]>
Commit | Line | Data |
---|---|---|
6e681866 | 1 | /* Ada language support routines for GDB, the GNU debugger. |
10a2c479 | 2 | |
e2882c85 | 3 | Copyright (C) 1992-2018 Free Software Foundation, Inc. |
14f9c5c9 | 4 | |
a9762ec7 | 5 | This file is part of GDB. |
14f9c5c9 | 6 | |
a9762ec7 JB |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
14f9c5c9 | 11 | |
a9762ec7 JB |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
14f9c5c9 | 16 | |
a9762ec7 JB |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 19 | |
96d887e8 | 20 | |
4c4b4cd2 | 21 | #include "defs.h" |
14f9c5c9 | 22 | #include <ctype.h> |
14f9c5c9 | 23 | #include "demangle.h" |
4c4b4cd2 PH |
24 | #include "gdb_regex.h" |
25 | #include "frame.h" | |
14f9c5c9 AS |
26 | #include "symtab.h" |
27 | #include "gdbtypes.h" | |
28 | #include "gdbcmd.h" | |
29 | #include "expression.h" | |
30 | #include "parser-defs.h" | |
31 | #include "language.h" | |
a53b64ea | 32 | #include "varobj.h" |
14f9c5c9 AS |
33 | #include "c-lang.h" |
34 | #include "inferior.h" | |
35 | #include "symfile.h" | |
36 | #include "objfiles.h" | |
37 | #include "breakpoint.h" | |
38 | #include "gdbcore.h" | |
4c4b4cd2 PH |
39 | #include "hashtab.h" |
40 | #include "gdb_obstack.h" | |
14f9c5c9 | 41 | #include "ada-lang.h" |
4c4b4cd2 | 42 | #include "completer.h" |
53ce3c39 | 43 | #include <sys/stat.h> |
14f9c5c9 | 44 | #include "ui-out.h" |
fe898f56 | 45 | #include "block.h" |
04714b91 | 46 | #include "infcall.h" |
de4f826b | 47 | #include "dictionary.h" |
f7f9143b JB |
48 | #include "annotate.h" |
49 | #include "valprint.h" | |
9bbc9174 | 50 | #include "source.h" |
76727919 | 51 | #include "observable.h" |
2ba95b9b | 52 | #include "vec.h" |
692465f1 | 53 | #include "stack.h" |
fa864999 | 54 | #include "gdb_vecs.h" |
79d43c61 | 55 | #include "typeprint.h" |
22cee43f | 56 | #include "namespace.h" |
14f9c5c9 | 57 | |
ccefe4c4 | 58 | #include "psymtab.h" |
40bc484c | 59 | #include "value.h" |
956a9fb9 | 60 | #include "mi/mi-common.h" |
9ac4176b | 61 | #include "arch-utils.h" |
0fcd72ba | 62 | #include "cli/cli-utils.h" |
14bc53a8 | 63 | #include "common/function-view.h" |
d5722aa2 | 64 | #include "common/byte-vector.h" |
ab816a27 | 65 | #include <algorithm> |
ccefe4c4 | 66 | |
4c4b4cd2 | 67 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 68 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
69 | Copied from valarith.c. */ |
70 | ||
71 | #ifndef TRUNCATION_TOWARDS_ZERO | |
72 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
73 | #endif | |
74 | ||
d2e4a39e | 75 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 76 | |
d2e4a39e | 77 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 78 | |
d2e4a39e | 79 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 80 | |
d2e4a39e | 81 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 82 | |
d2e4a39e | 83 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 84 | |
556bdfd4 | 85 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 86 | |
d2e4a39e | 87 | static struct value *desc_data (struct value *); |
14f9c5c9 | 88 | |
d2e4a39e | 89 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 90 | |
d2e4a39e | 91 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 92 | |
d2e4a39e | 93 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 94 | |
d2e4a39e | 95 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 96 | |
d2e4a39e | 97 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 98 | |
d2e4a39e | 99 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 100 | |
d2e4a39e | 101 | static int desc_arity (struct type *); |
14f9c5c9 | 102 | |
d2e4a39e | 103 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 104 | |
d2e4a39e | 105 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 106 | |
40bc484c | 107 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 108 | |
4c4b4cd2 | 109 | static void ada_add_block_symbols (struct obstack *, |
b5ec771e PA |
110 | const struct block *, |
111 | const lookup_name_info &lookup_name, | |
112 | domain_enum, struct objfile *); | |
14f9c5c9 | 113 | |
22cee43f | 114 | static void ada_add_all_symbols (struct obstack *, const struct block *, |
b5ec771e PA |
115 | const lookup_name_info &lookup_name, |
116 | domain_enum, int, int *); | |
22cee43f | 117 | |
d12307c1 | 118 | static int is_nonfunction (struct block_symbol *, int); |
14f9c5c9 | 119 | |
76a01679 | 120 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
f0c5f9b2 | 121 | const struct block *); |
14f9c5c9 | 122 | |
4c4b4cd2 PH |
123 | static int num_defns_collected (struct obstack *); |
124 | ||
d12307c1 | 125 | static struct block_symbol *defns_collected (struct obstack *, int); |
14f9c5c9 | 126 | |
e9d9f57e | 127 | static struct value *resolve_subexp (expression_up *, int *, int, |
76a01679 | 128 | struct type *); |
14f9c5c9 | 129 | |
e9d9f57e | 130 | static void replace_operator_with_call (expression_up *, int, int, int, |
270140bd | 131 | struct symbol *, const struct block *); |
14f9c5c9 | 132 | |
d2e4a39e | 133 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 134 | |
a121b7c1 | 135 | static const char *ada_op_name (enum exp_opcode); |
4c4b4cd2 PH |
136 | |
137 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 138 | |
d2e4a39e | 139 | static int numeric_type_p (struct type *); |
14f9c5c9 | 140 | |
d2e4a39e | 141 | static int integer_type_p (struct type *); |
14f9c5c9 | 142 | |
d2e4a39e | 143 | static int scalar_type_p (struct type *); |
14f9c5c9 | 144 | |
d2e4a39e | 145 | static int discrete_type_p (struct type *); |
14f9c5c9 | 146 | |
aeb5907d JB |
147 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
148 | const char **, | |
149 | int *, | |
150 | const char **); | |
151 | ||
152 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
270140bd | 153 | const struct block *); |
aeb5907d | 154 | |
a121b7c1 | 155 | static struct type *ada_lookup_struct_elt_type (struct type *, const char *, |
988f6b3d | 156 | int, int); |
4c4b4cd2 | 157 | |
d2e4a39e | 158 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 159 | |
b4ba55a1 JB |
160 | static struct type *ada_find_parallel_type_with_name (struct type *, |
161 | const char *); | |
162 | ||
d2e4a39e | 163 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 164 | |
10a2c479 | 165 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 166 | const gdb_byte *, |
4c4b4cd2 PH |
167 | CORE_ADDR, struct value *); |
168 | ||
169 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 170 | |
28c85d6c | 171 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 172 | |
d2e4a39e | 173 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 174 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 175 | |
d2e4a39e | 176 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 177 | |
ad82864c | 178 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 179 | |
ad82864c | 180 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 181 | |
ad82864c JB |
182 | static long decode_packed_array_bitsize (struct type *); |
183 | ||
184 | static struct value *decode_constrained_packed_array (struct value *); | |
185 | ||
186 | static int ada_is_packed_array_type (struct type *); | |
187 | ||
188 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 189 | |
d2e4a39e | 190 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 191 | struct value **); |
14f9c5c9 | 192 | |
4c4b4cd2 PH |
193 | static struct value *coerce_unspec_val_to_type (struct value *, |
194 | struct type *); | |
14f9c5c9 | 195 | |
d2e4a39e | 196 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 197 | |
d2e4a39e | 198 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 199 | |
d2e4a39e | 200 | static int is_name_suffix (const char *); |
14f9c5c9 | 201 | |
73589123 PH |
202 | static int advance_wild_match (const char **, const char *, int); |
203 | ||
b5ec771e | 204 | static bool wild_match (const char *name, const char *patn); |
14f9c5c9 | 205 | |
d2e4a39e | 206 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 207 | |
4c4b4cd2 PH |
208 | static LONGEST pos_atr (struct value *); |
209 | ||
3cb382c9 | 210 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 211 | |
d2e4a39e | 212 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 213 | |
4c4b4cd2 PH |
214 | static struct symbol *standard_lookup (const char *, const struct block *, |
215 | domain_enum); | |
14f9c5c9 | 216 | |
108d56a4 | 217 | static struct value *ada_search_struct_field (const char *, struct value *, int, |
4c4b4cd2 PH |
218 | struct type *); |
219 | ||
220 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
221 | struct type *); | |
222 | ||
0d5cff50 | 223 | static int find_struct_field (const char *, struct type *, int, |
52ce6436 | 224 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 | 225 | |
d12307c1 | 226 | static int ada_resolve_function (struct block_symbol *, int, |
4c4b4cd2 PH |
227 | struct value **, int, const char *, |
228 | struct type *); | |
229 | ||
4c4b4cd2 PH |
230 | static int ada_is_direct_array_type (struct type *); |
231 | ||
72d5681a PH |
232 | static void ada_language_arch_info (struct gdbarch *, |
233 | struct language_arch_info *); | |
714e53ab | 234 | |
52ce6436 PH |
235 | static struct value *ada_index_struct_field (int, struct value *, int, |
236 | struct type *); | |
237 | ||
238 | static struct value *assign_aggregate (struct value *, struct value *, | |
0963b4bd MS |
239 | struct expression *, |
240 | int *, enum noside); | |
52ce6436 PH |
241 | |
242 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
243 | struct expression *, | |
244 | int *, LONGEST *, int *, | |
245 | int, LONGEST, LONGEST); | |
246 | ||
247 | static void aggregate_assign_positional (struct value *, struct value *, | |
248 | struct expression *, | |
249 | int *, LONGEST *, int *, int, | |
250 | LONGEST, LONGEST); | |
251 | ||
252 | ||
253 | static void aggregate_assign_others (struct value *, struct value *, | |
254 | struct expression *, | |
255 | int *, LONGEST *, int, LONGEST, LONGEST); | |
256 | ||
257 | ||
258 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
259 | ||
260 | ||
261 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
262 | int *, enum noside); | |
263 | ||
264 | static void ada_forward_operator_length (struct expression *, int, int *, | |
265 | int *); | |
852dff6c JB |
266 | |
267 | static struct type *ada_find_any_type (const char *name); | |
b5ec771e PA |
268 | |
269 | static symbol_name_matcher_ftype *ada_get_symbol_name_matcher | |
270 | (const lookup_name_info &lookup_name); | |
271 | ||
4c4b4cd2 PH |
272 | \f |
273 | ||
ee01b665 JB |
274 | /* The result of a symbol lookup to be stored in our symbol cache. */ |
275 | ||
276 | struct cache_entry | |
277 | { | |
278 | /* The name used to perform the lookup. */ | |
279 | const char *name; | |
280 | /* The namespace used during the lookup. */ | |
fe978cb0 | 281 | domain_enum domain; |
ee01b665 JB |
282 | /* The symbol returned by the lookup, or NULL if no matching symbol |
283 | was found. */ | |
284 | struct symbol *sym; | |
285 | /* The block where the symbol was found, or NULL if no matching | |
286 | symbol was found. */ | |
287 | const struct block *block; | |
288 | /* A pointer to the next entry with the same hash. */ | |
289 | struct cache_entry *next; | |
290 | }; | |
291 | ||
292 | /* The Ada symbol cache, used to store the result of Ada-mode symbol | |
293 | lookups in the course of executing the user's commands. | |
294 | ||
295 | The cache is implemented using a simple, fixed-sized hash. | |
296 | The size is fixed on the grounds that there are not likely to be | |
297 | all that many symbols looked up during any given session, regardless | |
298 | of the size of the symbol table. If we decide to go to a resizable | |
299 | table, let's just use the stuff from libiberty instead. */ | |
300 | ||
301 | #define HASH_SIZE 1009 | |
302 | ||
303 | struct ada_symbol_cache | |
304 | { | |
305 | /* An obstack used to store the entries in our cache. */ | |
306 | struct obstack cache_space; | |
307 | ||
308 | /* The root of the hash table used to implement our symbol cache. */ | |
309 | struct cache_entry *root[HASH_SIZE]; | |
310 | }; | |
311 | ||
312 | static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache); | |
76a01679 | 313 | |
4c4b4cd2 | 314 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
315 | static unsigned int varsize_limit; |
316 | ||
67cb5b2d | 317 | static const char ada_completer_word_break_characters[] = |
4c4b4cd2 PH |
318 | #ifdef VMS |
319 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
320 | #else | |
14f9c5c9 | 321 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 322 | #endif |
14f9c5c9 | 323 | |
4c4b4cd2 | 324 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 325 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 326 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 327 | |
4c4b4cd2 PH |
328 | /* Limit on the number of warnings to raise per expression evaluation. */ |
329 | static int warning_limit = 2; | |
330 | ||
331 | /* Number of warning messages issued; reset to 0 by cleanups after | |
332 | expression evaluation. */ | |
333 | static int warnings_issued = 0; | |
334 | ||
335 | static const char *known_runtime_file_name_patterns[] = { | |
336 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
337 | }; | |
338 | ||
339 | static const char *known_auxiliary_function_name_patterns[] = { | |
340 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
341 | }; | |
342 | ||
c6044dd1 JB |
343 | /* Maintenance-related settings for this module. */ |
344 | ||
345 | static struct cmd_list_element *maint_set_ada_cmdlist; | |
346 | static struct cmd_list_element *maint_show_ada_cmdlist; | |
347 | ||
348 | /* Implement the "maintenance set ada" (prefix) command. */ | |
349 | ||
350 | static void | |
981a3fb3 | 351 | maint_set_ada_cmd (const char *args, int from_tty) |
c6044dd1 | 352 | { |
635c7e8a TT |
353 | help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands, |
354 | gdb_stdout); | |
c6044dd1 JB |
355 | } |
356 | ||
357 | /* Implement the "maintenance show ada" (prefix) command. */ | |
358 | ||
359 | static void | |
981a3fb3 | 360 | maint_show_ada_cmd (const char *args, int from_tty) |
c6044dd1 JB |
361 | { |
362 | cmd_show_list (maint_show_ada_cmdlist, from_tty, ""); | |
363 | } | |
364 | ||
365 | /* The "maintenance ada set/show ignore-descriptive-type" value. */ | |
366 | ||
367 | static int ada_ignore_descriptive_types_p = 0; | |
368 | ||
e802dbe0 JB |
369 | /* Inferior-specific data. */ |
370 | ||
371 | /* Per-inferior data for this module. */ | |
372 | ||
373 | struct ada_inferior_data | |
374 | { | |
375 | /* The ada__tags__type_specific_data type, which is used when decoding | |
376 | tagged types. With older versions of GNAT, this type was directly | |
377 | accessible through a component ("tsd") in the object tag. But this | |
378 | is no longer the case, so we cache it for each inferior. */ | |
379 | struct type *tsd_type; | |
3eecfa55 JB |
380 | |
381 | /* The exception_support_info data. This data is used to determine | |
382 | how to implement support for Ada exception catchpoints in a given | |
383 | inferior. */ | |
384 | const struct exception_support_info *exception_info; | |
e802dbe0 JB |
385 | }; |
386 | ||
387 | /* Our key to this module's inferior data. */ | |
388 | static const struct inferior_data *ada_inferior_data; | |
389 | ||
390 | /* A cleanup routine for our inferior data. */ | |
391 | static void | |
392 | ada_inferior_data_cleanup (struct inferior *inf, void *arg) | |
393 | { | |
394 | struct ada_inferior_data *data; | |
395 | ||
9a3c8263 | 396 | data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data); |
e802dbe0 JB |
397 | if (data != NULL) |
398 | xfree (data); | |
399 | } | |
400 | ||
401 | /* Return our inferior data for the given inferior (INF). | |
402 | ||
403 | This function always returns a valid pointer to an allocated | |
404 | ada_inferior_data structure. If INF's inferior data has not | |
405 | been previously set, this functions creates a new one with all | |
406 | fields set to zero, sets INF's inferior to it, and then returns | |
407 | a pointer to that newly allocated ada_inferior_data. */ | |
408 | ||
409 | static struct ada_inferior_data * | |
410 | get_ada_inferior_data (struct inferior *inf) | |
411 | { | |
412 | struct ada_inferior_data *data; | |
413 | ||
9a3c8263 | 414 | data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data); |
e802dbe0 JB |
415 | if (data == NULL) |
416 | { | |
41bf6aca | 417 | data = XCNEW (struct ada_inferior_data); |
e802dbe0 JB |
418 | set_inferior_data (inf, ada_inferior_data, data); |
419 | } | |
420 | ||
421 | return data; | |
422 | } | |
423 | ||
424 | /* Perform all necessary cleanups regarding our module's inferior data | |
425 | that is required after the inferior INF just exited. */ | |
426 | ||
427 | static void | |
428 | ada_inferior_exit (struct inferior *inf) | |
429 | { | |
430 | ada_inferior_data_cleanup (inf, NULL); | |
431 | set_inferior_data (inf, ada_inferior_data, NULL); | |
432 | } | |
433 | ||
ee01b665 JB |
434 | |
435 | /* program-space-specific data. */ | |
436 | ||
437 | /* This module's per-program-space data. */ | |
438 | struct ada_pspace_data | |
439 | { | |
440 | /* The Ada symbol cache. */ | |
441 | struct ada_symbol_cache *sym_cache; | |
442 | }; | |
443 | ||
444 | /* Key to our per-program-space data. */ | |
445 | static const struct program_space_data *ada_pspace_data_handle; | |
446 | ||
447 | /* Return this module's data for the given program space (PSPACE). | |
448 | If not is found, add a zero'ed one now. | |
449 | ||
450 | This function always returns a valid object. */ | |
451 | ||
452 | static struct ada_pspace_data * | |
453 | get_ada_pspace_data (struct program_space *pspace) | |
454 | { | |
455 | struct ada_pspace_data *data; | |
456 | ||
9a3c8263 SM |
457 | data = ((struct ada_pspace_data *) |
458 | program_space_data (pspace, ada_pspace_data_handle)); | |
ee01b665 JB |
459 | if (data == NULL) |
460 | { | |
461 | data = XCNEW (struct ada_pspace_data); | |
462 | set_program_space_data (pspace, ada_pspace_data_handle, data); | |
463 | } | |
464 | ||
465 | return data; | |
466 | } | |
467 | ||
468 | /* The cleanup callback for this module's per-program-space data. */ | |
469 | ||
470 | static void | |
471 | ada_pspace_data_cleanup (struct program_space *pspace, void *data) | |
472 | { | |
9a3c8263 | 473 | struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data; |
ee01b665 JB |
474 | |
475 | if (pspace_data->sym_cache != NULL) | |
476 | ada_free_symbol_cache (pspace_data->sym_cache); | |
477 | xfree (pspace_data); | |
478 | } | |
479 | ||
4c4b4cd2 PH |
480 | /* Utilities */ |
481 | ||
720d1a40 | 482 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 483 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
484 | |
485 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
486 | In other words, we really expect the target type of a typedef type to be | |
487 | a non-typedef type. This is particularly true for Ada units, because | |
488 | the language does not have a typedef vs not-typedef distinction. | |
489 | In that respect, the Ada compiler has been trying to eliminate as many | |
490 | typedef definitions in the debugging information, since they generally | |
491 | do not bring any extra information (we still use typedef under certain | |
492 | circumstances related mostly to the GNAT encoding). | |
493 | ||
494 | Unfortunately, we have seen situations where the debugging information | |
495 | generated by the compiler leads to such multiple typedef layers. For | |
496 | instance, consider the following example with stabs: | |
497 | ||
498 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
499 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
500 | ||
501 | This is an error in the debugging information which causes type | |
502 | pck__float_array___XUP to be defined twice, and the second time, | |
503 | it is defined as a typedef of a typedef. | |
504 | ||
505 | This is on the fringe of legality as far as debugging information is | |
506 | concerned, and certainly unexpected. But it is easy to handle these | |
507 | situations correctly, so we can afford to be lenient in this case. */ | |
508 | ||
509 | static struct type * | |
510 | ada_typedef_target_type (struct type *type) | |
511 | { | |
512 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
513 | type = TYPE_TARGET_TYPE (type); | |
514 | return type; | |
515 | } | |
516 | ||
41d27058 JB |
517 | /* Given DECODED_NAME a string holding a symbol name in its |
518 | decoded form (ie using the Ada dotted notation), returns | |
519 | its unqualified name. */ | |
520 | ||
521 | static const char * | |
522 | ada_unqualified_name (const char *decoded_name) | |
523 | { | |
2b0f535a JB |
524 | const char *result; |
525 | ||
526 | /* If the decoded name starts with '<', it means that the encoded | |
527 | name does not follow standard naming conventions, and thus that | |
528 | it is not your typical Ada symbol name. Trying to unqualify it | |
529 | is therefore pointless and possibly erroneous. */ | |
530 | if (decoded_name[0] == '<') | |
531 | return decoded_name; | |
532 | ||
533 | result = strrchr (decoded_name, '.'); | |
41d27058 JB |
534 | if (result != NULL) |
535 | result++; /* Skip the dot... */ | |
536 | else | |
537 | result = decoded_name; | |
538 | ||
539 | return result; | |
540 | } | |
541 | ||
39e7af3e | 542 | /* Return a string starting with '<', followed by STR, and '>'. */ |
41d27058 | 543 | |
39e7af3e | 544 | static std::string |
41d27058 JB |
545 | add_angle_brackets (const char *str) |
546 | { | |
39e7af3e | 547 | return string_printf ("<%s>", str); |
41d27058 | 548 | } |
96d887e8 | 549 | |
67cb5b2d | 550 | static const char * |
4c4b4cd2 PH |
551 | ada_get_gdb_completer_word_break_characters (void) |
552 | { | |
553 | return ada_completer_word_break_characters; | |
554 | } | |
555 | ||
e79af960 JB |
556 | /* Print an array element index using the Ada syntax. */ |
557 | ||
558 | static void | |
559 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 560 | const struct value_print_options *options) |
e79af960 | 561 | { |
79a45b7d | 562 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
563 | fprintf_filtered (stream, " => "); |
564 | } | |
565 | ||
e2b7af72 JB |
566 | /* la_watch_location_expression for Ada. */ |
567 | ||
568 | gdb::unique_xmalloc_ptr<char> | |
569 | ada_watch_location_expression (struct type *type, CORE_ADDR addr) | |
570 | { | |
571 | type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type))); | |
572 | std::string name = type_to_string (type); | |
573 | return gdb::unique_xmalloc_ptr<char> | |
574 | (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr))); | |
575 | } | |
576 | ||
f27cf670 | 577 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 578 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 579 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 580 | |
f27cf670 AS |
581 | void * |
582 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 583 | { |
d2e4a39e AS |
584 | if (*size < min_size) |
585 | { | |
586 | *size *= 2; | |
587 | if (*size < min_size) | |
4c4b4cd2 | 588 | *size = min_size; |
f27cf670 | 589 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 590 | } |
f27cf670 | 591 | return vect; |
14f9c5c9 AS |
592 | } |
593 | ||
594 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 595 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
596 | |
597 | static int | |
ebf56fd3 | 598 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
599 | { |
600 | int len = strlen (target); | |
5b4ee69b | 601 | |
d2e4a39e | 602 | return |
4c4b4cd2 PH |
603 | (strncmp (field_name, target, len) == 0 |
604 | && (field_name[len] == '\0' | |
61012eef | 605 | || (startswith (field_name + len, "___") |
76a01679 JB |
606 | && strcmp (field_name + strlen (field_name) - 6, |
607 | "___XVN") != 0))); | |
14f9c5c9 AS |
608 | } |
609 | ||
610 | ||
872c8b51 JB |
611 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
612 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
613 | and return its index. This function also handles fields whose name | |
614 | have ___ suffixes because the compiler sometimes alters their name | |
615 | by adding such a suffix to represent fields with certain constraints. | |
616 | If the field could not be found, return a negative number if | |
617 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
618 | |
619 | int | |
620 | ada_get_field_index (const struct type *type, const char *field_name, | |
621 | int maybe_missing) | |
622 | { | |
623 | int fieldno; | |
872c8b51 JB |
624 | struct type *struct_type = check_typedef ((struct type *) type); |
625 | ||
626 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
627 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
628 | return fieldno; |
629 | ||
630 | if (!maybe_missing) | |
323e0a4a | 631 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 632 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
633 | |
634 | return -1; | |
635 | } | |
636 | ||
637 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
638 | |
639 | int | |
d2e4a39e | 640 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
641 | { |
642 | if (name == NULL) | |
643 | return 0; | |
d2e4a39e | 644 | else |
14f9c5c9 | 645 | { |
d2e4a39e | 646 | const char *p = strstr (name, "___"); |
5b4ee69b | 647 | |
14f9c5c9 | 648 | if (p == NULL) |
4c4b4cd2 | 649 | return strlen (name); |
14f9c5c9 | 650 | else |
4c4b4cd2 | 651 | return p - name; |
14f9c5c9 AS |
652 | } |
653 | } | |
654 | ||
4c4b4cd2 PH |
655 | /* Return non-zero if SUFFIX is a suffix of STR. |
656 | Return zero if STR is null. */ | |
657 | ||
14f9c5c9 | 658 | static int |
d2e4a39e | 659 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
660 | { |
661 | int len1, len2; | |
5b4ee69b | 662 | |
14f9c5c9 AS |
663 | if (str == NULL) |
664 | return 0; | |
665 | len1 = strlen (str); | |
666 | len2 = strlen (suffix); | |
4c4b4cd2 | 667 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
668 | } |
669 | ||
4c4b4cd2 PH |
670 | /* The contents of value VAL, treated as a value of type TYPE. The |
671 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 672 | |
d2e4a39e | 673 | static struct value * |
4c4b4cd2 | 674 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 675 | { |
61ee279c | 676 | type = ada_check_typedef (type); |
df407dfe | 677 | if (value_type (val) == type) |
4c4b4cd2 | 678 | return val; |
d2e4a39e | 679 | else |
14f9c5c9 | 680 | { |
4c4b4cd2 PH |
681 | struct value *result; |
682 | ||
683 | /* Make sure that the object size is not unreasonable before | |
684 | trying to allocate some memory for it. */ | |
c1b5a1a6 | 685 | ada_ensure_varsize_limit (type); |
4c4b4cd2 | 686 | |
41e8491f JK |
687 | if (value_lazy (val) |
688 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) | |
689 | result = allocate_value_lazy (type); | |
690 | else | |
691 | { | |
692 | result = allocate_value (type); | |
9a0dc9e3 | 693 | value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type)); |
41e8491f | 694 | } |
74bcbdf3 | 695 | set_value_component_location (result, val); |
9bbda503 AC |
696 | set_value_bitsize (result, value_bitsize (val)); |
697 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 698 | set_value_address (result, value_address (val)); |
14f9c5c9 AS |
699 | return result; |
700 | } | |
701 | } | |
702 | ||
fc1a4b47 AC |
703 | static const gdb_byte * |
704 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
705 | { |
706 | if (valaddr == NULL) | |
707 | return NULL; | |
708 | else | |
709 | return valaddr + offset; | |
710 | } | |
711 | ||
712 | static CORE_ADDR | |
ebf56fd3 | 713 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
714 | { |
715 | if (address == 0) | |
716 | return 0; | |
d2e4a39e | 717 | else |
14f9c5c9 AS |
718 | return address + offset; |
719 | } | |
720 | ||
4c4b4cd2 PH |
721 | /* Issue a warning (as for the definition of warning in utils.c, but |
722 | with exactly one argument rather than ...), unless the limit on the | |
723 | number of warnings has passed during the evaluation of the current | |
724 | expression. */ | |
a2249542 | 725 | |
77109804 AC |
726 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
727 | provided by "complaint". */ | |
a0b31db1 | 728 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 729 | |
14f9c5c9 | 730 | static void |
a2249542 | 731 | lim_warning (const char *format, ...) |
14f9c5c9 | 732 | { |
a2249542 | 733 | va_list args; |
a2249542 | 734 | |
5b4ee69b | 735 | va_start (args, format); |
4c4b4cd2 PH |
736 | warnings_issued += 1; |
737 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
738 | vwarning (format, args); |
739 | ||
740 | va_end (args); | |
4c4b4cd2 PH |
741 | } |
742 | ||
714e53ab PH |
743 | /* Issue an error if the size of an object of type T is unreasonable, |
744 | i.e. if it would be a bad idea to allocate a value of this type in | |
745 | GDB. */ | |
746 | ||
c1b5a1a6 JB |
747 | void |
748 | ada_ensure_varsize_limit (const struct type *type) | |
714e53ab PH |
749 | { |
750 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 751 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
752 | } |
753 | ||
0963b4bd | 754 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 755 | static LONGEST |
c3e5cd34 | 756 | max_of_size (int size) |
4c4b4cd2 | 757 | { |
76a01679 | 758 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 759 | |
76a01679 | 760 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
761 | } |
762 | ||
0963b4bd | 763 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 764 | static LONGEST |
c3e5cd34 | 765 | min_of_size (int size) |
4c4b4cd2 | 766 | { |
c3e5cd34 | 767 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
768 | } |
769 | ||
0963b4bd | 770 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 771 | static ULONGEST |
c3e5cd34 | 772 | umax_of_size (int size) |
4c4b4cd2 | 773 | { |
76a01679 | 774 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 775 | |
76a01679 | 776 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
777 | } |
778 | ||
0963b4bd | 779 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
780 | static LONGEST |
781 | max_of_type (struct type *t) | |
4c4b4cd2 | 782 | { |
c3e5cd34 PH |
783 | if (TYPE_UNSIGNED (t)) |
784 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
785 | else | |
786 | return max_of_size (TYPE_LENGTH (t)); | |
787 | } | |
788 | ||
0963b4bd | 789 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
790 | static LONGEST |
791 | min_of_type (struct type *t) | |
792 | { | |
793 | if (TYPE_UNSIGNED (t)) | |
794 | return 0; | |
795 | else | |
796 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
797 | } |
798 | ||
799 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
800 | LONGEST |
801 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 802 | { |
c3345124 | 803 | type = resolve_dynamic_type (type, NULL, 0); |
76a01679 | 804 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
805 | { |
806 | case TYPE_CODE_RANGE: | |
690cc4eb | 807 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 808 | case TYPE_CODE_ENUM: |
14e75d8e | 809 | return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1); |
690cc4eb PH |
810 | case TYPE_CODE_BOOL: |
811 | return 1; | |
812 | case TYPE_CODE_CHAR: | |
76a01679 | 813 | case TYPE_CODE_INT: |
690cc4eb | 814 | return max_of_type (type); |
4c4b4cd2 | 815 | default: |
43bbcdc2 | 816 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
817 | } |
818 | } | |
819 | ||
14e75d8e | 820 | /* The smallest value in the domain of TYPE, a discrete type, as an integer. */ |
43bbcdc2 PH |
821 | LONGEST |
822 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 823 | { |
c3345124 | 824 | type = resolve_dynamic_type (type, NULL, 0); |
76a01679 | 825 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
826 | { |
827 | case TYPE_CODE_RANGE: | |
690cc4eb | 828 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 829 | case TYPE_CODE_ENUM: |
14e75d8e | 830 | return TYPE_FIELD_ENUMVAL (type, 0); |
690cc4eb PH |
831 | case TYPE_CODE_BOOL: |
832 | return 0; | |
833 | case TYPE_CODE_CHAR: | |
76a01679 | 834 | case TYPE_CODE_INT: |
690cc4eb | 835 | return min_of_type (type); |
4c4b4cd2 | 836 | default: |
43bbcdc2 | 837 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
838 | } |
839 | } | |
840 | ||
841 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 842 | non-range scalar type. */ |
4c4b4cd2 PH |
843 | |
844 | static struct type * | |
18af8284 | 845 | get_base_type (struct type *type) |
4c4b4cd2 PH |
846 | { |
847 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
848 | { | |
76a01679 JB |
849 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
850 | return type; | |
4c4b4cd2 PH |
851 | type = TYPE_TARGET_TYPE (type); |
852 | } | |
853 | return type; | |
14f9c5c9 | 854 | } |
41246937 JB |
855 | |
856 | /* Return a decoded version of the given VALUE. This means returning | |
857 | a value whose type is obtained by applying all the GNAT-specific | |
858 | encondings, making the resulting type a static but standard description | |
859 | of the initial type. */ | |
860 | ||
861 | struct value * | |
862 | ada_get_decoded_value (struct value *value) | |
863 | { | |
864 | struct type *type = ada_check_typedef (value_type (value)); | |
865 | ||
866 | if (ada_is_array_descriptor_type (type) | |
867 | || (ada_is_constrained_packed_array_type (type) | |
868 | && TYPE_CODE (type) != TYPE_CODE_PTR)) | |
869 | { | |
870 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */ | |
871 | value = ada_coerce_to_simple_array_ptr (value); | |
872 | else | |
873 | value = ada_coerce_to_simple_array (value); | |
874 | } | |
875 | else | |
876 | value = ada_to_fixed_value (value); | |
877 | ||
878 | return value; | |
879 | } | |
880 | ||
881 | /* Same as ada_get_decoded_value, but with the given TYPE. | |
882 | Because there is no associated actual value for this type, | |
883 | the resulting type might be a best-effort approximation in | |
884 | the case of dynamic types. */ | |
885 | ||
886 | struct type * | |
887 | ada_get_decoded_type (struct type *type) | |
888 | { | |
889 | type = to_static_fixed_type (type); | |
890 | if (ada_is_constrained_packed_array_type (type)) | |
891 | type = ada_coerce_to_simple_array_type (type); | |
892 | return type; | |
893 | } | |
894 | ||
4c4b4cd2 | 895 | \f |
76a01679 | 896 | |
4c4b4cd2 | 897 | /* Language Selection */ |
14f9c5c9 AS |
898 | |
899 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 900 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 901 | |
14f9c5c9 | 902 | enum language |
ccefe4c4 | 903 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 904 | { |
d2e4a39e | 905 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
3b7344d5 | 906 | (struct objfile *) NULL).minsym != NULL) |
4c4b4cd2 | 907 | return language_ada; |
14f9c5c9 AS |
908 | |
909 | return lang; | |
910 | } | |
96d887e8 PH |
911 | |
912 | /* If the main procedure is written in Ada, then return its name. | |
913 | The result is good until the next call. Return NULL if the main | |
914 | procedure doesn't appear to be in Ada. */ | |
915 | ||
916 | char * | |
917 | ada_main_name (void) | |
918 | { | |
3b7344d5 | 919 | struct bound_minimal_symbol msym; |
e83e4e24 | 920 | static gdb::unique_xmalloc_ptr<char> main_program_name; |
6c038f32 | 921 | |
96d887e8 PH |
922 | /* For Ada, the name of the main procedure is stored in a specific |
923 | string constant, generated by the binder. Look for that symbol, | |
924 | extract its address, and then read that string. If we didn't find | |
925 | that string, then most probably the main procedure is not written | |
926 | in Ada. */ | |
927 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
928 | ||
3b7344d5 | 929 | if (msym.minsym != NULL) |
96d887e8 | 930 | { |
f9bc20b9 JB |
931 | CORE_ADDR main_program_name_addr; |
932 | int err_code; | |
933 | ||
77e371c0 | 934 | main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym); |
96d887e8 | 935 | if (main_program_name_addr == 0) |
323e0a4a | 936 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 937 | |
f9bc20b9 JB |
938 | target_read_string (main_program_name_addr, &main_program_name, |
939 | 1024, &err_code); | |
940 | ||
941 | if (err_code != 0) | |
942 | return NULL; | |
e83e4e24 | 943 | return main_program_name.get (); |
96d887e8 PH |
944 | } |
945 | ||
946 | /* The main procedure doesn't seem to be in Ada. */ | |
947 | return NULL; | |
948 | } | |
14f9c5c9 | 949 | \f |
4c4b4cd2 | 950 | /* Symbols */ |
d2e4a39e | 951 | |
4c4b4cd2 PH |
952 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
953 | of NULLs. */ | |
14f9c5c9 | 954 | |
d2e4a39e AS |
955 | const struct ada_opname_map ada_opname_table[] = { |
956 | {"Oadd", "\"+\"", BINOP_ADD}, | |
957 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
958 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
959 | {"Odivide", "\"/\"", BINOP_DIV}, | |
960 | {"Omod", "\"mod\"", BINOP_MOD}, | |
961 | {"Orem", "\"rem\"", BINOP_REM}, | |
962 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
963 | {"Olt", "\"<\"", BINOP_LESS}, | |
964 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
965 | {"Ogt", "\">\"", BINOP_GTR}, | |
966 | {"Oge", "\">=\"", BINOP_GEQ}, | |
967 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
968 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
969 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
970 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
971 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
972 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
973 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
974 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
975 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
976 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
977 | {NULL, NULL} | |
14f9c5c9 AS |
978 | }; |
979 | ||
b5ec771e PA |
980 | /* The "encoded" form of DECODED, according to GNAT conventions. The |
981 | result is valid until the next call to ada_encode. If | |
982 | THROW_ERRORS, throw an error if invalid operator name is found. | |
983 | Otherwise, return NULL in that case. */ | |
4c4b4cd2 | 984 | |
b5ec771e PA |
985 | static char * |
986 | ada_encode_1 (const char *decoded, bool throw_errors) | |
14f9c5c9 | 987 | { |
4c4b4cd2 PH |
988 | static char *encoding_buffer = NULL; |
989 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 990 | const char *p; |
14f9c5c9 | 991 | int k; |
d2e4a39e | 992 | |
4c4b4cd2 | 993 | if (decoded == NULL) |
14f9c5c9 AS |
994 | return NULL; |
995 | ||
4c4b4cd2 PH |
996 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
997 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
998 | |
999 | k = 0; | |
4c4b4cd2 | 1000 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 1001 | { |
cdc7bb92 | 1002 | if (*p == '.') |
4c4b4cd2 PH |
1003 | { |
1004 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
1005 | k += 2; | |
1006 | } | |
14f9c5c9 | 1007 | else if (*p == '"') |
4c4b4cd2 PH |
1008 | { |
1009 | const struct ada_opname_map *mapping; | |
1010 | ||
1011 | for (mapping = ada_opname_table; | |
1265e4aa | 1012 | mapping->encoded != NULL |
61012eef | 1013 | && !startswith (p, mapping->decoded); mapping += 1) |
4c4b4cd2 PH |
1014 | ; |
1015 | if (mapping->encoded == NULL) | |
b5ec771e PA |
1016 | { |
1017 | if (throw_errors) | |
1018 | error (_("invalid Ada operator name: %s"), p); | |
1019 | else | |
1020 | return NULL; | |
1021 | } | |
4c4b4cd2 PH |
1022 | strcpy (encoding_buffer + k, mapping->encoded); |
1023 | k += strlen (mapping->encoded); | |
1024 | break; | |
1025 | } | |
d2e4a39e | 1026 | else |
4c4b4cd2 PH |
1027 | { |
1028 | encoding_buffer[k] = *p; | |
1029 | k += 1; | |
1030 | } | |
14f9c5c9 AS |
1031 | } |
1032 | ||
4c4b4cd2 PH |
1033 | encoding_buffer[k] = '\0'; |
1034 | return encoding_buffer; | |
14f9c5c9 AS |
1035 | } |
1036 | ||
b5ec771e PA |
1037 | /* The "encoded" form of DECODED, according to GNAT conventions. |
1038 | The result is valid until the next call to ada_encode. */ | |
1039 | ||
1040 | char * | |
1041 | ada_encode (const char *decoded) | |
1042 | { | |
1043 | return ada_encode_1 (decoded, true); | |
1044 | } | |
1045 | ||
14f9c5c9 | 1046 | /* Return NAME folded to lower case, or, if surrounded by single |
4c4b4cd2 PH |
1047 | quotes, unfolded, but with the quotes stripped away. Result good |
1048 | to next call. */ | |
1049 | ||
d2e4a39e AS |
1050 | char * |
1051 | ada_fold_name (const char *name) | |
14f9c5c9 | 1052 | { |
d2e4a39e | 1053 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
1054 | static size_t fold_buffer_size = 0; |
1055 | ||
1056 | int len = strlen (name); | |
d2e4a39e | 1057 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
1058 | |
1059 | if (name[0] == '\'') | |
1060 | { | |
d2e4a39e AS |
1061 | strncpy (fold_buffer, name + 1, len - 2); |
1062 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
1063 | } |
1064 | else | |
1065 | { | |
1066 | int i; | |
5b4ee69b | 1067 | |
14f9c5c9 | 1068 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 1069 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
1070 | } |
1071 | ||
1072 | return fold_buffer; | |
1073 | } | |
1074 | ||
529cad9c PH |
1075 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
1076 | ||
1077 | static int | |
1078 | is_lower_alphanum (const char c) | |
1079 | { | |
1080 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
1081 | } | |
1082 | ||
c90092fe JB |
1083 | /* ENCODED is the linkage name of a symbol and LEN contains its length. |
1084 | This function saves in LEN the length of that same symbol name but | |
1085 | without either of these suffixes: | |
29480c32 JB |
1086 | . .{DIGIT}+ |
1087 | . ${DIGIT}+ | |
1088 | . ___{DIGIT}+ | |
1089 | . __{DIGIT}+. | |
c90092fe | 1090 | |
29480c32 JB |
1091 | These are suffixes introduced by the compiler for entities such as |
1092 | nested subprogram for instance, in order to avoid name clashes. | |
1093 | They do not serve any purpose for the debugger. */ | |
1094 | ||
1095 | static void | |
1096 | ada_remove_trailing_digits (const char *encoded, int *len) | |
1097 | { | |
1098 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
1099 | { | |
1100 | int i = *len - 2; | |
5b4ee69b | 1101 | |
29480c32 JB |
1102 | while (i > 0 && isdigit (encoded[i])) |
1103 | i--; | |
1104 | if (i >= 0 && encoded[i] == '.') | |
1105 | *len = i; | |
1106 | else if (i >= 0 && encoded[i] == '$') | |
1107 | *len = i; | |
61012eef | 1108 | else if (i >= 2 && startswith (encoded + i - 2, "___")) |
29480c32 | 1109 | *len = i - 2; |
61012eef | 1110 | else if (i >= 1 && startswith (encoded + i - 1, "__")) |
29480c32 JB |
1111 | *len = i - 1; |
1112 | } | |
1113 | } | |
1114 | ||
1115 | /* Remove the suffix introduced by the compiler for protected object | |
1116 | subprograms. */ | |
1117 | ||
1118 | static void | |
1119 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
1120 | { | |
1121 | /* Remove trailing N. */ | |
1122 | ||
1123 | /* Protected entry subprograms are broken into two | |
1124 | separate subprograms: The first one is unprotected, and has | |
1125 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 1126 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
1127 | the protection. Since the P subprograms are internally generated, |
1128 | we leave these names undecoded, giving the user a clue that this | |
1129 | entity is internal. */ | |
1130 | ||
1131 | if (*len > 1 | |
1132 | && encoded[*len - 1] == 'N' | |
1133 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
1134 | *len = *len - 1; | |
1135 | } | |
1136 | ||
69fadcdf JB |
1137 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
1138 | ||
1139 | static void | |
1140 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
1141 | { | |
1142 | int i = *len - 1; | |
1143 | ||
1144 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
1145 | i--; | |
1146 | ||
1147 | if (encoded[i] != 'X') | |
1148 | return; | |
1149 | ||
1150 | if (i == 0) | |
1151 | return; | |
1152 | ||
1153 | if (isalnum (encoded[i-1])) | |
1154 | *len = i; | |
1155 | } | |
1156 | ||
29480c32 JB |
1157 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
1158 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
1159 | replaced by ENCODED. | |
14f9c5c9 | 1160 | |
4c4b4cd2 | 1161 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 1162 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
1163 | is returned. */ |
1164 | ||
1165 | const char * | |
1166 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
1167 | { |
1168 | int i, j; | |
1169 | int len0; | |
d2e4a39e | 1170 | const char *p; |
4c4b4cd2 | 1171 | char *decoded; |
14f9c5c9 | 1172 | int at_start_name; |
4c4b4cd2 PH |
1173 | static char *decoding_buffer = NULL; |
1174 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 1175 | |
0d81f350 JG |
1176 | /* With function descriptors on PPC64, the value of a symbol named |
1177 | ".FN", if it exists, is the entry point of the function "FN". */ | |
1178 | if (encoded[0] == '.') | |
1179 | encoded += 1; | |
1180 | ||
29480c32 JB |
1181 | /* The name of the Ada main procedure starts with "_ada_". |
1182 | This prefix is not part of the decoded name, so skip this part | |
1183 | if we see this prefix. */ | |
61012eef | 1184 | if (startswith (encoded, "_ada_")) |
4c4b4cd2 | 1185 | encoded += 5; |
14f9c5c9 | 1186 | |
29480c32 JB |
1187 | /* If the name starts with '_', then it is not a properly encoded |
1188 | name, so do not attempt to decode it. Similarly, if the name | |
1189 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 1190 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1191 | goto Suppress; |
1192 | ||
4c4b4cd2 | 1193 | len0 = strlen (encoded); |
4c4b4cd2 | 1194 | |
29480c32 JB |
1195 | ada_remove_trailing_digits (encoded, &len0); |
1196 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1197 | |
4c4b4cd2 PH |
1198 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1199 | the suffix is located before the current "end" of ENCODED. We want | |
1200 | to avoid re-matching parts of ENCODED that have previously been | |
1201 | marked as discarded (by decrementing LEN0). */ | |
1202 | p = strstr (encoded, "___"); | |
1203 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1204 | { |
1205 | if (p[3] == 'X') | |
4c4b4cd2 | 1206 | len0 = p - encoded; |
14f9c5c9 | 1207 | else |
4c4b4cd2 | 1208 | goto Suppress; |
14f9c5c9 | 1209 | } |
4c4b4cd2 | 1210 | |
29480c32 JB |
1211 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1212 | is for the body of a task, but that information does not actually | |
1213 | appear in the decoded name. */ | |
1214 | ||
61012eef | 1215 | if (len0 > 3 && startswith (encoded + len0 - 3, "TKB")) |
14f9c5c9 | 1216 | len0 -= 3; |
76a01679 | 1217 | |
a10967fa JB |
1218 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1219 | from the TKB suffix because it is used for non-anonymous task | |
1220 | bodies. */ | |
1221 | ||
61012eef | 1222 | if (len0 > 2 && startswith (encoded + len0 - 2, "TB")) |
a10967fa JB |
1223 | len0 -= 2; |
1224 | ||
29480c32 JB |
1225 | /* Remove trailing "B" suffixes. */ |
1226 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1227 | ||
61012eef | 1228 | if (len0 > 1 && startswith (encoded + len0 - 1, "B")) |
14f9c5c9 AS |
1229 | len0 -= 1; |
1230 | ||
4c4b4cd2 | 1231 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1232 | |
4c4b4cd2 PH |
1233 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
1234 | decoded = decoding_buffer; | |
14f9c5c9 | 1235 | |
29480c32 JB |
1236 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1237 | ||
4c4b4cd2 | 1238 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1239 | { |
4c4b4cd2 PH |
1240 | i = len0 - 2; |
1241 | while ((i >= 0 && isdigit (encoded[i])) | |
1242 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1243 | i -= 1; | |
1244 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1245 | len0 = i - 1; | |
1246 | else if (encoded[i] == '$') | |
1247 | len0 = i; | |
d2e4a39e | 1248 | } |
14f9c5c9 | 1249 | |
29480c32 JB |
1250 | /* The first few characters that are not alphabetic are not part |
1251 | of any encoding we use, so we can copy them over verbatim. */ | |
1252 | ||
4c4b4cd2 PH |
1253 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1254 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1255 | |
1256 | at_start_name = 1; | |
1257 | while (i < len0) | |
1258 | { | |
29480c32 | 1259 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1260 | if (at_start_name && encoded[i] == 'O') |
1261 | { | |
1262 | int k; | |
5b4ee69b | 1263 | |
4c4b4cd2 PH |
1264 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1265 | { | |
1266 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1267 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1268 | op_len - 1) == 0) | |
1269 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1270 | { |
1271 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1272 | at_start_name = 0; | |
1273 | i += op_len; | |
1274 | j += strlen (ada_opname_table[k].decoded); | |
1275 | break; | |
1276 | } | |
1277 | } | |
1278 | if (ada_opname_table[k].encoded != NULL) | |
1279 | continue; | |
1280 | } | |
14f9c5c9 AS |
1281 | at_start_name = 0; |
1282 | ||
529cad9c PH |
1283 | /* Replace "TK__" with "__", which will eventually be translated |
1284 | into "." (just below). */ | |
1285 | ||
61012eef | 1286 | if (i < len0 - 4 && startswith (encoded + i, "TK__")) |
4c4b4cd2 | 1287 | i += 2; |
529cad9c | 1288 | |
29480c32 JB |
1289 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1290 | be translated into "." (just below). These are internal names | |
1291 | generated for anonymous blocks inside which our symbol is nested. */ | |
1292 | ||
1293 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1294 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1295 | && isdigit (encoded [i+4])) | |
1296 | { | |
1297 | int k = i + 5; | |
1298 | ||
1299 | while (k < len0 && isdigit (encoded[k])) | |
1300 | k++; /* Skip any extra digit. */ | |
1301 | ||
1302 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1303 | is indeed followed by "__". */ | |
1304 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1305 | i = k; | |
1306 | } | |
1307 | ||
529cad9c PH |
1308 | /* Remove _E{DIGITS}+[sb] */ |
1309 | ||
1310 | /* Just as for protected object subprograms, there are 2 categories | |
0963b4bd | 1311 | of subprograms created by the compiler for each entry. The first |
529cad9c PH |
1312 | one implements the actual entry code, and has a suffix following |
1313 | the convention above; the second one implements the barrier and | |
1314 | uses the same convention as above, except that the 'E' is replaced | |
1315 | by a 'B'. | |
1316 | ||
1317 | Just as above, we do not decode the name of barrier functions | |
1318 | to give the user a clue that the code he is debugging has been | |
1319 | internally generated. */ | |
1320 | ||
1321 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1322 | && isdigit (encoded[i+2])) | |
1323 | { | |
1324 | int k = i + 3; | |
1325 | ||
1326 | while (k < len0 && isdigit (encoded[k])) | |
1327 | k++; | |
1328 | ||
1329 | if (k < len0 | |
1330 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1331 | { | |
1332 | k++; | |
1333 | /* Just as an extra precaution, make sure that if this | |
1334 | suffix is followed by anything else, it is a '_'. | |
1335 | Otherwise, we matched this sequence by accident. */ | |
1336 | if (k == len0 | |
1337 | || (k < len0 && encoded[k] == '_')) | |
1338 | i = k; | |
1339 | } | |
1340 | } | |
1341 | ||
