]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Fix native follow-exec-mode "new"
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
32d0add0 3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
ccefe4c4 63
4c4b4cd2 64/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 65 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
40658b94
PH
104static int full_match (const char *, const char *);
105
40bc484c 106static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 107
4c4b4cd2 108static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 109 const struct block *, const char *,
2570f2b7 110 domain_enum, struct objfile *, int);
14f9c5c9 111
22cee43f
PMR
112static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
d12307c1 115static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 116
76a01679 117static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 118 const struct block *);
14f9c5c9 119
4c4b4cd2
PH
120static int num_defns_collected (struct obstack *);
121
d12307c1 122static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 123
4c4b4cd2 124static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 125 struct type *);
14f9c5c9 126
d2e4a39e 127static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 128 struct symbol *, const struct block *);
14f9c5c9 129
d2e4a39e 130static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 131
4c4b4cd2
PH
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 135
d2e4a39e 136static int numeric_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int integer_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int scalar_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int discrete_type_p (struct type *);
14f9c5c9 143
aeb5907d
JB
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 150 const struct block *);
aeb5907d 151
4c4b4cd2 152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 153 int, int, int *);
4c4b4cd2 154
d2e4a39e 155static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 156
b4ba55a1
JB
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
28c85d6c 168static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 169
d2e4a39e 170static struct type *to_static_fixed_type (struct type *);
f192137b 171static struct type *static_unwrap_type (struct type *type);
14f9c5c9 172
d2e4a39e 173static struct value *unwrap_value (struct value *);
14f9c5c9 174
ad82864c 175static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 176
ad82864c 177static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 178
ad82864c
JB
179static long decode_packed_array_bitsize (struct type *);
180
181static struct value *decode_constrained_packed_array (struct value *);
182
183static int ada_is_packed_array_type (struct type *);
184
185static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 188 struct value **);
14f9c5c9 189
50810684 190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 191
4c4b4cd2
PH
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
14f9c5c9 194
d2e4a39e 195static struct value *get_var_value (char *, char *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
73589123
PH
203static int advance_wild_match (const char **, const char *, int);
204
205static int wild_match (const char *, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
4c4b4cd2
PH
218static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
0d5cff50 224static int find_struct_field (const char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
d12307c1 230static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
231 struct value **, int, const char *,
232 struct type *);
233
4c4b4cd2
PH
234static int ada_is_direct_array_type (struct type *);
235
72d5681a
PH
236static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
714e53ab 238
52ce6436
PH
239static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
243 struct expression *,
244 int *, enum noside);
52ce6436
PH
245
246static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
852dff6c
JB
270
271static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
272\f
273
ee01b665
JB
274/* The result of a symbol lookup to be stored in our symbol cache. */
275
276struct cache_entry
277{
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
fe978cb0 281 domain_enum domain;
ee01b665
JB
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290};
291
292/* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301#define HASH_SIZE 1009
302
303struct ada_symbol_cache
304{
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310};
311
312static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 313
4c4b4cd2 314/* Maximum-sized dynamic type. */
14f9c5c9
AS
315static unsigned int varsize_limit;
316
4c4b4cd2
PH
317/* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319static char *ada_completer_word_break_characters =
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
345/* Space for allocating results of ada_lookup_symbol_list. */
346static struct obstack symbol_list_obstack;
347
c6044dd1
JB
348/* Maintenance-related settings for this module. */
349
350static struct cmd_list_element *maint_set_ada_cmdlist;
351static struct cmd_list_element *maint_show_ada_cmdlist;
352
353/* Implement the "maintenance set ada" (prefix) command. */
354
355static void
356maint_set_ada_cmd (char *args, int from_tty)
357{
635c7e8a
TT
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
c6044dd1
JB
360}
361
362/* Implement the "maintenance show ada" (prefix) command. */
363
364static void
365maint_show_ada_cmd (char *args, int from_tty)
366{
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368}
369
370/* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372static int ada_ignore_descriptive_types_p = 0;
373
e802dbe0
JB
374 /* Inferior-specific data. */
375
376/* Per-inferior data for this module. */
377
378struct ada_inferior_data
379{
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
3eecfa55
JB
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
e802dbe0
JB
390};
391
392/* Our key to this module's inferior data. */
393static const struct inferior_data *ada_inferior_data;
394
395/* A cleanup routine for our inferior data. */
396static void
397ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398{
399 struct ada_inferior_data *data;
400
401 data = inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404}
405
406/* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414static struct ada_inferior_data *
415get_ada_inferior_data (struct inferior *inf)
416{
417 struct ada_inferior_data *data;
418
419 data = inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
41bf6aca 422 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427}
428
429/* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432static void
433ada_inferior_exit (struct inferior *inf)
434{
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437}
438
ee01b665
JB
439
440 /* program-space-specific data. */
441
442/* This module's per-program-space data. */
443struct ada_pspace_data
444{
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447};
448
449/* Key to our per-program-space data. */
450static const struct program_space_data *ada_pspace_data_handle;
451
452/* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457static struct ada_pspace_data *
458get_ada_pspace_data (struct program_space *pspace)
459{
460 struct ada_pspace_data *data;
461
462 data = program_space_data (pspace, ada_pspace_data_handle);
463 if (data == NULL)
464 {
465 data = XCNEW (struct ada_pspace_data);
466 set_program_space_data (pspace, ada_pspace_data_handle, data);
467 }
468
469 return data;
470}
471
472/* The cleanup callback for this module's per-program-space data. */
473
474static void
475ada_pspace_data_cleanup (struct program_space *pspace, void *data)
476{
477 struct ada_pspace_data *pspace_data = data;
478
479 if (pspace_data->sym_cache != NULL)
480 ada_free_symbol_cache (pspace_data->sym_cache);
481 xfree (pspace_data);
482}
483
4c4b4cd2
PH
484 /* Utilities */
485
720d1a40 486/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 487 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
488
489 Normally, we really expect a typedef type to only have 1 typedef layer.
490 In other words, we really expect the target type of a typedef type to be
491 a non-typedef type. This is particularly true for Ada units, because
492 the language does not have a typedef vs not-typedef distinction.
493 In that respect, the Ada compiler has been trying to eliminate as many
494 typedef definitions in the debugging information, since they generally
495 do not bring any extra information (we still use typedef under certain
496 circumstances related mostly to the GNAT encoding).
497
498 Unfortunately, we have seen situations where the debugging information
499 generated by the compiler leads to such multiple typedef layers. For
500 instance, consider the following example with stabs:
501
502 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
503 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
504
505 This is an error in the debugging information which causes type
506 pck__float_array___XUP to be defined twice, and the second time,
507 it is defined as a typedef of a typedef.
508
509 This is on the fringe of legality as far as debugging information is
510 concerned, and certainly unexpected. But it is easy to handle these
511 situations correctly, so we can afford to be lenient in this case. */
512
513static struct type *
514ada_typedef_target_type (struct type *type)
515{
516 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
517 type = TYPE_TARGET_TYPE (type);
518 return type;
519}
520
41d27058
JB
521/* Given DECODED_NAME a string holding a symbol name in its
522 decoded form (ie using the Ada dotted notation), returns
523 its unqualified name. */
524
525static const char *
526ada_unqualified_name (const char *decoded_name)
527{
2b0f535a
JB
528 const char *result;
529
530 /* If the decoded name starts with '<', it means that the encoded
531 name does not follow standard naming conventions, and thus that
532 it is not your typical Ada symbol name. Trying to unqualify it
533 is therefore pointless and possibly erroneous. */
534 if (decoded_name[0] == '<')
535 return decoded_name;
536
537 result = strrchr (decoded_name, '.');
41d27058
JB
538 if (result != NULL)
539 result++; /* Skip the dot... */
540 else
541 result = decoded_name;
542
543 return result;
544}
545
546/* Return a string starting with '<', followed by STR, and '>'.
547 The result is good until the next call. */
548
549static char *
550add_angle_brackets (const char *str)
551{
552 static char *result = NULL;
553
554 xfree (result);
88c15c34 555 result = xstrprintf ("<%s>", str);
41d27058
JB
556 return result;
557}
96d887e8 558
4c4b4cd2
PH
559static char *
560ada_get_gdb_completer_word_break_characters (void)
561{
562 return ada_completer_word_break_characters;
563}
564
e79af960
JB
565/* Print an array element index using the Ada syntax. */
566
567static void
568ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 569 const struct value_print_options *options)
e79af960 570{
79a45b7d 571 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
572 fprintf_filtered (stream, " => ");
573}
574
f27cf670 575/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 576 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 577 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 578
f27cf670
AS
579void *
580grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 581{
d2e4a39e
AS
582 if (*size < min_size)
583 {
584 *size *= 2;
585 if (*size < min_size)
4c4b4cd2 586 *size = min_size;
f27cf670 587 vect = xrealloc (vect, *size * element_size);
d2e4a39e 588 }
f27cf670 589 return vect;
14f9c5c9
AS
590}
591
592/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 593 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
594
595static int
ebf56fd3 596field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
597{
598 int len = strlen (target);
5b4ee69b 599
d2e4a39e 600 return
4c4b4cd2
PH
601 (strncmp (field_name, target, len) == 0
602 && (field_name[len] == '\0'
61012eef 603 || (startswith (field_name + len, "___")
76a01679
JB
604 && strcmp (field_name + strlen (field_name) - 6,
605 "___XVN") != 0)));
14f9c5c9
AS
606}
607
608
872c8b51
JB
609/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
610 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
611 and return its index. This function also handles fields whose name
612 have ___ suffixes because the compiler sometimes alters their name
613 by adding such a suffix to represent fields with certain constraints.
614 If the field could not be found, return a negative number if
615 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
616
617int
618ada_get_field_index (const struct type *type, const char *field_name,
619 int maybe_missing)
620{
621 int fieldno;
872c8b51
JB
622 struct type *struct_type = check_typedef ((struct type *) type);
623
624 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
625 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
626 return fieldno;
627
628 if (!maybe_missing)
323e0a4a 629 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 630 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
631
632 return -1;
633}
634
635/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
636
637int
d2e4a39e 638ada_name_prefix_len (const char *name)
14f9c5c9
AS
639{
640 if (name == NULL)
641 return 0;
d2e4a39e 642 else
14f9c5c9 643 {
d2e4a39e 644 const char *p = strstr (name, "___");
5b4ee69b 645
14f9c5c9 646 if (p == NULL)
4c4b4cd2 647 return strlen (name);
14f9c5c9 648 else
4c4b4cd2 649 return p - name;
14f9c5c9
AS
650 }
651}
652
4c4b4cd2
PH
653/* Return non-zero if SUFFIX is a suffix of STR.
654 Return zero if STR is null. */
655
14f9c5c9 656static int
d2e4a39e 657is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
658{
659 int len1, len2;
5b4ee69b 660
14f9c5c9
AS
661 if (str == NULL)
662 return 0;
663 len1 = strlen (str);
664 len2 = strlen (suffix);
4c4b4cd2 665 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
666}
667
4c4b4cd2
PH
668/* The contents of value VAL, treated as a value of type TYPE. The
669 result is an lval in memory if VAL is. */
14f9c5c9 670
d2e4a39e 671static struct value *
4c4b4cd2 672coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 673{
61ee279c 674 type = ada_check_typedef (type);
df407dfe 675 if (value_type (val) == type)
4c4b4cd2 676 return val;
d2e4a39e 677 else
14f9c5c9 678 {
4c4b4cd2
PH
679 struct value *result;
680
681 /* Make sure that the object size is not unreasonable before
682 trying to allocate some memory for it. */
c1b5a1a6 683 ada_ensure_varsize_limit (type);
4c4b4cd2 684
41e8491f
JK
685 if (value_lazy (val)
686 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
687 result = allocate_value_lazy (type);
688 else
689 {
690 result = allocate_value (type);
9a0dc9e3 691 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 692 }
74bcbdf3 693 set_value_component_location (result, val);
9bbda503
AC
694 set_value_bitsize (result, value_bitsize (val));
695 set_value_bitpos (result, value_bitpos (val));
42ae5230 696 set_value_address (result, value_address (val));
14f9c5c9
AS
697 return result;
698 }
699}
700
fc1a4b47
AC
701static const gdb_byte *
702cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
703{
704 if (valaddr == NULL)
705 return NULL;
706 else
707 return valaddr + offset;
708}
709
710static CORE_ADDR
ebf56fd3 711cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
712{
713 if (address == 0)
714 return 0;
d2e4a39e 715 else
14f9c5c9
AS
716 return address + offset;
717}
718
4c4b4cd2
PH
719/* Issue a warning (as for the definition of warning in utils.c, but
720 with exactly one argument rather than ...), unless the limit on the
721 number of warnings has passed during the evaluation of the current
722 expression. */
a2249542 723
77109804
AC
724/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
725 provided by "complaint". */
a0b31db1 726static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 727
14f9c5c9 728static void
a2249542 729lim_warning (const char *format, ...)
14f9c5c9 730{
a2249542 731 va_list args;
a2249542 732
5b4ee69b 733 va_start (args, format);
4c4b4cd2
PH
734 warnings_issued += 1;
735 if (warnings_issued <= warning_limit)
a2249542
MK
736 vwarning (format, args);
737
738 va_end (args);
4c4b4cd2
PH
739}
740
714e53ab
PH
741/* Issue an error if the size of an object of type T is unreasonable,
742 i.e. if it would be a bad idea to allocate a value of this type in
743 GDB. */
744
c1b5a1a6
JB
745void
746ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
747{
748 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 749 error (_("object size is larger than varsize-limit"));
714e53ab
PH
750}
751
0963b4bd 752/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 753static LONGEST
c3e5cd34 754max_of_size (int size)
4c4b4cd2 755{
76a01679 756 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 757
76a01679 758 return top_bit | (top_bit - 1);
4c4b4cd2
PH
759}
760
0963b4bd 761/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 762static LONGEST
c3e5cd34 763min_of_size (int size)
4c4b4cd2 764{
c3e5cd34 765 return -max_of_size (size) - 1;
4c4b4cd2
PH
766}
767
0963b4bd 768/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 769static ULONGEST
c3e5cd34 770umax_of_size (int size)
4c4b4cd2 771{
76a01679 772 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 773
76a01679 774 return top_bit | (top_bit - 1);
4c4b4cd2
PH
775}
776
0963b4bd 777/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
778static LONGEST
779max_of_type (struct type *t)
4c4b4cd2 780{
c3e5cd34
PH
781 if (TYPE_UNSIGNED (t))
782 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
783 else
784 return max_of_size (TYPE_LENGTH (t));
785}
786
0963b4bd 787/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
788static LONGEST
789min_of_type (struct type *t)
790{
791 if (TYPE_UNSIGNED (t))
792 return 0;
793 else
794 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
795}
796
797/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
798LONGEST
799ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 800{
c3345124 801 type = resolve_dynamic_type (type, NULL, 0);
76a01679 802 switch (TYPE_CODE (type))
4c4b4cd2
PH
803 {
804 case TYPE_CODE_RANGE:
690cc4eb 805 return TYPE_HIGH_BOUND (type);
4c4b4cd2 806 case TYPE_CODE_ENUM:
14e75d8e 807 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
808 case TYPE_CODE_BOOL:
809 return 1;
810 case TYPE_CODE_CHAR:
76a01679 811 case TYPE_CODE_INT:
690cc4eb 812 return max_of_type (type);
4c4b4cd2 813 default:
43bbcdc2 814 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
815 }
816}
817
14e75d8e 818/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
819LONGEST
820ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 821{
c3345124 822 type = resolve_dynamic_type (type, NULL, 0);
76a01679 823 switch (TYPE_CODE (type))
4c4b4cd2
PH
824 {
825 case TYPE_CODE_RANGE:
690cc4eb 826 return TYPE_LOW_BOUND (type);
4c4b4cd2 827 case TYPE_CODE_ENUM:
14e75d8e 828 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
829 case TYPE_CODE_BOOL:
830 return 0;
831 case TYPE_CODE_CHAR:
76a01679 832 case TYPE_CODE_INT:
690cc4eb 833 return min_of_type (type);
4c4b4cd2 834 default:
43bbcdc2 835 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
836 }
837}
838
839/* The identity on non-range types. For range types, the underlying
76a01679 840 non-range scalar type. */
4c4b4cd2
PH
841
842static struct type *
18af8284 843get_base_type (struct type *type)
4c4b4cd2
PH
844{
845 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
846 {
76a01679
JB
847 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
848 return type;
4c4b4cd2
PH
849 type = TYPE_TARGET_TYPE (type);
850 }
851 return type;
14f9c5c9 852}
41246937
JB
853
854/* Return a decoded version of the given VALUE. This means returning
855 a value whose type is obtained by applying all the GNAT-specific
856 encondings, making the resulting type a static but standard description
857 of the initial type. */
858
859struct value *
860ada_get_decoded_value (struct value *value)
861{
862 struct type *type = ada_check_typedef (value_type (value));
863
864 if (ada_is_array_descriptor_type (type)
865 || (ada_is_constrained_packed_array_type (type)
866 && TYPE_CODE (type) != TYPE_CODE_PTR))
867 {
868 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
869 value = ada_coerce_to_simple_array_ptr (value);
870 else
871 value = ada_coerce_to_simple_array (value);
872 }
873 else
874 value = ada_to_fixed_value (value);
875
876 return value;
877}
878
879/* Same as ada_get_decoded_value, but with the given TYPE.
880 Because there is no associated actual value for this type,
881 the resulting type might be a best-effort approximation in
882 the case of dynamic types. */
883
884struct type *
885ada_get_decoded_type (struct type *type)
886{
887 type = to_static_fixed_type (type);
888 if (ada_is_constrained_packed_array_type (type))
889 type = ada_coerce_to_simple_array_type (type);
890 return type;
891}
892
4c4b4cd2 893\f
76a01679 894
4c4b4cd2 895 /* Language Selection */
14f9c5c9
AS
896
897/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 898 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 899
14f9c5c9 900enum language
ccefe4c4 901ada_update_initial_language (enum language lang)
14f9c5c9 902{
d2e4a39e 903 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 904 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 905 return language_ada;
14f9c5c9
AS
906
907 return lang;
908}
96d887e8
PH
909
910/* If the main procedure is written in Ada, then return its name.
911 The result is good until the next call. Return NULL if the main
912 procedure doesn't appear to be in Ada. */
913
914char *
915ada_main_name (void)
916{
3b7344d5 917 struct bound_minimal_symbol msym;
f9bc20b9 918 static char *main_program_name = NULL;
6c038f32 919
96d887e8
PH
920 /* For Ada, the name of the main procedure is stored in a specific
921 string constant, generated by the binder. Look for that symbol,
922 extract its address, and then read that string. If we didn't find
923 that string, then most probably the main procedure is not written
924 in Ada. */
925 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
926
3b7344d5 927 if (msym.minsym != NULL)
96d887e8 928 {
f9bc20b9
JB
929 CORE_ADDR main_program_name_addr;
930 int err_code;
931
77e371c0 932 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 933 if (main_program_name_addr == 0)
323e0a4a 934 error (_("Invalid address for Ada main program name."));
96d887e8 935
f9bc20b9
JB
936 xfree (main_program_name);
937 target_read_string (main_program_name_addr, &main_program_name,
938 1024, &err_code);
939
940 if (err_code != 0)
941 return NULL;
96d887e8
PH
942 return main_program_name;
943 }
944
945 /* The main procedure doesn't seem to be in Ada. */
946 return NULL;
947}
14f9c5c9 948\f
4c4b4cd2 949 /* Symbols */
d2e4a39e 950
4c4b4cd2
PH
951/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
952 of NULLs. */
14f9c5c9 953
d2e4a39e
AS
954const struct ada_opname_map ada_opname_table[] = {
955 {"Oadd", "\"+\"", BINOP_ADD},
956 {"Osubtract", "\"-\"", BINOP_SUB},
957 {"Omultiply", "\"*\"", BINOP_MUL},
958 {"Odivide", "\"/\"", BINOP_DIV},
959 {"Omod", "\"mod\"", BINOP_MOD},
960 {"Orem", "\"rem\"", BINOP_REM},
961 {"Oexpon", "\"**\"", BINOP_EXP},
962 {"Olt", "\"<\"", BINOP_LESS},
963 {"Ole", "\"<=\"", BINOP_LEQ},
964 {"Ogt", "\">\"", BINOP_GTR},
965 {"Oge", "\">=\"", BINOP_GEQ},
966 {"Oeq", "\"=\"", BINOP_EQUAL},
967 {"One", "\"/=\"", BINOP_NOTEQUAL},
968 {"Oand", "\"and\"", BINOP_BITWISE_AND},
969 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
970 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
971 {"Oconcat", "\"&\"", BINOP_CONCAT},
972 {"Oabs", "\"abs\"", UNOP_ABS},
973 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
974 {"Oadd", "\"+\"", UNOP_PLUS},
975 {"Osubtract", "\"-\"", UNOP_NEG},
976 {NULL, NULL}
14f9c5c9
AS
977};
978
4c4b4cd2
PH
979/* The "encoded" form of DECODED, according to GNAT conventions.
980 The result is valid until the next call to ada_encode. */
981
14f9c5c9 982char *
4c4b4cd2 983ada_encode (const char *decoded)
14f9c5c9 984{
4c4b4cd2
PH
985 static char *encoding_buffer = NULL;
986 static size_t encoding_buffer_size = 0;
d2e4a39e 987 const char *p;
14f9c5c9 988 int k;
d2e4a39e 989
4c4b4cd2 990 if (decoded == NULL)
14f9c5c9
AS
991 return NULL;
992
4c4b4cd2
PH
993 GROW_VECT (encoding_buffer, encoding_buffer_size,
994 2 * strlen (decoded) + 10);
14f9c5c9
AS
995
996 k = 0;
4c4b4cd2 997 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 998 {
cdc7bb92 999 if (*p == '.')
4c4b4cd2
PH
1000 {
1001 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1002 k += 2;
1003 }
14f9c5c9 1004 else if (*p == '"')
4c4b4cd2
PH
1005 {
1006 const struct ada_opname_map *mapping;
1007
1008 for (mapping = ada_opname_table;
1265e4aa 1009 mapping->encoded != NULL
61012eef 1010 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1011 ;
1012 if (mapping->encoded == NULL)
323e0a4a 1013 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1014 strcpy (encoding_buffer + k, mapping->encoded);
1015 k += strlen (mapping->encoded);
1016 break;
1017 }
d2e4a39e 1018 else
4c4b4cd2
PH
1019 {
1020 encoding_buffer[k] = *p;
1021 k += 1;
1022 }
14f9c5c9
AS
1023 }
1024
4c4b4cd2
PH
1025 encoding_buffer[k] = '\0';
1026 return encoding_buffer;
14f9c5c9
AS
1027}
1028
1029/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1030 quotes, unfolded, but with the quotes stripped away. Result good
1031 to next call. */
1032
d2e4a39e
AS
1033char *
1034ada_fold_name (const char *name)
14f9c5c9 1035{
d2e4a39e 1036 static char *fold_buffer = NULL;
14f9c5c9
AS
1037 static size_t fold_buffer_size = 0;
1038
1039 int len = strlen (name);
d2e4a39e 1040 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1041
1042 if (name[0] == '\'')
1043 {
d2e4a39e
AS
1044 strncpy (fold_buffer, name + 1, len - 2);
1045 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1046 }
1047 else
1048 {
1049 int i;
5b4ee69b 1050
14f9c5c9 1051 for (i = 0; i <= len; i += 1)
4c4b4cd2 1052 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1053 }
1054
1055 return fold_buffer;
1056}
1057
529cad9c
PH
1058/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1059
1060static int
1061is_lower_alphanum (const char c)
1062{
1063 return (isdigit (c) || (isalpha (c) && islower (c)));
1064}
1065
c90092fe
JB
1066/* ENCODED is the linkage name of a symbol and LEN contains its length.
1067 This function saves in LEN the length of that same symbol name but
1068 without either of these suffixes:
29480c32
JB
1069 . .{DIGIT}+
1070 . ${DIGIT}+
1071 . ___{DIGIT}+
1072 . __{DIGIT}+.
c90092fe 1073
29480c32
JB
1074 These are suffixes introduced by the compiler for entities such as
1075 nested subprogram for instance, in order to avoid name clashes.
1076 They do not serve any purpose for the debugger. */
1077
1078static void
1079ada_remove_trailing_digits (const char *encoded, int *len)
1080{
1081 if (*len > 1 && isdigit (encoded[*len - 1]))
1082 {
1083 int i = *len - 2;
5b4ee69b 1084
29480c32
JB
1085 while (i > 0 && isdigit (encoded[i]))
1086 i--;
1087 if (i >= 0 && encoded[i] == '.')
1088 *len = i;
1089 else if (i >= 0 && encoded[i] == '$')
1090 *len = i;
61012eef 1091 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1092 *len = i - 2;
61012eef 1093 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1094 *len = i - 1;
1095 }
1096}
1097
1098/* Remove the suffix introduced by the compiler for protected object
1099 subprograms. */
1100
1101static void
1102ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1103{
1104 /* Remove trailing N. */
1105
1106 /* Protected entry subprograms are broken into two
1107 separate subprograms: The first one is unprotected, and has
1108 a 'N' suffix; the second is the protected version, and has
0963b4bd 1109 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1110 the protection. Since the P subprograms are internally generated,
1111 we leave these names undecoded, giving the user a clue that this
1112 entity is internal. */
1113
1114 if (*len > 1
1115 && encoded[*len - 1] == 'N'
1116 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1117 *len = *len - 1;
1118}
1119
69fadcdf
JB
1120/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1121
1122static void
1123ada_remove_Xbn_suffix (const char *encoded, int *len)
1124{
1125 int i = *len - 1;
1126
1127 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1128 i--;
1129
1130 if (encoded[i] != 'X')
1131 return;
1132
1133 if (i == 0)
1134 return;
1135
1136 if (isalnum (encoded[i-1]))
1137 *len = i;
1138}
1139
29480c32
JB
1140/* If ENCODED follows the GNAT entity encoding conventions, then return
1141 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1142 replaced by ENCODED.
14f9c5c9 1143
4c4b4cd2 1144 The resulting string is valid until the next call of ada_decode.
29480c32 1145 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1146 is returned. */
1147
1148const char *
1149ada_decode (const char *encoded)
14f9c5c9
AS
1150{
1151 int i, j;
1152 int len0;
d2e4a39e 1153 const char *p;
4c4b4cd2 1154 char *decoded;
14f9c5c9 1155 int at_start_name;
4c4b4cd2
PH
1156 static char *decoding_buffer = NULL;
1157 static size_t decoding_buffer_size = 0;
d2e4a39e 1158
29480c32
JB
1159 /* The name of the Ada main procedure starts with "_ada_".
1160 This prefix is not part of the decoded name, so skip this part
1161 if we see this prefix. */
61012eef 1162 if (startswith (encoded, "_ada_"))
4c4b4cd2 1163 encoded += 5;
14f9c5c9 1164
29480c32
JB
1165 /* If the name starts with '_', then it is not a properly encoded
1166 name, so do not attempt to decode it. Similarly, if the name
1167 starts with '<', the name should not be decoded. */
4c4b4cd2 1168 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1169 goto Suppress;
1170
4c4b4cd2 1171 len0 = strlen (encoded);
4c4b4cd2 1172
29480c32
JB
1173 ada_remove_trailing_digits (encoded, &len0);
1174 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1175
4c4b4cd2
PH
1176 /* Remove the ___X.* suffix if present. Do not forget to verify that
1177 the suffix is located before the current "end" of ENCODED. We want
1178 to avoid re-matching parts of ENCODED that have previously been
1179 marked as discarded (by decrementing LEN0). */
1180 p = strstr (encoded, "___");
1181 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1182 {
1183 if (p[3] == 'X')
4c4b4cd2 1184 len0 = p - encoded;
14f9c5c9 1185 else
4c4b4cd2 1186 goto Suppress;
14f9c5c9 1187 }
4c4b4cd2 1188
29480c32
JB
1189 /* Remove any trailing TKB suffix. It tells us that this symbol
1190 is for the body of a task, but that information does not actually
1191 appear in the decoded name. */
1192
61012eef 1193 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1194 len0 -= 3;
76a01679 1195
a10967fa
JB
1196 /* Remove any trailing TB suffix. The TB suffix is slightly different
1197 from the TKB suffix because it is used for non-anonymous task
1198 bodies. */
1199
61012eef 1200 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1201 len0 -= 2;
1202
29480c32
JB
1203 /* Remove trailing "B" suffixes. */
1204 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1205
61012eef 1206 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1207 len0 -= 1;
1208
4c4b4cd2 1209 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1210
4c4b4cd2
PH
1211 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1212 decoded = decoding_buffer;
14f9c5c9 1213
29480c32
JB
1214 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1215
4c4b4cd2 1216 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1217 {
4c4b4cd2
PH
1218 i = len0 - 2;
1219 while ((i >= 0 && isdigit (encoded[i]))
1220 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1221 i -= 1;
1222 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1223 len0 = i - 1;
1224 else if (encoded[i] == '$')
1225 len0 = i;
d2e4a39e 1226 }
14f9c5c9 1227
29480c32
JB
1228 /* The first few characters that are not alphabetic are not part
1229 of any encoding we use, so we can copy them over verbatim. */
1230
4c4b4cd2
PH
1231 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1232 decoded[j] = encoded[i];
14f9c5c9
AS
1233
1234 at_start_name = 1;
1235 while (i < len0)
1236 {
29480c32 1237 /* Is this a symbol function? */
4c4b4cd2
PH
1238 if (at_start_name && encoded[i] == 'O')
1239 {
1240 int k;
5b4ee69b 1241
4c4b4cd2
PH
1242 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1243 {
1244 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1245 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1246 op_len - 1) == 0)
1247 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1248 {
1249 strcpy (decoded + j, ada_opname_table[k].decoded);
1250 at_start_name = 0;
1251 i += op_len;
1252 j += strlen (ada_opname_table[k].decoded);
1253 break;
1254 }
1255 }
1256 if (ada_opname_table[k].encoded != NULL)
1257 continue;
1258 }
14f9c5c9
AS
1259 at_start_name = 0;
1260
529cad9c
PH
1261 /* Replace "TK__" with "__", which will eventually be translated
1262 into "." (just below). */
1263
61012eef 1264 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1265 i += 2;
529cad9c 1266
29480c32
JB
1267 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1268 be translated into "." (just below). These are internal names
1269 generated for anonymous blocks inside which our symbol is nested. */
1270
1271 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1272 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1273 && isdigit (encoded [i+4]))
1274 {
1275 int k = i + 5;
1276
1277 while (k < len0 && isdigit (encoded[k]))
1278 k++; /* Skip any extra digit. */
1279
1280 /* Double-check that the "__B_{DIGITS}+" sequence we found
1281 is indeed followed by "__". */
1282 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1283 i = k;
1284 }
1285
529cad9c
PH
1286 /* Remove _E{DIGITS}+[sb] */
1287
1288 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1289 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1290 one implements the actual entry code, and has a suffix following
1291 the convention above; the second one implements the barrier and
1292 uses the same convention as above, except that the 'E' is replaced
1293 by a 'B'.
1294
1295 Just as above, we do not decode the name of barrier functions
1296 to give the user a clue that the code he is debugging has been
1297 internally generated. */
1298
1299 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1300 && isdigit (encoded[i+2]))
1301 {
1302 int k = i + 3;
1303
1304 while (k < len0 && isdigit (encoded[k]))
1305 k++;
1306
1307 if (k < len0
1308 && (encoded[k] == 'b' || encoded[k] == 's'))
1309 {
1310 k++;
1311 /* Just as an extra precaution, make sure that if this
1312 suffix is followed by anything else, it is a '_'.
1313 Otherwise, we matched this sequence by accident. */
1314 if (k == len0
1315 || (k < len0 && encoded[k] == '_'))
1316 i = k;
1317 }
1318 }
1319
1320 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1321 the GNAT front-end in protected object subprograms. */
1322
1323 if (i < len0 + 3
1324 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1325 {
1326 /* Backtrack a bit up until we reach either the begining of
1327 the encoded name, or "__". Make sure that we only find
1328 digits or lowercase characters. */
1329 const char *ptr = encoded + i - 1;
1330
1331 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1332 ptr--;
1333 if (ptr < encoded
1334 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1335 i++;
1336 }
1337
4c4b4cd2
PH
1338 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1339 {
29480c32
JB
1340 /* This is a X[bn]* sequence not separated from the previous
1341 part of the name with a non-alpha-numeric character (in other
1342 words, immediately following an alpha-numeric character), then
1343 verify that it is placed at the end of the encoded name. If
1344 not, then the encoding is not valid and we should abort the
1345 decoding. Otherwise, just skip it, it is used in body-nested
1346 package names. */
4c4b4cd2
PH
1347 do
1348 i += 1;
1349 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1350 if (i < len0)
1351 goto Suppress;
1352 }
cdc7bb92 1353 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1354 {
29480c32 1355 /* Replace '__' by '.'. */
4c4b4cd2
PH
1356 decoded[j] = '.';
1357 at_start_name = 1;
1358 i += 2;
1359 j += 1;
1360 }
14f9c5c9 1361 else
4c4b4cd2 1362 {
29480c32
JB
1363 /* It's a character part of the decoded name, so just copy it
1364 over. */
4c4b4cd2
PH
1365 decoded[j] = encoded[i];
1366 i += 1;
1367 j += 1;
1368 }
14f9c5c9 1369 }
4c4b4cd2 1370 decoded[j] = '\000';
14f9c5c9 1371
29480c32
JB
1372 /* Decoded names should never contain any uppercase character.
1373 Double-check this, and abort the decoding if we find one. */
1374
4c4b4cd2
PH
1375 for (i = 0; decoded[i] != '\0'; i += 1)
1376 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1377 goto Suppress;
1378
4c4b4cd2
PH
1379 if (strcmp (decoded, encoded) == 0)
1380 return encoded;
1381 else
1382 return decoded;
14f9c5c9
AS
1383
1384Suppress:
4c4b4cd2
PH
1385 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1386 decoded = decoding_buffer;
1387 if (encoded[0] == '<')
1388 strcpy (decoded, encoded);
14f9c5c9 1389 else
88c15c34 1390 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1391 return decoded;
1392
1393}
1394
1395/* Table for keeping permanent unique copies of decoded names. Once
1396 allocated, names in this table are never released. While this is a
1397 storage leak, it should not be significant unless there are massive
1398 changes in the set of decoded names in successive versions of a
1399 symbol table loaded during a single session. */
1400static struct htab *decoded_names_store;
1401
1402/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1403 in the language-specific part of GSYMBOL, if it has not been
1404 previously computed. Tries to save the decoded name in the same
1405 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1406 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1407 GSYMBOL).
4c4b4cd2
PH
1408 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1409 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1410 when a decoded name is cached in it. */
4c4b4cd2 1411
45e6c716 1412const char *
f85f34ed 1413ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1414{
f85f34ed
TT
1415 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1416 const char **resultp =
1417 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1418
f85f34ed 1419 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1420 {
1421 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1422 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1423
f85f34ed 1424 gsymbol->ada_mangled = 1;
5b4ee69b 1425
f85f34ed
TT
1426 if (obstack != NULL)
1427 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1428 else
76a01679 1429 {
f85f34ed
TT
1430 /* Sometimes, we can't find a corresponding objfile, in
1431 which case, we put the result on the heap. Since we only
1432 decode when needed, we hope this usually does not cause a
1433 significant memory leak (FIXME). */
1434
76a01679
JB
1435 char **slot = (char **) htab_find_slot (decoded_names_store,
1436 decoded, INSERT);
5b4ee69b 1437
76a01679
JB
1438 if (*slot == NULL)
1439 *slot = xstrdup (decoded);
1440 *resultp = *slot;
1441 }
4c4b4cd2 1442 }
14f9c5c9 1443
4c4b4cd2
PH
1444 return *resultp;
1445}
76a01679 1446
2c0b251b 1447static char *
76a01679 1448ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1449{
1450 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1451}
1452
1453/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1454 suffixes that encode debugging information or leading _ada_ on
1455 SYM_NAME (see is_name_suffix commentary for the debugging
1456 information that is ignored). If WILD, then NAME need only match a
1457 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1458 either argument is NULL. */
14f9c5c9 1459
2c0b251b 1460static int
40658b94 1461match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1462{
1463 if (sym_name == NULL || name == NULL)
1464 return 0;
1465 else if (wild)
73589123 1466 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1467 else
1468 {
1469 int len_name = strlen (name);
5b4ee69b 1470
4c4b4cd2
PH
1471 return (strncmp (sym_name, name, len_name) == 0
1472 && is_name_suffix (sym_name + len_name))
61012eef 1473 || (startswith (sym_name, "_ada_")
4c4b4cd2
PH
1474 && strncmp (sym_name + 5, name, len_name) == 0
1475 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1476 }
14f9c5c9 1477}
14f9c5c9 1478\f
d2e4a39e 1479
4c4b4cd2 1480 /* Arrays */
14f9c5c9 1481
28c85d6c
JB
1482/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1483 generated by the GNAT compiler to describe the index type used
1484 for each dimension of an array, check whether it follows the latest
1485 known encoding. If not, fix it up to conform to the latest encoding.
1486 Otherwise, do nothing. This function also does nothing if
1487 INDEX_DESC_TYPE is NULL.
1488
1489 The GNAT encoding used to describle the array index type evolved a bit.
1490 Initially, the information would be provided through the name of each
1491 field of the structure type only, while the type of these fields was
1492 described as unspecified and irrelevant. The debugger was then expected
1493 to perform a global type lookup using the name of that field in order
1494 to get access to the full index type description. Because these global
1495 lookups can be very expensive, the encoding was later enhanced to make
1496 the global lookup unnecessary by defining the field type as being
1497 the full index type description.
1498
1499 The purpose of this routine is to allow us to support older versions
1500 of the compiler by detecting the use of the older encoding, and by
1501 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1502 we essentially replace each field's meaningless type by the associated
1503 index subtype). */
1504
1505void
1506ada_fixup_array_indexes_type (struct type *index_desc_type)
1507{
1508 int i;
1509
1510 if (index_desc_type == NULL)
1511 return;
1512 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1513
1514 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1515 to check one field only, no need to check them all). If not, return
1516 now.
1517
1518 If our INDEX_DESC_TYPE was generated using the older encoding,
1519 the field type should be a meaningless integer type whose name
1520 is not equal to the field name. */
1521 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1522 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1523 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1524 return;
1525
1526 /* Fixup each field of INDEX_DESC_TYPE. */
1527 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1528 {
0d5cff50 1529 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1530 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1531
1532 if (raw_type)
1533 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1534 }
1535}
1536
4c4b4cd2 1537/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1538
d2e4a39e
AS
1539static char *bound_name[] = {
1540 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1541 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1542};
1543
1544/* Maximum number of array dimensions we are prepared to handle. */
1545
4c4b4cd2 1546#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1547
14f9c5c9 1548
4c4b4cd2
PH
1549/* The desc_* routines return primitive portions of array descriptors
1550 (fat pointers). */
14f9c5c9
AS
1551
1552/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1553 level of indirection, if needed. */
1554
d2e4a39e
AS
1555static struct type *
1556desc_base_type (struct type *type)
14f9c5c9
AS
1557{
1558 if (type == NULL)
1559 return NULL;
61ee279c 1560 type = ada_check_typedef (type);
720d1a40
JB
1561 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1562 type = ada_typedef_target_type (type);
1563
1265e4aa
JB
1564 if (type != NULL
1565 && (TYPE_CODE (type) == TYPE_CODE_PTR
1566 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1567 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1568 else
1569 return type;
1570}
1571
4c4b4cd2
PH
1572/* True iff TYPE indicates a "thin" array pointer type. */
1573
14f9c5c9 1574static int
d2e4a39e 1575is_thin_pntr (struct type *type)
14f9c5c9 1576{
d2e4a39e 1577 return
14f9c5c9
AS
1578 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1579 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1580}
1581
4c4b4cd2
PH
1582/* The descriptor type for thin pointer type TYPE. */
1583
d2e4a39e
AS
1584static struct type *
1585thin_descriptor_type (struct type *type)
14f9c5c9 1586{
d2e4a39e 1587 struct type *base_type = desc_base_type (type);
5b4ee69b 1588
14f9c5c9
AS
1589 if (base_type == NULL)
1590 return NULL;
1591 if (is_suffix (ada_type_name (base_type), "___XVE"))
1592 return base_type;
d2e4a39e 1593 else
14f9c5c9 1594 {
d2e4a39e 1595 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1596
14f9c5c9 1597 if (alt_type == NULL)
4c4b4cd2 1598 return base_type;
14f9c5c9 1599 else
4c4b4cd2 1600 return alt_type;
14f9c5c9
AS
1601 }
1602}
1603
4c4b4cd2
PH
1604/* A pointer to the array data for thin-pointer value VAL. */
1605
d2e4a39e
AS
1606static struct value *
1607thin_data_pntr (struct value *val)
14f9c5c9 1608{
828292f2 1609 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1610 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1611
556bdfd4
UW
1612 data_type = lookup_pointer_type (data_type);
1613
14f9c5c9 1614 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1615 return value_cast (data_type, value_copy (val));
d2e4a39e 1616 else
42ae5230 1617 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1618}
1619
4c4b4cd2
PH
1620/* True iff TYPE indicates a "thick" array pointer type. */
1621
14f9c5c9 1622static int
d2e4a39e 1623is_thick_pntr (struct type *type)
14f9c5c9
AS
1624{
1625 type = desc_base_type (type);
1626 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1627 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1628}
1629
4c4b4cd2
PH
1630/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1631 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1632
d2e4a39e
AS
1633static struct type *
1634desc_bounds_type (struct type *type)
14f9c5c9 1635{
d2e4a39e 1636 struct type *r;
14f9c5c9
AS
1637
1638 type = desc_base_type (type);
1639
1640 if (type == NULL)
1641 return NULL;
1642 else if (is_thin_pntr (type))
1643 {
1644 type = thin_descriptor_type (type);
1645 if (type == NULL)
4c4b4cd2 1646 return NULL;
14f9c5c9
AS
1647 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1648 if (r != NULL)
61ee279c 1649 return ada_check_typedef (r);
14f9c5c9
AS
1650 }
1651 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1652 {
1653 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1654 if (r != NULL)
61ee279c 1655 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1656 }
1657 return NULL;
1658}
1659
1660/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1661 one, a pointer to its bounds data. Otherwise NULL. */
1662
d2e4a39e
AS
1663static struct value *
1664desc_bounds (struct value *arr)
14f9c5c9 1665{
df407dfe 1666 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1667
d2e4a39e 1668 if (is_thin_pntr (type))
14f9c5c9 1669 {
d2e4a39e 1670 struct type *bounds_type =
4c4b4cd2 1671 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1672 LONGEST addr;
1673
4cdfadb1 1674 if (bounds_type == NULL)
323e0a4a 1675 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1676
1677 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1678 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1679 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1680 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1681 addr = value_as_long (arr);
d2e4a39e 1682 else
42ae5230 1683 addr = value_address (arr);
14f9c5c9 1684
d2e4a39e 1685 return
4c4b4cd2
PH
1686 value_from_longest (lookup_pointer_type (bounds_type),
1687 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1688 }
1689
1690 else if (is_thick_pntr (type))
05e522ef
JB
1691 {
1692 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1693 _("Bad GNAT array descriptor"));
1694 struct type *p_bounds_type = value_type (p_bounds);
1695
1696 if (p_bounds_type
1697 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1698 {
1699 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1700
1701 if (TYPE_STUB (target_type))
1702 p_bounds = value_cast (lookup_pointer_type
1703 (ada_check_typedef (target_type)),
1704 p_bounds);
1705 }
1706 else
1707 error (_("Bad GNAT array descriptor"));
1708
1709 return p_bounds;
1710 }
14f9c5c9
AS
1711 else
1712 return NULL;
1713}
1714
4c4b4cd2
PH
1715/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1716 position of the field containing the address of the bounds data. */
1717
14f9c5c9 1718static int
d2e4a39e 1719fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1720{
1721 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1722}
1723
1724/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1725 size of the field containing the address of the bounds data. */
1726
14f9c5c9 1727static int
d2e4a39e 1728fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1729{
1730 type = desc_base_type (type);
1731
d2e4a39e 1732 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1733 return TYPE_FIELD_BITSIZE (type, 1);
1734 else
61ee279c 1735 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1736}
1737
4c4b4cd2 1738/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1739 pointer to one, the type of its array data (a array-with-no-bounds type);
1740 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1741 data. */
4c4b4cd2 1742
d2e4a39e 1743static struct type *
556bdfd4 1744desc_data_target_type (struct type *type)
14f9c5c9
AS
1745{
1746 type = desc_base_type (type);
1747
4c4b4cd2 1748 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1749 if (is_thin_pntr (type))
556bdfd4 1750 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1751 else if (is_thick_pntr (type))
556bdfd4
UW
1752 {
1753 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1754
1755 if (data_type
1756 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1757 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1758 }
1759
1760 return NULL;
14f9c5c9
AS
1761}
1762
1763/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1764 its array data. */
4c4b4cd2 1765
d2e4a39e
AS
1766static struct value *
1767desc_data (struct value *arr)
14f9c5c9 1768{
df407dfe 1769 struct type *type = value_type (arr);
5b4ee69b 1770
14f9c5c9
AS
1771 if (is_thin_pntr (type))
1772 return thin_data_pntr (arr);
1773 else if (is_thick_pntr (type))
d2e4a39e 1774 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1775 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1776 else
1777 return NULL;
1778}
1779
1780
1781/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1782 position of the field containing the address of the data. */
1783
14f9c5c9 1784static int
d2e4a39e 1785fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1786{
1787 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1788}
1789
1790/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1791 size of the field containing the address of the data. */
1792
14f9c5c9 1793static int
d2e4a39e 1794fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1795{
1796 type = desc_base_type (type);
1797
1798 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1799 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1800 else
14f9c5c9
AS
1801 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1802}
1803
4c4b4cd2 1804/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1805 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1806 bound, if WHICH is 1. The first bound is I=1. */
1807
d2e4a39e
AS
1808static struct value *
1809desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1810{
d2e4a39e 1811 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1812 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1813}
1814
1815/* If BOUNDS is an array-bounds structure type, return the bit position
1816 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1817 bound, if WHICH is 1. The first bound is I=1. */
1818
14f9c5c9 1819static int
d2e4a39e 1820desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1821{
d2e4a39e 1822 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1823}
1824
1825/* If BOUNDS is an array-bounds structure type, return the bit field size
1826 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1827 bound, if WHICH is 1. The first bound is I=1. */
1828
76a01679 1829static int
d2e4a39e 1830desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1831{
1832 type = desc_base_type (type);
1833
d2e4a39e
AS
1834 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1835 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1836 else
1837 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1838}
1839
1840/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1841 Ith bound (numbering from 1). Otherwise, NULL. */
1842
d2e4a39e
AS
1843static struct type *
1844desc_index_type (struct type *type, int i)
14f9c5c9
AS
1845{
1846 type = desc_base_type (type);
1847
1848 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1849 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1850 else
14f9c5c9
AS
1851 return NULL;
1852}
1853
4c4b4cd2
PH
1854/* The number of index positions in the array-bounds type TYPE.
1855 Return 0 if TYPE is NULL. */
1856
14f9c5c9 1857static int
d2e4a39e 1858desc_arity (struct type *type)
14f9c5c9
AS
1859{
1860 type = desc_base_type (type);
1861
1862 if (type != NULL)
1863 return TYPE_NFIELDS (type) / 2;
1864 return 0;
1865}
1866
4c4b4cd2
PH
1867/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1868 an array descriptor type (representing an unconstrained array
1869 type). */
1870
76a01679
JB
1871static int
1872ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1873{
1874 if (type == NULL)
1875 return 0;
61ee279c 1876 type = ada_check_typedef (type);
4c4b4cd2 1877 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1878 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1879}
1880
52ce6436 1881/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1882 * to one. */
52ce6436 1883
2c0b251b 1884static int
52ce6436
PH
1885ada_is_array_type (struct type *type)
1886{
1887 while (type != NULL
1888 && (TYPE_CODE (type) == TYPE_CODE_PTR
1889 || TYPE_CODE (type) == TYPE_CODE_REF))
1890 type = TYPE_TARGET_TYPE (type);
1891 return ada_is_direct_array_type (type);
1892}
1893
4c4b4cd2 1894/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1895
14f9c5c9 1896int
4c4b4cd2 1897ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1898{
1899 if (type == NULL)
1900 return 0;
61ee279c 1901 type = ada_check_typedef (type);
14f9c5c9 1902 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1903 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1904 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1905 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1906}
1907
4c4b4cd2
PH
1908/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1909
14f9c5c9 1910int
4c4b4cd2 1911ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1912{
556bdfd4 1913 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1914
1915 if (type == NULL)
1916 return 0;
61ee279c 1917 type = ada_check_typedef (type);
556bdfd4
UW
1918 return (data_type != NULL
1919 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1920 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1921}
1922
1923/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1924 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1925 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1926 is still needed. */
1927
14f9c5c9 1928int
ebf56fd3 1929ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1930{
d2e4a39e 1931 return
14f9c5c9
AS
1932 type != NULL
1933 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1934 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1935 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1936 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1937}
1938
1939
4c4b4cd2 1940/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1941 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1942 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1943 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1944 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1945 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1946 a descriptor. */
d2e4a39e
AS
1947struct type *
1948ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1949{
ad82864c
JB
1950 if (ada_is_constrained_packed_array_type (value_type (arr)))
1951 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1952
df407dfe
AC
1953 if (!ada_is_array_descriptor_type (value_type (arr)))
1954 return value_type (arr);
d2e4a39e
AS
1955
1956 if (!bounds)
ad82864c
JB
1957 {
1958 struct type *array_type =
1959 ada_check_typedef (desc_data_target_type (value_type (arr)));
1960
1961 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1962 TYPE_FIELD_BITSIZE (array_type, 0) =
1963 decode_packed_array_bitsize (value_type (arr));
1964
1965 return array_type;
1966 }
14f9c5c9
AS
1967 else
1968 {
d2e4a39e 1969 struct type *elt_type;
14f9c5c9 1970 int arity;
d2e4a39e 1971 struct value *descriptor;
14f9c5c9 1972
df407dfe
AC
1973 elt_type = ada_array_element_type (value_type (arr), -1);
1974 arity = ada_array_arity (value_type (arr));
14f9c5c9 1975
d2e4a39e 1976 if (elt_type == NULL || arity == 0)
df407dfe 1977 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1978
1979 descriptor = desc_bounds (arr);
d2e4a39e 1980 if (value_as_long (descriptor) == 0)
4c4b4cd2 1981 return NULL;
d2e4a39e 1982 while (arity > 0)
4c4b4cd2 1983 {
e9bb382b
UW
1984 struct type *range_type = alloc_type_copy (value_type (arr));
1985 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1986 struct value *low = desc_one_bound (descriptor, arity, 0);
1987 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1988
5b4ee69b 1989 arity -= 1;
0c9c3474
SA
1990 create_static_range_type (range_type, value_type (low),
1991 longest_to_int (value_as_long (low)),
1992 longest_to_int (value_as_long (high)));
4c4b4cd2 1993 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1994
1995 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1996 {
1997 /* We need to store the element packed bitsize, as well as
1998 recompute the array size, because it was previously
1999 computed based on the unpacked element size. */
2000 LONGEST lo = value_as_long (low);
2001 LONGEST hi = value_as_long (high);
2002
2003 TYPE_FIELD_BITSIZE (elt_type, 0) =
2004 decode_packed_array_bitsize (value_type (arr));
2005 /* If the array has no element, then the size is already
2006 zero, and does not need to be recomputed. */
2007 if (lo < hi)
2008 {
2009 int array_bitsize =
2010 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2011
2012 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2013 }
2014 }
4c4b4cd2 2015 }
14f9c5c9
AS
2016
2017 return lookup_pointer_type (elt_type);
2018 }
2019}
2020
2021/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2022 Otherwise, returns either a standard GDB array with bounds set
2023 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2024 GDB array. Returns NULL if ARR is a null fat pointer. */
2025
d2e4a39e
AS
2026struct value *
2027ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2028{
df407dfe 2029 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2030 {
d2e4a39e 2031 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2032
14f9c5c9 2033 if (arrType == NULL)
4c4b4cd2 2034 return NULL;
14f9c5c9
AS
2035 return value_cast (arrType, value_copy (desc_data (arr)));
2036 }
ad82864c
JB
2037 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2038 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2039 else
2040 return arr;
2041}
2042
2043/* If ARR does not represent an array, returns ARR unchanged.
