]>
Commit | Line | Data |
---|---|---|
6e681866 | 1 | /* Ada language support routines for GDB, the GNU debugger. |
10a2c479 | 2 | |
32d0add0 | 3 | Copyright (C) 1992-2015 Free Software Foundation, Inc. |
14f9c5c9 | 4 | |
a9762ec7 | 5 | This file is part of GDB. |
14f9c5c9 | 6 | |
a9762ec7 JB |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
14f9c5c9 | 11 | |
a9762ec7 JB |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
14f9c5c9 | 16 | |
a9762ec7 JB |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 19 | |
96d887e8 | 20 | |
4c4b4cd2 | 21 | #include "defs.h" |
14f9c5c9 | 22 | #include <ctype.h> |
14f9c5c9 | 23 | #include "demangle.h" |
4c4b4cd2 PH |
24 | #include "gdb_regex.h" |
25 | #include "frame.h" | |
14f9c5c9 AS |
26 | #include "symtab.h" |
27 | #include "gdbtypes.h" | |
28 | #include "gdbcmd.h" | |
29 | #include "expression.h" | |
30 | #include "parser-defs.h" | |
31 | #include "language.h" | |
a53b64ea | 32 | #include "varobj.h" |
14f9c5c9 AS |
33 | #include "c-lang.h" |
34 | #include "inferior.h" | |
35 | #include "symfile.h" | |
36 | #include "objfiles.h" | |
37 | #include "breakpoint.h" | |
38 | #include "gdbcore.h" | |
4c4b4cd2 PH |
39 | #include "hashtab.h" |
40 | #include "gdb_obstack.h" | |
14f9c5c9 | 41 | #include "ada-lang.h" |
4c4b4cd2 | 42 | #include "completer.h" |
53ce3c39 | 43 | #include <sys/stat.h> |
14f9c5c9 | 44 | #include "ui-out.h" |
fe898f56 | 45 | #include "block.h" |
04714b91 | 46 | #include "infcall.h" |
de4f826b | 47 | #include "dictionary.h" |
f7f9143b JB |
48 | #include "annotate.h" |
49 | #include "valprint.h" | |
9bbc9174 | 50 | #include "source.h" |
0259addd | 51 | #include "observer.h" |
2ba95b9b | 52 | #include "vec.h" |
692465f1 | 53 | #include "stack.h" |
fa864999 | 54 | #include "gdb_vecs.h" |
79d43c61 | 55 | #include "typeprint.h" |
14f9c5c9 | 56 | |
ccefe4c4 | 57 | #include "psymtab.h" |
40bc484c | 58 | #include "value.h" |
956a9fb9 | 59 | #include "mi/mi-common.h" |
9ac4176b | 60 | #include "arch-utils.h" |
0fcd72ba | 61 | #include "cli/cli-utils.h" |
ccefe4c4 | 62 | |
4c4b4cd2 | 63 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 64 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
65 | Copied from valarith.c. */ |
66 | ||
67 | #ifndef TRUNCATION_TOWARDS_ZERO | |
68 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
69 | #endif | |
70 | ||
d2e4a39e | 71 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 72 | |
d2e4a39e | 73 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 74 | |
d2e4a39e | 75 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 76 | |
d2e4a39e | 77 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 78 | |
d2e4a39e | 79 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 80 | |
556bdfd4 | 81 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 82 | |
d2e4a39e | 83 | static struct value *desc_data (struct value *); |
14f9c5c9 | 84 | |
d2e4a39e | 85 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 86 | |
d2e4a39e | 87 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 88 | |
d2e4a39e | 89 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 90 | |
d2e4a39e | 91 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 92 | |
d2e4a39e | 93 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 94 | |
d2e4a39e | 95 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 96 | |
d2e4a39e | 97 | static int desc_arity (struct type *); |
14f9c5c9 | 98 | |
d2e4a39e | 99 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 100 | |
d2e4a39e | 101 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 102 | |
40658b94 PH |
103 | static int full_match (const char *, const char *); |
104 | ||
40bc484c | 105 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 106 | |
4c4b4cd2 | 107 | static void ada_add_block_symbols (struct obstack *, |
f0c5f9b2 | 108 | const struct block *, const char *, |
2570f2b7 | 109 | domain_enum, struct objfile *, int); |
14f9c5c9 | 110 | |
d12307c1 | 111 | static int is_nonfunction (struct block_symbol *, int); |
14f9c5c9 | 112 | |
76a01679 | 113 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
f0c5f9b2 | 114 | const struct block *); |
14f9c5c9 | 115 | |
4c4b4cd2 PH |
116 | static int num_defns_collected (struct obstack *); |
117 | ||
d12307c1 | 118 | static struct block_symbol *defns_collected (struct obstack *, int); |
14f9c5c9 | 119 | |
4c4b4cd2 | 120 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 121 | struct type *); |
14f9c5c9 | 122 | |
d2e4a39e | 123 | static void replace_operator_with_call (struct expression **, int, int, int, |
270140bd | 124 | struct symbol *, const struct block *); |
14f9c5c9 | 125 | |
d2e4a39e | 126 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 127 | |
4c4b4cd2 PH |
128 | static char *ada_op_name (enum exp_opcode); |
129 | ||
130 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 131 | |
d2e4a39e | 132 | static int numeric_type_p (struct type *); |
14f9c5c9 | 133 | |
d2e4a39e | 134 | static int integer_type_p (struct type *); |
14f9c5c9 | 135 | |
d2e4a39e | 136 | static int scalar_type_p (struct type *); |
14f9c5c9 | 137 | |
d2e4a39e | 138 | static int discrete_type_p (struct type *); |
14f9c5c9 | 139 | |
aeb5907d JB |
140 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
141 | const char **, | |
142 | int *, | |
143 | const char **); | |
144 | ||
145 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
270140bd | 146 | const struct block *); |
aeb5907d | 147 | |
4c4b4cd2 | 148 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 149 | int, int, int *); |
4c4b4cd2 | 150 | |
d2e4a39e | 151 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 152 | |
b4ba55a1 JB |
153 | static struct type *ada_find_parallel_type_with_name (struct type *, |
154 | const char *); | |
155 | ||
d2e4a39e | 156 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 157 | |
10a2c479 | 158 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 159 | const gdb_byte *, |
4c4b4cd2 PH |
160 | CORE_ADDR, struct value *); |
161 | ||
162 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 163 | |
28c85d6c | 164 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 165 | |
d2e4a39e | 166 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 167 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 168 | |
d2e4a39e | 169 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 170 | |
ad82864c | 171 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 172 | |
ad82864c | 173 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 174 | |
ad82864c JB |
175 | static long decode_packed_array_bitsize (struct type *); |
176 | ||
177 | static struct value *decode_constrained_packed_array (struct value *); | |
178 | ||
179 | static int ada_is_packed_array_type (struct type *); | |
180 | ||
181 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 182 | |
d2e4a39e | 183 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 184 | struct value **); |
14f9c5c9 | 185 | |
50810684 | 186 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); |
52ce6436 | 187 | |
4c4b4cd2 PH |
188 | static struct value *coerce_unspec_val_to_type (struct value *, |
189 | struct type *); | |
14f9c5c9 | 190 | |
d2e4a39e | 191 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 192 | |
d2e4a39e | 193 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 194 | |
d2e4a39e | 195 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 196 | |
d2e4a39e | 197 | static int is_name_suffix (const char *); |
14f9c5c9 | 198 | |
73589123 PH |
199 | static int advance_wild_match (const char **, const char *, int); |
200 | ||
201 | static int wild_match (const char *, const char *); | |
14f9c5c9 | 202 | |
d2e4a39e | 203 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 204 | |
4c4b4cd2 PH |
205 | static LONGEST pos_atr (struct value *); |
206 | ||
3cb382c9 | 207 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 208 | |
d2e4a39e | 209 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 210 | |
4c4b4cd2 PH |
211 | static struct symbol *standard_lookup (const char *, const struct block *, |
212 | domain_enum); | |
14f9c5c9 | 213 | |
4c4b4cd2 PH |
214 | static struct value *ada_search_struct_field (char *, struct value *, int, |
215 | struct type *); | |
216 | ||
217 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
218 | struct type *); | |
219 | ||
0d5cff50 | 220 | static int find_struct_field (const char *, struct type *, int, |
52ce6436 | 221 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
222 | |
223 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
224 | struct value *); | |
225 | ||
d12307c1 | 226 | static int ada_resolve_function (struct block_symbol *, int, |
4c4b4cd2 PH |
227 | struct value **, int, const char *, |
228 | struct type *); | |
229 | ||
4c4b4cd2 PH |
230 | static int ada_is_direct_array_type (struct type *); |
231 | ||
72d5681a PH |
232 | static void ada_language_arch_info (struct gdbarch *, |
233 | struct language_arch_info *); | |
714e53ab | 234 | |
52ce6436 PH |
235 | static struct value *ada_index_struct_field (int, struct value *, int, |
236 | struct type *); | |
237 | ||
238 | static struct value *assign_aggregate (struct value *, struct value *, | |
0963b4bd MS |
239 | struct expression *, |
240 | int *, enum noside); | |
52ce6436 PH |
241 | |
242 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
243 | struct expression *, | |
244 | int *, LONGEST *, int *, | |
245 | int, LONGEST, LONGEST); | |
246 | ||
247 | static void aggregate_assign_positional (struct value *, struct value *, | |
248 | struct expression *, | |
249 | int *, LONGEST *, int *, int, | |
250 | LONGEST, LONGEST); | |
251 | ||
252 | ||
253 | static void aggregate_assign_others (struct value *, struct value *, | |
254 | struct expression *, | |
255 | int *, LONGEST *, int, LONGEST, LONGEST); | |
256 | ||
257 | ||
258 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
259 | ||
260 | ||
261 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
262 | int *, enum noside); | |
263 | ||
264 | static void ada_forward_operator_length (struct expression *, int, int *, | |
265 | int *); | |
852dff6c JB |
266 | |
267 | static struct type *ada_find_any_type (const char *name); | |
4c4b4cd2 PH |
268 | \f |
269 | ||
ee01b665 JB |
270 | /* The result of a symbol lookup to be stored in our symbol cache. */ |
271 | ||
272 | struct cache_entry | |
273 | { | |
274 | /* The name used to perform the lookup. */ | |
275 | const char *name; | |
276 | /* The namespace used during the lookup. */ | |
fe978cb0 | 277 | domain_enum domain; |
ee01b665 JB |
278 | /* The symbol returned by the lookup, or NULL if no matching symbol |
279 | was found. */ | |
280 | struct symbol *sym; | |
281 | /* The block where the symbol was found, or NULL if no matching | |
282 | symbol was found. */ | |
283 | const struct block *block; | |
284 | /* A pointer to the next entry with the same hash. */ | |
285 | struct cache_entry *next; | |
286 | }; | |
287 | ||
288 | /* The Ada symbol cache, used to store the result of Ada-mode symbol | |
289 | lookups in the course of executing the user's commands. | |
290 | ||
291 | The cache is implemented using a simple, fixed-sized hash. | |
292 | The size is fixed on the grounds that there are not likely to be | |
293 | all that many symbols looked up during any given session, regardless | |
294 | of the size of the symbol table. If we decide to go to a resizable | |
295 | table, let's just use the stuff from libiberty instead. */ | |
296 | ||
297 | #define HASH_SIZE 1009 | |
298 | ||
299 | struct ada_symbol_cache | |
300 | { | |
301 | /* An obstack used to store the entries in our cache. */ | |
302 | struct obstack cache_space; | |
303 | ||
304 | /* The root of the hash table used to implement our symbol cache. */ | |
305 | struct cache_entry *root[HASH_SIZE]; | |
306 | }; | |
307 | ||
308 | static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache); | |
76a01679 | 309 | |
4c4b4cd2 | 310 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
311 | static unsigned int varsize_limit; |
312 | ||
4c4b4cd2 PH |
313 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
314 | returned by a function that does not return a const char *. */ | |
315 | static char *ada_completer_word_break_characters = | |
316 | #ifdef VMS | |
317 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
318 | #else | |
14f9c5c9 | 319 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 320 | #endif |
14f9c5c9 | 321 | |
4c4b4cd2 | 322 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 323 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 324 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 325 | |
4c4b4cd2 PH |
326 | /* Limit on the number of warnings to raise per expression evaluation. */ |
327 | static int warning_limit = 2; | |
328 | ||
329 | /* Number of warning messages issued; reset to 0 by cleanups after | |
330 | expression evaluation. */ | |
331 | static int warnings_issued = 0; | |
332 | ||
333 | static const char *known_runtime_file_name_patterns[] = { | |
334 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
335 | }; | |
336 | ||
337 | static const char *known_auxiliary_function_name_patterns[] = { | |
338 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
339 | }; | |
340 | ||
341 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
342 | static struct obstack symbol_list_obstack; | |
343 | ||
c6044dd1 JB |
344 | /* Maintenance-related settings for this module. */ |
345 | ||
346 | static struct cmd_list_element *maint_set_ada_cmdlist; | |
347 | static struct cmd_list_element *maint_show_ada_cmdlist; | |
348 | ||
349 | /* Implement the "maintenance set ada" (prefix) command. */ | |
350 | ||
351 | static void | |
352 | maint_set_ada_cmd (char *args, int from_tty) | |
353 | { | |
635c7e8a TT |
354 | help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands, |
355 | gdb_stdout); | |
c6044dd1 JB |
356 | } |
357 | ||
358 | /* Implement the "maintenance show ada" (prefix) command. */ | |
359 | ||
360 | static void | |
361 | maint_show_ada_cmd (char *args, int from_tty) | |
362 | { | |
363 | cmd_show_list (maint_show_ada_cmdlist, from_tty, ""); | |
364 | } | |
365 | ||
366 | /* The "maintenance ada set/show ignore-descriptive-type" value. */ | |
367 | ||
368 | static int ada_ignore_descriptive_types_p = 0; | |
369 | ||
e802dbe0 JB |
370 | /* Inferior-specific data. */ |
371 | ||
372 | /* Per-inferior data for this module. */ | |
373 | ||
374 | struct ada_inferior_data | |
375 | { | |
376 | /* The ada__tags__type_specific_data type, which is used when decoding | |
377 | tagged types. With older versions of GNAT, this type was directly | |
378 | accessible through a component ("tsd") in the object tag. But this | |
379 | is no longer the case, so we cache it for each inferior. */ | |
380 | struct type *tsd_type; | |
3eecfa55 JB |
381 | |
382 | /* The exception_support_info data. This data is used to determine | |
383 | how to implement support for Ada exception catchpoints in a given | |
384 | inferior. */ | |
385 | const struct exception_support_info *exception_info; | |
e802dbe0 JB |
386 | }; |
387 | ||
388 | /* Our key to this module's inferior data. */ | |
389 | static const struct inferior_data *ada_inferior_data; | |
390 | ||
391 | /* A cleanup routine for our inferior data. */ | |
392 | static void | |
393 | ada_inferior_data_cleanup (struct inferior *inf, void *arg) | |
394 | { | |
395 | struct ada_inferior_data *data; | |
396 | ||
397 | data = inferior_data (inf, ada_inferior_data); | |
398 | if (data != NULL) | |
399 | xfree (data); | |
400 | } | |
401 | ||
402 | /* Return our inferior data for the given inferior (INF). | |
403 | ||
404 | This function always returns a valid pointer to an allocated | |
405 | ada_inferior_data structure. If INF's inferior data has not | |
406 | been previously set, this functions creates a new one with all | |
407 | fields set to zero, sets INF's inferior to it, and then returns | |
408 | a pointer to that newly allocated ada_inferior_data. */ | |
409 | ||
410 | static struct ada_inferior_data * | |
411 | get_ada_inferior_data (struct inferior *inf) | |
412 | { | |
413 | struct ada_inferior_data *data; | |
414 | ||
415 | data = inferior_data (inf, ada_inferior_data); | |
416 | if (data == NULL) | |
417 | { | |
41bf6aca | 418 | data = XCNEW (struct ada_inferior_data); |
e802dbe0 JB |
419 | set_inferior_data (inf, ada_inferior_data, data); |
420 | } | |
421 | ||
422 | return data; | |
423 | } | |
424 | ||
425 | /* Perform all necessary cleanups regarding our module's inferior data | |
426 | that is required after the inferior INF just exited. */ | |
427 | ||
428 | static void | |
429 | ada_inferior_exit (struct inferior *inf) | |
430 | { | |
431 | ada_inferior_data_cleanup (inf, NULL); | |
432 | set_inferior_data (inf, ada_inferior_data, NULL); | |
433 | } | |
434 | ||
ee01b665 JB |
435 | |
436 | /* program-space-specific data. */ | |
437 | ||
438 | /* This module's per-program-space data. */ | |
439 | struct ada_pspace_data | |
440 | { | |
441 | /* The Ada symbol cache. */ | |
442 | struct ada_symbol_cache *sym_cache; | |
443 | }; | |
444 | ||
445 | /* Key to our per-program-space data. */ | |
446 | static const struct program_space_data *ada_pspace_data_handle; | |
447 | ||
448 | /* Return this module's data for the given program space (PSPACE). | |
449 | If not is found, add a zero'ed one now. | |
450 | ||
451 | This function always returns a valid object. */ | |
452 | ||
453 | static struct ada_pspace_data * | |
454 | get_ada_pspace_data (struct program_space *pspace) | |
455 | { | |
456 | struct ada_pspace_data *data; | |
457 | ||
458 | data = program_space_data (pspace, ada_pspace_data_handle); | |
459 | if (data == NULL) | |
460 | { | |
461 | data = XCNEW (struct ada_pspace_data); | |
462 | set_program_space_data (pspace, ada_pspace_data_handle, data); | |
463 | } | |
464 | ||
465 | return data; | |
466 | } | |
467 | ||
468 | /* The cleanup callback for this module's per-program-space data. */ | |
469 | ||
470 | static void | |
471 | ada_pspace_data_cleanup (struct program_space *pspace, void *data) | |
472 | { | |
473 | struct ada_pspace_data *pspace_data = data; | |
474 | ||
475 | if (pspace_data->sym_cache != NULL) | |
476 | ada_free_symbol_cache (pspace_data->sym_cache); | |
477 | xfree (pspace_data); | |
478 | } | |
479 | ||
4c4b4cd2 PH |
480 | /* Utilities */ |
481 | ||
720d1a40 | 482 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 483 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
484 | |
485 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
486 | In other words, we really expect the target type of a typedef type to be | |
487 | a non-typedef type. This is particularly true for Ada units, because | |
488 | the language does not have a typedef vs not-typedef distinction. | |
489 | In that respect, the Ada compiler has been trying to eliminate as many | |
490 | typedef definitions in the debugging information, since they generally | |
491 | do not bring any extra information (we still use typedef under certain | |
492 | circumstances related mostly to the GNAT encoding). | |
493 | ||
494 | Unfortunately, we have seen situations where the debugging information | |
495 | generated by the compiler leads to such multiple typedef layers. For | |
496 | instance, consider the following example with stabs: | |
497 | ||
498 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
499 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
500 | ||
501 | This is an error in the debugging information which causes type | |
502 | pck__float_array___XUP to be defined twice, and the second time, | |
503 | it is defined as a typedef of a typedef. | |
504 | ||
505 | This is on the fringe of legality as far as debugging information is | |
506 | concerned, and certainly unexpected. But it is easy to handle these | |
507 | situations correctly, so we can afford to be lenient in this case. */ | |
508 | ||
509 | static struct type * | |
510 | ada_typedef_target_type (struct type *type) | |
511 | { | |
512 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
513 | type = TYPE_TARGET_TYPE (type); | |
514 | return type; | |
515 | } | |
516 | ||
41d27058 JB |
517 | /* Given DECODED_NAME a string holding a symbol name in its |
518 | decoded form (ie using the Ada dotted notation), returns | |
519 | its unqualified name. */ | |
520 | ||
521 | static const char * | |
522 | ada_unqualified_name (const char *decoded_name) | |
523 | { | |
2b0f535a JB |
524 | const char *result; |
525 | ||
526 | /* If the decoded name starts with '<', it means that the encoded | |
527 | name does not follow standard naming conventions, and thus that | |
528 | it is not your typical Ada symbol name. Trying to unqualify it | |
529 | is therefore pointless and possibly erroneous. */ | |
530 | if (decoded_name[0] == '<') | |
531 | return decoded_name; | |
532 | ||
533 | result = strrchr (decoded_name, '.'); | |
41d27058 JB |
534 | if (result != NULL) |
535 | result++; /* Skip the dot... */ | |
536 | else | |
537 | result = decoded_name; | |
538 | ||
539 | return result; | |
540 | } | |
541 | ||
542 | /* Return a string starting with '<', followed by STR, and '>'. | |
543 | The result is good until the next call. */ | |
544 | ||
545 | static char * | |
546 | add_angle_brackets (const char *str) | |
547 | { | |
548 | static char *result = NULL; | |
549 | ||
550 | xfree (result); | |
88c15c34 | 551 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
552 | return result; |
553 | } | |
96d887e8 | 554 | |
4c4b4cd2 PH |
555 | static char * |
556 | ada_get_gdb_completer_word_break_characters (void) | |
557 | { | |
558 | return ada_completer_word_break_characters; | |
559 | } | |
560 | ||
e79af960 JB |
561 | /* Print an array element index using the Ada syntax. */ |
562 | ||
563 | static void | |
564 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 565 | const struct value_print_options *options) |
e79af960 | 566 | { |
79a45b7d | 567 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
568 | fprintf_filtered (stream, " => "); |
569 | } | |
570 | ||
f27cf670 | 571 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 572 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 573 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 574 | |
f27cf670 AS |
575 | void * |
576 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 577 | { |
d2e4a39e AS |
578 | if (*size < min_size) |
579 | { | |
580 | *size *= 2; | |
581 | if (*size < min_size) | |
4c4b4cd2 | 582 | *size = min_size; |
f27cf670 | 583 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 584 | } |
f27cf670 | 585 | return vect; |
14f9c5c9 AS |
586 | } |
587 | ||
588 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 589 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
590 | |
591 | static int | |
ebf56fd3 | 592 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
593 | { |
594 | int len = strlen (target); | |
5b4ee69b | 595 | |
d2e4a39e | 596 | return |
4c4b4cd2 PH |
597 | (strncmp (field_name, target, len) == 0 |
598 | && (field_name[len] == '\0' | |
61012eef | 599 | || (startswith (field_name + len, "___") |
76a01679 JB |
600 | && strcmp (field_name + strlen (field_name) - 6, |
601 | "___XVN") != 0))); | |
14f9c5c9 AS |
602 | } |
603 | ||
604 | ||
872c8b51 JB |
605 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
606 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
607 | and return its index. This function also handles fields whose name | |
608 | have ___ suffixes because the compiler sometimes alters their name | |
609 | by adding such a suffix to represent fields with certain constraints. | |
610 | If the field could not be found, return a negative number if | |
611 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
612 | |
613 | int | |
614 | ada_get_field_index (const struct type *type, const char *field_name, | |
615 | int maybe_missing) | |
616 | { | |
617 | int fieldno; | |
872c8b51 JB |
618 | struct type *struct_type = check_typedef ((struct type *) type); |
619 | ||
620 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
621 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
622 | return fieldno; |
623 | ||
624 | if (!maybe_missing) | |
323e0a4a | 625 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 626 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
627 | |
628 | return -1; | |
629 | } | |
630 | ||
631 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
632 | |
633 | int | |
d2e4a39e | 634 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
635 | { |
636 | if (name == NULL) | |
637 | return 0; | |
d2e4a39e | 638 | else |
14f9c5c9 | 639 | { |
d2e4a39e | 640 | const char *p = strstr (name, "___"); |
5b4ee69b | 641 | |
14f9c5c9 | 642 | if (p == NULL) |
4c4b4cd2 | 643 | return strlen (name); |
14f9c5c9 | 644 | else |
4c4b4cd2 | 645 | return p - name; |
14f9c5c9 AS |
646 | } |
647 | } | |
648 | ||
4c4b4cd2 PH |
649 | /* Return non-zero if SUFFIX is a suffix of STR. |
650 | Return zero if STR is null. */ | |
651 | ||
14f9c5c9 | 652 | static int |
d2e4a39e | 653 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
654 | { |
655 | int len1, len2; | |
5b4ee69b | 656 | |
14f9c5c9 AS |
657 | if (str == NULL) |
658 | return 0; | |
659 | len1 = strlen (str); | |
660 | len2 = strlen (suffix); | |
4c4b4cd2 | 661 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
662 | } |
663 | ||
4c4b4cd2 PH |
664 | /* The contents of value VAL, treated as a value of type TYPE. The |
665 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 666 | |
d2e4a39e | 667 | static struct value * |
4c4b4cd2 | 668 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 669 | { |
61ee279c | 670 | type = ada_check_typedef (type); |
df407dfe | 671 | if (value_type (val) == type) |
4c4b4cd2 | 672 | return val; |
d2e4a39e | 673 | else |
14f9c5c9 | 674 | { |
4c4b4cd2 PH |
675 | struct value *result; |
676 | ||
677 | /* Make sure that the object size is not unreasonable before | |
678 | trying to allocate some memory for it. */ | |
c1b5a1a6 | 679 | ada_ensure_varsize_limit (type); |
4c4b4cd2 | 680 | |
41e8491f JK |
681 | if (value_lazy (val) |
682 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) | |
683 | result = allocate_value_lazy (type); | |
684 | else | |
685 | { | |
686 | result = allocate_value (type); | |
9a0dc9e3 | 687 | value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type)); |
41e8491f | 688 | } |
74bcbdf3 | 689 | set_value_component_location (result, val); |
9bbda503 AC |
690 | set_value_bitsize (result, value_bitsize (val)); |
691 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 692 | set_value_address (result, value_address (val)); |
14f9c5c9 AS |
693 | return result; |
694 | } | |
695 | } | |
696 | ||
fc1a4b47 AC |
697 | static const gdb_byte * |
698 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
699 | { |
700 | if (valaddr == NULL) | |
701 | return NULL; | |
702 | else | |
703 | return valaddr + offset; | |
704 | } | |
705 | ||
706 | static CORE_ADDR | |
ebf56fd3 | 707 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
708 | { |
709 | if (address == 0) | |
710 | return 0; | |
d2e4a39e | 711 | else |
14f9c5c9 AS |
712 | return address + offset; |
713 | } | |
714 | ||
4c4b4cd2 PH |
715 | /* Issue a warning (as for the definition of warning in utils.c, but |
716 | with exactly one argument rather than ...), unless the limit on the | |
717 | number of warnings has passed during the evaluation of the current | |
718 | expression. */ | |
a2249542 | 719 | |
77109804 AC |
720 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
721 | provided by "complaint". */ | |
a0b31db1 | 722 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 723 | |
14f9c5c9 | 724 | static void |
a2249542 | 725 | lim_warning (const char *format, ...) |
14f9c5c9 | 726 | { |
a2249542 | 727 | va_list args; |
a2249542 | 728 | |
5b4ee69b | 729 | va_start (args, format); |
4c4b4cd2 PH |
730 | warnings_issued += 1; |
731 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
732 | vwarning (format, args); |
733 | ||
734 | va_end (args); | |
4c4b4cd2 PH |
735 | } |
736 | ||
714e53ab PH |
737 | /* Issue an error if the size of an object of type T is unreasonable, |
738 | i.e. if it would be a bad idea to allocate a value of this type in | |
739 | GDB. */ | |
740 | ||
c1b5a1a6 JB |
741 | void |
742 | ada_ensure_varsize_limit (const struct type *type) | |
714e53ab PH |
743 | { |
744 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 745 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
746 | } |
747 | ||
0963b4bd | 748 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 749 | static LONGEST |
c3e5cd34 | 750 | max_of_size (int size) |
4c4b4cd2 | 751 | { |
76a01679 | 752 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 753 | |
76a01679 | 754 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
755 | } |
756 | ||
0963b4bd | 757 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 758 | static LONGEST |
c3e5cd34 | 759 | min_of_size (int size) |
4c4b4cd2 | 760 | { |
c3e5cd34 | 761 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
762 | } |
763 | ||
0963b4bd | 764 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 765 | static ULONGEST |
c3e5cd34 | 766 | umax_of_size (int size) |
4c4b4cd2 | 767 | { |
76a01679 | 768 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 769 | |
76a01679 | 770 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
771 | } |
772 | ||
0963b4bd | 773 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
774 | static LONGEST |
775 | max_of_type (struct type *t) | |
4c4b4cd2 | 776 | { |
c3e5cd34 PH |
777 | if (TYPE_UNSIGNED (t)) |
778 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
779 | else | |
780 | return max_of_size (TYPE_LENGTH (t)); | |
781 | } | |
782 | ||
0963b4bd | 783 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
784 | static LONGEST |
785 | min_of_type (struct type *t) | |
786 | { | |
787 | if (TYPE_UNSIGNED (t)) | |
788 | return 0; | |
789 | else | |
790 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
791 | } |
792 | ||
793 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
794 | LONGEST |
795 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 796 | { |
c3345124 | 797 | type = resolve_dynamic_type (type, NULL, 0); |
76a01679 | 798 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
799 | { |
800 | case TYPE_CODE_RANGE: | |
690cc4eb | 801 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 802 | case TYPE_CODE_ENUM: |
14e75d8e | 803 | return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1); |
690cc4eb PH |
804 | case TYPE_CODE_BOOL: |
805 | return 1; | |
806 | case TYPE_CODE_CHAR: | |
76a01679 | 807 | case TYPE_CODE_INT: |
690cc4eb | 808 | return max_of_type (type); |
4c4b4cd2 | 809 | default: |
43bbcdc2 | 810 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
811 | } |
812 | } | |
813 | ||
14e75d8e | 814 | /* The smallest value in the domain of TYPE, a discrete type, as an integer. */ |
43bbcdc2 PH |
815 | LONGEST |
816 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 817 | { |
c3345124 | 818 | type = resolve_dynamic_type (type, NULL, 0); |
76a01679 | 819 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
820 | { |
821 | case TYPE_CODE_RANGE: | |
690cc4eb | 822 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 823 | case TYPE_CODE_ENUM: |
14e75d8e | 824 | return TYPE_FIELD_ENUMVAL (type, 0); |
690cc4eb PH |
825 | case TYPE_CODE_BOOL: |
826 | return 0; | |
827 | case TYPE_CODE_CHAR: | |
76a01679 | 828 | case TYPE_CODE_INT: |
690cc4eb | 829 | return min_of_type (type); |
4c4b4cd2 | 830 | default: |
43bbcdc2 | 831 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
832 | } |
833 | } | |
834 | ||
835 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 836 | non-range scalar type. */ |
4c4b4cd2 PH |
837 | |
838 | static struct type * | |
18af8284 | 839 | get_base_type (struct type *type) |
4c4b4cd2 PH |
840 | { |
841 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
842 | { | |
76a01679 JB |
843 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
844 | return type; | |
4c4b4cd2 PH |
845 | type = TYPE_TARGET_TYPE (type); |
846 | } | |
847 | return type; | |
14f9c5c9 | 848 | } |
41246937 JB |
849 | |
850 | /* Return a decoded version of the given VALUE. This means returning | |
851 | a value whose type is obtained by applying all the GNAT-specific | |
852 | encondings, making the resulting type a static but standard description | |
853 | of the initial type. */ | |
854 | ||
855 | struct value * | |
856 | ada_get_decoded_value (struct value *value) | |
857 | { | |
858 | struct type *type = ada_check_typedef (value_type (value)); | |
859 | ||
860 | if (ada_is_array_descriptor_type (type) | |
861 | || (ada_is_constrained_packed_array_type (type) | |
862 | && TYPE_CODE (type) != TYPE_CODE_PTR)) | |
863 | { | |
864 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */ | |
865 | value = ada_coerce_to_simple_array_ptr (value); | |
866 | else | |
867 | value = ada_coerce_to_simple_array (value); | |
868 | } | |
869 | else | |
870 | value = ada_to_fixed_value (value); | |
871 | ||
872 | return value; | |
873 | } | |
874 | ||
875 | /* Same as ada_get_decoded_value, but with the given TYPE. | |
876 | Because there is no associated actual value for this type, | |
877 | the resulting type might be a best-effort approximation in | |
878 | the case of dynamic types. */ | |
879 | ||
880 | struct type * | |
881 | ada_get_decoded_type (struct type *type) | |
882 | { | |
883 | type = to_static_fixed_type (type); | |
884 | if (ada_is_constrained_packed_array_type (type)) | |
885 | type = ada_coerce_to_simple_array_type (type); | |
886 | return type; | |
887 | } | |
888 | ||
4c4b4cd2 | 889 | \f |
76a01679 | 890 | |
4c4b4cd2 | 891 | /* Language Selection */ |
14f9c5c9 AS |
892 | |
893 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 894 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 895 | |
14f9c5c9 | 896 | enum language |
ccefe4c4 | 897 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 898 | { |
d2e4a39e | 899 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
3b7344d5 | 900 | (struct objfile *) NULL).minsym != NULL) |
4c4b4cd2 | 901 | return language_ada; |
14f9c5c9 AS |
902 | |
903 | return lang; | |
904 | } | |
96d887e8 PH |
905 | |
906 | /* If the main procedure is written in Ada, then return its name. | |
907 | The result is good until the next call. Return NULL if the main | |
908 | procedure doesn't appear to be in Ada. */ | |
909 | ||
910 | char * | |
911 | ada_main_name (void) | |
912 | { | |
3b7344d5 | 913 | struct bound_minimal_symbol msym; |
f9bc20b9 | 914 | static char *main_program_name = NULL; |
6c038f32 | 915 | |
96d887e8 PH |
916 | /* For Ada, the name of the main procedure is stored in a specific |
917 | string constant, generated by the binder. Look for that symbol, | |
918 | extract its address, and then read that string. If we didn't find | |
919 | that string, then most probably the main procedure is not written | |
920 | in Ada. */ | |
921 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
922 | ||
3b7344d5 | 923 | if (msym.minsym != NULL) |
96d887e8 | 924 | { |
f9bc20b9 JB |
925 | CORE_ADDR main_program_name_addr; |
926 | int err_code; | |
927 | ||
77e371c0 | 928 | main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym); |
96d887e8 | 929 | if (main_program_name_addr == 0) |
323e0a4a | 930 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 931 | |
f9bc20b9 JB |
932 | xfree (main_program_name); |
933 | target_read_string (main_program_name_addr, &main_program_name, | |
934 | 1024, &err_code); | |
935 | ||
936 | if (err_code != 0) | |
937 | return NULL; | |
96d887e8 PH |
938 | return main_program_name; |
939 | } | |
940 | ||
941 | /* The main procedure doesn't seem to be in Ada. */ | |
942 | return NULL; | |
943 | } | |
14f9c5c9 | 944 | \f |
4c4b4cd2 | 945 | /* Symbols */ |
d2e4a39e | 946 | |
4c4b4cd2 PH |
947 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
948 | of NULLs. */ | |
14f9c5c9 | 949 | |
d2e4a39e AS |
950 | const struct ada_opname_map ada_opname_table[] = { |
951 | {"Oadd", "\"+\"", BINOP_ADD}, | |
952 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
953 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
954 | {"Odivide", "\"/\"", BINOP_DIV}, | |
955 | {"Omod", "\"mod\"", BINOP_MOD}, | |
956 | {"Orem", "\"rem\"", BINOP_REM}, | |
957 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
958 | {"Olt", "\"<\"", BINOP_LESS}, | |
959 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
960 | {"Ogt", "\">\"", BINOP_GTR}, | |
961 | {"Oge", "\">=\"", BINOP_GEQ}, | |
962 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
963 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
964 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
965 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
966 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
967 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
968 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
969 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
970 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
971 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
972 | {NULL, NULL} | |
14f9c5c9 AS |
973 | }; |
974 | ||
4c4b4cd2 PH |
975 | /* The "encoded" form of DECODED, according to GNAT conventions. |
976 | The result is valid until the next call to ada_encode. */ | |
977 | ||
14f9c5c9 | 978 | char * |
4c4b4cd2 | 979 | ada_encode (const char *decoded) |
14f9c5c9 | 980 | { |
4c4b4cd2 PH |
981 | static char *encoding_buffer = NULL; |
982 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 983 | const char *p; |
14f9c5c9 | 984 | int k; |
d2e4a39e | 985 | |
4c4b4cd2 | 986 | if (decoded == NULL) |
14f9c5c9 AS |
987 | return NULL; |
988 | ||
4c4b4cd2 PH |
989 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
990 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
991 | |
992 | k = 0; | |
4c4b4cd2 | 993 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 994 | { |
cdc7bb92 | 995 | if (*p == '.') |
4c4b4cd2 PH |
996 | { |
997 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
998 | k += 2; | |
999 | } | |
14f9c5c9 | 1000 | else if (*p == '"') |
4c4b4cd2 PH |
1001 | { |
1002 | const struct ada_opname_map *mapping; | |
1003 | ||
1004 | for (mapping = ada_opname_table; | |
1265e4aa | 1005 | mapping->encoded != NULL |
61012eef | 1006 | && !startswith (p, mapping->decoded); mapping += 1) |
4c4b4cd2 PH |
1007 | ; |
1008 | if (mapping->encoded == NULL) | |
323e0a4a | 1009 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
1010 | strcpy (encoding_buffer + k, mapping->encoded); |
1011 | k += strlen (mapping->encoded); | |
1012 | break; | |
1013 | } | |
d2e4a39e | 1014 | else |
4c4b4cd2 PH |
1015 | { |
1016 | encoding_buffer[k] = *p; | |
1017 | k += 1; | |
1018 | } | |
14f9c5c9 AS |
1019 | } |
1020 | ||
4c4b4cd2 PH |
1021 | encoding_buffer[k] = '\0'; |
1022 | return encoding_buffer; | |
14f9c5c9 AS |
1023 | } |
1024 | ||
1025 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
1026 | quotes, unfolded, but with the quotes stripped away. Result good |
1027 | to next call. */ | |
1028 | ||
d2e4a39e AS |
1029 | char * |
1030 | ada_fold_name (const char *name) | |
14f9c5c9 | 1031 | { |
d2e4a39e | 1032 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
1033 | static size_t fold_buffer_size = 0; |
1034 | ||
1035 | int len = strlen (name); | |
d2e4a39e | 1036 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
1037 | |
1038 | if (name[0] == '\'') | |
1039 | { | |
d2e4a39e AS |
1040 | strncpy (fold_buffer, name + 1, len - 2); |
1041 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
1042 | } |
1043 | else | |
1044 | { | |
1045 | int i; | |
5b4ee69b | 1046 | |
14f9c5c9 | 1047 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 1048 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
1049 | } |
1050 | ||
1051 | return fold_buffer; | |
1052 | } | |
1053 | ||
529cad9c PH |
1054 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
1055 | ||
1056 | static int | |
1057 | is_lower_alphanum (const char c) | |
1058 | { | |
1059 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
1060 | } | |
1061 | ||
c90092fe JB |
1062 | /* ENCODED is the linkage name of a symbol and LEN contains its length. |
1063 | This function saves in LEN the length of that same symbol name but | |
1064 | without either of these suffixes: | |
29480c32 JB |
1065 | . .{DIGIT}+ |
1066 | . ${DIGIT}+ | |
1067 | . ___{DIGIT}+ | |
1068 | . __{DIGIT}+. | |
c90092fe | 1069 | |
29480c32 JB |
1070 | These are suffixes introduced by the compiler for entities such as |
1071 | nested subprogram for instance, in order to avoid name clashes. | |
1072 | They do not serve any purpose for the debugger. */ | |
1073 | ||
1074 | static void | |
1075 | ada_remove_trailing_digits (const char *encoded, int *len) | |
1076 | { | |
1077 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
1078 | { | |
1079 | int i = *len - 2; | |
5b4ee69b | 1080 | |
29480c32 JB |
1081 | while (i > 0 && isdigit (encoded[i])) |
1082 | i--; | |
1083 | if (i >= 0 && encoded[i] == '.') | |
1084 | *len = i; | |
1085 | else if (i >= 0 && encoded[i] == '$') | |
1086 | *len = i; | |
61012eef | 1087 | else if (i >= 2 && startswith (encoded + i - 2, "___")) |
29480c32 | 1088 | *len = i - 2; |
61012eef | 1089 | else if (i >= 1 && startswith (encoded + i - 1, "__")) |
29480c32 JB |
1090 | *len = i - 1; |
1091 | } | |
1092 | } | |
1093 | ||
1094 | /* Remove the suffix introduced by the compiler for protected object | |
1095 | subprograms. */ | |
1096 | ||
1097 | static void | |
1098 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
1099 | { | |
1100 | /* Remove trailing N. */ | |
1101 | ||
1102 | /* Protected entry subprograms are broken into two | |
1103 | separate subprograms: The first one is unprotected, and has | |
1104 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 1105 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
1106 | the protection. Since the P subprograms are internally generated, |
1107 | we leave these names undecoded, giving the user a clue that this | |
1108 | entity is internal. */ | |
1109 | ||
1110 | if (*len > 1 | |
1111 | && encoded[*len - 1] == 'N' | |
1112 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
1113 | *len = *len - 1; | |
1114 | } | |
1115 | ||
69fadcdf JB |
1116 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
1117 | ||
1118 | static void | |
1119 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
1120 | { | |
1121 | int i = *len - 1; | |
1122 | ||
1123 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
1124 | i--; | |
1125 | ||
1126 | if (encoded[i] != 'X') | |
1127 | return; | |
1128 | ||
1129 | if (i == 0) | |
1130 | return; | |
1131 | ||
1132 | if (isalnum (encoded[i-1])) | |
1133 | *len = i; | |
1134 | } | |
1135 | ||
29480c32 JB |
1136 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
1137 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
1138 | replaced by ENCODED. | |
14f9c5c9 | 1139 | |
4c4b4cd2 | 1140 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 1141 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
1142 | is returned. */ |
1143 | ||
1144 | const char * | |
1145 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
1146 | { |
1147 | int i, j; | |
1148 | int len0; | |
d2e4a39e | 1149 | const char *p; |
4c4b4cd2 | 1150 | char *decoded; |
14f9c5c9 | 1151 | int at_start_name; |
4c4b4cd2 PH |
1152 | static char *decoding_buffer = NULL; |
1153 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 1154 | |
29480c32 JB |
1155 | /* The name of the Ada main procedure starts with "_ada_". |
1156 | This prefix is not part of the decoded name, so skip this part | |
1157 | if we see this prefix. */ | |
61012eef | 1158 | if (startswith (encoded, "_ada_")) |
4c4b4cd2 | 1159 | encoded += 5; |
14f9c5c9 | 1160 | |
29480c32 JB |
1161 | /* If the name starts with '_', then it is not a properly encoded |
1162 | name, so do not attempt to decode it. Similarly, if the name | |
1163 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 1164 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1165 | goto Suppress; |
1166 | ||
4c4b4cd2 | 1167 | len0 = strlen (encoded); |
4c4b4cd2 | 1168 | |
29480c32 JB |
1169 | ada_remove_trailing_digits (encoded, &len0); |
1170 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1171 | |
4c4b4cd2 PH |
1172 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1173 | the suffix is located before the current "end" of ENCODED. We want | |
1174 | to avoid re-matching parts of ENCODED that have previously been | |
1175 | marked as discarded (by decrementing LEN0). */ | |
1176 | p = strstr (encoded, "___"); | |
1177 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1178 | { |
1179 | if (p[3] == 'X') | |
4c4b4cd2 | 1180 | len0 = p - encoded; |
14f9c5c9 | 1181 | else |
4c4b4cd2 | 1182 | goto Suppress; |
14f9c5c9 | 1183 | } |
4c4b4cd2 | 1184 | |
29480c32 JB |
1185 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1186 | is for the body of a task, but that information does not actually | |
1187 | appear in the decoded name. */ | |
1188 | ||
61012eef | 1189 | if (len0 > 3 && startswith (encoded + len0 - 3, "TKB")) |
14f9c5c9 | 1190 | len0 -= 3; |
76a01679 | 1191 | |
a10967fa JB |
1192 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1193 | from the TKB suffix because it is used for non-anonymous task | |
1194 | bodies. */ | |
1195 | ||
61012eef | 1196 | if (len0 > 2 && startswith (encoded + len0 - 2, "TB")) |
a10967fa JB |
1197 | len0 -= 2; |
1198 | ||
29480c32 JB |
1199 | /* Remove trailing "B" suffixes. */ |
1200 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1201 | ||
61012eef | 1202 | if (len0 > 1 && startswith (encoded + len0 - 1, "B")) |
14f9c5c9 AS |
1203 | len0 -= 1; |
1204 | ||
4c4b4cd2 | 1205 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1206 | |
4c4b4cd2 PH |
1207 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
1208 | decoded = decoding_buffer; | |
14f9c5c9 | 1209 | |
29480c32 JB |
1210 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1211 | ||
4c4b4cd2 | 1212 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1213 | { |
4c4b4cd2 PH |
1214 | i = len0 - 2; |
1215 | while ((i >= 0 && isdigit (encoded[i])) | |
1216 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1217 | i -= 1; | |
1218 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1219 | len0 = i - 1; | |
1220 | else if (encoded[i] == '$') | |
1221 | len0 = i; | |
d2e4a39e | 1222 | } |
14f9c5c9 | 1223 | |
29480c32 JB |
1224 | /* The first few characters that are not alphabetic are not part |
1225 | of any encoding we use, so we can copy them over verbatim. */ | |
1226 | ||
4c4b4cd2 PH |
1227 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1228 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1229 | |
1230 | at_start_name = 1; | |
1231 | while (i < len0) | |
1232 | { | |
29480c32 | 1233 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1234 | if (at_start_name && encoded[i] == 'O') |
1235 | { | |
1236 | int k; | |
5b4ee69b | 1237 | |
4c4b4cd2 PH |
1238 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1239 | { | |
1240 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1241 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1242 | op_len - 1) == 0) | |
1243 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1244 | { |
1245 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1246 | at_start_name = 0; | |
1247 | i += op_len; | |
1248 | j += strlen (ada_opname_table[k].decoded); | |
1249 | break; | |
1250 | } | |
1251 | } | |
1252 | if (ada_opname_table[k].encoded != NULL) | |
1253 | continue; | |
1254 | } | |
14f9c5c9 AS |
1255 | at_start_name = 0; |
1256 | ||
529cad9c PH |
1257 | /* Replace "TK__" with "__", which will eventually be translated |
1258 | into "." (just below). */ | |
1259 | ||
61012eef | 1260 | if (i < len0 - 4 && startswith (encoded + i, "TK__")) |
4c4b4cd2 | 1261 | i += 2; |
529cad9c | 1262 | |
29480c32 JB |
1263 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1264 | be translated into "." (just below). These are internal names | |
1265 | generated for anonymous blocks inside which our symbol is nested. */ | |
1266 | ||
1267 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1268 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1269 | && isdigit (encoded [i+4])) | |
1270 | { | |
1271 | int k = i + 5; | |
1272 | ||
1273 | while (k < len0 && isdigit (encoded[k])) | |
1274 | k++; /* Skip any extra digit. */ | |
1275 | ||
1276 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1277 | is indeed followed by "__". */ | |
1278 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1279 | i = k; | |
1280 | } | |
1281 | ||
529cad9c PH |
1282 | /* Remove _E{DIGITS}+[sb] */ |
1283 | ||
1284 | /* Just as for protected object subprograms, there are 2 categories | |
0963b4bd | 1285 | of subprograms created by the compiler for each entry. The first |
529cad9c PH |
1286 | one implements the actual entry code, and has a suffix following |
1287 | the convention above; the second one implements the barrier and | |
1288 | uses the same convention as above, except that the 'E' is replaced | |
1289 | by a 'B'. | |
1290 | ||
1291 | Just as above, we do not decode the name of barrier functions | |
1292 | to give the user a clue that the code he is debugging has been | |
1293 | internally generated. */ | |
1294 | ||
1295 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1296 | && isdigit (encoded[i+2])) | |
1297 | { | |
1298 | int k = i + 3; | |
1299 | ||
1300 | while (k < len0 && isdigit (encoded[k])) | |
1301 | k++; | |
1302 | ||
1303 | if (k < len0 | |
1304 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1305 | { | |
1306 | k++; | |
1307 | /* Just as an extra precaution, make sure that if this | |
1308 | suffix is followed by anything else, it is a '_'. | |
1309 | Otherwise, we matched this sequence by accident. */ | |
1310 | if (k == len0 | |
1311 | || (k < len0 && encoded[k] == '_')) | |
1312 | i = k; | |
1313 | } | |
1314 | } | |
1315 | ||
1316 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1317 | the GNAT front-end in protected object subprograms. */ | |
1318 | ||
1319 | if (i < len0 + 3 | |
1320 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1321 | { | |
1322 | /* Backtrack a bit up until we reach either the begining of | |
1323 | the encoded name, or "__". Make sure that we only find | |
1324 | digits or lowercase characters. */ | |
1325 | const char *ptr = encoded + i - 1; | |
1326 | ||
1327 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1328 | ptr--; | |
1329 | if (ptr < encoded | |
1330 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1331 | i++; | |
1332 | } | |
1333 | ||
4c4b4cd2 PH |
1334 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1335 | { | |
29480c32 JB |
1336 | /* This is a X[bn]* sequence not separated from the previous |
1337 | part of the name with a non-alpha-numeric character (in other | |
1338 | words, immediately following an alpha-numeric character), then | |
1339 | verify that it is placed at the end of the encoded name. If | |
1340 | not, then the encoding is not valid and we should abort the | |
1341 | decoding. Otherwise, just skip it, it is used in body-nested | |
1342 | package names. */ | |
4c4b4cd2 PH |
1343 | do |
1344 | i += 1; | |
1345 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1346 | if (i < len0) | |
1347 | goto Suppress; | |
1348 | } | |
cdc7bb92 | 1349 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1350 | { |
29480c32 | 1351 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1352 | decoded[j] = '.'; |
1353 | at_start_name = 1; | |
1354 | i += 2; | |
1355 | j += 1; | |
1356 | } | |
14f9c5c9 | 1357 | else |
4c4b4cd2 | 1358 | { |
29480c32 JB |
1359 | /* It's a character part of the decoded name, so just copy it |
1360 | over. */ | |
4c4b4cd2 PH |
1361 | decoded[j] = encoded[i]; |
1362 | i += 1; | |
1363 | j += 1; | |
1364 | } | |
14f9c5c9 | 1365 | } |
4c4b4cd2 | 1366 | decoded[j] = '\000'; |
14f9c5c9 | 1367 | |
29480c32 JB |
1368 | /* Decoded names should never contain any uppercase character. |
1369 | Double-check this, and abort the decoding if we find one. */ | |
1370 | ||
4c4b4cd2 PH |
1371 | for (i = 0; decoded[i] != '\0'; i += 1) |
1372 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1373 | goto Suppress; |
1374 | ||
4c4b4cd2 PH |
1375 | if (strcmp (decoded, encoded) == 0) |
1376 | return encoded; | |
1377 | else | |
1378 | return decoded; | |
14f9c5c9 AS |
1379 | |
1380 | Suppress: | |
4c4b4cd2 PH |
1381 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1382 | decoded = decoding_buffer; | |
1383 | if (encoded[0] == '<') | |
1384 | strcpy (decoded, encoded); | |
14f9c5c9 | 1385 | else |
88c15c34 | 1386 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1387 | return decoded; |
1388 | ||
1389 | } | |
1390 | ||
1391 | /* Table for keeping permanent unique copies of decoded names. Once | |
1392 | allocated, names in this table are never released. While this is a | |
1393 | storage leak, it should not be significant unless there are massive | |
1394 | changes in the set of decoded names in successive versions of a | |
1395 | symbol table loaded during a single session. */ | |
1396 | static struct htab *decoded_names_store; | |
1397 | ||
1398 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1399 | in the language-specific part of GSYMBOL, if it has not been | |
1400 | previously computed. Tries to save the decoded name in the same | |
1401 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1402 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1403 | GSYMBOL). |
4c4b4cd2 PH |
1404 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1405 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1406 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1407 | |
45e6c716 | 1408 | const char * |
f85f34ed | 1409 | ada_decode_symbol (const struct general_symbol_info *arg) |
4c4b4cd2 | 1410 | { |
f85f34ed TT |
1411 | struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg; |
1412 | const char **resultp = | |
1413 | &gsymbol->language_specific.mangled_lang.demangled_name; | |
5b4ee69b | 1414 | |
f85f34ed | 1415 | if (!gsymbol->ada_mangled) |
4c4b4cd2 PH |
1416 | { |
1417 | const char *decoded = ada_decode (gsymbol->name); | |
f85f34ed | 1418 | struct obstack *obstack = gsymbol->language_specific.obstack; |
5b4ee69b | 1419 | |
f85f34ed | 1420 | gsymbol->ada_mangled = 1; |
5b4ee69b | 1421 | |
f85f34ed TT |
1422 | if (obstack != NULL) |
1423 | *resultp = obstack_copy0 (obstack, decoded, strlen (decoded)); | |
1424 | else | |
76a01679 | 1425 | { |
f85f34ed TT |
1426 | /* Sometimes, we can't find a corresponding objfile, in |
1427 | which case, we put the result on the heap. Since we only | |
1428 | decode when needed, we hope this usually does not cause a | |
1429 | significant memory leak (FIXME). */ | |
1430 | ||
76a01679 JB |
1431 | char **slot = (char **) htab_find_slot (decoded_names_store, |
1432 | decoded, INSERT); | |
5b4ee69b | 1433 | |
76a01679 JB |
1434 | if (*slot == NULL) |
1435 | *slot = xstrdup (decoded); | |
1436 | *resultp = *slot; | |
1437 | } | |
4c4b4cd2 | 1438 | } |
14f9c5c9 | 1439 | |
4c4b4cd2 PH |
1440 | return *resultp; |
1441 | } | |
76a01679 | 1442 | |
2c0b251b | 1443 | static char * |
76a01679 | 1444 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1445 | { |
1446 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1447 | } |
1448 | ||
1449 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1450 | suffixes that encode debugging information or leading _ada_ on |
1451 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1452 | information that is ignored). If WILD, then NAME need only match a | |
1453 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1454 | either argument is NULL. */ | |
14f9c5c9 | 1455 | |
2c0b251b | 1456 | static int |
40658b94 | 1457 | match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1458 | { |
1459 | if (sym_name == NULL || name == NULL) | |
1460 | return 0; | |
1461 | else if (wild) | |
73589123 | 1462 | return wild_match (sym_name, name) == 0; |
d2e4a39e AS |
1463 | else |
1464 | { | |
1465 | int len_name = strlen (name); | |
5b4ee69b | 1466 | |
4c4b4cd2 PH |
1467 | return (strncmp (sym_name, name, len_name) == 0 |
1468 | && is_name_suffix (sym_name + len_name)) | |
61012eef | 1469 | || (startswith (sym_name, "_ada_") |
4c4b4cd2 PH |
1470 | && strncmp (sym_name + 5, name, len_name) == 0 |
1471 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1472 | } |
14f9c5c9 | 1473 | } |
14f9c5c9 | 1474 | \f |
d2e4a39e | 1475 | |
4c4b4cd2 | 1476 | /* Arrays */ |
14f9c5c9 | 1477 | |
28c85d6c JB |
1478 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1479 | generated by the GNAT compiler to describe the index type used | |
1480 | for each dimension of an array, check whether it follows the latest | |
1481 | known encoding. If not, fix it up to conform to the latest encoding. | |
1482 | Otherwise, do nothing. This function also does nothing if | |
1483 | INDEX_DESC_TYPE is NULL. | |
1484 | ||
1485 | The GNAT encoding used to describle the array index type evolved a bit. | |
1486 | Initially, the information would be provided through the name of each | |
1487 | field of the structure type only, while the type of these fields was | |
1488 | described as unspecified and irrelevant. The debugger was then expected | |
1489 | to perform a global type lookup using the name of that field in order | |
1490 | to get access to the full index type description. Because these global | |
1491 | lookups can be very expensive, the encoding was later enhanced to make | |
1492 | the global lookup unnecessary by defining the field type as being | |
1493 | the full index type description. | |
1494 | ||
1495 | The purpose of this routine is to allow us to support older versions | |
1496 | of the compiler by detecting the use of the older encoding, and by | |
1497 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1498 | we essentially replace each field's meaningless type by the associated | |
1499 | index subtype). */ | |
1500 | ||
1501 | void | |
1502 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1503 | { | |
1504 | int i; | |
1505 | ||
1506 | if (index_desc_type == NULL) | |
1507 | return; | |
1508 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1509 | ||
1510 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1511 | to check one field only, no need to check them all). If not, return | |
1512 | now. | |
1513 | ||
1514 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1515 | the field type should be a meaningless integer type whose name | |
1516 | is not equal to the field name. */ | |
1517 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1518 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1519 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1520 | return; | |
1521 | ||
1522 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1523 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1524 | { | |
0d5cff50 | 1525 | const char *name = TYPE_FIELD_NAME (index_desc_type, i); |
28c85d6c JB |
1526 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); |
1527 | ||
1528 | if (raw_type) | |
1529 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1530 | } | |
1531 | } | |
1532 | ||
4c4b4cd2 | 1533 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1534 | |
d2e4a39e AS |
1535 | static char *bound_name[] = { |
1536 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1537 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1538 | }; | |
1539 | ||
1540 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1541 | ||
4c4b4cd2 | 1542 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1543 | |
14f9c5c9 | 1544 | |
4c4b4cd2 PH |
1545 | /* The desc_* routines return primitive portions of array descriptors |
1546 | (fat pointers). */ | |
14f9c5c9 AS |
1547 | |
1548 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1549 | level of indirection, if needed. */ |
1550 | ||
d2e4a39e AS |
1551 | static struct type * |
1552 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1553 | { |
1554 | if (type == NULL) | |
1555 | return NULL; | |
61ee279c | 1556 | type = ada_check_typedef (type); |
720d1a40 JB |
1557 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1558 | type = ada_typedef_target_type (type); | |
1559 | ||
1265e4aa JB |
1560 | if (type != NULL |
1561 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1562 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1563 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1564 | else |
1565 | return type; | |
1566 | } | |
1567 | ||
4c4b4cd2 PH |
1568 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1569 | ||
14f9c5c9 | 1570 | static int |
d2e4a39e | 1571 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1572 | { |
d2e4a39e | 1573 | return |
14f9c5c9 AS |
1574 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1575 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1576 | } | |
1577 | ||
4c4b4cd2 PH |
1578 | /* The descriptor type for thin pointer type TYPE. */ |
1579 | ||
d2e4a39e AS |
1580 | static struct type * |
1581 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1582 | { |
d2e4a39e | 1583 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1584 | |
14f9c5c9 AS |
1585 | if (base_type == NULL) |
1586 | return NULL; | |
1587 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1588 | return base_type; | |
d2e4a39e | 1589 | else |
14f9c5c9 | 1590 | { |
d2e4a39e | 1591 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1592 | |
14f9c5c9 | 1593 | if (alt_type == NULL) |
4c4b4cd2 | 1594 | return base_type; |
14f9c5c9 | 1595 | else |
4c4b4cd2 | 1596 | return alt_type; |
14f9c5c9 AS |
1597 | } |
1598 | } | |
1599 | ||
4c4b4cd2 PH |
1600 | /* A pointer to the array data for thin-pointer value VAL. */ |
1601 | ||
d2e4a39e AS |
1602 | static struct value * |
1603 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1604 | { |
828292f2 | 1605 | struct type *type = ada_check_typedef (value_type (val)); |
556bdfd4 | 1606 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1607 | |
556bdfd4 UW |
1608 | data_type = lookup_pointer_type (data_type); |
1609 | ||
14f9c5c9 | 1610 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1611 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1612 | else |
42ae5230 | 1613 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1614 | } |
1615 | ||
4c4b4cd2 PH |
1616 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1617 | ||
14f9c5c9 | 1618 | static int |
d2e4a39e | 1619 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1620 | { |
1621 | type = desc_base_type (type); | |
1622 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1623 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1624 | } |
1625 | ||
4c4b4cd2 PH |
1626 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1627 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1628 | |
d2e4a39e AS |
1629 | static struct type * |
1630 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1631 | { |
d2e4a39e | 1632 | struct type *r; |
14f9c5c9 AS |
1633 | |
1634 | type = desc_base_type (type); | |
1635 | ||
1636 | if (type == NULL) | |
1637 | return NULL; | |
1638 | else if (is_thin_pntr (type)) | |
1639 | { | |
1640 | type = thin_descriptor_type (type); | |
1641 | if (type == NULL) | |
4c4b4cd2 | 1642 | return NULL; |
14f9c5c9 AS |
1643 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1644 | if (r != NULL) | |
61ee279c | 1645 | return ada_check_typedef (r); |
14f9c5c9 AS |
1646 | } |
1647 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1648 | { | |
1649 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1650 | if (r != NULL) | |
61ee279c | 1651 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1652 | } |
1653 | return NULL; | |
1654 | } | |
1655 | ||
1656 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1657 | one, a pointer to its bounds data. Otherwise NULL. */ |
1658 | ||
d2e4a39e AS |
1659 | static struct value * |
1660 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1661 | { |
df407dfe | 1662 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1663 | |
d2e4a39e | 1664 | if (is_thin_pntr (type)) |
14f9c5c9 | 1665 | { |
d2e4a39e | 1666 | struct type *bounds_type = |
4c4b4cd2 | 1667 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1668 | LONGEST addr; |
1669 | ||
4cdfadb1 | 1670 | if (bounds_type == NULL) |
323e0a4a | 1671 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1672 | |
1673 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1674 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1675 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1676 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1677 | addr = value_as_long (arr); |
d2e4a39e | 1678 | else |
42ae5230 | 1679 | addr = value_address (arr); |
14f9c5c9 | 1680 | |
d2e4a39e | 1681 | return |
4c4b4cd2 PH |
1682 | value_from_longest (lookup_pointer_type (bounds_type), |
1683 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1684 | } |
1685 | ||
1686 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1687 | { |
1688 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1689 | _("Bad GNAT array descriptor")); | |
1690 | struct type *p_bounds_type = value_type (p_bounds); | |
1691 | ||
1692 | if (p_bounds_type | |
1693 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1694 | { | |
1695 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1696 | ||
1697 | if (TYPE_STUB (target_type)) | |
1698 | p_bounds = value_cast (lookup_pointer_type | |
1699 | (ada_check_typedef (target_type)), | |
1700 | p_bounds); | |
1701 | } | |
1702 | else | |
1703 | error (_("Bad GNAT array descriptor")); | |
1704 | ||
1705 | return p_bounds; | |
1706 | } | |
14f9c5c9 AS |
1707 | else |
1708 | return NULL; | |
1709 | } | |
1710 | ||
4c4b4cd2 PH |
1711 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1712 | position of the field containing the address of the bounds data. */ | |
1713 | ||
14f9c5c9 | 1714 | static int |
d2e4a39e | 1715 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1716 | { |
1717 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1718 | } | |
1719 | ||
1720 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1721 | size of the field containing the address of the bounds data. */ |
1722 | ||
14f9c5c9 | 1723 | static int |
d2e4a39e | 1724 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1725 | { |
1726 | type = desc_base_type (type); | |
1727 | ||
d2e4a39e | 1728 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1729 | return TYPE_FIELD_BITSIZE (type, 1); |
1730 | else | |
61ee279c | 1731 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1732 | } |
1733 | ||
4c4b4cd2 | 1734 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1735 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1736 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1737 | data. */ | |
4c4b4cd2 | 1738 | |
d2e4a39e | 1739 | static struct type * |
556bdfd4 | 1740 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1741 | { |
1742 | type = desc_base_type (type); | |
1743 | ||
4c4b4cd2 | 1744 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1745 | if (is_thin_pntr (type)) |
556bdfd4 | 1746 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1747 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1748 | { |
1749 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1750 | ||
1751 | if (data_type | |
1752 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1753 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1754 | } |
1755 | ||
1756 | return NULL; | |
14f9c5c9 AS |
1757 | } |
1758 | ||
1759 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1760 | its array data. */ | |
4c4b4cd2 | 1761 | |
d2e4a39e AS |
1762 | static struct value * |
1763 | desc_data (struct value *arr) | |
14f9c5c9 | 1764 | { |
df407dfe | 1765 | struct type *type = value_type (arr); |
5b4ee69b | 1766 | |
14f9c5c9 AS |
1767 | if (is_thin_pntr (type)) |
1768 | return thin_data_pntr (arr); | |
1769 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1770 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1771 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1772 | else |
1773 | return NULL; | |
1774 | } | |
1775 | ||
1776 | ||
1777 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1778 | position of the field containing the address of the data. */ |
1779 | ||
14f9c5c9 | 1780 | static int |
d2e4a39e | 1781 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1782 | { |
1783 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1784 | } | |
1785 | ||
1786 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1787 | size of the field containing the address of the data. */ |
1788 | ||
14f9c5c9 | 1789 | static int |
d2e4a39e | 1790 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1791 | { |
1792 | type = desc_base_type (type); | |
1793 | ||
1794 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1795 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1796 | else |
14f9c5c9 AS |
1797 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1798 | } | |
1799 | ||
4c4b4cd2 | 1800 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1801 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1802 | bound, if WHICH is 1. The first bound is I=1. */ |
1803 | ||
d2e4a39e AS |
1804 | static struct value * |
1805 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1806 | { |
d2e4a39e | 1807 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1808 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1809 | } |
1810 | ||
1811 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1812 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1813 | bound, if WHICH is 1. The first bound is I=1. */ |
1814 | ||
14f9c5c9 | 1815 | static int |
d2e4a39e | 1816 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1817 | { |
d2e4a39e | 1818 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1819 | } |
1820 | ||
1821 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1822 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1823 | bound, if WHICH is 1. The first bound is I=1. */ |
1824 | ||
76a01679 | 1825 | static int |
