {
11127 default:
e1d5a0d2
PH
11128 lim_warning (_("Membership test incompletely implemented; "
11129 "always returns true"));
fbb06eb1
UW
11130 type = language_bool_type (exp->language_defn, exp->gdbarch);
11131 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11132
11133 case TYPE_CODE_RANGE:
030b4912
UW
11134 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11135 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11136 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11137 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11138 type = language_bool_type (exp->language_defn, exp->gdbarch);
11139 return
11140 value_from_longest (type,
4c4b4cd2
PH
11141 (value_less (arg1, arg3)
11142 || value_equal (arg1, arg3))
11143 && (value_less (arg2, arg1)
11144 || value_equal (arg2, arg1)));
11145 }
11146
11147 case BINOP_IN_BOUNDS:
14f9c5c9 11148 (*pos) += 2;
4c4b4cd2
PH
11149 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11150 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11151
4c4b4cd2
PH
11152 if (noside == EVAL_SKIP)
11153 goto nosideret;
14f9c5c9 11154
4c4b4cd2 11155 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11156 {
11157 type = language_bool_type (exp->language_defn, exp->gdbarch);
11158 return value_zero (type, not_lval);
11159 }
14f9c5c9 11160
4c4b4cd2 11161 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11162
1eea4ebd
UW
11163 type = ada_index_type (value_type (arg2), tem, "range");
11164 if (!type)
11165 type = value_type (arg1);
14f9c5c9 11166
1eea4ebd
UW
11167 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11168 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11169
f44316fa
UW
11170 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11171 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11172 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11173 return
fbb06eb1 11174 value_from_longest (type,
4c4b4cd2
PH
11175 (value_less (arg1, arg3)
11176 || value_equal (arg1, arg3))
11177 && (value_less (arg2, arg1)
11178 || value_equal (arg2, arg1)));
11179
11180 case TERNOP_IN_RANGE:
11181 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11182 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11183 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11184
11185 if (noside == EVAL_SKIP)
11186 goto nosideret;
11187
f44316fa
UW
11188 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11189 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11190 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11191 return
fbb06eb1 11192 value_from_longest (type,
4c4b4cd2
PH
11193 (value_less (arg1, arg3)
11194 || value_equal (arg1, arg3))
11195 && (value_less (arg2, arg1)
11196 || value_equal (arg2, arg1)));
11197
11198 case OP_ATR_FIRST:
11199 case OP_ATR_LAST:
11200 case OP_ATR_LENGTH:
11201 {
76a01679 11202 struct type *type_arg;
5b4ee69b 11203
76a01679
JB
11204 if (exp->elts[*pos].opcode == OP_TYPE)
11205 {
11206 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11207 arg1 = NULL;
5bc23cb3 11208 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11209 }
11210 else
11211 {
11212 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11213 type_arg = NULL;
11214 }
11215
11216 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11217 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11218 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11219 *pos += 4;
11220
11221 if (noside == EVAL_SKIP)
11222 goto nosideret;
11223
11224 if (type_arg == NULL)
11225 {
11226 arg1 = ada_coerce_ref (arg1);
11227
ad82864c 11228 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11229 arg1 = ada_coerce_to_simple_array (arg1);
11230
aa4fb036 11231 if (op == OP_ATR_LENGTH)
1eea4ebd 11232 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11233 else
11234 {
11235 type = ada_index_type (value_type (arg1), tem,
11236 ada_attribute_name (op));
11237 if (type == NULL)
11238 type = builtin_type (exp->gdbarch)->builtin_int;
11239 }
76a01679
JB
11240
11241 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11242 return allocate_value (type);
76a01679
JB
11243
11244 switch (op)
11245 {
11246 default: /* Should never happen. */
323e0a4a 11247 error (_("unexpected attribute encountered"));
76a01679 11248 case OP_ATR_FIRST:
1eea4ebd
UW
11249 return value_from_longest
11250 (type, ada_array_bound (arg1, tem, 0));
76a01679 11251 case OP_ATR_LAST:
1eea4ebd
UW
11252 return value_from_longest
11253 (type, ada_array_bound (arg1, tem, 1));
76a01679 11254 case OP_ATR_LENGTH:
1eea4ebd
UW
11255 return value_from_longest
11256 (type, ada_array_length (arg1, tem));
76a01679
JB
11257 }
11258 }
11259 else if (discrete_type_p (type_arg))
11260 {
11261 struct type *range_type;
0d5cff50 11262 const char *name = ada_type_name (type_arg);
5b4ee69b 11263
76a01679
JB
11264 range_type = NULL;
11265 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11266 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11267 if (range_type == NULL)
11268 range_type = type_arg;
11269 switch (op)
11270 {
11271 default:
323e0a4a 11272 error (_("unexpected attribute encountered"));
76a01679 11273 case OP_ATR_FIRST:
690cc4eb 11274 return value_from_longest
43bbcdc2 11275 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11276 case OP_ATR_LAST:
690cc4eb 11277 return value_from_longest
43bbcdc2 11278 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11279 case OP_ATR_LENGTH:
323e0a4a 11280 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11281 }
11282 }
11283 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11284 error (_("unimplemented type attribute"));
76a01679
JB
11285 else
11286 {
11287 LONGEST low, high;
11288
ad82864c
JB
11289 if (ada_is_constrained_packed_array_type (type_arg))
11290 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11291
aa4fb036 11292 if (op == OP_ATR_LENGTH)
1eea4ebd 11293 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11294 else
11295 {
11296 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11297 if (type == NULL)
11298 type = builtin_type (exp->gdbarch)->builtin_int;
11299 }
1eea4ebd 11300
76a01679
JB
11301 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11302 return allocate_value (type);
11303
11304 switch (op)
11305 {
11306 default:
323e0a4a 11307 error (_("unexpected attribute encountered"));
76a01679 11308 case OP_ATR_FIRST:
1eea4ebd 11309 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11310 return value_from_longest (type, low);
11311 case OP_ATR_LAST:
1eea4ebd 11312 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11313 return value_from_longest (type, high);
11314 case OP_ATR_LENGTH:
1eea4ebd
UW
11315 low = ada_array_bound_from_type (type_arg, tem, 0);
11316 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11317 return value_from_longest (type, high - low + 1);
11318 }
11319 }
14f9c5c9
AS
11320 }
11321
4c4b4cd2
PH
11322 case OP_ATR_TAG:
11323 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11324 if (noside == EVAL_SKIP)
76a01679 11325 goto nosideret;
4c4b4cd2
PH
11326
11327 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11328 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11329
11330 return ada_value_tag (arg1);
11331
11332 case OP_ATR_MIN:
11333 case OP_ATR_MAX:
11334 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11335 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11336 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11337 if (noside == EVAL_SKIP)
76a01679 11338 goto nosideret;
d2e4a39e 11339 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11340 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11341 else
f44316fa
UW
11342 {
11343 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11344 return value_binop (arg1, arg2,
11345 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11346 }
14f9c5c9 11347
4c4b4cd2
PH
11348 case OP_ATR_MODULUS:
11349 {
31dedfee 11350 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11351
5b4ee69b 11352 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11353 if (noside == EVAL_SKIP)
11354 goto nosideret;
4c4b4cd2 11355
76a01679 11356 if (!ada_is_modular_type (type_arg))
323e0a4a 11357 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11358
76a01679
JB
11359 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11360 ada_modulus (type_arg));
4c4b4cd2
PH
11361 }
11362
11363
11364 case OP_ATR_POS:
11365 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11366 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11367 if (noside == EVAL_SKIP)
76a01679 11368 goto nosideret;
3cb382c9
UW
11369 type = builtin_type (exp->gdbarch)->builtin_int;
11370 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11371 return value_zero (type, not_lval);
14f9c5c9 11372 else
3cb382c9 11373 return value_pos_atr (type, arg1);
14f9c5c9 11374
4c4b4cd2
PH
11375 case OP_ATR_SIZE:
11376 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11377 type = value_type (arg1);
11378
11379 /* If the argument is a reference, then dereference its type, since
11380 the user is really asking for the size of the actual object,
11381 not the size of the pointer. */
11382 if (TYPE_CODE (type) == TYPE_CODE_REF)
11383 type = TYPE_TARGET_TYPE (type);
11384
4c4b4cd2 11385 if (noside == EVAL_SKIP)
76a01679 11386 goto nosideret;
4c4b4cd2 11387 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11388 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11389 else
22601c15 11390 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11391 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11392
11393 case OP_ATR_VAL:
11394 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11395 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11396 type = exp->elts[pc + 2].type;
14f9c5c9 11397 if (noside == EVAL_SKIP)
76a01679 11398 goto nosideret;
4c4b4cd2 11399 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11400 return value_zero (type, not_lval);
4c4b4cd2 11401 else
76a01679 11402 return value_val_atr (type, arg1);
4c4b4cd2
PH
11403
11404 case BINOP_EXP:
11405 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11406 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11407 if (noside == EVAL_SKIP)
11408 goto nosideret;
11409 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11410 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11411 else
f44316fa
UW
11412 {
11413 /* For integer exponentiation operations,
11414 only promote the first argument. */
11415 if (is_integral_type (value_type (arg2)))
11416 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11417 else
11418 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11419
11420 return value_binop (arg1, arg2, op);
11421 }
4c4b4cd2
PH
11422
11423 case UNOP_PLUS:
11424 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11425 if (noside == EVAL_SKIP)
11426 goto nosideret;
11427 else
11428 return arg1;
11429
11430 case UNOP_ABS:
11431 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11432 if (noside == EVAL_SKIP)
11433 goto nosideret;
f44316fa 11434 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11435 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11436 return value_neg (arg1);
14f9c5c9 11437 else
4c4b4cd2 11438 return arg1;
14f9c5c9
AS
11439
11440 case UNOP_IND:
5ec18f2b 11441 preeval_pos = *pos;
6b0d7253 11442 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11443 if (noside == EVAL_SKIP)
4c4b4cd2 11444 goto nosideret;
df407dfe 11445 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11446 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11447 {
11448 if (ada_is_array_descriptor_type (type))
11449 /* GDB allows dereferencing GNAT array descriptors. */
11450 {
11451 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11452
4c4b4cd2 11453 if (arrType == NULL)
323e0a4a 11454 error (_("Attempt to dereference null array pointer."));
00a4c844 11455 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11456 }
11457 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11458 || TYPE_CODE (type) == TYPE_CODE_REF
11459 /* In C you can dereference an array to get the 1st elt. */
11460 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11461 {
5ec18f2b
JG
11462 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11463 only be determined by inspecting the object's tag.
11464 This means that we need to evaluate completely the
11465 expression in order to get its type. */
11466
023db19c
JB
11467 if ((TYPE_CODE (type) == TYPE_CODE_REF
11468 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11469 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11470 {
11471 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11472 EVAL_NORMAL);
11473 type = value_type (ada_value_ind (arg1));
11474 }
11475 else
11476 {
11477 type = to_static_fixed_type
11478 (ada_aligned_type
11479 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11480 }
c1b5a1a6 11481 ada_ensure_varsize_limit (type);
714e53ab
PH
11482 return value_zero (type, lval_memory);
11483 }
4c4b4cd2 11484 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11485 {
11486 /* GDB allows dereferencing an int. */
11487 if (expect_type == NULL)
11488 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11489 lval_memory);
11490 else
11491 {
11492 expect_type =
11493 to_static_fixed_type (ada_aligned_type (expect_type));
11494 return value_zero (expect_type, lval_memory);
11495 }
11496 }
4c4b4cd2 11497 else
323e0a4a 11498 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11499 }
0963b4bd 11500 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11501 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11502
96967637
JB
11503 if (TYPE_CODE (type) == TYPE_CODE_INT)
11504 /* GDB allows dereferencing an int. If we were given
11505 the expect_type, then use that as the target type.
11506 Otherwise, assume that the target type is an int. */
11507 {
11508 if (expect_type != NULL)
11509 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11510 arg1));
11511 else
11512 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11513 (CORE_ADDR) value_as_address (arg1));
11514 }
6b0d7253 11515
4c4b4cd2
PH
11516 if (ada_is_array_descriptor_type (type))
11517 /* GDB allows dereferencing GNAT array descriptors. */
11518 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11519 else
4c4b4cd2 11520 return ada_value_ind (arg1);
14f9c5c9
AS
11521
11522 case STRUCTOP_STRUCT:
11523 tem = longest_to_int (exp->elts[pc + 1].longconst);
11524 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11525 preeval_pos = *pos;
14f9c5c9
AS
11526 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11527 if (noside == EVAL_SKIP)
4c4b4cd2 11528 goto nosideret;
14f9c5c9 11529 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11530 {
df407dfe 11531 struct type *type1 = value_type (arg1);
5b4ee69b 11532
76a01679
JB
11533 if (ada_is_tagged_type (type1, 1))
11534 {
11535 type = ada_lookup_struct_elt_type (type1,
11536 &exp->elts[pc + 2].string,
988f6b3d 11537 1, 1);
5ec18f2b
JG
11538
11539 /* If the field is not found, check if it exists in the
11540 extension of this object's type. This means that we
11541 need to evaluate completely the expression. */
11542
76a01679 11543 if (type == NULL)
5ec18f2b
JG
11544 {
11545 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11546 EVAL_NORMAL);
11547 arg1 = ada_value_struct_elt (arg1,
11548 &exp->elts[pc + 2].string,
11549 0);
11550 arg1 = unwrap_value (arg1);
11551 type = value_type (ada_to_fixed_value (arg1));
11552 }
76a01679
JB
11553 }
11554 else
11555 type =
11556 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11557 0);
76a01679
JB
11558
11559 return value_zero (ada_aligned_type (type), lval_memory);
11560 }
14f9c5c9 11561 else
a579cd9a
MW
11562 {
11563 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11564 arg1 = unwrap_value (arg1);
11565 return ada_to_fixed_value (arg1);
11566 }
284614f0 11567
14f9c5c9 11568 case OP_TYPE:
4c4b4cd2
PH
11569 /* The value is not supposed to be used. This is here to make it
11570 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11571 (*pos) += 2;
11572 if (noside == EVAL_SKIP)
4c4b4cd2 11573 goto nosideret;
14f9c5c9 11574 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11575 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11576 else
323e0a4a 11577 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11578
11579 case OP_AGGREGATE:
11580 case OP_CHOICES:
11581 case OP_OTHERS:
11582 case OP_DISCRETE_RANGE:
11583 case OP_POSITIONAL:
11584 case OP_NAME:
11585 if (noside == EVAL_NORMAL)
11586 switch (op)
11587 {
11588 case OP_NAME:
11589 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11590 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11591 case OP_AGGREGATE:
11592 error (_("Aggregates only allowed on the right of an assignment"));
11593 default:
0963b4bd
MS
11594 internal_error (__FILE__, __LINE__,
11595 _("aggregate apparently mangled"));
52ce6436
PH
11596 }
11597
11598 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11599 *pos += oplen - 1;
11600 for (tem = 0; tem < nargs; tem += 1)
11601 ada_evaluate_subexp (NULL, exp, pos, noside);
11602 goto nosideret;
14f9c5c9
AS
11603 }
11604
11605nosideret:
ced9779b 11606 return eval_skip_value (exp);
14f9c5c9 11607}
14f9c5c9 11608\f
d2e4a39e 11609
4c4b4cd2 11610 /* Fixed point */
14f9c5c9
AS
11611
11612/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11613 type name that encodes the 'small and 'delta information.