2044 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2045 be ARR itself if it already is in the proper form). */
2046
720d1a40 2047struct value *
d2e4a39e 2048ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2049{
df407dfe 2050 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2051 {
d2e4a39e 2052 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2053
14f9c5c9 2054 if (arrVal == NULL)
323e0a4a 2055 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2056 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2057 return value_ind (arrVal);
2058 }
ad82864c
JB
2059 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2060 return decode_constrained_packed_array (arr);
d2e4a39e 2061 else
14f9c5c9
AS
2062 return arr;
2063}
2064
2065/* If TYPE represents a GNAT array type, return it translated to an
2066 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2067 packing). For other types, is the identity. */
2068
d2e4a39e
AS
2069struct type *
2070ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2071{
ad82864c
JB
2072 if (ada_is_constrained_packed_array_type (type))
2073 return decode_constrained_packed_array_type (type);
17280b9f
UW
2074
2075 if (ada_is_array_descriptor_type (type))
556bdfd4 2076 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2077
2078 return type;
14f9c5c9
AS
2079}
2080
4c4b4cd2
PH
2081/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2082
ad82864c
JB
2083static int
2084ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2085{
2086 if (type == NULL)
2087 return 0;
4c4b4cd2 2088 type = desc_base_type (type);
61ee279c 2089 type = ada_check_typedef (type);
d2e4a39e 2090 return
14f9c5c9
AS
2091 ada_type_name (type) != NULL
2092 && strstr (ada_type_name (type), "___XP") != NULL;
2093}
2094
ad82864c
JB
2095/* Non-zero iff TYPE represents a standard GNAT constrained
2096 packed-array type. */
2097
2098int
2099ada_is_constrained_packed_array_type (struct type *type)
2100{
2101 return ada_is_packed_array_type (type)
2102 && !ada_is_array_descriptor_type (type);
2103}
2104
2105/* Non-zero iff TYPE represents an array descriptor for a
2106 unconstrained packed-array type. */
2107
2108static int
2109ada_is_unconstrained_packed_array_type (struct type *type)
2110{
2111 return ada_is_packed_array_type (type)
2112 && ada_is_array_descriptor_type (type);
2113}
2114
2115/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2116 return the size of its elements in bits. */
2117
2118static long
2119decode_packed_array_bitsize (struct type *type)
2120{
0d5cff50
DE
2121 const char *raw_name;
2122 const char *tail;
ad82864c
JB
2123 long bits;
2124
720d1a40
JB
2125 /* Access to arrays implemented as fat pointers are encoded as a typedef
2126 of the fat pointer type. We need the name of the fat pointer type
2127 to do the decoding, so strip the typedef layer. */
2128 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2129 type = ada_typedef_target_type (type);
2130
2131 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2132 if (!raw_name)
2133 raw_name = ada_type_name (desc_base_type (type));
2134
2135 if (!raw_name)
2136 return 0;
2137
2138 tail = strstr (raw_name, "___XP");
720d1a40 2139 gdb_assert (tail != NULL);
ad82864c
JB
2140
2141 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2142 {
2143 lim_warning
2144 (_("could not understand bit size information on packed array"));
2145 return 0;
2146 }
2147
2148 return bits;
2149}
2150
14f9c5c9
AS
2151/* Given that TYPE is a standard GDB array type with all bounds filled
2152 in, and that the element size of its ultimate scalar constituents
2153 (that is, either its elements, or, if it is an array of arrays, its
2154 elements' elements, etc.) is *ELT_BITS, return an identical type,
2155 but with the bit sizes of its elements (and those of any
2156 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2157 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2158 in bits.
2159
2160 Note that, for arrays whose index type has an XA encoding where
2161 a bound references a record discriminant, getting that discriminant,
2162 and therefore the actual value of that bound, is not possible
2163 because none of the given parameters gives us access to the record.
2164 This function assumes that it is OK in the context where it is being
2165 used to return an array whose bounds are still dynamic and where
2166 the length is arbitrary. */
4c4b4cd2 2167
d2e4a39e 2168static struct type *
ad82864c 2169constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2170{
d2e4a39e
AS
2171 struct type *new_elt_type;
2172 struct type *new_type;
99b1c762
JB
2173 struct type *index_type_desc;
2174 struct type *index_type;
14f9c5c9
AS
2175 LONGEST low_bound, high_bound;
2176
61ee279c 2177 type = ada_check_typedef (type);
14f9c5c9
AS
2178 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2179 return type;
2180
99b1c762
JB
2181 index_type_desc = ada_find_parallel_type (type, "___XA");
2182 if (index_type_desc)
2183 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2184 NULL);
2185 else
2186 index_type = TYPE_INDEX_TYPE (type);
2187
e9bb382b 2188 new_type = alloc_type_copy (type);
ad82864c
JB
2189 new_elt_type =
2190 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2191 elt_bits);
99b1c762 2192 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2193 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2194 TYPE_NAME (new_type) = ada_type_name (type);
2195
4a46959e
JB
2196 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2197 && is_dynamic_type (check_typedef (index_type)))
2198 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2199 low_bound = high_bound = 0;
2200 if (high_bound < low_bound)
2201 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2202 else
14f9c5c9
AS
2203 {
2204 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2205 TYPE_LENGTH (new_type) =
4c4b4cd2 2206 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2207 }
2208
876cecd0 2209 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2210 return new_type;
2211}
2212
ad82864c
JB
2213/* The array type encoded by TYPE, where
2214 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2215
d2e4a39e 2216static struct type *
ad82864c 2217decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2218{
0d5cff50 2219 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2220 char *name;
0d5cff50 2221 const char *tail;
d2e4a39e 2222 struct type *shadow_type;
14f9c5c9 2223 long bits;
14f9c5c9 2224
727e3d2e
JB
2225 if (!raw_name)
2226 raw_name = ada_type_name (desc_base_type (type));
2227
2228 if (!raw_name)
2229 return NULL;
2230
2231 name = (char *) alloca (strlen (raw_name) + 1);
2232 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2233 type = desc_base_type (type);
2234
14f9c5c9
AS
2235 memcpy (name, raw_name, tail - raw_name);
2236 name[tail - raw_name] = '\000';
2237
b4ba55a1
JB
2238 shadow_type = ada_find_parallel_type_with_name (type, name);
2239
2240 if (shadow_type == NULL)
14f9c5c9 2241 {
323e0a4a 2242 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2243 return NULL;
2244 }
f168693b 2245 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2246
2247 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2248 {
0963b4bd
MS
2249 lim_warning (_("could not understand bounds "
2250 "information on packed array"));
14f9c5c9
AS
2251 return NULL;
2252 }
d2e4a39e 2253
ad82864c
JB
2254 bits = decode_packed_array_bitsize (type);
2255 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2256}
2257
ad82864c
JB
2258/* Given that ARR is a struct value *indicating a GNAT constrained packed
2259 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2260 standard GDB array type except that the BITSIZEs of the array
2261 target types are set to the number of bits in each element, and the
4c4b4cd2 2262 type length is set appropriately. */
14f9c5c9 2263
d2e4a39e 2264static struct value *
ad82864c 2265decode_constrained_packed_array (struct value *arr)
14f9c5c9 2266{
4c4b4cd2 2267 struct type *type;
14f9c5c9 2268
11aa919a
PMR
2269 /* If our value is a pointer, then dereference it. Likewise if
2270 the value is a reference. Make sure that this operation does not
2271 cause the target type to be fixed, as this would indirectly cause
2272 this array to be decoded. The rest of the routine assumes that
2273 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2274 and "value_ind" routines to perform the dereferencing, as opposed
2275 to using "ada_coerce_ref" or "ada_value_ind". */
2276 arr = coerce_ref (arr);
828292f2 2277 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2278 arr = value_ind (arr);
4c4b4cd2 2279
ad82864c 2280 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2281 if (type == NULL)
2282 {
323e0a4a 2283 error (_("can't unpack array"));
14f9c5c9
AS
2284 return NULL;
2285 }
61ee279c 2286
50810684 2287 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2288 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2289 {
2290 /* This is a (right-justified) modular type representing a packed
2291 array with no wrapper. In order to interpret the value through
2292 the (left-justified) packed array type we just built, we must
2293 first left-justify it. */
2294 int bit_size, bit_pos;
2295 ULONGEST mod;
2296
df407dfe 2297 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2298 bit_size = 0;
2299 while (mod > 0)
2300 {
2301 bit_size += 1;
2302 mod >>= 1;
2303 }
df407dfe 2304 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2305 arr = ada_value_primitive_packed_val (arr, NULL,
2306 bit_pos / HOST_CHAR_BIT,
2307 bit_pos % HOST_CHAR_BIT,
2308 bit_size,
2309 type);
2310 }
2311
4c4b4cd2 2312 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2313}
2314
2315
2316/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2317 given in IND. ARR must be a simple array. */
14f9c5c9 2318
d2e4a39e
AS
2319static struct value *
2320value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2321{
2322 int i;
2323 int bits, elt_off, bit_off;
2324 long elt_total_bit_offset;
d2e4a39e
AS
2325 struct type *elt_type;
2326 struct value *v;
14f9c5c9
AS
2327
2328 bits = 0;
2329 elt_total_bit_offset = 0;
df407dfe 2330 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2331 for (i = 0; i < arity; i += 1)
14f9c5c9 2332 {
d2e4a39e 2333 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2334 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2335 error
0963b4bd
MS
2336 (_("attempt to do packed indexing of "
2337 "something other than a packed array"));
14f9c5c9 2338 else
4c4b4cd2
PH
2339 {
2340 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2341 LONGEST lowerbound, upperbound;
2342 LONGEST idx;
2343
2344 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2345 {
323e0a4a 2346 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2347 lowerbound = upperbound = 0;
2348 }
2349
3cb382c9 2350 idx = pos_atr (ind[i]);
4c4b4cd2 2351 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2352 lim_warning (_("packed array index %ld out of bounds"),
2353 (long) idx);
4c4b4cd2
PH
2354 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2355 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2356 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2357 }
14f9c5c9
AS
2358 }
2359 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2360 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2361
2362 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2363 bits, elt_type);
14f9c5c9
AS
2364 return v;
2365}
2366
4c4b4cd2 2367/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2368
2369static int
d2e4a39e 2370has_negatives (struct type *type)
14f9c5c9 2371{
d2e4a39e
AS
2372 switch (TYPE_CODE (type))
2373 {
2374 default:
2375 return 0;
2376 case TYPE_CODE_INT:
2377 return !TYPE_UNSIGNED (type);
2378 case TYPE_CODE_RANGE:
2379 return TYPE_LOW_BOUND (type) < 0;
2380 }
14f9c5c9 2381}
d2e4a39e 2382
14f9c5c9
AS
2383
2384/* Create a new value of type TYPE from the contents of OBJ starting
2385 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2386 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2387 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2388 VALADDR is ignored unless OBJ is NULL, in which case,
2389 VALADDR+OFFSET must address the start of storage containing the
2390 packed value. The value returned in this case is never an lval.
2391 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2392
d2e4a39e 2393struct value *
fc1a4b47 2394ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2395 long offset, int bit_offset, int bit_size,
4c4b4cd2 2396 struct type *type)
14f9c5c9 2397{
d2e4a39e 2398 struct value *v;
4c4b4cd2
PH
2399 int src, /* Index into the source area */
2400 targ, /* Index into the target area */
2401 srcBitsLeft, /* Number of source bits left to move */
2402 nsrc, ntarg, /* Number of source and target bytes */
2403 unusedLS, /* Number of bits in next significant
2404 byte of source that are unused */
2405 accumSize; /* Number of meaningful bits in accum */
2406 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2407 unsigned char *unpacked;
4c4b4cd2 2408 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2409 unsigned char sign;
2410 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2411 /* Transmit bytes from least to most significant; delta is the direction
2412 the indices move. */
50810684 2413 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2414
61ee279c 2415 type = ada_check_typedef (type);
14f9c5c9
AS
2416
2417 if (obj == NULL)
2418 {
2419 v = allocate_value (type);
d2e4a39e 2420 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2421 }
9214ee5f 2422 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2423 {
ca34b84f 2424 v = value_at (type, value_address (obj) + offset);
9f1f738a 2425 type = value_type (v);
fc958966
JB
2426 if (TYPE_LENGTH (type) * HOST_CHAR_BIT < bit_size)
2427 {
2428 /* This can happen in the case of an array of dynamic objects,
2429 where the size of each element changes from element to element.
2430 In that case, we're initially given the array stride, but
2431 after resolving the element type, we find that its size is
2432 less than this stride. In that case, adjust bit_size to
2433 match TYPE's length, and recompute LEN accordingly. */
2434 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2435 len = TYPE_LENGTH (type) + (bit_offset + HOST_CHAR_BIT - 1) / 8;
2436 }
d2e4a39e 2437 bytes = (unsigned char *) alloca (len);
ca34b84f 2438 read_memory (value_address (v), bytes, len);
14f9c5c9 2439 }
d2e4a39e 2440 else
14f9c5c9
AS
2441 {
2442 v = allocate_value (type);
0fd88904 2443 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2444 }
d2e4a39e
AS
2445
2446 if (obj != NULL)
14f9c5c9 2447 {
53ba8333 2448 long new_offset = offset;
5b4ee69b 2449
74bcbdf3 2450 set_value_component_location (v, obj);
9bbda503
AC
2451 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2452 set_value_bitsize (v, bit_size);
df407dfe 2453 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2454 {
53ba8333 2455 ++new_offset;
9bbda503 2456 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2457 }
53ba8333
JB
2458 set_value_offset (v, new_offset);
2459
2460 /* Also set the parent value. This is needed when trying to
2461 assign a new value (in inferior memory). */
2462 set_value_parent (v, obj);
14f9c5c9
AS
2463 }
2464 else
9bbda503 2465 set_value_bitsize (v, bit_size);
0fd88904 2466 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2467
2468 srcBitsLeft = bit_size;
2469 nsrc = len;
2470 ntarg = TYPE_LENGTH (type);
2471 sign = 0;
2472 if (bit_size == 0)
2473 {
2474 memset (unpacked, 0, TYPE_LENGTH (type));
2475 return v;
2476 }
50810684 2477 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2478 {
d2e4a39e 2479 src = len - 1;
1265e4aa
JB
2480 if (has_negatives (type)
2481 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2482 sign = ~0;
d2e4a39e
AS
2483
2484 unusedLS =
4c4b4cd2
PH
2485 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2486 % HOST_CHAR_BIT;
14f9c5c9
AS
2487
2488 switch (TYPE_CODE (type))
4c4b4cd2
PH
2489 {
2490 case TYPE_CODE_ARRAY:
2491 case TYPE_CODE_UNION:
2492 case TYPE_CODE_STRUCT:
2493 /* Non-scalar values must be aligned at a byte boundary... */
2494 accumSize =
2495 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2496 /* ... And are placed at the beginning (most-significant) bytes
2497 of the target. */
529cad9c 2498 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2499 ntarg = targ + 1;
4c4b4cd2
PH
2500 break;
2501 default:
2502 accumSize = 0;
2503 targ = TYPE_LENGTH (type) - 1;
2504 break;
2505 }
14f9c5c9 2506 }
d2e4a39e 2507 else
14f9c5c9
AS
2508 {
2509 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2510
2511 src = targ = 0;
2512 unusedLS = bit_offset;
2513 accumSize = 0;
2514
d2e4a39e 2515 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2516 sign = ~0;
14f9c5c9 2517 }
d2e4a39e 2518
14f9c5c9
AS
2519 accum = 0;
2520 while (nsrc > 0)
2521 {
2522 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2523 part of the value. */
d2e4a39e 2524 unsigned int unusedMSMask =
4c4b4cd2
PH
2525 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2526 1;
2527 /* Sign-extend bits for this byte. */
14f9c5c9 2528 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2529
d2e4a39e 2530 accum |=
4c4b4cd2 2531 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2532 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2533 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2534 {
2535 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2536 accumSize -= HOST_CHAR_BIT;
2537 accum >>= HOST_CHAR_BIT;
2538 ntarg -= 1;
2539 targ += delta;
2540 }
14f9c5c9
AS
2541 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2542 unusedLS = 0;
2543 nsrc -= 1;
2544 src += delta;
2545 }
2546 while (ntarg > 0)
2547 {
2548 accum |= sign << accumSize;
2549 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2550 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2551 if (accumSize < 0)
2552 accumSize = 0;
14f9c5c9
AS
2553 accum >>= HOST_CHAR_BIT;
2554 ntarg -= 1;
2555 targ += delta;
2556 }
2557
2478d075
JB
2558 if (is_dynamic_type (value_type (v)))
2559 v = value_from_contents_and_address (value_type (v), value_contents (v),
2560 0);
14f9c5c9
AS
2561 return v;
2562}
d2e4a39e 2563
14f9c5c9
AS
2564/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2565 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2566 not overlap. */
14f9c5c9 2567static void
fc1a4b47 2568move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2569 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2570{
2571 unsigned int accum, mask;
2572 int accum_bits, chunk_size;
2573
2574 target += targ_offset / HOST_CHAR_BIT;
2575 targ_offset %= HOST_CHAR_BIT;
2576 source += src_offset / HOST_CHAR_BIT;
2577 src_offset %= HOST_CHAR_BIT;
50810684 2578 if (bits_big_endian_p)
14f9c5c9
AS
2579 {
2580 accum = (unsigned char) *source;
2581 source += 1;
2582 accum_bits = HOST_CHAR_BIT - src_offset;
2583
d2e4a39e 2584 while (n > 0)
4c4b4cd2
PH
2585 {
2586 int unused_right;
5b4ee69b 2587
4c4b4cd2
PH
2588 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2589 accum_bits += HOST_CHAR_BIT;
2590 source += 1;
2591 chunk_size = HOST_CHAR_BIT - targ_offset;
2592 if (chunk_size > n)
2593 chunk_size = n;
2594 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2595 mask = ((1 << chunk_size) - 1) << unused_right;
2596 *target =
2597 (*target & ~mask)
2598 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2599 n -= chunk_size;
2600 accum_bits -= chunk_size;
2601 target += 1;
2602 targ_offset = 0;
2603 }
14f9c5c9
AS
2604 }
2605 else
2606 {
2607 accum = (unsigned char) *source >> src_offset;
2608 source += 1;
2609 accum_bits = HOST_CHAR_BIT - src_offset;
2610
d2e4a39e 2611 while (n > 0)
4c4b4cd2
PH
2612 {
2613 accum = accum + ((unsigned char) *source << accum_bits);
2614 accum_bits += HOST_CHAR_BIT;
2615 source += 1;
2616 chunk_size = HOST_CHAR_BIT - targ_offset;
2617 if (chunk_size > n)
2618 chunk_size = n;
2619 mask = ((1 << chunk_size) - 1) << targ_offset;
2620 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2621 n -= chunk_size;
2622 accum_bits -= chunk_size;
2623 accum >>= chunk_size;
2624 target += 1;
2625 targ_offset = 0;
2626 }
14f9c5c9
AS
2627 }
2628}
2629
14f9c5c9
AS
2630/* Store the contents of FROMVAL into the location of TOVAL.
2631 Return a new value with the location of TOVAL and contents of
2632 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2633 floating-point or non-scalar types. */
14f9c5c9 2634
d2e4a39e
AS
2635static struct value *
2636ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2637{
df407dfe
AC
2638 struct type *type = value_type (toval);
2639 int bits = value_bitsize (toval);
14f9c5c9 2640
52ce6436
PH
2641 toval = ada_coerce_ref (toval);
2642 fromval = ada_coerce_ref (fromval);
2643
2644 if (ada_is_direct_array_type (value_type (toval)))
2645 toval = ada_coerce_to_simple_array (toval);
2646 if (ada_is_direct_array_type (value_type (fromval)))
2647 fromval = ada_coerce_to_simple_array (fromval);
2648
88e3b34b 2649 if (!deprecated_value_modifiable (toval))
323e0a4a 2650 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2651
d2e4a39e 2652 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2653 && bits > 0
d2e4a39e 2654 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2655 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2656 {
df407dfe
AC
2657 int len = (value_bitpos (toval)
2658 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2659 int from_size;
948f8e3d 2660 gdb_byte *buffer = alloca (len);
d2e4a39e 2661 struct value *val;
42ae5230 2662 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2663
2664 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2665 fromval = value_cast (type, fromval);
14f9c5c9 2666
52ce6436 2667 read_memory (to_addr, buffer, len);
aced2898
PH
2668 from_size = value_bitsize (fromval);
2669 if (from_size == 0)
2670 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2671 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2672 move_bits (buffer, value_bitpos (toval),
50810684 2673 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2674 else
50810684
UW
2675 move_bits (buffer, value_bitpos (toval),
2676 value_contents (fromval), 0, bits, 0);
972daa01 2677 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2678
14f9c5c9 2679 val = value_copy (toval);
0fd88904 2680 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2681 TYPE_LENGTH (type));
04624583 2682 deprecated_set_value_type (val, type);
d2e4a39e 2683
14f9c5c9
AS
2684 return val;
2685 }
2686
2687 return value_assign (toval, fromval);
2688}
2689
2690
7c512744
JB
2691/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2692 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2693 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2694 COMPONENT, and not the inferior's memory. The current contents
2695 of COMPONENT are ignored.
2696
2697 Although not part of the initial design, this function also works
2698 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2699 had a null address, and COMPONENT had an address which is equal to
2700 its offset inside CONTAINER. */
2701
52ce6436
PH
2702static void
2703value_assign_to_component (struct value *container, struct value *component,
2704 struct value *val)
2705{
2706 LONGEST offset_in_container =
42ae5230 2707 (LONGEST) (value_address (component) - value_address (container));
7c512744 2708 int bit_offset_in_container =
52ce6436
PH
2709 value_bitpos (component) - value_bitpos (container);
2710 int bits;
7c512744 2711
52ce6436
PH
2712 val = value_cast (value_type (component), val);
2713
2714 if (value_bitsize (component) == 0)
2715 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2716 else
2717 bits = value_bitsize (component);
2718
50810684 2719 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2720 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2721 value_bitpos (container) + bit_offset_in_container,
2722 value_contents (val),
2723 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2724 bits, 1);
52ce6436 2725 else
7c512744 2726 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2727 value_bitpos (container) + bit_offset_in_container,
50810684 2728 value_contents (val), 0, bits, 0);
7c512744
JB
2729}
2730
4c4b4cd2
PH
2731/* The value of the element of array ARR at the ARITY indices given in IND.
2732 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2733 thereto. */
2734
d2e4a39e
AS
2735struct value *
2736ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2737{
2738 int k;
d2e4a39e
AS
2739 struct value *elt;
2740 struct type *elt_type;
14f9c5c9
AS
2741
2742 elt = ada_coerce_to_simple_array (arr);
2743
df407dfe 2744 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2745 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2746 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2747 return value_subscript_packed (elt, arity, ind);
2748
2749 for (k = 0; k < arity; k += 1)
2750 {
2751 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2752 error (_("too many subscripts (%d expected)"), k);
2497b498 2753 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2754 }
2755 return elt;
2756}
2757
deede10c
JB
2758/* Assuming ARR is a pointer to a GDB array, the value of the element
2759 of *ARR at the ARITY indices given in IND.
2760 Does not read the entire array into memory. */
14f9c5c9 2761
2c0b251b 2762static struct value *
deede10c 2763ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2764{
2765 int k;
deede10c
JB
2766 struct type *type
2767 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
14f9c5c9
AS
2768
2769 for (k = 0; k < arity; k += 1)
2770 {
2771 LONGEST lwb, upb;
aa715135 2772 struct value *lwb_value;
14f9c5c9
AS
2773
2774 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2775 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2776 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2777 value_copy (arr));
14f9c5c9 2778 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2779 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2780 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2781 type = TYPE_TARGET_TYPE (type);
2782 }
2783
2784 return value_ind (arr);
2785}
2786
0b5d8877 2787/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2788 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2789 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2790 this array is LOW, as per Ada rules. */
0b5d8877 2791static struct value *
f5938064
JG
2792ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2793 int low, int high)
0b5d8877 2794{
b0dd7688 2795 struct type *type0 = ada_check_typedef (type);
aa715135 2796 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2797 struct type *index_type
aa715135 2798 = create_static_range_type (NULL, base_index_type, low, high);
6c038f32 2799 struct type *slice_type =
b0dd7688 2800 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
aa715135
JG
2801 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2802 LONGEST base_low_pos, low_pos;
2803 CORE_ADDR base;
2804
2805 if (!discrete_position (base_index_type, low, &low_pos)
2806 || !discrete_position (base_index_type, base_low, &base_low_pos))
2807 {
2808 warning (_("unable to get positions in slice, use bounds instead"));
2809 low_pos = low;
2810 base_low_pos = base_low;
2811 }
5b4ee69b 2812
aa715135
JG
2813 base = value_as_address (array_ptr)
2814 + ((low_pos - base_low_pos)
2815 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2816 return value_at_lazy (slice_type, base);
0b5d8877
PH
2817}
2818
2819
2820static struct value *
2821ada_value_slice (struct value *array, int low, int high)
2822{
b0dd7688 2823 struct type *type = ada_check_typedef (value_type (array));
aa715135 2824 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2825 struct type *index_type
2826 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2827 struct type *slice_type =
0b5d8877 2828 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
aa715135 2829 LONGEST low_pos, high_pos;
5b4ee69b 2830
aa715135
JG
2831 if (!discrete_position (base_index_type, low, &low_pos)
2832 || !discrete_position (base_index_type, high, &high_pos))
2833 {
2834 warning (_("unable to get positions in slice, use bounds instead"));
2835 low_pos = low;
2836 high_pos = high;
2837 }
2838
2839 return value_cast (slice_type,
2840 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2841}
2842
14f9c5c9
AS
2843/* If type is a record type in the form of a standard GNAT array
2844 descriptor, returns the number of dimensions for type. If arr is a
2845 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2846 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2847
2848int
d2e4a39e 2849ada_array_arity (struct type *type)
14f9c5c9
AS
2850{
2851 int arity;
2852
2853 if (type == NULL)
2854 return 0;
2855
2856 type = desc_base_type (type);
2857
2858 arity = 0;
d2e4a39e 2859 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2860 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2861 else
2862 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2863 {
4c4b4cd2 2864 arity += 1;
61ee279c 2865 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2866 }
d2e4a39e 2867
14f9c5c9
AS
2868 return arity;
2869}
2870
2871/* If TYPE is a record type in the form of a standard GNAT array
2872 descriptor or a simple array type, returns the element type for
2873 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2874 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2875
d2e4a39e
AS
2876struct type *
2877ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2878{
2879 type = desc_base_type (type);
2880
d2e4a39e 2881 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2882 {
2883 int k;
d2e4a39e 2884 struct type *p_array_type;
14f9c5c9 2885
556bdfd4 2886 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2887
2888 k = ada_array_arity (type);
2889 if (k == 0)
4c4b4cd2 2890 return NULL;
d2e4a39e 2891
4c4b4cd2 2892 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2893 if (nindices >= 0 && k > nindices)
4c4b4cd2 2894 k = nindices;
d2e4a39e 2895 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2896 {
61ee279c 2897 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2898 k -= 1;
2899 }
14f9c5c9
AS
2900 return p_array_type;
2901 }
2902 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2903 {
2904 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2905 {
2906 type = TYPE_TARGET_TYPE (type);
2907 nindices -= 1;
2908 }
14f9c5c9
AS
2909 return type;
2910 }
2911
2912 return NULL;
2913}
2914
4c4b4cd2 2915/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2916 Does not examine memory. Throws an error if N is invalid or TYPE
2917 is not an array type. NAME is the name of the Ada attribute being
2918 evaluated ('range, 'first, 'last, or 'length); it is used in building
2919 the error message. */
14f9c5c9 2920
1eea4ebd
UW
2921static struct type *
2922ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2923{
4c4b4cd2
PH
2924 struct type *result_type;
2925
14f9c5c9
AS
2926 type = desc_base_type (type);
2927
1eea4ebd
UW
2928 if (n < 0 || n > ada_array_arity (type))
2929 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2930
4c4b4cd2 2931 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2932 {
2933 int i;
2934
2935 for (i = 1; i < n; i += 1)
4c4b4cd2 2936 type = TYPE_TARGET_TYPE (type);
262452ec 2937 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2938 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2939 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2940 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2941 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2942 result_type = NULL;
14f9c5c9 2943 }
d2e4a39e 2944 else
1eea4ebd
UW
2945 {
2946 result_type = desc_index_type (desc_bounds_type (type), n);
2947 if (result_type == NULL)
2948 error (_("attempt to take bound of something that is not an array"));
2949 }
2950
2951 return result_type;
14f9c5c9
AS
2952}
2953
2954/* Given that arr is an array type, returns the lower bound of the
2955 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2956 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2957 array-descriptor type. It works for other arrays with bounds supplied
2958 by run-time quantities other than discriminants. */
14f9c5c9 2959
abb68b3e 2960static LONGEST
fb5e3d5c 2961ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2962{
8a48ac95 2963 struct type *type, *index_type_desc, *index_type;
1ce677a4 2964 int i;
262452ec
JK
2965
2966 gdb_assert (which == 0 || which == 1);
14f9c5c9 2967
ad82864c
JB
2968 if (ada_is_constrained_packed_array_type (arr_type))
2969 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2970
4c4b4cd2 2971 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2972 return (LONGEST) - which;
14f9c5c9
AS
2973
2974 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2975 type = TYPE_TARGET_TYPE (arr_type);
2976 else
2977 type = arr_type;
2978
bafffb51
JB
2979 if (TYPE_FIXED_INSTANCE (type))
2980 {
2981 /* The array has already been fixed, so we do not need to
2982 check the parallel ___XA type again. That encoding has
2983 already been applied, so ignore it now. */
2984 index_type_desc = NULL;
2985 }
2986 else
2987 {
2988 index_type_desc = ada_find_parallel_type (type, "___XA");
2989 ada_fixup_array_indexes_type (index_type_desc);
2990 }
2991
262452ec 2992 if (index_type_desc != NULL)
28c85d6c
JB
2993 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2994 NULL);
262452ec 2995 else
8a48ac95
JB
2996 {
2997 struct type *elt_type = check_typedef (type);
2998
2999 for (i = 1; i < n; i++)
3000 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3001
3002 index_type = TYPE_INDEX_TYPE (elt_type);
3003 }
262452ec 3004
43bbcdc2
PH
3005 return
3006 (LONGEST) (which == 0
3007 ? ada_discrete_type_low_bound (index_type)
3008 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3009}
3010
3011/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3012 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3013 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3014 supplied by run-time quantities other than discriminants. */
14f9c5c9 3015
1eea4ebd 3016static LONGEST
4dc81987 3017ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3018{
eb479039
JB
3019 struct type *arr_type;
3020
3021 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3022 arr = value_ind (arr);
3023 arr_type = value_enclosing_type (arr);
14f9c5c9 3024
ad82864c
JB
3025 if (ada_is_constrained_packed_array_type (arr_type))
3026 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3027 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3028 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3029 else
1eea4ebd 3030 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3031}
3032
3033/* Given that arr is an array value, returns the length of the
3034 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3035 supplied by run-time quantities other than discriminants.
3036 Does not work for arrays indexed by enumeration types with representation
3037 clauses at the moment. */
14f9c5c9 3038
1eea4ebd 3039static LONGEST
d2e4a39e 3040ada_array_length (struct value *arr, int n)
14f9c5c9 3041{
aa715135
JG
3042 struct type *arr_type, *index_type;
3043 int low, high;
eb479039
JB
3044
3045 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3046 arr = value_ind (arr);
3047 arr_type = value_enclosing_type (arr);
14f9c5c9 3048
ad82864c
JB
3049 if (ada_is_constrained_packed_array_type (arr_type))
3050 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3051
4c4b4cd2 3052 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3053 {
3054 low = ada_array_bound_from_type (arr_type, n, 0);
3055 high = ada_array_bound_from_type (arr_type, n, 1);
3056 }
14f9c5c9 3057 else
aa715135
JG
3058 {
3059 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3060 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3061 }
3062
f168693b 3063 arr_type = check_typedef (arr_type);
aa715135
JG
3064 index_type = TYPE_INDEX_TYPE (arr_type);
3065 if (index_type != NULL)
3066 {
3067 struct type *base_type;
3068 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3069 base_type = TYPE_TARGET_TYPE (index_type);
3070 else
3071 base_type = index_type;
3072
3073 low = pos_atr (value_from_longest (base_type, low));
3074 high = pos_atr (value_from_longest (base_type, high));
3075 }
3076 return high - low + 1;
4c4b4cd2
PH
3077}
3078
3079/* An empty array whose type is that of ARR_TYPE (an array type),
3080 with bounds LOW to LOW-1. */
3081
3082static struct value *
3083empty_array (struct type *arr_type, int low)
3084{
b0dd7688 3085 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3086 struct type *index_type
3087 = create_static_range_type
3088 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3089 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3090
0b5d8877 3091 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3092}
14f9c5c9 3093\f
d2e4a39e 3094
4c4b4cd2 3095 /* Name resolution */
14f9c5c9 3096
4c4b4cd2
PH
3097/* The "decoded" name for the user-definable Ada operator corresponding
3098 to OP. */
14f9c5c9 3099
d2e4a39e 3100static const char *
4c4b4cd2 3101ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3102{
3103 int i;
3104
4c4b4cd2 3105 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3106 {
3107 if (ada_opname_table[i].op == op)
4c4b4cd2 3108 return ada_opname_table[i].decoded;
14f9c5c9 3109 }
323e0a4a 3110 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3111}
3112
3113
4c4b4cd2
PH
3114/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3115 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3116 undefined namespace) and converts operators that are
3117 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3118 non-null, it provides a preferred result type [at the moment, only
3119 type void has any effect---causing procedures to be preferred over
3120 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3121 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3122
4c4b4cd2
PH
3123static void
3124resolve (struct expression **expp, int void_context_p)
14f9c5c9 3125{
30b15541
UW
3126 struct type *context_type = NULL;
3127 int pc = 0;
3128
3129 if (void_context_p)
3130 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3131
3132 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3133}
3134
4c4b4cd2
PH
3135/* Resolve the operator of the subexpression beginning at
3136 position *POS of *EXPP. "Resolving" consists of replacing
3137 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3138 with their resolutions, replacing built-in operators with
3139 function calls to user-defined operators, where appropriate, and,
3140 when DEPROCEDURE_P is non-zero, converting function-valued variables
3141 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3142 are as in ada_resolve, above. */
14f9c5c9 3143
d2e4a39e 3144static struct value *
4c4b4cd2 3145resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3146 struct type *context_type)
14f9c5c9
AS
3147{
3148 int pc = *pos;
3149 int i;
4c4b4cd2 3150 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3151 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3152 struct value **argvec; /* Vector of operand types (alloca'ed). */
3153 int nargs; /* Number of operands. */
52ce6436 3154 int oplen;
14f9c5c9
AS
3155
3156 argvec = NULL;
3157 nargs = 0;
3158 exp = *expp;
3159
52ce6436
PH
3160 /* Pass one: resolve operands, saving their types and updating *pos,
3161 if needed. */
14f9c5c9
AS
3162 switch (op)
3163 {
4c4b4cd2
PH
3164 case OP_FUNCALL:
3165 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3166 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3167 *pos += 7;
4c4b4cd2
PH
3168 else
3169 {
3170 *pos += 3;
3171 resolve_subexp (expp, pos, 0, NULL);
3172 }
3173 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3174 break;
3175
14f9c5c9 3176 case UNOP_ADDR:
4c4b4cd2
PH
3177 *pos += 1;
3178 resolve_subexp (expp, pos, 0, NULL);
3179 break;
3180
52ce6436
PH
3181 case UNOP_QUAL:
3182 *pos += 3;
17466c1a 3183 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3184 break;
3185
52ce6436 3186 case OP_ATR_MODULUS:
4c4b4cd2
PH
3187 case OP_ATR_SIZE:
3188 case OP_ATR_TAG:
4c4b4cd2
PH
3189 case OP_ATR_FIRST:
3190 case OP_ATR_LAST:
3191 case OP_ATR_LENGTH:
3192 case OP_ATR_POS:
3193 case OP_ATR_VAL:
4c4b4cd2
PH
3194 case OP_ATR_MIN:
3195 case OP_ATR_MAX:
52ce6436
PH
3196 case TERNOP_IN_RANGE:
3197 case BINOP_IN_BOUNDS:
3198 case UNOP_IN_RANGE:
3199 case OP_AGGREGATE:
3200 case OP_OTHERS:
3201 case OP_CHOICES:
3202 case OP_POSITIONAL:
3203 case OP_DISCRETE_RANGE:
3204 case OP_NAME:
3205 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3206 *pos += oplen;
14f9c5c9
AS
3207 break;
3208
3209 case BINOP_ASSIGN:
3210 {
4c4b4cd2
PH
3211 struct value *arg1;
3212
3213 *pos += 1;
3214 arg1 = resolve_subexp (expp, pos, 0, NULL);
3215 if (arg1 == NULL)
3216 resolve_subexp (expp, pos, 1, NULL);
3217 else
df407dfe 3218 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3219 break;
14f9c5c9
AS
3220 }
3221
4c4b4cd2 3222 case UNOP_CAST:
4c4b4cd2
PH
3223 *pos += 3;
3224 nargs = 1;
3225 break;
14f9c5c9 3226
4c4b4cd2
PH
3227 case BINOP_ADD:
3228 case BINOP_SUB:
3229 case BINOP_MUL:
3230 case BINOP_DIV:
3231 case BINOP_REM:
3232 case BINOP_MOD:
3233 case BINOP_EXP:
3234 case BINOP_CONCAT:
3235 case BINOP_LOGICAL_AND:
3236 case BINOP_LOGICAL_OR:
3237 case BINOP_BITWISE_AND:
3238 case BINOP_BITWISE_IOR:
3239 case BINOP_BITWISE_XOR:
14f9c5c9 3240
4c4b4cd2
PH
3241 case BINOP_EQUAL:
3242 case BINOP_NOTEQUAL:
3243 case BINOP_LESS:
3244 case BINOP_GTR:
3245 case BINOP_LEQ:
3246 case BINOP_GEQ:
14f9c5c9 3247
4c4b4cd2
PH
3248 case BINOP_REPEAT:
3249 case BINOP_SUBSCRIPT:
3250 case BINOP_COMMA:
40c8aaa9
JB
3251 *pos += 1;
3252 nargs = 2;
3253 break;
14f9c5c9 3254
4c4b4cd2
PH
3255 case UNOP_NEG:
3256 case UNOP_PLUS:
3257 case UNOP_LOGICAL_NOT:
3258 case UNOP_ABS:
3259 case UNOP_IND:
3260 *pos += 1;
3261 nargs = 1;
3262 break;
14f9c5c9 3263
4c4b4cd2
PH
3264 case OP_LONG:
3265 case OP_DOUBLE:
3266 case OP_VAR_VALUE:
3267 *pos += 4;
3268 break;
14f9c5c9 3269
4c4b4cd2
PH
3270 case OP_TYPE:
3271 case OP_BOOL:
3272 case OP_LAST:
4c4b4cd2
PH
3273 case OP_INTERNALVAR:
3274 *pos += 3;
3275 break;
14f9c5c9 3276
4c4b4cd2
PH
3277 case UNOP_MEMVAL:
3278 *pos += 3;
3279 nargs = 1;
3280 break;
3281
67f3407f
DJ
3282 case OP_REGISTER:
3283 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3284 break;
3285
4c4b4cd2
PH
3286 case STRUCTOP_STRUCT:
3287 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3288 nargs = 1;
3289 break;
3290
4c4b4cd2 3291 case TERNOP_SLICE:
4c4b4cd2
PH
3292 *pos += 1;
3293 nargs = 3;
3294 break;
3295
52ce6436 3296 case OP_STRING:
14f9c5c9 3297 break;
4c4b4cd2
PH
3298
3299 default:
323e0a4a 3300 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3301 }
3302
76a01679 3303 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3304 for (i = 0; i < nargs; i += 1)
3305 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3306 argvec[i] = NULL;
3307 exp = *expp;
3308
3309 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3310 switch (op)
3311 {
3312 default:
3313 break;
3314
14f9c5c9 3315 case OP_VAR_VALUE:
4c4b4cd2 3316 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3317 {
d12307c1 3318 struct block_symbol *candidates;
76a01679
JB
3319 int n_candidates;
3320
3321 n_candidates =
3322 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3323 (exp->elts[pc + 2].symbol),
3324 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3325 &candidates);
76a01679
JB
3326
3327 if (n_candidates > 1)
3328 {
3329 /* Types tend to get re-introduced locally, so if there
3330 are any local symbols that are not types, first filter
3331 out all types. */
3332 int j;
3333 for (j = 0; j < n_candidates; j += 1)
d12307c1 3334 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3335 {
3336 case LOC_REGISTER:
3337 case LOC_ARG:
3338 case LOC_REF_ARG:
76a01679
JB
3339 case LOC_REGPARM_ADDR:
3340 case LOC_LOCAL:
76a01679 3341 case LOC_COMPUTED:
76a01679
JB
3342 goto FoundNonType;
3343 default:
3344 break;
3345 }
3346 FoundNonType:
3347 if (j < n_candidates)
3348 {
3349 j = 0;
3350 while (j < n_candidates)
3351 {
d12307c1 3352 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3353 {
3354 candidates[j] = candidates[n_candidates - 1];
3355 n_candidates -= 1;
3356 }
3357 else
3358 j += 1;
3359 }
3360 }
3361 }
3362
3363 if (n_candidates == 0)
323e0a4a 3364 error (_("No definition found for %s"),
76a01679
JB
3365 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3366 else if (n_candidates == 1)
3367 i = 0;
3368 else if (deprocedure_p
3369 && !is_nonfunction (candidates, n_candidates))
3370 {
06d5cf63
JB
3371 i = ada_resolve_function
3372 (candidates, n_candidates, NULL, 0,
3373 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3374 context_type);
76a01679 3375 if (i < 0)
323e0a4a 3376 error (_("Could not find a match for %s"),
76a01679
JB
3377 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3378 }
3379 else
3380 {
323e0a4a 3381 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3382 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3383 user_select_syms (candidates, n_candidates, 1);
3384 i = 0;
3385 }
3386
3387 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3388 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3389 if (innermost_block == NULL
3390 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3391 innermost_block = candidates[i].block;
3392 }
3393
3394 if (deprocedure_p
3395 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3396 == TYPE_CODE_FUNC))
3397 {
3398 replace_operator_with_call (expp, pc, 0, 0,
3399 exp->elts[pc + 2].symbol,
3400 exp->elts[pc + 1].block);
3401 exp = *expp;
3402 }
14f9c5c9
AS
3403 break;
3404
3405 case OP_FUNCALL:
3406 {
4c4b4cd2 3407 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3408 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3409 {
d12307c1 3410 struct block_symbol *candidates;
4c4b4cd2
PH
3411 int n_candidates;
3412
3413 n_candidates =
76a01679
JB
3414 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3415 (exp->elts[pc + 5].symbol),
3416 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3417 &candidates);
4c4b4cd2
PH
3418 if (n_candidates == 1)
3419 i = 0;
3420 else
3421 {
06d5cf63
JB
3422 i = ada_resolve_function
3423 (candidates, n_candidates,
3424 argvec, nargs,
3425 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3426 context_type);
4c4b4cd2 3427 if (i < 0)
323e0a4a 3428 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3429 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3430 }
3431
3432 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3433 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3434 if (innermost_block == NULL
3435 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3436 innermost_block = candidates[i].block;
3437 }
14f9c5c9
AS
3438 }
3439 break;
3440 case BINOP_ADD:
3441 case BINOP_SUB:
3442 case BINOP_MUL:
3443 case BINOP_DIV:
3444 case BINOP_REM:
3445 case BINOP_MOD:
3446 case BINOP_CONCAT:
3447 case BINOP_BITWISE_AND:
3448 case BINOP_BITWISE_IOR:
3449 case BINOP_BITWISE_XOR:
3450 case BINOP_EQUAL:
3451 case BINOP_NOTEQUAL:
3452 case BINOP_LESS:
3453 case BINOP_GTR:
3454 case BINOP_LEQ:
3455 case BINOP_GEQ:
3456 case BINOP_EXP:
3457 case UNOP_NEG:
3458 case UNOP_PLUS:
3459 case UNOP_LOGICAL_NOT:
3460 case UNOP_ABS:
3461 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3462 {
d12307c1 3463 struct block_symbol *candidates;
4c4b4cd2
PH
3464 int n_candidates;
3465
3466 n_candidates =
3467 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3468 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3469 &candidates);
4c4b4cd2 3470 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3471 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3472 if (i < 0)
3473 break;
3474
d12307c1
PMR
3475 replace_operator_with_call (expp, pc, nargs, 1,
3476 candidates[i].symbol,
3477 candidates[i].block);
4c4b4cd2
PH
3478 exp = *expp;
3479 }
14f9c5c9 3480 break;
4c4b4cd2
PH
3481
3482 case OP_TYPE:
b3dbf008 3483 case OP_REGISTER:
4c4b4cd2 3484 return NULL;
14f9c5c9
AS
3485 }
3486
3487 *pos = pc;
3488 return evaluate_subexp_type (exp, pos);
3489}
3490
3491/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3492 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3493 a non-pointer. */
14f9c5c9 3494/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3495 liberal. */
14f9c5c9
AS
3496
3497static int
4dc81987 3498ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3499{
61ee279c
PH
3500 ftype = ada_check_typedef (ftype);
3501 atype = ada_check_typedef (atype);
14f9c5c9
AS
3502
3503 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3504 ftype = TYPE_TARGET_TYPE (ftype);
3505 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3506 atype = TYPE_TARGET_TYPE (atype);
3507
d2e4a39e 3508 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3509 {
3510 default:
5b3d5b7d 3511 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3512 case TYPE_CODE_PTR:
3513 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3514 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3515 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3516 else
1265e4aa
JB
3517 return (may_deref
3518 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3519 case TYPE_CODE_INT:
3520 case TYPE_CODE_ENUM:
3521 case TYPE_CODE_RANGE:
3522 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3523 {
3524 case TYPE_CODE_INT:
3525 case TYPE_CODE_ENUM:
3526 case TYPE_CODE_RANGE:
3527 return 1;
3528 default:
3529 return 0;
3530 }
14f9c5c9
AS
3531
3532 case TYPE_CODE_ARRAY:
d2e4a39e 3533 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3534 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3535
3536 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3537 if (ada_is_array_descriptor_type (ftype))
3538 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3539 || ada_is_array_descriptor_type (atype));
14f9c5c9 3540 else
4c4b4cd2
PH
3541 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3542 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3543
3544 case TYPE_CODE_UNION:
3545 case TYPE_CODE_FLT:
3546 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3547 }
3548}
3549
3550/* Return non-zero if the formals of FUNC "sufficiently match" the
3551 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3552 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3553 argument function. */
14f9c5c9
AS
3554
3555static int
d2e4a39e 3556ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3557{
3558 int i;
d2e4a39e 3559 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3560
1265e4aa
JB
3561 if (SYMBOL_CLASS (func) == LOC_CONST
3562 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3563 return (n_actuals == 0);
3564 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3565 return 0;
3566
3567 if (TYPE_NFIELDS (func_type) != n_actuals)
3568 return 0;
3569
3570 for (i = 0; i < n_actuals; i += 1)
3571 {
4c4b4cd2 3572 if (actuals[i] == NULL)
76a01679
JB
3573 return 0;
3574 else
3575 {
5b4ee69b
MS
3576 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3577 i));
df407dfe 3578 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3579
76a01679
JB
3580 if (!ada_type_match (ftype, atype, 1))
3581 return 0;
3582 }
14f9c5c9
AS
3583 }
3584 return 1;
3585}
3586
3587/* False iff function type FUNC_TYPE definitely does not produce a value
3588 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3589 FUNC_TYPE is not a valid function type with a non-null return type
3590 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3591
3592static int
d2e4a39e 3593return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3594{
d2e4a39e 3595 struct type *return_type;
14f9c5c9
AS
3596
3597 if (func_type == NULL)
3598 return 1;
3599
4c4b4cd2 3600 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3601 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3602 else
18af8284 3603 return_type = get_base_type (func_type);
14f9c5c9
AS
3604 if (return_type == NULL)
3605 return 1;
3606
18af8284 3607 context_type = get_base_type (context_type);
14f9c5c9
AS
3608
3609 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3610 return context_type == NULL || return_type == context_type;
3611 else if (context_type == NULL)
3612 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3613 else
3614 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3615}
3616
3617
4c4b4cd2 3618/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3619 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3620 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3621 that returns that type, then eliminate matches that don't. If
3622 CONTEXT_TYPE is void and there is at least one match that does not
3623 return void, eliminate all matches that do.
3624
14f9c5c9
AS
3625 Asks the user if there is more than one match remaining. Returns -1
3626 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3627 solely for messages. May re-arrange and modify SYMS in
3628 the process; the index returned is for the modified vector. */
14f9c5c9 3629
4c4b4cd2 3630static int
d12307c1 3631ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3632 int nsyms, struct value **args, int nargs,
3633 const char *name, struct type *context_type)
14f9c5c9 3634{
30b15541 3635 int fallback;
14f9c5c9 3636 int k;
4c4b4cd2 3637 int m; /* Number of hits */
14f9c5c9 3638
d2e4a39e 3639 m = 0;
30b15541
UW
3640 /* In the first pass of the loop, we only accept functions matching
3641 context_type. If none are found, we add a second pass of the loop
3642 where every function is accepted. */
3643 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3644 {
3645 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3646 {
d12307c1 3647 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3648
d12307c1 3649 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3650 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3651 {
3652 syms[m] = syms[k];
3653 m += 1;
3654 }
3655 }
14f9c5c9
AS
3656 }
3657
3658 if (m == 0)
3659 return -1;
3660 else if (m > 1)
3661 {
323e0a4a 3662 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3663 user_select_syms (syms, m, 1);
14f9c5c9
AS
3664 return 0;
3665 }
3666 return 0;
3667}
3668
4c4b4cd2
PH
3669/* Returns true (non-zero) iff decoded name N0 should appear before N1
3670 in a listing of choices during disambiguation (see sort_choices, below).
3671 The idea is that overloadings of a subprogram name from the
3672 same package should sort in their source order. We settle for ordering
3673 such symbols by their trailing number (__N or $N). */
3674
14f9c5c9 3675static int
0d5cff50 3676encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3677{
3678 if (N1 == NULL)
3679 return 0;
3680 else if (N0 == NULL)
3681 return 1;
3682 else
3683 {
3684 int k0, k1;
5b4ee69b 3685
d2e4a39e 3686 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3687 ;
d2e4a39e 3688 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3689 ;
d2e4a39e 3690 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3691 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3692 {
3693 int n0, n1;
5b4ee69b 3694
4c4b4cd2
PH
3695 n0 = k0;
3696 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3697 n0 -= 1;
3698 n1 = k1;
3699 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3700 n1 -= 1;
3701 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3702 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3703 }
14f9c5c9
AS
3704 return (strcmp (N0, N1) < 0);
3705 }
3706}
d2e4a39e 3707
4c4b4cd2
PH
3708/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3709 encoded names. */
3710
d2e4a39e 3711static void
d12307c1 3712sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3713{
4c4b4cd2 3714 int i;
5b4ee69b 3715
d2e4a39e 3716 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3717 {
d12307c1 3718 struct block_symbol sym = syms[i];
14f9c5c9
AS
3719 int j;
3720
d2e4a39e 3721 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3722 {
d12307c1
PMR
3723 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3724 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3725 break;
3726 syms[j + 1] = syms[j];
3727 }
d2e4a39e 3728 syms[j + 1] = sym;
14f9c5c9
AS
3729 }
3730}
3731
4c4b4cd2
PH
3732/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3733 by asking the user (if necessary), returning the number selected,
3734 and setting the first elements of SYMS items. Error if no symbols
3735 selected. */
14f9c5c9
AS
3736
3737/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3738 to be re-integrated one of these days. */
14f9c5c9
AS
3739
3740int
d12307c1 3741user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3742{
3743 int i;
d2e4a39e 3744 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3745 int n_chosen;
3746 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3747 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3748
3749 if (max_results < 1)
323e0a4a 3750 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3751 if (nsyms <= 1)
3752 return nsyms;
3753
717d2f5a
JB
3754 if (select_mode == multiple_symbols_cancel)
3755 error (_("\
3756canceled because the command is ambiguous\n\
3757See set/show multiple-symbol."));
3758
3759 /* If select_mode is "all", then return all possible symbols.
3760 Only do that if more than one symbol can be selected, of course.
3761 Otherwise, display the menu as usual. */
3762 if (select_mode == multiple_symbols_all && max_results > 1)
3763 return nsyms;
3764
323e0a4a 3765 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3766 if (max_results > 1)
323e0a4a 3767 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3768
4c4b4cd2 3769 sort_choices (syms, nsyms);
14f9c5c9
AS
3770
3771 for (i = 0; i < nsyms; i += 1)
3772 {
d12307c1 3773 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3774 continue;
3775
d12307c1 3776 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3777 {
76a01679 3778 struct symtab_and_line sal =
d12307c1 3779 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3780
323e0a4a
AC
3781 if (sal.symtab == NULL)
3782 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3783 i + first_choice,
d12307c1 3784 SYMBOL_PRINT_NAME (syms[i].symbol),
323e0a4a
AC
3785 sal.line);
3786 else
3787 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
d12307c1 3788 SYMBOL_PRINT_NAME (syms[i].symbol),
05cba821
JK
3789 symtab_to_filename_for_display (sal.symtab),
3790 sal.line);
4c4b4cd2
PH
3791 continue;
3792 }
d2e4a39e 3793 else
4c4b4cd2
PH
3794 {
3795 int is_enumeral =
d12307c1
PMR
3796 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3797 && SYMBOL_TYPE (syms[i].symbol) != NULL
3798 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3799 struct symtab *symtab = NULL;
3800
d12307c1
PMR
3801 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3802 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3803
d12307c1 3804 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
323e0a4a 3805 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2 3806 i + first_choice,
d12307c1 3807 SYMBOL_PRINT_NAME (syms[i].symbol),
05cba821 3808 symtab_to_filename_for_display (symtab),
d12307c1 3809 SYMBOL_LINE (syms[i].symbol));
76a01679 3810 else if (is_enumeral
d12307c1 3811 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3812 {
a3f17187 3813 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3814 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3815 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3816 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3817 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2
PH
3818 }
3819 else if (symtab != NULL)
3820 printf_unfiltered (is_enumeral
323e0a4a
AC
3821 ? _("[%d] %s in %s (enumeral)\n")
3822 : _("[%d] %s at %s:?\n"),
4c4b4cd2 3823 i + first_choice,
d12307c1 3824 SYMBOL_PRINT_NAME (syms[i].symbol),
05cba821 3825 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3826 else
3827 printf_unfiltered (is_enumeral
323e0a4a
AC
3828 ? _("[%d] %s (enumeral)\n")
3829 : _("[%d] %s at ?\n"),
4c4b4cd2 3830 i + first_choice,
d12307c1 3831 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3832 }
14f9c5c9 3833 }
d2e4a39e 3834
14f9c5c9 3835 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3836 "overload-choice");
14f9c5c9
AS
3837
3838 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3839 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3840
3841 return n_chosen;
3842}
3843
3844/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3845 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3846 order in CHOICES[0 .. N-1], and return N.