1342 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1343 | the GNAT front-end in protected object subprograms. */ | |
1344 | ||
1345 | if (i < len0 + 3 | |
1346 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1347 | { | |
1348 | /* Backtrack a bit up until we reach either the begining of | |
1349 | the encoded name, or "__". Make sure that we only find | |
1350 | digits or lowercase characters. */ | |
1351 | const char *ptr = encoded + i - 1; | |
1352 | ||
1353 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1354 | ptr--; | |
1355 | if (ptr < encoded | |
1356 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1357 | i++; | |
1358 | } | |
1359 | ||
4c4b4cd2 PH |
1360 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1361 | { | |
29480c32 JB |
1362 | /* This is a X[bn]* sequence not separated from the previous |
1363 | part of the name with a non-alpha-numeric character (in other | |
1364 | words, immediately following an alpha-numeric character), then | |
1365 | verify that it is placed at the end of the encoded name. If | |
1366 | not, then the encoding is not valid and we should abort the | |
1367 | decoding. Otherwise, just skip it, it is used in body-nested | |
1368 | package names. */ | |
4c4b4cd2 PH |
1369 | do |
1370 | i += 1; | |
1371 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1372 | if (i < len0) | |
1373 | goto Suppress; | |
1374 | } | |
cdc7bb92 | 1375 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1376 | { |
29480c32 | 1377 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1378 | decoded[j] = '.'; |
1379 | at_start_name = 1; | |
1380 | i += 2; | |
1381 | j += 1; | |
1382 | } | |
14f9c5c9 | 1383 | else |
4c4b4cd2 | 1384 | { |
29480c32 JB |
1385 | /* It's a character part of the decoded name, so just copy it |
1386 | over. */ | |
4c4b4cd2 PH |
1387 | decoded[j] = encoded[i]; |
1388 | i += 1; | |
1389 | j += 1; | |
1390 | } | |
14f9c5c9 | 1391 | } |
4c4b4cd2 | 1392 | decoded[j] = '\000'; |
14f9c5c9 | 1393 | |
29480c32 JB |
1394 | /* Decoded names should never contain any uppercase character. |
1395 | Double-check this, and abort the decoding if we find one. */ | |
1396 | ||
4c4b4cd2 PH |
1397 | for (i = 0; decoded[i] != '\0'; i += 1) |
1398 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1399 | goto Suppress; |
1400 | ||
4c4b4cd2 PH |
1401 | if (strcmp (decoded, encoded) == 0) |
1402 | return encoded; | |
1403 | else | |
1404 | return decoded; | |
14f9c5c9 AS |
1405 | |
1406 | Suppress: | |
4c4b4cd2 PH |
1407 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1408 | decoded = decoding_buffer; | |
1409 | if (encoded[0] == '<') | |
1410 | strcpy (decoded, encoded); | |
14f9c5c9 | 1411 | else |
88c15c34 | 1412 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1413 | return decoded; |
1414 | ||
1415 | } | |
1416 | ||
1417 | /* Table for keeping permanent unique copies of decoded names. Once | |
1418 | allocated, names in this table are never released. While this is a | |
1419 | storage leak, it should not be significant unless there are massive | |
1420 | changes in the set of decoded names in successive versions of a | |
1421 | symbol table loaded during a single session. */ | |
1422 | static struct htab *decoded_names_store; | |
1423 | ||
1424 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1425 | in the language-specific part of GSYMBOL, if it has not been | |
1426 | previously computed. Tries to save the decoded name in the same | |
1427 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1428 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1429 | GSYMBOL). |
4c4b4cd2 PH |
1430 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1431 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1432 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1433 | |
45e6c716 | 1434 | const char * |
f85f34ed | 1435 | ada_decode_symbol (const struct general_symbol_info *arg) |
4c4b4cd2 | 1436 | { |
f85f34ed TT |
1437 | struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg; |
1438 | const char **resultp = | |
615b3f62 | 1439 | &gsymbol->language_specific.demangled_name; |
5b4ee69b | 1440 | |
f85f34ed | 1441 | if (!gsymbol->ada_mangled) |
4c4b4cd2 PH |
1442 | { |
1443 | const char *decoded = ada_decode (gsymbol->name); | |
f85f34ed | 1444 | struct obstack *obstack = gsymbol->language_specific.obstack; |
5b4ee69b | 1445 | |
f85f34ed | 1446 | gsymbol->ada_mangled = 1; |
5b4ee69b | 1447 | |
f85f34ed | 1448 | if (obstack != NULL) |
224c3ddb SM |
1449 | *resultp |
1450 | = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded)); | |
f85f34ed | 1451 | else |
76a01679 | 1452 | { |
f85f34ed TT |
1453 | /* Sometimes, we can't find a corresponding objfile, in |
1454 | which case, we put the result on the heap. Since we only | |
1455 | decode when needed, we hope this usually does not cause a | |
1456 | significant memory leak (FIXME). */ | |
1457 | ||
76a01679 JB |
1458 | char **slot = (char **) htab_find_slot (decoded_names_store, |
1459 | decoded, INSERT); | |
5b4ee69b | 1460 | |
76a01679 JB |
1461 | if (*slot == NULL) |
1462 | *slot = xstrdup (decoded); | |
1463 | *resultp = *slot; | |
1464 | } | |
4c4b4cd2 | 1465 | } |
14f9c5c9 | 1466 | |
4c4b4cd2 PH |
1467 | return *resultp; |
1468 | } | |
76a01679 | 1469 | |
2c0b251b | 1470 | static char * |
76a01679 | 1471 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1472 | { |
1473 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1474 | } |
1475 | ||
8b302db8 TT |
1476 | /* Implement la_sniff_from_mangled_name for Ada. */ |
1477 | ||
1478 | static int | |
1479 | ada_sniff_from_mangled_name (const char *mangled, char **out) | |
1480 | { | |
1481 | const char *demangled = ada_decode (mangled); | |
1482 | ||
1483 | *out = NULL; | |
1484 | ||
1485 | if (demangled != mangled && demangled != NULL && demangled[0] != '<') | |
1486 | { | |
1487 | /* Set the gsymbol language to Ada, but still return 0. | |
1488 | Two reasons for that: | |
1489 | ||
1490 | 1. For Ada, we prefer computing the symbol's decoded name | |
1491 | on the fly rather than pre-compute it, in order to save | |
1492 | memory (Ada projects are typically very large). | |
1493 | ||
1494 | 2. There are some areas in the definition of the GNAT | |
1495 | encoding where, with a bit of bad luck, we might be able | |
1496 | to decode a non-Ada symbol, generating an incorrect | |
1497 | demangled name (Eg: names ending with "TB" for instance | |
1498 | are identified as task bodies and so stripped from | |
1499 | the decoded name returned). | |
1500 | ||
1501 | Returning 1, here, but not setting *DEMANGLED, helps us get a | |
1502 | little bit of the best of both worlds. Because we're last, | |
1503 | we should not affect any of the other languages that were | |
1504 | able to demangle the symbol before us; we get to correctly | |
1505 | tag Ada symbols as such; and even if we incorrectly tagged a | |
1506 | non-Ada symbol, which should be rare, any routing through the | |
1507 | Ada language should be transparent (Ada tries to behave much | |
1508 | like C/C++ with non-Ada symbols). */ | |
1509 | return 1; | |
1510 | } | |
1511 | ||
1512 | return 0; | |
1513 | } | |
1514 | ||
14f9c5c9 | 1515 | \f |
d2e4a39e | 1516 | |
4c4b4cd2 | 1517 | /* Arrays */ |
14f9c5c9 | 1518 | |
28c85d6c JB |
1519 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1520 | generated by the GNAT compiler to describe the index type used | |
1521 | for each dimension of an array, check whether it follows the latest | |
1522 | known encoding. If not, fix it up to conform to the latest encoding. | |
1523 | Otherwise, do nothing. This function also does nothing if | |
1524 | INDEX_DESC_TYPE is NULL. | |
1525 | ||
1526 | The GNAT encoding used to describle the array index type evolved a bit. | |
1527 | Initially, the information would be provided through the name of each | |
1528 | field of the structure type only, while the type of these fields was | |
1529 | described as unspecified and irrelevant. The debugger was then expected | |
1530 | to perform a global type lookup using the name of that field in order | |
1531 | to get access to the full index type description. Because these global | |
1532 | lookups can be very expensive, the encoding was later enhanced to make | |
1533 | the global lookup unnecessary by defining the field type as being | |
1534 | the full index type description. | |
1535 | ||
1536 | The purpose of this routine is to allow us to support older versions | |
1537 | of the compiler by detecting the use of the older encoding, and by | |
1538 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1539 | we essentially replace each field's meaningless type by the associated | |
1540 | index subtype). */ | |
1541 | ||
1542 | void | |
1543 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1544 | { | |
1545 | int i; | |
1546 | ||
1547 | if (index_desc_type == NULL) | |
1548 | return; | |
1549 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1550 | ||
1551 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1552 | to check one field only, no need to check them all). If not, return | |
1553 | now. | |
1554 | ||
1555 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1556 | the field type should be a meaningless integer type whose name | |
1557 | is not equal to the field name. */ | |
1558 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1559 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1560 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1561 | return; | |
1562 | ||
1563 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1564 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1565 | { | |
0d5cff50 | 1566 | const char *name = TYPE_FIELD_NAME (index_desc_type, i); |
28c85d6c JB |
1567 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); |
1568 | ||
1569 | if (raw_type) | |
1570 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1571 | } | |
1572 | } | |
1573 | ||
4c4b4cd2 | 1574 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1575 | |
a121b7c1 | 1576 | static const char *bound_name[] = { |
d2e4a39e | 1577 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", |
14f9c5c9 AS |
1578 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1579 | }; | |
1580 | ||
1581 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1582 | ||
4c4b4cd2 | 1583 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1584 | |
14f9c5c9 | 1585 | |
4c4b4cd2 PH |
1586 | /* The desc_* routines return primitive portions of array descriptors |
1587 | (fat pointers). */ | |
14f9c5c9 AS |
1588 | |
1589 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1590 | level of indirection, if needed. */ |
1591 | ||
d2e4a39e AS |
1592 | static struct type * |
1593 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1594 | { |
1595 | if (type == NULL) | |
1596 | return NULL; | |
61ee279c | 1597 | type = ada_check_typedef (type); |
720d1a40 JB |
1598 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1599 | type = ada_typedef_target_type (type); | |
1600 | ||
1265e4aa JB |
1601 | if (type != NULL |
1602 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1603 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1604 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1605 | else |
1606 | return type; | |
1607 | } | |
1608 | ||
4c4b4cd2 PH |
1609 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1610 | ||
14f9c5c9 | 1611 | static int |
d2e4a39e | 1612 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1613 | { |
d2e4a39e | 1614 | return |
14f9c5c9 AS |
1615 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1616 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1617 | } | |
1618 | ||
4c4b4cd2 PH |
1619 | /* The descriptor type for thin pointer type TYPE. */ |
1620 | ||
d2e4a39e AS |
1621 | static struct type * |
1622 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1623 | { |
d2e4a39e | 1624 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1625 | |
14f9c5c9 AS |
1626 | if (base_type == NULL) |
1627 | return NULL; | |
1628 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1629 | return base_type; | |
d2e4a39e | 1630 | else |
14f9c5c9 | 1631 | { |
d2e4a39e | 1632 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1633 | |
14f9c5c9 | 1634 | if (alt_type == NULL) |
4c4b4cd2 | 1635 | return base_type; |
14f9c5c9 | 1636 | else |
4c4b4cd2 | 1637 | return alt_type; |
14f9c5c9 AS |
1638 | } |
1639 | } | |
1640 | ||
4c4b4cd2 PH |
1641 | /* A pointer to the array data for thin-pointer value VAL. */ |
1642 | ||
d2e4a39e AS |
1643 | static struct value * |
1644 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1645 | { |
828292f2 | 1646 | struct type *type = ada_check_typedef (value_type (val)); |
556bdfd4 | 1647 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1648 | |
556bdfd4 UW |
1649 | data_type = lookup_pointer_type (data_type); |
1650 | ||
14f9c5c9 | 1651 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1652 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1653 | else |
42ae5230 | 1654 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1655 | } |
1656 | ||
4c4b4cd2 PH |
1657 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1658 | ||
14f9c5c9 | 1659 | static int |
d2e4a39e | 1660 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1661 | { |
1662 | type = desc_base_type (type); | |
1663 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1664 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1665 | } |
1666 | ||
4c4b4cd2 PH |
1667 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1668 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1669 | |
d2e4a39e AS |
1670 | static struct type * |
1671 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1672 | { |
d2e4a39e | 1673 | struct type *r; |
14f9c5c9 AS |
1674 | |
1675 | type = desc_base_type (type); | |
1676 | ||
1677 | if (type == NULL) | |
1678 | return NULL; | |
1679 | else if (is_thin_pntr (type)) | |
1680 | { | |
1681 | type = thin_descriptor_type (type); | |
1682 | if (type == NULL) | |
4c4b4cd2 | 1683 | return NULL; |
14f9c5c9 AS |
1684 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1685 | if (r != NULL) | |
61ee279c | 1686 | return ada_check_typedef (r); |
14f9c5c9 AS |
1687 | } |
1688 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1689 | { | |
1690 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1691 | if (r != NULL) | |
61ee279c | 1692 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1693 | } |
1694 | return NULL; | |
1695 | } | |
1696 | ||
1697 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1698 | one, a pointer to its bounds data. Otherwise NULL. */ |
1699 | ||
d2e4a39e AS |
1700 | static struct value * |
1701 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1702 | { |
df407dfe | 1703 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1704 | |
d2e4a39e | 1705 | if (is_thin_pntr (type)) |
14f9c5c9 | 1706 | { |
d2e4a39e | 1707 | struct type *bounds_type = |
4c4b4cd2 | 1708 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1709 | LONGEST addr; |
1710 | ||
4cdfadb1 | 1711 | if (bounds_type == NULL) |
323e0a4a | 1712 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1713 | |
1714 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1715 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1716 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1717 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1718 | addr = value_as_long (arr); |
d2e4a39e | 1719 | else |
42ae5230 | 1720 | addr = value_address (arr); |
14f9c5c9 | 1721 | |
d2e4a39e | 1722 | return |
4c4b4cd2 PH |
1723 | value_from_longest (lookup_pointer_type (bounds_type), |
1724 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1725 | } |
1726 | ||
1727 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1728 | { |
1729 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1730 | _("Bad GNAT array descriptor")); | |
1731 | struct type *p_bounds_type = value_type (p_bounds); | |
1732 | ||
1733 | if (p_bounds_type | |
1734 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1735 | { | |
1736 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1737 | ||
1738 | if (TYPE_STUB (target_type)) | |
1739 | p_bounds = value_cast (lookup_pointer_type | |
1740 | (ada_check_typedef (target_type)), | |
1741 | p_bounds); | |
1742 | } | |
1743 | else | |
1744 | error (_("Bad GNAT array descriptor")); | |
1745 | ||
1746 | return p_bounds; | |
1747 | } | |
14f9c5c9 AS |
1748 | else |
1749 | return NULL; | |
1750 | } | |
1751 | ||
4c4b4cd2 PH |
1752 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1753 | position of the field containing the address of the bounds data. */ | |
1754 | ||
14f9c5c9 | 1755 | static int |
d2e4a39e | 1756 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1757 | { |
1758 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1759 | } | |
1760 | ||
1761 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1762 | size of the field containing the address of the bounds data. */ |
1763 | ||
14f9c5c9 | 1764 | static int |
d2e4a39e | 1765 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1766 | { |
1767 | type = desc_base_type (type); | |
1768 | ||
d2e4a39e | 1769 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1770 | return TYPE_FIELD_BITSIZE (type, 1); |
1771 | else | |
61ee279c | 1772 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1773 | } |
1774 | ||
4c4b4cd2 | 1775 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1776 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1777 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1778 | data. */ | |
4c4b4cd2 | 1779 | |
d2e4a39e | 1780 | static struct type * |
556bdfd4 | 1781 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1782 | { |
1783 | type = desc_base_type (type); | |
1784 | ||
4c4b4cd2 | 1785 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1786 | if (is_thin_pntr (type)) |
556bdfd4 | 1787 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1788 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1789 | { |
1790 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1791 | ||
1792 | if (data_type | |
1793 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1794 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1795 | } |
1796 | ||
1797 | return NULL; | |
14f9c5c9 AS |
1798 | } |
1799 | ||
1800 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1801 | its array data. */ | |
4c4b4cd2 | 1802 | |
d2e4a39e AS |
1803 | static struct value * |
1804 | desc_data (struct value *arr) | |
14f9c5c9 | 1805 | { |
df407dfe | 1806 | struct type *type = value_type (arr); |
5b4ee69b | 1807 | |
14f9c5c9 AS |
1808 | if (is_thin_pntr (type)) |
1809 | return thin_data_pntr (arr); | |
1810 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1811 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1812 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1813 | else |
1814 | return NULL; | |
1815 | } | |
1816 | ||
1817 | ||
1818 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1819 | position of the field containing the address of the data. */ |
1820 | ||
14f9c5c9 | 1821 | static int |
d2e4a39e | 1822 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1823 | { |
1824 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1825 | } | |
1826 | ||
1827 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1828 | size of the field containing the address of the data. */ |
1829 | ||
14f9c5c9 | 1830 | static int |
d2e4a39e | 1831 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1832 | { |
1833 | type = desc_base_type (type); | |
1834 | ||
1835 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1836 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1837 | else |
14f9c5c9 AS |
1838 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1839 | } | |
1840 | ||
4c4b4cd2 | 1841 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1842 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1843 | bound, if WHICH is 1. The first bound is I=1. */ |
1844 | ||
d2e4a39e AS |
1845 | static struct value * |
1846 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1847 | { |
d2e4a39e | 1848 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1849 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1850 | } |
1851 | ||
1852 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1853 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1854 | bound, if WHICH is 1. The first bound is I=1. */ |
1855 | ||
14f9c5c9 | 1856 | static int |
d2e4a39e | 1857 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1858 | { |
d2e4a39e | 1859 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1860 | } |
1861 | ||
1862 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1863 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1864 | bound, if WHICH is 1. The first bound is I=1. */ |
1865 | ||
76a01679 | 1866 | static int |
d2e4a39e | 1867 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1868 | { |
1869 | type = desc_base_type (type); | |
1870 | ||
d2e4a39e AS |
1871 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1872 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1873 | else | |
1874 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1875 | } |
1876 | ||
1877 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1878 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1879 | ||
d2e4a39e AS |
1880 | static struct type * |
1881 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1882 | { |
1883 | type = desc_base_type (type); | |
1884 | ||
1885 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1886 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1887 | else | |
14f9c5c9 AS |
1888 | return NULL; |
1889 | } | |
1890 | ||
4c4b4cd2 PH |
1891 | /* The number of index positions in the array-bounds type TYPE. |
1892 | Return 0 if TYPE is NULL. */ | |
1893 | ||
14f9c5c9 | 1894 | static int |
d2e4a39e | 1895 | desc_arity (struct type *type) |
14f9c5c9 AS |
1896 | { |
1897 | type = desc_base_type (type); | |
1898 | ||
1899 | if (type != NULL) | |
1900 | return TYPE_NFIELDS (type) / 2; | |
1901 | return 0; | |
1902 | } | |
1903 | ||
4c4b4cd2 PH |
1904 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1905 | an array descriptor type (representing an unconstrained array | |
1906 | type). */ | |
1907 | ||
76a01679 JB |
1908 | static int |
1909 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1910 | { |
1911 | if (type == NULL) | |
1912 | return 0; | |
61ee279c | 1913 | type = ada_check_typedef (type); |
4c4b4cd2 | 1914 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1915 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1916 | } |
1917 | ||
52ce6436 | 1918 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1919 | * to one. */ |
52ce6436 | 1920 | |
2c0b251b | 1921 | static int |
52ce6436 PH |
1922 | ada_is_array_type (struct type *type) |
1923 | { | |
1924 | while (type != NULL | |
1925 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1926 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1927 | type = TYPE_TARGET_TYPE (type); | |
1928 | return ada_is_direct_array_type (type); | |
1929 | } | |
1930 | ||
4c4b4cd2 | 1931 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1932 | |
14f9c5c9 | 1933 | int |
4c4b4cd2 | 1934 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1935 | { |
1936 | if (type == NULL) | |
1937 | return 0; | |
61ee279c | 1938 | type = ada_check_typedef (type); |
14f9c5c9 | 1939 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 | 1940 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
b0dd7688 JB |
1941 | && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))) |
1942 | == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1943 | } |
1944 | ||
4c4b4cd2 PH |
1945 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1946 | ||
14f9c5c9 | 1947 | int |
4c4b4cd2 | 1948 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1949 | { |
556bdfd4 | 1950 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1951 | |
1952 | if (type == NULL) | |
1953 | return 0; | |
61ee279c | 1954 | type = ada_check_typedef (type); |
556bdfd4 UW |
1955 | return (data_type != NULL |
1956 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1957 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1958 | } |
1959 | ||
1960 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1961 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1962 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1963 | is still needed. */ |
1964 | ||
14f9c5c9 | 1965 | int |
ebf56fd3 | 1966 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1967 | { |
d2e4a39e | 1968 | return |
14f9c5c9 AS |
1969 | type != NULL |
1970 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1971 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1972 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1973 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1974 | } |
1975 | ||
1976 | ||
4c4b4cd2 | 1977 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1978 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1979 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1980 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1981 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1982 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1983 | a descriptor. */ |
d2e4a39e AS |
1984 | struct type * |
1985 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1986 | { |
ad82864c JB |
1987 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1988 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1989 | |
df407dfe AC |
1990 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1991 | return value_type (arr); | |
d2e4a39e AS |
1992 | |
1993 | if (!bounds) | |
ad82864c JB |
1994 | { |
1995 | struct type *array_type = | |
1996 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1997 | ||
1998 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1999 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
2000 | decode_packed_array_bitsize (value_type (arr)); | |
2001 | ||
2002 | return array_type; | |
2003 | } | |
14f9c5c9 AS |
2004 | else |
2005 | { | |
d2e4a39e | 2006 | struct type *elt_type; |
14f9c5c9 | 2007 | int arity; |
d2e4a39e | 2008 | struct value *descriptor; |
14f9c5c9 | 2009 | |
df407dfe AC |
2010 | elt_type = ada_array_element_type (value_type (arr), -1); |
2011 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 2012 | |
d2e4a39e | 2013 | if (elt_type == NULL || arity == 0) |
df407dfe | 2014 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
2015 | |
2016 | descriptor = desc_bounds (arr); | |
d2e4a39e | 2017 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 2018 | return NULL; |
d2e4a39e | 2019 | while (arity > 0) |
4c4b4cd2 | 2020 | { |
e9bb382b UW |
2021 | struct type *range_type = alloc_type_copy (value_type (arr)); |
2022 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
2023 | struct value *low = desc_one_bound (descriptor, arity, 0); |
2024 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 2025 | |
5b4ee69b | 2026 | arity -= 1; |
0c9c3474 SA |
2027 | create_static_range_type (range_type, value_type (low), |
2028 | longest_to_int (value_as_long (low)), | |
2029 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 2030 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
2031 | |
2032 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
2033 | { |
2034 | /* We need to store the element packed bitsize, as well as | |
2035 | recompute the array size, because it was previously | |
2036 | computed based on the unpacked element size. */ | |
2037 | LONGEST lo = value_as_long (low); | |
2038 | LONGEST hi = value_as_long (high); | |
2039 | ||
2040 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
2041 | decode_packed_array_bitsize (value_type (arr)); | |
2042 | /* If the array has no element, then the size is already | |
2043 | zero, and does not need to be recomputed. */ | |
2044 | if (lo < hi) | |
2045 | { | |
2046 | int array_bitsize = | |
2047 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); | |
2048 | ||
2049 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
2050 | } | |
2051 | } | |
4c4b4cd2 | 2052 | } |
14f9c5c9 AS |
2053 | |
2054 | return lookup_pointer_type (elt_type); | |
2055 | } | |
2056 | } | |
2057 | ||
2058 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
2059 | Otherwise, returns either a standard GDB array with bounds set |
2060 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
2061 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
2062 | ||
d2e4a39e AS |
2063 | struct value * |
2064 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 2065 | { |
df407dfe | 2066 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2067 | { |
d2e4a39e | 2068 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 2069 | |
14f9c5c9 | 2070 | if (arrType == NULL) |
4c4b4cd2 | 2071 | return NULL; |
14f9c5c9 AS |
2072 | return value_cast (arrType, value_copy (desc_data (arr))); |
2073 | } | |
ad82864c JB |
2074 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2075 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
2076 | else |
2077 | return arr; | |
2078 | } | |
2079 | ||
2080 | /* If ARR does not represent an array, returns ARR unchanged. | |
2081 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
2082 | be ARR itself if it already is in the proper form). */ |
2083 | ||
720d1a40 | 2084 | struct value * |
d2e4a39e | 2085 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 2086 | { |
df407dfe | 2087 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2088 | { |
d2e4a39e | 2089 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 2090 | |
14f9c5c9 | 2091 | if (arrVal == NULL) |
323e0a4a | 2092 | error (_("Bounds unavailable for null array pointer.")); |
c1b5a1a6 | 2093 | ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
2094 | return value_ind (arrVal); |
2095 | } | |
ad82864c JB |
2096 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2097 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 2098 | else |
14f9c5c9 AS |
2099 | return arr; |
2100 | } | |
2101 | ||
2102 | /* If TYPE represents a GNAT array type, return it translated to an | |
2103 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
2104 | packing). For other types, is the identity. */ |
2105 | ||
d2e4a39e AS |
2106 | struct type * |
2107 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 2108 | { |
ad82864c JB |
2109 | if (ada_is_constrained_packed_array_type (type)) |
2110 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
2111 | |
2112 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 2113 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
2114 | |
2115 | return type; | |
14f9c5c9 AS |
2116 | } |
2117 | ||
4c4b4cd2 PH |
2118 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
2119 | ||
ad82864c JB |
2120 | static int |
2121 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
2122 | { |
2123 | if (type == NULL) | |
2124 | return 0; | |
4c4b4cd2 | 2125 | type = desc_base_type (type); |
61ee279c | 2126 | type = ada_check_typedef (type); |
d2e4a39e | 2127 | return |
14f9c5c9 AS |
2128 | ada_type_name (type) != NULL |
2129 | && strstr (ada_type_name (type), "___XP") != NULL; | |
2130 | } | |
2131 | ||
ad82864c JB |
2132 | /* Non-zero iff TYPE represents a standard GNAT constrained |
2133 | packed-array type. */ | |
2134 | ||
2135 | int | |
2136 | ada_is_constrained_packed_array_type (struct type *type) | |
2137 | { | |
2138 | return ada_is_packed_array_type (type) | |
2139 | && !ada_is_array_descriptor_type (type); | |
2140 | } | |
2141 | ||
2142 | /* Non-zero iff TYPE represents an array descriptor for a | |
2143 | unconstrained packed-array type. */ | |
2144 | ||
2145 | static int | |
2146 | ada_is_unconstrained_packed_array_type (struct type *type) | |
2147 | { | |
2148 | return ada_is_packed_array_type (type) | |
2149 | && ada_is_array_descriptor_type (type); | |
2150 | } | |
2151 | ||
2152 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
2153 | return the size of its elements in bits. */ | |
2154 | ||
2155 | static long | |
2156 | decode_packed_array_bitsize (struct type *type) | |
2157 | { | |
0d5cff50 DE |
2158 | const char *raw_name; |
2159 | const char *tail; | |
ad82864c JB |
2160 | long bits; |
2161 | ||
720d1a40 JB |
2162 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
2163 | of the fat pointer type. We need the name of the fat pointer type | |
2164 | to do the decoding, so strip the typedef layer. */ | |
2165 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
2166 | type = ada_typedef_target_type (type); | |
2167 | ||
2168 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
2169 | if (!raw_name) |
2170 | raw_name = ada_type_name (desc_base_type (type)); | |
2171 | ||
2172 | if (!raw_name) | |
2173 | return 0; | |
2174 | ||
2175 | tail = strstr (raw_name, "___XP"); | |
720d1a40 | 2176 | gdb_assert (tail != NULL); |
ad82864c JB |
2177 | |
2178 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
2179 | { | |
2180 | lim_warning | |
2181 | (_("could not understand bit size information on packed array")); | |
2182 | return 0; | |
2183 | } | |
2184 | ||
2185 | return bits; | |
2186 | } | |
2187 | ||
14f9c5c9 AS |
2188 | /* Given that TYPE is a standard GDB array type with all bounds filled |
2189 | in, and that the element size of its ultimate scalar constituents | |
2190 | (that is, either its elements, or, if it is an array of arrays, its | |
2191 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
2192 | but with the bit sizes of its elements (and those of any | |
2193 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 | 2194 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
4a46959e JB |
2195 | in bits. |
2196 | ||
2197 | Note that, for arrays whose index type has an XA encoding where | |
2198 | a bound references a record discriminant, getting that discriminant, | |
2199 | and therefore the actual value of that bound, is not possible | |
2200 | because none of the given parameters gives us access to the record. | |
2201 | This function assumes that it is OK in the context where it is being | |
2202 | used to return an array whose bounds are still dynamic and where | |
2203 | the length is arbitrary. */ | |
4c4b4cd2 | 2204 | |
d2e4a39e | 2205 | static struct type * |
ad82864c | 2206 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 2207 | { |
d2e4a39e AS |
2208 | struct type *new_elt_type; |
2209 | struct type *new_type; | |
99b1c762 JB |
2210 | struct type *index_type_desc; |
2211 | struct type *index_type; | |
14f9c5c9 AS |
2212 | LONGEST low_bound, high_bound; |
2213 | ||
61ee279c | 2214 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2215 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
2216 | return type; | |
2217 | ||
99b1c762 JB |
2218 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
2219 | if (index_type_desc) | |
2220 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0), | |
2221 | NULL); | |
2222 | else | |
2223 | index_type = TYPE_INDEX_TYPE (type); | |
2224 | ||
e9bb382b | 2225 | new_type = alloc_type_copy (type); |
ad82864c JB |
2226 | new_elt_type = |
2227 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2228 | elt_bits); | |
99b1c762 | 2229 | create_array_type (new_type, new_elt_type, index_type); |
14f9c5c9 AS |
2230 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
2231 | TYPE_NAME (new_type) = ada_type_name (type); | |
2232 | ||
4a46959e JB |
2233 | if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE |
2234 | && is_dynamic_type (check_typedef (index_type))) | |
2235 | || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0) | |
14f9c5c9 AS |
2236 | low_bound = high_bound = 0; |
2237 | if (high_bound < low_bound) | |
2238 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2239 | else |
14f9c5c9 AS |
2240 | { |
2241 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2242 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 2243 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2244 | } |
2245 | ||
876cecd0 | 2246 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
2247 | return new_type; |
2248 | } | |
2249 | ||
ad82864c JB |
2250 | /* The array type encoded by TYPE, where |
2251 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2252 | |
d2e4a39e | 2253 | static struct type * |
ad82864c | 2254 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2255 | { |
0d5cff50 | 2256 | const char *raw_name = ada_type_name (ada_check_typedef (type)); |
727e3d2e | 2257 | char *name; |
0d5cff50 | 2258 | const char *tail; |
d2e4a39e | 2259 | struct type *shadow_type; |
14f9c5c9 | 2260 | long bits; |
14f9c5c9 | 2261 | |
727e3d2e JB |
2262 | if (!raw_name) |
2263 | raw_name = ada_type_name (desc_base_type (type)); | |
2264 | ||
2265 | if (!raw_name) | |
2266 | return NULL; | |
2267 | ||
2268 | name = (char *) alloca (strlen (raw_name) + 1); | |
2269 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2270 | type = desc_base_type (type); |
2271 | ||
14f9c5c9 AS |
2272 | memcpy (name, raw_name, tail - raw_name); |
2273 | name[tail - raw_name] = '\000'; | |
2274 | ||
b4ba55a1 JB |
2275 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2276 | ||
2277 | if (shadow_type == NULL) | |
14f9c5c9 | 2278 | { |
323e0a4a | 2279 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2280 | return NULL; |
2281 | } | |
f168693b | 2282 | shadow_type = check_typedef (shadow_type); |
14f9c5c9 AS |
2283 | |
2284 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2285 | { | |
0963b4bd MS |
2286 | lim_warning (_("could not understand bounds " |
2287 | "information on packed array")); | |
14f9c5c9 AS |
2288 | return NULL; |
2289 | } | |
d2e4a39e | 2290 | |
ad82864c JB |
2291 | bits = decode_packed_array_bitsize (type); |
2292 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2293 | } |
2294 | ||
ad82864c JB |
2295 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2296 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2297 | standard GDB array type except that the BITSIZEs of the array |
2298 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2299 | type length is set appropriately. */ |
14f9c5c9 | 2300 | |
d2e4a39e | 2301 | static struct value * |
ad82864c | 2302 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2303 | { |
4c4b4cd2 | 2304 | struct type *type; |
14f9c5c9 | 2305 | |
11aa919a PMR |
2306 | /* If our value is a pointer, then dereference it. Likewise if |
2307 | the value is a reference. Make sure that this operation does not | |
2308 | cause the target type to be fixed, as this would indirectly cause | |
2309 | this array to be decoded. The rest of the routine assumes that | |
2310 | the array hasn't been decoded yet, so we use the basic "coerce_ref" | |
2311 | and "value_ind" routines to perform the dereferencing, as opposed | |
2312 | to using "ada_coerce_ref" or "ada_value_ind". */ | |
2313 | arr = coerce_ref (arr); | |
828292f2 | 2314 | if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR) |
284614f0 | 2315 | arr = value_ind (arr); |
4c4b4cd2 | 2316 | |
ad82864c | 2317 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2318 | if (type == NULL) |
2319 | { | |
323e0a4a | 2320 | error (_("can't unpack array")); |
14f9c5c9 AS |
2321 | return NULL; |
2322 | } | |
61ee279c | 2323 | |
50810684 | 2324 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 2325 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2326 | { |
2327 | /* This is a (right-justified) modular type representing a packed | |
2328 | array with no wrapper. In order to interpret the value through | |
2329 | the (left-justified) packed array type we just built, we must | |
2330 | first left-justify it. */ | |
2331 | int bit_size, bit_pos; | |
2332 | ULONGEST mod; | |
2333 | ||
df407dfe | 2334 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2335 | bit_size = 0; |
2336 | while (mod > 0) | |
2337 | { | |
2338 | bit_size += 1; | |
2339 | mod >>= 1; | |
2340 | } | |
df407dfe | 2341 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2342 | arr = ada_value_primitive_packed_val (arr, NULL, |
2343 | bit_pos / HOST_CHAR_BIT, | |
2344 | bit_pos % HOST_CHAR_BIT, | |
2345 | bit_size, | |
2346 | type); | |
2347 | } | |
2348 | ||
4c4b4cd2 | 2349 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2350 | } |
2351 | ||
2352 | ||
2353 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2354 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2355 | |
d2e4a39e AS |
2356 | static struct value * |
2357 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2358 | { |
2359 | int i; | |
2360 | int bits, elt_off, bit_off; | |
2361 | long elt_total_bit_offset; | |
d2e4a39e AS |
2362 | struct type *elt_type; |
2363 | struct value *v; | |
14f9c5c9 AS |
2364 | |
2365 | bits = 0; | |
2366 | elt_total_bit_offset = 0; | |
df407dfe | 2367 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2368 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2369 | { |
d2e4a39e | 2370 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2371 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2372 | error | |
0963b4bd MS |
2373 | (_("attempt to do packed indexing of " |
2374 | "something other than a packed array")); | |
14f9c5c9 | 2375 | else |
4c4b4cd2 PH |
2376 | { |
2377 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2378 | LONGEST lowerbound, upperbound; | |
2379 | LONGEST idx; | |
2380 | ||
2381 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2382 | { | |
323e0a4a | 2383 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2384 | lowerbound = upperbound = 0; |
2385 | } | |
2386 | ||
3cb382c9 | 2387 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2388 | if (idx < lowerbound || idx > upperbound) |
0963b4bd MS |
2389 | lim_warning (_("packed array index %ld out of bounds"), |
2390 | (long) idx); | |
4c4b4cd2 PH |
2391 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2392 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2393 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2394 | } |
14f9c5c9 AS |
2395 | } |
2396 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2397 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2398 | |
2399 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2400 | bits, elt_type); |
14f9c5c9 AS |
2401 | return v; |
2402 | } | |
2403 | ||
4c4b4cd2 | 2404 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2405 | |
2406 | static int | |
d2e4a39e | 2407 | has_negatives (struct type *type) |
14f9c5c9 | 2408 | { |
d2e4a39e AS |
2409 | switch (TYPE_CODE (type)) |
2410 | { | |
2411 | default: | |
2412 | return 0; | |
2413 | case TYPE_CODE_INT: | |
2414 | return !TYPE_UNSIGNED (type); | |
2415 | case TYPE_CODE_RANGE: | |
2416 | return TYPE_LOW_BOUND (type) < 0; | |
2417 | } | |
14f9c5c9 | 2418 | } |
d2e4a39e | 2419 | |
f93fca70 | 2420 | /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET, |
5b639dea | 2421 | unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of |
f93fca70 | 2422 | the unpacked buffer. |
14f9c5c9 | 2423 | |
5b639dea JB |
2424 | The size of the unpacked buffer (UNPACKED_LEN) is expected to be large |
2425 | enough to contain at least BIT_OFFSET bits. If not, an error is raised. | |
2426 | ||
f93fca70 JB |
2427 | IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode, |
2428 | zero otherwise. | |
14f9c5c9 | 2429 | |
f93fca70 | 2430 | IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type. |
a1c95e6b | 2431 | |
f93fca70 JB |
2432 | IS_SCALAR is nonzero if the data corresponds to a signed type. */ |
2433 | ||
2434 | static void | |
2435 | ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size, | |
2436 | gdb_byte *unpacked, int unpacked_len, | |
2437 | int is_big_endian, int is_signed_type, | |
2438 | int is_scalar) | |
2439 | { | |
a1c95e6b JB |
2440 | int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; |
2441 | int src_idx; /* Index into the source area */ | |
2442 | int src_bytes_left; /* Number of source bytes left to process. */ | |
2443 | int srcBitsLeft; /* Number of source bits left to move */ | |
2444 | int unusedLS; /* Number of bits in next significant | |
2445 | byte of source that are unused */ | |
2446 | ||
a1c95e6b JB |
2447 | int unpacked_idx; /* Index into the unpacked buffer */ |
2448 | int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */ | |
2449 | ||
4c4b4cd2 | 2450 | unsigned long accum; /* Staging area for bits being transferred */ |
a1c95e6b | 2451 | int accumSize; /* Number of meaningful bits in accum */ |
14f9c5c9 | 2452 | unsigned char sign; |
a1c95e6b | 2453 | |
4c4b4cd2 PH |
2454 | /* Transmit bytes from least to most significant; delta is the direction |
2455 | the indices move. */ | |
f93fca70 | 2456 | int delta = is_big_endian ? -1 : 1; |
14f9c5c9 | 2457 | |
5b639dea JB |
2458 | /* Make sure that unpacked is large enough to receive the BIT_SIZE |
2459 | bits from SRC. .*/ | |
2460 | if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len) | |
2461 | error (_("Cannot unpack %d bits into buffer of %d bytes"), | |
2462 | bit_size, unpacked_len); | |
2463 | ||
14f9c5c9 | 2464 | srcBitsLeft = bit_size; |
086ca51f | 2465 | src_bytes_left = src_len; |
f93fca70 | 2466 | unpacked_bytes_left = unpacked_len; |
14f9c5c9 | 2467 | sign = 0; |
f93fca70 JB |
2468 | |
2469 | if (is_big_endian) | |
14f9c5c9 | 2470 | { |
086ca51f | 2471 | src_idx = src_len - 1; |
f93fca70 JB |
2472 | if (is_signed_type |
2473 | && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2474 | sign = ~0; |
d2e4a39e AS |
2475 | |
2476 | unusedLS = | |
4c4b4cd2 PH |
2477 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2478 | % HOST_CHAR_BIT; | |
14f9c5c9 | 2479 | |
f93fca70 JB |
2480 | if (is_scalar) |
2481 | { | |
2482 | accumSize = 0; | |
2483 | unpacked_idx = unpacked_len - 1; | |
2484 | } | |
2485 | else | |
2486 | { | |
4c4b4cd2 PH |
2487 | /* Non-scalar values must be aligned at a byte boundary... */ |
2488 | accumSize = | |
2489 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2490 | /* ... And are placed at the beginning (most-significant) bytes | |
2491 | of the target. */ | |
086ca51f JB |
2492 | unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
2493 | unpacked_bytes_left = unpacked_idx + 1; | |
f93fca70 | 2494 | } |
14f9c5c9 | 2495 | } |
d2e4a39e | 2496 | else |
14f9c5c9 AS |
2497 | { |
2498 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2499 | ||
086ca51f | 2500 | src_idx = unpacked_idx = 0; |
14f9c5c9 AS |
2501 | unusedLS = bit_offset; |
2502 | accumSize = 0; | |
2503 | ||
f93fca70 | 2504 | if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2505 | sign = ~0; |
14f9c5c9 | 2506 | } |
d2e4a39e | 2507 | |
14f9c5c9 | 2508 | accum = 0; |
086ca51f | 2509 | while (src_bytes_left > 0) |
14f9c5c9 AS |
2510 | { |
2511 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2512 | part of the value. */ |
d2e4a39e | 2513 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2514 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2515 | 1; | |
2516 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2517 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2518 | |
d2e4a39e | 2519 | accum |= |
086ca51f | 2520 | (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2521 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2522 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 | 2523 | { |
db297a65 | 2524 | unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT); |
4c4b4cd2 PH |
2525 | accumSize -= HOST_CHAR_BIT; |
2526 | accum >>= HOST_CHAR_BIT; | |
086ca51f JB |
2527 | unpacked_bytes_left -= 1; |
2528 | unpacked_idx += delta; | |
4c4b4cd2 | 2529 | } |
14f9c5c9 AS |
2530 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2531 | unusedLS = 0; | |
086ca51f JB |
2532 | src_bytes_left -= 1; |
2533 | src_idx += delta; | |
14f9c5c9 | 2534 | } |
086ca51f | 2535 | while (unpacked_bytes_left > 0) |
14f9c5c9 AS |
2536 | { |
2537 | accum |= sign << accumSize; | |
db297a65 | 2538 | unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT); |
14f9c5c9 | 2539 | accumSize -= HOST_CHAR_BIT; |
9cd4d857 JB |
2540 | if (accumSize < 0) |
2541 | accumSize = 0; | |
14f9c5c9 | 2542 | accum >>= HOST_CHAR_BIT; |
086ca51f JB |
2543 | unpacked_bytes_left -= 1; |
2544 | unpacked_idx += delta; | |
14f9c5c9 | 2545 | } |
f93fca70 JB |
2546 | } |
2547 | ||
2548 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2549 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2550 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
2551 | assigning through the result will set the field fetched from. | |
2552 | VALADDR is ignored unless OBJ is NULL, in which case, | |
2553 | VALADDR+OFFSET must address the start of storage containing the | |
2554 | packed value. The value returned in this case is never an lval. | |
2555 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
2556 | ||
2557 | struct value * | |
2558 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, | |
2559 | long offset, int bit_offset, int bit_size, | |
2560 | struct type *type) | |
2561 | { | |
2562 | struct value *v; | |
bfb1c796 | 2563 | const gdb_byte *src; /* First byte containing data to unpack */ |
f93fca70 | 2564 | gdb_byte *unpacked; |
220475ed | 2565 | const int is_scalar = is_scalar_type (type); |
d0a9e810 | 2566 | const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type)); |
d5722aa2 | 2567 | gdb::byte_vector staging; |
f93fca70 JB |
2568 | |
2569 | type = ada_check_typedef (type); | |
2570 | ||
d0a9e810 | 2571 | if (obj == NULL) |
bfb1c796 | 2572 | src = valaddr + offset; |
d0a9e810 | 2573 | else |
bfb1c796 | 2574 | src = value_contents (obj) + offset; |
d0a9e810 JB |
2575 | |
2576 | if (is_dynamic_type (type)) | |
2577 | { | |
2578 | /* The length of TYPE might by dynamic, so we need to resolve | |
2579 | TYPE in order to know its actual size, which we then use | |
2580 | to create the contents buffer of the value we return. | |
2581 | The difficulty is that the data containing our object is | |
2582 | packed, and therefore maybe not at a byte boundary. So, what | |
2583 | we do, is unpack the data into a byte-aligned buffer, and then | |
2584 | use that buffer as our object's value for resolving the type. */ | |
d5722aa2 PA |
2585 | int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
2586 | staging.resize (staging_len); | |
d0a9e810 JB |
2587 | |
2588 | ada_unpack_from_contents (src, bit_offset, bit_size, | |
d5722aa2 | 2589 | staging.data (), staging.size (), |
d0a9e810 JB |
2590 | is_big_endian, has_negatives (type), |
2591 | is_scalar); | |
d5722aa2 | 2592 | type = resolve_dynamic_type (type, staging.data (), 0); |
0cafa88c JB |
2593 | if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT) |
2594 | { | |
2595 | /* This happens when the length of the object is dynamic, | |
2596 | and is actually smaller than the space reserved for it. | |
2597 | For instance, in an array of variant records, the bit_size | |
2598 | we're given is the array stride, which is constant and | |
2599 | normally equal to the maximum size of its element. | |
2600 | But, in reality, each element only actually spans a portion | |
2601 | of that stride. */ | |
2602 | bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT; | |
2603 | } | |
d0a9e810 JB |
2604 | } |
2605 | ||
f93fca70 JB |
2606 | if (obj == NULL) |
2607 | { | |
2608 | v = allocate_value (type); | |
bfb1c796 | 2609 | src = valaddr + offset; |
f93fca70 JB |
2610 | } |
2611 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) | |
2612 | { | |
0cafa88c | 2613 | int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; |
bfb1c796 | 2614 | gdb_byte *buf; |
0cafa88c | 2615 | |
f93fca70 | 2616 | v = value_at (type, value_address (obj) + offset); |
bfb1c796 PA |
2617 | buf = (gdb_byte *) alloca (src_len); |
2618 | read_memory (value_address (v), buf, src_len); | |
2619 | src = buf; | |