4c4b4cd2 11614 Otherwise, return NULL. */
14f9c5c9 11615
d2e4a39e 11616static const char *
ebf56fd3 11617fixed_type_info (struct type *type)
14f9c5c9 11618{
d2e4a39e 11619 const char *name = ada_type_name (type);
14f9c5c9
AS
11620 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11621
d2e4a39e
AS
11622 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11623 {
14f9c5c9 11624 const char *tail = strstr (name, "___XF_");
5b4ee69b 11625
14f9c5c9 11626 if (tail == NULL)
4c4b4cd2 11627 return NULL;
d2e4a39e 11628 else
4c4b4cd2 11629 return tail + 5;
14f9c5c9
AS
11630 }
11631 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11632 return fixed_type_info (TYPE_TARGET_TYPE (type));
11633 else
11634 return NULL;
11635}
11636
4c4b4cd2 11637/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11638
11639int
ebf56fd3 11640ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11641{
11642 return fixed_type_info (type) != NULL;
11643}
11644
4c4b4cd2
PH
11645/* Return non-zero iff TYPE represents a System.Address type. */
11646
11647int
11648ada_is_system_address_type (struct type *type)
11649{
11650 return (TYPE_NAME (type)
11651 && strcmp (TYPE_NAME (type), "system__address") == 0);
11652}
11653
14f9c5c9 11654/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11655 type, return the target floating-point type to be used to represent
11656 of this type during internal computation. */
11657
11658static struct type *
11659ada_scaling_type (struct type *type)
11660{
11661 return builtin_type (get_type_arch (type))->builtin_long_double;
11662}
11663
11664/* Assuming that TYPE is the representation of an Ada fixed-point
11665 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11666 delta cannot be determined. */
14f9c5c9 11667
50eff16b 11668struct value *
ebf56fd3 11669ada_delta (struct type *type)
14f9c5c9
AS
11670{
11671 const char *encoding = fixed_type_info (type);
50eff16b
UW
11672 struct type *scale_type = ada_scaling_type (type);
11673
11674 long long num, den;
11675
11676 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11677 return nullptr;
d2e4a39e 11678 else
50eff16b
UW
11679 return value_binop (value_from_longest (scale_type, num),
11680 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11681}
11682
11683/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11684 factor ('SMALL value) associated with the type. */
14f9c5c9 11685
50eff16b
UW
11686struct value *
11687ada_scaling_factor (struct type *type)
14f9c5c9
AS
11688{
11689 const char *encoding = fixed_type_info (type);
50eff16b
UW
11690 struct type *scale_type = ada_scaling_type (type);
11691
11692 long long num0, den0, num1, den1;
14f9c5c9 11693 int n;
d2e4a39e 11694
50eff16b 11695 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11696 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11697
11698 if (n < 2)
50eff16b 11699 return value_from_longest (scale_type, 1);
14f9c5c9 11700 else if (n == 4)
50eff16b
UW
11701 return value_binop (value_from_longest (scale_type, num1),
11702 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11703 else
50eff16b
UW
11704 return value_binop (value_from_longest (scale_type, num0),
11705 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11706}
11707
14f9c5c9 11708\f
d2e4a39e 11709
4c4b4cd2 11710 /* Range types */
14f9c5c9
AS
11711
11712/* Scan STR beginning at position K for a discriminant name, and
11713 return the value of that discriminant field of DVAL in *PX. If
11714 PNEW_K is not null, put the position of the character beyond the
11715 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11716 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11717
11718static int
108d56a4 11719scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11720 int *pnew_k)
14f9c5c9
AS
11721{
11722 static char *bound_buffer = NULL;
11723 static size_t bound_buffer_len = 0;
5da1a4d3 11724 const char *pstart, *pend, *bound;
d2e4a39e 11725 struct value *bound_val;
14f9c5c9
AS
11726
11727 if (dval == NULL || str == NULL || str[k] == '\0')
11728 return 0;
11729
5da1a4d3
SM
11730 pstart = str + k;
11731 pend = strstr (pstart, "__");
14f9c5c9
AS
11732 if (pend == NULL)
11733 {
5da1a4d3 11734 bound = pstart;
14f9c5c9
AS
11735 k += strlen (bound);
11736 }
d2e4a39e 11737 else
14f9c5c9 11738 {
5da1a4d3
SM
11739 int len = pend - pstart;
11740
11741 /* Strip __ and beyond. */
11742 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11743 strncpy (bound_buffer, pstart, len);
11744 bound_buffer[len] = '\0';
11745
14f9c5c9 11746 bound = bound_buffer;
d2e4a39e 11747 k = pend - str;
14f9c5c9 11748 }
d2e4a39e 11749
df407dfe 11750 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11751 if (bound_val == NULL)
11752 return 0;
11753
11754 *px = value_as_long (bound_val);
11755 if (pnew_k != NULL)
11756 *pnew_k = k;
11757 return 1;
11758}
11759
11760/* Value of variable named NAME in the current environment. If
11761 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11762 otherwise causes an error with message ERR_MSG. */
11763
d2e4a39e 11764static struct value *
edb0c9cb 11765get_var_value (const char *name, const char *err_msg)
14f9c5c9 11766{
b5ec771e 11767 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11768
b5ec771e
PA
11769 struct block_symbol *syms;
11770 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11771 get_selected_block (0),
11772 VAR_DOMAIN, &syms, 1);
ec6a20c2 11773 struct cleanup *old_chain = make_cleanup (xfree, syms);
14f9c5c9
AS
11774
11775 if (nsyms != 1)
11776 {
ec6a20c2 11777 do_cleanups (old_chain);
14f9c5c9 11778 if (err_msg == NULL)
4c4b4cd2 11779 return 0;
14f9c5c9 11780 else
8a3fe4f8 11781 error (("%s"), err_msg);
14f9c5c9
AS
11782 }
11783
ec6a20c2
JB
11784 struct value *result = value_of_variable (syms[0].symbol, syms[0].block);
11785 do_cleanups (old_chain);
11786 return result;
14f9c5c9 11787}
d2e4a39e 11788
edb0c9cb
PA
11789/* Value of integer variable named NAME in the current environment.
11790 If no such variable is found, returns false. Otherwise, sets VALUE
11791 to the variable's value and returns true. */
4c4b4cd2 11792
edb0c9cb
PA
11793bool
11794get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11795{
4c4b4cd2 11796 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11797
14f9c5c9 11798 if (var_val == 0)
edb0c9cb
PA
11799 return false;
11800
11801 value = value_as_long (var_val);
11802 return true;
14f9c5c9 11803}
d2e4a39e 11804
14f9c5c9
AS
11805
11806/* Return a range type whose base type is that of the range type named
11807 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11808 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11809 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11810 corresponding range type from debug information; fall back to using it
11811 if symbol lookup fails. If a new type must be created, allocate it
11812 like ORIG_TYPE was. The bounds information, in general, is encoded
11813 in NAME, the base type given in the named range type. */
14f9c5c9 11814
d2e4a39e 11815static struct type *
28c85d6c 11816to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11817{
0d5cff50 11818 const char *name;
14f9c5c9 11819 struct type *base_type;
108d56a4 11820 const char *subtype_info;
14f9c5c9 11821
28c85d6c
JB
11822 gdb_assert (raw_type != NULL);
11823 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11824
1ce677a4 11825 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11826 base_type = TYPE_TARGET_TYPE (raw_type);
11827 else
11828 base_type = raw_type;
11829
28c85d6c 11830 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11831 subtype_info = strstr (name, "___XD");
11832 if (subtype_info == NULL)
690cc4eb 11833 {
43bbcdc2
PH
11834 LONGEST L = ada_discrete_type_low_bound (raw_type);
11835 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11836
690cc4eb
PH
11837 if (L < INT_MIN || U > INT_MAX)
11838 return raw_type;
11839 else
0c9c3474
SA
11840 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11841 L, U);
690cc4eb 11842 }
14f9c5c9
AS
11843 else
11844 {
11845 static char *name_buf = NULL;
11846 static size_t name_len = 0;
11847 int prefix_len = subtype_info - name;
11848 LONGEST L, U;
11849 struct type *type;
108d56a4 11850 const char *bounds_str;
14f9c5c9
AS
11851 int n;
11852
11853 GROW_VECT (name_buf, name_len, prefix_len + 5);
11854 strncpy (name_buf, name, prefix_len);
11855 name_buf[prefix_len] = '\0';
11856
11857 subtype_info += 5;
11858 bounds_str = strchr (subtype_info, '_');
11859 n = 1;
11860
d2e4a39e 11861 if (*subtype_info == 'L')
4c4b4cd2
PH
11862 {
11863 if (!ada_scan_number (bounds_str, n, &L, &n)
11864 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11865 return raw_type;
11866 if (bounds_str[n] == '_')
11867 n += 2;
0963b4bd 11868 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11869 n += 1;
11870 subtype_info += 1;
11871 }
d2e4a39e 11872 else
4c4b4cd2 11873 {
4c4b4cd2 11874 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11875 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11876 {
323e0a4a 11877 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11878 L = 1;
11879 }
11880 }
14f9c5c9 11881
d2e4a39e 11882 if (*subtype_info == 'U')
4c4b4cd2
PH
11883 {
11884 if (!ada_scan_number (bounds_str, n, &U, &n)
11885 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11886 return raw_type;
11887 }
d2e4a39e 11888 else
4c4b4cd2 11889 {
4c4b4cd2 11890 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11891 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11892 {
323e0a4a 11893 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11894 U = L;
11895 }
11896 }
14f9c5c9 11897
0c9c3474
SA
11898 type = create_static_range_type (alloc_type_copy (raw_type),
11899 base_type, L, U);
f5a91472
JB
11900 /* create_static_range_type alters the resulting type's length
11901 to match the size of the base_type, which is not what we want.
11902 Set it back to the original range type's length. */
11903 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11904 TYPE_NAME (type) = name;
14f9c5c9
AS
11905 return type;
11906 }
11907}
11908
4c4b4cd2
PH
11909/* True iff NAME is the name of a range type. */
11910
14f9c5c9 11911int
d2e4a39e 11912ada_is_range_type_name (const char *name)
14f9c5c9
AS
11913{
11914 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11915}
14f9c5c9 11916\f
d2e4a39e 11917
4c4b4cd2
PH
11918 /* Modular types */
11919
11920/* True iff TYPE is an Ada modular type. */
14f9c5c9 11921
14f9c5c9 11922int
d2e4a39e 11923ada_is_modular_type (struct type *type)
14f9c5c9 11924{
18af8284 11925 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11926
11927 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11928 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11929 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11930}
11931
4c4b4cd2
PH
11932/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11933
61ee279c 11934ULONGEST
0056e4d5 11935ada_modulus (struct type *type)
14f9c5c9 11936{
43bbcdc2 11937 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11938}
d2e4a39e 11939\f
f7f9143b
JB
11940
11941/* Ada exception catchpoint support:
11942 ---------------------------------
11943
11944 We support 3 kinds of exception catchpoints:
11945 . catchpoints on Ada exceptions
11946 . catchpoints on unhandled Ada exceptions
11947 . catchpoints on failed assertions
11948
11949 Exceptions raised during failed assertions, or unhandled exceptions
11950 could perfectly be caught with the general catchpoint on Ada exceptions.
11951 However, we can easily differentiate these two special cases, and having
11952 the option to distinguish these two cases from the rest can be useful
11953 to zero-in on certain situations.
11954
11955 Exception catchpoints are a specialized form of breakpoint,
11956 since they rely on inserting breakpoints inside known routines
11957 of the GNAT runtime. The implementation therefore uses a standard
11958 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11959 of breakpoint_ops.
11960
0259addd
JB
11961 Support in the runtime for exception catchpoints have been changed
11962 a few times already, and these changes affect the implementation
11963 of these catchpoints. In order to be able to support several
11964 variants of the runtime, we use a sniffer that will determine
28010a5d 11965 the runtime variant used by the program being debugged. */
f7f9143b 11966
82eacd52
JB
11967/* Ada's standard exceptions.
11968
11969 The Ada 83 standard also defined Numeric_Error. But there so many
11970 situations where it was unclear from the Ada 83 Reference Manual
11971 (RM) whether Constraint_Error or Numeric_Error should be raised,
11972 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11973 Interpretation saying that anytime the RM says that Numeric_Error
11974 should be raised, the implementation may raise Constraint_Error.