d2e4a39e | 1826 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1827 | { |
1828 | type = desc_base_type (type); | |
1829 | ||
d2e4a39e AS |
1830 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1831 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1832 | else | |
1833 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1834 | } |
1835 | ||
1836 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1837 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1838 | ||
d2e4a39e AS |
1839 | static struct type * |
1840 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1841 | { |
1842 | type = desc_base_type (type); | |
1843 | ||
1844 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1845 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1846 | else | |
14f9c5c9 AS |
1847 | return NULL; |
1848 | } | |
1849 | ||
4c4b4cd2 PH |
1850 | /* The number of index positions in the array-bounds type TYPE. |
1851 | Return 0 if TYPE is NULL. */ | |
1852 | ||
14f9c5c9 | 1853 | static int |
d2e4a39e | 1854 | desc_arity (struct type *type) |
14f9c5c9 AS |
1855 | { |
1856 | type = desc_base_type (type); | |
1857 | ||
1858 | if (type != NULL) | |
1859 | return TYPE_NFIELDS (type) / 2; | |
1860 | return 0; | |
1861 | } | |
1862 | ||
4c4b4cd2 PH |
1863 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1864 | an array descriptor type (representing an unconstrained array | |
1865 | type). */ | |
1866 | ||
76a01679 JB |
1867 | static int |
1868 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1869 | { |
1870 | if (type == NULL) | |
1871 | return 0; | |
61ee279c | 1872 | type = ada_check_typedef (type); |
4c4b4cd2 | 1873 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1874 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1875 | } |
1876 | ||
52ce6436 | 1877 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1878 | * to one. */ |
52ce6436 | 1879 | |
2c0b251b | 1880 | static int |
52ce6436 PH |
1881 | ada_is_array_type (struct type *type) |
1882 | { | |
1883 | while (type != NULL | |
1884 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1885 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1886 | type = TYPE_TARGET_TYPE (type); | |
1887 | return ada_is_direct_array_type (type); | |
1888 | } | |
1889 | ||
4c4b4cd2 | 1890 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1891 | |
14f9c5c9 | 1892 | int |
4c4b4cd2 | 1893 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1894 | { |
1895 | if (type == NULL) | |
1896 | return 0; | |
61ee279c | 1897 | type = ada_check_typedef (type); |
14f9c5c9 | 1898 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 | 1899 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
b0dd7688 JB |
1900 | && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))) |
1901 | == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1902 | } |
1903 | ||
4c4b4cd2 PH |
1904 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1905 | ||
14f9c5c9 | 1906 | int |
4c4b4cd2 | 1907 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1908 | { |
556bdfd4 | 1909 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1910 | |
1911 | if (type == NULL) | |
1912 | return 0; | |
61ee279c | 1913 | type = ada_check_typedef (type); |
556bdfd4 UW |
1914 | return (data_type != NULL |
1915 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1916 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1917 | } |
1918 | ||
1919 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1920 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1921 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1922 | is still needed. */ |
1923 | ||
14f9c5c9 | 1924 | int |
ebf56fd3 | 1925 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1926 | { |
d2e4a39e | 1927 | return |
14f9c5c9 AS |
1928 | type != NULL |
1929 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1930 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1931 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1932 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1933 | } |
1934 | ||
1935 | ||
4c4b4cd2 | 1936 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1937 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1938 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1939 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1940 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1941 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1942 | a descriptor. */ |
d2e4a39e AS |
1943 | struct type * |
1944 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1945 | { |
ad82864c JB |
1946 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1947 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1948 | |
df407dfe AC |
1949 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1950 | return value_type (arr); | |
d2e4a39e AS |
1951 | |
1952 | if (!bounds) | |
ad82864c JB |
1953 | { |
1954 | struct type *array_type = | |
1955 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1956 | ||
1957 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1958 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
1959 | decode_packed_array_bitsize (value_type (arr)); | |
1960 | ||
1961 | return array_type; | |
1962 | } | |
14f9c5c9 AS |
1963 | else |
1964 | { | |
d2e4a39e | 1965 | struct type *elt_type; |
14f9c5c9 | 1966 | int arity; |
d2e4a39e | 1967 | struct value *descriptor; |
14f9c5c9 | 1968 | |
df407dfe AC |
1969 | elt_type = ada_array_element_type (value_type (arr), -1); |
1970 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1971 | |
d2e4a39e | 1972 | if (elt_type == NULL || arity == 0) |
df407dfe | 1973 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1974 | |
1975 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1976 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1977 | return NULL; |
d2e4a39e | 1978 | while (arity > 0) |
4c4b4cd2 | 1979 | { |
e9bb382b UW |
1980 | struct type *range_type = alloc_type_copy (value_type (arr)); |
1981 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
1982 | struct value *low = desc_one_bound (descriptor, arity, 0); |
1983 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 1984 | |
5b4ee69b | 1985 | arity -= 1; |
0c9c3474 SA |
1986 | create_static_range_type (range_type, value_type (low), |
1987 | longest_to_int (value_as_long (low)), | |
1988 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 1989 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
1990 | |
1991 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
1992 | { |
1993 | /* We need to store the element packed bitsize, as well as | |
1994 | recompute the array size, because it was previously | |
1995 | computed based on the unpacked element size. */ | |
1996 | LONGEST lo = value_as_long (low); | |
1997 | LONGEST hi = value_as_long (high); | |
1998 | ||
1999 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
2000 | decode_packed_array_bitsize (value_type (arr)); | |
2001 | /* If the array has no element, then the size is already | |
2002 | zero, and does not need to be recomputed. */ | |
2003 | if (lo < hi) | |
2004 | { | |
2005 | int array_bitsize = | |
2006 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); | |
2007 | ||
2008 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
2009 | } | |
2010 | } | |
4c4b4cd2 | 2011 | } |
14f9c5c9 AS |
2012 | |
2013 | return lookup_pointer_type (elt_type); | |
2014 | } | |
2015 | } | |
2016 | ||
2017 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
2018 | Otherwise, returns either a standard GDB array with bounds set |
2019 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
2020 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
2021 | ||
d2e4a39e AS |
2022 | struct value * |
2023 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 2024 | { |
df407dfe | 2025 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2026 | { |
d2e4a39e | 2027 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 2028 | |
14f9c5c9 | 2029 | if (arrType == NULL) |
4c4b4cd2 | 2030 | return NULL; |
14f9c5c9 AS |
2031 | return value_cast (arrType, value_copy (desc_data (arr))); |
2032 | } | |
ad82864c JB |
2033 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2034 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
2035 | else |
2036 | return arr; | |
2037 | } | |
2038 | ||
2039 | /* If ARR does not represent an array, returns ARR unchanged. | |
2040 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
2041 | be ARR itself if it already is in the proper form). */ |
2042 | ||
720d1a40 | 2043 | struct value * |
d2e4a39e | 2044 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 2045 | { |
df407dfe | 2046 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2047 | { |
d2e4a39e | 2048 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 2049 | |
14f9c5c9 | 2050 | if (arrVal == NULL) |
323e0a4a | 2051 | error (_("Bounds unavailable for null array pointer.")); |
c1b5a1a6 | 2052 | ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
2053 | return value_ind (arrVal); |
2054 | } | |
ad82864c JB |
2055 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2056 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 2057 | else |
14f9c5c9 AS |
2058 | return arr; |
2059 | } | |
2060 | ||
2061 | /* If TYPE represents a GNAT array type, return it translated to an | |
2062 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
2063 | packing). For other types, is the identity. */ |
2064 | ||
d2e4a39e AS |
2065 | struct type * |
2066 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 2067 | { |
ad82864c JB |
2068 | if (ada_is_constrained_packed_array_type (type)) |
2069 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
2070 | |
2071 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 2072 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
2073 | |
2074 | return type; | |
14f9c5c9 AS |
2075 | } |
2076 | ||
4c4b4cd2 PH |
2077 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
2078 | ||
ad82864c JB |
2079 | static int |
2080 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
2081 | { |
2082 | if (type == NULL) | |
2083 | return 0; | |
4c4b4cd2 | 2084 | type = desc_base_type (type); |
61ee279c | 2085 | type = ada_check_typedef (type); |
d2e4a39e | 2086 | return |
14f9c5c9 AS |
2087 | ada_type_name (type) != NULL |
2088 | && strstr (ada_type_name (type), "___XP") != NULL; | |
2089 | } | |
2090 | ||
ad82864c JB |
2091 | /* Non-zero iff TYPE represents a standard GNAT constrained |
2092 | packed-array type. */ | |
2093 | ||
2094 | int | |
2095 | ada_is_constrained_packed_array_type (struct type *type) | |
2096 | { | |
2097 | return ada_is_packed_array_type (type) | |
2098 | && !ada_is_array_descriptor_type (type); | |
2099 | } | |
2100 | ||
2101 | /* Non-zero iff TYPE represents an array descriptor for a | |
2102 | unconstrained packed-array type. */ | |
2103 | ||
2104 | static int | |
2105 | ada_is_unconstrained_packed_array_type (struct type *type) | |
2106 | { | |
2107 | return ada_is_packed_array_type (type) | |
2108 | && ada_is_array_descriptor_type (type); | |
2109 | } | |
2110 | ||
2111 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
2112 | return the size of its elements in bits. */ | |
2113 | ||
2114 | static long | |
2115 | decode_packed_array_bitsize (struct type *type) | |
2116 | { | |
0d5cff50 DE |
2117 | const char *raw_name; |
2118 | const char *tail; | |
ad82864c JB |
2119 | long bits; |
2120 | ||
720d1a40 JB |
2121 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
2122 | of the fat pointer type. We need the name of the fat pointer type | |
2123 | to do the decoding, so strip the typedef layer. */ | |
2124 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
2125 | type = ada_typedef_target_type (type); | |
2126 | ||
2127 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
2128 | if (!raw_name) |
2129 | raw_name = ada_type_name (desc_base_type (type)); | |
2130 | ||
2131 | if (!raw_name) | |
2132 | return 0; | |
2133 | ||
2134 | tail = strstr (raw_name, "___XP"); | |
720d1a40 | 2135 | gdb_assert (tail != NULL); |
ad82864c JB |
2136 | |
2137 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
2138 | { | |
2139 | lim_warning | |
2140 | (_("could not understand bit size information on packed array")); | |
2141 | return 0; | |
2142 | } | |
2143 | ||
2144 | return bits; | |
2145 | } | |
2146 | ||
14f9c5c9 AS |
2147 | /* Given that TYPE is a standard GDB array type with all bounds filled |
2148 | in, and that the element size of its ultimate scalar constituents | |
2149 | (that is, either its elements, or, if it is an array of arrays, its | |
2150 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
2151 | but with the bit sizes of its elements (and those of any | |
2152 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 | 2153 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
4a46959e JB |
2154 | in bits. |
2155 | ||
2156 | Note that, for arrays whose index type has an XA encoding where | |
2157 | a bound references a record discriminant, getting that discriminant, | |
2158 | and therefore the actual value of that bound, is not possible | |
2159 | because none of the given parameters gives us access to the record. | |
2160 | This function assumes that it is OK in the context where it is being | |
2161 | used to return an array whose bounds are still dynamic and where | |
2162 | the length is arbitrary. */ | |
4c4b4cd2 | 2163 | |
d2e4a39e | 2164 | static struct type * |
ad82864c | 2165 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 2166 | { |
d2e4a39e AS |
2167 | struct type *new_elt_type; |
2168 | struct type *new_type; | |
99b1c762 JB |
2169 | struct type *index_type_desc; |
2170 | struct type *index_type; | |
14f9c5c9 AS |
2171 | LONGEST low_bound, high_bound; |
2172 | ||
61ee279c | 2173 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2174 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
2175 | return type; | |
2176 | ||
99b1c762 JB |
2177 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
2178 | if (index_type_desc) | |
2179 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0), | |
2180 | NULL); | |
2181 | else | |
2182 | index_type = TYPE_INDEX_TYPE (type); | |
2183 | ||
e9bb382b | 2184 | new_type = alloc_type_copy (type); |
ad82864c JB |
2185 | new_elt_type = |
2186 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2187 | elt_bits); | |
99b1c762 | 2188 | create_array_type (new_type, new_elt_type, index_type); |
14f9c5c9 AS |
2189 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
2190 | TYPE_NAME (new_type) = ada_type_name (type); | |
2191 | ||
4a46959e JB |
2192 | if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE |
2193 | && is_dynamic_type (check_typedef (index_type))) | |
2194 | || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0) | |
14f9c5c9 AS |
2195 | low_bound = high_bound = 0; |
2196 | if (high_bound < low_bound) | |
2197 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2198 | else |
14f9c5c9 AS |
2199 | { |
2200 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2201 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 2202 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2203 | } |
2204 | ||
876cecd0 | 2205 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
2206 | return new_type; |
2207 | } | |
2208 | ||
ad82864c JB |
2209 | /* The array type encoded by TYPE, where |
2210 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2211 | |
d2e4a39e | 2212 | static struct type * |
ad82864c | 2213 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2214 | { |
0d5cff50 | 2215 | const char *raw_name = ada_type_name (ada_check_typedef (type)); |
727e3d2e | 2216 | char *name; |
0d5cff50 | 2217 | const char *tail; |
d2e4a39e | 2218 | struct type *shadow_type; |
14f9c5c9 | 2219 | long bits; |
14f9c5c9 | 2220 | |
727e3d2e JB |
2221 | if (!raw_name) |
2222 | raw_name = ada_type_name (desc_base_type (type)); | |
2223 | ||
2224 | if (!raw_name) | |
2225 | return NULL; | |
2226 | ||
2227 | name = (char *) alloca (strlen (raw_name) + 1); | |
2228 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2229 | type = desc_base_type (type); |
2230 | ||
14f9c5c9 AS |
2231 | memcpy (name, raw_name, tail - raw_name); |
2232 | name[tail - raw_name] = '\000'; | |
2233 | ||
b4ba55a1 JB |
2234 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2235 | ||
2236 | if (shadow_type == NULL) | |
14f9c5c9 | 2237 | { |
323e0a4a | 2238 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2239 | return NULL; |
2240 | } | |
f168693b | 2241 | shadow_type = check_typedef (shadow_type); |
14f9c5c9 AS |
2242 | |
2243 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2244 | { | |
0963b4bd MS |
2245 | lim_warning (_("could not understand bounds " |
2246 | "information on packed array")); | |
14f9c5c9 AS |
2247 | return NULL; |
2248 | } | |
d2e4a39e | 2249 | |
ad82864c JB |
2250 | bits = decode_packed_array_bitsize (type); |
2251 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2252 | } |
2253 | ||
ad82864c JB |
2254 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2255 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2256 | standard GDB array type except that the BITSIZEs of the array |
2257 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2258 | type length is set appropriately. */ |
14f9c5c9 | 2259 | |
d2e4a39e | 2260 | static struct value * |
ad82864c | 2261 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2262 | { |
4c4b4cd2 | 2263 | struct type *type; |
14f9c5c9 | 2264 | |
11aa919a PMR |
2265 | /* If our value is a pointer, then dereference it. Likewise if |
2266 | the value is a reference. Make sure that this operation does not | |
2267 | cause the target type to be fixed, as this would indirectly cause | |
2268 | this array to be decoded. The rest of the routine assumes that | |
2269 | the array hasn't been decoded yet, so we use the basic "coerce_ref" | |
2270 | and "value_ind" routines to perform the dereferencing, as opposed | |
2271 | to using "ada_coerce_ref" or "ada_value_ind". */ | |
2272 | arr = coerce_ref (arr); | |
828292f2 | 2273 | if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR) |
284614f0 | 2274 | arr = value_ind (arr); |
4c4b4cd2 | 2275 | |
ad82864c | 2276 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2277 | if (type == NULL) |
2278 | { | |
323e0a4a | 2279 | error (_("can't unpack array")); |
14f9c5c9 AS |
2280 | return NULL; |
2281 | } | |
61ee279c | 2282 | |
50810684 | 2283 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 2284 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2285 | { |
2286 | /* This is a (right-justified) modular type representing a packed | |
2287 | array with no wrapper. In order to interpret the value through | |
2288 | the (left-justified) packed array type we just built, we must | |
2289 | first left-justify it. */ | |
2290 | int bit_size, bit_pos; | |
2291 | ULONGEST mod; | |
2292 | ||
df407dfe | 2293 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2294 | bit_size = 0; |
2295 | while (mod > 0) | |
2296 | { | |
2297 | bit_size += 1; | |
2298 | mod >>= 1; | |
2299 | } | |
df407dfe | 2300 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2301 | arr = ada_value_primitive_packed_val (arr, NULL, |
2302 | bit_pos / HOST_CHAR_BIT, | |
2303 | bit_pos % HOST_CHAR_BIT, | |
2304 | bit_size, | |
2305 | type); | |
2306 | } | |
2307 | ||
4c4b4cd2 | 2308 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2309 | } |
2310 | ||
2311 | ||
2312 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2313 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2314 | |
d2e4a39e AS |
2315 | static struct value * |
2316 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2317 | { |
2318 | int i; | |
2319 | int bits, elt_off, bit_off; | |
2320 | long elt_total_bit_offset; | |
d2e4a39e AS |
2321 | struct type *elt_type; |
2322 | struct value *v; | |
14f9c5c9 AS |
2323 | |
2324 | bits = 0; | |
2325 | elt_total_bit_offset = 0; | |
df407dfe | 2326 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2327 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2328 | { |
d2e4a39e | 2329 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2330 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2331 | error | |
0963b4bd MS |
2332 | (_("attempt to do packed indexing of " |
2333 | "something other than a packed array")); | |
14f9c5c9 | 2334 | else |
4c4b4cd2 PH |
2335 | { |
2336 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2337 | LONGEST lowerbound, upperbound; | |
2338 | LONGEST idx; | |
2339 | ||
2340 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2341 | { | |
323e0a4a | 2342 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2343 | lowerbound = upperbound = 0; |
2344 | } | |
2345 | ||
3cb382c9 | 2346 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2347 | if (idx < lowerbound || idx > upperbound) |
0963b4bd MS |
2348 | lim_warning (_("packed array index %ld out of bounds"), |
2349 | (long) idx); | |
4c4b4cd2 PH |
2350 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2351 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2352 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2353 | } |
14f9c5c9 AS |
2354 | } |
2355 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2356 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2357 | |
2358 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2359 | bits, elt_type); |
14f9c5c9 AS |
2360 | return v; |
2361 | } | |
2362 | ||
4c4b4cd2 | 2363 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2364 | |
2365 | static int | |
d2e4a39e | 2366 | has_negatives (struct type *type) |
14f9c5c9 | 2367 | { |
d2e4a39e AS |
2368 | switch (TYPE_CODE (type)) |
2369 | { | |
2370 | default: | |
2371 | return 0; | |
2372 | case TYPE_CODE_INT: | |
2373 | return !TYPE_UNSIGNED (type); | |
2374 | case TYPE_CODE_RANGE: | |
2375 | return TYPE_LOW_BOUND (type) < 0; | |
2376 | } | |
14f9c5c9 | 2377 | } |
d2e4a39e | 2378 | |
14f9c5c9 AS |
2379 | |
2380 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2381 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2382 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
0963b4bd | 2383 | assigning through the result will set the field fetched from. |
4c4b4cd2 PH |
2384 | VALADDR is ignored unless OBJ is NULL, in which case, |
2385 | VALADDR+OFFSET must address the start of storage containing the | |
2386 | packed value. The value returned in this case is never an lval. | |
2387 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 2388 | |
d2e4a39e | 2389 | struct value * |
fc1a4b47 | 2390 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 2391 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 2392 | struct type *type) |
14f9c5c9 | 2393 | { |
d2e4a39e | 2394 | struct value *v; |
4c4b4cd2 PH |
2395 | int src, /* Index into the source area */ |
2396 | targ, /* Index into the target area */ | |
2397 | srcBitsLeft, /* Number of source bits left to move */ | |
2398 | nsrc, ntarg, /* Number of source and target bytes */ | |
2399 | unusedLS, /* Number of bits in next significant | |
2400 | byte of source that are unused */ | |
2401 | accumSize; /* Number of meaningful bits in accum */ | |
2402 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 2403 | unsigned char *unpacked; |
4c4b4cd2 | 2404 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
2405 | unsigned char sign; |
2406 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
2407 | /* Transmit bytes from least to most significant; delta is the direction |
2408 | the indices move. */ | |
50810684 | 2409 | int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1; |
14f9c5c9 | 2410 | |
61ee279c | 2411 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2412 | |
2413 | if (obj == NULL) | |
2414 | { | |
2415 | v = allocate_value (type); | |
d2e4a39e | 2416 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 2417 | } |
9214ee5f | 2418 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 | 2419 | { |
ca34b84f | 2420 | v = value_at (type, value_address (obj) + offset); |
9f1f738a | 2421 | type = value_type (v); |
fc958966 JB |
2422 | if (TYPE_LENGTH (type) * HOST_CHAR_BIT < bit_size) |
2423 | { | |
2424 | /* This can happen in the case of an array of dynamic objects, | |
2425 | where the size of each element changes from element to element. | |
2426 | In that case, we're initially given the array stride, but | |
2427 | after resolving the element type, we find that its size is | |
2428 | less than this stride. In that case, adjust bit_size to | |
2429 | match TYPE's length, and recompute LEN accordingly. */ | |
2430 | bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT; | |
2431 | len = TYPE_LENGTH (type) + (bit_offset + HOST_CHAR_BIT - 1) / 8; | |
2432 | } | |
d2e4a39e | 2433 | bytes = (unsigned char *) alloca (len); |
ca34b84f | 2434 | read_memory (value_address (v), bytes, len); |
14f9c5c9 | 2435 | } |
d2e4a39e | 2436 | else |
14f9c5c9 AS |
2437 | { |
2438 | v = allocate_value (type); | |
0fd88904 | 2439 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 2440 | } |
d2e4a39e AS |
2441 | |
2442 | if (obj != NULL) | |
14f9c5c9 | 2443 | { |
53ba8333 | 2444 | long new_offset = offset; |
5b4ee69b | 2445 | |
74bcbdf3 | 2446 | set_value_component_location (v, obj); |
9bbda503 AC |
2447 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
2448 | set_value_bitsize (v, bit_size); | |
df407dfe | 2449 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 | 2450 | { |
53ba8333 | 2451 | ++new_offset; |
9bbda503 | 2452 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 2453 | } |
53ba8333 JB |
2454 | set_value_offset (v, new_offset); |
2455 | ||
2456 | /* Also set the parent value. This is needed when trying to | |
2457 | assign a new value (in inferior memory). */ | |
2458 | set_value_parent (v, obj); | |
14f9c5c9 AS |
2459 | } |
2460 | else | |
9bbda503 | 2461 | set_value_bitsize (v, bit_size); |
0fd88904 | 2462 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2463 | |
2464 | srcBitsLeft = bit_size; | |
2465 | nsrc = len; | |
2466 | ntarg = TYPE_LENGTH (type); | |
2467 | sign = 0; | |
2468 | if (bit_size == 0) | |
2469 | { | |
2470 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2471 | return v; | |
2472 | } | |
50810684 | 2473 | else if (gdbarch_bits_big_endian (get_type_arch (type))) |
14f9c5c9 | 2474 | { |
d2e4a39e | 2475 | src = len - 1; |
1265e4aa JB |
2476 | if (has_negatives (type) |
2477 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2478 | sign = ~0; |
d2e4a39e AS |
2479 | |
2480 | unusedLS = | |
4c4b4cd2 PH |
2481 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2482 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2483 | |
2484 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2485 | { |
2486 | case TYPE_CODE_ARRAY: | |
2487 | case TYPE_CODE_UNION: | |
2488 | case TYPE_CODE_STRUCT: | |
2489 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2490 | accumSize = | |
2491 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2492 | /* ... And are placed at the beginning (most-significant) bytes | |
2493 | of the target. */ | |
529cad9c | 2494 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
0056e4d5 | 2495 | ntarg = targ + 1; |
4c4b4cd2 PH |
2496 | break; |
2497 | default: | |
2498 | accumSize = 0; | |
2499 | targ = TYPE_LENGTH (type) - 1; | |
2500 | break; | |
2501 | } | |
14f9c5c9 | 2502 | } |
d2e4a39e | 2503 | else |
14f9c5c9 AS |
2504 | { |
2505 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2506 | ||
2507 | src = targ = 0; | |
2508 | unusedLS = bit_offset; | |
2509 | accumSize = 0; | |
2510 | ||
d2e4a39e | 2511 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2512 | sign = ~0; |
14f9c5c9 | 2513 | } |
d2e4a39e | 2514 | |
14f9c5c9 AS |
2515 | accum = 0; |
2516 | while (nsrc > 0) | |
2517 | { | |
2518 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2519 | part of the value. */ |
d2e4a39e | 2520 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2521 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2522 | 1; | |
2523 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2524 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2525 | |
d2e4a39e | 2526 | accum |= |
4c4b4cd2 | 2527 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2528 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2529 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2530 | { |
2531 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2532 | accumSize -= HOST_CHAR_BIT; | |
2533 | accum >>= HOST_CHAR_BIT; | |
2534 | ntarg -= 1; | |
2535 | targ += delta; | |
2536 | } | |
14f9c5c9 AS |
2537 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2538 | unusedLS = 0; | |
2539 | nsrc -= 1; | |
2540 | src += delta; | |
2541 | } | |
2542 | while (ntarg > 0) | |
2543 | { | |
2544 | accum |= sign << accumSize; | |
2545 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2546 | accumSize -= HOST_CHAR_BIT; | |
9cd4d857 JB |
2547 | if (accumSize < 0) |
2548 | accumSize = 0; | |
14f9c5c9 AS |
2549 | accum >>= HOST_CHAR_BIT; |
2550 | ntarg -= 1; | |
2551 | targ += delta; | |
2552 | } | |
2553 | ||
2478d075 JB |
2554 | if (is_dynamic_type (value_type (v))) |
2555 | v = value_from_contents_and_address (value_type (v), value_contents (v), | |
2556 | 0); | |
14f9c5c9 AS |
2557 | return v; |
2558 | } | |
d2e4a39e | 2559 | |
14f9c5c9 AS |
2560 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2561 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2562 | not overlap. */ |
14f9c5c9 | 2563 | static void |
fc1a4b47 | 2564 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
50810684 | 2565 | int src_offset, int n, int bits_big_endian_p) |
14f9c5c9 AS |
2566 | { |
2567 | unsigned int accum, mask; | |
2568 | int accum_bits, chunk_size; | |
2569 | ||
2570 | target += targ_offset / HOST_CHAR_BIT; | |
2571 | targ_offset %= HOST_CHAR_BIT; | |
2572 | source += src_offset / HOST_CHAR_BIT; | |
2573 | src_offset %= HOST_CHAR_BIT; | |
50810684 | 2574 | if (bits_big_endian_p) |
14f9c5c9 AS |
2575 | { |
2576 | accum = (unsigned char) *source; | |
2577 | source += 1; | |
2578 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2579 | ||
d2e4a39e | 2580 | while (n > 0) |
4c4b4cd2 PH |
2581 | { |
2582 | int unused_right; | |
5b4ee69b | 2583 | |
4c4b4cd2 PH |
2584 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; |
2585 | accum_bits += HOST_CHAR_BIT; | |
2586 | source += 1; | |
2587 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2588 | if (chunk_size > n) | |
2589 | chunk_size = n; | |
2590 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2591 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2592 | *target = | |
2593 | (*target & ~mask) | |
2594 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2595 | n -= chunk_size; | |
2596 | accum_bits -= chunk_size; | |
2597 | target += 1; | |
2598 | targ_offset = 0; | |
2599 | } | |
14f9c5c9 AS |
2600 | } |
2601 | else | |
2602 | { | |
2603 | accum = (unsigned char) *source >> src_offset; | |
2604 | source += 1; | |
2605 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2606 | ||
d2e4a39e | 2607 | while (n > 0) |
4c4b4cd2 PH |
2608 | { |
2609 | accum = accum + ((unsigned char) *source << accum_bits); | |
2610 | accum_bits += HOST_CHAR_BIT; | |
2611 | source += 1; | |
2612 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2613 | if (chunk_size > n) | |
2614 | chunk_size = n; | |
2615 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2616 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2617 | n -= chunk_size; | |
2618 | accum_bits -= chunk_size; | |
2619 | accum >>= chunk_size; | |
2620 | target += 1; | |
2621 | targ_offset = 0; | |
2622 | } | |
14f9c5c9 AS |
2623 | } |
2624 | } | |
2625 | ||
14f9c5c9 AS |
2626 | /* Store the contents of FROMVAL into the location of TOVAL. |
2627 | Return a new value with the location of TOVAL and contents of | |
2628 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2629 | floating-point or non-scalar types. */ |
14f9c5c9 | 2630 | |
d2e4a39e AS |
2631 | static struct value * |
2632 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2633 | { |
df407dfe AC |
2634 | struct type *type = value_type (toval); |
2635 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2636 | |
52ce6436 PH |
2637 | toval = ada_coerce_ref (toval); |
2638 | fromval = ada_coerce_ref (fromval); | |
2639 | ||
2640 | if (ada_is_direct_array_type (value_type (toval))) | |
2641 | toval = ada_coerce_to_simple_array (toval); | |
2642 | if (ada_is_direct_array_type (value_type (fromval))) | |
2643 | fromval = ada_coerce_to_simple_array (fromval); | |
2644 | ||
88e3b34b | 2645 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2646 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2647 | |
d2e4a39e | 2648 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2649 | && bits > 0 |
d2e4a39e | 2650 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2651 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2652 | { |
df407dfe AC |
2653 | int len = (value_bitpos (toval) |
2654 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2655 | int from_size; |
948f8e3d | 2656 | gdb_byte *buffer = alloca (len); |
d2e4a39e | 2657 | struct value *val; |
42ae5230 | 2658 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2659 | |
2660 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2661 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2662 | |
52ce6436 | 2663 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2664 | from_size = value_bitsize (fromval); |
2665 | if (from_size == 0) | |
2666 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2667 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
df407dfe | 2668 | move_bits (buffer, value_bitpos (toval), |
50810684 | 2669 | value_contents (fromval), from_size - bits, bits, 1); |
14f9c5c9 | 2670 | else |
50810684 UW |
2671 | move_bits (buffer, value_bitpos (toval), |
2672 | value_contents (fromval), 0, bits, 0); | |
972daa01 | 2673 | write_memory_with_notification (to_addr, buffer, len); |
8cebebb9 | 2674 | |
14f9c5c9 | 2675 | val = value_copy (toval); |
0fd88904 | 2676 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2677 | TYPE_LENGTH (type)); |
04624583 | 2678 | deprecated_set_value_type (val, type); |
d2e4a39e | 2679 | |
14f9c5c9 AS |
2680 | return val; |
2681 | } | |
2682 | ||
2683 | return value_assign (toval, fromval); | |
2684 | } | |
2685 | ||
2686 | ||
7c512744 JB |
2687 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2688 | CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2689 | CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2690 | COMPONENT, and not the inferior's memory. The current contents | |
2691 | of COMPONENT are ignored. | |
2692 | ||
2693 | Although not part of the initial design, this function also works | |
2694 | when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER | |
2695 | had a null address, and COMPONENT had an address which is equal to | |
2696 | its offset inside CONTAINER. */ | |
2697 | ||
52ce6436 PH |
2698 | static void |
2699 | value_assign_to_component (struct value *container, struct value *component, | |
2700 | struct value *val) | |
2701 | { | |
2702 | LONGEST offset_in_container = | |
42ae5230 | 2703 | (LONGEST) (value_address (component) - value_address (container)); |
7c512744 | 2704 | int bit_offset_in_container = |
52ce6436 PH |
2705 | value_bitpos (component) - value_bitpos (container); |
2706 | int bits; | |
7c512744 | 2707 | |
52ce6436 PH |
2708 | val = value_cast (value_type (component), val); |
2709 | ||
2710 | if (value_bitsize (component) == 0) | |
2711 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2712 | else | |
2713 | bits = value_bitsize (component); | |
2714 | ||
50810684 | 2715 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
7c512744 | 2716 | move_bits (value_contents_writeable (container) + offset_in_container, |
52ce6436 PH |
2717 | value_bitpos (container) + bit_offset_in_container, |
2718 | value_contents (val), | |
2719 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
50810684 | 2720 | bits, 1); |
52ce6436 | 2721 | else |
7c512744 | 2722 | move_bits (value_contents_writeable (container) + offset_in_container, |
52ce6436 | 2723 | value_bitpos (container) + bit_offset_in_container, |
50810684 | 2724 | value_contents (val), 0, bits, 0); |
7c512744 JB |
2725 | } |
2726 | ||
4c4b4cd2 PH |
2727 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2728 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2729 | thereto. */ |
2730 | ||
d2e4a39e AS |
2731 | struct value * |
2732 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2733 | { |
2734 | int k; | |
d2e4a39e AS |
2735 | struct value *elt; |
2736 | struct type *elt_type; | |
14f9c5c9 AS |
2737 | |
2738 | elt = ada_coerce_to_simple_array (arr); | |
2739 | ||
df407dfe | 2740 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2741 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2742 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2743 | return value_subscript_packed (elt, arity, ind); | |
2744 | ||
2745 | for (k = 0; k < arity; k += 1) | |
2746 | { | |
2747 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2748 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2749 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2750 | } |
2751 | return elt; | |
2752 | } | |
2753 | ||
deede10c JB |
2754 | /* Assuming ARR is a pointer to a GDB array, the value of the element |
2755 | of *ARR at the ARITY indices given in IND. | |
2756 | Does not read the entire array into memory. */ | |
14f9c5c9 | 2757 | |
2c0b251b | 2758 | static struct value * |
deede10c | 2759 | ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind) |
14f9c5c9 AS |
2760 | { |
2761 | int k; | |
deede10c JB |
2762 | struct type *type |
2763 | = check_typedef (value_enclosing_type (ada_value_ind (arr))); | |
14f9c5c9 AS |
2764 | |
2765 | for (k = 0; k < arity; k += 1) | |
2766 | { | |
2767 | LONGEST lwb, upb; | |
aa715135 | 2768 | struct value *lwb_value; |
14f9c5c9 AS |
2769 | |
2770 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2771 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2772 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2773 | value_copy (arr)); |
14f9c5c9 | 2774 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
aa715135 JG |
2775 | lwb_value = value_from_longest (value_type(ind[k]), lwb); |
2776 | arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value)); | |
14f9c5c9 AS |
2777 | type = TYPE_TARGET_TYPE (type); |
2778 | } | |
2779 | ||
2780 | return value_ind (arr); | |
2781 | } | |
2782 | ||
0b5d8877 | 2783 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
aa715135 JG |
2784 | actual type of ARRAY_PTR is ignored), returns the Ada slice of |
2785 | HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of | |
2786 | this array is LOW, as per Ada rules. */ | |
0b5d8877 | 2787 | static struct value * |
f5938064 JG |
2788 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2789 | int low, int high) | |
0b5d8877 | 2790 | { |
b0dd7688 | 2791 | struct type *type0 = ada_check_typedef (type); |
aa715135 | 2792 | struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)); |
0c9c3474 | 2793 | struct type *index_type |
aa715135 | 2794 | = create_static_range_type (NULL, base_index_type, low, high); |
6c038f32 | 2795 | struct type *slice_type = |
b0dd7688 | 2796 | create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type); |
aa715135 JG |
2797 | int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)); |
2798 | LONGEST base_low_pos, low_pos; | |
2799 | CORE_ADDR base; | |
2800 | ||
2801 | if (!discrete_position (base_index_type, low, &low_pos) | |
2802 | || !discrete_position (base_index_type, base_low, &base_low_pos)) | |
2803 | { | |
2804 | warning (_("unable to get positions in slice, use bounds instead")); | |
2805 | low_pos = low; | |
2806 | base_low_pos = base_low; | |
2807 | } | |
5b4ee69b | 2808 | |
aa715135 JG |
2809 | base = value_as_address (array_ptr) |
2810 | + ((low_pos - base_low_pos) | |
2811 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type0))); | |
f5938064 | 2812 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2813 | } |
2814 | ||
2815 | ||
2816 | static struct value * | |
2817 | ada_value_slice (struct value *array, int low, int high) | |
2818 | { | |
b0dd7688 | 2819 | struct type *type = ada_check_typedef (value_type (array)); |
aa715135 | 2820 | struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
0c9c3474 SA |
2821 | struct type *index_type |
2822 | = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); | |
6c038f32 | 2823 | struct type *slice_type = |
0b5d8877 | 2824 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
aa715135 | 2825 | LONGEST low_pos, high_pos; |
5b4ee69b | 2826 | |
aa715135 JG |
2827 | if (!discrete_position (base_index_type, low, &low_pos) |
2828 | || !discrete_position (base_index_type, high, &high_pos)) | |
2829 | { | |
2830 | warning (_("unable to get positions in slice, use bounds instead")); | |
2831 | low_pos = low; | |
2832 | high_pos = high; | |
2833 | } | |
2834 | ||
2835 | return value_cast (slice_type, | |
2836 | value_slice (array, low, high_pos - low_pos + 1)); | |
0b5d8877 PH |
2837 | } |
2838 | ||
14f9c5c9 AS |
2839 | /* If type is a record type in the form of a standard GNAT array |
2840 | descriptor, returns the number of dimensions for type. If arr is a | |
2841 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2842 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2843 | |
2844 | int | |
d2e4a39e | 2845 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2846 | { |
2847 | int arity; | |
2848 | ||
2849 | if (type == NULL) | |
2850 | return 0; | |
2851 | ||
2852 | type = desc_base_type (type); | |
2853 | ||
2854 | arity = 0; | |
d2e4a39e | 2855 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2856 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2857 | else |
2858 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2859 | { |
4c4b4cd2 | 2860 | arity += 1; |
61ee279c | 2861 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2862 | } |
d2e4a39e | 2863 | |
14f9c5c9 AS |
2864 | return arity; |
2865 | } | |
2866 | ||
2867 | /* If TYPE is a record type in the form of a standard GNAT array | |
2868 | descriptor or a simple array type, returns the element type for | |
2869 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2870 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2871 | |
d2e4a39e AS |
2872 | struct type * |
2873 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2874 | { |
2875 | type = desc_base_type (type); | |
2876 | ||
d2e4a39e | 2877 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2878 | { |
2879 | int k; | |
d2e4a39e | 2880 | struct type *p_array_type; |
14f9c5c9 | 2881 | |
556bdfd4 | 2882 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2883 | |
2884 | k = ada_array_arity (type); | |
2885 | if (k == 0) | |
4c4b4cd2 | 2886 | return NULL; |
d2e4a39e | 2887 | |
4c4b4cd2 | 2888 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2889 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2890 | k = nindices; |
d2e4a39e | 2891 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2892 | { |
61ee279c | 2893 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2894 | k -= 1; |
2895 | } | |
14f9c5c9 AS |
2896 | return p_array_type; |
2897 | } | |
2898 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2899 | { | |
2900 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2901 | { |
2902 | type = TYPE_TARGET_TYPE (type); | |
2903 | nindices -= 1; | |
2904 | } | |
14f9c5c9 AS |
2905 | return type; |
2906 | } | |
2907 | ||
2908 | return NULL; | |
2909 | } | |
2910 | ||
4c4b4cd2 | 2911 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
2912 | Does not examine memory. Throws an error if N is invalid or TYPE |
2913 | is not an array type. NAME is the name of the Ada attribute being | |
2914 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
2915 | the error message. */ | |
14f9c5c9 | 2916 | |
1eea4ebd UW |
2917 | static struct type * |
2918 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 2919 | { |
4c4b4cd2 PH |
2920 | struct type *result_type; |
2921 | ||
14f9c5c9 AS |
2922 | type = desc_base_type (type); |
2923 | ||
1eea4ebd UW |
2924 | if (n < 0 || n > ada_array_arity (type)) |
2925 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 2926 | |
4c4b4cd2 | 2927 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2928 | { |
2929 | int i; | |
2930 | ||
2931 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 2932 | type = TYPE_TARGET_TYPE (type); |
262452ec | 2933 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
2934 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
2935 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 2936 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
2937 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
2938 | result_type = NULL; | |
14f9c5c9 | 2939 | } |
d2e4a39e | 2940 | else |
1eea4ebd UW |
2941 | { |
2942 | result_type = desc_index_type (desc_bounds_type (type), n); | |
2943 | if (result_type == NULL) | |
2944 | error (_("attempt to take bound of something that is not an array")); | |
2945 | } | |
2946 | ||
2947 | return result_type; | |
14f9c5c9 AS |
2948 | } |
2949 | ||
2950 | /* Given that arr is an array type, returns the lower bound of the | |
2951 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 2952 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
2953 | array-descriptor type. It works for other arrays with bounds supplied |
2954 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 2955 | |
abb68b3e | 2956 | static LONGEST |
fb5e3d5c | 2957 | ada_array_bound_from_type (struct type *arr_type, int n, int which) |
14f9c5c9 | 2958 | { |
8a48ac95 | 2959 | struct type *type, *index_type_desc, *index_type; |
1ce677a4 | 2960 | int i; |
262452ec JK |
2961 | |
2962 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 2963 | |
ad82864c JB |
2964 | if (ada_is_constrained_packed_array_type (arr_type)) |
2965 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 2966 | |
4c4b4cd2 | 2967 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2968 | return (LONGEST) - which; |
14f9c5c9 AS |
2969 | |
2970 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2971 | type = TYPE_TARGET_TYPE (arr_type); | |
2972 | else | |
2973 | type = arr_type; | |
2974 | ||
bafffb51 JB |
2975 | if (TYPE_FIXED_INSTANCE (type)) |
2976 | { | |
2977 | /* The array has already been fixed, so we do not need to | |
2978 | check the parallel ___XA type again. That encoding has | |
2979 | already been applied, so ignore it now. */ | |
2980 | index_type_desc = NULL; | |
2981 | } | |
2982 | else | |
2983 | { | |
2984 | index_type_desc = ada_find_parallel_type (type, "___XA"); | |
2985 | ada_fixup_array_indexes_type (index_type_desc); | |
2986 | } | |
2987 | ||
262452ec | 2988 | if (index_type_desc != NULL) |
28c85d6c JB |
2989 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
2990 | NULL); | |
262452ec | 2991 | else |
8a48ac95 JB |
2992 | { |
2993 | struct type *elt_type = check_typedef (type); | |
2994 | ||
2995 | for (i = 1; i < n; i++) | |
2996 | elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type)); | |
2997 | ||
2998 | index_type = TYPE_INDEX_TYPE (elt_type); | |
2999 | } | |
262452ec | 3000 | |
43bbcdc2 PH |
3001 | return |
3002 | (LONGEST) (which == 0 | |
3003 | ? ada_discrete_type_low_bound (index_type) | |
3004 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
3005 | } |
3006 | ||
3007 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
3008 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
3009 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 3010 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 3011 | |
1eea4ebd | 3012 | static LONGEST |
4dc81987 | 3013 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 3014 | { |
eb479039 JB |
3015 | struct type *arr_type; |
3016 | ||
3017 | if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR) | |
3018 | arr = value_ind (arr); | |
3019 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 3020 | |
ad82864c JB |
3021 | if (ada_is_constrained_packed_array_type (arr_type)) |
3022 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 3023 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 3024 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 3025 | else |
1eea4ebd | 3026 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
3027 | } |
3028 | ||
3029 | /* Given that arr is an array value, returns the length of the | |
3030 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
3031 | supplied by run-time quantities other than discriminants. |
3032 | Does not work for arrays indexed by enumeration types with representation | |
3033 | clauses at the moment. */ | |
14f9c5c9 | 3034 | |
1eea4ebd | 3035 | static LONGEST |
d2e4a39e | 3036 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 3037 | { |
aa715135 JG |
3038 | struct type *arr_type, *index_type; |
3039 | int low, high; | |
eb479039 JB |
3040 | |
3041 | if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR) | |
3042 | arr = value_ind (arr); | |
3043 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 3044 | |
ad82864c JB |
3045 | if (ada_is_constrained_packed_array_type (arr_type)) |
3046 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 3047 | |
4c4b4cd2 | 3048 | if (ada_is_simple_array_type (arr_type)) |
aa715135 JG |
3049 | { |
3050 | low = ada_array_bound_from_type (arr_type, n, 0); | |
3051 | high = ada_array_bound_from_type (arr_type, n, 1); | |
3052 | } | |
14f9c5c9 | 3053 | else |
aa715135 JG |
3054 | { |
3055 | low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0)); | |
3056 | high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1)); | |
3057 | } | |
3058 | ||
f168693b | 3059 | arr_type = check_typedef (arr_type); |
aa715135 JG |
3060 | index_type = TYPE_INDEX_TYPE (arr_type); |
3061 | if (index_type != NULL) | |
3062 | { | |
3063 | struct type *base_type; | |
3064 | if (TYPE_CODE (index_type) == TYPE_CODE_RANGE) | |
3065 | base_type = TYPE_TARGET_TYPE (index_type); | |
3066 | else | |
3067 | base_type = index_type; | |
3068 | ||
3069 | low = pos_atr (value_from_longest (base_type, low)); | |
3070 | high = pos_atr (value_from_longest (base_type, high)); | |
3071 | } | |
3072 | return high - low + 1; | |
4c4b4cd2 PH |
3073 | } |
3074 | ||
3075 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
3076 | with bounds LOW to LOW-1. */ | |
3077 | ||
3078 | static struct value * | |
3079 | empty_array (struct type *arr_type, int low) | |
3080 | { | |
b0dd7688 | 3081 | struct type *arr_type0 = ada_check_typedef (arr_type); |
0c9c3474 SA |
3082 | struct type *index_type |
3083 | = create_static_range_type | |
3084 | (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1); | |
b0dd7688 | 3085 | struct type *elt_type = ada_array_element_type (arr_type0, 1); |
5b4ee69b | 3086 | |
0b5d8877 | 3087 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 3088 | } |
14f9c5c9 | 3089 | \f |
d2e4a39e | 3090 | |
4c4b4cd2 | 3091 | /* Name resolution */ |
14f9c5c9 | 3092 | |
4c4b4cd2 PH |
3093 | /* The "decoded" name for the user-definable Ada operator corresponding |
3094 | to OP. */ | |
14f9c5c9 | 3095 | |
d2e4a39e | 3096 | static const char * |
4c4b4cd2 | 3097 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
3098 | { |
3099 | int i; | |
3100 | ||
4c4b4cd2 | 3101 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
3102 | { |
3103 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 3104 | return ada_opname_table[i].decoded; |
14f9c5c9 | 3105 | } |
323e0a4a | 3106 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
3107 | } |
3108 | ||
3109 | ||
4c4b4cd2 PH |
3110 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
3111 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
3112 | undefined namespace) and converts operators that are | |
3113 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
3114 | non-null, it provides a preferred result type [at the moment, only |
3115 | type void has any effect---causing procedures to be preferred over | |
3116 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 3117 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 3118 | |
4c4b4cd2 PH |
3119 | static void |
3120 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 | 3121 | { |
30b15541 UW |
3122 | struct type *context_type = NULL; |
3123 | int pc = 0; | |
3124 | ||
3125 | if (void_context_p) | |
3126 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
3127 | ||
3128 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
3129 | } |
3130 | ||
4c4b4cd2 PH |
3131 | /* Resolve the operator of the subexpression beginning at |
3132 | position *POS of *EXPP. "Resolving" consists of replacing | |
3133 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
3134 | with their resolutions, replacing built-in operators with | |
3135 | function calls to user-defined operators, where appropriate, and, | |
3136 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
3137 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
3138 | are as in ada_resolve, above. */ | |
14f9c5c9 | 3139 | |
d2e4a39e | 3140 | static struct value * |
4c4b4cd2 | 3141 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 3142 | struct type *context_type) |
14f9c5c9 AS |
3143 | { |
3144 | int pc = *pos; | |
3145 | int i; | |
4c4b4cd2 | 3146 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 3147 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
3148 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
3149 | int nargs; /* Number of operands. */ | |
52ce6436 | 3150 | int oplen; |
14f9c5c9 AS |
3151 | |
3152 | argvec = NULL; | |
3153 | nargs = 0; | |
3154 | exp = *expp; | |
3155 | ||
52ce6436 PH |
3156 | /* Pass one: resolve operands, saving their types and updating *pos, |
3157 | if needed. */ | |
14f9c5c9 AS |
3158 | switch (op) |
3159 | { | |
4c4b4cd2 PH |
3160 | case OP_FUNCALL: |
3161 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
3162 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
3163 | *pos += 7; | |
4c4b4cd2 PH |
3164 | else |
3165 | { | |
3166 | *pos += 3; | |
3167 | resolve_subexp (expp, pos, 0, NULL); | |
3168 | } | |
3169 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
3170 | break; |
3171 | ||
14f9c5c9 | 3172 | case UNOP_ADDR: |
4c4b4cd2 PH |
3173 | *pos += 1; |
3174 | resolve_subexp (expp, pos, 0, NULL); | |
3175 | break; | |
3176 | ||
52ce6436 PH |
3177 | case UNOP_QUAL: |
3178 | *pos += 3; | |
17466c1a | 3179 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
3180 | break; |
3181 | ||
52ce6436 | 3182 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
3183 | case OP_ATR_SIZE: |
3184 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
3185 | case OP_ATR_FIRST: |
3186 | case OP_ATR_LAST: | |
3187 | case OP_ATR_LENGTH: | |
3188 | case OP_ATR_POS: | |
3189 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
3190 | case OP_ATR_MIN: |
3191 | case OP_ATR_MAX: | |
52ce6436 PH |
3192 | case TERNOP_IN_RANGE: |
3193 | case BINOP_IN_BOUNDS: | |
3194 | case UNOP_IN_RANGE: | |
3195 | case OP_AGGREGATE: | |
3196 | case OP_OTHERS: | |
3197 | case OP_CHOICES: | |
3198 | case OP_POSITIONAL: | |
3199 | case OP_DISCRETE_RANGE: | |
3200 | case OP_NAME: | |
3201 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
3202 | *pos += oplen; | |
14f9c5c9 AS |
3203 | break; |
3204 | ||
3205 | case BINOP_ASSIGN: | |
3206 | { | |
4c4b4cd2 PH |
3207 | struct value *arg1; |
3208 | ||
3209 | *pos += 1; | |
3210 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
3211 | if (arg1 == NULL) | |
3212 | resolve_subexp (expp, pos, 1, NULL); | |
3213 | else | |
df407dfe | 3214 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 3215 | break; |
14f9c5c9 AS |
3216 | } |
3217 | ||
4c4b4cd2 | 3218 | case UNOP_CAST: |
4c4b4cd2 PH |
3219 | *pos += 3; |
3220 | nargs = 1; | |
3221 | break; | |
14f9c5c9 | 3222 | |
4c4b4cd2 PH |
3223 | case BINOP_ADD: |
3224 | case BINOP_SUB: | |
3225 | case BINOP_MUL: | |
3226 | case BINOP_DIV: | |
3227 | case BINOP_REM: | |
3228 | case BINOP_MOD: | |
3229 | case BINOP_EXP: | |
3230 | case BINOP_CONCAT: | |
3231 | case BINOP_LOGICAL_AND: | |
3232 | case BINOP_LOGICAL_OR: | |
3233 | case BINOP_BITWISE_AND: | |
3234 | case BINOP_BITWISE_IOR: | |
3235 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 3236 | |
4c4b4cd2 PH |
3237 | case BINOP_EQUAL: |
3238 | case BINOP_NOTEQUAL: | |
3239 | case BINOP_LESS: | |
3240 | case BINOP_GTR: | |
3241 | case BINOP_LEQ: | |
3242 | case BINOP_GEQ: | |
14f9c5c9 | 3243 | |
4c4b4cd2 PH |
3244 | case BINOP_REPEAT: |
3245 | case BINOP_SUBSCRIPT: | |
3246 | case BINOP_COMMA: | |
40c8aaa9 JB |
3247 | *pos += 1; |
3248 | nargs = 2; | |
3249 | break; | |
14f9c5c9 | 3250 | |
4c4b4cd2 PH |
3251 | case UNOP_NEG: |
3252 | case UNOP_PLUS: | |
3253 | case UNOP_LOGICAL_NOT: | |
3254 | case UNOP_ABS: | |
3255 | case UNOP_IND: | |
3256 | *pos += 1; | |
3257 | nargs = 1; | |
3258 | break; | |
14f9c5c9 | 3259 | |
4c4b4cd2 PH |
3260 | case OP_LONG: |
3261 | case OP_DOUBLE: | |
3262 | case OP_VAR_VALUE: | |
3263 | *pos += 4; | |
3264 | break; | |
14f9c5c9 | 3265 | |
4c4b4cd2 PH |
3266 | case OP_TYPE: |
3267 | case OP_BOOL: | |
3268 | case OP_LAST: | |
4c4b4cd2 PH |
3269 | case OP_INTERNALVAR: |
3270 | *pos += 3; | |
3271 | break; | |
14f9c5c9 | 3272 | |
4c4b4cd2 PH |
3273 | case UNOP_MEMVAL: |
3274 | *pos += 3; | |
3275 | nargs = 1; | |
3276 | break; | |
3277 | ||
67f3407f DJ |
3278 | case OP_REGISTER: |
3279 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3280 | break; | |
3281 | ||
4c4b4cd2 PH |
3282 | case STRUCTOP_STRUCT: |
3283 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3284 | nargs = 1; | |
3285 | break; | |
3286 | ||
4c4b4cd2 | 3287 | case TERNOP_SLICE: |
4c4b4cd2 PH |
3288 | *pos += 1; |
3289 | nargs = 3; | |
3290 | break; | |
3291 | ||
52ce6436 | 3292 | case OP_STRING: |
14f9c5c9 | 3293 | break; |
4c4b4cd2 PH |
3294 | |
3295 | default: | |
323e0a4a | 3296 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
3297 | } |
3298 | ||
76a01679 | 3299 | argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); |
4c4b4cd2 PH |
3300 | for (i = 0; i < nargs; i += 1) |
3301 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
3302 | argvec[i] = NULL; | |
3303 | exp = *expp; | |
3304 | ||
3305 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
3306 | switch (op) |
3307 | { | |
3308 | default: | |
3309 | break; | |
3310 | ||
14f9c5c9 | 3311 | case OP_VAR_VALUE: |
4c4b4cd2 | 3312 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 | 3313 | { |
d12307c1 | 3314 | struct block_symbol *candidates; |
76a01679 JB |
3315 | int n_candidates; |
3316 | ||
3317 | n_candidates = | |
3318 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
3319 | (exp->elts[pc + 2].symbol), | |
3320 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
4eeaa230 | 3321 | &candidates); |
76a01679 JB |
3322 | |
3323 | if (n_candidates > 1) | |
3324 | { | |
3325 | /* Types tend to get re-introduced locally, so if there | |
3326 | are any local symbols that are not types, first filter | |
3327 | out all types. */ | |
3328 | int j; | |
3329 | for (j = 0; j < n_candidates; j += 1) | |
d12307c1 | 3330 | switch (SYMBOL_CLASS (candidates[j].symbol)) |
76a01679 JB |
3331 | { |
3332 | case LOC_REGISTER: | |
3333 | case LOC_ARG: | |
3334 | case LOC_REF_ARG: | |
76a01679 JB |
3335 | case LOC_REGPARM_ADDR: |
3336 | case LOC_LOCAL: | |
76a01679 | 3337 | case LOC_COMPUTED: |
76a01679 JB |
3338 | goto FoundNonType; |
3339 | default: | |
3340 | break; | |
3341 | } | |
3342 | FoundNonType: | |
3343 | if (j < n_candidates) | |
3344 | { | |
3345 | j = 0; | |
3346 | while (j < n_candidates) | |
3347 | { | |
d12307c1 | 3348 | if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF) |
76a01679 JB |
3349 | { |
3350 | candidates[j] = candidates[n_candidates - 1]; | |
3351 | n_candidates -= 1; | |
3352 | } | |
3353 | else | |
3354 | j += 1; | |
3355 | } | |
3356 | } | |
3357 | } | |
3358 | ||
3359 | if (n_candidates == 0) | |
323e0a4a | 3360 | error (_("No definition found for %s"), |
76a01679 JB |
3361 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3362 | else if (n_candidates == 1) | |
3363 | i = 0; | |
3364 | else if (deprocedure_p | |
3365 | && !is_nonfunction (candidates, n_candidates)) | |
3366 | { | |
06d5cf63 JB |
3367 | i = ada_resolve_function |
3368 | (candidates, n_candidates, NULL, 0, | |
3369 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
3370 | context_type); | |
76a01679 | 3371 | if (i < 0) |
323e0a4a | 3372 | error (_("Could not find a match for %s"), |
76a01679 JB |
3373 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3374 | } | |
3375 | else | |
3376 | { | |
323e0a4a | 3377 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
3378 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3379 | user_select_syms (candidates, n_candidates, 1); | |
3380 | i = 0; | |
3381 | } | |
3382 | ||
3383 | exp->elts[pc + 1].block = candidates[i].block; | |
d12307c1 | 3384 | exp->elts[pc + 2].symbol = candidates[i].symbol; |
1265e4aa JB |
3385 | if (innermost_block == NULL |
3386 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
3387 | innermost_block = candidates[i].block; |
3388 | } | |
3389 | ||
3390 | if (deprocedure_p | |
3391 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3392 | == TYPE_CODE_FUNC)) | |
3393 | { | |
3394 | replace_operator_with_call (expp, pc, 0, 0, | |
3395 | exp->elts[pc + 2].symbol, | |
3396 | exp->elts[pc + 1].block); | |
3397 | exp = *expp; | |
3398 | } | |
14f9c5c9 AS |
3399 | break; |
3400 | ||
3401 | case OP_FUNCALL: | |
3402 | { | |
4c4b4cd2 | 3403 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 3404 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 | 3405 | { |
d12307c1 | 3406 | struct block_symbol *candidates; |
4c4b4cd2 PH |
3407 | int n_candidates; |
3408 | ||
3409 | n_candidates = | |
76a01679 JB |
3410 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
3411 | (exp->elts[pc + 5].symbol), | |
3412 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
4eeaa230 | 3413 | &candidates); |
4c4b4cd2 PH |
3414 | if (n_candidates == 1) |
3415 | i = 0; | |
3416 | else | |
3417 | { | |
06d5cf63 JB |
3418 | i = ada_resolve_function |
3419 | (candidates, n_candidates, | |
3420 | argvec, nargs, | |
3421 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
3422 | context_type); | |
4c4b4cd2 | 3423 | if (i < 0) |
323e0a4a | 3424 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
3425 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
3426 | } | |
3427 | ||
3428 | exp->elts[pc + 4].block = candidates[i].block; | |
d12307c1 | 3429 | exp->elts[pc + 5].symbol = candidates[i].symbol; |
1265e4aa JB |
3430 | if (innermost_block == NULL |
3431 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
3432 | innermost_block = candidates[i].block; |
3433 | } | |
14f9c5c9 AS |
3434 | } |
3435 | break; | |
3436 | case BINOP_ADD: | |
3437 | case BINOP_SUB: | |
3438 | case BINOP_MUL: | |
3439 | case BINOP_DIV: | |
3440 | case BINOP_REM: | |
3441 | case BINOP_MOD: | |
3442 | case BINOP_CONCAT: | |
3443 | case BINOP_BITWISE_AND: | |
3444 | case BINOP_BITWISE_IOR: | |
3445 | case BINOP_BITWISE_XOR: | |
3446 | case BINOP_EQUAL: | |
3447 | case BINOP_NOTEQUAL: | |
3448 | case BINOP_LESS: | |
3449 | case BINOP_GTR: | |
3450 | case BINOP_LEQ: | |
3451 | case BINOP_GEQ: | |
3452 | case BINOP_EXP: | |
3453 | case UNOP_NEG: | |
3454 | case UNOP_PLUS: | |
3455 | case UNOP_LOGICAL_NOT: | |
3456 | case UNOP_ABS: | |
3457 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 | 3458 | { |
d12307c1 | 3459 | struct block_symbol *candidates; |
4c4b4cd2 PH |
3460 | int n_candidates; |
3461 | ||
3462 | n_candidates = | |
3463 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
3464 | (struct block *) NULL, VAR_DOMAIN, | |
4eeaa230 | 3465 | &candidates); |
4c4b4cd2 | 3466 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, |
76a01679 | 3467 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3468 | if (i < 0) |
3469 | break; | |
3470 | ||
d12307c1 PMR |
3471 | replace_operator_with_call (expp, pc, nargs, 1, |
3472 | candidates[i].symbol, | |
3473 | candidates[i].block); | |
4c4b4cd2 PH |
3474 | exp = *expp; |
3475 | } | |
14f9c5c9 | 3476 | break; |
4c4b4cd2 PH |
3477 | |
3478 | case OP_TYPE: | |
b3dbf008 | 3479 | case OP_REGISTER: |
4c4b4cd2 | 3480 | return NULL; |
14f9c5c9 AS |
3481 | } |
3482 | ||
3483 | *pos = pc; | |
3484 | return evaluate_subexp_type (exp, pos); | |
3485 | } | |
3486 | ||
3487 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3488 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3489 | a non-pointer. */ |
14f9c5c9 | 3490 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3491 | liberal. */ |
14f9c5c9 AS |
3492 | |
3493 | static int | |
4dc81987 | 3494 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3495 | { |
61ee279c PH |
3496 | ftype = ada_check_typedef (ftype); |
3497 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3498 | |
3499 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3500 | ftype = TYPE_TARGET_TYPE (ftype); | |
3501 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3502 | atype = TYPE_TARGET_TYPE (atype); | |
3503 | ||
d2e4a39e | 3504 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3505 | { |
3506 | default: | |
5b3d5b7d | 3507 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3508 | case TYPE_CODE_PTR: |
3509 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3510 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3511 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3512 | else |
1265e4aa JB |
3513 | return (may_deref |
3514 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3515 | case TYPE_CODE_INT: |
3516 | case TYPE_CODE_ENUM: | |
3517 | case TYPE_CODE_RANGE: | |
3518 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3519 | { |
3520 | case TYPE_CODE_INT: | |
3521 | case TYPE_CODE_ENUM: | |
3522 | case TYPE_CODE_RANGE: | |
3523 | return 1; | |
3524 | default: | |
3525 | return 0; | |
3526 | } | |
14f9c5c9 AS |
3527 | |
3528 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3529 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3530 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3531 | |
3532 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3533 | if (ada_is_array_descriptor_type (ftype)) |
3534 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3535 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3536 | else |
4c4b4cd2 PH |
3537 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3538 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3539 | |
3540 | case TYPE_CODE_UNION: | |
3541 | case TYPE_CODE_FLT: | |
3542 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3543 | } | |
3544 | } | |
3545 | ||
3546 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3547 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3548 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3549 | argument function. */ |
14f9c5c9 AS |
3550 | |
3551 | static int | |
d2e4a39e | 3552 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3553 | { |
3554 | int i; | |
d2e4a39e | 3555 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3556 | |
1265e4aa JB |
3557 | if (SYMBOL_CLASS (func) == LOC_CONST |
3558 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3559 | return (n_actuals == 0); |
3560 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3561 | return 0; | |
3562 | ||
3563 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3564 | return 0; | |
3565 | ||
3566 | for (i = 0; i < n_actuals; i += 1) | |
3567 | { | |
4c4b4cd2 | 3568 | if (actuals[i] == NULL) |
76a01679 JB |
3569 | return 0; |
3570 | else | |
3571 | { | |
5b4ee69b MS |
3572 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, |
3573 | i)); | |
df407dfe | 3574 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3575 | |
76a01679 JB |
3576 | if (!ada_type_match (ftype, atype, 1)) |
3577 | return 0; | |
3578 | } | |
14f9c5c9 AS |
3579 | } |
3580 | return 1; | |
3581 | } | |
3582 | ||
3583 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3584 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3585 | FUNC_TYPE is not a valid function type with a non-null return type | |
3586 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3587 | ||
3588 | static int | |
d2e4a39e | 3589 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3590 | { |
d2e4a39e | 3591 | struct type *return_type; |
14f9c5c9 AS |
3592 | |
3593 | if (func_type == NULL) | |
3594 | return 1; | |
3595 | ||
4c4b4cd2 | 3596 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
18af8284 | 3597 | return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); |
4c4b4cd2 | 3598 | else |
18af8284 | 3599 | return_type = get_base_type (func_type); |
14f9c5c9 AS |
3600 | if (return_type == NULL) |
3601 | return 1; | |
3602 | ||
18af8284 | 3603 | context_type = get_base_type (context_type); |
14f9c5c9 AS |
3604 | |
3605 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3606 | return context_type == NULL || return_type == context_type; | |
3607 | else if (context_type == NULL) | |
3608 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3609 | else | |
3610 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3611 | } | |
3612 | ||
3613 | ||
4c4b4cd2 | 3614 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3615 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3616 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3617 | that returns that type, then eliminate matches that don't. If | |
3618 | CONTEXT_TYPE is void and there is at least one match that does not | |
3619 | return void, eliminate all matches that do. | |
3620 | ||
14f9c5c9 AS |
3621 | Asks the user if there is more than one match remaining. Returns -1 |
3622 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3623 | solely for messages. May re-arrange and modify SYMS in |
3624 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3625 | |
4c4b4cd2 | 3626 | static int |
d12307c1 | 3627 | ada_resolve_function (struct block_symbol syms[], |
4c4b4cd2 PH |
3628 | int nsyms, struct value **args, int nargs, |
3629 | const char *name, struct type *context_type) | |
14f9c5c9 | 3630 | { |
30b15541 | 3631 | int fallback; |
14f9c5c9 | 3632 | int k; |
4c4b4cd2 | 3633 | int m; /* Number of hits */ |
14f9c5c9 | 3634 | |
d2e4a39e | 3635 | m = 0; |
30b15541 UW |