f93fca70 JB |
2620 | } |
2621 | else | |
2622 | { | |
2623 | v = allocate_value (type); | |
bfb1c796 | 2624 | src = value_contents (obj) + offset; |
f93fca70 JB |
2625 | } |
2626 | ||
2627 | if (obj != NULL) | |
2628 | { | |
2629 | long new_offset = offset; | |
2630 | ||
2631 | set_value_component_location (v, obj); | |
2632 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); | |
2633 | set_value_bitsize (v, bit_size); | |
2634 | if (value_bitpos (v) >= HOST_CHAR_BIT) | |
2635 | { | |
2636 | ++new_offset; | |
2637 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); | |
2638 | } | |
2639 | set_value_offset (v, new_offset); | |
2640 | ||
2641 | /* Also set the parent value. This is needed when trying to | |
2642 | assign a new value (in inferior memory). */ | |
2643 | set_value_parent (v, obj); | |
2644 | } | |
2645 | else | |
2646 | set_value_bitsize (v, bit_size); | |
bfb1c796 | 2647 | unpacked = value_contents_writeable (v); |
f93fca70 JB |
2648 | |
2649 | if (bit_size == 0) | |
2650 | { | |
2651 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2652 | return v; | |
2653 | } | |
2654 | ||
d5722aa2 | 2655 | if (staging.size () == TYPE_LENGTH (type)) |
f93fca70 | 2656 | { |
d0a9e810 JB |
2657 | /* Small short-cut: If we've unpacked the data into a buffer |
2658 | of the same size as TYPE's length, then we can reuse that, | |
2659 | instead of doing the unpacking again. */ | |
d5722aa2 | 2660 | memcpy (unpacked, staging.data (), staging.size ()); |
f93fca70 | 2661 | } |
d0a9e810 JB |
2662 | else |
2663 | ada_unpack_from_contents (src, bit_offset, bit_size, | |
2664 | unpacked, TYPE_LENGTH (type), | |
2665 | is_big_endian, has_negatives (type), is_scalar); | |
f93fca70 | 2666 | |
14f9c5c9 AS |
2667 | return v; |
2668 | } | |
d2e4a39e | 2669 | |
14f9c5c9 AS |
2670 | /* Store the contents of FROMVAL into the location of TOVAL. |
2671 | Return a new value with the location of TOVAL and contents of | |
2672 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2673 | floating-point or non-scalar types. */ |
14f9c5c9 | 2674 | |
d2e4a39e AS |
2675 | static struct value * |
2676 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2677 | { |
df407dfe AC |
2678 | struct type *type = value_type (toval); |
2679 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2680 | |
52ce6436 PH |
2681 | toval = ada_coerce_ref (toval); |
2682 | fromval = ada_coerce_ref (fromval); | |
2683 | ||
2684 | if (ada_is_direct_array_type (value_type (toval))) | |
2685 | toval = ada_coerce_to_simple_array (toval); | |
2686 | if (ada_is_direct_array_type (value_type (fromval))) | |
2687 | fromval = ada_coerce_to_simple_array (fromval); | |
2688 | ||
88e3b34b | 2689 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2690 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2691 | |
d2e4a39e | 2692 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2693 | && bits > 0 |
d2e4a39e | 2694 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2695 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2696 | { |
df407dfe AC |
2697 | int len = (value_bitpos (toval) |
2698 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2699 | int from_size; |
224c3ddb | 2700 | gdb_byte *buffer = (gdb_byte *) alloca (len); |
d2e4a39e | 2701 | struct value *val; |
42ae5230 | 2702 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2703 | |
2704 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2705 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2706 | |
52ce6436 | 2707 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2708 | from_size = value_bitsize (fromval); |
2709 | if (from_size == 0) | |
2710 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2711 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
a99bc3d2 JB |
2712 | copy_bitwise (buffer, value_bitpos (toval), |
2713 | value_contents (fromval), from_size - bits, bits, 1); | |
14f9c5c9 | 2714 | else |
a99bc3d2 JB |
2715 | copy_bitwise (buffer, value_bitpos (toval), |
2716 | value_contents (fromval), 0, bits, 0); | |
972daa01 | 2717 | write_memory_with_notification (to_addr, buffer, len); |
8cebebb9 | 2718 | |
14f9c5c9 | 2719 | val = value_copy (toval); |
0fd88904 | 2720 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2721 | TYPE_LENGTH (type)); |
04624583 | 2722 | deprecated_set_value_type (val, type); |
d2e4a39e | 2723 | |
14f9c5c9 AS |
2724 | return val; |
2725 | } | |
2726 | ||
2727 | return value_assign (toval, fromval); | |
2728 | } | |
2729 | ||
2730 | ||
7c512744 JB |
2731 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2732 | CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2733 | CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2734 | COMPONENT, and not the inferior's memory. The current contents | |
2735 | of COMPONENT are ignored. | |
2736 | ||
2737 | Although not part of the initial design, this function also works | |
2738 | when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER | |
2739 | had a null address, and COMPONENT had an address which is equal to | |
2740 | its offset inside CONTAINER. */ | |
2741 | ||
52ce6436 PH |
2742 | static void |
2743 | value_assign_to_component (struct value *container, struct value *component, | |
2744 | struct value *val) | |
2745 | { | |
2746 | LONGEST offset_in_container = | |
42ae5230 | 2747 | (LONGEST) (value_address (component) - value_address (container)); |
7c512744 | 2748 | int bit_offset_in_container = |
52ce6436 PH |
2749 | value_bitpos (component) - value_bitpos (container); |
2750 | int bits; | |
7c512744 | 2751 | |
52ce6436 PH |
2752 | val = value_cast (value_type (component), val); |
2753 | ||
2754 | if (value_bitsize (component) == 0) | |
2755 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2756 | else | |
2757 | bits = value_bitsize (component); | |
2758 | ||
50810684 | 2759 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
2a62dfa9 JB |
2760 | { |
2761 | int src_offset; | |
2762 | ||
2763 | if (is_scalar_type (check_typedef (value_type (component)))) | |
2764 | src_offset | |
2765 | = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits; | |
2766 | else | |
2767 | src_offset = 0; | |
a99bc3d2 JB |
2768 | copy_bitwise (value_contents_writeable (container) + offset_in_container, |
2769 | value_bitpos (container) + bit_offset_in_container, | |
2770 | value_contents (val), src_offset, bits, 1); | |
2a62dfa9 | 2771 | } |
52ce6436 | 2772 | else |
a99bc3d2 JB |
2773 | copy_bitwise (value_contents_writeable (container) + offset_in_container, |
2774 | value_bitpos (container) + bit_offset_in_container, | |
2775 | value_contents (val), 0, bits, 0); | |
7c512744 JB |
2776 | } |
2777 | ||
736ade86 XR |
2778 | /* Determine if TYPE is an access to an unconstrained array. */ |
2779 | ||
d91e9ea8 | 2780 | bool |
736ade86 XR |
2781 | ada_is_access_to_unconstrained_array (struct type *type) |
2782 | { | |
2783 | return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
2784 | && is_thick_pntr (ada_typedef_target_type (type))); | |
2785 | } | |
2786 | ||
4c4b4cd2 PH |
2787 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2788 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2789 | thereto. */ |
2790 | ||
d2e4a39e AS |
2791 | struct value * |
2792 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2793 | { |
2794 | int k; | |
d2e4a39e AS |
2795 | struct value *elt; |
2796 | struct type *elt_type; | |
14f9c5c9 AS |
2797 | |
2798 | elt = ada_coerce_to_simple_array (arr); | |
2799 | ||
df407dfe | 2800 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2801 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2802 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2803 | return value_subscript_packed (elt, arity, ind); | |
2804 | ||
2805 | for (k = 0; k < arity; k += 1) | |
2806 | { | |
b9c50e9a XR |
2807 | struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type); |
2808 | ||
14f9c5c9 | 2809 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) |
323e0a4a | 2810 | error (_("too many subscripts (%d expected)"), k); |
b9c50e9a | 2811 | |
2497b498 | 2812 | elt = value_subscript (elt, pos_atr (ind[k])); |
b9c50e9a XR |
2813 | |
2814 | if (ada_is_access_to_unconstrained_array (saved_elt_type) | |
2815 | && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF) | |
2816 | { | |
2817 | /* The element is a typedef to an unconstrained array, | |
2818 | except that the value_subscript call stripped the | |
2819 | typedef layer. The typedef layer is GNAT's way to | |
2820 | specify that the element is, at the source level, an | |
2821 | access to the unconstrained array, rather than the | |
2822 | unconstrained array. So, we need to restore that | |
2823 | typedef layer, which we can do by forcing the element's | |
2824 | type back to its original type. Otherwise, the returned | |
2825 | value is going to be printed as the array, rather | |
2826 | than as an access. Another symptom of the same issue | |
2827 | would be that an expression trying to dereference the | |
2828 | element would also be improperly rejected. */ | |
2829 | deprecated_set_value_type (elt, saved_elt_type); | |
2830 | } | |
2831 | ||
2832 | elt_type = ada_check_typedef (value_type (elt)); | |
14f9c5c9 | 2833 | } |
b9c50e9a | 2834 | |
14f9c5c9 AS |
2835 | return elt; |
2836 | } | |
2837 | ||
deede10c JB |
2838 | /* Assuming ARR is a pointer to a GDB array, the value of the element |
2839 | of *ARR at the ARITY indices given in IND. | |
919e6dbe PMR |
2840 | Does not read the entire array into memory. |
2841 | ||
2842 | Note: Unlike what one would expect, this function is used instead of | |
2843 | ada_value_subscript for basically all non-packed array types. The reason | |
2844 | for this is that a side effect of doing our own pointer arithmetics instead | |
2845 | of relying on value_subscript is that there is no implicit typedef peeling. | |
2846 | This is important for arrays of array accesses, where it allows us to | |
2847 | preserve the fact that the array's element is an array access, where the | |
2848 | access part os encoded in a typedef layer. */ | |
14f9c5c9 | 2849 | |
2c0b251b | 2850 | static struct value * |
deede10c | 2851 | ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind) |
14f9c5c9 AS |
2852 | { |
2853 | int k; | |
919e6dbe | 2854 | struct value *array_ind = ada_value_ind (arr); |
deede10c | 2855 | struct type *type |
919e6dbe PMR |
2856 | = check_typedef (value_enclosing_type (array_ind)); |
2857 | ||
2858 | if (TYPE_CODE (type) == TYPE_CODE_ARRAY | |
2859 | && TYPE_FIELD_BITSIZE (type, 0) > 0) | |
2860 | return value_subscript_packed (array_ind, arity, ind); | |
14f9c5c9 AS |
2861 | |
2862 | for (k = 0; k < arity; k += 1) | |
2863 | { | |
2864 | LONGEST lwb, upb; | |
aa715135 | 2865 | struct value *lwb_value; |
14f9c5c9 AS |
2866 | |
2867 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2868 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2869 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2870 | value_copy (arr)); |
14f9c5c9 | 2871 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
aa715135 JG |
2872 | lwb_value = value_from_longest (value_type(ind[k]), lwb); |
2873 | arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value)); | |
14f9c5c9 AS |
2874 | type = TYPE_TARGET_TYPE (type); |
2875 | } | |
2876 | ||
2877 | return value_ind (arr); | |
2878 | } | |
2879 | ||
0b5d8877 | 2880 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
aa715135 JG |
2881 | actual type of ARRAY_PTR is ignored), returns the Ada slice of |
2882 | HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of | |
2883 | this array is LOW, as per Ada rules. */ | |
0b5d8877 | 2884 | static struct value * |
f5938064 JG |
2885 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2886 | int low, int high) | |
0b5d8877 | 2887 | { |
b0dd7688 | 2888 | struct type *type0 = ada_check_typedef (type); |
aa715135 | 2889 | struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)); |
0c9c3474 | 2890 | struct type *index_type |
aa715135 | 2891 | = create_static_range_type (NULL, base_index_type, low, high); |
9fe561ab JB |
2892 | struct type *slice_type = create_array_type_with_stride |
2893 | (NULL, TYPE_TARGET_TYPE (type0), index_type, | |
2894 | get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0), | |
2895 | TYPE_FIELD_BITSIZE (type0, 0)); | |
aa715135 JG |
2896 | int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)); |
2897 | LONGEST base_low_pos, low_pos; | |
2898 | CORE_ADDR base; | |
2899 | ||
2900 | if (!discrete_position (base_index_type, low, &low_pos) | |
2901 | || !discrete_position (base_index_type, base_low, &base_low_pos)) | |
2902 | { | |
2903 | warning (_("unable to get positions in slice, use bounds instead")); | |
2904 | low_pos = low; | |
2905 | base_low_pos = base_low; | |
2906 | } | |
5b4ee69b | 2907 | |
aa715135 JG |
2908 | base = value_as_address (array_ptr) |
2909 | + ((low_pos - base_low_pos) | |
2910 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type0))); | |
f5938064 | 2911 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2912 | } |
2913 | ||
2914 | ||
2915 | static struct value * | |
2916 | ada_value_slice (struct value *array, int low, int high) | |
2917 | { | |
b0dd7688 | 2918 | struct type *type = ada_check_typedef (value_type (array)); |
aa715135 | 2919 | struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
0c9c3474 SA |
2920 | struct type *index_type |
2921 | = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); | |
9fe561ab JB |
2922 | struct type *slice_type = create_array_type_with_stride |
2923 | (NULL, TYPE_TARGET_TYPE (type), index_type, | |
2924 | get_dyn_prop (DYN_PROP_BYTE_STRIDE, type), | |
2925 | TYPE_FIELD_BITSIZE (type, 0)); | |
aa715135 | 2926 | LONGEST low_pos, high_pos; |
5b4ee69b | 2927 | |
aa715135 JG |
2928 | if (!discrete_position (base_index_type, low, &low_pos) |
2929 | || !discrete_position (base_index_type, high, &high_pos)) | |
2930 | { | |
2931 | warning (_("unable to get positions in slice, use bounds instead")); | |
2932 | low_pos = low; | |
2933 | high_pos = high; | |
2934 | } | |
2935 | ||
2936 | return value_cast (slice_type, | |
2937 | value_slice (array, low, high_pos - low_pos + 1)); | |
0b5d8877 PH |
2938 | } |
2939 | ||
14f9c5c9 AS |
2940 | /* If type is a record type in the form of a standard GNAT array |
2941 | descriptor, returns the number of dimensions for type. If arr is a | |
2942 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2943 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2944 | |
2945 | int | |
d2e4a39e | 2946 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2947 | { |
2948 | int arity; | |
2949 | ||
2950 | if (type == NULL) | |
2951 | return 0; | |
2952 | ||
2953 | type = desc_base_type (type); | |
2954 | ||
2955 | arity = 0; | |
d2e4a39e | 2956 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2957 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2958 | else |
2959 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2960 | { |
4c4b4cd2 | 2961 | arity += 1; |
61ee279c | 2962 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2963 | } |
d2e4a39e | 2964 | |
14f9c5c9 AS |
2965 | return arity; |
2966 | } | |
2967 | ||
2968 | /* If TYPE is a record type in the form of a standard GNAT array | |
2969 | descriptor or a simple array type, returns the element type for | |
2970 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2971 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2972 | |
d2e4a39e AS |
2973 | struct type * |
2974 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2975 | { |
2976 | type = desc_base_type (type); | |
2977 | ||
d2e4a39e | 2978 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2979 | { |
2980 | int k; | |
d2e4a39e | 2981 | struct type *p_array_type; |
14f9c5c9 | 2982 | |
556bdfd4 | 2983 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2984 | |
2985 | k = ada_array_arity (type); | |
2986 | if (k == 0) | |
4c4b4cd2 | 2987 | return NULL; |
d2e4a39e | 2988 | |
4c4b4cd2 | 2989 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2990 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2991 | k = nindices; |
d2e4a39e | 2992 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2993 | { |
61ee279c | 2994 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2995 | k -= 1; |
2996 | } | |
14f9c5c9 AS |
2997 | return p_array_type; |
2998 | } | |
2999 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
3000 | { | |
3001 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
3002 | { |
3003 | type = TYPE_TARGET_TYPE (type); | |
3004 | nindices -= 1; | |
3005 | } | |
14f9c5c9 AS |
3006 | return type; |
3007 | } | |
3008 | ||
3009 | return NULL; | |
3010 | } | |
3011 | ||
4c4b4cd2 | 3012 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
3013 | Does not examine memory. Throws an error if N is invalid or TYPE |
3014 | is not an array type. NAME is the name of the Ada attribute being | |
3015 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
3016 | the error message. */ | |
14f9c5c9 | 3017 | |
1eea4ebd UW |
3018 | static struct type * |
3019 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 3020 | { |
4c4b4cd2 PH |
3021 | struct type *result_type; |
3022 | ||
14f9c5c9 AS |
3023 | type = desc_base_type (type); |
3024 | ||
1eea4ebd UW |
3025 | if (n < 0 || n > ada_array_arity (type)) |
3026 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 3027 | |
4c4b4cd2 | 3028 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
3029 | { |
3030 | int i; | |
3031 | ||
3032 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 3033 | type = TYPE_TARGET_TYPE (type); |
262452ec | 3034 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
3035 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
3036 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 3037 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
3038 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
3039 | result_type = NULL; | |
14f9c5c9 | 3040 | } |
d2e4a39e | 3041 | else |
1eea4ebd UW |
3042 | { |
3043 | result_type = desc_index_type (desc_bounds_type (type), n); | |
3044 | if (result_type == NULL) | |
3045 | error (_("attempt to take bound of something that is not an array")); | |
3046 | } | |
3047 | ||
3048 | return result_type; | |
14f9c5c9 AS |
3049 | } |
3050 | ||
3051 | /* Given that arr is an array type, returns the lower bound of the | |
3052 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 3053 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
3054 | array-descriptor type. It works for other arrays with bounds supplied |
3055 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 3056 | |
abb68b3e | 3057 | static LONGEST |
fb5e3d5c | 3058 | ada_array_bound_from_type (struct type *arr_type, int n, int which) |
14f9c5c9 | 3059 | { |
8a48ac95 | 3060 | struct type *type, *index_type_desc, *index_type; |
1ce677a4 | 3061 | int i; |
262452ec JK |
3062 | |
3063 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 3064 | |
ad82864c JB |
3065 | if (ada_is_constrained_packed_array_type (arr_type)) |
3066 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 3067 | |
4c4b4cd2 | 3068 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 3069 | return (LONGEST) - which; |
14f9c5c9 AS |
3070 | |
3071 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
3072 | type = TYPE_TARGET_TYPE (arr_type); | |
3073 | else | |
3074 | type = arr_type; | |
3075 | ||
bafffb51 JB |
3076 | if (TYPE_FIXED_INSTANCE (type)) |
3077 | { | |
3078 | /* The array has already been fixed, so we do not need to | |
3079 | check the parallel ___XA type again. That encoding has | |
3080 | already been applied, so ignore it now. */ | |
3081 | index_type_desc = NULL; | |
3082 | } | |
3083 | else | |
3084 | { | |
3085 | index_type_desc = ada_find_parallel_type (type, "___XA"); | |
3086 | ada_fixup_array_indexes_type (index_type_desc); | |
3087 | } | |
3088 | ||
262452ec | 3089 | if (index_type_desc != NULL) |
28c85d6c JB |
3090 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
3091 | NULL); | |
262452ec | 3092 | else |
8a48ac95 JB |
3093 | { |
3094 | struct type *elt_type = check_typedef (type); | |
3095 | ||
3096 | for (i = 1; i < n; i++) | |
3097 | elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type)); | |
3098 | ||
3099 | index_type = TYPE_INDEX_TYPE (elt_type); | |
3100 | } | |
262452ec | 3101 | |
43bbcdc2 PH |
3102 | return |
3103 | (LONGEST) (which == 0 | |
3104 | ? ada_discrete_type_low_bound (index_type) | |
3105 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
3106 | } |
3107 | ||
3108 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
3109 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
3110 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 3111 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 3112 | |
1eea4ebd | 3113 | static LONGEST |
4dc81987 | 3114 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 3115 | { |
eb479039 JB |
3116 | struct type *arr_type; |
3117 | ||
3118 | if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR) | |
3119 | arr = value_ind (arr); | |
3120 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 3121 | |
ad82864c JB |
3122 | if (ada_is_constrained_packed_array_type (arr_type)) |
3123 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 3124 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 3125 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 3126 | else |
1eea4ebd | 3127 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
3128 | } |
3129 | ||
3130 | /* Given that arr is an array value, returns the length of the | |
3131 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
3132 | supplied by run-time quantities other than discriminants. |
3133 | Does not work for arrays indexed by enumeration types with representation | |
3134 | clauses at the moment. */ | |
14f9c5c9 | 3135 | |
1eea4ebd | 3136 | static LONGEST |
d2e4a39e | 3137 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 3138 | { |
aa715135 JG |
3139 | struct type *arr_type, *index_type; |
3140 | int low, high; | |
eb479039 JB |
3141 | |
3142 | if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR) | |
3143 | arr = value_ind (arr); | |
3144 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 3145 | |
ad82864c JB |
3146 | if (ada_is_constrained_packed_array_type (arr_type)) |
3147 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 3148 | |
4c4b4cd2 | 3149 | if (ada_is_simple_array_type (arr_type)) |
aa715135 JG |
3150 | { |
3151 | low = ada_array_bound_from_type (arr_type, n, 0); | |
3152 | high = ada_array_bound_from_type (arr_type, n, 1); | |
3153 | } | |
14f9c5c9 | 3154 | else |
aa715135 JG |
3155 | { |
3156 | low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0)); | |
3157 | high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1)); | |
3158 | } | |
3159 | ||
f168693b | 3160 | arr_type = check_typedef (arr_type); |
7150d33c | 3161 | index_type = ada_index_type (arr_type, n, "length"); |
aa715135 JG |
3162 | if (index_type != NULL) |
3163 | { | |
3164 | struct type *base_type; | |
3165 | if (TYPE_CODE (index_type) == TYPE_CODE_RANGE) | |
3166 | base_type = TYPE_TARGET_TYPE (index_type); | |
3167 | else | |
3168 | base_type = index_type; | |
3169 | ||
3170 | low = pos_atr (value_from_longest (base_type, low)); | |
3171 | high = pos_atr (value_from_longest (base_type, high)); | |
3172 | } | |
3173 | return high - low + 1; | |
4c4b4cd2 PH |
3174 | } |
3175 | ||
3176 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
3177 | with bounds LOW to LOW-1. */ | |
3178 | ||
3179 | static struct value * | |
3180 | empty_array (struct type *arr_type, int low) | |
3181 | { | |
b0dd7688 | 3182 | struct type *arr_type0 = ada_check_typedef (arr_type); |
0c9c3474 SA |
3183 | struct type *index_type |
3184 | = create_static_range_type | |
3185 | (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1); | |
b0dd7688 | 3186 | struct type *elt_type = ada_array_element_type (arr_type0, 1); |
5b4ee69b | 3187 | |
0b5d8877 | 3188 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 3189 | } |
14f9c5c9 | 3190 | \f |
d2e4a39e | 3191 | |
4c4b4cd2 | 3192 | /* Name resolution */ |
14f9c5c9 | 3193 | |
4c4b4cd2 PH |
3194 | /* The "decoded" name for the user-definable Ada operator corresponding |
3195 | to OP. */ | |
14f9c5c9 | 3196 | |
d2e4a39e | 3197 | static const char * |
4c4b4cd2 | 3198 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
3199 | { |
3200 | int i; | |
3201 | ||
4c4b4cd2 | 3202 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
3203 | { |
3204 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 3205 | return ada_opname_table[i].decoded; |
14f9c5c9 | 3206 | } |
323e0a4a | 3207 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
3208 | } |
3209 | ||
3210 | ||
4c4b4cd2 PH |
3211 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
3212 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
3213 | undefined namespace) and converts operators that are | |
3214 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
3215 | non-null, it provides a preferred result type [at the moment, only |
3216 | type void has any effect---causing procedures to be preferred over | |
3217 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 3218 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 3219 | |
4c4b4cd2 | 3220 | static void |
e9d9f57e | 3221 | resolve (expression_up *expp, int void_context_p) |
14f9c5c9 | 3222 | { |
30b15541 UW |
3223 | struct type *context_type = NULL; |
3224 | int pc = 0; | |
3225 | ||
3226 | if (void_context_p) | |
3227 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
3228 | ||
3229 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
3230 | } |
3231 | ||
4c4b4cd2 PH |
3232 | /* Resolve the operator of the subexpression beginning at |
3233 | position *POS of *EXPP. "Resolving" consists of replacing | |
3234 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
3235 | with their resolutions, replacing built-in operators with | |
3236 | function calls to user-defined operators, where appropriate, and, | |
3237 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
3238 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
3239 | are as in ada_resolve, above. */ | |
14f9c5c9 | 3240 | |
d2e4a39e | 3241 | static struct value * |
e9d9f57e | 3242 | resolve_subexp (expression_up *expp, int *pos, int deprocedure_p, |
76a01679 | 3243 | struct type *context_type) |
14f9c5c9 AS |
3244 | { |
3245 | int pc = *pos; | |
3246 | int i; | |
4c4b4cd2 | 3247 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 3248 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
3249 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
3250 | int nargs; /* Number of operands. */ | |
52ce6436 | 3251 | int oplen; |
14f9c5c9 AS |
3252 | |
3253 | argvec = NULL; | |
3254 | nargs = 0; | |
e9d9f57e | 3255 | exp = expp->get (); |
14f9c5c9 | 3256 | |
52ce6436 PH |
3257 | /* Pass one: resolve operands, saving their types and updating *pos, |
3258 | if needed. */ | |
14f9c5c9 AS |
3259 | switch (op) |
3260 | { | |
4c4b4cd2 PH |
3261 | case OP_FUNCALL: |
3262 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
3263 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
3264 | *pos += 7; | |
4c4b4cd2 PH |
3265 | else |
3266 | { | |
3267 | *pos += 3; | |
3268 | resolve_subexp (expp, pos, 0, NULL); | |
3269 | } | |
3270 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
3271 | break; |
3272 | ||
14f9c5c9 | 3273 | case UNOP_ADDR: |
4c4b4cd2 PH |
3274 | *pos += 1; |
3275 | resolve_subexp (expp, pos, 0, NULL); | |
3276 | break; | |
3277 | ||
52ce6436 PH |
3278 | case UNOP_QUAL: |
3279 | *pos += 3; | |
17466c1a | 3280 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
3281 | break; |
3282 | ||
52ce6436 | 3283 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
3284 | case OP_ATR_SIZE: |
3285 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
3286 | case OP_ATR_FIRST: |
3287 | case OP_ATR_LAST: | |
3288 | case OP_ATR_LENGTH: | |
3289 | case OP_ATR_POS: | |
3290 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
3291 | case OP_ATR_MIN: |
3292 | case OP_ATR_MAX: | |
52ce6436 PH |
3293 | case TERNOP_IN_RANGE: |
3294 | case BINOP_IN_BOUNDS: | |
3295 | case UNOP_IN_RANGE: | |
3296 | case OP_AGGREGATE: | |
3297 | case OP_OTHERS: | |
3298 | case OP_CHOICES: | |
3299 | case OP_POSITIONAL: | |
3300 | case OP_DISCRETE_RANGE: | |
3301 | case OP_NAME: | |
3302 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
3303 | *pos += oplen; | |
14f9c5c9 AS |
3304 | break; |
3305 | ||
3306 | case BINOP_ASSIGN: | |
3307 | { | |
4c4b4cd2 PH |
3308 | struct value *arg1; |
3309 | ||
3310 | *pos += 1; | |
3311 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
3312 | if (arg1 == NULL) | |
3313 | resolve_subexp (expp, pos, 1, NULL); | |
3314 | else | |
df407dfe | 3315 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 3316 | break; |
14f9c5c9 AS |
3317 | } |
3318 | ||
4c4b4cd2 | 3319 | case UNOP_CAST: |
4c4b4cd2 PH |
3320 | *pos += 3; |
3321 | nargs = 1; | |
3322 | break; | |
14f9c5c9 | 3323 | |
4c4b4cd2 PH |
3324 | case BINOP_ADD: |
3325 | case BINOP_SUB: | |
3326 | case BINOP_MUL: | |
3327 | case BINOP_DIV: | |
3328 | case BINOP_REM: | |
3329 | case BINOP_MOD: | |
3330 | case BINOP_EXP: | |
3331 | case BINOP_CONCAT: | |
3332 | case BINOP_LOGICAL_AND: | |
3333 | case BINOP_LOGICAL_OR: | |
3334 | case BINOP_BITWISE_AND: | |
3335 | case BINOP_BITWISE_IOR: | |
3336 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 3337 | |
4c4b4cd2 PH |
3338 | case BINOP_EQUAL: |
3339 | case BINOP_NOTEQUAL: | |
3340 | case BINOP_LESS: | |
3341 | case BINOP_GTR: | |
3342 | case BINOP_LEQ: | |
3343 | case BINOP_GEQ: | |
14f9c5c9 | 3344 | |
4c4b4cd2 PH |
3345 | case BINOP_REPEAT: |
3346 | case BINOP_SUBSCRIPT: | |
3347 | case BINOP_COMMA: | |
40c8aaa9 JB |
3348 | *pos += 1; |
3349 | nargs = 2; | |
3350 | break; | |
14f9c5c9 | 3351 | |
4c4b4cd2 PH |
3352 | case UNOP_NEG: |
3353 | case UNOP_PLUS: | |
3354 | case UNOP_LOGICAL_NOT: | |
3355 | case UNOP_ABS: | |
3356 | case UNOP_IND: | |
3357 | *pos += 1; | |
3358 | nargs = 1; | |
3359 | break; | |
14f9c5c9 | 3360 | |
4c4b4cd2 | 3361 | case OP_LONG: |
edd079d9 | 3362 | case OP_FLOAT: |
4c4b4cd2 | 3363 | case OP_VAR_VALUE: |
74ea4be4 | 3364 | case OP_VAR_MSYM_VALUE: |
4c4b4cd2 PH |
3365 | *pos += 4; |
3366 | break; | |
14f9c5c9 | 3367 | |
4c4b4cd2 PH |
3368 | case OP_TYPE: |
3369 | case OP_BOOL: | |
3370 | case OP_LAST: | |
4c4b4cd2 PH |
3371 | case OP_INTERNALVAR: |
3372 | *pos += 3; | |
3373 | break; | |
14f9c5c9 | 3374 | |
4c4b4cd2 PH |
3375 | case UNOP_MEMVAL: |
3376 | *pos += 3; | |
3377 | nargs = 1; | |
3378 | break; | |
3379 | ||
67f3407f DJ |
3380 | case OP_REGISTER: |
3381 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3382 | break; | |
3383 | ||
4c4b4cd2 PH |
3384 | case STRUCTOP_STRUCT: |
3385 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3386 | nargs = 1; | |
3387 | break; | |
3388 | ||
4c4b4cd2 | 3389 | case TERNOP_SLICE: |
4c4b4cd2 PH |
3390 | *pos += 1; |
3391 | nargs = 3; | |
3392 | break; | |
3393 | ||
52ce6436 | 3394 | case OP_STRING: |
14f9c5c9 | 3395 | break; |
4c4b4cd2 PH |
3396 | |
3397 | default: | |
323e0a4a | 3398 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
3399 | } |
3400 | ||
8d749320 | 3401 | argvec = XALLOCAVEC (struct value *, nargs + 1); |
4c4b4cd2 PH |
3402 | for (i = 0; i < nargs; i += 1) |
3403 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
3404 | argvec[i] = NULL; | |
e9d9f57e | 3405 | exp = expp->get (); |
4c4b4cd2 PH |
3406 | |
3407 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
3408 | switch (op) |
3409 | { | |
3410 | default: | |
3411 | break; | |
3412 | ||
14f9c5c9 | 3413 | case OP_VAR_VALUE: |
4c4b4cd2 | 3414 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 | 3415 | { |
54d343a2 | 3416 | std::vector<struct block_symbol> candidates; |
76a01679 JB |
3417 | int n_candidates; |
3418 | ||
3419 | n_candidates = | |
3420 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
3421 | (exp->elts[pc + 2].symbol), | |
3422 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
4eeaa230 | 3423 | &candidates); |
76a01679 JB |
3424 | |
3425 | if (n_candidates > 1) | |
3426 | { | |
3427 | /* Types tend to get re-introduced locally, so if there | |
3428 | are any local symbols that are not types, first filter | |
3429 | out all types. */ | |
3430 | int j; | |
3431 | for (j = 0; j < n_candidates; j += 1) | |
d12307c1 | 3432 | switch (SYMBOL_CLASS (candidates[j].symbol)) |
76a01679 JB |
3433 | { |
3434 | case LOC_REGISTER: | |
3435 | case LOC_ARG: | |
3436 | case LOC_REF_ARG: | |
76a01679 JB |
3437 | case LOC_REGPARM_ADDR: |
3438 | case LOC_LOCAL: | |
76a01679 | 3439 | case LOC_COMPUTED: |
76a01679 JB |
3440 | goto FoundNonType; |
3441 | default: | |
3442 | break; | |
3443 | } | |
3444 | FoundNonType: | |
3445 | if (j < n_candidates) | |
3446 | { | |
3447 | j = 0; | |
3448 | while (j < n_candidates) | |
3449 | { | |
d12307c1 | 3450 | if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF) |
76a01679 JB |
3451 | { |
3452 | candidates[j] = candidates[n_candidates - 1]; | |
3453 | n_candidates -= 1; | |
3454 | } | |
3455 | else | |
3456 | j += 1; | |
3457 | } | |
3458 | } | |
3459 | } | |
3460 | ||
3461 | if (n_candidates == 0) | |
323e0a4a | 3462 | error (_("No definition found for %s"), |
76a01679 JB |
3463 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3464 | else if (n_candidates == 1) | |
3465 | i = 0; | |
3466 | else if (deprocedure_p | |
54d343a2 | 3467 | && !is_nonfunction (candidates.data (), n_candidates)) |
76a01679 | 3468 | { |
06d5cf63 | 3469 | i = ada_resolve_function |
54d343a2 | 3470 | (candidates.data (), n_candidates, NULL, 0, |
06d5cf63 JB |
3471 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), |
3472 | context_type); | |
76a01679 | 3473 | if (i < 0) |
323e0a4a | 3474 | error (_("Could not find a match for %s"), |
76a01679 JB |
3475 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3476 | } | |
3477 | else | |
3478 | { | |
323e0a4a | 3479 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 | 3480 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
54d343a2 | 3481 | user_select_syms (candidates.data (), n_candidates, 1); |
76a01679 JB |
3482 | i = 0; |
3483 | } | |
3484 | ||
3485 | exp->elts[pc + 1].block = candidates[i].block; | |
d12307c1 | 3486 | exp->elts[pc + 2].symbol = candidates[i].symbol; |
aee1fcdf | 3487 | innermost_block.update (candidates[i]); |
76a01679 JB |
3488 | } |
3489 | ||
3490 | if (deprocedure_p | |
3491 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3492 | == TYPE_CODE_FUNC)) | |
3493 | { | |
424da6cf | 3494 | replace_operator_with_call (expp, pc, 0, 4, |
76a01679 JB |
3495 | exp->elts[pc + 2].symbol, |
3496 | exp->elts[pc + 1].block); | |
e9d9f57e | 3497 | exp = expp->get (); |
76a01679 | 3498 | } |
14f9c5c9 AS |
3499 | break; |
3500 | ||
3501 | case OP_FUNCALL: | |
3502 | { | |
4c4b4cd2 | 3503 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 3504 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 | 3505 | { |
54d343a2 | 3506 | std::vector<struct block_symbol> candidates; |
4c4b4cd2 PH |
3507 | int n_candidates; |
3508 | ||
3509 | n_candidates = | |
76a01679 JB |
3510 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
3511 | (exp->elts[pc + 5].symbol), | |
3512 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
4eeaa230 | 3513 | &candidates); |
ec6a20c2 | 3514 | |
4c4b4cd2 PH |
3515 | if (n_candidates == 1) |
3516 | i = 0; | |
3517 | else | |
3518 | { | |
06d5cf63 | 3519 | i = ada_resolve_function |
54d343a2 | 3520 | (candidates.data (), n_candidates, |
06d5cf63 JB |
3521 | argvec, nargs, |
3522 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
3523 | context_type); | |
4c4b4cd2 | 3524 | if (i < 0) |
323e0a4a | 3525 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
3526 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
3527 | } | |
3528 | ||
3529 | exp->elts[pc + 4].block = candidates[i].block; | |
d12307c1 | 3530 | exp->elts[pc + 5].symbol = candidates[i].symbol; |
aee1fcdf | 3531 | innermost_block.update (candidates[i]); |
4c4b4cd2 | 3532 | } |
14f9c5c9 AS |
3533 | } |
3534 | break; | |
3535 | case BINOP_ADD: | |
3536 | case BINOP_SUB: | |
3537 | case BINOP_MUL: | |
3538 | case BINOP_DIV: | |
3539 | case BINOP_REM: | |
3540 | case BINOP_MOD: | |
3541 | case BINOP_CONCAT: | |
3542 | case BINOP_BITWISE_AND: | |
3543 | case BINOP_BITWISE_IOR: | |
3544 | case BINOP_BITWISE_XOR: | |
3545 | case BINOP_EQUAL: | |
3546 | case BINOP_NOTEQUAL: | |
3547 | case BINOP_LESS: | |
3548 | case BINOP_GTR: | |
3549 | case BINOP_LEQ: | |
3550 | case BINOP_GEQ: | |
3551 | case BINOP_EXP: | |
3552 | case UNOP_NEG: | |
3553 | case UNOP_PLUS: | |
3554 | case UNOP_LOGICAL_NOT: | |
3555 | case UNOP_ABS: | |
3556 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 | 3557 | { |
54d343a2 | 3558 | std::vector<struct block_symbol> candidates; |
4c4b4cd2 PH |
3559 | int n_candidates; |
3560 | ||
3561 | n_candidates = | |
b5ec771e | 3562 | ada_lookup_symbol_list (ada_decoded_op_name (op), |
4c4b4cd2 | 3563 | (struct block *) NULL, VAR_DOMAIN, |
4eeaa230 | 3564 | &candidates); |
ec6a20c2 | 3565 | |
54d343a2 TT |
3566 | i = ada_resolve_function (candidates.data (), n_candidates, argvec, |
3567 | nargs, ada_decoded_op_name (op), NULL); | |
4c4b4cd2 PH |
3568 | if (i < 0) |
3569 | break; | |
3570 | ||
d12307c1 PMR |
3571 | replace_operator_with_call (expp, pc, nargs, 1, |
3572 | candidates[i].symbol, | |
3573 | candidates[i].block); | |
e9d9f57e | 3574 | exp = expp->get (); |
4c4b4cd2 | 3575 | } |
14f9c5c9 | 3576 | break; |
4c4b4cd2 PH |
3577 | |
3578 | case OP_TYPE: | |
b3dbf008 | 3579 | case OP_REGISTER: |
4c4b4cd2 | 3580 | return NULL; |
14f9c5c9 AS |
3581 | } |
3582 | ||
3583 | *pos = pc; | |
ced9779b JB |
3584 | if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE) |
3585 | return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS, | |
3586 | exp->elts[pc + 1].objfile, | |
3587 | exp->elts[pc + 2].msymbol); | |
3588 | else | |
3589 | return evaluate_subexp_type (exp, pos); | |
14f9c5c9 AS |
3590 | } |
3591 | ||
3592 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3593 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3594 | a non-pointer. */ |
14f9c5c9 | 3595 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3596 | liberal. */ |
14f9c5c9 AS |
3597 | |
3598 | static int | |
4dc81987 | 3599 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3600 | { |
61ee279c PH |
3601 | ftype = ada_check_typedef (ftype); |
3602 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3603 | |
3604 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3605 | ftype = TYPE_TARGET_TYPE (ftype); | |
3606 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3607 | atype = TYPE_TARGET_TYPE (atype); | |
3608 | ||
d2e4a39e | 3609 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3610 | { |
3611 | default: | |
5b3d5b7d | 3612 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3613 | case TYPE_CODE_PTR: |
3614 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3615 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3616 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3617 | else |
1265e4aa JB |
3618 | return (may_deref |
3619 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3620 | case TYPE_CODE_INT: |
3621 | case TYPE_CODE_ENUM: | |
3622 | case TYPE_CODE_RANGE: | |
3623 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3624 | { |
3625 | case TYPE_CODE_INT: | |
3626 | case TYPE_CODE_ENUM: | |
3627 | case TYPE_CODE_RANGE: | |
3628 | return 1; | |
3629 | default: | |
3630 | return 0; | |
3631 | } | |
14f9c5c9 AS |
3632 | |
3633 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3634 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3635 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3636 | |
3637 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3638 | if (ada_is_array_descriptor_type (ftype)) |
3639 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3640 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3641 | else |
4c4b4cd2 PH |
3642 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3643 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3644 | |
3645 | case TYPE_CODE_UNION: | |
3646 | case TYPE_CODE_FLT: | |
3647 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3648 | } | |
3649 | } | |
3650 | ||
3651 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3652 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3653 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3654 | argument function. */ |
14f9c5c9 AS |
3655 | |
3656 | static int | |
d2e4a39e | 3657 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3658 | { |
3659 | int i; | |
d2e4a39e | 3660 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3661 | |
1265e4aa JB |
3662 | if (SYMBOL_CLASS (func) == LOC_CONST |
3663 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3664 | return (n_actuals == 0); |
3665 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3666 | return 0; | |
3667 | ||
3668 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3669 | return 0; | |
3670 | ||
3671 | for (i = 0; i < n_actuals; i += 1) | |
3672 | { | |
4c4b4cd2 | 3673 | if (actuals[i] == NULL) |
76a01679 JB |
3674 | return 0; |
3675 | else | |
3676 | { | |
5b4ee69b MS |
3677 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, |
3678 | i)); | |
df407dfe | 3679 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3680 | |
76a01679 JB |
3681 | if (!ada_type_match (ftype, atype, 1)) |
3682 | return 0; | |
3683 | } | |
14f9c5c9 AS |
3684 | } |
3685 | return 1; | |
3686 | } | |
3687 | ||
3688 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3689 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3690 | FUNC_TYPE is not a valid function type with a non-null return type | |
3691 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3692 | ||
3693 | static int | |
d2e4a39e | 3694 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3695 | { |
d2e4a39e | 3696 | struct type *return_type; |
14f9c5c9 AS |
3697 | |
3698 | if (func_type == NULL) | |
3699 | return 1; | |
3700 | ||
4c4b4cd2 | 3701 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
18af8284 | 3702 | return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); |
4c4b4cd2 | 3703 | else |
18af8284 | 3704 | return_type = get_base_type (func_type); |
14f9c5c9 AS |
3705 | if (return_type == NULL) |
3706 | return 1; | |
3707 | ||
18af8284 | 3708 | context_type = get_base_type (context_type); |
14f9c5c9 AS |
3709 | |
3710 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3711 | return context_type == NULL || return_type == context_type; | |
3712 | else if (context_type == NULL) | |
3713 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3714 | else | |
3715 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3716 | } | |
3717 | ||
3718 | ||
4c4b4cd2 | 3719 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3720 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3721 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3722 | that returns that type, then eliminate matches that don't. If | |
3723 | CONTEXT_TYPE is void and there is at least one match that does not | |
3724 | return void, eliminate all matches that do. | |
3725 | ||
14f9c5c9 AS |
3726 | Asks the user if there is more than one match remaining. Returns -1 |
3727 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3728 | solely for messages. May re-arrange and modify SYMS in |
3729 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3730 | |
4c4b4cd2 | 3731 | static int |
d12307c1 | 3732 | ada_resolve_function (struct block_symbol syms[], |
4c4b4cd2 PH |
3733 | int nsyms, struct value **args, int nargs, |
3734 | const char *name, struct type *context_type) | |
14f9c5c9 | 3735 | { |
30b15541 | 3736 | int fallback; |
14f9c5c9 | 3737 | int k; |
4c4b4cd2 | 3738 | int m; /* Number of hits */ |
14f9c5c9 | 3739 | |
d2e4a39e | 3740 | m = 0; |
30b15541 UW |
3741 | /* In the first pass of the loop, we only accept functions matching |
3742 | context_type. If none are found, we add a second pass of the loop | |
3743 | where every function is accepted. */ | |
3744 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3745 | { |
3746 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3747 | { |
d12307c1 | 3748 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol)); |
4c4b4cd2 | 3749 | |
d12307c1 | 3750 | if (ada_args_match (syms[k].symbol, args, nargs) |
30b15541 | 3751 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3752 | { |
3753 | syms[m] = syms[k]; | |
3754 | m += 1; | |
3755 | } | |
3756 | } | |
14f9c5c9 AS |
3757 | } |
3758 | ||
dc5c8746 PMR |
3759 | /* If we got multiple matches, ask the user which one to use. Don't do this |
3760 | interactive thing during completion, though, as the purpose of the | |
3761 | completion is providing a list of all possible matches. Prompting the | |
3762 | user to filter it down would be completely unexpected in this case. */ | |
14f9c5c9 AS |
3763 | if (m == 0) |
3764 | return -1; | |
dc5c8746 | 3765 | else if (m > 1 && !parse_completion) |
14f9c5c9 | 3766 | { |
323e0a4a | 3767 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3768 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3769 | return 0; |
3770 | } | |
3771 | return 0; | |
3772 | } | |
3773 | ||
4c4b4cd2 PH |
3774 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3775 | in a listing of choices during disambiguation (see sort_choices, below). | |
3776 | The idea is that overloadings of a subprogram name from the | |
3777 | same package should sort in their source order. We settle for ordering | |
3778 | such symbols by their trailing number (__N or $N). */ | |
3779 | ||
14f9c5c9 | 3780 | static int |
0d5cff50 | 3781 | encoded_ordered_before (const char *N0, const char *N1) |
14f9c5c9 AS |
3782 | { |
3783 | if (N1 == NULL) | |
3784 | return 0; | |
3785 | else if (N0 == NULL) | |
3786 | return 1; | |
3787 | else | |
3788 | { | |
3789 | int k0, k1; | |
5b4ee69b | 3790 | |
d2e4a39e | 3791 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3792 | ; |
d2e4a39e | 3793 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3794 | ; |
d2e4a39e | 3795 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3796 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3797 | { | |
3798 | int n0, n1; | |
5b4ee69b | 3799 | |
4c4b4cd2 PH |
3800 | n0 = k0; |
3801 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3802 | n0 -= 1; | |
3803 | n1 = k1; | |
3804 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3805 | n1 -= 1; | |
3806 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3807 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3808 | } | |
14f9c5c9 AS |
3809 | return (strcmp (N0, N1) < 0); |
3810 | } | |
3811 | } | |
d2e4a39e | 3812 | |
4c4b4cd2 PH |
3813 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3814 | encoded names. */ | |
3815 | ||
d2e4a39e | 3816 | static void |
d12307c1 | 3817 | sort_choices (struct block_symbol syms[], int nsyms) |
14f9c5c9 | 3818 | { |
4c4b4cd2 | 3819 | int i; |
5b4ee69b | 3820 | |
d2e4a39e | 3821 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3822 | { |
d12307c1 | 3823 | struct block_symbol sym = syms[i]; |
14f9c5c9 AS |
3824 | int j; |
3825 | ||
d2e4a39e | 3826 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 | 3827 | { |
d12307c1 PMR |
3828 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol), |
3829 | SYMBOL_LINKAGE_NAME (sym.symbol))) | |
4c4b4cd2 PH |
3830 | break; |
3831 | syms[j + 1] = syms[j]; | |
3832 | } | |
d2e4a39e | 3833 | syms[j + 1] = sym; |
14f9c5c9 AS |
3834 | } |
3835 | } | |
3836 | ||
d72413e6 PMR |
3837 | /* Whether GDB should display formals and return types for functions in the |
3838 | overloads selection menu. */ | |
3839 | static int print_signatures = 1; | |
3840 | ||
3841 | /* Print the signature for SYM on STREAM according to the FLAGS options. For | |
3842 | all but functions, the signature is just the name of the symbol. For | |
3843 | functions, this is the name of the function, the list of types for formals | |
3844 | and the return type (if any). */ | |
3845 | ||
3846 | static void | |
3847 | ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym, | |
3848 | const struct type_print_options *flags) | |
3849 | { | |
3850 | struct type *type = SYMBOL_TYPE (sym); | |
3851 | ||
3852 | fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym)); | |
3853 | if (!print_signatures | |
3854 | || type == NULL | |
3855 | || TYPE_CODE (type) != TYPE_CODE_FUNC) | |
3856 | return; | |
3857 | ||
3858 | if (TYPE_NFIELDS (type) > 0) | |
3859 | { | |
3860 | int i; | |
3861 | ||
3862 | fprintf_filtered (stream, " ("); | |
3863 | for (i = 0; i < TYPE_NFIELDS (type); ++i) | |
3864 | { | |
3865 | if (i > 0) | |
3866 | fprintf_filtered (stream, "; "); | |
3867 | ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0, | |
3868 | flags); | |
3869 | } | |
3870 | fprintf_filtered (stream, ")"); | |
3871 | } | |
3872 | if (TYPE_TARGET_TYPE (type) != NULL | |
3873 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID) | |
3874 | { | |
3875 | fprintf_filtered (stream, " return "); | |
3876 | ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags); | |
3877 | } | |
3878 | } | |
3879 | ||
4c4b4cd2 PH |
3880 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3881 | by asking the user (if necessary), returning the number selected, | |
3882 | and setting the first elements of SYMS items. Error if no symbols | |
3883 | selected. */ | |
14f9c5c9 AS |
3884 | |
3885 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3886 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3887 | |
3888 | int | |
d12307c1 | 3889 | user_select_syms (struct block_symbol *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3890 | { |
3891 | int i; | |
8d749320 | 3892 | int *chosen = XALLOCAVEC (int , nsyms); |
14f9c5c9 AS |
3893 | int n_chosen; |
3894 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3895 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3896 | |
3897 | if (max_results < 1) | |
323e0a4a | 3898 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3899 | if (nsyms <= 1) |
3900 | return nsyms; | |
3901 | ||
717d2f5a JB |
3902 | if (select_mode == multiple_symbols_cancel) |
3903 | error (_("\ | |
3904 | canceled because the command is ambiguous\n\ | |
3905 | See set/show multiple-symbol.")); | |
3906 | ||
3907 | /* If select_mode is "all", then return all possible symbols. | |
3908 | Only do that if more than one symbol can be selected, of course. | |
3909 | Otherwise, display the menu as usual. */ | |
3910 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3911 | return nsyms; | |
3912 | ||
323e0a4a | 3913 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3914 | if (max_results > 1) |
323e0a4a | 3915 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3916 | |
4c4b4cd2 | 3917 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3918 | |
3919 | for (i = 0; i < nsyms; i += 1) | |
3920 | { | |
d12307c1 | 3921 | if (syms[i].symbol == NULL) |
4c4b4cd2 PH |
3922 | continue; |
3923 | ||
d12307c1 | 3924 | if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK) |
4c4b4cd2 | 3925 | { |
76a01679 | 3926 | struct symtab_and_line sal = |
d12307c1 | 3927 | find_function_start_sal (syms[i].symbol, 1); |
5b4ee69b | 3928 | |
d72413e6 PMR |
3929 | printf_unfiltered ("[%d] ", i + first_choice); |
3930 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, | |
3931 | &type_print_raw_options); | |
323e0a4a | 3932 | if (sal.symtab == NULL) |
d72413e6 | 3933 | printf_unfiltered (_(" at <no source file available>:%d\n"), |
323e0a4a AC |
3934 | sal.line); |
3935 | else | |
d72413e6 | 3936 | printf_unfiltered (_(" at %s:%d\n"), |