3847
3848 The user types choices as a sequence of numbers on one line
3849 separated by blanks, encoding them as follows:
3850
4c4b4cd2 3851 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3852 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3853 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3854
4c4b4cd2 3855 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3856
3857 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3858 prompts (for use with the -f switch). */
14f9c5c9
AS
3859
3860int
d2e4a39e 3861get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3862 int is_all_choice, char *annotation_suffix)
14f9c5c9 3863{
d2e4a39e 3864 char *args;
0bcd0149 3865 char *prompt;
14f9c5c9
AS
3866 int n_chosen;
3867 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3868
14f9c5c9
AS
3869 prompt = getenv ("PS2");
3870 if (prompt == NULL)
0bcd0149 3871 prompt = "> ";
14f9c5c9 3872
0bcd0149 3873 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3874
14f9c5c9 3875 if (args == NULL)
323e0a4a 3876 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3877
3878 n_chosen = 0;
76a01679 3879
4c4b4cd2
PH
3880 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3881 order, as given in args. Choices are validated. */
14f9c5c9
AS
3882 while (1)
3883 {
d2e4a39e 3884 char *args2;
14f9c5c9
AS
3885 int choice, j;
3886
0fcd72ba 3887 args = skip_spaces (args);
14f9c5c9 3888 if (*args == '\0' && n_chosen == 0)
323e0a4a 3889 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3890 else if (*args == '\0')
4c4b4cd2 3891 break;
14f9c5c9
AS
3892
3893 choice = strtol (args, &args2, 10);
d2e4a39e 3894 if (args == args2 || choice < 0
4c4b4cd2 3895 || choice > n_choices + first_choice - 1)
323e0a4a 3896 error (_("Argument must be choice number"));
14f9c5c9
AS
3897 args = args2;
3898
d2e4a39e 3899 if (choice == 0)
323e0a4a 3900 error (_("cancelled"));
14f9c5c9
AS
3901
3902 if (choice < first_choice)
4c4b4cd2
PH
3903 {
3904 n_chosen = n_choices;
3905 for (j = 0; j < n_choices; j += 1)
3906 choices[j] = j;
3907 break;
3908 }
14f9c5c9
AS
3909 choice -= first_choice;
3910
d2e4a39e 3911 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3912 {
3913 }
14f9c5c9
AS
3914
3915 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3916 {
3917 int k;
5b4ee69b 3918
4c4b4cd2
PH
3919 for (k = n_chosen - 1; k > j; k -= 1)
3920 choices[k + 1] = choices[k];
3921 choices[j + 1] = choice;
3922 n_chosen += 1;
3923 }
14f9c5c9
AS
3924 }
3925
3926 if (n_chosen > max_results)
323e0a4a 3927 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3928
14f9c5c9
AS
3929 return n_chosen;
3930}
3931
4c4b4cd2
PH
3932/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3933 on the function identified by SYM and BLOCK, and taking NARGS
3934 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3935
3936static void
d2e4a39e 3937replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3938 int oplen, struct symbol *sym,
270140bd 3939 const struct block *block)
14f9c5c9
AS
3940{
3941 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3942 symbol, -oplen for operator being replaced). */
d2e4a39e 3943 struct expression *newexp = (struct expression *)
8c1a34e7 3944 xzalloc (sizeof (struct expression)
4c4b4cd2 3945 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3946 struct expression *exp = *expp;
14f9c5c9
AS
3947
3948 newexp->nelts = exp->nelts + 7 - oplen;
3949 newexp->language_defn = exp->language_defn;
3489610d 3950 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3951 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3952 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3953 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3954
3955 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3956 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3957
3958 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3959 newexp->elts[pc + 4].block = block;
3960 newexp->elts[pc + 5].symbol = sym;
3961
3962 *expp = newexp;
aacb1f0a 3963 xfree (exp);
d2e4a39e 3964}
14f9c5c9
AS
3965
3966/* Type-class predicates */
3967
4c4b4cd2
PH
3968/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3969 or FLOAT). */
14f9c5c9
AS
3970
3971static int
d2e4a39e 3972numeric_type_p (struct type *type)
14f9c5c9
AS
3973{
3974 if (type == NULL)
3975 return 0;
d2e4a39e
AS
3976 else
3977 {
3978 switch (TYPE_CODE (type))
4c4b4cd2
PH
3979 {
3980 case TYPE_CODE_INT:
3981 case TYPE_CODE_FLT:
3982 return 1;
3983 case TYPE_CODE_RANGE:
3984 return (type == TYPE_TARGET_TYPE (type)
3985 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3986 default:
3987 return 0;
3988 }
d2e4a39e 3989 }
14f9c5c9
AS
3990}
3991
4c4b4cd2 3992/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3993
3994static int
d2e4a39e 3995integer_type_p (struct type *type)
14f9c5c9
AS
3996{
3997 if (type == NULL)
3998 return 0;
d2e4a39e
AS
3999 else
4000 {
4001 switch (TYPE_CODE (type))
4c4b4cd2
PH
4002 {
4003 case TYPE_CODE_INT:
4004 return 1;
4005 case TYPE_CODE_RANGE:
4006 return (type == TYPE_TARGET_TYPE (type)
4007 || integer_type_p (TYPE_TARGET_TYPE (type)));
4008 default:
4009 return 0;
4010 }
d2e4a39e 4011 }
14f9c5c9
AS
4012}
4013
4c4b4cd2 4014/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4015
4016static int
d2e4a39e 4017scalar_type_p (struct type *type)
14f9c5c9
AS
4018{
4019 if (type == NULL)
4020 return 0;
d2e4a39e
AS
4021 else
4022 {
4023 switch (TYPE_CODE (type))
4c4b4cd2
PH
4024 {
4025 case TYPE_CODE_INT:
4026 case TYPE_CODE_RANGE:
4027 case TYPE_CODE_ENUM:
4028 case TYPE_CODE_FLT:
4029 return 1;
4030 default:
4031 return 0;
4032 }
d2e4a39e 4033 }
14f9c5c9
AS
4034}
4035
4c4b4cd2 4036/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4037
4038static int
d2e4a39e 4039discrete_type_p (struct type *type)
14f9c5c9
AS
4040{
4041 if (type == NULL)
4042 return 0;
d2e4a39e
AS
4043 else
4044 {
4045 switch (TYPE_CODE (type))
4c4b4cd2
PH
4046 {
4047 case TYPE_CODE_INT:
4048 case TYPE_CODE_RANGE:
4049 case TYPE_CODE_ENUM:
872f0337 4050 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4051 return 1;
4052 default:
4053 return 0;
4054 }
d2e4a39e 4055 }
14f9c5c9
AS
4056}
4057
4c4b4cd2
PH
4058/* Returns non-zero if OP with operands in the vector ARGS could be
4059 a user-defined function. Errs on the side of pre-defined operators
4060 (i.e., result 0). */
14f9c5c9
AS
4061
4062static int
d2e4a39e 4063possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4064{
76a01679 4065 struct type *type0 =
df407dfe 4066 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4067 struct type *type1 =
df407dfe 4068 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4069
4c4b4cd2
PH
4070 if (type0 == NULL)
4071 return 0;
4072
14f9c5c9
AS
4073 switch (op)
4074 {
4075 default:
4076 return 0;
4077
4078 case BINOP_ADD:
4079 case BINOP_SUB:
4080 case BINOP_MUL:
4081 case BINOP_DIV:
d2e4a39e 4082 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4083
4084 case BINOP_REM:
4085 case BINOP_MOD:
4086 case BINOP_BITWISE_AND:
4087 case BINOP_BITWISE_IOR:
4088 case BINOP_BITWISE_XOR:
d2e4a39e 4089 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4090
4091 case BINOP_EQUAL:
4092 case BINOP_NOTEQUAL:
4093 case BINOP_LESS:
4094 case BINOP_GTR:
4095 case BINOP_LEQ:
4096 case BINOP_GEQ:
d2e4a39e 4097 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4098
4099 case BINOP_CONCAT:
ee90b9ab 4100 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4101
4102 case BINOP_EXP:
d2e4a39e 4103 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4104
4105 case UNOP_NEG:
4106 case UNOP_PLUS:
4107 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4108 case UNOP_ABS:
4109 return (!numeric_type_p (type0));
14f9c5c9
AS
4110
4111 }
4112}
4113\f
4c4b4cd2 4114 /* Renaming */
14f9c5c9 4115
aeb5907d
JB
4116/* NOTES:
4117
4118 1. In the following, we assume that a renaming type's name may
4119 have an ___XD suffix. It would be nice if this went away at some
4120 point.
4121 2. We handle both the (old) purely type-based representation of
4122 renamings and the (new) variable-based encoding. At some point,
4123 it is devoutly to be hoped that the former goes away
4124 (FIXME: hilfinger-2007-07-09).
4125 3. Subprogram renamings are not implemented, although the XRS
4126 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4127
4128/* If SYM encodes a renaming,
4129
4130 <renaming> renames <renamed entity>,
4131
4132 sets *LEN to the length of the renamed entity's name,
4133 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4134 the string describing the subcomponent selected from the renamed
0963b4bd 4135 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4136 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4137 are undefined). Otherwise, returns a value indicating the category
4138 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4139 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4140 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4141 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4142 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4143 may be NULL, in which case they are not assigned.
4144
4145 [Currently, however, GCC does not generate subprogram renamings.] */
4146
4147enum ada_renaming_category
4148ada_parse_renaming (struct symbol *sym,
4149 const char **renamed_entity, int *len,
4150 const char **renaming_expr)
4151{
4152 enum ada_renaming_category kind;
4153 const char *info;
4154 const char *suffix;
4155
4156 if (sym == NULL)
4157 return ADA_NOT_RENAMING;
4158 switch (SYMBOL_CLASS (sym))
14f9c5c9 4159 {
aeb5907d
JB
4160 default:
4161 return ADA_NOT_RENAMING;
4162 case LOC_TYPEDEF:
4163 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4164 renamed_entity, len, renaming_expr);
4165 case LOC_LOCAL:
4166 case LOC_STATIC:
4167 case LOC_COMPUTED:
4168 case LOC_OPTIMIZED_OUT:
4169 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4170 if (info == NULL)
4171 return ADA_NOT_RENAMING;
4172 switch (info[5])
4173 {
4174 case '_':
4175 kind = ADA_OBJECT_RENAMING;
4176 info += 6;
4177 break;
4178 case 'E':
4179 kind = ADA_EXCEPTION_RENAMING;
4180 info += 7;
4181 break;
4182 case 'P':
4183 kind = ADA_PACKAGE_RENAMING;
4184 info += 7;
4185 break;
4186 case 'S':
4187 kind = ADA_SUBPROGRAM_RENAMING;
4188 info += 7;
4189 break;
4190 default:
4191 return ADA_NOT_RENAMING;
4192 }
14f9c5c9 4193 }
4c4b4cd2 4194
aeb5907d
JB
4195 if (renamed_entity != NULL)
4196 *renamed_entity = info;
4197 suffix = strstr (info, "___XE");
4198 if (suffix == NULL || suffix == info)
4199 return ADA_NOT_RENAMING;
4200 if (len != NULL)
4201 *len = strlen (info) - strlen (suffix);
4202 suffix += 5;
4203 if (renaming_expr != NULL)
4204 *renaming_expr = suffix;
4205 return kind;
4206}
4207
4208/* Assuming TYPE encodes a renaming according to the old encoding in
4209 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4210 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4211 ADA_NOT_RENAMING otherwise. */
4212static enum ada_renaming_category
4213parse_old_style_renaming (struct type *type,
4214 const char **renamed_entity, int *len,
4215 const char **renaming_expr)
4216{
4217 enum ada_renaming_category kind;
4218 const char *name;
4219 const char *info;
4220 const char *suffix;
14f9c5c9 4221
aeb5907d
JB
4222 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4223 || TYPE_NFIELDS (type) != 1)
4224 return ADA_NOT_RENAMING;
14f9c5c9 4225
aeb5907d
JB
4226 name = type_name_no_tag (type);
4227 if (name == NULL)
4228 return ADA_NOT_RENAMING;
4229
4230 name = strstr (name, "___XR");
4231 if (name == NULL)
4232 return ADA_NOT_RENAMING;
4233 switch (name[5])
4234 {
4235 case '\0':
4236 case '_':
4237 kind = ADA_OBJECT_RENAMING;
4238 break;
4239 case 'E':
4240 kind = ADA_EXCEPTION_RENAMING;
4241 break;
4242 case 'P':
4243 kind = ADA_PACKAGE_RENAMING;
4244 break;
4245 case 'S':
4246 kind = ADA_SUBPROGRAM_RENAMING;
4247 break;
4248 default:
4249 return ADA_NOT_RENAMING;
4250 }
14f9c5c9 4251
aeb5907d
JB
4252 info = TYPE_FIELD_NAME (type, 0);
4253 if (info == NULL)
4254 return ADA_NOT_RENAMING;
4255 if (renamed_entity != NULL)
4256 *renamed_entity = info;
4257 suffix = strstr (info, "___XE");
4258 if (renaming_expr != NULL)
4259 *renaming_expr = suffix + 5;
4260 if (suffix == NULL || suffix == info)
4261 return ADA_NOT_RENAMING;
4262 if (len != NULL)
4263 *len = suffix - info;
4264 return kind;
a5ee536b
JB
4265}
4266
4267/* Compute the value of the given RENAMING_SYM, which is expected to
4268 be a symbol encoding a renaming expression. BLOCK is the block
4269 used to evaluate the renaming. */
52ce6436 4270
a5ee536b
JB
4271static struct value *
4272ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4273 const struct block *block)
a5ee536b 4274{
bbc13ae3 4275 const char *sym_name;
a5ee536b
JB
4276 struct expression *expr;
4277 struct value *value;
4278 struct cleanup *old_chain = NULL;
4279
bbc13ae3 4280 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4281 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4282 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4283 value = evaluate_expression (expr);
4284
4285 do_cleanups (old_chain);
4286 return value;
4287}
14f9c5c9 4288\f
d2e4a39e 4289
4c4b4cd2 4290 /* Evaluation: Function Calls */
14f9c5c9 4291
4c4b4cd2 4292/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4293 lvalues, and otherwise has the side-effect of allocating memory
4294 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4295
d2e4a39e 4296static struct value *
40bc484c 4297ensure_lval (struct value *val)
14f9c5c9 4298{
40bc484c
JB
4299 if (VALUE_LVAL (val) == not_lval
4300 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4301 {
df407dfe 4302 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4303 const CORE_ADDR addr =
4304 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4305
40bc484c 4306 set_value_address (val, addr);
a84a8a0d 4307 VALUE_LVAL (val) = lval_memory;
40bc484c 4308 write_memory (addr, value_contents (val), len);
c3e5cd34 4309 }
14f9c5c9
AS
4310
4311 return val;
4312}
4313
4314/* Return the value ACTUAL, converted to be an appropriate value for a
4315 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4316 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4317 values not residing in memory, updating it as needed. */
14f9c5c9 4318
a93c0eb6 4319struct value *
40bc484c 4320ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4321{
df407dfe 4322 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4323 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4324 struct type *formal_target =
4325 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4326 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4327 struct type *actual_target =
4328 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4329 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4330
4c4b4cd2 4331 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4332 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4333 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4334 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4335 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4336 {
a84a8a0d 4337 struct value *result;
5b4ee69b 4338
14f9c5c9 4339 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4340 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4341 result = desc_data (actual);
14f9c5c9 4342 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4343 {
4344 if (VALUE_LVAL (actual) != lval_memory)
4345 {
4346 struct value *val;
5b4ee69b 4347
df407dfe 4348 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4349 val = allocate_value (actual_type);
990a07ab 4350 memcpy ((char *) value_contents_raw (val),
0fd88904 4351 (char *) value_contents (actual),
4c4b4cd2 4352 TYPE_LENGTH (actual_type));
40bc484c 4353 actual = ensure_lval (val);
4c4b4cd2 4354 }
a84a8a0d 4355 result = value_addr (actual);
4c4b4cd2 4356 }
a84a8a0d
JB
4357 else
4358 return actual;
b1af9e97 4359 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4360 }
4361 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4362 return ada_value_ind (actual);
8344af1e
JB
4363 else if (ada_is_aligner_type (formal_type))
4364 {
4365 /* We need to turn this parameter into an aligner type
4366 as well. */
4367 struct value *aligner = allocate_value (formal_type);
4368 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4369
4370 value_assign_to_component (aligner, component, actual);
4371 return aligner;
4372 }
14f9c5c9
AS
4373
4374 return actual;
4375}
4376
438c98a1
JB
4377/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4378 type TYPE. This is usually an inefficient no-op except on some targets
4379 (such as AVR) where the representation of a pointer and an address
4380 differs. */
4381
4382static CORE_ADDR
4383value_pointer (struct value *value, struct type *type)
4384{
4385 struct gdbarch *gdbarch = get_type_arch (type);
4386 unsigned len = TYPE_LENGTH (type);
4387 gdb_byte *buf = alloca (len);
4388 CORE_ADDR addr;
4389
4390 addr = value_address (value);
4391 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4392 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4393 return addr;
4394}
4395
14f9c5c9 4396
4c4b4cd2
PH
4397/* Push a descriptor of type TYPE for array value ARR on the stack at
4398 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4399 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4400 to-descriptor type rather than a descriptor type), a struct value *
4401 representing a pointer to this descriptor. */
14f9c5c9 4402
d2e4a39e 4403static struct value *
40bc484c 4404make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4405{
d2e4a39e
AS
4406 struct type *bounds_type = desc_bounds_type (type);
4407 struct type *desc_type = desc_base_type (type);
4408 struct value *descriptor = allocate_value (desc_type);
4409 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4410 int i;
d2e4a39e 4411
0963b4bd
MS
4412 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4413 i > 0; i -= 1)
14f9c5c9 4414 {
19f220c3
JK
4415 modify_field (value_type (bounds), value_contents_writeable (bounds),
4416 ada_array_bound (arr, i, 0),
4417 desc_bound_bitpos (bounds_type, i, 0),
4418 desc_bound_bitsize (bounds_type, i, 0));
4419 modify_field (value_type (bounds), value_contents_writeable (bounds),
4420 ada_array_bound (arr, i, 1),
4421 desc_bound_bitpos (bounds_type, i, 1),
4422 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4423 }
d2e4a39e 4424
40bc484c 4425 bounds = ensure_lval (bounds);
d2e4a39e 4426
19f220c3
JK
4427 modify_field (value_type (descriptor),
4428 value_contents_writeable (descriptor),
4429 value_pointer (ensure_lval (arr),
4430 TYPE_FIELD_TYPE (desc_type, 0)),
4431 fat_pntr_data_bitpos (desc_type),
4432 fat_pntr_data_bitsize (desc_type));
4433
4434 modify_field (value_type (descriptor),
4435 value_contents_writeable (descriptor),
4436 value_pointer (bounds,
4437 TYPE_FIELD_TYPE (desc_type, 1)),
4438 fat_pntr_bounds_bitpos (desc_type),
4439 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4440
40bc484c 4441 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4442
4443 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4444 return value_addr (descriptor);
4445 else
4446 return descriptor;
4447}
14f9c5c9 4448\f
3d9434b5
JB
4449 /* Symbol Cache Module */
4450
3d9434b5 4451/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4452 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4453 on the type of entity being printed, the cache can make it as much
4454 as an order of magnitude faster than without it.
4455
4456 The descriptive type DWARF extension has significantly reduced
4457 the need for this cache, at least when DWARF is being used. However,
4458 even in this case, some expensive name-based symbol searches are still
4459 sometimes necessary - to find an XVZ variable, mostly. */
4460
ee01b665 4461/* Initialize the contents of SYM_CACHE. */
3d9434b5 4462
ee01b665
JB
4463static void
4464ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4465{
4466 obstack_init (&sym_cache->cache_space);
4467 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4468}
3d9434b5 4469
ee01b665
JB
4470/* Free the memory used by SYM_CACHE. */
4471
4472static void
4473ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4474{
ee01b665
JB
4475 obstack_free (&sym_cache->cache_space, NULL);
4476 xfree (sym_cache);
4477}
3d9434b5 4478
ee01b665
JB
4479/* Return the symbol cache associated to the given program space PSPACE.
4480 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4481
ee01b665
JB
4482static struct ada_symbol_cache *
4483ada_get_symbol_cache (struct program_space *pspace)
4484{
4485 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4486
66c168ae 4487 if (pspace_data->sym_cache == NULL)
ee01b665 4488 {
66c168ae
JB
4489 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4490 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4491 }
4492
66c168ae 4493 return pspace_data->sym_cache;
ee01b665 4494}
3d9434b5
JB
4495
4496/* Clear all entries from the symbol cache. */
4497
4498static void
4499ada_clear_symbol_cache (void)
4500{
ee01b665
JB
4501 struct ada_symbol_cache *sym_cache
4502 = ada_get_symbol_cache (current_program_space);
4503
4504 obstack_free (&sym_cache->cache_space, NULL);
4505 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4506}
4507
fe978cb0 4508/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4509 Return it if found, or NULL otherwise. */
4510
4511static struct cache_entry **
fe978cb0 4512find_entry (const char *name, domain_enum domain)
3d9434b5 4513{
ee01b665
JB
4514 struct ada_symbol_cache *sym_cache
4515 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4516 int h = msymbol_hash (name) % HASH_SIZE;
4517 struct cache_entry **e;
4518
ee01b665 4519 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4520 {
fe978cb0 4521 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4522 return e;
4523 }
4524 return NULL;
4525}
4526
fe978cb0 4527/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4528 Return 1 if found, 0 otherwise.
4529
4530 If an entry was found and SYM is not NULL, set *SYM to the entry's
4531 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4532
96d887e8 4533static int
fe978cb0 4534lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4535 struct symbol **sym, const struct block **block)
96d887e8 4536{
fe978cb0 4537 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4538
4539 if (e == NULL)
4540 return 0;
4541 if (sym != NULL)
4542 *sym = (*e)->sym;
4543 if (block != NULL)
4544 *block = (*e)->block;
4545 return 1;
96d887e8
PH
4546}
4547
3d9434b5 4548/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4549 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4550
96d887e8 4551static void
fe978cb0 4552cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4553 const struct block *block)
96d887e8 4554{
ee01b665
JB
4555 struct ada_symbol_cache *sym_cache
4556 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4557 int h;
4558 char *copy;
4559 struct cache_entry *e;
4560
1994afbf
DE
4561 /* Symbols for builtin types don't have a block.
4562 For now don't cache such symbols. */
4563 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4564 return;
4565
3d9434b5
JB
4566 /* If the symbol is a local symbol, then do not cache it, as a search
4567 for that symbol depends on the context. To determine whether
4568 the symbol is local or not, we check the block where we found it
4569 against the global and static blocks of its associated symtab. */
4570 if (sym
08be3fe3 4571 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4572 GLOBAL_BLOCK) != block
08be3fe3 4573 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4574 STATIC_BLOCK) != block)
3d9434b5
JB
4575 return;
4576
4577 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4578 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4579 sizeof (*e));
4580 e->next = sym_cache->root[h];
4581 sym_cache->root[h] = e;
4582 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4583 strcpy (copy, name);
4584 e->sym = sym;
fe978cb0 4585 e->domain = domain;
3d9434b5 4586 e->block = block;
96d887e8 4587}
4c4b4cd2
PH
4588\f
4589 /* Symbol Lookup */
4590
c0431670
JB
4591/* Return nonzero if wild matching should be used when searching for
4592 all symbols matching LOOKUP_NAME.
4593
4594 LOOKUP_NAME is expected to be a symbol name after transformation
4595 for Ada lookups (see ada_name_for_lookup). */
4596
4597static int
4598should_use_wild_match (const char *lookup_name)
4599{
4600 return (strstr (lookup_name, "__") == NULL);
4601}
4602
4c4b4cd2
PH
4603/* Return the result of a standard (literal, C-like) lookup of NAME in
4604 given DOMAIN, visible from lexical block BLOCK. */
4605
4606static struct symbol *
4607standard_lookup (const char *name, const struct block *block,
4608 domain_enum domain)
4609{
acbd605d 4610 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4611 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4612
d12307c1
PMR
4613 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4614 return sym.symbol;
2570f2b7 4615 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4616 cache_symbol (name, domain, sym.symbol, sym.block);
4617 return sym.symbol;
4c4b4cd2
PH
4618}
4619
4620
4621/* Non-zero iff there is at least one non-function/non-enumeral symbol
4622 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4623 since they contend in overloading in the same way. */
4624static int
d12307c1 4625is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4626{
4627 int i;
4628
4629 for (i = 0; i < n; i += 1)
d12307c1
PMR
4630 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4631 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4632 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4633 return 1;
4634
4635 return 0;
4636}
4637
4638/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4639 struct types. Otherwise, they may not. */
14f9c5c9
AS
4640
4641static int
d2e4a39e 4642equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4643{
d2e4a39e 4644 if (type0 == type1)
14f9c5c9 4645 return 1;
d2e4a39e 4646 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4647 || TYPE_CODE (type0) != TYPE_CODE (type1))
4648 return 0;
d2e4a39e 4649 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4650 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4651 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4652 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4653 return 1;
d2e4a39e 4654
14f9c5c9
AS
4655 return 0;
4656}
4657
4658/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4659 no more defined than that of SYM1. */
14f9c5c9
AS
4660
4661static int
d2e4a39e 4662lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4663{
4664 if (sym0 == sym1)
4665 return 1;
176620f1 4666 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4667 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4668 return 0;
4669
d2e4a39e 4670 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4671 {
4672 case LOC_UNDEF:
4673 return 1;
4674 case LOC_TYPEDEF:
4675 {
4c4b4cd2
PH
4676 struct type *type0 = SYMBOL_TYPE (sym0);
4677 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4678 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4679 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4680 int len0 = strlen (name0);
5b4ee69b 4681
4c4b4cd2
PH
4682 return
4683 TYPE_CODE (type0) == TYPE_CODE (type1)
4684 && (equiv_types (type0, type1)
4685 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4686 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4687 }
4688 case LOC_CONST:
4689 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4690 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4691 default:
4692 return 0;
14f9c5c9
AS
4693 }
4694}
4695
d12307c1 4696/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4697 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4698
4699static void
76a01679
JB
4700add_defn_to_vec (struct obstack *obstackp,
4701 struct symbol *sym,
f0c5f9b2 4702 const struct block *block)
14f9c5c9
AS
4703{
4704 int i;
d12307c1 4705 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4706
529cad9c
PH
4707 /* Do not try to complete stub types, as the debugger is probably
4708 already scanning all symbols matching a certain name at the
4709 time when this function is called. Trying to replace the stub
4710 type by its associated full type will cause us to restart a scan
4711 which may lead to an infinite recursion. Instead, the client
4712 collecting the matching symbols will end up collecting several
4713 matches, with at least one of them complete. It can then filter
4714 out the stub ones if needed. */
4715
4c4b4cd2
PH
4716 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4717 {
d12307c1 4718 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4719 return;
d12307c1 4720 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4721 {
d12307c1 4722 prevDefns[i].symbol = sym;
4c4b4cd2 4723 prevDefns[i].block = block;
4c4b4cd2 4724 return;
76a01679 4725 }
4c4b4cd2
PH
4726 }
4727
4728 {
d12307c1 4729 struct block_symbol info;
4c4b4cd2 4730
d12307c1 4731 info.symbol = sym;
4c4b4cd2 4732 info.block = block;
d12307c1 4733 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4734 }
4735}
4736
d12307c1
PMR
4737/* Number of block_symbol structures currently collected in current vector in
4738 OBSTACKP. */
4c4b4cd2 4739
76a01679
JB
4740static int
4741num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4742{
d12307c1 4743 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4744}
4745
d12307c1
PMR
4746/* Vector of block_symbol structures currently collected in current vector in
4747 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4748
d12307c1 4749static struct block_symbol *
4c4b4cd2
PH
4750defns_collected (struct obstack *obstackp, int finish)
4751{
4752 if (finish)
4753 return obstack_finish (obstackp);
4754 else
d12307c1 4755 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4756}
4757
7c7b6655
TT
4758/* Return a bound minimal symbol matching NAME according to Ada
4759 decoding rules. Returns an invalid symbol if there is no such
4760 minimal symbol. Names prefixed with "standard__" are handled
4761 specially: "standard__" is first stripped off, and only static and
4762 global symbols are searched. */
4c4b4cd2 4763
7c7b6655 4764struct bound_minimal_symbol
96d887e8 4765ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4766{
7c7b6655 4767 struct bound_minimal_symbol result;
4c4b4cd2 4768 struct objfile *objfile;
96d887e8 4769 struct minimal_symbol *msymbol;
dc4024cd 4770 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4771
7c7b6655
TT
4772 memset (&result, 0, sizeof (result));
4773
c0431670
JB
4774 /* Special case: If the user specifies a symbol name inside package
4775 Standard, do a non-wild matching of the symbol name without
4776 the "standard__" prefix. This was primarily introduced in order
4777 to allow the user to specifically access the standard exceptions
4778 using, for instance, Standard.Constraint_Error when Constraint_Error
4779 is ambiguous (due to the user defining its own Constraint_Error
4780 entity inside its program). */
61012eef 4781 if (startswith (name, "standard__"))
c0431670 4782 name += sizeof ("standard__") - 1;
4c4b4cd2 4783
96d887e8
PH
4784 ALL_MSYMBOLS (objfile, msymbol)
4785 {
efd66ac6 4786 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4787 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4788 {
4789 result.minsym = msymbol;
4790 result.objfile = objfile;
4791 break;
4792 }
96d887e8 4793 }
4c4b4cd2 4794
7c7b6655 4795 return result;
96d887e8 4796}
4c4b4cd2 4797
96d887e8
PH
4798/* For all subprograms that statically enclose the subprogram of the
4799 selected frame, add symbols matching identifier NAME in DOMAIN
4800 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4801 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4802 with a wildcard prefix. */
4c4b4cd2 4803
96d887e8
PH
4804static void
4805add_symbols_from_enclosing_procs (struct obstack *obstackp,
fe978cb0 4806 const char *name, domain_enum domain,
48b78332 4807 int wild_match_p)
96d887e8 4808{
96d887e8 4809}
14f9c5c9 4810
96d887e8
PH
4811/* True if TYPE is definitely an artificial type supplied to a symbol
4812 for which no debugging information was given in the symbol file. */
14f9c5c9 4813
96d887e8
PH
4814static int
4815is_nondebugging_type (struct type *type)
4816{
0d5cff50 4817 const char *name = ada_type_name (type);
5b4ee69b 4818
96d887e8
PH
4819 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4820}
4c4b4cd2 4821
8f17729f
JB
4822/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4823 that are deemed "identical" for practical purposes.
4824
4825 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4826 types and that their number of enumerals is identical (in other
4827 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4828
4829static int
4830ada_identical_enum_types_p (struct type *type1, struct type *type2)
4831{
4832 int i;
4833
4834 /* The heuristic we use here is fairly conservative. We consider
4835 that 2 enumerate types are identical if they have the same
4836 number of enumerals and that all enumerals have the same
4837 underlying value and name. */
4838
4839 /* All enums in the type should have an identical underlying value. */
4840 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4841 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4842 return 0;
4843
4844 /* All enumerals should also have the same name (modulo any numerical
4845 suffix). */
4846 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4847 {
0d5cff50
DE
4848 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4849 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4850 int len_1 = strlen (name_1);
4851 int len_2 = strlen (name_2);
4852
4853 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4854 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4855 if (len_1 != len_2
4856 || strncmp (TYPE_FIELD_NAME (type1, i),
4857 TYPE_FIELD_NAME (type2, i),
4858 len_1) != 0)
4859 return 0;
4860 }
4861
4862 return 1;
4863}
4864
4865/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4866 that are deemed "identical" for practical purposes. Sometimes,
4867 enumerals are not strictly identical, but their types are so similar
4868 that they can be considered identical.
4869
4870 For instance, consider the following code:
4871
4872 type Color is (Black, Red, Green, Blue, White);
4873 type RGB_Color is new Color range Red .. Blue;
4874
4875 Type RGB_Color is a subrange of an implicit type which is a copy
4876 of type Color. If we call that implicit type RGB_ColorB ("B" is
4877 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4878 As a result, when an expression references any of the enumeral
4879 by name (Eg. "print green"), the expression is technically
4880 ambiguous and the user should be asked to disambiguate. But
4881 doing so would only hinder the user, since it wouldn't matter
4882 what choice he makes, the outcome would always be the same.
4883 So, for practical purposes, we consider them as the same. */
4884
4885static int
d12307c1 4886symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
4887{
4888 int i;
4889
4890 /* Before performing a thorough comparison check of each type,
4891 we perform a series of inexpensive checks. We expect that these
4892 checks will quickly fail in the vast majority of cases, and thus
4893 help prevent the unnecessary use of a more expensive comparison.
4894 Said comparison also expects us to make some of these checks
4895 (see ada_identical_enum_types_p). */
4896
4897 /* Quick check: All symbols should have an enum type. */
4898 for (i = 0; i < nsyms; i++)
d12307c1 4899 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
4900 return 0;
4901
4902 /* Quick check: They should all have the same value. */
4903 for (i = 1; i < nsyms; i++)
d12307c1 4904 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4905 return 0;
4906
4907 /* Quick check: They should all have the same number of enumerals. */
4908 for (i = 1; i < nsyms; i++)
d12307c1
PMR
4909 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4910 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4911 return 0;
4912
4913 /* All the sanity checks passed, so we might have a set of
4914 identical enumeration types. Perform a more complete
4915 comparison of the type of each symbol. */
4916 for (i = 1; i < nsyms; i++)
d12307c1
PMR
4917 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4918 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4919 return 0;
4920
4921 return 1;
4922}
4923
96d887e8
PH
4924/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4925 duplicate other symbols in the list (The only case I know of where
4926 this happens is when object files containing stabs-in-ecoff are
4927 linked with files containing ordinary ecoff debugging symbols (or no
4928 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4929 Returns the number of items in the modified list. */
4c4b4cd2 4930
96d887e8 4931static int
d12307c1 4932remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
4933{
4934 int i, j;
4c4b4cd2 4935
8f17729f
JB
4936 /* We should never be called with less than 2 symbols, as there
4937 cannot be any extra symbol in that case. But it's easy to
4938 handle, since we have nothing to do in that case. */
4939 if (nsyms < 2)
4940 return nsyms;
4941
96d887e8
PH
4942 i = 0;
4943 while (i < nsyms)
4944 {
a35ddb44 4945 int remove_p = 0;
339c13b6
JB
4946
4947 /* If two symbols have the same name and one of them is a stub type,
4948 the get rid of the stub. */
4949
d12307c1
PMR
4950 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
4951 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
4952 {
4953 for (j = 0; j < nsyms; j++)
4954 {
4955 if (j != i
d12307c1
PMR
4956 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
4957 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
4958 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
4959 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 4960 remove_p = 1;
339c13b6
JB
4961 }
4962 }
4963
4964 /* Two symbols with the same name, same class and same address
4965 should be identical. */
4966
d12307c1
PMR
4967 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
4968 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
4969 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
4970 {
4971 for (j = 0; j < nsyms; j += 1)
4972 {
4973 if (i != j
d12307c1
PMR
4974 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
4975 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
4976 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
4977 && SYMBOL_CLASS (syms[i].symbol)
4978 == SYMBOL_CLASS (syms[j].symbol)
4979 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
4980 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 4981 remove_p = 1;
4c4b4cd2 4982 }
4c4b4cd2 4983 }
339c13b6 4984
a35ddb44 4985 if (remove_p)
339c13b6
JB
4986 {
4987 for (j = i + 1; j < nsyms; j += 1)
4988 syms[j - 1] = syms[j];
4989 nsyms -= 1;
4990 }
4991
96d887e8 4992 i += 1;
14f9c5c9 4993 }
8f17729f
JB
4994
4995 /* If all the remaining symbols are identical enumerals, then
4996 just keep the first one and discard the rest.
4997
4998 Unlike what we did previously, we do not discard any entry
4999 unless they are ALL identical. This is because the symbol
5000 comparison is not a strict comparison, but rather a practical
5001 comparison. If all symbols are considered identical, then
5002 we can just go ahead and use the first one and discard the rest.
5003 But if we cannot reduce the list to a single element, we have
5004 to ask the user to disambiguate anyways. And if we have to
5005 present a multiple-choice menu, it's less confusing if the list
5006 isn't missing some choices that were identical and yet distinct. */
5007 if (symbols_are_identical_enums (syms, nsyms))
5008 nsyms = 1;
5009
96d887e8 5010 return nsyms;
14f9c5c9
AS
5011}
5012
96d887e8
PH
5013/* Given a type that corresponds to a renaming entity, use the type name
5014 to extract the scope (package name or function name, fully qualified,
5015 and following the GNAT encoding convention) where this renaming has been
5016 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5017
96d887e8
PH
5018static char *
5019xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5020{
96d887e8 5021 /* The renaming types adhere to the following convention:
0963b4bd 5022 <scope>__<rename>___<XR extension>.
96d887e8
PH
5023 So, to extract the scope, we search for the "___XR" extension,
5024 and then backtrack until we find the first "__". */
76a01679 5025
96d887e8
PH
5026 const char *name = type_name_no_tag (renaming_type);
5027 char *suffix = strstr (name, "___XR");
5028 char *last;
5029 int scope_len;
5030 char *scope;
14f9c5c9 5031
96d887e8
PH
5032 /* Now, backtrack a bit until we find the first "__". Start looking
5033 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5034
96d887e8
PH
5035 for (last = suffix - 3; last > name; last--)
5036 if (last[0] == '_' && last[1] == '_')
5037 break;
76a01679 5038
96d887e8 5039 /* Make a copy of scope and return it. */
14f9c5c9 5040
96d887e8
PH
5041 scope_len = last - name;
5042 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5043
96d887e8
PH
5044 strncpy (scope, name, scope_len);
5045 scope[scope_len] = '\0';
4c4b4cd2 5046
96d887e8 5047 return scope;
4c4b4cd2
PH
5048}
5049
96d887e8 5050/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5051
96d887e8
PH
5052static int
5053is_package_name (const char *name)
4c4b4cd2 5054{
96d887e8
PH
5055 /* Here, We take advantage of the fact that no symbols are generated
5056 for packages, while symbols are generated for each function.
5057 So the condition for NAME represent a package becomes equivalent
5058 to NAME not existing in our list of symbols. There is only one
5059 small complication with library-level functions (see below). */
4c4b4cd2 5060
96d887e8 5061 char *fun_name;
76a01679 5062
96d887e8
PH
5063 /* If it is a function that has not been defined at library level,
5064 then we should be able to look it up in the symbols. */
5065 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5066 return 0;
14f9c5c9 5067
96d887e8
PH
5068 /* Library-level function names start with "_ada_". See if function
5069 "_ada_" followed by NAME can be found. */
14f9c5c9 5070
96d887e8 5071 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5072 functions names cannot contain "__" in them. */
96d887e8
PH
5073 if (strstr (name, "__") != NULL)
5074 return 0;
4c4b4cd2 5075
b435e160 5076 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5077
96d887e8
PH
5078 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5079}
14f9c5c9 5080
96d887e8 5081/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5082 not visible from FUNCTION_NAME. */
14f9c5c9 5083
96d887e8 5084static int
0d5cff50 5085old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5086{
aeb5907d 5087 char *scope;
1509e573 5088 struct cleanup *old_chain;
aeb5907d
JB
5089
5090 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5091 return 0;
5092
5093 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5094 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5095
96d887e8
PH
5096 /* If the rename has been defined in a package, then it is visible. */
5097 if (is_package_name (scope))
1509e573
JB
5098 {
5099 do_cleanups (old_chain);
5100 return 0;
5101 }
14f9c5c9 5102
96d887e8
PH
5103 /* Check that the rename is in the current function scope by checking
5104 that its name starts with SCOPE. */
76a01679 5105
96d887e8
PH
5106 /* If the function name starts with "_ada_", it means that it is
5107 a library-level function. Strip this prefix before doing the
5108 comparison, as the encoding for the renaming does not contain
5109 this prefix. */
61012eef 5110 if (startswith (function_name, "_ada_"))
96d887e8 5111 function_name += 5;
f26caa11 5112
1509e573 5113 {
61012eef 5114 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5115
5116 do_cleanups (old_chain);
5117 return is_invisible;
5118 }
f26caa11
PH
5119}
5120
aeb5907d
JB
5121/* Remove entries from SYMS that corresponds to a renaming entity that
5122 is not visible from the function associated with CURRENT_BLOCK or
5123 that is superfluous due to the presence of more specific renaming
5124 information. Places surviving symbols in the initial entries of
5125 SYMS and returns the number of surviving symbols.
96d887e8
PH
5126
5127 Rationale:
aeb5907d
JB
5128 First, in cases where an object renaming is implemented as a
5129 reference variable, GNAT may produce both the actual reference
5130 variable and the renaming encoding. In this case, we discard the
5131 latter.
5132
5133 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5134 entity. Unfortunately, STABS currently does not support the definition
5135 of types that are local to a given lexical block, so all renamings types
5136 are emitted at library level. As a consequence, if an application
5137 contains two renaming entities using the same name, and a user tries to
5138 print the value of one of these entities, the result of the ada symbol
5139 lookup will also contain the wrong renaming type.
f26caa11 5140
96d887e8
PH
5141 This function partially covers for this limitation by attempting to
5142 remove from the SYMS list renaming symbols that should be visible
5143 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5144 method with the current information available. The implementation
5145 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5146
5147 - When the user tries to print a rename in a function while there
5148 is another rename entity defined in a package: Normally, the
5149 rename in the function has precedence over the rename in the
5150 package, so the latter should be removed from the list. This is
5151 currently not the case.
5152
5153 - This function will incorrectly remove valid renames if
5154 the CURRENT_BLOCK corresponds to a function which symbol name
5155 has been changed by an "Export" pragma. As a consequence,
5156 the user will be unable to print such rename entities. */
4c4b4cd2 5157
14f9c5c9 5158static int
d12307c1 5159remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5160 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5161{
5162 struct symbol *current_function;
0d5cff50 5163 const char *current_function_name;
4c4b4cd2 5164 int i;
aeb5907d
JB
5165 int is_new_style_renaming;
5166
5167 /* If there is both a renaming foo___XR... encoded as a variable and
5168 a simple variable foo in the same block, discard the latter.
0963b4bd 5169 First, zero out such symbols, then compress. */
aeb5907d
JB
5170 is_new_style_renaming = 0;
5171 for (i = 0; i < nsyms; i += 1)
5172 {
d12307c1 5173 struct symbol *sym = syms[i].symbol;
270140bd 5174 const struct block *block = syms[i].block;
aeb5907d
JB
5175 const char *name;
5176 const char *suffix;
5177
5178 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5179 continue;
5180 name = SYMBOL_LINKAGE_NAME (sym);
5181 suffix = strstr (name, "___XR");
5182
5183 if (suffix != NULL)
5184 {
5185 int name_len = suffix - name;
5186 int j;
5b4ee69b 5187
aeb5907d
JB
5188 is_new_style_renaming = 1;
5189 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5190 if (i != j && syms[j].symbol != NULL
5191 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5192 name_len) == 0
5193 && block == syms[j].block)
d12307c1 5194 syms[j].symbol = NULL;
aeb5907d
JB
5195 }
5196 }
5197 if (is_new_style_renaming)
5198 {
5199 int j, k;
5200
5201 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5202 if (syms[j].symbol != NULL)
aeb5907d
JB
5203 {
5204 syms[k] = syms[j];
5205 k += 1;
5206 }
5207 return k;
5208 }
4c4b4cd2
PH
5209
5210 /* Extract the function name associated to CURRENT_BLOCK.
5211 Abort if unable to do so. */
76a01679 5212
4c4b4cd2
PH
5213 if (current_block == NULL)
5214 return nsyms;
76a01679 5215
7f0df278 5216 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5217 if (current_function == NULL)
5218 return nsyms;
5219
5220 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5221 if (current_function_name == NULL)
5222 return nsyms;
5223
5224 /* Check each of the symbols, and remove it from the list if it is
5225 a type corresponding to a renaming that is out of the scope of
5226 the current block. */
5227
5228 i = 0;
5229 while (i < nsyms)
5230 {
d12307c1 5231 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5232 == ADA_OBJECT_RENAMING
d12307c1 5233 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5234 {
5235 int j;
5b4ee69b 5236
aeb5907d 5237 for (j = i + 1; j < nsyms; j += 1)
76a01679 5238 syms[j - 1] = syms[j];
4c4b4cd2
PH
5239 nsyms -= 1;
5240 }
5241 else
5242 i += 1;
5243 }
5244
5245 return nsyms;
5246}
5247
339c13b6
JB
5248/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5249 whose name and domain match NAME and DOMAIN respectively.
5250 If no match was found, then extend the search to "enclosing"
5251 routines (in other words, if we're inside a nested function,
5252 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5253 If WILD_MATCH_P is nonzero, perform the naming matching in
5254 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5255
5256 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5257
5258static void
5259ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5260 const struct block *block, domain_enum domain,
d0a8ab18 5261 int wild_match_p)
339c13b6
JB
5262{
5263 int block_depth = 0;
5264
5265 while (block != NULL)
5266 {
5267 block_depth += 1;
d0a8ab18
JB
5268 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5269 wild_match_p);
339c13b6
JB
5270
5271 /* If we found a non-function match, assume that's the one. */
5272 if (is_nonfunction (defns_collected (obstackp, 0),
5273 num_defns_collected (obstackp)))
5274 return;
5275
5276 block = BLOCK_SUPERBLOCK (block);
5277 }
5278
5279 /* If no luck so far, try to find NAME as a local symbol in some lexically
5280 enclosing subprogram. */
5281 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5282 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5283}
5284
ccefe4c4 5285/* An object of this type is used as the user_data argument when
40658b94 5286 calling the map_matching_symbols method. */
ccefe4c4 5287
40658b94 5288struct match_data
ccefe4c4 5289{
40658b94 5290 struct objfile *objfile;
ccefe4c4 5291 struct obstack *obstackp;
40658b94
PH
5292 struct symbol *arg_sym;
5293 int found_sym;
ccefe4c4
TT
5294};
5295
22cee43f 5296/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5297 to a list of symbols. DATA0 is a pointer to a struct match_data *
5298 containing the obstack that collects the symbol list, the file that SYM
5299 must come from, a flag indicating whether a non-argument symbol has
5300 been found in the current block, and the last argument symbol
5301 passed in SYM within the current block (if any). When SYM is null,
5302 marking the end of a block, the argument symbol is added if no
5303 other has been found. */
ccefe4c4 5304
40658b94
PH
5305static int
5306aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5307{
40658b94
PH
5308 struct match_data *data = (struct match_data *) data0;
5309
5310 if (sym == NULL)
5311 {
5312 if (!data->found_sym && data->arg_sym != NULL)
5313 add_defn_to_vec (data->obstackp,
5314 fixup_symbol_section (data->arg_sym, data->objfile),
5315 block);
5316 data->found_sym = 0;
5317 data->arg_sym = NULL;
5318 }
5319 else
5320 {
5321 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5322 return 0;
5323 else if (SYMBOL_IS_ARGUMENT (sym))
5324 data->arg_sym = sym;
5325 else
5326 {
5327 data->found_sym = 1;
5328 add_defn_to_vec (data->obstackp,
5329 fixup_symbol_section (sym, data->objfile),
5330 block);
5331 }
5332 }
5333 return 0;
5334}
5335
22cee43f
PMR
5336/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5337 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5338 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5339 function "wild_match" for more information). Return whether we found such
5340 symbols. */
5341
5342static int
5343ada_add_block_renamings (struct obstack *obstackp,
5344 const struct block *block,
5345 const char *name,
5346 domain_enum domain,
5347 int wild_match_p)
5348{
5349 struct using_direct *renaming;
5350 int defns_mark = num_defns_collected (obstackp);
5351
5352 for (renaming = block_using (block);
5353 renaming != NULL;
5354 renaming = renaming->next)
5355 {
5356 const char *r_name;
5357 int name_match;
5358
5359 /* Avoid infinite recursions: skip this renaming if we are actually
5360 already traversing it.
5361
5362 Currently, symbol lookup in Ada don't use the namespace machinery from
5363 C++/Fortran support: skip namespace imports that use them. */
5364 if (renaming->searched
5365 || (renaming->import_src != NULL
5366 && renaming->import_src[0] != '\0')
5367 || (renaming->import_dest != NULL
5368 && renaming->import_dest[0] != '\0'))
5369 continue;
5370 renaming->searched = 1;
5371
5372 /* TODO: here, we perform another name-based symbol lookup, which can
5373 pull its own multiple overloads. In theory, we should be able to do
5374 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5375 not a simple name. But in order to do this, we would need to enhance
5376 the DWARF reader to associate a symbol to this renaming, instead of a
5377 name. So, for now, we do something simpler: re-use the C++/Fortran
5378 namespace machinery. */
5379 r_name = (renaming->alias != NULL
5380 ? renaming->alias
5381 : renaming->declaration);
5382 name_match
5383 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5384 if (name_match == 0)
5385 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5386 1, NULL);
5387 renaming->searched = 0;
5388 }
5389 return num_defns_collected (obstackp) != defns_mark;
5390}
5391
db230ce3
JB
5392/* Implements compare_names, but only applying the comparision using
5393 the given CASING. */
5b4ee69b 5394
40658b94 5395static int
db230ce3
JB
5396compare_names_with_case (const char *string1, const char *string2,
5397 enum case_sensitivity casing)
40658b94
PH
5398{
5399 while (*string1 != '\0' && *string2 != '\0')
5400 {
db230ce3
JB
5401 char c1, c2;
5402
40658b94
PH
5403 if (isspace (*string1) || isspace (*string2))
5404 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5405
5406 if (casing == case_sensitive_off)
5407 {
5408 c1 = tolower (*string1);
5409 c2 = tolower (*string2);
5410 }
5411 else
5412 {
5413 c1 = *string1;
5414 c2 = *string2;
5415 }
5416 if (c1 != c2)
40658b94 5417 break;
db230ce3 5418
40658b94
PH
5419 string1 += 1;
5420 string2 += 1;
5421 }
db230ce3 5422
40658b94
PH
5423 switch (*string1)
5424 {
5425 case '(':
5426 return strcmp_iw_ordered (string1, string2);
5427 case '_':
5428 if (*string2 == '\0')
5429 {
052874e8 5430 if (is_name_suffix (string1))
40658b94
PH
5431 return 0;
5432 else
1a1d5513 5433 return 1;
40658b94 5434 }
dbb8534f 5435 /* FALLTHROUGH */
40658b94
PH
5436 default:
5437 if (*string2 == '(')
5438 return strcmp_iw_ordered (string1, string2);
5439 else
db230ce3
JB
5440 {
5441 if (casing == case_sensitive_off)
5442 return tolower (*string1) - tolower (*string2);
5443 else
5444 return *string1 - *string2;
5445 }
40658b94 5446 }
ccefe4c4
TT
5447}
5448
db230ce3
JB
5449/* Compare STRING1 to STRING2, with results as for strcmp.
5450 Compatible with strcmp_iw_ordered in that...
5451
5452 strcmp_iw_ordered (STRING1, STRING2) <= 0
5453
5454 ... implies...
5455
5456 compare_names (STRING1, STRING2) <= 0
5457
5458 (they may differ as to what symbols compare equal). */
5459
5460static int
5461compare_names (const char *string1, const char *string2)
5462{
5463 int result;
5464
5465 /* Similar to what strcmp_iw_ordered does, we need to perform
5466 a case-insensitive comparison first, and only resort to
5467 a second, case-sensitive, comparison if the first one was
5468 not sufficient to differentiate the two strings. */
5469
5470 result = compare_names_with_case (string1, string2, case_sensitive_off);
5471 if (result == 0)
5472 result = compare_names_with_case (string1, string2, case_sensitive_on);
5473
5474 return result;
5475}
5476
339c13b6
JB
5477/* Add to OBSTACKP all non-local symbols whose name and domain match
5478 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5479 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5480
5481static void
40658b94
PH
5482add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5483 domain_enum domain, int global,
5484 int is_wild_match)
339c13b6
JB
5485{
5486 struct objfile *objfile;
22cee43f 5487 struct compunit_symtab *cu;
40658b94 5488 struct match_data data;
339c13b6 5489
6475f2fe 5490 memset (&data, 0, sizeof data);
ccefe4c4 5491 data.obstackp = obstackp;
339c13b6 5492
ccefe4c4 5493 ALL_OBJFILES (objfile)
40658b94
PH
5494 {
5495 data.objfile = objfile;
5496
5497 if (is_wild_match)
4186eb54
KS
5498 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5499 aux_add_nonlocal_symbols, &data,
5500 wild_match, NULL);
40658b94 5501 else
4186eb54
KS
5502 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5503 aux_add_nonlocal_symbols, &data,
5504 full_match, compare_names);
22cee43f
PMR
5505
5506 ALL_OBJFILE_COMPUNITS (objfile, cu)
5507 {
5508 const struct block *global_block
5509 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5510
5511 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5512 is_wild_match))
5513 data.found_sym = 1;
5514 }
40658b94
PH
5515 }
5516
5517 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5518 {
5519 ALL_OBJFILES (objfile)
5520 {
5521 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5522 strcpy (name1, "_ada_");
5523 strcpy (name1 + sizeof ("_ada_") - 1, name);
5524 data.objfile = objfile;
ade7ed9e
DE
5525 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5526 global,
0963b4bd
MS
5527 aux_add_nonlocal_symbols,
5528 &data,
40658b94
PH
5529 full_match, compare_names);
5530 }
5531 }
339c13b6
JB
5532}
5533
22cee43f 5534/* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
4eeaa230 5535 non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5536 matches. Add these to OBSTACKP.