3636 | /* In the first pass of the loop, we only accept functions matching |
3637 | context_type. If none are found, we add a second pass of the loop | |
3638 | where every function is accepted. */ | |
3639 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3640 | { |
3641 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3642 | { |
d12307c1 | 3643 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol)); |
4c4b4cd2 | 3644 | |
d12307c1 | 3645 | if (ada_args_match (syms[k].symbol, args, nargs) |
30b15541 | 3646 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3647 | { |
3648 | syms[m] = syms[k]; | |
3649 | m += 1; | |
3650 | } | |
3651 | } | |
14f9c5c9 AS |
3652 | } |
3653 | ||
3654 | if (m == 0) | |
3655 | return -1; | |
3656 | else if (m > 1) | |
3657 | { | |
323e0a4a | 3658 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3659 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3660 | return 0; |
3661 | } | |
3662 | return 0; | |
3663 | } | |
3664 | ||
4c4b4cd2 PH |
3665 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3666 | in a listing of choices during disambiguation (see sort_choices, below). | |
3667 | The idea is that overloadings of a subprogram name from the | |
3668 | same package should sort in their source order. We settle for ordering | |
3669 | such symbols by their trailing number (__N or $N). */ | |
3670 | ||
14f9c5c9 | 3671 | static int |
0d5cff50 | 3672 | encoded_ordered_before (const char *N0, const char *N1) |
14f9c5c9 AS |
3673 | { |
3674 | if (N1 == NULL) | |
3675 | return 0; | |
3676 | else if (N0 == NULL) | |
3677 | return 1; | |
3678 | else | |
3679 | { | |
3680 | int k0, k1; | |
5b4ee69b | 3681 | |
d2e4a39e | 3682 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3683 | ; |
d2e4a39e | 3684 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3685 | ; |
d2e4a39e | 3686 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3687 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3688 | { | |
3689 | int n0, n1; | |
5b4ee69b | 3690 | |
4c4b4cd2 PH |
3691 | n0 = k0; |
3692 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3693 | n0 -= 1; | |
3694 | n1 = k1; | |
3695 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3696 | n1 -= 1; | |
3697 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3698 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3699 | } | |
14f9c5c9 AS |
3700 | return (strcmp (N0, N1) < 0); |
3701 | } | |
3702 | } | |
d2e4a39e | 3703 | |
4c4b4cd2 PH |
3704 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3705 | encoded names. */ | |
3706 | ||
d2e4a39e | 3707 | static void |
d12307c1 | 3708 | sort_choices (struct block_symbol syms[], int nsyms) |
14f9c5c9 | 3709 | { |
4c4b4cd2 | 3710 | int i; |
5b4ee69b | 3711 | |
d2e4a39e | 3712 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3713 | { |
d12307c1 | 3714 | struct block_symbol sym = syms[i]; |
14f9c5c9 AS |
3715 | int j; |
3716 | ||
d2e4a39e | 3717 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 | 3718 | { |
d12307c1 PMR |
3719 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol), |
3720 | SYMBOL_LINKAGE_NAME (sym.symbol))) | |
4c4b4cd2 PH |
3721 | break; |
3722 | syms[j + 1] = syms[j]; | |
3723 | } | |
d2e4a39e | 3724 | syms[j + 1] = sym; |
14f9c5c9 AS |
3725 | } |
3726 | } | |
3727 | ||
4c4b4cd2 PH |
3728 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3729 | by asking the user (if necessary), returning the number selected, | |
3730 | and setting the first elements of SYMS items. Error if no symbols | |
3731 | selected. */ | |
14f9c5c9 AS |
3732 | |
3733 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3734 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3735 | |
3736 | int | |
d12307c1 | 3737 | user_select_syms (struct block_symbol *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3738 | { |
3739 | int i; | |
d2e4a39e | 3740 | int *chosen = (int *) alloca (sizeof (int) * nsyms); |
14f9c5c9 AS |
3741 | int n_chosen; |
3742 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3743 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3744 | |
3745 | if (max_results < 1) | |
323e0a4a | 3746 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3747 | if (nsyms <= 1) |
3748 | return nsyms; | |
3749 | ||
717d2f5a JB |
3750 | if (select_mode == multiple_symbols_cancel) |
3751 | error (_("\ | |
3752 | canceled because the command is ambiguous\n\ | |
3753 | See set/show multiple-symbol.")); | |
3754 | ||
3755 | /* If select_mode is "all", then return all possible symbols. | |
3756 | Only do that if more than one symbol can be selected, of course. | |
3757 | Otherwise, display the menu as usual. */ | |
3758 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3759 | return nsyms; | |
3760 | ||
323e0a4a | 3761 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3762 | if (max_results > 1) |
323e0a4a | 3763 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3764 | |
4c4b4cd2 | 3765 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3766 | |
3767 | for (i = 0; i < nsyms; i += 1) | |
3768 | { | |
d12307c1 | 3769 | if (syms[i].symbol == NULL) |
4c4b4cd2 PH |
3770 | continue; |
3771 | ||
d12307c1 | 3772 | if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK) |
4c4b4cd2 | 3773 | { |
76a01679 | 3774 | struct symtab_and_line sal = |
d12307c1 | 3775 | find_function_start_sal (syms[i].symbol, 1); |
5b4ee69b | 3776 | |
323e0a4a AC |
3777 | if (sal.symtab == NULL) |
3778 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3779 | i + first_choice, | |
d12307c1 | 3780 | SYMBOL_PRINT_NAME (syms[i].symbol), |
323e0a4a AC |
3781 | sal.line); |
3782 | else | |
3783 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
d12307c1 | 3784 | SYMBOL_PRINT_NAME (syms[i].symbol), |
05cba821 JK |
3785 | symtab_to_filename_for_display (sal.symtab), |
3786 | sal.line); | |
4c4b4cd2 PH |
3787 | continue; |
3788 | } | |
d2e4a39e | 3789 | else |
4c4b4cd2 PH |
3790 | { |
3791 | int is_enumeral = | |
d12307c1 PMR |
3792 | (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST |
3793 | && SYMBOL_TYPE (syms[i].symbol) != NULL | |
3794 | && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM); | |
1994afbf DE |
3795 | struct symtab *symtab = NULL; |
3796 | ||
d12307c1 PMR |
3797 | if (SYMBOL_OBJFILE_OWNED (syms[i].symbol)) |
3798 | symtab = symbol_symtab (syms[i].symbol); | |
4c4b4cd2 | 3799 | |
d12307c1 | 3800 | if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL) |
323e0a4a | 3801 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 | 3802 | i + first_choice, |
d12307c1 | 3803 | SYMBOL_PRINT_NAME (syms[i].symbol), |
05cba821 | 3804 | symtab_to_filename_for_display (symtab), |
d12307c1 | 3805 | SYMBOL_LINE (syms[i].symbol)); |
76a01679 | 3806 | else if (is_enumeral |
d12307c1 | 3807 | && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL) |
4c4b4cd2 | 3808 | { |
a3f17187 | 3809 | printf_unfiltered (("[%d] "), i + first_choice); |
d12307c1 | 3810 | ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL, |
79d43c61 | 3811 | gdb_stdout, -1, 0, &type_print_raw_options); |
323e0a4a | 3812 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
d12307c1 | 3813 | SYMBOL_PRINT_NAME (syms[i].symbol)); |
4c4b4cd2 PH |
3814 | } |
3815 | else if (symtab != NULL) | |
3816 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3817 | ? _("[%d] %s in %s (enumeral)\n") |
3818 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 | 3819 | i + first_choice, |
d12307c1 | 3820 | SYMBOL_PRINT_NAME (syms[i].symbol), |
05cba821 | 3821 | symtab_to_filename_for_display (symtab)); |
4c4b4cd2 PH |
3822 | else |
3823 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3824 | ? _("[%d] %s (enumeral)\n") |
3825 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 | 3826 | i + first_choice, |
d12307c1 | 3827 | SYMBOL_PRINT_NAME (syms[i].symbol)); |
4c4b4cd2 | 3828 | } |
14f9c5c9 | 3829 | } |
d2e4a39e | 3830 | |
14f9c5c9 | 3831 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3832 | "overload-choice"); |
14f9c5c9 AS |
3833 | |
3834 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3835 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3836 | |
3837 | return n_chosen; | |
3838 | } | |
3839 | ||
3840 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3841 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3842 | order in CHOICES[0 .. N-1], and return N. |
3843 | ||
3844 | The user types choices as a sequence of numbers on one line | |
3845 | separated by blanks, encoding them as follows: | |
3846 | ||
4c4b4cd2 | 3847 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3848 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3849 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3850 | ||
4c4b4cd2 | 3851 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3852 | |
3853 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3854 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3855 | |
3856 | int | |
d2e4a39e | 3857 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3858 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3859 | { |
d2e4a39e | 3860 | char *args; |
0bcd0149 | 3861 | char *prompt; |
14f9c5c9 AS |
3862 | int n_chosen; |
3863 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3864 | |
14f9c5c9 AS |
3865 | prompt = getenv ("PS2"); |
3866 | if (prompt == NULL) | |
0bcd0149 | 3867 | prompt = "> "; |
14f9c5c9 | 3868 | |
0bcd0149 | 3869 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3870 | |
14f9c5c9 | 3871 | if (args == NULL) |
323e0a4a | 3872 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3873 | |
3874 | n_chosen = 0; | |
76a01679 | 3875 | |
4c4b4cd2 PH |
3876 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3877 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3878 | while (1) |
3879 | { | |
d2e4a39e | 3880 | char *args2; |
14f9c5c9 AS |
3881 | int choice, j; |
3882 | ||
0fcd72ba | 3883 | args = skip_spaces (args); |
14f9c5c9 | 3884 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3885 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3886 | else if (*args == '\0') |
4c4b4cd2 | 3887 | break; |
14f9c5c9 AS |
3888 | |
3889 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3890 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3891 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3892 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3893 | args = args2; |
3894 | ||
d2e4a39e | 3895 | if (choice == 0) |
323e0a4a | 3896 | error (_("cancelled")); |
14f9c5c9 AS |
3897 | |
3898 | if (choice < first_choice) | |
4c4b4cd2 PH |
3899 | { |
3900 | n_chosen = n_choices; | |
3901 | for (j = 0; j < n_choices; j += 1) | |
3902 | choices[j] = j; | |
3903 | break; | |
3904 | } | |
14f9c5c9 AS |
3905 | choice -= first_choice; |
3906 | ||
d2e4a39e | 3907 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3908 | { |
3909 | } | |
14f9c5c9 AS |
3910 | |
3911 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3912 | { |
3913 | int k; | |
5b4ee69b | 3914 | |
4c4b4cd2 PH |
3915 | for (k = n_chosen - 1; k > j; k -= 1) |
3916 | choices[k + 1] = choices[k]; | |
3917 | choices[j + 1] = choice; | |
3918 | n_chosen += 1; | |
3919 | } | |
14f9c5c9 AS |
3920 | } |
3921 | ||
3922 | if (n_chosen > max_results) | |
323e0a4a | 3923 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3924 | |
14f9c5c9 AS |
3925 | return n_chosen; |
3926 | } | |
3927 | ||
4c4b4cd2 PH |
3928 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3929 | on the function identified by SYM and BLOCK, and taking NARGS | |
3930 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3931 | |
3932 | static void | |
d2e4a39e | 3933 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 | 3934 | int oplen, struct symbol *sym, |
270140bd | 3935 | const struct block *block) |
14f9c5c9 AS |
3936 | { |
3937 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3938 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3939 | struct expression *newexp = (struct expression *) |
8c1a34e7 | 3940 | xzalloc (sizeof (struct expression) |
4c4b4cd2 | 3941 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3942 | struct expression *exp = *expp; |
14f9c5c9 AS |
3943 | |
3944 | newexp->nelts = exp->nelts + 7 - oplen; | |
3945 | newexp->language_defn = exp->language_defn; | |
3489610d | 3946 | newexp->gdbarch = exp->gdbarch; |
14f9c5c9 | 3947 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); |
d2e4a39e | 3948 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3949 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3950 | |
3951 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3952 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3953 | ||
3954 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3955 | newexp->elts[pc + 4].block = block; | |
3956 | newexp->elts[pc + 5].symbol = sym; | |
3957 | ||
3958 | *expp = newexp; | |
aacb1f0a | 3959 | xfree (exp); |
d2e4a39e | 3960 | } |
14f9c5c9 AS |
3961 | |
3962 | /* Type-class predicates */ | |
3963 | ||
4c4b4cd2 PH |
3964 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3965 | or FLOAT). */ | |
14f9c5c9 AS |
3966 | |
3967 | static int | |
d2e4a39e | 3968 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3969 | { |
3970 | if (type == NULL) | |
3971 | return 0; | |
d2e4a39e AS |
3972 | else |
3973 | { | |
3974 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3975 | { |
3976 | case TYPE_CODE_INT: | |
3977 | case TYPE_CODE_FLT: | |
3978 | return 1; | |
3979 | case TYPE_CODE_RANGE: | |
3980 | return (type == TYPE_TARGET_TYPE (type) | |
3981 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3982 | default: | |
3983 | return 0; | |
3984 | } | |
d2e4a39e | 3985 | } |
14f9c5c9 AS |
3986 | } |
3987 | ||
4c4b4cd2 | 3988 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3989 | |
3990 | static int | |
d2e4a39e | 3991 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3992 | { |
3993 | if (type == NULL) | |
3994 | return 0; | |
d2e4a39e AS |
3995 | else |
3996 | { | |
3997 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3998 | { |
3999 | case TYPE_CODE_INT: | |
4000 | return 1; | |
4001 | case TYPE_CODE_RANGE: | |
4002 | return (type == TYPE_TARGET_TYPE (type) | |
4003 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
4004 | default: | |
4005 | return 0; | |
4006 | } | |
d2e4a39e | 4007 | } |
14f9c5c9 AS |
4008 | } |
4009 | ||
4c4b4cd2 | 4010 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
4011 | |
4012 | static int | |
d2e4a39e | 4013 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
4014 | { |
4015 | if (type == NULL) | |
4016 | return 0; | |
d2e4a39e AS |
4017 | else |
4018 | { | |
4019 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4020 | { |
4021 | case TYPE_CODE_INT: | |
4022 | case TYPE_CODE_RANGE: | |
4023 | case TYPE_CODE_ENUM: | |
4024 | case TYPE_CODE_FLT: | |
4025 | return 1; | |
4026 | default: | |
4027 | return 0; | |
4028 | } | |
d2e4a39e | 4029 | } |
14f9c5c9 AS |
4030 | } |
4031 | ||
4c4b4cd2 | 4032 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
4033 | |
4034 | static int | |
d2e4a39e | 4035 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
4036 | { |
4037 | if (type == NULL) | |
4038 | return 0; | |
d2e4a39e AS |
4039 | else |
4040 | { | |
4041 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4042 | { |
4043 | case TYPE_CODE_INT: | |
4044 | case TYPE_CODE_RANGE: | |
4045 | case TYPE_CODE_ENUM: | |
872f0337 | 4046 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
4047 | return 1; |
4048 | default: | |
4049 | return 0; | |
4050 | } | |
d2e4a39e | 4051 | } |
14f9c5c9 AS |
4052 | } |
4053 | ||
4c4b4cd2 PH |
4054 | /* Returns non-zero if OP with operands in the vector ARGS could be |
4055 | a user-defined function. Errs on the side of pre-defined operators | |
4056 | (i.e., result 0). */ | |
14f9c5c9 AS |
4057 | |
4058 | static int | |
d2e4a39e | 4059 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 4060 | { |
76a01679 | 4061 | struct type *type0 = |
df407dfe | 4062 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 4063 | struct type *type1 = |
df407dfe | 4064 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 4065 | |
4c4b4cd2 PH |
4066 | if (type0 == NULL) |
4067 | return 0; | |
4068 | ||
14f9c5c9 AS |
4069 | switch (op) |
4070 | { | |
4071 | default: | |
4072 | return 0; | |
4073 | ||
4074 | case BINOP_ADD: | |
4075 | case BINOP_SUB: | |
4076 | case BINOP_MUL: | |
4077 | case BINOP_DIV: | |
d2e4a39e | 4078 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
4079 | |
4080 | case BINOP_REM: | |
4081 | case BINOP_MOD: | |
4082 | case BINOP_BITWISE_AND: | |
4083 | case BINOP_BITWISE_IOR: | |
4084 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 4085 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
4086 | |
4087 | case BINOP_EQUAL: | |
4088 | case BINOP_NOTEQUAL: | |
4089 | case BINOP_LESS: | |
4090 | case BINOP_GTR: | |
4091 | case BINOP_LEQ: | |
4092 | case BINOP_GEQ: | |
d2e4a39e | 4093 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
4094 | |
4095 | case BINOP_CONCAT: | |
ee90b9ab | 4096 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
4097 | |
4098 | case BINOP_EXP: | |
d2e4a39e | 4099 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
4100 | |
4101 | case UNOP_NEG: | |
4102 | case UNOP_PLUS: | |
4103 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
4104 | case UNOP_ABS: |
4105 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
4106 | |
4107 | } | |
4108 | } | |
4109 | \f | |
4c4b4cd2 | 4110 | /* Renaming */ |
14f9c5c9 | 4111 | |
aeb5907d JB |
4112 | /* NOTES: |
4113 | ||
4114 | 1. In the following, we assume that a renaming type's name may | |
4115 | have an ___XD suffix. It would be nice if this went away at some | |
4116 | point. | |
4117 | 2. We handle both the (old) purely type-based representation of | |
4118 | renamings and the (new) variable-based encoding. At some point, | |
4119 | it is devoutly to be hoped that the former goes away | |
4120 | (FIXME: hilfinger-2007-07-09). | |
4121 | 3. Subprogram renamings are not implemented, although the XRS | |
4122 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
4123 | ||
4124 | /* If SYM encodes a renaming, | |
4125 | ||
4126 | <renaming> renames <renamed entity>, | |
4127 | ||
4128 | sets *LEN to the length of the renamed entity's name, | |
4129 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
4130 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 4131 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
4132 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
4133 | are undefined). Otherwise, returns a value indicating the category | |
4134 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
4135 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
4136 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
4137 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
4138 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
4139 | may be NULL, in which case they are not assigned. | |
4140 | ||
4141 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
4142 | ||
4143 | enum ada_renaming_category | |
4144 | ada_parse_renaming (struct symbol *sym, | |
4145 | const char **renamed_entity, int *len, | |
4146 | const char **renaming_expr) | |
4147 | { | |
4148 | enum ada_renaming_category kind; | |
4149 | const char *info; | |
4150 | const char *suffix; | |
4151 | ||
4152 | if (sym == NULL) | |
4153 | return ADA_NOT_RENAMING; | |
4154 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 4155 | { |
aeb5907d JB |
4156 | default: |
4157 | return ADA_NOT_RENAMING; | |
4158 | case LOC_TYPEDEF: | |
4159 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
4160 | renamed_entity, len, renaming_expr); | |
4161 | case LOC_LOCAL: | |
4162 | case LOC_STATIC: | |
4163 | case LOC_COMPUTED: | |
4164 | case LOC_OPTIMIZED_OUT: | |
4165 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
4166 | if (info == NULL) | |
4167 | return ADA_NOT_RENAMING; | |
4168 | switch (info[5]) | |
4169 | { | |
4170 | case '_': | |
4171 | kind = ADA_OBJECT_RENAMING; | |
4172 | info += 6; | |
4173 | break; | |
4174 | case 'E': | |
4175 | kind = ADA_EXCEPTION_RENAMING; | |
4176 | info += 7; | |
4177 | break; | |
4178 | case 'P': | |
4179 | kind = ADA_PACKAGE_RENAMING; | |
4180 | info += 7; | |
4181 | break; | |
4182 | case 'S': | |
4183 | kind = ADA_SUBPROGRAM_RENAMING; | |
4184 | info += 7; | |
4185 | break; | |
4186 | default: | |
4187 | return ADA_NOT_RENAMING; | |
4188 | } | |
14f9c5c9 | 4189 | } |
4c4b4cd2 | 4190 | |
aeb5907d JB |
4191 | if (renamed_entity != NULL) |
4192 | *renamed_entity = info; | |
4193 | suffix = strstr (info, "___XE"); | |
4194 | if (suffix == NULL || suffix == info) | |
4195 | return ADA_NOT_RENAMING; | |
4196 | if (len != NULL) | |
4197 | *len = strlen (info) - strlen (suffix); | |
4198 | suffix += 5; | |
4199 | if (renaming_expr != NULL) | |
4200 | *renaming_expr = suffix; | |
4201 | return kind; | |
4202 | } | |
4203 | ||
4204 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
4205 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
4206 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
4207 | ADA_NOT_RENAMING otherwise. */ | |
4208 | static enum ada_renaming_category | |
4209 | parse_old_style_renaming (struct type *type, | |
4210 | const char **renamed_entity, int *len, | |
4211 | const char **renaming_expr) | |
4212 | { | |
4213 | enum ada_renaming_category kind; | |
4214 | const char *name; | |
4215 | const char *info; | |
4216 | const char *suffix; | |
14f9c5c9 | 4217 | |
aeb5907d JB |
4218 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
4219 | || TYPE_NFIELDS (type) != 1) | |
4220 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 4221 | |
aeb5907d JB |
4222 | name = type_name_no_tag (type); |
4223 | if (name == NULL) | |
4224 | return ADA_NOT_RENAMING; | |
4225 | ||
4226 | name = strstr (name, "___XR"); | |
4227 | if (name == NULL) | |
4228 | return ADA_NOT_RENAMING; | |
4229 | switch (name[5]) | |
4230 | { | |
4231 | case '\0': | |
4232 | case '_': | |
4233 | kind = ADA_OBJECT_RENAMING; | |
4234 | break; | |
4235 | case 'E': | |
4236 | kind = ADA_EXCEPTION_RENAMING; | |
4237 | break; | |
4238 | case 'P': | |
4239 | kind = ADA_PACKAGE_RENAMING; | |
4240 | break; | |
4241 | case 'S': | |
4242 | kind = ADA_SUBPROGRAM_RENAMING; | |
4243 | break; | |
4244 | default: | |
4245 | return ADA_NOT_RENAMING; | |
4246 | } | |
14f9c5c9 | 4247 | |
aeb5907d JB |
4248 | info = TYPE_FIELD_NAME (type, 0); |
4249 | if (info == NULL) | |
4250 | return ADA_NOT_RENAMING; | |
4251 | if (renamed_entity != NULL) | |
4252 | *renamed_entity = info; | |
4253 | suffix = strstr (info, "___XE"); | |
4254 | if (renaming_expr != NULL) | |
4255 | *renaming_expr = suffix + 5; | |
4256 | if (suffix == NULL || suffix == info) | |
4257 | return ADA_NOT_RENAMING; | |
4258 | if (len != NULL) | |
4259 | *len = suffix - info; | |
4260 | return kind; | |
a5ee536b JB |
4261 | } |
4262 | ||
4263 | /* Compute the value of the given RENAMING_SYM, which is expected to | |
4264 | be a symbol encoding a renaming expression. BLOCK is the block | |
4265 | used to evaluate the renaming. */ | |
52ce6436 | 4266 | |
a5ee536b JB |
4267 | static struct value * |
4268 | ada_read_renaming_var_value (struct symbol *renaming_sym, | |
3977b71f | 4269 | const struct block *block) |
a5ee536b | 4270 | { |
bbc13ae3 | 4271 | const char *sym_name; |
a5ee536b JB |
4272 | struct expression *expr; |
4273 | struct value *value; | |
4274 | struct cleanup *old_chain = NULL; | |
4275 | ||
bbc13ae3 | 4276 | sym_name = SYMBOL_LINKAGE_NAME (renaming_sym); |
1bb9788d | 4277 | expr = parse_exp_1 (&sym_name, 0, block, 0); |
bbc13ae3 | 4278 | old_chain = make_cleanup (free_current_contents, &expr); |
a5ee536b JB |
4279 | value = evaluate_expression (expr); |
4280 | ||
4281 | do_cleanups (old_chain); | |
4282 | return value; | |
4283 | } | |
14f9c5c9 | 4284 | \f |
d2e4a39e | 4285 | |
4c4b4cd2 | 4286 | /* Evaluation: Function Calls */ |
14f9c5c9 | 4287 | |
4c4b4cd2 | 4288 | /* Return an lvalue containing the value VAL. This is the identity on |
40bc484c JB |
4289 | lvalues, and otherwise has the side-effect of allocating memory |
4290 | in the inferior where a copy of the value contents is copied. */ | |
14f9c5c9 | 4291 | |
d2e4a39e | 4292 | static struct value * |
40bc484c | 4293 | ensure_lval (struct value *val) |
14f9c5c9 | 4294 | { |
40bc484c JB |
4295 | if (VALUE_LVAL (val) == not_lval |
4296 | || VALUE_LVAL (val) == lval_internalvar) | |
c3e5cd34 | 4297 | { |
df407dfe | 4298 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
40bc484c JB |
4299 | const CORE_ADDR addr = |
4300 | value_as_long (value_allocate_space_in_inferior (len)); | |
c3e5cd34 | 4301 | |
40bc484c | 4302 | set_value_address (val, addr); |
a84a8a0d | 4303 | VALUE_LVAL (val) = lval_memory; |
40bc484c | 4304 | write_memory (addr, value_contents (val), len); |
c3e5cd34 | 4305 | } |
14f9c5c9 AS |
4306 | |
4307 | return val; | |
4308 | } | |
4309 | ||
4310 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4311 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4312 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4313 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4314 | |
a93c0eb6 | 4315 | struct value * |
40bc484c | 4316 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4317 | { |
df407dfe | 4318 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4319 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
4320 | struct type *formal_target = |
4321 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 4322 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
4323 | struct type *actual_target = |
4324 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 4325 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4326 | |
4c4b4cd2 | 4327 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 4328 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 4329 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
4330 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
4331 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 4332 | { |
a84a8a0d | 4333 | struct value *result; |
5b4ee69b | 4334 | |
14f9c5c9 | 4335 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 4336 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4337 | result = desc_data (actual); |
14f9c5c9 | 4338 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
4339 | { |
4340 | if (VALUE_LVAL (actual) != lval_memory) | |
4341 | { | |
4342 | struct value *val; | |
5b4ee69b | 4343 | |
df407dfe | 4344 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 4345 | val = allocate_value (actual_type); |
990a07ab | 4346 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 4347 | (char *) value_contents (actual), |
4c4b4cd2 | 4348 | TYPE_LENGTH (actual_type)); |
40bc484c | 4349 | actual = ensure_lval (val); |
4c4b4cd2 | 4350 | } |
a84a8a0d | 4351 | result = value_addr (actual); |
4c4b4cd2 | 4352 | } |
a84a8a0d JB |
4353 | else |
4354 | return actual; | |
b1af9e97 | 4355 | return value_cast_pointers (formal_type, result, 0); |
14f9c5c9 AS |
4356 | } |
4357 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
4358 | return ada_value_ind (actual); | |
8344af1e JB |
4359 | else if (ada_is_aligner_type (formal_type)) |
4360 | { | |
4361 | /* We need to turn this parameter into an aligner type | |
4362 | as well. */ | |
4363 | struct value *aligner = allocate_value (formal_type); | |
4364 | struct value *component = ada_value_struct_elt (aligner, "F", 0); | |
4365 | ||
4366 | value_assign_to_component (aligner, component, actual); | |
4367 | return aligner; | |
4368 | } | |
14f9c5c9 AS |
4369 | |
4370 | return actual; | |
4371 | } | |
4372 | ||
438c98a1 JB |
4373 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4374 | type TYPE. This is usually an inefficient no-op except on some targets | |
4375 | (such as AVR) where the representation of a pointer and an address | |
4376 | differs. */ | |
4377 | ||
4378 | static CORE_ADDR | |
4379 | value_pointer (struct value *value, struct type *type) | |
4380 | { | |
4381 | struct gdbarch *gdbarch = get_type_arch (type); | |
4382 | unsigned len = TYPE_LENGTH (type); | |
4383 | gdb_byte *buf = alloca (len); | |
4384 | CORE_ADDR addr; | |
4385 | ||
4386 | addr = value_address (value); | |
4387 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
4388 | addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); | |
4389 | return addr; | |
4390 | } | |
4391 | ||
14f9c5c9 | 4392 | |
4c4b4cd2 PH |
4393 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4394 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4395 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4396 | to-descriptor type rather than a descriptor type), a struct value * |
4397 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4398 | |
d2e4a39e | 4399 | static struct value * |
40bc484c | 4400 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4401 | { |
d2e4a39e AS |
4402 | struct type *bounds_type = desc_bounds_type (type); |
4403 | struct type *desc_type = desc_base_type (type); | |
4404 | struct value *descriptor = allocate_value (desc_type); | |
4405 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4406 | int i; |
d2e4a39e | 4407 | |
0963b4bd MS |
4408 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4409 | i > 0; i -= 1) | |
14f9c5c9 | 4410 | { |
19f220c3 JK |
4411 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4412 | ada_array_bound (arr, i, 0), | |
4413 | desc_bound_bitpos (bounds_type, i, 0), | |
4414 | desc_bound_bitsize (bounds_type, i, 0)); | |
4415 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4416 | ada_array_bound (arr, i, 1), | |
4417 | desc_bound_bitpos (bounds_type, i, 1), | |
4418 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4419 | } |
d2e4a39e | 4420 | |
40bc484c | 4421 | bounds = ensure_lval (bounds); |
d2e4a39e | 4422 | |
19f220c3 JK |
4423 | modify_field (value_type (descriptor), |
4424 | value_contents_writeable (descriptor), | |
4425 | value_pointer (ensure_lval (arr), | |
4426 | TYPE_FIELD_TYPE (desc_type, 0)), | |
4427 | fat_pntr_data_bitpos (desc_type), | |
4428 | fat_pntr_data_bitsize (desc_type)); | |
4429 | ||
4430 | modify_field (value_type (descriptor), | |
4431 | value_contents_writeable (descriptor), | |
4432 | value_pointer (bounds, | |
4433 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4434 | fat_pntr_bounds_bitpos (desc_type), | |
4435 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4436 | |
40bc484c | 4437 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4438 | |
4439 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4440 | return value_addr (descriptor); | |
4441 | else | |
4442 | return descriptor; | |
4443 | } | |
14f9c5c9 | 4444 | \f |
3d9434b5 JB |
4445 | /* Symbol Cache Module */ |
4446 | ||
3d9434b5 | 4447 | /* Performance measurements made as of 2010-01-15 indicate that |
ee01b665 | 4448 | this cache does bring some noticeable improvements. Depending |
3d9434b5 JB |
4449 | on the type of entity being printed, the cache can make it as much |
4450 | as an order of magnitude faster than without it. | |
4451 | ||
4452 | The descriptive type DWARF extension has significantly reduced | |
4453 | the need for this cache, at least when DWARF is being used. However, | |
4454 | even in this case, some expensive name-based symbol searches are still | |
4455 | sometimes necessary - to find an XVZ variable, mostly. */ | |
4456 | ||
ee01b665 | 4457 | /* Initialize the contents of SYM_CACHE. */ |
3d9434b5 | 4458 | |
ee01b665 JB |
4459 | static void |
4460 | ada_init_symbol_cache (struct ada_symbol_cache *sym_cache) | |
4461 | { | |
4462 | obstack_init (&sym_cache->cache_space); | |
4463 | memset (sym_cache->root, '\000', sizeof (sym_cache->root)); | |
4464 | } | |
3d9434b5 | 4465 | |
ee01b665 JB |
4466 | /* Free the memory used by SYM_CACHE. */ |
4467 | ||
4468 | static void | |
4469 | ada_free_symbol_cache (struct ada_symbol_cache *sym_cache) | |
3d9434b5 | 4470 | { |
ee01b665 JB |
4471 | obstack_free (&sym_cache->cache_space, NULL); |
4472 | xfree (sym_cache); | |
4473 | } | |
3d9434b5 | 4474 | |
ee01b665 JB |
4475 | /* Return the symbol cache associated to the given program space PSPACE. |
4476 | If not allocated for this PSPACE yet, allocate and initialize one. */ | |
3d9434b5 | 4477 | |
ee01b665 JB |
4478 | static struct ada_symbol_cache * |
4479 | ada_get_symbol_cache (struct program_space *pspace) | |
4480 | { | |
4481 | struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace); | |
ee01b665 | 4482 | |
66c168ae | 4483 | if (pspace_data->sym_cache == NULL) |
ee01b665 | 4484 | { |
66c168ae JB |
4485 | pspace_data->sym_cache = XCNEW (struct ada_symbol_cache); |
4486 | ada_init_symbol_cache (pspace_data->sym_cache); | |
ee01b665 JB |
4487 | } |
4488 | ||
66c168ae | 4489 | return pspace_data->sym_cache; |
ee01b665 | 4490 | } |
3d9434b5 JB |
4491 | |
4492 | /* Clear all entries from the symbol cache. */ | |
4493 | ||
4494 | static void | |
4495 | ada_clear_symbol_cache (void) | |
4496 | { | |
ee01b665 JB |
4497 | struct ada_symbol_cache *sym_cache |
4498 | = ada_get_symbol_cache (current_program_space); | |
4499 | ||
4500 | obstack_free (&sym_cache->cache_space, NULL); | |
4501 | ada_init_symbol_cache (sym_cache); | |
3d9434b5 JB |
4502 | } |
4503 | ||
fe978cb0 | 4504 | /* Search our cache for an entry matching NAME and DOMAIN. |
3d9434b5 JB |
4505 | Return it if found, or NULL otherwise. */ |
4506 | ||
4507 | static struct cache_entry ** | |
fe978cb0 | 4508 | find_entry (const char *name, domain_enum domain) |
3d9434b5 | 4509 | { |
ee01b665 JB |
4510 | struct ada_symbol_cache *sym_cache |
4511 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4512 | int h = msymbol_hash (name) % HASH_SIZE; |
4513 | struct cache_entry **e; | |
4514 | ||
ee01b665 | 4515 | for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next) |
3d9434b5 | 4516 | { |
fe978cb0 | 4517 | if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0) |
3d9434b5 JB |
4518 | return e; |
4519 | } | |
4520 | return NULL; | |
4521 | } | |
4522 | ||
fe978cb0 | 4523 | /* Search the symbol cache for an entry matching NAME and DOMAIN. |
3d9434b5 JB |
4524 | Return 1 if found, 0 otherwise. |
4525 | ||
4526 | If an entry was found and SYM is not NULL, set *SYM to the entry's | |
4527 | SYM. Same principle for BLOCK if not NULL. */ | |
96d887e8 | 4528 | |
96d887e8 | 4529 | static int |
fe978cb0 | 4530 | lookup_cached_symbol (const char *name, domain_enum domain, |
f0c5f9b2 | 4531 | struct symbol **sym, const struct block **block) |
96d887e8 | 4532 | { |
fe978cb0 | 4533 | struct cache_entry **e = find_entry (name, domain); |
3d9434b5 JB |
4534 | |
4535 | if (e == NULL) | |
4536 | return 0; | |
4537 | if (sym != NULL) | |
4538 | *sym = (*e)->sym; | |
4539 | if (block != NULL) | |
4540 | *block = (*e)->block; | |
4541 | return 1; | |
96d887e8 PH |
4542 | } |
4543 | ||
3d9434b5 | 4544 | /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME |
fe978cb0 | 4545 | in domain DOMAIN, save this result in our symbol cache. */ |
3d9434b5 | 4546 | |
96d887e8 | 4547 | static void |
fe978cb0 | 4548 | cache_symbol (const char *name, domain_enum domain, struct symbol *sym, |
270140bd | 4549 | const struct block *block) |
96d887e8 | 4550 | { |
ee01b665 JB |
4551 | struct ada_symbol_cache *sym_cache |
4552 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4553 | int h; |
4554 | char *copy; | |
4555 | struct cache_entry *e; | |
4556 | ||
1994afbf DE |
4557 | /* Symbols for builtin types don't have a block. |
4558 | For now don't cache such symbols. */ | |
4559 | if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym)) | |
4560 | return; | |
4561 | ||
3d9434b5 JB |
4562 | /* If the symbol is a local symbol, then do not cache it, as a search |
4563 | for that symbol depends on the context. To determine whether | |
4564 | the symbol is local or not, we check the block where we found it | |
4565 | against the global and static blocks of its associated symtab. */ | |
4566 | if (sym | |
08be3fe3 | 4567 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)), |
439247b6 | 4568 | GLOBAL_BLOCK) != block |
08be3fe3 | 4569 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)), |
439247b6 | 4570 | STATIC_BLOCK) != block) |
3d9434b5 JB |
4571 | return; |
4572 | ||
4573 | h = msymbol_hash (name) % HASH_SIZE; | |
ee01b665 JB |
4574 | e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space, |
4575 | sizeof (*e)); | |
4576 | e->next = sym_cache->root[h]; | |
4577 | sym_cache->root[h] = e; | |
4578 | e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1); | |
3d9434b5 JB |
4579 | strcpy (copy, name); |
4580 | e->sym = sym; | |
fe978cb0 | 4581 | e->domain = domain; |
3d9434b5 | 4582 | e->block = block; |
96d887e8 | 4583 | } |
4c4b4cd2 PH |
4584 | \f |
4585 | /* Symbol Lookup */ | |
4586 | ||
c0431670 JB |
4587 | /* Return nonzero if wild matching should be used when searching for |
4588 | all symbols matching LOOKUP_NAME. | |
4589 | ||
4590 | LOOKUP_NAME is expected to be a symbol name after transformation | |
4591 | for Ada lookups (see ada_name_for_lookup). */ | |
4592 | ||
4593 | static int | |
4594 | should_use_wild_match (const char *lookup_name) | |
4595 | { | |
4596 | return (strstr (lookup_name, "__") == NULL); | |
4597 | } | |
4598 | ||
4c4b4cd2 PH |
4599 | /* Return the result of a standard (literal, C-like) lookup of NAME in |
4600 | given DOMAIN, visible from lexical block BLOCK. */ | |
4601 | ||
4602 | static struct symbol * | |
4603 | standard_lookup (const char *name, const struct block *block, | |
4604 | domain_enum domain) | |
4605 | { | |
acbd605d | 4606 | /* Initialize it just to avoid a GCC false warning. */ |
d12307c1 | 4607 | struct block_symbol sym = {NULL, NULL}; |
4c4b4cd2 | 4608 | |
d12307c1 PMR |
4609 | if (lookup_cached_symbol (name, domain, &sym.symbol, NULL)) |
4610 | return sym.symbol; | |
2570f2b7 | 4611 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
d12307c1 PMR |
4612 | cache_symbol (name, domain, sym.symbol, sym.block); |
4613 | return sym.symbol; | |
4c4b4cd2 PH |
4614 | } |
4615 | ||
4616 | ||
4617 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4618 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4619 | since they contend in overloading in the same way. */ | |
4620 | static int | |
d12307c1 | 4621 | is_nonfunction (struct block_symbol syms[], int n) |
4c4b4cd2 PH |
4622 | { |
4623 | int i; | |
4624 | ||
4625 | for (i = 0; i < n; i += 1) | |
d12307c1 PMR |
4626 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC |
4627 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM | |
4628 | || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST)) | |
14f9c5c9 AS |
4629 | return 1; |
4630 | ||
4631 | return 0; | |
4632 | } | |
4633 | ||
4634 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4635 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4636 | |
4637 | static int | |
d2e4a39e | 4638 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4639 | { |
d2e4a39e | 4640 | if (type0 == type1) |
14f9c5c9 | 4641 | return 1; |
d2e4a39e | 4642 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4643 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4644 | return 0; | |
d2e4a39e | 4645 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4646 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4647 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4648 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4649 | return 1; |
d2e4a39e | 4650 | |
14f9c5c9 AS |
4651 | return 0; |
4652 | } | |
4653 | ||
4654 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4655 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4656 | |
4657 | static int | |
d2e4a39e | 4658 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4659 | { |
4660 | if (sym0 == sym1) | |
4661 | return 1; | |
176620f1 | 4662 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4663 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4664 | return 0; | |
4665 | ||
d2e4a39e | 4666 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4667 | { |
4668 | case LOC_UNDEF: | |
4669 | return 1; | |
4670 | case LOC_TYPEDEF: | |
4671 | { | |
4c4b4cd2 PH |
4672 | struct type *type0 = SYMBOL_TYPE (sym0); |
4673 | struct type *type1 = SYMBOL_TYPE (sym1); | |
0d5cff50 DE |
4674 | const char *name0 = SYMBOL_LINKAGE_NAME (sym0); |
4675 | const char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4c4b4cd2 | 4676 | int len0 = strlen (name0); |
5b4ee69b | 4677 | |
4c4b4cd2 PH |
4678 | return |
4679 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4680 | && (equiv_types (type0, type1) | |
4681 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
61012eef | 4682 | && startswith (name1 + len0, "___XV"))); |
14f9c5c9 AS |
4683 | } |
4684 | case LOC_CONST: | |
4685 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4686 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4687 | default: |
4688 | return 0; | |
14f9c5c9 AS |
4689 | } |
4690 | } | |
4691 | ||
d12307c1 | 4692 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol |
4c4b4cd2 | 4693 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ |
14f9c5c9 AS |
4694 | |
4695 | static void | |
76a01679 JB |
4696 | add_defn_to_vec (struct obstack *obstackp, |
4697 | struct symbol *sym, | |
f0c5f9b2 | 4698 | const struct block *block) |
14f9c5c9 AS |
4699 | { |
4700 | int i; | |
d12307c1 | 4701 | struct block_symbol *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4702 | |
529cad9c PH |
4703 | /* Do not try to complete stub types, as the debugger is probably |
4704 | already scanning all symbols matching a certain name at the | |
4705 | time when this function is called. Trying to replace the stub | |
4706 | type by its associated full type will cause us to restart a scan | |
4707 | which may lead to an infinite recursion. Instead, the client | |
4708 | collecting the matching symbols will end up collecting several | |
4709 | matches, with at least one of them complete. It can then filter | |
4710 | out the stub ones if needed. */ | |
4711 | ||
4c4b4cd2 PH |
4712 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4713 | { | |
d12307c1 | 4714 | if (lesseq_defined_than (sym, prevDefns[i].symbol)) |
4c4b4cd2 | 4715 | return; |
d12307c1 | 4716 | else if (lesseq_defined_than (prevDefns[i].symbol, sym)) |
4c4b4cd2 | 4717 | { |
d12307c1 | 4718 | prevDefns[i].symbol = sym; |
4c4b4cd2 | 4719 | prevDefns[i].block = block; |
4c4b4cd2 | 4720 | return; |
76a01679 | 4721 | } |
4c4b4cd2 PH |
4722 | } |
4723 | ||
4724 | { | |
d12307c1 | 4725 | struct block_symbol info; |
4c4b4cd2 | 4726 | |
d12307c1 | 4727 | info.symbol = sym; |
4c4b4cd2 | 4728 | info.block = block; |
d12307c1 | 4729 | obstack_grow (obstackp, &info, sizeof (struct block_symbol)); |
4c4b4cd2 PH |
4730 | } |
4731 | } | |
4732 | ||
d12307c1 PMR |
4733 | /* Number of block_symbol structures currently collected in current vector in |
4734 | OBSTACKP. */ | |
4c4b4cd2 | 4735 | |
76a01679 JB |
4736 | static int |
4737 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 | 4738 | { |
d12307c1 | 4739 | return obstack_object_size (obstackp) / sizeof (struct block_symbol); |
4c4b4cd2 PH |
4740 | } |
4741 | ||
d12307c1 PMR |
4742 | /* Vector of block_symbol structures currently collected in current vector in |
4743 | OBSTACKP. If FINISH, close off the vector and return its final address. */ | |
4c4b4cd2 | 4744 | |
d12307c1 | 4745 | static struct block_symbol * |
4c4b4cd2 PH |
4746 | defns_collected (struct obstack *obstackp, int finish) |
4747 | { | |
4748 | if (finish) | |
4749 | return obstack_finish (obstackp); | |
4750 | else | |
d12307c1 | 4751 | return (struct block_symbol *) obstack_base (obstackp); |
4c4b4cd2 PH |
4752 | } |
4753 | ||
7c7b6655 TT |
4754 | /* Return a bound minimal symbol matching NAME according to Ada |
4755 | decoding rules. Returns an invalid symbol if there is no such | |
4756 | minimal symbol. Names prefixed with "standard__" are handled | |
4757 | specially: "standard__" is first stripped off, and only static and | |
4758 | global symbols are searched. */ | |
4c4b4cd2 | 4759 | |
7c7b6655 | 4760 | struct bound_minimal_symbol |
96d887e8 | 4761 | ada_lookup_simple_minsym (const char *name) |
4c4b4cd2 | 4762 | { |
7c7b6655 | 4763 | struct bound_minimal_symbol result; |
4c4b4cd2 | 4764 | struct objfile *objfile; |
96d887e8 | 4765 | struct minimal_symbol *msymbol; |
dc4024cd | 4766 | const int wild_match_p = should_use_wild_match (name); |
4c4b4cd2 | 4767 | |
7c7b6655 TT |
4768 | memset (&result, 0, sizeof (result)); |
4769 | ||
c0431670 JB |
4770 | /* Special case: If the user specifies a symbol name inside package |
4771 | Standard, do a non-wild matching of the symbol name without | |
4772 | the "standard__" prefix. This was primarily introduced in order | |
4773 | to allow the user to specifically access the standard exceptions | |
4774 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4775 | is ambiguous (due to the user defining its own Constraint_Error | |
4776 | entity inside its program). */ | |
61012eef | 4777 | if (startswith (name, "standard__")) |
c0431670 | 4778 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4779 | |
96d887e8 PH |
4780 | ALL_MSYMBOLS (objfile, msymbol) |
4781 | { | |
efd66ac6 | 4782 | if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p) |
96d887e8 | 4783 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
7c7b6655 TT |
4784 | { |
4785 | result.minsym = msymbol; | |
4786 | result.objfile = objfile; | |
4787 | break; | |
4788 | } | |
96d887e8 | 4789 | } |
4c4b4cd2 | 4790 | |
7c7b6655 | 4791 | return result; |
96d887e8 | 4792 | } |
4c4b4cd2 | 4793 | |
96d887e8 PH |
4794 | /* For all subprograms that statically enclose the subprogram of the |
4795 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4796 | and their blocks to the list of data in OBSTACKP, as for | |
48b78332 JB |
4797 | ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME |
4798 | with a wildcard prefix. */ | |
4c4b4cd2 | 4799 | |
96d887e8 PH |
4800 | static void |
4801 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
fe978cb0 | 4802 | const char *name, domain_enum domain, |
48b78332 | 4803 | int wild_match_p) |
96d887e8 | 4804 | { |
96d887e8 | 4805 | } |
14f9c5c9 | 4806 | |
96d887e8 PH |
4807 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4808 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4809 | |
96d887e8 PH |
4810 | static int |
4811 | is_nondebugging_type (struct type *type) | |
4812 | { | |
0d5cff50 | 4813 | const char *name = ada_type_name (type); |
5b4ee69b | 4814 | |
96d887e8 PH |
4815 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4816 | } | |
4c4b4cd2 | 4817 | |
8f17729f JB |
4818 | /* Return nonzero if TYPE1 and TYPE2 are two enumeration types |
4819 | that are deemed "identical" for practical purposes. | |
4820 | ||
4821 | This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM | |
4822 | types and that their number of enumerals is identical (in other | |
4823 | words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */ | |
4824 | ||
4825 | static int | |
4826 | ada_identical_enum_types_p (struct type *type1, struct type *type2) | |
4827 | { | |
4828 | int i; | |
4829 | ||
4830 | /* The heuristic we use here is fairly conservative. We consider | |
4831 | that 2 enumerate types are identical if they have the same | |
4832 | number of enumerals and that all enumerals have the same | |
4833 | underlying value and name. */ | |
4834 | ||
4835 | /* All enums in the type should have an identical underlying value. */ | |
4836 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
14e75d8e | 4837 | if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i)) |
8f17729f JB |
4838 | return 0; |
4839 | ||
4840 | /* All enumerals should also have the same name (modulo any numerical | |
4841 | suffix). */ | |
4842 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
4843 | { | |
0d5cff50 DE |
4844 | const char *name_1 = TYPE_FIELD_NAME (type1, i); |
4845 | const char *name_2 = TYPE_FIELD_NAME (type2, i); | |
8f17729f JB |
4846 | int len_1 = strlen (name_1); |
4847 | int len_2 = strlen (name_2); | |
4848 | ||
4849 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1); | |
4850 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2); | |
4851 | if (len_1 != len_2 | |
4852 | || strncmp (TYPE_FIELD_NAME (type1, i), | |
4853 | TYPE_FIELD_NAME (type2, i), | |
4854 | len_1) != 0) | |
4855 | return 0; | |
4856 | } | |
4857 | ||
4858 | return 1; | |
4859 | } | |
4860 | ||
4861 | /* Return nonzero if all the symbols in SYMS are all enumeral symbols | |
4862 | that are deemed "identical" for practical purposes. Sometimes, | |
4863 | enumerals are not strictly identical, but their types are so similar | |
4864 | that they can be considered identical. | |
4865 | ||
4866 | For instance, consider the following code: | |
4867 | ||
4868 | type Color is (Black, Red, Green, Blue, White); | |
4869 | type RGB_Color is new Color range Red .. Blue; | |
4870 | ||
4871 | Type RGB_Color is a subrange of an implicit type which is a copy | |
4872 | of type Color. If we call that implicit type RGB_ColorB ("B" is | |
4873 | for "Base Type"), then type RGB_ColorB is a copy of type Color. | |
4874 | As a result, when an expression references any of the enumeral | |
4875 | by name (Eg. "print green"), the expression is technically | |
4876 | ambiguous and the user should be asked to disambiguate. But | |
4877 | doing so would only hinder the user, since it wouldn't matter | |
4878 | what choice he makes, the outcome would always be the same. | |
4879 | So, for practical purposes, we consider them as the same. */ | |
4880 | ||
4881 | static int | |
d12307c1 | 4882 | symbols_are_identical_enums (struct block_symbol *syms, int nsyms) |
8f17729f JB |
4883 | { |
4884 | int i; | |
4885 | ||
4886 | /* Before performing a thorough comparison check of each type, | |
4887 | we perform a series of inexpensive checks. We expect that these | |
4888 | checks will quickly fail in the vast majority of cases, and thus | |
4889 | help prevent the unnecessary use of a more expensive comparison. | |
4890 | Said comparison also expects us to make some of these checks | |
4891 | (see ada_identical_enum_types_p). */ | |
4892 | ||
4893 | /* Quick check: All symbols should have an enum type. */ | |
4894 | for (i = 0; i < nsyms; i++) | |
d12307c1 | 4895 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM) |
8f17729f JB |
4896 | return 0; |
4897 | ||
4898 | /* Quick check: They should all have the same value. */ | |
4899 | for (i = 1; i < nsyms; i++) | |
d12307c1 | 4900 | if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol)) |
8f17729f JB |
4901 | return 0; |
4902 | ||
4903 | /* Quick check: They should all have the same number of enumerals. */ | |
4904 | for (i = 1; i < nsyms; i++) | |
d12307c1 PMR |
4905 | if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol)) |
4906 | != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol))) | |
8f17729f JB |
4907 | return 0; |
4908 | ||
4909 | /* All the sanity checks passed, so we might have a set of | |
4910 | identical enumeration types. Perform a more complete | |
4911 | comparison of the type of each symbol. */ | |
4912 | for (i = 1; i < nsyms; i++) | |
d12307c1 PMR |
4913 | if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol), |
4914 | SYMBOL_TYPE (syms[0].symbol))) | |
8f17729f JB |
4915 | return 0; |
4916 | ||
4917 | return 1; | |
4918 | } | |
4919 | ||
96d887e8 PH |
4920 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4921 | duplicate other symbols in the list (The only case I know of where | |
4922 | this happens is when object files containing stabs-in-ecoff are | |
4923 | linked with files containing ordinary ecoff debugging symbols (or no | |
4924 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4925 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4926 | |
96d887e8 | 4927 | static int |
d12307c1 | 4928 | remove_extra_symbols (struct block_symbol *syms, int nsyms) |
96d887e8 PH |
4929 | { |
4930 | int i, j; | |
4c4b4cd2 | 4931 | |
8f17729f JB |
4932 | /* We should never be called with less than 2 symbols, as there |
4933 | cannot be any extra symbol in that case. But it's easy to | |
4934 | handle, since we have nothing to do in that case. */ | |
4935 | if (nsyms < 2) | |
4936 | return nsyms; | |
4937 | ||
96d887e8 PH |
4938 | i = 0; |
4939 | while (i < nsyms) | |
4940 | { | |
a35ddb44 | 4941 | int remove_p = 0; |
339c13b6 JB |
4942 | |
4943 | /* If two symbols have the same name and one of them is a stub type, | |
4944 | the get rid of the stub. */ | |
4945 | ||
d12307c1 PMR |
4946 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol)) |
4947 | && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL) | |
339c13b6 JB |
4948 | { |
4949 | for (j = 0; j < nsyms; j++) | |
4950 | { | |
4951 | if (j != i | |
d12307c1 PMR |
4952 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol)) |
4953 | && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL | |
4954 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol), | |
4955 | SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0) | |
a35ddb44 | 4956 | remove_p = 1; |
339c13b6 JB |
4957 | } |
4958 | } | |
4959 | ||
4960 | /* Two symbols with the same name, same class and same address | |
4961 | should be identical. */ | |
4962 | ||
d12307c1 PMR |
4963 | else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL |
4964 | && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC | |
4965 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol))) | |
96d887e8 PH |
4966 | { |
4967 | for (j = 0; j < nsyms; j += 1) | |
4968 | { | |
4969 | if (i != j | |
d12307c1 PMR |
4970 | && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL |
4971 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol), | |
4972 | SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0 | |
4973 | && SYMBOL_CLASS (syms[i].symbol) | |
4974 | == SYMBOL_CLASS (syms[j].symbol) | |
4975 | && SYMBOL_VALUE_ADDRESS (syms[i].symbol) | |
4976 | == SYMBOL_VALUE_ADDRESS (syms[j].symbol)) | |
a35ddb44 | 4977 | remove_p = 1; |
4c4b4cd2 | 4978 | } |
4c4b4cd2 | 4979 | } |
339c13b6 | 4980 | |
a35ddb44 | 4981 | if (remove_p) |
339c13b6 JB |
4982 | { |
4983 | for (j = i + 1; j < nsyms; j += 1) | |
4984 | syms[j - 1] = syms[j]; | |
4985 | nsyms -= 1; | |
4986 | } | |
4987 | ||
96d887e8 | 4988 | i += 1; |
14f9c5c9 | 4989 | } |
8f17729f JB |
4990 | |
4991 | /* If all the remaining symbols are identical enumerals, then | |
4992 | just keep the first one and discard the rest. | |
4993 | ||
4994 | Unlike what we did previously, we do not discard any entry | |
4995 | unless they are ALL identical. This is because the symbol | |
4996 | comparison is not a strict comparison, but rather a practical | |
4997 | comparison. If all symbols are considered identical, then | |
4998 | we can just go ahead and use the first one and discard the rest. | |
4999 | But if we cannot reduce the list to a single element, we have | |
5000 | to ask the user to disambiguate anyways. And if we have to | |
5001 | present a multiple-choice menu, it's less confusing if the list | |
5002 | isn't missing some choices that were identical and yet distinct. */ | |
5003 | if (symbols_are_identical_enums (syms, nsyms)) | |
5004 | nsyms = 1; | |
5005 | ||
96d887e8 | 5006 | return nsyms; |
14f9c5c9 AS |
5007 | } |
5008 | ||
96d887e8 PH |
5009 | /* Given a type that corresponds to a renaming entity, use the type name |
5010 | to extract the scope (package name or function name, fully qualified, | |
5011 | and following the GNAT encoding convention) where this renaming has been | |
5012 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 5013 | |
96d887e8 PH |
5014 | static char * |
5015 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 5016 | { |
96d887e8 | 5017 | /* The renaming types adhere to the following convention: |
0963b4bd | 5018 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
5019 | So, to extract the scope, we search for the "___XR" extension, |
5020 | and then backtrack until we find the first "__". */ | |
76a01679 | 5021 | |
96d887e8 PH |
5022 | const char *name = type_name_no_tag (renaming_type); |
5023 | char *suffix = strstr (name, "___XR"); | |
5024 | char *last; | |
5025 | int scope_len; | |
5026 | char *scope; | |
14f9c5c9 | 5027 | |
96d887e8 PH |
5028 | /* Now, backtrack a bit until we find the first "__". Start looking |
5029 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 5030 | |
96d887e8 PH |
5031 | for (last = suffix - 3; last > name; last--) |
5032 | if (last[0] == '_' && last[1] == '_') | |
5033 | break; | |
76a01679 | 5034 | |
96d887e8 | 5035 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 5036 | |
96d887e8 PH |
5037 | scope_len = last - name; |
5038 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 5039 | |
96d887e8 PH |
5040 | strncpy (scope, name, scope_len); |
5041 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 5042 | |
96d887e8 | 5043 | return scope; |
4c4b4cd2 PH |
5044 | } |
5045 | ||
96d887e8 | 5046 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 5047 | |
96d887e8 PH |
5048 | static int |
5049 | is_package_name (const char *name) | |
4c4b4cd2 | 5050 | { |
96d887e8 PH |
5051 | /* Here, We take advantage of the fact that no symbols are generated |
5052 | for packages, while symbols are generated for each function. | |
5053 | So the condition for NAME represent a package becomes equivalent | |
5054 | to NAME not existing in our list of symbols. There is only one | |
5055 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 5056 | |
96d887e8 | 5057 | char *fun_name; |
76a01679 | 5058 | |
96d887e8 PH |
5059 | /* If it is a function that has not been defined at library level, |
5060 | then we should be able to look it up in the symbols. */ | |
5061 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
5062 | return 0; | |
14f9c5c9 | 5063 | |
96d887e8 PH |
5064 | /* Library-level function names start with "_ada_". See if function |
5065 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 5066 | |
96d887e8 | 5067 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 5068 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
5069 | if (strstr (name, "__") != NULL) |
5070 | return 0; | |
4c4b4cd2 | 5071 | |
b435e160 | 5072 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 5073 | |
96d887e8 PH |
5074 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
5075 | } | |
14f9c5c9 | 5076 | |
96d887e8 | 5077 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 5078 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 5079 | |
96d887e8 | 5080 | static int |
0d5cff50 | 5081 | old_renaming_is_invisible (const struct symbol *sym, const char *function_name) |
96d887e8 | 5082 | { |
aeb5907d | 5083 | char *scope; |
1509e573 | 5084 | struct cleanup *old_chain; |
aeb5907d JB |
5085 | |
5086 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
5087 | return 0; | |
5088 | ||
5089 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
1509e573 | 5090 | old_chain = make_cleanup (xfree, scope); |
14f9c5c9 | 5091 | |
96d887e8 PH |
5092 | /* If the rename has been defined in a package, then it is visible. */ |
5093 | if (is_package_name (scope)) | |
1509e573 JB |
5094 | { |
5095 | do_cleanups (old_chain); | |
5096 | return 0; | |
5097 | } | |
14f9c5c9 | 5098 | |
96d887e8 PH |
5099 | /* Check that the rename is in the current function scope by checking |
5100 | that its name starts with SCOPE. */ | |
76a01679 | 5101 | |
96d887e8 PH |
5102 | /* If the function name starts with "_ada_", it means that it is |
5103 | a library-level function. Strip this prefix before doing the | |
5104 | comparison, as the encoding for the renaming does not contain | |
5105 | this prefix. */ | |
61012eef | 5106 | if (startswith (function_name, "_ada_")) |
96d887e8 | 5107 | function_name += 5; |
f26caa11 | 5108 | |
1509e573 | 5109 | { |
61012eef | 5110 | int is_invisible = !startswith (function_name, scope); |
1509e573 JB |
5111 | |
5112 | do_cleanups (old_chain); | |
5113 | return is_invisible; | |
5114 | } | |
f26caa11 PH |
5115 | } |
5116 | ||
aeb5907d JB |
5117 | /* Remove entries from SYMS that corresponds to a renaming entity that |
5118 | is not visible from the function associated with CURRENT_BLOCK or | |
5119 | that is superfluous due to the presence of more specific renaming | |
5120 | information. Places surviving symbols in the initial entries of | |
5121 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
5122 | |
5123 | Rationale: | |
aeb5907d JB |
5124 | First, in cases where an object renaming is implemented as a |
5125 | reference variable, GNAT may produce both the actual reference | |
5126 | variable and the renaming encoding. In this case, we discard the | |
5127 | latter. | |
5128 | ||
5129 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
5130 | entity. Unfortunately, STABS currently does not support the definition |
5131 | of types that are local to a given lexical block, so all renamings types | |
5132 | are emitted at library level. As a consequence, if an application | |
5133 | contains two renaming entities using the same name, and a user tries to | |
5134 | print the value of one of these entities, the result of the ada symbol | |
5135 | lookup will also contain the wrong renaming type. | |
f26caa11 | 5136 | |
96d887e8 PH |
5137 | This function partially covers for this limitation by attempting to |
5138 | remove from the SYMS list renaming symbols that should be visible | |
5139 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
5140 | method with the current information available. The implementation | |
5141 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
5142 | ||
5143 | - When the user tries to print a rename in a function while there | |
5144 | is another rename entity defined in a package: Normally, the | |
5145 | rename in the function has precedence over the rename in the | |
5146 | package, so the latter should be removed from the list. This is | |
5147 | currently not the case. | |
5148 | ||
5149 | - This function will incorrectly remove valid renames if | |
5150 | the CURRENT_BLOCK corresponds to a function which symbol name | |
5151 | has been changed by an "Export" pragma. As a consequence, | |
5152 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 5153 | |
14f9c5c9 | 5154 | static int |
d12307c1 | 5155 | remove_irrelevant_renamings (struct block_symbol *syms, |
aeb5907d | 5156 | int nsyms, const struct block *current_block) |
4c4b4cd2 PH |
5157 | { |
5158 | struct symbol *current_function; | |
0d5cff50 | 5159 | const char *current_function_name; |
4c4b4cd2 | 5160 | int i; |
aeb5907d JB |
5161 | int is_new_style_renaming; |
5162 | ||
5163 | /* If there is both a renaming foo___XR... encoded as a variable and | |
5164 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 5165 | First, zero out such symbols, then compress. */ |
aeb5907d JB |
5166 | is_new_style_renaming = 0; |
5167 | for (i = 0; i < nsyms; i += 1) | |
5168 | { | |
d12307c1 | 5169 | struct symbol *sym = syms[i].symbol; |
270140bd | 5170 | const struct block *block = syms[i].block; |
aeb5907d JB |
5171 | const char *name; |
5172 | const char *suffix; | |
5173 | ||
5174 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
5175 | continue; | |
5176 | name = SYMBOL_LINKAGE_NAME (sym); | |
5177 | suffix = strstr (name, "___XR"); | |
5178 | ||
5179 | if (suffix != NULL) | |
5180 | { | |
5181 | int name_len = suffix - name; | |
5182 | int j; | |
5b4ee69b | 5183 | |
aeb5907d JB |
5184 | is_new_style_renaming = 1; |
5185 | for (j = 0; j < nsyms; j += 1) | |
d12307c1 PMR |
5186 | if (i != j && syms[j].symbol != NULL |
5187 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol), | |
aeb5907d JB |
5188 | name_len) == 0 |
5189 | && block == syms[j].block) | |
d12307c1 | 5190 | syms[j].symbol = NULL; |
aeb5907d JB |
5191 | } |
5192 | } | |
5193 | if (is_new_style_renaming) | |
5194 | { | |
5195 | int j, k; | |
5196 | ||
5197 | for (j = k = 0; j < nsyms; j += 1) | |
d12307c1 | 5198 | if (syms[j].symbol != NULL) |
aeb5907d JB |
5199 | { |
5200 | syms[k] = syms[j]; | |
5201 | k += 1; | |
5202 | } | |
5203 | return k; | |
5204 | } | |
4c4b4cd2 PH |
5205 | |
5206 | /* Extract the function name associated to CURRENT_BLOCK. | |
5207 | Abort if unable to do so. */ | |
76a01679 | 5208 | |
4c4b4cd2 PH |
5209 | if (current_block == NULL) |
5210 | return nsyms; | |
76a01679 | 5211 | |
7f0df278 | 5212 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
5213 | if (current_function == NULL) |
5214 | return nsyms; | |
5215 | ||
5216 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
5217 | if (current_function_name == NULL) | |
5218 | return nsyms; | |
5219 | ||
5220 | /* Check each of the symbols, and remove it from the list if it is | |
5221 | a type corresponding to a renaming that is out of the scope of | |
5222 | the current block. */ | |
5223 | ||
5224 | i = 0; | |
5225 | while (i < nsyms) | |
5226 | { | |
d12307c1 | 5227 | if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL) |
aeb5907d | 5228 | == ADA_OBJECT_RENAMING |
d12307c1 | 5229 | && old_renaming_is_invisible (syms[i].symbol, current_function_name)) |
4c4b4cd2 PH |
5230 | { |
5231 | int j; | |
5b4ee69b | 5232 | |
aeb5907d | 5233 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 5234 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
5235 | nsyms -= 1; |
5236 | } | |
5237 | else | |
5238 | i += 1; | |
5239 | } | |
5240 | ||
5241 | return nsyms; | |
5242 | } | |
5243 | ||
339c13b6 JB |
5244 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
5245 | whose name and domain match NAME and DOMAIN respectively. | |
5246 | If no match was found, then extend the search to "enclosing" | |
5247 | routines (in other words, if we're inside a nested function, | |
5248 | search the symbols defined inside the enclosing functions). | |
d0a8ab18 JB |
5249 | If WILD_MATCH_P is nonzero, perform the naming matching in |
5250 | "wild" mode (see function "wild_match" for more info). | |
339c13b6 JB |
5251 | |
5252 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
5253 | ||
5254 | static void | |
5255 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
f0c5f9b2 | 5256 | const struct block *block, domain_enum domain, |
d0a8ab18 | 5257 | int wild_match_p) |
339c13b6 JB |
5258 | { |
5259 | int block_depth = 0; | |
5260 | ||
5261 | while (block != NULL) | |
5262 | { | |
5263 | block_depth += 1; | |
d0a8ab18 JB |
5264 | ada_add_block_symbols (obstackp, block, name, domain, NULL, |
5265 | wild_match_p); | |
339c13b6 JB |
5266 | |
5267 | /* If we found a non-function match, assume that's the one. */ | |
5268 | if (is_nonfunction (defns_collected (obstackp, 0), | |
5269 | num_defns_collected (obstackp))) | |
5270 | return; | |
5271 | ||
5272 | block = BLOCK_SUPERBLOCK (block); | |
5273 | } | |
5274 | ||
5275 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
5276 | enclosing subprogram. */ | |
5277 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
d0a8ab18 | 5278 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p); |
339c13b6 JB |
5279 | } |
5280 | ||
ccefe4c4 | 5281 | /* An object of this type is used as the user_data argument when |
40658b94 | 5282 | calling the map_matching_symbols method. */ |
ccefe4c4 | 5283 | |
40658b94 | 5284 | struct match_data |
ccefe4c4 | 5285 | { |
40658b94 | 5286 | struct objfile *objfile; |
ccefe4c4 | 5287 | struct obstack *obstackp; |
40658b94 PH |
5288 | struct symbol *arg_sym; |
5289 | int found_sym; | |
ccefe4c4 TT |
5290 | }; |
5291 | ||
40658b94 PH |
5292 | /* A callback for add_matching_symbols that adds SYM, found in BLOCK, |
5293 | to a list of symbols. DATA0 is a pointer to a struct match_data * | |
5294 | containing the obstack that collects the symbol list, the file that SYM | |
5295 | must come from, a flag indicating whether a non-argument symbol has | |
5296 | been found in the current block, and the last argument symbol | |
5297 | passed in SYM within the current block (if any). When SYM is null, | |
5298 | marking the end of a block, the argument symbol is added if no | |
5299 | other has been found. */ | |
ccefe4c4 | 5300 | |
40658b94 PH |
5301 | static int |
5302 | aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0) | |
ccefe4c4 | 5303 | { |
40658b94 PH |
5304 | struct match_data *data = (struct match_data *) data0; |
5305 | ||
5306 | if (sym == NULL) | |
5307 | { | |
5308 | if (!data->found_sym && data->arg_sym != NULL) | |
5309 | add_defn_to_vec (data->obstackp, | |
5310 | fixup_symbol_section (data->arg_sym, data->objfile), | |
5311 | block); | |
5312 | data->found_sym = 0; | |
5313 | data->arg_sym = NULL; | |
5314 | } | |
5315 | else | |
5316 | { | |
5317 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
5318 | return 0; | |
5319 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5320 | data->arg_sym = sym; | |
5321 | else | |
5322 | { | |
5323 | data->found_sym = 1; | |
5324 | add_defn_to_vec (data->obstackp, | |
5325 | fixup_symbol_section (sym, data->objfile), | |
5326 | block); | |
5327 | } | |
5328 | } | |
5329 | return 0; | |
5330 | } | |
5331 | ||
db230ce3 JB |
5332 | /* Implements compare_names, but only applying the comparision using |
5333 | the given CASING. */ | |
5b4ee69b | 5334 | |
40658b94 | 5335 | static int |
db230ce3 JB |
5336 | compare_names_with_case (const char *string1, const char *string2, |
5337 | enum case_sensitivity casing) | |
40658b94 PH |
5338 | { |
5339 | while (*string1 != '\0' && *string2 != '\0') | |
5340 | { | |
db230ce3 JB |
5341 | char c1, c2; |
5342 | ||
40658b94 PH |
5343 | if (isspace (*string1) || isspace (*string2)) |
5344 | return strcmp_iw_ordered (string1, string2); | |
db230ce3 JB |
5345 | |
5346 | if (casing == case_sensitive_off) | |
5347 | { | |
5348 | c1 = tolower (*string1); | |
5349 | c2 = tolower (*string2); | |
5350 | } | |
5351 | else | |
5352 | { | |
5353 | c1 = *string1; | |
5354 | c2 = *string2; | |
5355 | } | |
5356 | if (c1 != c2) | |
40658b94 | 5357 | break; |
db230ce3 | 5358 | |
40658b94 PH |
5359 | string1 += 1; |
5360 | string2 += 1; | |
5361 | } | |
db230ce3 | 5362 | |
40658b94 PH |
5363 | switch (*string1) |
5364 | { | |
5365 | case '(': | |
5366 | return strcmp_iw_ordered (string1, string2); | |
5367 | case '_': | |
5368 | if (*string2 == '\0') | |
5369 | { | |
052874e8 | 5370 | if (is_name_suffix (string1)) |