05cba821 JK |
3937 | symtab_to_filename_for_display (sal.symtab), |
3938 | sal.line); | |
4c4b4cd2 PH |
3939 | continue; |
3940 | } | |
d2e4a39e | 3941 | else |
4c4b4cd2 PH |
3942 | { |
3943 | int is_enumeral = | |
d12307c1 PMR |
3944 | (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST |
3945 | && SYMBOL_TYPE (syms[i].symbol) != NULL | |
3946 | && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM); | |
1994afbf DE |
3947 | struct symtab *symtab = NULL; |
3948 | ||
d12307c1 PMR |
3949 | if (SYMBOL_OBJFILE_OWNED (syms[i].symbol)) |
3950 | symtab = symbol_symtab (syms[i].symbol); | |
4c4b4cd2 | 3951 | |
d12307c1 | 3952 | if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL) |
d72413e6 PMR |
3953 | { |
3954 | printf_unfiltered ("[%d] ", i + first_choice); | |
3955 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, | |
3956 | &type_print_raw_options); | |
3957 | printf_unfiltered (_(" at %s:%d\n"), | |
3958 | symtab_to_filename_for_display (symtab), | |
3959 | SYMBOL_LINE (syms[i].symbol)); | |
3960 | } | |
76a01679 | 3961 | else if (is_enumeral |
d12307c1 | 3962 | && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL) |
4c4b4cd2 | 3963 | { |
a3f17187 | 3964 | printf_unfiltered (("[%d] "), i + first_choice); |
d12307c1 | 3965 | ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL, |
79d43c61 | 3966 | gdb_stdout, -1, 0, &type_print_raw_options); |
323e0a4a | 3967 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
d12307c1 | 3968 | SYMBOL_PRINT_NAME (syms[i].symbol)); |
4c4b4cd2 | 3969 | } |
d72413e6 PMR |
3970 | else |
3971 | { | |
3972 | printf_unfiltered ("[%d] ", i + first_choice); | |
3973 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, | |
3974 | &type_print_raw_options); | |
3975 | ||
3976 | if (symtab != NULL) | |
3977 | printf_unfiltered (is_enumeral | |
3978 | ? _(" in %s (enumeral)\n") | |
3979 | : _(" at %s:?\n"), | |
3980 | symtab_to_filename_for_display (symtab)); | |
3981 | else | |
3982 | printf_unfiltered (is_enumeral | |
3983 | ? _(" (enumeral)\n") | |
3984 | : _(" at ?\n")); | |
3985 | } | |
4c4b4cd2 | 3986 | } |
14f9c5c9 | 3987 | } |
d2e4a39e | 3988 | |
14f9c5c9 | 3989 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3990 | "overload-choice"); |
14f9c5c9 AS |
3991 | |
3992 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3993 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3994 | |
3995 | return n_chosen; | |
3996 | } | |
3997 | ||
3998 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3999 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
4000 | order in CHOICES[0 .. N-1], and return N. |
4001 | ||
4002 | The user types choices as a sequence of numbers on one line | |
4003 | separated by blanks, encoding them as follows: | |
4004 | ||
4c4b4cd2 | 4005 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
4006 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
4007 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
4008 | ||
4c4b4cd2 | 4009 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
4010 | |
4011 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 4012 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
4013 | |
4014 | int | |
d2e4a39e | 4015 | get_selections (int *choices, int n_choices, int max_results, |
a121b7c1 | 4016 | int is_all_choice, const char *annotation_suffix) |
14f9c5c9 | 4017 | { |
d2e4a39e | 4018 | char *args; |
a121b7c1 | 4019 | const char *prompt; |
14f9c5c9 AS |
4020 | int n_chosen; |
4021 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 4022 | |
14f9c5c9 AS |
4023 | prompt = getenv ("PS2"); |
4024 | if (prompt == NULL) | |
0bcd0149 | 4025 | prompt = "> "; |
14f9c5c9 | 4026 | |
89fbedf3 | 4027 | args = command_line_input (prompt, annotation_suffix); |
d2e4a39e | 4028 | |
14f9c5c9 | 4029 | if (args == NULL) |
323e0a4a | 4030 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
4031 | |
4032 | n_chosen = 0; | |
76a01679 | 4033 | |
4c4b4cd2 PH |
4034 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
4035 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
4036 | while (1) |
4037 | { | |
d2e4a39e | 4038 | char *args2; |
14f9c5c9 AS |
4039 | int choice, j; |
4040 | ||
0fcd72ba | 4041 | args = skip_spaces (args); |
14f9c5c9 | 4042 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 4043 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 4044 | else if (*args == '\0') |
4c4b4cd2 | 4045 | break; |
14f9c5c9 AS |
4046 | |
4047 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 4048 | if (args == args2 || choice < 0 |
4c4b4cd2 | 4049 | || choice > n_choices + first_choice - 1) |
323e0a4a | 4050 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
4051 | args = args2; |
4052 | ||
d2e4a39e | 4053 | if (choice == 0) |
323e0a4a | 4054 | error (_("cancelled")); |
14f9c5c9 AS |
4055 | |
4056 | if (choice < first_choice) | |
4c4b4cd2 PH |
4057 | { |
4058 | n_chosen = n_choices; | |
4059 | for (j = 0; j < n_choices; j += 1) | |
4060 | choices[j] = j; | |
4061 | break; | |
4062 | } | |
14f9c5c9 AS |
4063 | choice -= first_choice; |
4064 | ||
d2e4a39e | 4065 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
4066 | { |
4067 | } | |
14f9c5c9 AS |
4068 | |
4069 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
4070 | { |
4071 | int k; | |
5b4ee69b | 4072 | |
4c4b4cd2 PH |
4073 | for (k = n_chosen - 1; k > j; k -= 1) |
4074 | choices[k + 1] = choices[k]; | |
4075 | choices[j + 1] = choice; | |
4076 | n_chosen += 1; | |
4077 | } | |
14f9c5c9 AS |
4078 | } |
4079 | ||
4080 | if (n_chosen > max_results) | |
323e0a4a | 4081 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 4082 | |
14f9c5c9 AS |
4083 | return n_chosen; |
4084 | } | |
4085 | ||
4c4b4cd2 PH |
4086 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
4087 | on the function identified by SYM and BLOCK, and taking NARGS | |
4088 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
4089 | |
4090 | static void | |
e9d9f57e | 4091 | replace_operator_with_call (expression_up *expp, int pc, int nargs, |
4c4b4cd2 | 4092 | int oplen, struct symbol *sym, |
270140bd | 4093 | const struct block *block) |
14f9c5c9 AS |
4094 | { |
4095 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 4096 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 4097 | struct expression *newexp = (struct expression *) |
8c1a34e7 | 4098 | xzalloc (sizeof (struct expression) |
4c4b4cd2 | 4099 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
e9d9f57e | 4100 | struct expression *exp = expp->get (); |
14f9c5c9 AS |
4101 | |
4102 | newexp->nelts = exp->nelts + 7 - oplen; | |
4103 | newexp->language_defn = exp->language_defn; | |
3489610d | 4104 | newexp->gdbarch = exp->gdbarch; |
14f9c5c9 | 4105 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); |
d2e4a39e | 4106 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 4107 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
4108 | |
4109 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
4110 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
4111 | ||
4112 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
4113 | newexp->elts[pc + 4].block = block; | |
4114 | newexp->elts[pc + 5].symbol = sym; | |
4115 | ||
e9d9f57e | 4116 | expp->reset (newexp); |
d2e4a39e | 4117 | } |
14f9c5c9 AS |
4118 | |
4119 | /* Type-class predicates */ | |
4120 | ||
4c4b4cd2 PH |
4121 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
4122 | or FLOAT). */ | |
14f9c5c9 AS |
4123 | |
4124 | static int | |
d2e4a39e | 4125 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
4126 | { |
4127 | if (type == NULL) | |
4128 | return 0; | |
d2e4a39e AS |
4129 | else |
4130 | { | |
4131 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4132 | { |
4133 | case TYPE_CODE_INT: | |
4134 | case TYPE_CODE_FLT: | |
4135 | return 1; | |
4136 | case TYPE_CODE_RANGE: | |
4137 | return (type == TYPE_TARGET_TYPE (type) | |
4138 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
4139 | default: | |
4140 | return 0; | |
4141 | } | |
d2e4a39e | 4142 | } |
14f9c5c9 AS |
4143 | } |
4144 | ||
4c4b4cd2 | 4145 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
4146 | |
4147 | static int | |
d2e4a39e | 4148 | integer_type_p (struct type *type) |
14f9c5c9 AS |
4149 | { |
4150 | if (type == NULL) | |
4151 | return 0; | |
d2e4a39e AS |
4152 | else |
4153 | { | |
4154 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4155 | { |
4156 | case TYPE_CODE_INT: | |
4157 | return 1; | |
4158 | case TYPE_CODE_RANGE: | |
4159 | return (type == TYPE_TARGET_TYPE (type) | |
4160 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
4161 | default: | |
4162 | return 0; | |
4163 | } | |
d2e4a39e | 4164 | } |
14f9c5c9 AS |
4165 | } |
4166 | ||
4c4b4cd2 | 4167 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
4168 | |
4169 | static int | |
d2e4a39e | 4170 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
4171 | { |
4172 | if (type == NULL) | |
4173 | return 0; | |
d2e4a39e AS |
4174 | else |
4175 | { | |
4176 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4177 | { |
4178 | case TYPE_CODE_INT: | |
4179 | case TYPE_CODE_RANGE: | |
4180 | case TYPE_CODE_ENUM: | |
4181 | case TYPE_CODE_FLT: | |
4182 | return 1; | |
4183 | default: | |
4184 | return 0; | |
4185 | } | |
d2e4a39e | 4186 | } |
14f9c5c9 AS |
4187 | } |
4188 | ||
4c4b4cd2 | 4189 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
4190 | |
4191 | static int | |
d2e4a39e | 4192 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
4193 | { |
4194 | if (type == NULL) | |
4195 | return 0; | |
d2e4a39e AS |
4196 | else |
4197 | { | |
4198 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4199 | { |
4200 | case TYPE_CODE_INT: | |
4201 | case TYPE_CODE_RANGE: | |
4202 | case TYPE_CODE_ENUM: | |
872f0337 | 4203 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
4204 | return 1; |
4205 | default: | |
4206 | return 0; | |
4207 | } | |
d2e4a39e | 4208 | } |
14f9c5c9 AS |
4209 | } |
4210 | ||
4c4b4cd2 PH |
4211 | /* Returns non-zero if OP with operands in the vector ARGS could be |
4212 | a user-defined function. Errs on the side of pre-defined operators | |
4213 | (i.e., result 0). */ | |
14f9c5c9 AS |
4214 | |
4215 | static int | |
d2e4a39e | 4216 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 4217 | { |
76a01679 | 4218 | struct type *type0 = |
df407dfe | 4219 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 4220 | struct type *type1 = |
df407dfe | 4221 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 4222 | |
4c4b4cd2 PH |
4223 | if (type0 == NULL) |
4224 | return 0; | |
4225 | ||
14f9c5c9 AS |
4226 | switch (op) |
4227 | { | |
4228 | default: | |
4229 | return 0; | |
4230 | ||
4231 | case BINOP_ADD: | |
4232 | case BINOP_SUB: | |
4233 | case BINOP_MUL: | |
4234 | case BINOP_DIV: | |
d2e4a39e | 4235 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
4236 | |
4237 | case BINOP_REM: | |
4238 | case BINOP_MOD: | |
4239 | case BINOP_BITWISE_AND: | |
4240 | case BINOP_BITWISE_IOR: | |
4241 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 4242 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
4243 | |
4244 | case BINOP_EQUAL: | |
4245 | case BINOP_NOTEQUAL: | |
4246 | case BINOP_LESS: | |
4247 | case BINOP_GTR: | |
4248 | case BINOP_LEQ: | |
4249 | case BINOP_GEQ: | |
d2e4a39e | 4250 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
4251 | |
4252 | case BINOP_CONCAT: | |
ee90b9ab | 4253 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
4254 | |
4255 | case BINOP_EXP: | |
d2e4a39e | 4256 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
4257 | |
4258 | case UNOP_NEG: | |
4259 | case UNOP_PLUS: | |
4260 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
4261 | case UNOP_ABS: |
4262 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
4263 | |
4264 | } | |
4265 | } | |
4266 | \f | |
4c4b4cd2 | 4267 | /* Renaming */ |
14f9c5c9 | 4268 | |
aeb5907d JB |
4269 | /* NOTES: |
4270 | ||
4271 | 1. In the following, we assume that a renaming type's name may | |
4272 | have an ___XD suffix. It would be nice if this went away at some | |
4273 | point. | |
4274 | 2. We handle both the (old) purely type-based representation of | |
4275 | renamings and the (new) variable-based encoding. At some point, | |
4276 | it is devoutly to be hoped that the former goes away | |
4277 | (FIXME: hilfinger-2007-07-09). | |
4278 | 3. Subprogram renamings are not implemented, although the XRS | |
4279 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
4280 | ||
4281 | /* If SYM encodes a renaming, | |
4282 | ||
4283 | <renaming> renames <renamed entity>, | |
4284 | ||
4285 | sets *LEN to the length of the renamed entity's name, | |
4286 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
4287 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 4288 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
4289 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
4290 | are undefined). Otherwise, returns a value indicating the category | |
4291 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
4292 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
4293 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
4294 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
4295 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
4296 | may be NULL, in which case they are not assigned. | |
4297 | ||
4298 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
4299 | ||
4300 | enum ada_renaming_category | |
4301 | ada_parse_renaming (struct symbol *sym, | |
4302 | const char **renamed_entity, int *len, | |
4303 | const char **renaming_expr) | |
4304 | { | |
4305 | enum ada_renaming_category kind; | |
4306 | const char *info; | |
4307 | const char *suffix; | |
4308 | ||
4309 | if (sym == NULL) | |
4310 | return ADA_NOT_RENAMING; | |
4311 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 4312 | { |
aeb5907d JB |
4313 | default: |
4314 | return ADA_NOT_RENAMING; | |
4315 | case LOC_TYPEDEF: | |
4316 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
4317 | renamed_entity, len, renaming_expr); | |
4318 | case LOC_LOCAL: | |
4319 | case LOC_STATIC: | |
4320 | case LOC_COMPUTED: | |
4321 | case LOC_OPTIMIZED_OUT: | |
4322 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
4323 | if (info == NULL) | |
4324 | return ADA_NOT_RENAMING; | |
4325 | switch (info[5]) | |
4326 | { | |
4327 | case '_': | |
4328 | kind = ADA_OBJECT_RENAMING; | |
4329 | info += 6; | |
4330 | break; | |
4331 | case 'E': | |
4332 | kind = ADA_EXCEPTION_RENAMING; | |
4333 | info += 7; | |
4334 | break; | |
4335 | case 'P': | |
4336 | kind = ADA_PACKAGE_RENAMING; | |
4337 | info += 7; | |
4338 | break; | |
4339 | case 'S': | |
4340 | kind = ADA_SUBPROGRAM_RENAMING; | |
4341 | info += 7; | |
4342 | break; | |
4343 | default: | |
4344 | return ADA_NOT_RENAMING; | |
4345 | } | |
14f9c5c9 | 4346 | } |
4c4b4cd2 | 4347 | |
aeb5907d JB |
4348 | if (renamed_entity != NULL) |
4349 | *renamed_entity = info; | |
4350 | suffix = strstr (info, "___XE"); | |
4351 | if (suffix == NULL || suffix == info) | |
4352 | return ADA_NOT_RENAMING; | |
4353 | if (len != NULL) | |
4354 | *len = strlen (info) - strlen (suffix); | |
4355 | suffix += 5; | |
4356 | if (renaming_expr != NULL) | |
4357 | *renaming_expr = suffix; | |
4358 | return kind; | |
4359 | } | |
4360 | ||
4361 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
4362 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
4363 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
4364 | ADA_NOT_RENAMING otherwise. */ | |
4365 | static enum ada_renaming_category | |
4366 | parse_old_style_renaming (struct type *type, | |
4367 | const char **renamed_entity, int *len, | |
4368 | const char **renaming_expr) | |
4369 | { | |
4370 | enum ada_renaming_category kind; | |
4371 | const char *name; | |
4372 | const char *info; | |
4373 | const char *suffix; | |
14f9c5c9 | 4374 | |
aeb5907d JB |
4375 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
4376 | || TYPE_NFIELDS (type) != 1) | |
4377 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 4378 | |
a737d952 | 4379 | name = TYPE_NAME (type); |
aeb5907d JB |
4380 | if (name == NULL) |
4381 | return ADA_NOT_RENAMING; | |
4382 | ||
4383 | name = strstr (name, "___XR"); | |
4384 | if (name == NULL) | |
4385 | return ADA_NOT_RENAMING; | |
4386 | switch (name[5]) | |
4387 | { | |
4388 | case '\0': | |
4389 | case '_': | |
4390 | kind = ADA_OBJECT_RENAMING; | |
4391 | break; | |
4392 | case 'E': | |
4393 | kind = ADA_EXCEPTION_RENAMING; | |
4394 | break; | |
4395 | case 'P': | |
4396 | kind = ADA_PACKAGE_RENAMING; | |
4397 | break; | |
4398 | case 'S': | |
4399 | kind = ADA_SUBPROGRAM_RENAMING; | |
4400 | break; | |
4401 | default: | |
4402 | return ADA_NOT_RENAMING; | |
4403 | } | |
14f9c5c9 | 4404 | |
aeb5907d JB |
4405 | info = TYPE_FIELD_NAME (type, 0); |
4406 | if (info == NULL) | |
4407 | return ADA_NOT_RENAMING; | |
4408 | if (renamed_entity != NULL) | |
4409 | *renamed_entity = info; | |
4410 | suffix = strstr (info, "___XE"); | |
4411 | if (renaming_expr != NULL) | |
4412 | *renaming_expr = suffix + 5; | |
4413 | if (suffix == NULL || suffix == info) | |
4414 | return ADA_NOT_RENAMING; | |
4415 | if (len != NULL) | |
4416 | *len = suffix - info; | |
4417 | return kind; | |
a5ee536b JB |
4418 | } |
4419 | ||
4420 | /* Compute the value of the given RENAMING_SYM, which is expected to | |
4421 | be a symbol encoding a renaming expression. BLOCK is the block | |
4422 | used to evaluate the renaming. */ | |
52ce6436 | 4423 | |
a5ee536b JB |
4424 | static struct value * |
4425 | ada_read_renaming_var_value (struct symbol *renaming_sym, | |
3977b71f | 4426 | const struct block *block) |
a5ee536b | 4427 | { |
bbc13ae3 | 4428 | const char *sym_name; |
a5ee536b | 4429 | |
bbc13ae3 | 4430 | sym_name = SYMBOL_LINKAGE_NAME (renaming_sym); |
4d01a485 PA |
4431 | expression_up expr = parse_exp_1 (&sym_name, 0, block, 0); |
4432 | return evaluate_expression (expr.get ()); | |
a5ee536b | 4433 | } |
14f9c5c9 | 4434 | \f |
d2e4a39e | 4435 | |
4c4b4cd2 | 4436 | /* Evaluation: Function Calls */ |
14f9c5c9 | 4437 | |
4c4b4cd2 | 4438 | /* Return an lvalue containing the value VAL. This is the identity on |
40bc484c JB |
4439 | lvalues, and otherwise has the side-effect of allocating memory |
4440 | in the inferior where a copy of the value contents is copied. */ | |
14f9c5c9 | 4441 | |
d2e4a39e | 4442 | static struct value * |
40bc484c | 4443 | ensure_lval (struct value *val) |
14f9c5c9 | 4444 | { |
40bc484c JB |
4445 | if (VALUE_LVAL (val) == not_lval |
4446 | || VALUE_LVAL (val) == lval_internalvar) | |
c3e5cd34 | 4447 | { |
df407dfe | 4448 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
40bc484c JB |
4449 | const CORE_ADDR addr = |
4450 | value_as_long (value_allocate_space_in_inferior (len)); | |
c3e5cd34 | 4451 | |
a84a8a0d | 4452 | VALUE_LVAL (val) = lval_memory; |
1a088441 | 4453 | set_value_address (val, addr); |
40bc484c | 4454 | write_memory (addr, value_contents (val), len); |
c3e5cd34 | 4455 | } |
14f9c5c9 AS |
4456 | |
4457 | return val; | |
4458 | } | |
4459 | ||
4460 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4461 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4462 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4463 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4464 | |
a93c0eb6 | 4465 | struct value * |
40bc484c | 4466 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4467 | { |
df407dfe | 4468 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4469 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
4470 | struct type *formal_target = |
4471 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 4472 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
4473 | struct type *actual_target = |
4474 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 4475 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4476 | |
4c4b4cd2 | 4477 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 4478 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 4479 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
4480 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
4481 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 4482 | { |
a84a8a0d | 4483 | struct value *result; |
5b4ee69b | 4484 | |
14f9c5c9 | 4485 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 4486 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4487 | result = desc_data (actual); |
cb923fcc | 4488 | else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
4489 | { |
4490 | if (VALUE_LVAL (actual) != lval_memory) | |
4491 | { | |
4492 | struct value *val; | |
5b4ee69b | 4493 | |
df407dfe | 4494 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 4495 | val = allocate_value (actual_type); |
990a07ab | 4496 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 4497 | (char *) value_contents (actual), |
4c4b4cd2 | 4498 | TYPE_LENGTH (actual_type)); |
40bc484c | 4499 | actual = ensure_lval (val); |
4c4b4cd2 | 4500 | } |
a84a8a0d | 4501 | result = value_addr (actual); |
4c4b4cd2 | 4502 | } |
a84a8a0d JB |
4503 | else |
4504 | return actual; | |
b1af9e97 | 4505 | return value_cast_pointers (formal_type, result, 0); |
14f9c5c9 AS |
4506 | } |
4507 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
4508 | return ada_value_ind (actual); | |
8344af1e JB |
4509 | else if (ada_is_aligner_type (formal_type)) |
4510 | { | |
4511 | /* We need to turn this parameter into an aligner type | |
4512 | as well. */ | |
4513 | struct value *aligner = allocate_value (formal_type); | |
4514 | struct value *component = ada_value_struct_elt (aligner, "F", 0); | |
4515 | ||
4516 | value_assign_to_component (aligner, component, actual); | |
4517 | return aligner; | |
4518 | } | |
14f9c5c9 AS |
4519 | |
4520 | return actual; | |
4521 | } | |
4522 | ||
438c98a1 JB |
4523 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4524 | type TYPE. This is usually an inefficient no-op except on some targets | |
4525 | (such as AVR) where the representation of a pointer and an address | |
4526 | differs. */ | |
4527 | ||
4528 | static CORE_ADDR | |
4529 | value_pointer (struct value *value, struct type *type) | |
4530 | { | |
4531 | struct gdbarch *gdbarch = get_type_arch (type); | |
4532 | unsigned len = TYPE_LENGTH (type); | |
224c3ddb | 4533 | gdb_byte *buf = (gdb_byte *) alloca (len); |
438c98a1 JB |
4534 | CORE_ADDR addr; |
4535 | ||
4536 | addr = value_address (value); | |
4537 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
4538 | addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); | |
4539 | return addr; | |
4540 | } | |
4541 | ||
14f9c5c9 | 4542 | |
4c4b4cd2 PH |
4543 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4544 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4545 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4546 | to-descriptor type rather than a descriptor type), a struct value * |
4547 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4548 | |
d2e4a39e | 4549 | static struct value * |
40bc484c | 4550 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4551 | { |
d2e4a39e AS |
4552 | struct type *bounds_type = desc_bounds_type (type); |
4553 | struct type *desc_type = desc_base_type (type); | |
4554 | struct value *descriptor = allocate_value (desc_type); | |
4555 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4556 | int i; |
d2e4a39e | 4557 | |
0963b4bd MS |
4558 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4559 | i > 0; i -= 1) | |
14f9c5c9 | 4560 | { |
19f220c3 JK |
4561 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4562 | ada_array_bound (arr, i, 0), | |
4563 | desc_bound_bitpos (bounds_type, i, 0), | |
4564 | desc_bound_bitsize (bounds_type, i, 0)); | |
4565 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4566 | ada_array_bound (arr, i, 1), | |
4567 | desc_bound_bitpos (bounds_type, i, 1), | |
4568 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4569 | } |
d2e4a39e | 4570 | |
40bc484c | 4571 | bounds = ensure_lval (bounds); |
d2e4a39e | 4572 | |
19f220c3 JK |
4573 | modify_field (value_type (descriptor), |
4574 | value_contents_writeable (descriptor), | |
4575 | value_pointer (ensure_lval (arr), | |
4576 | TYPE_FIELD_TYPE (desc_type, 0)), | |
4577 | fat_pntr_data_bitpos (desc_type), | |
4578 | fat_pntr_data_bitsize (desc_type)); | |
4579 | ||
4580 | modify_field (value_type (descriptor), | |
4581 | value_contents_writeable (descriptor), | |
4582 | value_pointer (bounds, | |
4583 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4584 | fat_pntr_bounds_bitpos (desc_type), | |
4585 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4586 | |
40bc484c | 4587 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4588 | |
4589 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4590 | return value_addr (descriptor); | |
4591 | else | |
4592 | return descriptor; | |
4593 | } | |
14f9c5c9 | 4594 | \f |
3d9434b5 JB |
4595 | /* Symbol Cache Module */ |
4596 | ||
3d9434b5 | 4597 | /* Performance measurements made as of 2010-01-15 indicate that |
ee01b665 | 4598 | this cache does bring some noticeable improvements. Depending |
3d9434b5 JB |
4599 | on the type of entity being printed, the cache can make it as much |
4600 | as an order of magnitude faster than without it. | |
4601 | ||
4602 | The descriptive type DWARF extension has significantly reduced | |
4603 | the need for this cache, at least when DWARF is being used. However, | |
4604 | even in this case, some expensive name-based symbol searches are still | |
4605 | sometimes necessary - to find an XVZ variable, mostly. */ | |
4606 | ||
ee01b665 | 4607 | /* Initialize the contents of SYM_CACHE. */ |
3d9434b5 | 4608 | |
ee01b665 JB |
4609 | static void |
4610 | ada_init_symbol_cache (struct ada_symbol_cache *sym_cache) | |
4611 | { | |
4612 | obstack_init (&sym_cache->cache_space); | |
4613 | memset (sym_cache->root, '\000', sizeof (sym_cache->root)); | |
4614 | } | |
3d9434b5 | 4615 | |
ee01b665 JB |
4616 | /* Free the memory used by SYM_CACHE. */ |
4617 | ||
4618 | static void | |
4619 | ada_free_symbol_cache (struct ada_symbol_cache *sym_cache) | |
3d9434b5 | 4620 | { |
ee01b665 JB |
4621 | obstack_free (&sym_cache->cache_space, NULL); |
4622 | xfree (sym_cache); | |
4623 | } | |
3d9434b5 | 4624 | |
ee01b665 JB |
4625 | /* Return the symbol cache associated to the given program space PSPACE. |
4626 | If not allocated for this PSPACE yet, allocate and initialize one. */ | |
3d9434b5 | 4627 | |
ee01b665 JB |
4628 | static struct ada_symbol_cache * |
4629 | ada_get_symbol_cache (struct program_space *pspace) | |
4630 | { | |
4631 | struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace); | |
ee01b665 | 4632 | |
66c168ae | 4633 | if (pspace_data->sym_cache == NULL) |
ee01b665 | 4634 | { |
66c168ae JB |
4635 | pspace_data->sym_cache = XCNEW (struct ada_symbol_cache); |
4636 | ada_init_symbol_cache (pspace_data->sym_cache); | |
ee01b665 JB |
4637 | } |
4638 | ||
66c168ae | 4639 | return pspace_data->sym_cache; |
ee01b665 | 4640 | } |
3d9434b5 JB |
4641 | |
4642 | /* Clear all entries from the symbol cache. */ | |
4643 | ||
4644 | static void | |
4645 | ada_clear_symbol_cache (void) | |
4646 | { | |
ee01b665 JB |
4647 | struct ada_symbol_cache *sym_cache |
4648 | = ada_get_symbol_cache (current_program_space); | |
4649 | ||
4650 | obstack_free (&sym_cache->cache_space, NULL); | |
4651 | ada_init_symbol_cache (sym_cache); | |
3d9434b5 JB |
4652 | } |
4653 | ||
fe978cb0 | 4654 | /* Search our cache for an entry matching NAME and DOMAIN. |
3d9434b5 JB |
4655 | Return it if found, or NULL otherwise. */ |
4656 | ||
4657 | static struct cache_entry ** | |
fe978cb0 | 4658 | find_entry (const char *name, domain_enum domain) |
3d9434b5 | 4659 | { |
ee01b665 JB |
4660 | struct ada_symbol_cache *sym_cache |
4661 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4662 | int h = msymbol_hash (name) % HASH_SIZE; |
4663 | struct cache_entry **e; | |
4664 | ||
ee01b665 | 4665 | for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next) |
3d9434b5 | 4666 | { |
fe978cb0 | 4667 | if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0) |
3d9434b5 JB |
4668 | return e; |
4669 | } | |
4670 | return NULL; | |
4671 | } | |
4672 | ||
fe978cb0 | 4673 | /* Search the symbol cache for an entry matching NAME and DOMAIN. |
3d9434b5 JB |
4674 | Return 1 if found, 0 otherwise. |
4675 | ||
4676 | If an entry was found and SYM is not NULL, set *SYM to the entry's | |
4677 | SYM. Same principle for BLOCK if not NULL. */ | |
96d887e8 | 4678 | |
96d887e8 | 4679 | static int |
fe978cb0 | 4680 | lookup_cached_symbol (const char *name, domain_enum domain, |
f0c5f9b2 | 4681 | struct symbol **sym, const struct block **block) |
96d887e8 | 4682 | { |
fe978cb0 | 4683 | struct cache_entry **e = find_entry (name, domain); |
3d9434b5 JB |
4684 | |
4685 | if (e == NULL) | |
4686 | return 0; | |
4687 | if (sym != NULL) | |
4688 | *sym = (*e)->sym; | |
4689 | if (block != NULL) | |
4690 | *block = (*e)->block; | |
4691 | return 1; | |
96d887e8 PH |
4692 | } |
4693 | ||
3d9434b5 | 4694 | /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME |
fe978cb0 | 4695 | in domain DOMAIN, save this result in our symbol cache. */ |
3d9434b5 | 4696 | |
96d887e8 | 4697 | static void |
fe978cb0 | 4698 | cache_symbol (const char *name, domain_enum domain, struct symbol *sym, |
270140bd | 4699 | const struct block *block) |
96d887e8 | 4700 | { |
ee01b665 JB |
4701 | struct ada_symbol_cache *sym_cache |
4702 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4703 | int h; |
4704 | char *copy; | |
4705 | struct cache_entry *e; | |
4706 | ||
1994afbf DE |
4707 | /* Symbols for builtin types don't have a block. |
4708 | For now don't cache such symbols. */ | |
4709 | if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym)) | |
4710 | return; | |
4711 | ||
3d9434b5 JB |
4712 | /* If the symbol is a local symbol, then do not cache it, as a search |
4713 | for that symbol depends on the context. To determine whether | |
4714 | the symbol is local or not, we check the block where we found it | |
4715 | against the global and static blocks of its associated symtab. */ | |
4716 | if (sym | |
08be3fe3 | 4717 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)), |
439247b6 | 4718 | GLOBAL_BLOCK) != block |
08be3fe3 | 4719 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)), |
439247b6 | 4720 | STATIC_BLOCK) != block) |
3d9434b5 JB |
4721 | return; |
4722 | ||
4723 | h = msymbol_hash (name) % HASH_SIZE; | |
e39db4db | 4724 | e = XOBNEW (&sym_cache->cache_space, cache_entry); |
ee01b665 JB |
4725 | e->next = sym_cache->root[h]; |
4726 | sym_cache->root[h] = e; | |
224c3ddb SM |
4727 | e->name = copy |
4728 | = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1); | |
3d9434b5 JB |
4729 | strcpy (copy, name); |
4730 | e->sym = sym; | |
fe978cb0 | 4731 | e->domain = domain; |
3d9434b5 | 4732 | e->block = block; |
96d887e8 | 4733 | } |
4c4b4cd2 PH |
4734 | \f |
4735 | /* Symbol Lookup */ | |
4736 | ||
b5ec771e PA |
4737 | /* Return the symbol name match type that should be used used when |
4738 | searching for all symbols matching LOOKUP_NAME. | |
c0431670 JB |
4739 | |
4740 | LOOKUP_NAME is expected to be a symbol name after transformation | |
f98b2e33 | 4741 | for Ada lookups. */ |
c0431670 | 4742 | |
b5ec771e PA |
4743 | static symbol_name_match_type |
4744 | name_match_type_from_name (const char *lookup_name) | |
c0431670 | 4745 | { |
b5ec771e PA |
4746 | return (strstr (lookup_name, "__") == NULL |
4747 | ? symbol_name_match_type::WILD | |
4748 | : symbol_name_match_type::FULL); | |
c0431670 JB |
4749 | } |
4750 | ||
4c4b4cd2 PH |
4751 | /* Return the result of a standard (literal, C-like) lookup of NAME in |
4752 | given DOMAIN, visible from lexical block BLOCK. */ | |
4753 | ||
4754 | static struct symbol * | |
4755 | standard_lookup (const char *name, const struct block *block, | |
4756 | domain_enum domain) | |
4757 | { | |
acbd605d | 4758 | /* Initialize it just to avoid a GCC false warning. */ |
d12307c1 | 4759 | struct block_symbol sym = {NULL, NULL}; |
4c4b4cd2 | 4760 | |
d12307c1 PMR |
4761 | if (lookup_cached_symbol (name, domain, &sym.symbol, NULL)) |
4762 | return sym.symbol; | |
2570f2b7 | 4763 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
d12307c1 PMR |
4764 | cache_symbol (name, domain, sym.symbol, sym.block); |
4765 | return sym.symbol; | |
4c4b4cd2 PH |
4766 | } |
4767 | ||
4768 | ||
4769 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4770 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4771 | since they contend in overloading in the same way. */ | |
4772 | static int | |
d12307c1 | 4773 | is_nonfunction (struct block_symbol syms[], int n) |
4c4b4cd2 PH |
4774 | { |
4775 | int i; | |
4776 | ||
4777 | for (i = 0; i < n; i += 1) | |
d12307c1 PMR |
4778 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC |
4779 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM | |
4780 | || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST)) | |
14f9c5c9 AS |
4781 | return 1; |
4782 | ||
4783 | return 0; | |
4784 | } | |
4785 | ||
4786 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4787 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4788 | |
4789 | static int | |
d2e4a39e | 4790 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4791 | { |
d2e4a39e | 4792 | if (type0 == type1) |
14f9c5c9 | 4793 | return 1; |
d2e4a39e | 4794 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4795 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4796 | return 0; | |
d2e4a39e | 4797 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4798 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4799 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4800 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4801 | return 1; |
d2e4a39e | 4802 | |
14f9c5c9 AS |
4803 | return 0; |
4804 | } | |
4805 | ||
4806 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4807 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4808 | |
4809 | static int | |
d2e4a39e | 4810 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4811 | { |
4812 | if (sym0 == sym1) | |
4813 | return 1; | |
176620f1 | 4814 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4815 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4816 | return 0; | |
4817 | ||
d2e4a39e | 4818 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4819 | { |
4820 | case LOC_UNDEF: | |
4821 | return 1; | |
4822 | case LOC_TYPEDEF: | |
4823 | { | |
4c4b4cd2 PH |
4824 | struct type *type0 = SYMBOL_TYPE (sym0); |
4825 | struct type *type1 = SYMBOL_TYPE (sym1); | |
0d5cff50 DE |
4826 | const char *name0 = SYMBOL_LINKAGE_NAME (sym0); |
4827 | const char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4c4b4cd2 | 4828 | int len0 = strlen (name0); |
5b4ee69b | 4829 | |
4c4b4cd2 PH |
4830 | return |
4831 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4832 | && (equiv_types (type0, type1) | |
4833 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
61012eef | 4834 | && startswith (name1 + len0, "___XV"))); |
14f9c5c9 AS |
4835 | } |
4836 | case LOC_CONST: | |
4837 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4838 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4839 | default: |
4840 | return 0; | |
14f9c5c9 AS |
4841 | } |
4842 | } | |
4843 | ||
d12307c1 | 4844 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol |
4c4b4cd2 | 4845 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ |
14f9c5c9 AS |
4846 | |
4847 | static void | |
76a01679 JB |
4848 | add_defn_to_vec (struct obstack *obstackp, |
4849 | struct symbol *sym, | |
f0c5f9b2 | 4850 | const struct block *block) |
14f9c5c9 AS |
4851 | { |
4852 | int i; | |
d12307c1 | 4853 | struct block_symbol *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4854 | |
529cad9c PH |
4855 | /* Do not try to complete stub types, as the debugger is probably |
4856 | already scanning all symbols matching a certain name at the | |
4857 | time when this function is called. Trying to replace the stub | |
4858 | type by its associated full type will cause us to restart a scan | |
4859 | which may lead to an infinite recursion. Instead, the client | |
4860 | collecting the matching symbols will end up collecting several | |
4861 | matches, with at least one of them complete. It can then filter | |
4862 | out the stub ones if needed. */ | |
4863 | ||
4c4b4cd2 PH |
4864 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4865 | { | |
d12307c1 | 4866 | if (lesseq_defined_than (sym, prevDefns[i].symbol)) |
4c4b4cd2 | 4867 | return; |
d12307c1 | 4868 | else if (lesseq_defined_than (prevDefns[i].symbol, sym)) |
4c4b4cd2 | 4869 | { |
d12307c1 | 4870 | prevDefns[i].symbol = sym; |
4c4b4cd2 | 4871 | prevDefns[i].block = block; |
4c4b4cd2 | 4872 | return; |
76a01679 | 4873 | } |
4c4b4cd2 PH |
4874 | } |
4875 | ||
4876 | { | |
d12307c1 | 4877 | struct block_symbol info; |
4c4b4cd2 | 4878 | |
d12307c1 | 4879 | info.symbol = sym; |
4c4b4cd2 | 4880 | info.block = block; |
d12307c1 | 4881 | obstack_grow (obstackp, &info, sizeof (struct block_symbol)); |
4c4b4cd2 PH |
4882 | } |
4883 | } | |
4884 | ||
d12307c1 PMR |
4885 | /* Number of block_symbol structures currently collected in current vector in |
4886 | OBSTACKP. */ | |
4c4b4cd2 | 4887 | |
76a01679 JB |
4888 | static int |
4889 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 | 4890 | { |
d12307c1 | 4891 | return obstack_object_size (obstackp) / sizeof (struct block_symbol); |
4c4b4cd2 PH |
4892 | } |
4893 | ||
d12307c1 PMR |
4894 | /* Vector of block_symbol structures currently collected in current vector in |
4895 | OBSTACKP. If FINISH, close off the vector and return its final address. */ | |
4c4b4cd2 | 4896 | |
d12307c1 | 4897 | static struct block_symbol * |
4c4b4cd2 PH |
4898 | defns_collected (struct obstack *obstackp, int finish) |
4899 | { | |
4900 | if (finish) | |
224c3ddb | 4901 | return (struct block_symbol *) obstack_finish (obstackp); |
4c4b4cd2 | 4902 | else |
d12307c1 | 4903 | return (struct block_symbol *) obstack_base (obstackp); |
4c4b4cd2 PH |
4904 | } |
4905 | ||
7c7b6655 TT |
4906 | /* Return a bound minimal symbol matching NAME according to Ada |
4907 | decoding rules. Returns an invalid symbol if there is no such | |
4908 | minimal symbol. Names prefixed with "standard__" are handled | |
4909 | specially: "standard__" is first stripped off, and only static and | |
4910 | global symbols are searched. */ | |
4c4b4cd2 | 4911 | |
7c7b6655 | 4912 | struct bound_minimal_symbol |
96d887e8 | 4913 | ada_lookup_simple_minsym (const char *name) |
4c4b4cd2 | 4914 | { |
7c7b6655 | 4915 | struct bound_minimal_symbol result; |
4c4b4cd2 | 4916 | struct objfile *objfile; |
96d887e8 | 4917 | struct minimal_symbol *msymbol; |
4c4b4cd2 | 4918 | |
7c7b6655 TT |
4919 | memset (&result, 0, sizeof (result)); |
4920 | ||
b5ec771e PA |
4921 | symbol_name_match_type match_type = name_match_type_from_name (name); |
4922 | lookup_name_info lookup_name (name, match_type); | |
4923 | ||
4924 | symbol_name_matcher_ftype *match_name | |
4925 | = ada_get_symbol_name_matcher (lookup_name); | |
4c4b4cd2 | 4926 | |
96d887e8 PH |
4927 | ALL_MSYMBOLS (objfile, msymbol) |
4928 | { | |
b5ec771e | 4929 | if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL) |
96d887e8 | 4930 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
7c7b6655 TT |
4931 | { |
4932 | result.minsym = msymbol; | |
4933 | result.objfile = objfile; | |
4934 | break; | |
4935 | } | |
96d887e8 | 4936 | } |
4c4b4cd2 | 4937 | |
7c7b6655 | 4938 | return result; |
96d887e8 | 4939 | } |
4c4b4cd2 | 4940 | |
96d887e8 PH |
4941 | /* For all subprograms that statically enclose the subprogram of the |
4942 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4943 | and their blocks to the list of data in OBSTACKP, as for | |
48b78332 JB |
4944 | ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME |
4945 | with a wildcard prefix. */ | |
4c4b4cd2 | 4946 | |
96d887e8 PH |
4947 | static void |
4948 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
b5ec771e PA |
4949 | const lookup_name_info &lookup_name, |
4950 | domain_enum domain) | |
96d887e8 | 4951 | { |
96d887e8 | 4952 | } |
14f9c5c9 | 4953 | |
96d887e8 PH |
4954 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4955 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4956 | |
96d887e8 PH |
4957 | static int |
4958 | is_nondebugging_type (struct type *type) | |
4959 | { | |
0d5cff50 | 4960 | const char *name = ada_type_name (type); |
5b4ee69b | 4961 | |
96d887e8 PH |
4962 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4963 | } | |
4c4b4cd2 | 4964 | |
8f17729f JB |
4965 | /* Return nonzero if TYPE1 and TYPE2 are two enumeration types |
4966 | that are deemed "identical" for practical purposes. | |
4967 | ||
4968 | This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM | |
4969 | types and that their number of enumerals is identical (in other | |
4970 | words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */ | |
4971 | ||
4972 | static int | |
4973 | ada_identical_enum_types_p (struct type *type1, struct type *type2) | |
4974 | { | |
4975 | int i; | |
4976 | ||
4977 | /* The heuristic we use here is fairly conservative. We consider | |
4978 | that 2 enumerate types are identical if they have the same | |
4979 | number of enumerals and that all enumerals have the same | |
4980 | underlying value and name. */ | |
4981 | ||
4982 | /* All enums in the type should have an identical underlying value. */ | |
4983 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
14e75d8e | 4984 | if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i)) |
8f17729f JB |
4985 | return 0; |
4986 | ||
4987 | /* All enumerals should also have the same name (modulo any numerical | |
4988 | suffix). */ | |
4989 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
4990 | { | |
0d5cff50 DE |
4991 | const char *name_1 = TYPE_FIELD_NAME (type1, i); |
4992 | const char *name_2 = TYPE_FIELD_NAME (type2, i); | |
8f17729f JB |
4993 | int len_1 = strlen (name_1); |
4994 | int len_2 = strlen (name_2); | |
4995 | ||
4996 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1); | |
4997 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2); | |
4998 | if (len_1 != len_2 | |
4999 | || strncmp (TYPE_FIELD_NAME (type1, i), | |
5000 | TYPE_FIELD_NAME (type2, i), | |
5001 | len_1) != 0) | |
5002 | return 0; | |
5003 | } | |
5004 | ||
5005 | return 1; | |
5006 | } | |
5007 | ||
5008 | /* Return nonzero if all the symbols in SYMS are all enumeral symbols | |
5009 | that are deemed "identical" for practical purposes. Sometimes, | |
5010 | enumerals are not strictly identical, but their types are so similar | |
5011 | that they can be considered identical. | |
5012 | ||
5013 | For instance, consider the following code: | |
5014 | ||
5015 | type Color is (Black, Red, Green, Blue, White); | |
5016 | type RGB_Color is new Color range Red .. Blue; | |
5017 | ||
5018 | Type RGB_Color is a subrange of an implicit type which is a copy | |
5019 | of type Color. If we call that implicit type RGB_ColorB ("B" is | |
5020 | for "Base Type"), then type RGB_ColorB is a copy of type Color. | |
5021 | As a result, when an expression references any of the enumeral | |
5022 | by name (Eg. "print green"), the expression is technically | |
5023 | ambiguous and the user should be asked to disambiguate. But | |
5024 | doing so would only hinder the user, since it wouldn't matter | |
5025 | what choice he makes, the outcome would always be the same. | |
5026 | So, for practical purposes, we consider them as the same. */ | |
5027 | ||
5028 | static int | |
54d343a2 | 5029 | symbols_are_identical_enums (const std::vector<struct block_symbol> &syms) |
8f17729f JB |
5030 | { |
5031 | int i; | |
5032 | ||
5033 | /* Before performing a thorough comparison check of each type, | |
5034 | we perform a series of inexpensive checks. We expect that these | |
5035 | checks will quickly fail in the vast majority of cases, and thus | |
5036 | help prevent the unnecessary use of a more expensive comparison. | |
5037 | Said comparison also expects us to make some of these checks | |
5038 | (see ada_identical_enum_types_p). */ | |
5039 | ||
5040 | /* Quick check: All symbols should have an enum type. */ | |
54d343a2 | 5041 | for (i = 0; i < syms.size (); i++) |
d12307c1 | 5042 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM) |
8f17729f JB |
5043 | return 0; |
5044 | ||
5045 | /* Quick check: They should all have the same value. */ | |
54d343a2 | 5046 | for (i = 1; i < syms.size (); i++) |
d12307c1 | 5047 | if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol)) |
8f17729f JB |
5048 | return 0; |
5049 | ||
5050 | /* Quick check: They should all have the same number of enumerals. */ | |
54d343a2 | 5051 | for (i = 1; i < syms.size (); i++) |
d12307c1 PMR |
5052 | if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol)) |
5053 | != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol))) | |
8f17729f JB |
5054 | return 0; |
5055 | ||
5056 | /* All the sanity checks passed, so we might have a set of | |
5057 | identical enumeration types. Perform a more complete | |
5058 | comparison of the type of each symbol. */ | |
54d343a2 | 5059 | for (i = 1; i < syms.size (); i++) |
d12307c1 PMR |
5060 | if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol), |
5061 | SYMBOL_TYPE (syms[0].symbol))) | |
8f17729f JB |
5062 | return 0; |
5063 | ||
5064 | return 1; | |
5065 | } | |
5066 | ||
54d343a2 | 5067 | /* Remove any non-debugging symbols in SYMS that definitely |
96d887e8 PH |
5068 | duplicate other symbols in the list (The only case I know of where |
5069 | this happens is when object files containing stabs-in-ecoff are | |
5070 | linked with files containing ordinary ecoff debugging symbols (or no | |
5071 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
5072 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 5073 | |
96d887e8 | 5074 | static int |
54d343a2 | 5075 | remove_extra_symbols (std::vector<struct block_symbol> *syms) |
96d887e8 PH |
5076 | { |
5077 | int i, j; | |
4c4b4cd2 | 5078 | |
8f17729f JB |
5079 | /* We should never be called with less than 2 symbols, as there |
5080 | cannot be any extra symbol in that case. But it's easy to | |
5081 | handle, since we have nothing to do in that case. */ | |
54d343a2 TT |
5082 | if (syms->size () < 2) |
5083 | return syms->size (); | |
8f17729f | 5084 | |
96d887e8 | 5085 | i = 0; |
54d343a2 | 5086 | while (i < syms->size ()) |
96d887e8 | 5087 | { |
a35ddb44 | 5088 | int remove_p = 0; |
339c13b6 JB |
5089 | |
5090 | /* If two symbols have the same name and one of them is a stub type, | |
5091 | the get rid of the stub. */ | |
5092 | ||
54d343a2 TT |
5093 | if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol)) |
5094 | && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL) | |
339c13b6 | 5095 | { |
54d343a2 | 5096 | for (j = 0; j < syms->size (); j++) |
339c13b6 JB |
5097 | { |
5098 | if (j != i | |
54d343a2 TT |
5099 | && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol)) |
5100 | && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL | |
5101 | && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol), | |
5102 | SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0) | |
a35ddb44 | 5103 | remove_p = 1; |
339c13b6 JB |
5104 | } |
5105 | } | |
5106 | ||
5107 | /* Two symbols with the same name, same class and same address | |
5108 | should be identical. */ | |
5109 | ||
54d343a2 TT |
5110 | else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL |
5111 | && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC | |
5112 | && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol))) | |
96d887e8 | 5113 | { |
54d343a2 | 5114 | for (j = 0; j < syms->size (); j += 1) |
96d887e8 PH |
5115 | { |
5116 | if (i != j | |
54d343a2 TT |
5117 | && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL |
5118 | && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol), | |
5119 | SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0 | |
5120 | && SYMBOL_CLASS ((*syms)[i].symbol) | |
5121 | == SYMBOL_CLASS ((*syms)[j].symbol) | |
5122 | && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol) | |
5123 | == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol)) | |
a35ddb44 | 5124 | remove_p = 1; |
4c4b4cd2 | 5125 | } |
4c4b4cd2 | 5126 | } |
339c13b6 | 5127 | |
a35ddb44 | 5128 | if (remove_p) |
54d343a2 | 5129 | syms->erase (syms->begin () + i); |
339c13b6 | 5130 | |
96d887e8 | 5131 | i += 1; |
14f9c5c9 | 5132 | } |
8f17729f JB |
5133 | |
5134 | /* If all the remaining symbols are identical enumerals, then | |
5135 | just keep the first one and discard the rest. | |
5136 | ||
5137 | Unlike what we did previously, we do not discard any entry | |
5138 | unless they are ALL identical. This is because the symbol | |
5139 | comparison is not a strict comparison, but rather a practical | |
5140 | comparison. If all symbols are considered identical, then | |
5141 | we can just go ahead and use the first one and discard the rest. | |
5142 | But if we cannot reduce the list to a single element, we have | |
5143 | to ask the user to disambiguate anyways. And if we have to | |
5144 | present a multiple-choice menu, it's less confusing if the list | |
5145 | isn't missing some choices that were identical and yet distinct. */ | |
54d343a2 TT |
5146 | if (symbols_are_identical_enums (*syms)) |
5147 | syms->resize (1); | |
8f17729f | 5148 | |
54d343a2 | 5149 | return syms->size (); |
14f9c5c9 AS |
5150 | } |
5151 | ||
96d887e8 PH |
5152 | /* Given a type that corresponds to a renaming entity, use the type name |
5153 | to extract the scope (package name or function name, fully qualified, | |
5154 | and following the GNAT encoding convention) where this renaming has been | |
49d83361 | 5155 | defined. */ |
4c4b4cd2 | 5156 | |
49d83361 | 5157 | static std::string |
96d887e8 | 5158 | xget_renaming_scope (struct type *renaming_type) |
14f9c5c9 | 5159 | { |
96d887e8 | 5160 | /* The renaming types adhere to the following convention: |
0963b4bd | 5161 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
5162 | So, to extract the scope, we search for the "___XR" extension, |
5163 | and then backtrack until we find the first "__". */ | |
76a01679 | 5164 | |
a737d952 | 5165 | const char *name = TYPE_NAME (renaming_type); |
108d56a4 SM |
5166 | const char *suffix = strstr (name, "___XR"); |
5167 | const char *last; | |
14f9c5c9 | 5168 | |
96d887e8 PH |
5169 | /* Now, backtrack a bit until we find the first "__". Start looking |
5170 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 5171 | |
96d887e8 PH |
5172 | for (last = suffix - 3; last > name; last--) |
5173 | if (last[0] == '_' && last[1] == '_') | |
5174 | break; | |
76a01679 | 5175 | |
96d887e8 | 5176 | /* Make a copy of scope and return it. */ |
49d83361 | 5177 | return std::string (name, last); |
4c4b4cd2 PH |
5178 | } |
5179 | ||
96d887e8 | 5180 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 5181 | |
96d887e8 PH |
5182 | static int |
5183 | is_package_name (const char *name) | |
4c4b4cd2 | 5184 | { |
96d887e8 PH |
5185 | /* Here, We take advantage of the fact that no symbols are generated |
5186 | for packages, while symbols are generated for each function. | |
5187 | So the condition for NAME represent a package becomes equivalent | |
5188 | to NAME not existing in our list of symbols. There is only one | |
5189 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 5190 | |
96d887e8 PH |
5191 | /* If it is a function that has not been defined at library level, |
5192 | then we should be able to look it up in the symbols. */ | |
5193 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