4eeaa230 5537
22cee43f
PMR
5538 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5539 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5540 is the one match returned (no other matches in that or
d9680e73 5541 enclosing blocks is returned). If there are any matches in or
22cee43f 5542 surrounding BLOCK, then these alone are returned.
4eeaa230 5543
9f88c959 5544 Names prefixed with "standard__" are handled specially: "standard__"
22cee43f 5545 is first stripped off, and only static and global symbols are searched.
14f9c5c9 5546
22cee43f
PMR
5547 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5548 to lookup global symbols. */
5549
5550static void
5551ada_add_all_symbols (struct obstack *obstackp,
5552 const struct block *block,
5553 const char *name,
5554 domain_enum domain,
5555 int full_search,
5556 int *made_global_lookup_p)
14f9c5c9
AS
5557{
5558 struct symbol *sym;
22cee43f 5559 const int wild_match_p = should_use_wild_match (name);
14f9c5c9 5560
22cee43f
PMR
5561 if (made_global_lookup_p)
5562 *made_global_lookup_p = 0;
339c13b6
JB
5563
5564 /* Special case: If the user specifies a symbol name inside package
5565 Standard, do a non-wild matching of the symbol name without
5566 the "standard__" prefix. This was primarily introduced in order
5567 to allow the user to specifically access the standard exceptions
5568 using, for instance, Standard.Constraint_Error when Constraint_Error
5569 is ambiguous (due to the user defining its own Constraint_Error
5570 entity inside its program). */
22cee43f 5571 if (startswith (name, "standard__"))
4c4b4cd2 5572 {
4c4b4cd2 5573 block = NULL;
22cee43f 5574 name = name + sizeof ("standard__") - 1;
4c4b4cd2
PH
5575 }
5576
339c13b6 5577 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5578
4eeaa230
DE
5579 if (block != NULL)
5580 {
5581 if (full_search)
22cee43f 5582 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
4eeaa230
DE
5583 else
5584 {
5585 /* In the !full_search case we're are being called by
5586 ada_iterate_over_symbols, and we don't want to search
5587 superblocks. */
22cee43f
PMR
5588 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5589 wild_match_p);
4eeaa230 5590 }
22cee43f
PMR
5591 if (num_defns_collected (obstackp) > 0 || !full_search)
5592 return;
4eeaa230 5593 }
d2e4a39e 5594
339c13b6
JB
5595 /* No non-global symbols found. Check our cache to see if we have
5596 already performed this search before. If we have, then return
5597 the same result. */
5598
22cee43f 5599 if (lookup_cached_symbol (name, domain, &sym, &block))
4c4b4cd2
PH
5600 {
5601 if (sym != NULL)
22cee43f
PMR
5602 add_defn_to_vec (obstackp, sym, block);
5603 return;
4c4b4cd2 5604 }
14f9c5c9 5605
22cee43f
PMR
5606 if (made_global_lookup_p)
5607 *made_global_lookup_p = 1;
b1eedac9 5608
339c13b6
JB
5609 /* Search symbols from all global blocks. */
5610
22cee43f 5611 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
d2e4a39e 5612
4c4b4cd2 5613 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5614 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5615
22cee43f
PMR
5616 if (num_defns_collected (obstackp) == 0)
5617 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5618}
5619
5620/* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5621 non-zero, enclosing scope and in global scopes, returning the number of
5622 matches.
5623 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5624 indicating the symbols found and the blocks and symbol tables (if
5625 any) in which they were found. This vector is transient---good only to
5626 the next call of ada_lookup_symbol_list.
5627
5628 When full_search is non-zero, any non-function/non-enumeral
5629 symbol match within the nest of blocks whose innermost member is BLOCK,
5630 is the one match returned (no other matches in that or
5631 enclosing blocks is returned). If there are any matches in or
5632 surrounding BLOCK, then these alone are returned.
5633
5634 Names prefixed with "standard__" are handled specially: "standard__"
5635 is first stripped off, and only static and global symbols are searched. */
5636
5637static int
5638ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5639 domain_enum domain,
5640 struct block_symbol **results,
5641 int full_search)
5642{
5643 const int wild_match_p = should_use_wild_match (name);
5644 int syms_from_global_search;
5645 int ndefns;
5646
5647 obstack_free (&symbol_list_obstack, NULL);
5648 obstack_init (&symbol_list_obstack);
5649 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5650 full_search, &syms_from_global_search);
14f9c5c9 5651
4c4b4cd2
PH
5652 ndefns = num_defns_collected (&symbol_list_obstack);
5653 *results = defns_collected (&symbol_list_obstack, 1);
5654
5655 ndefns = remove_extra_symbols (*results, ndefns);
5656
b1eedac9 5657 if (ndefns == 0 && full_search && syms_from_global_search)
22cee43f 5658 cache_symbol (name, domain, NULL, NULL);
14f9c5c9 5659
b1eedac9 5660 if (ndefns == 1 && full_search && syms_from_global_search)
22cee43f 5661 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5662
22cee43f 5663 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
14f9c5c9
AS
5664 return ndefns;
5665}
5666
4eeaa230
DE
5667/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5668 in global scopes, returning the number of matches, and setting *RESULTS
5669 to a vector of (SYM,BLOCK) tuples.
5670 See ada_lookup_symbol_list_worker for further details. */
5671
5672int
5673ada_lookup_symbol_list (const char *name0, const struct block *block0,
d12307c1 5674 domain_enum domain, struct block_symbol **results)
4eeaa230
DE
5675{
5676 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5677}
5678
5679/* Implementation of the la_iterate_over_symbols method. */
5680
5681static void
5682ada_iterate_over_symbols (const struct block *block,
5683 const char *name, domain_enum domain,
5684 symbol_found_callback_ftype *callback,
5685 void *data)
5686{
5687 int ndefs, i;
d12307c1 5688 struct block_symbol *results;
4eeaa230
DE
5689
5690 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5691 for (i = 0; i < ndefs; ++i)
5692 {
d12307c1 5693 if (! (*callback) (results[i].symbol, data))
4eeaa230
DE
5694 break;
5695 }
5696}
5697
f8eba3c6
TT
5698/* If NAME is the name of an entity, return a string that should
5699 be used to look that entity up in Ada units. This string should
5700 be deallocated after use using xfree.
5701
5702 NAME can have any form that the "break" or "print" commands might
5703 recognize. In other words, it does not have to be the "natural"
5704 name, or the "encoded" name. */
5705
5706char *
5707ada_name_for_lookup (const char *name)
5708{
5709 char *canon;
5710 int nlen = strlen (name);
5711
5712 if (name[0] == '<' && name[nlen - 1] == '>')
5713 {
5714 canon = xmalloc (nlen - 1);
5715 memcpy (canon, name + 1, nlen - 2);
5716 canon[nlen - 2] = '\0';
5717 }
5718 else
5719 canon = xstrdup (ada_encode (ada_fold_name (name)));
5720 return canon;
5721}
5722
4e5c77fe
JB
5723/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5724 to 1, but choosing the first symbol found if there are multiple
5725 choices.
5726
5e2336be
JB
5727 The result is stored in *INFO, which must be non-NULL.
5728 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5729
5730void
5731ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5732 domain_enum domain,
d12307c1 5733 struct block_symbol *info)
14f9c5c9 5734{
d12307c1 5735 struct block_symbol *candidates;
14f9c5c9
AS
5736 int n_candidates;
5737
5e2336be 5738 gdb_assert (info != NULL);
d12307c1 5739 memset (info, 0, sizeof (struct block_symbol));
4e5c77fe 5740
fe978cb0 5741 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
14f9c5c9 5742 if (n_candidates == 0)
4e5c77fe 5743 return;
4c4b4cd2 5744
5e2336be 5745 *info = candidates[0];
d12307c1 5746 info->symbol = fixup_symbol_section (info->symbol, NULL);
4e5c77fe 5747}
aeb5907d
JB
5748
5749/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5750 scope and in global scopes, or NULL if none. NAME is folded and
5751 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5752 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5753 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5754
d12307c1 5755struct block_symbol
aeb5907d 5756ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5757 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5758{
d12307c1 5759 struct block_symbol info;
4e5c77fe 5760
aeb5907d
JB
5761 if (is_a_field_of_this != NULL)
5762 *is_a_field_of_this = 0;
5763
4e5c77fe 5764 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5765 block0, domain, &info);
d12307c1 5766 return info;
4c4b4cd2 5767}
14f9c5c9 5768
d12307c1 5769static struct block_symbol
f606139a
DE
5770ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5771 const char *name,
76a01679 5772 const struct block *block,
21b556f4 5773 const domain_enum domain)
4c4b4cd2 5774{
d12307c1 5775 struct block_symbol sym;
04dccad0
JB
5776
5777 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5778 if (sym.symbol != NULL)
04dccad0
JB
5779 return sym;
5780
5781 /* If we haven't found a match at this point, try the primitive
5782 types. In other languages, this search is performed before
5783 searching for global symbols in order to short-circuit that
5784 global-symbol search if it happens that the name corresponds
5785 to a primitive type. But we cannot do the same in Ada, because
5786 it is perfectly legitimate for a program to declare a type which
5787 has the same name as a standard type. If looking up a type in
5788 that situation, we have traditionally ignored the primitive type
5789 in favor of user-defined types. This is why, unlike most other
5790 languages, we search the primitive types this late and only after
5791 having searched the global symbols without success. */
5792
5793 if (domain == VAR_DOMAIN)
5794 {
5795 struct gdbarch *gdbarch;
5796
5797 if (block == NULL)
5798 gdbarch = target_gdbarch ();
5799 else
5800 gdbarch = block_gdbarch (block);
d12307c1
PMR
5801 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5802 if (sym.symbol != NULL)
04dccad0
JB
5803 return sym;
5804 }
5805
d12307c1 5806 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5807}
5808
5809
4c4b4cd2
PH
5810/* True iff STR is a possible encoded suffix of a normal Ada name
5811 that is to be ignored for matching purposes. Suffixes of parallel
5812 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5813 are given by any of the regular expressions:
4c4b4cd2 5814
babe1480
JB
5815 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5816 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5817 TKB [subprogram suffix for task bodies]
babe1480 5818 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5819 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5820
5821 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5822 match is performed. This sequence is used to differentiate homonyms,
5823 is an optional part of a valid name suffix. */
4c4b4cd2 5824
14f9c5c9 5825static int
d2e4a39e 5826is_name_suffix (const char *str)
14f9c5c9
AS
5827{
5828 int k;
4c4b4cd2
PH
5829 const char *matching;
5830 const int len = strlen (str);
5831
babe1480
JB
5832 /* Skip optional leading __[0-9]+. */
5833
4c4b4cd2
PH
5834 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5835 {
babe1480
JB
5836 str += 3;
5837 while (isdigit (str[0]))
5838 str += 1;
4c4b4cd2 5839 }
babe1480
JB
5840
5841 /* [.$][0-9]+ */
4c4b4cd2 5842
babe1480 5843 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5844 {
babe1480 5845 matching = str + 1;
4c4b4cd2
PH
5846 while (isdigit (matching[0]))
5847 matching += 1;
5848 if (matching[0] == '\0')
5849 return 1;
5850 }
5851
5852 /* ___[0-9]+ */
babe1480 5853
4c4b4cd2
PH
5854 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5855 {
5856 matching = str + 3;
5857 while (isdigit (matching[0]))
5858 matching += 1;
5859 if (matching[0] == '\0')
5860 return 1;
5861 }
5862
9ac7f98e
JB
5863 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5864
5865 if (strcmp (str, "TKB") == 0)
5866 return 1;
5867
529cad9c
PH
5868#if 0
5869 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5870 with a N at the end. Unfortunately, the compiler uses the same
5871 convention for other internal types it creates. So treating
529cad9c 5872 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5873 some regressions. For instance, consider the case of an enumerated
5874 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5875 name ends with N.
5876 Having a single character like this as a suffix carrying some
0963b4bd 5877 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5878 to be something like "_N" instead. In the meantime, do not do
5879 the following check. */
5880 /* Protected Object Subprograms */
5881 if (len == 1 && str [0] == 'N')
5882 return 1;
5883#endif
5884
5885 /* _E[0-9]+[bs]$ */
5886 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5887 {
5888 matching = str + 3;
5889 while (isdigit (matching[0]))
5890 matching += 1;
5891 if ((matching[0] == 'b' || matching[0] == 's')
5892 && matching [1] == '\0')
5893 return 1;
5894 }
5895
4c4b4cd2
PH
5896 /* ??? We should not modify STR directly, as we are doing below. This
5897 is fine in this case, but may become problematic later if we find
5898 that this alternative did not work, and want to try matching
5899 another one from the begining of STR. Since we modified it, we
5900 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5901 if (str[0] == 'X')
5902 {
5903 str += 1;
d2e4a39e 5904 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5905 {
5906 if (str[0] != 'n' && str[0] != 'b')
5907 return 0;
5908 str += 1;
5909 }
14f9c5c9 5910 }
babe1480 5911
14f9c5c9
AS
5912 if (str[0] == '\000')
5913 return 1;
babe1480 5914
d2e4a39e 5915 if (str[0] == '_')
14f9c5c9
AS
5916 {
5917 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5918 return 0;
d2e4a39e 5919 if (str[2] == '_')
4c4b4cd2 5920 {
61ee279c
PH
5921 if (strcmp (str + 3, "JM") == 0)
5922 return 1;
5923 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5924 the LJM suffix in favor of the JM one. But we will
5925 still accept LJM as a valid suffix for a reasonable
5926 amount of time, just to allow ourselves to debug programs
5927 compiled using an older version of GNAT. */
4c4b4cd2
PH
5928 if (strcmp (str + 3, "LJM") == 0)
5929 return 1;
5930 if (str[3] != 'X')
5931 return 0;
1265e4aa
JB
5932 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5933 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5934 return 1;
5935 if (str[4] == 'R' && str[5] != 'T')
5936 return 1;
5937 return 0;
5938 }
5939 if (!isdigit (str[2]))
5940 return 0;
5941 for (k = 3; str[k] != '\0'; k += 1)
5942 if (!isdigit (str[k]) && str[k] != '_')
5943 return 0;
14f9c5c9
AS
5944 return 1;
5945 }
4c4b4cd2 5946 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5947 {
4c4b4cd2
PH
5948 for (k = 2; str[k] != '\0'; k += 1)
5949 if (!isdigit (str[k]) && str[k] != '_')
5950 return 0;
14f9c5c9
AS
5951 return 1;
5952 }
5953 return 0;
5954}
d2e4a39e 5955
aeb5907d
JB
5956/* Return non-zero if the string starting at NAME and ending before
5957 NAME_END contains no capital letters. */
529cad9c
PH
5958
5959static int
5960is_valid_name_for_wild_match (const char *name0)
5961{
5962 const char *decoded_name = ada_decode (name0);
5963 int i;
5964
5823c3ef
JB
5965 /* If the decoded name starts with an angle bracket, it means that
5966 NAME0 does not follow the GNAT encoding format. It should then
5967 not be allowed as a possible wild match. */
5968 if (decoded_name[0] == '<')
5969 return 0;
5970
529cad9c
PH
5971 for (i=0; decoded_name[i] != '\0'; i++)
5972 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5973 return 0;
5974
5975 return 1;
5976}
5977
73589123
PH
5978/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5979 that could start a simple name. Assumes that *NAMEP points into
5980 the string beginning at NAME0. */
4c4b4cd2 5981
14f9c5c9 5982static int
73589123 5983advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5984{
73589123 5985 const char *name = *namep;
5b4ee69b 5986
5823c3ef 5987 while (1)
14f9c5c9 5988 {
aa27d0b3 5989 int t0, t1;
73589123
PH
5990
5991 t0 = *name;
5992 if (t0 == '_')
5993 {
5994 t1 = name[1];
5995 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5996 {
5997 name += 1;
61012eef 5998 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
5999 break;
6000 else
6001 name += 1;
6002 }
aa27d0b3
JB
6003 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6004 || name[2] == target0))
73589123
PH
6005 {
6006 name += 2;
6007 break;
6008 }
6009 else
6010 return 0;
6011 }
6012 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6013 name += 1;
6014 else
5823c3ef 6015 return 0;
73589123
PH
6016 }
6017
6018 *namep = name;
6019 return 1;
6020}
6021
6022/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6023 informational suffixes of NAME (i.e., for which is_name_suffix is
6024 true). Assumes that PATN is a lower-cased Ada simple name. */
6025
6026static int
6027wild_match (const char *name, const char *patn)
6028{
22e048c9 6029 const char *p;
73589123
PH
6030 const char *name0 = name;
6031
6032 while (1)
6033 {
6034 const char *match = name;
6035
6036 if (*name == *patn)
6037 {
6038 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6039 if (*p != *name)
6040 break;
6041 if (*p == '\0' && is_name_suffix (name))
6042 return match != name0 && !is_valid_name_for_wild_match (name0);
6043
6044 if (name[-1] == '_')
6045 name -= 1;
6046 }
6047 if (!advance_wild_match (&name, name0, *patn))
6048 return 1;
96d887e8 6049 }
96d887e8
PH
6050}
6051
40658b94
PH
6052/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6053 informational suffix. */
6054
c4d840bd
PH
6055static int
6056full_match (const char *sym_name, const char *search_name)
6057{
40658b94 6058 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
6059}
6060
6061
96d887e8
PH
6062/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6063 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 6064 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 6065 OBJFILE is the section containing BLOCK. */
96d887e8
PH
6066
6067static void
6068ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 6069 const struct block *block, const char *name,
96d887e8 6070 domain_enum domain, struct objfile *objfile,
2570f2b7 6071 int wild)
96d887e8 6072{
8157b174 6073 struct block_iterator iter;
96d887e8
PH
6074 int name_len = strlen (name);
6075 /* A matching argument symbol, if any. */
6076 struct symbol *arg_sym;
6077 /* Set true when we find a matching non-argument symbol. */
6078 int found_sym;
6079 struct symbol *sym;
6080
6081 arg_sym = NULL;
6082 found_sym = 0;
6083 if (wild)
6084 {
8157b174
TT
6085 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6086 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 6087 {
4186eb54
KS
6088 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6089 SYMBOL_DOMAIN (sym), domain)
73589123 6090 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 6091 {
2a2d4dc3
AS
6092 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6093 continue;
6094 else if (SYMBOL_IS_ARGUMENT (sym))
6095 arg_sym = sym;
6096 else
6097 {
76a01679
JB
6098 found_sym = 1;
6099 add_defn_to_vec (obstackp,
6100 fixup_symbol_section (sym, objfile),
2570f2b7 6101 block);
76a01679
JB
6102 }
6103 }
6104 }
96d887e8
PH
6105 }
6106 else
6107 {
8157b174
TT
6108 for (sym = block_iter_match_first (block, name, full_match, &iter);
6109 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 6110 {
4186eb54
KS
6111 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6112 SYMBOL_DOMAIN (sym), domain))
76a01679 6113 {
c4d840bd
PH
6114 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6115 {
6116 if (SYMBOL_IS_ARGUMENT (sym))
6117 arg_sym = sym;
6118 else
2a2d4dc3 6119 {
c4d840bd
PH
6120 found_sym = 1;
6121 add_defn_to_vec (obstackp,
6122 fixup_symbol_section (sym, objfile),
6123 block);
2a2d4dc3 6124 }
c4d840bd 6125 }
76a01679
JB
6126 }
6127 }
96d887e8
PH
6128 }
6129
22cee43f
PMR
6130 /* Handle renamings. */
6131
6132 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6133 found_sym = 1;
6134
96d887e8
PH
6135 if (!found_sym && arg_sym != NULL)
6136 {
76a01679
JB
6137 add_defn_to_vec (obstackp,
6138 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6139 block);
96d887e8
PH
6140 }
6141
6142 if (!wild)
6143 {
6144 arg_sym = NULL;
6145 found_sym = 0;
6146
6147 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6148 {
4186eb54
KS
6149 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6150 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6151 {
6152 int cmp;
6153
6154 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6155 if (cmp == 0)
6156 {
61012eef 6157 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6158 if (cmp == 0)
6159 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6160 name_len);
6161 }
6162
6163 if (cmp == 0
6164 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6165 {
2a2d4dc3
AS
6166 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6167 {
6168 if (SYMBOL_IS_ARGUMENT (sym))
6169 arg_sym = sym;
6170 else
6171 {
6172 found_sym = 1;
6173 add_defn_to_vec (obstackp,
6174 fixup_symbol_section (sym, objfile),
6175 block);
6176 }
6177 }
76a01679
JB
6178 }
6179 }
76a01679 6180 }
96d887e8
PH
6181
6182 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6183 They aren't parameters, right? */
6184 if (!found_sym && arg_sym != NULL)
6185 {
6186 add_defn_to_vec (obstackp,
76a01679 6187 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6188 block);
96d887e8
PH
6189 }
6190 }
6191}
6192\f
41d27058
JB
6193
6194 /* Symbol Completion */
6195
6196/* If SYM_NAME is a completion candidate for TEXT, return this symbol
6197 name in a form that's appropriate for the completion. The result
6198 does not need to be deallocated, but is only good until the next call.
6199
6200 TEXT_LEN is equal to the length of TEXT.
e701b3c0 6201 Perform a wild match if WILD_MATCH_P is set.
6ea35997 6202 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
6203 in its encoded form. */
6204
6205static const char *
6206symbol_completion_match (const char *sym_name,
6207 const char *text, int text_len,
6ea35997 6208 int wild_match_p, int encoded_p)
41d27058 6209{
41d27058
JB
6210 const int verbatim_match = (text[0] == '<');
6211 int match = 0;
6212
6213 if (verbatim_match)
6214 {
6215 /* Strip the leading angle bracket. */
6216 text = text + 1;
6217 text_len--;
6218 }
6219
6220 /* First, test against the fully qualified name of the symbol. */
6221
6222 if (strncmp (sym_name, text, text_len) == 0)
6223 match = 1;
6224
6ea35997 6225 if (match && !encoded_p)
41d27058
JB
6226 {
6227 /* One needed check before declaring a positive match is to verify
6228 that iff we are doing a verbatim match, the decoded version
6229 of the symbol name starts with '<'. Otherwise, this symbol name
6230 is not a suitable completion. */
6231 const char *sym_name_copy = sym_name;
6232 int has_angle_bracket;
6233
6234 sym_name = ada_decode (sym_name);
6235 has_angle_bracket = (sym_name[0] == '<');
6236 match = (has_angle_bracket == verbatim_match);
6237 sym_name = sym_name_copy;
6238 }
6239
6240 if (match && !verbatim_match)
6241 {
6242 /* When doing non-verbatim match, another check that needs to
6243 be done is to verify that the potentially matching symbol name
6244 does not include capital letters, because the ada-mode would
6245 not be able to understand these symbol names without the
6246 angle bracket notation. */
6247 const char *tmp;
6248
6249 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6250 if (*tmp != '\0')
6251 match = 0;
6252 }
6253
6254 /* Second: Try wild matching... */
6255
e701b3c0 6256 if (!match && wild_match_p)
41d27058
JB
6257 {
6258 /* Since we are doing wild matching, this means that TEXT
6259 may represent an unqualified symbol name. We therefore must
6260 also compare TEXT against the unqualified name of the symbol. */
6261 sym_name = ada_unqualified_name (ada_decode (sym_name));
6262
6263 if (strncmp (sym_name, text, text_len) == 0)
6264 match = 1;
6265 }
6266
6267 /* Finally: If we found a mach, prepare the result to return. */
6268
6269 if (!match)
6270 return NULL;
6271
6272 if (verbatim_match)
6273 sym_name = add_angle_brackets (sym_name);
6274
6ea35997 6275 if (!encoded_p)
41d27058
JB
6276 sym_name = ada_decode (sym_name);
6277
6278 return sym_name;
6279}
6280
6281/* A companion function to ada_make_symbol_completion_list().
6282 Check if SYM_NAME represents a symbol which name would be suitable
6283 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6284 it is appended at the end of the given string vector SV.
6285
6286 ORIG_TEXT is the string original string from the user command
6287 that needs to be completed. WORD is the entire command on which
6288 completion should be performed. These two parameters are used to
6289 determine which part of the symbol name should be added to the
6290 completion vector.
c0af1706 6291 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6292 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6293 encoded formed (in which case the completion should also be
6294 encoded). */
6295
6296static void
d6565258 6297symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6298 const char *sym_name,
6299 const char *text, int text_len,
6300 const char *orig_text, const char *word,
cb8e9b97 6301 int wild_match_p, int encoded_p)
41d27058
JB
6302{
6303 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6304 wild_match_p, encoded_p);
41d27058
JB
6305 char *completion;
6306
6307 if (match == NULL)
6308 return;
6309
6310 /* We found a match, so add the appropriate completion to the given
6311 string vector. */
6312
6313 if (word == orig_text)
6314 {
6315 completion = xmalloc (strlen (match) + 5);
6316 strcpy (completion, match);
6317 }
6318 else if (word > orig_text)
6319 {
6320 /* Return some portion of sym_name. */
6321 completion = xmalloc (strlen (match) + 5);
6322 strcpy (completion, match + (word - orig_text));
6323 }
6324 else
6325 {
6326 /* Return some of ORIG_TEXT plus sym_name. */
6327 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6328 strncpy (completion, word, orig_text - word);
6329 completion[orig_text - word] = '\0';
6330 strcat (completion, match);
6331 }
6332
d6565258 6333 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6334}
6335
ccefe4c4 6336/* An object of this type is passed as the user_data argument to the
bb4142cf 6337 expand_symtabs_matching method. */
ccefe4c4
TT
6338struct add_partial_datum
6339{
6340 VEC(char_ptr) **completions;
6f937416 6341 const char *text;
ccefe4c4 6342 int text_len;
6f937416
PA
6343 const char *text0;
6344 const char *word;
ccefe4c4
TT
6345 int wild_match;
6346 int encoded;
6347};
6348
bb4142cf
DE
6349/* A callback for expand_symtabs_matching. */
6350
7b08b9eb 6351static int
bb4142cf 6352ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4
TT
6353{
6354 struct add_partial_datum *data = user_data;
7b08b9eb
JK
6355
6356 return symbol_completion_match (name, data->text, data->text_len,
6357 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6358}
6359
49c4e619
TT
6360/* Return a list of possible symbol names completing TEXT0. WORD is
6361 the entire command on which completion is made. */
41d27058 6362
49c4e619 6363static VEC (char_ptr) *
6f937416
PA
6364ada_make_symbol_completion_list (const char *text0, const char *word,
6365 enum type_code code)
41d27058
JB
6366{
6367 char *text;
6368 int text_len;
b1ed564a
JB
6369 int wild_match_p;
6370 int encoded_p;
2ba95b9b 6371 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058 6372 struct symbol *sym;
43f3e411 6373 struct compunit_symtab *s;
41d27058
JB
6374 struct minimal_symbol *msymbol;
6375 struct objfile *objfile;
3977b71f 6376 const struct block *b, *surrounding_static_block = 0;
41d27058 6377 int i;
8157b174 6378 struct block_iterator iter;
b8fea896 6379 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6380
2f68a895
TT
6381 gdb_assert (code == TYPE_CODE_UNDEF);
6382
41d27058
JB
6383 if (text0[0] == '<')
6384 {
6385 text = xstrdup (text0);
6386 make_cleanup (xfree, text);
6387 text_len = strlen (text);
b1ed564a
JB
6388 wild_match_p = 0;
6389 encoded_p = 1;
41d27058
JB
6390 }
6391 else
6392 {
6393 text = xstrdup (ada_encode (text0));
6394 make_cleanup (xfree, text);
6395 text_len = strlen (text);
6396 for (i = 0; i < text_len; i++)
6397 text[i] = tolower (text[i]);
6398
b1ed564a 6399 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6400 /* If the name contains a ".", then the user is entering a fully
6401 qualified entity name, and the match must not be done in wild
6402 mode. Similarly, if the user wants to complete what looks like
6403 an encoded name, the match must not be done in wild mode. */
b1ed564a 6404 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6405 }
6406
6407 /* First, look at the partial symtab symbols. */
41d27058 6408 {
ccefe4c4
TT
6409 struct add_partial_datum data;
6410
6411 data.completions = &completions;
6412 data.text = text;
6413 data.text_len = text_len;
6414 data.text0 = text0;
6415 data.word = word;
b1ed564a
JB
6416 data.wild_match = wild_match_p;
6417 data.encoded = encoded_p;
276d885b
GB
6418 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6419 ALL_DOMAIN, &data);
41d27058
JB
6420 }
6421
6422 /* At this point scan through the misc symbol vectors and add each
6423 symbol you find to the list. Eventually we want to ignore
6424 anything that isn't a text symbol (everything else will be
6425 handled by the psymtab code above). */
6426
6427 ALL_MSYMBOLS (objfile, msymbol)
6428 {
6429 QUIT;
efd66ac6 6430 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6431 text, text_len, text0, word, wild_match_p,
6432 encoded_p);
41d27058
JB
6433 }
6434
6435 /* Search upwards from currently selected frame (so that we can
6436 complete on local vars. */
6437
6438 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6439 {
6440 if (!BLOCK_SUPERBLOCK (b))
6441 surrounding_static_block = b; /* For elmin of dups */
6442
6443 ALL_BLOCK_SYMBOLS (b, iter, sym)
6444 {
d6565258 6445 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6446 text, text_len, text0, word,
b1ed564a 6447 wild_match_p, encoded_p);
41d27058
JB
6448 }
6449 }
6450
6451 /* Go through the symtabs and check the externs and statics for
43f3e411 6452 symbols which match. */
41d27058 6453
43f3e411 6454 ALL_COMPUNITS (objfile, s)
41d27058
JB
6455 {
6456 QUIT;
43f3e411 6457 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6458 ALL_BLOCK_SYMBOLS (b, iter, sym)
6459 {
d6565258 6460 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6461 text, text_len, text0, word,
b1ed564a 6462 wild_match_p, encoded_p);
41d27058
JB
6463 }
6464 }
6465
43f3e411 6466 ALL_COMPUNITS (objfile, s)
41d27058
JB
6467 {
6468 QUIT;
43f3e411 6469 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6470 /* Don't do this block twice. */
6471 if (b == surrounding_static_block)
6472 continue;
6473 ALL_BLOCK_SYMBOLS (b, iter, sym)
6474 {
d6565258 6475 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6476 text, text_len, text0, word,
b1ed564a 6477 wild_match_p, encoded_p);
41d27058
JB
6478 }
6479 }
6480
b8fea896 6481 do_cleanups (old_chain);
49c4e619 6482 return completions;
41d27058
JB
6483}
6484
963a6417 6485 /* Field Access */
96d887e8 6486
73fb9985
JB
6487/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6488 for tagged types. */
6489
6490static int
6491ada_is_dispatch_table_ptr_type (struct type *type)
6492{
0d5cff50 6493 const char *name;
73fb9985
JB
6494
6495 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6496 return 0;
6497
6498 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6499 if (name == NULL)
6500 return 0;
6501
6502 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6503}
6504
ac4a2da4
JG
6505/* Return non-zero if TYPE is an interface tag. */
6506
6507static int
6508ada_is_interface_tag (struct type *type)
6509{
6510 const char *name = TYPE_NAME (type);
6511
6512 if (name == NULL)
6513 return 0;
6514
6515 return (strcmp (name, "ada__tags__interface_tag") == 0);
6516}
6517
963a6417
PH
6518/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6519 to be invisible to users. */
96d887e8 6520
963a6417
PH
6521int
6522ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6523{
963a6417
PH
6524 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6525 return 1;
ffde82bf 6526
73fb9985
JB
6527 /* Check the name of that field. */
6528 {
6529 const char *name = TYPE_FIELD_NAME (type, field_num);
6530
6531 /* Anonymous field names should not be printed.
6532 brobecker/2007-02-20: I don't think this can actually happen
6533 but we don't want to print the value of annonymous fields anyway. */
6534 if (name == NULL)
6535 return 1;
6536
ffde82bf
JB
6537 /* Normally, fields whose name start with an underscore ("_")
6538 are fields that have been internally generated by the compiler,
6539 and thus should not be printed. The "_parent" field is special,
6540 however: This is a field internally generated by the compiler
6541 for tagged types, and it contains the components inherited from
6542 the parent type. This field should not be printed as is, but
6543 should not be ignored either. */
61012eef 6544 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6545 return 1;
6546 }
6547
ac4a2da4
JG
6548 /* If this is the dispatch table of a tagged type or an interface tag,
6549 then ignore. */
73fb9985 6550 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6551 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6552 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6553 return 1;
6554
6555 /* Not a special field, so it should not be ignored. */
6556 return 0;
963a6417 6557}
96d887e8 6558
963a6417 6559/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6560 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6561
963a6417
PH
6562int
6563ada_is_tagged_type (struct type *type, int refok)
6564{
6565 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6566}
96d887e8 6567
963a6417 6568/* True iff TYPE represents the type of X'Tag */
96d887e8 6569
963a6417
PH
6570int
6571ada_is_tag_type (struct type *type)
6572{
460efde1
JB
6573 type = ada_check_typedef (type);
6574
963a6417
PH
6575 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6576 return 0;
6577 else
96d887e8 6578 {
963a6417 6579 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6580
963a6417
PH
6581 return (name != NULL
6582 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6583 }
96d887e8
PH
6584}
6585
963a6417 6586/* The type of the tag on VAL. */
76a01679 6587
963a6417
PH
6588struct type *
6589ada_tag_type (struct value *val)
96d887e8 6590{
df407dfe 6591 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6592}
96d887e8 6593
b50d69b5
JG
6594/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6595 retired at Ada 05). */
6596
6597static int
6598is_ada95_tag (struct value *tag)
6599{
6600 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6601}
6602
963a6417 6603/* The value of the tag on VAL. */
96d887e8 6604
963a6417
PH
6605struct value *
6606ada_value_tag (struct value *val)
6607{
03ee6b2e 6608 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6609}
6610
963a6417
PH
6611/* The value of the tag on the object of type TYPE whose contents are
6612 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6613 ADDRESS. */
96d887e8 6614
963a6417 6615static struct value *
10a2c479 6616value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6617 const gdb_byte *valaddr,
963a6417 6618 CORE_ADDR address)
96d887e8 6619{
b5385fc0 6620 int tag_byte_offset;
963a6417 6621 struct type *tag_type;
5b4ee69b 6622
963a6417 6623 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6624 NULL, NULL, NULL))
96d887e8 6625 {
fc1a4b47 6626 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6627 ? NULL
6628 : valaddr + tag_byte_offset);
963a6417 6629 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6630
963a6417 6631 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6632 }
963a6417
PH
6633 return NULL;
6634}
96d887e8 6635
963a6417
PH
6636static struct type *
6637type_from_tag (struct value *tag)
6638{
6639 const char *type_name = ada_tag_name (tag);
5b4ee69b 6640
963a6417
PH
6641 if (type_name != NULL)
6642 return ada_find_any_type (ada_encode (type_name));
6643 return NULL;
6644}
96d887e8 6645
b50d69b5
JG
6646/* Given a value OBJ of a tagged type, return a value of this
6647 type at the base address of the object. The base address, as
6648 defined in Ada.Tags, it is the address of the primary tag of
6649 the object, and therefore where the field values of its full
6650 view can be fetched. */
6651
6652struct value *
6653ada_tag_value_at_base_address (struct value *obj)
6654{
b50d69b5
JG
6655 struct value *val;
6656 LONGEST offset_to_top = 0;
6657 struct type *ptr_type, *obj_type;
6658 struct value *tag;
6659 CORE_ADDR base_address;
6660
6661 obj_type = value_type (obj);
6662
6663 /* It is the responsability of the caller to deref pointers. */
6664
6665 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6666 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6667 return obj;
6668
6669 tag = ada_value_tag (obj);
6670 if (!tag)
6671 return obj;
6672
6673 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6674
6675 if (is_ada95_tag (tag))
6676 return obj;
6677
6678 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6679 ptr_type = lookup_pointer_type (ptr_type);
6680 val = value_cast (ptr_type, tag);
6681 if (!val)
6682 return obj;
6683
6684 /* It is perfectly possible that an exception be raised while
6685 trying to determine the base address, just like for the tag;
6686 see ada_tag_name for more details. We do not print the error
6687 message for the same reason. */
6688
492d29ea 6689 TRY
b50d69b5
JG
6690 {
6691 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6692 }
6693
492d29ea
PA
6694 CATCH (e, RETURN_MASK_ERROR)
6695 {
6696 return obj;
6697 }
6698 END_CATCH
b50d69b5
JG
6699
6700 /* If offset is null, nothing to do. */
6701
6702 if (offset_to_top == 0)
6703 return obj;
6704
6705 /* -1 is a special case in Ada.Tags; however, what should be done
6706 is not quite clear from the documentation. So do nothing for
6707 now. */
6708
6709 if (offset_to_top == -1)
6710 return obj;
6711
6712 base_address = value_address (obj) - offset_to_top;
6713 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6714
6715 /* Make sure that we have a proper tag at the new address.
6716 Otherwise, offset_to_top is bogus (which can happen when
6717 the object is not initialized yet). */
6718
6719 if (!tag)
6720 return obj;
6721
6722 obj_type = type_from_tag (tag);
6723
6724 if (!obj_type)
6725 return obj;
6726
6727 return value_from_contents_and_address (obj_type, NULL, base_address);
6728}
6729
1b611343
JB
6730/* Return the "ada__tags__type_specific_data" type. */
6731
6732static struct type *
6733ada_get_tsd_type (struct inferior *inf)
963a6417 6734{
1b611343 6735 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6736
1b611343
JB
6737 if (data->tsd_type == 0)
6738 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6739 return data->tsd_type;
6740}
529cad9c 6741
1b611343
JB
6742/* Return the TSD (type-specific data) associated to the given TAG.
6743 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6744
1b611343 6745 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6746
1b611343
JB
6747static struct value *
6748ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6749{
4c4b4cd2 6750 struct value *val;
1b611343 6751 struct type *type;
5b4ee69b 6752
1b611343
JB
6753 /* First option: The TSD is simply stored as a field of our TAG.
6754 Only older versions of GNAT would use this format, but we have
6755 to test it first, because there are no visible markers for
6756 the current approach except the absence of that field. */
529cad9c 6757
1b611343
JB
6758 val = ada_value_struct_elt (tag, "tsd", 1);
6759 if (val)
6760 return val;
e802dbe0 6761
1b611343
JB
6762 /* Try the second representation for the dispatch table (in which
6763 there is no explicit 'tsd' field in the referent of the tag pointer,
6764 and instead the tsd pointer is stored just before the dispatch
6765 table. */
e802dbe0 6766
1b611343
JB
6767 type = ada_get_tsd_type (current_inferior());
6768 if (type == NULL)
6769 return NULL;
6770 type = lookup_pointer_type (lookup_pointer_type (type));
6771 val = value_cast (type, tag);
6772 if (val == NULL)
6773 return NULL;
6774 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6775}
6776
1b611343
JB
6777/* Given the TSD of a tag (type-specific data), return a string
6778 containing the name of the associated type.
6779
6780 The returned value is good until the next call. May return NULL
6781 if we are unable to determine the tag name. */
6782
6783static char *
6784ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6785{
529cad9c
PH
6786 static char name[1024];
6787 char *p;
1b611343 6788 struct value *val;
529cad9c 6789
1b611343 6790 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6791 if (val == NULL)
1b611343 6792 return NULL;
4c4b4cd2
PH
6793 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6794 for (p = name; *p != '\0'; p += 1)
6795 if (isalpha (*p))
6796 *p = tolower (*p);
1b611343 6797 return name;
4c4b4cd2
PH
6798}
6799
6800/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6801 a C string.
6802
6803 Return NULL if the TAG is not an Ada tag, or if we were unable to
6804 determine the name of that tag. The result is good until the next
6805 call. */
4c4b4cd2
PH
6806
6807const char *
6808ada_tag_name (struct value *tag)
6809{
1b611343 6810 char *name = NULL;
5b4ee69b 6811
df407dfe 6812 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6813 return NULL;
1b611343
JB
6814
6815 /* It is perfectly possible that an exception be raised while trying
6816 to determine the TAG's name, even under normal circumstances:
6817 The associated variable may be uninitialized or corrupted, for
6818 instance. We do not let any exception propagate past this point.
6819 instead we return NULL.
6820
6821 We also do not print the error message either (which often is very
6822 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6823 the caller print a more meaningful message if necessary. */
492d29ea 6824 TRY
1b611343
JB
6825 {
6826 struct value *tsd = ada_get_tsd_from_tag (tag);
6827
6828 if (tsd != NULL)
6829 name = ada_tag_name_from_tsd (tsd);
6830 }
492d29ea
PA
6831 CATCH (e, RETURN_MASK_ERROR)
6832 {
6833 }
6834 END_CATCH
1b611343
JB
6835
6836 return name;
4c4b4cd2
PH
6837}
6838
6839/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6840
d2e4a39e 6841struct type *
ebf56fd3 6842ada_parent_type (struct type *type)
14f9c5c9
AS
6843{
6844 int i;
6845
61ee279c 6846 type = ada_check_typedef (type);
14f9c5c9
AS
6847
6848 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6849 return NULL;
6850
6851 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6852 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6853 {
6854 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6855
6856 /* If the _parent field is a pointer, then dereference it. */
6857 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6858 parent_type = TYPE_TARGET_TYPE (parent_type);
6859 /* If there is a parallel XVS type, get the actual base type. */
6860 parent_type = ada_get_base_type (parent_type);
6861
6862 return ada_check_typedef (parent_type);
6863 }
14f9c5c9
AS
6864
6865 return NULL;
6866}
6867
4c4b4cd2
PH
6868/* True iff field number FIELD_NUM of structure type TYPE contains the
6869 parent-type (inherited) fields of a derived type. Assumes TYPE is
6870 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6871
6872int
ebf56fd3 6873ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6874{
61ee279c 6875 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6876
4c4b4cd2 6877 return (name != NULL
61012eef
GB
6878 && (startswith (name, "PARENT")
6879 || startswith (name, "_parent")));
14f9c5c9
AS
6880}
6881
4c4b4cd2 6882/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6883 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6884 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6885 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6886 structures. */
14f9c5c9
AS
6887
6888int
ebf56fd3 6889ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6890{
d2e4a39e 6891 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6892
d2e4a39e 6893 return (name != NULL
61012eef 6894 && (startswith (name, "PARENT")
4c4b4cd2 6895 || strcmp (name, "REP") == 0
61012eef 6896 || startswith (name, "_parent")
4c4b4cd2 6897 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6898}
6899
4c4b4cd2
PH
6900/* True iff field number FIELD_NUM of structure or union type TYPE
6901 is a variant wrapper. Assumes TYPE is a structure type with at least
6902 FIELD_NUM+1 fields. */
14f9c5c9
AS
6903
6904int
ebf56fd3 6905ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6906{
d2e4a39e 6907 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6908
14f9c5c9 6909 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6910 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6911 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6912 == TYPE_CODE_UNION)));
14f9c5c9
AS
6913}
6914
6915/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6916 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6917 returns the type of the controlling discriminant for the variant.
6918 May return NULL if the type could not be found. */
14f9c5c9 6919
d2e4a39e 6920struct type *
ebf56fd3 6921ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6922{
d2e4a39e 6923 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6924
7c964f07 6925 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6926}
6927
4c4b4cd2 6928/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6929 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6930 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6931
6932int
ebf56fd3 6933ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6934{
d2e4a39e 6935 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6936
14f9c5c9
AS
6937 return (name != NULL && name[0] == 'O');
6938}
6939
6940/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6941 returns the name of the discriminant controlling the variant.
6942 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6943
d2e4a39e 6944char *
ebf56fd3 6945ada_variant_discrim_name (struct type *type0)
14f9c5c9 6946{
d2e4a39e 6947 static char *result = NULL;
14f9c5c9 6948 static size_t result_len = 0;
d2e4a39e
AS
6949 struct type *type;
6950 const char *name;
6951 const char *discrim_end;
6952 const char *discrim_start;
14f9c5c9
AS
6953
6954 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6955 type = TYPE_TARGET_TYPE (type0);
6956 else
6957 type = type0;
6958
6959 name = ada_type_name (type);
6960
6961 if (name == NULL || name[0] == '\000')
6962 return "";
6963
6964 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6965 discrim_end -= 1)
6966 {
61012eef 6967 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 6968 break;
14f9c5c9
AS
6969 }
6970 if (discrim_end == name)
6971 return "";
6972
d2e4a39e 6973 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6974 discrim_start -= 1)
6975 {
d2e4a39e 6976 if (discrim_start == name + 1)
4c4b4cd2 6977 return "";
76a01679 6978 if ((discrim_start > name + 3
61012eef 6979 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
6980 || discrim_start[-1] == '.')
6981 break;
14f9c5c9
AS
6982 }
6983
6984 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6985 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6986 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6987 return result;
6988}
6989
4c4b4cd2
PH
6990/* Scan STR for a subtype-encoded number, beginning at position K.
6991 Put the position of the character just past the number scanned in
6992 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6993 Return 1 if there was a valid number at the given position, and 0
6994 otherwise. A "subtype-encoded" number consists of the absolute value
6995 in decimal, followed by the letter 'm' to indicate a negative number.
6996 Assumes 0m does not occur. */
14f9c5c9
AS
6997
6998int
d2e4a39e 6999ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7000{
7001 ULONGEST RU;
7002
d2e4a39e 7003 if (!isdigit (str[k]))
14f9c5c9
AS
7004 return 0;
7005
4c4b4cd2 7006 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7007 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7008 LONGEST. */
14f9c5c9
AS
7009 RU = 0;
7010 while (isdigit (str[k]))
7011 {
d2e4a39e 7012 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7013 k += 1;
7014 }
7015
d2e4a39e 7016 if (str[k] == 'm')
14f9c5c9
AS
7017 {
7018 if (R != NULL)
4c4b4cd2 7019 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7020 k += 1;
7021 }
7022 else if (R != NULL)
7023 *R = (LONGEST) RU;
7024
4c4b4cd2 7025 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7026 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7027 number representable as a LONGEST (although either would probably work
7028 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7029 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7030
7031 if (new_k != NULL)
7032 *new_k = k;
7033 return 1;
7034}
7035
4c4b4cd2
PH
7036/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7037 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7038 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7039
d2e4a39e 7040int
ebf56fd3 7041ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7042{
d2e4a39e 7043 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7044 int p;
7045
7046 p = 0;
7047 while (1)
7048 {
d2e4a39e 7049 switch (name[p])
4c4b4cd2
PH
7050 {
7051 case '\0':
7052 return 0;
7053 case 'S':
7054 {
7055 LONGEST W;
5b4ee69b 7056
4c4b4cd2
PH
7057 if (!ada_scan_number (name, p + 1, &W, &p))
7058 return 0;
7059 if (val == W)
7060 return 1;
7061 break;
7062 }
7063 case 'R':
7064 {
7065 LONGEST L, U;
5b4ee69b 7066
4c4b4cd2
PH
7067 if (!ada_scan_number (name, p + 1, &L, &p)
7068 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7069 return 0;
7070 if (val >= L && val <= U)
7071 return 1;
7072 break;
7073 }
7074 case 'O':
7075 return 1;
7076 default:
7077 return 0;
7078 }
7079 }
7080}
7081
0963b4bd 7082/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7083
7084/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7085 ARG_TYPE, extract and return the value of one of its (non-static)
7086 fields. FIELDNO says which field. Differs from value_primitive_field
7087 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7088
4c4b4cd2 7089static struct value *
d2e4a39e 7090ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7091 struct type *arg_type)
14f9c5c9 7092{
14f9c5c9
AS
7093 struct type *type;
7094
61ee279c 7095 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7096 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7097
4c4b4cd2 7098 /* Handle packed fields. */
14f9c5c9
AS
7099
7100 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7101 {
7102 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7103 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7104
0fd88904 7105 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7106 offset + bit_pos / 8,
7107 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7108 }
7109 else
7110 return value_primitive_field (arg1, offset, fieldno, arg_type);
7111}
7112
52ce6436
PH
7113/* Find field with name NAME in object of type TYPE. If found,
7114 set the following for each argument that is non-null:
7115 - *FIELD_TYPE_P to the field's type;
7116 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7117 an object of that type;
7118 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7119 - *BIT_SIZE_P to its size in bits if the field is packed, and
7120 0 otherwise;
7121 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7122 fields up to but not including the desired field, or by the total
7123 number of fields if not found. A NULL value of NAME never
7124 matches; the function just counts visible fields in this case.
7125
0963b4bd 7126 Returns 1 if found, 0 otherwise. */
52ce6436 7127
4c4b4cd2 7128static int
0d5cff50 7129find_struct_field (const char *name, struct type *type, int offset,
76a01679 7130 struct type **field_type_p,
52ce6436
PH
7131 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7132 int *index_p)
4c4b4cd2
PH
7133{
7134 int i;
7135
61ee279c 7136 type = ada_check_typedef (type);
76a01679 7137
52ce6436
PH
7138 if (field_type_p != NULL)
7139 *field_type_p = NULL;
7140 if (byte_offset_p != NULL)
d5d6fca5 7141 *byte_offset_p = 0;
52ce6436
PH
7142 if (bit_offset_p != NULL)
7143 *bit_offset_p = 0;
7144 if (bit_size_p != NULL)
7145 *bit_size_p = 0;
7146
7147 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7148 {
7149 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7150 int fld_offset = offset + bit_pos / 8;
0d5cff50 7151 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7152
4c4b4cd2
PH
7153 if (t_field_name == NULL)
7154 continue;
7155
52ce6436 7156 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7157 {
7158 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7159
52ce6436
PH
7160 if (field_type_p != NULL)
7161 *field_type_p = TYPE_FIELD_TYPE (type, i);
7162 if (byte_offset_p != NULL)
7163 *byte_offset_p = fld_offset;
7164 if (bit_offset_p != NULL)
7165 *bit_offset_p = bit_pos % 8;
7166 if (bit_size_p != NULL)
7167 *bit_size_p = bit_size;
76a01679
JB
7168 return 1;
7169 }
4c4b4cd2
PH
7170 else if (ada_is_wrapper_field (type, i))
7171 {
52ce6436
PH
7172 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7173 field_type_p, byte_offset_p, bit_offset_p,
7174 bit_size_p, index_p))
76a01679
JB
7175 return 1;
7176 }
4c4b4cd2
PH
7177 else if (ada_is_variant_part (type, i))
7178 {
52ce6436
PH
7179 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7180 fixed type?? */
4c4b4cd2 7181 int j;
52ce6436
PH
7182 struct type *field_type
7183 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7184
52ce6436 7185 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7186 {
76a01679
JB
7187 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7188 fld_offset
7189 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7190 field_type_p, byte_offset_p,
52ce6436 7191 bit_offset_p, bit_size_p, index_p))
76a01679 7192 return 1;
4c4b4cd2
PH
7193 }
7194 }
52ce6436
PH
7195 else if (index_p != NULL)
7196 *index_p += 1;
4c4b4cd2
PH
7197 }
7198 return 0;
7199}
7200
0963b4bd 7201/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7202
52ce6436
PH
7203static int
7204num_visible_fields (struct type *type)
7205{
7206 int n;
5b4ee69b 7207
52ce6436
PH
7208 n = 0;
7209 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7210 return n;
7211}
14f9c5c9 7212
4c4b4cd2 7213/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7214 and search in it assuming it has (class) type TYPE.
7215 If found, return value, else return NULL.
7216
4c4b4cd2 7217 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7218
4c4b4cd2 7219static struct value *
d2e4a39e 7220ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 7221 struct type *type)
14f9c5c9
AS
7222{
7223 int i;
14f9c5c9 7224
5b4ee69b 7225 type = ada_check_typedef (type);
52ce6436 7226 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7227 {
0d5cff50 7228 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7229
7230 if (t_field_name == NULL)
4c4b4cd2 7231 continue;
14f9c5c9
AS
7232
7233 else if (field_name_match (t_field_name, name))
4c4b4cd2 7234 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7235
7236 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7237 {
0963b4bd 7238 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7239 ada_search_struct_field (name, arg,
7240 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7241 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7242
4c4b4cd2
PH
7243 if (v != NULL)
7244 return v;
7245 }
14f9c5c9
AS
7246
7247 else if (ada_is_variant_part (type, i))
4c4b4cd2 7248 {
0963b4bd 7249 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7250 int j;
5b4ee69b
MS
7251 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7252 i));
4c4b4cd2
PH
7253 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7254
52ce6436 7255 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7256 {
0963b4bd
MS
7257 struct value *v = ada_search_struct_field /* Force line
7258 break. */
06d5cf63
JB
7259 (name, arg,
7260 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7261 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7262
4c4b4cd2
PH
7263 if (v != NULL)
7264 return v;
7265 }
7266 }
14f9c5c9
AS
7267 }
7268 return NULL;
7269}
d2e4a39e 7270
52ce6436
PH
7271static struct value *ada_index_struct_field_1 (int *, struct value *,
7272 int, struct type *);
7273
7274
7275/* Return field #INDEX in ARG, where the index is that returned by
7276 * find_struct_field through its INDEX_P argument. Adjust the address
7277 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7278 * If found, return value, else return NULL. */
52ce6436
PH
7279
7280static struct value *
7281ada_index_struct_field (int index, struct value *arg, int offset,
7282 struct type *type)
7283{
7284 return ada_index_struct_field_1 (&index, arg, offset, type);
7285}
7286
7287
7288/* Auxiliary function for ada_index_struct_field. Like
7289 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7290 * *INDEX_P. */
52ce6436
PH
7291
7292static struct value *
7293ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7294 struct type *type)
7295{
7296 int i;
7297 type = ada_check_typedef (type);
7298
7299 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7300 {
7301 if (TYPE_FIELD_NAME (type, i) == NULL)
7302 continue;
7303 else if (ada_is_wrapper_field (type, i))
7304 {
0963b4bd 7305 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7306 ada_index_struct_field_1 (index_p, arg,
7307 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7308 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7309
52ce6436
PH
7310 if (v != NULL)
7311 return v;
7312 }
7313
7314 else if (ada_is_variant_part (type, i))
7315 {
7316 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7317 find_struct_field. */
52ce6436
PH
7318 error (_("Cannot assign this kind of variant record"));
7319 }
7320 else if (*index_p == 0)
7321 return ada_value_primitive_field (arg, offset, i, type);
7322 else
7323 *index_p -= 1;
7324 }
7325 return NULL;
7326}
7327
4c4b4cd2
PH
7328/* Given ARG, a value of type (pointer or reference to a)*
7329 structure/union, extract the component named NAME from the ultimate
7330 target structure/union and return it as a value with its
f5938064 7331 appropriate type.