11975 Ada 95 went one step further and pretty much removed Numeric_Error
11976 from the list of standard exceptions (it made it a renaming of
11977 Constraint_Error, to help preserve compatibility when compiling
11978 an Ada83 compiler). As such, we do not include Numeric_Error from
11979 this list of standard exceptions. */
3d0b0fa3 11980
a121b7c1 11981static const char *standard_exc[] = {
3d0b0fa3
JB
11982 "constraint_error",
11983 "program_error",
11984 "storage_error",
11985 "tasking_error"
11986};
11987
0259addd
JB
11988typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11989
11990/* A structure that describes how to support exception catchpoints
11991 for a given executable. */
11992
11993struct exception_support_info
11994{
11995 /* The name of the symbol to break on in order to insert
11996 a catchpoint on exceptions. */
11997 const char *catch_exception_sym;
11998
11999 /* The name of the symbol to break on in order to insert
12000 a catchpoint on unhandled exceptions. */
12001 const char *catch_exception_unhandled_sym;
12002
12003 /* The name of the symbol to break on in order to insert
12004 a catchpoint on failed assertions. */
12005 const char *catch_assert_sym;
12006
9f757bf7
XR
12007 /* The name of the symbol to break on in order to insert
12008 a catchpoint on exception handling. */
12009 const char *catch_handlers_sym;
12010
0259addd
JB
12011 /* Assuming that the inferior just triggered an unhandled exception
12012 catchpoint, this function is responsible for returning the address
12013 in inferior memory where the name of that exception is stored.
12014 Return zero if the address could not be computed. */
12015 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12016};
12017
12018static CORE_ADDR ada_unhandled_exception_name_addr (void);
12019static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12020
12021/* The following exception support info structure describes how to
12022 implement exception catchpoints with the latest version of the
12023 Ada runtime (as of 2007-03-06). */
12024
12025static const struct exception_support_info default_exception_support_info =
12026{
12027 "__gnat_debug_raise_exception", /* catch_exception_sym */
12028 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12029 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 12030 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12031 ada_unhandled_exception_name_addr
12032};
12033
12034/* The following exception support info structure describes how to
12035 implement exception catchpoints with a slightly older version
12036 of the Ada runtime. */
12037
12038static const struct exception_support_info exception_support_info_fallback =
12039{
12040 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12041 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12042 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 12043 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12044 ada_unhandled_exception_name_addr_from_raise
12045};
12046
f17011e0
JB
12047/* Return nonzero if we can detect the exception support routines
12048 described in EINFO.
12049
12050 This function errors out if an abnormal situation is detected
12051 (for instance, if we find the exception support routines, but
12052 that support is found to be incomplete). */
12053
12054static int
12055ada_has_this_exception_support (const struct exception_support_info *einfo)
12056{
12057 struct symbol *sym;
12058
12059 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12060 that should be compiled with debugging information. As a result, we
12061 expect to find that symbol in the symtabs. */
12062
12063 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12064 if (sym == NULL)
a6af7abe
JB
12065 {
12066 /* Perhaps we did not find our symbol because the Ada runtime was
12067 compiled without debugging info, or simply stripped of it.
12068 It happens on some GNU/Linux distributions for instance, where
12069 users have to install a separate debug package in order to get
12070 the runtime's debugging info. In that situation, let the user
12071 know why we cannot insert an Ada exception catchpoint.
12072
12073 Note: Just for the purpose of inserting our Ada exception
12074 catchpoint, we could rely purely on the associated minimal symbol.
12075 But we would be operating in degraded mode anyway, since we are
12076 still lacking the debugging info needed later on to extract
12077 the name of the exception being raised (this name is printed in
12078 the catchpoint message, and is also used when trying to catch
12079 a specific exception). We do not handle this case for now. */
3b7344d5 12080 struct bound_minimal_symbol msym
1c8e84b0
JB
12081 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12082
3b7344d5 12083 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
12084 error (_("Your Ada runtime appears to be missing some debugging "
12085 "information.\nCannot insert Ada exception catchpoint "
12086 "in this configuration."));
12087
12088 return 0;
12089 }
f17011e0
JB
12090
12091 /* Make sure that the symbol we found corresponds to a function. */
12092
12093 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12094 error (_("Symbol \"%s\" is not a function (class = %d)"),
12095 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12096
12097 return 1;
12098}
12099
0259addd
JB
12100/* Inspect the Ada runtime and determine which exception info structure
12101 should be used to provide support for exception catchpoints.
12102
3eecfa55
JB
12103 This function will always set the per-inferior exception_info,
12104 or raise an error. */
0259addd
JB
12105
12106static void
12107ada_exception_support_info_sniffer (void)
12108{
3eecfa55 12109 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
12110
12111 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12112 if (data->exception_info != NULL)
0259addd
JB
12113 return;
12114
12115 /* Check the latest (default) exception support info. */
f17011e0 12116 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12117 {
3eecfa55 12118 data->exception_info = &default_exception_support_info;
0259addd
JB
12119 return;
12120 }
12121
12122 /* Try our fallback exception suport info. */
f17011e0 12123 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12124 {
3eecfa55 12125 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12126 return;
12127 }
12128
12129 /* Sometimes, it is normal for us to not be able to find the routine
12130 we are looking for. This happens when the program is linked with
12131 the shared version of the GNAT runtime, and the program has not been
12132 started yet. Inform the user of these two possible causes if
12133 applicable. */
12134
ccefe4c4 12135 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12136 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12137
12138 /* If the symbol does not exist, then check that the program is
12139 already started, to make sure that shared libraries have been
12140 loaded. If it is not started, this may mean that the symbol is
12141 in a shared library. */
12142
12143 if (ptid_get_pid (inferior_ptid) == 0)
12144 error (_("Unable to insert catchpoint. Try to start the program first."));
12145
12146 /* At this point, we know that we are debugging an Ada program and
12147 that the inferior has been started, but we still are not able to
0963b4bd 12148 find the run-time symbols. That can mean that we are in
0259addd
JB
12149 configurable run time mode, or that a-except as been optimized
12150 out by the linker... In any case, at this point it is not worth
12151 supporting this feature. */
12152
7dda8cff 12153 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12154}
12155
f7f9143b
JB
12156/* True iff FRAME is very likely to be that of a function that is
12157 part of the runtime system. This is all very heuristic, but is
12158 intended to be used as advice as to what frames are uninteresting
12159 to most users. */
12160
12161static int
12162is_known_support_routine (struct frame_info *frame)
12163{
692465f1 12164 enum language func_lang;
f7f9143b 12165 int i;
f35a17b5 12166 const char *fullname;
f7f9143b 12167
4ed6b5be
JB
12168 /* If this code does not have any debugging information (no symtab),
12169 This cannot be any user code. */
f7f9143b 12170
51abb421 12171 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12172 if (sal.symtab == NULL)
12173 return 1;
12174
4ed6b5be
JB
12175 /* If there is a symtab, but the associated source file cannot be
12176 located, then assume this is not user code: Selecting a frame
12177 for which we cannot display the code would not be very helpful
12178 for the user. This should also take care of case such as VxWorks
12179 where the kernel has some debugging info provided for a few units. */
f7f9143b 12180
f35a17b5
JK
12181 fullname = symtab_to_fullname (sal.symtab);
12182 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12183 return 1;
12184
4ed6b5be
JB
12185 /* Check the unit filename againt the Ada runtime file naming.
12186 We also check the name of the objfile against the name of some
12187 known system libraries that sometimes come with debugging info
12188 too. */
12189
f7f9143b
JB
12190 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12191 {
12192 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12193 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12194 return 1;
eb822aa6
DE
12195 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12196 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12197 return 1;
f7f9143b
JB
12198 }
12199
4ed6b5be 12200 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12201
c6dc63a1
TT
12202 gdb::unique_xmalloc_ptr<char> func_name
12203 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12204 if (func_name == NULL)
12205 return 1;
12206
12207 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12208 {
12209 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12210 if (re_exec (func_name.get ()))
12211 return 1;
f7f9143b
JB
12212 }
12213
12214 return 0;
12215}
12216
12217/* Find the first frame that contains debugging information and that is not
12218 part of the Ada run-time, starting from FI and moving upward. */
12219
0ef643c8 12220void
f7f9143b
JB
12221ada_find_printable_frame (struct frame_info *fi)
12222{
12223 for (; fi != NULL; fi = get_prev_frame (fi))
12224 {
12225 if (!is_known_support_routine (fi))
12226 {
12227 select_frame (fi);
12228 break;
12229 }
12230 }
12231
12232}
12233
12234/* Assuming that the inferior just triggered an unhandled exception
12235 catchpoint, return the address in inferior memory where the name
12236 of the exception is stored.
12237
12238 Return zero if the address could not be computed. */
12239
12240static CORE_ADDR
12241ada_unhandled_exception_name_addr (void)
0259addd
JB
12242{
12243 return parse_and_eval_address ("e.full_name");
12244}
12245
12246/* Same as ada_unhandled_exception_name_addr, except that this function
12247 should be used when the inferior uses an older version of the runtime,
12248 where the exception name needs to be extracted from a specific frame
12249 several frames up in the callstack. */
12250
12251static CORE_ADDR
12252ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12253{
12254 int frame_level;
12255 struct frame_info *fi;
3eecfa55 12256 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12257
12258 /* To determine the name of this exception, we need to select
12259 the frame corresponding to RAISE_SYM_NAME. This frame is
12260 at least 3 levels up, so we simply skip the first 3 frames
12261 without checking the name of their associated function. */
12262 fi = get_current_frame ();
12263 for (frame_level = 0; frame_level < 3; frame_level += 1)
12264 if (fi != NULL)
12265 fi = get_prev_frame (fi);
12266
12267 while (fi != NULL)
12268 {
692465f1
JB
12269 enum language func_lang;
12270
c6dc63a1
TT
12271 gdb::unique_xmalloc_ptr<char> func_name
12272 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12273 if (func_name != NULL)
12274 {
c6dc63a1 12275 if (strcmp (func_name.get (),
55b87a52
KS
12276 data->exception_info->catch_exception_sym) == 0)
12277 break; /* We found the frame we were looking for... */
12278 fi = get_prev_frame (fi);
12279 }
f7f9143b
JB
12280 }
12281
12282 if (fi == NULL)
12283 return 0;
12284
12285 select_frame (fi);
12286 return parse_and_eval_address ("id.full_name");
12287}
12288
12289/* Assuming the inferior just triggered an Ada exception catchpoint
12290 (of any type), return the address in inferior memory where the name
12291 of the exception is stored, if applicable.
12292
45db7c09
PA
12293 Assumes the selected frame is the current frame.
12294
f7f9143b
JB
12295 Return zero if the address could not be computed, or if not relevant. */
12296
12297static CORE_ADDR
761269c8 12298ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12299 struct breakpoint *b)
12300{
3eecfa55
JB
12301 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12302
f7f9143b
JB
12303 switch (ex)
12304 {
761269c8 12305 case ada_catch_exception:
f7f9143b
JB
12306 return (parse_and_eval_address ("e.full_name"));
12307 break;
12308
761269c8 12309 case ada_catch_exception_unhandled:
3eecfa55 12310 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12311 break;
9f757bf7
XR
12312
12313 case ada_catch_handlers:
12314 return 0; /* The runtimes does not provide access to the exception
12315 name. */
12316 break;
12317
761269c8 12318 case ada_catch_assert:
f7f9143b
JB
12319 return 0; /* Exception name is not relevant in this case. */
12320 break;
12321
12322 default:
12323 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12324 break;
12325 }
12326
12327 return 0; /* Should never be reached. */
12328}
12329
e547c119
JB
12330/* Assuming the inferior is stopped at an exception catchpoint,
12331 return the message which was associated to the exception, if
12332 available. Return NULL if the message could not be retrieved.
12333
e547c119
JB
12334 Note: The exception message can be associated to an exception
12335 either through the use of the Raise_Exception function, or
12336 more simply (Ada 2005 and later), via:
12337
12338 raise Exception_Name with "exception message";
12339
12340 */
12341
6f46ac85 12342static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12343ada_exception_message_1 (void)
12344{
12345 struct value *e_msg_val;
e547c119 12346 int e_msg_len;
e547c119
JB
12347
12348 /* For runtimes that support this feature, the exception message
12349 is passed as an unbounded string argument called "message". */
12350 e_msg_val = parse_and_eval ("message");
12351 if (e_msg_val == NULL)
12352 return NULL; /* Exception message not supported. */
12353
12354 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12355 gdb_assert (e_msg_val != NULL);
12356 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12357
12358 /* If the message string is empty, then treat it as if there was
12359 no exception message. */
12360 if (e_msg_len <= 0)
12361 return NULL;
12362
6f46ac85
TT
12363 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12364 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12365 e_msg.get ()[e_msg_len] = '\0';
e547c119 12366
e547c119
JB
12367 return e_msg;
12368}
12369
12370/* Same as ada_exception_message_1, except that all exceptions are
12371 contained here (returning NULL instead). */
12372
6f46ac85 12373static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12374ada_exception_message (void)
12375{
6f46ac85 12376 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119
JB
12377
12378 TRY
12379 {
12380 e_msg = ada_exception_message_1 ();
12381 }
12382 CATCH (e, RETURN_MASK_ERROR)
12383 {
6f46ac85 12384 e_msg.reset (nullptr);
e547c119
JB
12385 }
12386 END_CATCH
12387
12388 return e_msg;
12389}
12390
f7f9143b
JB
12391/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12392 any error that ada_exception_name_addr_1 might cause to be thrown.
12393 When an error is intercepted, a warning with the error message is printed,
12394 and zero is returned. */
12395
12396static CORE_ADDR
761269c8 12397ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12398 struct breakpoint *b)
12399{
f7f9143b
JB
12400 CORE_ADDR result = 0;
12401
492d29ea 12402 TRY
f7f9143b
JB
12403 {
12404 result = ada_exception_name_addr_1 (ex, b);
12405 }
12406
492d29ea 12407 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12408 {
12409 warning (_("failed to get exception name: %s"), e.message);
12410 return 0;
12411 }
492d29ea 12412 END_CATCH
f7f9143b
JB
12413
12414 return result;
12415}
12416
cb7de75e 12417static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12418 (const char *excep_string,
12419 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12420
12421/* Ada catchpoints.
12422
12423 In the case of catchpoints on Ada exceptions, the catchpoint will
12424 stop the target on every exception the program throws. When a user
12425 specifies the name of a specific exception, we translate this
12426 request into a condition expression (in text form), and then parse
12427 it into an expression stored in each of the catchpoint's locations.