5194 | return 0; | |
14f9c5c9 | 5195 | |
96d887e8 PH |
5196 | /* Library-level function names start with "_ada_". See if function |
5197 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 5198 | |
96d887e8 | 5199 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 5200 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
5201 | if (strstr (name, "__") != NULL) |
5202 | return 0; | |
4c4b4cd2 | 5203 | |
528e1572 | 5204 | std::string fun_name = string_printf ("_ada_%s", name); |
14f9c5c9 | 5205 | |
528e1572 | 5206 | return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL); |
96d887e8 | 5207 | } |
14f9c5c9 | 5208 | |
96d887e8 | 5209 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 5210 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 5211 | |
96d887e8 | 5212 | static int |
0d5cff50 | 5213 | old_renaming_is_invisible (const struct symbol *sym, const char *function_name) |
96d887e8 | 5214 | { |
aeb5907d JB |
5215 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) |
5216 | return 0; | |
5217 | ||
49d83361 | 5218 | std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym)); |
14f9c5c9 | 5219 | |
96d887e8 | 5220 | /* If the rename has been defined in a package, then it is visible. */ |
49d83361 TT |
5221 | if (is_package_name (scope.c_str ())) |
5222 | return 0; | |
14f9c5c9 | 5223 | |
96d887e8 PH |
5224 | /* Check that the rename is in the current function scope by checking |
5225 | that its name starts with SCOPE. */ | |
76a01679 | 5226 | |
96d887e8 PH |
5227 | /* If the function name starts with "_ada_", it means that it is |
5228 | a library-level function. Strip this prefix before doing the | |
5229 | comparison, as the encoding for the renaming does not contain | |
5230 | this prefix. */ | |
61012eef | 5231 | if (startswith (function_name, "_ada_")) |
96d887e8 | 5232 | function_name += 5; |
f26caa11 | 5233 | |
49d83361 | 5234 | return !startswith (function_name, scope.c_str ()); |
f26caa11 PH |
5235 | } |
5236 | ||
aeb5907d JB |
5237 | /* Remove entries from SYMS that corresponds to a renaming entity that |
5238 | is not visible from the function associated with CURRENT_BLOCK or | |
5239 | that is superfluous due to the presence of more specific renaming | |
5240 | information. Places surviving symbols in the initial entries of | |
5241 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
5242 | |
5243 | Rationale: | |
aeb5907d JB |
5244 | First, in cases where an object renaming is implemented as a |
5245 | reference variable, GNAT may produce both the actual reference | |
5246 | variable and the renaming encoding. In this case, we discard the | |
5247 | latter. | |
5248 | ||
5249 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
5250 | entity. Unfortunately, STABS currently does not support the definition |
5251 | of types that are local to a given lexical block, so all renamings types | |
5252 | are emitted at library level. As a consequence, if an application | |
5253 | contains two renaming entities using the same name, and a user tries to | |
5254 | print the value of one of these entities, the result of the ada symbol | |
5255 | lookup will also contain the wrong renaming type. | |
f26caa11 | 5256 | |
96d887e8 PH |
5257 | This function partially covers for this limitation by attempting to |
5258 | remove from the SYMS list renaming symbols that should be visible | |
5259 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
5260 | method with the current information available. The implementation | |
5261 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
5262 | ||
5263 | - When the user tries to print a rename in a function while there | |
5264 | is another rename entity defined in a package: Normally, the | |
5265 | rename in the function has precedence over the rename in the | |
5266 | package, so the latter should be removed from the list. This is | |
5267 | currently not the case. | |
5268 | ||
5269 | - This function will incorrectly remove valid renames if | |
5270 | the CURRENT_BLOCK corresponds to a function which symbol name | |
5271 | has been changed by an "Export" pragma. As a consequence, | |
5272 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 5273 | |
14f9c5c9 | 5274 | static int |
54d343a2 TT |
5275 | remove_irrelevant_renamings (std::vector<struct block_symbol> *syms, |
5276 | const struct block *current_block) | |
4c4b4cd2 PH |
5277 | { |
5278 | struct symbol *current_function; | |
0d5cff50 | 5279 | const char *current_function_name; |
4c4b4cd2 | 5280 | int i; |
aeb5907d JB |
5281 | int is_new_style_renaming; |
5282 | ||
5283 | /* If there is both a renaming foo___XR... encoded as a variable and | |
5284 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 5285 | First, zero out such symbols, then compress. */ |
aeb5907d | 5286 | is_new_style_renaming = 0; |
54d343a2 | 5287 | for (i = 0; i < syms->size (); i += 1) |
aeb5907d | 5288 | { |
54d343a2 TT |
5289 | struct symbol *sym = (*syms)[i].symbol; |
5290 | const struct block *block = (*syms)[i].block; | |
aeb5907d JB |
5291 | const char *name; |
5292 | const char *suffix; | |
5293 | ||
5294 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
5295 | continue; | |
5296 | name = SYMBOL_LINKAGE_NAME (sym); | |
5297 | suffix = strstr (name, "___XR"); | |
5298 | ||
5299 | if (suffix != NULL) | |
5300 | { | |
5301 | int name_len = suffix - name; | |
5302 | int j; | |
5b4ee69b | 5303 | |
aeb5907d | 5304 | is_new_style_renaming = 1; |
54d343a2 TT |
5305 | for (j = 0; j < syms->size (); j += 1) |
5306 | if (i != j && (*syms)[j].symbol != NULL | |
5307 | && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol), | |
aeb5907d | 5308 | name_len) == 0 |
54d343a2 TT |
5309 | && block == (*syms)[j].block) |
5310 | (*syms)[j].symbol = NULL; | |
aeb5907d JB |
5311 | } |
5312 | } | |
5313 | if (is_new_style_renaming) | |
5314 | { | |
5315 | int j, k; | |
5316 | ||
54d343a2 TT |
5317 | for (j = k = 0; j < syms->size (); j += 1) |
5318 | if ((*syms)[j].symbol != NULL) | |
aeb5907d | 5319 | { |
54d343a2 | 5320 | (*syms)[k] = (*syms)[j]; |
aeb5907d JB |
5321 | k += 1; |
5322 | } | |
5323 | return k; | |
5324 | } | |
4c4b4cd2 PH |
5325 | |
5326 | /* Extract the function name associated to CURRENT_BLOCK. | |
5327 | Abort if unable to do so. */ | |
76a01679 | 5328 | |
4c4b4cd2 | 5329 | if (current_block == NULL) |
54d343a2 | 5330 | return syms->size (); |
76a01679 | 5331 | |
7f0df278 | 5332 | current_function = block_linkage_function (current_block); |
4c4b4cd2 | 5333 | if (current_function == NULL) |
54d343a2 | 5334 | return syms->size (); |
4c4b4cd2 PH |
5335 | |
5336 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
5337 | if (current_function_name == NULL) | |
54d343a2 | 5338 | return syms->size (); |
4c4b4cd2 PH |
5339 | |
5340 | /* Check each of the symbols, and remove it from the list if it is | |
5341 | a type corresponding to a renaming that is out of the scope of | |
5342 | the current block. */ | |
5343 | ||
5344 | i = 0; | |
54d343a2 | 5345 | while (i < syms->size ()) |
4c4b4cd2 | 5346 | { |
54d343a2 | 5347 | if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL) |
aeb5907d | 5348 | == ADA_OBJECT_RENAMING |
54d343a2 TT |
5349 | && old_renaming_is_invisible ((*syms)[i].symbol, |
5350 | current_function_name)) | |
5351 | syms->erase (syms->begin () + i); | |
4c4b4cd2 PH |
5352 | else |
5353 | i += 1; | |
5354 | } | |
5355 | ||
54d343a2 | 5356 | return syms->size (); |
4c4b4cd2 PH |
5357 | } |
5358 | ||
339c13b6 JB |
5359 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
5360 | whose name and domain match NAME and DOMAIN respectively. | |
5361 | If no match was found, then extend the search to "enclosing" | |
5362 | routines (in other words, if we're inside a nested function, | |
5363 | search the symbols defined inside the enclosing functions). | |
d0a8ab18 JB |
5364 | If WILD_MATCH_P is nonzero, perform the naming matching in |
5365 | "wild" mode (see function "wild_match" for more info). | |
339c13b6 JB |
5366 | |
5367 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
5368 | ||
5369 | static void | |
b5ec771e PA |
5370 | ada_add_local_symbols (struct obstack *obstackp, |
5371 | const lookup_name_info &lookup_name, | |
5372 | const struct block *block, domain_enum domain) | |
339c13b6 JB |
5373 | { |
5374 | int block_depth = 0; | |
5375 | ||
5376 | while (block != NULL) | |
5377 | { | |
5378 | block_depth += 1; | |
b5ec771e | 5379 | ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL); |
339c13b6 JB |
5380 | |
5381 | /* If we found a non-function match, assume that's the one. */ | |
5382 | if (is_nonfunction (defns_collected (obstackp, 0), | |
5383 | num_defns_collected (obstackp))) | |
5384 | return; | |
5385 | ||
5386 | block = BLOCK_SUPERBLOCK (block); | |
5387 | } | |
5388 | ||
5389 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
5390 | enclosing subprogram. */ | |
5391 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
b5ec771e | 5392 | add_symbols_from_enclosing_procs (obstackp, lookup_name, domain); |
339c13b6 JB |
5393 | } |
5394 | ||
ccefe4c4 | 5395 | /* An object of this type is used as the user_data argument when |
40658b94 | 5396 | calling the map_matching_symbols method. */ |
ccefe4c4 | 5397 | |
40658b94 | 5398 | struct match_data |
ccefe4c4 | 5399 | { |
40658b94 | 5400 | struct objfile *objfile; |
ccefe4c4 | 5401 | struct obstack *obstackp; |
40658b94 PH |
5402 | struct symbol *arg_sym; |
5403 | int found_sym; | |
ccefe4c4 TT |
5404 | }; |
5405 | ||
22cee43f | 5406 | /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK, |
40658b94 PH |
5407 | to a list of symbols. DATA0 is a pointer to a struct match_data * |
5408 | containing the obstack that collects the symbol list, the file that SYM | |
5409 | must come from, a flag indicating whether a non-argument symbol has | |
5410 | been found in the current block, and the last argument symbol | |
5411 | passed in SYM within the current block (if any). When SYM is null, | |
5412 | marking the end of a block, the argument symbol is added if no | |
5413 | other has been found. */ | |
ccefe4c4 | 5414 | |
40658b94 PH |
5415 | static int |
5416 | aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0) | |
ccefe4c4 | 5417 | { |
40658b94 PH |
5418 | struct match_data *data = (struct match_data *) data0; |
5419 | ||
5420 | if (sym == NULL) | |
5421 | { | |
5422 | if (!data->found_sym && data->arg_sym != NULL) | |
5423 | add_defn_to_vec (data->obstackp, | |
5424 | fixup_symbol_section (data->arg_sym, data->objfile), | |
5425 | block); | |
5426 | data->found_sym = 0; | |
5427 | data->arg_sym = NULL; | |
5428 | } | |
5429 | else | |
5430 | { | |
5431 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
5432 | return 0; | |
5433 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5434 | data->arg_sym = sym; | |
5435 | else | |
5436 | { | |
5437 | data->found_sym = 1; | |
5438 | add_defn_to_vec (data->obstackp, | |
5439 | fixup_symbol_section (sym, data->objfile), | |
5440 | block); | |
5441 | } | |
5442 | } | |
5443 | return 0; | |
5444 | } | |
5445 | ||
b5ec771e PA |
5446 | /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are |
5447 | targeted by renamings matching LOOKUP_NAME in BLOCK. Add these | |
5448 | symbols to OBSTACKP. Return whether we found such symbols. */ | |
22cee43f PMR |
5449 | |
5450 | static int | |
5451 | ada_add_block_renamings (struct obstack *obstackp, | |
5452 | const struct block *block, | |
b5ec771e PA |
5453 | const lookup_name_info &lookup_name, |
5454 | domain_enum domain) | |
22cee43f PMR |
5455 | { |
5456 | struct using_direct *renaming; | |
5457 | int defns_mark = num_defns_collected (obstackp); | |
5458 | ||
b5ec771e PA |
5459 | symbol_name_matcher_ftype *name_match |
5460 | = ada_get_symbol_name_matcher (lookup_name); | |
5461 | ||
22cee43f PMR |
5462 | for (renaming = block_using (block); |
5463 | renaming != NULL; | |
5464 | renaming = renaming->next) | |
5465 | { | |
5466 | const char *r_name; | |
22cee43f PMR |
5467 | |
5468 | /* Avoid infinite recursions: skip this renaming if we are actually | |
5469 | already traversing it. | |
5470 | ||
5471 | Currently, symbol lookup in Ada don't use the namespace machinery from | |
5472 | C++/Fortran support: skip namespace imports that use them. */ | |
5473 | if (renaming->searched | |
5474 | || (renaming->import_src != NULL | |
5475 | && renaming->import_src[0] != '\0') | |
5476 | || (renaming->import_dest != NULL | |
5477 | && renaming->import_dest[0] != '\0')) | |
5478 | continue; | |
5479 | renaming->searched = 1; | |
5480 | ||
5481 | /* TODO: here, we perform another name-based symbol lookup, which can | |
5482 | pull its own multiple overloads. In theory, we should be able to do | |
5483 | better in this case since, in DWARF, DW_AT_import is a DIE reference, | |
5484 | not a simple name. But in order to do this, we would need to enhance | |
5485 | the DWARF reader to associate a symbol to this renaming, instead of a | |
5486 | name. So, for now, we do something simpler: re-use the C++/Fortran | |
5487 | namespace machinery. */ | |
5488 | r_name = (renaming->alias != NULL | |
5489 | ? renaming->alias | |
5490 | : renaming->declaration); | |
b5ec771e PA |
5491 | if (name_match (r_name, lookup_name, NULL)) |
5492 | { | |
5493 | lookup_name_info decl_lookup_name (renaming->declaration, | |
5494 | lookup_name.match_type ()); | |
5495 | ada_add_all_symbols (obstackp, block, decl_lookup_name, domain, | |
5496 | 1, NULL); | |
5497 | } | |
22cee43f PMR |
5498 | renaming->searched = 0; |
5499 | } | |
5500 | return num_defns_collected (obstackp) != defns_mark; | |
5501 | } | |
5502 | ||
db230ce3 JB |
5503 | /* Implements compare_names, but only applying the comparision using |
5504 | the given CASING. */ | |
5b4ee69b | 5505 | |
40658b94 | 5506 | static int |
db230ce3 JB |
5507 | compare_names_with_case (const char *string1, const char *string2, |
5508 | enum case_sensitivity casing) | |
40658b94 PH |
5509 | { |
5510 | while (*string1 != '\0' && *string2 != '\0') | |
5511 | { | |
db230ce3 JB |
5512 | char c1, c2; |
5513 | ||
40658b94 PH |
5514 | if (isspace (*string1) || isspace (*string2)) |
5515 | return strcmp_iw_ordered (string1, string2); | |
db230ce3 JB |
5516 | |
5517 | if (casing == case_sensitive_off) | |
5518 | { | |
5519 | c1 = tolower (*string1); | |
5520 | c2 = tolower (*string2); | |
5521 | } | |
5522 | else | |
5523 | { | |
5524 | c1 = *string1; | |
5525 | c2 = *string2; | |
5526 | } | |
5527 | if (c1 != c2) | |
40658b94 | 5528 | break; |
db230ce3 | 5529 | |
40658b94 PH |
5530 | string1 += 1; |
5531 | string2 += 1; | |
5532 | } | |
db230ce3 | 5533 | |
40658b94 PH |
5534 | switch (*string1) |
5535 | { | |
5536 | case '(': | |
5537 | return strcmp_iw_ordered (string1, string2); | |
5538 | case '_': | |
5539 | if (*string2 == '\0') | |
5540 | { | |
052874e8 | 5541 | if (is_name_suffix (string1)) |
40658b94 PH |
5542 | return 0; |
5543 | else | |
1a1d5513 | 5544 | return 1; |
40658b94 | 5545 | } |
dbb8534f | 5546 | /* FALLTHROUGH */ |
40658b94 PH |
5547 | default: |
5548 | if (*string2 == '(') | |
5549 | return strcmp_iw_ordered (string1, string2); | |
5550 | else | |
db230ce3 JB |
5551 | { |
5552 | if (casing == case_sensitive_off) | |
5553 | return tolower (*string1) - tolower (*string2); | |
5554 | else | |
5555 | return *string1 - *string2; | |
5556 | } | |
40658b94 | 5557 | } |
ccefe4c4 TT |
5558 | } |
5559 | ||
db230ce3 JB |
5560 | /* Compare STRING1 to STRING2, with results as for strcmp. |
5561 | Compatible with strcmp_iw_ordered in that... | |
5562 | ||
5563 | strcmp_iw_ordered (STRING1, STRING2) <= 0 | |
5564 | ||
5565 | ... implies... | |
5566 | ||
5567 | compare_names (STRING1, STRING2) <= 0 | |
5568 | ||
5569 | (they may differ as to what symbols compare equal). */ | |
5570 | ||
5571 | static int | |
5572 | compare_names (const char *string1, const char *string2) | |
5573 | { | |
5574 | int result; | |
5575 | ||
5576 | /* Similar to what strcmp_iw_ordered does, we need to perform | |
5577 | a case-insensitive comparison first, and only resort to | |
5578 | a second, case-sensitive, comparison if the first one was | |
5579 | not sufficient to differentiate the two strings. */ | |
5580 | ||
5581 | result = compare_names_with_case (string1, string2, case_sensitive_off); | |
5582 | if (result == 0) | |
5583 | result = compare_names_with_case (string1, string2, case_sensitive_on); | |
5584 | ||
5585 | return result; | |
5586 | } | |
5587 | ||
b5ec771e PA |
5588 | /* Convenience function to get at the Ada encoded lookup name for |
5589 | LOOKUP_NAME, as a C string. */ | |
5590 | ||
5591 | static const char * | |
5592 | ada_lookup_name (const lookup_name_info &lookup_name) | |
5593 | { | |
5594 | return lookup_name.ada ().lookup_name ().c_str (); | |
5595 | } | |
5596 | ||
339c13b6 | 5597 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
b5ec771e PA |
5598 | LOOKUP_NAME and DOMAIN respectively. The search is performed on |
5599 | GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK | |
5600 | symbols otherwise. */ | |
339c13b6 JB |
5601 | |
5602 | static void | |
b5ec771e PA |
5603 | add_nonlocal_symbols (struct obstack *obstackp, |
5604 | const lookup_name_info &lookup_name, | |
5605 | domain_enum domain, int global) | |
339c13b6 JB |
5606 | { |
5607 | struct objfile *objfile; | |
22cee43f | 5608 | struct compunit_symtab *cu; |
40658b94 | 5609 | struct match_data data; |
339c13b6 | 5610 | |
6475f2fe | 5611 | memset (&data, 0, sizeof data); |
ccefe4c4 | 5612 | data.obstackp = obstackp; |
339c13b6 | 5613 | |
b5ec771e PA |
5614 | bool is_wild_match = lookup_name.ada ().wild_match_p (); |
5615 | ||
ccefe4c4 | 5616 | ALL_OBJFILES (objfile) |
40658b94 PH |
5617 | { |
5618 | data.objfile = objfile; | |
5619 | ||
5620 | if (is_wild_match) | |
b5ec771e PA |
5621 | objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (), |
5622 | domain, global, | |
4186eb54 | 5623 | aux_add_nonlocal_symbols, &data, |
b5ec771e PA |
5624 | symbol_name_match_type::WILD, |
5625 | NULL); | |
40658b94 | 5626 | else |
b5ec771e PA |
5627 | objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (), |
5628 | domain, global, | |
4186eb54 | 5629 | aux_add_nonlocal_symbols, &data, |
b5ec771e PA |
5630 | symbol_name_match_type::FULL, |
5631 | compare_names); | |
22cee43f PMR |
5632 | |
5633 | ALL_OBJFILE_COMPUNITS (objfile, cu) | |
5634 | { | |
5635 | const struct block *global_block | |
5636 | = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK); | |
5637 | ||
b5ec771e PA |
5638 | if (ada_add_block_renamings (obstackp, global_block, lookup_name, |
5639 | domain)) | |
22cee43f PMR |
5640 | data.found_sym = 1; |
5641 | } | |
40658b94 PH |
5642 | } |
5643 | ||
5644 | if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) | |
5645 | { | |
b5ec771e PA |
5646 | const char *name = ada_lookup_name (lookup_name); |
5647 | std::string name1 = std::string ("<_ada_") + name + '>'; | |
5648 | ||
40658b94 PH |
5649 | ALL_OBJFILES (objfile) |
5650 | { | |
40658b94 | 5651 | data.objfile = objfile; |
b5ec771e PA |
5652 | objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (), |
5653 | domain, global, | |
0963b4bd MS |
5654 | aux_add_nonlocal_symbols, |
5655 | &data, | |
b5ec771e PA |
5656 | symbol_name_match_type::FULL, |
5657 | compare_names); | |
40658b94 PH |
5658 | } |
5659 | } | |
339c13b6 JB |
5660 | } |
5661 | ||
b5ec771e PA |
5662 | /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if |
5663 | FULL_SEARCH is non-zero, enclosing scope and in global scopes, | |
5664 | returning the number of matches. Add these to OBSTACKP. | |
4eeaa230 | 5665 | |
22cee43f PMR |
5666 | When FULL_SEARCH is non-zero, any non-function/non-enumeral |
5667 | symbol match within the nest of blocks whose innermost member is BLOCK, | |
4c4b4cd2 | 5668 | is the one match returned (no other matches in that or |
d9680e73 | 5669 | enclosing blocks is returned). If there are any matches in or |
22cee43f | 5670 | surrounding BLOCK, then these alone are returned. |
4eeaa230 | 5671 | |
b5ec771e PA |
5672 | Names prefixed with "standard__" are handled specially: |
5673 | "standard__" is first stripped off (by the lookup_name | |
5674 | constructor), and only static and global symbols are searched. | |
14f9c5c9 | 5675 | |
22cee43f PMR |
5676 | If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had |
5677 | to lookup global symbols. */ | |
5678 | ||
5679 | static void | |
5680 | ada_add_all_symbols (struct obstack *obstackp, | |
5681 | const struct block *block, | |
b5ec771e | 5682 | const lookup_name_info &lookup_name, |
22cee43f PMR |
5683 | domain_enum domain, |
5684 | int full_search, | |
5685 | int *made_global_lookup_p) | |
14f9c5c9 AS |
5686 | { |
5687 | struct symbol *sym; | |
14f9c5c9 | 5688 | |
22cee43f PMR |
5689 | if (made_global_lookup_p) |
5690 | *made_global_lookup_p = 0; | |
339c13b6 JB |
5691 | |
5692 | /* Special case: If the user specifies a symbol name inside package | |
5693 | Standard, do a non-wild matching of the symbol name without | |
5694 | the "standard__" prefix. This was primarily introduced in order | |
5695 | to allow the user to specifically access the standard exceptions | |
5696 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
5697 | is ambiguous (due to the user defining its own Constraint_Error | |
5698 | entity inside its program). */ | |
b5ec771e PA |
5699 | if (lookup_name.ada ().standard_p ()) |
5700 | block = NULL; | |
4c4b4cd2 | 5701 | |
339c13b6 | 5702 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 5703 | |
4eeaa230 DE |
5704 | if (block != NULL) |
5705 | { | |
5706 | if (full_search) | |
b5ec771e | 5707 | ada_add_local_symbols (obstackp, lookup_name, block, domain); |
4eeaa230 DE |
5708 | else |
5709 | { | |
5710 | /* In the !full_search case we're are being called by | |
5711 | ada_iterate_over_symbols, and we don't want to search | |
5712 | superblocks. */ | |
b5ec771e | 5713 | ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL); |
4eeaa230 | 5714 | } |
22cee43f PMR |
5715 | if (num_defns_collected (obstackp) > 0 || !full_search) |
5716 | return; | |
4eeaa230 | 5717 | } |
d2e4a39e | 5718 | |
339c13b6 JB |
5719 | /* No non-global symbols found. Check our cache to see if we have |
5720 | already performed this search before. If we have, then return | |
5721 | the same result. */ | |
5722 | ||
b5ec771e PA |
5723 | if (lookup_cached_symbol (ada_lookup_name (lookup_name), |
5724 | domain, &sym, &block)) | |
4c4b4cd2 PH |
5725 | { |
5726 | if (sym != NULL) | |
b5ec771e | 5727 | add_defn_to_vec (obstackp, sym, block); |
22cee43f | 5728 | return; |
4c4b4cd2 | 5729 | } |
14f9c5c9 | 5730 | |
22cee43f PMR |
5731 | if (made_global_lookup_p) |
5732 | *made_global_lookup_p = 1; | |
b1eedac9 | 5733 | |
339c13b6 JB |
5734 | /* Search symbols from all global blocks. */ |
5735 | ||
b5ec771e | 5736 | add_nonlocal_symbols (obstackp, lookup_name, domain, 1); |
d2e4a39e | 5737 | |
4c4b4cd2 | 5738 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 5739 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 5740 | |
22cee43f | 5741 | if (num_defns_collected (obstackp) == 0) |
b5ec771e | 5742 | add_nonlocal_symbols (obstackp, lookup_name, domain, 0); |
22cee43f PMR |
5743 | } |
5744 | ||
b5ec771e PA |
5745 | /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH |
5746 | is non-zero, enclosing scope and in global scopes, returning the number of | |
22cee43f | 5747 | matches. |
54d343a2 TT |
5748 | Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols |
5749 | found and the blocks and symbol tables (if any) in which they were | |
5750 | found. | |
22cee43f PMR |
5751 | |
5752 | When full_search is non-zero, any non-function/non-enumeral | |
5753 | symbol match within the nest of blocks whose innermost member is BLOCK, | |
5754 | is the one match returned (no other matches in that or | |
5755 | enclosing blocks is returned). If there are any matches in or | |
5756 | surrounding BLOCK, then these alone are returned. | |
5757 | ||
5758 | Names prefixed with "standard__" are handled specially: "standard__" | |
5759 | is first stripped off, and only static and global symbols are searched. */ | |
5760 | ||
5761 | static int | |
b5ec771e PA |
5762 | ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name, |
5763 | const struct block *block, | |
22cee43f | 5764 | domain_enum domain, |
54d343a2 | 5765 | std::vector<struct block_symbol> *results, |
22cee43f PMR |
5766 | int full_search) |
5767 | { | |
22cee43f PMR |
5768 | int syms_from_global_search; |
5769 | int ndefns; | |
ec6a20c2 | 5770 | auto_obstack obstack; |
22cee43f | 5771 | |
ec6a20c2 | 5772 | ada_add_all_symbols (&obstack, block, lookup_name, |
b5ec771e | 5773 | domain, full_search, &syms_from_global_search); |
14f9c5c9 | 5774 | |
ec6a20c2 JB |
5775 | ndefns = num_defns_collected (&obstack); |
5776 | ||
54d343a2 TT |
5777 | struct block_symbol *base = defns_collected (&obstack, 1); |
5778 | for (int i = 0; i < ndefns; ++i) | |
5779 | results->push_back (base[i]); | |
4c4b4cd2 | 5780 | |
54d343a2 | 5781 | ndefns = remove_extra_symbols (results); |
4c4b4cd2 | 5782 | |
b1eedac9 | 5783 | if (ndefns == 0 && full_search && syms_from_global_search) |
b5ec771e | 5784 | cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL); |
14f9c5c9 | 5785 | |
b1eedac9 | 5786 | if (ndefns == 1 && full_search && syms_from_global_search) |
b5ec771e PA |
5787 | cache_symbol (ada_lookup_name (lookup_name), domain, |
5788 | (*results)[0].symbol, (*results)[0].block); | |
14f9c5c9 | 5789 | |
54d343a2 | 5790 | ndefns = remove_irrelevant_renamings (results, block); |
ec6a20c2 | 5791 | |
14f9c5c9 AS |
5792 | return ndefns; |
5793 | } | |
5794 | ||
b5ec771e | 5795 | /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and |
54d343a2 TT |
5796 | in global scopes, returning the number of matches, and filling *RESULTS |
5797 | with (SYM,BLOCK) tuples. | |
ec6a20c2 | 5798 | |
4eeaa230 DE |
5799 | See ada_lookup_symbol_list_worker for further details. */ |
5800 | ||
5801 | int | |
b5ec771e | 5802 | ada_lookup_symbol_list (const char *name, const struct block *block, |
54d343a2 TT |
5803 | domain_enum domain, |
5804 | std::vector<struct block_symbol> *results) | |
4eeaa230 | 5805 | { |
b5ec771e PA |
5806 | symbol_name_match_type name_match_type = name_match_type_from_name (name); |
5807 | lookup_name_info lookup_name (name, name_match_type); | |
5808 | ||
5809 | return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1); | |
4eeaa230 DE |
5810 | } |
5811 | ||
5812 | /* Implementation of the la_iterate_over_symbols method. */ | |
5813 | ||
5814 | static void | |
14bc53a8 | 5815 | ada_iterate_over_symbols |
b5ec771e PA |
5816 | (const struct block *block, const lookup_name_info &name, |
5817 | domain_enum domain, | |
14bc53a8 | 5818 | gdb::function_view<symbol_found_callback_ftype> callback) |
4eeaa230 DE |
5819 | { |
5820 | int ndefs, i; | |
54d343a2 | 5821 | std::vector<struct block_symbol> results; |
4eeaa230 DE |
5822 | |
5823 | ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0); | |
ec6a20c2 | 5824 | |
4eeaa230 DE |
5825 | for (i = 0; i < ndefs; ++i) |
5826 | { | |
7e41c8db | 5827 | if (!callback (&results[i])) |
4eeaa230 DE |
5828 | break; |
5829 | } | |
5830 | } | |
5831 | ||
4e5c77fe JB |
5832 | /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set |
5833 | to 1, but choosing the first symbol found if there are multiple | |
5834 | choices. | |
5835 | ||
5e2336be JB |
5836 | The result is stored in *INFO, which must be non-NULL. |
5837 | If no match is found, INFO->SYM is set to NULL. */ | |
4e5c77fe JB |
5838 | |
5839 | void | |
5840 | ada_lookup_encoded_symbol (const char *name, const struct block *block, | |
fe978cb0 | 5841 | domain_enum domain, |
d12307c1 | 5842 | struct block_symbol *info) |
14f9c5c9 | 5843 | { |
b5ec771e PA |
5844 | /* Since we already have an encoded name, wrap it in '<>' to force a |
5845 | verbatim match. Otherwise, if the name happens to not look like | |
5846 | an encoded name (because it doesn't include a "__"), | |
5847 | ada_lookup_name_info would re-encode/fold it again, and that | |
5848 | would e.g., incorrectly lowercase object renaming names like | |
5849 | "R28b" -> "r28b". */ | |
5850 | std::string verbatim = std::string ("<") + name + '>'; | |
5851 | ||
5e2336be | 5852 | gdb_assert (info != NULL); |
f98fc17b | 5853 | *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL); |
4e5c77fe | 5854 | } |
aeb5907d JB |
5855 | |
5856 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
5857 | scope and in global scopes, or NULL if none. NAME is folded and | |
5858 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
0963b4bd | 5859 | choosing the first symbol if there are multiple choices. |
4e5c77fe JB |
5860 | If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */ |
5861 | ||
d12307c1 | 5862 | struct block_symbol |
aeb5907d | 5863 | ada_lookup_symbol (const char *name, const struct block *block0, |
fe978cb0 | 5864 | domain_enum domain, int *is_a_field_of_this) |
aeb5907d JB |
5865 | { |
5866 | if (is_a_field_of_this != NULL) | |
5867 | *is_a_field_of_this = 0; | |
5868 | ||
54d343a2 | 5869 | std::vector<struct block_symbol> candidates; |
f98fc17b | 5870 | int n_candidates; |
f98fc17b PA |
5871 | |
5872 | n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates); | |
f98fc17b PA |
5873 | |
5874 | if (n_candidates == 0) | |
54d343a2 | 5875 | return {}; |
f98fc17b PA |
5876 | |
5877 | block_symbol info = candidates[0]; | |
5878 | info.symbol = fixup_symbol_section (info.symbol, NULL); | |
d12307c1 | 5879 | return info; |
4c4b4cd2 | 5880 | } |
14f9c5c9 | 5881 | |
d12307c1 | 5882 | static struct block_symbol |
f606139a DE |
5883 | ada_lookup_symbol_nonlocal (const struct language_defn *langdef, |
5884 | const char *name, | |
76a01679 | 5885 | const struct block *block, |
21b556f4 | 5886 | const domain_enum domain) |
4c4b4cd2 | 5887 | { |
d12307c1 | 5888 | struct block_symbol sym; |
04dccad0 JB |
5889 | |
5890 | sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL); | |
d12307c1 | 5891 | if (sym.symbol != NULL) |
04dccad0 JB |
5892 | return sym; |
5893 | ||
5894 | /* If we haven't found a match at this point, try the primitive | |
5895 | types. In other languages, this search is performed before | |
5896 | searching for global symbols in order to short-circuit that | |
5897 | global-symbol search if it happens that the name corresponds | |
5898 | to a primitive type. But we cannot do the same in Ada, because | |
5899 | it is perfectly legitimate for a program to declare a type which | |
5900 | has the same name as a standard type. If looking up a type in | |
5901 | that situation, we have traditionally ignored the primitive type | |
5902 | in favor of user-defined types. This is why, unlike most other | |
5903 | languages, we search the primitive types this late and only after | |
5904 | having searched the global symbols without success. */ | |
5905 | ||
5906 | if (domain == VAR_DOMAIN) | |
5907 | { | |
5908 | struct gdbarch *gdbarch; | |
5909 | ||
5910 | if (block == NULL) | |
5911 | gdbarch = target_gdbarch (); | |
5912 | else | |
5913 | gdbarch = block_gdbarch (block); | |
d12307c1 PMR |
5914 | sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name); |
5915 | if (sym.symbol != NULL) | |
04dccad0 JB |
5916 | return sym; |
5917 | } | |
5918 | ||
d12307c1 | 5919 | return (struct block_symbol) {NULL, NULL}; |
14f9c5c9 AS |
5920 | } |
5921 | ||
5922 | ||
4c4b4cd2 PH |
5923 | /* True iff STR is a possible encoded suffix of a normal Ada name |
5924 | that is to be ignored for matching purposes. Suffixes of parallel | |
5925 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 5926 | are given by any of the regular expressions: |
4c4b4cd2 | 5927 | |
babe1480 JB |
5928 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
5929 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
9ac7f98e | 5930 | TKB [subprogram suffix for task bodies] |
babe1480 | 5931 | _E[0-9]+[bs]$ [protected object entry suffixes] |
61ee279c | 5932 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
5933 | |
5934 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
5935 | match is performed. This sequence is used to differentiate homonyms, | |
5936 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 5937 | |
14f9c5c9 | 5938 | static int |
d2e4a39e | 5939 | is_name_suffix (const char *str) |
14f9c5c9 AS |
5940 | { |
5941 | int k; | |
4c4b4cd2 PH |
5942 | const char *matching; |
5943 | const int len = strlen (str); | |
5944 | ||
babe1480 JB |
5945 | /* Skip optional leading __[0-9]+. */ |
5946 | ||
4c4b4cd2 PH |
5947 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
5948 | { | |
babe1480 JB |
5949 | str += 3; |
5950 | while (isdigit (str[0])) | |
5951 | str += 1; | |
4c4b4cd2 | 5952 | } |
babe1480 JB |
5953 | |
5954 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 5955 | |
babe1480 | 5956 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 5957 | { |
babe1480 | 5958 | matching = str + 1; |
4c4b4cd2 PH |
5959 | while (isdigit (matching[0])) |
5960 | matching += 1; | |
5961 | if (matching[0] == '\0') | |
5962 | return 1; | |
5963 | } | |
5964 | ||
5965 | /* ___[0-9]+ */ | |
babe1480 | 5966 | |
4c4b4cd2 PH |
5967 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
5968 | { | |
5969 | matching = str + 3; | |
5970 | while (isdigit (matching[0])) | |
5971 | matching += 1; | |
5972 | if (matching[0] == '\0') | |
5973 | return 1; | |
5974 | } | |
5975 | ||
9ac7f98e JB |
5976 | /* "TKB" suffixes are used for subprograms implementing task bodies. */ |
5977 | ||
5978 | if (strcmp (str, "TKB") == 0) | |
5979 | return 1; | |
5980 | ||
529cad9c PH |
5981 | #if 0 |
5982 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
5983 | with a N at the end. Unfortunately, the compiler uses the same |
5984 | convention for other internal types it creates. So treating | |
529cad9c | 5985 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
5986 | some regressions. For instance, consider the case of an enumerated |
5987 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
5988 | name ends with N. |
5989 | Having a single character like this as a suffix carrying some | |
0963b4bd | 5990 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
5991 | to be something like "_N" instead. In the meantime, do not do |
5992 | the following check. */ | |
5993 | /* Protected Object Subprograms */ | |
5994 | if (len == 1 && str [0] == 'N') | |
5995 | return 1; | |
5996 | #endif | |
5997 | ||
5998 | /* _E[0-9]+[bs]$ */ | |
5999 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
6000 | { | |
6001 | matching = str + 3; | |
6002 | while (isdigit (matching[0])) | |
6003 | matching += 1; | |
6004 | if ((matching[0] == 'b' || matching[0] == 's') | |
6005 | && matching [1] == '\0') | |
6006 | return 1; | |
6007 | } | |
6008 | ||
4c4b4cd2 PH |
6009 | /* ??? We should not modify STR directly, as we are doing below. This |
6010 | is fine in this case, but may become problematic later if we find | |
6011 | that this alternative did not work, and want to try matching | |
6012 | another one from the begining of STR. Since we modified it, we | |
6013 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
6014 | if (str[0] == 'X') |
6015 | { | |
6016 | str += 1; | |
d2e4a39e | 6017 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
6018 | { |
6019 | if (str[0] != 'n' && str[0] != 'b') | |
6020 | return 0; | |
6021 | str += 1; | |
6022 | } | |
14f9c5c9 | 6023 | } |
babe1480 | 6024 | |
14f9c5c9 AS |
6025 | if (str[0] == '\000') |
6026 | return 1; | |
babe1480 | 6027 | |
d2e4a39e | 6028 | if (str[0] == '_') |
14f9c5c9 AS |
6029 | { |
6030 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 6031 | return 0; |
d2e4a39e | 6032 | if (str[2] == '_') |
4c4b4cd2 | 6033 | { |
61ee279c PH |
6034 | if (strcmp (str + 3, "JM") == 0) |
6035 | return 1; | |
6036 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
6037 | the LJM suffix in favor of the JM one. But we will | |
6038 | still accept LJM as a valid suffix for a reasonable | |
6039 | amount of time, just to allow ourselves to debug programs | |
6040 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
6041 | if (strcmp (str + 3, "LJM") == 0) |
6042 | return 1; | |
6043 | if (str[3] != 'X') | |
6044 | return 0; | |
1265e4aa JB |
6045 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
6046 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
6047 | return 1; |
6048 | if (str[4] == 'R' && str[5] != 'T') | |
6049 | return 1; | |
6050 | return 0; | |
6051 | } | |
6052 | if (!isdigit (str[2])) | |
6053 | return 0; | |
6054 | for (k = 3; str[k] != '\0'; k += 1) | |
6055 | if (!isdigit (str[k]) && str[k] != '_') | |
6056 | return 0; | |
14f9c5c9 AS |
6057 | return 1; |
6058 | } | |
4c4b4cd2 | 6059 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 6060 | { |
4c4b4cd2 PH |
6061 | for (k = 2; str[k] != '\0'; k += 1) |
6062 | if (!isdigit (str[k]) && str[k] != '_') | |
6063 | return 0; | |
14f9c5c9 AS |
6064 | return 1; |
6065 | } | |
6066 | return 0; | |
6067 | } | |
d2e4a39e | 6068 | |
aeb5907d JB |
6069 | /* Return non-zero if the string starting at NAME and ending before |
6070 | NAME_END contains no capital letters. */ | |
529cad9c PH |
6071 | |
6072 | static int | |
6073 | is_valid_name_for_wild_match (const char *name0) | |
6074 | { | |
6075 | const char *decoded_name = ada_decode (name0); | |
6076 | int i; | |
6077 | ||
5823c3ef JB |
6078 | /* If the decoded name starts with an angle bracket, it means that |
6079 | NAME0 does not follow the GNAT encoding format. It should then | |
6080 | not be allowed as a possible wild match. */ | |
6081 | if (decoded_name[0] == '<') | |
6082 | return 0; | |
6083 | ||
529cad9c PH |
6084 | for (i=0; decoded_name[i] != '\0'; i++) |
6085 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
6086 | return 0; | |
6087 | ||
6088 | return 1; | |
6089 | } | |
6090 | ||
73589123 PH |
6091 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
6092 | that could start a simple name. Assumes that *NAMEP points into | |
6093 | the string beginning at NAME0. */ | |
4c4b4cd2 | 6094 | |
14f9c5c9 | 6095 | static int |
73589123 | 6096 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 6097 | { |
73589123 | 6098 | const char *name = *namep; |
5b4ee69b | 6099 | |
5823c3ef | 6100 | while (1) |
14f9c5c9 | 6101 | { |
aa27d0b3 | 6102 | int t0, t1; |
73589123 PH |
6103 | |
6104 | t0 = *name; | |
6105 | if (t0 == '_') | |
6106 | { | |
6107 | t1 = name[1]; | |
6108 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
6109 | { | |
6110 | name += 1; | |
61012eef | 6111 | if (name == name0 + 5 && startswith (name0, "_ada")) |
73589123 PH |
6112 | break; |
6113 | else | |
6114 | name += 1; | |
6115 | } | |
aa27d0b3 JB |
6116 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
6117 | || name[2] == target0)) | |
73589123 PH |
6118 | { |
6119 | name += 2; | |
6120 | break; | |
6121 | } | |
6122 | else | |
6123 | return 0; | |
6124 | } | |
6125 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
6126 | name += 1; | |
6127 | else | |
5823c3ef | 6128 | return 0; |
73589123 PH |
6129 | } |
6130 | ||
6131 | *namep = name; | |
6132 | return 1; | |
6133 | } | |
6134 | ||
b5ec771e PA |
6135 | /* Return true iff NAME encodes a name of the form prefix.PATN. |
6136 | Ignores any informational suffixes of NAME (i.e., for which | |
6137 | is_name_suffix is true). Assumes that PATN is a lower-cased Ada | |
6138 | simple name. */ | |
73589123 | 6139 | |
b5ec771e | 6140 | static bool |
73589123 PH |
6141 | wild_match (const char *name, const char *patn) |
6142 | { | |
22e048c9 | 6143 | const char *p; |
73589123 PH |
6144 | const char *name0 = name; |
6145 | ||
6146 | while (1) | |
6147 | { | |
6148 | const char *match = name; | |
6149 | ||
6150 | if (*name == *patn) | |
6151 | { | |
6152 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
6153 | if (*p != *name) | |
6154 | break; | |
6155 | if (*p == '\0' && is_name_suffix (name)) | |
b5ec771e | 6156 | return match == name0 || is_valid_name_for_wild_match (name0); |
73589123 PH |
6157 | |
6158 | if (name[-1] == '_') | |
6159 | name -= 1; | |
6160 | } | |
6161 | if (!advance_wild_match (&name, name0, *patn)) | |
b5ec771e | 6162 | return false; |
96d887e8 | 6163 | } |
96d887e8 PH |
6164 | } |
6165 | ||
b5ec771e PA |
6166 | /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring |
6167 | any trailing suffixes that encode debugging information or leading | |
6168 | _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging | |
6169 | information that is ignored). */ | |
40658b94 | 6170 | |
b5ec771e | 6171 | static bool |
c4d840bd PH |
6172 | full_match (const char *sym_name, const char *search_name) |
6173 | { | |
b5ec771e PA |
6174 | size_t search_name_len = strlen (search_name); |
6175 | ||
6176 | if (strncmp (sym_name, search_name, search_name_len) == 0 | |
6177 | && is_name_suffix (sym_name + search_name_len)) | |
6178 | return true; | |
6179 | ||
6180 | if (startswith (sym_name, "_ada_") | |
6181 | && strncmp (sym_name + 5, search_name, search_name_len) == 0 | |
6182 | && is_name_suffix (sym_name + search_name_len + 5)) | |
6183 | return true; | |
c4d840bd | 6184 | |
b5ec771e PA |
6185 | return false; |
6186 | } | |
c4d840bd | 6187 | |
b5ec771e PA |
6188 | /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector |
6189 | *defn_symbols, updating the list of symbols in OBSTACKP (if | |
6190 | necessary). OBJFILE is the section containing BLOCK. */ | |
96d887e8 PH |
6191 | |
6192 | static void | |
6193 | ada_add_block_symbols (struct obstack *obstackp, | |
b5ec771e PA |
6194 | const struct block *block, |
6195 | const lookup_name_info &lookup_name, | |
6196 | domain_enum domain, struct objfile *objfile) | |
96d887e8 | 6197 | { |
8157b174 | 6198 | struct block_iterator iter; |
96d887e8 PH |
6199 | /* A matching argument symbol, if any. */ |
6200 | struct symbol *arg_sym; | |
6201 | /* Set true when we find a matching non-argument symbol. */ | |
6202 | int found_sym; | |
6203 | struct symbol *sym; | |
6204 | ||
6205 | arg_sym = NULL; | |
6206 | found_sym = 0; | |
b5ec771e PA |
6207 | for (sym = block_iter_match_first (block, lookup_name, &iter); |
6208 | sym != NULL; | |
6209 | sym = block_iter_match_next (lookup_name, &iter)) | |
96d887e8 | 6210 | { |
b5ec771e PA |
6211 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
6212 | SYMBOL_DOMAIN (sym), domain)) | |
6213 | { | |
6214 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) | |
6215 | { | |
6216 | if (SYMBOL_IS_ARGUMENT (sym)) | |
6217 | arg_sym = sym; | |
6218 | else | |
6219 | { | |
6220 | found_sym = 1; | |
6221 | add_defn_to_vec (obstackp, | |
6222 | fixup_symbol_section (sym, objfile), | |
6223 | block); | |
6224 | } | |
6225 | } | |
6226 | } | |
96d887e8 PH |
6227 | } |
6228 | ||
22cee43f PMR |
6229 | /* Handle renamings. */ |
6230 | ||
b5ec771e | 6231 | if (ada_add_block_renamings (obstackp, block, lookup_name, domain)) |
22cee43f PMR |
6232 | found_sym = 1; |
6233 | ||
96d887e8 PH |
6234 | if (!found_sym && arg_sym != NULL) |
6235 | { | |
76a01679 JB |
6236 | add_defn_to_vec (obstackp, |
6237 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 6238 | block); |
96d887e8 PH |
6239 | } |
6240 | ||
b5ec771e | 6241 | if (!lookup_name.ada ().wild_match_p ()) |
96d887e8 PH |
6242 | { |
6243 | arg_sym = NULL; | |
6244 | found_sym = 0; | |
b5ec771e PA |
6245 | const std::string &ada_lookup_name = lookup_name.ada ().lookup_name (); |
6246 | const char *name = ada_lookup_name.c_str (); | |
6247 | size_t name_len = ada_lookup_name.size (); | |
96d887e8 PH |
6248 | |
6249 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 6250 | { |
4186eb54 KS |
6251 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
6252 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
6253 | { |
6254 | int cmp; | |
6255 | ||
6256 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
6257 | if (cmp == 0) | |
6258 | { | |
61012eef | 6259 | cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_"); |
76a01679 JB |
6260 | if (cmp == 0) |
6261 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
6262 | name_len); | |
6263 | } | |
6264 | ||
6265 | if (cmp == 0 | |
6266 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
6267 | { | |
2a2d4dc3 AS |
6268 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
6269 | { | |
6270 | if (SYMBOL_IS_ARGUMENT (sym)) | |
6271 | arg_sym = sym; | |
6272 | else | |
6273 | { | |
6274 | found_sym = 1; | |
6275 | add_defn_to_vec (obstackp, | |
6276 | fixup_symbol_section (sym, objfile), | |
6277 | block); | |
6278 | } | |
6279 | } | |
76a01679 JB |
6280 | } |
6281 | } | |
76a01679 | 6282 | } |
96d887e8 PH |
6283 | |
6284 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
6285 | They aren't parameters, right? */ | |
6286 | if (!found_sym && arg_sym != NULL) | |
6287 | { | |
6288 | add_defn_to_vec (obstackp, | |
76a01679 | 6289 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 6290 | block); |
96d887e8 PH |
6291 | } |
6292 | } | |
6293 | } | |
6294 | \f | |
41d27058 JB |
6295 | |
6296 | /* Symbol Completion */ | |
6297 | ||
b5ec771e | 6298 | /* See symtab.h. */ |
41d27058 | 6299 | |
b5ec771e PA |
6300 | bool |
6301 | ada_lookup_name_info::matches | |
6302 | (const char *sym_name, | |
6303 | symbol_name_match_type match_type, | |
a207cff2 | 6304 | completion_match_result *comp_match_res) const |
41d27058 | 6305 | { |
b5ec771e PA |
6306 | bool match = false; |
6307 | const char *text = m_encoded_name.c_str (); | |
6308 | size_t text_len = m_encoded_name.size (); | |
41d27058 JB |
6309 | |
6310 | /* First, test against the fully qualified name of the symbol. */ | |
6311 | ||
6312 | if (strncmp (sym_name, text, text_len) == 0) | |
b5ec771e | 6313 | match = true; |
41d27058 | 6314 | |
b5ec771e | 6315 | if (match && !m_encoded_p) |
41d27058 JB |
6316 | { |
6317 | /* One needed check before declaring a positive match is to verify | |
6318 | that iff we are doing a verbatim match, the decoded version | |
6319 | of the symbol name starts with '<'. Otherwise, this symbol name | |
6320 | is not a suitable completion. */ | |
6321 | const char *sym_name_copy = sym_name; | |
b5ec771e | 6322 | bool has_angle_bracket; |
41d27058 JB |
6323 | |
6324 | sym_name = ada_decode (sym_name); | |
6325 | has_angle_bracket = (sym_name[0] == '<'); | |
b5ec771e | 6326 | match = (has_angle_bracket == m_verbatim_p); |
41d27058 JB |
6327 | sym_name = sym_name_copy; |
6328 | } | |
6329 | ||
b5ec771e | 6330 | if (match && !m_verbatim_p) |
41d27058 JB |
6331 | { |
6332 | /* When doing non-verbatim match, another check that needs to | |
6333 | be done is to verify that the potentially matching symbol name | |
6334 | does not include capital letters, because the ada-mode would | |
6335 | not be able to understand these symbol names without the | |
6336 | angle bracket notation. */ | |
6337 | const char *tmp; | |
6338 | ||
6339 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
6340 | if (*tmp != '\0') | |
b5ec771e | 6341 | match = false; |
41d27058 JB |
6342 | } |
6343 | ||
6344 | /* Second: Try wild matching... */ | |
6345 | ||
b5ec771e | 6346 | if (!match && m_wild_match_p) |
41d27058 JB |
6347 | { |
6348 | /* Since we are doing wild matching, this means that TEXT | |
6349 | may represent an unqualified symbol name. We therefore must | |
6350 | also compare TEXT against the unqualified name of the symbol. */ | |
6351 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
6352 | ||
6353 | if (strncmp (sym_name, text, text_len) == 0) | |
b5ec771e | 6354 | match = true; |
41d27058 JB |
6355 | } |
6356 | ||
b5ec771e | 6357 | /* Finally: If we found a match, prepare the result to return. */ |
41d27058 JB |
6358 | |
6359 | if (!match) | |
b5ec771e | 6360 | return false; |
41d27058 | 6361 | |
a207cff2 | 6362 | if (comp_match_res != NULL) |
b5ec771e | 6363 | { |
a207cff2 | 6364 | std::string &match_str = comp_match_res->match.storage (); |
41d27058 | 6365 | |
b5ec771e | 6366 | if (!m_encoded_p) |
a207cff2 | 6367 | match_str = ada_decode (sym_name); |
b5ec771e PA |
6368 | else |
6369 | { | |
6370 | if (m_verbatim_p) | |
6371 | match_str = add_angle_brackets (sym_name); | |
6372 | else | |
6373 | match_str = sym_name; | |
41d27058 | 6374 | |
b5ec771e | 6375 | } |
a207cff2 PA |
6376 | |
6377 | comp_match_res->set_match (match_str.c_str ()); | |
41d27058 JB |
6378 | } |
6379 | ||
b5ec771e | 6380 | return true; |
41d27058 JB |
6381 | } |
6382 | ||
b5ec771e | 6383 | /* Add the list of possible symbol names completing TEXT to TRACKER. |
eb3ff9a5 | 6384 | WORD is the entire command on which completion is made. */ |
41d27058 | 6385 | |
eb3ff9a5 PA |
6386 | static void |
6387 | ada_collect_symbol_completion_matches (completion_tracker &tracker, | |
c6756f62 | 6388 | complete_symbol_mode mode, |
b5ec771e PA |
6389 | symbol_name_match_type name_match_type, |
6390 | const char *text, const char *word, | |
eb3ff9a5 | 6391 | enum type_code code) |
41d27058 | 6392 | { |
41d27058 | 6393 | struct symbol *sym; |
43f3e411 | 6394 | struct compunit_symtab *s; |
41d27058 JB |
6395 | struct minimal_symbol *msymbol; |
6396 | struct objfile *objfile; | |
3977b71f | 6397 | const struct block *b, *surrounding_static_block = 0; |
8157b174 | 6398 | struct block_iterator iter; |
41d27058 | 6399 | |
2f68a895 TT |
6400 | gdb_assert (code == TYPE_CODE_UNDEF); |
6401 | ||
1b026119 | 6402 | lookup_name_info lookup_name (text, name_match_type, true); |
41d27058 JB |
6403 | |
6404 | /* First, look at the partial symtab symbols. */ | |
14bc53a8 | 6405 | expand_symtabs_matching (NULL, |
b5ec771e PA |
6406 | lookup_name, |
6407 | NULL, | |
14bc53a8 PA |
6408 | NULL, |
6409 | ALL_DOMAIN); | |
41d27058 JB |
6410 | |
6411 | /* At this point scan through the misc symbol vectors and add each | |
6412 | symbol you find to the list. Eventually we want to ignore | |
6413 | anything that isn't a text symbol (everything else will be | |
6414 | handled by the psymtab code above). */ | |
6415 | ||
6416 | ALL_MSYMBOLS (objfile, msymbol) | |
6417 | { | |
6418 | QUIT; | |
b5ec771e | 6419 | |
f9d67a22 PA |
6420 | if (completion_skip_symbol (mode, msymbol)) |
6421 | continue; | |
6422 | ||
d4c2a405 PA |
6423 | language symbol_language = MSYMBOL_LANGUAGE (msymbol); |
6424 | ||
6425 | /* Ada minimal symbols won't have their language set to Ada. If | |
6426 | we let completion_list_add_name compare using the | |
6427 | default/C-like matcher, then when completing e.g., symbols in a | |
6428 | package named "pck", we'd match internal Ada symbols like | |
6429 | "pckS", which are invalid in an Ada expression, unless you wrap | |
6430 | them in '<' '>' to request a verbatim match. | |
6431 | ||
6432 | Unfortunately, some Ada encoded names successfully demangle as | |
6433 | C++ symbols (using an old mangling scheme), such as "name__2Xn" | |
6434 | -> "Xn::name(void)" and thus some Ada minimal symbols end up | |
6435 | with the wrong language set. Paper over that issue here. */ | |
6436 | if (symbol_language == language_auto | |
6437 | || symbol_language == language_cplus) | |
6438 | symbol_language = language_ada; | |
6439 | ||
b5ec771e | 6440 | completion_list_add_name (tracker, |
d4c2a405 | 6441 | symbol_language, |
b5ec771e | 6442 | MSYMBOL_LINKAGE_NAME (msymbol), |
1b026119 | 6443 | lookup_name, text, word); |
41d27058 JB |
6444 | } |
6445 | ||
6446 | /* Search upwards from currently selected frame (so that we can | |
6447 | complete on local vars. */ | |
6448 | ||
6449 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
6450 | { | |
6451 | if (!BLOCK_SUPERBLOCK (b)) | |
6452 | surrounding_static_block = b; /* For elmin of dups */ | |
6453 | ||