14f9c5c9 7332
4c4b4cd2
PH
7333 The routine searches for NAME among all members of the structure itself
7334 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7335 (e.g., '_parent').
7336
03ee6b2e
PH
7337 If NO_ERR, then simply return NULL in case of error, rather than
7338 calling error. */
14f9c5c9 7339
d2e4a39e 7340struct value *
03ee6b2e 7341ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7342{
4c4b4cd2 7343 struct type *t, *t1;
d2e4a39e 7344 struct value *v;
14f9c5c9 7345
4c4b4cd2 7346 v = NULL;
df407dfe 7347 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7348 if (TYPE_CODE (t) == TYPE_CODE_REF)
7349 {
7350 t1 = TYPE_TARGET_TYPE (t);
7351 if (t1 == NULL)
03ee6b2e 7352 goto BadValue;
61ee279c 7353 t1 = ada_check_typedef (t1);
4c4b4cd2 7354 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7355 {
994b9211 7356 arg = coerce_ref (arg);
76a01679
JB
7357 t = t1;
7358 }
4c4b4cd2 7359 }
14f9c5c9 7360
4c4b4cd2
PH
7361 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7362 {
7363 t1 = TYPE_TARGET_TYPE (t);
7364 if (t1 == NULL)
03ee6b2e 7365 goto BadValue;
61ee279c 7366 t1 = ada_check_typedef (t1);
4c4b4cd2 7367 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7368 {
7369 arg = value_ind (arg);
7370 t = t1;
7371 }
4c4b4cd2 7372 else
76a01679 7373 break;
4c4b4cd2 7374 }
14f9c5c9 7375
4c4b4cd2 7376 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7377 goto BadValue;
14f9c5c9 7378
4c4b4cd2
PH
7379 if (t1 == t)
7380 v = ada_search_struct_field (name, arg, 0, t);
7381 else
7382 {
7383 int bit_offset, bit_size, byte_offset;
7384 struct type *field_type;
7385 CORE_ADDR address;
7386
76a01679 7387 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7388 address = value_address (ada_value_ind (arg));
4c4b4cd2 7389 else
b50d69b5 7390 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7391
1ed6ede0 7392 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7393 if (find_struct_field (name, t1, 0,
7394 &field_type, &byte_offset, &bit_offset,
52ce6436 7395 &bit_size, NULL))
76a01679
JB
7396 {
7397 if (bit_size != 0)
7398 {
714e53ab
PH
7399 if (TYPE_CODE (t) == TYPE_CODE_REF)
7400 arg = ada_coerce_ref (arg);
7401 else
7402 arg = ada_value_ind (arg);
76a01679
JB
7403 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7404 bit_offset, bit_size,
7405 field_type);
7406 }
7407 else
f5938064 7408 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7409 }
7410 }
7411
03ee6b2e
PH
7412 if (v != NULL || no_err)
7413 return v;
7414 else
323e0a4a 7415 error (_("There is no member named %s."), name);
14f9c5c9 7416
03ee6b2e
PH
7417 BadValue:
7418 if (no_err)
7419 return NULL;
7420 else
0963b4bd
MS
7421 error (_("Attempt to extract a component of "
7422 "a value that is not a record."));
14f9c5c9
AS
7423}
7424
7425/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7426 If DISPP is non-null, add its byte displacement from the beginning of a
7427 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7428 work for packed fields).
7429
7430 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7431 followed by "___".
14f9c5c9 7432
0963b4bd 7433 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7434 be a (pointer or reference)+ to a struct or union, and the
7435 ultimate target type will be searched.
14f9c5c9
AS
7436
7437 Looks recursively into variant clauses and parent types.
7438
4c4b4cd2
PH
7439 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7440 TYPE is not a type of the right kind. */
14f9c5c9 7441
4c4b4cd2 7442static struct type *
76a01679
JB
7443ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7444 int noerr, int *dispp)
14f9c5c9
AS
7445{
7446 int i;
7447
7448 if (name == NULL)
7449 goto BadName;
7450
76a01679 7451 if (refok && type != NULL)
4c4b4cd2
PH
7452 while (1)
7453 {
61ee279c 7454 type = ada_check_typedef (type);
76a01679
JB
7455 if (TYPE_CODE (type) != TYPE_CODE_PTR
7456 && TYPE_CODE (type) != TYPE_CODE_REF)
7457 break;
7458 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7459 }
14f9c5c9 7460
76a01679 7461 if (type == NULL
1265e4aa
JB
7462 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7463 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7464 {
4c4b4cd2 7465 if (noerr)
76a01679 7466 return NULL;
4c4b4cd2 7467 else
76a01679
JB
7468 {
7469 target_terminal_ours ();
7470 gdb_flush (gdb_stdout);
323e0a4a
AC
7471 if (type == NULL)
7472 error (_("Type (null) is not a structure or union type"));
7473 else
7474 {
7475 /* XXX: type_sprint */
7476 fprintf_unfiltered (gdb_stderr, _("Type "));
7477 type_print (type, "", gdb_stderr, -1);
7478 error (_(" is not a structure or union type"));
7479 }
76a01679 7480 }
14f9c5c9
AS
7481 }
7482
7483 type = to_static_fixed_type (type);
7484
7485 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7486 {
0d5cff50 7487 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7488 struct type *t;
7489 int disp;
d2e4a39e 7490
14f9c5c9 7491 if (t_field_name == NULL)
4c4b4cd2 7492 continue;
14f9c5c9
AS
7493
7494 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7495 {
7496 if (dispp != NULL)
7497 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
460efde1 7498 return TYPE_FIELD_TYPE (type, i);
4c4b4cd2 7499 }
14f9c5c9
AS
7500
7501 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7502 {
7503 disp = 0;
7504 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7505 0, 1, &disp);
7506 if (t != NULL)
7507 {
7508 if (dispp != NULL)
7509 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7510 return t;
7511 }
7512 }
14f9c5c9
AS
7513
7514 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7515 {
7516 int j;
5b4ee69b
MS
7517 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7518 i));
4c4b4cd2
PH
7519
7520 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7521 {
b1f33ddd
JB
7522 /* FIXME pnh 2008/01/26: We check for a field that is
7523 NOT wrapped in a struct, since the compiler sometimes
7524 generates these for unchecked variant types. Revisit
0963b4bd 7525 if the compiler changes this practice. */
0d5cff50 7526 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7527 disp = 0;
b1f33ddd
JB
7528 if (v_field_name != NULL
7529 && field_name_match (v_field_name, name))
460efde1 7530 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7531 else
0963b4bd
MS
7532 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7533 j),
b1f33ddd
JB
7534 name, 0, 1, &disp);
7535
4c4b4cd2
PH
7536 if (t != NULL)
7537 {
7538 if (dispp != NULL)
7539 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7540 return t;
7541 }
7542 }
7543 }
14f9c5c9
AS
7544
7545 }
7546
7547BadName:
d2e4a39e 7548 if (!noerr)
14f9c5c9
AS
7549 {
7550 target_terminal_ours ();
7551 gdb_flush (gdb_stdout);
323e0a4a
AC
7552 if (name == NULL)
7553 {
7554 /* XXX: type_sprint */
7555 fprintf_unfiltered (gdb_stderr, _("Type "));
7556 type_print (type, "", gdb_stderr, -1);
7557 error (_(" has no component named <null>"));
7558 }
7559 else
7560 {
7561 /* XXX: type_sprint */
7562 fprintf_unfiltered (gdb_stderr, _("Type "));
7563 type_print (type, "", gdb_stderr, -1);
7564 error (_(" has no component named %s"), name);
7565 }
14f9c5c9
AS
7566 }
7567
7568 return NULL;
7569}
7570
b1f33ddd
JB
7571/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7572 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7573 represents an unchecked union (that is, the variant part of a
0963b4bd 7574 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7575
7576static int
7577is_unchecked_variant (struct type *var_type, struct type *outer_type)
7578{
7579 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7580
b1f33ddd
JB
7581 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7582 == NULL);
7583}
7584
7585
14f9c5c9
AS
7586/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7587 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7588 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7589 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7590
d2e4a39e 7591int
ebf56fd3 7592ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7593 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7594{
7595 int others_clause;
7596 int i;
d2e4a39e 7597 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7598 struct value *outer;
7599 struct value *discrim;
14f9c5c9
AS
7600 LONGEST discrim_val;
7601
012370f6
TT
7602 /* Using plain value_from_contents_and_address here causes problems
7603 because we will end up trying to resolve a type that is currently
7604 being constructed. */
7605 outer = value_from_contents_and_address_unresolved (outer_type,
7606 outer_valaddr, 0);
0c281816
JB
7607 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7608 if (discrim == NULL)
14f9c5c9 7609 return -1;
0c281816 7610 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7611
7612 others_clause = -1;
7613 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7614 {
7615 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7616 others_clause = i;
14f9c5c9 7617 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7618 return i;
14f9c5c9
AS
7619 }
7620
7621 return others_clause;
7622}
d2e4a39e 7623\f
14f9c5c9
AS
7624
7625
4c4b4cd2 7626 /* Dynamic-Sized Records */
14f9c5c9
AS
7627
7628/* Strategy: The type ostensibly attached to a value with dynamic size
7629 (i.e., a size that is not statically recorded in the debugging
7630 data) does not accurately reflect the size or layout of the value.
7631 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7632 conventional types that are constructed on the fly. */
14f9c5c9
AS
7633
7634/* There is a subtle and tricky problem here. In general, we cannot
7635 determine the size of dynamic records without its data. However,
7636 the 'struct value' data structure, which GDB uses to represent
7637 quantities in the inferior process (the target), requires the size
7638 of the type at the time of its allocation in order to reserve space
7639 for GDB's internal copy of the data. That's why the
7640 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7641 rather than struct value*s.
14f9c5c9
AS
7642
7643 However, GDB's internal history variables ($1, $2, etc.) are
7644 struct value*s containing internal copies of the data that are not, in
7645 general, the same as the data at their corresponding addresses in
7646 the target. Fortunately, the types we give to these values are all
7647 conventional, fixed-size types (as per the strategy described
7648 above), so that we don't usually have to perform the
7649 'to_fixed_xxx_type' conversions to look at their values.
7650 Unfortunately, there is one exception: if one of the internal
7651 history variables is an array whose elements are unconstrained
7652 records, then we will need to create distinct fixed types for each
7653 element selected. */
7654
7655/* The upshot of all of this is that many routines take a (type, host
7656 address, target address) triple as arguments to represent a value.
7657 The host address, if non-null, is supposed to contain an internal
7658 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7659 target at the target address. */
14f9c5c9
AS
7660
7661/* Assuming that VAL0 represents a pointer value, the result of
7662 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7663 dynamic-sized types. */
14f9c5c9 7664
d2e4a39e
AS
7665struct value *
7666ada_value_ind (struct value *val0)
14f9c5c9 7667{
c48db5ca 7668 struct value *val = value_ind (val0);
5b4ee69b 7669
b50d69b5
JG
7670 if (ada_is_tagged_type (value_type (val), 0))
7671 val = ada_tag_value_at_base_address (val);
7672
4c4b4cd2 7673 return ada_to_fixed_value (val);
14f9c5c9
AS
7674}
7675
7676/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7677 qualifiers on VAL0. */
7678
d2e4a39e
AS
7679static struct value *
7680ada_coerce_ref (struct value *val0)
7681{
df407dfe 7682 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7683 {
7684 struct value *val = val0;
5b4ee69b 7685
994b9211 7686 val = coerce_ref (val);
b50d69b5
JG
7687
7688 if (ada_is_tagged_type (value_type (val), 0))
7689 val = ada_tag_value_at_base_address (val);
7690
4c4b4cd2 7691 return ada_to_fixed_value (val);
d2e4a39e
AS
7692 }
7693 else
14f9c5c9
AS
7694 return val0;
7695}
7696
7697/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7698 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7699
7700static unsigned int
ebf56fd3 7701align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7702{
7703 return (off + alignment - 1) & ~(alignment - 1);
7704}
7705
4c4b4cd2 7706/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7707
7708static unsigned int
ebf56fd3 7709field_alignment (struct type *type, int f)
14f9c5c9 7710{
d2e4a39e 7711 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7712 int len;
14f9c5c9
AS
7713 int align_offset;
7714
64a1bf19
JB
7715 /* The field name should never be null, unless the debugging information
7716 is somehow malformed. In this case, we assume the field does not
7717 require any alignment. */
7718 if (name == NULL)
7719 return 1;
7720
7721 len = strlen (name);
7722
4c4b4cd2
PH
7723 if (!isdigit (name[len - 1]))
7724 return 1;
14f9c5c9 7725
d2e4a39e 7726 if (isdigit (name[len - 2]))
14f9c5c9
AS
7727 align_offset = len - 2;
7728 else
7729 align_offset = len - 1;
7730
61012eef 7731 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7732 return TARGET_CHAR_BIT;
7733
4c4b4cd2
PH
7734 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7735}
7736
852dff6c 7737/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7738
852dff6c
JB
7739static struct symbol *
7740ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7741{
7742 struct symbol *sym;
7743
7744 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7745 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7746 return sym;
7747
4186eb54
KS
7748 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7749 return sym;
14f9c5c9
AS
7750}
7751
dddfab26
UW
7752/* Find a type named NAME. Ignores ambiguity. This routine will look
7753 solely for types defined by debug info, it will not search the GDB
7754 primitive types. */
4c4b4cd2 7755
852dff6c 7756static struct type *
ebf56fd3 7757ada_find_any_type (const char *name)
14f9c5c9 7758{
852dff6c 7759 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7760
14f9c5c9 7761 if (sym != NULL)
dddfab26 7762 return SYMBOL_TYPE (sym);
14f9c5c9 7763
dddfab26 7764 return NULL;
14f9c5c9
AS
7765}
7766
739593e0
JB
7767/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7768 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7769 symbol, in which case it is returned. Otherwise, this looks for
7770 symbols whose name is that of NAME_SYM suffixed with "___XR".
7771 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7772
7773struct symbol *
270140bd 7774ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7775{
739593e0 7776 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7777 struct symbol *sym;
7778
739593e0
JB
7779 if (strstr (name, "___XR") != NULL)
7780 return name_sym;
7781
aeb5907d
JB
7782 sym = find_old_style_renaming_symbol (name, block);
7783
7784 if (sym != NULL)
7785 return sym;
7786
0963b4bd 7787 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7788 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7789 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7790 return sym;
7791 else
7792 return NULL;
7793}
7794
7795static struct symbol *
270140bd 7796find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7797{
7f0df278 7798 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7799 char *rename;
7800
7801 if (function_sym != NULL)
7802 {
7803 /* If the symbol is defined inside a function, NAME is not fully
7804 qualified. This means we need to prepend the function name
7805 as well as adding the ``___XR'' suffix to build the name of
7806 the associated renaming symbol. */
0d5cff50 7807 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7808 /* Function names sometimes contain suffixes used
7809 for instance to qualify nested subprograms. When building
7810 the XR type name, we need to make sure that this suffix is
7811 not included. So do not include any suffix in the function
7812 name length below. */
69fadcdf 7813 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7814 const int rename_len = function_name_len + 2 /* "__" */
7815 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7816
529cad9c 7817 /* Strip the suffix if necessary. */
69fadcdf
JB
7818 ada_remove_trailing_digits (function_name, &function_name_len);
7819 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7820 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7821
4c4b4cd2
PH
7822 /* Library-level functions are a special case, as GNAT adds
7823 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7824 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7825 have this prefix, so we need to skip this prefix if present. */
7826 if (function_name_len > 5 /* "_ada_" */
7827 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7828 {
7829 function_name += 5;
7830 function_name_len -= 5;
7831 }
4c4b4cd2
PH
7832
7833 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7834 strncpy (rename, function_name, function_name_len);
7835 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7836 "__%s___XR", name);
4c4b4cd2
PH
7837 }
7838 else
7839 {
7840 const int rename_len = strlen (name) + 6;
5b4ee69b 7841
4c4b4cd2 7842 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7843 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7844 }
7845
852dff6c 7846 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7847}
7848
14f9c5c9 7849/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7850 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7851 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7852 otherwise return 0. */
7853
14f9c5c9 7854int
d2e4a39e 7855ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7856{
7857 if (type1 == NULL)
7858 return 1;
7859 else if (type0 == NULL)
7860 return 0;
7861 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7862 return 1;
7863 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7864 return 0;
4c4b4cd2
PH
7865 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7866 return 1;
ad82864c 7867 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7868 return 1;
4c4b4cd2
PH
7869 else if (ada_is_array_descriptor_type (type0)
7870 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7871 return 1;
aeb5907d
JB
7872 else
7873 {
7874 const char *type0_name = type_name_no_tag (type0);
7875 const char *type1_name = type_name_no_tag (type1);
7876
7877 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7878 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7879 return 1;
7880 }
14f9c5c9
AS
7881 return 0;
7882}
7883
7884/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7885 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7886
0d5cff50 7887const char *
d2e4a39e 7888ada_type_name (struct type *type)
14f9c5c9 7889{
d2e4a39e 7890 if (type == NULL)
14f9c5c9
AS
7891 return NULL;
7892 else if (TYPE_NAME (type) != NULL)
7893 return TYPE_NAME (type);
7894 else
7895 return TYPE_TAG_NAME (type);
7896}
7897
b4ba55a1
JB
7898/* Search the list of "descriptive" types associated to TYPE for a type
7899 whose name is NAME. */
7900
7901static struct type *
7902find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7903{
931e5bc3 7904 struct type *result, *tmp;
b4ba55a1 7905
c6044dd1
JB
7906 if (ada_ignore_descriptive_types_p)
7907 return NULL;
7908
b4ba55a1
JB
7909 /* If there no descriptive-type info, then there is no parallel type
7910 to be found. */
7911 if (!HAVE_GNAT_AUX_INFO (type))
7912 return NULL;
7913
7914 result = TYPE_DESCRIPTIVE_TYPE (type);
7915 while (result != NULL)
7916 {
0d5cff50 7917 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7918
7919 if (result_name == NULL)
7920 {
7921 warning (_("unexpected null name on descriptive type"));
7922 return NULL;
7923 }
7924
7925 /* If the names match, stop. */
7926 if (strcmp (result_name, name) == 0)
7927 break;
7928
7929 /* Otherwise, look at the next item on the list, if any. */
7930 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7931 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7932 else
7933 tmp = NULL;
7934
7935 /* If not found either, try after having resolved the typedef. */
7936 if (tmp != NULL)
7937 result = tmp;
b4ba55a1 7938 else
931e5bc3 7939 {
f168693b 7940 result = check_typedef (result);
931e5bc3
JG
7941 if (HAVE_GNAT_AUX_INFO (result))
7942 result = TYPE_DESCRIPTIVE_TYPE (result);
7943 else
7944 result = NULL;
7945 }
b4ba55a1
JB
7946 }
7947
7948 /* If we didn't find a match, see whether this is a packed array. With
7949 older compilers, the descriptive type information is either absent or
7950 irrelevant when it comes to packed arrays so the above lookup fails.
7951 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7952 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7953 return ada_find_any_type (name);
7954
7955 return result;
7956}
7957
7958/* Find a parallel type to TYPE with the specified NAME, using the
7959 descriptive type taken from the debugging information, if available,
7960 and otherwise using the (slower) name-based method. */
7961
7962static struct type *
7963ada_find_parallel_type_with_name (struct type *type, const char *name)
7964{
7965 struct type *result = NULL;
7966
7967 if (HAVE_GNAT_AUX_INFO (type))
7968 result = find_parallel_type_by_descriptive_type (type, name);
7969 else
7970 result = ada_find_any_type (name);
7971
7972 return result;
7973}
7974
7975/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7976 SUFFIX to the name of TYPE. */
14f9c5c9 7977
d2e4a39e 7978struct type *
ebf56fd3 7979ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7980{
0d5cff50 7981 char *name;
fe978cb0 7982 const char *type_name = ada_type_name (type);
14f9c5c9 7983 int len;
d2e4a39e 7984
fe978cb0 7985 if (type_name == NULL)
14f9c5c9
AS
7986 return NULL;
7987
fe978cb0 7988 len = strlen (type_name);
14f9c5c9 7989
b4ba55a1 7990 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7991
fe978cb0 7992 strcpy (name, type_name);
14f9c5c9
AS
7993 strcpy (name + len, suffix);
7994
b4ba55a1 7995 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7996}
7997
14f9c5c9 7998/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7999 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8000
d2e4a39e
AS
8001static struct type *
8002dynamic_template_type (struct type *type)
14f9c5c9 8003{
61ee279c 8004 type = ada_check_typedef (type);
14f9c5c9
AS
8005
8006 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8007 || ada_type_name (type) == NULL)
14f9c5c9 8008 return NULL;
d2e4a39e 8009 else
14f9c5c9
AS
8010 {
8011 int len = strlen (ada_type_name (type));
5b4ee69b 8012
4c4b4cd2
PH
8013 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8014 return type;
14f9c5c9 8015 else
4c4b4cd2 8016 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8017 }
8018}
8019
8020/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8021 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8022
d2e4a39e
AS
8023static int
8024is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8025{
8026 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8027
d2e4a39e 8028 return name != NULL
14f9c5c9
AS
8029 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8030 && strstr (name, "___XVL") != NULL;
8031}
8032
4c4b4cd2
PH
8033/* The index of the variant field of TYPE, or -1 if TYPE does not
8034 represent a variant record type. */
14f9c5c9 8035
d2e4a39e 8036static int
4c4b4cd2 8037variant_field_index (struct type *type)
14f9c5c9
AS
8038{
8039 int f;
8040
4c4b4cd2
PH
8041 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8042 return -1;
8043
8044 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8045 {
8046 if (ada_is_variant_part (type, f))
8047 return f;
8048 }
8049 return -1;
14f9c5c9
AS
8050}
8051
4c4b4cd2
PH
8052/* A record type with no fields. */
8053
d2e4a39e 8054static struct type *
fe978cb0 8055empty_record (struct type *templ)
14f9c5c9 8056{
fe978cb0 8057 struct type *type = alloc_type_copy (templ);
5b4ee69b 8058
14f9c5c9
AS
8059 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8060 TYPE_NFIELDS (type) = 0;
8061 TYPE_FIELDS (type) = NULL;
b1f33ddd 8062 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8063 TYPE_NAME (type) = "<empty>";
8064 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8065 TYPE_LENGTH (type) = 0;
8066 return type;
8067}
8068
8069/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8070 the value of type TYPE at VALADDR or ADDRESS (see comments at
8071 the beginning of this section) VAL according to GNAT conventions.
8072 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8073 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8074 an outer-level type (i.e., as opposed to a branch of a variant.) A
8075 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8076 of the variant.
14f9c5c9 8077
4c4b4cd2
PH
8078 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8079 length are not statically known are discarded. As a consequence,
8080 VALADDR, ADDRESS and DVAL0 are ignored.
8081
8082 NOTE: Limitations: For now, we assume that dynamic fields and
8083 variants occupy whole numbers of bytes. However, they need not be
8084 byte-aligned. */
8085
8086struct type *
10a2c479 8087ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8088 const gdb_byte *valaddr,
4c4b4cd2
PH
8089 CORE_ADDR address, struct value *dval0,
8090 int keep_dynamic_fields)
14f9c5c9 8091{
d2e4a39e
AS
8092 struct value *mark = value_mark ();
8093 struct value *dval;
8094 struct type *rtype;
14f9c5c9 8095 int nfields, bit_len;
4c4b4cd2 8096 int variant_field;
14f9c5c9 8097 long off;
d94e4f4f 8098 int fld_bit_len;
14f9c5c9
AS
8099 int f;
8100
4c4b4cd2
PH
8101 /* Compute the number of fields in this record type that are going
8102 to be processed: unless keep_dynamic_fields, this includes only
8103 fields whose position and length are static will be processed. */
8104 if (keep_dynamic_fields)
8105 nfields = TYPE_NFIELDS (type);
8106 else
8107 {
8108 nfields = 0;
76a01679 8109 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8110 && !ada_is_variant_part (type, nfields)
8111 && !is_dynamic_field (type, nfields))
8112 nfields++;
8113 }
8114
e9bb382b 8115 rtype = alloc_type_copy (type);
14f9c5c9
AS
8116 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8117 INIT_CPLUS_SPECIFIC (rtype);
8118 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8119 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8120 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8121 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8122 TYPE_NAME (rtype) = ada_type_name (type);
8123 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8124 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8125
d2e4a39e
AS
8126 off = 0;
8127 bit_len = 0;
4c4b4cd2
PH
8128 variant_field = -1;
8129
14f9c5c9
AS
8130 for (f = 0; f < nfields; f += 1)
8131 {
6c038f32
PH
8132 off = align_value (off, field_alignment (type, f))
8133 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8134 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8135 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8136
d2e4a39e 8137 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8138 {
8139 variant_field = f;
d94e4f4f 8140 fld_bit_len = 0;
4c4b4cd2 8141 }
14f9c5c9 8142 else if (is_dynamic_field (type, f))
4c4b4cd2 8143 {
284614f0
JB
8144 const gdb_byte *field_valaddr = valaddr;
8145 CORE_ADDR field_address = address;
8146 struct type *field_type =
8147 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8148
4c4b4cd2 8149 if (dval0 == NULL)
b5304971
JG
8150 {
8151 /* rtype's length is computed based on the run-time
8152 value of discriminants. If the discriminants are not
8153 initialized, the type size may be completely bogus and
0963b4bd 8154 GDB may fail to allocate a value for it. So check the
b5304971 8155 size first before creating the value. */
c1b5a1a6 8156 ada_ensure_varsize_limit (rtype);
012370f6
TT
8157 /* Using plain value_from_contents_and_address here
8158 causes problems because we will end up trying to
8159 resolve a type that is currently being
8160 constructed. */
8161 dval = value_from_contents_and_address_unresolved (rtype,
8162 valaddr,
8163 address);
9f1f738a 8164 rtype = value_type (dval);
b5304971 8165 }
4c4b4cd2
PH
8166 else
8167 dval = dval0;
8168
284614f0
JB
8169 /* If the type referenced by this field is an aligner type, we need
8170 to unwrap that aligner type, because its size might not be set.
8171 Keeping the aligner type would cause us to compute the wrong
8172 size for this field, impacting the offset of the all the fields
8173 that follow this one. */
8174 if (ada_is_aligner_type (field_type))
8175 {
8176 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8177
8178 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8179 field_address = cond_offset_target (field_address, field_offset);
8180 field_type = ada_aligned_type (field_type);
8181 }
8182
8183 field_valaddr = cond_offset_host (field_valaddr,
8184 off / TARGET_CHAR_BIT);
8185 field_address = cond_offset_target (field_address,
8186 off / TARGET_CHAR_BIT);
8187
8188 /* Get the fixed type of the field. Note that, in this case,
8189 we do not want to get the real type out of the tag: if
8190 the current field is the parent part of a tagged record,
8191 we will get the tag of the object. Clearly wrong: the real
8192 type of the parent is not the real type of the child. We
8193 would end up in an infinite loop. */
8194 field_type = ada_get_base_type (field_type);
8195 field_type = ada_to_fixed_type (field_type, field_valaddr,
8196 field_address, dval, 0);
27f2a97b
JB
8197 /* If the field size is already larger than the maximum
8198 object size, then the record itself will necessarily
8199 be larger than the maximum object size. We need to make
8200 this check now, because the size might be so ridiculously
8201 large (due to an uninitialized variable in the inferior)
8202 that it would cause an overflow when adding it to the
8203 record size. */
c1b5a1a6 8204 ada_ensure_varsize_limit (field_type);
284614f0
JB
8205
8206 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8207 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8208 /* The multiplication can potentially overflow. But because
8209 the field length has been size-checked just above, and
8210 assuming that the maximum size is a reasonable value,
8211 an overflow should not happen in practice. So rather than
8212 adding overflow recovery code to this already complex code,
8213 we just assume that it's not going to happen. */
d94e4f4f 8214 fld_bit_len =
4c4b4cd2
PH
8215 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8216 }
14f9c5c9 8217 else
4c4b4cd2 8218 {
5ded5331
JB
8219 /* Note: If this field's type is a typedef, it is important
8220 to preserve the typedef layer.
8221
8222 Otherwise, we might be transforming a typedef to a fat
8223 pointer (encoding a pointer to an unconstrained array),
8224 into a basic fat pointer (encoding an unconstrained
8225 array). As both types are implemented using the same
8226 structure, the typedef is the only clue which allows us
8227 to distinguish between the two options. Stripping it
8228 would prevent us from printing this field appropriately. */
8229 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8230 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8231 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8232 fld_bit_len =
4c4b4cd2
PH
8233 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8234 else
5ded5331
JB
8235 {
8236 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8237
8238 /* We need to be careful of typedefs when computing
8239 the length of our field. If this is a typedef,
8240 get the length of the target type, not the length
8241 of the typedef. */
8242 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8243 field_type = ada_typedef_target_type (field_type);
8244
8245 fld_bit_len =
8246 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8247 }
4c4b4cd2 8248 }
14f9c5c9 8249 if (off + fld_bit_len > bit_len)
4c4b4cd2 8250 bit_len = off + fld_bit_len;
d94e4f4f 8251 off += fld_bit_len;
4c4b4cd2
PH
8252 TYPE_LENGTH (rtype) =
8253 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8254 }
4c4b4cd2
PH
8255
8256 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8257 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8258 the record. This can happen in the presence of representation
8259 clauses. */
8260 if (variant_field >= 0)
8261 {
8262 struct type *branch_type;
8263
8264 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8265
8266 if (dval0 == NULL)
9f1f738a 8267 {
012370f6
TT
8268 /* Using plain value_from_contents_and_address here causes
8269 problems because we will end up trying to resolve a type
8270 that is currently being constructed. */
8271 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8272 address);
9f1f738a
SA
8273 rtype = value_type (dval);
8274 }
4c4b4cd2
PH
8275 else
8276 dval = dval0;
8277
8278 branch_type =
8279 to_fixed_variant_branch_type
8280 (TYPE_FIELD_TYPE (type, variant_field),
8281 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8282 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8283 if (branch_type == NULL)
8284 {
8285 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8286 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8287 TYPE_NFIELDS (rtype) -= 1;
8288 }
8289 else
8290 {
8291 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8292 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8293 fld_bit_len =
8294 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8295 TARGET_CHAR_BIT;
8296 if (off + fld_bit_len > bit_len)
8297 bit_len = off + fld_bit_len;
8298 TYPE_LENGTH (rtype) =
8299 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8300 }
8301 }
8302
714e53ab
PH
8303 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8304 should contain the alignment of that record, which should be a strictly
8305 positive value. If null or negative, then something is wrong, most
8306 probably in the debug info. In that case, we don't round up the size
0963b4bd 8307 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8308 the current RTYPE length might be good enough for our purposes. */
8309 if (TYPE_LENGTH (type) <= 0)
8310 {
323e0a4a
AC
8311 if (TYPE_NAME (rtype))
8312 warning (_("Invalid type size for `%s' detected: %d."),
8313 TYPE_NAME (rtype), TYPE_LENGTH (type));
8314 else
8315 warning (_("Invalid type size for <unnamed> detected: %d."),
8316 TYPE_LENGTH (type));
714e53ab
PH
8317 }
8318 else
8319 {
8320 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8321 TYPE_LENGTH (type));
8322 }
14f9c5c9
AS
8323
8324 value_free_to_mark (mark);
d2e4a39e 8325 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8326 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8327 return rtype;
8328}
8329
4c4b4cd2
PH
8330/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8331 of 1. */
14f9c5c9 8332
d2e4a39e 8333static struct type *
fc1a4b47 8334template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8335 CORE_ADDR address, struct value *dval0)
8336{
8337 return ada_template_to_fixed_record_type_1 (type, valaddr,
8338 address, dval0, 1);
8339}
8340
8341/* An ordinary record type in which ___XVL-convention fields and
8342 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8343 static approximations, containing all possible fields. Uses
8344 no runtime values. Useless for use in values, but that's OK,
8345 since the results are used only for type determinations. Works on both
8346 structs and unions. Representation note: to save space, we memorize
8347 the result of this function in the TYPE_TARGET_TYPE of the
8348 template type. */
8349
8350static struct type *
8351template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8352{
8353 struct type *type;
8354 int nfields;
8355 int f;
8356
9e195661
PMR
8357 /* No need no do anything if the input type is already fixed. */
8358 if (TYPE_FIXED_INSTANCE (type0))
8359 return type0;
8360
8361 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8362 if (TYPE_TARGET_TYPE (type0) != NULL)
8363 return TYPE_TARGET_TYPE (type0);
8364
9e195661 8365 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8366 type = type0;
9e195661
PMR
8367 nfields = TYPE_NFIELDS (type0);
8368
8369 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8370 recompute all over next time. */
8371 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8372
8373 for (f = 0; f < nfields; f += 1)
8374 {
460efde1 8375 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8376 struct type *new_type;
14f9c5c9 8377
4c4b4cd2 8378 if (is_dynamic_field (type0, f))
460efde1
JB
8379 {
8380 field_type = ada_check_typedef (field_type);
8381 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8382 }
14f9c5c9 8383 else
f192137b 8384 new_type = static_unwrap_type (field_type);
9e195661
PMR
8385
8386 if (new_type != field_type)
8387 {
8388 /* Clone TYPE0 only the first time we get a new field type. */
8389 if (type == type0)
8390 {
8391 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8392 TYPE_CODE (type) = TYPE_CODE (type0);
8393 INIT_CPLUS_SPECIFIC (type);
8394 TYPE_NFIELDS (type) = nfields;
8395 TYPE_FIELDS (type) = (struct field *)
8396 TYPE_ALLOC (type, nfields * sizeof (struct field));
8397 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8398 sizeof (struct field) * nfields);
8399 TYPE_NAME (type) = ada_type_name (type0);
8400 TYPE_TAG_NAME (type) = NULL;
8401 TYPE_FIXED_INSTANCE (type) = 1;
8402 TYPE_LENGTH (type) = 0;
8403 }
8404 TYPE_FIELD_TYPE (type, f) = new_type;
8405 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8406 }
14f9c5c9 8407 }
9e195661 8408
14f9c5c9
AS
8409 return type;
8410}
8411
4c4b4cd2 8412/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8413 whose address in memory is ADDRESS, returns a revision of TYPE,
8414 which should be a non-dynamic-sized record, in which the variant
8415 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8416 for discriminant values in DVAL0, which can be NULL if the record
8417 contains the necessary discriminant values. */
8418
d2e4a39e 8419static struct type *
fc1a4b47 8420to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8421 CORE_ADDR address, struct value *dval0)
14f9c5c9 8422{
d2e4a39e 8423 struct value *mark = value_mark ();
4c4b4cd2 8424 struct value *dval;
d2e4a39e 8425 struct type *rtype;
14f9c5c9
AS
8426 struct type *branch_type;
8427 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8428 int variant_field = variant_field_index (type);
14f9c5c9 8429
4c4b4cd2 8430 if (variant_field == -1)
14f9c5c9
AS
8431 return type;
8432
4c4b4cd2 8433 if (dval0 == NULL)
9f1f738a
SA
8434 {
8435 dval = value_from_contents_and_address (type, valaddr, address);
8436 type = value_type (dval);
8437 }
4c4b4cd2
PH
8438 else
8439 dval = dval0;
8440
e9bb382b 8441 rtype = alloc_type_copy (type);
14f9c5c9 8442 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8443 INIT_CPLUS_SPECIFIC (rtype);
8444 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8445 TYPE_FIELDS (rtype) =
8446 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8447 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8448 sizeof (struct field) * nfields);
14f9c5c9
AS
8449 TYPE_NAME (rtype) = ada_type_name (type);
8450 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8451 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8452 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8453
4c4b4cd2
PH
8454 branch_type = to_fixed_variant_branch_type
8455 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8456 cond_offset_host (valaddr,
4c4b4cd2
PH
8457 TYPE_FIELD_BITPOS (type, variant_field)
8458 / TARGET_CHAR_BIT),
d2e4a39e 8459 cond_offset_target (address,
4c4b4cd2
PH
8460 TYPE_FIELD_BITPOS (type, variant_field)
8461 / TARGET_CHAR_BIT), dval);
d2e4a39e 8462 if (branch_type == NULL)
14f9c5c9 8463 {
4c4b4cd2 8464 int f;
5b4ee69b 8465
4c4b4cd2
PH
8466 for (f = variant_field + 1; f < nfields; f += 1)
8467 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8468 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8469 }
8470 else
8471 {
4c4b4cd2
PH
8472 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8473 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8474 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8475 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8476 }
4c4b4cd2 8477 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8478
4c4b4cd2 8479 value_free_to_mark (mark);
14f9c5c9
AS
8480 return rtype;
8481}
8482
8483/* An ordinary record type (with fixed-length fields) that describes
8484 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8485 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8486 should be in DVAL, a record value; it may be NULL if the object
8487 at ADDR itself contains any necessary discriminant values.
8488 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8489 values from the record are needed. Except in the case that DVAL,
8490 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8491 unchecked) is replaced by a particular branch of the variant.
8492
8493 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8494 is questionable and may be removed. It can arise during the
8495 processing of an unconstrained-array-of-record type where all the
8496 variant branches have exactly the same size. This is because in
8497 such cases, the compiler does not bother to use the XVS convention
8498 when encoding the record. I am currently dubious of this
8499 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8500
d2e4a39e 8501static struct type *
fc1a4b47 8502to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8503 CORE_ADDR address, struct value *dval)
14f9c5c9 8504{
d2e4a39e 8505 struct type *templ_type;
14f9c5c9 8506
876cecd0 8507 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8508 return type0;
8509
d2e4a39e 8510 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8511
8512 if (templ_type != NULL)
8513 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8514 else if (variant_field_index (type0) >= 0)
8515 {
8516 if (dval == NULL && valaddr == NULL && address == 0)
8517 return type0;
8518 return to_record_with_fixed_variant_part (type0, valaddr, address,
8519 dval);
8520 }
14f9c5c9
AS
8521 else
8522 {
876cecd0 8523 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8524 return type0;
8525 }
8526
8527}
8528
8529/* An ordinary record type (with fixed-length fields) that describes
8530 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8531 union type. Any necessary discriminants' values should be in DVAL,
8532 a record value. That is, this routine selects the appropriate
8533 branch of the union at ADDR according to the discriminant value
b1f33ddd 8534 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8535 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8536
d2e4a39e 8537static struct type *
fc1a4b47 8538to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8539 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8540{
8541 int which;
d2e4a39e
AS
8542 struct type *templ_type;
8543 struct type *var_type;
14f9c5c9
AS
8544
8545 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8546 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8547 else
14f9c5c9
AS
8548 var_type = var_type0;
8549
8550 templ_type = ada_find_parallel_type (var_type, "___XVU");
8551
8552 if (templ_type != NULL)
8553 var_type = templ_type;
8554
b1f33ddd
JB
8555 if (is_unchecked_variant (var_type, value_type (dval)))
8556 return var_type0;
d2e4a39e
AS
8557 which =
8558 ada_which_variant_applies (var_type,
0fd88904 8559 value_type (dval), value_contents (dval));
14f9c5c9
AS
8560
8561 if (which < 0)
e9bb382b 8562 return empty_record (var_type);
14f9c5c9 8563 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8564 return to_fixed_record_type
d2e4a39e
AS
8565 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8566 valaddr, address, dval);
4c4b4cd2 8567 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8568 return
8569 to_fixed_record_type
8570 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8571 else
8572 return TYPE_FIELD_TYPE (var_type, which);
8573}
8574
8908fca5
JB
8575/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8576 ENCODING_TYPE, a type following the GNAT conventions for discrete
8577 type encodings, only carries redundant information. */
8578
8579static int
8580ada_is_redundant_range_encoding (struct type *range_type,
8581 struct type *encoding_type)
8582{
8583 struct type *fixed_range_type;
8584 char *bounds_str;
8585 int n;
8586 LONGEST lo, hi;
8587
8588 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8589
005e2509
JB
8590 if (TYPE_CODE (get_base_type (range_type))
8591 != TYPE_CODE (get_base_type (encoding_type)))
8592 {
8593 /* The compiler probably used a simple base type to describe
8594 the range type instead of the range's actual base type,
8595 expecting us to get the real base type from the encoding
8596 anyway. In this situation, the encoding cannot be ignored
8597 as redundant. */
8598 return 0;
8599 }
8600
8908fca5
JB
8601 if (is_dynamic_type (range_type))
8602 return 0;
8603
8604 if (TYPE_NAME (encoding_type) == NULL)
8605 return 0;
8606
8607 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8608 if (bounds_str == NULL)
8609 return 0;
8610
8611 n = 8; /* Skip "___XDLU_". */
8612 if (!ada_scan_number (bounds_str, n, &lo, &n))
8613 return 0;
8614 if (TYPE_LOW_BOUND (range_type) != lo)
8615 return 0;
8616
8617 n += 2; /* Skip the "__" separator between the two bounds. */
8618 if (!ada_scan_number (bounds_str, n, &hi, &n))
8619 return 0;
8620 if (TYPE_HIGH_BOUND (range_type) != hi)
8621 return 0;
8622
8623 return 1;
8624}
8625
8626/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8627 a type following the GNAT encoding for describing array type
8628 indices, only carries redundant information. */
8629
8630static int
8631ada_is_redundant_index_type_desc (struct type *array_type,
8632 struct type *desc_type)
8633{
8634 struct type *this_layer = check_typedef (array_type);
8635 int i;
8636
8637 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8638 {
8639 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8640 TYPE_FIELD_TYPE (desc_type, i)))
8641 return 0;
8642 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8643 }
8644
8645 return 1;
8646}
8647
14f9c5c9
AS
8648/* Assuming that TYPE0 is an array type describing the type of a value
8649 at ADDR, and that DVAL describes a record containing any
8650 discriminants used in TYPE0, returns a type for the value that
8651 contains no dynamic components (that is, no components whose sizes
8652 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8653 true, gives an error message if the resulting type's size is over
4c4b4cd2 8654 varsize_limit. */
14f9c5c9 8655
d2e4a39e
AS
8656static struct type *
8657to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8658 int ignore_too_big)
14f9c5c9 8659{
d2e4a39e
AS
8660 struct type *index_type_desc;
8661 struct type *result;
ad82864c 8662 int constrained_packed_array_p;
931e5bc3 8663 static const char *xa_suffix = "___XA";
14f9c5c9 8664
b0dd7688 8665 type0 = ada_check_typedef (type0);
284614f0 8666 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8667 return type0;
14f9c5c9 8668
ad82864c
JB
8669 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8670 if (constrained_packed_array_p)
8671 type0 = decode_constrained_packed_array_type (type0);
284614f0 8672
931e5bc3
JG
8673 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8674
8675 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8676 encoding suffixed with 'P' may still be generated. If so,
8677 it should be used to find the XA type. */
8678
8679 if (index_type_desc == NULL)
8680 {
1da0522e 8681 const char *type_name = ada_type_name (type0);
931e5bc3 8682
1da0522e 8683 if (type_name != NULL)
931e5bc3 8684 {
1da0522e 8685 const int len = strlen (type_name);
931e5bc3
JG
8686 char *name = (char *) alloca (len + strlen (xa_suffix));
8687
1da0522e 8688 if (type_name[len - 1] == 'P')
931e5bc3 8689 {
1da0522e 8690 strcpy (name, type_name);
931e5bc3
JG
8691 strcpy (name + len - 1, xa_suffix);
8692 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8693 }
8694 }
8695 }
8696
28c85d6c 8697 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8698 if (index_type_desc != NULL
8699 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8700 {
8701 /* Ignore this ___XA parallel type, as it does not bring any
8702 useful information. This allows us to avoid creating fixed
8703 versions of the array's index types, which would be identical
8704 to the original ones. This, in turn, can also help avoid
8705 the creation of fixed versions of the array itself. */
8706 index_type_desc = NULL;
8707 }
8708
14f9c5c9
AS
8709 if (index_type_desc == NULL)
8710 {
61ee279c 8711 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8712
14f9c5c9 8713 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8714 depend on the contents of the array in properly constructed
8715 debugging data. */
529cad9c
PH
8716 /* Create a fixed version of the array element type.
8717 We're not providing the address of an element here,
e1d5a0d2 8718 and thus the actual object value cannot be inspected to do
529cad9c
PH
8719 the conversion. This should not be a problem, since arrays of
8720 unconstrained objects are not allowed. In particular, all
8721 the elements of an array of a tagged type should all be of
8722 the same type specified in the debugging info. No need to
8723 consult the object tag. */
1ed6ede0 8724 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8725
284614f0
JB
8726 /* Make sure we always create a new array type when dealing with
8727 packed array types, since we're going to fix-up the array
8728 type length and element bitsize a little further down. */
ad82864c 8729 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8730 result = type0;
14f9c5c9 8731 else
e9bb382b 8732 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8733 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8734 }
8735 else
8736 {
8737 int i;
8738 struct type *elt_type0;
8739
8740 elt_type0 = type0;
8741 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8742 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8743
8744 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8745 depend on the contents of the array in properly constructed
8746 debugging data. */
529cad9c
PH
8747 /* Create a fixed version of the array element type.
8748 We're not providing the address of an element here,
e1d5a0d2 8749 and thus the actual object value cannot be inspected to do
529cad9c
PH
8750 the conversion. This should not be a problem, since arrays of
8751 unconstrained objects are not allowed. In particular, all
8752 the elements of an array of a tagged type should all be of
8753 the same type specified in the debugging info. No need to
8754 consult the object tag. */
1ed6ede0
JB
8755 result =
8756 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8757
8758 elt_type0 = type0;
14f9c5c9 8759 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8760 {
8761 struct type *range_type =
28c85d6c 8762 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8763
e9bb382b 8764 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8765 result, range_type);
1ce677a4 8766 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8767 }
d2e4a39e 8768 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8769 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8770 }
8771
2e6fda7d
JB
8772 /* We want to preserve the type name. This can be useful when
8773 trying to get the type name of a value that has already been
8774 printed (for instance, if the user did "print VAR; whatis $". */
8775 TYPE_NAME (result) = TYPE_NAME (type0);
8776
ad82864c 8777 if (constrained_packed_array_p)
284614f0
JB
8778 {
8779 /* So far, the resulting type has been created as if the original
8780 type was a regular (non-packed) array type. As a result, the
8781 bitsize of the array elements needs to be set again, and the array
8782 length needs to be recomputed based on that bitsize. */
8783 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8784 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8785
8786 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8787 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8788 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8789 TYPE_LENGTH (result)++;
8790 }
8791
876cecd0 8792 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8793 return result;
d2e4a39e 8794}
14f9c5c9
AS
8795
8796
8797/* A standard type (containing no dynamically sized components)
8798 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8799 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8800 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8801 ADDRESS or in VALADDR contains these discriminants.
8802
1ed6ede0
JB
8803 If CHECK_TAG is not null, in the case of tagged types, this function
8804 attempts to locate the object's tag and use it to compute the actual
8805 type. However, when ADDRESS is null, we cannot use it to determine the
8806 location of the tag, and therefore compute the tagged type's actual type.
8807 So we return the tagged type without consulting the tag. */
529cad9c 8808
f192137b
JB
8809static struct type *
8810ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8811 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8812{
61ee279c 8813 type = ada_check_typedef (type);
d2e4a39e
AS
8814 switch (TYPE_CODE (type))
8815 {
8816 default:
14f9c5c9 8817 return type;
d2e4a39e 8818 case TYPE_CODE_STRUCT:
4c4b4cd2 8819 {
76a01679 8820 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8821 struct type *fixed_record_type =
8822 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8823
529cad9c
PH
8824 /* If STATIC_TYPE is a tagged type and we know the object's address,
8825 then we can determine its tag, and compute the object's actual
0963b4bd 8826 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8827 type (the parent part of the record may have dynamic fields
8828 and the way the location of _tag is expressed may depend on
8829 them). */
529cad9c 8830
1ed6ede0 8831 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8832 {
b50d69b5
JG
8833 struct value *tag =
8834 value_tag_from_contents_and_address
8835 (fixed_record_type,
8836 valaddr,
8837 address);
8838 struct type *real_type = type_from_tag (tag);
8839 struct value *obj =
8840 value_from_contents_and_address (fixed_record_type,
8841 valaddr,
8842 address);
9f1f738a 8843 fixed_record_type = value_type (obj);
76a01679 8844 if (real_type != NULL)
b50d69b5
JG
8845 return to_fixed_record_type
8846 (real_type, NULL,
8847 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8848 }
4af88198
JB
8849
8850 /* Check to see if there is a parallel ___XVZ variable.
8851 If there is, then it provides the actual size of our type. */
8852 else if (ada_type_name (fixed_record_type) != NULL)
8853 {
0d5cff50 8854 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8855 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8856 int xvz_found = 0;
8857 LONGEST size;
8858
88c15c34 8859 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8860 size = get_int_var_value (xvz_name, &xvz_found);
8861 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8862 {
8863 fixed_record_type = copy_type (fixed_record_type);
8864 TYPE_LENGTH (fixed_record_type) = size;
8865
8866 /* The FIXED_RECORD_TYPE may have be a stub. We have
8867 observed this when the debugging info is STABS, and
8868 apparently it is something that is hard to fix.
8869
8870 In practice, we don't need the actual type definition
8871 at all, because the presence of the XVZ variable allows us
8872 to assume that there must be a XVS type as well, which we
8873 should be able to use later, when we need the actual type
8874 definition.
8875
8876 In the meantime, pretend that the "fixed" type we are
8877 returning is NOT a stub, because this can cause trouble
8878 when using this type to create new types targeting it.
8879 Indeed, the associated creation routines often check
8880 whether the target type is a stub and will try to replace
0963b4bd 8881 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8882 might cause the new type to have the wrong size too.
8883 Consider the case of an array, for instance, where the size
8884 of the array is computed from the number of elements in
8885 our array multiplied by the size of its element. */
8886 TYPE_STUB (fixed_record_type) = 0;
8887 }
8888 }
1ed6ede0 8889 return fixed_record_type;
4c4b4cd2 8890 }
d2e4a39e 8891 case TYPE_CODE_ARRAY:
4c4b4cd2 8892 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8893 case TYPE_CODE_UNION:
8894 if (dval == NULL)
4c4b4cd2 8895 return type;
d2e4a39e 8896 else
4c4b4cd2 8897 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8898 }
14f9c5c9
AS
8899}
8900
f192137b
JB
8901/* The same as ada_to_fixed_type_1, except that it preserves the type
8902 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8903
8904 The typedef layer needs be preserved in order to differentiate between
8905 arrays and array pointers when both types are implemented using the same
8906 fat pointer. In the array pointer case, the pointer is encoded as
8907 a typedef of the pointer type. For instance, considering:
8908
8909 type String_Access is access String;
8910 S1 : String_Access := null;
8911
8912 To the debugger, S1 is defined as a typedef of type String. But
8913 to the user, it is a pointer. So if the user tries to print S1,
8914 we should not dereference the array, but print the array address
8915 instead.
8916
8917 If we didn't preserve the typedef layer, we would lose the fact that
8918 the type is to be presented as a pointer (needs de-reference before
8919 being printed). And we would also use the source-level type name. */
f192137b
JB
8920
8921struct type *
8922ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8923 CORE_ADDR address, struct value *dval, int check_tag)
8924
8925{
8926 struct type *fixed_type =
8927 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8928
96dbd2c1
JB
8929 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8930 then preserve the typedef layer.
8931
8932 Implementation note: We can only check the main-type portion of
8933 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8934 from TYPE now returns a type that has the same instance flags
8935 as TYPE. For instance, if TYPE is a "typedef const", and its
8936 target type is a "struct", then the typedef elimination will return
8937 a "const" version of the target type. See check_typedef for more
8938 details about how the typedef layer elimination is done.
8939
8940 brobecker/2010-11-19: It seems to me that the only case where it is
8941 useful to preserve the typedef layer is when dealing with fat pointers.
8942 Perhaps, we could add a check for that and preserve the typedef layer
8943 only in that situation. But this seems unecessary so far, probably
8944 because we call check_typedef/ada_check_typedef pretty much everywhere.