12428 We then use this condition to check whether the exception that was
12429 raised is the one the user is interested in. If not, then the
12430 target is resumed again. We store the name of the requested
12431 exception, in order to be able to re-set the condition expression
12432 when symbols change. */
12433
12434/* An instance of this type is used to represent an Ada catchpoint
5625a286 12435 breakpoint location. */
28010a5d 12436
5625a286 12437class ada_catchpoint_location : public bp_location
28010a5d 12438{
5625a286
PA
12439public:
12440 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12441 : bp_location (ops, owner)
12442 {}
28010a5d
PA
12443
12444 /* The condition that checks whether the exception that was raised
12445 is the specific exception the user specified on catchpoint
12446 creation. */
4d01a485 12447 expression_up excep_cond_expr;
28010a5d
PA
12448};
12449
12450/* Implement the DTOR method in the bp_location_ops structure for all
12451 Ada exception catchpoint kinds. */
12452
12453static void
12454ada_catchpoint_location_dtor (struct bp_location *bl)
12455{
12456 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12457
4d01a485 12458 al->excep_cond_expr.reset ();
28010a5d
PA
12459}
12460
12461/* The vtable to be used in Ada catchpoint locations. */
12462
12463static const struct bp_location_ops ada_catchpoint_location_ops =
12464{
12465 ada_catchpoint_location_dtor
12466};
12467
c1fc2657 12468/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12469
c1fc2657 12470struct ada_catchpoint : public breakpoint
28010a5d 12471{
28010a5d 12472 /* The name of the specific exception the user specified. */
bc18fbb5 12473 std::string excep_string;
28010a5d
PA
12474};
12475
12476/* Parse the exception condition string in the context of each of the
12477 catchpoint's locations, and store them for later evaluation. */
12478
12479static void
9f757bf7
XR
12480create_excep_cond_exprs (struct ada_catchpoint *c,
12481 enum ada_exception_catchpoint_kind ex)
28010a5d 12482{
28010a5d 12483 struct bp_location *bl;
28010a5d
PA
12484
12485 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12486 if (c->excep_string.empty ())
28010a5d
PA
12487 return;
12488
12489 /* Same if there are no locations... */
c1fc2657 12490 if (c->loc == NULL)
28010a5d
PA
12491 return;
12492
12493 /* Compute the condition expression in text form, from the specific
12494 expection we want to catch. */
cb7de75e 12495 std::string cond_string
bc18fbb5 12496 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d
PA
12497
12498 /* Iterate over all the catchpoint's locations, and parse an
12499 expression for each. */
c1fc2657 12500 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12501 {
12502 struct ada_catchpoint_location *ada_loc
12503 = (struct ada_catchpoint_location *) bl;
4d01a485 12504 expression_up exp;
28010a5d
PA
12505
12506 if (!bl->shlib_disabled)
12507 {
bbc13ae3 12508 const char *s;
28010a5d 12509
cb7de75e 12510 s = cond_string.c_str ();
492d29ea 12511 TRY
28010a5d 12512 {
036e657b
JB
12513 exp = parse_exp_1 (&s, bl->address,
12514 block_for_pc (bl->address),
12515 0);
28010a5d 12516 }
492d29ea 12517 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12518 {
12519 warning (_("failed to reevaluate internal exception condition "
12520 "for catchpoint %d: %s"),
c1fc2657 12521 c->number, e.message);
849f2b52 12522 }
492d29ea 12523 END_CATCH
28010a5d
PA
12524 }
12525
b22e99fd 12526 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12527 }
28010a5d
PA
12528}
12529
28010a5d
PA
12530/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12531 structure for all exception catchpoint kinds. */
12532
12533static struct bp_location *
761269c8 12534allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12535 struct breakpoint *self)
12536{
5625a286 12537 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
28010a5d
PA
12538}
12539
12540/* Implement the RE_SET method in the breakpoint_ops structure for all
12541 exception catchpoint kinds. */
12542
12543static void
761269c8 12544re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12545{
12546 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12547
12548 /* Call the base class's method. This updates the catchpoint's
12549 locations. */
2060206e 12550 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12551
12552 /* Reparse the exception conditional expressions. One for each
12553 location. */
9f757bf7 12554 create_excep_cond_exprs (c, ex);
28010a5d
PA
12555}
12556
12557/* Returns true if we should stop for this breakpoint hit. If the
12558 user specified a specific exception, we only want to cause a stop
12559 if the program thrown that exception. */
12560
12561static int
12562should_stop_exception (const struct bp_location *bl)
12563{
12564 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12565 const struct ada_catchpoint_location *ada_loc
12566 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12567 int stop;
12568
12569 /* With no specific exception, should always stop. */
bc18fbb5 12570 if (c->excep_string.empty ())
28010a5d
PA
12571 return 1;
12572
12573 if (ada_loc->excep_cond_expr == NULL)
12574 {
12575 /* We will have a NULL expression if back when we were creating
12576 the expressions, this location's had failed to parse. */
12577 return 1;
12578 }
12579
12580 stop = 1;
492d29ea 12581 TRY
28010a5d
PA
12582 {
12583 struct value *mark;
12584
12585 mark = value_mark ();
4d01a485 12586 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12587 value_free_to_mark (mark);
12588 }
492d29ea
PA
12589 CATCH (ex, RETURN_MASK_ALL)
12590 {
12591 exception_fprintf (gdb_stderr, ex,
12592 _("Error in testing exception condition:\n"));
12593 }
12594 END_CATCH
12595
28010a5d
PA
12596 return stop;
12597}
12598
12599/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12600 for all exception catchpoint kinds. */
12601
12602static void
761269c8 12603check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12604{
12605 bs->stop = should_stop_exception (bs->bp_location_at);
12606}
12607
f7f9143b
JB
12608/* Implement the PRINT_IT method in the breakpoint_ops structure
12609 for all exception catchpoint kinds. */
12610
12611static enum print_stop_action
761269c8 12612print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12613{
79a45e25 12614 struct ui_out *uiout = current_uiout;
348d480f
PA
12615 struct breakpoint *b = bs->breakpoint_at;
12616
956a9fb9 12617 annotate_catchpoint (b->number);
f7f9143b 12618
112e8700 12619 if (uiout->is_mi_like_p ())
f7f9143b 12620 {
112e8700 12621 uiout->field_string ("reason",
956a9fb9 12622 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12623 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12624 }
12625
112e8700
SM
12626 uiout->text (b->disposition == disp_del
12627 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12628 uiout->field_int ("bkptno", b->number);
12629 uiout->text (", ");
f7f9143b 12630
45db7c09
PA
12631 /* ada_exception_name_addr relies on the selected frame being the
12632 current frame. Need to do this here because this function may be
12633 called more than once when printing a stop, and below, we'll
12634 select the first frame past the Ada run-time (see
12635 ada_find_printable_frame). */
12636 select_frame (get_current_frame ());
12637
f7f9143b
JB
12638 switch (ex)
12639 {
761269c8
JB
12640 case ada_catch_exception:
12641 case ada_catch_exception_unhandled:
9f757bf7 12642 case ada_catch_handlers:
956a9fb9
JB
12643 {
12644 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12645 char exception_name[256];
12646
12647 if (addr != 0)
12648 {
c714b426
PA
12649 read_memory (addr, (gdb_byte *) exception_name,
12650 sizeof (exception_name) - 1);
956a9fb9
JB
12651 exception_name [sizeof (exception_name) - 1] = '\0';
12652 }
12653 else
12654 {
12655 /* For some reason, we were unable to read the exception
12656 name. This could happen if the Runtime was compiled
12657 without debugging info, for instance. In that case,
12658 just replace the exception name by the generic string
12659 "exception" - it will read as "an exception" in the
12660 notification we are about to print. */
967cff16 12661 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12662 }
12663 /* In the case of unhandled exception breakpoints, we print
12664 the exception name as "unhandled EXCEPTION_NAME", to make
12665 it clearer to the user which kind of catchpoint just got
12666 hit. We used ui_out_text to make sure that this extra
12667 info does not pollute the exception name in the MI case. */
761269c8 12668 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12669 uiout->text ("unhandled ");
12670 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12671 }
12672 break;
761269c8 12673 case ada_catch_assert:
956a9fb9
JB
12674 /* In this case, the name of the exception is not really
12675 important. Just print "failed assertion" to make it clearer
12676 that his program just hit an assertion-failure catchpoint.
12677 We used ui_out_text because this info does not belong in
12678 the MI output. */
112e8700 12679 uiout->text ("failed assertion");
956a9fb9 12680 break;
f7f9143b 12681 }
e547c119 12682
6f46ac85 12683 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12684 if (exception_message != NULL)
12685 {
e547c119 12686 uiout->text (" (");
6f46ac85 12687 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12688 uiout->text (")");
e547c119
JB
12689 }
12690
112e8700 12691 uiout->text (" at ");
956a9fb9 12692 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12693
12694 return PRINT_SRC_AND_LOC;
12695}
12696
12697/* Implement the PRINT_ONE method in the breakpoint_ops structure
12698 for all exception catchpoint kinds. */
12699
12700static void
761269c8 12701print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12702 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12703{
79a45e25 12704 struct ui_out *uiout = current_uiout;
28010a5d 12705 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12706 struct value_print_options opts;
12707
12708 get_user_print_options (&opts);
12709 if (opts.addressprint)
f7f9143b
JB
12710 {
12711 annotate_field (4);
112e8700 12712 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12713 }
12714
12715 annotate_field (5);
a6d9a66e 12716 *last_loc = b->loc;
f7f9143b
JB
12717 switch (ex)
12718 {
761269c8 12719 case ada_catch_exception:
bc18fbb5 12720 if (!c->excep_string.empty ())
f7f9143b 12721 {
bc18fbb5
TT
12722 std::string msg = string_printf (_("`%s' Ada exception"),
12723 c->excep_string.c_str ());
28010a5d 12724
112e8700 12725 uiout->field_string ("what", msg);
f7f9143b
JB
12726 }
12727 else
112e8700 12728 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12729
12730 break;
12731
761269c8 12732 case ada_catch_exception_unhandled:
112e8700 12733 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12734 break;
12735
9f757bf7 12736 case ada_catch_handlers:
bc18fbb5 12737 if (!c->excep_string.empty ())
9f757bf7
XR
12738 {
12739 uiout->field_fmt ("what",
12740 _("`%s' Ada exception handlers"),
bc18fbb5 12741 c->excep_string.c_str ());
9f757bf7
XR
12742 }
12743 else
12744 uiout->field_string ("what", "all Ada exceptions handlers");
12745 break;
12746
761269c8 12747 case ada_catch_assert:
112e8700 12748 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12749 break;
12750
12751 default:
12752 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12753 break;
12754 }
12755}
12756
12757/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12758 for all exception catchpoint kinds. */
12759
12760static void
761269c8 12761print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12762 struct breakpoint *b)
12763{
28010a5d 12764 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12765 struct ui_out *uiout = current_uiout;
28010a5d 12766
112e8700 12767 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12768 : _("Catchpoint "));
112e8700
SM
12769 uiout->field_int ("bkptno", b->number);
12770 uiout->text (": ");
00eb2c4a 12771
f7f9143b
JB
12772 switch (ex)
12773 {
761269c8 12774 case ada_catch_exception:
bc18fbb5 12775 if (!c->excep_string.empty ())
00eb2c4a 12776 {
862d101a 12777 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12778 c->excep_string.c_str ());
862d101a 12779 uiout->text (info.c_str ());
00eb2c4a 12780 }
f7f9143b 12781 else
112e8700 12782 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12783 break;
12784
761269c8 12785 case ada_catch_exception_unhandled:
112e8700 12786 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12787 break;
9f757bf7
XR
12788
12789 case ada_catch_handlers:
bc18fbb5 12790 if (!c->excep_string.empty ())
9f757bf7
XR
12791 {
12792 std::string info
12793 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12794 c->excep_string.c_str ());
9f757bf7
XR
12795 uiout->text (info.c_str ());
12796 }
12797 else
12798 uiout->text (_("all Ada exceptions handlers"));
12799 break;
12800
761269c8 12801 case ada_catch_assert:
112e8700 12802 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12803 break;
12804
12805 default:
12806 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12807 break;
12808 }
12809}
12810
6149aea9
PA
12811/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12812 for all exception catchpoint kinds. */
12813
12814static void
761269c8 12815print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12816 struct breakpoint *b, struct ui_file *fp)
12817{
28010a5d
PA
12818 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12819
6149aea9
PA
12820 switch (ex)
12821 {
761269c8 12822 case ada_catch_exception:
6149aea9 12823 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12824 if (!c->excep_string.empty ())
12825 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12826 break;
12827
761269c8 12828 case ada_catch_exception_unhandled:
78076abc 12829 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12830 break;
12831
9f757bf7
XR
12832 case ada_catch_handlers:
12833 fprintf_filtered (fp, "catch handlers");
12834 break;
12835
761269c8 12836 case ada_catch_assert:
6149aea9
PA
12837 fprintf_filtered (fp, "catch assert");
12838 break;
12839
12840 default:
12841 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12842 }
d9b3f62e 12843 print_recreate_thread (b, fp);
6149aea9
PA
12844}
12845
f7f9143b
JB
12846/* Virtual table for "catch exception" breakpoints. */
12847
28010a5d
PA
12848static struct bp_location *
12849allocate_location_catch_exception (struct breakpoint *self)
12850{
761269c8 12851 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12852}
12853
12854static void
12855re_set_catch_exception (struct breakpoint *b)
12856{
761269c8 12857 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12858}
12859
12860static void
12861check_status_catch_exception (bpstat bs)
12862{
761269c8 12863 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12864}
12865
f7f9143b 12866static enum print_stop_action
348d480f 12867print_it_catch_exception (bpstat bs)
f7f9143b 12868{
761269c8 12869 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12870}
12871
12872static void
a6d9a66e 12873print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12874{
761269c8 12875 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12876}
12877
12878static void
12879print_mention_catch_exception (struct breakpoint *b)
12880{
761269c8 12881 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12882}
12883
6149aea9
PA
12884static void
12885print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12886{
761269c8 12887 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12888}
12889
2060206e 12890static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12891
12892/* Virtual table for "catch exception unhandled" breakpoints. */
12893
28010a5d
PA
12894static struct bp_location *
12895allocate_location_catch_exception_unhandled (struct breakpoint *self)
12896{
761269c8 12897 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12898}
12899
12900static void
12901re_set_catch_exception_unhandled (struct breakpoint *b)
12902{
761269c8 12903 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12904}
12905
12906static void
12907check_status_catch_exception_unhandled (bpstat bs)
12908{
761269c8 12909 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12910}
12911
f7f9143b 12912static enum print_stop_action
348d480f 12913print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12914{
761269c8 12915 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12916}
12917
12918static void
a6d9a66e
UW
12919print_one_catch_exception_unhandled (struct breakpoint *b,
12920 struct bp_location **last_loc)
f7f9143b 12921{
761269c8 12922 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12923}
12924
12925static void
12926print_mention_catch_exception_unhandled (struct breakpoint *b)
12927{
761269c8 12928 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12929}
12930
6149aea9
PA
12931static void
12932print_recreate_catch_exception_unhandled (struct breakpoint *b,
12933 struct ui_file *fp)
12934{
761269c8 12935 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12936}
12937
2060206e 12938static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12939
12940/* Virtual table for "catch assert" breakpoints. */
12941
28010a5d
PA
12942static struct bp_location *
12943allocate_location_catch_assert (struct breakpoint *self)
12944{
761269c8 12945 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12946}
12947
12948static void
12949re_set_catch_assert (struct breakpoint *b)
12950{
761269c8 12951 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12952}
12953
12954static void
12955check_status_catch_assert (bpstat bs)
12956{
761269c8 12957 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12958}
12959
f7f9143b 12960static enum print_stop_action
348d480f 12961print_it_catch_assert (bpstat bs)
f7f9143b 12962{
761269c8 12963 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12964}
12965
12966static void
a6d9a66e 12967print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12968{
761269c8 12969 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12970}
12971
12972static void
12973print_mention_catch_assert (struct breakpoint *b)
12974{
761269c8 12975 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12976}
12977
6149aea9
PA
12978static void
12979print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12980{
761269c8 12981 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12982}
12983
2060206e 12984static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12985
9f757bf7
XR
12986/* Virtual table for "catch handlers" breakpoints. */
12987
12988static struct bp_location *
12989allocate_location_catch_handlers (struct breakpoint *self)
12990{
12991 return allocate_location_exception (ada_catch_handlers, self);
12992}
12993
12994static void
12995re_set_catch_handlers (struct breakpoint *b)
12996{
12997 re_set_exception (ada_catch_handlers, b);
12998}
12999
13000static void
13001check_status_catch_handlers (bpstat bs)
13002{
13003 check_status_exception (ada_catch_handlers, bs);
13004}
13005
13006static enum print_stop_action
13007print_it_catch_handlers (bpstat bs)
13008{
13009 return print_it_exception (ada_catch_handlers, bs);
13010}
13011
13012static void
13013print_one_catch_handlers (struct breakpoint *b,
13014 struct bp_location **last_loc)
13015{
13016 print_one_exception (ada_catch_handlers, b, last_loc);
13017}
13018
13019static void
13020print_mention_catch_handlers (struct breakpoint *b)
13021{
13022 print_mention_exception (ada_catch_handlers, b);
13023}
13024
13025static void
13026print_recreate_catch_handlers (struct breakpoint *b,
13027 struct ui_file *fp)
13028{
13029 print_recreate_exception (ada_catch_handlers, b, fp);
13030}
13031
13032static struct breakpoint_ops catch_handlers_breakpoint_ops;
13033
f7f9143b
JB
13034/* Split the arguments specified in a "catch exception" command.