6454 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6455 | { | |
f9d67a22 PA |
6456 | if (completion_skip_symbol (mode, sym)) |
6457 | continue; | |
6458 | ||
b5ec771e PA |
6459 | completion_list_add_name (tracker, |
6460 | SYMBOL_LANGUAGE (sym), | |
6461 | SYMBOL_LINKAGE_NAME (sym), | |
1b026119 | 6462 | lookup_name, text, word); |
41d27058 JB |
6463 | } |
6464 | } | |
6465 | ||
6466 | /* Go through the symtabs and check the externs and statics for | |
43f3e411 | 6467 | symbols which match. */ |
41d27058 | 6468 | |
43f3e411 | 6469 | ALL_COMPUNITS (objfile, s) |
41d27058 JB |
6470 | { |
6471 | QUIT; | |
43f3e411 | 6472 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK); |
41d27058 JB |
6473 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
6474 | { | |
f9d67a22 PA |
6475 | if (completion_skip_symbol (mode, sym)) |
6476 | continue; | |
6477 | ||
b5ec771e PA |
6478 | completion_list_add_name (tracker, |
6479 | SYMBOL_LANGUAGE (sym), | |
6480 | SYMBOL_LINKAGE_NAME (sym), | |
1b026119 | 6481 | lookup_name, text, word); |
41d27058 JB |
6482 | } |
6483 | } | |
6484 | ||
43f3e411 | 6485 | ALL_COMPUNITS (objfile, s) |
41d27058 JB |
6486 | { |
6487 | QUIT; | |
43f3e411 | 6488 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK); |
41d27058 JB |
6489 | /* Don't do this block twice. */ |
6490 | if (b == surrounding_static_block) | |
6491 | continue; | |
6492 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6493 | { | |
f9d67a22 PA |
6494 | if (completion_skip_symbol (mode, sym)) |
6495 | continue; | |
6496 | ||
b5ec771e PA |
6497 | completion_list_add_name (tracker, |
6498 | SYMBOL_LANGUAGE (sym), | |
6499 | SYMBOL_LINKAGE_NAME (sym), | |
1b026119 | 6500 | lookup_name, text, word); |
41d27058 JB |
6501 | } |
6502 | } | |
41d27058 JB |
6503 | } |
6504 | ||
963a6417 | 6505 | /* Field Access */ |
96d887e8 | 6506 | |
73fb9985 JB |
6507 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
6508 | for tagged types. */ | |
6509 | ||
6510 | static int | |
6511 | ada_is_dispatch_table_ptr_type (struct type *type) | |
6512 | { | |
0d5cff50 | 6513 | const char *name; |
73fb9985 JB |
6514 | |
6515 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
6516 | return 0; | |
6517 | ||
6518 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
6519 | if (name == NULL) | |
6520 | return 0; | |
6521 | ||
6522 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
6523 | } | |
6524 | ||
ac4a2da4 JG |
6525 | /* Return non-zero if TYPE is an interface tag. */ |
6526 | ||
6527 | static int | |
6528 | ada_is_interface_tag (struct type *type) | |
6529 | { | |
6530 | const char *name = TYPE_NAME (type); | |
6531 | ||
6532 | if (name == NULL) | |
6533 | return 0; | |
6534 | ||
6535 | return (strcmp (name, "ada__tags__interface_tag") == 0); | |
6536 | } | |
6537 | ||
963a6417 PH |
6538 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
6539 | to be invisible to users. */ | |
96d887e8 | 6540 | |
963a6417 PH |
6541 | int |
6542 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 6543 | { |
963a6417 PH |
6544 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
6545 | return 1; | |
ffde82bf | 6546 | |
73fb9985 JB |
6547 | /* Check the name of that field. */ |
6548 | { | |
6549 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
6550 | ||
6551 | /* Anonymous field names should not be printed. | |
6552 | brobecker/2007-02-20: I don't think this can actually happen | |
6553 | but we don't want to print the value of annonymous fields anyway. */ | |
6554 | if (name == NULL) | |
6555 | return 1; | |
6556 | ||
ffde82bf JB |
6557 | /* Normally, fields whose name start with an underscore ("_") |
6558 | are fields that have been internally generated by the compiler, | |
6559 | and thus should not be printed. The "_parent" field is special, | |
6560 | however: This is a field internally generated by the compiler | |
6561 | for tagged types, and it contains the components inherited from | |
6562 | the parent type. This field should not be printed as is, but | |
6563 | should not be ignored either. */ | |
61012eef | 6564 | if (name[0] == '_' && !startswith (name, "_parent")) |
73fb9985 JB |
6565 | return 1; |
6566 | } | |
6567 | ||
ac4a2da4 JG |
6568 | /* If this is the dispatch table of a tagged type or an interface tag, |
6569 | then ignore. */ | |
73fb9985 | 6570 | if (ada_is_tagged_type (type, 1) |
ac4a2da4 JG |
6571 | && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)) |
6572 | || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num)))) | |
73fb9985 JB |
6573 | return 1; |
6574 | ||
6575 | /* Not a special field, so it should not be ignored. */ | |
6576 | return 0; | |
963a6417 | 6577 | } |
96d887e8 | 6578 | |
963a6417 | 6579 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 6580 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 6581 | |
963a6417 PH |
6582 | int |
6583 | ada_is_tagged_type (struct type *type, int refok) | |
6584 | { | |
988f6b3d | 6585 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL); |
963a6417 | 6586 | } |
96d887e8 | 6587 | |
963a6417 | 6588 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 6589 | |
963a6417 PH |
6590 | int |
6591 | ada_is_tag_type (struct type *type) | |
6592 | { | |
460efde1 JB |
6593 | type = ada_check_typedef (type); |
6594 | ||
963a6417 PH |
6595 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) |
6596 | return 0; | |
6597 | else | |
96d887e8 | 6598 | { |
963a6417 | 6599 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 6600 | |
963a6417 PH |
6601 | return (name != NULL |
6602 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 6603 | } |
96d887e8 PH |
6604 | } |
6605 | ||
963a6417 | 6606 | /* The type of the tag on VAL. */ |
76a01679 | 6607 | |
963a6417 PH |
6608 | struct type * |
6609 | ada_tag_type (struct value *val) | |
96d887e8 | 6610 | { |
988f6b3d | 6611 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0); |
963a6417 | 6612 | } |
96d887e8 | 6613 | |
b50d69b5 JG |
6614 | /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95, |
6615 | retired at Ada 05). */ | |
6616 | ||
6617 | static int | |
6618 | is_ada95_tag (struct value *tag) | |
6619 | { | |
6620 | return ada_value_struct_elt (tag, "tsd", 1) != NULL; | |
6621 | } | |
6622 | ||
963a6417 | 6623 | /* The value of the tag on VAL. */ |
96d887e8 | 6624 | |
963a6417 PH |
6625 | struct value * |
6626 | ada_value_tag (struct value *val) | |
6627 | { | |
03ee6b2e | 6628 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
6629 | } |
6630 | ||
963a6417 PH |
6631 | /* The value of the tag on the object of type TYPE whose contents are |
6632 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 6633 | ADDRESS. */ |
96d887e8 | 6634 | |
963a6417 | 6635 | static struct value * |
10a2c479 | 6636 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 6637 | const gdb_byte *valaddr, |
963a6417 | 6638 | CORE_ADDR address) |
96d887e8 | 6639 | { |
b5385fc0 | 6640 | int tag_byte_offset; |
963a6417 | 6641 | struct type *tag_type; |
5b4ee69b | 6642 | |
963a6417 | 6643 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 6644 | NULL, NULL, NULL)) |
96d887e8 | 6645 | { |
fc1a4b47 | 6646 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
6647 | ? NULL |
6648 | : valaddr + tag_byte_offset); | |
963a6417 | 6649 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 6650 | |
963a6417 | 6651 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 6652 | } |
963a6417 PH |
6653 | return NULL; |
6654 | } | |
96d887e8 | 6655 | |
963a6417 PH |
6656 | static struct type * |
6657 | type_from_tag (struct value *tag) | |
6658 | { | |
6659 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 6660 | |
963a6417 PH |
6661 | if (type_name != NULL) |
6662 | return ada_find_any_type (ada_encode (type_name)); | |
6663 | return NULL; | |
6664 | } | |
96d887e8 | 6665 | |
b50d69b5 JG |
6666 | /* Given a value OBJ of a tagged type, return a value of this |
6667 | type at the base address of the object. The base address, as | |
6668 | defined in Ada.Tags, it is the address of the primary tag of | |
6669 | the object, and therefore where the field values of its full | |
6670 | view can be fetched. */ | |
6671 | ||
6672 | struct value * | |
6673 | ada_tag_value_at_base_address (struct value *obj) | |
6674 | { | |
b50d69b5 JG |
6675 | struct value *val; |
6676 | LONGEST offset_to_top = 0; | |
6677 | struct type *ptr_type, *obj_type; | |
6678 | struct value *tag; | |
6679 | CORE_ADDR base_address; | |
6680 | ||
6681 | obj_type = value_type (obj); | |
6682 | ||
6683 | /* It is the responsability of the caller to deref pointers. */ | |
6684 | ||
6685 | if (TYPE_CODE (obj_type) == TYPE_CODE_PTR | |
6686 | || TYPE_CODE (obj_type) == TYPE_CODE_REF) | |
6687 | return obj; | |
6688 | ||
6689 | tag = ada_value_tag (obj); | |
6690 | if (!tag) | |
6691 | return obj; | |
6692 | ||
6693 | /* Base addresses only appeared with Ada 05 and multiple inheritance. */ | |
6694 | ||
6695 | if (is_ada95_tag (tag)) | |
6696 | return obj; | |
6697 | ||
08f49010 XR |
6698 | ptr_type = language_lookup_primitive_type |
6699 | (language_def (language_ada), target_gdbarch(), "storage_offset"); | |
b50d69b5 JG |
6700 | ptr_type = lookup_pointer_type (ptr_type); |
6701 | val = value_cast (ptr_type, tag); | |
6702 | if (!val) | |
6703 | return obj; | |
6704 | ||
6705 | /* It is perfectly possible that an exception be raised while | |
6706 | trying to determine the base address, just like for the tag; | |
6707 | see ada_tag_name for more details. We do not print the error | |
6708 | message for the same reason. */ | |
6709 | ||
492d29ea | 6710 | TRY |
b50d69b5 JG |
6711 | { |
6712 | offset_to_top = value_as_long (value_ind (value_ptradd (val, -2))); | |
6713 | } | |
6714 | ||
492d29ea PA |
6715 | CATCH (e, RETURN_MASK_ERROR) |
6716 | { | |
6717 | return obj; | |
6718 | } | |
6719 | END_CATCH | |
b50d69b5 JG |
6720 | |
6721 | /* If offset is null, nothing to do. */ | |
6722 | ||
6723 | if (offset_to_top == 0) | |
6724 | return obj; | |
6725 | ||
6726 | /* -1 is a special case in Ada.Tags; however, what should be done | |
6727 | is not quite clear from the documentation. So do nothing for | |
6728 | now. */ | |
6729 | ||
6730 | if (offset_to_top == -1) | |
6731 | return obj; | |
6732 | ||
08f49010 XR |
6733 | /* OFFSET_TO_TOP used to be a positive value to be subtracted |
6734 | from the base address. This was however incompatible with | |
6735 | C++ dispatch table: C++ uses a *negative* value to *add* | |
6736 | to the base address. Ada's convention has therefore been | |
6737 | changed in GNAT 19.0w 20171023: since then, C++ and Ada | |
6738 | use the same convention. Here, we support both cases by | |
6739 | checking the sign of OFFSET_TO_TOP. */ | |
6740 | ||
6741 | if (offset_to_top > 0) | |
6742 | offset_to_top = -offset_to_top; | |
6743 | ||
6744 | base_address = value_address (obj) + offset_to_top; | |
b50d69b5 JG |
6745 | tag = value_tag_from_contents_and_address (obj_type, NULL, base_address); |
6746 | ||
6747 | /* Make sure that we have a proper tag at the new address. | |
6748 | Otherwise, offset_to_top is bogus (which can happen when | |
6749 | the object is not initialized yet). */ | |
6750 | ||
6751 | if (!tag) | |
6752 | return obj; | |
6753 | ||
6754 | obj_type = type_from_tag (tag); | |
6755 | ||
6756 | if (!obj_type) | |
6757 | return obj; | |
6758 | ||
6759 | return value_from_contents_and_address (obj_type, NULL, base_address); | |
6760 | } | |
6761 | ||
1b611343 JB |
6762 | /* Return the "ada__tags__type_specific_data" type. */ |
6763 | ||
6764 | static struct type * | |
6765 | ada_get_tsd_type (struct inferior *inf) | |
963a6417 | 6766 | { |
1b611343 | 6767 | struct ada_inferior_data *data = get_ada_inferior_data (inf); |
4c4b4cd2 | 6768 | |
1b611343 JB |
6769 | if (data->tsd_type == 0) |
6770 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
6771 | return data->tsd_type; | |
6772 | } | |
529cad9c | 6773 | |
1b611343 JB |
6774 | /* Return the TSD (type-specific data) associated to the given TAG. |
6775 | TAG is assumed to be the tag of a tagged-type entity. | |
529cad9c | 6776 | |
1b611343 | 6777 | May return NULL if we are unable to get the TSD. */ |
4c4b4cd2 | 6778 | |
1b611343 JB |
6779 | static struct value * |
6780 | ada_get_tsd_from_tag (struct value *tag) | |
4c4b4cd2 | 6781 | { |
4c4b4cd2 | 6782 | struct value *val; |
1b611343 | 6783 | struct type *type; |
5b4ee69b | 6784 | |
1b611343 JB |
6785 | /* First option: The TSD is simply stored as a field of our TAG. |
6786 | Only older versions of GNAT would use this format, but we have | |
6787 | to test it first, because there are no visible markers for | |
6788 | the current approach except the absence of that field. */ | |
529cad9c | 6789 | |
1b611343 JB |
6790 | val = ada_value_struct_elt (tag, "tsd", 1); |
6791 | if (val) | |
6792 | return val; | |
e802dbe0 | 6793 | |
1b611343 JB |
6794 | /* Try the second representation for the dispatch table (in which |
6795 | there is no explicit 'tsd' field in the referent of the tag pointer, | |
6796 | and instead the tsd pointer is stored just before the dispatch | |
6797 | table. */ | |
e802dbe0 | 6798 | |
1b611343 JB |
6799 | type = ada_get_tsd_type (current_inferior()); |
6800 | if (type == NULL) | |
6801 | return NULL; | |
6802 | type = lookup_pointer_type (lookup_pointer_type (type)); | |
6803 | val = value_cast (type, tag); | |
6804 | if (val == NULL) | |
6805 | return NULL; | |
6806 | return value_ind (value_ptradd (val, -1)); | |
e802dbe0 JB |
6807 | } |
6808 | ||
1b611343 JB |
6809 | /* Given the TSD of a tag (type-specific data), return a string |
6810 | containing the name of the associated type. | |
6811 | ||
6812 | The returned value is good until the next call. May return NULL | |
6813 | if we are unable to determine the tag name. */ | |
6814 | ||
6815 | static char * | |
6816 | ada_tag_name_from_tsd (struct value *tsd) | |
529cad9c | 6817 | { |
529cad9c PH |
6818 | static char name[1024]; |
6819 | char *p; | |
1b611343 | 6820 | struct value *val; |
529cad9c | 6821 | |
1b611343 | 6822 | val = ada_value_struct_elt (tsd, "expanded_name", 1); |
4c4b4cd2 | 6823 | if (val == NULL) |
1b611343 | 6824 | return NULL; |
4c4b4cd2 PH |
6825 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); |
6826 | for (p = name; *p != '\0'; p += 1) | |
6827 | if (isalpha (*p)) | |
6828 | *p = tolower (*p); | |
1b611343 | 6829 | return name; |
4c4b4cd2 PH |
6830 | } |
6831 | ||
6832 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
1b611343 JB |
6833 | a C string. |
6834 | ||
6835 | Return NULL if the TAG is not an Ada tag, or if we were unable to | |
6836 | determine the name of that tag. The result is good until the next | |
6837 | call. */ | |
4c4b4cd2 PH |
6838 | |
6839 | const char * | |
6840 | ada_tag_name (struct value *tag) | |
6841 | { | |
1b611343 | 6842 | char *name = NULL; |
5b4ee69b | 6843 | |
df407dfe | 6844 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 6845 | return NULL; |
1b611343 JB |
6846 | |
6847 | /* It is perfectly possible that an exception be raised while trying | |
6848 | to determine the TAG's name, even under normal circumstances: | |
6849 | The associated variable may be uninitialized or corrupted, for | |
6850 | instance. We do not let any exception propagate past this point. | |
6851 | instead we return NULL. | |
6852 | ||
6853 | We also do not print the error message either (which often is very | |
6854 | low-level (Eg: "Cannot read memory at 0x[...]"), but instead let | |
6855 | the caller print a more meaningful message if necessary. */ | |
492d29ea | 6856 | TRY |
1b611343 JB |
6857 | { |
6858 | struct value *tsd = ada_get_tsd_from_tag (tag); | |
6859 | ||
6860 | if (tsd != NULL) | |
6861 | name = ada_tag_name_from_tsd (tsd); | |
6862 | } | |
492d29ea PA |
6863 | CATCH (e, RETURN_MASK_ERROR) |
6864 | { | |
6865 | } | |
6866 | END_CATCH | |
1b611343 JB |
6867 | |
6868 | return name; | |
4c4b4cd2 PH |
6869 | } |
6870 | ||
6871 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 6872 | |
d2e4a39e | 6873 | struct type * |
ebf56fd3 | 6874 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
6875 | { |
6876 | int i; | |
6877 | ||
61ee279c | 6878 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6879 | |
6880 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
6881 | return NULL; | |
6882 | ||
6883 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6884 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
6885 | { |
6886 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
6887 | ||
6888 | /* If the _parent field is a pointer, then dereference it. */ | |
6889 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
6890 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
6891 | /* If there is a parallel XVS type, get the actual base type. */ | |
6892 | parent_type = ada_get_base_type (parent_type); | |
6893 | ||
6894 | return ada_check_typedef (parent_type); | |
6895 | } | |
14f9c5c9 AS |
6896 | |
6897 | return NULL; | |
6898 | } | |
6899 | ||
4c4b4cd2 PH |
6900 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
6901 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
6902 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6903 | |
6904 | int | |
ebf56fd3 | 6905 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 6906 | { |
61ee279c | 6907 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 6908 | |
4c4b4cd2 | 6909 | return (name != NULL |
61012eef GB |
6910 | && (startswith (name, "PARENT") |
6911 | || startswith (name, "_parent"))); | |
14f9c5c9 AS |
6912 | } |
6913 | ||
4c4b4cd2 | 6914 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 6915 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 6916 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 6917 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 6918 | structures. */ |
14f9c5c9 AS |
6919 | |
6920 | int | |
ebf56fd3 | 6921 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 6922 | { |
d2e4a39e | 6923 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6924 | |
dddc0e16 JB |
6925 | if (name != NULL && strcmp (name, "RETVAL") == 0) |
6926 | { | |
6927 | /* This happens in functions with "out" or "in out" parameters | |
6928 | which are passed by copy. For such functions, GNAT describes | |
6929 | the function's return type as being a struct where the return | |
6930 | value is in a field called RETVAL, and where the other "out" | |
6931 | or "in out" parameters are fields of that struct. This is not | |
6932 | a wrapper. */ | |
6933 | return 0; | |
6934 | } | |
6935 | ||
d2e4a39e | 6936 | return (name != NULL |
61012eef | 6937 | && (startswith (name, "PARENT") |
4c4b4cd2 | 6938 | || strcmp (name, "REP") == 0 |
61012eef | 6939 | || startswith (name, "_parent") |
4c4b4cd2 | 6940 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); |
14f9c5c9 AS |
6941 | } |
6942 | ||
4c4b4cd2 PH |
6943 | /* True iff field number FIELD_NUM of structure or union type TYPE |
6944 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
6945 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6946 | |
6947 | int | |
ebf56fd3 | 6948 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 6949 | { |
d2e4a39e | 6950 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 6951 | |
14f9c5c9 | 6952 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 6953 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
6954 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
6955 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
6956 | } |
6957 | ||
6958 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 6959 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
6960 | returns the type of the controlling discriminant for the variant. |
6961 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 6962 | |
d2e4a39e | 6963 | struct type * |
ebf56fd3 | 6964 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 6965 | { |
a121b7c1 | 6966 | const char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 6967 | |
988f6b3d | 6968 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1); |
14f9c5c9 AS |
6969 | } |
6970 | ||
4c4b4cd2 | 6971 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 6972 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 6973 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
6974 | |
6975 | int | |
ebf56fd3 | 6976 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 6977 | { |
d2e4a39e | 6978 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6979 | |
14f9c5c9 AS |
6980 | return (name != NULL && name[0] == 'O'); |
6981 | } | |
6982 | ||
6983 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
6984 | returns the name of the discriminant controlling the variant. |
6985 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 6986 | |
a121b7c1 | 6987 | const char * |
ebf56fd3 | 6988 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 6989 | { |
d2e4a39e | 6990 | static char *result = NULL; |
14f9c5c9 | 6991 | static size_t result_len = 0; |
d2e4a39e AS |
6992 | struct type *type; |
6993 | const char *name; | |
6994 | const char *discrim_end; | |
6995 | const char *discrim_start; | |
14f9c5c9 AS |
6996 | |
6997 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
6998 | type = TYPE_TARGET_TYPE (type0); | |
6999 | else | |
7000 | type = type0; | |
7001 | ||
7002 | name = ada_type_name (type); | |
7003 | ||
7004 | if (name == NULL || name[0] == '\000') | |
7005 | return ""; | |
7006 | ||
7007 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
7008 | discrim_end -= 1) | |
7009 | { | |
61012eef | 7010 | if (startswith (discrim_end, "___XVN")) |
4c4b4cd2 | 7011 | break; |
14f9c5c9 AS |
7012 | } |
7013 | if (discrim_end == name) | |
7014 | return ""; | |
7015 | ||
d2e4a39e | 7016 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
7017 | discrim_start -= 1) |
7018 | { | |
d2e4a39e | 7019 | if (discrim_start == name + 1) |
4c4b4cd2 | 7020 | return ""; |
76a01679 | 7021 | if ((discrim_start > name + 3 |
61012eef | 7022 | && startswith (discrim_start - 3, "___")) |
4c4b4cd2 PH |
7023 | || discrim_start[-1] == '.') |
7024 | break; | |
14f9c5c9 AS |
7025 | } |
7026 | ||
7027 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
7028 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 7029 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
7030 | return result; |
7031 | } | |
7032 | ||
4c4b4cd2 PH |
7033 | /* Scan STR for a subtype-encoded number, beginning at position K. |
7034 | Put the position of the character just past the number scanned in | |
7035 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
7036 | Return 1 if there was a valid number at the given position, and 0 | |
7037 | otherwise. A "subtype-encoded" number consists of the absolute value | |
7038 | in decimal, followed by the letter 'm' to indicate a negative number. | |
7039 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
7040 | |
7041 | int | |
d2e4a39e | 7042 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
7043 | { |
7044 | ULONGEST RU; | |
7045 | ||
d2e4a39e | 7046 | if (!isdigit (str[k])) |
14f9c5c9 AS |
7047 | return 0; |
7048 | ||
4c4b4cd2 | 7049 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 7050 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 7051 | LONGEST. */ |
14f9c5c9 AS |
7052 | RU = 0; |
7053 | while (isdigit (str[k])) | |
7054 | { | |
d2e4a39e | 7055 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
7056 | k += 1; |
7057 | } | |
7058 | ||
d2e4a39e | 7059 | if (str[k] == 'm') |
14f9c5c9 AS |
7060 | { |
7061 | if (R != NULL) | |
4c4b4cd2 | 7062 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
7063 | k += 1; |
7064 | } | |
7065 | else if (R != NULL) | |
7066 | *R = (LONGEST) RU; | |
7067 | ||
4c4b4cd2 | 7068 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
7069 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
7070 | number representable as a LONGEST (although either would probably work | |
7071 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 7072 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
7073 | |
7074 | if (new_k != NULL) | |
7075 | *new_k = k; | |
7076 | return 1; | |
7077 | } | |
7078 | ||
4c4b4cd2 PH |
7079 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
7080 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
7081 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 7082 | |
d2e4a39e | 7083 | int |
ebf56fd3 | 7084 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 7085 | { |
d2e4a39e | 7086 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
7087 | int p; |
7088 | ||
7089 | p = 0; | |
7090 | while (1) | |
7091 | { | |
d2e4a39e | 7092 | switch (name[p]) |
4c4b4cd2 PH |
7093 | { |
7094 | case '\0': | |
7095 | return 0; | |
7096 | case 'S': | |
7097 | { | |
7098 | LONGEST W; | |
5b4ee69b | 7099 | |
4c4b4cd2 PH |
7100 | if (!ada_scan_number (name, p + 1, &W, &p)) |
7101 | return 0; | |
7102 | if (val == W) | |
7103 | return 1; | |
7104 | break; | |
7105 | } | |
7106 | case 'R': | |
7107 | { | |
7108 | LONGEST L, U; | |
5b4ee69b | 7109 | |
4c4b4cd2 PH |
7110 | if (!ada_scan_number (name, p + 1, &L, &p) |
7111 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
7112 | return 0; | |
7113 | if (val >= L && val <= U) | |
7114 | return 1; | |
7115 | break; | |
7116 | } | |
7117 | case 'O': | |
7118 | return 1; | |
7119 | default: | |
7120 | return 0; | |
7121 | } | |
7122 | } | |
7123 | } | |
7124 | ||
0963b4bd | 7125 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
7126 | |
7127 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
7128 | ARG_TYPE, extract and return the value of one of its (non-static) | |
7129 | fields. FIELDNO says which field. Differs from value_primitive_field | |
7130 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 7131 | |
4c4b4cd2 | 7132 | static struct value * |
d2e4a39e | 7133 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 7134 | struct type *arg_type) |
14f9c5c9 | 7135 | { |
14f9c5c9 AS |
7136 | struct type *type; |
7137 | ||
61ee279c | 7138 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
7139 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
7140 | ||
4c4b4cd2 | 7141 | /* Handle packed fields. */ |
14f9c5c9 AS |
7142 | |
7143 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
7144 | { | |
7145 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
7146 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 7147 | |
0fd88904 | 7148 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
7149 | offset + bit_pos / 8, |
7150 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
7151 | } |
7152 | else | |
7153 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
7154 | } | |
7155 | ||
52ce6436 PH |
7156 | /* Find field with name NAME in object of type TYPE. If found, |
7157 | set the following for each argument that is non-null: | |
7158 | - *FIELD_TYPE_P to the field's type; | |
7159 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
7160 | an object of that type; | |
7161 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
7162 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
7163 | 0 otherwise; | |
7164 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
7165 | fields up to but not including the desired field, or by the total | |
7166 | number of fields if not found. A NULL value of NAME never | |
7167 | matches; the function just counts visible fields in this case. | |
7168 | ||
828d5846 XR |
7169 | Notice that we need to handle when a tagged record hierarchy |
7170 | has some components with the same name, like in this scenario: | |
7171 | ||
7172 | type Top_T is tagged record | |
7173 | N : Integer := 1; | |
7174 | U : Integer := 974; | |
7175 | A : Integer := 48; | |
7176 | end record; | |
7177 | ||
7178 | type Middle_T is new Top.Top_T with record | |
7179 | N : Character := 'a'; | |
7180 | C : Integer := 3; | |
7181 | end record; | |
7182 | ||
7183 | type Bottom_T is new Middle.Middle_T with record | |
7184 | N : Float := 4.0; | |
7185 | C : Character := '5'; | |
7186 | X : Integer := 6; | |
7187 | A : Character := 'J'; | |
7188 | end record; | |
7189 | ||
7190 | Let's say we now have a variable declared and initialized as follow: | |
7191 | ||
7192 | TC : Top_A := new Bottom_T; | |
7193 | ||
7194 | And then we use this variable to call this function | |
7195 | ||
7196 | procedure Assign (Obj: in out Top_T; TV : Integer); | |
7197 | ||
7198 | as follow: | |
7199 | ||
7200 | Assign (Top_T (B), 12); | |
7201 | ||
7202 | Now, we're in the debugger, and we're inside that procedure | |
7203 | then and we want to print the value of obj.c: | |
7204 | ||
7205 | Usually, the tagged record or one of the parent type owns the | |
7206 | component to print and there's no issue but in this particular | |
7207 | case, what does it mean to ask for Obj.C? Since the actual | |
7208 | type for object is type Bottom_T, it could mean two things: type | |
7209 | component C from the Middle_T view, but also component C from | |
7210 | Bottom_T. So in that "undefined" case, when the component is | |
7211 | not found in the non-resolved type (which includes all the | |
7212 | components of the parent type), then resolve it and see if we | |
7213 | get better luck once expanded. | |
7214 | ||
7215 | In the case of homonyms in the derived tagged type, we don't | |
7216 | guaranty anything, and pick the one that's easiest for us | |
7217 | to program. | |
7218 | ||
0963b4bd | 7219 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 7220 | |
4c4b4cd2 | 7221 | static int |
0d5cff50 | 7222 | find_struct_field (const char *name, struct type *type, int offset, |
76a01679 | 7223 | struct type **field_type_p, |
52ce6436 PH |
7224 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
7225 | int *index_p) | |
4c4b4cd2 PH |
7226 | { |
7227 | int i; | |
828d5846 | 7228 | int parent_offset = -1; |
4c4b4cd2 | 7229 | |
61ee279c | 7230 | type = ada_check_typedef (type); |
76a01679 | 7231 | |
52ce6436 PH |
7232 | if (field_type_p != NULL) |
7233 | *field_type_p = NULL; | |
7234 | if (byte_offset_p != NULL) | |
d5d6fca5 | 7235 | *byte_offset_p = 0; |
52ce6436 PH |
7236 | if (bit_offset_p != NULL) |
7237 | *bit_offset_p = 0; | |
7238 | if (bit_size_p != NULL) | |
7239 | *bit_size_p = 0; | |
7240 | ||
7241 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
7242 | { |
7243 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
7244 | int fld_offset = offset + bit_pos / 8; | |
0d5cff50 | 7245 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
76a01679 | 7246 | |
4c4b4cd2 PH |
7247 | if (t_field_name == NULL) |
7248 | continue; | |
7249 | ||
828d5846 XR |
7250 | else if (ada_is_parent_field (type, i)) |
7251 | { | |
7252 | /* This is a field pointing us to the parent type of a tagged | |
7253 | type. As hinted in this function's documentation, we give | |
7254 | preference to fields in the current record first, so what | |
7255 | we do here is just record the index of this field before | |
7256 | we skip it. If it turns out we couldn't find our field | |
7257 | in the current record, then we'll get back to it and search | |
7258 | inside it whether the field might exist in the parent. */ | |
7259 | ||
7260 | parent_offset = i; | |
7261 | continue; | |
7262 | } | |
7263 | ||
52ce6436 | 7264 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
7265 | { |
7266 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 7267 | |
52ce6436 PH |
7268 | if (field_type_p != NULL) |
7269 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
7270 | if (byte_offset_p != NULL) | |
7271 | *byte_offset_p = fld_offset; | |
7272 | if (bit_offset_p != NULL) | |
7273 | *bit_offset_p = bit_pos % 8; | |
7274 | if (bit_size_p != NULL) | |
7275 | *bit_size_p = bit_size; | |
76a01679 JB |
7276 | return 1; |
7277 | } | |
4c4b4cd2 PH |
7278 | else if (ada_is_wrapper_field (type, i)) |
7279 | { | |
52ce6436 PH |
7280 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
7281 | field_type_p, byte_offset_p, bit_offset_p, | |
7282 | bit_size_p, index_p)) | |
76a01679 JB |
7283 | return 1; |
7284 | } | |
4c4b4cd2 PH |
7285 | else if (ada_is_variant_part (type, i)) |
7286 | { | |
52ce6436 PH |
7287 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
7288 | fixed type?? */ | |
4c4b4cd2 | 7289 | int j; |
52ce6436 PH |
7290 | struct type *field_type |
7291 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 7292 | |
52ce6436 | 7293 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 7294 | { |
76a01679 JB |
7295 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
7296 | fld_offset | |
7297 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
7298 | field_type_p, byte_offset_p, | |
52ce6436 | 7299 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 7300 | return 1; |
4c4b4cd2 PH |
7301 | } |
7302 | } | |
52ce6436 PH |
7303 | else if (index_p != NULL) |
7304 | *index_p += 1; | |
4c4b4cd2 | 7305 | } |
828d5846 XR |
7306 | |
7307 | /* Field not found so far. If this is a tagged type which | |
7308 | has a parent, try finding that field in the parent now. */ | |
7309 | ||
7310 | if (parent_offset != -1) | |
7311 | { | |
7312 | int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset); | |
7313 | int fld_offset = offset + bit_pos / 8; | |
7314 | ||
7315 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset), | |
7316 | fld_offset, field_type_p, byte_offset_p, | |
7317 | bit_offset_p, bit_size_p, index_p)) | |
7318 | return 1; | |
7319 | } | |
7320 | ||
4c4b4cd2 PH |
7321 | return 0; |
7322 | } | |
7323 | ||
0963b4bd | 7324 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 7325 | |
52ce6436 PH |
7326 | static int |
7327 | num_visible_fields (struct type *type) | |
7328 | { | |
7329 | int n; | |
5b4ee69b | 7330 | |
52ce6436 PH |
7331 | n = 0; |
7332 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
7333 | return n; | |
7334 | } | |
14f9c5c9 | 7335 | |
4c4b4cd2 | 7336 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
7337 | and search in it assuming it has (class) type TYPE. |
7338 | If found, return value, else return NULL. | |
7339 | ||
828d5846 XR |
7340 | Searches recursively through wrapper fields (e.g., '_parent'). |
7341 | ||
7342 | In the case of homonyms in the tagged types, please refer to the | |
7343 | long explanation in find_struct_field's function documentation. */ | |
14f9c5c9 | 7344 | |
4c4b4cd2 | 7345 | static struct value * |
108d56a4 | 7346 | ada_search_struct_field (const char *name, struct value *arg, int offset, |
4c4b4cd2 | 7347 | struct type *type) |
14f9c5c9 AS |
7348 | { |
7349 | int i; | |
828d5846 | 7350 | int parent_offset = -1; |
14f9c5c9 | 7351 | |
5b4ee69b | 7352 | type = ada_check_typedef (type); |
52ce6436 | 7353 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 | 7354 | { |
0d5cff50 | 7355 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
7356 | |
7357 | if (t_field_name == NULL) | |
4c4b4cd2 | 7358 | continue; |
14f9c5c9 | 7359 | |
828d5846 XR |
7360 | else if (ada_is_parent_field (type, i)) |
7361 | { | |
7362 | /* This is a field pointing us to the parent type of a tagged | |
7363 | type. As hinted in this function's documentation, we give | |
7364 | preference to fields in the current record first, so what | |
7365 | we do here is just record the index of this field before | |
7366 | we skip it. If it turns out we couldn't find our field | |
7367 | in the current record, then we'll get back to it and search | |
7368 | inside it whether the field might exist in the parent. */ | |
7369 | ||
7370 | parent_offset = i; | |
7371 | continue; | |
7372 | } | |
7373 | ||
14f9c5c9 | 7374 | else if (field_name_match (t_field_name, name)) |
4c4b4cd2 | 7375 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
7376 | |
7377 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 7378 | { |
0963b4bd | 7379 | struct value *v = /* Do not let indent join lines here. */ |
06d5cf63 JB |
7380 | ada_search_struct_field (name, arg, |
7381 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7382 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7383 | |
4c4b4cd2 PH |
7384 | if (v != NULL) |
7385 | return v; | |
7386 | } | |
14f9c5c9 AS |
7387 | |
7388 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 7389 | { |
0963b4bd | 7390 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 7391 | int j; |
5b4ee69b MS |
7392 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7393 | i)); | |
4c4b4cd2 PH |
7394 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
7395 | ||
52ce6436 | 7396 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 7397 | { |
0963b4bd MS |
7398 | struct value *v = ada_search_struct_field /* Force line |
7399 | break. */ | |
06d5cf63 JB |
7400 | (name, arg, |
7401 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
7402 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 7403 | |
4c4b4cd2 PH |
7404 | if (v != NULL) |
7405 | return v; | |
7406 | } | |
7407 | } | |
14f9c5c9 | 7408 | } |
828d5846 XR |
7409 | |
7410 | /* Field not found so far. If this is a tagged type which | |
7411 | has a parent, try finding that field in the parent now. */ | |
7412 | ||
7413 | if (parent_offset != -1) | |
7414 | { | |
7415 | struct value *v = ada_search_struct_field ( | |
7416 | name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8, | |
7417 | TYPE_FIELD_TYPE (type, parent_offset)); | |
7418 | ||
7419 | if (v != NULL) | |
7420 | return v; | |
7421 | } | |
7422 | ||
14f9c5c9 AS |
7423 | return NULL; |
7424 | } | |
d2e4a39e | 7425 | |
52ce6436 PH |
7426 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
7427 | int, struct type *); | |
7428 | ||
7429 | ||
7430 | /* Return field #INDEX in ARG, where the index is that returned by | |
7431 | * find_struct_field through its INDEX_P argument. Adjust the address | |
7432 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 7433 | * If found, return value, else return NULL. */ |
52ce6436 PH |
7434 | |
7435 | static struct value * | |
7436 | ada_index_struct_field (int index, struct value *arg, int offset, | |
7437 | struct type *type) | |
7438 | { | |
7439 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
7440 | } | |
7441 | ||
7442 | ||
7443 | /* Auxiliary function for ada_index_struct_field. Like | |
7444 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 7445 | * *INDEX_P. */ |
52ce6436 PH |
7446 | |
7447 | static struct value * | |
7448 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
7449 | struct type *type) | |
7450 | { | |
7451 | int i; | |
7452 | type = ada_check_typedef (type); | |
7453 | ||
7454 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7455 | { | |
7456 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
7457 | continue; | |
7458 | else if (ada_is_wrapper_field (type, i)) | |
7459 | { | |
0963b4bd | 7460 | struct value *v = /* Do not let indent join lines here. */ |
52ce6436 PH |
7461 | ada_index_struct_field_1 (index_p, arg, |
7462 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7463 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7464 | |
52ce6436 PH |
7465 | if (v != NULL) |
7466 | return v; | |
7467 | } | |
7468 | ||
7469 | else if (ada_is_variant_part (type, i)) | |
7470 | { | |
7471 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
0963b4bd | 7472 | find_struct_field. */ |
52ce6436 PH |
7473 | error (_("Cannot assign this kind of variant record")); |
7474 | } | |
7475 | else if (*index_p == 0) | |
7476 | return ada_value_primitive_field (arg, offset, i, type); | |
7477 | else | |
7478 | *index_p -= 1; | |
7479 | } | |
7480 | return NULL; | |
7481 | } | |
7482 | ||
4c4b4cd2 PH |
7483 | /* Given ARG, a value of type (pointer or reference to a)* |
7484 | structure/union, extract the component named NAME from the ultimate | |
7485 | target structure/union and return it as a value with its | |
f5938064 | 7486 | appropriate type. |
14f9c5c9 | 7487 | |
4c4b4cd2 PH |
7488 | The routine searches for NAME among all members of the structure itself |
7489 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
7490 | (e.g., '_parent'). |
7491 | ||
03ee6b2e PH |
7492 | If NO_ERR, then simply return NULL in case of error, rather than |
7493 | calling error. */ | |
14f9c5c9 | 7494 | |
d2e4a39e | 7495 | struct value * |
a121b7c1 | 7496 | ada_value_struct_elt (struct value *arg, const char *name, int no_err) |
14f9c5c9 | 7497 | { |
4c4b4cd2 | 7498 | struct type *t, *t1; |
d2e4a39e | 7499 | struct value *v; |
1f5d1570 | 7500 | int check_tag; |
14f9c5c9 | 7501 | |
4c4b4cd2 | 7502 | v = NULL; |
df407dfe | 7503 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
7504 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
7505 | { | |
7506 | t1 = TYPE_TARGET_TYPE (t); | |
7507 | if (t1 == NULL) | |
03ee6b2e | 7508 | goto BadValue; |
61ee279c | 7509 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 7510 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 7511 | { |
994b9211 | 7512 | arg = coerce_ref (arg); |
76a01679 JB |
7513 | t = t1; |
7514 | } | |
4c4b4cd2 | 7515 | } |
14f9c5c9 | 7516 | |
4c4b4cd2 PH |
7517 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
7518 | { | |
7519 | t1 = TYPE_TARGET_TYPE (t); | |
7520 | if (t1 == NULL) | |
03ee6b2e | 7521 | goto BadValue; |
61ee279c | 7522 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 7523 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
7524 | { |
7525 | arg = value_ind (arg); | |
7526 | t = t1; | |
7527 | } | |
4c4b4cd2 | 7528 | else |
76a01679 | 7529 | break; |
4c4b4cd2 | 7530 | } |
14f9c5c9 | 7531 | |
4c4b4cd2 | 7532 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 7533 | goto BadValue; |
14f9c5c9 | 7534 | |
4c4b4cd2 PH |
7535 | if (t1 == t) |
7536 | v = ada_search_struct_field (name, arg, 0, t); | |
7537 | else | |
7538 | { | |
7539 | int bit_offset, bit_size, byte_offset; | |
7540 | struct type *field_type; | |
7541 | CORE_ADDR address; | |
7542 | ||
76a01679 | 7543 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
b50d69b5 | 7544 | address = value_address (ada_value_ind (arg)); |
4c4b4cd2 | 7545 | else |
b50d69b5 | 7546 | address = value_address (ada_coerce_ref (arg)); |
14f9c5c9 | 7547 | |
828d5846 XR |
7548 | /* Check to see if this is a tagged type. We also need to handle |
7549 | the case where the type is a reference to a tagged type, but | |
7550 | we have to be careful to exclude pointers to tagged types. | |
7551 | The latter should be shown as usual (as a pointer), whereas | |
7552 | a reference should mostly be transparent to the user. */ | |
7553 | ||
7554 | if (ada_is_tagged_type (t1, 0) | |
7555 | || (TYPE_CODE (t1) == TYPE_CODE_REF | |
7556 | && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0))) | |
7557 | { | |
7558 | /* We first try to find the searched field in the current type. | |
7559 | If not found then let's look in the fixed type. */ | |
7560 | ||
7561 | if (!find_struct_field (name, t1, 0, | |
7562 | &field_type, &byte_offset, &bit_offset, | |
7563 | &bit_size, NULL)) | |
1f5d1570 JG |
7564 | check_tag = 1; |
7565 | else | |
7566 | check_tag = 0; | |
828d5846 XR |
7567 | } |
7568 | else | |
1f5d1570 JG |
7569 | check_tag = 0; |
7570 | ||
7571 | /* Convert to fixed type in all cases, so that we have proper | |
7572 | offsets to each field in unconstrained record types. */ | |
7573 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, | |
7574 | address, NULL, check_tag); | |
828d5846 | 7575 | |
76a01679 JB |
7576 | if (find_struct_field (name, t1, 0, |
7577 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 7578 | &bit_size, NULL)) |
76a01679 JB |
7579 | { |
7580 | if (bit_size != 0) | |
7581 | { | |
714e53ab PH |
7582 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
7583 | arg = ada_coerce_ref (arg); | |
7584 | else | |
7585 | arg = ada_value_ind (arg); | |
76a01679 JB |
7586 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
7587 | bit_offset, bit_size, | |
7588 | field_type); | |
7589 | } | |
7590 | else | |
f5938064 | 7591 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
7592 | } |
7593 | } | |
7594 | ||
03ee6b2e PH |
7595 | if (v != NULL || no_err) |
7596 | return v; | |
7597 | else | |
323e0a4a | 7598 | error (_("There is no member named %s."), name); |
14f9c5c9 | 7599 | |
03ee6b2e PH |
7600 | BadValue: |
7601 | if (no_err) | |
7602 | return NULL; | |
7603 | else | |
0963b4bd MS |
7604 | error (_("Attempt to extract a component of " |
7605 | "a value that is not a record.")); | |
14f9c5c9 AS |
7606 | } |
7607 | ||
3b4de39c | 7608 | /* Return a string representation of type TYPE. */ |
99bbb428 | 7609 | |
3b4de39c | 7610 | static std::string |
99bbb428 PA |
7611 | type_as_string (struct type *type) |
7612 | { | |
d7e74731 | 7613 | string_file tmp_stream; |
99bbb428 | 7614 | |
d7e74731 | 7615 | type_print (type, "", &tmp_stream, -1); |
99bbb428 | 7616 | |
d7e74731 | 7617 | return std::move (tmp_stream.string ()); |
99bbb428 PA |
7618 | } |
7619 | ||
14f9c5c9 | 7620 | /* Given a type TYPE, look up the type of the component of type named NAME. |
4c4b4cd2 PH |
7621 | If DISPP is non-null, add its byte displacement from the beginning of a |
7622 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
7623 | work for packed fields). |
7624 | ||
7625 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 7626 | followed by "___". |
14f9c5c9 | 7627 | |
0963b4bd | 7628 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
7629 | be a (pointer or reference)+ to a struct or union, and the |
7630 | ultimate target type will be searched. | |
14f9c5c9 AS |
7631 | |
7632 | Looks recursively into variant clauses and parent types. | |
7633 | ||
828d5846 XR |
7634 | In the case of homonyms in the tagged types, please refer to the |
7635 | long explanation in find_struct_field's function documentation. | |
7636 | ||
4c4b4cd2 PH |
7637 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
7638 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 7639 | |
4c4b4cd2 | 7640 | static struct type * |
a121b7c1 | 7641 | ada_lookup_struct_elt_type (struct type *type, const char *name, int refok, |
988f6b3d | 7642 | int noerr) |
14f9c5c9 AS |
7643 | { |
7644 | int i; | |
828d5846 | 7645 | int parent_offset = -1; |
14f9c5c9 AS |
7646 | |
7647 | if (name == NULL) | |
7648 | goto BadName; | |
7649 | ||
76a01679 | 7650 | if (refok && type != NULL) |
4c4b4cd2 PH |
7651 | while (1) |
7652 | { | |
61ee279c | 7653 | type = ada_check_typedef (type); |
76a01679 JB |
7654 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
7655 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
7656 | break; | |
7657 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 7658 | } |
14f9c5c9 | 7659 | |
76a01679 | 7660 | if (type == NULL |
1265e4aa JB |
7661 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
7662 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 7663 | { |
4c4b4cd2 | 7664 | if (noerr) |
76a01679 | 7665 | return NULL; |
99bbb428 | 7666 | |
3b4de39c PA |
7667 | error (_("Type %s is not a structure or union type"), |
7668 | type != NULL ? type_as_string (type).c_str () : _("(null)")); | |
14f9c5c9 AS |
7669 | } |
7670 | ||
7671 | type = to_static_fixed_type (type); | |
7672 | ||
7673 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7674 | { | |
0d5cff50 | 7675 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 | 7676 | struct type *t; |
d2e4a39e | 7677 | |
14f9c5c9 | 7678 | if (t_field_name == NULL) |
4c4b4cd2 | 7679 | continue; |
14f9c5c9 | 7680 | |
828d5846 XR |
7681 | else if (ada_is_parent_field (type, i)) |
7682 | { | |
7683 | /* This is a field pointing us to the parent type of a tagged | |
7684 | type. As hinted in this function's documentation, we give | |
7685 | preference to fields in the current record first, so what | |
7686 | we do here is just record the index of this field before | |
7687 | we skip it. If it turns out we couldn't find our field | |
7688 | in the current record, then we'll get back to it and search | |
7689 | inside it whether the field might exist in the parent. */ | |
7690 | ||
7691 | parent_offset = i; | |
7692 | continue; | |
7693 | } | |
7694 | ||
14f9c5c9 | 7695 | else if (field_name_match (t_field_name, name)) |
988f6b3d | 7696 | return TYPE_FIELD_TYPE (type, i); |
14f9c5c9 AS |
7697 | |
7698 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 7699 | { |
4c4b4cd2 | 7700 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, |
988f6b3d | 7701 | 0, 1); |
4c4b4cd2 | 7702 | if (t != NULL) |
988f6b3d | 7703 | return t; |
4c4b4cd2 | 7704 | } |
14f9c5c9 AS |
7705 | |
7706 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
7707 | { |
7708 | int j; | |
5b4ee69b MS |
7709 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7710 | i)); | |
4c4b4cd2 PH |
7711 | |
7712 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
7713 | { | |
b1f33ddd JB |
7714 | /* FIXME pnh 2008/01/26: We check for a field that is |
7715 | NOT wrapped in a struct, since the compiler sometimes | |
7716 | generates these for unchecked variant types. Revisit | |
0963b4bd | 7717 | if the compiler changes this practice. */ |
0d5cff50 | 7718 | const char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
988f6b3d | 7719 | |
b1f33ddd JB |
7720 | if (v_field_name != NULL |
7721 | && field_name_match (v_field_name, name)) | |
460efde1 | 7722 | t = TYPE_FIELD_TYPE (field_type, j); |
b1f33ddd | 7723 | else |
0963b4bd MS |
7724 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, |
7725 | j), | |
988f6b3d | 7726 | name, 0, 1); |
b1f33ddd | 7727 | |
4c4b4cd2 | 7728 | if (t != NULL) |
988f6b3d | 7729 | return t; |
4c4b4cd2 PH |
7730 | } |
7731 | } | |
14f9c5c9 AS |
7732 | |
7733 | } | |
7734 | ||
828d5846 XR |
7735 | /* Field not found so far. If this is a tagged type which |
7736 | has a parent, try finding that field in the parent now. */ | |
7737 | ||
7738 | if (parent_offset != -1) | |
7739 | { | |
7740 | struct type *t; | |
7741 | ||
7742 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset), | |
7743 | name, 0, 1); | |
7744 | if (t != NULL) | |
7745 | return t; | |
7746 | } | |
7747 | ||
14f9c5c9 | 7748 | BadName: |
d2e4a39e | 7749 | if (!noerr) |
14f9c5c9 | 7750 | { |
2b2798cc | 7751 | const char *name_str = name != NULL ? name : _("<null>"); |
99bbb428 PA |
7752 | |
7753 | error (_("Type %s has no component named %s"), | |
3b4de39c | 7754 | type_as_string (type).c_str (), name_str); |
14f9c5c9 AS |
7755 | } |
7756 | ||
7757 | return NULL; | |
7758 | } | |
7759 | ||
b1f33ddd JB |
7760 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7761 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
7762 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 7763 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
7764 | |
7765 | static int | |
7766 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
7767 | { | |
a121b7c1 | 7768 | const char *discrim_name = ada_variant_discrim_name (var_type); |
5b4ee69b | 7769 | |
988f6b3d | 7770 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL); |
b1f33ddd JB |
7771 | } |
7772 | ||
7773 | ||
14f9c5c9 AS |
7774 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7775 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
7776 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
7777 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 7778 | |
d2e4a39e | 7779 | int |
ebf56fd3 | 7780 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 7781 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
7782 | { |
7783 | int others_clause; | |
7784 | int i; | |
a121b7c1 | 7785 | const char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
7786 | struct value *outer; |
7787 | struct value *discrim; | |
14f9c5c9 AS |
7788 | LONGEST discrim_val; |
7789 | ||
012370f6 TT |
7790 | /* Using plain value_from_contents_and_address here causes problems |
7791 | because we will end up trying to resolve a type that is currently | |
7792 | being constructed. */ | |