40658b94 PH |
5371 | return 0; |
5372 | else | |
1a1d5513 | 5373 | return 1; |
40658b94 | 5374 | } |
dbb8534f | 5375 | /* FALLTHROUGH */ |
40658b94 PH |
5376 | default: |
5377 | if (*string2 == '(') | |
5378 | return strcmp_iw_ordered (string1, string2); | |
5379 | else | |
db230ce3 JB |
5380 | { |
5381 | if (casing == case_sensitive_off) | |
5382 | return tolower (*string1) - tolower (*string2); | |
5383 | else | |
5384 | return *string1 - *string2; | |
5385 | } | |
40658b94 | 5386 | } |
ccefe4c4 TT |
5387 | } |
5388 | ||
db230ce3 JB |
5389 | /* Compare STRING1 to STRING2, with results as for strcmp. |
5390 | Compatible with strcmp_iw_ordered in that... | |
5391 | ||
5392 | strcmp_iw_ordered (STRING1, STRING2) <= 0 | |
5393 | ||
5394 | ... implies... | |
5395 | ||
5396 | compare_names (STRING1, STRING2) <= 0 | |
5397 | ||
5398 | (they may differ as to what symbols compare equal). */ | |
5399 | ||
5400 | static int | |
5401 | compare_names (const char *string1, const char *string2) | |
5402 | { | |
5403 | int result; | |
5404 | ||
5405 | /* Similar to what strcmp_iw_ordered does, we need to perform | |
5406 | a case-insensitive comparison first, and only resort to | |
5407 | a second, case-sensitive, comparison if the first one was | |
5408 | not sufficient to differentiate the two strings. */ | |
5409 | ||
5410 | result = compare_names_with_case (string1, string2, case_sensitive_off); | |
5411 | if (result == 0) | |
5412 | result = compare_names_with_case (string1, string2, case_sensitive_on); | |
5413 | ||
5414 | return result; | |
5415 | } | |
5416 | ||
339c13b6 JB |
5417 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
5418 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
5419 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
5420 | ||
5421 | static void | |
40658b94 PH |
5422 | add_nonlocal_symbols (struct obstack *obstackp, const char *name, |
5423 | domain_enum domain, int global, | |
5424 | int is_wild_match) | |
339c13b6 JB |
5425 | { |
5426 | struct objfile *objfile; | |
40658b94 | 5427 | struct match_data data; |
339c13b6 | 5428 | |
6475f2fe | 5429 | memset (&data, 0, sizeof data); |
ccefe4c4 | 5430 | data.obstackp = obstackp; |
339c13b6 | 5431 | |
ccefe4c4 | 5432 | ALL_OBJFILES (objfile) |
40658b94 PH |
5433 | { |
5434 | data.objfile = objfile; | |
5435 | ||
5436 | if (is_wild_match) | |
4186eb54 KS |
5437 | objfile->sf->qf->map_matching_symbols (objfile, name, domain, global, |
5438 | aux_add_nonlocal_symbols, &data, | |
5439 | wild_match, NULL); | |
40658b94 | 5440 | else |
4186eb54 KS |
5441 | objfile->sf->qf->map_matching_symbols (objfile, name, domain, global, |
5442 | aux_add_nonlocal_symbols, &data, | |
5443 | full_match, compare_names); | |
40658b94 PH |
5444 | } |
5445 | ||
5446 | if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) | |
5447 | { | |
5448 | ALL_OBJFILES (objfile) | |
5449 | { | |
5450 | char *name1 = alloca (strlen (name) + sizeof ("_ada_")); | |
5451 | strcpy (name1, "_ada_"); | |
5452 | strcpy (name1 + sizeof ("_ada_") - 1, name); | |
5453 | data.objfile = objfile; | |
ade7ed9e DE |
5454 | objfile->sf->qf->map_matching_symbols (objfile, name1, domain, |
5455 | global, | |
0963b4bd MS |
5456 | aux_add_nonlocal_symbols, |
5457 | &data, | |
40658b94 PH |
5458 | full_match, compare_names); |
5459 | } | |
5460 | } | |
339c13b6 JB |
5461 | } |
5462 | ||
4eeaa230 DE |
5463 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is |
5464 | non-zero, enclosing scope and in global scopes, returning the number of | |
5465 | matches. | |
9f88c959 | 5466 | Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples, |
4c4b4cd2 | 5467 | indicating the symbols found and the blocks and symbol tables (if |
4eeaa230 DE |
5468 | any) in which they were found. This vector is transient---good only to |
5469 | the next call of ada_lookup_symbol_list. | |
5470 | ||
5471 | When full_search is non-zero, any non-function/non-enumeral | |
4c4b4cd2 PH |
5472 | symbol match within the nest of blocks whose innermost member is BLOCK0, |
5473 | is the one match returned (no other matches in that or | |
d9680e73 | 5474 | enclosing blocks is returned). If there are any matches in or |
4eeaa230 DE |
5475 | surrounding BLOCK0, then these alone are returned. |
5476 | ||
9f88c959 | 5477 | Names prefixed with "standard__" are handled specially: "standard__" |
4c4b4cd2 | 5478 | is first stripped off, and only static and global symbols are searched. */ |
14f9c5c9 | 5479 | |
4eeaa230 DE |
5480 | static int |
5481 | ada_lookup_symbol_list_worker (const char *name0, const struct block *block0, | |
fe978cb0 | 5482 | domain_enum domain, |
d12307c1 | 5483 | struct block_symbol **results, |
4eeaa230 | 5484 | int full_search) |
14f9c5c9 AS |
5485 | { |
5486 | struct symbol *sym; | |
f0c5f9b2 | 5487 | const struct block *block; |
4c4b4cd2 | 5488 | const char *name; |
82ccd55e | 5489 | const int wild_match_p = should_use_wild_match (name0); |
b1eedac9 | 5490 | int syms_from_global_search = 0; |
4c4b4cd2 | 5491 | int ndefns; |
14f9c5c9 | 5492 | |
4c4b4cd2 PH |
5493 | obstack_free (&symbol_list_obstack, NULL); |
5494 | obstack_init (&symbol_list_obstack); | |
14f9c5c9 | 5495 | |
14f9c5c9 AS |
5496 | /* Search specified block and its superiors. */ |
5497 | ||
4c4b4cd2 | 5498 | name = name0; |
f0c5f9b2 | 5499 | block = block0; |
339c13b6 JB |
5500 | |
5501 | /* Special case: If the user specifies a symbol name inside package | |
5502 | Standard, do a non-wild matching of the symbol name without | |
5503 | the "standard__" prefix. This was primarily introduced in order | |
5504 | to allow the user to specifically access the standard exceptions | |
5505 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
5506 | is ambiguous (due to the user defining its own Constraint_Error | |
5507 | entity inside its program). */ | |
61012eef | 5508 | if (startswith (name0, "standard__")) |
4c4b4cd2 | 5509 | { |
4c4b4cd2 PH |
5510 | block = NULL; |
5511 | name = name0 + sizeof ("standard__") - 1; | |
5512 | } | |
5513 | ||
339c13b6 | 5514 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 5515 | |
4eeaa230 DE |
5516 | if (block != NULL) |
5517 | { | |
5518 | if (full_search) | |
5519 | { | |
5520 | ada_add_local_symbols (&symbol_list_obstack, name, block, | |
fe978cb0 | 5521 | domain, wild_match_p); |
4eeaa230 DE |
5522 | } |
5523 | else | |
5524 | { | |
5525 | /* In the !full_search case we're are being called by | |
5526 | ada_iterate_over_symbols, and we don't want to search | |
5527 | superblocks. */ | |
5528 | ada_add_block_symbols (&symbol_list_obstack, block, name, | |
fe978cb0 | 5529 | domain, NULL, wild_match_p); |
4eeaa230 DE |
5530 | } |
5531 | if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search) | |
5532 | goto done; | |
5533 | } | |
d2e4a39e | 5534 | |
339c13b6 JB |
5535 | /* No non-global symbols found. Check our cache to see if we have |
5536 | already performed this search before. If we have, then return | |
5537 | the same result. */ | |
5538 | ||
fe978cb0 | 5539 | if (lookup_cached_symbol (name0, domain, &sym, &block)) |
4c4b4cd2 PH |
5540 | { |
5541 | if (sym != NULL) | |
2570f2b7 | 5542 | add_defn_to_vec (&symbol_list_obstack, sym, block); |
4c4b4cd2 PH |
5543 | goto done; |
5544 | } | |
14f9c5c9 | 5545 | |
b1eedac9 JB |
5546 | syms_from_global_search = 1; |
5547 | ||
339c13b6 JB |
5548 | /* Search symbols from all global blocks. */ |
5549 | ||
fe978cb0 | 5550 | add_nonlocal_symbols (&symbol_list_obstack, name, domain, 1, |
82ccd55e | 5551 | wild_match_p); |
d2e4a39e | 5552 | |
4c4b4cd2 | 5553 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 5554 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 5555 | |
4c4b4cd2 | 5556 | if (num_defns_collected (&symbol_list_obstack) == 0) |
fe978cb0 | 5557 | add_nonlocal_symbols (&symbol_list_obstack, name, domain, 0, |
82ccd55e | 5558 | wild_match_p); |
14f9c5c9 | 5559 | |
4c4b4cd2 PH |
5560 | done: |
5561 | ndefns = num_defns_collected (&symbol_list_obstack); | |
5562 | *results = defns_collected (&symbol_list_obstack, 1); | |
5563 | ||
5564 | ndefns = remove_extra_symbols (*results, ndefns); | |
5565 | ||
b1eedac9 | 5566 | if (ndefns == 0 && full_search && syms_from_global_search) |
fe978cb0 | 5567 | cache_symbol (name0, domain, NULL, NULL); |
14f9c5c9 | 5568 | |
b1eedac9 | 5569 | if (ndefns == 1 && full_search && syms_from_global_search) |
d12307c1 | 5570 | cache_symbol (name0, domain, (*results)[0].symbol, (*results)[0].block); |
14f9c5c9 | 5571 | |
aeb5907d | 5572 | ndefns = remove_irrelevant_renamings (*results, ndefns, block0); |
14f9c5c9 | 5573 | |
14f9c5c9 AS |
5574 | return ndefns; |
5575 | } | |
5576 | ||
4eeaa230 DE |
5577 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and |
5578 | in global scopes, returning the number of matches, and setting *RESULTS | |
5579 | to a vector of (SYM,BLOCK) tuples. | |
5580 | See ada_lookup_symbol_list_worker for further details. */ | |
5581 | ||
5582 | int | |
5583 | ada_lookup_symbol_list (const char *name0, const struct block *block0, | |
d12307c1 | 5584 | domain_enum domain, struct block_symbol **results) |
4eeaa230 DE |
5585 | { |
5586 | return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1); | |
5587 | } | |
5588 | ||
5589 | /* Implementation of the la_iterate_over_symbols method. */ | |
5590 | ||
5591 | static void | |
5592 | ada_iterate_over_symbols (const struct block *block, | |
5593 | const char *name, domain_enum domain, | |
5594 | symbol_found_callback_ftype *callback, | |
5595 | void *data) | |
5596 | { | |
5597 | int ndefs, i; | |
d12307c1 | 5598 | struct block_symbol *results; |
4eeaa230 DE |
5599 | |
5600 | ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0); | |
5601 | for (i = 0; i < ndefs; ++i) | |
5602 | { | |
d12307c1 | 5603 | if (! (*callback) (results[i].symbol, data)) |
4eeaa230 DE |
5604 | break; |
5605 | } | |
5606 | } | |
5607 | ||
f8eba3c6 TT |
5608 | /* If NAME is the name of an entity, return a string that should |
5609 | be used to look that entity up in Ada units. This string should | |
5610 | be deallocated after use using xfree. | |
5611 | ||
5612 | NAME can have any form that the "break" or "print" commands might | |
5613 | recognize. In other words, it does not have to be the "natural" | |
5614 | name, or the "encoded" name. */ | |
5615 | ||
5616 | char * | |
5617 | ada_name_for_lookup (const char *name) | |
5618 | { | |
5619 | char *canon; | |
5620 | int nlen = strlen (name); | |
5621 | ||
5622 | if (name[0] == '<' && name[nlen - 1] == '>') | |
5623 | { | |
5624 | canon = xmalloc (nlen - 1); | |
5625 | memcpy (canon, name + 1, nlen - 2); | |
5626 | canon[nlen - 2] = '\0'; | |
5627 | } | |
5628 | else | |
5629 | canon = xstrdup (ada_encode (ada_fold_name (name))); | |
5630 | return canon; | |
5631 | } | |
5632 | ||
4e5c77fe JB |
5633 | /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set |
5634 | to 1, but choosing the first symbol found if there are multiple | |
5635 | choices. | |
5636 | ||
5e2336be JB |
5637 | The result is stored in *INFO, which must be non-NULL. |
5638 | If no match is found, INFO->SYM is set to NULL. */ | |
4e5c77fe JB |
5639 | |
5640 | void | |
5641 | ada_lookup_encoded_symbol (const char *name, const struct block *block, | |
fe978cb0 | 5642 | domain_enum domain, |
d12307c1 | 5643 | struct block_symbol *info) |
14f9c5c9 | 5644 | { |
d12307c1 | 5645 | struct block_symbol *candidates; |
14f9c5c9 AS |
5646 | int n_candidates; |
5647 | ||
5e2336be | 5648 | gdb_assert (info != NULL); |
d12307c1 | 5649 | memset (info, 0, sizeof (struct block_symbol)); |
4e5c77fe | 5650 | |
fe978cb0 | 5651 | n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates); |
14f9c5c9 | 5652 | if (n_candidates == 0) |
4e5c77fe | 5653 | return; |
4c4b4cd2 | 5654 | |
5e2336be | 5655 | *info = candidates[0]; |
d12307c1 | 5656 | info->symbol = fixup_symbol_section (info->symbol, NULL); |
4e5c77fe | 5657 | } |
aeb5907d JB |
5658 | |
5659 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
5660 | scope and in global scopes, or NULL if none. NAME is folded and | |
5661 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
0963b4bd | 5662 | choosing the first symbol if there are multiple choices. |
4e5c77fe JB |
5663 | If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */ |
5664 | ||
d12307c1 | 5665 | struct block_symbol |
aeb5907d | 5666 | ada_lookup_symbol (const char *name, const struct block *block0, |
fe978cb0 | 5667 | domain_enum domain, int *is_a_field_of_this) |
aeb5907d | 5668 | { |
d12307c1 | 5669 | struct block_symbol info; |
4e5c77fe | 5670 | |
aeb5907d JB |
5671 | if (is_a_field_of_this != NULL) |
5672 | *is_a_field_of_this = 0; | |
5673 | ||
4e5c77fe | 5674 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), |
fe978cb0 | 5675 | block0, domain, &info); |
d12307c1 | 5676 | return info; |
4c4b4cd2 | 5677 | } |
14f9c5c9 | 5678 | |
d12307c1 | 5679 | static struct block_symbol |
f606139a DE |
5680 | ada_lookup_symbol_nonlocal (const struct language_defn *langdef, |
5681 | const char *name, | |
76a01679 | 5682 | const struct block *block, |
21b556f4 | 5683 | const domain_enum domain) |
4c4b4cd2 | 5684 | { |
d12307c1 | 5685 | struct block_symbol sym; |
04dccad0 JB |
5686 | |
5687 | sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL); | |
d12307c1 | 5688 | if (sym.symbol != NULL) |
04dccad0 JB |
5689 | return sym; |
5690 | ||
5691 | /* If we haven't found a match at this point, try the primitive | |
5692 | types. In other languages, this search is performed before | |
5693 | searching for global symbols in order to short-circuit that | |
5694 | global-symbol search if it happens that the name corresponds | |
5695 | to a primitive type. But we cannot do the same in Ada, because | |
5696 | it is perfectly legitimate for a program to declare a type which | |
5697 | has the same name as a standard type. If looking up a type in | |
5698 | that situation, we have traditionally ignored the primitive type | |
5699 | in favor of user-defined types. This is why, unlike most other | |
5700 | languages, we search the primitive types this late and only after | |
5701 | having searched the global symbols without success. */ | |
5702 | ||
5703 | if (domain == VAR_DOMAIN) | |
5704 | { | |
5705 | struct gdbarch *gdbarch; | |
5706 | ||
5707 | if (block == NULL) | |
5708 | gdbarch = target_gdbarch (); | |
5709 | else | |
5710 | gdbarch = block_gdbarch (block); | |
d12307c1 PMR |
5711 | sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name); |
5712 | if (sym.symbol != NULL) | |
04dccad0 JB |
5713 | return sym; |
5714 | } | |
5715 | ||
d12307c1 | 5716 | return (struct block_symbol) {NULL, NULL}; |
14f9c5c9 AS |
5717 | } |
5718 | ||
5719 | ||
4c4b4cd2 PH |
5720 | /* True iff STR is a possible encoded suffix of a normal Ada name |
5721 | that is to be ignored for matching purposes. Suffixes of parallel | |
5722 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 5723 | are given by any of the regular expressions: |
4c4b4cd2 | 5724 | |
babe1480 JB |
5725 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
5726 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
9ac7f98e | 5727 | TKB [subprogram suffix for task bodies] |
babe1480 | 5728 | _E[0-9]+[bs]$ [protected object entry suffixes] |
61ee279c | 5729 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
5730 | |
5731 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
5732 | match is performed. This sequence is used to differentiate homonyms, | |
5733 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 5734 | |
14f9c5c9 | 5735 | static int |
d2e4a39e | 5736 | is_name_suffix (const char *str) |
14f9c5c9 AS |
5737 | { |
5738 | int k; | |
4c4b4cd2 PH |
5739 | const char *matching; |
5740 | const int len = strlen (str); | |
5741 | ||
babe1480 JB |
5742 | /* Skip optional leading __[0-9]+. */ |
5743 | ||
4c4b4cd2 PH |
5744 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
5745 | { | |
babe1480 JB |
5746 | str += 3; |
5747 | while (isdigit (str[0])) | |
5748 | str += 1; | |
4c4b4cd2 | 5749 | } |
babe1480 JB |
5750 | |
5751 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 5752 | |
babe1480 | 5753 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 5754 | { |
babe1480 | 5755 | matching = str + 1; |
4c4b4cd2 PH |
5756 | while (isdigit (matching[0])) |
5757 | matching += 1; | |
5758 | if (matching[0] == '\0') | |
5759 | return 1; | |
5760 | } | |
5761 | ||
5762 | /* ___[0-9]+ */ | |
babe1480 | 5763 | |
4c4b4cd2 PH |
5764 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
5765 | { | |
5766 | matching = str + 3; | |
5767 | while (isdigit (matching[0])) | |
5768 | matching += 1; | |
5769 | if (matching[0] == '\0') | |
5770 | return 1; | |
5771 | } | |
5772 | ||
9ac7f98e JB |
5773 | /* "TKB" suffixes are used for subprograms implementing task bodies. */ |
5774 | ||
5775 | if (strcmp (str, "TKB") == 0) | |
5776 | return 1; | |
5777 | ||
529cad9c PH |
5778 | #if 0 |
5779 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
5780 | with a N at the end. Unfortunately, the compiler uses the same |
5781 | convention for other internal types it creates. So treating | |
529cad9c | 5782 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
5783 | some regressions. For instance, consider the case of an enumerated |
5784 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
5785 | name ends with N. |
5786 | Having a single character like this as a suffix carrying some | |
0963b4bd | 5787 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
5788 | to be something like "_N" instead. In the meantime, do not do |
5789 | the following check. */ | |
5790 | /* Protected Object Subprograms */ | |
5791 | if (len == 1 && str [0] == 'N') | |
5792 | return 1; | |
5793 | #endif | |
5794 | ||
5795 | /* _E[0-9]+[bs]$ */ | |
5796 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
5797 | { | |
5798 | matching = str + 3; | |
5799 | while (isdigit (matching[0])) | |
5800 | matching += 1; | |
5801 | if ((matching[0] == 'b' || matching[0] == 's') | |
5802 | && matching [1] == '\0') | |
5803 | return 1; | |
5804 | } | |
5805 | ||
4c4b4cd2 PH |
5806 | /* ??? We should not modify STR directly, as we are doing below. This |
5807 | is fine in this case, but may become problematic later if we find | |
5808 | that this alternative did not work, and want to try matching | |
5809 | another one from the begining of STR. Since we modified it, we | |
5810 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
5811 | if (str[0] == 'X') |
5812 | { | |
5813 | str += 1; | |
d2e4a39e | 5814 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
5815 | { |
5816 | if (str[0] != 'n' && str[0] != 'b') | |
5817 | return 0; | |
5818 | str += 1; | |
5819 | } | |
14f9c5c9 | 5820 | } |
babe1480 | 5821 | |
14f9c5c9 AS |
5822 | if (str[0] == '\000') |
5823 | return 1; | |
babe1480 | 5824 | |
d2e4a39e | 5825 | if (str[0] == '_') |
14f9c5c9 AS |
5826 | { |
5827 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 5828 | return 0; |
d2e4a39e | 5829 | if (str[2] == '_') |
4c4b4cd2 | 5830 | { |
61ee279c PH |
5831 | if (strcmp (str + 3, "JM") == 0) |
5832 | return 1; | |
5833 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
5834 | the LJM suffix in favor of the JM one. But we will | |
5835 | still accept LJM as a valid suffix for a reasonable | |
5836 | amount of time, just to allow ourselves to debug programs | |
5837 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
5838 | if (strcmp (str + 3, "LJM") == 0) |
5839 | return 1; | |
5840 | if (str[3] != 'X') | |
5841 | return 0; | |
1265e4aa JB |
5842 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
5843 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
5844 | return 1; |
5845 | if (str[4] == 'R' && str[5] != 'T') | |
5846 | return 1; | |
5847 | return 0; | |
5848 | } | |
5849 | if (!isdigit (str[2])) | |
5850 | return 0; | |
5851 | for (k = 3; str[k] != '\0'; k += 1) | |
5852 | if (!isdigit (str[k]) && str[k] != '_') | |
5853 | return 0; | |
14f9c5c9 AS |
5854 | return 1; |
5855 | } | |
4c4b4cd2 | 5856 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 5857 | { |
4c4b4cd2 PH |
5858 | for (k = 2; str[k] != '\0'; k += 1) |
5859 | if (!isdigit (str[k]) && str[k] != '_') | |
5860 | return 0; | |
14f9c5c9 AS |
5861 | return 1; |
5862 | } | |
5863 | return 0; | |
5864 | } | |
d2e4a39e | 5865 | |
aeb5907d JB |
5866 | /* Return non-zero if the string starting at NAME and ending before |
5867 | NAME_END contains no capital letters. */ | |
529cad9c PH |
5868 | |
5869 | static int | |
5870 | is_valid_name_for_wild_match (const char *name0) | |
5871 | { | |
5872 | const char *decoded_name = ada_decode (name0); | |
5873 | int i; | |
5874 | ||
5823c3ef JB |
5875 | /* If the decoded name starts with an angle bracket, it means that |
5876 | NAME0 does not follow the GNAT encoding format. It should then | |
5877 | not be allowed as a possible wild match. */ | |
5878 | if (decoded_name[0] == '<') | |
5879 | return 0; | |
5880 | ||
529cad9c PH |
5881 | for (i=0; decoded_name[i] != '\0'; i++) |
5882 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
5883 | return 0; | |
5884 | ||
5885 | return 1; | |
5886 | } | |
5887 | ||
73589123 PH |
5888 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
5889 | that could start a simple name. Assumes that *NAMEP points into | |
5890 | the string beginning at NAME0. */ | |
4c4b4cd2 | 5891 | |
14f9c5c9 | 5892 | static int |
73589123 | 5893 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 5894 | { |
73589123 | 5895 | const char *name = *namep; |
5b4ee69b | 5896 | |
5823c3ef | 5897 | while (1) |
14f9c5c9 | 5898 | { |
aa27d0b3 | 5899 | int t0, t1; |
73589123 PH |
5900 | |
5901 | t0 = *name; | |
5902 | if (t0 == '_') | |
5903 | { | |
5904 | t1 = name[1]; | |
5905 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
5906 | { | |
5907 | name += 1; | |
61012eef | 5908 | if (name == name0 + 5 && startswith (name0, "_ada")) |
73589123 PH |
5909 | break; |
5910 | else | |
5911 | name += 1; | |
5912 | } | |
aa27d0b3 JB |
5913 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
5914 | || name[2] == target0)) | |
73589123 PH |
5915 | { |
5916 | name += 2; | |
5917 | break; | |
5918 | } | |
5919 | else | |
5920 | return 0; | |
5921 | } | |
5922 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
5923 | name += 1; | |
5924 | else | |
5823c3ef | 5925 | return 0; |
73589123 PH |
5926 | } |
5927 | ||
5928 | *namep = name; | |
5929 | return 1; | |
5930 | } | |
5931 | ||
5932 | /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any | |
5933 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
5934 | true). Assumes that PATN is a lower-cased Ada simple name. */ | |
5935 | ||
5936 | static int | |
5937 | wild_match (const char *name, const char *patn) | |
5938 | { | |
22e048c9 | 5939 | const char *p; |
73589123 PH |
5940 | const char *name0 = name; |
5941 | ||
5942 | while (1) | |
5943 | { | |
5944 | const char *match = name; | |
5945 | ||
5946 | if (*name == *patn) | |
5947 | { | |
5948 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
5949 | if (*p != *name) | |
5950 | break; | |
5951 | if (*p == '\0' && is_name_suffix (name)) | |
5952 | return match != name0 && !is_valid_name_for_wild_match (name0); | |
5953 | ||
5954 | if (name[-1] == '_') | |
5955 | name -= 1; | |
5956 | } | |
5957 | if (!advance_wild_match (&name, name0, *patn)) | |
5958 | return 1; | |
96d887e8 | 5959 | } |
96d887e8 PH |
5960 | } |
5961 | ||
40658b94 PH |
5962 | /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from |
5963 | informational suffix. */ | |
5964 | ||
c4d840bd PH |
5965 | static int |
5966 | full_match (const char *sym_name, const char *search_name) | |
5967 | { | |
40658b94 | 5968 | return !match_name (sym_name, search_name, 0); |
c4d840bd PH |
5969 | } |
5970 | ||
5971 | ||
96d887e8 PH |
5972 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
5973 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
0963b4bd | 5974 | (if necessary). If WILD, treat as NAME with a wildcard prefix. |
4eeaa230 | 5975 | OBJFILE is the section containing BLOCK. */ |
96d887e8 PH |
5976 | |
5977 | static void | |
5978 | ada_add_block_symbols (struct obstack *obstackp, | |
f0c5f9b2 | 5979 | const struct block *block, const char *name, |
96d887e8 | 5980 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 5981 | int wild) |
96d887e8 | 5982 | { |
8157b174 | 5983 | struct block_iterator iter; |
96d887e8 PH |
5984 | int name_len = strlen (name); |
5985 | /* A matching argument symbol, if any. */ | |
5986 | struct symbol *arg_sym; | |
5987 | /* Set true when we find a matching non-argument symbol. */ | |
5988 | int found_sym; | |
5989 | struct symbol *sym; | |
5990 | ||
5991 | arg_sym = NULL; | |
5992 | found_sym = 0; | |
5993 | if (wild) | |
5994 | { | |
8157b174 TT |
5995 | for (sym = block_iter_match_first (block, name, wild_match, &iter); |
5996 | sym != NULL; sym = block_iter_match_next (name, wild_match, &iter)) | |
76a01679 | 5997 | { |
4186eb54 KS |
5998 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5999 | SYMBOL_DOMAIN (sym), domain) | |
73589123 | 6000 | && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0) |
76a01679 | 6001 | { |
2a2d4dc3 AS |
6002 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
6003 | continue; | |
6004 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
6005 | arg_sym = sym; | |
6006 | else | |
6007 | { | |
76a01679 JB |
6008 | found_sym = 1; |
6009 | add_defn_to_vec (obstackp, | |
6010 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 6011 | block); |
76a01679 JB |
6012 | } |
6013 | } | |
6014 | } | |
96d887e8 PH |
6015 | } |
6016 | else | |
6017 | { | |
8157b174 TT |
6018 | for (sym = block_iter_match_first (block, name, full_match, &iter); |
6019 | sym != NULL; sym = block_iter_match_next (name, full_match, &iter)) | |
76a01679 | 6020 | { |
4186eb54 KS |
6021 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
6022 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 | 6023 | { |
c4d840bd PH |
6024 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
6025 | { | |
6026 | if (SYMBOL_IS_ARGUMENT (sym)) | |
6027 | arg_sym = sym; | |
6028 | else | |
2a2d4dc3 | 6029 | { |
c4d840bd PH |
6030 | found_sym = 1; |
6031 | add_defn_to_vec (obstackp, | |
6032 | fixup_symbol_section (sym, objfile), | |
6033 | block); | |
2a2d4dc3 | 6034 | } |
c4d840bd | 6035 | } |
76a01679 JB |
6036 | } |
6037 | } | |
96d887e8 PH |
6038 | } |
6039 | ||
6040 | if (!found_sym && arg_sym != NULL) | |
6041 | { | |
76a01679 JB |
6042 | add_defn_to_vec (obstackp, |
6043 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 6044 | block); |
96d887e8 PH |
6045 | } |
6046 | ||
6047 | if (!wild) | |
6048 | { | |
6049 | arg_sym = NULL; | |
6050 | found_sym = 0; | |
6051 | ||
6052 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 6053 | { |
4186eb54 KS |
6054 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
6055 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
6056 | { |
6057 | int cmp; | |
6058 | ||
6059 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
6060 | if (cmp == 0) | |
6061 | { | |
61012eef | 6062 | cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_"); |
76a01679 JB |
6063 | if (cmp == 0) |
6064 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
6065 | name_len); | |
6066 | } | |
6067 | ||
6068 | if (cmp == 0 | |
6069 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
6070 | { | |
2a2d4dc3 AS |
6071 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
6072 | { | |
6073 | if (SYMBOL_IS_ARGUMENT (sym)) | |
6074 | arg_sym = sym; | |
6075 | else | |
6076 | { | |
6077 | found_sym = 1; | |
6078 | add_defn_to_vec (obstackp, | |
6079 | fixup_symbol_section (sym, objfile), | |
6080 | block); | |
6081 | } | |
6082 | } | |
76a01679 JB |
6083 | } |
6084 | } | |
76a01679 | 6085 | } |
96d887e8 PH |
6086 | |
6087 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
6088 | They aren't parameters, right? */ | |
6089 | if (!found_sym && arg_sym != NULL) | |
6090 | { | |
6091 | add_defn_to_vec (obstackp, | |
76a01679 | 6092 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 6093 | block); |
96d887e8 PH |
6094 | } |
6095 | } | |
6096 | } | |
6097 | \f | |
41d27058 JB |
6098 | |
6099 | /* Symbol Completion */ | |
6100 | ||
6101 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
6102 | name in a form that's appropriate for the completion. The result | |
6103 | does not need to be deallocated, but is only good until the next call. | |
6104 | ||
6105 | TEXT_LEN is equal to the length of TEXT. | |
e701b3c0 | 6106 | Perform a wild match if WILD_MATCH_P is set. |
6ea35997 | 6107 | ENCODED_P should be set if TEXT represents the start of a symbol name |
41d27058 JB |
6108 | in its encoded form. */ |
6109 | ||
6110 | static const char * | |
6111 | symbol_completion_match (const char *sym_name, | |
6112 | const char *text, int text_len, | |
6ea35997 | 6113 | int wild_match_p, int encoded_p) |
41d27058 | 6114 | { |
41d27058 JB |
6115 | const int verbatim_match = (text[0] == '<'); |
6116 | int match = 0; | |
6117 | ||
6118 | if (verbatim_match) | |
6119 | { | |
6120 | /* Strip the leading angle bracket. */ | |
6121 | text = text + 1; | |
6122 | text_len--; | |
6123 | } | |
6124 | ||
6125 | /* First, test against the fully qualified name of the symbol. */ | |
6126 | ||
6127 | if (strncmp (sym_name, text, text_len) == 0) | |
6128 | match = 1; | |
6129 | ||
6ea35997 | 6130 | if (match && !encoded_p) |
41d27058 JB |
6131 | { |
6132 | /* One needed check before declaring a positive match is to verify | |
6133 | that iff we are doing a verbatim match, the decoded version | |
6134 | of the symbol name starts with '<'. Otherwise, this symbol name | |
6135 | is not a suitable completion. */ | |
6136 | const char *sym_name_copy = sym_name; | |
6137 | int has_angle_bracket; | |
6138 | ||
6139 | sym_name = ada_decode (sym_name); | |
6140 | has_angle_bracket = (sym_name[0] == '<'); | |
6141 | match = (has_angle_bracket == verbatim_match); | |
6142 | sym_name = sym_name_copy; | |
6143 | } | |
6144 | ||
6145 | if (match && !verbatim_match) | |
6146 | { | |
6147 | /* When doing non-verbatim match, another check that needs to | |
6148 | be done is to verify that the potentially matching symbol name | |
6149 | does not include capital letters, because the ada-mode would | |
6150 | not be able to understand these symbol names without the | |
6151 | angle bracket notation. */ | |
6152 | const char *tmp; | |
6153 | ||
6154 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
6155 | if (*tmp != '\0') | |
6156 | match = 0; | |
6157 | } | |
6158 | ||
6159 | /* Second: Try wild matching... */ | |
6160 | ||
e701b3c0 | 6161 | if (!match && wild_match_p) |
41d27058 JB |
6162 | { |
6163 | /* Since we are doing wild matching, this means that TEXT | |
6164 | may represent an unqualified symbol name. We therefore must | |
6165 | also compare TEXT against the unqualified name of the symbol. */ | |
6166 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
6167 | ||
6168 | if (strncmp (sym_name, text, text_len) == 0) | |
6169 | match = 1; | |
6170 | } | |
6171 | ||
6172 | /* Finally: If we found a mach, prepare the result to return. */ | |
6173 | ||
6174 | if (!match) | |
6175 | return NULL; | |
6176 | ||
6177 | if (verbatim_match) | |
6178 | sym_name = add_angle_brackets (sym_name); | |
6179 | ||
6ea35997 | 6180 | if (!encoded_p) |
41d27058 JB |
6181 | sym_name = ada_decode (sym_name); |
6182 | ||
6183 | return sym_name; | |
6184 | } | |
6185 | ||
6186 | /* A companion function to ada_make_symbol_completion_list(). | |
6187 | Check if SYM_NAME represents a symbol which name would be suitable | |
6188 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
6189 | it is appended at the end of the given string vector SV. | |
6190 | ||
6191 | ORIG_TEXT is the string original string from the user command | |
6192 | that needs to be completed. WORD is the entire command on which | |
6193 | completion should be performed. These two parameters are used to | |
6194 | determine which part of the symbol name should be added to the | |
6195 | completion vector. | |
c0af1706 | 6196 | if WILD_MATCH_P is set, then wild matching is performed. |
cb8e9b97 | 6197 | ENCODED_P should be set if TEXT represents a symbol name in its |
41d27058 JB |
6198 | encoded formed (in which case the completion should also be |
6199 | encoded). */ | |
6200 | ||
6201 | static void | |
d6565258 | 6202 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
6203 | const char *sym_name, |
6204 | const char *text, int text_len, | |
6205 | const char *orig_text, const char *word, | |
cb8e9b97 | 6206 | int wild_match_p, int encoded_p) |
41d27058 JB |
6207 | { |
6208 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
cb8e9b97 | 6209 | wild_match_p, encoded_p); |
41d27058 JB |
6210 | char *completion; |
6211 | ||
6212 | if (match == NULL) | |
6213 | return; | |
6214 | ||
6215 | /* We found a match, so add the appropriate completion to the given | |
6216 | string vector. */ | |
6217 | ||
6218 | if (word == orig_text) | |
6219 | { | |
6220 | completion = xmalloc (strlen (match) + 5); | |
6221 | strcpy (completion, match); | |
6222 | } | |
6223 | else if (word > orig_text) | |
6224 | { | |
6225 | /* Return some portion of sym_name. */ | |
6226 | completion = xmalloc (strlen (match) + 5); | |
6227 | strcpy (completion, match + (word - orig_text)); | |
6228 | } | |
6229 | else | |
6230 | { | |
6231 | /* Return some of ORIG_TEXT plus sym_name. */ | |
6232 | completion = xmalloc (strlen (match) + (orig_text - word) + 5); | |
6233 | strncpy (completion, word, orig_text - word); | |
6234 | completion[orig_text - word] = '\0'; | |
6235 | strcat (completion, match); | |
6236 | } | |
6237 | ||
d6565258 | 6238 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
6239 | } |
6240 | ||
ccefe4c4 | 6241 | /* An object of this type is passed as the user_data argument to the |
bb4142cf | 6242 | expand_symtabs_matching method. */ |
ccefe4c4 TT |
6243 | struct add_partial_datum |
6244 | { | |
6245 | VEC(char_ptr) **completions; | |
6f937416 | 6246 | const char *text; |
ccefe4c4 | 6247 | int text_len; |
6f937416 PA |
6248 | const char *text0; |
6249 | const char *word; | |
ccefe4c4 TT |
6250 | int wild_match; |
6251 | int encoded; | |
6252 | }; | |
6253 | ||
bb4142cf DE |
6254 | /* A callback for expand_symtabs_matching. */ |
6255 | ||
7b08b9eb | 6256 | static int |
bb4142cf | 6257 | ada_complete_symbol_matcher (const char *name, void *user_data) |
ccefe4c4 TT |
6258 | { |
6259 | struct add_partial_datum *data = user_data; | |
7b08b9eb JK |
6260 | |
6261 | return symbol_completion_match (name, data->text, data->text_len, | |
6262 | data->wild_match, data->encoded) != NULL; | |
ccefe4c4 TT |
6263 | } |
6264 | ||
49c4e619 TT |
6265 | /* Return a list of possible symbol names completing TEXT0. WORD is |
6266 | the entire command on which completion is made. */ | |
41d27058 | 6267 | |
49c4e619 | 6268 | static VEC (char_ptr) * |
6f937416 PA |
6269 | ada_make_symbol_completion_list (const char *text0, const char *word, |
6270 | enum type_code code) | |
41d27058 JB |
6271 | { |
6272 | char *text; | |
6273 | int text_len; | |
b1ed564a JB |
6274 | int wild_match_p; |
6275 | int encoded_p; | |
2ba95b9b | 6276 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 | 6277 | struct symbol *sym; |
43f3e411 | 6278 | struct compunit_symtab *s; |
41d27058 JB |
6279 | struct minimal_symbol *msymbol; |
6280 | struct objfile *objfile; | |
3977b71f | 6281 | const struct block *b, *surrounding_static_block = 0; |
41d27058 | 6282 | int i; |
8157b174 | 6283 | struct block_iterator iter; |
b8fea896 | 6284 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
41d27058 | 6285 | |
2f68a895 TT |
6286 | gdb_assert (code == TYPE_CODE_UNDEF); |
6287 | ||
41d27058 JB |
6288 | if (text0[0] == '<') |
6289 | { | |
6290 | text = xstrdup (text0); | |
6291 | make_cleanup (xfree, text); | |
6292 | text_len = strlen (text); | |
b1ed564a JB |
6293 | wild_match_p = 0; |
6294 | encoded_p = 1; | |
41d27058 JB |
6295 | } |
6296 | else | |
6297 | { | |
6298 | text = xstrdup (ada_encode (text0)); | |
6299 | make_cleanup (xfree, text); | |
6300 | text_len = strlen (text); | |
6301 | for (i = 0; i < text_len; i++) | |
6302 | text[i] = tolower (text[i]); | |
6303 | ||
b1ed564a | 6304 | encoded_p = (strstr (text0, "__") != NULL); |
41d27058 JB |
6305 | /* If the name contains a ".", then the user is entering a fully |
6306 | qualified entity name, and the match must not be done in wild | |
6307 | mode. Similarly, if the user wants to complete what looks like | |
6308 | an encoded name, the match must not be done in wild mode. */ | |
b1ed564a | 6309 | wild_match_p = (strchr (text0, '.') == NULL && !encoded_p); |
41d27058 JB |
6310 | } |
6311 | ||
6312 | /* First, look at the partial symtab symbols. */ | |
41d27058 | 6313 | { |
ccefe4c4 TT |
6314 | struct add_partial_datum data; |
6315 | ||
6316 | data.completions = &completions; | |
6317 | data.text = text; | |
6318 | data.text_len = text_len; | |
6319 | data.text0 = text0; | |
6320 | data.word = word; | |
b1ed564a JB |
6321 | data.wild_match = wild_match_p; |
6322 | data.encoded = encoded_p; | |
276d885b GB |
6323 | expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL, |
6324 | ALL_DOMAIN, &data); | |
41d27058 JB |
6325 | } |
6326 | ||
6327 | /* At this point scan through the misc symbol vectors and add each | |
6328 | symbol you find to the list. Eventually we want to ignore | |
6329 | anything that isn't a text symbol (everything else will be | |
6330 | handled by the psymtab code above). */ | |
6331 | ||
6332 | ALL_MSYMBOLS (objfile, msymbol) | |
6333 | { | |
6334 | QUIT; | |
efd66ac6 | 6335 | symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol), |
b1ed564a JB |
6336 | text, text_len, text0, word, wild_match_p, |
6337 | encoded_p); | |
41d27058 JB |
6338 | } |
6339 | ||
6340 | /* Search upwards from currently selected frame (so that we can | |
6341 | complete on local vars. */ | |
6342 | ||
6343 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
6344 | { | |
6345 | if (!BLOCK_SUPERBLOCK (b)) | |
6346 | surrounding_static_block = b; /* For elmin of dups */ | |
6347 | ||
6348 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6349 | { | |
d6565258 | 6350 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6351 | text, text_len, text0, word, |
b1ed564a | 6352 | wild_match_p, encoded_p); |
41d27058 JB |
6353 | } |
6354 | } | |
6355 | ||
6356 | /* Go through the symtabs and check the externs and statics for | |
43f3e411 | 6357 | symbols which match. */ |
41d27058 | 6358 | |
43f3e411 | 6359 | ALL_COMPUNITS (objfile, s) |
41d27058 JB |
6360 | { |
6361 | QUIT; | |
43f3e411 | 6362 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK); |
41d27058 JB |
6363 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
6364 | { | |
d6565258 | 6365 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6366 | text, text_len, text0, word, |
b1ed564a | 6367 | wild_match_p, encoded_p); |
41d27058 JB |
6368 | } |
6369 | } | |
6370 | ||
43f3e411 | 6371 | ALL_COMPUNITS (objfile, s) |
41d27058 JB |
6372 | { |
6373 | QUIT; | |
43f3e411 | 6374 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK); |
41d27058 JB |
6375 | /* Don't do this block twice. */ |
6376 | if (b == surrounding_static_block) | |
6377 | continue; | |
6378 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6379 | { | |
d6565258 | 6380 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6381 | text, text_len, text0, word, |
b1ed564a | 6382 | wild_match_p, encoded_p); |
41d27058 JB |
6383 | } |
6384 | } | |
6385 | ||
b8fea896 | 6386 | do_cleanups (old_chain); |
49c4e619 | 6387 | return completions; |
41d27058 JB |
6388 | } |
6389 | ||
963a6417 | 6390 | /* Field Access */ |
96d887e8 | 6391 | |
73fb9985 JB |
6392 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
6393 | for tagged types. */ | |
6394 | ||
6395 | static int | |
6396 | ada_is_dispatch_table_ptr_type (struct type *type) | |
6397 | { | |
0d5cff50 | 6398 | const char *name; |
73fb9985 JB |
6399 | |
6400 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
6401 | return 0; | |
6402 | ||
6403 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
6404 | if (name == NULL) | |
6405 | return 0; | |
6406 | ||
6407 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
6408 | } | |
6409 | ||
ac4a2da4 JG |
6410 | /* Return non-zero if TYPE is an interface tag. */ |
6411 | ||
6412 | static int | |
6413 | ada_is_interface_tag (struct type *type) | |
6414 | { | |
6415 | const char *name = TYPE_NAME (type); | |
6416 | ||
6417 | if (name == NULL) | |
6418 | return 0; | |
6419 | ||
6420 | return (strcmp (name, "ada__tags__interface_tag") == 0); | |
6421 | } | |
6422 | ||
963a6417 PH |
6423 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
6424 | to be invisible to users. */ | |
96d887e8 | 6425 | |
963a6417 PH |
6426 | int |
6427 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 6428 | { |
963a6417 PH |
6429 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
6430 | return 1; | |
ffde82bf | 6431 | |
73fb9985 JB |
6432 | /* Check the name of that field. */ |
6433 | { | |
6434 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
6435 | ||
6436 | /* Anonymous field names should not be printed. | |
6437 | brobecker/2007-02-20: I don't think this can actually happen | |
6438 | but we don't want to print the value of annonymous fields anyway. */ | |
6439 | if (name == NULL) | |
6440 | return 1; | |
6441 | ||
ffde82bf JB |
6442 | /* Normally, fields whose name start with an underscore ("_") |
6443 | are fields that have been internally generated by the compiler, | |
6444 | and thus should not be printed. The "_parent" field is special, | |
6445 | however: This is a field internally generated by the compiler | |
6446 | for tagged types, and it contains the components inherited from | |
6447 | the parent type. This field should not be printed as is, but | |
6448 | should not be ignored either. */ | |
61012eef | 6449 | if (name[0] == '_' && !startswith (name, "_parent")) |
73fb9985 JB |
6450 | return 1; |
6451 | } | |
6452 | ||
ac4a2da4 JG |
6453 | /* If this is the dispatch table of a tagged type or an interface tag, |
6454 | then ignore. */ | |
73fb9985 | 6455 | if (ada_is_tagged_type (type, 1) |
ac4a2da4 JG |
6456 | && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)) |
6457 | || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num)))) | |
73fb9985 JB |
6458 | return 1; |
6459 | ||
6460 | /* Not a special field, so it should not be ignored. */ | |
6461 | return 0; | |
963a6417 | 6462 | } |
96d887e8 | 6463 | |
963a6417 | 6464 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 6465 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 6466 | |
963a6417 PH |
6467 | int |
6468 | ada_is_tagged_type (struct type *type, int refok) | |
6469 | { | |
6470 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
6471 | } | |
96d887e8 | 6472 | |
963a6417 | 6473 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 6474 | |
963a6417 PH |
6475 | int |
6476 | ada_is_tag_type (struct type *type) | |
6477 | { | |
460efde1 JB |
6478 | type = ada_check_typedef (type); |
6479 | ||
963a6417 PH |
6480 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) |
6481 | return 0; | |
6482 | else | |
96d887e8 | 6483 | { |
963a6417 | 6484 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 6485 | |
963a6417 PH |
6486 | return (name != NULL |
6487 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 6488 | } |
96d887e8 PH |
6489 | } |
6490 | ||
963a6417 | 6491 | /* The type of the tag on VAL. */ |
76a01679 | 6492 | |
963a6417 PH |
6493 | struct type * |
6494 | ada_tag_type (struct value *val) | |
96d887e8 | 6495 | { |
df407dfe | 6496 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 6497 | } |
96d887e8 | 6498 | |
b50d69b5 JG |
6499 | /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95, |
6500 | retired at Ada 05). */ | |
6501 | ||
6502 | static int | |
6503 | is_ada95_tag (struct value *tag) | |
6504 | { | |
6505 | return ada_value_struct_elt (tag, "tsd", 1) != NULL; | |
6506 | } | |
6507 | ||
963a6417 | 6508 | /* The value of the tag on VAL. */ |
96d887e8 | 6509 | |
963a6417 PH |
6510 | struct value * |
6511 | ada_value_tag (struct value *val) | |
6512 | { | |
03ee6b2e | 6513 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
6514 | } |
6515 | ||
963a6417 PH |
6516 | /* The value of the tag on the object of type TYPE whose contents are |
6517 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 6518 | ADDRESS. */ |
96d887e8 | 6519 | |
963a6417 | 6520 | static struct value * |
10a2c479 | 6521 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 6522 | const gdb_byte *valaddr, |
963a6417 | 6523 | CORE_ADDR address) |
96d887e8 | 6524 | { |
b5385fc0 | 6525 | int tag_byte_offset; |
963a6417 | 6526 | struct type *tag_type; |
5b4ee69b | 6527 | |
963a6417 | 6528 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 6529 | NULL, NULL, NULL)) |
96d887e8 | 6530 | { |
fc1a4b47 | 6531 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
6532 | ? NULL |
6533 | : valaddr + tag_byte_offset); | |
963a6417 | 6534 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 6535 | |
963a6417 | 6536 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 6537 | } |
963a6417 PH |
6538 | return NULL; |
6539 | } | |
96d887e8 | 6540 | |
963a6417 PH |
6541 | static struct type * |
6542 | type_from_tag (struct value *tag) | |
6543 | { | |
6544 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 6545 | |
963a6417 PH |
6546 | if (type_name != NULL) |
6547 | return ada_find_any_type (ada_encode (type_name)); | |
6548 | return NULL; | |
6549 | } | |
96d887e8 | 6550 | |
b50d69b5 JG |
6551 | /* Given a value OBJ of a tagged type, return a value of this |
6552 | type at the base address of the object. The base address, as | |
6553 | defined in Ada.Tags, it is the address of the primary tag of | |
6554 | the object, and therefore where the field values of its full | |
6555 | view can be fetched. */ | |
6556 | ||
6557 | struct value * | |
6558 | ada_tag_value_at_base_address (struct value *obj) | |
6559 | { | |
b50d69b5 JG |
6560 | struct value *val; |
6561 | LONGEST offset_to_top = 0; | |
6562 | struct type *ptr_type, *obj_type; | |
6563 | struct value *tag; | |
6564 | CORE_ADDR base_address; | |
6565 | ||
6566 | obj_type = value_type (obj); | |
6567 | ||
6568 | /* It is the responsability of the caller to deref pointers. */ | |
6569 | ||
6570 | if (TYPE_CODE (obj_type) == TYPE_CODE_PTR | |
6571 | || TYPE_CODE (obj_type) == TYPE_CODE_REF) | |
6572 | return obj; | |
6573 | ||
6574 | tag = ada_value_tag (obj); | |
6575 | if (!tag) | |
6576 | return obj; | |
6577 | ||
6578 | /* Base addresses only appeared with Ada 05 and multiple inheritance. */ | |
6579 | ||
6580 | if (is_ada95_tag (tag)) | |
6581 | return obj; | |
6582 | ||
6583 | ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; | |
6584 | ptr_type = lookup_pointer_type (ptr_type); | |
6585 | val = value_cast (ptr_type, tag); | |
6586 | if (!val) | |
6587 | return obj; | |
6588 | ||
6589 | /* It is perfectly possible that an exception be raised while | |
6590 | trying to determine the base address, just like for the tag; | |
6591 | see ada_tag_name for more details. We do not print the error | |
6592 | message for the same reason. */ | |
6593 | ||
492d29ea | 6594 | TRY |
b50d69b5 JG |
6595 | { |
6596 | offset_to_top = value_as_long (value_ind (value_ptradd (val, -2))); | |
6597 | } | |
6598 | ||
492d29ea PA |
6599 | CATCH (e, RETURN_MASK_ERROR) |
6600 | { | |
6601 | return obj; | |
6602 | } | |
6603 | END_CATCH | |
b50d69b5 JG |
6604 | |
6605 | /* If offset is null, nothing to do. */ | |
6606 | ||
6607 | if (offset_to_top == 0) | |
6608 | return obj; | |
6609 | ||
6610 | /* -1 is a special case in Ada.Tags; however, what should be done | |
6611 | is not quite clear from the documentation. So do nothing for | |
6612 | now. */ | |
6613 | ||
6614 | if (offset_to_top == -1) | |
6615 | return obj; | |
6616 | ||
6617 | base_address = value_address (obj) - offset_to_top; | |
6618 | tag = value_tag_from_contents_and_address (obj_type, NULL, base_address); | |
6619 | ||
6620 | /* Make sure that we have a proper tag at the new address. | |
6621 | Otherwise, offset_to_top is bogus (which can happen when | |
6622 | the object is not initialized yet). */ | |
6623 | ||
6624 | if (!tag) | |
6625 | return obj; | |
6626 | ||
6627 | obj_type = type_from_tag (tag); | |
6628 | ||
6629 | if (!obj_type) | |
6630 | return obj; | |
6631 | ||
6632 | return value_from_contents_and_address (obj_type, NULL, base_address); | |
6633 | } | |
6634 | ||
1b611343 JB |
6635 | /* Return the "ada__tags__type_specific_data" type. */ |
6636 | ||
6637 | static struct type * | |
6638 | ada_get_tsd_type (struct inferior *inf) | |
963a6417 | 6639 | { |
1b611343 | 6640 | struct ada_inferior_data *data = get_ada_inferior_data (inf); |
4c4b4cd2 | 6641 | |
1b611343 JB |
6642 | if (data->tsd_type == 0) |
6643 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
6644 | return data->tsd_type; | |
6645 | } | |
529cad9c | 6646 | |
1b611343 JB |
6647 | /* Return the TSD (type-specific data) associated to the given TAG. |
6648 | TAG is assumed to be the tag of a tagged-type entity. | |
529cad9c | 6649 | |
1b611343 | 6650 | May return NULL if we are unable to get the TSD. */ |
4c4b4cd2 | 6651 | |
1b611343 JB |
6652 | static struct value * |
6653 | ada_get_tsd_from_tag (struct value *tag) | |
4c4b4cd2 | 6654 | { |
4c4b4cd2 | 6655 | struct value *val; |
1b611343 | 6656 | struct type *type; |
5b4ee69b | 6657 | |
1b611343 JB |
6658 | /* First option: The TSD is simply stored as a field of our TAG. |
6659 | Only older versions of GNAT would use this format, but we have | |
6660 | to test it first, because there are no visible markers for | |
6661 | the current approach except the absence of that field. */ | |
529cad9c | 6662 | |
1b611343 JB |
6663 | val = ada_value_struct_elt (tag, "tsd", 1); |
6664 | if (val) | |
6665 | return val; | |
e802dbe0 | 6666 | |
1b611343 JB |
6667 | /* Try the second representation for the dispatch table (in which |
6668 | there is no explicit 'tsd' field in the referent of the tag pointer, | |
6669 | and instead the tsd pointer is stored just before the dispatch | |
6670 | table. */ | |
e802dbe0 | 6671 | |
1b611343 JB |
6672 | type = ada_get_tsd_type (current_inferior()); |
6673 | if (type == NULL) | |
6674 | return NULL; | |
6675 | type = lookup_pointer_type (lookup_pointer_type (type)); | |
6676 | val = value_cast (type, tag); | |
6677 | if (val == NULL) | |
6678 | return NULL; | |
6679 | return value_ind (value_ptradd (val, -1)); | |
e802dbe0 JB |
6680 | } |
6681 | ||
1b611343 JB |
6682 | /* Given the TSD of a tag (type-specific data), return a string |
6683 | containing the name of the associated type. | |
6684 | ||
6685 | The returned value is good until the next call. May return NULL | |
6686 | if we are unable to determine the tag name. */ | |
6687 | ||
6688 | static char * | |
6689 | ada_tag_name_from_tsd (struct value *tsd) | |
529cad9c | 6690 | { |
529cad9c PH |
6691 | static char name[1024]; |
6692 | char *p; | |
1b611343 | 6693 | struct value *val; |
529cad9c | 6694 | |
1b611343 | 6695 | val = ada_value_struct_elt (tsd, "expanded_name", 1); |
4c4b4cd2 | 6696 | if (val == NULL) |
1b611343 | 6697 | return NULL; |
4c4b4cd2 PH |
6698 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); |
6699 | for (p = name; *p != '\0'; p += 1) | |
6700 | if (isalpha (*p)) | |
6701 | *p = tolower (*p); | |
1b611343 | 6702 | return name; |
4c4b4cd2 PH |
6703 | } |
6704 | ||
6705 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
1b611343 JB |
6706 | a C string. |
6707 | ||
6708 | Return NULL if the TAG is not an Ada tag, or if we were unable to | |
6709 | determine the name of that tag. The result is good until the next | |
6710 | call. */ | |
4c4b4cd2 PH |
6711 | |
6712 | const char * | |
6713 | ada_tag_name (struct value *tag) | |
6714 | { | |
1b611343 | 6715 | char *name = NULL; |
5b4ee69b | 6716 | |
df407dfe | 6717 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 6718 | return NULL; |
1b611343 JB |
6719 | |
6720 | /* It is perfectly possible that an exception be raised while trying | |
6721 | to determine the TAG's name, even under normal circumstances: | |
6722 | The associated variable may be uninitialized or corrupted, for | |
6723 | instance. We do not let any exception propagate past this point. | |
6724 | instead we return NULL. | |
6725 | ||
6726 | We also do not print the error message either (which often is very | |
6727 | low-level (Eg: "Cannot read memory at 0x[...]"), but instead let | |
6728 | the caller print a more meaningful message if necessary. */ | |
492d29ea | 6729 | TRY |
1b611343 JB |
6730 | { |
6731 | struct value *tsd = ada_get_tsd_from_tag (tag); | |
6732 | ||
6733 | if (tsd != NULL) | |
6734 | name = ada_tag_name_from_tsd (tsd); | |
6735 | } | |
492d29ea PA |
6736 | CATCH (e, RETURN_MASK_ERROR) |
6737 | { | |
6738 | } | |
6739 | END_CATCH | |
1b611343 JB |
6740 | |
6741 | return name; | |
4c4b4cd2 PH |
6742 | } |
6743 | ||
6744 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 6745 | |
d2e4a39e | 6746 | struct type * |
ebf56fd3 | 6747 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
6748 | { |
6749 | int i; | |
6750 | ||
61ee279c | 6751 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6752 | |
6753 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
6754 | return NULL; | |
6755 | ||
6756 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6757 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
6758 | { |
6759 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
6760 | ||
6761 | /* If the _parent field is a pointer, then dereference it. */ | |
6762 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
6763 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
6764 | /* If there is a parallel XVS type, get the actual base type. */ | |
6765 | parent_type = ada_get_base_type (parent_type); | |
6766 | ||
6767 | return ada_check_typedef (parent_type); | |
6768 | } | |
14f9c5c9 AS |
6769 | |
6770 | return NULL; | |
6771 | } | |
6772 | ||
4c4b4cd2 PH |
6773 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
6774 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
6775 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6776 | |
6777 | int | |
ebf56fd3 | 6778 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 6779 | { |
61ee279c | 6780 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 6781 | |
4c4b4cd2 | 6782 | return (name != NULL |
61012eef GB |
6783 | && (startswith (name, "PARENT") |
6784 | || startswith (name, "_parent"))); | |
14f9c5c9 AS |
6785 | } |
6786 | ||
4c4b4cd2 | 6787 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 6788 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 6789 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 6790 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 6791 | structures. */ |
14f9c5c9 AS |
6792 | |
6793 | int | |
ebf56fd3 | 6794 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 6795 | { |
d2e4a39e | 6796 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6797 | |
d2e4a39e | 6798 | return (name != NULL |
61012eef | 6799 | && (startswith (name, "PARENT") |
4c4b4cd2 | 6800 | || strcmp (name, "REP") == 0 |
61012eef | 6801 | || startswith (name, "_parent") |
4c4b4cd2 | 6802 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); |
14f9c5c9 AS |
6803 | } |
6804 | ||
4c4b4cd2 PH |
6805 | /* True iff field number FIELD_NUM of structure or union type TYPE |
6806 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
6807 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6808 | |
6809 | int | |
ebf56fd3 | 6810 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 6811 | { |
d2e4a39e | 6812 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 6813 | |
14f9c5c9 | 6814 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 6815 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
6816 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
6817 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
6818 | } |
6819 | ||
6820 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 6821 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
6822 | returns the type of the controlling discriminant for the variant. |
6823 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 6824 | |
d2e4a39e | 6825 | struct type * |
ebf56fd3 | 6826 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 6827 | { |
d2e4a39e | 6828 | char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 6829 | |
7c964f07 | 6830 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 AS |
6831 | } |
6832 | ||
4c4b4cd2 | 6833 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 6834 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 6835 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
6836 | |
6837 | int | |
ebf56fd3 | 6838 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 6839 | { |
d2e4a39e | 6840 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6841 | |
14f9c5c9 AS |
6842 | return (name != NULL && name[0] == 'O'); |
6843 | } | |
6844 | ||
6845 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
6846 | returns the name of the discriminant controlling the variant. |
6847 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 6848 | |
d2e4a39e | 6849 | char * |
ebf56fd3 | 6850 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 6851 | { |
d2e4a39e | 6852 | static char *result = NULL; |
14f9c5c9 | 6853 | static size_t result_len = 0; |
d2e4a39e AS |
6854 | struct type *type; |
6855 | const char *name; | |
6856 | const char *discrim_end; | |
6857 | const char *discrim_start; | |
14f9c5c9 AS |
6858 | |
6859 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
6860 | type = TYPE_TARGET_TYPE (type0); | |
6861 | else | |
6862 | type = type0; | |
6863 | ||
6864 | name = ada_type_name (type); | |
6865 | ||
6866 | if (name == NULL || name[0] == '\000') | |
6867 | return ""; | |
6868 | ||
6869 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
6870 | discrim_end -= 1) | |
6871 | { | |
61012eef | 6872 | if (startswith (discrim_end, "___XVN")) |
4c4b4cd2 | 6873 | break; |
14f9c5c9 AS |
6874 | } |
6875 | if (discrim_end == name) | |
6876 | return ""; | |
6877 | ||
d2e4a39e | 6878 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
6879 | discrim_start -= 1) |
6880 | { | |
d2e4a39e | 6881 | if (discrim_start == name + 1) |
4c4b4cd2 | 6882 | return ""; |
76a01679 | 6883 | if ((discrim_start > name + 3 |
61012eef | 6884 | && startswith (discrim_start - 3, "___")) |
4c4b4cd2 PH |
6885 | || discrim_start[-1] == '.') |
6886 | break; | |
14f9c5c9 AS |
6887 | } |
6888 | ||
6889 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
6890 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 6891 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
6892 | return result; |
6893 | } | |
6894 | ||
4c4b4cd2 PH |
6895 | /* Scan STR for a subtype-encoded number, beginning at position K. |
6896 | Put the position of the character just past the number scanned in | |
6897 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
6898 | Return 1 if there was a valid number at the given position, and 0 | |
6899 | otherwise. A "subtype-encoded" number consists of the absolute value | |
6900 | in decimal, followed by the letter 'm' to indicate a negative number. | |
6901 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
6902 | |
6903 | int | |
d2e4a39e | 6904 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
6905 | { |
6906 | ULONGEST RU; | |
6907 | ||
d2e4a39e | 6908 | if (!isdigit (str[k])) |
14f9c5c9 AS |
6909 | return 0; |
6910 | ||
4c4b4cd2 | 6911 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 6912 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 6913 | LONGEST. */ |
14f9c5c9 AS |
6914 | RU = 0; |
6915 | while (isdigit (str[k])) | |
6916 | { | |
d2e4a39e | 6917 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
6918 | k += 1; |
6919 | } | |
6920 | ||
d2e4a39e | 6921 | if (str[k] == 'm') |
14f9c5c9 AS |
6922 | { |
6923 | if (R != NULL) | |
4c4b4cd2 | 6924 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
6925 | k += 1; |
6926 | } | |
6927 | else if (R != NULL) | |
6928 | *R = (LONGEST) RU; | |
6929 | ||
4c4b4cd2 | 6930 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
6931 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
6932 | number representable as a LONGEST (although either would probably work | |
6933 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 6934 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
6935 | |
6936 | if (new_k != NULL) | |
6937 | *new_k = k; | |
6938 | return 1; | |
6939 | } | |
6940 | ||
4c4b4cd2 PH |
6941 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
6942 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
6943 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 6944 | |
d2e4a39e | 6945 | int |
ebf56fd3 | 6946 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 6947 | { |
d2e4a39e | 6948 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
6949 | int p; |
6950 | ||
6951 | p = 0; | |
6952 | while (1) | |
6953 | { | |
d2e4a39e | 6954 | switch (name[p]) |
4c4b4cd2 PH |
6955 | { |
6956 | case '\0': | |
6957 | return 0; | |
6958 | case 'S': | |
6959 | { | |
6960 | LONGEST W; | |
5b4ee69b | 6961 | |
4c4b4cd2 PH |
6962 | if (!ada_scan_number (name, p + 1, &W, &p)) |
6963 | return 0; | |
6964 | if (val == W) | |
6965 | return 1; | |
6966 | break; | |
6967 | } | |
6968 | case 'R': | |
6969 | { | |
6970 | LONGEST L, U; | |
5b4ee69b | 6971 | |
4c4b4cd2 PH |
6972 | if (!ada_scan_number (name, p + 1, &L, &p) |
6973 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
6974 | return 0; | |
6975 | if (val >= L && val <= U) | |
6976 | return 1; | |
6977 | break; | |
6978 | } | |
6979 | case 'O': | |
6980 | return 1; | |
6981 | default: | |
6982 | return 0; | |
6983 | } | |
6984 | } | |
6985 | } | |
6986 | ||
0963b4bd | 6987 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
6988 | |
6989 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
6990 | ARG_TYPE, extract and return the value of one of its (non-static) | |
6991 | fields. FIELDNO says which field. Differs from value_primitive_field | |
6992 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 6993 | |
4c4b4cd2 | 6994 | static struct value * |
d2e4a39e | 6995 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 6996 | struct type *arg_type) |
14f9c5c9 | 6997 | { |
14f9c5c9 AS |
6998 | struct type *type; |
6999 | ||
61ee279c | 7000 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
7001 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
7002 | ||
4c4b4cd2 | 7003 | /* Handle packed fields. */ |
14f9c5c9 AS |
7004 | |
7005 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
7006 | { | |
7007 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
7008 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 7009 | |
0fd88904 | 7010 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
7011 | offset + bit_pos / 8, |
7012 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
7013 | } |
7014 | else | |
7015 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
7016 | } | |
7017 | ||
52ce6436 PH |
7018 | /* Find field with name NAME in object of type TYPE. If found, |
7019 | set the following for each argument that is non-null: | |
7020 | - *FIELD_TYPE_P to the field's type; | |
7021 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
7022 | an object of that type; | |
7023 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
7024 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
7025 | 0 otherwise; | |
7026 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
7027 | fields up to but not including the desired field, or by the total | |
7028 | number of fields if not found. A NULL value of NAME never | |
7029 | matches; the function just counts visible fields in this case. | |
7030 | ||
0963b4bd | 7031 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 7032 | |
4c4b4cd2 | 7033 | static int |
0d5cff50 | 7034 | find_struct_field (const char *name, struct type *type, int offset, |
76a01679 | 7035 | struct type **field_type_p, |
52ce6436 PH |
7036 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
7037 | int *index_p) | |
4c4b4cd2 PH |
7038 | { |
7039 | int i; | |
7040 | ||
61ee279c | 7041 | type = ada_check_typedef (type); |
76a01679 | 7042 | |
52ce6436 PH |
7043 | if (field_type_p != NULL) |
7044 | *field_type_p = NULL; | |
7045 | if (byte_offset_p != NULL) | |
d5d6fca5 | 7046 | *byte_offset_p = 0; |
52ce6436 PH |
7047 | if (bit_offset_p != NULL) |
7048 | *bit_offset_p = 0; | |
7049 | if (bit_size_p != NULL) | |
7050 | *bit_size_p = 0; | |
7051 | ||
7052 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
7053 | { |
7054 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
7055 | int fld_offset = offset + bit_pos / 8; | |
0d5cff50 | 7056 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
76a01679 | 7057 | |
4c4b4cd2 PH |
7058 | if (t_field_name == NULL) |
7059 | continue; | |
7060 | ||
52ce6436 | 7061 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
7062 | { |
7063 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 7064 | |
52ce6436 PH |
7065 | if (field_type_p != NULL) |
7066 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
7067 | if (byte_offset_p != NULL) | |
7068 | *byte_offset_p = fld_offset; | |
7069 | if (bit_offset_p != NULL) | |
7070 | *bit_offset_p = bit_pos % 8; | |
7071 | if (bit_size_p != NULL) | |
7072 | *bit_size_p = bit_size; | |
76a01679 JB |
7073 | return 1; |
7074 | } | |
4c4b4cd2 PH |
7075 | else if (ada_is_wrapper_field (type, i)) |
7076 | { | |
52ce6436 PH |
7077 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
7078 | field_type_p, byte_offset_p, bit_offset_p, | |
7079 | bit_size_p, index_p)) | |
76a01679 JB |
7080 | return 1; |
7081 | } | |
4c4b4cd2 PH |
7082 | else if (ada_is_variant_part (type, i)) |
7083 | { | |
52ce6436 PH |
7084 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
7085 | fixed type?? */ | |
4c4b4cd2 | 7086 | int j; |
52ce6436 PH |
7087 | struct type *field_type |
7088 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 7089 | |
52ce6436 | 7090 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 7091 | { |
76a01679 JB |
7092 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
7093 | fld_offset | |
7094 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
7095 | field_type_p, byte_offset_p, | |
52ce6436 | 7096 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 7097 | return 1; |
4c4b4cd2 PH |
7098 | } |
7099 | } | |
52ce6436 PH |
7100 | else if (index_p != NULL) |
7101 | *index_p += 1; | |
4c4b4cd2 PH |
7102 | } |
7103 | return 0; | |
7104 | } | |
7105 | ||
0963b4bd | 7106 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 7107 | |
52ce6436 PH |
7108 | static int |
7109 | num_visible_fields (struct type *type) | |
7110 | { | |
7111 | int n; | |
5b4ee69b | 7112 | |
52ce6436 PH |
7113 | n = 0; |
7114 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
7115 | return n; | |
7116 | } | |
14f9c5c9 | 7117 | |
4c4b4cd2 | 7118 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
7119 | and search in it assuming it has (class) type TYPE. |
7120 | If found, return value, else return NULL. | |
7121 | ||
4c4b4cd2 | 7122 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 7123 | |
4c4b4cd2 | 7124 | static struct value * |
d2e4a39e | 7125 | ada_search_struct_field (char *name, struct value *arg, int offset, |
4c4b4cd2 | 7126 | struct type *type) |
14f9c5c9 AS |
7127 | { |
7128 | int i; | |
14f9c5c9 | 7129 | |
5b4ee69b | 7130 | type = ada_check_typedef (type); |
52ce6436 | 7131 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 | 7132 | { |
0d5cff50 | 7133 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
7134 | |
7135 | if (t_field_name == NULL) | |
4c4b4cd2 | 7136 | continue; |
14f9c5c9 AS |
7137 | |
7138 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 7139 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
7140 | |
7141 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 7142 | { |
0963b4bd | 7143 | struct value *v = /* Do not let indent join lines here. */ |
06d5cf63 JB |
7144 | ada_search_struct_field (name, arg, |
7145 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7146 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7147 | |
4c4b4cd2 PH |
7148 | if (v != NULL) |
7149 | return v; | |
7150 | } | |
14f9c5c9 AS |
7151 | |
7152 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 7153 | { |
0963b4bd | 7154 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 7155 | int j; |
5b4ee69b MS |
7156 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7157 | i)); | |
4c4b4cd2 PH |
7158 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
7159 | ||
52ce6436 | 7160 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 7161 | { |
0963b4bd MS |
7162 | struct value *v = ada_search_struct_field /* Force line |
7163 | break. */ | |
06d5cf63 JB |
7164 | (name, arg, |
7165 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
7166 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 7167 | |
4c4b4cd2 PH |
7168 | if (v != NULL) |
7169 | return v; | |
7170 | } | |
7171 | } | |
14f9c5c9 AS |
7172 | } |
7173 | return NULL; | |
7174 | } | |
d2e4a39e | 7175 | |
52ce6436 PH |
7176 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
7177 | int, struct type *); | |
7178 | ||
7179 | ||
7180 | /* Return field #INDEX in ARG, where the index is that returned by | |
7181 | * find_struct_field through its INDEX_P argument. Adjust the address | |
7182 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 7183 | * If found, return value, else return NULL. */ |
52ce6436 PH |
7184 | |
7185 | static struct value * | |
7186 | ada_index_struct_field (int index, struct value *arg, int offset, | |
7187 | struct type *type) | |
7188 | { | |
7189 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
7190 | } | |
7191 | ||
7192 | ||
7193 | /* Auxiliary function for ada_index_struct_field. Like | |
7194 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 7195 | * *INDEX_P. */ |
52ce6436 PH |
7196 | |
7197 | static struct value * | |