13035 Set EX to the appropriate catchpoint type.
28010a5d 13036 Set EXCEP_STRING to the name of the specific exception if
5845583d 13037 specified by the user.
9f757bf7
XR
13038 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13039 "catch handlers" command. False otherwise.
5845583d
JB
13040 If a condition is found at the end of the arguments, the condition
13041 expression is stored in COND_STRING (memory must be deallocated
13042 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
13043
13044static void
a121b7c1 13045catch_ada_exception_command_split (const char *args,
9f757bf7 13046 bool is_catch_handlers_cmd,
761269c8 13047 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
13048 std::string *excep_string,
13049 std::string *cond_string)
f7f9143b 13050{
bc18fbb5 13051 std::string exception_name;
f7f9143b 13052
bc18fbb5
TT
13053 exception_name = extract_arg (&args);
13054 if (exception_name == "if")
5845583d
JB
13055 {
13056 /* This is not an exception name; this is the start of a condition
13057 expression for a catchpoint on all exceptions. So, "un-get"
13058 this token, and set exception_name to NULL. */
bc18fbb5 13059 exception_name.clear ();
5845583d
JB
13060 args -= 2;
13061 }
f7f9143b 13062
5845583d 13063 /* Check to see if we have a condition. */
f7f9143b 13064
f1735a53 13065 args = skip_spaces (args);
61012eef 13066 if (startswith (args, "if")
5845583d
JB
13067 && (isspace (args[2]) || args[2] == '\0'))
13068 {
13069 args += 2;
f1735a53 13070 args = skip_spaces (args);
5845583d
JB
13071
13072 if (args[0] == '\0')
13073 error (_("Condition missing after `if' keyword"));
bc18fbb5 13074 *cond_string = args;
5845583d
JB
13075
13076 args += strlen (args);
13077 }
13078
13079 /* Check that we do not have any more arguments. Anything else
13080 is unexpected. */
f7f9143b
JB
13081
13082 if (args[0] != '\0')
13083 error (_("Junk at end of expression"));
13084
9f757bf7
XR
13085 if (is_catch_handlers_cmd)
13086 {
13087 /* Catch handling of exceptions. */
13088 *ex = ada_catch_handlers;
13089 *excep_string = exception_name;
13090 }
bc18fbb5 13091 else if (exception_name.empty ())
f7f9143b
JB
13092 {
13093 /* Catch all exceptions. */
761269c8 13094 *ex = ada_catch_exception;
bc18fbb5 13095 excep_string->clear ();
f7f9143b 13096 }
bc18fbb5 13097 else if (exception_name == "unhandled")
f7f9143b
JB
13098 {
13099 /* Catch unhandled exceptions. */
761269c8 13100 *ex = ada_catch_exception_unhandled;
bc18fbb5 13101 excep_string->clear ();
f7f9143b
JB
13102 }
13103 else
13104 {
13105 /* Catch a specific exception. */
761269c8 13106 *ex = ada_catch_exception;
28010a5d 13107 *excep_string = exception_name;
f7f9143b
JB
13108 }
13109}
13110
13111/* Return the name of the symbol on which we should break in order to
13112 implement a catchpoint of the EX kind. */
13113
13114static const char *
761269c8 13115ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13116{
3eecfa55
JB
13117 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13118
13119 gdb_assert (data->exception_info != NULL);
0259addd 13120
f7f9143b
JB
13121 switch (ex)
13122 {
761269c8 13123 case ada_catch_exception:
3eecfa55 13124 return (data->exception_info->catch_exception_sym);
f7f9143b 13125 break;
761269c8 13126 case ada_catch_exception_unhandled:
3eecfa55 13127 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13128 break;
761269c8 13129 case ada_catch_assert:
3eecfa55 13130 return (data->exception_info->catch_assert_sym);
f7f9143b 13131 break;
9f757bf7
XR
13132 case ada_catch_handlers:
13133 return (data->exception_info->catch_handlers_sym);
13134 break;
f7f9143b
JB
13135 default:
13136 internal_error (__FILE__, __LINE__,
13137 _("unexpected catchpoint kind (%d)"), ex);
13138 }
13139}
13140
13141/* Return the breakpoint ops "virtual table" used for catchpoints
13142 of the EX kind. */
13143
c0a91b2b 13144static const struct breakpoint_ops *
761269c8 13145ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13146{
13147 switch (ex)
13148 {
761269c8 13149 case ada_catch_exception:
f7f9143b
JB
13150 return (&catch_exception_breakpoint_ops);
13151 break;
761269c8 13152 case ada_catch_exception_unhandled:
f7f9143b
JB
13153 return (&catch_exception_unhandled_breakpoint_ops);
13154 break;
761269c8 13155 case ada_catch_assert:
f7f9143b
JB
13156 return (&catch_assert_breakpoint_ops);
13157 break;
9f757bf7
XR
13158 case ada_catch_handlers:
13159 return (&catch_handlers_breakpoint_ops);
13160 break;
f7f9143b
JB
13161 default:
13162 internal_error (__FILE__, __LINE__,
13163 _("unexpected catchpoint kind (%d)"), ex);
13164 }
13165}
13166
13167/* Return the condition that will be used to match the current exception
13168 being raised with the exception that the user wants to catch. This
13169 assumes that this condition is used when the inferior just triggered
13170 an exception catchpoint.
cb7de75e 13171 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 13172
cb7de75e 13173static std::string
9f757bf7
XR
13174ada_exception_catchpoint_cond_string (const char *excep_string,
13175 enum ada_exception_catchpoint_kind ex)
f7f9143b 13176{
3d0b0fa3 13177 int i;
9f757bf7 13178 bool is_standard_exc = false;
cb7de75e 13179 std::string result;
9f757bf7
XR
13180
13181 if (ex == ada_catch_handlers)
13182 {
13183 /* For exception handlers catchpoints, the condition string does
13184 not use the same parameter as for the other exceptions. */
cb7de75e
TT
13185 result = ("long_integer (GNAT_GCC_exception_Access"
13186 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
13187 }
13188 else
cb7de75e 13189 result = "long_integer (e)";
3d0b0fa3 13190
0963b4bd 13191 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13192 runtime units that have been compiled without debugging info; if
28010a5d 13193 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13194 exception (e.g. "constraint_error") then, during the evaluation
13195 of the condition expression, the symbol lookup on this name would
0963b4bd 13196 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13197 may then be set only on user-defined exceptions which have the
13198 same not-fully-qualified name (e.g. my_package.constraint_error).
13199
13200 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13201 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13202 exception constraint_error" is rewritten into "catch exception
13203 standard.constraint_error".
13204
13205 If an exception named contraint_error is defined in another package of
13206 the inferior program, then the only way to specify this exception as a
13207 breakpoint condition is to use its fully-qualified named:
13208 e.g. my_package.constraint_error. */
13209
13210 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13211 {
28010a5d 13212 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13213 {
9f757bf7
XR
13214 is_standard_exc = true;
13215 break;
3d0b0fa3
JB
13216 }
13217 }
9f757bf7 13218
cb7de75e
TT
13219 result += " = ";
13220
9f757bf7 13221 if (is_standard_exc)
cb7de75e 13222 string_appendf (result, "long_integer (&standard.%s)", excep_string);
9f757bf7 13223 else
cb7de75e 13224 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 13225
9f757bf7 13226 return result;
f7f9143b
JB
13227}
13228
13229/* Return the symtab_and_line that should be used to insert an exception
13230 catchpoint of the TYPE kind.
13231
28010a5d
PA
13232 ADDR_STRING returns the name of the function where the real
13233 breakpoint that implements the catchpoints is set, depending on the
13234 type of catchpoint we need to create. */
f7f9143b
JB
13235
13236static struct symtab_and_line
bc18fbb5 13237ada_exception_sal (enum ada_exception_catchpoint_kind ex,
f2fc3015 13238 const char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13239{
13240 const char *sym_name;
13241 struct symbol *sym;
f7f9143b 13242
0259addd
JB
13243 /* First, find out which exception support info to use. */
13244 ada_exception_support_info_sniffer ();
13245
13246 /* Then lookup the function on which we will break in order to catch
f7f9143b 13247 the Ada exceptions requested by the user. */
f7f9143b
JB
13248 sym_name = ada_exception_sym_name (ex);
13249 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13250
f17011e0
JB
13251 /* We can assume that SYM is not NULL at this stage. If the symbol
13252 did not exist, ada_exception_support_info_sniffer would have
13253 raised an exception.
f7f9143b 13254
f17011e0
JB
13255 Also, ada_exception_support_info_sniffer should have already
13256 verified that SYM is a function symbol. */
13257 gdb_assert (sym != NULL);
13258 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
13259
13260 /* Set ADDR_STRING. */
f7f9143b
JB
13261 *addr_string = xstrdup (sym_name);
13262
f7f9143b 13263 /* Set OPS. */
4b9eee8c 13264 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13265
f17011e0 13266 return find_function_start_sal (sym, 1);
f7f9143b
JB
13267}
13268
b4a5b78b 13269/* Create an Ada exception catchpoint.
f7f9143b 13270
b4a5b78b 13271 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13272
bc18fbb5 13273 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 13274 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 13275 of the exception to which this catchpoint applies.
2df4d1d5 13276
bc18fbb5 13277 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 13278
b4a5b78b
JB
13279 TEMPFLAG, if nonzero, means that the underlying breakpoint
13280 should be temporary.
28010a5d 13281
b4a5b78b 13282 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13283
349774ef 13284void
28010a5d 13285create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13286 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 13287 const std::string &excep_string,
56ecd069 13288 const std::string &cond_string,
28010a5d 13289 int tempflag,
349774ef 13290 int disabled,
28010a5d
PA
13291 int from_tty)
13292{
f2fc3015 13293 const char *addr_string = NULL;
b4a5b78b 13294 const struct breakpoint_ops *ops = NULL;
bc18fbb5 13295 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 13296
b270e6f9
TT
13297 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13298 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
349774ef 13299 ops, tempflag, disabled, from_tty);
28010a5d 13300 c->excep_string = excep_string;
9f757bf7 13301 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
13302 if (!cond_string.empty ())
13303 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 13304 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13305}
13306
9ac4176b
PA
13307/* Implement the "catch exception" command. */
13308
13309static void
eb4c3f4a 13310catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13311 struct cmd_list_element *command)
13312{
a121b7c1 13313 const char *arg = arg_entry;
9ac4176b
PA
13314 struct gdbarch *gdbarch = get_current_arch ();
13315 int tempflag;
761269c8 13316 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13317 std::string excep_string;
56ecd069 13318 std::string cond_string;
9ac4176b
PA
13319
13320 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13321
13322 if (!arg)
13323 arg = "";
9f757bf7 13324 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13325 &cond_string);
9f757bf7
XR
13326 create_ada_exception_catchpoint (gdbarch, ex_kind,
13327 excep_string, cond_string,
13328 tempflag, 1 /* enabled */,
13329 from_tty);
13330}
13331
13332/* Implement the "catch handlers" command. */
13333
13334static void
13335catch_ada_handlers_command (const char *arg_entry, int from_tty,
13336 struct cmd_list_element *command)
13337{
13338 const char *arg = arg_entry;
13339 struct gdbarch *gdbarch = get_current_arch ();
13340 int tempflag;
13341 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13342 std::string excep_string;
56ecd069 13343 std::string cond_string;
9f757bf7
XR
13344
13345 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13346
13347 if (!arg)
13348 arg = "";
13349 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13350 &cond_string);
b4a5b78b
JB
13351 create_ada_exception_catchpoint (gdbarch, ex_kind,
13352 excep_string, cond_string,
349774ef
JB
13353 tempflag, 1 /* enabled */,
13354 from_tty);
9ac4176b
PA
13355}
13356
b4a5b78b 13357/* Split the arguments specified in a "catch assert" command.