7793 | outer = value_from_contents_and_address_unresolved (outer_type, | |
7794 | outer_valaddr, 0); | |
0c281816 JB |
7795 | discrim = ada_value_struct_elt (outer, discrim_name, 1); |
7796 | if (discrim == NULL) | |
14f9c5c9 | 7797 | return -1; |
0c281816 | 7798 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
7799 | |
7800 | others_clause = -1; | |
7801 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
7802 | { | |
7803 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 7804 | others_clause = i; |
14f9c5c9 | 7805 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 7806 | return i; |
14f9c5c9 AS |
7807 | } |
7808 | ||
7809 | return others_clause; | |
7810 | } | |
d2e4a39e | 7811 | \f |
14f9c5c9 AS |
7812 | |
7813 | ||
4c4b4cd2 | 7814 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
7815 | |
7816 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
7817 | (i.e., a size that is not statically recorded in the debugging | |
7818 | data) does not accurately reflect the size or layout of the value. | |
7819 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 7820 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
7821 | |
7822 | /* There is a subtle and tricky problem here. In general, we cannot | |
7823 | determine the size of dynamic records without its data. However, | |
7824 | the 'struct value' data structure, which GDB uses to represent | |
7825 | quantities in the inferior process (the target), requires the size | |
7826 | of the type at the time of its allocation in order to reserve space | |
7827 | for GDB's internal copy of the data. That's why the | |
7828 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 7829 | rather than struct value*s. |
14f9c5c9 AS |
7830 | |
7831 | However, GDB's internal history variables ($1, $2, etc.) are | |
7832 | struct value*s containing internal copies of the data that are not, in | |
7833 | general, the same as the data at their corresponding addresses in | |
7834 | the target. Fortunately, the types we give to these values are all | |
7835 | conventional, fixed-size types (as per the strategy described | |
7836 | above), so that we don't usually have to perform the | |
7837 | 'to_fixed_xxx_type' conversions to look at their values. | |
7838 | Unfortunately, there is one exception: if one of the internal | |
7839 | history variables is an array whose elements are unconstrained | |
7840 | records, then we will need to create distinct fixed types for each | |
7841 | element selected. */ | |
7842 | ||
7843 | /* The upshot of all of this is that many routines take a (type, host | |
7844 | address, target address) triple as arguments to represent a value. | |
7845 | The host address, if non-null, is supposed to contain an internal | |
7846 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 7847 | target at the target address. */ |
14f9c5c9 AS |
7848 | |
7849 | /* Assuming that VAL0 represents a pointer value, the result of | |
7850 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 7851 | dynamic-sized types. */ |
14f9c5c9 | 7852 | |
d2e4a39e AS |
7853 | struct value * |
7854 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 7855 | { |
c48db5ca | 7856 | struct value *val = value_ind (val0); |
5b4ee69b | 7857 | |
b50d69b5 JG |
7858 | if (ada_is_tagged_type (value_type (val), 0)) |
7859 | val = ada_tag_value_at_base_address (val); | |
7860 | ||
4c4b4cd2 | 7861 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
7862 | } |
7863 | ||
7864 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
7865 | qualifiers on VAL0. */ |
7866 | ||
d2e4a39e AS |
7867 | static struct value * |
7868 | ada_coerce_ref (struct value *val0) | |
7869 | { | |
df407dfe | 7870 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
7871 | { |
7872 | struct value *val = val0; | |
5b4ee69b | 7873 | |
994b9211 | 7874 | val = coerce_ref (val); |
b50d69b5 JG |
7875 | |
7876 | if (ada_is_tagged_type (value_type (val), 0)) | |
7877 | val = ada_tag_value_at_base_address (val); | |
7878 | ||
4c4b4cd2 | 7879 | return ada_to_fixed_value (val); |
d2e4a39e AS |
7880 | } |
7881 | else | |
14f9c5c9 AS |
7882 | return val0; |
7883 | } | |
7884 | ||
7885 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 7886 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
7887 | |
7888 | static unsigned int | |
ebf56fd3 | 7889 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
7890 | { |
7891 | return (off + alignment - 1) & ~(alignment - 1); | |
7892 | } | |
7893 | ||
4c4b4cd2 | 7894 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
7895 | |
7896 | static unsigned int | |
ebf56fd3 | 7897 | field_alignment (struct type *type, int f) |
14f9c5c9 | 7898 | { |
d2e4a39e | 7899 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 7900 | int len; |
14f9c5c9 AS |
7901 | int align_offset; |
7902 | ||
64a1bf19 JB |
7903 | /* The field name should never be null, unless the debugging information |
7904 | is somehow malformed. In this case, we assume the field does not | |
7905 | require any alignment. */ | |
7906 | if (name == NULL) | |
7907 | return 1; | |
7908 | ||
7909 | len = strlen (name); | |
7910 | ||
4c4b4cd2 PH |
7911 | if (!isdigit (name[len - 1])) |
7912 | return 1; | |
14f9c5c9 | 7913 | |
d2e4a39e | 7914 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
7915 | align_offset = len - 2; |
7916 | else | |
7917 | align_offset = len - 1; | |
7918 | ||
61012eef | 7919 | if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV")) |
14f9c5c9 AS |
7920 | return TARGET_CHAR_BIT; |
7921 | ||
4c4b4cd2 PH |
7922 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
7923 | } | |
7924 | ||
852dff6c | 7925 | /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */ |
4c4b4cd2 | 7926 | |
852dff6c JB |
7927 | static struct symbol * |
7928 | ada_find_any_type_symbol (const char *name) | |
4c4b4cd2 PH |
7929 | { |
7930 | struct symbol *sym; | |
7931 | ||
7932 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
4186eb54 | 7933 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) |
4c4b4cd2 PH |
7934 | return sym; |
7935 | ||
4186eb54 KS |
7936 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); |
7937 | return sym; | |
14f9c5c9 AS |
7938 | } |
7939 | ||
dddfab26 UW |
7940 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
7941 | solely for types defined by debug info, it will not search the GDB | |
7942 | primitive types. */ | |
4c4b4cd2 | 7943 | |
852dff6c | 7944 | static struct type * |
ebf56fd3 | 7945 | ada_find_any_type (const char *name) |
14f9c5c9 | 7946 | { |
852dff6c | 7947 | struct symbol *sym = ada_find_any_type_symbol (name); |
14f9c5c9 | 7948 | |
14f9c5c9 | 7949 | if (sym != NULL) |
dddfab26 | 7950 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 7951 | |
dddfab26 | 7952 | return NULL; |
14f9c5c9 AS |
7953 | } |
7954 | ||
739593e0 JB |
7955 | /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol |
7956 | associated with NAME_SYM's name. NAME_SYM may itself be a renaming | |
7957 | symbol, in which case it is returned. Otherwise, this looks for | |
7958 | symbols whose name is that of NAME_SYM suffixed with "___XR". | |
7959 | Return symbol if found, and NULL otherwise. */ | |
4c4b4cd2 PH |
7960 | |
7961 | struct symbol * | |
270140bd | 7962 | ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block) |
aeb5907d | 7963 | { |
739593e0 | 7964 | const char *name = SYMBOL_LINKAGE_NAME (name_sym); |
aeb5907d JB |
7965 | struct symbol *sym; |
7966 | ||
739593e0 JB |
7967 | if (strstr (name, "___XR") != NULL) |
7968 | return name_sym; | |
7969 | ||
aeb5907d JB |
7970 | sym = find_old_style_renaming_symbol (name, block); |
7971 | ||
7972 | if (sym != NULL) | |
7973 | return sym; | |
7974 | ||
0963b4bd | 7975 | /* Not right yet. FIXME pnh 7/20/2007. */ |
852dff6c | 7976 | sym = ada_find_any_type_symbol (name); |
aeb5907d JB |
7977 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) |
7978 | return sym; | |
7979 | else | |
7980 | return NULL; | |
7981 | } | |
7982 | ||
7983 | static struct symbol * | |
270140bd | 7984 | find_old_style_renaming_symbol (const char *name, const struct block *block) |
4c4b4cd2 | 7985 | { |
7f0df278 | 7986 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
7987 | char *rename; |
7988 | ||
7989 | if (function_sym != NULL) | |
7990 | { | |
7991 | /* If the symbol is defined inside a function, NAME is not fully | |
7992 | qualified. This means we need to prepend the function name | |
7993 | as well as adding the ``___XR'' suffix to build the name of | |
7994 | the associated renaming symbol. */ | |
0d5cff50 | 7995 | const char *function_name = SYMBOL_LINKAGE_NAME (function_sym); |
529cad9c PH |
7996 | /* Function names sometimes contain suffixes used |
7997 | for instance to qualify nested subprograms. When building | |
7998 | the XR type name, we need to make sure that this suffix is | |
7999 | not included. So do not include any suffix in the function | |
8000 | name length below. */ | |
69fadcdf | 8001 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
8002 | const int rename_len = function_name_len + 2 /* "__" */ |
8003 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 8004 | |
529cad9c | 8005 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
8006 | ada_remove_trailing_digits (function_name, &function_name_len); |
8007 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
8008 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 8009 | |
4c4b4cd2 PH |
8010 | /* Library-level functions are a special case, as GNAT adds |
8011 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 8012 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
8013 | have this prefix, so we need to skip this prefix if present. */ |
8014 | if (function_name_len > 5 /* "_ada_" */ | |
8015 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
8016 | { |
8017 | function_name += 5; | |
8018 | function_name_len -= 5; | |
8019 | } | |
4c4b4cd2 PH |
8020 | |
8021 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
8022 | strncpy (rename, function_name, function_name_len); |
8023 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
8024 | "__%s___XR", name); | |
4c4b4cd2 PH |
8025 | } |
8026 | else | |
8027 | { | |
8028 | const int rename_len = strlen (name) + 6; | |
5b4ee69b | 8029 | |
4c4b4cd2 | 8030 | rename = (char *) alloca (rename_len * sizeof (char)); |
88c15c34 | 8031 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
8032 | } |
8033 | ||
852dff6c | 8034 | return ada_find_any_type_symbol (rename); |
4c4b4cd2 PH |
8035 | } |
8036 | ||
14f9c5c9 | 8037 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 8038 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 8039 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
8040 | otherwise return 0. */ |
8041 | ||
14f9c5c9 | 8042 | int |
d2e4a39e | 8043 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
8044 | { |
8045 | if (type1 == NULL) | |
8046 | return 1; | |
8047 | else if (type0 == NULL) | |
8048 | return 0; | |
8049 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
8050 | return 1; | |
8051 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
8052 | return 0; | |
4c4b4cd2 PH |
8053 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
8054 | return 1; | |
ad82864c | 8055 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 8056 | return 1; |
4c4b4cd2 PH |
8057 | else if (ada_is_array_descriptor_type (type0) |
8058 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 8059 | return 1; |
aeb5907d JB |
8060 | else |
8061 | { | |
a737d952 TT |
8062 | const char *type0_name = TYPE_NAME (type0); |
8063 | const char *type1_name = TYPE_NAME (type1); | |
aeb5907d JB |
8064 | |
8065 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
8066 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
8067 | return 1; | |
8068 | } | |
14f9c5c9 AS |
8069 | return 0; |
8070 | } | |
8071 | ||
e86ca25f TT |
8072 | /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is |
8073 | null. */ | |
4c4b4cd2 | 8074 | |
0d5cff50 | 8075 | const char * |
d2e4a39e | 8076 | ada_type_name (struct type *type) |
14f9c5c9 | 8077 | { |
d2e4a39e | 8078 | if (type == NULL) |
14f9c5c9 | 8079 | return NULL; |
e86ca25f | 8080 | return TYPE_NAME (type); |
14f9c5c9 AS |
8081 | } |
8082 | ||
b4ba55a1 JB |
8083 | /* Search the list of "descriptive" types associated to TYPE for a type |
8084 | whose name is NAME. */ | |
8085 | ||
8086 | static struct type * | |
8087 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
8088 | { | |
931e5bc3 | 8089 | struct type *result, *tmp; |
b4ba55a1 | 8090 | |
c6044dd1 JB |
8091 | if (ada_ignore_descriptive_types_p) |
8092 | return NULL; | |
8093 | ||
b4ba55a1 JB |
8094 | /* If there no descriptive-type info, then there is no parallel type |
8095 | to be found. */ | |
8096 | if (!HAVE_GNAT_AUX_INFO (type)) | |
8097 | return NULL; | |
8098 | ||
8099 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
8100 | while (result != NULL) | |
8101 | { | |
0d5cff50 | 8102 | const char *result_name = ada_type_name (result); |
b4ba55a1 JB |
8103 | |
8104 | if (result_name == NULL) | |
8105 | { | |
8106 | warning (_("unexpected null name on descriptive type")); | |
8107 | return NULL; | |
8108 | } | |
8109 | ||
8110 | /* If the names match, stop. */ | |
8111 | if (strcmp (result_name, name) == 0) | |
8112 | break; | |
8113 | ||
8114 | /* Otherwise, look at the next item on the list, if any. */ | |
8115 | if (HAVE_GNAT_AUX_INFO (result)) | |
931e5bc3 JG |
8116 | tmp = TYPE_DESCRIPTIVE_TYPE (result); |
8117 | else | |
8118 | tmp = NULL; | |
8119 | ||
8120 | /* If not found either, try after having resolved the typedef. */ | |
8121 | if (tmp != NULL) | |
8122 | result = tmp; | |
b4ba55a1 | 8123 | else |
931e5bc3 | 8124 | { |
f168693b | 8125 | result = check_typedef (result); |
931e5bc3 JG |
8126 | if (HAVE_GNAT_AUX_INFO (result)) |
8127 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
8128 | else | |
8129 | result = NULL; | |
8130 | } | |
b4ba55a1 JB |
8131 | } |
8132 | ||
8133 | /* If we didn't find a match, see whether this is a packed array. With | |
8134 | older compilers, the descriptive type information is either absent or | |
8135 | irrelevant when it comes to packed arrays so the above lookup fails. | |
8136 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 8137 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
8138 | return ada_find_any_type (name); |
8139 | ||
8140 | return result; | |
8141 | } | |
8142 | ||
8143 | /* Find a parallel type to TYPE with the specified NAME, using the | |
8144 | descriptive type taken from the debugging information, if available, | |
8145 | and otherwise using the (slower) name-based method. */ | |
8146 | ||
8147 | static struct type * | |
8148 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
8149 | { | |
8150 | struct type *result = NULL; | |
8151 | ||
8152 | if (HAVE_GNAT_AUX_INFO (type)) | |
8153 | result = find_parallel_type_by_descriptive_type (type, name); | |
8154 | else | |
8155 | result = ada_find_any_type (name); | |
8156 | ||
8157 | return result; | |
8158 | } | |
8159 | ||
8160 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 8161 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 8162 | |
d2e4a39e | 8163 | struct type * |
ebf56fd3 | 8164 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 8165 | { |
0d5cff50 | 8166 | char *name; |
fe978cb0 | 8167 | const char *type_name = ada_type_name (type); |
14f9c5c9 | 8168 | int len; |
d2e4a39e | 8169 | |
fe978cb0 | 8170 | if (type_name == NULL) |
14f9c5c9 AS |
8171 | return NULL; |
8172 | ||
fe978cb0 | 8173 | len = strlen (type_name); |
14f9c5c9 | 8174 | |
b4ba55a1 | 8175 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 | 8176 | |
fe978cb0 | 8177 | strcpy (name, type_name); |
14f9c5c9 AS |
8178 | strcpy (name + len, suffix); |
8179 | ||
b4ba55a1 | 8180 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
8181 | } |
8182 | ||
14f9c5c9 | 8183 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 8184 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 8185 | |
d2e4a39e AS |
8186 | static struct type * |
8187 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 8188 | { |
61ee279c | 8189 | type = ada_check_typedef (type); |
14f9c5c9 AS |
8190 | |
8191 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 8192 | || ada_type_name (type) == NULL) |
14f9c5c9 | 8193 | return NULL; |
d2e4a39e | 8194 | else |
14f9c5c9 AS |
8195 | { |
8196 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 8197 | |
4c4b4cd2 PH |
8198 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
8199 | return type; | |
14f9c5c9 | 8200 | else |
4c4b4cd2 | 8201 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
8202 | } |
8203 | } | |
8204 | ||
8205 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 8206 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 8207 | |
d2e4a39e AS |
8208 | static int |
8209 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
8210 | { |
8211 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 8212 | |
d2e4a39e | 8213 | return name != NULL |
14f9c5c9 AS |
8214 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
8215 | && strstr (name, "___XVL") != NULL; | |
8216 | } | |
8217 | ||
4c4b4cd2 PH |
8218 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
8219 | represent a variant record type. */ | |
14f9c5c9 | 8220 | |
d2e4a39e | 8221 | static int |
4c4b4cd2 | 8222 | variant_field_index (struct type *type) |
14f9c5c9 AS |
8223 | { |
8224 | int f; | |
8225 | ||
4c4b4cd2 PH |
8226 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
8227 | return -1; | |
8228 | ||
8229 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
8230 | { | |
8231 | if (ada_is_variant_part (type, f)) | |
8232 | return f; | |
8233 | } | |
8234 | return -1; | |
14f9c5c9 AS |
8235 | } |
8236 | ||
4c4b4cd2 PH |
8237 | /* A record type with no fields. */ |
8238 | ||
d2e4a39e | 8239 | static struct type * |
fe978cb0 | 8240 | empty_record (struct type *templ) |
14f9c5c9 | 8241 | { |
fe978cb0 | 8242 | struct type *type = alloc_type_copy (templ); |
5b4ee69b | 8243 | |
14f9c5c9 AS |
8244 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
8245 | TYPE_NFIELDS (type) = 0; | |
8246 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 8247 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 | 8248 | TYPE_NAME (type) = "<empty>"; |
14f9c5c9 AS |
8249 | TYPE_LENGTH (type) = 0; |
8250 | return type; | |
8251 | } | |
8252 | ||
8253 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
8254 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
8255 | the beginning of this section) VAL according to GNAT conventions. | |
8256 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 8257 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
8258 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
8259 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 8260 | of the variant. |
14f9c5c9 | 8261 | |
4c4b4cd2 PH |
8262 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
8263 | length are not statically known are discarded. As a consequence, | |
8264 | VALADDR, ADDRESS and DVAL0 are ignored. | |
8265 | ||
8266 | NOTE: Limitations: For now, we assume that dynamic fields and | |
8267 | variants occupy whole numbers of bytes. However, they need not be | |
8268 | byte-aligned. */ | |
8269 | ||
8270 | struct type * | |
10a2c479 | 8271 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 8272 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
8273 | CORE_ADDR address, struct value *dval0, |
8274 | int keep_dynamic_fields) | |
14f9c5c9 | 8275 | { |
d2e4a39e AS |
8276 | struct value *mark = value_mark (); |
8277 | struct value *dval; | |
8278 | struct type *rtype; | |
14f9c5c9 | 8279 | int nfields, bit_len; |
4c4b4cd2 | 8280 | int variant_field; |
14f9c5c9 | 8281 | long off; |
d94e4f4f | 8282 | int fld_bit_len; |
14f9c5c9 AS |
8283 | int f; |
8284 | ||
4c4b4cd2 PH |
8285 | /* Compute the number of fields in this record type that are going |
8286 | to be processed: unless keep_dynamic_fields, this includes only | |
8287 | fields whose position and length are static will be processed. */ | |
8288 | if (keep_dynamic_fields) | |
8289 | nfields = TYPE_NFIELDS (type); | |
8290 | else | |
8291 | { | |
8292 | nfields = 0; | |
76a01679 | 8293 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
8294 | && !ada_is_variant_part (type, nfields) |
8295 | && !is_dynamic_field (type, nfields)) | |
8296 | nfields++; | |
8297 | } | |
8298 | ||
e9bb382b | 8299 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
8300 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
8301 | INIT_CPLUS_SPECIFIC (rtype); | |
8302 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 8303 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
8304 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
8305 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
8306 | TYPE_NAME (rtype) = ada_type_name (type); | |
876cecd0 | 8307 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 8308 | |
d2e4a39e AS |
8309 | off = 0; |
8310 | bit_len = 0; | |
4c4b4cd2 PH |
8311 | variant_field = -1; |
8312 | ||
14f9c5c9 AS |
8313 | for (f = 0; f < nfields; f += 1) |
8314 | { | |
6c038f32 PH |
8315 | off = align_value (off, field_alignment (type, f)) |
8316 | + TYPE_FIELD_BITPOS (type, f); | |
945b3a32 | 8317 | SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off); |
d2e4a39e | 8318 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 8319 | |
d2e4a39e | 8320 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
8321 | { |
8322 | variant_field = f; | |
d94e4f4f | 8323 | fld_bit_len = 0; |
4c4b4cd2 | 8324 | } |
14f9c5c9 | 8325 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 8326 | { |
284614f0 JB |
8327 | const gdb_byte *field_valaddr = valaddr; |
8328 | CORE_ADDR field_address = address; | |
8329 | struct type *field_type = | |
8330 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
8331 | ||
4c4b4cd2 | 8332 | if (dval0 == NULL) |
b5304971 JG |
8333 | { |
8334 | /* rtype's length is computed based on the run-time | |
8335 | value of discriminants. If the discriminants are not | |
8336 | initialized, the type size may be completely bogus and | |
0963b4bd | 8337 | GDB may fail to allocate a value for it. So check the |
b5304971 | 8338 | size first before creating the value. */ |
c1b5a1a6 | 8339 | ada_ensure_varsize_limit (rtype); |
012370f6 TT |
8340 | /* Using plain value_from_contents_and_address here |
8341 | causes problems because we will end up trying to | |
8342 | resolve a type that is currently being | |
8343 | constructed. */ | |
8344 | dval = value_from_contents_and_address_unresolved (rtype, | |
8345 | valaddr, | |
8346 | address); | |
9f1f738a | 8347 | rtype = value_type (dval); |
b5304971 | 8348 | } |
4c4b4cd2 PH |
8349 | else |
8350 | dval = dval0; | |
8351 | ||
284614f0 JB |
8352 | /* If the type referenced by this field is an aligner type, we need |
8353 | to unwrap that aligner type, because its size might not be set. | |
8354 | Keeping the aligner type would cause us to compute the wrong | |
8355 | size for this field, impacting the offset of the all the fields | |
8356 | that follow this one. */ | |
8357 | if (ada_is_aligner_type (field_type)) | |
8358 | { | |
8359 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
8360 | ||
8361 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
8362 | field_address = cond_offset_target (field_address, field_offset); | |
8363 | field_type = ada_aligned_type (field_type); | |
8364 | } | |
8365 | ||
8366 | field_valaddr = cond_offset_host (field_valaddr, | |
8367 | off / TARGET_CHAR_BIT); | |
8368 | field_address = cond_offset_target (field_address, | |
8369 | off / TARGET_CHAR_BIT); | |
8370 | ||
8371 | /* Get the fixed type of the field. Note that, in this case, | |
8372 | we do not want to get the real type out of the tag: if | |
8373 | the current field is the parent part of a tagged record, | |
8374 | we will get the tag of the object. Clearly wrong: the real | |
8375 | type of the parent is not the real type of the child. We | |
8376 | would end up in an infinite loop. */ | |
8377 | field_type = ada_get_base_type (field_type); | |
8378 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
8379 | field_address, dval, 0); | |
27f2a97b JB |
8380 | /* If the field size is already larger than the maximum |
8381 | object size, then the record itself will necessarily | |
8382 | be larger than the maximum object size. We need to make | |
8383 | this check now, because the size might be so ridiculously | |
8384 | large (due to an uninitialized variable in the inferior) | |
8385 | that it would cause an overflow when adding it to the | |
8386 | record size. */ | |
c1b5a1a6 | 8387 | ada_ensure_varsize_limit (field_type); |
284614f0 JB |
8388 | |
8389 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 | 8390 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
8391 | /* The multiplication can potentially overflow. But because |
8392 | the field length has been size-checked just above, and | |
8393 | assuming that the maximum size is a reasonable value, | |
8394 | an overflow should not happen in practice. So rather than | |
8395 | adding overflow recovery code to this already complex code, | |
8396 | we just assume that it's not going to happen. */ | |
d94e4f4f | 8397 | fld_bit_len = |
4c4b4cd2 PH |
8398 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; |
8399 | } | |
14f9c5c9 | 8400 | else |
4c4b4cd2 | 8401 | { |
5ded5331 JB |
8402 | /* Note: If this field's type is a typedef, it is important |
8403 | to preserve the typedef layer. | |
8404 | ||
8405 | Otherwise, we might be transforming a typedef to a fat | |
8406 | pointer (encoding a pointer to an unconstrained array), | |
8407 | into a basic fat pointer (encoding an unconstrained | |
8408 | array). As both types are implemented using the same | |
8409 | structure, the typedef is the only clue which allows us | |
8410 | to distinguish between the two options. Stripping it | |
8411 | would prevent us from printing this field appropriately. */ | |
8412 | TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); | |
4c4b4cd2 PH |
8413 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
8414 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
d94e4f4f | 8415 | fld_bit_len = |
4c4b4cd2 PH |
8416 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
8417 | else | |
5ded5331 JB |
8418 | { |
8419 | struct type *field_type = TYPE_FIELD_TYPE (type, f); | |
8420 | ||
8421 | /* We need to be careful of typedefs when computing | |
8422 | the length of our field. If this is a typedef, | |
8423 | get the length of the target type, not the length | |
8424 | of the typedef. */ | |
8425 | if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) | |
8426 | field_type = ada_typedef_target_type (field_type); | |
8427 | ||
8428 | fld_bit_len = | |
8429 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; | |
8430 | } | |
4c4b4cd2 | 8431 | } |
14f9c5c9 | 8432 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 8433 | bit_len = off + fld_bit_len; |
d94e4f4f | 8434 | off += fld_bit_len; |
4c4b4cd2 PH |
8435 | TYPE_LENGTH (rtype) = |
8436 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 8437 | } |
4c4b4cd2 PH |
8438 | |
8439 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 8440 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
8441 | the record. This can happen in the presence of representation |
8442 | clauses. */ | |
8443 | if (variant_field >= 0) | |
8444 | { | |
8445 | struct type *branch_type; | |
8446 | ||
8447 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
8448 | ||
8449 | if (dval0 == NULL) | |
9f1f738a | 8450 | { |
012370f6 TT |
8451 | /* Using plain value_from_contents_and_address here causes |
8452 | problems because we will end up trying to resolve a type | |
8453 | that is currently being constructed. */ | |
8454 | dval = value_from_contents_and_address_unresolved (rtype, valaddr, | |
8455 | address); | |
9f1f738a SA |
8456 | rtype = value_type (dval); |
8457 | } | |
4c4b4cd2 PH |
8458 | else |
8459 | dval = dval0; | |
8460 | ||
8461 | branch_type = | |
8462 | to_fixed_variant_branch_type | |
8463 | (TYPE_FIELD_TYPE (type, variant_field), | |
8464 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
8465 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
8466 | if (branch_type == NULL) | |
8467 | { | |
8468 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
8469 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
8470 | TYPE_NFIELDS (rtype) -= 1; | |
8471 | } | |
8472 | else | |
8473 | { | |
8474 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
8475 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8476 | fld_bit_len = | |
8477 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
8478 | TARGET_CHAR_BIT; | |
8479 | if (off + fld_bit_len > bit_len) | |
8480 | bit_len = off + fld_bit_len; | |
8481 | TYPE_LENGTH (rtype) = | |
8482 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
8483 | } | |
8484 | } | |
8485 | ||
714e53ab PH |
8486 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
8487 | should contain the alignment of that record, which should be a strictly | |
8488 | positive value. If null or negative, then something is wrong, most | |
8489 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 8490 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
8491 | the current RTYPE length might be good enough for our purposes. */ |
8492 | if (TYPE_LENGTH (type) <= 0) | |
8493 | { | |
323e0a4a AC |
8494 | if (TYPE_NAME (rtype)) |
8495 | warning (_("Invalid type size for `%s' detected: %d."), | |
8496 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
8497 | else | |
8498 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
8499 | TYPE_LENGTH (type)); | |
714e53ab PH |
8500 | } |
8501 | else | |
8502 | { | |
8503 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
8504 | TYPE_LENGTH (type)); | |
8505 | } | |
14f9c5c9 AS |
8506 | |
8507 | value_free_to_mark (mark); | |
d2e4a39e | 8508 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 8509 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8510 | return rtype; |
8511 | } | |
8512 | ||
4c4b4cd2 PH |
8513 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
8514 | of 1. */ | |
14f9c5c9 | 8515 | |
d2e4a39e | 8516 | static struct type * |
fc1a4b47 | 8517 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
8518 | CORE_ADDR address, struct value *dval0) |
8519 | { | |
8520 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
8521 | address, dval0, 1); | |
8522 | } | |
8523 | ||
8524 | /* An ordinary record type in which ___XVL-convention fields and | |
8525 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
8526 | static approximations, containing all possible fields. Uses | |
8527 | no runtime values. Useless for use in values, but that's OK, | |
8528 | since the results are used only for type determinations. Works on both | |
8529 | structs and unions. Representation note: to save space, we memorize | |
8530 | the result of this function in the TYPE_TARGET_TYPE of the | |
8531 | template type. */ | |
8532 | ||
8533 | static struct type * | |
8534 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
8535 | { |
8536 | struct type *type; | |
8537 | int nfields; | |
8538 | int f; | |
8539 | ||
9e195661 PMR |
8540 | /* No need no do anything if the input type is already fixed. */ |
8541 | if (TYPE_FIXED_INSTANCE (type0)) | |
8542 | return type0; | |
8543 | ||
8544 | /* Likewise if we already have computed the static approximation. */ | |
4c4b4cd2 PH |
8545 | if (TYPE_TARGET_TYPE (type0) != NULL) |
8546 | return TYPE_TARGET_TYPE (type0); | |
8547 | ||
9e195661 | 8548 | /* Don't clone TYPE0 until we are sure we are going to need a copy. */ |
4c4b4cd2 | 8549 | type = type0; |
9e195661 PMR |
8550 | nfields = TYPE_NFIELDS (type0); |
8551 | ||
8552 | /* Whether or not we cloned TYPE0, cache the result so that we don't do | |
8553 | recompute all over next time. */ | |
8554 | TYPE_TARGET_TYPE (type0) = type; | |
14f9c5c9 AS |
8555 | |
8556 | for (f = 0; f < nfields; f += 1) | |
8557 | { | |
460efde1 | 8558 | struct type *field_type = TYPE_FIELD_TYPE (type0, f); |
4c4b4cd2 | 8559 | struct type *new_type; |
14f9c5c9 | 8560 | |
4c4b4cd2 | 8561 | if (is_dynamic_field (type0, f)) |
460efde1 JB |
8562 | { |
8563 | field_type = ada_check_typedef (field_type); | |
8564 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
8565 | } | |
14f9c5c9 | 8566 | else |
f192137b | 8567 | new_type = static_unwrap_type (field_type); |
9e195661 PMR |
8568 | |
8569 | if (new_type != field_type) | |
8570 | { | |
8571 | /* Clone TYPE0 only the first time we get a new field type. */ | |
8572 | if (type == type0) | |
8573 | { | |
8574 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); | |
8575 | TYPE_CODE (type) = TYPE_CODE (type0); | |
8576 | INIT_CPLUS_SPECIFIC (type); | |
8577 | TYPE_NFIELDS (type) = nfields; | |
8578 | TYPE_FIELDS (type) = (struct field *) | |
8579 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
8580 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
8581 | sizeof (struct field) * nfields); | |
8582 | TYPE_NAME (type) = ada_type_name (type0); | |
9e195661 PMR |
8583 | TYPE_FIXED_INSTANCE (type) = 1; |
8584 | TYPE_LENGTH (type) = 0; | |
8585 | } | |
8586 | TYPE_FIELD_TYPE (type, f) = new_type; | |
8587 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
8588 | } | |
14f9c5c9 | 8589 | } |
9e195661 | 8590 | |
14f9c5c9 AS |
8591 | return type; |
8592 | } | |
8593 | ||
4c4b4cd2 | 8594 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
8595 | whose address in memory is ADDRESS, returns a revision of TYPE, |
8596 | which should be a non-dynamic-sized record, in which the variant | |
8597 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
8598 | for discriminant values in DVAL0, which can be NULL if the record |
8599 | contains the necessary discriminant values. */ | |
8600 | ||
d2e4a39e | 8601 | static struct type * |
fc1a4b47 | 8602 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 8603 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 8604 | { |
d2e4a39e | 8605 | struct value *mark = value_mark (); |
4c4b4cd2 | 8606 | struct value *dval; |
d2e4a39e | 8607 | struct type *rtype; |
14f9c5c9 AS |
8608 | struct type *branch_type; |
8609 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 8610 | int variant_field = variant_field_index (type); |
14f9c5c9 | 8611 | |
4c4b4cd2 | 8612 | if (variant_field == -1) |
14f9c5c9 AS |
8613 | return type; |
8614 | ||
4c4b4cd2 | 8615 | if (dval0 == NULL) |
9f1f738a SA |
8616 | { |
8617 | dval = value_from_contents_and_address (type, valaddr, address); | |
8618 | type = value_type (dval); | |
8619 | } | |
4c4b4cd2 PH |
8620 | else |
8621 | dval = dval0; | |
8622 | ||
e9bb382b | 8623 | rtype = alloc_type_copy (type); |
14f9c5c9 | 8624 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
8625 | INIT_CPLUS_SPECIFIC (rtype); |
8626 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
8627 | TYPE_FIELDS (rtype) = |
8628 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
8629 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 8630 | sizeof (struct field) * nfields); |
14f9c5c9 | 8631 | TYPE_NAME (rtype) = ada_type_name (type); |
876cecd0 | 8632 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
8633 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
8634 | ||
4c4b4cd2 PH |
8635 | branch_type = to_fixed_variant_branch_type |
8636 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 8637 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
8638 | TYPE_FIELD_BITPOS (type, variant_field) |
8639 | / TARGET_CHAR_BIT), | |
d2e4a39e | 8640 | cond_offset_target (address, |
4c4b4cd2 PH |
8641 | TYPE_FIELD_BITPOS (type, variant_field) |
8642 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 8643 | if (branch_type == NULL) |
14f9c5c9 | 8644 | { |
4c4b4cd2 | 8645 | int f; |
5b4ee69b | 8646 | |
4c4b4cd2 PH |
8647 | for (f = variant_field + 1; f < nfields; f += 1) |
8648 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 8649 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
8650 | } |
8651 | else | |
8652 | { | |
4c4b4cd2 PH |
8653 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
8654 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8655 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 8656 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 8657 | } |
4c4b4cd2 | 8658 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 8659 | |
4c4b4cd2 | 8660 | value_free_to_mark (mark); |
14f9c5c9 AS |
8661 | return rtype; |
8662 | } | |
8663 | ||
8664 | /* An ordinary record type (with fixed-length fields) that describes | |
8665 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
8666 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
8667 | should be in DVAL, a record value; it may be NULL if the object |
8668 | at ADDR itself contains any necessary discriminant values. | |
8669 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
8670 | values from the record are needed. Except in the case that DVAL, | |
8671 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
8672 | unchecked) is replaced by a particular branch of the variant. | |
8673 | ||
8674 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
8675 | is questionable and may be removed. It can arise during the | |
8676 | processing of an unconstrained-array-of-record type where all the | |
8677 | variant branches have exactly the same size. This is because in | |
8678 | such cases, the compiler does not bother to use the XVS convention | |
8679 | when encoding the record. I am currently dubious of this | |
8680 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 8681 | |
d2e4a39e | 8682 | static struct type * |
fc1a4b47 | 8683 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8684 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 8685 | { |
d2e4a39e | 8686 | struct type *templ_type; |
14f9c5c9 | 8687 | |
876cecd0 | 8688 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8689 | return type0; |
8690 | ||
d2e4a39e | 8691 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
8692 | |
8693 | if (templ_type != NULL) | |
8694 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
8695 | else if (variant_field_index (type0) >= 0) |
8696 | { | |
8697 | if (dval == NULL && valaddr == NULL && address == 0) | |
8698 | return type0; | |
8699 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
8700 | dval); | |
8701 | } | |
14f9c5c9 AS |
8702 | else |
8703 | { | |
876cecd0 | 8704 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
8705 | return type0; |
8706 | } | |
8707 | ||
8708 | } | |
8709 | ||
8710 | /* An ordinary record type (with fixed-length fields) that describes | |
8711 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
8712 | union type. Any necessary discriminants' values should be in DVAL, | |
8713 | a record value. That is, this routine selects the appropriate | |
8714 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 8715 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 8716 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 8717 | |
d2e4a39e | 8718 | static struct type * |
fc1a4b47 | 8719 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8720 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
8721 | { |
8722 | int which; | |
d2e4a39e AS |
8723 | struct type *templ_type; |
8724 | struct type *var_type; | |
14f9c5c9 AS |
8725 | |
8726 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
8727 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 8728 | else |
14f9c5c9 AS |
8729 | var_type = var_type0; |
8730 | ||
8731 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
8732 | ||
8733 | if (templ_type != NULL) | |
8734 | var_type = templ_type; | |
8735 | ||
b1f33ddd JB |
8736 | if (is_unchecked_variant (var_type, value_type (dval))) |
8737 | return var_type0; | |
d2e4a39e AS |
8738 | which = |
8739 | ada_which_variant_applies (var_type, | |
0fd88904 | 8740 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
8741 | |
8742 | if (which < 0) | |
e9bb382b | 8743 | return empty_record (var_type); |
14f9c5c9 | 8744 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 8745 | return to_fixed_record_type |
d2e4a39e AS |
8746 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
8747 | valaddr, address, dval); | |
4c4b4cd2 | 8748 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
8749 | return |
8750 | to_fixed_record_type | |
8751 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
8752 | else |
8753 | return TYPE_FIELD_TYPE (var_type, which); | |
8754 | } | |
8755 | ||
8908fca5 JB |
8756 | /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if |
8757 | ENCODING_TYPE, a type following the GNAT conventions for discrete | |
8758 | type encodings, only carries redundant information. */ | |
8759 | ||
8760 | static int | |
8761 | ada_is_redundant_range_encoding (struct type *range_type, | |
8762 | struct type *encoding_type) | |
8763 | { | |
108d56a4 | 8764 | const char *bounds_str; |
8908fca5 JB |
8765 | int n; |
8766 | LONGEST lo, hi; | |
8767 | ||
8768 | gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE); | |
8769 | ||
005e2509 JB |
8770 | if (TYPE_CODE (get_base_type (range_type)) |
8771 | != TYPE_CODE (get_base_type (encoding_type))) | |
8772 | { | |
8773 | /* The compiler probably used a simple base type to describe | |
8774 | the range type instead of the range's actual base type, | |
8775 | expecting us to get the real base type from the encoding | |
8776 | anyway. In this situation, the encoding cannot be ignored | |
8777 | as redundant. */ | |
8778 | return 0; | |
8779 | } | |
8780 | ||
8908fca5 JB |
8781 | if (is_dynamic_type (range_type)) |
8782 | return 0; | |
8783 | ||
8784 | if (TYPE_NAME (encoding_type) == NULL) | |
8785 | return 0; | |
8786 | ||
8787 | bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_"); | |
8788 | if (bounds_str == NULL) | |
8789 | return 0; | |
8790 | ||
8791 | n = 8; /* Skip "___XDLU_". */ | |
8792 | if (!ada_scan_number (bounds_str, n, &lo, &n)) | |
8793 | return 0; | |
8794 | if (TYPE_LOW_BOUND (range_type) != lo) | |
8795 | return 0; | |
8796 | ||
8797 | n += 2; /* Skip the "__" separator between the two bounds. */ | |
8798 | if (!ada_scan_number (bounds_str, n, &hi, &n)) | |
8799 | return 0; | |
8800 | if (TYPE_HIGH_BOUND (range_type) != hi) | |
8801 | return 0; | |
8802 | ||
8803 | return 1; | |
8804 | } | |
8805 | ||
8806 | /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE, | |
8807 | a type following the GNAT encoding for describing array type | |
8808 | indices, only carries redundant information. */ | |
8809 | ||
8810 | static int | |
8811 | ada_is_redundant_index_type_desc (struct type *array_type, | |
8812 | struct type *desc_type) | |
8813 | { | |
8814 | struct type *this_layer = check_typedef (array_type); | |
8815 | int i; | |
8816 | ||
8817 | for (i = 0; i < TYPE_NFIELDS (desc_type); i++) | |
8818 | { | |
8819 | if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer), | |
8820 | TYPE_FIELD_TYPE (desc_type, i))) | |
8821 | return 0; | |
8822 | this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer)); | |
8823 | } | |
8824 | ||
8825 | return 1; | |
8826 | } | |
8827 | ||
14f9c5c9 AS |
8828 | /* Assuming that TYPE0 is an array type describing the type of a value |
8829 | at ADDR, and that DVAL describes a record containing any | |
8830 | discriminants used in TYPE0, returns a type for the value that | |
8831 | contains no dynamic components (that is, no components whose sizes | |
8832 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
8833 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 8834 | varsize_limit. */ |
14f9c5c9 | 8835 | |
d2e4a39e AS |
8836 | static struct type * |
8837 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 8838 | int ignore_too_big) |
14f9c5c9 | 8839 | { |
d2e4a39e AS |
8840 | struct type *index_type_desc; |
8841 | struct type *result; | |
ad82864c | 8842 | int constrained_packed_array_p; |
931e5bc3 | 8843 | static const char *xa_suffix = "___XA"; |
14f9c5c9 | 8844 | |
b0dd7688 | 8845 | type0 = ada_check_typedef (type0); |
284614f0 | 8846 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 8847 | return type0; |
14f9c5c9 | 8848 | |
ad82864c JB |
8849 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
8850 | if (constrained_packed_array_p) | |
8851 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 8852 | |
931e5bc3 JG |
8853 | index_type_desc = ada_find_parallel_type (type0, xa_suffix); |
8854 | ||
8855 | /* As mentioned in exp_dbug.ads, for non bit-packed arrays an | |
8856 | encoding suffixed with 'P' may still be generated. If so, | |
8857 | it should be used to find the XA type. */ | |
8858 | ||
8859 | if (index_type_desc == NULL) | |
8860 | { | |
1da0522e | 8861 | const char *type_name = ada_type_name (type0); |
931e5bc3 | 8862 | |
1da0522e | 8863 | if (type_name != NULL) |
931e5bc3 | 8864 | { |
1da0522e | 8865 | const int len = strlen (type_name); |
931e5bc3 JG |
8866 | char *name = (char *) alloca (len + strlen (xa_suffix)); |
8867 | ||
1da0522e | 8868 | if (type_name[len - 1] == 'P') |
931e5bc3 | 8869 | { |
1da0522e | 8870 | strcpy (name, type_name); |
931e5bc3 JG |
8871 | strcpy (name + len - 1, xa_suffix); |
8872 | index_type_desc = ada_find_parallel_type_with_name (type0, name); | |
8873 | } | |
8874 | } | |
8875 | } | |
8876 | ||
28c85d6c | 8877 | ada_fixup_array_indexes_type (index_type_desc); |
8908fca5 JB |
8878 | if (index_type_desc != NULL |
8879 | && ada_is_redundant_index_type_desc (type0, index_type_desc)) | |
8880 | { | |
8881 | /* Ignore this ___XA parallel type, as it does not bring any | |
8882 | useful information. This allows us to avoid creating fixed | |
8883 | versions of the array's index types, which would be identical | |
8884 | to the original ones. This, in turn, can also help avoid | |
8885 | the creation of fixed versions of the array itself. */ | |
8886 | index_type_desc = NULL; | |
8887 | } | |
8888 | ||
14f9c5c9 AS |
8889 | if (index_type_desc == NULL) |
8890 | { | |
61ee279c | 8891 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 8892 | |
14f9c5c9 | 8893 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
8894 | depend on the contents of the array in properly constructed |
8895 | debugging data. */ | |
529cad9c PH |
8896 | /* Create a fixed version of the array element type. |
8897 | We're not providing the address of an element here, | |
e1d5a0d2 | 8898 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8899 | the conversion. This should not be a problem, since arrays of |
8900 | unconstrained objects are not allowed. In particular, all | |
8901 | the elements of an array of a tagged type should all be of | |
8902 | the same type specified in the debugging info. No need to | |
8903 | consult the object tag. */ | |
1ed6ede0 | 8904 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 8905 | |
284614f0 JB |
8906 | /* Make sure we always create a new array type when dealing with |
8907 | packed array types, since we're going to fix-up the array | |
8908 | type length and element bitsize a little further down. */ | |
ad82864c | 8909 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 8910 | result = type0; |
14f9c5c9 | 8911 | else |
e9bb382b | 8912 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 8913 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
8914 | } |
8915 | else | |
8916 | { | |
8917 | int i; | |
8918 | struct type *elt_type0; | |
8919 | ||
8920 | elt_type0 = type0; | |
8921 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 8922 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
8923 | |
8924 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
8925 | depend on the contents of the array in properly constructed |
8926 | debugging data. */ | |
529cad9c PH |
8927 | /* Create a fixed version of the array element type. |
8928 | We're not providing the address of an element here, | |
e1d5a0d2 | 8929 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8930 | the conversion. This should not be a problem, since arrays of |
8931 | unconstrained objects are not allowed. In particular, all | |
8932 | the elements of an array of a tagged type should all be of | |
8933 | the same type specified in the debugging info. No need to | |
8934 | consult the object tag. */ | |
1ed6ede0 JB |
8935 | result = |
8936 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
8937 | |
8938 | elt_type0 = type0; | |
14f9c5c9 | 8939 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
8940 | { |
8941 | struct type *range_type = | |
28c85d6c | 8942 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 8943 | |
e9bb382b | 8944 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 8945 | result, range_type); |
1ce677a4 | 8946 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 8947 | } |
d2e4a39e | 8948 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 8949 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8950 | } |
8951 | ||
2e6fda7d JB |
8952 | /* We want to preserve the type name. This can be useful when |
8953 | trying to get the type name of a value that has already been | |
8954 | printed (for instance, if the user did "print VAR; whatis $". */ | |
8955 | TYPE_NAME (result) = TYPE_NAME (type0); | |
8956 | ||
ad82864c | 8957 | if (constrained_packed_array_p) |
284614f0 JB |
8958 | { |
8959 | /* So far, the resulting type has been created as if the original | |
8960 | type was a regular (non-packed) array type. As a result, the | |
8961 | bitsize of the array elements needs to be set again, and the array | |
8962 | length needs to be recomputed based on that bitsize. */ | |
8963 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
8964 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
8965 | ||
8966 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
8967 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
8968 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
8969 | TYPE_LENGTH (result)++; | |
8970 | } | |
8971 | ||
876cecd0 | 8972 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 8973 | return result; |
d2e4a39e | 8974 | } |
14f9c5c9 AS |
8975 | |
8976 | ||
8977 | /* A standard type (containing no dynamically sized components) | |
8978 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
8979 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 8980 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
8981 | ADDRESS or in VALADDR contains these discriminants. |
8982 | ||
1ed6ede0 JB |
8983 | If CHECK_TAG is not null, in the case of tagged types, this function |
8984 | attempts to locate the object's tag and use it to compute the actual | |
8985 | type. However, when ADDRESS is null, we cannot use it to determine the | |
8986 | location of the tag, and therefore compute the tagged type's actual type. | |
8987 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 8988 | |
f192137b JB |
8989 | static struct type * |
8990 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 8991 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 8992 | { |
61ee279c | 8993 | type = ada_check_typedef (type); |
d2e4a39e AS |
8994 | switch (TYPE_CODE (type)) |
8995 | { | |
8996 | default: | |
14f9c5c9 | 8997 | return type; |
d2e4a39e | 8998 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 8999 | { |
76a01679 | 9000 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
9001 | struct type *fixed_record_type = |
9002 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 9003 | |
529cad9c PH |
9004 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
9005 | then we can determine its tag, and compute the object's actual | |