7198 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
7199 | struct type *type) | |
7200 | { | |
7201 | int i; | |
7202 | type = ada_check_typedef (type); | |
7203 | ||
7204 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7205 | { | |
7206 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
7207 | continue; | |
7208 | else if (ada_is_wrapper_field (type, i)) | |
7209 | { | |
0963b4bd | 7210 | struct value *v = /* Do not let indent join lines here. */ |
52ce6436 PH |
7211 | ada_index_struct_field_1 (index_p, arg, |
7212 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7213 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7214 | |
52ce6436 PH |
7215 | if (v != NULL) |
7216 | return v; | |
7217 | } | |
7218 | ||
7219 | else if (ada_is_variant_part (type, i)) | |
7220 | { | |
7221 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
0963b4bd | 7222 | find_struct_field. */ |
52ce6436 PH |
7223 | error (_("Cannot assign this kind of variant record")); |
7224 | } | |
7225 | else if (*index_p == 0) | |
7226 | return ada_value_primitive_field (arg, offset, i, type); | |
7227 | else | |
7228 | *index_p -= 1; | |
7229 | } | |
7230 | return NULL; | |
7231 | } | |
7232 | ||
4c4b4cd2 PH |
7233 | /* Given ARG, a value of type (pointer or reference to a)* |
7234 | structure/union, extract the component named NAME from the ultimate | |
7235 | target structure/union and return it as a value with its | |
f5938064 | 7236 | appropriate type. |
14f9c5c9 | 7237 | |
4c4b4cd2 PH |
7238 | The routine searches for NAME among all members of the structure itself |
7239 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
7240 | (e.g., '_parent'). |
7241 | ||
03ee6b2e PH |
7242 | If NO_ERR, then simply return NULL in case of error, rather than |
7243 | calling error. */ | |
14f9c5c9 | 7244 | |
d2e4a39e | 7245 | struct value * |
03ee6b2e | 7246 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 7247 | { |
4c4b4cd2 | 7248 | struct type *t, *t1; |
d2e4a39e | 7249 | struct value *v; |
14f9c5c9 | 7250 | |
4c4b4cd2 | 7251 | v = NULL; |
df407dfe | 7252 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
7253 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
7254 | { | |
7255 | t1 = TYPE_TARGET_TYPE (t); | |
7256 | if (t1 == NULL) | |
03ee6b2e | 7257 | goto BadValue; |
61ee279c | 7258 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 7259 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 7260 | { |
994b9211 | 7261 | arg = coerce_ref (arg); |
76a01679 JB |
7262 | t = t1; |
7263 | } | |
4c4b4cd2 | 7264 | } |
14f9c5c9 | 7265 | |
4c4b4cd2 PH |
7266 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
7267 | { | |
7268 | t1 = TYPE_TARGET_TYPE (t); | |
7269 | if (t1 == NULL) | |
03ee6b2e | 7270 | goto BadValue; |
61ee279c | 7271 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 7272 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
7273 | { |
7274 | arg = value_ind (arg); | |
7275 | t = t1; | |
7276 | } | |
4c4b4cd2 | 7277 | else |
76a01679 | 7278 | break; |
4c4b4cd2 | 7279 | } |
14f9c5c9 | 7280 | |
4c4b4cd2 | 7281 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 7282 | goto BadValue; |
14f9c5c9 | 7283 | |
4c4b4cd2 PH |
7284 | if (t1 == t) |
7285 | v = ada_search_struct_field (name, arg, 0, t); | |
7286 | else | |
7287 | { | |
7288 | int bit_offset, bit_size, byte_offset; | |
7289 | struct type *field_type; | |
7290 | CORE_ADDR address; | |
7291 | ||
76a01679 | 7292 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
b50d69b5 | 7293 | address = value_address (ada_value_ind (arg)); |
4c4b4cd2 | 7294 | else |
b50d69b5 | 7295 | address = value_address (ada_coerce_ref (arg)); |
14f9c5c9 | 7296 | |
1ed6ede0 | 7297 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
7298 | if (find_struct_field (name, t1, 0, |
7299 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 7300 | &bit_size, NULL)) |
76a01679 JB |
7301 | { |
7302 | if (bit_size != 0) | |
7303 | { | |
714e53ab PH |
7304 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
7305 | arg = ada_coerce_ref (arg); | |
7306 | else | |
7307 | arg = ada_value_ind (arg); | |
76a01679 JB |
7308 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
7309 | bit_offset, bit_size, | |
7310 | field_type); | |
7311 | } | |
7312 | else | |
f5938064 | 7313 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
7314 | } |
7315 | } | |
7316 | ||
03ee6b2e PH |
7317 | if (v != NULL || no_err) |
7318 | return v; | |
7319 | else | |
323e0a4a | 7320 | error (_("There is no member named %s."), name); |
14f9c5c9 | 7321 | |
03ee6b2e PH |
7322 | BadValue: |
7323 | if (no_err) | |
7324 | return NULL; | |
7325 | else | |
0963b4bd MS |
7326 | error (_("Attempt to extract a component of " |
7327 | "a value that is not a record.")); | |
14f9c5c9 AS |
7328 | } |
7329 | ||
7330 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
7331 | If DISPP is non-null, add its byte displacement from the beginning of a |
7332 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
7333 | work for packed fields). |
7334 | ||
7335 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 7336 | followed by "___". |
14f9c5c9 | 7337 | |
0963b4bd | 7338 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
7339 | be a (pointer or reference)+ to a struct or union, and the |
7340 | ultimate target type will be searched. | |
14f9c5c9 AS |
7341 | |
7342 | Looks recursively into variant clauses and parent types. | |
7343 | ||
4c4b4cd2 PH |
7344 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
7345 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 7346 | |
4c4b4cd2 | 7347 | static struct type * |
76a01679 JB |
7348 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
7349 | int noerr, int *dispp) | |
14f9c5c9 AS |
7350 | { |
7351 | int i; | |
7352 | ||
7353 | if (name == NULL) | |
7354 | goto BadName; | |
7355 | ||
76a01679 | 7356 | if (refok && type != NULL) |
4c4b4cd2 PH |
7357 | while (1) |
7358 | { | |
61ee279c | 7359 | type = ada_check_typedef (type); |
76a01679 JB |
7360 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
7361 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
7362 | break; | |
7363 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 7364 | } |
14f9c5c9 | 7365 | |
76a01679 | 7366 | if (type == NULL |
1265e4aa JB |
7367 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
7368 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 7369 | { |
4c4b4cd2 | 7370 | if (noerr) |
76a01679 | 7371 | return NULL; |
4c4b4cd2 | 7372 | else |
76a01679 JB |
7373 | { |
7374 | target_terminal_ours (); | |
7375 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
7376 | if (type == NULL) |
7377 | error (_("Type (null) is not a structure or union type")); | |
7378 | else | |
7379 | { | |
7380 | /* XXX: type_sprint */ | |
7381 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
7382 | type_print (type, "", gdb_stderr, -1); | |
7383 | error (_(" is not a structure or union type")); | |
7384 | } | |
76a01679 | 7385 | } |
14f9c5c9 AS |
7386 | } |
7387 | ||
7388 | type = to_static_fixed_type (type); | |
7389 | ||
7390 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7391 | { | |
0d5cff50 | 7392 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
7393 | struct type *t; |
7394 | int disp; | |
d2e4a39e | 7395 | |
14f9c5c9 | 7396 | if (t_field_name == NULL) |
4c4b4cd2 | 7397 | continue; |
14f9c5c9 AS |
7398 | |
7399 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
7400 | { |
7401 | if (dispp != NULL) | |
7402 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
460efde1 | 7403 | return TYPE_FIELD_TYPE (type, i); |
4c4b4cd2 | 7404 | } |
14f9c5c9 AS |
7405 | |
7406 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
7407 | { |
7408 | disp = 0; | |
7409 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
7410 | 0, 1, &disp); | |
7411 | if (t != NULL) | |
7412 | { | |
7413 | if (dispp != NULL) | |
7414 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
7415 | return t; | |
7416 | } | |
7417 | } | |
14f9c5c9 AS |
7418 | |
7419 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
7420 | { |
7421 | int j; | |
5b4ee69b MS |
7422 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7423 | i)); | |
4c4b4cd2 PH |
7424 | |
7425 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
7426 | { | |
b1f33ddd JB |
7427 | /* FIXME pnh 2008/01/26: We check for a field that is |
7428 | NOT wrapped in a struct, since the compiler sometimes | |
7429 | generates these for unchecked variant types. Revisit | |
0963b4bd | 7430 | if the compiler changes this practice. */ |
0d5cff50 | 7431 | const char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
4c4b4cd2 | 7432 | disp = 0; |
b1f33ddd JB |
7433 | if (v_field_name != NULL |
7434 | && field_name_match (v_field_name, name)) | |
460efde1 | 7435 | t = TYPE_FIELD_TYPE (field_type, j); |
b1f33ddd | 7436 | else |
0963b4bd MS |
7437 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, |
7438 | j), | |
b1f33ddd JB |
7439 | name, 0, 1, &disp); |
7440 | ||
4c4b4cd2 PH |
7441 | if (t != NULL) |
7442 | { | |
7443 | if (dispp != NULL) | |
7444 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
7445 | return t; | |
7446 | } | |
7447 | } | |
7448 | } | |
14f9c5c9 AS |
7449 | |
7450 | } | |
7451 | ||
7452 | BadName: | |
d2e4a39e | 7453 | if (!noerr) |
14f9c5c9 AS |
7454 | { |
7455 | target_terminal_ours (); | |
7456 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
7457 | if (name == NULL) |
7458 | { | |
7459 | /* XXX: type_sprint */ | |
7460 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
7461 | type_print (type, "", gdb_stderr, -1); | |
7462 | error (_(" has no component named <null>")); | |
7463 | } | |
7464 | else | |
7465 | { | |
7466 | /* XXX: type_sprint */ | |
7467 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
7468 | type_print (type, "", gdb_stderr, -1); | |
7469 | error (_(" has no component named %s"), name); | |
7470 | } | |
14f9c5c9 AS |
7471 | } |
7472 | ||
7473 | return NULL; | |
7474 | } | |
7475 | ||
b1f33ddd JB |
7476 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7477 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
7478 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 7479 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
7480 | |
7481 | static int | |
7482 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
7483 | { | |
7484 | char *discrim_name = ada_variant_discrim_name (var_type); | |
5b4ee69b | 7485 | |
b1f33ddd JB |
7486 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) |
7487 | == NULL); | |
7488 | } | |
7489 | ||
7490 | ||
14f9c5c9 AS |
7491 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7492 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
7493 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
7494 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 7495 | |
d2e4a39e | 7496 | int |
ebf56fd3 | 7497 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 7498 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
7499 | { |
7500 | int others_clause; | |
7501 | int i; | |
d2e4a39e | 7502 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
7503 | struct value *outer; |
7504 | struct value *discrim; | |
14f9c5c9 AS |
7505 | LONGEST discrim_val; |
7506 | ||
012370f6 TT |
7507 | /* Using plain value_from_contents_and_address here causes problems |
7508 | because we will end up trying to resolve a type that is currently | |
7509 | being constructed. */ | |
7510 | outer = value_from_contents_and_address_unresolved (outer_type, | |
7511 | outer_valaddr, 0); | |
0c281816 JB |
7512 | discrim = ada_value_struct_elt (outer, discrim_name, 1); |
7513 | if (discrim == NULL) | |
14f9c5c9 | 7514 | return -1; |
0c281816 | 7515 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
7516 | |
7517 | others_clause = -1; | |
7518 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
7519 | { | |
7520 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 7521 | others_clause = i; |
14f9c5c9 | 7522 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 7523 | return i; |
14f9c5c9 AS |
7524 | } |
7525 | ||
7526 | return others_clause; | |
7527 | } | |
d2e4a39e | 7528 | \f |
14f9c5c9 AS |
7529 | |
7530 | ||
4c4b4cd2 | 7531 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
7532 | |
7533 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
7534 | (i.e., a size that is not statically recorded in the debugging | |
7535 | data) does not accurately reflect the size or layout of the value. | |
7536 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 7537 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
7538 | |
7539 | /* There is a subtle and tricky problem here. In general, we cannot | |
7540 | determine the size of dynamic records without its data. However, | |
7541 | the 'struct value' data structure, which GDB uses to represent | |
7542 | quantities in the inferior process (the target), requires the size | |
7543 | of the type at the time of its allocation in order to reserve space | |
7544 | for GDB's internal copy of the data. That's why the | |
7545 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 7546 | rather than struct value*s. |
14f9c5c9 AS |
7547 | |
7548 | However, GDB's internal history variables ($1, $2, etc.) are | |
7549 | struct value*s containing internal copies of the data that are not, in | |
7550 | general, the same as the data at their corresponding addresses in | |
7551 | the target. Fortunately, the types we give to these values are all | |
7552 | conventional, fixed-size types (as per the strategy described | |
7553 | above), so that we don't usually have to perform the | |
7554 | 'to_fixed_xxx_type' conversions to look at their values. | |
7555 | Unfortunately, there is one exception: if one of the internal | |
7556 | history variables is an array whose elements are unconstrained | |
7557 | records, then we will need to create distinct fixed types for each | |
7558 | element selected. */ | |
7559 | ||
7560 | /* The upshot of all of this is that many routines take a (type, host | |
7561 | address, target address) triple as arguments to represent a value. | |
7562 | The host address, if non-null, is supposed to contain an internal | |
7563 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 7564 | target at the target address. */ |
14f9c5c9 AS |
7565 | |
7566 | /* Assuming that VAL0 represents a pointer value, the result of | |
7567 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 7568 | dynamic-sized types. */ |
14f9c5c9 | 7569 | |
d2e4a39e AS |
7570 | struct value * |
7571 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 7572 | { |
c48db5ca | 7573 | struct value *val = value_ind (val0); |
5b4ee69b | 7574 | |
b50d69b5 JG |
7575 | if (ada_is_tagged_type (value_type (val), 0)) |
7576 | val = ada_tag_value_at_base_address (val); | |
7577 | ||
4c4b4cd2 | 7578 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
7579 | } |
7580 | ||
7581 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
7582 | qualifiers on VAL0. */ |
7583 | ||
d2e4a39e AS |
7584 | static struct value * |
7585 | ada_coerce_ref (struct value *val0) | |
7586 | { | |
df407dfe | 7587 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
7588 | { |
7589 | struct value *val = val0; | |
5b4ee69b | 7590 | |
994b9211 | 7591 | val = coerce_ref (val); |
b50d69b5 JG |
7592 | |
7593 | if (ada_is_tagged_type (value_type (val), 0)) | |
7594 | val = ada_tag_value_at_base_address (val); | |
7595 | ||
4c4b4cd2 | 7596 | return ada_to_fixed_value (val); |
d2e4a39e AS |
7597 | } |
7598 | else | |
14f9c5c9 AS |
7599 | return val0; |
7600 | } | |
7601 | ||
7602 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 7603 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
7604 | |
7605 | static unsigned int | |
ebf56fd3 | 7606 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
7607 | { |
7608 | return (off + alignment - 1) & ~(alignment - 1); | |
7609 | } | |
7610 | ||
4c4b4cd2 | 7611 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
7612 | |
7613 | static unsigned int | |
ebf56fd3 | 7614 | field_alignment (struct type *type, int f) |
14f9c5c9 | 7615 | { |
d2e4a39e | 7616 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 7617 | int len; |
14f9c5c9 AS |
7618 | int align_offset; |
7619 | ||
64a1bf19 JB |
7620 | /* The field name should never be null, unless the debugging information |
7621 | is somehow malformed. In this case, we assume the field does not | |
7622 | require any alignment. */ | |
7623 | if (name == NULL) | |
7624 | return 1; | |
7625 | ||
7626 | len = strlen (name); | |
7627 | ||
4c4b4cd2 PH |
7628 | if (!isdigit (name[len - 1])) |
7629 | return 1; | |
14f9c5c9 | 7630 | |
d2e4a39e | 7631 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
7632 | align_offset = len - 2; |
7633 | else | |
7634 | align_offset = len - 1; | |
7635 | ||
61012eef | 7636 | if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV")) |
14f9c5c9 AS |
7637 | return TARGET_CHAR_BIT; |
7638 | ||
4c4b4cd2 PH |
7639 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
7640 | } | |
7641 | ||
852dff6c | 7642 | /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */ |
4c4b4cd2 | 7643 | |
852dff6c JB |
7644 | static struct symbol * |
7645 | ada_find_any_type_symbol (const char *name) | |
4c4b4cd2 PH |
7646 | { |
7647 | struct symbol *sym; | |
7648 | ||
7649 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
4186eb54 | 7650 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) |
4c4b4cd2 PH |
7651 | return sym; |
7652 | ||
4186eb54 KS |
7653 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); |
7654 | return sym; | |
14f9c5c9 AS |
7655 | } |
7656 | ||
dddfab26 UW |
7657 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
7658 | solely for types defined by debug info, it will not search the GDB | |
7659 | primitive types. */ | |
4c4b4cd2 | 7660 | |
852dff6c | 7661 | static struct type * |
ebf56fd3 | 7662 | ada_find_any_type (const char *name) |
14f9c5c9 | 7663 | { |
852dff6c | 7664 | struct symbol *sym = ada_find_any_type_symbol (name); |
14f9c5c9 | 7665 | |
14f9c5c9 | 7666 | if (sym != NULL) |
dddfab26 | 7667 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 7668 | |
dddfab26 | 7669 | return NULL; |
14f9c5c9 AS |
7670 | } |
7671 | ||
739593e0 JB |
7672 | /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol |
7673 | associated with NAME_SYM's name. NAME_SYM may itself be a renaming | |
7674 | symbol, in which case it is returned. Otherwise, this looks for | |
7675 | symbols whose name is that of NAME_SYM suffixed with "___XR". | |
7676 | Return symbol if found, and NULL otherwise. */ | |
4c4b4cd2 PH |
7677 | |
7678 | struct symbol * | |
270140bd | 7679 | ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block) |
aeb5907d | 7680 | { |
739593e0 | 7681 | const char *name = SYMBOL_LINKAGE_NAME (name_sym); |
aeb5907d JB |
7682 | struct symbol *sym; |
7683 | ||
739593e0 JB |
7684 | if (strstr (name, "___XR") != NULL) |
7685 | return name_sym; | |
7686 | ||
aeb5907d JB |
7687 | sym = find_old_style_renaming_symbol (name, block); |
7688 | ||
7689 | if (sym != NULL) | |
7690 | return sym; | |
7691 | ||
0963b4bd | 7692 | /* Not right yet. FIXME pnh 7/20/2007. */ |
852dff6c | 7693 | sym = ada_find_any_type_symbol (name); |
aeb5907d JB |
7694 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) |
7695 | return sym; | |
7696 | else | |
7697 | return NULL; | |
7698 | } | |
7699 | ||
7700 | static struct symbol * | |
270140bd | 7701 | find_old_style_renaming_symbol (const char *name, const struct block *block) |
4c4b4cd2 | 7702 | { |
7f0df278 | 7703 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
7704 | char *rename; |
7705 | ||
7706 | if (function_sym != NULL) | |
7707 | { | |
7708 | /* If the symbol is defined inside a function, NAME is not fully | |
7709 | qualified. This means we need to prepend the function name | |
7710 | as well as adding the ``___XR'' suffix to build the name of | |
7711 | the associated renaming symbol. */ | |
0d5cff50 | 7712 | const char *function_name = SYMBOL_LINKAGE_NAME (function_sym); |
529cad9c PH |
7713 | /* Function names sometimes contain suffixes used |
7714 | for instance to qualify nested subprograms. When building | |
7715 | the XR type name, we need to make sure that this suffix is | |
7716 | not included. So do not include any suffix in the function | |
7717 | name length below. */ | |
69fadcdf | 7718 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
7719 | const int rename_len = function_name_len + 2 /* "__" */ |
7720 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 7721 | |
529cad9c | 7722 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
7723 | ada_remove_trailing_digits (function_name, &function_name_len); |
7724 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
7725 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 7726 | |
4c4b4cd2 PH |
7727 | /* Library-level functions are a special case, as GNAT adds |
7728 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 7729 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
7730 | have this prefix, so we need to skip this prefix if present. */ |
7731 | if (function_name_len > 5 /* "_ada_" */ | |
7732 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
7733 | { |
7734 | function_name += 5; | |
7735 | function_name_len -= 5; | |
7736 | } | |
4c4b4cd2 PH |
7737 | |
7738 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
7739 | strncpy (rename, function_name, function_name_len); |
7740 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
7741 | "__%s___XR", name); | |
4c4b4cd2 PH |
7742 | } |
7743 | else | |
7744 | { | |
7745 | const int rename_len = strlen (name) + 6; | |
5b4ee69b | 7746 | |
4c4b4cd2 | 7747 | rename = (char *) alloca (rename_len * sizeof (char)); |
88c15c34 | 7748 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
7749 | } |
7750 | ||
852dff6c | 7751 | return ada_find_any_type_symbol (rename); |
4c4b4cd2 PH |
7752 | } |
7753 | ||
14f9c5c9 | 7754 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 7755 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 7756 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
7757 | otherwise return 0. */ |
7758 | ||
14f9c5c9 | 7759 | int |
d2e4a39e | 7760 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
7761 | { |
7762 | if (type1 == NULL) | |
7763 | return 1; | |
7764 | else if (type0 == NULL) | |
7765 | return 0; | |
7766 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
7767 | return 1; | |
7768 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
7769 | return 0; | |
4c4b4cd2 PH |
7770 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
7771 | return 1; | |
ad82864c | 7772 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 7773 | return 1; |
4c4b4cd2 PH |
7774 | else if (ada_is_array_descriptor_type (type0) |
7775 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 7776 | return 1; |
aeb5907d JB |
7777 | else |
7778 | { | |
7779 | const char *type0_name = type_name_no_tag (type0); | |
7780 | const char *type1_name = type_name_no_tag (type1); | |
7781 | ||
7782 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
7783 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
7784 | return 1; | |
7785 | } | |
14f9c5c9 AS |
7786 | return 0; |
7787 | } | |
7788 | ||
7789 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
7790 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
7791 | ||
0d5cff50 | 7792 | const char * |
d2e4a39e | 7793 | ada_type_name (struct type *type) |
14f9c5c9 | 7794 | { |
d2e4a39e | 7795 | if (type == NULL) |
14f9c5c9 AS |
7796 | return NULL; |
7797 | else if (TYPE_NAME (type) != NULL) | |
7798 | return TYPE_NAME (type); | |
7799 | else | |
7800 | return TYPE_TAG_NAME (type); | |
7801 | } | |
7802 | ||
b4ba55a1 JB |
7803 | /* Search the list of "descriptive" types associated to TYPE for a type |
7804 | whose name is NAME. */ | |
7805 | ||
7806 | static struct type * | |
7807 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
7808 | { | |
931e5bc3 | 7809 | struct type *result, *tmp; |
b4ba55a1 | 7810 | |
c6044dd1 JB |
7811 | if (ada_ignore_descriptive_types_p) |
7812 | return NULL; | |
7813 | ||
b4ba55a1 JB |
7814 | /* If there no descriptive-type info, then there is no parallel type |
7815 | to be found. */ | |
7816 | if (!HAVE_GNAT_AUX_INFO (type)) | |
7817 | return NULL; | |
7818 | ||
7819 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
7820 | while (result != NULL) | |
7821 | { | |
0d5cff50 | 7822 | const char *result_name = ada_type_name (result); |
b4ba55a1 JB |
7823 | |
7824 | if (result_name == NULL) | |
7825 | { | |
7826 | warning (_("unexpected null name on descriptive type")); | |
7827 | return NULL; | |
7828 | } | |
7829 | ||
7830 | /* If the names match, stop. */ | |
7831 | if (strcmp (result_name, name) == 0) | |
7832 | break; | |
7833 | ||
7834 | /* Otherwise, look at the next item on the list, if any. */ | |
7835 | if (HAVE_GNAT_AUX_INFO (result)) | |
931e5bc3 JG |
7836 | tmp = TYPE_DESCRIPTIVE_TYPE (result); |
7837 | else | |
7838 | tmp = NULL; | |
7839 | ||
7840 | /* If not found either, try after having resolved the typedef. */ | |
7841 | if (tmp != NULL) | |
7842 | result = tmp; | |
b4ba55a1 | 7843 | else |
931e5bc3 | 7844 | { |
f168693b | 7845 | result = check_typedef (result); |
931e5bc3 JG |
7846 | if (HAVE_GNAT_AUX_INFO (result)) |
7847 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
7848 | else | |
7849 | result = NULL; | |
7850 | } | |
b4ba55a1 JB |
7851 | } |
7852 | ||
7853 | /* If we didn't find a match, see whether this is a packed array. With | |
7854 | older compilers, the descriptive type information is either absent or | |
7855 | irrelevant when it comes to packed arrays so the above lookup fails. | |
7856 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 7857 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
7858 | return ada_find_any_type (name); |
7859 | ||
7860 | return result; | |
7861 | } | |
7862 | ||
7863 | /* Find a parallel type to TYPE with the specified NAME, using the | |
7864 | descriptive type taken from the debugging information, if available, | |
7865 | and otherwise using the (slower) name-based method. */ | |
7866 | ||
7867 | static struct type * | |
7868 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
7869 | { | |
7870 | struct type *result = NULL; | |
7871 | ||
7872 | if (HAVE_GNAT_AUX_INFO (type)) | |
7873 | result = find_parallel_type_by_descriptive_type (type, name); | |
7874 | else | |
7875 | result = ada_find_any_type (name); | |
7876 | ||
7877 | return result; | |
7878 | } | |
7879 | ||
7880 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 7881 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 7882 | |
d2e4a39e | 7883 | struct type * |
ebf56fd3 | 7884 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 7885 | { |
0d5cff50 | 7886 | char *name; |
fe978cb0 | 7887 | const char *type_name = ada_type_name (type); |
14f9c5c9 | 7888 | int len; |
d2e4a39e | 7889 | |
fe978cb0 | 7890 | if (type_name == NULL) |
14f9c5c9 AS |
7891 | return NULL; |
7892 | ||
fe978cb0 | 7893 | len = strlen (type_name); |
14f9c5c9 | 7894 | |
b4ba55a1 | 7895 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 | 7896 | |
fe978cb0 | 7897 | strcpy (name, type_name); |
14f9c5c9 AS |
7898 | strcpy (name + len, suffix); |
7899 | ||
b4ba55a1 | 7900 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
7901 | } |
7902 | ||
14f9c5c9 | 7903 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 7904 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 7905 | |
d2e4a39e AS |
7906 | static struct type * |
7907 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 7908 | { |
61ee279c | 7909 | type = ada_check_typedef (type); |
14f9c5c9 AS |
7910 | |
7911 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 7912 | || ada_type_name (type) == NULL) |
14f9c5c9 | 7913 | return NULL; |
d2e4a39e | 7914 | else |
14f9c5c9 AS |
7915 | { |
7916 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 7917 | |
4c4b4cd2 PH |
7918 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
7919 | return type; | |
14f9c5c9 | 7920 | else |
4c4b4cd2 | 7921 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
7922 | } |
7923 | } | |
7924 | ||
7925 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 7926 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 7927 | |
d2e4a39e AS |
7928 | static int |
7929 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
7930 | { |
7931 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 7932 | |
d2e4a39e | 7933 | return name != NULL |
14f9c5c9 AS |
7934 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
7935 | && strstr (name, "___XVL") != NULL; | |
7936 | } | |
7937 | ||
4c4b4cd2 PH |
7938 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
7939 | represent a variant record type. */ | |
14f9c5c9 | 7940 | |
d2e4a39e | 7941 | static int |
4c4b4cd2 | 7942 | variant_field_index (struct type *type) |
14f9c5c9 AS |
7943 | { |
7944 | int f; | |
7945 | ||
4c4b4cd2 PH |
7946 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
7947 | return -1; | |
7948 | ||
7949 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
7950 | { | |
7951 | if (ada_is_variant_part (type, f)) | |
7952 | return f; | |
7953 | } | |
7954 | return -1; | |
14f9c5c9 AS |
7955 | } |
7956 | ||
4c4b4cd2 PH |
7957 | /* A record type with no fields. */ |
7958 | ||
d2e4a39e | 7959 | static struct type * |
fe978cb0 | 7960 | empty_record (struct type *templ) |
14f9c5c9 | 7961 | { |
fe978cb0 | 7962 | struct type *type = alloc_type_copy (templ); |
5b4ee69b | 7963 | |
14f9c5c9 AS |
7964 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
7965 | TYPE_NFIELDS (type) = 0; | |
7966 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 7967 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
7968 | TYPE_NAME (type) = "<empty>"; |
7969 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
7970 | TYPE_LENGTH (type) = 0; |
7971 | return type; | |
7972 | } | |
7973 | ||
7974 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
7975 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
7976 | the beginning of this section) VAL according to GNAT conventions. | |
7977 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 7978 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
7979 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
7980 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 7981 | of the variant. |
14f9c5c9 | 7982 | |
4c4b4cd2 PH |
7983 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
7984 | length are not statically known are discarded. As a consequence, | |
7985 | VALADDR, ADDRESS and DVAL0 are ignored. | |
7986 | ||
7987 | NOTE: Limitations: For now, we assume that dynamic fields and | |
7988 | variants occupy whole numbers of bytes. However, they need not be | |
7989 | byte-aligned. */ | |
7990 | ||
7991 | struct type * | |
10a2c479 | 7992 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 7993 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
7994 | CORE_ADDR address, struct value *dval0, |
7995 | int keep_dynamic_fields) | |
14f9c5c9 | 7996 | { |
d2e4a39e AS |
7997 | struct value *mark = value_mark (); |
7998 | struct value *dval; | |
7999 | struct type *rtype; | |
14f9c5c9 | 8000 | int nfields, bit_len; |
4c4b4cd2 | 8001 | int variant_field; |
14f9c5c9 | 8002 | long off; |
d94e4f4f | 8003 | int fld_bit_len; |
14f9c5c9 AS |
8004 | int f; |
8005 | ||
4c4b4cd2 PH |
8006 | /* Compute the number of fields in this record type that are going |
8007 | to be processed: unless keep_dynamic_fields, this includes only | |
8008 | fields whose position and length are static will be processed. */ | |
8009 | if (keep_dynamic_fields) | |
8010 | nfields = TYPE_NFIELDS (type); | |
8011 | else | |
8012 | { | |
8013 | nfields = 0; | |
76a01679 | 8014 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
8015 | && !ada_is_variant_part (type, nfields) |
8016 | && !is_dynamic_field (type, nfields)) | |
8017 | nfields++; | |
8018 | } | |
8019 | ||
e9bb382b | 8020 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
8021 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
8022 | INIT_CPLUS_SPECIFIC (rtype); | |
8023 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 8024 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
8025 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
8026 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
8027 | TYPE_NAME (rtype) = ada_type_name (type); | |
8028 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 8029 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 8030 | |
d2e4a39e AS |
8031 | off = 0; |
8032 | bit_len = 0; | |
4c4b4cd2 PH |
8033 | variant_field = -1; |
8034 | ||
14f9c5c9 AS |
8035 | for (f = 0; f < nfields; f += 1) |
8036 | { | |
6c038f32 PH |
8037 | off = align_value (off, field_alignment (type, f)) |
8038 | + TYPE_FIELD_BITPOS (type, f); | |
945b3a32 | 8039 | SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off); |
d2e4a39e | 8040 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 8041 | |
d2e4a39e | 8042 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
8043 | { |
8044 | variant_field = f; | |
d94e4f4f | 8045 | fld_bit_len = 0; |
4c4b4cd2 | 8046 | } |
14f9c5c9 | 8047 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 8048 | { |
284614f0 JB |
8049 | const gdb_byte *field_valaddr = valaddr; |
8050 | CORE_ADDR field_address = address; | |
8051 | struct type *field_type = | |
8052 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
8053 | ||
4c4b4cd2 | 8054 | if (dval0 == NULL) |
b5304971 JG |
8055 | { |
8056 | /* rtype's length is computed based on the run-time | |
8057 | value of discriminants. If the discriminants are not | |
8058 | initialized, the type size may be completely bogus and | |
0963b4bd | 8059 | GDB may fail to allocate a value for it. So check the |
b5304971 | 8060 | size first before creating the value. */ |
c1b5a1a6 | 8061 | ada_ensure_varsize_limit (rtype); |
012370f6 TT |
8062 | /* Using plain value_from_contents_and_address here |
8063 | causes problems because we will end up trying to | |
8064 | resolve a type that is currently being | |
8065 | constructed. */ | |
8066 | dval = value_from_contents_and_address_unresolved (rtype, | |
8067 | valaddr, | |
8068 | address); | |
9f1f738a | 8069 | rtype = value_type (dval); |
b5304971 | 8070 | } |
4c4b4cd2 PH |
8071 | else |
8072 | dval = dval0; | |
8073 | ||
284614f0 JB |
8074 | /* If the type referenced by this field is an aligner type, we need |
8075 | to unwrap that aligner type, because its size might not be set. | |
8076 | Keeping the aligner type would cause us to compute the wrong | |
8077 | size for this field, impacting the offset of the all the fields | |
8078 | that follow this one. */ | |
8079 | if (ada_is_aligner_type (field_type)) | |
8080 | { | |
8081 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
8082 | ||
8083 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
8084 | field_address = cond_offset_target (field_address, field_offset); | |
8085 | field_type = ada_aligned_type (field_type); | |
8086 | } | |
8087 | ||
8088 | field_valaddr = cond_offset_host (field_valaddr, | |
8089 | off / TARGET_CHAR_BIT); | |
8090 | field_address = cond_offset_target (field_address, | |
8091 | off / TARGET_CHAR_BIT); | |
8092 | ||
8093 | /* Get the fixed type of the field. Note that, in this case, | |
8094 | we do not want to get the real type out of the tag: if | |
8095 | the current field is the parent part of a tagged record, | |
8096 | we will get the tag of the object. Clearly wrong: the real | |
8097 | type of the parent is not the real type of the child. We | |
8098 | would end up in an infinite loop. */ | |
8099 | field_type = ada_get_base_type (field_type); | |
8100 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
8101 | field_address, dval, 0); | |
27f2a97b JB |
8102 | /* If the field size is already larger than the maximum |
8103 | object size, then the record itself will necessarily | |
8104 | be larger than the maximum object size. We need to make | |
8105 | this check now, because the size might be so ridiculously | |
8106 | large (due to an uninitialized variable in the inferior) | |
8107 | that it would cause an overflow when adding it to the | |
8108 | record size. */ | |
c1b5a1a6 | 8109 | ada_ensure_varsize_limit (field_type); |
284614f0 JB |
8110 | |
8111 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 | 8112 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
8113 | /* The multiplication can potentially overflow. But because |
8114 | the field length has been size-checked just above, and | |
8115 | assuming that the maximum size is a reasonable value, | |
8116 | an overflow should not happen in practice. So rather than | |
8117 | adding overflow recovery code to this already complex code, | |
8118 | we just assume that it's not going to happen. */ | |
d94e4f4f | 8119 | fld_bit_len = |
4c4b4cd2 PH |
8120 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; |
8121 | } | |
14f9c5c9 | 8122 | else |
4c4b4cd2 | 8123 | { |
5ded5331 JB |
8124 | /* Note: If this field's type is a typedef, it is important |
8125 | to preserve the typedef layer. | |
8126 | ||
8127 | Otherwise, we might be transforming a typedef to a fat | |
8128 | pointer (encoding a pointer to an unconstrained array), | |
8129 | into a basic fat pointer (encoding an unconstrained | |
8130 | array). As both types are implemented using the same | |
8131 | structure, the typedef is the only clue which allows us | |
8132 | to distinguish between the two options. Stripping it | |
8133 | would prevent us from printing this field appropriately. */ | |
8134 | TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); | |
4c4b4cd2 PH |
8135 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
8136 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
d94e4f4f | 8137 | fld_bit_len = |
4c4b4cd2 PH |
8138 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
8139 | else | |
5ded5331 JB |
8140 | { |
8141 | struct type *field_type = TYPE_FIELD_TYPE (type, f); | |
8142 | ||
8143 | /* We need to be careful of typedefs when computing | |
8144 | the length of our field. If this is a typedef, | |
8145 | get the length of the target type, not the length | |
8146 | of the typedef. */ | |
8147 | if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) | |
8148 | field_type = ada_typedef_target_type (field_type); | |
8149 | ||
8150 | fld_bit_len = | |
8151 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; | |
8152 | } | |
4c4b4cd2 | 8153 | } |
14f9c5c9 | 8154 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 8155 | bit_len = off + fld_bit_len; |
d94e4f4f | 8156 | off += fld_bit_len; |
4c4b4cd2 PH |
8157 | TYPE_LENGTH (rtype) = |
8158 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 8159 | } |
4c4b4cd2 PH |
8160 | |
8161 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 8162 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
8163 | the record. This can happen in the presence of representation |
8164 | clauses. */ | |
8165 | if (variant_field >= 0) | |
8166 | { | |
8167 | struct type *branch_type; | |
8168 | ||
8169 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
8170 | ||
8171 | if (dval0 == NULL) | |
9f1f738a | 8172 | { |
012370f6 TT |
8173 | /* Using plain value_from_contents_and_address here causes |
8174 | problems because we will end up trying to resolve a type | |
8175 | that is currently being constructed. */ | |
8176 | dval = value_from_contents_and_address_unresolved (rtype, valaddr, | |
8177 | address); | |
9f1f738a SA |
8178 | rtype = value_type (dval); |
8179 | } | |
4c4b4cd2 PH |
8180 | else |
8181 | dval = dval0; | |
8182 | ||
8183 | branch_type = | |
8184 | to_fixed_variant_branch_type | |
8185 | (TYPE_FIELD_TYPE (type, variant_field), | |
8186 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
8187 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
8188 | if (branch_type == NULL) | |
8189 | { | |
8190 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
8191 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
8192 | TYPE_NFIELDS (rtype) -= 1; | |
8193 | } | |
8194 | else | |
8195 | { | |
8196 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
8197 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8198 | fld_bit_len = | |
8199 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
8200 | TARGET_CHAR_BIT; | |
8201 | if (off + fld_bit_len > bit_len) | |
8202 | bit_len = off + fld_bit_len; | |
8203 | TYPE_LENGTH (rtype) = | |
8204 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
8205 | } | |
8206 | } | |
8207 | ||
714e53ab PH |
8208 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
8209 | should contain the alignment of that record, which should be a strictly | |
8210 | positive value. If null or negative, then something is wrong, most | |
8211 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 8212 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
8213 | the current RTYPE length might be good enough for our purposes. */ |
8214 | if (TYPE_LENGTH (type) <= 0) | |
8215 | { | |
323e0a4a AC |
8216 | if (TYPE_NAME (rtype)) |
8217 | warning (_("Invalid type size for `%s' detected: %d."), | |
8218 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
8219 | else | |
8220 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
8221 | TYPE_LENGTH (type)); | |
714e53ab PH |
8222 | } |
8223 | else | |
8224 | { | |
8225 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
8226 | TYPE_LENGTH (type)); | |
8227 | } | |
14f9c5c9 AS |
8228 | |
8229 | value_free_to_mark (mark); | |
d2e4a39e | 8230 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 8231 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8232 | return rtype; |
8233 | } | |
8234 | ||
4c4b4cd2 PH |
8235 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
8236 | of 1. */ | |
14f9c5c9 | 8237 | |
d2e4a39e | 8238 | static struct type * |
fc1a4b47 | 8239 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
8240 | CORE_ADDR address, struct value *dval0) |
8241 | { | |
8242 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
8243 | address, dval0, 1); | |
8244 | } | |
8245 | ||
8246 | /* An ordinary record type in which ___XVL-convention fields and | |
8247 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
8248 | static approximations, containing all possible fields. Uses | |
8249 | no runtime values. Useless for use in values, but that's OK, | |
8250 | since the results are used only for type determinations. Works on both | |
8251 | structs and unions. Representation note: to save space, we memorize | |
8252 | the result of this function in the TYPE_TARGET_TYPE of the | |
8253 | template type. */ | |
8254 | ||
8255 | static struct type * | |
8256 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
8257 | { |
8258 | struct type *type; | |
8259 | int nfields; | |
8260 | int f; | |
8261 | ||
9e195661 PMR |
8262 | /* No need no do anything if the input type is already fixed. */ |
8263 | if (TYPE_FIXED_INSTANCE (type0)) | |
8264 | return type0; | |
8265 | ||
8266 | /* Likewise if we already have computed the static approximation. */ | |
4c4b4cd2 PH |
8267 | if (TYPE_TARGET_TYPE (type0) != NULL) |
8268 | return TYPE_TARGET_TYPE (type0); | |
8269 | ||
9e195661 | 8270 | /* Don't clone TYPE0 until we are sure we are going to need a copy. */ |
4c4b4cd2 | 8271 | type = type0; |
9e195661 PMR |
8272 | nfields = TYPE_NFIELDS (type0); |
8273 | ||
8274 | /* Whether or not we cloned TYPE0, cache the result so that we don't do | |
8275 | recompute all over next time. */ | |
8276 | TYPE_TARGET_TYPE (type0) = type; | |
14f9c5c9 AS |
8277 | |
8278 | for (f = 0; f < nfields; f += 1) | |
8279 | { | |
460efde1 | 8280 | struct type *field_type = TYPE_FIELD_TYPE (type0, f); |
4c4b4cd2 | 8281 | struct type *new_type; |
14f9c5c9 | 8282 | |
4c4b4cd2 | 8283 | if (is_dynamic_field (type0, f)) |
460efde1 JB |
8284 | { |
8285 | field_type = ada_check_typedef (field_type); | |
8286 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
8287 | } | |
14f9c5c9 | 8288 | else |
f192137b | 8289 | new_type = static_unwrap_type (field_type); |
9e195661 PMR |
8290 | |
8291 | if (new_type != field_type) | |
8292 | { | |
8293 | /* Clone TYPE0 only the first time we get a new field type. */ | |
8294 | if (type == type0) | |
8295 | { | |
8296 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); | |
8297 | TYPE_CODE (type) = TYPE_CODE (type0); | |
8298 | INIT_CPLUS_SPECIFIC (type); | |
8299 | TYPE_NFIELDS (type) = nfields; | |
8300 | TYPE_FIELDS (type) = (struct field *) | |
8301 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
8302 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
8303 | sizeof (struct field) * nfields); | |
8304 | TYPE_NAME (type) = ada_type_name (type0); | |
8305 | TYPE_TAG_NAME (type) = NULL; | |
8306 | TYPE_FIXED_INSTANCE (type) = 1; | |
8307 | TYPE_LENGTH (type) = 0; | |
8308 | } | |
8309 | TYPE_FIELD_TYPE (type, f) = new_type; | |
8310 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
8311 | } | |
14f9c5c9 | 8312 | } |
9e195661 | 8313 | |
14f9c5c9 AS |
8314 | return type; |
8315 | } | |
8316 | ||
4c4b4cd2 | 8317 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
8318 | whose address in memory is ADDRESS, returns a revision of TYPE, |
8319 | which should be a non-dynamic-sized record, in which the variant | |
8320 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
8321 | for discriminant values in DVAL0, which can be NULL if the record |
8322 | contains the necessary discriminant values. */ | |
8323 | ||
d2e4a39e | 8324 | static struct type * |
fc1a4b47 | 8325 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 8326 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 8327 | { |
d2e4a39e | 8328 | struct value *mark = value_mark (); |
4c4b4cd2 | 8329 | struct value *dval; |
d2e4a39e | 8330 | struct type *rtype; |
14f9c5c9 AS |
8331 | struct type *branch_type; |
8332 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 8333 | int variant_field = variant_field_index (type); |
14f9c5c9 | 8334 | |
4c4b4cd2 | 8335 | if (variant_field == -1) |
14f9c5c9 AS |
8336 | return type; |
8337 | ||
4c4b4cd2 | 8338 | if (dval0 == NULL) |
9f1f738a SA |
8339 | { |
8340 | dval = value_from_contents_and_address (type, valaddr, address); | |
8341 | type = value_type (dval); | |
8342 | } | |
4c4b4cd2 PH |
8343 | else |
8344 | dval = dval0; | |
8345 | ||
e9bb382b | 8346 | rtype = alloc_type_copy (type); |
14f9c5c9 | 8347 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
8348 | INIT_CPLUS_SPECIFIC (rtype); |
8349 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
8350 | TYPE_FIELDS (rtype) = |
8351 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
8352 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 8353 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
8354 | TYPE_NAME (rtype) = ada_type_name (type); |
8355 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 8356 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
8357 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
8358 | ||
4c4b4cd2 PH |
8359 | branch_type = to_fixed_variant_branch_type |
8360 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 8361 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
8362 | TYPE_FIELD_BITPOS (type, variant_field) |
8363 | / TARGET_CHAR_BIT), | |
d2e4a39e | 8364 | cond_offset_target (address, |
4c4b4cd2 PH |
8365 | TYPE_FIELD_BITPOS (type, variant_field) |
8366 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 8367 | if (branch_type == NULL) |
14f9c5c9 | 8368 | { |
4c4b4cd2 | 8369 | int f; |
5b4ee69b | 8370 | |
4c4b4cd2 PH |
8371 | for (f = variant_field + 1; f < nfields; f += 1) |
8372 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 8373 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
8374 | } |
8375 | else | |
8376 | { | |
4c4b4cd2 PH |
8377 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
8378 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8379 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 8380 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 8381 | } |
4c4b4cd2 | 8382 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 8383 | |
4c4b4cd2 | 8384 | value_free_to_mark (mark); |
14f9c5c9 AS |
8385 | return rtype; |
8386 | } | |
8387 | ||
8388 | /* An ordinary record type (with fixed-length fields) that describes | |
8389 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
8390 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
8391 | should be in DVAL, a record value; it may be NULL if the object |
8392 | at ADDR itself contains any necessary discriminant values. | |
8393 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
8394 | values from the record are needed. Except in the case that DVAL, | |
8395 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
8396 | unchecked) is replaced by a particular branch of the variant. | |
8397 | ||
8398 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
8399 | is questionable and may be removed. It can arise during the | |
8400 | processing of an unconstrained-array-of-record type where all the | |
8401 | variant branches have exactly the same size. This is because in | |
8402 | such cases, the compiler does not bother to use the XVS convention | |
8403 | when encoding the record. I am currently dubious of this | |
8404 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 8405 | |
d2e4a39e | 8406 | static struct type * |
fc1a4b47 | 8407 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8408 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 8409 | { |
d2e4a39e | 8410 | struct type *templ_type; |
14f9c5c9 | 8411 | |
876cecd0 | 8412 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8413 | return type0; |
8414 | ||
d2e4a39e | 8415 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
8416 | |
8417 | if (templ_type != NULL) | |
8418 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
8419 | else if (variant_field_index (type0) >= 0) |
8420 | { | |
8421 | if (dval == NULL && valaddr == NULL && address == 0) | |
8422 | return type0; | |
8423 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
8424 | dval); | |
8425 | } | |
14f9c5c9 AS |
8426 | else |
8427 | { | |
876cecd0 | 8428 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
8429 | return type0; |
8430 | } | |
8431 | ||
8432 | } | |
8433 | ||
8434 | /* An ordinary record type (with fixed-length fields) that describes | |
8435 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
8436 | union type. Any necessary discriminants' values should be in DVAL, | |
8437 | a record value. That is, this routine selects the appropriate | |
8438 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 8439 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 8440 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 8441 | |
d2e4a39e | 8442 | static struct type * |
fc1a4b47 | 8443 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8444 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
8445 | { |
8446 | int which; | |
d2e4a39e AS |
8447 | struct type *templ_type; |
8448 | struct type *var_type; | |
14f9c5c9 AS |
8449 | |
8450 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
8451 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 8452 | else |
14f9c5c9 AS |
8453 | var_type = var_type0; |
8454 | ||
8455 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
8456 | ||
8457 | if (templ_type != NULL) | |
8458 | var_type = templ_type; | |
8459 | ||
b1f33ddd JB |
8460 | if (is_unchecked_variant (var_type, value_type (dval))) |
8461 | return var_type0; | |
d2e4a39e AS |
8462 | which = |
8463 | ada_which_variant_applies (var_type, | |
0fd88904 | 8464 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
8465 | |
8466 | if (which < 0) | |
e9bb382b | 8467 | return empty_record (var_type); |
14f9c5c9 | 8468 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 8469 | return to_fixed_record_type |
d2e4a39e AS |
8470 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
8471 | valaddr, address, dval); | |
4c4b4cd2 | 8472 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
8473 | return |
8474 | to_fixed_record_type | |
8475 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
8476 | else |
8477 | return TYPE_FIELD_TYPE (var_type, which); | |
8478 | } | |
8479 | ||
8908fca5 JB |
8480 | /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if |
8481 | ENCODING_TYPE, a type following the GNAT conventions for discrete | |
8482 | type encodings, only carries redundant information. */ | |
8483 | ||
8484 | static int | |
8485 | ada_is_redundant_range_encoding (struct type *range_type, | |
8486 | struct type *encoding_type) | |
8487 | { | |
8488 | struct type *fixed_range_type; | |
8489 | char *bounds_str; | |
8490 | int n; | |
8491 | LONGEST lo, hi; | |
8492 | ||
8493 | gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE); | |
8494 | ||
005e2509 JB |
8495 | if (TYPE_CODE (get_base_type (range_type)) |
8496 | != TYPE_CODE (get_base_type (encoding_type))) | |
8497 | { | |
8498 | /* The compiler probably used a simple base type to describe | |
8499 | the range type instead of the range's actual base type, | |
8500 | expecting us to get the real base type from the encoding | |
8501 | anyway. In this situation, the encoding cannot be ignored | |
8502 | as redundant. */ | |
8503 | return 0; | |
8504 | } | |
8505 | ||
8908fca5 JB |
8506 | if (is_dynamic_type (range_type)) |
8507 | return 0; | |
8508 | ||
8509 | if (TYPE_NAME (encoding_type) == NULL) | |
8510 | return 0; | |
8511 | ||
8512 | bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_"); | |
8513 | if (bounds_str == NULL) | |
8514 | return 0; | |
8515 | ||
8516 | n = 8; /* Skip "___XDLU_". */ | |
8517 | if (!ada_scan_number (bounds_str, n, &lo, &n)) | |
8518 | return 0; | |
8519 | if (TYPE_LOW_BOUND (range_type) != lo) | |
8520 | return 0; | |
8521 | ||
8522 | n += 2; /* Skip the "__" separator between the two bounds. */ | |
8523 | if (!ada_scan_number (bounds_str, n, &hi, &n)) | |
8524 | return 0; | |
8525 | if (TYPE_HIGH_BOUND (range_type) != hi) | |
8526 | return 0; | |
8527 | ||
8528 | return 1; | |
8529 | } | |
8530 | ||
8531 | /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE, | |
8532 | a type following the GNAT encoding for describing array type | |
8533 | indices, only carries redundant information. */ | |
8534 | ||
8535 | static int | |
8536 | ada_is_redundant_index_type_desc (struct type *array_type, | |
8537 | struct type *desc_type) | |
8538 | { | |
8539 | struct type *this_layer = check_typedef (array_type); | |
8540 | int i; | |
8541 | ||
8542 | for (i = 0; i < TYPE_NFIELDS (desc_type); i++) | |
8543 | { | |
8544 | if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer), | |
8545 | TYPE_FIELD_TYPE (desc_type, i))) | |
8546 | return 0; | |
8547 | this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer)); | |
8548 | } | |
8549 | ||
8550 | return 1; | |
8551 | } | |
8552 | ||
14f9c5c9 AS |
8553 | /* Assuming that TYPE0 is an array type describing the type of a value |
8554 | at ADDR, and that DVAL describes a record containing any | |
8555 | discriminants used in TYPE0, returns a type for the value that | |
8556 | contains no dynamic components (that is, no components whose sizes | |
8557 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
8558 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 8559 | varsize_limit. */ |
14f9c5c9 | 8560 | |
d2e4a39e AS |
8561 | static struct type * |
8562 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 8563 | int ignore_too_big) |
14f9c5c9 | 8564 | { |
d2e4a39e AS |
8565 | struct type *index_type_desc; |
8566 | struct type *result; | |
ad82864c | 8567 | int constrained_packed_array_p; |
931e5bc3 | 8568 | static const char *xa_suffix = "___XA"; |
14f9c5c9 | 8569 | |
b0dd7688 | 8570 | type0 = ada_check_typedef (type0); |
284614f0 | 8571 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 8572 | return type0; |
14f9c5c9 | 8573 | |
ad82864c JB |
8574 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
8575 | if (constrained_packed_array_p) | |
8576 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 8577 | |
931e5bc3 JG |
8578 | index_type_desc = ada_find_parallel_type (type0, xa_suffix); |
8579 | ||
8580 | /* As mentioned in exp_dbug.ads, for non bit-packed arrays an | |
8581 | encoding suffixed with 'P' may still be generated. If so, | |
8582 | it should be used to find the XA type. */ | |
8583 | ||
8584 | if (index_type_desc == NULL) | |
8585 | { | |
1da0522e | 8586 | const char *type_name = ada_type_name (type0); |
931e5bc3 | 8587 | |
1da0522e | 8588 | if (type_name != NULL) |
931e5bc3 | 8589 | { |
1da0522e | 8590 | const int len = strlen (type_name); |
931e5bc3 JG |
8591 | char *name = (char *) alloca (len + strlen (xa_suffix)); |
8592 | ||
1da0522e | 8593 | if (type_name[len - 1] == 'P') |
931e5bc3 | 8594 | { |
1da0522e | 8595 | strcpy (name, type_name); |
931e5bc3 JG |
8596 | strcpy (name + len - 1, xa_suffix); |
8597 | index_type_desc = ada_find_parallel_type_with_name (type0, name); | |
8598 | } | |
8599 | } | |
8600 | } | |
8601 | ||
28c85d6c | 8602 | ada_fixup_array_indexes_type (index_type_desc); |
8908fca5 JB |
8603 | if (index_type_desc != NULL |
8604 | && ada_is_redundant_index_type_desc (type0, index_type_desc)) | |
8605 | { | |
8606 | /* Ignore this ___XA parallel type, as it does not bring any | |
8607 | useful information. This allows us to avoid creating fixed | |
8608 | versions of the array's index types, which would be identical | |
8609 | to the original ones. This, in turn, can also help avoid | |
8610 | the creation of fixed versions of the array itself. */ | |
8611 | index_type_desc = NULL; | |
8612 | } | |
8613 | ||
14f9c5c9 AS |
8614 | if (index_type_desc == NULL) |
8615 | { | |
61ee279c | 8616 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 8617 | |
14f9c5c9 | 8618 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
8619 | depend on the contents of the array in properly constructed |
8620 | debugging data. */ | |
529cad9c PH |
8621 | /* Create a fixed version of the array element type. |
8622 | We're not providing the address of an element here, | |
e1d5a0d2 | 8623 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8624 | the conversion. This should not be a problem, since arrays of |
8625 | unconstrained objects are not allowed. In particular, all | |
8626 | the elements of an array of a tagged type should all be of | |
8627 | the same type specified in the debugging info. No need to | |
8628 | consult the object tag. */ | |
1ed6ede0 | 8629 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 8630 | |
284614f0 JB |
8631 | /* Make sure we always create a new array type when dealing with |
8632 | packed array types, since we're going to fix-up the array | |
8633 | type length and element bitsize a little further down. */ | |
ad82864c | 8634 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 8635 | result = type0; |
14f9c5c9 | 8636 | else |
e9bb382b | 8637 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 8638 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
8639 | } |
8640 | else | |
8641 | { | |
8642 | int i; | |
8643 | struct type *elt_type0; | |
8644 | ||
8645 | elt_type0 = type0; | |
8646 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 8647 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
8648 | |
8649 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
8650 | depend on the contents of the array in properly constructed |
8651 | debugging data. */ | |
529cad9c PH |
8652 | /* Create a fixed version of the array element type. |
8653 | We're not providing the address of an element here, | |
e1d5a0d2 | 8654 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8655 | the conversion. This should not be a problem, since arrays of |
8656 | unconstrained objects are not allowed. In particular, all | |
8657 | the elements of an array of a tagged type should all be of | |
8658 | the same type specified in the debugging info. No need to | |
8659 | consult the object tag. */ | |
1ed6ede0 JB |
8660 | result = |
8661 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
8662 | |
8663 | elt_type0 = type0; | |
14f9c5c9 | 8664 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
8665 | { |
8666 | struct type *range_type = | |
28c85d6c | 8667 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 8668 | |
e9bb382b | 8669 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 8670 | result, range_type); |
1ce677a4 | 8671 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 8672 | } |
d2e4a39e | 8673 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 8674 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8675 | } |
8676 | ||
2e6fda7d JB |
8677 | /* We want to preserve the type name. This can be useful when |
8678 | trying to get the type name of a value that has already been | |
8679 | printed (for instance, if the user did "print VAR; whatis $". */ | |
8680 | TYPE_NAME (result) = TYPE_NAME (type0); | |
8681 | ||
ad82864c | 8682 | if (constrained_packed_array_p) |
284614f0 JB |
8683 | { |
8684 | /* So far, the resulting type has been created as if the original | |
8685 | type was a regular (non-packed) array type. As a result, the | |
8686 | bitsize of the array elements needs to be set again, and the array | |
8687 | length needs to be recomputed based on that bitsize. */ | |
8688 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
8689 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
8690 | ||
8691 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
8692 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
8693 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
8694 | TYPE_LENGTH (result)++; | |
8695 | } | |
8696 | ||
876cecd0 | 8697 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 8698 | return result; |
d2e4a39e | 8699 | } |
14f9c5c9 AS |
8700 | |
8701 | ||
8702 | /* A standard type (containing no dynamically sized components) | |
8703 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
8704 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 8705 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
8706 | ADDRESS or in VALADDR contains these discriminants. |
8707 | ||
1ed6ede0 JB |
8708 | If CHECK_TAG is not null, in the case of tagged types, this function |
8709 | attempts to locate the object's tag and use it to compute the actual | |
8710 | type. However, when ADDRESS is null, we cannot use it to determine the | |
8711 | location of the tag, and therefore compute the tagged type's actual type. | |
8712 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 8713 | |
f192137b JB |
8714 | static struct type * |
8715 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 8716 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 8717 | { |
61ee279c | 8718 | type = ada_check_typedef (type); |
d2e4a39e AS |
8719 | switch (TYPE_CODE (type)) |
8720 | { | |
8721 | default: | |
14f9c5c9 | 8722 | return type; |
d2e4a39e | 8723 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 8724 | { |
76a01679 | 8725 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
8726 | struct type *fixed_record_type = |
8727 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 8728 | |
529cad9c PH |
8729 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
8730 | then we can determine its tag, and compute the object's actual | |
0963b4bd | 8731 | type from there. Note that we have to use the fixed record |
1ed6ede0 JB |
8732 | type (the parent part of the record may have dynamic fields |
8733 | and the way the location of _tag is expressed may depend on | |
8734 | them). */ | |
529cad9c | 8735 | |
1ed6ede0 | 8736 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 | 8737 | { |
b50d69b5 JG |
8738 | struct value *tag = |
8739 | value_tag_from_contents_and_address | |
8740 | (fixed_record_type, | |
8741 | valaddr, | |
8742 | address); | |
8743 | struct type *real_type = type_from_tag (tag); | |
8744 | struct value *obj = | |
8745 | value_from_contents_and_address (fixed_record_type, | |
8746 | valaddr, | |
8747 | address); | |
9f1f738a | 8748 | fixed_record_type = value_type (obj); |
76a01679 | 8749 | if (real_type != NULL) |
b50d69b5 JG |
8750 | return to_fixed_record_type |
8751 | (real_type, NULL, | |
8752 | value_address (ada_tag_value_at_base_address (obj)), NULL); | |
76a01679 | 8753 | } |
4af88198 JB |
8754 | |
8755 | /* Check to see if there is a parallel ___XVZ variable. | |
8756 | If there is, then it provides the actual size of our type. */ | |
8757 | else if (ada_type_name (fixed_record_type) != NULL) | |
8758 | { | |
0d5cff50 | 8759 | const char *name = ada_type_name (fixed_record_type); |
4af88198 JB |
8760 | char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */); |
8761 | int xvz_found = 0; | |
8762 | LONGEST size; | |
8763 | ||
88c15c34 | 8764 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
4af88198 JB |
8765 | size = get_int_var_value (xvz_name, &xvz_found); |
8766 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
8767 | { | |
8768 | fixed_record_type = copy_type (fixed_record_type); | |
8769 | TYPE_LENGTH (fixed_record_type) = size; | |
8770 | ||
8771 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
8772 | observed this when the debugging info is STABS, and | |
8773 | apparently it is something that is hard to fix. | |
8774 | ||
8775 | In practice, we don't need the actual type definition | |
8776 | at all, because the presence of the XVZ variable allows us | |
8777 | to assume that there must be a XVS type as well, which we | |
8778 | should be able to use later, when we need the actual type | |
8779 | definition. | |
8780 | ||
8781 | In the meantime, pretend that the "fixed" type we are | |
8782 | returning is NOT a stub, because this can cause trouble | |
8783 | when using this type to create new types targeting it. | |
8784 | Indeed, the associated creation routines often check | |
8785 | whether the target type is a stub and will try to replace | |
0963b4bd | 8786 | it, thus using a type with the wrong size. This, in turn, |
4af88198 JB |
8787 | might cause the new type to have the wrong size too. |
8788 | Consider the case of an array, for instance, where the size | |
8789 | of the array is computed from the number of elements in | |
8790 | our array multiplied by the size of its element. */ | |
8791 | TYPE_STUB (fixed_record_type) = 0; | |
8792 | } | |
8793 | } | |
1ed6ede0 | 8794 | return fixed_record_type; |
4c4b4cd2 | 8795 | } |
d2e4a39e | 8796 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 8797 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
8798 | case TYPE_CODE_UNION: |
8799 | if (dval == NULL) | |
4c4b4cd2 | 8800 | return type; |
d2e4a39e | 8801 | else |
4c4b4cd2 | 8802 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 8803 | } |
14f9c5c9 AS |
8804 | } |
8805 | ||
f192137b JB |
8806 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
8807 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
8808 | |
8809 | The typedef layer needs be preserved in order to differentiate between | |
8810 | arrays and array pointers when both types are implemented using the same | |
8811 | fat pointer. In the array pointer case, the pointer is encoded as | |
8812 | a typedef of the pointer type. For instance, considering: | |
8813 | ||
8814 | type String_Access is access String; | |
8815 | S1 : String_Access := null; | |
8816 | ||
8817 | To the debugger, S1 is defined as a typedef of type String. But | |
8818 | to the user, it is a pointer. So if the user tries to print S1, | |
8819 | we should not dereference the array, but print the array address | |
8820 | instead. | |
8821 | ||
8822 | If we didn't preserve the typedef layer, we would lose the fact that | |
8823 | the type is to be presented as a pointer (needs de-reference before | |
8824 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
8825 | |
8826 | struct type * | |
8827 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
8828 | CORE_ADDR address, struct value *dval, int check_tag) | |
8829 | ||
8830 | { | |
8831 | struct type *fixed_type = | |
8832 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
8833 | ||
96dbd2c1 JB |
8834 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
8835 | then preserve the typedef layer. | |
8836 | ||
8837 | Implementation note: We can only check the main-type portion of | |
8838 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
8839 | from TYPE now returns a type that has the same instance flags | |
8840 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
8841 | target type is a "struct", then the typedef elimination will return | |
8842 | a "const" version of the target type. See check_typedef for more | |
8843 | details about how the typedef layer elimination is done. | |
8844 | ||
8845 | brobecker/2010-11-19: It seems to me that the only case where it is | |
8846 | useful to preserve the typedef layer is when dealing with fat pointers. | |
8847 | Perhaps, we could add a check for that and preserve the typedef layer | |
8848 | only in that situation. But this seems unecessary so far, probably | |
8849 | because we call check_typedef/ada_check_typedef pretty much everywhere. | |
8850 | */ | |
f192137b | 8851 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF |
720d1a40 | 8852 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 8853 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
8854 | return type; |
8855 | ||
8856 | return fixed_type; | |
8857 | } | |
8858 | ||
14f9c5c9 | 8859 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 8860 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 8861 | |
d2e4a39e AS |
8862 | static struct type * |
8863 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 8864 | { |
d2e4a39e | 8865 | struct type *type; |
14f9c5c9 AS |
8866 | |
8867 | if (type0 == NULL) | |
8868 | return NULL; | |
8869 | ||
876cecd0 | 8870 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8871 | return type0; |
8872 | ||
61ee279c | 8873 | type0 = ada_check_typedef (type0); |
d2e4a39e | 8874 | |
14f9c5c9 AS |
8875 | switch (TYPE_CODE (type0)) |
8876 | { | |
8877 | default: | |
8878 | return type0; | |
8879 | case TYPE_CODE_STRUCT: | |
8880 | type = dynamic_template_type (type0); | |
d2e4a39e | 8881 | if (type != NULL) |
4c4b4cd2 PH |
8882 | return template_to_static_fixed_type (type); |