8945 */
f192137b 8946 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8947 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8948 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8949 return type;
8950
8951 return fixed_type;
8952}
8953
14f9c5c9 8954/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8955 TYPE0, but based on no runtime data. */
14f9c5c9 8956
d2e4a39e
AS
8957static struct type *
8958to_static_fixed_type (struct type *type0)
14f9c5c9 8959{
d2e4a39e 8960 struct type *type;
14f9c5c9
AS
8961
8962 if (type0 == NULL)
8963 return NULL;
8964
876cecd0 8965 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8966 return type0;
8967
61ee279c 8968 type0 = ada_check_typedef (type0);
d2e4a39e 8969
14f9c5c9
AS
8970 switch (TYPE_CODE (type0))
8971 {
8972 default:
8973 return type0;
8974 case TYPE_CODE_STRUCT:
8975 type = dynamic_template_type (type0);
d2e4a39e 8976 if (type != NULL)
4c4b4cd2
PH
8977 return template_to_static_fixed_type (type);
8978 else
8979 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8980 case TYPE_CODE_UNION:
8981 type = ada_find_parallel_type (type0, "___XVU");
8982 if (type != NULL)
4c4b4cd2
PH
8983 return template_to_static_fixed_type (type);
8984 else
8985 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8986 }
8987}
8988
4c4b4cd2
PH
8989/* A static approximation of TYPE with all type wrappers removed. */
8990
d2e4a39e
AS
8991static struct type *
8992static_unwrap_type (struct type *type)
14f9c5c9
AS
8993{
8994 if (ada_is_aligner_type (type))
8995 {
61ee279c 8996 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8997 if (ada_type_name (type1) == NULL)
4c4b4cd2 8998 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8999
9000 return static_unwrap_type (type1);
9001 }
d2e4a39e 9002 else
14f9c5c9 9003 {
d2e4a39e 9004 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9005
d2e4a39e 9006 if (raw_real_type == type)
4c4b4cd2 9007 return type;
14f9c5c9 9008 else
4c4b4cd2 9009 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9010 }
9011}
9012
9013/* In some cases, incomplete and private types require
4c4b4cd2 9014 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9015 type Foo;
9016 type FooP is access Foo;
9017 V: FooP;
9018 type Foo is array ...;
4c4b4cd2 9019 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9020 cross-references to such types, we instead substitute for FooP a
9021 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9022 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9023
9024/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9025 exists, otherwise TYPE. */
9026
d2e4a39e 9027struct type *
61ee279c 9028ada_check_typedef (struct type *type)
14f9c5c9 9029{
727e3d2e
JB
9030 if (type == NULL)
9031 return NULL;
9032
720d1a40
JB
9033 /* If our type is a typedef type of a fat pointer, then we're done.
9034 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9035 what allows us to distinguish between fat pointers that represent
9036 array types, and fat pointers that represent array access types
9037 (in both cases, the compiler implements them as fat pointers). */
9038 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9039 && is_thick_pntr (ada_typedef_target_type (type)))
9040 return type;
9041
f168693b 9042 type = check_typedef (type);
14f9c5c9 9043 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9044 || !TYPE_STUB (type)
14f9c5c9
AS
9045 || TYPE_TAG_NAME (type) == NULL)
9046 return type;
d2e4a39e 9047 else
14f9c5c9 9048 {
0d5cff50 9049 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9050 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9051
05e522ef
JB
9052 if (type1 == NULL)
9053 return type;
9054
9055 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9056 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9057 types, only for the typedef-to-array types). If that's the case,
9058 strip the typedef layer. */
9059 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9060 type1 = ada_check_typedef (type1);
9061
9062 return type1;
14f9c5c9
AS
9063 }
9064}
9065
9066/* A value representing the data at VALADDR/ADDRESS as described by
9067 type TYPE0, but with a standard (static-sized) type that correctly
9068 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9069 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9070 creation of struct values]. */
14f9c5c9 9071
4c4b4cd2
PH
9072static struct value *
9073ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9074 struct value *val0)
14f9c5c9 9075{
1ed6ede0 9076 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9077
14f9c5c9
AS
9078 if (type == type0 && val0 != NULL)
9079 return val0;
d2e4a39e 9080 else
4c4b4cd2
PH
9081 return value_from_contents_and_address (type, 0, address);
9082}
9083
9084/* A value representing VAL, but with a standard (static-sized) type
9085 that correctly describes it. Does not necessarily create a new
9086 value. */
9087
0c3acc09 9088struct value *
4c4b4cd2
PH
9089ada_to_fixed_value (struct value *val)
9090{
c48db5ca
JB
9091 val = unwrap_value (val);
9092 val = ada_to_fixed_value_create (value_type (val),
9093 value_address (val),
9094 val);
9095 return val;
14f9c5c9 9096}
d2e4a39e 9097\f
14f9c5c9 9098
14f9c5c9
AS
9099/* Attributes */
9100
4c4b4cd2
PH
9101/* Table mapping attribute numbers to names.
9102 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9103
d2e4a39e 9104static const char *attribute_names[] = {
14f9c5c9
AS
9105 "<?>",
9106
d2e4a39e 9107 "first",
14f9c5c9
AS
9108 "last",
9109 "length",
9110 "image",
14f9c5c9
AS
9111 "max",
9112 "min",
4c4b4cd2
PH
9113 "modulus",
9114 "pos",
9115 "size",
9116 "tag",
14f9c5c9 9117 "val",
14f9c5c9
AS
9118 0
9119};
9120
d2e4a39e 9121const char *
4c4b4cd2 9122ada_attribute_name (enum exp_opcode n)
14f9c5c9 9123{
4c4b4cd2
PH
9124 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9125 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9126 else
9127 return attribute_names[0];
9128}
9129
4c4b4cd2 9130/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9131
4c4b4cd2
PH
9132static LONGEST
9133pos_atr (struct value *arg)
14f9c5c9 9134{
24209737
PH
9135 struct value *val = coerce_ref (arg);
9136 struct type *type = value_type (val);
aa715135 9137 LONGEST result;
14f9c5c9 9138
d2e4a39e 9139 if (!discrete_type_p (type))
323e0a4a 9140 error (_("'POS only defined on discrete types"));
14f9c5c9 9141
aa715135
JG
9142 if (!discrete_position (type, value_as_long (val), &result))
9143 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9144
aa715135 9145 return result;
4c4b4cd2
PH
9146}
9147
9148static struct value *
3cb382c9 9149value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9150{
3cb382c9 9151 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9152}
9153
4c4b4cd2 9154/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9155
d2e4a39e
AS
9156static struct value *
9157value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9158{
d2e4a39e 9159 if (!discrete_type_p (type))
323e0a4a 9160 error (_("'VAL only defined on discrete types"));
df407dfe 9161 if (!integer_type_p (value_type (arg)))
323e0a4a 9162 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9163
9164 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9165 {
9166 long pos = value_as_long (arg);
5b4ee69b 9167
14f9c5c9 9168 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9169 error (_("argument to 'VAL out of range"));
14e75d8e 9170 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9171 }
9172 else
9173 return value_from_longest (type, value_as_long (arg));
9174}
14f9c5c9 9175\f
d2e4a39e 9176
4c4b4cd2 9177 /* Evaluation */
14f9c5c9 9178
4c4b4cd2
PH
9179/* True if TYPE appears to be an Ada character type.
9180 [At the moment, this is true only for Character and Wide_Character;
9181 It is a heuristic test that could stand improvement]. */
14f9c5c9 9182
d2e4a39e
AS
9183int
9184ada_is_character_type (struct type *type)
14f9c5c9 9185{
7b9f71f2
JB
9186 const char *name;
9187
9188 /* If the type code says it's a character, then assume it really is,
9189 and don't check any further. */
9190 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9191 return 1;
9192
9193 /* Otherwise, assume it's a character type iff it is a discrete type
9194 with a known character type name. */
9195 name = ada_type_name (type);
9196 return (name != NULL
9197 && (TYPE_CODE (type) == TYPE_CODE_INT
9198 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9199 && (strcmp (name, "character") == 0
9200 || strcmp (name, "wide_character") == 0
5a517ebd 9201 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9202 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9203}
9204
4c4b4cd2 9205/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9206
9207int
ebf56fd3 9208ada_is_string_type (struct type *type)
14f9c5c9 9209{
61ee279c 9210 type = ada_check_typedef (type);
d2e4a39e 9211 if (type != NULL
14f9c5c9 9212 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9213 && (ada_is_simple_array_type (type)
9214 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9215 && ada_array_arity (type) == 1)
9216 {
9217 struct type *elttype = ada_array_element_type (type, 1);
9218
9219 return ada_is_character_type (elttype);
9220 }
d2e4a39e 9221 else
14f9c5c9
AS
9222 return 0;
9223}
9224
5bf03f13
JB
9225/* The compiler sometimes provides a parallel XVS type for a given
9226 PAD type. Normally, it is safe to follow the PAD type directly,
9227 but older versions of the compiler have a bug that causes the offset
9228 of its "F" field to be wrong. Following that field in that case
9229 would lead to incorrect results, but this can be worked around
9230 by ignoring the PAD type and using the associated XVS type instead.
9231
9232 Set to True if the debugger should trust the contents of PAD types.
9233 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9234static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9235
9236/* True if TYPE is a struct type introduced by the compiler to force the
9237 alignment of a value. Such types have a single field with a
4c4b4cd2 9238 distinctive name. */
14f9c5c9
AS
9239
9240int
ebf56fd3 9241ada_is_aligner_type (struct type *type)
14f9c5c9 9242{
61ee279c 9243 type = ada_check_typedef (type);
714e53ab 9244
5bf03f13 9245 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9246 return 0;
9247
14f9c5c9 9248 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9249 && TYPE_NFIELDS (type) == 1
9250 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9251}
9252
9253/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9254 the parallel type. */
14f9c5c9 9255
d2e4a39e
AS
9256struct type *
9257ada_get_base_type (struct type *raw_type)
14f9c5c9 9258{
d2e4a39e
AS
9259 struct type *real_type_namer;
9260 struct type *raw_real_type;
14f9c5c9
AS
9261
9262 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9263 return raw_type;
9264
284614f0
JB
9265 if (ada_is_aligner_type (raw_type))
9266 /* The encoding specifies that we should always use the aligner type.
9267 So, even if this aligner type has an associated XVS type, we should
9268 simply ignore it.
9269
9270 According to the compiler gurus, an XVS type parallel to an aligner
9271 type may exist because of a stabs limitation. In stabs, aligner
9272 types are empty because the field has a variable-sized type, and
9273 thus cannot actually be used as an aligner type. As a result,
9274 we need the associated parallel XVS type to decode the type.
9275 Since the policy in the compiler is to not change the internal
9276 representation based on the debugging info format, we sometimes
9277 end up having a redundant XVS type parallel to the aligner type. */
9278 return raw_type;
9279
14f9c5c9 9280 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9281 if (real_type_namer == NULL
14f9c5c9
AS
9282 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9283 || TYPE_NFIELDS (real_type_namer) != 1)
9284 return raw_type;
9285
f80d3ff2
JB
9286 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9287 {
9288 /* This is an older encoding form where the base type needs to be
9289 looked up by name. We prefer the newer enconding because it is
9290 more efficient. */
9291 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9292 if (raw_real_type == NULL)
9293 return raw_type;
9294 else
9295 return raw_real_type;
9296 }
9297
9298 /* The field in our XVS type is a reference to the base type. */
9299 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9300}
14f9c5c9 9301
4c4b4cd2 9302/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9303
d2e4a39e
AS
9304struct type *
9305ada_aligned_type (struct type *type)
14f9c5c9
AS
9306{
9307 if (ada_is_aligner_type (type))
9308 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9309 else
9310 return ada_get_base_type (type);
9311}
9312
9313
9314/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9315 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9316
fc1a4b47
AC
9317const gdb_byte *
9318ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9319{
d2e4a39e 9320 if (ada_is_aligner_type (type))
14f9c5c9 9321 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9322 valaddr +
9323 TYPE_FIELD_BITPOS (type,
9324 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9325 else
9326 return valaddr;
9327}
9328
4c4b4cd2
PH
9329
9330
14f9c5c9 9331/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9332 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9333const char *
9334ada_enum_name (const char *name)
14f9c5c9 9335{
4c4b4cd2
PH
9336 static char *result;
9337 static size_t result_len = 0;
d2e4a39e 9338 char *tmp;
14f9c5c9 9339
4c4b4cd2
PH
9340 /* First, unqualify the enumeration name:
9341 1. Search for the last '.' character. If we find one, then skip
177b42fe 9342 all the preceding characters, the unqualified name starts
76a01679 9343 right after that dot.
4c4b4cd2 9344 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9345 translates dots into "__". Search forward for double underscores,
9346 but stop searching when we hit an overloading suffix, which is
9347 of the form "__" followed by digits. */
4c4b4cd2 9348
c3e5cd34
PH
9349 tmp = strrchr (name, '.');
9350 if (tmp != NULL)
4c4b4cd2
PH
9351 name = tmp + 1;
9352 else
14f9c5c9 9353 {
4c4b4cd2
PH
9354 while ((tmp = strstr (name, "__")) != NULL)
9355 {
9356 if (isdigit (tmp[2]))
9357 break;
9358 else
9359 name = tmp + 2;
9360 }
14f9c5c9
AS
9361 }
9362
9363 if (name[0] == 'Q')
9364 {
14f9c5c9 9365 int v;
5b4ee69b 9366
14f9c5c9 9367 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9368 {
9369 if (sscanf (name + 2, "%x", &v) != 1)
9370 return name;
9371 }
14f9c5c9 9372 else
4c4b4cd2 9373 return name;
14f9c5c9 9374
4c4b4cd2 9375 GROW_VECT (result, result_len, 16);
14f9c5c9 9376 if (isascii (v) && isprint (v))
88c15c34 9377 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9378 else if (name[1] == 'U')
88c15c34 9379 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9380 else
88c15c34 9381 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9382
9383 return result;
9384 }
d2e4a39e 9385 else
4c4b4cd2 9386 {
c3e5cd34
PH
9387 tmp = strstr (name, "__");
9388 if (tmp == NULL)
9389 tmp = strstr (name, "$");
9390 if (tmp != NULL)
4c4b4cd2
PH
9391 {
9392 GROW_VECT (result, result_len, tmp - name + 1);
9393 strncpy (result, name, tmp - name);
9394 result[tmp - name] = '\0';
9395 return result;
9396 }
9397
9398 return name;
9399 }
14f9c5c9
AS
9400}
9401
14f9c5c9
AS
9402/* Evaluate the subexpression of EXP starting at *POS as for
9403 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9404 expression. */
14f9c5c9 9405
d2e4a39e
AS
9406static struct value *
9407evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9408{
4b27a620 9409 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9410}
9411
9412/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9413 value it wraps. */
14f9c5c9 9414
d2e4a39e
AS
9415static struct value *
9416unwrap_value (struct value *val)
14f9c5c9 9417{
df407dfe 9418 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9419
14f9c5c9
AS
9420 if (ada_is_aligner_type (type))
9421 {
de4d072f 9422 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9423 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9424
14f9c5c9 9425 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9426 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9427
9428 return unwrap_value (v);
9429 }
d2e4a39e 9430 else
14f9c5c9 9431 {
d2e4a39e 9432 struct type *raw_real_type =
61ee279c 9433 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9434
5bf03f13
JB
9435 /* If there is no parallel XVS or XVE type, then the value is
9436 already unwrapped. Return it without further modification. */
9437 if ((type == raw_real_type)
9438 && ada_find_parallel_type (type, "___XVE") == NULL)
9439 return val;
14f9c5c9 9440
d2e4a39e 9441 return
4c4b4cd2
PH
9442 coerce_unspec_val_to_type
9443 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9444 value_address (val),
1ed6ede0 9445 NULL, 1));
14f9c5c9
AS
9446 }
9447}
d2e4a39e
AS
9448
9449static struct value *
9450cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9451{
9452 LONGEST val;
9453
df407dfe 9454 if (type == value_type (arg))
14f9c5c9 9455 return arg;
df407dfe 9456 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9457 val = ada_float_to_fixed (type,
df407dfe 9458 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9459 value_as_long (arg)));
d2e4a39e 9460 else
14f9c5c9 9461 {
a53b7a21 9462 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9463
14f9c5c9
AS
9464 val = ada_float_to_fixed (type, argd);
9465 }
9466
9467 return value_from_longest (type, val);
9468}
9469
d2e4a39e 9470static struct value *
a53b7a21 9471cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9472{
df407dfe 9473 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9474 value_as_long (arg));
5b4ee69b 9475
a53b7a21 9476 return value_from_double (type, val);
14f9c5c9
AS
9477}
9478
d99dcf51
JB
9479/* Given two array types T1 and T2, return nonzero iff both arrays
9480 contain the same number of elements. */
9481
9482static int
9483ada_same_array_size_p (struct type *t1, struct type *t2)
9484{
9485 LONGEST lo1, hi1, lo2, hi2;
9486
9487 /* Get the array bounds in order to verify that the size of
9488 the two arrays match. */
9489 if (!get_array_bounds (t1, &lo1, &hi1)
9490 || !get_array_bounds (t2, &lo2, &hi2))
9491 error (_("unable to determine array bounds"));
9492
9493 /* To make things easier for size comparison, normalize a bit
9494 the case of empty arrays by making sure that the difference
9495 between upper bound and lower bound is always -1. */
9496 if (lo1 > hi1)
9497 hi1 = lo1 - 1;
9498 if (lo2 > hi2)
9499 hi2 = lo2 - 1;
9500
9501 return (hi1 - lo1 == hi2 - lo2);
9502}
9503
9504/* Assuming that VAL is an array of integrals, and TYPE represents
9505 an array with the same number of elements, but with wider integral
9506 elements, return an array "casted" to TYPE. In practice, this
9507 means that the returned array is built by casting each element
9508 of the original array into TYPE's (wider) element type. */
9509
9510static struct value *
9511ada_promote_array_of_integrals (struct type *type, struct value *val)
9512{
9513 struct type *elt_type = TYPE_TARGET_TYPE (type);
9514 LONGEST lo, hi;
9515 struct value *res;
9516 LONGEST i;
9517
9518 /* Verify that both val and type are arrays of scalars, and
9519 that the size of val's elements is smaller than the size
9520 of type's element. */
9521 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9522 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9523 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9524 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9525 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9526 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9527
9528 if (!get_array_bounds (type, &lo, &hi))
9529 error (_("unable to determine array bounds"));
9530
9531 res = allocate_value (type);
9532
9533 /* Promote each array element. */
9534 for (i = 0; i < hi - lo + 1; i++)
9535 {
9536 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9537
9538 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9539 value_contents_all (elt), TYPE_LENGTH (elt_type));
9540 }
9541
9542 return res;
9543}
9544
4c4b4cd2
PH
9545/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9546 return the converted value. */
9547
d2e4a39e
AS
9548static struct value *
9549coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9550{
df407dfe 9551 struct type *type2 = value_type (val);
5b4ee69b 9552
14f9c5c9
AS
9553 if (type == type2)
9554 return val;
9555
61ee279c
PH
9556 type2 = ada_check_typedef (type2);
9557 type = ada_check_typedef (type);
14f9c5c9 9558
d2e4a39e
AS
9559 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9560 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9561 {
9562 val = ada_value_ind (val);
df407dfe 9563 type2 = value_type (val);
14f9c5c9
AS
9564 }
9565
d2e4a39e 9566 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9567 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9568 {
d99dcf51
JB
9569 if (!ada_same_array_size_p (type, type2))
9570 error (_("cannot assign arrays of different length"));
9571
9572 if (is_integral_type (TYPE_TARGET_TYPE (type))
9573 && is_integral_type (TYPE_TARGET_TYPE (type2))
9574 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9575 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9576 {
9577 /* Allow implicit promotion of the array elements to
9578 a wider type. */
9579 return ada_promote_array_of_integrals (type, val);
9580 }
9581
9582 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9583 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9584 error (_("Incompatible types in assignment"));
04624583 9585 deprecated_set_value_type (val, type);
14f9c5c9 9586 }
d2e4a39e 9587 return val;
14f9c5c9
AS
9588}
9589
4c4b4cd2
PH
9590static struct value *
9591ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9592{
9593 struct value *val;
9594 struct type *type1, *type2;
9595 LONGEST v, v1, v2;
9596
994b9211
AC
9597 arg1 = coerce_ref (arg1);
9598 arg2 = coerce_ref (arg2);
18af8284
JB
9599 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9600 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9601
76a01679
JB
9602 if (TYPE_CODE (type1) != TYPE_CODE_INT
9603 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9604 return value_binop (arg1, arg2, op);
9605
76a01679 9606 switch (op)
4c4b4cd2
PH
9607 {
9608 case BINOP_MOD:
9609 case BINOP_DIV:
9610 case BINOP_REM:
9611 break;
9612 default:
9613 return value_binop (arg1, arg2, op);
9614 }
9615
9616 v2 = value_as_long (arg2);
9617 if (v2 == 0)
323e0a4a 9618 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9619
9620 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9621 return value_binop (arg1, arg2, op);
9622
9623 v1 = value_as_long (arg1);
9624 switch (op)
9625 {
9626 case BINOP_DIV:
9627 v = v1 / v2;
76a01679
JB
9628 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9629 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9630 break;
9631 case BINOP_REM:
9632 v = v1 % v2;
76a01679
JB
9633 if (v * v1 < 0)
9634 v -= v2;
4c4b4cd2
PH
9635 break;
9636 default:
9637 /* Should not reach this point. */
9638 v = 0;
9639 }
9640
9641 val = allocate_value (type1);
990a07ab 9642 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9643 TYPE_LENGTH (value_type (val)),
9644 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9645 return val;
9646}
9647
9648static int
9649ada_value_equal (struct value *arg1, struct value *arg2)
9650{
df407dfe
AC
9651 if (ada_is_direct_array_type (value_type (arg1))
9652 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9653 {
f58b38bf
JB
9654 /* Automatically dereference any array reference before
9655 we attempt to perform the comparison. */
9656 arg1 = ada_coerce_ref (arg1);
9657 arg2 = ada_coerce_ref (arg2);
9658
4c4b4cd2
PH
9659 arg1 = ada_coerce_to_simple_array (arg1);
9660 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9661 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9662 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9663 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9664 /* FIXME: The following works only for types whose
76a01679
JB
9665 representations use all bits (no padding or undefined bits)
9666 and do not have user-defined equality. */
9667 return
df407dfe 9668 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9669 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9670 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9671 }
9672 return value_equal (arg1, arg2);
9673}
9674
52ce6436
PH
9675/* Total number of component associations in the aggregate starting at
9676 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9677 OP_AGGREGATE. */
52ce6436
PH
9678
9679static int
9680num_component_specs (struct expression *exp, int pc)
9681{
9682 int n, m, i;
5b4ee69b 9683
52ce6436
PH
9684 m = exp->elts[pc + 1].longconst;
9685 pc += 3;
9686 n = 0;
9687 for (i = 0; i < m; i += 1)
9688 {
9689 switch (exp->elts[pc].opcode)
9690 {
9691 default:
9692 n += 1;
9693 break;
9694 case OP_CHOICES:
9695 n += exp->elts[pc + 1].longconst;
9696 break;
9697 }
9698 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9699 }
9700 return n;
9701}
9702
9703/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9704 component of LHS (a simple array or a record), updating *POS past
9705 the expression, assuming that LHS is contained in CONTAINER. Does
9706 not modify the inferior's memory, nor does it modify LHS (unless
9707 LHS == CONTAINER). */
9708
9709static void
9710assign_component (struct value *container, struct value *lhs, LONGEST index,
9711 struct expression *exp, int *pos)
9712{
9713 struct value *mark = value_mark ();
9714 struct value *elt;
5b4ee69b 9715
52ce6436
PH
9716 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9717 {
22601c15
UW
9718 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9719 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9720
52ce6436
PH
9721 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9722 }
9723 else
9724 {
9725 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9726 elt = ada_to_fixed_value (elt);
52ce6436
PH
9727 }
9728
9729 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9730 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9731 else
9732 value_assign_to_component (container, elt,
9733 ada_evaluate_subexp (NULL, exp, pos,
9734 EVAL_NORMAL));
9735
9736 value_free_to_mark (mark);
9737}
9738
9739/* Assuming that LHS represents an lvalue having a record or array
9740 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9741 of that aggregate's value to LHS, advancing *POS past the
9742 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9743 lvalue containing LHS (possibly LHS itself). Does not modify
9744 the inferior's memory, nor does it modify the contents of
0963b4bd 9745 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9746
9747static struct value *
9748assign_aggregate (struct value *container,
9749 struct value *lhs, struct expression *exp,
9750 int *pos, enum noside noside)
9751{
9752 struct type *lhs_type;
9753 int n = exp->elts[*pos+1].longconst;
9754 LONGEST low_index, high_index;
9755 int num_specs;
9756 LONGEST *indices;
9757 int max_indices, num_indices;
52ce6436 9758 int i;
52ce6436
PH
9759
9760 *pos += 3;
9761 if (noside != EVAL_NORMAL)
9762 {
52ce6436
PH
9763 for (i = 0; i < n; i += 1)
9764 ada_evaluate_subexp (NULL, exp, pos, noside);
9765 return container;
9766 }
9767
9768 container = ada_coerce_ref (container);
9769 if (ada_is_direct_array_type (value_type (container)))
9770 container = ada_coerce_to_simple_array (container);
9771 lhs = ada_coerce_ref (lhs);
9772 if (!deprecated_value_modifiable (lhs))
9773 error (_("Left operand of assignment is not a modifiable lvalue."));
9774
9775 lhs_type = value_type (lhs);
9776 if (ada_is_direct_array_type (lhs_type))
9777 {
9778 lhs = ada_coerce_to_simple_array (lhs);
9779 lhs_type = value_type (lhs);
9780 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9781 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9782 }
9783 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9784 {
9785 low_index = 0;
9786 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9787 }
9788 else
9789 error (_("Left-hand side must be array or record."));
9790
9791 num_specs = num_component_specs (exp, *pos - 3);
9792 max_indices = 4 * num_specs + 4;
9793 indices = alloca (max_indices * sizeof (indices[0]));
9794 indices[0] = indices[1] = low_index - 1;
9795 indices[2] = indices[3] = high_index + 1;
9796 num_indices = 4;
9797
9798 for (i = 0; i < n; i += 1)
9799 {
9800 switch (exp->elts[*pos].opcode)
9801 {
1fbf5ada
JB
9802 case OP_CHOICES:
9803 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9804 &num_indices, max_indices,
9805 low_index, high_index);
9806 break;
9807 case OP_POSITIONAL:
9808 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9809 &num_indices, max_indices,
9810 low_index, high_index);
1fbf5ada
JB
9811 break;
9812 case OP_OTHERS:
9813 if (i != n-1)
9814 error (_("Misplaced 'others' clause"));
9815 aggregate_assign_others (container, lhs, exp, pos, indices,
9816 num_indices, low_index, high_index);
9817 break;
9818 default:
9819 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9820 }
9821 }
9822
9823 return container;
9824}
9825
9826/* Assign into the component of LHS indexed by the OP_POSITIONAL
9827 construct at *POS, updating *POS past the construct, given that
9828 the positions are relative to lower bound LOW, where HIGH is the
9829 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9830 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9831 assign_aggregate. */
52ce6436
PH
9832static void
9833aggregate_assign_positional (struct value *container,
9834 struct value *lhs, struct expression *exp,
9835 int *pos, LONGEST *indices, int *num_indices,
9836 int max_indices, LONGEST low, LONGEST high)
9837{
9838 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9839
9840 if (ind - 1 == high)
e1d5a0d2 9841 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9842 if (ind <= high)
9843 {
9844 add_component_interval (ind, ind, indices, num_indices, max_indices);
9845 *pos += 3;
9846 assign_component (container, lhs, ind, exp, pos);
9847 }
9848 else
9849 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9850}
9851
9852/* Assign into the components of LHS indexed by the OP_CHOICES
9853 construct at *POS, updating *POS past the construct, given that
9854 the allowable indices are LOW..HIGH. Record the indices assigned
9855 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9856 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9857static void
9858aggregate_assign_from_choices (struct value *container,
9859 struct value *lhs, struct expression *exp,
9860 int *pos, LONGEST *indices, int *num_indices,
9861 int max_indices, LONGEST low, LONGEST high)
9862{
9863 int j;
9864 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9865 int choice_pos, expr_pc;
9866 int is_array = ada_is_direct_array_type (value_type (lhs));
9867
9868 choice_pos = *pos += 3;
9869
9870 for (j = 0; j < n_choices; j += 1)
9871 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9872 expr_pc = *pos;
9873 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9874
9875 for (j = 0; j < n_choices; j += 1)
9876 {
9877 LONGEST lower, upper;
9878 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9879
52ce6436
PH
9880 if (op == OP_DISCRETE_RANGE)
9881 {
9882 choice_pos += 1;
9883 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9884 EVAL_NORMAL));
9885 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9886 EVAL_NORMAL));
9887 }
9888 else if (is_array)
9889 {
9890 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9891 EVAL_NORMAL));
9892 upper = lower;
9893 }
9894 else
9895 {
9896 int ind;
0d5cff50 9897 const char *name;
5b4ee69b 9898
52ce6436
PH
9899 switch (op)
9900 {
9901 case OP_NAME:
9902 name = &exp->elts[choice_pos + 2].string;
9903 break;
9904 case OP_VAR_VALUE:
9905 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9906 break;
9907 default:
9908 error (_("Invalid record component association."));
9909 }
9910 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9911 ind = 0;
9912 if (! find_struct_field (name, value_type (lhs), 0,
9913 NULL, NULL, NULL, NULL, &ind))
9914 error (_("Unknown component name: %s."), name);
9915 lower = upper = ind;
9916 }
9917
9918 if (lower <= upper && (lower < low || upper > high))
9919 error (_("Index in component association out of bounds."));
9920
9921 add_component_interval (lower, upper, indices, num_indices,
9922 max_indices);
9923 while (lower <= upper)
9924 {
9925 int pos1;
5b4ee69b 9926
52ce6436
PH
9927 pos1 = expr_pc;
9928 assign_component (container, lhs, lower, exp, &pos1);
9929 lower += 1;
9930 }
9931 }
9932}
9933
9934/* Assign the value of the expression in the OP_OTHERS construct in
9935 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9936 have not been previously assigned. The index intervals already assigned
9937 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9938 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9939static void
9940aggregate_assign_others (struct value *container,
9941 struct value *lhs, struct expression *exp,
9942 int *pos, LONGEST *indices, int num_indices,
9943 LONGEST low, LONGEST high)
9944{
9945 int i;
5ce64950 9946 int expr_pc = *pos + 1;
52ce6436
PH
9947
9948 for (i = 0; i < num_indices - 2; i += 2)
9949 {
9950 LONGEST ind;
5b4ee69b 9951
52ce6436
PH
9952 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9953 {
5ce64950 9954 int localpos;
5b4ee69b 9955
5ce64950
MS
9956 localpos = expr_pc;
9957 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9958 }
9959 }
9960 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9961}
9962
9963/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9964 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9965 modifying *SIZE as needed. It is an error if *SIZE exceeds
9966 MAX_SIZE. The resulting intervals do not overlap. */
9967static void
9968add_component_interval (LONGEST low, LONGEST high,
9969 LONGEST* indices, int *size, int max_size)
9970{
9971 int i, j;
5b4ee69b 9972
52ce6436
PH
9973 for (i = 0; i < *size; i += 2) {
9974 if (high >= indices[i] && low <= indices[i + 1])
9975 {
9976 int kh;
5b4ee69b 9977
52ce6436
PH
9978 for (kh = i + 2; kh < *size; kh += 2)
9979 if (high < indices[kh])
9980 break;
9981 if (low < indices[i])
9982 indices[i] = low;
9983 indices[i + 1] = indices[kh - 1];
9984 if (high > indices[i + 1])
9985 indices[i + 1] = high;
9986 memcpy (indices + i + 2, indices + kh, *size - kh);
9987 *size -= kh - i - 2;
9988 return;
9989 }
9990 else if (high < indices[i])
9991 break;
9992 }
9993
9994 if (*size == max_size)
9995 error (_("Internal error: miscounted aggregate components."));
9996 *size += 2;
9997 for (j = *size-1; j >= i+2; j -= 1)
9998 indices[j] = indices[j - 2];
9999 indices[i] = low;
10000 indices[i + 1] = high;
10001}
10002
6e48bd2c
JB
10003/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10004 is different. */
10005
10006static struct value *
10007ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10008{
10009 if (type == ada_check_typedef (value_type (arg2)))
10010 return arg2;
10011
10012 if (ada_is_fixed_point_type (type))
10013 return (cast_to_fixed (type, arg2));
10014
10015 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10016 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10017
10018 return value_cast (type, arg2);
10019}
10020
284614f0
JB
10021/* Evaluating Ada expressions, and printing their result.
10022 ------------------------------------------------------
10023
21649b50
JB
10024 1. Introduction:
10025 ----------------
10026
284614f0
JB
10027 We usually evaluate an Ada expression in order to print its value.
10028 We also evaluate an expression in order to print its type, which
10029 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10030 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10031 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10032 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10033 similar.
10034
10035 Evaluating expressions is a little more complicated for Ada entities
10036 than it is for entities in languages such as C. The main reason for
10037 this is that Ada provides types whose definition might be dynamic.
10038 One example of such types is variant records. Or another example
10039 would be an array whose bounds can only be known at run time.
10040
10041 The following description is a general guide as to what should be
10042 done (and what should NOT be done) in order to evaluate an expression
10043 involving such types, and when. This does not cover how the semantic
10044 information is encoded by GNAT as this is covered separatly. For the
10045 document used as the reference for the GNAT encoding, see exp_dbug.ads
10046 in the GNAT sources.
10047
10048 Ideally, we should embed each part of this description next to its
10049 associated code. Unfortunately, the amount of code is so vast right
10050 now that it's hard to see whether the code handling a particular
10051 situation might be duplicated or not. One day, when the code is
10052 cleaned up, this guide might become redundant with the comments
10053 inserted in the code, and we might want to remove it.
10054
21649b50
JB
10055 2. ``Fixing'' an Entity, the Simple Case:
10056 -----------------------------------------
10057
284614f0
JB
10058 When evaluating Ada expressions, the tricky issue is that they may
10059 reference entities whose type contents and size are not statically
10060 known. Consider for instance a variant record:
10061
10062 type Rec (Empty : Boolean := True) is record
10063 case Empty is
10064 when True => null;
10065 when False => Value : Integer;
10066 end case;
10067 end record;
10068 Yes : Rec := (Empty => False, Value => 1);
10069 No : Rec := (empty => True);
10070
10071 The size and contents of that record depends on the value of the
10072 descriminant (Rec.Empty). At this point, neither the debugging
10073 information nor the associated type structure in GDB are able to
10074 express such dynamic types. So what the debugger does is to create
10075 "fixed" versions of the type that applies to the specific object.
10076 We also informally refer to this opperation as "fixing" an object,
10077 which means creating its associated fixed type.
10078
10079 Example: when printing the value of variable "Yes" above, its fixed
10080 type would look like this:
10081
10082 type Rec is record
10083 Empty : Boolean;
10084 Value : Integer;
10085 end record;
10086
10087 On the other hand, if we printed the value of "No", its fixed type
10088 would become:
10089
10090 type Rec is record
10091 Empty : Boolean;
10092 end record;
10093
10094 Things become a little more complicated when trying to fix an entity
10095 with a dynamic type that directly contains another dynamic type,
10096 such as an array of variant records, for instance. There are
10097 two possible cases: Arrays, and records.
10098
21649b50
JB
10099 3. ``Fixing'' Arrays:
10100 ---------------------
10101
10102 The type structure in GDB describes an array in terms of its bounds,
10103 and the type of its elements. By design, all elements in the array
10104 have the same type and we cannot represent an array of variant elements
10105 using the current type structure in GDB. When fixing an array,
10106 we cannot fix the array element, as we would potentially need one
10107 fixed type per element of the array. As a result, the best we can do
10108 when fixing an array is to produce an array whose bounds and size
10109 are correct (allowing us to read it from memory), but without having
10110 touched its element type. Fixing each element will be done later,
10111 when (if) necessary.
10112
10113 Arrays are a little simpler to handle than records, because the same
10114 amount of memory is allocated for each element of the array, even if
1b536f04 10115 the amount of space actually used by each element differs from element
21649b50 10116 to element. Consider for instance the following array of type Rec:
284614f0
JB
10117
10118 type Rec_Array is array (1 .. 2) of Rec;
10119
1b536f04
JB
10120 The actual amount of memory occupied by each element might be different
10121 from element to element, depending on the value of their discriminant.
21649b50 10122 But the amount of space reserved for each element in the array remains
1b536f04 10123 fixed regardless. So we simply need to compute that size using
21649b50
JB
10124 the debugging information available, from which we can then determine
10125 the array size (we multiply the number of elements of the array by
10126 the size of each element).
10127
10128 The simplest case is when we have an array of a constrained element
10129 type. For instance, consider the following type declarations:
10130
10131 type Bounded_String (Max_Size : Integer) is
10132 Length : Integer;
10133 Buffer : String (1 .. Max_Size);
10134 end record;
10135 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10136
10137 In this case, the compiler describes the array as an array of
10138 variable-size elements (identified by its XVS suffix) for which
10139 the size can be read in the parallel XVZ variable.
10140
10141 In the case of an array of an unconstrained element type, the compiler
10142 wraps the array element inside a private PAD type. This type should not
10143 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10144 that we also use the adjective "aligner" in our code to designate
10145 these wrapper types.
10146
1b536f04 10147 In some cases, the size allocated for each element is statically
21649b50
JB
10148 known. In that case, the PAD type already has the correct size,
10149 and the array element should remain unfixed.
10150
10151 But there are cases when this size is not statically known.
10152 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10153
10154 type Dynamic is array (1 .. Five) of Integer;
10155 type Wrapper (Has_Length : Boolean := False) is record
10156 Data : Dynamic;
10157 case Has_Length is
10158 when True => Length : Integer;
10159 when False => null;
10160 end case;
10161 end record;
10162 type Wrapper_Array is array (1 .. 2) of Wrapper;
10163
10164 Hello : Wrapper_Array := (others => (Has_Length => True,
10165 Data => (others => 17),
10166 Length => 1));
10167
10168
10169 The debugging info would describe variable Hello as being an
10170 array of a PAD type. The size of that PAD type is not statically
10171 known, but can be determined using a parallel XVZ variable.
10172 In that case, a copy of the PAD type with the correct size should
10173 be used for the fixed array.
10174
21649b50
JB
10175 3. ``Fixing'' record type objects:
10176 ----------------------------------
10177
10178 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10179 record types. In this case, in order to compute the associated
10180 fixed type, we need to determine the size and offset of each of
10181 its components. This, in turn, requires us to compute the fixed
10182 type of each of these components.
10183
10184 Consider for instance the example:
10185
10186 type Bounded_String (Max_Size : Natural) is record
10187 Str : String (1 .. Max_Size);
10188 Length : Natural;
10189 end record;
10190 My_String : Bounded_String (Max_Size => 10);
10191
10192 In that case, the position of field "Length" depends on the size
10193 of field Str, which itself depends on the value of the Max_Size
21649b50 10194 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10195 we need to fix the type of field Str. Therefore, fixing a variant
10196 record requires us to fix each of its components.
10197
10198 However, if a component does not have a dynamic size, the component
10199 should not be fixed. In particular, fields that use a PAD type
10200 should not fixed. Here is an example where this might happen
10201 (assuming type Rec above):
10202
10203 type Container (Big : Boolean) is record
10204 First : Rec;
10205 After : Integer;
10206 case Big is
10207 when True => Another : Integer;
10208 when False => null;
10209 end case;
10210 end record;
10211 My_Container : Container := (Big => False,
10212 First => (Empty => True),
10213 After => 42);
10214
10215 In that example, the compiler creates a PAD type for component First,
10216 whose size is constant, and then positions the component After just
10217 right after it. The offset of component After is therefore constant
10218 in this case.
10219
10220 The debugger computes the position of each field based on an algorithm
10221 that uses, among other things, the actual position and size of the field
21649b50
JB
10222 preceding it. Let's now imagine that the user is trying to print
10223 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10224 end up computing the offset of field After based on the size of the
10225 fixed version of field First. And since in our example First has
10226 only one actual field, the size of the fixed type is actually smaller
10227 than the amount of space allocated to that field, and thus we would
10228 compute the wrong offset of field After.
10229
21649b50
JB
10230 To make things more complicated, we need to watch out for dynamic
10231 components of variant records (identified by the ___XVL suffix in
10232 the component name). Even if the target type is a PAD type, the size
10233 of that type might not be statically known. So the PAD type needs
10234 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10235 we might end up with the wrong size for our component. This can be
10236 observed with the following type declarations:
284614f0
JB
10237
10238 type Octal is new Integer range 0 .. 7;
10239 type Octal_Array is array (Positive range <>) of Octal;
10240 pragma Pack (Octal_Array);
10241
10242 type Octal_Buffer (Size : Positive) is record
10243 Buffer : Octal_Array (1 .. Size);
10244 Length : Integer;
10245 end record;
10246
10247 In that case, Buffer is a PAD type whose size is unset and needs
10248 to be computed by fixing the unwrapped type.
10249
21649b50
JB
10250 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10251 ----------------------------------------------------------
10252
10253 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10254 thus far, be actually fixed?
10255
10256 The answer is: Only when referencing that element. For instance
10257 when selecting one component of a record, this specific component
10258 should be fixed at that point in time. Or when printing the value
10259 of a record, each component should be fixed before its value gets
10260 printed. Similarly for arrays, the element of the array should be
10261 fixed when printing each element of the array, or when extracting
10262 one element out of that array. On the other hand, fixing should
10263 not be performed on the elements when taking a slice of an array!
10264
10265 Note that one of the side-effects of miscomputing the offset and
10266 size of each field is that we end up also miscomputing the size
10267 of the containing type. This can have adverse results when computing
10268 the value of an entity. GDB fetches the value of an entity based
10269 on the size of its type, and thus a wrong size causes GDB to fetch
10270 the wrong amount of memory. In the case where the computed size is
10271 too small, GDB fetches too little data to print the value of our
10272 entiry. Results in this case as unpredicatble, as we usually read
10273 past the buffer containing the data =:-o. */
10274
10275/* Implement the evaluate_exp routine in the exp_descriptor structure
10276 for the Ada language. */
10277
52ce6436 10278static struct value *
ebf56fd3 10279ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10280 int *pos, enum noside noside)
14f9c5c9
AS
10281{
10282 enum exp_opcode op;
b5385fc0 10283 int tem;
14f9c5c9 10284 int pc;
5ec18f2b 10285 int preeval_pos;
14f9c5c9
AS
10286 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10287 struct type *type;
52ce6436 10288 int nargs, oplen;
d2e4a39e 10289 struct value **argvec;
14f9c5c9 10290
d2e4a39e
AS
10291 pc = *pos;
10292 *pos += 1;
14f9c5c9
AS
10293 op = exp->elts[pc].opcode;
10294
d2e4a39e 10295 switch (op)
14f9c5c9
AS
10296 {
10297 default:
10298 *pos -= 1;
6e48bd2c 10299 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10300
10301 if (noside == EVAL_NORMAL)
10302 arg1 = unwrap_value (arg1);
6e48bd2c
JB
10303
10304 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10305 then we need to perform the conversion manually, because
10306 evaluate_subexp_standard doesn't do it. This conversion is
10307 necessary in Ada because the different kinds of float/fixed
10308 types in Ada have different representations.
10309
10310 Similarly, we need to perform the conversion from OP_LONG
10311 ourselves. */
10312 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10313 arg1 = ada_value_cast (expect_type, arg1, noside);
10314
10315 return arg1;
4c4b4cd2
PH
10316
10317 case OP_STRING:
10318 {
76a01679 10319 struct value *result;
5b4ee69b 10320
76a01679
JB
10321 *pos -= 1;
10322 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10323 /* The result type will have code OP_STRING, bashed there from
10324 OP_ARRAY. Bash it back. */
df407dfe
AC
10325 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10326 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10327 return result;
4c4b4cd2 10328 }
14f9c5c9
AS
10329
10330 case UNOP_CAST:
10331 (*pos) += 2;
10332 type = exp->elts[pc + 1].type;
10333 arg1 = evaluate_subexp (type, exp, pos, noside);
10334 if (noside == EVAL_SKIP)
4c4b4cd2 10335 goto nosideret;
6e48bd2c 10336 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
10337 return arg1;
10338
4c4b4cd2
PH
10339 case UNOP_QUAL:
10340 (*pos) += 2;
10341 type = exp->elts[pc + 1].type;
10342 return ada_evaluate_subexp (type, exp, pos, noside);
10343
14f9c5c9
AS
10344 case BINOP_ASSIGN:
10345 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10346 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10347 {
10348 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10349 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10350 return arg1;
10351 return ada_value_assign (arg1, arg1);
10352 }
003f3813
JB
10353 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10354 except if the lhs of our assignment is a convenience variable.
10355 In the case of assigning to a convenience variable, the lhs
10356 should be exactly the result of the evaluation of the rhs. */
10357 type = value_type (arg1);
10358 if (VALUE_LVAL (arg1) == lval_internalvar)
10359 type = NULL;
10360 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10361 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10362 return arg1;
df407dfe
AC
10363 if (ada_is_fixed_point_type (value_type (arg1)))
10364 arg2 = cast_to_fixed (value_type (arg1), arg2);
10365 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10366 error
323e0a4a 10367 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10368 else
df407dfe 10369 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10370 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10371
10372 case BINOP_ADD:
10373 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10374 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10375 if (noside == EVAL_SKIP)
4c4b4cd2 10376 goto nosideret;
2ac8a782
JB
10377 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10378 return (value_from_longest
10379 (value_type (arg1),
10380 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10381 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10382 return (value_from_longest
10383 (value_type (arg2),
10384 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10385 if ((ada_is_fixed_point_type (value_type (arg1))
10386 || ada_is_fixed_point_type (value_type (arg2)))
10387 && value_type (arg1) != value_type (arg2))
323e0a4a 10388 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10389 /* Do the addition, and cast the result to the type of the first
10390 argument. We cannot cast the result to a reference type, so if
10391 ARG1 is a reference type, find its underlying type. */
10392 type = value_type (arg1);
10393 while (TYPE_CODE (type) == TYPE_CODE_REF)
10394 type = TYPE_TARGET_TYPE (type);
f44316fa 10395 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10396 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10397
10398 case BINOP_SUB:
10399 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10400 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10401 if (noside == EVAL_SKIP)
4c4b4cd2 10402 goto nosideret;
2ac8a782
JB
10403 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10404 return (value_from_longest
10405 (value_type (arg1),
10406 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10407 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10408 return (value_from_longest
10409 (value_type (arg2),
10410 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10411 if ((ada_is_fixed_point_type (value_type (arg1))
10412 || ada_is_fixed_point_type (value_type (arg2)))
10413 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10414 error (_("Operands of fixed-point subtraction "
10415 "must have the same type"));
b7789565
JB
10416 /* Do the substraction, and cast the result to the type of the first
10417 argument. We cannot cast the result to a reference type, so if
10418 ARG1 is a reference type, find its underlying type. */
10419 type = value_type (arg1);
10420 while (TYPE_CODE (type) == TYPE_CODE_REF)
10421 type = TYPE_TARGET_TYPE (type);
f44316fa 10422 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10423 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10424
10425 case BINOP_MUL:
10426 case BINOP_DIV:
e1578042
JB
10427 case BINOP_REM:
10428 case BINOP_MOD:
14f9c5c9
AS
10429 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10430 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10431 if (noside == EVAL_SKIP)
4c4b4cd2 10432 goto nosideret;
e1578042 10433 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10434 {
10435 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10436 return value_zero (value_type (arg1), not_lval);
10437 }
14f9c5c9 10438 else
4c4b4cd2 10439 {
a53b7a21 10440 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10441 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10442 arg1 = cast_from_fixed (type, arg1);
df407dfe 10443 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10444 arg2 = cast_from_fixed (type, arg2);
f44316fa 10445 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10446 return ada_value_binop (arg1, arg2, op);
10447 }
10448
4c4b4cd2
PH
10449 case BINOP_EQUAL:
10450 case BINOP_NOTEQUAL:
14f9c5c9 10451 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10452 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10453 if (noside == EVAL_SKIP)
76a01679 10454 goto nosideret;
4c4b4cd2 10455 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10456 tem = 0;
4c4b4cd2 10457 else
f44316fa
UW
10458 {
10459 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10460 tem = ada_value_equal (arg1, arg2);
10461 }
4c4b4cd2 10462 if (op == BINOP_NOTEQUAL)
76a01679 10463 tem = !tem;
fbb06eb1
UW
10464 type = language_bool_type (exp->language_defn, exp->gdbarch);
10465 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10466
10467 case UNOP_NEG:
10468 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10469 if (noside == EVAL_SKIP)
10470 goto nosideret;
df407dfe
AC
10471 else if (ada_is_fixed_point_type (value_type (arg1)))
10472 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10473 else
f44316fa
UW
10474 {
10475 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10476 return value_neg (arg1);
10477 }
4c4b4cd2 10478
2330c6c6
JB
10479 case BINOP_LOGICAL_AND:
10480 case BINOP_LOGICAL_OR:
10481 case UNOP_LOGICAL_NOT:
000d5124
JB
10482 {
10483 struct value *val;
10484
10485 *pos -= 1;
10486 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10487 type = language_bool_type (exp->language_defn, exp->gdbarch);
10488 return value_cast (type, val);
000d5124 10489 }
2330c6c6
JB
10490
10491 case BINOP_BITWISE_AND:
10492 case BINOP_BITWISE_IOR:
10493 case BINOP_BITWISE_XOR:
000d5124
JB
10494 {
10495 struct value *val;
10496
10497 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10498 *pos = pc;
10499 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10500
10501 return value_cast (value_type (arg1), val);
10502 }
2330c6c6 10503
14f9c5c9
AS
10504 case OP_VAR_VALUE:
10505 *pos -= 1;
6799def4 10506
14f9c5c9 10507 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10508 {
10509 *pos += 4;
10510 goto nosideret;
10511 }
da5c522f
JB
10512
10513 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10514 /* Only encountered when an unresolved symbol occurs in a
10515 context other than a function call, in which case, it is
52ce6436 10516 invalid. */
323e0a4a 10517 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10518 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10519
10520 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10521 {
0c1f74cf 10522 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10523 /* Check to see if this is a tagged type. We also need to handle
10524 the case where the type is a reference to a tagged type, but
10525 we have to be careful to exclude pointers to tagged types.
10526 The latter should be shown as usual (as a pointer), whereas
10527 a reference should mostly be transparent to the user. */
10528 if (ada_is_tagged_type (type, 0)
023db19c 10529 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10530 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10531 {
10532 /* Tagged types are a little special in the fact that the real
10533 type is dynamic and can only be determined by inspecting the
10534 object's tag. This means that we need to get the object's
10535 value first (EVAL_NORMAL) and then extract the actual object
10536 type from its tag.
10537
10538 Note that we cannot skip the final step where we extract
10539 the object type from its tag, because the EVAL_NORMAL phase
10540 results in dynamic components being resolved into fixed ones.
10541 This can cause problems when trying to print the type
10542 description of tagged types whose parent has a dynamic size:
10543 We use the type name of the "_parent" component in order
10544 to print the name of the ancestor type in the type description.
10545 If that component had a dynamic size, the resolution into
10546 a fixed type would result in the loss of that type name,
10547 thus preventing us from printing the name of the ancestor
10548 type in the type description. */
10549 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10550
10551 if (TYPE_CODE (type) != TYPE_CODE_REF)
10552 {
10553 struct type *actual_type;
10554
10555 actual_type = type_from_tag (ada_value_tag (arg1));
10556 if (actual_type == NULL)
10557 /* If, for some reason, we were unable to determine
10558 the actual type from the tag, then use the static
10559 approximation that we just computed as a fallback.
10560 This can happen if the debugging information is
10561 incomplete, for instance. */
10562 actual_type = type;
10563 return value_zero (actual_type, not_lval);
10564 }
10565 else
10566 {
10567 /* In the case of a ref, ada_coerce_ref takes care
10568 of determining the actual type. But the evaluation
10569 should return a ref as it should be valid to ask
10570 for its address; so rebuild a ref after coerce. */
10571 arg1 = ada_coerce_ref (arg1);
10572 return value_ref (arg1);
10573 }
10574 }
0c1f74cf 10575
84754697
JB
10576 /* Records and unions for which GNAT encodings have been
10577 generated need to be statically fixed as well.
10578 Otherwise, non-static fixing produces a type where
10579 all dynamic properties are removed, which prevents "ptype"
10580 from being able to completely describe the type.