5845583d 13358
b4a5b78b
JB
13359 ARGS contains the command's arguments (or the empty string if
13360 no arguments were passed).
5845583d
JB
13361
13362 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13363 (the memory needs to be deallocated after use). */
5845583d 13364
b4a5b78b 13365static void
56ecd069 13366catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13367{
f1735a53 13368 args = skip_spaces (args);
f7f9143b 13369
5845583d 13370 /* Check whether a condition was provided. */
61012eef 13371 if (startswith (args, "if")
5845583d 13372 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13373 {
5845583d 13374 args += 2;
f1735a53 13375 args = skip_spaces (args);
5845583d
JB
13376 if (args[0] == '\0')
13377 error (_("condition missing after `if' keyword"));
56ecd069 13378 cond_string.assign (args);
f7f9143b
JB
13379 }
13380
5845583d
JB
13381 /* Otherwise, there should be no other argument at the end of
13382 the command. */
13383 else if (args[0] != '\0')
13384 error (_("Junk at end of arguments."));
f7f9143b
JB
13385}
13386
9ac4176b
PA
13387/* Implement the "catch assert" command. */
13388
13389static void
eb4c3f4a 13390catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13391 struct cmd_list_element *command)
13392{
a121b7c1 13393 const char *arg = arg_entry;
9ac4176b
PA
13394 struct gdbarch *gdbarch = get_current_arch ();
13395 int tempflag;
56ecd069 13396 std::string cond_string;
9ac4176b
PA
13397
13398 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13399
13400 if (!arg)
13401 arg = "";
56ecd069 13402 catch_ada_assert_command_split (arg, cond_string);
761269c8 13403 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13404 "", cond_string,
349774ef
JB
13405 tempflag, 1 /* enabled */,
13406 from_tty);
9ac4176b 13407}
778865d3
JB
13408
13409/* Return non-zero if the symbol SYM is an Ada exception object. */
13410
13411static int
13412ada_is_exception_sym (struct symbol *sym)
13413{
a737d952 13414 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13415
13416 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13417 && SYMBOL_CLASS (sym) != LOC_BLOCK
13418 && SYMBOL_CLASS (sym) != LOC_CONST
13419 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13420 && type_name != NULL && strcmp (type_name, "exception") == 0);
13421}
13422
13423/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13424 Ada exception object. This matches all exceptions except the ones
13425 defined by the Ada language. */
13426
13427static int
13428ada_is_non_standard_exception_sym (struct symbol *sym)
13429{
13430 int i;
13431
13432 if (!ada_is_exception_sym (sym))
13433 return 0;
13434
13435 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13436 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13437 return 0; /* A standard exception. */
13438
13439 /* Numeric_Error is also a standard exception, so exclude it.
13440 See the STANDARD_EXC description for more details as to why
13441 this exception is not listed in that array. */
13442 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13443 return 0;
13444
13445 return 1;
13446}
13447
ab816a27 13448/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13449 objects.
13450
13451 The comparison is determined first by exception name, and then
13452 by exception address. */
13453
ab816a27 13454bool
cc536b21 13455ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13456{
778865d3
JB
13457 int result;
13458
ab816a27
TT
13459 result = strcmp (name, other.name);
13460 if (result < 0)
13461 return true;
13462 if (result == 0 && addr < other.addr)
13463 return true;
13464 return false;
13465}
778865d3 13466
ab816a27 13467bool
cc536b21 13468ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13469{
13470 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13471}
13472
13473/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13474 routine, but keeping the first SKIP elements untouched.
13475
13476 All duplicates are also removed. */
13477
13478static void
ab816a27 13479sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13480 int skip)
13481{
ab816a27
TT
13482 std::sort (exceptions->begin () + skip, exceptions->end ());
13483 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13484 exceptions->end ());
778865d3
JB
13485}
13486
778865d3
JB
13487/* Add all exceptions defined by the Ada standard whose name match
13488 a regular expression.
13489
13490 If PREG is not NULL, then this regexp_t object is used to
13491 perform the symbol name matching. Otherwise, no name-based
13492 filtering is performed.
13493
13494 EXCEPTIONS is a vector of exceptions to which matching exceptions
13495 gets pushed. */
13496
13497static void
2d7cc5c7 13498ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13499 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13500{
13501 int i;
13502
13503 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13504 {
13505 if (preg == NULL
2d7cc5c7 13506 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13507 {
13508 struct bound_minimal_symbol msymbol
13509 = ada_lookup_simple_minsym (standard_exc[i]);
13510
13511 if (msymbol.minsym != NULL)
13512 {
13513 struct ada_exc_info info
77e371c0 13514 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13515
ab816a27 13516 exceptions->push_back (info);
778865d3
JB
13517 }
13518 }
13519 }
13520}
13521
13522/* Add all Ada exceptions defined locally and accessible from the given
13523 FRAME.
13524
13525 If PREG is not NULL, then this regexp_t object is used to
13526 perform the symbol name matching. Otherwise, no name-based
13527 filtering is performed.
13528
13529 EXCEPTIONS is a vector of exceptions to which matching exceptions
13530 gets pushed. */
13531
13532static void
2d7cc5c7
PA
13533ada_add_exceptions_from_frame (compiled_regex *preg,
13534 struct frame_info *frame,
ab816a27 13535 std::vector<ada_exc_info> *exceptions)
778865d3 13536{
3977b71f 13537 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13538
13539 while (block != 0)
13540 {
13541 struct block_iterator iter;
13542 struct symbol *sym;
13543
13544 ALL_BLOCK_SYMBOLS (block, iter, sym)
13545 {
13546 switch (SYMBOL_CLASS (sym))
13547 {
13548 case LOC_TYPEDEF:
13549 case LOC_BLOCK:
13550 case LOC_CONST:
13551 break;
13552 default:
13553 if (ada_is_exception_sym (sym))
13554 {
13555 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13556 SYMBOL_VALUE_ADDRESS (sym)};
13557
ab816a27 13558 exceptions->push_back (info);
778865d3
JB
13559 }
13560 }
13561 }
13562 if (BLOCK_FUNCTION (block) != NULL)
13563 break;
13564 block = BLOCK_SUPERBLOCK (block);
13565 }
13566}
13567
14bc53a8
PA
13568/* Return true if NAME matches PREG or if PREG is NULL. */
13569
13570static bool
2d7cc5c7 13571name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13572{
13573 return (preg == NULL
2d7cc5c7 13574 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13575}
13576
778865d3
JB
13577/* Add all exceptions defined globally whose name name match
13578 a regular expression, excluding standard exceptions.
13579
13580 The reason we exclude standard exceptions is that they need
13581 to be handled separately: Standard exceptions are defined inside
13582 a runtime unit which is normally not compiled with debugging info,
13583 and thus usually do not show up in our symbol search. However,
13584 if the unit was in fact built with debugging info, we need to
13585 exclude them because they would duplicate the entry we found
13586 during the special loop that specifically searches for those
13587 standard exceptions.
13588
13589 If PREG is not NULL, then this regexp_t object is used to
13590 perform the symbol name matching. Otherwise, no name-based
13591 filtering is performed.
13592
13593 EXCEPTIONS is a vector of exceptions to which matching exceptions
13594 gets pushed. */
13595
13596static void
2d7cc5c7 13597ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13598 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13599{
13600 struct objfile *objfile;
43f3e411 13601 struct compunit_symtab *s;
778865d3 13602
14bc53a8
PA
13603 /* In Ada, the symbol "search name" is a linkage name, whereas the
13604 regular expression used to do the matching refers to the natural
13605 name. So match against the decoded name. */
13606 expand_symtabs_matching (NULL,
b5ec771e 13607 lookup_name_info::match_any (),
14bc53a8
PA
13608 [&] (const char *search_name)
13609 {
13610 const char *decoded = ada_decode (search_name);
13611 return name_matches_regex (decoded, preg);
13612 },
13613 NULL,
13614 VARIABLES_DOMAIN);
778865d3 13615
43f3e411 13616 ALL_COMPUNITS (objfile, s)
778865d3 13617 {
43f3e411 13618 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13619 int i;
13620
13621 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13622 {
13623 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13624 struct block_iterator iter;
13625 struct symbol *sym;
13626
13627 ALL_BLOCK_SYMBOLS (b, iter, sym)
13628 if (ada_is_non_standard_exception_sym (sym)
14bc53a8 13629 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
778865d3
JB
13630 {
13631 struct ada_exc_info info
13632 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13633
ab816a27 13634 exceptions->push_back (info);
778865d3
JB
13635 }
13636 }
13637 }
13638}
13639
13640/* Implements ada_exceptions_list with the regular expression passed
13641 as a regex_t, rather than a string.
13642
13643 If not NULL, PREG is used to filter out exceptions whose names
13644 do not match. Otherwise, all exceptions are listed. */
13645
ab816a27 13646static std::vector<ada_exc_info>
2d7cc5c7 13647ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13648{
ab816a27 13649 std::vector<ada_exc_info> result;
778865d3
JB
13650 int prev_len;
13651
13652 /* First, list the known standard exceptions. These exceptions
13653 need to be handled separately, as they are usually defined in
13654 runtime units that have been compiled without debugging info. */
13655
13656 ada_add_standard_exceptions (preg, &result);
13657
13658 /* Next, find all exceptions whose scope is local and accessible
13659 from the currently selected frame. */
13660
13661 if (has_stack_frames ())
13662 {
ab816a27 13663 prev_len = result.size ();
778865d3
JB
13664 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13665 &result);
ab816a27 13666 if (result.size () > prev_len)
778865d3
JB
13667 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13668 }
13669
13670 /* Add all exceptions whose scope is global. */
13671
ab816a27 13672 prev_len = result.size ();
778865d3 13673 ada_add_global_exceptions (preg, &result);
ab816a27 13674 if (result.size () > prev_len)
778865d3
JB
13675 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13676
778865d3
JB
13677 return result;
13678}
13679
13680/* Return a vector of ada_exc_info.
13681
13682 If REGEXP is NULL, all exceptions are included in the result.
13683 Otherwise, it should contain a valid regular expression,
13684 and only the exceptions whose names match that regular expression
13685 are included in the result.