8883 | else | |
8884 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
8885 | case TYPE_CODE_UNION: |
8886 | type = ada_find_parallel_type (type0, "___XVU"); | |
8887 | if (type != NULL) | |
4c4b4cd2 PH |
8888 | return template_to_static_fixed_type (type); |
8889 | else | |
8890 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
8891 | } |
8892 | } | |
8893 | ||
4c4b4cd2 PH |
8894 | /* A static approximation of TYPE with all type wrappers removed. */ |
8895 | ||
d2e4a39e AS |
8896 | static struct type * |
8897 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
8898 | { |
8899 | if (ada_is_aligner_type (type)) | |
8900 | { | |
61ee279c | 8901 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 8902 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 8903 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
8904 | |
8905 | return static_unwrap_type (type1); | |
8906 | } | |
d2e4a39e | 8907 | else |
14f9c5c9 | 8908 | { |
d2e4a39e | 8909 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 8910 | |
d2e4a39e | 8911 | if (raw_real_type == type) |
4c4b4cd2 | 8912 | return type; |
14f9c5c9 | 8913 | else |
4c4b4cd2 | 8914 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
8915 | } |
8916 | } | |
8917 | ||
8918 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 8919 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
8920 | type Foo; |
8921 | type FooP is access Foo; | |
8922 | V: FooP; | |
8923 | type Foo is array ...; | |
4c4b4cd2 | 8924 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
8925 | cross-references to such types, we instead substitute for FooP a |
8926 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 8927 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
8928 | |
8929 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
8930 | exists, otherwise TYPE. */ |
8931 | ||
d2e4a39e | 8932 | struct type * |
61ee279c | 8933 | ada_check_typedef (struct type *type) |
14f9c5c9 | 8934 | { |
727e3d2e JB |
8935 | if (type == NULL) |
8936 | return NULL; | |
8937 | ||
720d1a40 JB |
8938 | /* If our type is a typedef type of a fat pointer, then we're done. |
8939 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is | |
8940 | what allows us to distinguish between fat pointers that represent | |
8941 | array types, and fat pointers that represent array access types | |
8942 | (in both cases, the compiler implements them as fat pointers). */ | |
8943 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
8944 | && is_thick_pntr (ada_typedef_target_type (type))) | |
8945 | return type; | |
8946 | ||
f168693b | 8947 | type = check_typedef (type); |
14f9c5c9 | 8948 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
529cad9c | 8949 | || !TYPE_STUB (type) |
14f9c5c9 AS |
8950 | || TYPE_TAG_NAME (type) == NULL) |
8951 | return type; | |
d2e4a39e | 8952 | else |
14f9c5c9 | 8953 | { |
0d5cff50 | 8954 | const char *name = TYPE_TAG_NAME (type); |
d2e4a39e | 8955 | struct type *type1 = ada_find_any_type (name); |
5b4ee69b | 8956 | |
05e522ef JB |
8957 | if (type1 == NULL) |
8958 | return type; | |
8959 | ||
8960 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
8961 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
8962 | types, only for the typedef-to-array types). If that's the case, |
8963 | strip the typedef layer. */ | |
8964 | if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) | |
8965 | type1 = ada_check_typedef (type1); | |
8966 | ||
8967 | return type1; | |
14f9c5c9 AS |
8968 | } |
8969 | } | |
8970 | ||
8971 | /* A value representing the data at VALADDR/ADDRESS as described by | |
8972 | type TYPE0, but with a standard (static-sized) type that correctly | |
8973 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
8974 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 8975 | creation of struct values]. */ |
14f9c5c9 | 8976 | |
4c4b4cd2 PH |
8977 | static struct value * |
8978 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
8979 | struct value *val0) | |
14f9c5c9 | 8980 | { |
1ed6ede0 | 8981 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 8982 | |
14f9c5c9 AS |
8983 | if (type == type0 && val0 != NULL) |
8984 | return val0; | |
d2e4a39e | 8985 | else |
4c4b4cd2 PH |
8986 | return value_from_contents_and_address (type, 0, address); |
8987 | } | |
8988 | ||
8989 | /* A value representing VAL, but with a standard (static-sized) type | |
8990 | that correctly describes it. Does not necessarily create a new | |
8991 | value. */ | |
8992 | ||
0c3acc09 | 8993 | struct value * |
4c4b4cd2 PH |
8994 | ada_to_fixed_value (struct value *val) |
8995 | { | |
c48db5ca JB |
8996 | val = unwrap_value (val); |
8997 | val = ada_to_fixed_value_create (value_type (val), | |
8998 | value_address (val), | |
8999 | val); | |
9000 | return val; | |
14f9c5c9 | 9001 | } |
d2e4a39e | 9002 | \f |
14f9c5c9 | 9003 | |
14f9c5c9 AS |
9004 | /* Attributes */ |
9005 | ||
4c4b4cd2 PH |
9006 | /* Table mapping attribute numbers to names. |
9007 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 9008 | |
d2e4a39e | 9009 | static const char *attribute_names[] = { |
14f9c5c9 AS |
9010 | "<?>", |
9011 | ||
d2e4a39e | 9012 | "first", |
14f9c5c9 AS |
9013 | "last", |
9014 | "length", | |
9015 | "image", | |
14f9c5c9 AS |
9016 | "max", |
9017 | "min", | |
4c4b4cd2 PH |
9018 | "modulus", |
9019 | "pos", | |
9020 | "size", | |
9021 | "tag", | |
14f9c5c9 | 9022 | "val", |
14f9c5c9 AS |
9023 | 0 |
9024 | }; | |
9025 | ||
d2e4a39e | 9026 | const char * |
4c4b4cd2 | 9027 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 9028 | { |
4c4b4cd2 PH |
9029 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
9030 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
9031 | else |
9032 | return attribute_names[0]; | |
9033 | } | |
9034 | ||
4c4b4cd2 | 9035 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 9036 | |
4c4b4cd2 PH |
9037 | static LONGEST |
9038 | pos_atr (struct value *arg) | |
14f9c5c9 | 9039 | { |
24209737 PH |
9040 | struct value *val = coerce_ref (arg); |
9041 | struct type *type = value_type (val); | |
aa715135 | 9042 | LONGEST result; |
14f9c5c9 | 9043 | |
d2e4a39e | 9044 | if (!discrete_type_p (type)) |
323e0a4a | 9045 | error (_("'POS only defined on discrete types")); |
14f9c5c9 | 9046 | |
aa715135 JG |
9047 | if (!discrete_position (type, value_as_long (val), &result)) |
9048 | error (_("enumeration value is invalid: can't find 'POS")); | |
14f9c5c9 | 9049 | |
aa715135 | 9050 | return result; |
4c4b4cd2 PH |
9051 | } |
9052 | ||
9053 | static struct value * | |
3cb382c9 | 9054 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 9055 | { |
3cb382c9 | 9056 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
9057 | } |
9058 | ||
4c4b4cd2 | 9059 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 9060 | |
d2e4a39e AS |
9061 | static struct value * |
9062 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 9063 | { |
d2e4a39e | 9064 | if (!discrete_type_p (type)) |
323e0a4a | 9065 | error (_("'VAL only defined on discrete types")); |
df407dfe | 9066 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 9067 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
9068 | |
9069 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
9070 | { | |
9071 | long pos = value_as_long (arg); | |
5b4ee69b | 9072 | |
14f9c5c9 | 9073 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 9074 | error (_("argument to 'VAL out of range")); |
14e75d8e | 9075 | return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos)); |
14f9c5c9 AS |
9076 | } |
9077 | else | |
9078 | return value_from_longest (type, value_as_long (arg)); | |
9079 | } | |
14f9c5c9 | 9080 | \f |
d2e4a39e | 9081 | |
4c4b4cd2 | 9082 | /* Evaluation */ |
14f9c5c9 | 9083 | |
4c4b4cd2 PH |
9084 | /* True if TYPE appears to be an Ada character type. |
9085 | [At the moment, this is true only for Character and Wide_Character; | |
9086 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 9087 | |
d2e4a39e AS |
9088 | int |
9089 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 9090 | { |
7b9f71f2 JB |
9091 | const char *name; |
9092 | ||
9093 | /* If the type code says it's a character, then assume it really is, | |
9094 | and don't check any further. */ | |
9095 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
9096 | return 1; | |
9097 | ||
9098 | /* Otherwise, assume it's a character type iff it is a discrete type | |
9099 | with a known character type name. */ | |
9100 | name = ada_type_name (type); | |
9101 | return (name != NULL | |
9102 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
9103 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
9104 | && (strcmp (name, "character") == 0 | |
9105 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 9106 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 9107 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
9108 | } |
9109 | ||
4c4b4cd2 | 9110 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
9111 | |
9112 | int | |
ebf56fd3 | 9113 | ada_is_string_type (struct type *type) |
14f9c5c9 | 9114 | { |
61ee279c | 9115 | type = ada_check_typedef (type); |
d2e4a39e | 9116 | if (type != NULL |
14f9c5c9 | 9117 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
9118 | && (ada_is_simple_array_type (type) |
9119 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
9120 | && ada_array_arity (type) == 1) |
9121 | { | |
9122 | struct type *elttype = ada_array_element_type (type, 1); | |
9123 | ||
9124 | return ada_is_character_type (elttype); | |
9125 | } | |
d2e4a39e | 9126 | else |
14f9c5c9 AS |
9127 | return 0; |
9128 | } | |
9129 | ||
5bf03f13 JB |
9130 | /* The compiler sometimes provides a parallel XVS type for a given |
9131 | PAD type. Normally, it is safe to follow the PAD type directly, | |
9132 | but older versions of the compiler have a bug that causes the offset | |
9133 | of its "F" field to be wrong. Following that field in that case | |
9134 | would lead to incorrect results, but this can be worked around | |
9135 | by ignoring the PAD type and using the associated XVS type instead. | |
9136 | ||
9137 | Set to True if the debugger should trust the contents of PAD types. | |
9138 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
9139 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
9140 | |
9141 | /* True if TYPE is a struct type introduced by the compiler to force the | |
9142 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 9143 | distinctive name. */ |
14f9c5c9 AS |
9144 | |
9145 | int | |
ebf56fd3 | 9146 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 9147 | { |
61ee279c | 9148 | type = ada_check_typedef (type); |
714e53ab | 9149 | |
5bf03f13 | 9150 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
9151 | return 0; |
9152 | ||
14f9c5c9 | 9153 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
9154 | && TYPE_NFIELDS (type) == 1 |
9155 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
9156 | } |
9157 | ||
9158 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 9159 | the parallel type. */ |
14f9c5c9 | 9160 | |
d2e4a39e AS |
9161 | struct type * |
9162 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 9163 | { |
d2e4a39e AS |
9164 | struct type *real_type_namer; |
9165 | struct type *raw_real_type; | |
14f9c5c9 AS |
9166 | |
9167 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
9168 | return raw_type; | |
9169 | ||
284614f0 JB |
9170 | if (ada_is_aligner_type (raw_type)) |
9171 | /* The encoding specifies that we should always use the aligner type. | |
9172 | So, even if this aligner type has an associated XVS type, we should | |
9173 | simply ignore it. | |
9174 | ||
9175 | According to the compiler gurus, an XVS type parallel to an aligner | |
9176 | type may exist because of a stabs limitation. In stabs, aligner | |
9177 | types are empty because the field has a variable-sized type, and | |
9178 | thus cannot actually be used as an aligner type. As a result, | |
9179 | we need the associated parallel XVS type to decode the type. | |
9180 | Since the policy in the compiler is to not change the internal | |
9181 | representation based on the debugging info format, we sometimes | |
9182 | end up having a redundant XVS type parallel to the aligner type. */ | |
9183 | return raw_type; | |
9184 | ||
14f9c5c9 | 9185 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 9186 | if (real_type_namer == NULL |
14f9c5c9 AS |
9187 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
9188 | || TYPE_NFIELDS (real_type_namer) != 1) | |
9189 | return raw_type; | |
9190 | ||
f80d3ff2 JB |
9191 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
9192 | { | |
9193 | /* This is an older encoding form where the base type needs to be | |
9194 | looked up by name. We prefer the newer enconding because it is | |
9195 | more efficient. */ | |
9196 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
9197 | if (raw_real_type == NULL) | |
9198 | return raw_type; | |
9199 | else | |
9200 | return raw_real_type; | |
9201 | } | |
9202 | ||
9203 | /* The field in our XVS type is a reference to the base type. */ | |
9204 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 9205 | } |
14f9c5c9 | 9206 | |
4c4b4cd2 | 9207 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 9208 | |
d2e4a39e AS |
9209 | struct type * |
9210 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
9211 | { |
9212 | if (ada_is_aligner_type (type)) | |
9213 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
9214 | else | |
9215 | return ada_get_base_type (type); | |
9216 | } | |
9217 | ||
9218 | ||
9219 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 9220 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 9221 | |
fc1a4b47 AC |
9222 | const gdb_byte * |
9223 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 9224 | { |
d2e4a39e | 9225 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 9226 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
9227 | valaddr + |
9228 | TYPE_FIELD_BITPOS (type, | |
9229 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
9230 | else |
9231 | return valaddr; | |
9232 | } | |
9233 | ||
4c4b4cd2 PH |
9234 | |
9235 | ||
14f9c5c9 | 9236 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 9237 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
9238 | const char * |
9239 | ada_enum_name (const char *name) | |
14f9c5c9 | 9240 | { |
4c4b4cd2 PH |
9241 | static char *result; |
9242 | static size_t result_len = 0; | |
d2e4a39e | 9243 | char *tmp; |
14f9c5c9 | 9244 | |
4c4b4cd2 PH |
9245 | /* First, unqualify the enumeration name: |
9246 | 1. Search for the last '.' character. If we find one, then skip | |
177b42fe | 9247 | all the preceding characters, the unqualified name starts |
76a01679 | 9248 | right after that dot. |
4c4b4cd2 | 9249 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
9250 | translates dots into "__". Search forward for double underscores, |
9251 | but stop searching when we hit an overloading suffix, which is | |
9252 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 9253 | |
c3e5cd34 PH |
9254 | tmp = strrchr (name, '.'); |
9255 | if (tmp != NULL) | |
4c4b4cd2 PH |
9256 | name = tmp + 1; |
9257 | else | |
14f9c5c9 | 9258 | { |
4c4b4cd2 PH |
9259 | while ((tmp = strstr (name, "__")) != NULL) |
9260 | { | |
9261 | if (isdigit (tmp[2])) | |
9262 | break; | |
9263 | else | |
9264 | name = tmp + 2; | |
9265 | } | |
14f9c5c9 AS |
9266 | } |
9267 | ||
9268 | if (name[0] == 'Q') | |
9269 | { | |
14f9c5c9 | 9270 | int v; |
5b4ee69b | 9271 | |
14f9c5c9 | 9272 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
9273 | { |
9274 | if (sscanf (name + 2, "%x", &v) != 1) | |
9275 | return name; | |
9276 | } | |
14f9c5c9 | 9277 | else |
4c4b4cd2 | 9278 | return name; |
14f9c5c9 | 9279 | |
4c4b4cd2 | 9280 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 9281 | if (isascii (v) && isprint (v)) |
88c15c34 | 9282 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 9283 | else if (name[1] == 'U') |
88c15c34 | 9284 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 9285 | else |
88c15c34 | 9286 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
9287 | |
9288 | return result; | |
9289 | } | |
d2e4a39e | 9290 | else |
4c4b4cd2 | 9291 | { |
c3e5cd34 PH |
9292 | tmp = strstr (name, "__"); |
9293 | if (tmp == NULL) | |
9294 | tmp = strstr (name, "$"); | |
9295 | if (tmp != NULL) | |
4c4b4cd2 PH |
9296 | { |
9297 | GROW_VECT (result, result_len, tmp - name + 1); | |
9298 | strncpy (result, name, tmp - name); | |
9299 | result[tmp - name] = '\0'; | |
9300 | return result; | |
9301 | } | |
9302 | ||
9303 | return name; | |
9304 | } | |
14f9c5c9 AS |
9305 | } |
9306 | ||
14f9c5c9 AS |
9307 | /* Evaluate the subexpression of EXP starting at *POS as for |
9308 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 9309 | expression. */ |
14f9c5c9 | 9310 | |
d2e4a39e AS |
9311 | static struct value * |
9312 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 9313 | { |
4b27a620 | 9314 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
9315 | } |
9316 | ||
9317 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 9318 | value it wraps. */ |
14f9c5c9 | 9319 | |
d2e4a39e AS |
9320 | static struct value * |
9321 | unwrap_value (struct value *val) | |
14f9c5c9 | 9322 | { |
df407dfe | 9323 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 9324 | |
14f9c5c9 AS |
9325 | if (ada_is_aligner_type (type)) |
9326 | { | |
de4d072f | 9327 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 9328 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 9329 | |
14f9c5c9 | 9330 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 9331 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
9332 | |
9333 | return unwrap_value (v); | |
9334 | } | |
d2e4a39e | 9335 | else |
14f9c5c9 | 9336 | { |
d2e4a39e | 9337 | struct type *raw_real_type = |
61ee279c | 9338 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 9339 | |
5bf03f13 JB |
9340 | /* If there is no parallel XVS or XVE type, then the value is |
9341 | already unwrapped. Return it without further modification. */ | |
9342 | if ((type == raw_real_type) | |
9343 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
9344 | return val; | |
14f9c5c9 | 9345 | |
d2e4a39e | 9346 | return |
4c4b4cd2 PH |
9347 | coerce_unspec_val_to_type |
9348 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 9349 | value_address (val), |
1ed6ede0 | 9350 | NULL, 1)); |
14f9c5c9 AS |
9351 | } |
9352 | } | |
d2e4a39e AS |
9353 | |
9354 | static struct value * | |
9355 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
9356 | { |
9357 | LONGEST val; | |
9358 | ||
df407dfe | 9359 | if (type == value_type (arg)) |
14f9c5c9 | 9360 | return arg; |
df407dfe | 9361 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 9362 | val = ada_float_to_fixed (type, |
df407dfe | 9363 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 9364 | value_as_long (arg))); |
d2e4a39e | 9365 | else |
14f9c5c9 | 9366 | { |
a53b7a21 | 9367 | DOUBLEST argd = value_as_double (arg); |
5b4ee69b | 9368 | |
14f9c5c9 AS |
9369 | val = ada_float_to_fixed (type, argd); |
9370 | } | |
9371 | ||
9372 | return value_from_longest (type, val); | |
9373 | } | |
9374 | ||
d2e4a39e | 9375 | static struct value * |
a53b7a21 | 9376 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 9377 | { |
df407dfe | 9378 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 9379 | value_as_long (arg)); |
5b4ee69b | 9380 | |
a53b7a21 | 9381 | return value_from_double (type, val); |
14f9c5c9 AS |
9382 | } |
9383 | ||
d99dcf51 JB |
9384 | /* Given two array types T1 and T2, return nonzero iff both arrays |
9385 | contain the same number of elements. */ | |
9386 | ||
9387 | static int | |
9388 | ada_same_array_size_p (struct type *t1, struct type *t2) | |
9389 | { | |
9390 | LONGEST lo1, hi1, lo2, hi2; | |
9391 | ||
9392 | /* Get the array bounds in order to verify that the size of | |
9393 | the two arrays match. */ | |
9394 | if (!get_array_bounds (t1, &lo1, &hi1) | |
9395 | || !get_array_bounds (t2, &lo2, &hi2)) | |
9396 | error (_("unable to determine array bounds")); | |
9397 | ||
9398 | /* To make things easier for size comparison, normalize a bit | |
9399 | the case of empty arrays by making sure that the difference | |
9400 | between upper bound and lower bound is always -1. */ | |
9401 | if (lo1 > hi1) | |
9402 | hi1 = lo1 - 1; | |
9403 | if (lo2 > hi2) | |
9404 | hi2 = lo2 - 1; | |
9405 | ||
9406 | return (hi1 - lo1 == hi2 - lo2); | |
9407 | } | |
9408 | ||
9409 | /* Assuming that VAL is an array of integrals, and TYPE represents | |
9410 | an array with the same number of elements, but with wider integral | |
9411 | elements, return an array "casted" to TYPE. In practice, this | |
9412 | means that the returned array is built by casting each element | |
9413 | of the original array into TYPE's (wider) element type. */ | |
9414 | ||
9415 | static struct value * | |
9416 | ada_promote_array_of_integrals (struct type *type, struct value *val) | |
9417 | { | |
9418 | struct type *elt_type = TYPE_TARGET_TYPE (type); | |
9419 | LONGEST lo, hi; | |
9420 | struct value *res; | |
9421 | LONGEST i; | |
9422 | ||
9423 | /* Verify that both val and type are arrays of scalars, and | |
9424 | that the size of val's elements is smaller than the size | |
9425 | of type's element. */ | |
9426 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY); | |
9427 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type))); | |
9428 | gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY); | |
9429 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val)))); | |
9430 | gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type)) | |
9431 | > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val)))); | |
9432 | ||
9433 | if (!get_array_bounds (type, &lo, &hi)) | |
9434 | error (_("unable to determine array bounds")); | |
9435 | ||
9436 | res = allocate_value (type); | |
9437 | ||
9438 | /* Promote each array element. */ | |
9439 | for (i = 0; i < hi - lo + 1; i++) | |
9440 | { | |
9441 | struct value *elt = value_cast (elt_type, value_subscript (val, lo + i)); | |
9442 | ||
9443 | memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)), | |
9444 | value_contents_all (elt), TYPE_LENGTH (elt_type)); | |
9445 | } | |
9446 | ||
9447 | return res; | |
9448 | } | |
9449 | ||
4c4b4cd2 PH |
9450 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
9451 | return the converted value. */ | |
9452 | ||
d2e4a39e AS |
9453 | static struct value * |
9454 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 9455 | { |
df407dfe | 9456 | struct type *type2 = value_type (val); |
5b4ee69b | 9457 | |
14f9c5c9 AS |
9458 | if (type == type2) |
9459 | return val; | |
9460 | ||
61ee279c PH |
9461 | type2 = ada_check_typedef (type2); |
9462 | type = ada_check_typedef (type); | |
14f9c5c9 | 9463 | |
d2e4a39e AS |
9464 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
9465 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
9466 | { |
9467 | val = ada_value_ind (val); | |
df407dfe | 9468 | type2 = value_type (val); |
14f9c5c9 AS |
9469 | } |
9470 | ||
d2e4a39e | 9471 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
9472 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
9473 | { | |
d99dcf51 JB |
9474 | if (!ada_same_array_size_p (type, type2)) |
9475 | error (_("cannot assign arrays of different length")); | |
9476 | ||
9477 | if (is_integral_type (TYPE_TARGET_TYPE (type)) | |
9478 | && is_integral_type (TYPE_TARGET_TYPE (type2)) | |
9479 | && TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9480 | < TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
9481 | { | |
9482 | /* Allow implicit promotion of the array elements to | |
9483 | a wider type. */ | |
9484 | return ada_promote_array_of_integrals (type, val); | |
9485 | } | |
9486 | ||
9487 | if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9488 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
323e0a4a | 9489 | error (_("Incompatible types in assignment")); |
04624583 | 9490 | deprecated_set_value_type (val, type); |
14f9c5c9 | 9491 | } |
d2e4a39e | 9492 | return val; |
14f9c5c9 AS |
9493 | } |
9494 | ||
4c4b4cd2 PH |
9495 | static struct value * |
9496 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
9497 | { | |
9498 | struct value *val; | |
9499 | struct type *type1, *type2; | |
9500 | LONGEST v, v1, v2; | |
9501 | ||
994b9211 AC |
9502 | arg1 = coerce_ref (arg1); |
9503 | arg2 = coerce_ref (arg2); | |
18af8284 JB |
9504 | type1 = get_base_type (ada_check_typedef (value_type (arg1))); |
9505 | type2 = get_base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 9506 | |
76a01679 JB |
9507 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
9508 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
9509 | return value_binop (arg1, arg2, op); |
9510 | ||
76a01679 | 9511 | switch (op) |
4c4b4cd2 PH |
9512 | { |
9513 | case BINOP_MOD: | |
9514 | case BINOP_DIV: | |
9515 | case BINOP_REM: | |
9516 | break; | |
9517 | default: | |
9518 | return value_binop (arg1, arg2, op); | |
9519 | } | |
9520 | ||
9521 | v2 = value_as_long (arg2); | |
9522 | if (v2 == 0) | |
323e0a4a | 9523 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
9524 | |
9525 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
9526 | return value_binop (arg1, arg2, op); | |
9527 | ||
9528 | v1 = value_as_long (arg1); | |
9529 | switch (op) | |
9530 | { | |
9531 | case BINOP_DIV: | |
9532 | v = v1 / v2; | |
76a01679 JB |
9533 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
9534 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
9535 | break; |
9536 | case BINOP_REM: | |
9537 | v = v1 % v2; | |
76a01679 JB |
9538 | if (v * v1 < 0) |
9539 | v -= v2; | |
4c4b4cd2 PH |
9540 | break; |
9541 | default: | |
9542 | /* Should not reach this point. */ | |
9543 | v = 0; | |
9544 | } | |
9545 | ||
9546 | val = allocate_value (type1); | |
990a07ab | 9547 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
9548 | TYPE_LENGTH (value_type (val)), |
9549 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
9550 | return val; |
9551 | } | |
9552 | ||
9553 | static int | |
9554 | ada_value_equal (struct value *arg1, struct value *arg2) | |
9555 | { | |
df407dfe AC |
9556 | if (ada_is_direct_array_type (value_type (arg1)) |
9557 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 9558 | { |
f58b38bf JB |
9559 | /* Automatically dereference any array reference before |
9560 | we attempt to perform the comparison. */ | |
9561 | arg1 = ada_coerce_ref (arg1); | |
9562 | arg2 = ada_coerce_ref (arg2); | |
9563 | ||
4c4b4cd2 PH |
9564 | arg1 = ada_coerce_to_simple_array (arg1); |
9565 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
9566 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
9567 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 9568 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 9569 | /* FIXME: The following works only for types whose |
76a01679 JB |
9570 | representations use all bits (no padding or undefined bits) |
9571 | and do not have user-defined equality. */ | |
9572 | return | |
df407dfe | 9573 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 9574 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 9575 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
9576 | } |
9577 | return value_equal (arg1, arg2); | |
9578 | } | |
9579 | ||
52ce6436 PH |
9580 | /* Total number of component associations in the aggregate starting at |
9581 | index PC in EXP. Assumes that index PC is the start of an | |
0963b4bd | 9582 | OP_AGGREGATE. */ |
52ce6436 PH |
9583 | |
9584 | static int | |
9585 | num_component_specs (struct expression *exp, int pc) | |
9586 | { | |
9587 | int n, m, i; | |
5b4ee69b | 9588 | |
52ce6436 PH |
9589 | m = exp->elts[pc + 1].longconst; |
9590 | pc += 3; | |
9591 | n = 0; | |
9592 | for (i = 0; i < m; i += 1) | |
9593 | { | |
9594 | switch (exp->elts[pc].opcode) | |
9595 | { | |
9596 | default: | |
9597 | n += 1; | |
9598 | break; | |
9599 | case OP_CHOICES: | |
9600 | n += exp->elts[pc + 1].longconst; | |
9601 | break; | |
9602 | } | |
9603 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
9604 | } | |
9605 | return n; | |
9606 | } | |
9607 | ||
9608 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
9609 | component of LHS (a simple array or a record), updating *POS past | |
9610 | the expression, assuming that LHS is contained in CONTAINER. Does | |
9611 | not modify the inferior's memory, nor does it modify LHS (unless | |
9612 | LHS == CONTAINER). */ | |
9613 | ||
9614 | static void | |
9615 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
9616 | struct expression *exp, int *pos) | |
9617 | { | |
9618 | struct value *mark = value_mark (); | |
9619 | struct value *elt; | |
5b4ee69b | 9620 | |
52ce6436 PH |
9621 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) |
9622 | { | |
22601c15 UW |
9623 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
9624 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 9625 | |
52ce6436 PH |
9626 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
9627 | } | |
9628 | else | |
9629 | { | |
9630 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
c48db5ca | 9631 | elt = ada_to_fixed_value (elt); |
52ce6436 PH |
9632 | } |
9633 | ||
9634 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
9635 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
9636 | else | |
9637 | value_assign_to_component (container, elt, | |
9638 | ada_evaluate_subexp (NULL, exp, pos, | |
9639 | EVAL_NORMAL)); | |
9640 | ||
9641 | value_free_to_mark (mark); | |
9642 | } | |
9643 | ||
9644 | /* Assuming that LHS represents an lvalue having a record or array | |
9645 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
9646 | of that aggregate's value to LHS, advancing *POS past the | |
9647 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
9648 | lvalue containing LHS (possibly LHS itself). Does not modify | |
9649 | the inferior's memory, nor does it modify the contents of | |
0963b4bd | 9650 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ |
52ce6436 PH |
9651 | |
9652 | static struct value * | |
9653 | assign_aggregate (struct value *container, | |
9654 | struct value *lhs, struct expression *exp, | |
9655 | int *pos, enum noside noside) | |
9656 | { | |
9657 | struct type *lhs_type; | |
9658 | int n = exp->elts[*pos+1].longconst; | |
9659 | LONGEST low_index, high_index; | |
9660 | int num_specs; | |
9661 | LONGEST *indices; | |
9662 | int max_indices, num_indices; | |
52ce6436 | 9663 | int i; |
52ce6436 PH |
9664 | |
9665 | *pos += 3; | |
9666 | if (noside != EVAL_NORMAL) | |
9667 | { | |
52ce6436 PH |
9668 | for (i = 0; i < n; i += 1) |
9669 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9670 | return container; | |
9671 | } | |
9672 | ||
9673 | container = ada_coerce_ref (container); | |
9674 | if (ada_is_direct_array_type (value_type (container))) | |
9675 | container = ada_coerce_to_simple_array (container); | |
9676 | lhs = ada_coerce_ref (lhs); | |
9677 | if (!deprecated_value_modifiable (lhs)) | |
9678 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
9679 | ||
9680 | lhs_type = value_type (lhs); | |
9681 | if (ada_is_direct_array_type (lhs_type)) | |
9682 | { | |
9683 | lhs = ada_coerce_to_simple_array (lhs); | |
9684 | lhs_type = value_type (lhs); | |
9685 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
9686 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
52ce6436 PH |
9687 | } |
9688 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
9689 | { | |
9690 | low_index = 0; | |
9691 | high_index = num_visible_fields (lhs_type) - 1; | |
52ce6436 PH |
9692 | } |
9693 | else | |
9694 | error (_("Left-hand side must be array or record.")); | |
9695 | ||
9696 | num_specs = num_component_specs (exp, *pos - 3); | |
9697 | max_indices = 4 * num_specs + 4; | |
9698 | indices = alloca (max_indices * sizeof (indices[0])); | |
9699 | indices[0] = indices[1] = low_index - 1; | |
9700 | indices[2] = indices[3] = high_index + 1; | |
9701 | num_indices = 4; | |
9702 | ||
9703 | for (i = 0; i < n; i += 1) | |
9704 | { | |
9705 | switch (exp->elts[*pos].opcode) | |
9706 | { | |
1fbf5ada JB |
9707 | case OP_CHOICES: |
9708 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
9709 | &num_indices, max_indices, | |
9710 | low_index, high_index); | |
9711 | break; | |
9712 | case OP_POSITIONAL: | |
9713 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
52ce6436 PH |
9714 | &num_indices, max_indices, |
9715 | low_index, high_index); | |
1fbf5ada JB |
9716 | break; |
9717 | case OP_OTHERS: | |
9718 | if (i != n-1) | |
9719 | error (_("Misplaced 'others' clause")); | |
9720 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
9721 | num_indices, low_index, high_index); | |
9722 | break; | |
9723 | default: | |
9724 | error (_("Internal error: bad aggregate clause")); | |
52ce6436 PH |
9725 | } |
9726 | } | |
9727 | ||
9728 | return container; | |
9729 | } | |
9730 | ||
9731 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
9732 | construct at *POS, updating *POS past the construct, given that | |
9733 | the positions are relative to lower bound LOW, where HIGH is the | |
9734 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
9735 | updating *NUM_INDICES as needed. CONTAINER is as for | |
0963b4bd | 9736 | assign_aggregate. */ |
52ce6436 PH |
9737 | static void |
9738 | aggregate_assign_positional (struct value *container, | |
9739 | struct value *lhs, struct expression *exp, | |
9740 | int *pos, LONGEST *indices, int *num_indices, | |
9741 | int max_indices, LONGEST low, LONGEST high) | |
9742 | { | |
9743 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
9744 | ||
9745 | if (ind - 1 == high) | |
e1d5a0d2 | 9746 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
9747 | if (ind <= high) |
9748 | { | |
9749 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
9750 | *pos += 3; | |
9751 | assign_component (container, lhs, ind, exp, pos); | |
9752 | } | |
9753 | else | |
9754 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9755 | } | |
9756 | ||
9757 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
9758 | construct at *POS, updating *POS past the construct, given that | |
9759 | the allowable indices are LOW..HIGH. Record the indices assigned | |
9760 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
0963b4bd | 9761 | needed. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
9762 | static void |
9763 | aggregate_assign_from_choices (struct value *container, | |
9764 | struct value *lhs, struct expression *exp, | |
9765 | int *pos, LONGEST *indices, int *num_indices, | |
9766 | int max_indices, LONGEST low, LONGEST high) | |
9767 | { | |
9768 | int j; | |
9769 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
9770 | int choice_pos, expr_pc; | |
9771 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
9772 | ||
9773 | choice_pos = *pos += 3; | |
9774 | ||
9775 | for (j = 0; j < n_choices; j += 1) | |
9776 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9777 | expr_pc = *pos; | |
9778 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9779 | ||
9780 | for (j = 0; j < n_choices; j += 1) | |
9781 | { | |
9782 | LONGEST lower, upper; | |
9783 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 9784 | |
52ce6436 PH |
9785 | if (op == OP_DISCRETE_RANGE) |
9786 | { | |
9787 | choice_pos += 1; | |
9788 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
9789 | EVAL_NORMAL)); | |
9790 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
9791 | EVAL_NORMAL)); | |
9792 | } | |
9793 | else if (is_array) | |
9794 | { | |
9795 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
9796 | EVAL_NORMAL)); | |
9797 | upper = lower; | |
9798 | } | |
9799 | else | |
9800 | { | |
9801 | int ind; | |
0d5cff50 | 9802 | const char *name; |
5b4ee69b | 9803 | |
52ce6436 PH |
9804 | switch (op) |
9805 | { | |
9806 | case OP_NAME: | |
9807 | name = &exp->elts[choice_pos + 2].string; | |
9808 | break; | |
9809 | case OP_VAR_VALUE: | |
9810 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
9811 | break; | |
9812 | default: | |
9813 | error (_("Invalid record component association.")); | |
9814 | } | |
9815 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
9816 | ind = 0; | |
9817 | if (! find_struct_field (name, value_type (lhs), 0, | |
9818 | NULL, NULL, NULL, NULL, &ind)) | |
9819 | error (_("Unknown component name: %s."), name); | |
9820 | lower = upper = ind; | |
9821 | } | |
9822 | ||
9823 | if (lower <= upper && (lower < low || upper > high)) | |
9824 | error (_("Index in component association out of bounds.")); | |
9825 | ||
9826 | add_component_interval (lower, upper, indices, num_indices, | |
9827 | max_indices); | |
9828 | while (lower <= upper) | |
9829 | { | |
9830 | int pos1; | |
5b4ee69b | 9831 | |
52ce6436 PH |
9832 | pos1 = expr_pc; |
9833 | assign_component (container, lhs, lower, exp, &pos1); | |
9834 | lower += 1; | |
9835 | } | |
9836 | } | |
9837 | } | |
9838 | ||
9839 | /* Assign the value of the expression in the OP_OTHERS construct in | |
9840 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
9841 | have not been previously assigned. The index intervals already assigned | |
9842 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
0963b4bd | 9843 | OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
9844 | static void |
9845 | aggregate_assign_others (struct value *container, | |
9846 | struct value *lhs, struct expression *exp, | |
9847 | int *pos, LONGEST *indices, int num_indices, | |
9848 | LONGEST low, LONGEST high) | |
9849 | { | |
9850 | int i; | |
5ce64950 | 9851 | int expr_pc = *pos + 1; |
52ce6436 PH |
9852 | |
9853 | for (i = 0; i < num_indices - 2; i += 2) | |
9854 | { | |
9855 | LONGEST ind; | |
5b4ee69b | 9856 | |
52ce6436 PH |
9857 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
9858 | { | |
5ce64950 | 9859 | int localpos; |
5b4ee69b | 9860 | |
5ce64950 MS |
9861 | localpos = expr_pc; |
9862 | assign_component (container, lhs, ind, exp, &localpos); | |
52ce6436 PH |
9863 | } |
9864 | } | |
9865 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9866 | } | |
9867 | ||
9868 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
9869 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
9870 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
9871 | MAX_SIZE. The resulting intervals do not overlap. */ | |
9872 | static void | |
9873 | add_component_interval (LONGEST low, LONGEST high, | |
9874 | LONGEST* indices, int *size, int max_size) | |
9875 | { | |
9876 | int i, j; | |
5b4ee69b | 9877 | |
52ce6436 PH |
9878 | for (i = 0; i < *size; i += 2) { |
9879 | if (high >= indices[i] && low <= indices[i + 1]) | |
9880 | { | |
9881 | int kh; | |
5b4ee69b | 9882 | |
52ce6436 PH |
9883 | for (kh = i + 2; kh < *size; kh += 2) |
9884 | if (high < indices[kh]) | |
9885 | break; | |
9886 | if (low < indices[i]) | |
9887 | indices[i] = low; | |
9888 | indices[i + 1] = indices[kh - 1]; | |
9889 | if (high > indices[i + 1]) | |
9890 | indices[i + 1] = high; | |
9891 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
9892 | *size -= kh - i - 2; | |
9893 | return; | |
9894 | } | |
9895 | else if (high < indices[i]) | |
9896 | break; | |
9897 | } | |
9898 | ||
9899 | if (*size == max_size) | |
9900 | error (_("Internal error: miscounted aggregate components.")); | |
9901 | *size += 2; | |
9902 | for (j = *size-1; j >= i+2; j -= 1) | |
9903 | indices[j] = indices[j - 2]; | |
9904 | indices[i] = low; | |
9905 | indices[i + 1] = high; | |
9906 | } | |
9907 | ||
6e48bd2c JB |
9908 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
9909 | is different. */ | |
9910 | ||
9911 | static struct value * | |
9912 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
9913 | { | |
9914 | if (type == ada_check_typedef (value_type (arg2))) | |
9915 | return arg2; | |
9916 | ||
9917 | if (ada_is_fixed_point_type (type)) | |
9918 | return (cast_to_fixed (type, arg2)); | |
9919 | ||
9920 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 9921 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
9922 | |
9923 | return value_cast (type, arg2); | |
9924 | } | |
9925 | ||
284614f0 JB |
9926 | /* Evaluating Ada expressions, and printing their result. |
9927 | ------------------------------------------------------ | |
9928 | ||
21649b50 JB |
9929 | 1. Introduction: |
9930 | ---------------- | |
9931 | ||
284614f0 JB |
9932 | We usually evaluate an Ada expression in order to print its value. |
9933 | We also evaluate an expression in order to print its type, which | |
9934 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
9935 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
9936 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
9937 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
9938 | similar. | |
9939 | ||
9940 | Evaluating expressions is a little more complicated for Ada entities | |
9941 | than it is for entities in languages such as C. The main reason for | |
9942 | this is that Ada provides types whose definition might be dynamic. | |
9943 | One example of such types is variant records. Or another example | |
9944 | would be an array whose bounds can only be known at run time. | |
9945 | ||
9946 | The following description is a general guide as to what should be | |
9947 | done (and what should NOT be done) in order to evaluate an expression | |
9948 | involving such types, and when. This does not cover how the semantic | |
9949 | information is encoded by GNAT as this is covered separatly. For the | |
9950 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
9951 | in the GNAT sources. | |
9952 | ||
9953 | Ideally, we should embed each part of this description next to its | |
9954 | associated code. Unfortunately, the amount of code is so vast right | |
9955 | now that it's hard to see whether the code handling a particular | |
9956 | situation might be duplicated or not. One day, when the code is | |
9957 | cleaned up, this guide might become redundant with the comments | |
9958 | inserted in the code, and we might want to remove it. | |
9959 | ||
21649b50 JB |
9960 | 2. ``Fixing'' an Entity, the Simple Case: |
9961 | ----------------------------------------- | |
9962 | ||
284614f0 JB |
9963 | When evaluating Ada expressions, the tricky issue is that they may |
9964 | reference entities whose type contents and size are not statically | |
9965 | known. Consider for instance a variant record: | |
9966 | ||
9967 | type Rec (Empty : Boolean := True) is record | |
9968 | case Empty is | |
9969 | when True => null; | |
9970 | when False => Value : Integer; | |
9971 | end case; | |
9972 | end record; | |
9973 | Yes : Rec := (Empty => False, Value => 1); | |
9974 | No : Rec := (empty => True); | |
9975 | ||
9976 | The size and contents of that record depends on the value of the | |
9977 | descriminant (Rec.Empty). At this point, neither the debugging | |
9978 | information nor the associated type structure in GDB are able to | |
9979 | express such dynamic types. So what the debugger does is to create | |
9980 | "fixed" versions of the type that applies to the specific object. | |
9981 | We also informally refer to this opperation as "fixing" an object, | |
9982 | which means creating its associated fixed type. | |
9983 | ||
9984 | Example: when printing the value of variable "Yes" above, its fixed | |
9985 | type would look like this: | |
9986 | ||
9987 | type Rec is record | |
9988 | Empty : Boolean; | |
9989 | Value : Integer; | |
9990 | end record; | |
9991 | ||
9992 | On the other hand, if we printed the value of "No", its fixed type | |
9993 | would become: | |
9994 | ||
9995 | type Rec is record | |
9996 | Empty : Boolean; | |
9997 | end record; | |
9998 | ||
9999 | Things become a little more complicated when trying to fix an entity | |
10000 | with a dynamic type that directly contains another dynamic type, | |
10001 | such as an array of variant records, for instance. There are | |
10002 | two possible cases: Arrays, and records. | |
10003 | ||
21649b50 JB |
10004 | 3. ``Fixing'' Arrays: |
10005 | --------------------- | |
10006 | ||
10007 | The type structure in GDB describes an array in terms of its bounds, | |
10008 | and the type of its elements. By design, all elements in the array | |
10009 | have the same type and we cannot represent an array of variant elements | |
10010 | using the current type structure in GDB. When fixing an array, | |
10011 | we cannot fix the array element, as we would potentially need one | |
10012 | fixed type per element of the array. As a result, the best we can do | |
10013 | when fixing an array is to produce an array whose bounds and size | |
10014 | are correct (allowing us to read it from memory), but without having | |
10015 | touched its element type. Fixing each element will be done later, | |
10016 | when (if) necessary. | |
10017 | ||
10018 | Arrays are a little simpler to handle than records, because the same | |
10019 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 10020 | the amount of space actually used by each element differs from element |
21649b50 | 10021 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
10022 | |
10023 | type Rec_Array is array (1 .. 2) of Rec; | |
10024 | ||
1b536f04 JB |
10025 | The actual amount of memory occupied by each element might be different |
10026 | from element to element, depending on the value of their discriminant. | |
21649b50 | 10027 | But the amount of space reserved for each element in the array remains |
1b536f04 | 10028 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
10029 | the debugging information available, from which we can then determine |
10030 | the array size (we multiply the number of elements of the array by | |
10031 | the size of each element). | |
10032 | ||
10033 | The simplest case is when we have an array of a constrained element | |
10034 | type. For instance, consider the following type declarations: | |
10035 | ||
10036 | type Bounded_String (Max_Size : Integer) is | |
10037 | Length : Integer; | |
10038 | Buffer : String (1 .. Max_Size); | |
10039 | end record; | |
10040 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
10041 | ||
10042 | In this case, the compiler describes the array as an array of | |
10043 | variable-size elements (identified by its XVS suffix) for which | |
10044 | the size can be read in the parallel XVZ variable. | |
10045 | ||
10046 | In the case of an array of an unconstrained element type, the compiler | |
10047 | wraps the array element inside a private PAD type. This type should not | |
10048 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
10049 | that we also use the adjective "aligner" in our code to designate |
10050 | these wrapper types. | |
10051 | ||
1b536f04 | 10052 | In some cases, the size allocated for each element is statically |
21649b50 JB |
10053 | known. In that case, the PAD type already has the correct size, |
10054 | and the array element should remain unfixed. | |
10055 | ||
10056 | But there are cases when this size is not statically known. | |
10057 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
10058 | |
10059 | type Dynamic is array (1 .. Five) of Integer; | |
10060 | type Wrapper (Has_Length : Boolean := False) is record | |
10061 | Data : Dynamic; | |
10062 | case Has_Length is | |
10063 | when True => Length : Integer; | |
10064 | when False => null; | |
10065 | end case; | |
10066 | end record; | |
10067 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
10068 | ||
10069 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
10070 | Data => (others => 17), | |
10071 | Length => 1)); | |
10072 | ||
10073 | ||
10074 | The debugging info would describe variable Hello as being an | |
10075 | array of a PAD type. The size of that PAD type is not statically | |
10076 | known, but can be determined using a parallel XVZ variable. | |
10077 | In that case, a copy of the PAD type with the correct size should | |
10078 | be used for the fixed array. | |
10079 | ||
21649b50 JB |
10080 | 3. ``Fixing'' record type objects: |
10081 | ---------------------------------- | |
10082 | ||
10083 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
10084 | record types. In this case, in order to compute the associated |
10085 | fixed type, we need to determine the size and offset of each of | |
10086 | its components. This, in turn, requires us to compute the fixed | |
10087 | type of each of these components. | |
10088 | ||
10089 | Consider for instance the example: | |
10090 | ||
10091 | type Bounded_String (Max_Size : Natural) is record | |
10092 | Str : String (1 .. Max_Size); | |
10093 | Length : Natural; | |
10094 | end record; | |
10095 | My_String : Bounded_String (Max_Size => 10); | |
10096 | ||
10097 | In that case, the position of field "Length" depends on the size | |
10098 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 10099 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
10100 | we need to fix the type of field Str. Therefore, fixing a variant |
10101 | record requires us to fix each of its components. | |
10102 | ||
10103 | However, if a component does not have a dynamic size, the component | |
10104 | should not be fixed. In particular, fields that use a PAD type | |
10105 | should not fixed. Here is an example where this might happen | |
10106 | (assuming type Rec above): | |
10107 | ||
10108 | type Container (Big : Boolean) is record | |
10109 | First : Rec; | |
10110 | After : Integer; | |
10111 | case Big is | |
10112 | when True => Another : Integer; | |
10113 | when False => null; | |
10114 | end case; | |
10115 | end record; | |
10116 | My_Container : Container := (Big => False, | |
10117 | First => (Empty => True), | |
10118 | After => 42); | |
10119 | ||
10120 | In that example, the compiler creates a PAD type for component First, | |
10121 | whose size is constant, and then positions the component After just | |
10122 | right after it. The offset of component After is therefore constant | |
10123 | in this case. | |
10124 | ||
10125 | The debugger computes the position of each field based on an algorithm | |
10126 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
10127 | preceding it. Let's now imagine that the user is trying to print |
10128 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
10129 | end up computing the offset of field After based on the size of the |
10130 | fixed version of field First. And since in our example First has | |
10131 | only one actual field, the size of the fixed type is actually smaller | |
10132 | than the amount of space allocated to that field, and thus we would | |
10133 | compute the wrong offset of field After. | |
10134 | ||
21649b50 JB |
10135 | To make things more complicated, we need to watch out for dynamic |
10136 | components of variant records (identified by the ___XVL suffix in | |
10137 | the component name). Even if the target type is a PAD type, the size | |
10138 | of that type might not be statically known. So the PAD type needs | |
10139 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
10140 | we might end up with the wrong size for our component. This can be | |
10141 | observed with the following type declarations: | |
284614f0 JB |
10142 | |
10143 | type Octal is new Integer range 0 .. 7; | |
10144 | type Octal_Array is array (Positive range <>) of Octal; | |
10145 | pragma Pack (Octal_Array); | |
10146 | ||
10147 | type Octal_Buffer (Size : Positive) is record | |
10148 | Buffer : Octal_Array (1 .. Size); | |
10149 | Length : Integer; | |
10150 | end record; | |
10151 | ||
10152 | In that case, Buffer is a PAD type whose size is unset and needs | |
10153 | to be computed by fixing the unwrapped type. | |
10154 | ||
21649b50 JB |
10155 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
10156 | ---------------------------------------------------------- | |
10157 | ||
10158 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
10159 | thus far, be actually fixed? |
10160 | ||
10161 | The answer is: Only when referencing that element. For instance | |
10162 | when selecting one component of a record, this specific component | |
10163 | should be fixed at that point in time. Or when printing the value | |
10164 | of a record, each component should be fixed before its value gets | |
10165 | printed. Similarly for arrays, the element of the array should be | |
10166 | fixed when printing each element of the array, or when extracting | |
10167 | one element out of that array. On the other hand, fixing should | |
10168 | not be performed on the elements when taking a slice of an array! | |
10169 | ||
10170 | Note that one of the side-effects of miscomputing the offset and | |
10171 | size of each field is that we end up also miscomputing the size | |
10172 | of the containing type. This can have adverse results when computing | |
10173 | the value of an entity. GDB fetches the value of an entity based | |
10174 | on the size of its type, and thus a wrong size causes GDB to fetch | |
10175 | the wrong amount of memory. In the case where the computed size is | |
10176 | too small, GDB fetches too little data to print the value of our | |
10177 | entiry. Results in this case as unpredicatble, as we usually read | |
10178 | past the buffer containing the data =:-o. */ | |
10179 | ||
10180 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
10181 | for the Ada language. */ | |
10182 | ||
52ce6436 | 10183 | static struct value * |
ebf56fd3 | 10184 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 10185 | int *pos, enum noside noside) |
14f9c5c9 AS |
10186 | { |
10187 | enum exp_opcode op; | |
b5385fc0 | 10188 | int tem; |
14f9c5c9 | 10189 | int pc; |
5ec18f2b | 10190 | int preeval_pos; |
14f9c5c9 AS |
10191 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; |
10192 | struct type *type; | |
52ce6436 | 10193 | int nargs, oplen; |
d2e4a39e | 10194 | struct value **argvec; |
14f9c5c9 | 10195 | |
d2e4a39e AS |
10196 | pc = *pos; |
10197 | *pos += 1; | |
14f9c5c9 AS |
10198 | op = exp->elts[pc].opcode; |
10199 | ||
d2e4a39e | 10200 | switch (op) |
14f9c5c9 AS |
10201 | { |
10202 | default: | |
10203 | *pos -= 1; | |
6e48bd2c | 10204 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
ca1f964d JG |
10205 | |
10206 | if (noside == EVAL_NORMAL) | |
10207 | arg1 = unwrap_value (arg1); | |
6e48bd2c JB |
10208 | |
10209 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
10210 | then we need to perform the conversion manually, because | |
10211 | evaluate_subexp_standard doesn't do it. This conversion is | |
10212 | necessary in Ada because the different kinds of float/fixed | |
10213 | types in Ada have different representations. | |
10214 | ||
10215 | Similarly, we need to perform the conversion from OP_LONG | |
10216 | ourselves. */ | |
10217 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
10218 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
10219 | ||
10220 | return arg1; | |
4c4b4cd2 PH |
10221 | |
10222 | case OP_STRING: | |
10223 | { | |
76a01679 | 10224 | struct value *result; |
5b4ee69b | 10225 | |
76a01679 JB |
10226 | *pos -= 1; |
10227 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10228 | /* The result type will have code OP_STRING, bashed there from | |
10229 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
10230 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
10231 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 10232 | return result; |
4c4b4cd2 | 10233 | } |
14f9c5c9 AS |
10234 | |
10235 | case UNOP_CAST: | |
10236 | (*pos) += 2; | |
10237 | type = exp->elts[pc + 1].type; | |
10238 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
10239 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10240 | goto nosideret; |
6e48bd2c | 10241 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
10242 | return arg1; |
10243 | ||
4c4b4cd2 PH |
10244 | case UNOP_QUAL: |
10245 | (*pos) += 2; | |
10246 | type = exp->elts[pc + 1].type; | |
10247 | return ada_evaluate_subexp (type, exp, pos, noside); | |
10248 | ||
14f9c5c9 AS |
10249 | case BINOP_ASSIGN: |
10250 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
10251 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
10252 | { | |
10253 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
10254 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
10255 | return arg1; | |
10256 | return ada_value_assign (arg1, arg1); | |
10257 | } | |
003f3813 JB |
10258 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
10259 | except if the lhs of our assignment is a convenience variable. | |
10260 | In the case of assigning to a convenience variable, the lhs | |
10261 | should be exactly the result of the evaluation of the rhs. */ | |
10262 | type = value_type (arg1); | |
10263 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
10264 | type = NULL; | |
10265 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 10266 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 10267 | return arg1; |
df407dfe AC |
10268 | if (ada_is_fixed_point_type (value_type (arg1))) |
10269 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
10270 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 10271 | error |
323e0a4a | 10272 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 10273 | else |
df407dfe | 10274 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 10275 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
10276 | |
10277 | case BINOP_ADD: | |
10278 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10279 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10280 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10281 | goto nosideret; |
2ac8a782 JB |
10282 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10283 | return (value_from_longest | |
10284 | (value_type (arg1), | |
10285 | value_as_long (arg1) + value_as_long (arg2))); | |
c40cc657 JB |
10286 | if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR) |
10287 | return (value_from_longest | |
10288 | (value_type (arg2), | |
10289 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
10290 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10291 | || ada_is_fixed_point_type (value_type (arg2))) | |
10292 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 10293 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
10294 | /* Do the addition, and cast the result to the type of the first |
10295 | argument. We cannot cast the result to a reference type, so if | |
10296 | ARG1 is a reference type, find its underlying type. */ | |
10297 | type = value_type (arg1); | |
10298 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10299 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10300 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10301 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
10302 | |
10303 | case BINOP_SUB: | |
10304 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10305 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10306 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10307 | goto nosideret; |
2ac8a782 JB |
10308 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10309 | return (value_from_longest | |
10310 | (value_type (arg1), | |
10311 | value_as_long (arg1) - value_as_long (arg2))); | |
c40cc657 JB |
10312 | if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR) |
10313 | return (value_from_longest | |
10314 | (value_type (arg2), | |
10315 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
10316 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10317 | || ada_is_fixed_point_type (value_type (arg2))) | |
10318 | && value_type (arg1) != value_type (arg2)) | |
0963b4bd MS |
10319 | error (_("Operands of fixed-point subtraction " |
10320 | "must have the same type")); | |
b7789565 JB |
10321 | /* Do the substraction, and cast the result to the type of the first |
10322 | argument. We cannot cast the result to a reference type, so if | |
10323 | ARG1 is a reference type, find its underlying type. */ | |
10324 | type = value_type (arg1); | |
10325 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10326 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10327 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10328 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
10329 | |
10330 | case BINOP_MUL: | |
10331 | case BINOP_DIV: | |
e1578042 JB |
10332 | case BINOP_REM: |
10333 | case BINOP_MOD: | |
14f9c5c9 AS |
10334 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10335 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10336 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10337 | goto nosideret; |
e1578042 | 10338 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
10339 | { |
10340 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10341 | return value_zero (value_type (arg1), not_lval); | |
10342 | } | |
14f9c5c9 | 10343 | else |
4c4b4cd2 | 10344 | { |
a53b7a21 | 10345 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 10346 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 10347 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 10348 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 10349 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 10350 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
10351 | return ada_value_binop (arg1, arg2, op); |
10352 | } | |
10353 | ||
4c4b4cd2 PH |
10354 | case BINOP_EQUAL: |
10355 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 10356 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 10357 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 10358 | if (noside == EVAL_SKIP) |
76a01679 | 10359 | goto nosideret; |
4c4b4cd2 | 10360 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10361 | tem = 0; |
4c4b4cd2 | 10362 | else |
f44316fa UW |
10363 | { |
10364 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10365 | tem = ada_value_equal (arg1, arg2); | |
10366 | } | |
4c4b4cd2 | 10367 | if (op == BINOP_NOTEQUAL) |
76a01679 | 10368 | tem = !tem; |
fbb06eb1 UW |
10369 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10370 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
10371 | |
10372 | case UNOP_NEG: | |
10373 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10374 | if (noside == EVAL_SKIP) | |
10375 | goto nosideret; | |
df407dfe AC |
10376 | else if (ada_is_fixed_point_type (value_type (arg1))) |
10377 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 10378 | else |
f44316fa UW |
10379 | { |
10380 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10381 | return value_neg (arg1); | |
10382 | } | |
4c4b4cd2 | 10383 | |
2330c6c6 JB |
10384 | case BINOP_LOGICAL_AND: |
10385 | case BINOP_LOGICAL_OR: | |
10386 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
10387 | { |
10388 | struct value *val; | |
10389 | ||
10390 | *pos -= 1; | |
10391 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
10392 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10393 | return value_cast (type, val); | |
000d5124 | 10394 | } |
2330c6c6 JB |
10395 | |
10396 | case BINOP_BITWISE_AND: | |
10397 | case BINOP_BITWISE_IOR: | |
10398 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
10399 | { |
10400 | struct value *val; | |
10401 | ||
10402 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
10403 | *pos = pc; | |
10404 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10405 | ||
10406 | return value_cast (value_type (arg1), val); | |
10407 | } | |
2330c6c6 | 10408 | |
14f9c5c9 AS |
10409 | case OP_VAR_VALUE: |
10410 | *pos -= 1; | |
6799def4 | 10411 | |
14f9c5c9 | 10412 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
10413 | { |
10414 | *pos += 4; | |
10415 | goto nosideret; | |
10416 | } | |
da5c522f JB |
10417 | |
10418 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
10419 | /* Only encountered when an unresolved symbol occurs in a |
10420 | context other than a function call, in which case, it is | |
52ce6436 | 10421 | invalid. */ |
323e0a4a | 10422 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 10423 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
da5c522f JB |
10424 | |
10425 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
4c4b4cd2 | 10426 | { |
0c1f74cf | 10427 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
10428 | /* Check to see if this is a tagged type. We also need to handle |
10429 | the case where the type is a reference to a tagged type, but | |
10430 | we have to be careful to exclude pointers to tagged types. | |
10431 | The latter should be shown as usual (as a pointer), whereas | |
10432 | a reference should mostly be transparent to the user. */ | |
10433 | if (ada_is_tagged_type (type, 0) | |
023db19c | 10434 | || (TYPE_CODE (type) == TYPE_CODE_REF |
31dbc1c5 | 10435 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) |
0d72a7c3 JB |
10436 | { |
10437 | /* Tagged types are a little special in the fact that the real | |
10438 | type is dynamic and can only be determined by inspecting the | |
10439 | object's tag. This means that we need to get the object's | |
10440 | value first (EVAL_NORMAL) and then extract the actual object | |
10441 | type from its tag. | |
10442 | ||
10443 | Note that we cannot skip the final step where we extract | |
10444 | the object type from its tag, because the EVAL_NORMAL phase | |
10445 | results in dynamic components being resolved into fixed ones. | |
10446 | This can cause problems when trying to print the type | |
10447 | description of tagged types whose parent has a dynamic size: | |
10448 | We use the type name of the "_parent" component in order | |
10449 | to print the name of the ancestor type in the type description. | |
10450 | If that component had a dynamic size, the resolution into | |
10451 | a fixed type would result in the loss of that type name, | |
10452 | thus preventing us from printing the name of the ancestor | |
10453 | type in the type description. */ | |
10454 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); | |
10455 | ||
10456 | if (TYPE_CODE (type) != TYPE_CODE_REF) | |
10457 | { | |
10458 | struct type *actual_type; | |
10459 | ||
10460 | actual_type = type_from_tag (ada_value_tag (arg1)); | |
10461 | if (actual_type == NULL) | |
10462 | /* If, for some reason, we were unable to determine | |
10463 | the actual type from the tag, then use the static | |
10464 | approximation that we just computed as a fallback. | |
10465 | This can happen if the debugging information is | |
10466 | incomplete, for instance. */ | |
10467 | actual_type = type; | |
10468 | return value_zero (actual_type, not_lval); | |
10469 | } | |
10470 | else | |
10471 | { | |
10472 | /* In the case of a ref, ada_coerce_ref takes care | |
10473 | of determining the actual type. But the evaluation | |
10474 | should return a ref as it should be valid to ask | |
10475 | for its address; so rebuild a ref after coerce. */ | |
10476 | arg1 = ada_coerce_ref (arg1); | |
10477 | return value_ref (arg1); | |
10478 | } | |
10479 | } | |
0c1f74cf | 10480 | |
84754697 JB |
10481 | /* Records and unions for which GNAT encodings have been |
10482 | generated need to be statically fixed as well. | |
10483 | Otherwise, non-static fixing produces a type where | |
10484 | all dynamic properties are removed, which prevents "ptype" | |
10485 | from being able to completely describe the type. | |
10486 | For instance, a case statement in a variant record would be | |
10487 | replaced by the relevant components based on the actual | |
10488 | value of the discriminants. */ | |
10489 | if ((TYPE_CODE (type) == TYPE_CODE_STRUCT | |
10490 | && dynamic_template_type (type) != NULL) | |
10491 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
10492 | && ada_find_parallel_type (type, "___XVU") != NULL)) | |
10493 | { | |
10494 | *pos += 4; | |
10495 | return value_zero (to_static_fixed_type (type), not_lval); | |
10496 | } | |
4c4b4cd2 | 10497 | } |
da5c522f JB |
10498 | |
10499 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10500 | return ada_to_fixed_value (arg1); | |
4c4b4cd2 PH |
10501 | |
10502 | case OP_FUNCALL: | |
10503 | (*pos) += 2; | |
10504 | ||
10505 | /* Allocate arg vector, including space for the function to be | |
10506 | called in argvec[0] and a terminating NULL. */ | |
10507 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
10508 | argvec = | |
10509 | (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); | |
10510 | ||
10511 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 10512 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 10513 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
10514 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
10515 | else | |
10516 | { | |
10517 | for (tem = 0; tem <= nargs; tem += 1) | |
10518 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10519 | argvec[tem] = 0; | |
10520 | ||
10521 | if (noside == EVAL_SKIP) | |
10522 | goto nosideret; | |
10523 | } | |
10524 | ||
ad82864c JB |
10525 | if (ada_is_constrained_packed_array_type |
10526 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 10527 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
10528 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
10529 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
10530 | /* This is a packed array that has already been fixed, and | |
10531 | therefore already coerced to a simple array. Nothing further | |
10532 | to do. */ | |
10533 | ; | |
df407dfe AC |
10534 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF |
10535 | || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
76a01679 | 10536 | && VALUE_LVAL (argvec[0]) == lval_memory)) |
4c4b4cd2 PH |
10537 | argvec[0] = value_addr (argvec[0]); |
10538 | ||
df407dfe | 10539 | type = ada_check_typedef (value_type (argvec[0])); |
720d1a40 JB |
10540 | |
10541 | /* Ada allows us to implicitly dereference arrays when subscripting | |
8f465ea7 JB |
10542 | them. So, if this is an array typedef (encoding use for array |
10543 | access types encoded as fat pointers), strip it now. */ | |
720d1a40 JB |
10544 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
10545 | type = ada_typedef_target_type (type); | |
10546 | ||
4c4b4cd2 PH |
10547 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
10548 | { | |
61ee279c | 10549 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