10581 For instance, a case statement in a variant record would be
10582 replaced by the relevant components based on the actual
10583 value of the discriminants. */
10584 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10585 && dynamic_template_type (type) != NULL)
10586 || (TYPE_CODE (type) == TYPE_CODE_UNION
10587 && ada_find_parallel_type (type, "___XVU") != NULL))
10588 {
10589 *pos += 4;
10590 return value_zero (to_static_fixed_type (type), not_lval);
10591 }
4c4b4cd2 10592 }
da5c522f
JB
10593
10594 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10595 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10596
10597 case OP_FUNCALL:
10598 (*pos) += 2;
10599
10600 /* Allocate arg vector, including space for the function to be
10601 called in argvec[0] and a terminating NULL. */
10602 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10603 argvec =
10604 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10605
10606 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10607 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10608 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10609 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10610 else
10611 {
10612 for (tem = 0; tem <= nargs; tem += 1)
10613 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10614 argvec[tem] = 0;
10615
10616 if (noside == EVAL_SKIP)
10617 goto nosideret;
10618 }
10619
ad82864c
JB
10620 if (ada_is_constrained_packed_array_type
10621 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10622 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10623 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10624 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10625 /* This is a packed array that has already been fixed, and
10626 therefore already coerced to a simple array. Nothing further
10627 to do. */
10628 ;
df407dfe
AC
10629 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10630 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 10631 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
10632 argvec[0] = value_addr (argvec[0]);
10633
df407dfe 10634 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10635
10636 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10637 them. So, if this is an array typedef (encoding use for array
10638 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10639 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10640 type = ada_typedef_target_type (type);
10641
4c4b4cd2
PH
10642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10643 {
61ee279c 10644 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10645 {
10646 case TYPE_CODE_FUNC:
61ee279c 10647 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10648 break;
10649 case TYPE_CODE_ARRAY:
10650 break;
10651 case TYPE_CODE_STRUCT:
10652 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10653 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10654 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10655 break;
10656 default:
323e0a4a 10657 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10658 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10659 break;
10660 }
10661 }
10662
10663 switch (TYPE_CODE (type))
10664 {
10665 case TYPE_CODE_FUNC:
10666 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10667 {
10668 struct type *rtype = TYPE_TARGET_TYPE (type);
10669
10670 if (TYPE_GNU_IFUNC (type))
10671 return allocate_value (TYPE_TARGET_TYPE (rtype));
10672 return allocate_value (rtype);
10673 }
4c4b4cd2 10674 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10675 case TYPE_CODE_INTERNAL_FUNCTION:
10676 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10677 /* We don't know anything about what the internal
10678 function might return, but we have to return
10679 something. */
10680 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10681 not_lval);
10682 else
10683 return call_internal_function (exp->gdbarch, exp->language_defn,
10684 argvec[0], nargs, argvec + 1);
10685
4c4b4cd2
PH
10686 case TYPE_CODE_STRUCT:
10687 {
10688 int arity;
10689
4c4b4cd2
PH
10690 arity = ada_array_arity (type);
10691 type = ada_array_element_type (type, nargs);
10692 if (type == NULL)
323e0a4a 10693 error (_("cannot subscript or call a record"));
4c4b4cd2 10694 if (arity != nargs)
323e0a4a 10695 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10696 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10697 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10698 return
10699 unwrap_value (ada_value_subscript
10700 (argvec[0], nargs, argvec + 1));
10701 }
10702 case TYPE_CODE_ARRAY:
10703 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10704 {
10705 type = ada_array_element_type (type, nargs);
10706 if (type == NULL)
323e0a4a 10707 error (_("element type of array unknown"));
4c4b4cd2 10708 else
0a07e705 10709 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10710 }
10711 return
10712 unwrap_value (ada_value_subscript
10713 (ada_coerce_to_simple_array (argvec[0]),
10714 nargs, argvec + 1));
10715 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10716 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10717 {
deede10c 10718 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10719 type = ada_array_element_type (type, nargs);
10720 if (type == NULL)
323e0a4a 10721 error (_("element type of array unknown"));
4c4b4cd2 10722 else
0a07e705 10723 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10724 }
10725 return
deede10c
JB
10726 unwrap_value (ada_value_ptr_subscript (argvec[0],
10727 nargs, argvec + 1));
4c4b4cd2
PH
10728
10729 default:
e1d5a0d2
PH
10730 error (_("Attempt to index or call something other than an "
10731 "array or function"));
4c4b4cd2
PH
10732 }
10733
10734 case TERNOP_SLICE:
10735 {
10736 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10737 struct value *low_bound_val =
10738 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10739 struct value *high_bound_val =
10740 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10741 LONGEST low_bound;
10742 LONGEST high_bound;
5b4ee69b 10743
994b9211
AC
10744 low_bound_val = coerce_ref (low_bound_val);
10745 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10746 low_bound = value_as_long (low_bound_val);
10747 high_bound = value_as_long (high_bound_val);
963a6417 10748
4c4b4cd2
PH
10749 if (noside == EVAL_SKIP)
10750 goto nosideret;
10751
4c4b4cd2
PH
10752 /* If this is a reference to an aligner type, then remove all
10753 the aligners. */
df407dfe
AC
10754 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10755 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10756 TYPE_TARGET_TYPE (value_type (array)) =
10757 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10758
ad82864c 10759 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10760 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10761
10762 /* If this is a reference to an array or an array lvalue,
10763 convert to a pointer. */
df407dfe
AC
10764 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10765 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10766 && VALUE_LVAL (array) == lval_memory))
10767 array = value_addr (array);
10768
1265e4aa 10769 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10770 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10771 (value_type (array))))
0b5d8877 10772 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10773
10774 array = ada_coerce_to_simple_array_ptr (array);
10775
714e53ab
PH
10776 /* If we have more than one level of pointer indirection,
10777 dereference the value until we get only one level. */
df407dfe
AC
10778 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10779 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10780 == TYPE_CODE_PTR))
10781 array = value_ind (array);
10782
10783 /* Make sure we really do have an array type before going further,
10784 to avoid a SEGV when trying to get the index type or the target
10785 type later down the road if the debug info generated by
10786 the compiler is incorrect or incomplete. */
df407dfe 10787 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10788 error (_("cannot take slice of non-array"));
714e53ab 10789
828292f2
JB
10790 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10791 == TYPE_CODE_PTR)
4c4b4cd2 10792 {
828292f2
JB
10793 struct type *type0 = ada_check_typedef (value_type (array));
10794
0b5d8877 10795 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10796 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10797 else
10798 {
10799 struct type *arr_type0 =
828292f2 10800 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10801
f5938064
JG
10802 return ada_value_slice_from_ptr (array, arr_type0,
10803 longest_to_int (low_bound),
10804 longest_to_int (high_bound));
4c4b4cd2
PH
10805 }
10806 }
10807 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10808 return array;
10809 else if (high_bound < low_bound)
df407dfe 10810 return empty_array (value_type (array), low_bound);
4c4b4cd2 10811 else
529cad9c
PH
10812 return ada_value_slice (array, longest_to_int (low_bound),
10813 longest_to_int (high_bound));
4c4b4cd2 10814 }
14f9c5c9 10815
4c4b4cd2
PH
10816 case UNOP_IN_RANGE:
10817 (*pos) += 2;
10818 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10819 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10820
14f9c5c9 10821 if (noside == EVAL_SKIP)
4c4b4cd2 10822 goto nosideret;
14f9c5c9 10823
4c4b4cd2
PH
10824 switch (TYPE_CODE (type))
10825 {
10826 default:
e1d5a0d2
PH
10827 lim_warning (_("Membership test incompletely implemented; "
10828 "always returns true"));
fbb06eb1
UW
10829 type = language_bool_type (exp->language_defn, exp->gdbarch);
10830 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10831
10832 case TYPE_CODE_RANGE:
030b4912
UW
10833 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10834 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10835 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10836 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10837 type = language_bool_type (exp->language_defn, exp->gdbarch);
10838 return
10839 value_from_longest (type,
4c4b4cd2
PH
10840 (value_less (arg1, arg3)
10841 || value_equal (arg1, arg3))
10842 && (value_less (arg2, arg1)
10843 || value_equal (arg2, arg1)));
10844 }
10845
10846 case BINOP_IN_BOUNDS:
14f9c5c9 10847 (*pos) += 2;
4c4b4cd2
PH
10848 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10849 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10850
4c4b4cd2
PH
10851 if (noside == EVAL_SKIP)
10852 goto nosideret;
14f9c5c9 10853
4c4b4cd2 10854 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10855 {
10856 type = language_bool_type (exp->language_defn, exp->gdbarch);
10857 return value_zero (type, not_lval);
10858 }
14f9c5c9 10859
4c4b4cd2 10860 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10861
1eea4ebd
UW
10862 type = ada_index_type (value_type (arg2), tem, "range");
10863 if (!type)
10864 type = value_type (arg1);
14f9c5c9 10865
1eea4ebd
UW
10866 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10867 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10868
f44316fa
UW
10869 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10870 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10871 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10872 return
fbb06eb1 10873 value_from_longest (type,
4c4b4cd2
PH
10874 (value_less (arg1, arg3)
10875 || value_equal (arg1, arg3))
10876 && (value_less (arg2, arg1)
10877 || value_equal (arg2, arg1)));
10878
10879 case TERNOP_IN_RANGE:
10880 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10881 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10882 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10883
10884 if (noside == EVAL_SKIP)
10885 goto nosideret;
10886
f44316fa
UW
10887 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10888 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10889 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10890 return
fbb06eb1 10891 value_from_longest (type,
4c4b4cd2
PH
10892 (value_less (arg1, arg3)
10893 || value_equal (arg1, arg3))
10894 && (value_less (arg2, arg1)
10895 || value_equal (arg2, arg1)));
10896
10897 case OP_ATR_FIRST:
10898 case OP_ATR_LAST:
10899 case OP_ATR_LENGTH:
10900 {
76a01679 10901 struct type *type_arg;
5b4ee69b 10902
76a01679
JB
10903 if (exp->elts[*pos].opcode == OP_TYPE)
10904 {
10905 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10906 arg1 = NULL;
5bc23cb3 10907 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10908 }
10909 else
10910 {
10911 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10912 type_arg = NULL;
10913 }
10914
10915 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10916 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10917 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10918 *pos += 4;
10919
10920 if (noside == EVAL_SKIP)
10921 goto nosideret;
10922
10923 if (type_arg == NULL)
10924 {
10925 arg1 = ada_coerce_ref (arg1);
10926
ad82864c 10927 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10928 arg1 = ada_coerce_to_simple_array (arg1);
10929
aa4fb036 10930 if (op == OP_ATR_LENGTH)
1eea4ebd 10931 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10932 else
10933 {
10934 type = ada_index_type (value_type (arg1), tem,
10935 ada_attribute_name (op));
10936 if (type == NULL)
10937 type = builtin_type (exp->gdbarch)->builtin_int;
10938 }
76a01679
JB
10939
10940 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10941 return allocate_value (type);
76a01679
JB
10942
10943 switch (op)
10944 {
10945 default: /* Should never happen. */
323e0a4a 10946 error (_("unexpected attribute encountered"));
76a01679 10947 case OP_ATR_FIRST:
1eea4ebd
UW
10948 return value_from_longest
10949 (type, ada_array_bound (arg1, tem, 0));
76a01679 10950 case OP_ATR_LAST:
1eea4ebd
UW
10951 return value_from_longest
10952 (type, ada_array_bound (arg1, tem, 1));
76a01679 10953 case OP_ATR_LENGTH:
1eea4ebd
UW
10954 return value_from_longest
10955 (type, ada_array_length (arg1, tem));
76a01679
JB
10956 }
10957 }
10958 else if (discrete_type_p (type_arg))
10959 {
10960 struct type *range_type;
0d5cff50 10961 const char *name = ada_type_name (type_arg);
5b4ee69b 10962
76a01679
JB
10963 range_type = NULL;
10964 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10965 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10966 if (range_type == NULL)
10967 range_type = type_arg;
10968 switch (op)
10969 {
10970 default:
323e0a4a 10971 error (_("unexpected attribute encountered"));
76a01679 10972 case OP_ATR_FIRST:
690cc4eb 10973 return value_from_longest
43bbcdc2 10974 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10975 case OP_ATR_LAST:
690cc4eb 10976 return value_from_longest
43bbcdc2 10977 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10978 case OP_ATR_LENGTH:
323e0a4a 10979 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10980 }
10981 }
10982 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10983 error (_("unimplemented type attribute"));
76a01679
JB
10984 else
10985 {
10986 LONGEST low, high;
10987
ad82864c
JB
10988 if (ada_is_constrained_packed_array_type (type_arg))
10989 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10990
aa4fb036 10991 if (op == OP_ATR_LENGTH)
1eea4ebd 10992 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10993 else
10994 {
10995 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10996 if (type == NULL)
10997 type = builtin_type (exp->gdbarch)->builtin_int;
10998 }
1eea4ebd 10999
76a01679
JB
11000 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11001 return allocate_value (type);
11002
11003 switch (op)
11004 {
11005 default:
323e0a4a 11006 error (_("unexpected attribute encountered"));
76a01679 11007 case OP_ATR_FIRST:
1eea4ebd 11008 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11009 return value_from_longest (type, low);
11010 case OP_ATR_LAST:
1eea4ebd 11011 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11012 return value_from_longest (type, high);
11013 case OP_ATR_LENGTH:
1eea4ebd
UW
11014 low = ada_array_bound_from_type (type_arg, tem, 0);
11015 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11016 return value_from_longest (type, high - low + 1);
11017 }
11018 }
14f9c5c9
AS
11019 }
11020
4c4b4cd2
PH
11021 case OP_ATR_TAG:
11022 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11023 if (noside == EVAL_SKIP)
76a01679 11024 goto nosideret;
4c4b4cd2
PH
11025
11026 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11027 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11028
11029 return ada_value_tag (arg1);
11030
11031 case OP_ATR_MIN:
11032 case OP_ATR_MAX:
11033 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11034 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11035 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11036 if (noside == EVAL_SKIP)
76a01679 11037 goto nosideret;
d2e4a39e 11038 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11039 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11040 else
f44316fa
UW
11041 {
11042 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11043 return value_binop (arg1, arg2,
11044 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11045 }
14f9c5c9 11046
4c4b4cd2
PH
11047 case OP_ATR_MODULUS:
11048 {
31dedfee 11049 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11050
5b4ee69b 11051 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11052 if (noside == EVAL_SKIP)
11053 goto nosideret;
4c4b4cd2 11054
76a01679 11055 if (!ada_is_modular_type (type_arg))
323e0a4a 11056 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11057
76a01679
JB
11058 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11059 ada_modulus (type_arg));
4c4b4cd2
PH
11060 }
11061
11062
11063 case OP_ATR_POS:
11064 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11065 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11066 if (noside == EVAL_SKIP)
76a01679 11067 goto nosideret;
3cb382c9
UW
11068 type = builtin_type (exp->gdbarch)->builtin_int;
11069 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11070 return value_zero (type, not_lval);
14f9c5c9 11071 else
3cb382c9 11072 return value_pos_atr (type, arg1);
14f9c5c9 11073
4c4b4cd2
PH
11074 case OP_ATR_SIZE:
11075 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11076 type = value_type (arg1);
11077
11078 /* If the argument is a reference, then dereference its type, since
11079 the user is really asking for the size of the actual object,
11080 not the size of the pointer. */
11081 if (TYPE_CODE (type) == TYPE_CODE_REF)
11082 type = TYPE_TARGET_TYPE (type);
11083
4c4b4cd2 11084 if (noside == EVAL_SKIP)
76a01679 11085 goto nosideret;
4c4b4cd2 11086 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11087 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11088 else
22601c15 11089 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11090 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11091
11092 case OP_ATR_VAL:
11093 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11094 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11095 type = exp->elts[pc + 2].type;
14f9c5c9 11096 if (noside == EVAL_SKIP)
76a01679 11097 goto nosideret;
4c4b4cd2 11098 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11099 return value_zero (type, not_lval);
4c4b4cd2 11100 else
76a01679 11101 return value_val_atr (type, arg1);
4c4b4cd2
PH
11102
11103 case BINOP_EXP:
11104 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11105 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11106 if (noside == EVAL_SKIP)
11107 goto nosideret;
11108 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11109 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11110 else
f44316fa
UW
11111 {
11112 /* For integer exponentiation operations,
11113 only promote the first argument. */
11114 if (is_integral_type (value_type (arg2)))
11115 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11116 else
11117 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11118
11119 return value_binop (arg1, arg2, op);
11120 }
4c4b4cd2
PH
11121
11122 case UNOP_PLUS:
11123 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11124 if (noside == EVAL_SKIP)
11125 goto nosideret;
11126 else
11127 return arg1;
11128
11129 case UNOP_ABS:
11130 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11131 if (noside == EVAL_SKIP)
11132 goto nosideret;
f44316fa 11133 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11134 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11135 return value_neg (arg1);
14f9c5c9 11136 else
4c4b4cd2 11137 return arg1;
14f9c5c9
AS
11138
11139 case UNOP_IND:
5ec18f2b 11140 preeval_pos = *pos;
6b0d7253 11141 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11142 if (noside == EVAL_SKIP)
4c4b4cd2 11143 goto nosideret;
df407dfe 11144 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11145 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11146 {
11147 if (ada_is_array_descriptor_type (type))
11148 /* GDB allows dereferencing GNAT array descriptors. */
11149 {
11150 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11151
4c4b4cd2 11152 if (arrType == NULL)
323e0a4a 11153 error (_("Attempt to dereference null array pointer."));
00a4c844 11154 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11155 }
11156 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11157 || TYPE_CODE (type) == TYPE_CODE_REF
11158 /* In C you can dereference an array to get the 1st elt. */
11159 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11160 {
5ec18f2b
JG
11161 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11162 only be determined by inspecting the object's tag.
11163 This means that we need to evaluate completely the
11164 expression in order to get its type. */
11165
023db19c
JB
11166 if ((TYPE_CODE (type) == TYPE_CODE_REF
11167 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11168 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11169 {
11170 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11171 EVAL_NORMAL);
11172 type = value_type (ada_value_ind (arg1));
11173 }
11174 else
11175 {
11176 type = to_static_fixed_type
11177 (ada_aligned_type
11178 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11179 }
c1b5a1a6 11180 ada_ensure_varsize_limit (type);
714e53ab
PH
11181 return value_zero (type, lval_memory);
11182 }
4c4b4cd2 11183 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11184 {
11185 /* GDB allows dereferencing an int. */
11186 if (expect_type == NULL)
11187 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11188 lval_memory);
11189 else
11190 {
11191 expect_type =
11192 to_static_fixed_type (ada_aligned_type (expect_type));
11193 return value_zero (expect_type, lval_memory);
11194 }
11195 }
4c4b4cd2 11196 else
323e0a4a 11197 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11198 }
0963b4bd 11199 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11200 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11201
96967637
JB
11202 if (TYPE_CODE (type) == TYPE_CODE_INT)
11203 /* GDB allows dereferencing an int. If we were given
11204 the expect_type, then use that as the target type.
11205 Otherwise, assume that the target type is an int. */
11206 {
11207 if (expect_type != NULL)
11208 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11209 arg1));
11210 else
11211 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11212 (CORE_ADDR) value_as_address (arg1));
11213 }
6b0d7253 11214
4c4b4cd2
PH
11215 if (ada_is_array_descriptor_type (type))
11216 /* GDB allows dereferencing GNAT array descriptors. */
11217 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11218 else
4c4b4cd2 11219 return ada_value_ind (arg1);
14f9c5c9
AS
11220
11221 case STRUCTOP_STRUCT:
11222 tem = longest_to_int (exp->elts[pc + 1].longconst);
11223 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11224 preeval_pos = *pos;
14f9c5c9
AS
11225 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11226 if (noside == EVAL_SKIP)
4c4b4cd2 11227 goto nosideret;
14f9c5c9 11228 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11229 {
df407dfe 11230 struct type *type1 = value_type (arg1);
5b4ee69b 11231
76a01679
JB
11232 if (ada_is_tagged_type (type1, 1))
11233 {
11234 type = ada_lookup_struct_elt_type (type1,
11235 &exp->elts[pc + 2].string,
11236 1, 1, NULL);
5ec18f2b
JG
11237
11238 /* If the field is not found, check if it exists in the
11239 extension of this object's type. This means that we
11240 need to evaluate completely the expression. */
11241
76a01679 11242 if (type == NULL)
5ec18f2b
JG
11243 {
11244 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11245 EVAL_NORMAL);
11246 arg1 = ada_value_struct_elt (arg1,
11247 &exp->elts[pc + 2].string,
11248 0);
11249 arg1 = unwrap_value (arg1);
11250 type = value_type (ada_to_fixed_value (arg1));
11251 }
76a01679
JB
11252 }
11253 else
11254 type =
11255 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11256 0, NULL);
11257
11258 return value_zero (ada_aligned_type (type), lval_memory);
11259 }
14f9c5c9 11260 else
284614f0
JB
11261 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11262 arg1 = unwrap_value (arg1);
11263 return ada_to_fixed_value (arg1);
11264
14f9c5c9 11265 case OP_TYPE:
4c4b4cd2
PH
11266 /* The value is not supposed to be used. This is here to make it
11267 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11268 (*pos) += 2;
11269 if (noside == EVAL_SKIP)
4c4b4cd2 11270 goto nosideret;
14f9c5c9 11271 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11272 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11273 else
323e0a4a 11274 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11275
11276 case OP_AGGREGATE:
11277 case OP_CHOICES:
11278 case OP_OTHERS:
11279 case OP_DISCRETE_RANGE:
11280 case OP_POSITIONAL:
11281 case OP_NAME:
11282 if (noside == EVAL_NORMAL)
11283 switch (op)
11284 {
11285 case OP_NAME:
11286 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11287 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11288 case OP_AGGREGATE:
11289 error (_("Aggregates only allowed on the right of an assignment"));
11290 default:
0963b4bd
MS
11291 internal_error (__FILE__, __LINE__,
11292 _("aggregate apparently mangled"));
52ce6436
PH
11293 }
11294
11295 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11296 *pos += oplen - 1;
11297 for (tem = 0; tem < nargs; tem += 1)
11298 ada_evaluate_subexp (NULL, exp, pos, noside);
11299 goto nosideret;
14f9c5c9
AS
11300 }
11301
11302nosideret:
22601c15 11303 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 11304}
14f9c5c9 11305\f
d2e4a39e 11306
4c4b4cd2 11307 /* Fixed point */
14f9c5c9
AS
11308
11309/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11310 type name that encodes the 'small and 'delta information.
4c4b4cd2 11311 Otherwise, return NULL. */
14f9c5c9 11312
d2e4a39e 11313static const char *
ebf56fd3 11314fixed_type_info (struct type *type)
14f9c5c9 11315{
d2e4a39e 11316 const char *name = ada_type_name (type);
14f9c5c9
AS
11317 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11318
d2e4a39e
AS
11319 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11320 {
14f9c5c9 11321 const char *tail = strstr (name, "___XF_");
5b4ee69b 11322
14f9c5c9 11323 if (tail == NULL)
4c4b4cd2 11324 return NULL;
d2e4a39e 11325 else
4c4b4cd2 11326 return tail + 5;
14f9c5c9
AS
11327 }
11328 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11329 return fixed_type_info (TYPE_TARGET_TYPE (type));
11330 else
11331 return NULL;
11332}
11333
4c4b4cd2 11334/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11335
11336int
ebf56fd3 11337ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11338{
11339 return fixed_type_info (type) != NULL;
11340}
11341
4c4b4cd2
PH
11342/* Return non-zero iff TYPE represents a System.Address type. */
11343
11344int
11345ada_is_system_address_type (struct type *type)
11346{
11347 return (TYPE_NAME (type)
11348 && strcmp (TYPE_NAME (type), "system__address") == 0);
11349}
11350
14f9c5c9
AS
11351/* Assuming that TYPE is the representation of an Ada fixed-point
11352 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 11353 delta cannot be determined. */
14f9c5c9
AS
11354
11355DOUBLEST
ebf56fd3 11356ada_delta (struct type *type)
14f9c5c9
AS
11357{
11358 const char *encoding = fixed_type_info (type);
facc390f 11359 DOUBLEST num, den;
14f9c5c9 11360
facc390f
JB
11361 /* Strictly speaking, num and den are encoded as integer. However,
11362 they may not fit into a long, and they will have to be converted
11363 to DOUBLEST anyway. So scan them as DOUBLEST. */
11364 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11365 &num, &den) < 2)
14f9c5c9 11366 return -1.0;
d2e4a39e 11367 else
facc390f 11368 return num / den;
14f9c5c9
AS
11369}
11370
11371/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11372 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
11373
11374static DOUBLEST
ebf56fd3 11375scaling_factor (struct type *type)
14f9c5c9
AS
11376{
11377 const char *encoding = fixed_type_info (type);
facc390f 11378 DOUBLEST num0, den0, num1, den1;
14f9c5c9 11379 int n;
d2e4a39e 11380
facc390f
JB
11381 /* Strictly speaking, num's and den's are encoded as integer. However,
11382 they may not fit into a long, and they will have to be converted
11383 to DOUBLEST anyway. So scan them as DOUBLEST. */
11384 n = sscanf (encoding,
11385 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11386 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11387 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11388
11389 if (n < 2)
11390 return 1.0;
11391 else if (n == 4)
facc390f 11392 return num1 / den1;
d2e4a39e 11393 else
facc390f 11394 return num0 / den0;
14f9c5c9
AS
11395}
11396
11397
11398/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11399 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11400
11401DOUBLEST
ebf56fd3 11402ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11403{
d2e4a39e 11404 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11405}
11406
4c4b4cd2
PH
11407/* The representation of a fixed-point value of type TYPE
11408 corresponding to the value X. */
14f9c5c9
AS
11409
11410LONGEST
ebf56fd3 11411ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11412{
11413 return (LONGEST) (x / scaling_factor (type) + 0.5);
11414}
11415
14f9c5c9 11416\f
d2e4a39e 11417
4c4b4cd2 11418 /* Range types */
14f9c5c9
AS
11419
11420/* Scan STR beginning at position K for a discriminant name, and
11421 return the value of that discriminant field of DVAL in *PX. If
11422 PNEW_K is not null, put the position of the character beyond the
11423 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11424 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11425
11426static int
07d8f827 11427scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 11428 int *pnew_k)
14f9c5c9
AS
11429{
11430 static char *bound_buffer = NULL;
11431 static size_t bound_buffer_len = 0;
11432 char *bound;
11433 char *pend;
d2e4a39e 11434 struct value *bound_val;
14f9c5c9
AS
11435
11436 if (dval == NULL || str == NULL || str[k] == '\0')
11437 return 0;
11438
d2e4a39e 11439 pend = strstr (str + k, "__");
14f9c5c9
AS
11440 if (pend == NULL)
11441 {
d2e4a39e 11442 bound = str + k;
14f9c5c9
AS
11443 k += strlen (bound);
11444 }
d2e4a39e 11445 else
14f9c5c9 11446 {
d2e4a39e 11447 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 11448 bound = bound_buffer;
d2e4a39e
AS
11449 strncpy (bound_buffer, str + k, pend - (str + k));
11450 bound[pend - (str + k)] = '\0';
11451 k = pend - str;
14f9c5c9 11452 }
d2e4a39e 11453
df407dfe 11454 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11455 if (bound_val == NULL)
11456 return 0;
11457
11458 *px = value_as_long (bound_val);
11459 if (pnew_k != NULL)
11460 *pnew_k = k;
11461 return 1;
11462}
11463
11464/* Value of variable named NAME in the current environment. If
11465 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11466 otherwise causes an error with message ERR_MSG. */
11467
d2e4a39e
AS
11468static struct value *
11469get_var_value (char *name, char *err_msg)
14f9c5c9 11470{
d12307c1 11471 struct block_symbol *syms;
14f9c5c9
AS
11472 int nsyms;
11473
4c4b4cd2 11474 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11475 &syms);
14f9c5c9
AS
11476
11477 if (nsyms != 1)
11478 {
11479 if (err_msg == NULL)
4c4b4cd2 11480 return 0;
14f9c5c9 11481 else
8a3fe4f8 11482 error (("%s"), err_msg);
14f9c5c9
AS
11483 }
11484
d12307c1 11485 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11486}
d2e4a39e 11487
14f9c5c9 11488/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11489 no such variable found, returns 0, and sets *FLAG to 0. If
11490 successful, sets *FLAG to 1. */
11491
14f9c5c9 11492LONGEST
4c4b4cd2 11493get_int_var_value (char *name, int *flag)
14f9c5c9 11494{
4c4b4cd2 11495 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11496
14f9c5c9
AS
11497 if (var_val == 0)
11498 {
11499 if (flag != NULL)
4c4b4cd2 11500 *flag = 0;
14f9c5c9
AS
11501 return 0;
11502 }
11503 else
11504 {
11505 if (flag != NULL)
4c4b4cd2 11506 *flag = 1;
14f9c5c9
AS
11507 return value_as_long (var_val);
11508 }
11509}
d2e4a39e 11510
14f9c5c9
AS
11511
11512/* Return a range type whose base type is that of the range type named
11513 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11514 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11515 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11516 corresponding range type from debug information; fall back to using it
11517 if symbol lookup fails. If a new type must be created, allocate it
11518 like ORIG_TYPE was. The bounds information, in general, is encoded
11519 in NAME, the base type given in the named range type. */
14f9c5c9 11520
d2e4a39e 11521static struct type *
28c85d6c 11522to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11523{
0d5cff50 11524 const char *name;
14f9c5c9 11525 struct type *base_type;
d2e4a39e 11526 char *subtype_info;
14f9c5c9 11527
28c85d6c
JB
11528 gdb_assert (raw_type != NULL);
11529 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11530
1ce677a4 11531 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11532 base_type = TYPE_TARGET_TYPE (raw_type);
11533 else
11534 base_type = raw_type;
11535
28c85d6c 11536 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11537 subtype_info = strstr (name, "___XD");
11538 if (subtype_info == NULL)
690cc4eb 11539 {
43bbcdc2
PH
11540 LONGEST L = ada_discrete_type_low_bound (raw_type);
11541 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11542
690cc4eb
PH
11543 if (L < INT_MIN || U > INT_MAX)
11544 return raw_type;
11545 else
0c9c3474
SA
11546 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11547 L, U);
690cc4eb 11548 }
14f9c5c9
AS
11549 else
11550 {
11551 static char *name_buf = NULL;
11552 static size_t name_len = 0;
11553 int prefix_len = subtype_info - name;
11554 LONGEST L, U;
11555 struct type *type;
11556 char *bounds_str;
11557 int n;
11558
11559 GROW_VECT (name_buf, name_len, prefix_len + 5);
11560 strncpy (name_buf, name, prefix_len);
11561 name_buf[prefix_len] = '\0';
11562
11563 subtype_info += 5;
11564 bounds_str = strchr (subtype_info, '_');
11565 n = 1;
11566
d2e4a39e 11567 if (*subtype_info == 'L')
4c4b4cd2
PH
11568 {
11569 if (!ada_scan_number (bounds_str, n, &L, &n)
11570 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11571 return raw_type;
11572 if (bounds_str[n] == '_')
11573 n += 2;
0963b4bd 11574 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11575 n += 1;
11576 subtype_info += 1;
11577 }
d2e4a39e 11578 else
4c4b4cd2
PH
11579 {
11580 int ok;
5b4ee69b 11581
4c4b4cd2
PH
11582 strcpy (name_buf + prefix_len, "___L");
11583 L = get_int_var_value (name_buf, &ok);
11584 if (!ok)
11585 {
323e0a4a 11586 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11587 L = 1;
11588 }
11589 }
14f9c5c9 11590
d2e4a39e 11591 if (*subtype_info == 'U')
4c4b4cd2
PH
11592 {
11593 if (!ada_scan_number (bounds_str, n, &U, &n)
11594 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11595 return raw_type;
11596 }
d2e4a39e 11597 else
4c4b4cd2
PH
11598 {
11599 int ok;
5b4ee69b 11600
4c4b4cd2
PH
11601 strcpy (name_buf + prefix_len, "___U");
11602 U = get_int_var_value (name_buf, &ok);
11603 if (!ok)
11604 {
323e0a4a 11605 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11606 U = L;
11607 }
11608 }
14f9c5c9 11609
0c9c3474
SA
11610 type = create_static_range_type (alloc_type_copy (raw_type),
11611 base_type, L, U);
d2e4a39e 11612 TYPE_NAME (type) = name;
14f9c5c9
AS
11613 return type;
11614 }
11615}
11616
4c4b4cd2
PH
11617/* True iff NAME is the name of a range type. */
11618
14f9c5c9 11619int
d2e4a39e 11620ada_is_range_type_name (const char *name)
14f9c5c9
AS
11621{
11622 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11623}
14f9c5c9 11624\f
d2e4a39e 11625
4c4b4cd2
PH
11626 /* Modular types */
11627
11628/* True iff TYPE is an Ada modular type. */
14f9c5c9 11629
14f9c5c9 11630int
d2e4a39e 11631ada_is_modular_type (struct type *type)
14f9c5c9 11632{
18af8284 11633 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11634
11635 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11636 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11637 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11638}
11639
4c4b4cd2
PH
11640/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11641
61ee279c 11642ULONGEST
0056e4d5 11643ada_modulus (struct type *type)
14f9c5c9 11644{
43bbcdc2 11645 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11646}
d2e4a39e 11647\f
f7f9143b
JB
11648
11649/* Ada exception catchpoint support:
11650 ---------------------------------
11651
11652 We support 3 kinds of exception catchpoints:
11653 . catchpoints on Ada exceptions
11654 . catchpoints on unhandled Ada exceptions
11655 . catchpoints on failed assertions
11656
11657 Exceptions raised during failed assertions, or unhandled exceptions
11658 could perfectly be caught with the general catchpoint on Ada exceptions.
11659 However, we can easily differentiate these two special cases, and having
11660 the option to distinguish these two cases from the rest can be useful
11661 to zero-in on certain situations.
11662
11663 Exception catchpoints are a specialized form of breakpoint,
11664 since they rely on inserting breakpoints inside known routines
11665 of the GNAT runtime. The implementation therefore uses a standard
11666 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11667 of breakpoint_ops.
11668
0259addd
JB
11669 Support in the runtime for exception catchpoints have been changed
11670 a few times already, and these changes affect the implementation
11671 of these catchpoints. In order to be able to support several
11672 variants of the runtime, we use a sniffer that will determine
28010a5d 11673 the runtime variant used by the program being debugged. */
f7f9143b 11674
82eacd52
JB
11675/* Ada's standard exceptions.
11676
11677 The Ada 83 standard also defined Numeric_Error. But there so many
11678 situations where it was unclear from the Ada 83 Reference Manual
11679 (RM) whether Constraint_Error or Numeric_Error should be raised,
11680 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11681 Interpretation saying that anytime the RM says that Numeric_Error
11682 should be raised, the implementation may raise Constraint_Error.
11683 Ada 95 went one step further and pretty much removed Numeric_Error
11684 from the list of standard exceptions (it made it a renaming of
11685 Constraint_Error, to help preserve compatibility when compiling
11686 an Ada83 compiler). As such, we do not include Numeric_Error from
11687 this list of standard exceptions. */
3d0b0fa3
JB
11688
11689static char *standard_exc[] = {
11690 "constraint_error",
11691 "program_error",
11692 "storage_error",
11693 "tasking_error"
11694};
11695
0259addd
JB
11696typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11697
11698/* A structure that describes how to support exception catchpoints
11699 for a given executable. */
11700
11701struct exception_support_info
11702{
11703 /* The name of the symbol to break on in order to insert
11704 a catchpoint on exceptions. */
11705 const char *catch_exception_sym;
11706
11707 /* The name of the symbol to break on in order to insert
11708 a catchpoint on unhandled exceptions. */
11709 const char *catch_exception_unhandled_sym;
11710
11711 /* The name of the symbol to break on in order to insert
11712 a catchpoint on failed assertions. */
11713 const char *catch_assert_sym;
11714
11715 /* Assuming that the inferior just triggered an unhandled exception
11716 catchpoint, this function is responsible for returning the address
11717 in inferior memory where the name of that exception is stored.
11718 Return zero if the address could not be computed. */
11719 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11720};
11721
11722static CORE_ADDR ada_unhandled_exception_name_addr (void);
11723static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11724
11725/* The following exception support info structure describes how to
11726 implement exception catchpoints with the latest version of the
11727 Ada runtime (as of 2007-03-06). */
11728
11729static const struct exception_support_info default_exception_support_info =
11730{
11731 "__gnat_debug_raise_exception", /* catch_exception_sym */
11732 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11733 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11734 ada_unhandled_exception_name_addr
11735};
11736
11737/* The following exception support info structure describes how to
11738 implement exception catchpoints with a slightly older version
11739 of the Ada runtime. */
11740
11741static const struct exception_support_info exception_support_info_fallback =
11742{
11743 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11744 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11745 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11746 ada_unhandled_exception_name_addr_from_raise
11747};
11748
f17011e0
JB
11749/* Return nonzero if we can detect the exception support routines
11750 described in EINFO.
11751
11752 This function errors out if an abnormal situation is detected
11753 (for instance, if we find the exception support routines, but
11754 that support is found to be incomplete). */
11755
11756static int
11757ada_has_this_exception_support (const struct exception_support_info *einfo)
11758{
11759 struct symbol *sym;
11760
11761 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11762 that should be compiled with debugging information. As a result, we
11763 expect to find that symbol in the symtabs. */
11764
11765 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11766 if (sym == NULL)
a6af7abe
JB
11767 {
11768 /* Perhaps we did not find our symbol because the Ada runtime was
11769 compiled without debugging info, or simply stripped of it.
11770 It happens on some GNU/Linux distributions for instance, where
11771 users have to install a separate debug package in order to get
11772 the runtime's debugging info. In that situation, let the user
11773 know why we cannot insert an Ada exception catchpoint.
11774
11775 Note: Just for the purpose of inserting our Ada exception
11776 catchpoint, we could rely purely on the associated minimal symbol.
11777 But we would be operating in degraded mode anyway, since we are
11778 still lacking the debugging info needed later on to extract
11779 the name of the exception being raised (this name is printed in
11780 the catchpoint message, and is also used when trying to catch
11781 a specific exception). We do not handle this case for now. */
3b7344d5 11782 struct bound_minimal_symbol msym
1c8e84b0
JB
11783 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11784
3b7344d5 11785 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11786 error (_("Your Ada runtime appears to be missing some debugging "
11787 "information.\nCannot insert Ada exception catchpoint "
11788 "in this configuration."));
11789
11790 return 0;
11791 }
f17011e0
JB
11792
11793 /* Make sure that the symbol we found corresponds to a function. */
11794
11795 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11796 error (_("Symbol \"%s\" is not a function (class = %d)"),
11797 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11798
11799 return 1;
11800}
11801
0259addd
JB
11802/* Inspect the Ada runtime and determine which exception info structure
11803 should be used to provide support for exception catchpoints.
11804
3eecfa55
JB
11805 This function will always set the per-inferior exception_info,
11806 or raise an error. */
0259addd
JB
11807
11808static void
11809ada_exception_support_info_sniffer (void)
11810{
3eecfa55 11811 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11812
11813 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11814 if (data->exception_info != NULL)
0259addd
JB
11815 return;
11816
11817 /* Check the latest (default) exception support info. */
f17011e0 11818 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11819 {
3eecfa55 11820 data->exception_info = &default_exception_support_info;
0259addd
JB
11821 return;
11822 }
11823
11824 /* Try our fallback exception suport info. */
f17011e0 11825 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11826 {
3eecfa55 11827 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11828 return;
11829 }
11830
11831 /* Sometimes, it is normal for us to not be able to find the routine
11832 we are looking for. This happens when the program is linked with
11833 the shared version of the GNAT runtime, and the program has not been
11834 started yet. Inform the user of these two possible causes if
11835 applicable. */
11836
ccefe4c4 11837 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11838 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11839
11840 /* If the symbol does not exist, then check that the program is
11841 already started, to make sure that shared libraries have been
11842 loaded. If it is not started, this may mean that the symbol is
11843 in a shared library. */
11844
11845 if (ptid_get_pid (inferior_ptid) == 0)
11846 error (_("Unable to insert catchpoint. Try to start the program first."));
11847
11848 /* At this point, we know that we are debugging an Ada program and
11849 that the inferior has been started, but we still are not able to
0963b4bd 11850 find the run-time symbols. That can mean that we are in
0259addd
JB
11851 configurable run time mode, or that a-except as been optimized
11852 out by the linker... In any case, at this point it is not worth
11853 supporting this feature. */
11854
7dda8cff 11855 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11856}
11857
f7f9143b
JB
11858/* True iff FRAME is very likely to be that of a function that is
11859 part of the runtime system. This is all very heuristic, but is
11860 intended to be used as advice as to what frames are uninteresting
11861 to most users. */
11862
11863static int
11864is_known_support_routine (struct frame_info *frame)
11865{
4ed6b5be 11866 struct symtab_and_line sal;
55b87a52 11867 char *func_name;
692465f1 11868 enum language func_lang;
f7f9143b 11869 int i;
f35a17b5 11870 const char *fullname;
f7f9143b 11871
4ed6b5be
JB
11872 /* If this code does not have any debugging information (no symtab),
11873 This cannot be any user code. */
f7f9143b 11874
4ed6b5be 11875 find_frame_sal (frame, &sal);
f7f9143b
JB
11876 if (sal.symtab == NULL)
11877 return 1;
11878
4ed6b5be
JB
11879 /* If there is a symtab, but the associated source file cannot be
11880 located, then assume this is not user code: Selecting a frame
11881 for which we cannot display the code would not be very helpful
11882 for the user. This should also take care of case such as VxWorks
11883 where the kernel has some debugging info provided for a few units. */
f7f9143b 11884
f35a17b5
JK
11885 fullname = symtab_to_fullname (sal.symtab);
11886 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11887 return 1;
11888
4ed6b5be
JB
11889 /* Check the unit filename againt the Ada runtime file naming.
11890 We also check the name of the objfile against the name of some
11891 known system libraries that sometimes come with debugging info
11892 too. */
11893
f7f9143b
JB
11894 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11895 {
11896 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11897 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11898 return 1;
eb822aa6
DE
11899 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11900 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 11901 return 1;
f7f9143b
JB
11902 }
11903
4ed6b5be 11904 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11905
e9e07ba6 11906 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11907 if (func_name == NULL)
11908 return 1;
11909
11910 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11911 {
11912 re_comp (known_auxiliary_function_name_patterns[i]);
11913 if (re_exec (func_name))
55b87a52
KS
11914 {
11915 xfree (func_name);
11916 return 1;
11917 }
f7f9143b
JB
11918 }
11919
55b87a52 11920 xfree (func_name);
f7f9143b
JB
11921 return 0;
11922}
11923
11924/* Find the first frame that contains debugging information and that is not
11925 part of the Ada run-time, starting from FI and moving upward. */
11926
0ef643c8 11927void
f7f9143b
JB
11928ada_find_printable_frame (struct frame_info *fi)
11929{
11930 for (; fi != NULL; fi = get_prev_frame (fi))
11931 {
11932 if (!is_known_support_routine (fi))
11933 {
11934 select_frame (fi);
11935 break;
11936 }
11937 }
11938
11939}
11940
11941/* Assuming that the inferior just triggered an unhandled exception
11942 catchpoint, return the address in inferior memory where the name
11943 of the exception is stored.
11944
11945 Return zero if the address could not be computed. */
11946
11947static CORE_ADDR
11948ada_unhandled_exception_name_addr (void)
0259addd
JB
11949{
11950 return parse_and_eval_address ("e.full_name");
11951}
11952
11953/* Same as ada_unhandled_exception_name_addr, except that this function
11954 should be used when the inferior uses an older version of the runtime,
11955 where the exception name needs to be extracted from a specific frame
11956 several frames up in the callstack. */
11957
11958static CORE_ADDR
11959ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11960{
11961 int frame_level;
11962 struct frame_info *fi;
3eecfa55 11963 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 11964 struct cleanup *old_chain;
f7f9143b
JB
11965
11966 /* To determine the name of this exception, we need to select
11967 the frame corresponding to RAISE_SYM_NAME. This frame is
11968 at least 3 levels up, so we simply skip the first 3 frames
11969 without checking the name of their associated function. */
11970 fi = get_current_frame ();
11971 for (frame_level = 0; frame_level < 3; frame_level += 1)
11972 if (fi != NULL)
11973 fi = get_prev_frame (fi);
11974
55b87a52 11975 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
11976 while (fi != NULL)
11977 {
55b87a52 11978 char *func_name;
692465f1
JB
11979 enum language func_lang;
11980
e9e07ba6 11981 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
11982 if (func_name != NULL)
11983 {
11984 make_cleanup (xfree, func_name);
11985
11986 if (strcmp (func_name,
11987 data->exception_info->catch_exception_sym) == 0)
11988 break; /* We found the frame we were looking for... */
11989 fi = get_prev_frame (fi);
11990 }
f7f9143b 11991 }
55b87a52 11992 do_cleanups (old_chain);
f7f9143b
JB
11993
11994 if (fi == NULL)
11995 return 0;
11996
11997 select_frame (fi);
11998 return parse_and_eval_address ("id.full_name");
11999}
12000
12001/* Assuming the inferior just triggered an Ada exception catchpoint
12002 (of any type), return the address in inferior memory where the name
12003 of the exception is stored, if applicable.
12004
12005 Return zero if the address could not be computed, or if not relevant. */
12006
12007static CORE_ADDR
761269c8 12008ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12009 struct breakpoint *b)
12010{
3eecfa55
JB
12011 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12012
f7f9143b
JB
12013 switch (ex)
12014 {
761269c8 12015 case ada_catch_exception:
f7f9143b
JB
12016 return (parse_and_eval_address ("e.full_name"));
12017 break;
12018
761269c8 12019 case ada_catch_exception_unhandled:
3eecfa55 12020 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
12021 break;
12022
761269c8 12023 case ada_catch_assert:
f7f9143b
JB
12024 return 0; /* Exception name is not relevant in this case. */
12025 break;
12026
12027 default:
12028 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12029 break;
12030 }
12031
12032 return 0; /* Should never be reached. */
12033}
12034
12035/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12036 any error that ada_exception_name_addr_1 might cause to be thrown.
12037 When an error is intercepted, a warning with the error message is printed,
12038 and zero is returned. */
12039
12040static CORE_ADDR
761269c8 12041ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12042 struct breakpoint *b)
12043{
f7f9143b
JB
12044 CORE_ADDR result = 0;
12045
492d29ea 12046 TRY
f7f9143b
JB
12047 {
12048 result = ada_exception_name_addr_1 (ex, b);
12049 }
12050
492d29ea 12051 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12052 {
12053 warning (_("failed to get exception name: %s"), e.message);
12054 return 0;
12055 }
492d29ea 12056 END_CATCH
f7f9143b
JB
12057
12058 return result;
12059}
12060
28010a5d
PA
12061static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12062
12063/* Ada catchpoints.
12064
12065 In the case of catchpoints on Ada exceptions, the catchpoint will
12066 stop the target on every exception the program throws. When a user
12067 specifies the name of a specific exception, we translate this
12068 request into a condition expression (in text form), and then parse
12069 it into an expression stored in each of the catchpoint's locations.
12070 We then use this condition to check whether the exception that was
12071 raised is the one the user is interested in. If not, then the
12072 target is resumed again. We store the name of the requested
12073 exception, in order to be able to re-set the condition expression
12074 when symbols change. */
12075
12076/* An instance of this type is used to represent an Ada catchpoint
12077 breakpoint location. It includes a "struct bp_location" as a kind
12078 of base class; users downcast to "struct bp_location *" when
12079 needed. */
12080
12081struct ada_catchpoint_location
12082{
12083 /* The base class. */
12084 struct bp_location base;
12085
12086 /* The condition that checks whether the exception that was raised
12087 is the specific exception the user specified on catchpoint
12088 creation. */
12089 struct expression *excep_cond_expr;
12090};
12091
12092/* Implement the DTOR method in the bp_location_ops structure for all
12093 Ada exception catchpoint kinds. */
12094
12095static void
12096ada_catchpoint_location_dtor (struct bp_location *bl)
12097{
12098 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12099
12100 xfree (al->excep_cond_expr);
12101}
12102
12103/* The vtable to be used in Ada catchpoint locations. */
12104
12105static const struct bp_location_ops ada_catchpoint_location_ops =
12106{
12107 ada_catchpoint_location_dtor
12108};
12109
12110/* An instance of this type is used to represent an Ada catchpoint.
12111 It includes a "struct breakpoint" as a kind of base class; users
12112 downcast to "struct breakpoint *" when needed. */
12113
12114struct ada_catchpoint
12115{
12116 /* The base class. */
12117 struct breakpoint base;
12118
12119 /* The name of the specific exception the user specified. */
12120 char *excep_string;
12121};
12122
12123/* Parse the exception condition string in the context of each of the
12124 catchpoint's locations, and store them for later evaluation. */
12125
12126static void
12127create_excep_cond_exprs (struct ada_catchpoint *c)
12128{
12129 struct cleanup *old_chain;
12130 struct bp_location *bl;
12131 char *cond_string;
12132
12133 /* Nothing to do if there's no specific exception to catch. */
12134 if (c->excep_string == NULL)
12135 return;
12136
12137 /* Same if there are no locations... */
12138 if (c->base.loc == NULL)
12139 return;
12140
12141 /* Compute the condition expression in text form, from the specific
12142 expection we want to catch. */
12143 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12144 old_chain = make_cleanup (xfree, cond_string);
12145
12146 /* Iterate over all the catchpoint's locations, and parse an
12147 expression for each. */
12148 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12149 {
12150 struct ada_catchpoint_location *ada_loc
12151 = (struct ada_catchpoint_location *) bl;
12152 struct expression *exp = NULL;
12153
12154 if (!bl->shlib_disabled)
12155 {
bbc13ae3 12156 const char *s;
28010a5d
PA
12157
12158 s = cond_string;
492d29ea 12159 TRY
28010a5d 12160 {
1bb9788d
TT
12161 exp = parse_exp_1 (&s, bl->address,
12162 block_for_pc (bl->address), 0);
28010a5d 12163 }
492d29ea 12164 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12165 {
12166 warning (_("failed to reevaluate internal exception condition "
12167 "for catchpoint %d: %s"),
12168 c->base.number, e.message);
12169 /* There is a bug in GCC on sparc-solaris when building with
12170 optimization which causes EXP to change unexpectedly
12171 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
12172 The problem should be fixed starting with GCC 4.9.
12173 In the meantime, work around it by forcing EXP back
12174 to NULL. */
12175 exp = NULL;
12176 }
492d29ea 12177 END_CATCH
28010a5d
PA
12178 }
12179
12180 ada_loc->excep_cond_expr = exp;
12181 }
12182
12183 do_cleanups (old_chain);
12184}
12185
12186/* Implement the DTOR method in the breakpoint_ops structure for all
12187 exception catchpoint kinds. */
12188
12189static void
761269c8 12190dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12191{
12192 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12193
12194 xfree (c->excep_string);
348d480f 12195
2060206e 12196 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
12197}
12198
12199/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12200 structure for all exception catchpoint kinds. */
12201
12202static struct bp_location *
761269c8 12203allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12204 struct breakpoint *self)
12205{
12206 struct ada_catchpoint_location *loc;
12207
12208 loc = XNEW (struct ada_catchpoint_location);
12209 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12210 loc->excep_cond_expr = NULL;
12211 return &loc->base;
12212}
12213
12214/* Implement the RE_SET method in the breakpoint_ops structure for all
12215 exception catchpoint kinds. */
12216
12217static void
761269c8 12218re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12219{
12220 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12221
12222 /* Call the base class's method. This updates the catchpoint's
12223 locations. */
2060206e 12224 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12225
12226 /* Reparse the exception conditional expressions. One for each
12227 location. */
12228 create_excep_cond_exprs (c);
12229}
12230
12231/* Returns true if we should stop for this breakpoint hit. If the
12232 user specified a specific exception, we only want to cause a stop
12233 if the program thrown that exception. */
12234
12235static int
12236should_stop_exception (const struct bp_location *bl)
12237{
12238 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12239 const struct ada_catchpoint_location *ada_loc
12240 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12241 int stop;
12242
12243 /* With no specific exception, should always stop. */
12244 if (c->excep_string == NULL)
12245 return 1;
12246
12247 if (ada_loc->excep_cond_expr == NULL)
12248 {
12249 /* We will have a NULL expression if back when we were creating
12250 the expressions, this location's had failed to parse. */
12251 return 1;
12252 }
12253
12254 stop = 1;
492d29ea 12255 TRY
28010a5d
PA
12256 {
12257 struct value *mark;
12258
12259 mark = value_mark ();
12260 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12261 value_free_to_mark (mark);
12262 }
492d29ea
PA
12263 CATCH (ex, RETURN_MASK_ALL)
12264 {
12265 exception_fprintf (gdb_stderr, ex,
12266 _("Error in testing exception condition:\n"));
12267 }
12268 END_CATCH
12269
28010a5d
PA
12270 return stop;
12271}
12272
12273/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12274 for all exception catchpoint kinds. */
12275
12276static void
761269c8 12277check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12278{
12279 bs->stop = should_stop_exception (bs->bp_location_at);
12280}
12281
f7f9143b
JB
12282/* Implement the PRINT_IT method in the breakpoint_ops structure
12283 for all exception catchpoint kinds. */
12284
12285static enum print_stop_action
761269c8 12286print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12287{
79a45e25 12288 struct ui_out *uiout = current_uiout;
348d480f
PA
12289 struct breakpoint *b = bs->breakpoint_at;
12290
956a9fb9 12291 annotate_catchpoint (b->number);
f7f9143b 12292
956a9fb9 12293 if (ui_out_is_mi_like_p (uiout))
f7f9143b 12294 {
956a9fb9
JB
12295 ui_out_field_string (uiout, "reason",
12296 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12297 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
12298 }
12299
00eb2c4a
JB
12300 ui_out_text (uiout,
12301 b->disposition == disp_del ? "\nTemporary catchpoint "
12302 : "\nCatchpoint ");
956a9fb9
JB
12303 ui_out_field_int (uiout, "bkptno", b->number);
12304 ui_out_text (uiout, ", ");
f7f9143b 12305
f7f9143b
JB
12306 switch (ex)
12307 {
761269c8
JB
12308 case ada_catch_exception:
12309 case ada_catch_exception_unhandled:
956a9fb9
JB
12310 {
12311 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12312 char exception_name[256];
12313
12314 if (addr != 0)
12315 {
c714b426
PA
12316 read_memory (addr, (gdb_byte *) exception_name,
12317 sizeof (exception_name) - 1);
956a9fb9
JB
12318 exception_name [sizeof (exception_name) - 1] = '\0';
12319 }
12320 else
12321 {
12322 /* For some reason, we were unable to read the exception
12323 name. This could happen if the Runtime was compiled
12324 without debugging info, for instance. In that case,
12325 just replace the exception name by the generic string
12326 "exception" - it will read as "an exception" in the
12327 notification we are about to print. */
967cff16 12328 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12329 }
12330 /* In the case of unhandled exception breakpoints, we print
12331 the exception name as "unhandled EXCEPTION_NAME", to make
12332 it clearer to the user which kind of catchpoint just got
12333 hit. We used ui_out_text to make sure that this extra
12334 info does not pollute the exception name in the MI case. */
761269c8 12335 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
12336 ui_out_text (uiout, "unhandled ");
12337 ui_out_field_string (uiout, "exception-name", exception_name);
12338 }
12339 break;
761269c8 12340 case ada_catch_assert:
956a9fb9
JB
12341 /* In this case, the name of the exception is not really
12342 important. Just print "failed assertion" to make it clearer
12343 that his program just hit an assertion-failure catchpoint.