13686
13687 The exceptions are sorted in the following order:
13688 - Standard exceptions (defined by the Ada language), in
13689 alphabetical order;
13690 - Exceptions only visible from the current frame, in
13691 alphabetical order;
13692 - Exceptions whose scope is global, in alphabetical order. */
13693
ab816a27 13694std::vector<ada_exc_info>
778865d3
JB
13695ada_exceptions_list (const char *regexp)
13696{
2d7cc5c7
PA
13697 if (regexp == NULL)
13698 return ada_exceptions_list_1 (NULL);
778865d3 13699
2d7cc5c7
PA
13700 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13701 return ada_exceptions_list_1 (&reg);
778865d3
JB
13702}
13703
13704/* Implement the "info exceptions" command. */
13705
13706static void
1d12d88f 13707info_exceptions_command (const char *regexp, int from_tty)
778865d3 13708{
778865d3 13709 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13710
ab816a27 13711 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13712
13713 if (regexp != NULL)
13714 printf_filtered
13715 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13716 else
13717 printf_filtered (_("All defined Ada exceptions:\n"));
13718
ab816a27
TT
13719 for (const ada_exc_info &info : exceptions)
13720 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13721}
13722
4c4b4cd2
PH
13723 /* Operators */
13724/* Information about operators given special treatment in functions
13725 below. */
13726/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13727
13728#define ADA_OPERATORS \
13729 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13730 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13731 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13732 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13733 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13734 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13735 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13736 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13737 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13738 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13739 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13740 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13741 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13742 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13743 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13744 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13745 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13746 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13747 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13748
13749static void
554794dc
SDJ
13750ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13751 int *argsp)
4c4b4cd2
PH
13752{
13753 switch (exp->elts[pc - 1].opcode)
13754 {
76a01679 13755 default:
4c4b4cd2
PH
13756 operator_length_standard (exp, pc, oplenp, argsp);
13757 break;
13758
13759#define OP_DEFN(op, len, args, binop) \
13760 case op: *oplenp = len; *argsp = args; break;
13761 ADA_OPERATORS;
13762#undef OP_DEFN
52ce6436
PH
13763
13764 case OP_AGGREGATE:
13765 *oplenp = 3;
13766 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13767 break;
13768
13769 case OP_CHOICES:
13770 *oplenp = 3;
13771 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13772 break;
4c4b4cd2
PH
13773 }
13774}
13775
c0201579
JK
13776/* Implementation of the exp_descriptor method operator_check. */
13777
13778static int
13779ada_operator_check (struct expression *exp, int pos,
13780 int (*objfile_func) (struct objfile *objfile, void *data),
13781 void *data)
13782{
13783 const union exp_element *const elts = exp->elts;
13784 struct type *type = NULL;
13785
13786 switch (elts[pos].opcode)
13787 {
13788 case UNOP_IN_RANGE:
13789 case UNOP_QUAL:
13790 type = elts[pos + 1].type;
13791 break;
13792
13793 default:
13794 return operator_check_standard (exp, pos, objfile_func, data);
13795 }
13796
13797 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13798
13799 if (type && TYPE_OBJFILE (type)
13800 && (*objfile_func) (TYPE_OBJFILE (type), data))
13801 return 1;
13802
13803 return 0;
13804}
13805
a121b7c1 13806static const char *
4c4b4cd2
PH
13807ada_op_name (enum exp_opcode opcode)
13808{
13809 switch (opcode)
13810 {
76a01679 13811 default:
4c4b4cd2 13812 return op_name_standard (opcode);
52ce6436 13813
4c4b4cd2
PH
13814#define OP_DEFN(op, len, args, binop) case op: return #op;
13815 ADA_OPERATORS;
13816#undef OP_DEFN
52ce6436
PH
13817
13818 case OP_AGGREGATE:
13819 return "OP_AGGREGATE";
13820 case OP_CHOICES:
13821 return "OP_CHOICES";
13822 case OP_NAME:
13823 return "OP_NAME";
4c4b4cd2
PH
13824 }
13825}
13826
13827/* As for operator_length, but assumes PC is pointing at the first
13828 element of the operator, and gives meaningful results only for the
52ce6436 13829 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13830
13831static void
76a01679
JB
13832ada_forward_operator_length (struct expression *exp, int pc,
13833 int *oplenp, int *argsp)
4c4b4cd2 13834{
76a01679 13835 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13836 {
13837 default:
13838 *oplenp = *argsp = 0;
13839 break;
52ce6436 13840
4c4b4cd2
PH
13841#define OP_DEFN(op, len, args, binop) \
13842 case op: *oplenp = len; *argsp = args; break;
13843 ADA_OPERATORS;
13844#undef OP_DEFN
52ce6436
PH
13845
13846 case OP_AGGREGATE:
13847 *oplenp = 3;
13848 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13849 break;
13850
13851 case OP_CHOICES:
13852 *oplenp = 3;
13853 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13854 break;
13855
13856 case OP_STRING:
13857 case OP_NAME:
13858 {
13859 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13860
52ce6436
PH
13861 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13862 *argsp = 0;
13863 break;
13864 }
4c4b4cd2
PH
13865 }
13866}
13867
13868static int
13869ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13870{
13871 enum exp_opcode op = exp->elts[elt].opcode;
13872 int oplen, nargs;
13873 int pc = elt;
13874 int i;
76a01679 13875
4c4b4cd2
PH
13876 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13877
76a01679 13878 switch (op)
4c4b4cd2 13879 {
76a01679 13880 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13881 case OP_ATR_FIRST:
13882 case OP_ATR_LAST:
13883 case OP_ATR_LENGTH:
13884 case OP_ATR_IMAGE:
13885 case OP_ATR_MAX:
13886 case OP_ATR_MIN:
13887 case OP_ATR_MODULUS:
13888 case OP_ATR_POS:
13889 case OP_ATR_SIZE:
13890 case OP_ATR_TAG:
13891 case OP_ATR_VAL:
13892 break;
13893
13894 case UNOP_IN_RANGE:
13895 case UNOP_QUAL:
323e0a4a
AC
13896 /* XXX: gdb_sprint_host_address, type_sprint */
13897 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13898 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13899 fprintf_filtered (stream, " (");
13900 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13901 fprintf_filtered (stream, ")");
13902 break;
13903 case BINOP_IN_BOUNDS:
52ce6436
PH
13904 fprintf_filtered (stream, " (%d)",
13905 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13906 break;
13907 case TERNOP_IN_RANGE:
13908 break;
13909
52ce6436
PH
13910 case OP_AGGREGATE:
13911 case OP_OTHERS:
13912 case OP_DISCRETE_RANGE:
13913 case OP_POSITIONAL:
13914 case OP_CHOICES:
13915 break;
13916
13917 case OP_NAME:
13918 case OP_STRING:
13919 {
13920 char *name = &exp->elts[elt + 2].string;
13921 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13922
52ce6436
PH
13923 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13924 break;
13925 }
13926
4c4b4cd2
PH
13927 default:
13928 return dump_subexp_body_standard (exp, stream, elt);
13929 }
13930
13931 elt += oplen;
13932 for (i = 0; i < nargs; i += 1)
13933 elt = dump_subexp (exp, stream, elt);
13934
13935 return elt;
13936}
13937
13938/* The Ada extension of print_subexp (q.v.). */
13939
76a01679
JB
13940static void
13941ada_print_subexp (struct expression *exp, int *pos,
13942 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13943{
52ce6436 13944 int oplen, nargs, i;
4c4b4cd2
PH
13945 int pc = *pos;
13946 enum exp_opcode op = exp->elts[pc].opcode;
13947
13948 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13949
52ce6436 13950 *pos += oplen;
4c4b4cd2
PH
13951 switch (op)
13952 {
13953 default:
52ce6436 13954 *pos -= oplen;
4c4b4cd2
PH
13955 print_subexp_standard (exp, pos, stream, prec);
13956 return;
13957
13958 case OP_VAR_VALUE:
4c4b4cd2
PH
13959 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13960 return;
13961
13962 case BINOP_IN_BOUNDS:
323e0a4a 13963 /* XXX: sprint_subexp */
4c4b4cd2 13964 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13965 fputs_filtered (" in ", stream);
4c4b4cd2 13966 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13967 fputs_filtered ("'range", stream);
4c4b4cd2 13968 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13969 fprintf_filtered (stream, "(%ld)",
13970 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13971 return;
13972
13973 case TERNOP_IN_RANGE:
4c4b4cd2 13974 if (prec >= PREC_EQUAL)
76a01679 13975 fputs_filtered ("(", stream);
323e0a4a 13976 /* XXX: sprint_subexp */
4c4b4cd2 13977 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13978 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13979 print_subexp (exp, pos, stream, PREC_EQUAL);
13980 fputs_filtered (" .. ", stream);
13981 print_subexp (exp, pos, stream, PREC_EQUAL);
13982 if (prec >= PREC_EQUAL)
76a01679
JB
13983 fputs_filtered (")", stream);
13984 return;
4c4b4cd2
PH
13985
13986 case OP_ATR_FIRST:
13987 case OP_ATR_LAST:
13988 case OP_ATR_LENGTH:
13989 case OP_ATR_IMAGE:
13990 case OP_ATR_MAX:
13991 case OP_ATR_MIN:
13992 case OP_ATR_MODULUS:
13993 case OP_ATR_POS:
13994 case OP_ATR_SIZE:
13995 case OP_ATR_TAG:
13996 case OP_ATR_VAL:
4c4b4cd2 13997 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13998 {
13999 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
14000 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
14001 &type_print_raw_options);
76a01679
JB
14002 *pos += 3;
14003 }
4c4b4cd2 14004 else
76a01679 14005 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
14006 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
14007 if (nargs > 1)
76a01679
JB
14008 {
14009 int tem;
5b4ee69b 14010
76a01679
JB
14011 for (tem = 1; tem < nargs; tem += 1)
14012 {
14013 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
14014 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
14015 }
14016 fputs_filtered (")", stream);
14017 }
4c4b4cd2 14018 return;
14f9c5c9 14019
4c4b4cd2 14020 case UNOP_QUAL:
4c4b4cd2
PH
14021 type_print (exp->elts[pc + 1].type, "", stream, 0);
14022 fputs_filtered ("'(", stream);
14023 print_subexp (exp, pos, stream, PREC_PREFIX);
14024 fputs_filtered (")", stream);
14025 return;
14f9c5c9 14026
4c4b4cd2 14027 case UNOP_IN_RANGE:
323e0a4a 14028 /* XXX: sprint_subexp */
4c4b4cd2 14029 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 14030 fputs_filtered (" in ", stream);
79d43c61
TT
14031 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14032 &type_print_raw_options);
4c4b4cd2 14033 return;
52ce6436
PH
14034
14035 case OP_DISCRETE_RANGE:
14036 print_subexp (exp, pos, stream, PREC_SUFFIX);
14037 fputs_filtered ("..", stream);
14038 print_subexp (exp, pos, stream, PREC_SUFFIX);
14039 return;
14040
14041 case OP_OTHERS:
14042 fputs_filtered ("others => ", stream);
14043 print_subexp (exp, pos, stream, PREC_SUFFIX);
14044 return;
14045
14046 case OP_CHOICES:
14047 for (i = 0; i < nargs-1; i += 1)
14048 {
14049 if (i > 0)
14050 fputs_filtered ("|", stream);
14051 print_subexp (exp, pos, stream, PREC_SUFFIX);
14052 }
14053 fputs_filtered (" => ", stream);
14054 print_subexp (exp, pos, stream, PREC_SUFFIX);
14055 return;
14056
14057 case OP_POSITIONAL:
14058 print_subexp (exp, pos, stream, PREC_SUFFIX);
14059 return;
14060
14061 case OP_AGGREGATE:
14062 fputs_filtered ("(", stream);
14063 for (i = 0; i < nargs; i += 1)
14064 {
14065 if (i > 0)
14066 fputs_filtered (", ", stream);
14067 print_subexp (exp, pos, stream, PREC_SUFFIX);
14068 }
14069 fputs_filtered (")", stream);
14070 return;
4c4b4cd2
PH
14071 }
14072}
14f9c5c9
AS
14073
14074/* Table mapping opcodes into strings for printing operators
14075 and precedences of the operators. */
14076
d2e4a39e
AS
14077static const struct op_print ada_op_print_tab[] = {
14078 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14079 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14080 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14081 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14082 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14083 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14084 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14085 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14086 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14087 {">=", BINOP_GEQ, PREC_ORDER, 0},
14088 {">", BINOP_GTR, PREC_ORDER, 0},
14089 {"<", BINOP_LESS, PREC_ORDER, 0},
14090 {">>", BINOP_RSH, PREC_SHIFT, 0},
14091 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14092 {"+", BINOP_ADD, PREC_ADD, 0},
14093 {"-", BINOP_SUB, PREC_ADD, 0},
14094 {"&", BINOP_CONCAT, PREC_ADD, 0},
14095 {"*", BINOP_MUL, PREC_MUL, 0},
14096 {"/", BINOP_DIV, PREC_MUL, 0},
14097 {"rem", BINOP_REM, PREC_MUL, 0},
14098 {"mod", BINOP_MOD, PREC_MUL, 0},
14099 {"**", BINOP_EXP, PREC_REPEAT, 0},
14100 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14101 {"-", UNOP_NEG, PREC_PREFIX, 0},
14102 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14103 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14104 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14105 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14106 {".all", UNOP_IND, PREC_SUFFIX, 1},
14107 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14108 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14109 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14110};
14111\f
72d5681a
PH
14112enum ada_primitive_types {
14113 ada_primitive_type_int,
14114 ada_primitive_type_long,
14115 ada_primitive_type_short,
14116 ada_primitive_type_char,
14117 ada_primitive_type_float,
14118 ada_primitive_type_double,
14119 ada_primitive_type_void,
14120 ada_primitive_type_long_long,
14121 ada_primitive_type_long_double,
14122 ada_primitive_type_natural,
14123 ada_primitive_type_positive,
14124 ada_primitive_type_system_address,
08f49010 14125 ada_primitive_type_storage_offset,
72d5681a
PH
14126 nr_ada_primitive_types
14127};
6c038f32
PH
14128
14129static void
d4a9a881 14130ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14131 struct language_arch_info *lai)
14132{
d4a9a881 14133 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14134
72d5681a 14135 lai->primitive_type_vector
d4a9a881 14136 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14137 struct type *);
e9bb382b
UW
14138
14139 lai->primitive_type_vector [ada_primitive_type_int]
14140 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14141 0, "integer");
14142 lai->primitive_type_vector [ada_primitive_type_long]
14143 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14144 0, "long_integer");
14145 lai->primitive_type_vector [ada_primitive_type_short]
14146 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14147 0, "short_integer");
14148 lai->string_char_type
14149 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14150 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14151 lai->primitive_type_vector [ada_primitive_type_float]
14152 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14153 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14154 lai->primitive_type_vector [ada_primitive_type_double]
14155 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14156 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14157 lai->primitive_type_vector [ada_primitive_type_long_long]
14158 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14159 0, "long_long_integer");
14160 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14161 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14162 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14163 lai->primitive_type_vector [ada_primitive_type_natural]
14164 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14165 0, "natural");
14166 lai->primitive_type_vector [ada_primitive_type_positive]
14167 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14168 0, "positive");
14169 lai->primitive_type_vector [ada_primitive_type_void]
14170 = builtin->builtin_void;
14171
14172 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14173 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14174 "void"));
72d5681a
PH
14175 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14176 = "system__address";
fbb06eb1 14177
08f49010
XR