10550 | { |
10551 | case TYPE_CODE_FUNC: | |
61ee279c | 10552 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10553 | break; |
10554 | case TYPE_CODE_ARRAY: | |
10555 | break; | |
10556 | case TYPE_CODE_STRUCT: | |
10557 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
10558 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 10559 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10560 | break; |
10561 | default: | |
323e0a4a | 10562 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 10563 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
10564 | break; |
10565 | } | |
10566 | } | |
10567 | ||
10568 | switch (TYPE_CODE (type)) | |
10569 | { | |
10570 | case TYPE_CODE_FUNC: | |
10571 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
c8ea1972 PH |
10572 | { |
10573 | struct type *rtype = TYPE_TARGET_TYPE (type); | |
10574 | ||
10575 | if (TYPE_GNU_IFUNC (type)) | |
10576 | return allocate_value (TYPE_TARGET_TYPE (rtype)); | |
10577 | return allocate_value (rtype); | |
10578 | } | |
4c4b4cd2 | 10579 | return call_function_by_hand (argvec[0], nargs, argvec + 1); |
c8ea1972 PH |
10580 | case TYPE_CODE_INTERNAL_FUNCTION: |
10581 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10582 | /* We don't know anything about what the internal | |
10583 | function might return, but we have to return | |
10584 | something. */ | |
10585 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10586 | not_lval); | |
10587 | else | |
10588 | return call_internal_function (exp->gdbarch, exp->language_defn, | |
10589 | argvec[0], nargs, argvec + 1); | |
10590 | ||
4c4b4cd2 PH |
10591 | case TYPE_CODE_STRUCT: |
10592 | { | |
10593 | int arity; | |
10594 | ||
4c4b4cd2 PH |
10595 | arity = ada_array_arity (type); |
10596 | type = ada_array_element_type (type, nargs); | |
10597 | if (type == NULL) | |
323e0a4a | 10598 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 10599 | if (arity != nargs) |
323e0a4a | 10600 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 10601 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 10602 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10603 | return |
10604 | unwrap_value (ada_value_subscript | |
10605 | (argvec[0], nargs, argvec + 1)); | |
10606 | } | |
10607 | case TYPE_CODE_ARRAY: | |
10608 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10609 | { | |
10610 | type = ada_array_element_type (type, nargs); | |
10611 | if (type == NULL) | |
323e0a4a | 10612 | error (_("element type of array unknown")); |
4c4b4cd2 | 10613 | else |
0a07e705 | 10614 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10615 | } |
10616 | return | |
10617 | unwrap_value (ada_value_subscript | |
10618 | (ada_coerce_to_simple_array (argvec[0]), | |
10619 | nargs, argvec + 1)); | |
10620 | case TYPE_CODE_PTR: /* Pointer to array */ | |
4c4b4cd2 PH |
10621 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
10622 | { | |
deede10c | 10623 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); |
4c4b4cd2 PH |
10624 | type = ada_array_element_type (type, nargs); |
10625 | if (type == NULL) | |
323e0a4a | 10626 | error (_("element type of array unknown")); |
4c4b4cd2 | 10627 | else |
0a07e705 | 10628 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10629 | } |
10630 | return | |
deede10c JB |
10631 | unwrap_value (ada_value_ptr_subscript (argvec[0], |
10632 | nargs, argvec + 1)); | |
4c4b4cd2 PH |
10633 | |
10634 | default: | |
e1d5a0d2 PH |
10635 | error (_("Attempt to index or call something other than an " |
10636 | "array or function")); | |
4c4b4cd2 PH |
10637 | } |
10638 | ||
10639 | case TERNOP_SLICE: | |
10640 | { | |
10641 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10642 | struct value *low_bound_val = | |
10643 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
10644 | struct value *high_bound_val = |
10645 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10646 | LONGEST low_bound; | |
10647 | LONGEST high_bound; | |
5b4ee69b | 10648 | |
994b9211 AC |
10649 | low_bound_val = coerce_ref (low_bound_val); |
10650 | high_bound_val = coerce_ref (high_bound_val); | |
aa715135 JG |
10651 | low_bound = value_as_long (low_bound_val); |
10652 | high_bound = value_as_long (high_bound_val); | |
963a6417 | 10653 | |
4c4b4cd2 PH |
10654 | if (noside == EVAL_SKIP) |
10655 | goto nosideret; | |
10656 | ||
4c4b4cd2 PH |
10657 | /* If this is a reference to an aligner type, then remove all |
10658 | the aligners. */ | |
df407dfe AC |
10659 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10660 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
10661 | TYPE_TARGET_TYPE (value_type (array)) = | |
10662 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 10663 | |
ad82864c | 10664 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 10665 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
10666 | |
10667 | /* If this is a reference to an array or an array lvalue, | |
10668 | convert to a pointer. */ | |
df407dfe AC |
10669 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10670 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
10671 | && VALUE_LVAL (array) == lval_memory)) |
10672 | array = value_addr (array); | |
10673 | ||
1265e4aa | 10674 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 10675 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 10676 | (value_type (array)))) |
0b5d8877 | 10677 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
10678 | |
10679 | array = ada_coerce_to_simple_array_ptr (array); | |
10680 | ||
714e53ab PH |
10681 | /* If we have more than one level of pointer indirection, |
10682 | dereference the value until we get only one level. */ | |
df407dfe AC |
10683 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
10684 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
10685 | == TYPE_CODE_PTR)) |
10686 | array = value_ind (array); | |
10687 | ||
10688 | /* Make sure we really do have an array type before going further, | |
10689 | to avoid a SEGV when trying to get the index type or the target | |
10690 | type later down the road if the debug info generated by | |
10691 | the compiler is incorrect or incomplete. */ | |
df407dfe | 10692 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 10693 | error (_("cannot take slice of non-array")); |
714e53ab | 10694 | |
828292f2 JB |
10695 | if (TYPE_CODE (ada_check_typedef (value_type (array))) |
10696 | == TYPE_CODE_PTR) | |
4c4b4cd2 | 10697 | { |
828292f2 JB |
10698 | struct type *type0 = ada_check_typedef (value_type (array)); |
10699 | ||
0b5d8877 | 10700 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
828292f2 | 10701 | return empty_array (TYPE_TARGET_TYPE (type0), low_bound); |
4c4b4cd2 PH |
10702 | else |
10703 | { | |
10704 | struct type *arr_type0 = | |
828292f2 | 10705 | to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); |
5b4ee69b | 10706 | |
f5938064 JG |
10707 | return ada_value_slice_from_ptr (array, arr_type0, |
10708 | longest_to_int (low_bound), | |
10709 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
10710 | } |
10711 | } | |
10712 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10713 | return array; | |
10714 | else if (high_bound < low_bound) | |
df407dfe | 10715 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 10716 | else |
529cad9c PH |
10717 | return ada_value_slice (array, longest_to_int (low_bound), |
10718 | longest_to_int (high_bound)); | |
4c4b4cd2 | 10719 | } |
14f9c5c9 | 10720 | |
4c4b4cd2 PH |
10721 | case UNOP_IN_RANGE: |
10722 | (*pos) += 2; | |
10723 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 10724 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 10725 | |
14f9c5c9 | 10726 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 10727 | goto nosideret; |
14f9c5c9 | 10728 | |
4c4b4cd2 PH |
10729 | switch (TYPE_CODE (type)) |
10730 | { | |
10731 | default: | |
e1d5a0d2 PH |
10732 | lim_warning (_("Membership test incompletely implemented; " |
10733 | "always returns true")); | |
fbb06eb1 UW |
10734 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10735 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
10736 | |
10737 | case TYPE_CODE_RANGE: | |
030b4912 UW |
10738 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
10739 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
10740 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10741 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
10742 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10743 | return | |
10744 | value_from_longest (type, | |
4c4b4cd2 PH |
10745 | (value_less (arg1, arg3) |
10746 | || value_equal (arg1, arg3)) | |
10747 | && (value_less (arg2, arg1) | |
10748 | || value_equal (arg2, arg1))); | |
10749 | } | |
10750 | ||
10751 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 10752 | (*pos) += 2; |
4c4b4cd2 PH |
10753 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10754 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 10755 | |
4c4b4cd2 PH |
10756 | if (noside == EVAL_SKIP) |
10757 | goto nosideret; | |
14f9c5c9 | 10758 | |
4c4b4cd2 | 10759 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
10760 | { |
10761 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
10762 | return value_zero (type, not_lval); | |
10763 | } | |
14f9c5c9 | 10764 | |
4c4b4cd2 | 10765 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 10766 | |
1eea4ebd UW |
10767 | type = ada_index_type (value_type (arg2), tem, "range"); |
10768 | if (!type) | |
10769 | type = value_type (arg1); | |
14f9c5c9 | 10770 | |
1eea4ebd UW |
10771 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
10772 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 10773 | |
f44316fa UW |
10774 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10775 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 10776 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 10777 | return |
fbb06eb1 | 10778 | value_from_longest (type, |
4c4b4cd2 PH |
10779 | (value_less (arg1, arg3) |
10780 | || value_equal (arg1, arg3)) | |
10781 | && (value_less (arg2, arg1) | |
10782 | || value_equal (arg2, arg1))); | |
10783 | ||
10784 | case TERNOP_IN_RANGE: | |
10785 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10786 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10787 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10788 | ||
10789 | if (noside == EVAL_SKIP) | |
10790 | goto nosideret; | |
10791 | ||
f44316fa UW |
10792 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10793 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 10794 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 10795 | return |
fbb06eb1 | 10796 | value_from_longest (type, |
4c4b4cd2 PH |
10797 | (value_less (arg1, arg3) |
10798 | || value_equal (arg1, arg3)) | |
10799 | && (value_less (arg2, arg1) | |
10800 | || value_equal (arg2, arg1))); | |
10801 | ||
10802 | case OP_ATR_FIRST: | |
10803 | case OP_ATR_LAST: | |
10804 | case OP_ATR_LENGTH: | |
10805 | { | |
76a01679 | 10806 | struct type *type_arg; |
5b4ee69b | 10807 | |
76a01679 JB |
10808 | if (exp->elts[*pos].opcode == OP_TYPE) |
10809 | { | |
10810 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
10811 | arg1 = NULL; | |
5bc23cb3 | 10812 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
10813 | } |
10814 | else | |
10815 | { | |
10816 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10817 | type_arg = NULL; | |
10818 | } | |
10819 | ||
10820 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 10821 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
10822 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
10823 | *pos += 4; | |
10824 | ||
10825 | if (noside == EVAL_SKIP) | |
10826 | goto nosideret; | |
10827 | ||
10828 | if (type_arg == NULL) | |
10829 | { | |
10830 | arg1 = ada_coerce_ref (arg1); | |
10831 | ||
ad82864c | 10832 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
10833 | arg1 = ada_coerce_to_simple_array (arg1); |
10834 | ||
aa4fb036 | 10835 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 10836 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
10837 | else |
10838 | { | |
10839 | type = ada_index_type (value_type (arg1), tem, | |
10840 | ada_attribute_name (op)); | |
10841 | if (type == NULL) | |
10842 | type = builtin_type (exp->gdbarch)->builtin_int; | |
10843 | } | |
76a01679 JB |
10844 | |
10845 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 10846 | return allocate_value (type); |
76a01679 JB |
10847 | |
10848 | switch (op) | |
10849 | { | |
10850 | default: /* Should never happen. */ | |
323e0a4a | 10851 | error (_("unexpected attribute encountered")); |
76a01679 | 10852 | case OP_ATR_FIRST: |
1eea4ebd UW |
10853 | return value_from_longest |
10854 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 10855 | case OP_ATR_LAST: |
1eea4ebd UW |
10856 | return value_from_longest |
10857 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 10858 | case OP_ATR_LENGTH: |
1eea4ebd UW |
10859 | return value_from_longest |
10860 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
10861 | } |
10862 | } | |
10863 | else if (discrete_type_p (type_arg)) | |
10864 | { | |
10865 | struct type *range_type; | |
0d5cff50 | 10866 | const char *name = ada_type_name (type_arg); |
5b4ee69b | 10867 | |
76a01679 JB |
10868 | range_type = NULL; |
10869 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 10870 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
10871 | if (range_type == NULL) |
10872 | range_type = type_arg; | |
10873 | switch (op) | |
10874 | { | |
10875 | default: | |
323e0a4a | 10876 | error (_("unexpected attribute encountered")); |
76a01679 | 10877 | case OP_ATR_FIRST: |
690cc4eb | 10878 | return value_from_longest |
43bbcdc2 | 10879 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 10880 | case OP_ATR_LAST: |
690cc4eb | 10881 | return value_from_longest |
43bbcdc2 | 10882 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 10883 | case OP_ATR_LENGTH: |
323e0a4a | 10884 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
10885 | } |
10886 | } | |
10887 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 10888 | error (_("unimplemented type attribute")); |
76a01679 JB |
10889 | else |
10890 | { | |
10891 | LONGEST low, high; | |
10892 | ||
ad82864c JB |
10893 | if (ada_is_constrained_packed_array_type (type_arg)) |
10894 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 10895 | |
aa4fb036 | 10896 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 10897 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
10898 | else |
10899 | { | |
10900 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); | |
10901 | if (type == NULL) | |
10902 | type = builtin_type (exp->gdbarch)->builtin_int; | |
10903 | } | |
1eea4ebd | 10904 | |
76a01679 JB |
10905 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
10906 | return allocate_value (type); | |
10907 | ||
10908 | switch (op) | |
10909 | { | |
10910 | default: | |
323e0a4a | 10911 | error (_("unexpected attribute encountered")); |
76a01679 | 10912 | case OP_ATR_FIRST: |
1eea4ebd | 10913 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
10914 | return value_from_longest (type, low); |
10915 | case OP_ATR_LAST: | |
1eea4ebd | 10916 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
10917 | return value_from_longest (type, high); |
10918 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
10919 | low = ada_array_bound_from_type (type_arg, tem, 0); |
10920 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
10921 | return value_from_longest (type, high - low + 1); |
10922 | } | |
10923 | } | |
14f9c5c9 AS |
10924 | } |
10925 | ||
4c4b4cd2 PH |
10926 | case OP_ATR_TAG: |
10927 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10928 | if (noside == EVAL_SKIP) | |
76a01679 | 10929 | goto nosideret; |
4c4b4cd2 PH |
10930 | |
10931 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 10932 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
10933 | |
10934 | return ada_value_tag (arg1); | |
10935 | ||
10936 | case OP_ATR_MIN: | |
10937 | case OP_ATR_MAX: | |
10938 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
10939 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10940 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10941 | if (noside == EVAL_SKIP) | |
76a01679 | 10942 | goto nosideret; |
d2e4a39e | 10943 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 10944 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 10945 | else |
f44316fa UW |
10946 | { |
10947 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10948 | return value_binop (arg1, arg2, | |
10949 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
10950 | } | |
14f9c5c9 | 10951 | |
4c4b4cd2 PH |
10952 | case OP_ATR_MODULUS: |
10953 | { | |
31dedfee | 10954 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 10955 | |
5b4ee69b | 10956 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
10957 | if (noside == EVAL_SKIP) |
10958 | goto nosideret; | |
4c4b4cd2 | 10959 | |
76a01679 | 10960 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 10961 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 10962 | |
76a01679 JB |
10963 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
10964 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
10965 | } |
10966 | ||
10967 | ||
10968 | case OP_ATR_POS: | |
10969 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
10970 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10971 | if (noside == EVAL_SKIP) | |
76a01679 | 10972 | goto nosideret; |
3cb382c9 UW |
10973 | type = builtin_type (exp->gdbarch)->builtin_int; |
10974 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10975 | return value_zero (type, not_lval); | |
14f9c5c9 | 10976 | else |
3cb382c9 | 10977 | return value_pos_atr (type, arg1); |
14f9c5c9 | 10978 | |
4c4b4cd2 PH |
10979 | case OP_ATR_SIZE: |
10980 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
10981 | type = value_type (arg1); |
10982 | ||
10983 | /* If the argument is a reference, then dereference its type, since | |
10984 | the user is really asking for the size of the actual object, | |
10985 | not the size of the pointer. */ | |
10986 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
10987 | type = TYPE_TARGET_TYPE (type); | |
10988 | ||
4c4b4cd2 | 10989 | if (noside == EVAL_SKIP) |
76a01679 | 10990 | goto nosideret; |
4c4b4cd2 | 10991 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 10992 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 10993 | else |
22601c15 | 10994 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 10995 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
10996 | |
10997 | case OP_ATR_VAL: | |
10998 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 10999 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 11000 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 11001 | if (noside == EVAL_SKIP) |
76a01679 | 11002 | goto nosideret; |
4c4b4cd2 | 11003 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 11004 | return value_zero (type, not_lval); |
4c4b4cd2 | 11005 | else |
76a01679 | 11006 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
11007 | |
11008 | case BINOP_EXP: | |
11009 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11010 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11011 | if (noside == EVAL_SKIP) | |
11012 | goto nosideret; | |
11013 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 11014 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 11015 | else |
f44316fa UW |
11016 | { |
11017 | /* For integer exponentiation operations, | |
11018 | only promote the first argument. */ | |
11019 | if (is_integral_type (value_type (arg2))) | |
11020 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
11021 | else | |
11022 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
11023 | ||
11024 | return value_binop (arg1, arg2, op); | |
11025 | } | |
4c4b4cd2 PH |
11026 | |
11027 | case UNOP_PLUS: | |
11028 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11029 | if (noside == EVAL_SKIP) | |
11030 | goto nosideret; | |
11031 | else | |
11032 | return arg1; | |
11033 | ||
11034 | case UNOP_ABS: | |
11035 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11036 | if (noside == EVAL_SKIP) | |
11037 | goto nosideret; | |
f44316fa | 11038 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 11039 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 11040 | return value_neg (arg1); |
14f9c5c9 | 11041 | else |
4c4b4cd2 | 11042 | return arg1; |
14f9c5c9 AS |
11043 | |
11044 | case UNOP_IND: | |
5ec18f2b | 11045 | preeval_pos = *pos; |
6b0d7253 | 11046 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 11047 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 11048 | goto nosideret; |
df407dfe | 11049 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 11050 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
11051 | { |
11052 | if (ada_is_array_descriptor_type (type)) | |
11053 | /* GDB allows dereferencing GNAT array descriptors. */ | |
11054 | { | |
11055 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 11056 | |
4c4b4cd2 | 11057 | if (arrType == NULL) |
323e0a4a | 11058 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 11059 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
11060 | } |
11061 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
11062 | || TYPE_CODE (type) == TYPE_CODE_REF | |
11063 | /* In C you can dereference an array to get the 1st elt. */ | |
11064 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab | 11065 | { |
5ec18f2b JG |
11066 | /* As mentioned in the OP_VAR_VALUE case, tagged types can |
11067 | only be determined by inspecting the object's tag. | |
11068 | This means that we need to evaluate completely the | |
11069 | expression in order to get its type. */ | |
11070 | ||
023db19c JB |
11071 | if ((TYPE_CODE (type) == TYPE_CODE_REF |
11072 | || TYPE_CODE (type) == TYPE_CODE_PTR) | |
5ec18f2b JG |
11073 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)) |
11074 | { | |
11075 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
11076 | EVAL_NORMAL); | |
11077 | type = value_type (ada_value_ind (arg1)); | |
11078 | } | |
11079 | else | |
11080 | { | |
11081 | type = to_static_fixed_type | |
11082 | (ada_aligned_type | |
11083 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
11084 | } | |
c1b5a1a6 | 11085 | ada_ensure_varsize_limit (type); |
714e53ab PH |
11086 | return value_zero (type, lval_memory); |
11087 | } | |
4c4b4cd2 | 11088 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
11089 | { |
11090 | /* GDB allows dereferencing an int. */ | |
11091 | if (expect_type == NULL) | |
11092 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
11093 | lval_memory); | |
11094 | else | |
11095 | { | |
11096 | expect_type = | |
11097 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
11098 | return value_zero (expect_type, lval_memory); | |
11099 | } | |
11100 | } | |
4c4b4cd2 | 11101 | else |
323e0a4a | 11102 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 11103 | } |
0963b4bd | 11104 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 11105 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 11106 | |
96967637 JB |
11107 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
11108 | /* GDB allows dereferencing an int. If we were given | |
11109 | the expect_type, then use that as the target type. | |
11110 | Otherwise, assume that the target type is an int. */ | |
11111 | { | |
11112 | if (expect_type != NULL) | |
11113 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
11114 | arg1)); | |
11115 | else | |
11116 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
11117 | (CORE_ADDR) value_as_address (arg1)); | |
11118 | } | |
6b0d7253 | 11119 | |
4c4b4cd2 PH |
11120 | if (ada_is_array_descriptor_type (type)) |
11121 | /* GDB allows dereferencing GNAT array descriptors. */ | |
11122 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 11123 | else |
4c4b4cd2 | 11124 | return ada_value_ind (arg1); |
14f9c5c9 AS |
11125 | |
11126 | case STRUCTOP_STRUCT: | |
11127 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
11128 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
5ec18f2b | 11129 | preeval_pos = *pos; |
14f9c5c9 AS |
11130 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11131 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 11132 | goto nosideret; |
14f9c5c9 | 11133 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 11134 | { |
df407dfe | 11135 | struct type *type1 = value_type (arg1); |
5b4ee69b | 11136 | |
76a01679 JB |
11137 | if (ada_is_tagged_type (type1, 1)) |
11138 | { | |
11139 | type = ada_lookup_struct_elt_type (type1, | |
11140 | &exp->elts[pc + 2].string, | |
11141 | 1, 1, NULL); | |
5ec18f2b JG |
11142 | |
11143 | /* If the field is not found, check if it exists in the | |
11144 | extension of this object's type. This means that we | |
11145 | need to evaluate completely the expression. */ | |
11146 | ||
76a01679 | 11147 | if (type == NULL) |
5ec18f2b JG |
11148 | { |
11149 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
11150 | EVAL_NORMAL); | |
11151 | arg1 = ada_value_struct_elt (arg1, | |
11152 | &exp->elts[pc + 2].string, | |
11153 | 0); | |
11154 | arg1 = unwrap_value (arg1); | |
11155 | type = value_type (ada_to_fixed_value (arg1)); | |
11156 | } | |
76a01679 JB |
11157 | } |
11158 | else | |
11159 | type = | |
11160 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
11161 | 0, NULL); | |
11162 | ||
11163 | return value_zero (ada_aligned_type (type), lval_memory); | |
11164 | } | |
14f9c5c9 | 11165 | else |
284614f0 JB |
11166 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); |
11167 | arg1 = unwrap_value (arg1); | |
11168 | return ada_to_fixed_value (arg1); | |
11169 | ||
14f9c5c9 | 11170 | case OP_TYPE: |
4c4b4cd2 PH |
11171 | /* The value is not supposed to be used. This is here to make it |
11172 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
11173 | (*pos) += 2; |
11174 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 11175 | goto nosideret; |
14f9c5c9 | 11176 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 11177 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 11178 | else |
323e0a4a | 11179 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
11180 | |
11181 | case OP_AGGREGATE: | |
11182 | case OP_CHOICES: | |
11183 | case OP_OTHERS: | |
11184 | case OP_DISCRETE_RANGE: | |
11185 | case OP_POSITIONAL: | |
11186 | case OP_NAME: | |
11187 | if (noside == EVAL_NORMAL) | |
11188 | switch (op) | |
11189 | { | |
11190 | case OP_NAME: | |
11191 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 11192 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
11193 | case OP_AGGREGATE: |
11194 | error (_("Aggregates only allowed on the right of an assignment")); | |
11195 | default: | |
0963b4bd MS |
11196 | internal_error (__FILE__, __LINE__, |
11197 | _("aggregate apparently mangled")); | |
52ce6436 PH |
11198 | } |
11199 | ||
11200 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
11201 | *pos += oplen - 1; | |
11202 | for (tem = 0; tem < nargs; tem += 1) | |
11203 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
11204 | goto nosideret; | |
14f9c5c9 AS |
11205 | } |
11206 | ||
11207 | nosideret: | |
22601c15 | 11208 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); |
14f9c5c9 | 11209 | } |
14f9c5c9 | 11210 | \f |
d2e4a39e | 11211 | |
4c4b4cd2 | 11212 | /* Fixed point */ |
14f9c5c9 AS |
11213 | |
11214 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
11215 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 11216 | Otherwise, return NULL. */ |
14f9c5c9 | 11217 | |
d2e4a39e | 11218 | static const char * |
ebf56fd3 | 11219 | fixed_type_info (struct type *type) |
14f9c5c9 | 11220 | { |
d2e4a39e | 11221 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
11222 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
11223 | ||
d2e4a39e AS |
11224 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
11225 | { | |
14f9c5c9 | 11226 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 11227 | |
14f9c5c9 | 11228 | if (tail == NULL) |
4c4b4cd2 | 11229 | return NULL; |
d2e4a39e | 11230 | else |
4c4b4cd2 | 11231 | return tail + 5; |
14f9c5c9 AS |
11232 | } |
11233 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
11234 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
11235 | else | |
11236 | return NULL; | |
11237 | } | |
11238 | ||
4c4b4cd2 | 11239 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
11240 | |
11241 | int | |
ebf56fd3 | 11242 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
11243 | { |
11244 | return fixed_type_info (type) != NULL; | |
11245 | } | |
11246 | ||
4c4b4cd2 PH |
11247 | /* Return non-zero iff TYPE represents a System.Address type. */ |
11248 | ||
11249 | int | |
11250 | ada_is_system_address_type (struct type *type) | |
11251 | { | |
11252 | return (TYPE_NAME (type) | |
11253 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
11254 | } | |
11255 | ||
14f9c5c9 AS |
11256 | /* Assuming that TYPE is the representation of an Ada fixed-point |
11257 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 11258 | delta cannot be determined. */ |
14f9c5c9 AS |
11259 | |
11260 | DOUBLEST | |
ebf56fd3 | 11261 | ada_delta (struct type *type) |
14f9c5c9 AS |
11262 | { |
11263 | const char *encoding = fixed_type_info (type); | |
facc390f | 11264 | DOUBLEST num, den; |
14f9c5c9 | 11265 | |
facc390f JB |
11266 | /* Strictly speaking, num and den are encoded as integer. However, |
11267 | they may not fit into a long, and they will have to be converted | |
11268 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
11269 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
11270 | &num, &den) < 2) | |
14f9c5c9 | 11271 | return -1.0; |
d2e4a39e | 11272 | else |
facc390f | 11273 | return num / den; |
14f9c5c9 AS |
11274 | } |
11275 | ||
11276 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 11277 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
11278 | |
11279 | static DOUBLEST | |
ebf56fd3 | 11280 | scaling_factor (struct type *type) |
14f9c5c9 AS |
11281 | { |
11282 | const char *encoding = fixed_type_info (type); | |
facc390f | 11283 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 11284 | int n; |
d2e4a39e | 11285 | |
facc390f JB |
11286 | /* Strictly speaking, num's and den's are encoded as integer. However, |
11287 | they may not fit into a long, and they will have to be converted | |
11288 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
11289 | n = sscanf (encoding, | |
11290 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
11291 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
11292 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
11293 | |
11294 | if (n < 2) | |
11295 | return 1.0; | |
11296 | else if (n == 4) | |
facc390f | 11297 | return num1 / den1; |
d2e4a39e | 11298 | else |
facc390f | 11299 | return num0 / den0; |
14f9c5c9 AS |
11300 | } |
11301 | ||
11302 | ||
11303 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 11304 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
11305 | |
11306 | DOUBLEST | |
ebf56fd3 | 11307 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 11308 | { |
d2e4a39e | 11309 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
11310 | } |
11311 | ||
4c4b4cd2 PH |
11312 | /* The representation of a fixed-point value of type TYPE |
11313 | corresponding to the value X. */ | |
14f9c5c9 AS |
11314 | |
11315 | LONGEST | |
ebf56fd3 | 11316 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
11317 | { |
11318 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
11319 | } | |
11320 | ||
14f9c5c9 | 11321 | \f |
d2e4a39e | 11322 | |
4c4b4cd2 | 11323 | /* Range types */ |
14f9c5c9 AS |
11324 | |
11325 | /* Scan STR beginning at position K for a discriminant name, and | |
11326 | return the value of that discriminant field of DVAL in *PX. If | |
11327 | PNEW_K is not null, put the position of the character beyond the | |
11328 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 11329 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
11330 | |
11331 | static int | |
07d8f827 | 11332 | scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 11333 | int *pnew_k) |
14f9c5c9 AS |
11334 | { |
11335 | static char *bound_buffer = NULL; | |
11336 | static size_t bound_buffer_len = 0; | |
11337 | char *bound; | |
11338 | char *pend; | |
d2e4a39e | 11339 | struct value *bound_val; |
14f9c5c9 AS |
11340 | |
11341 | if (dval == NULL || str == NULL || str[k] == '\0') | |
11342 | return 0; | |
11343 | ||
d2e4a39e | 11344 | pend = strstr (str + k, "__"); |
14f9c5c9 AS |
11345 | if (pend == NULL) |
11346 | { | |
d2e4a39e | 11347 | bound = str + k; |
14f9c5c9 AS |
11348 | k += strlen (bound); |
11349 | } | |
d2e4a39e | 11350 | else |
14f9c5c9 | 11351 | { |
d2e4a39e | 11352 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); |
14f9c5c9 | 11353 | bound = bound_buffer; |
d2e4a39e AS |
11354 | strncpy (bound_buffer, str + k, pend - (str + k)); |
11355 | bound[pend - (str + k)] = '\0'; | |
11356 | k = pend - str; | |
14f9c5c9 | 11357 | } |
d2e4a39e | 11358 | |
df407dfe | 11359 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
11360 | if (bound_val == NULL) |
11361 | return 0; | |
11362 | ||
11363 | *px = value_as_long (bound_val); | |
11364 | if (pnew_k != NULL) | |
11365 | *pnew_k = k; | |
11366 | return 1; | |
11367 | } | |
11368 | ||
11369 | /* Value of variable named NAME in the current environment. If | |
11370 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
11371 | otherwise causes an error with message ERR_MSG. */ |
11372 | ||
d2e4a39e AS |
11373 | static struct value * |
11374 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 11375 | { |
d12307c1 | 11376 | struct block_symbol *syms; |
14f9c5c9 AS |
11377 | int nsyms; |
11378 | ||
4c4b4cd2 | 11379 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
4eeaa230 | 11380 | &syms); |
14f9c5c9 AS |
11381 | |
11382 | if (nsyms != 1) | |
11383 | { | |
11384 | if (err_msg == NULL) | |
4c4b4cd2 | 11385 | return 0; |
14f9c5c9 | 11386 | else |
8a3fe4f8 | 11387 | error (("%s"), err_msg); |
14f9c5c9 AS |
11388 | } |
11389 | ||
d12307c1 | 11390 | return value_of_variable (syms[0].symbol, syms[0].block); |
14f9c5c9 | 11391 | } |
d2e4a39e | 11392 | |
14f9c5c9 | 11393 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
11394 | no such variable found, returns 0, and sets *FLAG to 0. If |
11395 | successful, sets *FLAG to 1. */ | |
11396 | ||
14f9c5c9 | 11397 | LONGEST |
4c4b4cd2 | 11398 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 11399 | { |
4c4b4cd2 | 11400 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 11401 | |
14f9c5c9 AS |
11402 | if (var_val == 0) |
11403 | { | |
11404 | if (flag != NULL) | |
4c4b4cd2 | 11405 | *flag = 0; |
14f9c5c9 AS |
11406 | return 0; |
11407 | } | |
11408 | else | |
11409 | { | |
11410 | if (flag != NULL) | |
4c4b4cd2 | 11411 | *flag = 1; |
14f9c5c9 AS |
11412 | return value_as_long (var_val); |
11413 | } | |
11414 | } | |
d2e4a39e | 11415 | |
14f9c5c9 AS |
11416 | |
11417 | /* Return a range type whose base type is that of the range type named | |
11418 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 11419 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
11420 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
11421 | corresponding range type from debug information; fall back to using it | |
11422 | if symbol lookup fails. If a new type must be created, allocate it | |
11423 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
11424 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 11425 | |
d2e4a39e | 11426 | static struct type * |
28c85d6c | 11427 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 11428 | { |
0d5cff50 | 11429 | const char *name; |
14f9c5c9 | 11430 | struct type *base_type; |
d2e4a39e | 11431 | char *subtype_info; |
14f9c5c9 | 11432 | |
28c85d6c JB |
11433 | gdb_assert (raw_type != NULL); |
11434 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 11435 | |
1ce677a4 | 11436 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
11437 | base_type = TYPE_TARGET_TYPE (raw_type); |
11438 | else | |
11439 | base_type = raw_type; | |
11440 | ||
28c85d6c | 11441 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
11442 | subtype_info = strstr (name, "___XD"); |
11443 | if (subtype_info == NULL) | |
690cc4eb | 11444 | { |
43bbcdc2 PH |
11445 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
11446 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 11447 | |
690cc4eb PH |
11448 | if (L < INT_MIN || U > INT_MAX) |
11449 | return raw_type; | |
11450 | else | |
0c9c3474 SA |
11451 | return create_static_range_type (alloc_type_copy (raw_type), raw_type, |
11452 | L, U); | |
690cc4eb | 11453 | } |
14f9c5c9 AS |
11454 | else |
11455 | { | |
11456 | static char *name_buf = NULL; | |
11457 | static size_t name_len = 0; | |
11458 | int prefix_len = subtype_info - name; | |
11459 | LONGEST L, U; | |
11460 | struct type *type; | |
11461 | char *bounds_str; | |
11462 | int n; | |
11463 | ||
11464 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
11465 | strncpy (name_buf, name, prefix_len); | |
11466 | name_buf[prefix_len] = '\0'; | |
11467 | ||
11468 | subtype_info += 5; | |
11469 | bounds_str = strchr (subtype_info, '_'); | |
11470 | n = 1; | |
11471 | ||
d2e4a39e | 11472 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
11473 | { |
11474 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
11475 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
11476 | return raw_type; | |
11477 | if (bounds_str[n] == '_') | |
11478 | n += 2; | |
0963b4bd | 11479 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
4c4b4cd2 PH |
11480 | n += 1; |
11481 | subtype_info += 1; | |
11482 | } | |
d2e4a39e | 11483 | else |
4c4b4cd2 PH |
11484 | { |
11485 | int ok; | |
5b4ee69b | 11486 | |
4c4b4cd2 PH |
11487 | strcpy (name_buf + prefix_len, "___L"); |
11488 | L = get_int_var_value (name_buf, &ok); | |
11489 | if (!ok) | |
11490 | { | |
323e0a4a | 11491 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
11492 | L = 1; |
11493 | } | |
11494 | } | |
14f9c5c9 | 11495 | |
d2e4a39e | 11496 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
11497 | { |
11498 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
11499 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
11500 | return raw_type; | |
11501 | } | |
d2e4a39e | 11502 | else |
4c4b4cd2 PH |
11503 | { |
11504 | int ok; | |
5b4ee69b | 11505 | |
4c4b4cd2 PH |
11506 | strcpy (name_buf + prefix_len, "___U"); |
11507 | U = get_int_var_value (name_buf, &ok); | |
11508 | if (!ok) | |
11509 | { | |
323e0a4a | 11510 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
11511 | U = L; |
11512 | } | |
11513 | } | |
14f9c5c9 | 11514 | |
0c9c3474 SA |
11515 | type = create_static_range_type (alloc_type_copy (raw_type), |
11516 | base_type, L, U); | |
d2e4a39e | 11517 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
11518 | return type; |
11519 | } | |
11520 | } | |
11521 | ||
4c4b4cd2 PH |
11522 | /* True iff NAME is the name of a range type. */ |
11523 | ||
14f9c5c9 | 11524 | int |
d2e4a39e | 11525 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
11526 | { |
11527 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 11528 | } |
14f9c5c9 | 11529 | \f |
d2e4a39e | 11530 | |
4c4b4cd2 PH |
11531 | /* Modular types */ |
11532 | ||
11533 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 11534 | |
14f9c5c9 | 11535 | int |
d2e4a39e | 11536 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 11537 | { |
18af8284 | 11538 | struct type *subranged_type = get_base_type (type); |
14f9c5c9 AS |
11539 | |
11540 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 11541 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 11542 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
11543 | } |
11544 | ||
4c4b4cd2 PH |
11545 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
11546 | ||
61ee279c | 11547 | ULONGEST |
0056e4d5 | 11548 | ada_modulus (struct type *type) |
14f9c5c9 | 11549 | { |
43bbcdc2 | 11550 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 11551 | } |
d2e4a39e | 11552 | \f |
f7f9143b JB |
11553 | |
11554 | /* Ada exception catchpoint support: | |
11555 | --------------------------------- | |
11556 | ||
11557 | We support 3 kinds of exception catchpoints: | |
11558 | . catchpoints on Ada exceptions | |
11559 | . catchpoints on unhandled Ada exceptions | |
11560 | . catchpoints on failed assertions | |
11561 | ||
11562 | Exceptions raised during failed assertions, or unhandled exceptions | |
11563 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
11564 | However, we can easily differentiate these two special cases, and having | |
11565 | the option to distinguish these two cases from the rest can be useful | |
11566 | to zero-in on certain situations. | |
11567 | ||
11568 | Exception catchpoints are a specialized form of breakpoint, | |
11569 | since they rely on inserting breakpoints inside known routines | |
11570 | of the GNAT runtime. The implementation therefore uses a standard | |
11571 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
11572 | of breakpoint_ops. | |
11573 | ||
0259addd JB |
11574 | Support in the runtime for exception catchpoints have been changed |
11575 | a few times already, and these changes affect the implementation | |
11576 | of these catchpoints. In order to be able to support several | |
11577 | variants of the runtime, we use a sniffer that will determine | |
28010a5d | 11578 | the runtime variant used by the program being debugged. */ |
f7f9143b | 11579 | |
82eacd52 JB |
11580 | /* Ada's standard exceptions. |
11581 | ||
11582 | The Ada 83 standard also defined Numeric_Error. But there so many | |
11583 | situations where it was unclear from the Ada 83 Reference Manual | |
11584 | (RM) whether Constraint_Error or Numeric_Error should be raised, | |
11585 | that the ARG (Ada Rapporteur Group) eventually issued a Binding | |
11586 | Interpretation saying that anytime the RM says that Numeric_Error | |
11587 | should be raised, the implementation may raise Constraint_Error. | |
11588 | Ada 95 went one step further and pretty much removed Numeric_Error | |
11589 | from the list of standard exceptions (it made it a renaming of | |
11590 | Constraint_Error, to help preserve compatibility when compiling | |
11591 | an Ada83 compiler). As such, we do not include Numeric_Error from | |
11592 | this list of standard exceptions. */ | |
3d0b0fa3 JB |
11593 | |
11594 | static char *standard_exc[] = { | |
11595 | "constraint_error", | |
11596 | "program_error", | |
11597 | "storage_error", | |
11598 | "tasking_error" | |
11599 | }; | |
11600 | ||
0259addd JB |
11601 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
11602 | ||
11603 | /* A structure that describes how to support exception catchpoints | |
11604 | for a given executable. */ | |
11605 | ||
11606 | struct exception_support_info | |
11607 | { | |
11608 | /* The name of the symbol to break on in order to insert | |
11609 | a catchpoint on exceptions. */ | |
11610 | const char *catch_exception_sym; | |
11611 | ||
11612 | /* The name of the symbol to break on in order to insert | |
11613 | a catchpoint on unhandled exceptions. */ | |
11614 | const char *catch_exception_unhandled_sym; | |
11615 | ||
11616 | /* The name of the symbol to break on in order to insert | |
11617 | a catchpoint on failed assertions. */ | |
11618 | const char *catch_assert_sym; | |
11619 | ||
11620 | /* Assuming that the inferior just triggered an unhandled exception | |
11621 | catchpoint, this function is responsible for returning the address | |
11622 | in inferior memory where the name of that exception is stored. | |
11623 | Return zero if the address could not be computed. */ | |
11624 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
11625 | }; | |
11626 | ||
11627 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
11628 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
11629 | ||
11630 | /* The following exception support info structure describes how to | |
11631 | implement exception catchpoints with the latest version of the | |
11632 | Ada runtime (as of 2007-03-06). */ | |
11633 | ||
11634 | static const struct exception_support_info default_exception_support_info = | |
11635 | { | |
11636 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
11637 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11638 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
11639 | ada_unhandled_exception_name_addr | |
11640 | }; | |
11641 | ||
11642 | /* The following exception support info structure describes how to | |
11643 | implement exception catchpoints with a slightly older version | |
11644 | of the Ada runtime. */ | |
11645 | ||
11646 | static const struct exception_support_info exception_support_info_fallback = | |
11647 | { | |
11648 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
11649 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11650 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
11651 | ada_unhandled_exception_name_addr_from_raise | |
11652 | }; | |
11653 | ||
f17011e0 JB |
11654 | /* Return nonzero if we can detect the exception support routines |
11655 | described in EINFO. | |
11656 | ||
11657 | This function errors out if an abnormal situation is detected | |
11658 | (for instance, if we find the exception support routines, but | |
11659 | that support is found to be incomplete). */ | |
11660 | ||
11661 | static int | |
11662 | ada_has_this_exception_support (const struct exception_support_info *einfo) | |
11663 | { | |
11664 | struct symbol *sym; | |
11665 | ||
11666 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
11667 | that should be compiled with debugging information. As a result, we | |
11668 | expect to find that symbol in the symtabs. */ | |
11669 | ||
11670 | sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN); | |
11671 | if (sym == NULL) | |
a6af7abe JB |
11672 | { |
11673 | /* Perhaps we did not find our symbol because the Ada runtime was | |
11674 | compiled without debugging info, or simply stripped of it. | |
11675 | It happens on some GNU/Linux distributions for instance, where | |
11676 | users have to install a separate debug package in order to get | |
11677 | the runtime's debugging info. In that situation, let the user | |
11678 | know why we cannot insert an Ada exception catchpoint. | |
11679 | ||
11680 | Note: Just for the purpose of inserting our Ada exception | |
11681 | catchpoint, we could rely purely on the associated minimal symbol. | |
11682 | But we would be operating in degraded mode anyway, since we are | |
11683 | still lacking the debugging info needed later on to extract | |
11684 | the name of the exception being raised (this name is printed in | |
11685 | the catchpoint message, and is also used when trying to catch | |
11686 | a specific exception). We do not handle this case for now. */ | |
3b7344d5 | 11687 | struct bound_minimal_symbol msym |
1c8e84b0 JB |
11688 | = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL); |
11689 | ||
3b7344d5 | 11690 | if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline) |
a6af7abe JB |
11691 | error (_("Your Ada runtime appears to be missing some debugging " |
11692 | "information.\nCannot insert Ada exception catchpoint " | |
11693 | "in this configuration.")); | |
11694 | ||
11695 | return 0; | |
11696 | } | |
f17011e0 JB |
11697 | |
11698 | /* Make sure that the symbol we found corresponds to a function. */ | |
11699 | ||
11700 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
11701 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
11702 | SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym)); | |
11703 | ||
11704 | return 1; | |
11705 | } | |
11706 | ||
0259addd JB |
11707 | /* Inspect the Ada runtime and determine which exception info structure |
11708 | should be used to provide support for exception catchpoints. | |
11709 | ||
3eecfa55 JB |
11710 | This function will always set the per-inferior exception_info, |
11711 | or raise an error. */ | |
0259addd JB |
11712 | |
11713 | static void | |
11714 | ada_exception_support_info_sniffer (void) | |
11715 | { | |
3eecfa55 | 11716 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
0259addd JB |
11717 | |
11718 | /* If the exception info is already known, then no need to recompute it. */ | |
3eecfa55 | 11719 | if (data->exception_info != NULL) |
0259addd JB |
11720 | return; |
11721 | ||
11722 | /* Check the latest (default) exception support info. */ | |
f17011e0 | 11723 | if (ada_has_this_exception_support (&default_exception_support_info)) |
0259addd | 11724 | { |
3eecfa55 | 11725 | data->exception_info = &default_exception_support_info; |
0259addd JB |
11726 | return; |
11727 | } | |
11728 | ||
11729 | /* Try our fallback exception suport info. */ | |
f17011e0 | 11730 | if (ada_has_this_exception_support (&exception_support_info_fallback)) |
0259addd | 11731 | { |
3eecfa55 | 11732 | data->exception_info = &exception_support_info_fallback; |
0259addd JB |
11733 | return; |
11734 | } | |
11735 | ||
11736 | /* Sometimes, it is normal for us to not be able to find the routine | |
11737 | we are looking for. This happens when the program is linked with | |
11738 | the shared version of the GNAT runtime, and the program has not been | |
11739 | started yet. Inform the user of these two possible causes if | |
11740 | applicable. */ | |
11741 | ||
ccefe4c4 | 11742 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
11743 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
11744 | ||
11745 | /* If the symbol does not exist, then check that the program is | |
11746 | already started, to make sure that shared libraries have been | |
11747 | loaded. If it is not started, this may mean that the symbol is | |
11748 | in a shared library. */ | |
11749 | ||
11750 | if (ptid_get_pid (inferior_ptid) == 0) | |
11751 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
11752 | ||
11753 | /* At this point, we know that we are debugging an Ada program and | |
11754 | that the inferior has been started, but we still are not able to | |
0963b4bd | 11755 | find the run-time symbols. That can mean that we are in |
0259addd JB |
11756 | configurable run time mode, or that a-except as been optimized |
11757 | out by the linker... In any case, at this point it is not worth | |
11758 | supporting this feature. */ | |
11759 | ||
7dda8cff | 11760 | error (_("Cannot insert Ada exception catchpoints in this configuration.")); |
0259addd JB |
11761 | } |
11762 | ||
f7f9143b JB |
11763 | /* True iff FRAME is very likely to be that of a function that is |
11764 | part of the runtime system. This is all very heuristic, but is | |
11765 | intended to be used as advice as to what frames are uninteresting | |
11766 | to most users. */ | |
11767 | ||
11768 | static int | |
11769 | is_known_support_routine (struct frame_info *frame) | |
11770 | { | |
4ed6b5be | 11771 | struct symtab_and_line sal; |
55b87a52 | 11772 | char *func_name; |
692465f1 | 11773 | enum language func_lang; |
f7f9143b | 11774 | int i; |
f35a17b5 | 11775 | const char *fullname; |
f7f9143b | 11776 | |
4ed6b5be JB |
11777 | /* If this code does not have any debugging information (no symtab), |
11778 | This cannot be any user code. */ | |
f7f9143b | 11779 | |
4ed6b5be | 11780 | find_frame_sal (frame, &sal); |
f7f9143b JB |
11781 | if (sal.symtab == NULL) |
11782 | return 1; | |
11783 | ||
4ed6b5be JB |
11784 | /* If there is a symtab, but the associated source file cannot be |
11785 | located, then assume this is not user code: Selecting a frame | |
11786 | for which we cannot display the code would not be very helpful | |
11787 | for the user. This should also take care of case such as VxWorks | |
11788 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 11789 | |
f35a17b5 JK |
11790 | fullname = symtab_to_fullname (sal.symtab); |
11791 | if (access (fullname, R_OK) != 0) | |
f7f9143b JB |
11792 | return 1; |
11793 | ||
4ed6b5be JB |
11794 | /* Check the unit filename againt the Ada runtime file naming. |
11795 | We also check the name of the objfile against the name of some | |
11796 | known system libraries that sometimes come with debugging info | |
11797 | too. */ | |
11798 | ||
f7f9143b JB |
11799 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
11800 | { | |
11801 | re_comp (known_runtime_file_name_patterns[i]); | |
f69c91ad | 11802 | if (re_exec (lbasename (sal.symtab->filename))) |
f7f9143b | 11803 | return 1; |
eb822aa6 DE |
11804 | if (SYMTAB_OBJFILE (sal.symtab) != NULL |
11805 | && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab)))) | |
4ed6b5be | 11806 | return 1; |
f7f9143b JB |
11807 | } |
11808 | ||
4ed6b5be | 11809 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 11810 | |
e9e07ba6 | 11811 | find_frame_funname (frame, &func_name, &func_lang, NULL); |
f7f9143b JB |
11812 | if (func_name == NULL) |
11813 | return 1; | |
11814 | ||
11815 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
11816 | { | |
11817 | re_comp (known_auxiliary_function_name_patterns[i]); | |
11818 | if (re_exec (func_name)) | |
55b87a52 KS |
11819 | { |
11820 | xfree (func_name); | |
11821 | return 1; | |
11822 | } | |
f7f9143b JB |
11823 | } |
11824 | ||
55b87a52 | 11825 | xfree (func_name); |
f7f9143b JB |
11826 | return 0; |
11827 | } | |
11828 | ||
11829 | /* Find the first frame that contains debugging information and that is not | |
11830 | part of the Ada run-time, starting from FI and moving upward. */ | |
11831 | ||
0ef643c8 | 11832 | void |
f7f9143b JB |
11833 | ada_find_printable_frame (struct frame_info *fi) |
11834 | { | |
11835 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
11836 | { | |
11837 | if (!is_known_support_routine (fi)) | |
11838 | { | |
11839 | select_frame (fi); | |
11840 | break; | |
11841 | } | |
11842 | } | |
11843 | ||
11844 | } | |
11845 | ||
11846 | /* Assuming that the inferior just triggered an unhandled exception | |
11847 | catchpoint, return the address in inferior memory where the name | |
11848 | of the exception is stored. | |
11849 | ||
11850 | Return zero if the address could not be computed. */ | |
11851 | ||
11852 | static CORE_ADDR | |
11853 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
11854 | { |
11855 | return parse_and_eval_address ("e.full_name"); | |
11856 | } | |
11857 | ||
11858 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
11859 | should be used when the inferior uses an older version of the runtime, | |
11860 | where the exception name needs to be extracted from a specific frame | |
11861 | several frames up in the callstack. */ | |
11862 | ||
11863 | static CORE_ADDR | |
11864 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
11865 | { |
11866 | int frame_level; | |
11867 | struct frame_info *fi; | |
3eecfa55 | 11868 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
55b87a52 | 11869 | struct cleanup *old_chain; |
f7f9143b JB |
11870 | |
11871 | /* To determine the name of this exception, we need to select | |
11872 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
11873 | at least 3 levels up, so we simply skip the first 3 frames | |
11874 | without checking the name of their associated function. */ | |
11875 | fi = get_current_frame (); | |
11876 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
11877 | if (fi != NULL) | |
11878 | fi = get_prev_frame (fi); | |
11879 | ||
55b87a52 | 11880 | old_chain = make_cleanup (null_cleanup, NULL); |
f7f9143b JB |
11881 | while (fi != NULL) |
11882 | { | |
55b87a52 | 11883 | char *func_name; |
692465f1 JB |
11884 | enum language func_lang; |
11885 | ||
e9e07ba6 | 11886 | find_frame_funname (fi, &func_name, &func_lang, NULL); |
55b87a52 KS |
11887 | if (func_name != NULL) |
11888 | { | |
11889 | make_cleanup (xfree, func_name); | |
11890 | ||
11891 | if (strcmp (func_name, | |
11892 | data->exception_info->catch_exception_sym) == 0) | |
11893 | break; /* We found the frame we were looking for... */ | |
11894 | fi = get_prev_frame (fi); | |
11895 | } | |
f7f9143b | 11896 | } |
55b87a52 | 11897 | do_cleanups (old_chain); |
f7f9143b JB |
11898 | |
11899 | if (fi == NULL) | |
11900 | return 0; | |
11901 | ||
11902 | select_frame (fi); | |
11903 | return parse_and_eval_address ("id.full_name"); | |
11904 | } | |
11905 | ||
11906 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
11907 | (of any type), return the address in inferior memory where the name | |
11908 | of the exception is stored, if applicable. | |
11909 | ||
11910 | Return zero if the address could not be computed, or if not relevant. */ | |
11911 | ||
11912 | static CORE_ADDR | |
761269c8 | 11913 | ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
11914 | struct breakpoint *b) |
11915 | { | |
3eecfa55 JB |
11916 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
11917 | ||
f7f9143b JB |
11918 | switch (ex) |
11919 | { | |
761269c8 | 11920 | case ada_catch_exception: |
f7f9143b JB |
11921 | return (parse_and_eval_address ("e.full_name")); |
11922 | break; | |
11923 | ||
761269c8 | 11924 | case ada_catch_exception_unhandled: |
3eecfa55 | 11925 | return data->exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
11926 | break; |
11927 | ||
761269c8 | 11928 | case ada_catch_assert: |
f7f9143b JB |
11929 | return 0; /* Exception name is not relevant in this case. */ |
11930 | break; | |
11931 | ||
11932 | default: | |
11933 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11934 | break; | |
11935 | } | |
11936 | ||
11937 | return 0; /* Should never be reached. */ | |
11938 | } | |
11939 | ||
11940 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
11941 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
11942 | When an error is intercepted, a warning with the error message is printed, | |
11943 | and zero is returned. */ | |
11944 | ||
11945 | static CORE_ADDR | |
761269c8 | 11946 | ada_exception_name_addr (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
11947 | struct breakpoint *b) |
11948 | { | |
f7f9143b JB |
11949 | CORE_ADDR result = 0; |
11950 | ||
492d29ea | 11951 | TRY |
f7f9143b JB |
11952 | { |
11953 | result = ada_exception_name_addr_1 (ex, b); | |
11954 | } | |
11955 | ||
492d29ea | 11956 | CATCH (e, RETURN_MASK_ERROR) |
f7f9143b JB |
11957 | { |
11958 | warning (_("failed to get exception name: %s"), e.message); | |
11959 | return 0; | |
11960 | } | |
492d29ea | 11961 | END_CATCH |
f7f9143b JB |
11962 | |
11963 | return result; | |
11964 | } | |
11965 | ||
28010a5d PA |
11966 | static char *ada_exception_catchpoint_cond_string (const char *excep_string); |
11967 | ||
11968 | /* Ada catchpoints. | |
11969 | ||
11970 | In the case of catchpoints on Ada exceptions, the catchpoint will | |
11971 | stop the target on every exception the program throws. When a user | |
11972 | specifies the name of a specific exception, we translate this | |
11973 | request into a condition expression (in text form), and then parse | |
11974 | it into an expression stored in each of the catchpoint's locations. | |
11975 | We then use this condition to check whether the exception that was | |
11976 | raised is the one the user is interested in. If not, then the | |
11977 | target is resumed again. We store the name of the requested | |
11978 | exception, in order to be able to re-set the condition expression | |
11979 | when symbols change. */ | |
11980 | ||
11981 | /* An instance of this type is used to represent an Ada catchpoint | |
11982 | breakpoint location. It includes a "struct bp_location" as a kind | |
11983 | of base class; users downcast to "struct bp_location *" when | |
11984 | needed. */ | |
11985 | ||
11986 | struct ada_catchpoint_location | |
11987 | { | |
11988 | /* The base class. */ | |
11989 | struct bp_location base; | |
11990 | ||
11991 | /* The condition that checks whether the exception that was raised | |
11992 | is the specific exception the user specified on catchpoint | |
11993 | creation. */ | |
11994 | struct expression *excep_cond_expr; | |
11995 | }; | |
11996 | ||
11997 | /* Implement the DTOR method in the bp_location_ops structure for all | |
11998 | Ada exception catchpoint kinds. */ | |
11999 | ||
12000 | static void | |
12001 | ada_catchpoint_location_dtor (struct bp_location *bl) | |
12002 | { | |
12003 | struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl; | |
12004 | ||
12005 | xfree (al->excep_cond_expr); | |
12006 | } | |
12007 | ||
12008 | /* The vtable to be used in Ada catchpoint locations. */ | |
12009 | ||
12010 | static const struct bp_location_ops ada_catchpoint_location_ops = | |
12011 | { | |
12012 | ada_catchpoint_location_dtor | |
12013 | }; | |
12014 | ||
12015 | /* An instance of this type is used to represent an Ada catchpoint. | |
12016 | It includes a "struct breakpoint" as a kind of base class; users | |
12017 | downcast to "struct breakpoint *" when needed. */ | |
12018 | ||
12019 | struct ada_catchpoint | |
12020 | { | |
12021 | /* The base class. */ | |
12022 | struct breakpoint base; | |
12023 | ||
12024 | /* The name of the specific exception the user specified. */ | |
12025 | char *excep_string; | |
12026 | }; | |
12027 | ||
12028 | /* Parse the exception condition string in the context of each of the | |
12029 | catchpoint's locations, and store them for later evaluation. */ | |
12030 | ||
12031 | static void | |
12032 | create_excep_cond_exprs (struct ada_catchpoint *c) | |
12033 | { | |
12034 | struct cleanup *old_chain; | |
12035 | struct bp_location *bl; | |
12036 | char *cond_string; | |
12037 | ||
12038 | /* Nothing to do if there's no specific exception to catch. */ | |
12039 | if (c->excep_string == NULL) | |
12040 | return; | |
12041 | ||
12042 | /* Same if there are no locations... */ | |
12043 | if (c->base.loc == NULL) | |
12044 | return; | |
12045 | ||
12046 | /* Compute the condition expression in text form, from the specific | |
12047 | expection we want to catch. */ | |
12048 | cond_string = ada_exception_catchpoint_cond_string (c->excep_string); | |
12049 | old_chain = make_cleanup (xfree, cond_string); | |
12050 | ||
12051 | /* Iterate over all the catchpoint's locations, and parse an | |
12052 | expression for each. */ | |
12053 | for (bl = c->base.loc; bl != NULL; bl = bl->next) | |
12054 | { | |
12055 | struct ada_catchpoint_location *ada_loc | |
12056 | = (struct ada_catchpoint_location *) bl; | |
12057 | struct expression *exp = NULL; | |
12058 | ||
12059 | if (!bl->shlib_disabled) | |
12060 | { | |
bbc13ae3 | 12061 | const char *s; |
28010a5d PA |
12062 | |
12063 | s = cond_string; | |
492d29ea | 12064 | TRY |
28010a5d | 12065 | { |
1bb9788d TT |
12066 | exp = parse_exp_1 (&s, bl->address, |
12067 | block_for_pc (bl->address), 0); | |
28010a5d | 12068 | } |
492d29ea | 12069 | CATCH (e, RETURN_MASK_ERROR) |
849f2b52 JB |
12070 | { |
12071 | warning (_("failed to reevaluate internal exception condition " | |
12072 | "for catchpoint %d: %s"), | |
12073 | c->base.number, e.message); | |
12074 | /* There is a bug in GCC on sparc-solaris when building with | |
12075 | optimization which causes EXP to change unexpectedly | |
12076 | (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982). | |
12077 | The problem should be fixed starting with GCC 4.9. | |
12078 | In the meantime, work around it by forcing EXP back | |
12079 | to NULL. */ | |
12080 | exp = NULL; | |
12081 | } | |
492d29ea | 12082 | END_CATCH |
28010a5d PA |
12083 | } |
12084 | ||
12085 | ada_loc->excep_cond_expr = exp; | |
12086 | } | |
12087 | ||
12088 | do_cleanups (old_chain); | |
12089 | } | |
12090 | ||
12091 | /* Implement the DTOR method in the breakpoint_ops structure for all | |
12092 | exception catchpoint kinds. */ | |
12093 | ||
12094 | static void | |
761269c8 | 12095 | dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b) |
28010a5d PA |
12096 | { |
12097 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
12098 | ||
12099 | xfree (c->excep_string); | |
348d480f | 12100 | |
2060206e | 12101 | bkpt_breakpoint_ops.dtor (b); |
28010a5d PA |
12102 | } |
12103 | ||
12104 | /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops | |
12105 | structure for all exception catchpoint kinds. */ | |
12106 | ||
12107 | static struct bp_location * | |
761269c8 | 12108 | allocate_location_exception (enum ada_exception_catchpoint_kind ex, |
28010a5d PA |
12109 | struct breakpoint *self) |
12110 | { | |
12111 | struct ada_catchpoint_location *loc; | |
12112 | ||
12113 | loc = XNEW (struct ada_catchpoint_location); | |
12114 | init_bp_location (&loc->base, &ada_catchpoint_location_ops, self); | |
12115 | loc->excep_cond_expr = NULL; | |
12116 | return &loc->base; | |
12117 | } | |
12118 | ||
12119 | /* Implement the RE_SET method in the breakpoint_ops structure for all | |
12120 | exception catchpoint kinds. */ | |
12121 | ||
12122 | static void | |
761269c8 | 12123 | re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b) |
28010a5d PA |
12124 | { |
12125 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
12126 | ||
12127 | /* Call the base class's method. This updates the catchpoint's | |
12128 | locations. */ | |
2060206e | 12129 | bkpt_breakpoint_ops.re_set (b); |
28010a5d PA |
12130 | |
12131 | /* Reparse the exception conditional expressions. One for each | |
12132 | location. */ | |
12133 | create_excep_cond_exprs (c); | |
12134 | } | |
12135 | ||
12136 | /* Returns true if we should stop for this breakpoint hit. If the | |
12137 | user specified a specific exception, we only want to cause a stop | |
12138 | if the program thrown that exception. */ | |
12139 | ||
12140 | static int | |
12141 | should_stop_exception (const struct bp_location *bl) | |
12142 | { | |
12143 | struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; | |
12144 | const struct ada_catchpoint_location *ada_loc | |
12145 | = (const struct ada_catchpoint_location *) bl; | |
28010a5d PA |
12146 | int stop; |
12147 | ||
12148 | /* With no specific exception, should always stop. */ | |
12149 | if (c->excep_string == NULL) | |
12150 | return 1; | |
12151 | ||
12152 | if (ada_loc->excep_cond_expr == NULL) | |
12153 | { | |
12154 | /* We will have a NULL expression if back when we were creating | |
12155 | the expressions, this location's had failed to parse. */ | |
12156 | return 1; | |
12157 | } | |
12158 | ||
12159 | stop = 1; | |
492d29ea | 12160 | TRY |
28010a5d PA |
12161 | { |
12162 | struct value *mark; | |
12163 | ||
12164 | mark = value_mark (); | |
12165 | stop = value_true (evaluate_expression (ada_loc->excep_cond_expr)); | |
12166 | value_free_to_mark (mark); | |
12167 | } | |
492d29ea PA |
12168 | CATCH (ex, RETURN_MASK_ALL) |
12169 | { | |
12170 | exception_fprintf (gdb_stderr, ex, | |
12171 | _("Error in testing exception condition:\n")); | |
12172 | } | |
12173 | END_CATCH | |
12174 | ||
28010a5d PA |
12175 | return stop; |
12176 | } | |
12177 | ||
12178 | /* Implement the CHECK_STATUS method in the breakpoint_ops structure | |
12179 | for all exception catchpoint kinds. */ | |
12180 | ||
12181 | static void | |
761269c8 | 12182 | check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
28010a5d PA |
12183 | { |
12184 | bs->stop = should_stop_exception (bs->bp_location_at); | |
12185 | } | |
12186 | ||
f7f9143b JB |
12187 | /* Implement the PRINT_IT method in the breakpoint_ops structure |
12188 | for all exception catchpoint kinds. */ | |
12189 | ||
12190 | static enum print_stop_action | |
761269c8 | 12191 | print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
f7f9143b | 12192 | { |
79a45e25 | 12193 | struct ui_out *uiout = current_uiout; |
348d480f PA |
12194 | struct breakpoint *b = bs->breakpoint_at; |
12195 | ||
956a9fb9 | 12196 | annotate_catchpoint (b->number); |
f7f9143b | 12197 | |
956a9fb9 | 12198 | if (ui_out_is_mi_like_p (uiout)) |
f7f9143b | 12199 | { |
956a9fb9 JB |
12200 | ui_out_field_string (uiout, "reason", |
12201 | async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); | |
12202 | ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition)); | |
f7f9143b JB |
12203 | } |
12204 | ||
00eb2c4a JB |
12205 | ui_out_text (uiout, |
12206 | b->disposition == disp_del ? "\nTemporary catchpoint " | |
12207 | : "\nCatchpoint "); | |
956a9fb9 JB |
12208 | ui_out_field_int (uiout, "bkptno", b->number); |
12209 | ui_out_text (uiout, ", "); | |
f7f9143b | 12210 | |
f7f9143b JB |
12211 | switch (ex) |
12212 | { | |
761269c8 JB |
12213 | case ada_catch_exception: |
12214 | case ada_catch_exception_unhandled: | |
956a9fb9 JB |
12215 | { |
12216 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
12217 | char exception_name[256]; | |
12218 | ||
12219 | if (addr != 0) | |
12220 | { | |
c714b426 PA |
12221 | read_memory (addr, (gdb_byte *) exception_name, |
12222 | sizeof (exception_name) - 1); | |
956a9fb9 JB |
12223 | exception_name [sizeof (exception_name) - 1] = '\0'; |
12224 | } | |
12225 | else | |
12226 | { | |
12227 | /* For some reason, we were unable to read the exception | |
12228 | name. This could happen if the Runtime was compiled | |
12229 | without debugging info, for instance. In that case, | |
12230 | just replace the exception name by the generic string | |
12231 | "exception" - it will read as "an exception" in the | |
12232 | notification we are about to print. */ | |
967cff16 | 12233 | memcpy (exception_name, "exception", sizeof ("exception")); |
956a9fb9 JB |
12234 | } |
12235 | /* In the case of unhandled exception breakpoints, we print | |
12236 | the exception name as "unhandled EXCEPTION_NAME", to make | |
12237 | it clearer to the user which kind of catchpoint just got | |
12238 | hit. We used ui_out_text to make sure that this extra | |
12239 | info does not pollute the exception name in the MI case. */ | |
761269c8 | 12240 | if (ex == ada_catch_exception_unhandled) |
956a9fb9 JB |
12241 | ui_out_text (uiout, "unhandled "); |
12242 | ui_out_field_string (uiout, "exception-name", exception_name); | |
12243 | } | |
12244 | break; | |
761269c8 | 12245 | case ada_catch_assert: |
956a9fb9 JB |
12246 | /* In this case, the name of the exception is not really |
12247 | important. Just print "failed assertion" to make it clearer | |
12248 | that his program just hit an assertion-failure catchpoint. | |