12344 We used ui_out_text because this info does not belong in
12345 the MI output. */
12346 ui_out_text (uiout, "failed assertion");
12347 break;
f7f9143b 12348 }
956a9fb9
JB
12349 ui_out_text (uiout, " at ");
12350 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12351
12352 return PRINT_SRC_AND_LOC;
12353}
12354
12355/* Implement the PRINT_ONE method in the breakpoint_ops structure
12356 for all exception catchpoint kinds. */
12357
12358static void
761269c8 12359print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12360 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12361{
79a45e25 12362 struct ui_out *uiout = current_uiout;
28010a5d 12363 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12364 struct value_print_options opts;
12365
12366 get_user_print_options (&opts);
12367 if (opts.addressprint)
f7f9143b
JB
12368 {
12369 annotate_field (4);
5af949e3 12370 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12371 }
12372
12373 annotate_field (5);
a6d9a66e 12374 *last_loc = b->loc;
f7f9143b
JB
12375 switch (ex)
12376 {
761269c8 12377 case ada_catch_exception:
28010a5d 12378 if (c->excep_string != NULL)
f7f9143b 12379 {
28010a5d
PA
12380 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12381
f7f9143b
JB
12382 ui_out_field_string (uiout, "what", msg);
12383 xfree (msg);
12384 }
12385 else
12386 ui_out_field_string (uiout, "what", "all Ada exceptions");
12387
12388 break;
12389
761269c8 12390 case ada_catch_exception_unhandled:
f7f9143b
JB
12391 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12392 break;
12393
761269c8 12394 case ada_catch_assert:
f7f9143b
JB
12395 ui_out_field_string (uiout, "what", "failed Ada assertions");
12396 break;
12397
12398 default:
12399 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12400 break;
12401 }
12402}
12403
12404/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12405 for all exception catchpoint kinds. */
12406
12407static void
761269c8 12408print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12409 struct breakpoint *b)
12410{
28010a5d 12411 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12412 struct ui_out *uiout = current_uiout;
28010a5d 12413
00eb2c4a
JB
12414 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12415 : _("Catchpoint "));
12416 ui_out_field_int (uiout, "bkptno", b->number);
12417 ui_out_text (uiout, ": ");
12418
f7f9143b
JB
12419 switch (ex)
12420 {
761269c8 12421 case ada_catch_exception:
28010a5d 12422 if (c->excep_string != NULL)
00eb2c4a
JB
12423 {
12424 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12425 struct cleanup *old_chain = make_cleanup (xfree, info);
12426
12427 ui_out_text (uiout, info);
12428 do_cleanups (old_chain);
12429 }
f7f9143b 12430 else
00eb2c4a 12431 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12432 break;
12433
761269c8 12434 case ada_catch_exception_unhandled:
00eb2c4a 12435 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12436 break;
12437
761269c8 12438 case ada_catch_assert:
00eb2c4a 12439 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12440 break;
12441
12442 default:
12443 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12444 break;
12445 }
12446}
12447
6149aea9
PA
12448/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12449 for all exception catchpoint kinds. */
12450
12451static void
761269c8 12452print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12453 struct breakpoint *b, struct ui_file *fp)
12454{
28010a5d
PA
12455 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12456
6149aea9
PA
12457 switch (ex)
12458 {
761269c8 12459 case ada_catch_exception:
6149aea9 12460 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12461 if (c->excep_string != NULL)
12462 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12463 break;
12464
761269c8 12465 case ada_catch_exception_unhandled:
78076abc 12466 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12467 break;
12468
761269c8 12469 case ada_catch_assert:
6149aea9
PA
12470 fprintf_filtered (fp, "catch assert");
12471 break;
12472
12473 default:
12474 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12475 }
d9b3f62e 12476 print_recreate_thread (b, fp);
6149aea9
PA
12477}
12478
f7f9143b
JB
12479/* Virtual table for "catch exception" breakpoints. */
12480
28010a5d
PA
12481static void
12482dtor_catch_exception (struct breakpoint *b)
12483{
761269c8 12484 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12485}
12486
12487static struct bp_location *
12488allocate_location_catch_exception (struct breakpoint *self)
12489{
761269c8 12490 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12491}
12492
12493static void
12494re_set_catch_exception (struct breakpoint *b)
12495{
761269c8 12496 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12497}
12498
12499static void
12500check_status_catch_exception (bpstat bs)
12501{
761269c8 12502 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12503}
12504
f7f9143b 12505static enum print_stop_action
348d480f 12506print_it_catch_exception (bpstat bs)
f7f9143b 12507{
761269c8 12508 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12509}
12510
12511static void
a6d9a66e 12512print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12513{
761269c8 12514 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12515}
12516
12517static void
12518print_mention_catch_exception (struct breakpoint *b)
12519{
761269c8 12520 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12521}
12522
6149aea9
PA
12523static void
12524print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12525{
761269c8 12526 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12527}
12528
2060206e 12529static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12530
12531/* Virtual table for "catch exception unhandled" breakpoints. */
12532
28010a5d
PA
12533static void
12534dtor_catch_exception_unhandled (struct breakpoint *b)
12535{
761269c8 12536 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12537}
12538
12539static struct bp_location *
12540allocate_location_catch_exception_unhandled (struct breakpoint *self)
12541{
761269c8 12542 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12543}
12544
12545static void
12546re_set_catch_exception_unhandled (struct breakpoint *b)
12547{
761269c8 12548 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12549}
12550
12551static void
12552check_status_catch_exception_unhandled (bpstat bs)
12553{
761269c8 12554 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12555}
12556
f7f9143b 12557static enum print_stop_action
348d480f 12558print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12559{
761269c8 12560 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12561}
12562
12563static void
a6d9a66e
UW
12564print_one_catch_exception_unhandled (struct breakpoint *b,
12565 struct bp_location **last_loc)
f7f9143b 12566{
761269c8 12567 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12568}
12569
12570static void
12571print_mention_catch_exception_unhandled (struct breakpoint *b)
12572{
761269c8 12573 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12574}
12575
6149aea9
PA
12576static void
12577print_recreate_catch_exception_unhandled (struct breakpoint *b,
12578 struct ui_file *fp)
12579{
761269c8 12580 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12581}
12582
2060206e 12583static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12584
12585/* Virtual table for "catch assert" breakpoints. */
12586
28010a5d
PA
12587static void
12588dtor_catch_assert (struct breakpoint *b)
12589{
761269c8 12590 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12591}
12592
12593static struct bp_location *
12594allocate_location_catch_assert (struct breakpoint *self)
12595{
761269c8 12596 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12597}
12598
12599static void
12600re_set_catch_assert (struct breakpoint *b)
12601{
761269c8 12602 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12603}
12604
12605static void
12606check_status_catch_assert (bpstat bs)
12607{
761269c8 12608 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12609}
12610
f7f9143b 12611static enum print_stop_action
348d480f 12612print_it_catch_assert (bpstat bs)
f7f9143b 12613{
761269c8 12614 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12615}
12616
12617static void
a6d9a66e 12618print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12619{
761269c8 12620 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12621}
12622
12623static void
12624print_mention_catch_assert (struct breakpoint *b)
12625{
761269c8 12626 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12627}
12628
6149aea9
PA
12629static void
12630print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12631{
761269c8 12632 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12633}
12634
2060206e 12635static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12636
f7f9143b
JB
12637/* Return a newly allocated copy of the first space-separated token
12638 in ARGSP, and then adjust ARGSP to point immediately after that
12639 token.
12640
12641 Return NULL if ARGPS does not contain any more tokens. */
12642
12643static char *
12644ada_get_next_arg (char **argsp)
12645{
12646 char *args = *argsp;
12647 char *end;
12648 char *result;
12649
0fcd72ba 12650 args = skip_spaces (args);
f7f9143b
JB
12651 if (args[0] == '\0')
12652 return NULL; /* No more arguments. */
12653
12654 /* Find the end of the current argument. */
12655
0fcd72ba 12656 end = skip_to_space (args);
f7f9143b
JB
12657
12658 /* Adjust ARGSP to point to the start of the next argument. */
12659
12660 *argsp = end;
12661
12662 /* Make a copy of the current argument and return it. */
12663
12664 result = xmalloc (end - args + 1);
12665 strncpy (result, args, end - args);
12666 result[end - args] = '\0';
12667
12668 return result;
12669}
12670
12671/* Split the arguments specified in a "catch exception" command.
12672 Set EX to the appropriate catchpoint type.
28010a5d 12673 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12674 specified by the user.
12675 If a condition is found at the end of the arguments, the condition
12676 expression is stored in COND_STRING (memory must be deallocated
12677 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12678
12679static void
12680catch_ada_exception_command_split (char *args,
761269c8 12681 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12682 char **excep_string,
12683 char **cond_string)
f7f9143b
JB
12684{
12685 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12686 char *exception_name;
5845583d 12687 char *cond = NULL;
f7f9143b
JB
12688
12689 exception_name = ada_get_next_arg (&args);
5845583d
JB
12690 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12691 {
12692 /* This is not an exception name; this is the start of a condition
12693 expression for a catchpoint on all exceptions. So, "un-get"
12694 this token, and set exception_name to NULL. */
12695 xfree (exception_name);
12696 exception_name = NULL;
12697 args -= 2;
12698 }
f7f9143b
JB
12699 make_cleanup (xfree, exception_name);
12700
5845583d 12701 /* Check to see if we have a condition. */
f7f9143b 12702
0fcd72ba 12703 args = skip_spaces (args);
61012eef 12704 if (startswith (args, "if")
5845583d
JB
12705 && (isspace (args[2]) || args[2] == '\0'))
12706 {
12707 args += 2;
12708 args = skip_spaces (args);
12709
12710 if (args[0] == '\0')
12711 error (_("Condition missing after `if' keyword"));
12712 cond = xstrdup (args);
12713 make_cleanup (xfree, cond);
12714
12715 args += strlen (args);
12716 }
12717
12718 /* Check that we do not have any more arguments. Anything else
12719 is unexpected. */
f7f9143b
JB
12720
12721 if (args[0] != '\0')
12722 error (_("Junk at end of expression"));
12723
12724 discard_cleanups (old_chain);
12725
12726 if (exception_name == NULL)
12727 {
12728 /* Catch all exceptions. */
761269c8 12729 *ex = ada_catch_exception;
28010a5d 12730 *excep_string = NULL;
f7f9143b
JB
12731 }
12732 else if (strcmp (exception_name, "unhandled") == 0)
12733 {
12734 /* Catch unhandled exceptions. */
761269c8 12735 *ex = ada_catch_exception_unhandled;
28010a5d 12736 *excep_string = NULL;
f7f9143b
JB
12737 }
12738 else
12739 {
12740 /* Catch a specific exception. */
761269c8 12741 *ex = ada_catch_exception;
28010a5d 12742 *excep_string = exception_name;
f7f9143b 12743 }
5845583d 12744 *cond_string = cond;
f7f9143b
JB
12745}
12746
12747/* Return the name of the symbol on which we should break in order to
12748 implement a catchpoint of the EX kind. */
12749
12750static const char *
761269c8 12751ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12752{
3eecfa55
JB
12753 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12754
12755 gdb_assert (data->exception_info != NULL);
0259addd 12756
f7f9143b
JB
12757 switch (ex)
12758 {
761269c8 12759 case ada_catch_exception:
3eecfa55 12760 return (data->exception_info->catch_exception_sym);
f7f9143b 12761 break;
761269c8 12762 case ada_catch_exception_unhandled:
3eecfa55 12763 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12764 break;
761269c8 12765 case ada_catch_assert:
3eecfa55 12766 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12767 break;
12768 default:
12769 internal_error (__FILE__, __LINE__,
12770 _("unexpected catchpoint kind (%d)"), ex);
12771 }
12772}
12773
12774/* Return the breakpoint ops "virtual table" used for catchpoints
12775 of the EX kind. */
12776
c0a91b2b 12777static const struct breakpoint_ops *
761269c8 12778ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12779{
12780 switch (ex)
12781 {
761269c8 12782 case ada_catch_exception:
f7f9143b
JB
12783 return (&catch_exception_breakpoint_ops);
12784 break;
761269c8 12785 case ada_catch_exception_unhandled:
f7f9143b
JB
12786 return (&catch_exception_unhandled_breakpoint_ops);
12787 break;
761269c8 12788 case ada_catch_assert:
f7f9143b
JB
12789 return (&catch_assert_breakpoint_ops);
12790 break;
12791 default:
12792 internal_error (__FILE__, __LINE__,
12793 _("unexpected catchpoint kind (%d)"), ex);
12794 }
12795}
12796
12797/* Return the condition that will be used to match the current exception
12798 being raised with the exception that the user wants to catch. This
12799 assumes that this condition is used when the inferior just triggered
12800 an exception catchpoint.
12801
12802 The string returned is a newly allocated string that needs to be
12803 deallocated later. */
12804
12805static char *
28010a5d 12806ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12807{
3d0b0fa3
JB
12808 int i;
12809
0963b4bd 12810 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12811 runtime units that have been compiled without debugging info; if
28010a5d 12812 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12813 exception (e.g. "constraint_error") then, during the evaluation
12814 of the condition expression, the symbol lookup on this name would
0963b4bd 12815 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12816 may then be set only on user-defined exceptions which have the
12817 same not-fully-qualified name (e.g. my_package.constraint_error).
12818
12819 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12820 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12821 exception constraint_error" is rewritten into "catch exception
12822 standard.constraint_error".
12823
12824 If an exception named contraint_error is defined in another package of
12825 the inferior program, then the only way to specify this exception as a
12826 breakpoint condition is to use its fully-qualified named:
12827 e.g. my_package.constraint_error. */
12828
12829 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12830 {
28010a5d 12831 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12832 {
12833 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12834 excep_string);
3d0b0fa3
JB
12835 }
12836 }
28010a5d 12837 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12838}
12839
12840/* Return the symtab_and_line that should be used to insert an exception
12841 catchpoint of the TYPE kind.
12842
28010a5d
PA
12843 EXCEP_STRING should contain the name of a specific exception that
12844 the catchpoint should catch, or NULL otherwise.
f7f9143b 12845
28010a5d
PA
12846 ADDR_STRING returns the name of the function where the real
12847 breakpoint that implements the catchpoints is set, depending on the
12848 type of catchpoint we need to create. */
f7f9143b
JB
12849
12850static struct symtab_and_line
761269c8 12851ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12852 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12853{
12854 const char *sym_name;
12855 struct symbol *sym;
f7f9143b 12856
0259addd
JB
12857 /* First, find out which exception support info to use. */
12858 ada_exception_support_info_sniffer ();
12859
12860 /* Then lookup the function on which we will break in order to catch
f7f9143b 12861 the Ada exceptions requested by the user. */
f7f9143b
JB
12862 sym_name = ada_exception_sym_name (ex);
12863 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12864
f17011e0
JB
12865 /* We can assume that SYM is not NULL at this stage. If the symbol
12866 did not exist, ada_exception_support_info_sniffer would have
12867 raised an exception.
f7f9143b 12868
f17011e0
JB
12869 Also, ada_exception_support_info_sniffer should have already
12870 verified that SYM is a function symbol. */
12871 gdb_assert (sym != NULL);
12872 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12873
12874 /* Set ADDR_STRING. */
f7f9143b
JB
12875 *addr_string = xstrdup (sym_name);
12876
f7f9143b 12877 /* Set OPS. */
4b9eee8c 12878 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12879
f17011e0 12880 return find_function_start_sal (sym, 1);
f7f9143b
JB
12881}
12882
b4a5b78b 12883/* Create an Ada exception catchpoint.
f7f9143b 12884
b4a5b78b 12885 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12886
2df4d1d5
JB
12887 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12888 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12889 of the exception to which this catchpoint applies. When not NULL,
12890 the string must be allocated on the heap, and its deallocation
12891 is no longer the responsibility of the caller.
12892
12893 COND_STRING, if not NULL, is the catchpoint condition. This string
12894 must be allocated on the heap, and its deallocation is no longer
12895 the responsibility of the caller.
f7f9143b 12896
b4a5b78b
JB
12897 TEMPFLAG, if nonzero, means that the underlying breakpoint
12898 should be temporary.
28010a5d 12899
b4a5b78b 12900 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12901
349774ef 12902void
28010a5d 12903create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12904 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12905 char *excep_string,
5845583d 12906 char *cond_string,
28010a5d 12907 int tempflag,
349774ef 12908 int disabled,
28010a5d
PA
12909 int from_tty)
12910{
12911 struct ada_catchpoint *c;
b4a5b78b
JB
12912 char *addr_string = NULL;
12913 const struct breakpoint_ops *ops = NULL;
12914 struct symtab_and_line sal
12915 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
12916
12917 c = XNEW (struct ada_catchpoint);
12918 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 12919 ops, tempflag, disabled, from_tty);
28010a5d
PA
12920 c->excep_string = excep_string;
12921 create_excep_cond_exprs (c);
5845583d
JB
12922 if (cond_string != NULL)
12923 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12924 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12925}
12926
9ac4176b
PA
12927/* Implement the "catch exception" command. */
12928
12929static void
12930catch_ada_exception_command (char *arg, int from_tty,
12931 struct cmd_list_element *command)
12932{
12933 struct gdbarch *gdbarch = get_current_arch ();
12934 int tempflag;
761269c8 12935 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12936 char *excep_string = NULL;
5845583d 12937 char *cond_string = NULL;
9ac4176b
PA
12938
12939 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12940
12941 if (!arg)
12942 arg = "";
b4a5b78b
JB
12943 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12944 &cond_string);
12945 create_ada_exception_catchpoint (gdbarch, ex_kind,
12946 excep_string, cond_string,
349774ef
JB
12947 tempflag, 1 /* enabled */,
12948 from_tty);
9ac4176b
PA
12949}
12950
b4a5b78b 12951/* Split the arguments specified in a "catch assert" command.
5845583d 12952
b4a5b78b
JB
12953 ARGS contains the command's arguments (or the empty string if
12954 no arguments were passed).
5845583d
JB
12955
12956 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12957 (the memory needs to be deallocated after use). */
5845583d 12958
b4a5b78b
JB
12959static void
12960catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 12961{
5845583d 12962 args = skip_spaces (args);
f7f9143b 12963
5845583d 12964 /* Check whether a condition was provided. */
61012eef 12965 if (startswith (args, "if")
5845583d 12966 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12967 {
5845583d 12968 args += 2;
0fcd72ba 12969 args = skip_spaces (args);
5845583d
JB
12970 if (args[0] == '\0')
12971 error (_("condition missing after `if' keyword"));
12972 *cond_string = xstrdup (args);
f7f9143b
JB
12973 }
12974
5845583d
JB
12975 /* Otherwise, there should be no other argument at the end of
12976 the command. */
12977 else if (args[0] != '\0')
12978 error (_("Junk at end of arguments."));
f7f9143b
JB
12979}
12980
9ac4176b
PA
12981/* Implement the "catch assert" command. */
12982
12983static void
12984catch_assert_command (char *arg, int from_tty,
12985 struct cmd_list_element *command)
12986{
12987 struct gdbarch *gdbarch = get_current_arch ();
12988 int tempflag;
5845583d 12989 char *cond_string = NULL;
9ac4176b
PA
12990
12991 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12992
12993 if (!arg)
12994 arg = "";
b4a5b78b 12995 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12996 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12997 NULL, cond_string,
349774ef
JB
12998 tempflag, 1 /* enabled */,
12999 from_tty);
9ac4176b 13000}
778865d3
JB
13001
13002/* Return non-zero if the symbol SYM is an Ada exception object. */
13003
13004static int
13005ada_is_exception_sym (struct symbol *sym)
13006{
13007 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13008
13009 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13010 && SYMBOL_CLASS (sym) != LOC_BLOCK
13011 && SYMBOL_CLASS (sym) != LOC_CONST
13012 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13013 && type_name != NULL && strcmp (type_name, "exception") == 0);
13014}
13015
13016/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13017 Ada exception object. This matches all exceptions except the ones
13018 defined by the Ada language. */
13019
13020static int
13021ada_is_non_standard_exception_sym (struct symbol *sym)
13022{
13023 int i;
13024
13025 if (!ada_is_exception_sym (sym))
13026 return 0;
13027
13028 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13029 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13030 return 0; /* A standard exception. */
13031
13032 /* Numeric_Error is also a standard exception, so exclude it.
13033 See the STANDARD_EXC description for more details as to why
13034 this exception is not listed in that array. */
13035 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13036 return 0;
13037
13038 return 1;
13039}
13040
13041/* A helper function for qsort, comparing two struct ada_exc_info
13042 objects.
13043
13044 The comparison is determined first by exception name, and then
13045 by exception address. */
13046
13047static int
13048compare_ada_exception_info (const void *a, const void *b)
13049{
13050 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13051 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13052 int result;
13053
13054 result = strcmp (exc_a->name, exc_b->name);
13055 if (result != 0)
13056 return result;
13057
13058 if (exc_a->addr < exc_b->addr)
13059 return -1;
13060 if (exc_a->addr > exc_b->addr)
13061 return 1;
13062
13063 return 0;
13064}
13065
13066/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13067 routine, but keeping the first SKIP elements untouched.
13068
13069 All duplicates are also removed. */
13070
13071static void
13072sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13073 int skip)
13074{
13075 struct ada_exc_info *to_sort
13076 = VEC_address (ada_exc_info, *exceptions) + skip;
13077 int to_sort_len
13078 = VEC_length (ada_exc_info, *exceptions) - skip;
13079 int i, j;
13080
13081 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13082 compare_ada_exception_info);
13083
13084 for (i = 1, j = 1; i < to_sort_len; i++)
13085 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13086 to_sort[j++] = to_sort[i];
13087 to_sort_len = j;
13088 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13089}
13090
13091/* A function intended as the "name_matcher" callback in the struct
13092 quick_symbol_functions' expand_symtabs_matching method.
13093
13094 SEARCH_NAME is the symbol's search name.
13095
13096 If USER_DATA is not NULL, it is a pointer to a regext_t object
13097 used to match the symbol (by natural name). Otherwise, when USER_DATA
13098 is null, no filtering is performed, and all symbols are a positive
13099 match. */
13100
13101static int
13102ada_exc_search_name_matches (const char *search_name, void *user_data)
13103{
13104 regex_t *preg = user_data;
13105
13106 if (preg == NULL)
13107 return 1;
13108
13109 /* In Ada, the symbol "search name" is a linkage name, whereas
13110 the regular expression used to do the matching refers to
13111 the natural name. So match against the decoded name. */
13112 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13113}
13114
13115/* Add all exceptions defined by the Ada standard whose name match
13116 a regular expression.
13117
13118 If PREG is not NULL, then this regexp_t object is used to
13119 perform the symbol name matching. Otherwise, no name-based
13120 filtering is performed.
13121
13122 EXCEPTIONS is a vector of exceptions to which matching exceptions
13123 gets pushed. */
13124
13125static void
13126ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13127{
13128 int i;
13129
13130 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13131 {
13132 if (preg == NULL
13133 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13134 {
13135 struct bound_minimal_symbol msymbol
13136 = ada_lookup_simple_minsym (standard_exc[i]);
13137
13138 if (msymbol.minsym != NULL)
13139 {
13140 struct ada_exc_info info
77e371c0 13141 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
13142
13143 VEC_safe_push (ada_exc_info, *exceptions, &info);
13144 }
13145 }
13146 }
13147}
13148
13149/* Add all Ada exceptions defined locally and accessible from the given
13150 FRAME.
13151
13152 If PREG is not NULL, then this regexp_t object is used to
13153 perform the symbol name matching. Otherwise, no name-based
13154 filtering is performed.
13155
13156 EXCEPTIONS is a vector of exceptions to which matching exceptions
13157 gets pushed. */
13158
13159static void
13160ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13161 VEC(ada_exc_info) **exceptions)
13162{
3977b71f 13163 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13164
13165 while (block != 0)
13166 {
13167 struct block_iterator iter;
13168 struct symbol *sym;
13169
13170 ALL_BLOCK_SYMBOLS (block, iter, sym)
13171 {
13172 switch (SYMBOL_CLASS (sym))
13173 {
13174 case LOC_TYPEDEF:
13175 case LOC_BLOCK:
13176 case LOC_CONST:
13177 break;
13178 default:
13179 if (ada_is_exception_sym (sym))
13180 {
13181 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13182 SYMBOL_VALUE_ADDRESS (sym)};
13183
13184 VEC_safe_push (ada_exc_info, *exceptions, &info);
13185 }
13186 }
13187 }
13188 if (BLOCK_FUNCTION (block) != NULL)
13189 break;
13190 block = BLOCK_SUPERBLOCK (block);
13191 }
13192}
13193
13194/* Add all exceptions defined globally whose name name match
13195 a regular expression, excluding standard exceptions.
13196
13197 The reason we exclude standard exceptions is that they need
13198 to be handled separately: Standard exceptions are defined inside
13199 a runtime unit which is normally not compiled with debugging info,
13200 and thus usually do not show up in our symbol search. However,
13201 if the unit was in fact built with debugging info, we need to
13202 exclude them because they would duplicate the entry we found
13203 during the special loop that specifically searches for those
13204 standard exceptions.
13205
13206 If PREG is not NULL, then this regexp_t object is used to
13207 perform the symbol name matching. Otherwise, no name-based
13208 filtering is performed.
13209
13210 EXCEPTIONS is a vector of exceptions to which matching exceptions
13211 gets pushed. */
13212
13213static void
13214ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13215{
13216 struct objfile *objfile;
43f3e411 13217 struct compunit_symtab *s;
778865d3 13218
276d885b 13219 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
bb4142cf 13220 VARIABLES_DOMAIN, preg);
778865d3 13221
43f3e411 13222 ALL_COMPUNITS (objfile, s)
778865d3 13223 {
43f3e411 13224 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13225 int i;
13226
13227 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13228 {
13229 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13230 struct block_iterator iter;
13231 struct symbol *sym;
13232
13233 ALL_BLOCK_SYMBOLS (b, iter, sym)
13234 if (ada_is_non_standard_exception_sym (sym)
13235 && (preg == NULL
13236 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13237 0, NULL, 0) == 0))
13238 {
13239 struct ada_exc_info info
13240 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13241
13242 VEC_safe_push (ada_exc_info, *exceptions, &info);
13243 }
13244 }
13245 }
13246}
13247
13248/* Implements ada_exceptions_list with the regular expression passed
13249 as a regex_t, rather than a string.
13250
13251 If not NULL, PREG is used to filter out exceptions whose names
13252 do not match. Otherwise, all exceptions are listed. */
13253
13254static VEC(ada_exc_info) *
13255ada_exceptions_list_1 (regex_t *preg)
13256{
13257 VEC(ada_exc_info) *result = NULL;
13258 struct cleanup *old_chain
13259 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13260 int prev_len;
13261
13262 /* First, list the known standard exceptions. These exceptions
13263 need to be handled separately, as they are usually defined in
13264 runtime units that have been compiled without debugging info. */
13265
13266 ada_add_standard_exceptions (preg, &result);
13267
13268 /* Next, find all exceptions whose scope is local and accessible
13269 from the currently selected frame. */
13270
13271 if (has_stack_frames ())
13272 {
13273 prev_len = VEC_length (ada_exc_info, result);
13274 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13275 &result);
13276 if (VEC_length (ada_exc_info, result) > prev_len)
13277 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13278 }
13279
13280 /* Add all exceptions whose scope is global. */
13281
13282 prev_len = VEC_length (ada_exc_info, result);
13283 ada_add_global_exceptions (preg, &result);
13284 if (VEC_length (ada_exc_info, result) > prev_len)
13285 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13286
13287 discard_cleanups (old_chain);
13288 return result;
13289}
13290
13291/* Return a vector of ada_exc_info.
13292
13293 If REGEXP is NULL, all exceptions are included in the result.
13294 Otherwise, it should contain a valid regular expression,
13295 and only the exceptions whose names match that regular expression
13296 are included in the result.
13297
13298 The exceptions are sorted in the following order:
13299 - Standard exceptions (defined by the Ada language), in
13300 alphabetical order;
13301 - Exceptions only visible from the current frame, in
13302 alphabetical order;
13303 - Exceptions whose scope is global, in alphabetical order. */
13304
13305VEC(ada_exc_info) *
13306ada_exceptions_list (const char *regexp)
13307{
13308 VEC(ada_exc_info) *result = NULL;
13309 struct cleanup *old_chain = NULL;
13310 regex_t reg;
13311
13312 if (regexp != NULL)
13313 old_chain = compile_rx_or_error (&reg, regexp,
13314 _("invalid regular expression"));
13315
13316 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13317
13318 if (old_chain != NULL)
13319 do_cleanups (old_chain);
13320 return result;
13321}
13322
13323/* Implement the "info exceptions" command. */
13324
13325static void
13326info_exceptions_command (char *regexp, int from_tty)
13327{
13328 VEC(ada_exc_info) *exceptions;
13329 struct cleanup *cleanup;
13330 struct gdbarch *gdbarch = get_current_arch ();
13331 int ix;
13332 struct ada_exc_info *info;
13333
13334 exceptions = ada_exceptions_list (regexp);
13335 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13336
13337 if (regexp != NULL)
13338 printf_filtered
13339 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13340 else
13341 printf_filtered (_("All defined Ada exceptions:\n"));
13342
13343 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13344 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13345
13346 do_cleanups (cleanup);
13347}
13348
4c4b4cd2
PH
13349 /* Operators */
13350/* Information about operators given special treatment in functions
13351 below. */
13352/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13353
13354#define ADA_OPERATORS \
13355 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13356 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13357 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13358 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13359 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13360 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13361 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13362 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13363 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13364 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13365 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13366 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13367 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13368 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13369 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13370 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13371 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13372 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13373 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13374
13375static void
554794dc
SDJ
13376ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13377 int *argsp)
4c4b4cd2
PH
13378{
13379 switch (exp->elts[pc - 1].opcode)
13380 {
76a01679 13381 default:
4c4b4cd2
PH
13382 operator_length_standard (exp, pc, oplenp, argsp);
13383 break;
13384
13385#define OP_DEFN(op, len, args, binop) \
13386 case op: *oplenp = len; *argsp = args; break;
13387 ADA_OPERATORS;
13388#undef OP_DEFN
52ce6436
PH
13389
13390 case OP_AGGREGATE:
13391 *oplenp = 3;
13392 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13393 break;
13394
13395 case OP_CHOICES:
13396 *oplenp = 3;
13397 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13398 break;
4c4b4cd2
PH
13399 }
13400}
13401
c0201579
JK
13402/* Implementation of the exp_descriptor method operator_check. */
13403
13404static int
13405ada_operator_check (struct expression *exp, int pos,
13406 int (*objfile_func) (struct objfile *objfile, void *data),
13407 void *data)
13408{
13409 const union exp_element *const elts = exp->elts;
13410 struct type *type = NULL;
13411
13412 switch (elts[pos].opcode)
13413 {
13414 case UNOP_IN_RANGE:
13415 case UNOP_QUAL:
13416 type = elts[pos + 1].type;
13417 break;
13418
13419 default:
13420 return operator_check_standard (exp, pos, objfile_func, data);
13421 }
13422
13423 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13424
13425 if (type && TYPE_OBJFILE (type)
13426 && (*objfile_func) (TYPE_OBJFILE (type), data))
13427 return 1;
13428
13429 return 0;
13430}
13431
4c4b4cd2
PH
13432static char *
13433ada_op_name (enum exp_opcode opcode)
13434{
13435 switch (opcode)
13436 {
76a01679 13437 default:
4c4b4cd2 13438 return op_name_standard (opcode);
52ce6436 13439
4c4b4cd2
PH
13440#define OP_DEFN(op, len, args, binop) case op: return #op;
13441 ADA_OPERATORS;
13442#undef OP_DEFN
52ce6436
PH
13443
13444 case OP_AGGREGATE:
13445 return "OP_AGGREGATE";
13446 case OP_CHOICES:
13447 return "OP_CHOICES";
13448 case OP_NAME:
13449 return "OP_NAME";
4c4b4cd2
PH
13450 }
13451}
13452
13453/* As for operator_length, but assumes PC is pointing at the first
13454 element of the operator, and gives meaningful results only for the
52ce6436 13455 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13456
13457static void
76a01679
JB
13458ada_forward_operator_length (struct expression *exp, int pc,
13459 int *oplenp, int *argsp)
4c4b4cd2 13460{
76a01679 13461 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13462 {
13463 default:
13464 *oplenp = *argsp = 0;
13465 break;
52ce6436 13466
4c4b4cd2
PH
13467#define OP_DEFN(op, len, args, binop) \
13468 case op: *oplenp = len; *argsp = args; break;
13469 ADA_OPERATORS;
13470#undef OP_DEFN
52ce6436
PH
13471
13472 case OP_AGGREGATE:
13473 *oplenp = 3;
13474 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13475 break;
13476
13477 case OP_CHOICES:
13478 *oplenp = 3;
13479 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13480 break;
13481
13482 case OP_STRING:
13483 case OP_NAME:
13484 {
13485 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13486
52ce6436
PH
13487 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13488 *argsp = 0;
13489 break;
13490 }
4c4b4cd2
PH
13491 }
13492}
13493
13494static int
13495ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13496{
13497 enum exp_opcode op = exp->elts[elt].opcode;
13498 int oplen, nargs;
13499 int pc = elt;
13500 int i;
76a01679 13501
4c4b4cd2
PH
13502 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13503
76a01679 13504 switch (op)
4c4b4cd2 13505 {
76a01679 13506 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13507 case OP_ATR_FIRST:
13508 case OP_ATR_LAST:
13509 case OP_ATR_LENGTH:
13510 case OP_ATR_IMAGE:
13511 case OP_ATR_MAX:
13512 case OP_ATR_MIN:
13513 case OP_ATR_MODULUS:
13514 case OP_ATR_POS:
13515 case OP_ATR_SIZE:
13516 case OP_ATR_TAG:
13517 case OP_ATR_VAL:
13518 break;
13519
13520 case UNOP_IN_RANGE:
13521 case UNOP_QUAL:
323e0a4a
AC
13522 /* XXX: gdb_sprint_host_address, type_sprint */
13523 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13524 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13525 fprintf_filtered (stream, " (");
13526 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13527 fprintf_filtered (stream, ")");
13528 break;
13529 case BINOP_IN_BOUNDS:
52ce6436
PH
13530 fprintf_filtered (stream, " (%d)",
13531 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13532 break;
13533 case TERNOP_IN_RANGE:
13534 break;
13535
52ce6436
PH
13536 case OP_AGGREGATE:
13537 case OP_OTHERS:
13538 case OP_DISCRETE_RANGE:
13539 case OP_POSITIONAL:
13540 case OP_CHOICES:
13541 break;
13542
13543 case OP_NAME:
13544 case OP_STRING:
13545 {
13546 char *name = &exp->elts[elt + 2].string;
13547 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13548
52ce6436
PH
13549 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13550 break;
13551 }
13552
4c4b4cd2
PH
13553 default:
13554 return dump_subexp_body_standard (exp, stream, elt);
13555 }
13556
13557 elt += oplen;
13558 for (i = 0; i < nargs; i += 1)
13559 elt = dump_subexp (exp, stream, elt);
13560
13561 return elt;
13562}
13563
13564/* The Ada extension of print_subexp (q.v.). */
13565
76a01679
JB
13566static void
13567ada_print_subexp (struct expression *exp, int *pos,
13568 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13569{
52ce6436 13570 int oplen, nargs, i;
4c4b4cd2
PH
13571 int pc = *pos;
13572 enum exp_opcode op = exp->elts[pc].opcode;
13573
13574 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13575
52ce6436 13576 *pos += oplen;
4c4b4cd2
PH
13577 switch (op)
13578 {
13579 default:
52ce6436 13580 *pos -= oplen;
4c4b4cd2
PH
13581 print_subexp_standard (exp, pos, stream, prec);
13582 return;
13583
13584 case OP_VAR_VALUE:
4c4b4cd2
PH
13585 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13586 return;
13587
13588 case BINOP_IN_BOUNDS:
323e0a4a 13589 /* XXX: sprint_subexp */
4c4b4cd2 13590 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13591 fputs_filtered (" in ", stream);
4c4b4cd2 13592 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13593 fputs_filtered ("'range", stream);
4c4b4cd2 13594 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13595 fprintf_filtered (stream, "(%ld)",
13596 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13597 return;
13598
13599 case TERNOP_IN_RANGE:
4c4b4cd2 13600 if (prec >= PREC_EQUAL)
76a01679 13601 fputs_filtered ("(", stream);
323e0a4a 13602 /* XXX: sprint_subexp */
4c4b4cd2 13603 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13604 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13605 print_subexp (exp, pos, stream, PREC_EQUAL);
13606 fputs_filtered (" .. ", stream);
13607 print_subexp (exp, pos, stream, PREC_EQUAL);
13608 if (prec >= PREC_EQUAL)
76a01679
JB
13609 fputs_filtered (")", stream);
13610 return;
4c4b4cd2
PH
13611
13612 case OP_ATR_FIRST:
13613 case OP_ATR_LAST:
13614 case OP_ATR_LENGTH:
13615 case OP_ATR_IMAGE:
13616 case OP_ATR_MAX:
13617 case OP_ATR_MIN:
13618 case OP_ATR_MODULUS:
13619 case OP_ATR_POS:
13620 case OP_ATR_SIZE:
13621 case OP_ATR_TAG:
13622 case OP_ATR_VAL:
4c4b4cd2 13623 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13624 {
13625 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13626 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13627 &type_print_raw_options);
76a01679
JB
13628 *pos += 3;
13629 }
4c4b4cd2 13630 else
76a01679 13631 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13632 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13633 if (nargs > 1)
76a01679
JB
13634 {
13635 int tem;
5b4ee69b 13636
76a01679
JB
13637 for (tem = 1; tem < nargs; tem += 1)
13638 {
13639 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13640 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13641 }
13642 fputs_filtered (")", stream);
13643 }
4c4b4cd2 13644 return;
14f9c5c9 13645
4c4b4cd2 13646 case UNOP_QUAL:
4c4b4cd2
PH
13647 type_print (exp->elts[pc + 1].type, "", stream, 0);
13648 fputs_filtered ("'(", stream);
13649 print_subexp (exp, pos, stream, PREC_PREFIX);
13650 fputs_filtered (")", stream);
13651 return;
14f9c5c9 13652
4c4b4cd2 13653 case UNOP_IN_RANGE:
323e0a4a 13654 /* XXX: sprint_subexp */
4c4b4cd2 13655 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13656 fputs_filtered (" in ", stream);
79d43c61
TT
13657 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13658 &type_print_raw_options);
4c4b4cd2 13659 return;
52ce6436
PH
13660
13661 case OP_DISCRETE_RANGE:
13662 print_subexp (exp, pos, stream, PREC_SUFFIX);
13663 fputs_filtered ("..", stream);
13664 print_subexp (exp, pos, stream, PREC_SUFFIX);
13665 return;
13666
13667 case OP_OTHERS:
13668 fputs_filtered ("others => ", stream);
13669 print_subexp (exp, pos, stream, PREC_SUFFIX);
13670 return;
13671
13672 case OP_CHOICES:
13673 for (i = 0; i < nargs-1; i += 1)
13674 {
13675 if (i > 0)
13676 fputs_filtered ("|", stream);
13677 print_subexp (exp, pos, stream, PREC_SUFFIX);
13678 }
13679 fputs_filtered (" => ", stream);
13680 print_subexp (exp, pos, stream, PREC_SUFFIX);
13681 return;
13682
13683 case OP_POSITIONAL:
13684 print_subexp (exp, pos, stream, PREC_SUFFIX);
13685 return;
13686
13687 case OP_AGGREGATE:
13688 fputs_filtered ("(", stream);
13689 for (i = 0; i < nargs; i += 1)
13690 {
13691 if (i > 0)
13692 fputs_filtered (", ", stream);
13693 print_subexp (exp, pos, stream, PREC_SUFFIX);
13694 }
13695 fputs_filtered (")", stream);
13696 return;
4c4b4cd2
PH
13697 }
13698}
14f9c5c9
AS
13699
13700/* Table mapping opcodes into strings for printing operators
13701 and precedences of the operators. */
13702
d2e4a39e
AS
13703static const struct op_print ada_op_print_tab[] = {
13704 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13705 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13706 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13707 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13708 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13709 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13710 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13711 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13712 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13713 {">=", BINOP_GEQ, PREC_ORDER, 0},
13714 {">", BINOP_GTR, PREC_ORDER, 0},
13715 {"<", BINOP_LESS, PREC_ORDER, 0},
13716 {">>", BINOP_RSH, PREC_SHIFT, 0},
13717 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13718 {"+", BINOP_ADD, PREC_ADD, 0},
13719 {"-", BINOP_SUB, PREC_ADD, 0},
13720 {"&", BINOP_CONCAT, PREC_ADD, 0},
13721 {"*", BINOP_MUL, PREC_MUL, 0},
13722 {"/", BINOP_DIV, PREC_MUL, 0},
13723 {"rem", BINOP_REM, PREC_MUL, 0},
13724 {"mod", BINOP_MOD, PREC_MUL, 0},
13725 {"**", BINOP_EXP, PREC_REPEAT, 0},
13726 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13727 {"-", UNOP_NEG, PREC_PREFIX, 0},
13728 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13729 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13730 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13731 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13732 {".all", UNOP_IND, PREC_SUFFIX, 1},
13733 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13734 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13735 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13736};
13737\f
72d5681a
PH
13738enum ada_primitive_types {
13739 ada_primitive_type_int,
13740 ada_primitive_type_long,
13741 ada_primitive_type_short,
13742 ada_primitive_type_char,
13743 ada_primitive_type_float,
13744 ada_primitive_type_double,
13745 ada_primitive_type_void,
13746 ada_primitive_type_long_long,
13747 ada_primitive_type_long_double,
13748 ada_primitive_type_natural,
13749 ada_primitive_type_positive,
13750 ada_primitive_type_system_address,
13751 nr_ada_primitive_types
13752};
6c038f32
PH
13753
13754static void
d4a9a881 13755ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13756 struct language_arch_info *lai)
13757{
d4a9a881 13758 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13759
72d5681a 13760 lai->primitive_type_vector
d4a9a881 13761 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13762 struct type *);
e9bb382b
UW
13763
13764 lai->primitive_type_vector [ada_primitive_type_int]
13765 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13766 0, "integer");
13767 lai->primitive_type_vector [ada_primitive_type_long]
13768 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13769 0, "long_integer");
13770 lai->primitive_type_vector [ada_primitive_type_short]
13771 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13772 0, "short_integer");
13773 lai->string_char_type
13774 = lai->primitive_type_vector [ada_primitive_type_char]
13775 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13776 lai->primitive_type_vector [ada_primitive_type_float]
13777 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13778 "float", NULL);
13779 lai->primitive_type_vector [ada_primitive_type_double]
13780 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13781 "long_float", NULL);
13782 lai->primitive_type_vector [ada_primitive_type_long_long]
13783 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13784 0, "long_long_integer");
13785 lai->primitive_type_vector [ada_primitive_type_long_double]
13786 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13787 "long_long_float", NULL);
13788 lai->primitive_type_vector [ada_primitive_type_natural]
13789 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13790 0, "natural");
13791 lai->primitive_type_vector [ada_primitive_type_positive]
13792 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13793 0, "positive");
13794 lai->primitive_type_vector [ada_primitive_type_void]
13795 = builtin->builtin_void;
13796
13797 lai->primitive_type_vector [ada_primitive_type_system_address]
13798 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13799 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13800 = "system__address";
fbb06eb1 13801
47e729a8 13802 lai->bool_type_symbol = NULL;
fbb06eb1 13803 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13804}
6c038f32
PH
13805\f
13806 /* Language vector */
13807
13808/* Not really used, but needed in the ada_language_defn. */
13809
13810static void
6c7a06a3 13811emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13812{
6c7a06a3 13813 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13814}
13815
13816static int
410a0ff2 13817parse (struct parser_state *ps)
6c038f32
PH
13818{
13819 warnings_issued = 0;
410a0ff2 13820 return ada_parse (ps);
6c038f32
PH
13821}
13822
13823static const struct exp_descriptor ada_exp_descriptor = {
13824 ada_print_subexp,
13825 ada_operator_length,
c0201579 13826 ada_operator_check,
6c038f32
PH
13827 ada_op_name,
13828 ada_dump_subexp_body,
13829 ada_evaluate_subexp
13830};
13831
1a119f36 13832/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13833 for Ada. */
13834
1a119f36
JB
13835static symbol_name_cmp_ftype
13836ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13837{
13838 if (should_use_wild_match (lookup_name))
13839 return wild_match;
13840 else
13841 return compare_names;
13842}
13843
a5ee536b
JB
13844/* Implement the "la_read_var_value" language_defn method for Ada. */
13845
13846static struct value *
63e43d3a
PMR
13847ada_read_var_value (struct symbol *var, const struct block *var_block,
13848 struct frame_info *frame)
a5ee536b 13849{
3977b71f 13850 const struct block *frame_block = NULL;
a5ee536b
JB
13851 struct symbol *renaming_sym = NULL;
13852
13853 /* The only case where default_read_var_value is not sufficient
13854 is when VAR is a renaming... */
13855 if (frame)
13856 frame_block = get_frame_block (frame, NULL);
13857 if (frame_block)
13858 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13859 if (renaming_sym != NULL)
13860 return ada_read_renaming_var_value (renaming_sym, frame_block);
13861
13862 /* This is a typical case where we expect the default_read_var_value
13863 function to work. */
63e43d3a 13864 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
13865}
13866
6c038f32
PH
13867const struct language_defn ada_language_defn = {
13868 "ada", /* Language name */
6abde28f 13869 "Ada",
6c038f32 13870 language_ada,
6c038f32 13871 range_check_off,
6c038f32
PH
13872 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13873 that's not quite what this means. */
6c038f32 13874 array_row_major,
9a044a89 13875 macro_expansion_no,
6c038f32
PH
13876 &ada_exp_descriptor,
13877 parse,
13878 ada_error,
13879 resolve,
13880 ada_printchar, /* Print a character constant */
13881 ada_printstr, /* Function to print string constant */
13882 emit_char, /* Function to print single char (not used) */
6c038f32 13883 ada_print_type, /* Print a type using appropriate syntax */
be942545 13884 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13885 ada_val_print, /* Print a value using appropriate syntax */
13886 ada_value_print, /* Print a top-level value */
a5ee536b 13887 ada_read_var_value, /* la_read_var_value */
6c038f32 13888 NULL, /* Language specific skip_trampoline */
2b2d9e11 13889 NULL, /* name_of_this */
6c038f32
PH
13890 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13891 basic_lookup_transparent_type, /* lookup_transparent_type */
13892 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13893 NULL, /* Language specific
13894 class_name_from_physname */
6c038f32
PH
13895 ada_op_print_tab, /* expression operators for printing */
13896 0, /* c-style arrays */
13897 1, /* String lower bound */
6c038f32 13898 ada_get_gdb_completer_word_break_characters,
41d27058 13899 ada_make_symbol_completion_list,
72d5681a 13900 ada_language_arch_info,
e79af960 13901 ada_print_array_index,
41f1b697 13902 default_pass_by_reference,
ae6a3a4c 13903 c_get_string,
1a119f36 13904 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13905 ada_iterate_over_symbols,
a53b64ea 13906 &ada_varobj_ops,
bb2ec1b3
TT
13907 NULL,
13908 NULL,
6c038f32
PH
13909 LANG_MAGIC
13910};
13911
2c0b251b
PA
13912/* Provide a prototype to silence -Wmissing-prototypes. */
13913extern initialize_file_ftype _initialize_ada_language;
13914
5bf03f13
JB
13915/* Command-list for the "set/show ada" prefix command. */
13916static struct cmd_list_element *set_ada_list;
13917static struct cmd_list_element *show_ada_list;
13918
13919/* Implement the "set ada" prefix command. */
13920
13921static void
13922set_ada_command (char *arg, int from_tty)
13923{
13924 printf_unfiltered (_(\
13925"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 13926 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
13927}
13928
13929/* Implement the "show ada" prefix command. */
13930
13931static void
13932show_ada_command (char *args, int from_tty)
13933{
13934 cmd_show_list (show_ada_list, from_tty, "");
13935}
13936
2060206e
PA
13937static void
13938initialize_ada_catchpoint_ops (void)
13939{
13940 struct breakpoint_ops *ops;
13941
13942 initialize_breakpoint_ops ();
13943
13944 ops = &catch_exception_breakpoint_ops;
13945 *ops = bkpt_breakpoint_ops;
13946 ops->dtor = dtor_catch_exception;
13947 ops->allocate_location = allocate_location_catch_exception;
13948 ops->re_set = re_set_catch_exception;
13949 ops->check_status = check_status_catch_exception;
13950 ops->print_it = print_it_catch_exception;
13951 ops->print_one = print_one_catch_exception;
13952 ops->print_mention = print_mention_catch_exception;
13953 ops->print_recreate = print_recreate_catch_exception;
13954
13955 ops = &catch_exception_unhandled_breakpoint_ops;
13956 *ops = bkpt_breakpoint_ops;
13957 ops->dtor = dtor_catch_exception_unhandled;
13958 ops->allocate_location = allocate_location_catch_exception_unhandled;
13959 ops->re_set = re_set_catch_exception_unhandled;
13960 ops->check_status = check_status_catch_exception_unhandled;
13961 ops->print_it = print_it_catch_exception_unhandled;
13962 ops->print_one = print_one_catch_exception_unhandled;
13963 ops->print_mention = print_mention_catch_exception_unhandled;
13964 ops->print_recreate = print_recreate_catch_exception_unhandled;
13965
13966 ops = &catch_assert_breakpoint_ops;
13967 *ops = bkpt_breakpoint_ops;
13968 ops->dtor = dtor_catch_assert;
13969 ops->allocate_location = allocate_location_catch_assert;
13970 ops->re_set = re_set_catch_assert;
13971 ops->check_status = check_status_catch_assert;
13972 ops->print_it = print_it_catch_assert;
13973 ops->print_one = print_one_catch_assert;
13974 ops->print_mention = print_mention_catch_assert;
13975 ops->print_recreate = print_recreate_catch_assert;
13976}
13977
3d9434b5
JB
13978/* This module's 'new_objfile' observer. */
13979
13980static void
13981ada_new_objfile_observer (struct objfile *objfile)
13982{
13983 ada_clear_symbol_cache ();
13984}
13985
13986/* This module's 'free_objfile' observer. */
13987
13988static void
13989ada_free_objfile_observer (struct objfile *objfile)
13990{
13991 ada_clear_symbol_cache ();
13992}
13993
d2e4a39e 13994void
6c038f32 13995_initialize_ada_language (void)
14f9c5c9 13996{
6c038f32
PH
13997 add_language (&ada_language_defn);
13998
2060206e
PA
13999 initialize_ada_catchpoint_ops ();
14000
5bf03f13
JB
14001 add_prefix_cmd ("ada", no_class, set_ada_command,
14002 _("Prefix command for changing Ada-specfic settings"),
14003 &set_ada_list, "set ada ", 0, &setlist);
14004
14005 add_prefix_cmd ("ada", no_class, show_ada_command,
14006 _("Generic command for showing Ada-specific settings."),
14007 &show_ada_list, "show ada ", 0, &showlist);
14008
14009 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14010 &trust_pad_over_xvs, _("\
14011Enable or disable an optimization trusting PAD types over XVS types"), _("\
14012Show whether an optimization trusting PAD types over XVS types is activated"),
14013 _("\
14014This is related to the encoding used by the GNAT compiler. The debugger\n\
14015should normally trust the contents of PAD types, but certain older versions\n\
14016of GNAT have a bug that sometimes causes the information in the PAD type\n\
14017to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14018work around this bug. It is always safe to turn this option \"off\", but\n\
14019this incurs a slight performance penalty, so it is recommended to NOT change\n\
14020this option to \"off\" unless necessary."),
14021 NULL, NULL, &set_ada_list, &show_ada_list);
14022
9ac4176b
PA
14023 add_catch_command ("exception", _("\
14024Catch Ada exceptions, when raised.\n\
14025With an argument, catch only exceptions with the given name."),
14026 catch_ada_exception_command,
14027 NULL,
14028 CATCH_PERMANENT,
14029 CATCH_TEMPORARY);
14030 add_catch_command ("assert", _("\
14031Catch failed Ada assertions, when raised.\n\
14032With an argument, catch only exceptions with the given name."),
14033 catch_assert_command,
14034 NULL,
14035 CATCH_PERMANENT,
14036 CATCH_TEMPORARY);
14037
6c038f32 14038 varsize_limit = 65536;
6c038f32 14039
778865d3
JB
14040 add_info ("exceptions", info_exceptions_command,
14041 _("\
14042List all Ada exception names.\n\
14043If a regular expression is passed as an argument, only those matching\n\
14044the regular expression are listed."));
14045
c6044dd1
JB
14046 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14047 _("Set Ada maintenance-related variables."),
14048 &maint_set_ada_cmdlist, "maintenance set ada ",
14049 0/*allow-unknown*/, &maintenance_set_cmdlist);
14050
14051 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14052 _("Show Ada maintenance-related variables"),
14053 &maint_show_ada_cmdlist, "maintenance show ada ",
14054 0/*allow-unknown*/, &maintenance_show_cmdlist);
14055
14056 add_setshow_boolean_cmd
14057 ("ignore-descriptive-types", class_maintenance,
14058 &ada_ignore_descriptive_types_p,
14059 _("Set whether descriptive types generated by GNAT should be ignored."),
14060 _("Show whether descriptive types generated by GNAT should be ignored."),
14061 _("\
14062When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14063DWARF attribute."),
14064 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14065
6c038f32
PH
14066 obstack_init (&symbol_list_obstack);
14067
14068 decoded_names_store = htab_create_alloc
14069 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14070 NULL, xcalloc, xfree);
6b69afc4 14071
3d9434b5
JB
14072 /* The ada-lang observers. */
14073 observer_attach_new_objfile (ada_new_objfile_observer);
14074 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14075 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14076
14077 /* Setup various context-specific data. */
e802dbe0 14078 ada_inferior_data
8e260fc0 14079 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14080 ada_pspace_data_handle
14081 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14082}