14178 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14179 type. This is a signed integral type whose size is the same as
14180 the size of addresses. */
14181 {
14182 unsigned int addr_length = TYPE_LENGTH
14183 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14184
14185 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14186 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14187 "storage_offset");
14188 }
14189
47e729a8 14190 lai->bool_type_symbol = NULL;
fbb06eb1 14191 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14192}
6c038f32
PH
14193\f
14194 /* Language vector */
14195
14196/* Not really used, but needed in the ada_language_defn. */
14197
14198static void
6c7a06a3 14199emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14200{
6c7a06a3 14201 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14202}
14203
14204static int
410a0ff2 14205parse (struct parser_state *ps)
6c038f32
PH
14206{
14207 warnings_issued = 0;
410a0ff2 14208 return ada_parse (ps);
6c038f32
PH
14209}
14210
14211static const struct exp_descriptor ada_exp_descriptor = {
14212 ada_print_subexp,
14213 ada_operator_length,
c0201579 14214 ada_operator_check,
6c038f32
PH
14215 ada_op_name,
14216 ada_dump_subexp_body,
14217 ada_evaluate_subexp
14218};
14219
b5ec771e
PA
14220/* symbol_name_matcher_ftype adapter for wild_match. */
14221
14222static bool
14223do_wild_match (const char *symbol_search_name,
14224 const lookup_name_info &lookup_name,
a207cff2 14225 completion_match_result *comp_match_res)
b5ec771e
PA
14226{
14227 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14228}
14229
14230/* symbol_name_matcher_ftype adapter for full_match. */
14231
14232static bool
14233do_full_match (const char *symbol_search_name,
14234 const lookup_name_info &lookup_name,
a207cff2 14235 completion_match_result *comp_match_res)
b5ec771e
PA
14236{
14237 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14238}
14239
14240/* Build the Ada lookup name for LOOKUP_NAME. */
14241
14242ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14243{
14244 const std::string &user_name = lookup_name.name ();
14245
14246 if (user_name[0] == '<')
14247 {
14248 if (user_name.back () == '>')
14249 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14250 else
14251 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14252 m_encoded_p = true;
14253 m_verbatim_p = true;
14254 m_wild_match_p = false;
14255 m_standard_p = false;
14256 }
14257 else
14258 {
14259 m_verbatim_p = false;
14260
14261 m_encoded_p = user_name.find ("__") != std::string::npos;
14262
14263 if (!m_encoded_p)
14264 {
14265 const char *folded = ada_fold_name (user_name.c_str ());
14266 const char *encoded = ada_encode_1 (folded, false);
14267 if (encoded != NULL)
14268 m_encoded_name = encoded;
14269 else
14270 m_encoded_name = user_name;
14271 }
14272 else
14273 m_encoded_name = user_name;
14274
14275 /* Handle the 'package Standard' special case. See description
14276 of m_standard_p. */
14277 if (startswith (m_encoded_name.c_str (), "standard__"))
14278 {
14279 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14280 m_standard_p = true;
14281 }
14282 else
14283 m_standard_p = false;
74ccd7f5 14284
b5ec771e
PA
14285 /* If the name contains a ".", then the user is entering a fully
14286 qualified entity name, and the match must not be done in wild
14287 mode. Similarly, if the user wants to complete what looks
14288 like an encoded name, the match must not be done in wild
14289 mode. Also, in the standard__ special case always do
14290 non-wild matching. */
14291 m_wild_match_p
14292 = (lookup_name.match_type () != symbol_name_match_type::FULL
14293 && !m_encoded_p
14294 && !m_standard_p
14295 && user_name.find ('.') == std::string::npos);
14296 }
14297}
14298
14299/* symbol_name_matcher_ftype method for Ada. This only handles
14300 completion mode. */
14301
14302static bool
14303ada_symbol_name_matches (const char *symbol_search_name,
14304 const lookup_name_info &lookup_name,
a207cff2 14305 completion_match_result *comp_match_res)
74ccd7f5 14306{
b5ec771e
PA
14307 return lookup_name.ada ().matches (symbol_search_name,
14308 lookup_name.match_type (),
a207cff2 14309 comp_match_res);
b5ec771e
PA
14310}
14311
de63c46b
PA
14312/* A name matcher that matches the symbol name exactly, with
14313 strcmp. */
14314
14315static bool
14316literal_symbol_name_matcher (const char *symbol_search_name,
14317 const lookup_name_info &lookup_name,
14318 completion_match_result *comp_match_res)
14319{
14320 const std::string &name = lookup_name.name ();
14321
14322 int cmp = (lookup_name.completion_mode ()
14323 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14324 : strcmp (symbol_search_name, name.c_str ()));
14325 if (cmp == 0)
14326 {
14327 if (comp_match_res != NULL)
14328 comp_match_res->set_match (symbol_search_name);
14329 return true;
14330 }
14331 else
14332 return false;
14333}
14334
b5ec771e
PA
14335/* Implement the "la_get_symbol_name_matcher" language_defn method for
14336 Ada. */
14337
14338static symbol_name_matcher_ftype *
14339ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14340{
de63c46b
PA
14341 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14342 return literal_symbol_name_matcher;
14343
b5ec771e
PA
14344 if (lookup_name.completion_mode ())
14345 return ada_symbol_name_matches;
74ccd7f5 14346 else
b5ec771e
PA
14347 {
14348 if (lookup_name.ada ().wild_match_p ())
14349 return do_wild_match;
14350 else
14351 return do_full_match;
14352 }
74ccd7f5
JB
14353}
14354
a5ee536b
JB
14355/* Implement the "la_read_var_value" language_defn method for Ada. */
14356
14357static struct value *
63e43d3a
PMR
14358ada_read_var_value (struct symbol *var, const struct block *var_block,
14359 struct frame_info *frame)
a5ee536b 14360{
3977b71f 14361 const struct block *frame_block = NULL;
a5ee536b
JB
14362 struct symbol *renaming_sym = NULL;
14363
14364 /* The only case where default_read_var_value is not sufficient
14365 is when VAR is a renaming... */
14366 if (frame)
14367 frame_block = get_frame_block (frame, NULL);
14368 if (frame_block)
14369 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14370 if (renaming_sym != NULL)
14371 return ada_read_renaming_var_value (renaming_sym, frame_block);
14372
14373 /* This is a typical case where we expect the default_read_var_value
14374 function to work. */
63e43d3a 14375 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14376}
14377
56618e20
TT
14378static const char *ada_extensions[] =
14379{
14380 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14381};
14382
47e77640 14383extern const struct language_defn ada_language_defn = {
6c038f32 14384 "ada", /* Language name */
6abde28f 14385 "Ada",
6c038f32 14386 language_ada,
6c038f32 14387 range_check_off,
6c038f32
PH
14388 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14389 that's not quite what this means. */
6c038f32 14390 array_row_major,
9a044a89 14391 macro_expansion_no,
56618e20 14392 ada_extensions,
6c038f32
PH
14393 &ada_exp_descriptor,
14394 parse,
b3f11165 14395 ada_yyerror,
6c038f32
PH
14396 resolve,
14397 ada_printchar, /* Print a character constant */
14398 ada_printstr, /* Function to print string constant */
14399 emit_char, /* Function to print single char (not used) */
6c038f32 14400 ada_print_type, /* Print a type using appropriate syntax */
be942545 14401 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14402 ada_val_print, /* Print a value using appropriate syntax */
14403 ada_value_print, /* Print a top-level value */
a5ee536b 14404 ada_read_var_value, /* la_read_var_value */
6c038f32 14405 NULL, /* Language specific skip_trampoline */
2b2d9e11 14406 NULL, /* name_of_this */
59cc4834 14407 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14408 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14409 basic_lookup_transparent_type, /* lookup_transparent_type */
14410 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14411 ada_sniff_from_mangled_name,
0963b4bd
MS
14412 NULL, /* Language specific
14413 class_name_from_physname */
6c038f32
PH
14414 ada_op_print_tab, /* expression operators for printing */
14415 0, /* c-style arrays */
14416 1, /* String lower bound */
6c038f32 14417 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14418 ada_collect_symbol_completion_matches,
72d5681a 14419 ada_language_arch_info,
e79af960 14420 ada_print_array_index,
41f1b697 14421 default_pass_by_reference,
ae6a3a4c 14422 c_get_string,
43cc5389 14423 c_watch_location_expression,
b5ec771e 14424 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14425 ada_iterate_over_symbols,
5ffa0793 14426 default_search_name_hash,
a53b64ea 14427 &ada_varobj_ops,
bb2ec1b3
TT
14428 NULL,
14429 NULL,
6c038f32
PH
14430 LANG_MAGIC
14431};
14432
5bf03f13
JB
14433/* Command-list for the "set/show ada" prefix command. */
14434static struct cmd_list_element *set_ada_list;
14435static struct cmd_list_element *show_ada_list;
14436
14437/* Implement the "set ada" prefix command. */
14438
14439static void
981a3fb3 14440set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14441{
14442 printf_unfiltered (_(\
14443"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14444 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14445}
14446
14447/* Implement the "show ada" prefix command. */
14448
14449static void
981a3fb3 14450show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14451{
14452 cmd_show_list (show_ada_list, from_tty, "");
14453}
14454
2060206e
PA
14455static void
14456initialize_ada_catchpoint_ops (void)
14457{
14458 struct breakpoint_ops *ops;
14459
14460 initialize_breakpoint_ops ();
14461
14462 ops = &catch_exception_breakpoint_ops;
14463 *ops = bkpt_breakpoint_ops;
2060206e
PA
14464 ops->allocate_location = allocate_location_catch_exception;
14465 ops->re_set = re_set_catch_exception;
14466 ops->check_status = check_status_catch_exception;
14467 ops->print_it = print_it_catch_exception;
14468 ops->print_one = print_one_catch_exception;
14469 ops->print_mention = print_mention_catch_exception;
14470 ops->print_recreate = print_recreate_catch_exception;
14471
14472 ops = &catch_exception_unhandled_breakpoint_ops;
14473 *ops = bkpt_breakpoint_ops;
2060206e
PA
14474 ops->allocate_location = allocate_location_catch_exception_unhandled;
14475 ops->re_set = re_set_catch_exception_unhandled;
14476 ops->check_status = check_status_catch_exception_unhandled;
14477 ops->print_it = print_it_catch_exception_unhandled;
14478 ops->print_one = print_one_catch_exception_unhandled;
14479 ops->print_mention = print_mention_catch_exception_unhandled;
14480 ops->print_recreate = print_recreate_catch_exception_unhandled;
14481
14482 ops = &catch_assert_breakpoint_ops;
14483 *ops = bkpt_breakpoint_ops;
2060206e
PA
14484 ops->allocate_location = allocate_location_catch_assert;
14485 ops->re_set = re_set_catch_assert;
14486 ops->check_status = check_status_catch_assert;
14487 ops->print_it = print_it_catch_assert;
14488 ops->print_one = print_one_catch_assert;
14489 ops->print_mention = print_mention_catch_assert;
14490 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14491
14492 ops = &catch_handlers_breakpoint_ops;
14493 *ops = bkpt_breakpoint_ops;
14494 ops->allocate_location = allocate_location_catch_handlers;
14495 ops->re_set = re_set_catch_handlers;
14496 ops->check_status = check_status_catch_handlers;
14497 ops->print_it = print_it_catch_handlers;
14498 ops->print_one = print_one_catch_handlers;
14499 ops->print_mention = print_mention_catch_handlers;
14500 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14501}
14502
3d9434b5
JB
14503/* This module's 'new_objfile' observer. */
14504
14505static void
14506ada_new_objfile_observer (struct objfile *objfile)
14507{
14508 ada_clear_symbol_cache ();
14509}
14510
14511/* This module's 'free_objfile' observer. */
14512
14513static void
14514ada_free_objfile_observer (struct objfile *objfile)
14515{
14516 ada_clear_symbol_cache ();
14517}
14518
d2e4a39e 14519void
6c038f32 14520_initialize_ada_language (void)
14f9c5c9 14521{
2060206e
PA
14522 initialize_ada_catchpoint_ops ();
14523
5bf03f13
JB
14524 add_prefix_cmd ("ada", no_class, set_ada_command,
14525 _("Prefix command for changing Ada-specfic settings"),
14526 &set_ada_list, "set ada ", 0, &setlist);
14527
14528 add_prefix_cmd ("ada", no_class, show_ada_command,
14529 _("Generic command for showing Ada-specific settings."),
14530 &show_ada_list, "show ada ", 0, &showlist);
14531
14532 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14533 &trust_pad_over_xvs, _("\
14534Enable or disable an optimization trusting PAD types over XVS types"), _("\
14535Show whether an optimization trusting PAD types over XVS types is activated"),
14536 _("\
14537This is related to the encoding used by the GNAT compiler. The debugger\n\
14538should normally trust the contents of PAD types, but certain older versions\n\
14539of GNAT have a bug that sometimes causes the information in the PAD type\n\
14540to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14541work around this bug. It is always safe to turn this option \"off\", but\n\
14542this incurs a slight performance penalty, so it is recommended to NOT change\n\
14543this option to \"off\" unless necessary."),
14544 NULL, NULL, &set_ada_list, &show_ada_list);
14545
d72413e6
PMR
14546 add_setshow_boolean_cmd ("print-signatures", class_vars,
14547 &print_signatures, _("\
14548Enable or disable the output of formal and return types for functions in the \
14549overloads selection menu"), _("\
14550Show whether the output of formal and return types for functions in the \
14551overloads selection menu is activated"),
14552 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14553
9ac4176b
PA
14554 add_catch_command ("exception", _("\
14555Catch Ada exceptions, when raised.\n\
14556With an argument, catch only exceptions with the given name."),
14557 catch_ada_exception_command,
14558 NULL,
14559 CATCH_PERMANENT,
14560 CATCH_TEMPORARY);
9f757bf7
XR
14561
14562 add_catch_command ("handlers", _("\
14563Catch Ada exceptions, when handled.\n\
14564With an argument, catch only exceptions with the given name."),
14565 catch_ada_handlers_command,
14566 NULL,
14567 CATCH_PERMANENT,
14568 CATCH_TEMPORARY);
9ac4176b
PA
14569 add_catch_command ("assert", _("\
14570Catch failed Ada assertions, when raised.\n\
14571With an argument, catch only exceptions with the given name."),
14572 catch_assert_command,
14573 NULL,
14574 CATCH_PERMANENT,
14575 CATCH_TEMPORARY);
14576
6c038f32 14577 varsize_limit = 65536;
3fcded8f
JB
14578 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14579 &varsize_limit, _("\
14580Set the maximum number of bytes allowed in a variable-size object."), _("\
14581Show the maximum number of bytes allowed in a variable-size object."), _("\
14582Attempts to access an object whose size is not a compile-time constant\n\
14583and exceeds this limit will cause an error."),
14584 NULL, NULL, &setlist, &showlist);
6c038f32 14585
778865d3
JB
14586 add_info ("exceptions", info_exceptions_command,
14587 _("\
14588List all Ada exception names.\n\
14589If a regular expression is passed as an argument, only those matching\n\
14590the regular expression are listed."));
14591
c6044dd1
JB
14592 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14593 _("Set Ada maintenance-related variables."),
14594 &maint_set_ada_cmdlist, "maintenance set ada ",
14595 0/*allow-unknown*/, &maintenance_set_cmdlist);
14596
14597 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14598 _("Show Ada maintenance-related variables"),
14599 &maint_show_ada_cmdlist, "maintenance show ada ",
14600 0/*allow-unknown*/, &maintenance_show_cmdlist);
14601
14602 add_setshow_boolean_cmd
14603 ("ignore-descriptive-types", class_maintenance,
14604 &ada_ignore_descriptive_types_p,
14605 _("Set whether descriptive types generated by GNAT should be ignored."),
14606 _("Show whether descriptive types generated by GNAT should be ignored."),
14607 _("\
14608When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14609DWARF attribute."),
14610 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14611
459a2e4c
TT
14612 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14613 NULL, xcalloc, xfree);
6b69afc4 14614
3d9434b5 14615 /* The ada-lang observers. */
76727919
TT
14616 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14617 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14618 gdb::observers::inferior_exit.attach (ada_inferior_exit);
ee01b665
JB
14619
14620 /* Setup various context-specific data. */
e802dbe0 14621 ada_inferior_data
8e260fc0 14622 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14623 ada_pspace_data_handle
14624 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14625}