12249 | We used ui_out_text because this info does not belong in | |
12250 | the MI output. */ | |
12251 | ui_out_text (uiout, "failed assertion"); | |
12252 | break; | |
f7f9143b | 12253 | } |
956a9fb9 JB |
12254 | ui_out_text (uiout, " at "); |
12255 | ada_find_printable_frame (get_current_frame ()); | |
f7f9143b JB |
12256 | |
12257 | return PRINT_SRC_AND_LOC; | |
12258 | } | |
12259 | ||
12260 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
12261 | for all exception catchpoint kinds. */ | |
12262 | ||
12263 | static void | |
761269c8 | 12264 | print_one_exception (enum ada_exception_catchpoint_kind ex, |
a6d9a66e | 12265 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12266 | { |
79a45e25 | 12267 | struct ui_out *uiout = current_uiout; |
28010a5d | 12268 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45b7d TT |
12269 | struct value_print_options opts; |
12270 | ||
12271 | get_user_print_options (&opts); | |
12272 | if (opts.addressprint) | |
f7f9143b JB |
12273 | { |
12274 | annotate_field (4); | |
5af949e3 | 12275 | ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
12276 | } |
12277 | ||
12278 | annotate_field (5); | |
a6d9a66e | 12279 | *last_loc = b->loc; |
f7f9143b JB |
12280 | switch (ex) |
12281 | { | |
761269c8 | 12282 | case ada_catch_exception: |
28010a5d | 12283 | if (c->excep_string != NULL) |
f7f9143b | 12284 | { |
28010a5d PA |
12285 | char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string); |
12286 | ||
f7f9143b JB |
12287 | ui_out_field_string (uiout, "what", msg); |
12288 | xfree (msg); | |
12289 | } | |
12290 | else | |
12291 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
12292 | ||
12293 | break; | |
12294 | ||
761269c8 | 12295 | case ada_catch_exception_unhandled: |
f7f9143b JB |
12296 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); |
12297 | break; | |
12298 | ||
761269c8 | 12299 | case ada_catch_assert: |
f7f9143b JB |
12300 | ui_out_field_string (uiout, "what", "failed Ada assertions"); |
12301 | break; | |
12302 | ||
12303 | default: | |
12304 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12305 | break; | |
12306 | } | |
12307 | } | |
12308 | ||
12309 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
12310 | for all exception catchpoint kinds. */ | |
12311 | ||
12312 | static void | |
761269c8 | 12313 | print_mention_exception (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12314 | struct breakpoint *b) |
12315 | { | |
28010a5d | 12316 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45e25 | 12317 | struct ui_out *uiout = current_uiout; |
28010a5d | 12318 | |
00eb2c4a JB |
12319 | ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ") |
12320 | : _("Catchpoint ")); | |
12321 | ui_out_field_int (uiout, "bkptno", b->number); | |
12322 | ui_out_text (uiout, ": "); | |
12323 | ||
f7f9143b JB |
12324 | switch (ex) |
12325 | { | |
761269c8 | 12326 | case ada_catch_exception: |
28010a5d | 12327 | if (c->excep_string != NULL) |
00eb2c4a JB |
12328 | { |
12329 | char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string); | |
12330 | struct cleanup *old_chain = make_cleanup (xfree, info); | |
12331 | ||
12332 | ui_out_text (uiout, info); | |
12333 | do_cleanups (old_chain); | |
12334 | } | |
f7f9143b | 12335 | else |
00eb2c4a | 12336 | ui_out_text (uiout, _("all Ada exceptions")); |
f7f9143b JB |
12337 | break; |
12338 | ||
761269c8 | 12339 | case ada_catch_exception_unhandled: |
00eb2c4a | 12340 | ui_out_text (uiout, _("unhandled Ada exceptions")); |
f7f9143b JB |
12341 | break; |
12342 | ||
761269c8 | 12343 | case ada_catch_assert: |
00eb2c4a | 12344 | ui_out_text (uiout, _("failed Ada assertions")); |
f7f9143b JB |
12345 | break; |
12346 | ||
12347 | default: | |
12348 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12349 | break; | |
12350 | } | |
12351 | } | |
12352 | ||
6149aea9 PA |
12353 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
12354 | for all exception catchpoint kinds. */ | |
12355 | ||
12356 | static void | |
761269c8 | 12357 | print_recreate_exception (enum ada_exception_catchpoint_kind ex, |
6149aea9 PA |
12358 | struct breakpoint *b, struct ui_file *fp) |
12359 | { | |
28010a5d PA |
12360 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
12361 | ||
6149aea9 PA |
12362 | switch (ex) |
12363 | { | |
761269c8 | 12364 | case ada_catch_exception: |
6149aea9 | 12365 | fprintf_filtered (fp, "catch exception"); |
28010a5d PA |
12366 | if (c->excep_string != NULL) |
12367 | fprintf_filtered (fp, " %s", c->excep_string); | |
6149aea9 PA |
12368 | break; |
12369 | ||
761269c8 | 12370 | case ada_catch_exception_unhandled: |
78076abc | 12371 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
12372 | break; |
12373 | ||
761269c8 | 12374 | case ada_catch_assert: |
6149aea9 PA |
12375 | fprintf_filtered (fp, "catch assert"); |
12376 | break; | |
12377 | ||
12378 | default: | |
12379 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12380 | } | |
d9b3f62e | 12381 | print_recreate_thread (b, fp); |
6149aea9 PA |
12382 | } |
12383 | ||
f7f9143b JB |
12384 | /* Virtual table for "catch exception" breakpoints. */ |
12385 | ||
28010a5d PA |
12386 | static void |
12387 | dtor_catch_exception (struct breakpoint *b) | |
12388 | { | |
761269c8 | 12389 | dtor_exception (ada_catch_exception, b); |
28010a5d PA |
12390 | } |
12391 | ||
12392 | static struct bp_location * | |
12393 | allocate_location_catch_exception (struct breakpoint *self) | |
12394 | { | |
761269c8 | 12395 | return allocate_location_exception (ada_catch_exception, self); |
28010a5d PA |
12396 | } |
12397 | ||
12398 | static void | |
12399 | re_set_catch_exception (struct breakpoint *b) | |
12400 | { | |
761269c8 | 12401 | re_set_exception (ada_catch_exception, b); |
28010a5d PA |
12402 | } |
12403 | ||
12404 | static void | |
12405 | check_status_catch_exception (bpstat bs) | |
12406 | { | |
761269c8 | 12407 | check_status_exception (ada_catch_exception, bs); |
28010a5d PA |
12408 | } |
12409 | ||
f7f9143b | 12410 | static enum print_stop_action |
348d480f | 12411 | print_it_catch_exception (bpstat bs) |
f7f9143b | 12412 | { |
761269c8 | 12413 | return print_it_exception (ada_catch_exception, bs); |
f7f9143b JB |
12414 | } |
12415 | ||
12416 | static void | |
a6d9a66e | 12417 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12418 | { |
761269c8 | 12419 | print_one_exception (ada_catch_exception, b, last_loc); |
f7f9143b JB |
12420 | } |
12421 | ||
12422 | static void | |
12423 | print_mention_catch_exception (struct breakpoint *b) | |
12424 | { | |
761269c8 | 12425 | print_mention_exception (ada_catch_exception, b); |
f7f9143b JB |
12426 | } |
12427 | ||
6149aea9 PA |
12428 | static void |
12429 | print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) | |
12430 | { | |
761269c8 | 12431 | print_recreate_exception (ada_catch_exception, b, fp); |
6149aea9 PA |
12432 | } |
12433 | ||
2060206e | 12434 | static struct breakpoint_ops catch_exception_breakpoint_ops; |
f7f9143b JB |
12435 | |
12436 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
12437 | ||
28010a5d PA |
12438 | static void |
12439 | dtor_catch_exception_unhandled (struct breakpoint *b) | |
12440 | { | |
761269c8 | 12441 | dtor_exception (ada_catch_exception_unhandled, b); |
28010a5d PA |
12442 | } |
12443 | ||
12444 | static struct bp_location * | |
12445 | allocate_location_catch_exception_unhandled (struct breakpoint *self) | |
12446 | { | |
761269c8 | 12447 | return allocate_location_exception (ada_catch_exception_unhandled, self); |
28010a5d PA |
12448 | } |
12449 | ||
12450 | static void | |
12451 | re_set_catch_exception_unhandled (struct breakpoint *b) | |
12452 | { | |
761269c8 | 12453 | re_set_exception (ada_catch_exception_unhandled, b); |
28010a5d PA |
12454 | } |
12455 | ||
12456 | static void | |
12457 | check_status_catch_exception_unhandled (bpstat bs) | |
12458 | { | |
761269c8 | 12459 | check_status_exception (ada_catch_exception_unhandled, bs); |
28010a5d PA |
12460 | } |
12461 | ||
f7f9143b | 12462 | static enum print_stop_action |
348d480f | 12463 | print_it_catch_exception_unhandled (bpstat bs) |
f7f9143b | 12464 | { |
761269c8 | 12465 | return print_it_exception (ada_catch_exception_unhandled, bs); |
f7f9143b JB |
12466 | } |
12467 | ||
12468 | static void | |
a6d9a66e UW |
12469 | print_one_catch_exception_unhandled (struct breakpoint *b, |
12470 | struct bp_location **last_loc) | |
f7f9143b | 12471 | { |
761269c8 | 12472 | print_one_exception (ada_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
12473 | } |
12474 | ||
12475 | static void | |
12476 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
12477 | { | |
761269c8 | 12478 | print_mention_exception (ada_catch_exception_unhandled, b); |
f7f9143b JB |
12479 | } |
12480 | ||
6149aea9 PA |
12481 | static void |
12482 | print_recreate_catch_exception_unhandled (struct breakpoint *b, | |
12483 | struct ui_file *fp) | |
12484 | { | |
761269c8 | 12485 | print_recreate_exception (ada_catch_exception_unhandled, b, fp); |
6149aea9 PA |
12486 | } |
12487 | ||
2060206e | 12488 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops; |
f7f9143b JB |
12489 | |
12490 | /* Virtual table for "catch assert" breakpoints. */ | |
12491 | ||
28010a5d PA |
12492 | static void |
12493 | dtor_catch_assert (struct breakpoint *b) | |
12494 | { | |
761269c8 | 12495 | dtor_exception (ada_catch_assert, b); |
28010a5d PA |
12496 | } |
12497 | ||
12498 | static struct bp_location * | |
12499 | allocate_location_catch_assert (struct breakpoint *self) | |
12500 | { | |
761269c8 | 12501 | return allocate_location_exception (ada_catch_assert, self); |
28010a5d PA |
12502 | } |
12503 | ||
12504 | static void | |
12505 | re_set_catch_assert (struct breakpoint *b) | |
12506 | { | |
761269c8 | 12507 | re_set_exception (ada_catch_assert, b); |
28010a5d PA |
12508 | } |
12509 | ||
12510 | static void | |
12511 | check_status_catch_assert (bpstat bs) | |
12512 | { | |
761269c8 | 12513 | check_status_exception (ada_catch_assert, bs); |
28010a5d PA |
12514 | } |
12515 | ||
f7f9143b | 12516 | static enum print_stop_action |
348d480f | 12517 | print_it_catch_assert (bpstat bs) |
f7f9143b | 12518 | { |
761269c8 | 12519 | return print_it_exception (ada_catch_assert, bs); |
f7f9143b JB |
12520 | } |
12521 | ||
12522 | static void | |
a6d9a66e | 12523 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12524 | { |
761269c8 | 12525 | print_one_exception (ada_catch_assert, b, last_loc); |
f7f9143b JB |
12526 | } |
12527 | ||
12528 | static void | |
12529 | print_mention_catch_assert (struct breakpoint *b) | |
12530 | { | |
761269c8 | 12531 | print_mention_exception (ada_catch_assert, b); |
f7f9143b JB |
12532 | } |
12533 | ||
6149aea9 PA |
12534 | static void |
12535 | print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) | |
12536 | { | |
761269c8 | 12537 | print_recreate_exception (ada_catch_assert, b, fp); |
6149aea9 PA |
12538 | } |
12539 | ||
2060206e | 12540 | static struct breakpoint_ops catch_assert_breakpoint_ops; |
f7f9143b | 12541 | |
f7f9143b JB |
12542 | /* Return a newly allocated copy of the first space-separated token |
12543 | in ARGSP, and then adjust ARGSP to point immediately after that | |
12544 | token. | |
12545 | ||
12546 | Return NULL if ARGPS does not contain any more tokens. */ | |
12547 | ||
12548 | static char * | |
12549 | ada_get_next_arg (char **argsp) | |
12550 | { | |
12551 | char *args = *argsp; | |
12552 | char *end; | |
12553 | char *result; | |
12554 | ||
0fcd72ba | 12555 | args = skip_spaces (args); |
f7f9143b JB |
12556 | if (args[0] == '\0') |
12557 | return NULL; /* No more arguments. */ | |
12558 | ||
12559 | /* Find the end of the current argument. */ | |
12560 | ||
0fcd72ba | 12561 | end = skip_to_space (args); |
f7f9143b JB |
12562 | |
12563 | /* Adjust ARGSP to point to the start of the next argument. */ | |
12564 | ||
12565 | *argsp = end; | |
12566 | ||
12567 | /* Make a copy of the current argument and return it. */ | |
12568 | ||
12569 | result = xmalloc (end - args + 1); | |
12570 | strncpy (result, args, end - args); | |
12571 | result[end - args] = '\0'; | |
12572 | ||
12573 | return result; | |
12574 | } | |
12575 | ||
12576 | /* Split the arguments specified in a "catch exception" command. | |
12577 | Set EX to the appropriate catchpoint type. | |
28010a5d | 12578 | Set EXCEP_STRING to the name of the specific exception if |
5845583d JB |
12579 | specified by the user. |
12580 | If a condition is found at the end of the arguments, the condition | |
12581 | expression is stored in COND_STRING (memory must be deallocated | |
12582 | after use). Otherwise COND_STRING is set to NULL. */ | |
f7f9143b JB |
12583 | |
12584 | static void | |
12585 | catch_ada_exception_command_split (char *args, | |
761269c8 | 12586 | enum ada_exception_catchpoint_kind *ex, |
5845583d JB |
12587 | char **excep_string, |
12588 | char **cond_string) | |
f7f9143b JB |
12589 | { |
12590 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
12591 | char *exception_name; | |
5845583d | 12592 | char *cond = NULL; |
f7f9143b JB |
12593 | |
12594 | exception_name = ada_get_next_arg (&args); | |
5845583d JB |
12595 | if (exception_name != NULL && strcmp (exception_name, "if") == 0) |
12596 | { | |
12597 | /* This is not an exception name; this is the start of a condition | |
12598 | expression for a catchpoint on all exceptions. So, "un-get" | |
12599 | this token, and set exception_name to NULL. */ | |
12600 | xfree (exception_name); | |
12601 | exception_name = NULL; | |
12602 | args -= 2; | |
12603 | } | |
f7f9143b JB |
12604 | make_cleanup (xfree, exception_name); |
12605 | ||
5845583d | 12606 | /* Check to see if we have a condition. */ |
f7f9143b | 12607 | |
0fcd72ba | 12608 | args = skip_spaces (args); |
61012eef | 12609 | if (startswith (args, "if") |
5845583d JB |
12610 | && (isspace (args[2]) || args[2] == '\0')) |
12611 | { | |
12612 | args += 2; | |
12613 | args = skip_spaces (args); | |
12614 | ||
12615 | if (args[0] == '\0') | |
12616 | error (_("Condition missing after `if' keyword")); | |
12617 | cond = xstrdup (args); | |
12618 | make_cleanup (xfree, cond); | |
12619 | ||
12620 | args += strlen (args); | |
12621 | } | |
12622 | ||
12623 | /* Check that we do not have any more arguments. Anything else | |
12624 | is unexpected. */ | |
f7f9143b JB |
12625 | |
12626 | if (args[0] != '\0') | |
12627 | error (_("Junk at end of expression")); | |
12628 | ||
12629 | discard_cleanups (old_chain); | |
12630 | ||
12631 | if (exception_name == NULL) | |
12632 | { | |
12633 | /* Catch all exceptions. */ | |
761269c8 | 12634 | *ex = ada_catch_exception; |
28010a5d | 12635 | *excep_string = NULL; |
f7f9143b JB |
12636 | } |
12637 | else if (strcmp (exception_name, "unhandled") == 0) | |
12638 | { | |
12639 | /* Catch unhandled exceptions. */ | |
761269c8 | 12640 | *ex = ada_catch_exception_unhandled; |
28010a5d | 12641 | *excep_string = NULL; |
f7f9143b JB |
12642 | } |
12643 | else | |
12644 | { | |
12645 | /* Catch a specific exception. */ | |
761269c8 | 12646 | *ex = ada_catch_exception; |
28010a5d | 12647 | *excep_string = exception_name; |
f7f9143b | 12648 | } |
5845583d | 12649 | *cond_string = cond; |
f7f9143b JB |
12650 | } |
12651 | ||
12652 | /* Return the name of the symbol on which we should break in order to | |
12653 | implement a catchpoint of the EX kind. */ | |
12654 | ||
12655 | static const char * | |
761269c8 | 12656 | ada_exception_sym_name (enum ada_exception_catchpoint_kind ex) |
f7f9143b | 12657 | { |
3eecfa55 JB |
12658 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
12659 | ||
12660 | gdb_assert (data->exception_info != NULL); | |
0259addd | 12661 | |
f7f9143b JB |
12662 | switch (ex) |
12663 | { | |
761269c8 | 12664 | case ada_catch_exception: |
3eecfa55 | 12665 | return (data->exception_info->catch_exception_sym); |
f7f9143b | 12666 | break; |
761269c8 | 12667 | case ada_catch_exception_unhandled: |
3eecfa55 | 12668 | return (data->exception_info->catch_exception_unhandled_sym); |
f7f9143b | 12669 | break; |
761269c8 | 12670 | case ada_catch_assert: |
3eecfa55 | 12671 | return (data->exception_info->catch_assert_sym); |
f7f9143b JB |
12672 | break; |
12673 | default: | |
12674 | internal_error (__FILE__, __LINE__, | |
12675 | _("unexpected catchpoint kind (%d)"), ex); | |
12676 | } | |
12677 | } | |
12678 | ||
12679 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
12680 | of the EX kind. */ | |
12681 | ||
c0a91b2b | 12682 | static const struct breakpoint_ops * |
761269c8 | 12683 | ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex) |
f7f9143b JB |
12684 | { |
12685 | switch (ex) | |
12686 | { | |
761269c8 | 12687 | case ada_catch_exception: |
f7f9143b JB |
12688 | return (&catch_exception_breakpoint_ops); |
12689 | break; | |
761269c8 | 12690 | case ada_catch_exception_unhandled: |
f7f9143b JB |
12691 | return (&catch_exception_unhandled_breakpoint_ops); |
12692 | break; | |
761269c8 | 12693 | case ada_catch_assert: |
f7f9143b JB |
12694 | return (&catch_assert_breakpoint_ops); |
12695 | break; | |
12696 | default: | |
12697 | internal_error (__FILE__, __LINE__, | |
12698 | _("unexpected catchpoint kind (%d)"), ex); | |
12699 | } | |
12700 | } | |
12701 | ||
12702 | /* Return the condition that will be used to match the current exception | |
12703 | being raised with the exception that the user wants to catch. This | |
12704 | assumes that this condition is used when the inferior just triggered | |
12705 | an exception catchpoint. | |
12706 | ||
12707 | The string returned is a newly allocated string that needs to be | |
12708 | deallocated later. */ | |
12709 | ||
12710 | static char * | |
28010a5d | 12711 | ada_exception_catchpoint_cond_string (const char *excep_string) |
f7f9143b | 12712 | { |
3d0b0fa3 JB |
12713 | int i; |
12714 | ||
0963b4bd | 12715 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 | 12716 | runtime units that have been compiled without debugging info; if |
28010a5d | 12717 | EXCEP_STRING is the not-fully-qualified name of a standard |
3d0b0fa3 JB |
12718 | exception (e.g. "constraint_error") then, during the evaluation |
12719 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 12720 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
12721 | may then be set only on user-defined exceptions which have the |
12722 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
12723 | ||
12724 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 12725 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
12726 | exception constraint_error" is rewritten into "catch exception |
12727 | standard.constraint_error". | |
12728 | ||
12729 | If an exception named contraint_error is defined in another package of | |
12730 | the inferior program, then the only way to specify this exception as a | |
12731 | breakpoint condition is to use its fully-qualified named: | |
12732 | e.g. my_package.constraint_error. */ | |
12733 | ||
12734 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
12735 | { | |
28010a5d | 12736 | if (strcmp (standard_exc [i], excep_string) == 0) |
3d0b0fa3 JB |
12737 | { |
12738 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
28010a5d | 12739 | excep_string); |
3d0b0fa3 JB |
12740 | } |
12741 | } | |
28010a5d | 12742 | return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string); |
f7f9143b JB |
12743 | } |
12744 | ||
12745 | /* Return the symtab_and_line that should be used to insert an exception | |
12746 | catchpoint of the TYPE kind. | |
12747 | ||
28010a5d PA |
12748 | EXCEP_STRING should contain the name of a specific exception that |
12749 | the catchpoint should catch, or NULL otherwise. | |
f7f9143b | 12750 | |
28010a5d PA |
12751 | ADDR_STRING returns the name of the function where the real |
12752 | breakpoint that implements the catchpoints is set, depending on the | |
12753 | type of catchpoint we need to create. */ | |
f7f9143b JB |
12754 | |
12755 | static struct symtab_and_line | |
761269c8 | 12756 | ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string, |
c0a91b2b | 12757 | char **addr_string, const struct breakpoint_ops **ops) |
f7f9143b JB |
12758 | { |
12759 | const char *sym_name; | |
12760 | struct symbol *sym; | |
f7f9143b | 12761 | |
0259addd JB |
12762 | /* First, find out which exception support info to use. */ |
12763 | ada_exception_support_info_sniffer (); | |
12764 | ||
12765 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b | 12766 | the Ada exceptions requested by the user. */ |
f7f9143b JB |
12767 | sym_name = ada_exception_sym_name (ex); |
12768 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
12769 | ||
f17011e0 JB |
12770 | /* We can assume that SYM is not NULL at this stage. If the symbol |
12771 | did not exist, ada_exception_support_info_sniffer would have | |
12772 | raised an exception. | |
f7f9143b | 12773 | |
f17011e0 JB |
12774 | Also, ada_exception_support_info_sniffer should have already |
12775 | verified that SYM is a function symbol. */ | |
12776 | gdb_assert (sym != NULL); | |
12777 | gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK); | |
f7f9143b JB |
12778 | |
12779 | /* Set ADDR_STRING. */ | |
f7f9143b JB |
12780 | *addr_string = xstrdup (sym_name); |
12781 | ||
f7f9143b | 12782 | /* Set OPS. */ |
4b9eee8c | 12783 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b | 12784 | |
f17011e0 | 12785 | return find_function_start_sal (sym, 1); |
f7f9143b JB |
12786 | } |
12787 | ||
b4a5b78b | 12788 | /* Create an Ada exception catchpoint. |
f7f9143b | 12789 | |
b4a5b78b | 12790 | EX_KIND is the kind of exception catchpoint to be created. |
5845583d | 12791 | |
2df4d1d5 JB |
12792 | If EXCEPT_STRING is NULL, this catchpoint is expected to trigger |
12793 | for all exceptions. Otherwise, EXCEPT_STRING indicates the name | |
12794 | of the exception to which this catchpoint applies. When not NULL, | |
12795 | the string must be allocated on the heap, and its deallocation | |
12796 | is no longer the responsibility of the caller. | |
12797 | ||
12798 | COND_STRING, if not NULL, is the catchpoint condition. This string | |
12799 | must be allocated on the heap, and its deallocation is no longer | |
12800 | the responsibility of the caller. | |
f7f9143b | 12801 | |
b4a5b78b JB |
12802 | TEMPFLAG, if nonzero, means that the underlying breakpoint |
12803 | should be temporary. | |
28010a5d | 12804 | |
b4a5b78b | 12805 | FROM_TTY is the usual argument passed to all commands implementations. */ |
28010a5d | 12806 | |
349774ef | 12807 | void |
28010a5d | 12808 | create_ada_exception_catchpoint (struct gdbarch *gdbarch, |
761269c8 | 12809 | enum ada_exception_catchpoint_kind ex_kind, |
28010a5d | 12810 | char *excep_string, |
5845583d | 12811 | char *cond_string, |
28010a5d | 12812 | int tempflag, |
349774ef | 12813 | int disabled, |
28010a5d PA |
12814 | int from_tty) |
12815 | { | |
12816 | struct ada_catchpoint *c; | |
b4a5b78b JB |
12817 | char *addr_string = NULL; |
12818 | const struct breakpoint_ops *ops = NULL; | |
12819 | struct symtab_and_line sal | |
12820 | = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops); | |
28010a5d PA |
12821 | |
12822 | c = XNEW (struct ada_catchpoint); | |
12823 | init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string, | |
349774ef | 12824 | ops, tempflag, disabled, from_tty); |
28010a5d PA |
12825 | c->excep_string = excep_string; |
12826 | create_excep_cond_exprs (c); | |
5845583d JB |
12827 | if (cond_string != NULL) |
12828 | set_breakpoint_condition (&c->base, cond_string, from_tty); | |
3ea46bff | 12829 | install_breakpoint (0, &c->base, 1); |
f7f9143b JB |
12830 | } |
12831 | ||
9ac4176b PA |
12832 | /* Implement the "catch exception" command. */ |
12833 | ||
12834 | static void | |
12835 | catch_ada_exception_command (char *arg, int from_tty, | |
12836 | struct cmd_list_element *command) | |
12837 | { | |
12838 | struct gdbarch *gdbarch = get_current_arch (); | |
12839 | int tempflag; | |
761269c8 | 12840 | enum ada_exception_catchpoint_kind ex_kind; |
28010a5d | 12841 | char *excep_string = NULL; |
5845583d | 12842 | char *cond_string = NULL; |
9ac4176b PA |
12843 | |
12844 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
12845 | ||
12846 | if (!arg) | |
12847 | arg = ""; | |
b4a5b78b JB |
12848 | catch_ada_exception_command_split (arg, &ex_kind, &excep_string, |
12849 | &cond_string); | |
12850 | create_ada_exception_catchpoint (gdbarch, ex_kind, | |
12851 | excep_string, cond_string, | |
349774ef JB |
12852 | tempflag, 1 /* enabled */, |
12853 | from_tty); | |
9ac4176b PA |
12854 | } |
12855 | ||
b4a5b78b | 12856 | /* Split the arguments specified in a "catch assert" command. |
5845583d | 12857 | |
b4a5b78b JB |
12858 | ARGS contains the command's arguments (or the empty string if |
12859 | no arguments were passed). | |
5845583d JB |
12860 | |
12861 | If ARGS contains a condition, set COND_STRING to that condition | |
b4a5b78b | 12862 | (the memory needs to be deallocated after use). */ |
5845583d | 12863 | |
b4a5b78b JB |
12864 | static void |
12865 | catch_ada_assert_command_split (char *args, char **cond_string) | |
f7f9143b | 12866 | { |
5845583d | 12867 | args = skip_spaces (args); |
f7f9143b | 12868 | |
5845583d | 12869 | /* Check whether a condition was provided. */ |
61012eef | 12870 | if (startswith (args, "if") |
5845583d | 12871 | && (isspace (args[2]) || args[2] == '\0')) |
f7f9143b | 12872 | { |
5845583d | 12873 | args += 2; |
0fcd72ba | 12874 | args = skip_spaces (args); |
5845583d JB |
12875 | if (args[0] == '\0') |
12876 | error (_("condition missing after `if' keyword")); | |
12877 | *cond_string = xstrdup (args); | |
f7f9143b JB |
12878 | } |
12879 | ||
5845583d JB |
12880 | /* Otherwise, there should be no other argument at the end of |
12881 | the command. */ | |
12882 | else if (args[0] != '\0') | |
12883 | error (_("Junk at end of arguments.")); | |
f7f9143b JB |
12884 | } |
12885 | ||
9ac4176b PA |
12886 | /* Implement the "catch assert" command. */ |
12887 | ||
12888 | static void | |
12889 | catch_assert_command (char *arg, int from_tty, | |
12890 | struct cmd_list_element *command) | |
12891 | { | |
12892 | struct gdbarch *gdbarch = get_current_arch (); | |
12893 | int tempflag; | |
5845583d | 12894 | char *cond_string = NULL; |
9ac4176b PA |
12895 | |
12896 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
12897 | ||
12898 | if (!arg) | |
12899 | arg = ""; | |
b4a5b78b | 12900 | catch_ada_assert_command_split (arg, &cond_string); |
761269c8 | 12901 | create_ada_exception_catchpoint (gdbarch, ada_catch_assert, |
b4a5b78b | 12902 | NULL, cond_string, |
349774ef JB |
12903 | tempflag, 1 /* enabled */, |
12904 | from_tty); | |
9ac4176b | 12905 | } |
778865d3 JB |
12906 | |
12907 | /* Return non-zero if the symbol SYM is an Ada exception object. */ | |
12908 | ||
12909 | static int | |
12910 | ada_is_exception_sym (struct symbol *sym) | |
12911 | { | |
12912 | const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym)); | |
12913 | ||
12914 | return (SYMBOL_CLASS (sym) != LOC_TYPEDEF | |
12915 | && SYMBOL_CLASS (sym) != LOC_BLOCK | |
12916 | && SYMBOL_CLASS (sym) != LOC_CONST | |
12917 | && SYMBOL_CLASS (sym) != LOC_UNRESOLVED | |
12918 | && type_name != NULL && strcmp (type_name, "exception") == 0); | |
12919 | } | |
12920 | ||
12921 | /* Given a global symbol SYM, return non-zero iff SYM is a non-standard | |
12922 | Ada exception object. This matches all exceptions except the ones | |
12923 | defined by the Ada language. */ | |
12924 | ||
12925 | static int | |
12926 | ada_is_non_standard_exception_sym (struct symbol *sym) | |
12927 | { | |
12928 | int i; | |
12929 | ||
12930 | if (!ada_is_exception_sym (sym)) | |
12931 | return 0; | |
12932 | ||
12933 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
12934 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0) | |
12935 | return 0; /* A standard exception. */ | |
12936 | ||
12937 | /* Numeric_Error is also a standard exception, so exclude it. | |
12938 | See the STANDARD_EXC description for more details as to why | |
12939 | this exception is not listed in that array. */ | |
12940 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0) | |
12941 | return 0; | |
12942 | ||
12943 | return 1; | |
12944 | } | |
12945 | ||
12946 | /* A helper function for qsort, comparing two struct ada_exc_info | |
12947 | objects. | |
12948 | ||
12949 | The comparison is determined first by exception name, and then | |
12950 | by exception address. */ | |
12951 | ||
12952 | static int | |
12953 | compare_ada_exception_info (const void *a, const void *b) | |
12954 | { | |
12955 | const struct ada_exc_info *exc_a = (struct ada_exc_info *) a; | |
12956 | const struct ada_exc_info *exc_b = (struct ada_exc_info *) b; | |
12957 | int result; | |
12958 | ||
12959 | result = strcmp (exc_a->name, exc_b->name); | |
12960 | if (result != 0) | |
12961 | return result; | |
12962 | ||
12963 | if (exc_a->addr < exc_b->addr) | |
12964 | return -1; | |
12965 | if (exc_a->addr > exc_b->addr) | |
12966 | return 1; | |
12967 | ||
12968 | return 0; | |
12969 | } | |
12970 | ||
12971 | /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison | |
12972 | routine, but keeping the first SKIP elements untouched. | |
12973 | ||
12974 | All duplicates are also removed. */ | |
12975 | ||
12976 | static void | |
12977 | sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions, | |
12978 | int skip) | |
12979 | { | |
12980 | struct ada_exc_info *to_sort | |
12981 | = VEC_address (ada_exc_info, *exceptions) + skip; | |
12982 | int to_sort_len | |
12983 | = VEC_length (ada_exc_info, *exceptions) - skip; | |
12984 | int i, j; | |
12985 | ||
12986 | qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info), | |
12987 | compare_ada_exception_info); | |
12988 | ||
12989 | for (i = 1, j = 1; i < to_sort_len; i++) | |
12990 | if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0) | |
12991 | to_sort[j++] = to_sort[i]; | |
12992 | to_sort_len = j; | |
12993 | VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len); | |
12994 | } | |
12995 | ||
12996 | /* A function intended as the "name_matcher" callback in the struct | |
12997 | quick_symbol_functions' expand_symtabs_matching method. | |
12998 | ||
12999 | SEARCH_NAME is the symbol's search name. | |
13000 | ||
13001 | If USER_DATA is not NULL, it is a pointer to a regext_t object | |
13002 | used to match the symbol (by natural name). Otherwise, when USER_DATA | |
13003 | is null, no filtering is performed, and all symbols are a positive | |
13004 | match. */ | |
13005 | ||
13006 | static int | |
13007 | ada_exc_search_name_matches (const char *search_name, void *user_data) | |
13008 | { | |
13009 | regex_t *preg = user_data; | |
13010 | ||
13011 | if (preg == NULL) | |
13012 | return 1; | |
13013 | ||
13014 | /* In Ada, the symbol "search name" is a linkage name, whereas | |
13015 | the regular expression used to do the matching refers to | |
13016 | the natural name. So match against the decoded name. */ | |
13017 | return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0); | |
13018 | } | |
13019 | ||
13020 | /* Add all exceptions defined by the Ada standard whose name match | |
13021 | a regular expression. | |
13022 | ||
13023 | If PREG is not NULL, then this regexp_t object is used to | |
13024 | perform the symbol name matching. Otherwise, no name-based | |
13025 | filtering is performed. | |
13026 | ||
13027 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13028 | gets pushed. */ | |
13029 | ||
13030 | static void | |
13031 | ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions) | |
13032 | { | |
13033 | int i; | |
13034 | ||
13035 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
13036 | { | |
13037 | if (preg == NULL | |
13038 | || regexec (preg, standard_exc[i], 0, NULL, 0) == 0) | |
13039 | { | |
13040 | struct bound_minimal_symbol msymbol | |
13041 | = ada_lookup_simple_minsym (standard_exc[i]); | |
13042 | ||
13043 | if (msymbol.minsym != NULL) | |
13044 | { | |
13045 | struct ada_exc_info info | |
77e371c0 | 13046 | = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)}; |
778865d3 JB |
13047 | |
13048 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
13049 | } | |
13050 | } | |
13051 | } | |
13052 | } | |
13053 | ||
13054 | /* Add all Ada exceptions defined locally and accessible from the given | |
13055 | FRAME. | |
13056 | ||
13057 | If PREG is not NULL, then this regexp_t object is used to | |
13058 | perform the symbol name matching. Otherwise, no name-based | |
13059 | filtering is performed. | |
13060 | ||
13061 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13062 | gets pushed. */ | |
13063 | ||
13064 | static void | |
13065 | ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame, | |
13066 | VEC(ada_exc_info) **exceptions) | |
13067 | { | |
3977b71f | 13068 | const struct block *block = get_frame_block (frame, 0); |
778865d3 JB |
13069 | |
13070 | while (block != 0) | |
13071 | { | |
13072 | struct block_iterator iter; | |
13073 | struct symbol *sym; | |
13074 | ||
13075 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
13076 | { | |
13077 | switch (SYMBOL_CLASS (sym)) | |
13078 | { | |
13079 | case LOC_TYPEDEF: | |
13080 | case LOC_BLOCK: | |
13081 | case LOC_CONST: | |
13082 | break; | |
13083 | default: | |
13084 | if (ada_is_exception_sym (sym)) | |
13085 | { | |
13086 | struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym), | |
13087 | SYMBOL_VALUE_ADDRESS (sym)}; | |
13088 | ||
13089 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
13090 | } | |
13091 | } | |
13092 | } | |
13093 | if (BLOCK_FUNCTION (block) != NULL) | |
13094 | break; | |
13095 | block = BLOCK_SUPERBLOCK (block); | |
13096 | } | |
13097 | } | |
13098 | ||
13099 | /* Add all exceptions defined globally whose name name match | |
13100 | a regular expression, excluding standard exceptions. | |
13101 | ||
13102 | The reason we exclude standard exceptions is that they need | |
13103 | to be handled separately: Standard exceptions are defined inside | |
13104 | a runtime unit which is normally not compiled with debugging info, | |
13105 | and thus usually do not show up in our symbol search. However, | |
13106 | if the unit was in fact built with debugging info, we need to | |
13107 | exclude them because they would duplicate the entry we found | |
13108 | during the special loop that specifically searches for those | |
13109 | standard exceptions. | |
13110 | ||
13111 | If PREG is not NULL, then this regexp_t object is used to | |
13112 | perform the symbol name matching. Otherwise, no name-based | |
13113 | filtering is performed. | |
13114 | ||
13115 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13116 | gets pushed. */ | |
13117 | ||
13118 | static void | |
13119 | ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions) | |
13120 | { | |
13121 | struct objfile *objfile; | |
43f3e411 | 13122 | struct compunit_symtab *s; |
778865d3 | 13123 | |
276d885b | 13124 | expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL, |
bb4142cf | 13125 | VARIABLES_DOMAIN, preg); |
778865d3 | 13126 | |
43f3e411 | 13127 | ALL_COMPUNITS (objfile, s) |
778865d3 | 13128 | { |
43f3e411 | 13129 | const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s); |
778865d3 JB |
13130 | int i; |
13131 | ||
13132 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) | |
13133 | { | |
13134 | struct block *b = BLOCKVECTOR_BLOCK (bv, i); | |
13135 | struct block_iterator iter; | |
13136 | struct symbol *sym; | |
13137 | ||
13138 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
13139 | if (ada_is_non_standard_exception_sym (sym) | |
13140 | && (preg == NULL | |
13141 | || regexec (preg, SYMBOL_NATURAL_NAME (sym), | |
13142 | 0, NULL, 0) == 0)) | |
13143 | { | |
13144 | struct ada_exc_info info | |
13145 | = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)}; | |
13146 | ||
13147 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
13148 | } | |
13149 | } | |
13150 | } | |
13151 | } | |
13152 | ||
13153 | /* Implements ada_exceptions_list with the regular expression passed | |
13154 | as a regex_t, rather than a string. | |
13155 | ||
13156 | If not NULL, PREG is used to filter out exceptions whose names | |
13157 | do not match. Otherwise, all exceptions are listed. */ | |
13158 | ||
13159 | static VEC(ada_exc_info) * | |
13160 | ada_exceptions_list_1 (regex_t *preg) | |
13161 | { | |
13162 | VEC(ada_exc_info) *result = NULL; | |
13163 | struct cleanup *old_chain | |
13164 | = make_cleanup (VEC_cleanup (ada_exc_info), &result); | |
13165 | int prev_len; | |
13166 | ||
13167 | /* First, list the known standard exceptions. These exceptions | |
13168 | need to be handled separately, as they are usually defined in | |
13169 | runtime units that have been compiled without debugging info. */ | |
13170 | ||
13171 | ada_add_standard_exceptions (preg, &result); | |
13172 | ||
13173 | /* Next, find all exceptions whose scope is local and accessible | |
13174 | from the currently selected frame. */ | |
13175 | ||
13176 | if (has_stack_frames ()) | |
13177 | { | |
13178 | prev_len = VEC_length (ada_exc_info, result); | |
13179 | ada_add_exceptions_from_frame (preg, get_selected_frame (NULL), | |
13180 | &result); | |
13181 | if (VEC_length (ada_exc_info, result) > prev_len) | |
13182 | sort_remove_dups_ada_exceptions_list (&result, prev_len); | |
13183 | } | |
13184 | ||
13185 | /* Add all exceptions whose scope is global. */ | |
13186 | ||
13187 | prev_len = VEC_length (ada_exc_info, result); | |
13188 | ada_add_global_exceptions (preg, &result); | |
13189 | if (VEC_length (ada_exc_info, result) > prev_len) | |
13190 | sort_remove_dups_ada_exceptions_list (&result, prev_len); | |
13191 | ||
13192 | discard_cleanups (old_chain); | |
13193 | return result; | |
13194 | } | |
13195 | ||
13196 | /* Return a vector of ada_exc_info. | |
13197 | ||
13198 | If REGEXP is NULL, all exceptions are included in the result. | |
13199 | Otherwise, it should contain a valid regular expression, | |
13200 | and only the exceptions whose names match that regular expression | |
13201 | are included in the result. | |
13202 | ||
13203 | The exceptions are sorted in the following order: | |
13204 | - Standard exceptions (defined by the Ada language), in | |
13205 | alphabetical order; | |
13206 | - Exceptions only visible from the current frame, in | |
13207 | alphabetical order; | |
13208 | - Exceptions whose scope is global, in alphabetical order. */ | |
13209 | ||
13210 | VEC(ada_exc_info) * | |
13211 | ada_exceptions_list (const char *regexp) | |
13212 | { | |
13213 | VEC(ada_exc_info) *result = NULL; | |
13214 | struct cleanup *old_chain = NULL; | |
13215 | regex_t reg; | |
13216 | ||
13217 | if (regexp != NULL) | |
13218 | old_chain = compile_rx_or_error (®, regexp, | |
13219 | _("invalid regular expression")); | |
13220 | ||
13221 | result = ada_exceptions_list_1 (regexp != NULL ? ® : NULL); | |
13222 | ||
13223 | if (old_chain != NULL) | |
13224 | do_cleanups (old_chain); | |
13225 | return result; | |
13226 | } | |
13227 | ||
13228 | /* Implement the "info exceptions" command. */ | |
13229 | ||
13230 | static void | |
13231 | info_exceptions_command (char *regexp, int from_tty) | |
13232 | { | |
13233 | VEC(ada_exc_info) *exceptions; | |
13234 | struct cleanup *cleanup; | |
13235 | struct gdbarch *gdbarch = get_current_arch (); | |
13236 | int ix; | |
13237 | struct ada_exc_info *info; | |
13238 | ||
13239 | exceptions = ada_exceptions_list (regexp); | |
13240 | cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions); | |
13241 | ||
13242 | if (regexp != NULL) | |
13243 | printf_filtered | |
13244 | (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp); | |
13245 | else | |
13246 | printf_filtered (_("All defined Ada exceptions:\n")); | |
13247 | ||
13248 | for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++) | |
13249 | printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr)); | |
13250 | ||
13251 | do_cleanups (cleanup); | |
13252 | } | |
13253 | ||
4c4b4cd2 PH |
13254 | /* Operators */ |
13255 | /* Information about operators given special treatment in functions | |
13256 | below. */ | |
13257 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
13258 | ||
13259 | #define ADA_OPERATORS \ | |
13260 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
13261 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
13262 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
13263 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
13264 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
13265 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
13266 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
13267 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
13268 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
13269 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
13270 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
13271 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
13272 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
13273 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
13274 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
13275 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
13276 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
13277 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
13278 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
13279 | |
13280 | static void | |
554794dc SDJ |
13281 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
13282 | int *argsp) | |
4c4b4cd2 PH |
13283 | { |
13284 | switch (exp->elts[pc - 1].opcode) | |
13285 | { | |
76a01679 | 13286 | default: |
4c4b4cd2 PH |
13287 | operator_length_standard (exp, pc, oplenp, argsp); |
13288 | break; | |
13289 | ||
13290 | #define OP_DEFN(op, len, args, binop) \ | |
13291 | case op: *oplenp = len; *argsp = args; break; | |
13292 | ADA_OPERATORS; | |
13293 | #undef OP_DEFN | |
52ce6436 PH |
13294 | |
13295 | case OP_AGGREGATE: | |
13296 | *oplenp = 3; | |
13297 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
13298 | break; | |
13299 | ||
13300 | case OP_CHOICES: | |
13301 | *oplenp = 3; | |
13302 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
13303 | break; | |
4c4b4cd2 PH |
13304 | } |
13305 | } | |
13306 | ||
c0201579 JK |
13307 | /* Implementation of the exp_descriptor method operator_check. */ |
13308 | ||
13309 | static int | |
13310 | ada_operator_check (struct expression *exp, int pos, | |
13311 | int (*objfile_func) (struct objfile *objfile, void *data), | |
13312 | void *data) | |
13313 | { | |
13314 | const union exp_element *const elts = exp->elts; | |
13315 | struct type *type = NULL; | |
13316 | ||
13317 | switch (elts[pos].opcode) | |
13318 | { | |
13319 | case UNOP_IN_RANGE: | |
13320 | case UNOP_QUAL: | |
13321 | type = elts[pos + 1].type; | |
13322 | break; | |
13323 | ||
13324 | default: | |
13325 | return operator_check_standard (exp, pos, objfile_func, data); | |
13326 | } | |
13327 | ||
13328 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
13329 | ||
13330 | if (type && TYPE_OBJFILE (type) | |
13331 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
13332 | return 1; | |
13333 | ||
13334 | return 0; | |
13335 | } | |
13336 | ||
4c4b4cd2 PH |
13337 | static char * |
13338 | ada_op_name (enum exp_opcode opcode) | |
13339 | { | |
13340 | switch (opcode) | |
13341 | { | |
76a01679 | 13342 | default: |
4c4b4cd2 | 13343 | return op_name_standard (opcode); |
52ce6436 | 13344 | |
4c4b4cd2 PH |
13345 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
13346 | ADA_OPERATORS; | |
13347 | #undef OP_DEFN | |
52ce6436 PH |
13348 | |
13349 | case OP_AGGREGATE: | |
13350 | return "OP_AGGREGATE"; | |
13351 | case OP_CHOICES: | |
13352 | return "OP_CHOICES"; | |
13353 | case OP_NAME: | |
13354 | return "OP_NAME"; | |
4c4b4cd2 PH |
13355 | } |
13356 | } | |
13357 | ||
13358 | /* As for operator_length, but assumes PC is pointing at the first | |
13359 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 13360 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
13361 | |
13362 | static void | |
76a01679 JB |
13363 | ada_forward_operator_length (struct expression *exp, int pc, |
13364 | int *oplenp, int *argsp) | |
4c4b4cd2 | 13365 | { |
76a01679 | 13366 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
13367 | { |
13368 | default: | |
13369 | *oplenp = *argsp = 0; | |
13370 | break; | |
52ce6436 | 13371 | |
4c4b4cd2 PH |
13372 | #define OP_DEFN(op, len, args, binop) \ |
13373 | case op: *oplenp = len; *argsp = args; break; | |
13374 | ADA_OPERATORS; | |
13375 | #undef OP_DEFN | |
52ce6436 PH |
13376 | |
13377 | case OP_AGGREGATE: | |
13378 | *oplenp = 3; | |
13379 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
13380 | break; | |
13381 | ||
13382 | case OP_CHOICES: | |
13383 | *oplenp = 3; | |
13384 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
13385 | break; | |
13386 | ||
13387 | case OP_STRING: | |
13388 | case OP_NAME: | |
13389 | { | |
13390 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 13391 | |
52ce6436 PH |
13392 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
13393 | *argsp = 0; | |
13394 | break; | |
13395 | } | |
4c4b4cd2 PH |
13396 | } |
13397 | } | |
13398 | ||
13399 | static int | |
13400 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
13401 | { | |
13402 | enum exp_opcode op = exp->elts[elt].opcode; | |
13403 | int oplen, nargs; | |
13404 | int pc = elt; | |
13405 | int i; | |
76a01679 | 13406 | |
4c4b4cd2 PH |
13407 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
13408 | ||
76a01679 | 13409 | switch (op) |
4c4b4cd2 | 13410 | { |
76a01679 | 13411 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
13412 | case OP_ATR_FIRST: |
13413 | case OP_ATR_LAST: | |
13414 | case OP_ATR_LENGTH: | |
13415 | case OP_ATR_IMAGE: | |
13416 | case OP_ATR_MAX: | |
13417 | case OP_ATR_MIN: | |
13418 | case OP_ATR_MODULUS: | |
13419 | case OP_ATR_POS: | |
13420 | case OP_ATR_SIZE: | |
13421 | case OP_ATR_TAG: | |
13422 | case OP_ATR_VAL: | |
13423 | break; | |
13424 | ||
13425 | case UNOP_IN_RANGE: | |
13426 | case UNOP_QUAL: | |
323e0a4a AC |
13427 | /* XXX: gdb_sprint_host_address, type_sprint */ |
13428 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
13429 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
13430 | fprintf_filtered (stream, " ("); | |
13431 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
13432 | fprintf_filtered (stream, ")"); | |
13433 | break; | |
13434 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
13435 | fprintf_filtered (stream, " (%d)", |
13436 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
13437 | break; |
13438 | case TERNOP_IN_RANGE: | |
13439 | break; | |
13440 | ||
52ce6436 PH |
13441 | case OP_AGGREGATE: |
13442 | case OP_OTHERS: | |
13443 | case OP_DISCRETE_RANGE: | |
13444 | case OP_POSITIONAL: | |
13445 | case OP_CHOICES: | |
13446 | break; | |
13447 | ||
13448 | case OP_NAME: | |
13449 | case OP_STRING: | |
13450 | { | |
13451 | char *name = &exp->elts[elt + 2].string; | |
13452 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 13453 | |
52ce6436 PH |
13454 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
13455 | break; | |
13456 | } | |
13457 | ||
4c4b4cd2 PH |
13458 | default: |
13459 | return dump_subexp_body_standard (exp, stream, elt); | |
13460 | } | |
13461 | ||
13462 | elt += oplen; | |
13463 | for (i = 0; i < nargs; i += 1) | |
13464 | elt = dump_subexp (exp, stream, elt); | |
13465 | ||
13466 | return elt; | |
13467 | } | |
13468 | ||
13469 | /* The Ada extension of print_subexp (q.v.). */ | |
13470 | ||
76a01679 JB |
13471 | static void |
13472 | ada_print_subexp (struct expression *exp, int *pos, | |
13473 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 13474 | { |
52ce6436 | 13475 | int oplen, nargs, i; |
4c4b4cd2 PH |
13476 | int pc = *pos; |
13477 | enum exp_opcode op = exp->elts[pc].opcode; | |
13478 | ||
13479 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
13480 | ||
52ce6436 | 13481 | *pos += oplen; |
4c4b4cd2 PH |
13482 | switch (op) |
13483 | { | |
13484 | default: | |
52ce6436 | 13485 | *pos -= oplen; |
4c4b4cd2 PH |
13486 | print_subexp_standard (exp, pos, stream, prec); |
13487 | return; | |
13488 | ||
13489 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
13490 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
13491 | return; | |
13492 | ||
13493 | case BINOP_IN_BOUNDS: | |
323e0a4a | 13494 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13495 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13496 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 13497 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13498 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 13499 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
13500 | fprintf_filtered (stream, "(%ld)", |
13501 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
13502 | return; |
13503 | ||
13504 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 13505 | if (prec >= PREC_EQUAL) |
76a01679 | 13506 | fputs_filtered ("(", stream); |
323e0a4a | 13507 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13508 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13509 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
13510 | print_subexp (exp, pos, stream, PREC_EQUAL); |
13511 | fputs_filtered (" .. ", stream); | |
13512 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
13513 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
13514 | fputs_filtered (")", stream); |
13515 | return; | |
4c4b4cd2 PH |
13516 | |
13517 | case OP_ATR_FIRST: | |
13518 | case OP_ATR_LAST: | |
13519 | case OP_ATR_LENGTH: | |
13520 | case OP_ATR_IMAGE: | |
13521 | case OP_ATR_MAX: | |
13522 | case OP_ATR_MIN: | |
13523 | case OP_ATR_MODULUS: | |
13524 | case OP_ATR_POS: | |
13525 | case OP_ATR_SIZE: | |
13526 | case OP_ATR_TAG: | |
13527 | case OP_ATR_VAL: | |
4c4b4cd2 | 13528 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
13529 | { |
13530 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
79d43c61 TT |
13531 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0, |
13532 | &type_print_raw_options); | |
76a01679 JB |
13533 | *pos += 3; |
13534 | } | |
4c4b4cd2 | 13535 | else |
76a01679 | 13536 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
13537 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
13538 | if (nargs > 1) | |
76a01679 JB |
13539 | { |
13540 | int tem; | |
5b4ee69b | 13541 | |
76a01679 JB |
13542 | for (tem = 1; tem < nargs; tem += 1) |
13543 | { | |
13544 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
13545 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
13546 | } | |
13547 | fputs_filtered (")", stream); | |
13548 | } | |
4c4b4cd2 | 13549 | return; |
14f9c5c9 | 13550 | |
4c4b4cd2 | 13551 | case UNOP_QUAL: |
4c4b4cd2 PH |
13552 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
13553 | fputs_filtered ("'(", stream); | |
13554 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
13555 | fputs_filtered (")", stream); | |
13556 | return; | |
14f9c5c9 | 13557 | |
4c4b4cd2 | 13558 | case UNOP_IN_RANGE: |
323e0a4a | 13559 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13560 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13561 | fputs_filtered (" in ", stream); |
79d43c61 TT |
13562 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0, |
13563 | &type_print_raw_options); | |
4c4b4cd2 | 13564 | return; |
52ce6436 PH |
13565 | |
13566 | case OP_DISCRETE_RANGE: | |
13567 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13568 | fputs_filtered ("..", stream); | |
13569 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13570 | return; | |
13571 | ||
13572 | case OP_OTHERS: | |
13573 | fputs_filtered ("others => ", stream); | |
13574 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13575 | return; | |
13576 | ||
13577 | case OP_CHOICES: | |
13578 | for (i = 0; i < nargs-1; i += 1) | |
13579 | { | |
13580 | if (i > 0) | |
13581 | fputs_filtered ("|", stream); | |
13582 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13583 | } | |
13584 | fputs_filtered (" => ", stream); | |
13585 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13586 | return; | |
13587 | ||
13588 | case OP_POSITIONAL: | |
13589 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13590 | return; | |
13591 | ||
13592 | case OP_AGGREGATE: | |
13593 | fputs_filtered ("(", stream); | |
13594 | for (i = 0; i < nargs; i += 1) | |
13595 | { | |
13596 | if (i > 0) | |
13597 | fputs_filtered (", ", stream); | |
13598 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13599 | } | |
13600 | fputs_filtered (")", stream); | |
13601 | return; | |
4c4b4cd2 PH |
13602 | } |
13603 | } | |
14f9c5c9 AS |
13604 | |
13605 | /* Table mapping opcodes into strings for printing operators | |
13606 | and precedences of the operators. */ | |
13607 | ||
d2e4a39e AS |
13608 | static const struct op_print ada_op_print_tab[] = { |
13609 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
13610 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
13611 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
13612 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
13613 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
13614 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
13615 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
13616 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
13617 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
13618 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
13619 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
13620 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
13621 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
13622 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
13623 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
13624 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
13625 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
13626 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
13627 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
13628 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
13629 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
13630 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
13631 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
13632 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
13633 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
13634 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
13635 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
13636 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
13637 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
13638 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
13639 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
f486487f | 13640 | {NULL, OP_NULL, PREC_SUFFIX, 0} |
14f9c5c9 AS |
13641 | }; |
13642 | \f | |
72d5681a PH |
13643 | enum ada_primitive_types { |
13644 | ada_primitive_type_int, | |
13645 | ada_primitive_type_long, | |
13646 | ada_primitive_type_short, | |
13647 | ada_primitive_type_char, | |
13648 | ada_primitive_type_float, | |
13649 | ada_primitive_type_double, | |
13650 | ada_primitive_type_void, | |
13651 | ada_primitive_type_long_long, | |
13652 | ada_primitive_type_long_double, | |
13653 | ada_primitive_type_natural, | |
13654 | ada_primitive_type_positive, | |
13655 | ada_primitive_type_system_address, | |
13656 | nr_ada_primitive_types | |
13657 | }; | |
6c038f32 PH |
13658 | |
13659 | static void | |
d4a9a881 | 13660 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
13661 | struct language_arch_info *lai) |
13662 | { | |
d4a9a881 | 13663 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 13664 | |
72d5681a | 13665 | lai->primitive_type_vector |
d4a9a881 | 13666 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 13667 | struct type *); |
e9bb382b UW |
13668 | |
13669 | lai->primitive_type_vector [ada_primitive_type_int] | |
13670 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13671 | 0, "integer"); | |
13672 | lai->primitive_type_vector [ada_primitive_type_long] | |
13673 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
13674 | 0, "long_integer"); | |
13675 | lai->primitive_type_vector [ada_primitive_type_short] | |
13676 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
13677 | 0, "short_integer"); | |
13678 | lai->string_char_type | |
13679 | = lai->primitive_type_vector [ada_primitive_type_char] | |
13680 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); | |
13681 | lai->primitive_type_vector [ada_primitive_type_float] | |
13682 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
13683 | "float", NULL); | |
13684 | lai->primitive_type_vector [ada_primitive_type_double] | |
13685 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
13686 | "long_float", NULL); | |
13687 | lai->primitive_type_vector [ada_primitive_type_long_long] | |
13688 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
13689 | 0, "long_long_integer"); | |
13690 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
13691 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
13692 | "long_long_float", NULL); | |
13693 | lai->primitive_type_vector [ada_primitive_type_natural] | |
13694 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13695 | 0, "natural"); | |
13696 | lai->primitive_type_vector [ada_primitive_type_positive] | |
13697 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13698 | 0, "positive"); | |
13699 | lai->primitive_type_vector [ada_primitive_type_void] | |
13700 | = builtin->builtin_void; | |
13701 | ||
13702 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
13703 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void")); | |
72d5681a PH |
13704 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
13705 | = "system__address"; | |
fbb06eb1 | 13706 | |
47e729a8 | 13707 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 13708 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 13709 | } |
6c038f32 PH |
13710 | \f |
13711 | /* Language vector */ | |
13712 | ||
13713 | /* Not really used, but needed in the ada_language_defn. */ | |
13714 | ||
13715 | static void | |
6c7a06a3 | 13716 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 13717 | { |
6c7a06a3 | 13718 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
13719 | } |
13720 | ||
13721 | static int | |
410a0ff2 | 13722 | parse (struct parser_state *ps) |
6c038f32 PH |
13723 | { |
13724 | warnings_issued = 0; | |
410a0ff2 | 13725 | return ada_parse (ps); |
6c038f32 PH |
13726 | } |
13727 | ||
13728 | static const struct exp_descriptor ada_exp_descriptor = { | |
13729 | ada_print_subexp, | |
13730 | ada_operator_length, | |
c0201579 | 13731 | ada_operator_check, |
6c038f32 PH |
13732 | ada_op_name, |
13733 | ada_dump_subexp_body, | |
13734 | ada_evaluate_subexp | |
13735 | }; | |
13736 | ||
1a119f36 | 13737 | /* Implement the "la_get_symbol_name_cmp" language_defn method |
74ccd7f5 JB |
13738 | for Ada. */ |
13739 | ||
1a119f36 JB |
13740 | static symbol_name_cmp_ftype |
13741 | ada_get_symbol_name_cmp (const char *lookup_name) | |
74ccd7f5 JB |
13742 | { |
13743 | if (should_use_wild_match (lookup_name)) | |
13744 | return wild_match; | |
13745 | else | |
13746 | return compare_names; | |
13747 | } | |
13748 | ||
a5ee536b JB |
13749 | /* Implement the "la_read_var_value" language_defn method for Ada. */ |
13750 | ||
13751 | static struct value * | |
13752 | ada_read_var_value (struct symbol *var, struct frame_info *frame) | |
13753 | { | |
3977b71f | 13754 | const struct block *frame_block = NULL; |
a5ee536b JB |
13755 | struct symbol *renaming_sym = NULL; |
13756 | ||
13757 | /* The only case where default_read_var_value is not sufficient | |
13758 | is when VAR is a renaming... */ | |
13759 | if (frame) | |
13760 | frame_block = get_frame_block (frame, NULL); | |
13761 | if (frame_block) | |
13762 | renaming_sym = ada_find_renaming_symbol (var, frame_block); | |
13763 | if (renaming_sym != NULL) | |
13764 | return ada_read_renaming_var_value (renaming_sym, frame_block); | |
13765 | ||
13766 | /* This is a typical case where we expect the default_read_var_value | |
13767 | function to work. */ | |
13768 | return default_read_var_value (var, frame); | |
13769 | } | |
13770 | ||
6c038f32 PH |
13771 | const struct language_defn ada_language_defn = { |
13772 | "ada", /* Language name */ | |
6abde28f | 13773 | "Ada", |
6c038f32 | 13774 | language_ada, |
6c038f32 | 13775 | range_check_off, |
6c038f32 PH |
13776 | case_sensitive_on, /* Yes, Ada is case-insensitive, but |
13777 | that's not quite what this means. */ | |
6c038f32 | 13778 | array_row_major, |
9a044a89 | 13779 | macro_expansion_no, |
6c038f32 PH |
13780 | &ada_exp_descriptor, |
13781 | parse, | |
13782 | ada_error, | |
13783 | resolve, | |
13784 | ada_printchar, /* Print a character constant */ | |
13785 | ada_printstr, /* Function to print string constant */ | |
13786 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 13787 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 13788 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
13789 | ada_val_print, /* Print a value using appropriate syntax */ |
13790 | ada_value_print, /* Print a top-level value */ | |
a5ee536b | 13791 | ada_read_var_value, /* la_read_var_value */ |
6c038f32 | 13792 | NULL, /* Language specific skip_trampoline */ |
2b2d9e11 | 13793 | NULL, /* name_of_this */ |
6c038f32 PH |
13794 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
13795 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
13796 | ada_la_decode, /* Language specific symbol demangler */ | |
0963b4bd MS |
13797 | NULL, /* Language specific |
13798 | class_name_from_physname */ | |
6c038f32 PH |
13799 | ada_op_print_tab, /* expression operators for printing */ |
13800 | 0, /* c-style arrays */ | |
13801 | 1, /* String lower bound */ | |
6c038f32 | 13802 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 13803 | ada_make_symbol_completion_list, |
72d5681a | 13804 | ada_language_arch_info, |
e79af960 | 13805 | ada_print_array_index, |
41f1b697 | 13806 | default_pass_by_reference, |
ae6a3a4c | 13807 | c_get_string, |
1a119f36 | 13808 | ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */ |
f8eba3c6 | 13809 | ada_iterate_over_symbols, |
a53b64ea | 13810 | &ada_varobj_ops, |
bb2ec1b3 TT |
13811 | NULL, |
13812 | NULL, | |
6c038f32 PH |
13813 | LANG_MAGIC |
13814 | }; | |
13815 | ||
2c0b251b PA |
13816 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
13817 | extern initialize_file_ftype _initialize_ada_language; | |
13818 | ||
5bf03f13 JB |
13819 | /* Command-list for the "set/show ada" prefix command. */ |
13820 | static struct cmd_list_element *set_ada_list; | |
13821 | static struct cmd_list_element *show_ada_list; | |
13822 | ||
13823 | /* Implement the "set ada" prefix command. */ | |
13824 | ||
13825 | static void | |
13826 | set_ada_command (char *arg, int from_tty) | |
13827 | { | |
13828 | printf_unfiltered (_(\ | |
13829 | "\"set ada\" must be followed by the name of a setting.\n")); | |
635c7e8a | 13830 | help_list (set_ada_list, "set ada ", all_commands, gdb_stdout); |
5bf03f13 JB |
13831 | } |
13832 | ||
13833 | /* Implement the "show ada" prefix command. */ | |
13834 | ||
13835 | static void | |
13836 | show_ada_command (char *args, int from_tty) | |
13837 | { | |
13838 | cmd_show_list (show_ada_list, from_tty, ""); | |
13839 | } | |
13840 | ||
2060206e PA |
13841 | static void |
13842 | initialize_ada_catchpoint_ops (void) | |
13843 | { | |
13844 | struct breakpoint_ops *ops; | |
13845 | ||
13846 | initialize_breakpoint_ops (); | |
13847 | ||
13848 | ops = &catch_exception_breakpoint_ops; | |
13849 | *ops = bkpt_breakpoint_ops; | |
13850 | ops->dtor = dtor_catch_exception; | |
13851 | ops->allocate_location = allocate_location_catch_exception; | |
13852 | ops->re_set = re_set_catch_exception; | |
13853 | ops->check_status = check_status_catch_exception; | |
13854 | ops->print_it = print_it_catch_exception; | |
13855 | ops->print_one = print_one_catch_exception; | |
13856 | ops->print_mention = print_mention_catch_exception; | |
13857 | ops->print_recreate = print_recreate_catch_exception; | |
13858 | ||
13859 | ops = &catch_exception_unhandled_breakpoint_ops; | |
13860 | *ops = bkpt_breakpoint_ops; | |
13861 | ops->dtor = dtor_catch_exception_unhandled; | |
13862 | ops->allocate_location = allocate_location_catch_exception_unhandled; | |
13863 | ops->re_set = re_set_catch_exception_unhandled; | |
13864 | ops->check_status = check_status_catch_exception_unhandled; | |
13865 | ops->print_it = print_it_catch_exception_unhandled; | |
13866 | ops->print_one = print_one_catch_exception_unhandled; | |
13867 | ops->print_mention = print_mention_catch_exception_unhandled; | |
13868 | ops->print_recreate = print_recreate_catch_exception_unhandled; | |
13869 | ||
13870 | ops = &catch_assert_breakpoint_ops; | |
13871 | *ops = bkpt_breakpoint_ops; | |
13872 | ops->dtor = dtor_catch_assert; | |
13873 | ops->allocate_location = allocate_location_catch_assert; | |
13874 | ops->re_set = re_set_catch_assert; | |
13875 | ops->check_status = check_status_catch_assert; | |
13876 | ops->print_it = print_it_catch_assert; | |
13877 | ops->print_one = print_one_catch_assert; | |
13878 | ops->print_mention = print_mention_catch_assert; | |
13879 | ops->print_recreate = print_recreate_catch_assert; | |
13880 | } | |
13881 | ||
3d9434b5 JB |
13882 | /* This module's 'new_objfile' observer. */ |
13883 | ||
13884 | static void | |
13885 | ada_new_objfile_observer (struct objfile *objfile) | |
13886 | { | |
13887 | ada_clear_symbol_cache (); | |
13888 | } | |
13889 | ||
13890 | /* This module's 'free_objfile' observer. */ | |
13891 | ||
13892 | static void | |
13893 | ada_free_objfile_observer (struct objfile *objfile) | |
13894 | { | |
13895 | ada_clear_symbol_cache (); | |
13896 | } | |
13897 | ||
d2e4a39e | 13898 | void |
6c038f32 | 13899 | _initialize_ada_language (void) |
14f9c5c9 | 13900 | { |
6c038f32 PH |
13901 | add_language (&ada_language_defn); |
13902 | ||
2060206e PA |
13903 | initialize_ada_catchpoint_ops (); |
13904 | ||
5bf03f13 JB |
13905 | add_prefix_cmd ("ada", no_class, set_ada_command, |
13906 | _("Prefix command for changing Ada-specfic settings"), | |
13907 | &set_ada_list, "set ada ", 0, &setlist); | |
13908 | ||
13909 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
13910 | _("Generic command for showing Ada-specific settings."), | |
13911 | &show_ada_list, "show ada ", 0, &showlist); | |
13912 | ||
13913 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
13914 | &trust_pad_over_xvs, _("\ | |
13915 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
13916 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
13917 | _("\ | |
13918 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
13919 | should normally trust the contents of PAD types, but certain older versions\n\ | |
13920 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
13921 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
13922 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
13923 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
13924 | this option to \"off\" unless necessary."), | |
13925 | NULL, NULL, &set_ada_list, &show_ada_list); | |
13926 | ||
9ac4176b PA |
13927 | add_catch_command ("exception", _("\ |
13928 | Catch Ada exceptions, when raised.\n\ | |
13929 | With an argument, catch only exceptions with the given name."), | |
13930 | catch_ada_exception_command, | |
13931 | NULL, | |
13932 | CATCH_PERMANENT, | |
13933 | CATCH_TEMPORARY); | |
13934 | add_catch_command ("assert", _("\ | |
13935 | Catch failed Ada assertions, when raised.\n\ | |
13936 | With an argument, catch only exceptions with the given name."), | |
13937 | catch_assert_command, | |
13938 | NULL, | |
13939 | CATCH_PERMANENT, | |
13940 | CATCH_TEMPORARY); | |
13941 | ||
6c038f32 | 13942 | varsize_limit = 65536; |
6c038f32 | 13943 | |
778865d3 JB |
13944 | add_info ("exceptions", info_exceptions_command, |
13945 | _("\ | |
13946 | List all Ada exception names.\n\ | |
13947 | If a regular expression is passed as an argument, only those matching\n\ | |
13948 | the regular expression are listed.")); | |
13949 | ||
c6044dd1 JB |
13950 | add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd, |
13951 | _("Set Ada maintenance-related variables."), | |
13952 | &maint_set_ada_cmdlist, "maintenance set ada ", | |
13953 | 0/*allow-unknown*/, &maintenance_set_cmdlist); | |
13954 | ||
13955 | add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd, | |
13956 | _("Show Ada maintenance-related variables"), | |
13957 | &maint_show_ada_cmdlist, "maintenance show ada ", | |
13958 | 0/*allow-unknown*/, &maintenance_show_cmdlist); | |
13959 | ||
13960 | add_setshow_boolean_cmd | |
13961 | ("ignore-descriptive-types", class_maintenance, | |
13962 | &ada_ignore_descriptive_types_p, | |
13963 | _("Set whether descriptive types generated by GNAT should be ignored."), | |
13964 | _("Show whether descriptive types generated by GNAT should be ignored."), | |
13965 | _("\ | |
13966 | When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\ | |
13967 | DWARF attribute."), | |
13968 | NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist); | |
13969 | ||
6c038f32 PH |
13970 | obstack_init (&symbol_list_obstack); |
13971 | ||
13972 | decoded_names_store = htab_create_alloc | |
13973 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
13974 | NULL, xcalloc, xfree); | |
6b69afc4 | 13975 | |
3d9434b5 JB |
13976 | /* The ada-lang observers. */ |
13977 | observer_attach_new_objfile (ada_new_objfile_observer); | |
13978 | observer_attach_free_objfile (ada_free_objfile_observer); | |
e802dbe0 | 13979 | observer_attach_inferior_exit (ada_inferior_exit); |
ee01b665 JB |
13980 | |
13981 | /* Setup various context-specific data. */ | |
e802dbe0 | 13982 | ada_inferior_data |
8e260fc0 | 13983 | = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup); |
ee01b665 JB |
13984 | ada_pspace_data_handle |
13985 | = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup); | |
14f9c5c9 | 13986 | } |