0963b4bd | 9006 | type from there. Note that we have to use the fixed record |
1ed6ede0 JB |
9007 | type (the parent part of the record may have dynamic fields |
9008 | and the way the location of _tag is expressed may depend on | |
9009 | them). */ | |
529cad9c | 9010 | |
1ed6ede0 | 9011 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 | 9012 | { |
b50d69b5 JG |
9013 | struct value *tag = |
9014 | value_tag_from_contents_and_address | |
9015 | (fixed_record_type, | |
9016 | valaddr, | |
9017 | address); | |
9018 | struct type *real_type = type_from_tag (tag); | |
9019 | struct value *obj = | |
9020 | value_from_contents_and_address (fixed_record_type, | |
9021 | valaddr, | |
9022 | address); | |
9f1f738a | 9023 | fixed_record_type = value_type (obj); |
76a01679 | 9024 | if (real_type != NULL) |
b50d69b5 JG |
9025 | return to_fixed_record_type |
9026 | (real_type, NULL, | |
9027 | value_address (ada_tag_value_at_base_address (obj)), NULL); | |
76a01679 | 9028 | } |
4af88198 JB |
9029 | |
9030 | /* Check to see if there is a parallel ___XVZ variable. | |
9031 | If there is, then it provides the actual size of our type. */ | |
9032 | else if (ada_type_name (fixed_record_type) != NULL) | |
9033 | { | |
0d5cff50 | 9034 | const char *name = ada_type_name (fixed_record_type); |
224c3ddb SM |
9035 | char *xvz_name |
9036 | = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */); | |
eccab96d | 9037 | bool xvz_found = false; |
4af88198 JB |
9038 | LONGEST size; |
9039 | ||
88c15c34 | 9040 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
eccab96d JB |
9041 | TRY |
9042 | { | |
9043 | xvz_found = get_int_var_value (xvz_name, size); | |
9044 | } | |
9045 | CATCH (except, RETURN_MASK_ERROR) | |
9046 | { | |
9047 | /* We found the variable, but somehow failed to read | |
9048 | its value. Rethrow the same error, but with a little | |
9049 | bit more information, to help the user understand | |
9050 | what went wrong (Eg: the variable might have been | |
9051 | optimized out). */ | |
9052 | throw_error (except.error, | |
9053 | _("unable to read value of %s (%s)"), | |
9054 | xvz_name, except.message); | |
9055 | } | |
9056 | END_CATCH | |
9057 | ||
9058 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
4af88198 JB |
9059 | { |
9060 | fixed_record_type = copy_type (fixed_record_type); | |
9061 | TYPE_LENGTH (fixed_record_type) = size; | |
9062 | ||
9063 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
9064 | observed this when the debugging info is STABS, and | |
9065 | apparently it is something that is hard to fix. | |
9066 | ||
9067 | In practice, we don't need the actual type definition | |
9068 | at all, because the presence of the XVZ variable allows us | |
9069 | to assume that there must be a XVS type as well, which we | |
9070 | should be able to use later, when we need the actual type | |
9071 | definition. | |
9072 | ||
9073 | In the meantime, pretend that the "fixed" type we are | |
9074 | returning is NOT a stub, because this can cause trouble | |
9075 | when using this type to create new types targeting it. | |
9076 | Indeed, the associated creation routines often check | |
9077 | whether the target type is a stub and will try to replace | |
0963b4bd | 9078 | it, thus using a type with the wrong size. This, in turn, |
4af88198 JB |
9079 | might cause the new type to have the wrong size too. |
9080 | Consider the case of an array, for instance, where the size | |
9081 | of the array is computed from the number of elements in | |
9082 | our array multiplied by the size of its element. */ | |
9083 | TYPE_STUB (fixed_record_type) = 0; | |
9084 | } | |
9085 | } | |
1ed6ede0 | 9086 | return fixed_record_type; |
4c4b4cd2 | 9087 | } |
d2e4a39e | 9088 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 9089 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
9090 | case TYPE_CODE_UNION: |
9091 | if (dval == NULL) | |
4c4b4cd2 | 9092 | return type; |
d2e4a39e | 9093 | else |
4c4b4cd2 | 9094 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 9095 | } |
14f9c5c9 AS |
9096 | } |
9097 | ||
f192137b JB |
9098 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
9099 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
9100 | |
9101 | The typedef layer needs be preserved in order to differentiate between | |
9102 | arrays and array pointers when both types are implemented using the same | |
9103 | fat pointer. In the array pointer case, the pointer is encoded as | |
9104 | a typedef of the pointer type. For instance, considering: | |
9105 | ||
9106 | type String_Access is access String; | |
9107 | S1 : String_Access := null; | |
9108 | ||
9109 | To the debugger, S1 is defined as a typedef of type String. But | |
9110 | to the user, it is a pointer. So if the user tries to print S1, | |
9111 | we should not dereference the array, but print the array address | |
9112 | instead. | |
9113 | ||
9114 | If we didn't preserve the typedef layer, we would lose the fact that | |
9115 | the type is to be presented as a pointer (needs de-reference before | |
9116 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
9117 | |
9118 | struct type * | |
9119 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
9120 | CORE_ADDR address, struct value *dval, int check_tag) | |
9121 | ||
9122 | { | |
9123 | struct type *fixed_type = | |
9124 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
9125 | ||
96dbd2c1 JB |
9126 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
9127 | then preserve the typedef layer. | |
9128 | ||
9129 | Implementation note: We can only check the main-type portion of | |
9130 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
9131 | from TYPE now returns a type that has the same instance flags | |
9132 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
9133 | target type is a "struct", then the typedef elimination will return | |
9134 | a "const" version of the target type. See check_typedef for more | |
9135 | details about how the typedef layer elimination is done. | |
9136 | ||
9137 | brobecker/2010-11-19: It seems to me that the only case where it is | |
9138 | useful to preserve the typedef layer is when dealing with fat pointers. | |
9139 | Perhaps, we could add a check for that and preserve the typedef layer | |
9140 | only in that situation. But this seems unecessary so far, probably | |
9141 | because we call check_typedef/ada_check_typedef pretty much everywhere. | |
9142 | */ | |
f192137b | 9143 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF |
720d1a40 | 9144 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 9145 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
9146 | return type; |
9147 | ||
9148 | return fixed_type; | |
9149 | } | |
9150 | ||
14f9c5c9 | 9151 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 9152 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 9153 | |
d2e4a39e AS |
9154 | static struct type * |
9155 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 9156 | { |
d2e4a39e | 9157 | struct type *type; |
14f9c5c9 AS |
9158 | |
9159 | if (type0 == NULL) | |
9160 | return NULL; | |
9161 | ||
876cecd0 | 9162 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
9163 | return type0; |
9164 | ||
61ee279c | 9165 | type0 = ada_check_typedef (type0); |
d2e4a39e | 9166 | |
14f9c5c9 AS |
9167 | switch (TYPE_CODE (type0)) |
9168 | { | |
9169 | default: | |
9170 | return type0; | |
9171 | case TYPE_CODE_STRUCT: | |
9172 | type = dynamic_template_type (type0); | |
d2e4a39e | 9173 | if (type != NULL) |
4c4b4cd2 PH |
9174 | return template_to_static_fixed_type (type); |
9175 | else | |
9176 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
9177 | case TYPE_CODE_UNION: |
9178 | type = ada_find_parallel_type (type0, "___XVU"); | |
9179 | if (type != NULL) | |
4c4b4cd2 PH |
9180 | return template_to_static_fixed_type (type); |
9181 | else | |
9182 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
9183 | } |
9184 | } | |
9185 | ||
4c4b4cd2 PH |
9186 | /* A static approximation of TYPE with all type wrappers removed. */ |
9187 | ||
d2e4a39e AS |
9188 | static struct type * |
9189 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
9190 | { |
9191 | if (ada_is_aligner_type (type)) | |
9192 | { | |
61ee279c | 9193 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 9194 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 9195 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
9196 | |
9197 | return static_unwrap_type (type1); | |
9198 | } | |
d2e4a39e | 9199 | else |
14f9c5c9 | 9200 | { |
d2e4a39e | 9201 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 9202 | |
d2e4a39e | 9203 | if (raw_real_type == type) |
4c4b4cd2 | 9204 | return type; |
14f9c5c9 | 9205 | else |
4c4b4cd2 | 9206 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
9207 | } |
9208 | } | |
9209 | ||
9210 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 9211 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
9212 | type Foo; |
9213 | type FooP is access Foo; | |
9214 | V: FooP; | |
9215 | type Foo is array ...; | |
4c4b4cd2 | 9216 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
9217 | cross-references to such types, we instead substitute for FooP a |
9218 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 9219 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
9220 | |
9221 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
9222 | exists, otherwise TYPE. */ |
9223 | ||
d2e4a39e | 9224 | struct type * |
61ee279c | 9225 | ada_check_typedef (struct type *type) |
14f9c5c9 | 9226 | { |
727e3d2e JB |
9227 | if (type == NULL) |
9228 | return NULL; | |
9229 | ||
736ade86 XR |
9230 | /* If our type is an access to an unconstrained array, which is encoded |
9231 | as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done. | |
720d1a40 JB |
9232 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is |
9233 | what allows us to distinguish between fat pointers that represent | |
9234 | array types, and fat pointers that represent array access types | |
9235 | (in both cases, the compiler implements them as fat pointers). */ | |
736ade86 | 9236 | if (ada_is_access_to_unconstrained_array (type)) |
720d1a40 JB |
9237 | return type; |
9238 | ||
f168693b | 9239 | type = check_typedef (type); |
14f9c5c9 | 9240 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
529cad9c | 9241 | || !TYPE_STUB (type) |
e86ca25f | 9242 | || TYPE_NAME (type) == NULL) |
14f9c5c9 | 9243 | return type; |
d2e4a39e | 9244 | else |
14f9c5c9 | 9245 | { |
e86ca25f | 9246 | const char *name = TYPE_NAME (type); |
d2e4a39e | 9247 | struct type *type1 = ada_find_any_type (name); |
5b4ee69b | 9248 | |
05e522ef JB |
9249 | if (type1 == NULL) |
9250 | return type; | |
9251 | ||
9252 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
9253 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
9254 | types, only for the typedef-to-array types). If that's the case, |
9255 | strip the typedef layer. */ | |
9256 | if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) | |
9257 | type1 = ada_check_typedef (type1); | |
9258 | ||
9259 | return type1; | |
14f9c5c9 AS |
9260 | } |
9261 | } | |
9262 | ||
9263 | /* A value representing the data at VALADDR/ADDRESS as described by | |
9264 | type TYPE0, but with a standard (static-sized) type that correctly | |
9265 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
9266 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 9267 | creation of struct values]. */ |
14f9c5c9 | 9268 | |
4c4b4cd2 PH |
9269 | static struct value * |
9270 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
9271 | struct value *val0) | |
14f9c5c9 | 9272 | { |
1ed6ede0 | 9273 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 9274 | |
14f9c5c9 AS |
9275 | if (type == type0 && val0 != NULL) |
9276 | return val0; | |
cc0e770c JB |
9277 | |
9278 | if (VALUE_LVAL (val0) != lval_memory) | |
9279 | { | |
9280 | /* Our value does not live in memory; it could be a convenience | |
9281 | variable, for instance. Create a not_lval value using val0's | |
9282 | contents. */ | |
9283 | return value_from_contents (type, value_contents (val0)); | |
9284 | } | |
9285 | ||
9286 | return value_from_contents_and_address (type, 0, address); | |
4c4b4cd2 PH |
9287 | } |
9288 | ||
9289 | /* A value representing VAL, but with a standard (static-sized) type | |
9290 | that correctly describes it. Does not necessarily create a new | |
9291 | value. */ | |
9292 | ||
0c3acc09 | 9293 | struct value * |
4c4b4cd2 PH |
9294 | ada_to_fixed_value (struct value *val) |
9295 | { | |
c48db5ca | 9296 | val = unwrap_value (val); |
d8ce9127 | 9297 | val = ada_to_fixed_value_create (value_type (val), value_address (val), val); |
c48db5ca | 9298 | return val; |
14f9c5c9 | 9299 | } |
d2e4a39e | 9300 | \f |
14f9c5c9 | 9301 | |
14f9c5c9 AS |
9302 | /* Attributes */ |
9303 | ||
4c4b4cd2 PH |
9304 | /* Table mapping attribute numbers to names. |
9305 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 9306 | |
d2e4a39e | 9307 | static const char *attribute_names[] = { |
14f9c5c9 AS |
9308 | "<?>", |
9309 | ||
d2e4a39e | 9310 | "first", |
14f9c5c9 AS |
9311 | "last", |
9312 | "length", | |
9313 | "image", | |
14f9c5c9 AS |
9314 | "max", |
9315 | "min", | |
4c4b4cd2 PH |
9316 | "modulus", |
9317 | "pos", | |
9318 | "size", | |
9319 | "tag", | |
14f9c5c9 | 9320 | "val", |
14f9c5c9 AS |
9321 | 0 |
9322 | }; | |
9323 | ||
d2e4a39e | 9324 | const char * |
4c4b4cd2 | 9325 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 9326 | { |
4c4b4cd2 PH |
9327 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
9328 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
9329 | else |
9330 | return attribute_names[0]; | |
9331 | } | |
9332 | ||
4c4b4cd2 | 9333 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 9334 | |
4c4b4cd2 PH |
9335 | static LONGEST |
9336 | pos_atr (struct value *arg) | |
14f9c5c9 | 9337 | { |
24209737 PH |
9338 | struct value *val = coerce_ref (arg); |
9339 | struct type *type = value_type (val); | |
aa715135 | 9340 | LONGEST result; |
14f9c5c9 | 9341 | |
d2e4a39e | 9342 | if (!discrete_type_p (type)) |
323e0a4a | 9343 | error (_("'POS only defined on discrete types")); |
14f9c5c9 | 9344 | |
aa715135 JG |
9345 | if (!discrete_position (type, value_as_long (val), &result)) |
9346 | error (_("enumeration value is invalid: can't find 'POS")); | |
14f9c5c9 | 9347 | |
aa715135 | 9348 | return result; |
4c4b4cd2 PH |
9349 | } |
9350 | ||
9351 | static struct value * | |
3cb382c9 | 9352 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 9353 | { |
3cb382c9 | 9354 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
9355 | } |
9356 | ||
4c4b4cd2 | 9357 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 9358 | |
d2e4a39e AS |
9359 | static struct value * |
9360 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 9361 | { |
d2e4a39e | 9362 | if (!discrete_type_p (type)) |
323e0a4a | 9363 | error (_("'VAL only defined on discrete types")); |
df407dfe | 9364 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 9365 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
9366 | |
9367 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
9368 | { | |
9369 | long pos = value_as_long (arg); | |
5b4ee69b | 9370 | |
14f9c5c9 | 9371 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 9372 | error (_("argument to 'VAL out of range")); |
14e75d8e | 9373 | return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos)); |
14f9c5c9 AS |
9374 | } |
9375 | else | |
9376 | return value_from_longest (type, value_as_long (arg)); | |
9377 | } | |
14f9c5c9 | 9378 | \f |
d2e4a39e | 9379 | |
4c4b4cd2 | 9380 | /* Evaluation */ |
14f9c5c9 | 9381 | |
4c4b4cd2 PH |
9382 | /* True if TYPE appears to be an Ada character type. |
9383 | [At the moment, this is true only for Character and Wide_Character; | |
9384 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 9385 | |
d2e4a39e AS |
9386 | int |
9387 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 9388 | { |
7b9f71f2 JB |
9389 | const char *name; |
9390 | ||
9391 | /* If the type code says it's a character, then assume it really is, | |
9392 | and don't check any further. */ | |
9393 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
9394 | return 1; | |
9395 | ||
9396 | /* Otherwise, assume it's a character type iff it is a discrete type | |
9397 | with a known character type name. */ | |
9398 | name = ada_type_name (type); | |
9399 | return (name != NULL | |
9400 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
9401 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
9402 | && (strcmp (name, "character") == 0 | |
9403 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 9404 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 9405 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
9406 | } |
9407 | ||
4c4b4cd2 | 9408 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
9409 | |
9410 | int | |
ebf56fd3 | 9411 | ada_is_string_type (struct type *type) |
14f9c5c9 | 9412 | { |
61ee279c | 9413 | type = ada_check_typedef (type); |
d2e4a39e | 9414 | if (type != NULL |
14f9c5c9 | 9415 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
9416 | && (ada_is_simple_array_type (type) |
9417 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
9418 | && ada_array_arity (type) == 1) |
9419 | { | |
9420 | struct type *elttype = ada_array_element_type (type, 1); | |
9421 | ||
9422 | return ada_is_character_type (elttype); | |
9423 | } | |
d2e4a39e | 9424 | else |
14f9c5c9 AS |
9425 | return 0; |
9426 | } | |
9427 | ||
5bf03f13 JB |
9428 | /* The compiler sometimes provides a parallel XVS type for a given |
9429 | PAD type. Normally, it is safe to follow the PAD type directly, | |
9430 | but older versions of the compiler have a bug that causes the offset | |
9431 | of its "F" field to be wrong. Following that field in that case | |
9432 | would lead to incorrect results, but this can be worked around | |
9433 | by ignoring the PAD type and using the associated XVS type instead. | |
9434 | ||
9435 | Set to True if the debugger should trust the contents of PAD types. | |
9436 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
9437 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
9438 | |
9439 | /* True if TYPE is a struct type introduced by the compiler to force the | |
9440 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 9441 | distinctive name. */ |
14f9c5c9 AS |
9442 | |
9443 | int | |
ebf56fd3 | 9444 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 9445 | { |
61ee279c | 9446 | type = ada_check_typedef (type); |
714e53ab | 9447 | |
5bf03f13 | 9448 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
9449 | return 0; |
9450 | ||
14f9c5c9 | 9451 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
9452 | && TYPE_NFIELDS (type) == 1 |
9453 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
9454 | } |
9455 | ||
9456 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 9457 | the parallel type. */ |
14f9c5c9 | 9458 | |
d2e4a39e AS |
9459 | struct type * |
9460 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 9461 | { |
d2e4a39e AS |
9462 | struct type *real_type_namer; |
9463 | struct type *raw_real_type; | |
14f9c5c9 AS |
9464 | |
9465 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
9466 | return raw_type; | |
9467 | ||
284614f0 JB |
9468 | if (ada_is_aligner_type (raw_type)) |
9469 | /* The encoding specifies that we should always use the aligner type. | |
9470 | So, even if this aligner type has an associated XVS type, we should | |
9471 | simply ignore it. | |
9472 | ||
9473 | According to the compiler gurus, an XVS type parallel to an aligner | |
9474 | type may exist because of a stabs limitation. In stabs, aligner | |
9475 | types are empty because the field has a variable-sized type, and | |
9476 | thus cannot actually be used as an aligner type. As a result, | |
9477 | we need the associated parallel XVS type to decode the type. | |
9478 | Since the policy in the compiler is to not change the internal | |
9479 | representation based on the debugging info format, we sometimes | |
9480 | end up having a redundant XVS type parallel to the aligner type. */ | |
9481 | return raw_type; | |
9482 | ||
14f9c5c9 | 9483 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 9484 | if (real_type_namer == NULL |
14f9c5c9 AS |
9485 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
9486 | || TYPE_NFIELDS (real_type_namer) != 1) | |
9487 | return raw_type; | |
9488 | ||
f80d3ff2 JB |
9489 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
9490 | { | |
9491 | /* This is an older encoding form where the base type needs to be | |
9492 | looked up by name. We prefer the newer enconding because it is | |
9493 | more efficient. */ | |
9494 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
9495 | if (raw_real_type == NULL) | |
9496 | return raw_type; | |
9497 | else | |
9498 | return raw_real_type; | |
9499 | } | |
9500 | ||
9501 | /* The field in our XVS type is a reference to the base type. */ | |
9502 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 9503 | } |
14f9c5c9 | 9504 | |
4c4b4cd2 | 9505 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 9506 | |
d2e4a39e AS |
9507 | struct type * |
9508 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
9509 | { |
9510 | if (ada_is_aligner_type (type)) | |
9511 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
9512 | else | |
9513 | return ada_get_base_type (type); | |
9514 | } | |
9515 | ||
9516 | ||
9517 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 9518 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 9519 | |
fc1a4b47 AC |
9520 | const gdb_byte * |
9521 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 9522 | { |
d2e4a39e | 9523 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 9524 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
9525 | valaddr + |
9526 | TYPE_FIELD_BITPOS (type, | |
9527 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
9528 | else |
9529 | return valaddr; | |
9530 | } | |
9531 | ||
4c4b4cd2 PH |
9532 | |
9533 | ||
14f9c5c9 | 9534 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 9535 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
9536 | const char * |
9537 | ada_enum_name (const char *name) | |
14f9c5c9 | 9538 | { |
4c4b4cd2 PH |
9539 | static char *result; |
9540 | static size_t result_len = 0; | |
e6a959d6 | 9541 | const char *tmp; |
14f9c5c9 | 9542 | |
4c4b4cd2 PH |
9543 | /* First, unqualify the enumeration name: |
9544 | 1. Search for the last '.' character. If we find one, then skip | |
177b42fe | 9545 | all the preceding characters, the unqualified name starts |
76a01679 | 9546 | right after that dot. |
4c4b4cd2 | 9547 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
9548 | translates dots into "__". Search forward for double underscores, |
9549 | but stop searching when we hit an overloading suffix, which is | |
9550 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 9551 | |
c3e5cd34 PH |
9552 | tmp = strrchr (name, '.'); |
9553 | if (tmp != NULL) | |
4c4b4cd2 PH |
9554 | name = tmp + 1; |
9555 | else | |
14f9c5c9 | 9556 | { |
4c4b4cd2 PH |
9557 | while ((tmp = strstr (name, "__")) != NULL) |
9558 | { | |
9559 | if (isdigit (tmp[2])) | |
9560 | break; | |
9561 | else | |
9562 | name = tmp + 2; | |
9563 | } | |
14f9c5c9 AS |
9564 | } |
9565 | ||
9566 | if (name[0] == 'Q') | |
9567 | { | |
14f9c5c9 | 9568 | int v; |
5b4ee69b | 9569 | |
14f9c5c9 | 9570 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
9571 | { |
9572 | if (sscanf (name + 2, "%x", &v) != 1) | |
9573 | return name; | |
9574 | } | |
14f9c5c9 | 9575 | else |
4c4b4cd2 | 9576 | return name; |
14f9c5c9 | 9577 | |
4c4b4cd2 | 9578 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 9579 | if (isascii (v) && isprint (v)) |
88c15c34 | 9580 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 9581 | else if (name[1] == 'U') |
88c15c34 | 9582 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 9583 | else |
88c15c34 | 9584 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
9585 | |
9586 | return result; | |
9587 | } | |
d2e4a39e | 9588 | else |
4c4b4cd2 | 9589 | { |
c3e5cd34 PH |
9590 | tmp = strstr (name, "__"); |
9591 | if (tmp == NULL) | |
9592 | tmp = strstr (name, "$"); | |
9593 | if (tmp != NULL) | |
4c4b4cd2 PH |
9594 | { |
9595 | GROW_VECT (result, result_len, tmp - name + 1); | |
9596 | strncpy (result, name, tmp - name); | |
9597 | result[tmp - name] = '\0'; | |
9598 | return result; | |
9599 | } | |
9600 | ||
9601 | return name; | |
9602 | } | |
14f9c5c9 AS |
9603 | } |
9604 | ||
14f9c5c9 AS |
9605 | /* Evaluate the subexpression of EXP starting at *POS as for |
9606 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 9607 | expression. */ |
14f9c5c9 | 9608 | |
d2e4a39e AS |
9609 | static struct value * |
9610 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 9611 | { |
4b27a620 | 9612 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
9613 | } |
9614 | ||
9615 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 9616 | value it wraps. */ |
14f9c5c9 | 9617 | |
d2e4a39e AS |
9618 | static struct value * |
9619 | unwrap_value (struct value *val) | |
14f9c5c9 | 9620 | { |
df407dfe | 9621 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 9622 | |
14f9c5c9 AS |
9623 | if (ada_is_aligner_type (type)) |
9624 | { | |
de4d072f | 9625 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 9626 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 9627 | |
14f9c5c9 | 9628 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 9629 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
9630 | |
9631 | return unwrap_value (v); | |
9632 | } | |
d2e4a39e | 9633 | else |
14f9c5c9 | 9634 | { |
d2e4a39e | 9635 | struct type *raw_real_type = |
61ee279c | 9636 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 9637 | |
5bf03f13 JB |
9638 | /* If there is no parallel XVS or XVE type, then the value is |
9639 | already unwrapped. Return it without further modification. */ | |
9640 | if ((type == raw_real_type) | |
9641 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
9642 | return val; | |
14f9c5c9 | 9643 | |
d2e4a39e | 9644 | return |
4c4b4cd2 PH |
9645 | coerce_unspec_val_to_type |
9646 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 9647 | value_address (val), |
1ed6ede0 | 9648 | NULL, 1)); |
14f9c5c9 AS |
9649 | } |
9650 | } | |
d2e4a39e AS |
9651 | |
9652 | static struct value * | |
50eff16b | 9653 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 9654 | { |
50eff16b UW |
9655 | struct value *scale = ada_scaling_factor (value_type (arg)); |
9656 | arg = value_cast (value_type (scale), arg); | |
14f9c5c9 | 9657 | |
50eff16b UW |
9658 | arg = value_binop (arg, scale, BINOP_MUL); |
9659 | return value_cast (type, arg); | |
14f9c5c9 AS |
9660 | } |
9661 | ||
d2e4a39e | 9662 | static struct value * |
50eff16b | 9663 | cast_to_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 9664 | { |
50eff16b UW |
9665 | if (type == value_type (arg)) |
9666 | return arg; | |
5b4ee69b | 9667 | |
50eff16b UW |
9668 | struct value *scale = ada_scaling_factor (type); |
9669 | if (ada_is_fixed_point_type (value_type (arg))) | |
9670 | arg = cast_from_fixed (value_type (scale), arg); | |
9671 | else | |
9672 | arg = value_cast (value_type (scale), arg); | |
9673 | ||
9674 | arg = value_binop (arg, scale, BINOP_DIV); | |
9675 | return value_cast (type, arg); | |
14f9c5c9 AS |
9676 | } |
9677 | ||
d99dcf51 JB |
9678 | /* Given two array types T1 and T2, return nonzero iff both arrays |
9679 | contain the same number of elements. */ | |
9680 | ||
9681 | static int | |
9682 | ada_same_array_size_p (struct type *t1, struct type *t2) | |
9683 | { | |
9684 | LONGEST lo1, hi1, lo2, hi2; | |
9685 | ||
9686 | /* Get the array bounds in order to verify that the size of | |
9687 | the two arrays match. */ | |
9688 | if (!get_array_bounds (t1, &lo1, &hi1) | |
9689 | || !get_array_bounds (t2, &lo2, &hi2)) | |
9690 | error (_("unable to determine array bounds")); | |
9691 | ||
9692 | /* To make things easier for size comparison, normalize a bit | |
9693 | the case of empty arrays by making sure that the difference | |
9694 | between upper bound and lower bound is always -1. */ | |
9695 | if (lo1 > hi1) | |
9696 | hi1 = lo1 - 1; | |
9697 | if (lo2 > hi2) | |
9698 | hi2 = lo2 - 1; | |
9699 | ||
9700 | return (hi1 - lo1 == hi2 - lo2); | |
9701 | } | |
9702 | ||
9703 | /* Assuming that VAL is an array of integrals, and TYPE represents | |
9704 | an array with the same number of elements, but with wider integral | |
9705 | elements, return an array "casted" to TYPE. In practice, this | |
9706 | means that the returned array is built by casting each element | |
9707 | of the original array into TYPE's (wider) element type. */ | |
9708 | ||
9709 | static struct value * | |
9710 | ada_promote_array_of_integrals (struct type *type, struct value *val) | |
9711 | { | |
9712 | struct type *elt_type = TYPE_TARGET_TYPE (type); | |
9713 | LONGEST lo, hi; | |
9714 | struct value *res; | |
9715 | LONGEST i; | |
9716 | ||
9717 | /* Verify that both val and type are arrays of scalars, and | |
9718 | that the size of val's elements is smaller than the size | |
9719 | of type's element. */ | |
9720 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY); | |
9721 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type))); | |
9722 | gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY); | |
9723 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val)))); | |
9724 | gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type)) | |
9725 | > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val)))); | |
9726 | ||
9727 | if (!get_array_bounds (type, &lo, &hi)) | |
9728 | error (_("unable to determine array bounds")); | |
9729 | ||
9730 | res = allocate_value (type); | |
9731 | ||
9732 | /* Promote each array element. */ | |
9733 | for (i = 0; i < hi - lo + 1; i++) | |
9734 | { | |
9735 | struct value *elt = value_cast (elt_type, value_subscript (val, lo + i)); | |
9736 | ||
9737 | memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)), | |
9738 | value_contents_all (elt), TYPE_LENGTH (elt_type)); | |
9739 | } | |
9740 | ||
9741 | return res; | |
9742 | } | |
9743 | ||
4c4b4cd2 PH |
9744 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
9745 | return the converted value. */ | |
9746 | ||
d2e4a39e AS |
9747 | static struct value * |
9748 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 9749 | { |
df407dfe | 9750 | struct type *type2 = value_type (val); |
5b4ee69b | 9751 | |
14f9c5c9 AS |
9752 | if (type == type2) |
9753 | return val; | |
9754 | ||
61ee279c PH |
9755 | type2 = ada_check_typedef (type2); |
9756 | type = ada_check_typedef (type); | |
14f9c5c9 | 9757 | |
d2e4a39e AS |
9758 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
9759 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
9760 | { |
9761 | val = ada_value_ind (val); | |
df407dfe | 9762 | type2 = value_type (val); |
14f9c5c9 AS |
9763 | } |
9764 | ||
d2e4a39e | 9765 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
9766 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
9767 | { | |
d99dcf51 JB |
9768 | if (!ada_same_array_size_p (type, type2)) |
9769 | error (_("cannot assign arrays of different length")); | |
9770 | ||
9771 | if (is_integral_type (TYPE_TARGET_TYPE (type)) | |
9772 | && is_integral_type (TYPE_TARGET_TYPE (type2)) | |
9773 | && TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9774 | < TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
9775 | { | |
9776 | /* Allow implicit promotion of the array elements to | |
9777 | a wider type. */ | |
9778 | return ada_promote_array_of_integrals (type, val); | |
9779 | } | |
9780 | ||
9781 | if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9782 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
323e0a4a | 9783 | error (_("Incompatible types in assignment")); |
04624583 | 9784 | deprecated_set_value_type (val, type); |
14f9c5c9 | 9785 | } |
d2e4a39e | 9786 | return val; |
14f9c5c9 AS |
9787 | } |
9788 | ||
4c4b4cd2 PH |
9789 | static struct value * |
9790 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
9791 | { | |
9792 | struct value *val; | |
9793 | struct type *type1, *type2; | |
9794 | LONGEST v, v1, v2; | |
9795 | ||
994b9211 AC |
9796 | arg1 = coerce_ref (arg1); |
9797 | arg2 = coerce_ref (arg2); | |
18af8284 JB |
9798 | type1 = get_base_type (ada_check_typedef (value_type (arg1))); |
9799 | type2 = get_base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 9800 | |
76a01679 JB |
9801 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
9802 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
9803 | return value_binop (arg1, arg2, op); |
9804 | ||
76a01679 | 9805 | switch (op) |
4c4b4cd2 PH |
9806 | { |
9807 | case BINOP_MOD: | |
9808 | case BINOP_DIV: | |
9809 | case BINOP_REM: | |
9810 | break; | |
9811 | default: | |
9812 | return value_binop (arg1, arg2, op); | |
9813 | } | |
9814 | ||
9815 | v2 = value_as_long (arg2); | |
9816 | if (v2 == 0) | |
323e0a4a | 9817 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
9818 | |
9819 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
9820 | return value_binop (arg1, arg2, op); | |
9821 | ||
9822 | v1 = value_as_long (arg1); | |
9823 | switch (op) | |
9824 | { | |
9825 | case BINOP_DIV: | |
9826 | v = v1 / v2; | |
76a01679 JB |
9827 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
9828 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
9829 | break; |
9830 | case BINOP_REM: | |
9831 | v = v1 % v2; | |
76a01679 JB |
9832 | if (v * v1 < 0) |
9833 | v -= v2; | |
4c4b4cd2 PH |
9834 | break; |
9835 | default: | |
9836 | /* Should not reach this point. */ | |
9837 | v = 0; | |
9838 | } | |
9839 | ||
9840 | val = allocate_value (type1); | |
990a07ab | 9841 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
9842 | TYPE_LENGTH (value_type (val)), |
9843 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
9844 | return val; |
9845 | } | |
9846 | ||
9847 | static int | |
9848 | ada_value_equal (struct value *arg1, struct value *arg2) | |
9849 | { | |
df407dfe AC |
9850 | if (ada_is_direct_array_type (value_type (arg1)) |
9851 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 9852 | { |
79e8fcaa JB |
9853 | struct type *arg1_type, *arg2_type; |
9854 | ||
f58b38bf JB |
9855 | /* Automatically dereference any array reference before |
9856 | we attempt to perform the comparison. */ | |
9857 | arg1 = ada_coerce_ref (arg1); | |
9858 | arg2 = ada_coerce_ref (arg2); | |
79e8fcaa | 9859 | |
4c4b4cd2 PH |
9860 | arg1 = ada_coerce_to_simple_array (arg1); |
9861 | arg2 = ada_coerce_to_simple_array (arg2); | |
79e8fcaa JB |
9862 | |
9863 | arg1_type = ada_check_typedef (value_type (arg1)); | |
9864 | arg2_type = ada_check_typedef (value_type (arg2)); | |
9865 | ||
9866 | if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY | |
9867 | || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 9868 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 9869 | /* FIXME: The following works only for types whose |
76a01679 JB |
9870 | representations use all bits (no padding or undefined bits) |
9871 | and do not have user-defined equality. */ | |
79e8fcaa JB |
9872 | return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type) |
9873 | && memcmp (value_contents (arg1), value_contents (arg2), | |
9874 | TYPE_LENGTH (arg1_type)) == 0); | |
4c4b4cd2 PH |
9875 | } |
9876 | return value_equal (arg1, arg2); | |
9877 | } | |
9878 | ||
52ce6436 PH |
9879 | /* Total number of component associations in the aggregate starting at |
9880 | index PC in EXP. Assumes that index PC is the start of an | |
0963b4bd | 9881 | OP_AGGREGATE. */ |
52ce6436 PH |
9882 | |
9883 | static int | |
9884 | num_component_specs (struct expression *exp, int pc) | |
9885 | { | |
9886 | int n, m, i; | |
5b4ee69b | 9887 | |
52ce6436 PH |
9888 | m = exp->elts[pc + 1].longconst; |
9889 | pc += 3; | |
9890 | n = 0; | |
9891 | for (i = 0; i < m; i += 1) | |
9892 | { | |
9893 | switch (exp->elts[pc].opcode) | |
9894 | { | |
9895 | default: | |
9896 | n += 1; | |
9897 | break; | |
9898 | case OP_CHOICES: | |
9899 | n += exp->elts[pc + 1].longconst; | |
9900 | break; | |
9901 | } | |
9902 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
9903 | } | |
9904 | return n; | |
9905 | } | |
9906 | ||
9907 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
9908 | component of LHS (a simple array or a record), updating *POS past | |
9909 | the expression, assuming that LHS is contained in CONTAINER. Does | |
9910 | not modify the inferior's memory, nor does it modify LHS (unless | |
9911 | LHS == CONTAINER). */ | |
9912 | ||
9913 | static void | |
9914 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
9915 | struct expression *exp, int *pos) | |
9916 | { | |
9917 | struct value *mark = value_mark (); | |
9918 | struct value *elt; | |
0e2da9f0 | 9919 | struct type *lhs_type = check_typedef (value_type (lhs)); |
5b4ee69b | 9920 | |
0e2da9f0 | 9921 | if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY) |
52ce6436 | 9922 | { |
22601c15 UW |
9923 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
9924 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 9925 | |
52ce6436 PH |
9926 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
9927 | } | |
9928 | else | |
9929 | { | |
9930 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
c48db5ca | 9931 | elt = ada_to_fixed_value (elt); |
52ce6436 PH |
9932 | } |
9933 | ||
9934 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
9935 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
9936 | else | |
9937 | value_assign_to_component (container, elt, | |
9938 | ada_evaluate_subexp (NULL, exp, pos, | |
9939 | EVAL_NORMAL)); | |
9940 | ||
9941 | value_free_to_mark (mark); | |
9942 | } | |
9943 | ||
9944 | /* Assuming that LHS represents an lvalue having a record or array | |
9945 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
9946 | of that aggregate's value to LHS, advancing *POS past the | |
9947 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
9948 | lvalue containing LHS (possibly LHS itself). Does not modify | |
9949 | the inferior's memory, nor does it modify the contents of | |
0963b4bd | 9950 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ |
52ce6436 PH |
9951 | |
9952 | static struct value * | |
9953 | assign_aggregate (struct value *container, | |
9954 | struct value *lhs, struct expression *exp, | |
9955 | int *pos, enum noside noside) | |
9956 | { | |
9957 | struct type *lhs_type; | |
9958 | int n = exp->elts[*pos+1].longconst; | |
9959 | LONGEST low_index, high_index; | |
9960 | int num_specs; | |
9961 | LONGEST *indices; | |
9962 | int max_indices, num_indices; | |
52ce6436 | 9963 | int i; |
52ce6436 PH |
9964 | |
9965 | *pos += 3; | |
9966 | if (noside != EVAL_NORMAL) | |
9967 | { | |
52ce6436 PH |
9968 | for (i = 0; i < n; i += 1) |
9969 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9970 | return container; | |
9971 | } | |
9972 | ||
9973 | container = ada_coerce_ref (container); | |
9974 | if (ada_is_direct_array_type (value_type (container))) | |
9975 | container = ada_coerce_to_simple_array (container); | |
9976 | lhs = ada_coerce_ref (lhs); | |
9977 | if (!deprecated_value_modifiable (lhs)) | |
9978 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
9979 | ||
0e2da9f0 | 9980 | lhs_type = check_typedef (value_type (lhs)); |
52ce6436 PH |
9981 | if (ada_is_direct_array_type (lhs_type)) |
9982 | { | |
9983 | lhs = ada_coerce_to_simple_array (lhs); | |
0e2da9f0 | 9984 | lhs_type = check_typedef (value_type (lhs)); |
52ce6436 PH |
9985 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); |
9986 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
52ce6436 PH |
9987 | } |
9988 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
9989 | { | |
9990 | low_index = 0; | |
9991 | high_index = num_visible_fields (lhs_type) - 1; | |
52ce6436 PH |
9992 | } |
9993 | else | |
9994 | error (_("Left-hand side must be array or record.")); | |
9995 | ||
9996 | num_specs = num_component_specs (exp, *pos - 3); | |
9997 | max_indices = 4 * num_specs + 4; | |
8d749320 | 9998 | indices = XALLOCAVEC (LONGEST, max_indices); |
52ce6436 PH |
9999 | indices[0] = indices[1] = low_index - 1; |
10000 | indices[2] = indices[3] = high_index + 1; | |
10001 | num_indices = 4; | |
10002 | ||
10003 | for (i = 0; i < n; i += 1) | |
10004 | { | |
10005 | switch (exp->elts[*pos].opcode) | |
10006 | { | |
1fbf5ada JB |
10007 | case OP_CHOICES: |
10008 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
10009 | &num_indices, max_indices, | |
10010 | low_index, high_index); | |
10011 | break; | |
10012 | case OP_POSITIONAL: | |
10013 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
52ce6436 PH |
10014 | &num_indices, max_indices, |
10015 | low_index, high_index); | |
1fbf5ada JB |
10016 | break; |
10017 | case OP_OTHERS: | |
10018 | if (i != n-1) | |
10019 | error (_("Misplaced 'others' clause")); | |
10020 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
10021 | num_indices, low_index, high_index); | |
10022 | break; | |
10023 | default: | |
10024 | error (_("Internal error: bad aggregate clause")); | |
52ce6436 PH |
10025 | } |
10026 | } | |
10027 | ||
10028 | return container; | |
10029 | } | |
10030 | ||
10031 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
10032 | construct at *POS, updating *POS past the construct, given that | |
10033 | the positions are relative to lower bound LOW, where HIGH is the | |
10034 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
10035 | updating *NUM_INDICES as needed. CONTAINER is as for | |
0963b4bd | 10036 | assign_aggregate. */ |
52ce6436 PH |
10037 | static void |
10038 | aggregate_assign_positional (struct value *container, | |
10039 | struct value *lhs, struct expression *exp, | |
10040 | int *pos, LONGEST *indices, int *num_indices, | |
10041 | int max_indices, LONGEST low, LONGEST high) | |
10042 | { | |
10043 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
10044 | ||
10045 | if (ind - 1 == high) | |
e1d5a0d2 | 10046 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
10047 | if (ind <= high) |
10048 | { | |
10049 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
10050 | *pos += 3; | |
10051 | assign_component (container, lhs, ind, exp, pos); | |
10052 | } | |
10053 | else | |
10054 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
10055 | } | |
10056 | ||
10057 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
10058 | construct at *POS, updating *POS past the construct, given that | |
10059 | the allowable indices are LOW..HIGH. Record the indices assigned | |
10060 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
0963b4bd | 10061 | needed. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
10062 | static void |
10063 | aggregate_assign_from_choices (struct value *container, | |
10064 | struct value *lhs, struct expression *exp, | |
10065 | int *pos, LONGEST *indices, int *num_indices, | |
10066 | int max_indices, LONGEST low, LONGEST high) | |
10067 | { | |
10068 | int j; | |
10069 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
10070 | int choice_pos, expr_pc; | |
10071 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
10072 | ||
10073 | choice_pos = *pos += 3; | |
10074 | ||
10075 | for (j = 0; j < n_choices; j += 1) | |
10076 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
10077 | expr_pc = *pos; | |
10078 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
10079 | ||
10080 | for (j = 0; j < n_choices; j += 1) | |
10081 | { | |
10082 | LONGEST lower, upper; | |
10083 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 10084 | |
52ce6436 PH |
10085 | if (op == OP_DISCRETE_RANGE) |
10086 | { | |
10087 | choice_pos += 1; | |
10088 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
10089 | EVAL_NORMAL)); | |
10090 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
10091 | EVAL_NORMAL)); | |
10092 | } | |
10093 | else if (is_array) | |
10094 | { | |
10095 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
10096 | EVAL_NORMAL)); | |
10097 | upper = lower; | |
10098 | } | |
10099 | else | |
10100 | { | |
10101 | int ind; | |
0d5cff50 | 10102 | const char *name; |
5b4ee69b | 10103 | |
52ce6436 PH |
10104 | switch (op) |
10105 | { | |
10106 | case OP_NAME: | |
10107 | name = &exp->elts[choice_pos + 2].string; | |
10108 | break; | |
10109 | case OP_VAR_VALUE: | |
10110 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
10111 | break; | |
10112 | default: | |
10113 | error (_("Invalid record component association.")); | |
10114 | } | |
10115 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
10116 | ind = 0; | |
10117 | if (! find_struct_field (name, value_type (lhs), 0, | |
10118 | NULL, NULL, NULL, NULL, &ind)) | |
10119 | error (_("Unknown component name: %s."), name); | |
10120 | lower = upper = ind; | |
10121 | } | |
10122 | ||
10123 | if (lower <= upper && (lower < low || upper > high)) | |
10124 | error (_("Index in component association out of bounds.")); | |
10125 | ||
10126 | add_component_interval (lower, upper, indices, num_indices, | |
10127 | max_indices); | |
10128 | while (lower <= upper) | |
10129 | { | |
10130 | int pos1; | |
5b4ee69b | 10131 | |
52ce6436 PH |
10132 | pos1 = expr_pc; |
10133 | assign_component (container, lhs, lower, exp, &pos1); | |
10134 | lower += 1; | |
10135 | } | |
10136 | } | |
10137 | } | |
10138 | ||
10139 | /* Assign the value of the expression in the OP_OTHERS construct in | |
10140 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
10141 | have not been previously assigned. The index intervals already assigned | |
10142 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
0963b4bd | 10143 | OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
10144 | static void |
10145 | aggregate_assign_others (struct value *container, | |
10146 | struct value *lhs, struct expression *exp, | |
10147 | int *pos, LONGEST *indices, int num_indices, | |
10148 | LONGEST low, LONGEST high) | |
10149 | { | |
10150 | int i; | |
5ce64950 | 10151 | int expr_pc = *pos + 1; |
52ce6436 PH |
10152 | |
10153 | for (i = 0; i < num_indices - 2; i += 2) | |
10154 | { | |
10155 | LONGEST ind; | |
5b4ee69b | 10156 | |
52ce6436 PH |
10157 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
10158 | { | |
5ce64950 | 10159 | int localpos; |
5b4ee69b | 10160 | |
5ce64950 MS |
10161 | localpos = expr_pc; |
10162 | assign_component (container, lhs, ind, exp, &localpos); | |
52ce6436 PH |
10163 | } |
10164 | } | |
10165 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
10166 | } | |
10167 | ||
10168 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
10169 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
10170 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
10171 | MAX_SIZE. The resulting intervals do not overlap. */ | |
10172 | static void | |
10173 | add_component_interval (LONGEST low, LONGEST high, | |
10174 | LONGEST* indices, int *size, int max_size) | |
10175 | { | |
10176 | int i, j; | |
5b4ee69b | 10177 | |
52ce6436 PH |
10178 | for (i = 0; i < *size; i += 2) { |
10179 | if (high >= indices[i] && low <= indices[i + 1]) | |
10180 | { | |
10181 | int kh; | |
5b4ee69b | 10182 | |
52ce6436 PH |
10183 | for (kh = i + 2; kh < *size; kh += 2) |
10184 | if (high < indices[kh]) | |
10185 | break; | |
10186 | if (low < indices[i]) | |
10187 | indices[i] = low; | |
10188 | indices[i + 1] = indices[kh - 1]; | |
10189 | if (high > indices[i + 1]) | |
10190 | indices[i + 1] = high; | |
10191 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
10192 | *size -= kh - i - 2; | |
10193 | return; | |
10194 | } | |
10195 | else if (high < indices[i]) | |
10196 | break; | |
10197 | } | |
10198 | ||
10199 | if (*size == max_size) | |
10200 | error (_("Internal error: miscounted aggregate components.")); | |
10201 | *size += 2; | |
10202 | for (j = *size-1; j >= i+2; j -= 1) | |
10203 | indices[j] = indices[j - 2]; | |
10204 | indices[i] = low; | |
10205 | indices[i + 1] = high; | |
10206 | } | |
10207 | ||
6e48bd2c JB |
10208 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
10209 | is different. */ | |
10210 | ||
10211 | static struct value * | |
b7e22850 | 10212 | ada_value_cast (struct type *type, struct value *arg2) |
6e48bd2c JB |
10213 | { |
10214 | if (type == ada_check_typedef (value_type (arg2))) | |
10215 | return arg2; | |
10216 | ||
10217 | if (ada_is_fixed_point_type (type)) | |
95f39a5b | 10218 | return cast_to_fixed (type, arg2); |
6e48bd2c JB |
10219 | |
10220 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 10221 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
10222 | |
10223 | return value_cast (type, arg2); | |
10224 | } | |
10225 | ||
284614f0 JB |
10226 | /* Evaluating Ada expressions, and printing their result. |
10227 | ------------------------------------------------------ | |
10228 | ||
21649b50 JB |
10229 | 1. Introduction: |
10230 | ---------------- | |
10231 | ||
284614f0 JB |
10232 | We usually evaluate an Ada expression in order to print its value. |
10233 | We also evaluate an expression in order to print its type, which | |
10234 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
10235 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
10236 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
10237 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
10238 | similar. | |
10239 | ||
10240 | Evaluating expressions is a little more complicated for Ada entities | |
10241 | than it is for entities in languages such as C. The main reason for | |
10242 | this is that Ada provides types whose definition might be dynamic. | |
10243 | One example of such types is variant records. Or another example | |
10244 | would be an array whose bounds can only be known at run time. | |
10245 | ||
10246 | The following description is a general guide as to what should be | |
10247 | done (and what should NOT be done) in order to evaluate an expression | |
10248 | involving such types, and when. This does not cover how the semantic | |
10249 | information is encoded by GNAT as this is covered separatly. For the | |
10250 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
10251 | in the GNAT sources. | |
10252 | ||
10253 | Ideally, we should embed each part of this description next to its | |
10254 | associated code. Unfortunately, the amount of code is so vast right | |
10255 | now that it's hard to see whether the code handling a particular | |
10256 | situation might be duplicated or not. One day, when the code is | |
10257 | cleaned up, this guide might become redundant with the comments | |
10258 | inserted in the code, and we might want to remove it. | |
10259 | ||
21649b50 JB |
10260 | 2. ``Fixing'' an Entity, the Simple Case: |
10261 | ----------------------------------------- | |
10262 | ||
284614f0 JB |
10263 | When evaluating Ada expressions, the tricky issue is that they may |
10264 | reference entities whose type contents and size are not statically | |
10265 | known. Consider for instance a variant record: | |
10266 | ||
10267 | type Rec (Empty : Boolean := True) is record | |
10268 | case Empty is | |
10269 | when True => null; | |
10270 | when False => Value : Integer; | |
10271 | end case; | |
10272 | end record; | |
10273 | Yes : Rec := (Empty => False, Value => 1); | |
10274 | No : Rec := (empty => True); | |
10275 | ||
10276 | The size and contents of that record depends on the value of the | |
10277 | descriminant (Rec.Empty). At this point, neither the debugging | |
10278 | information nor the associated type structure in GDB are able to | |
10279 | express such dynamic types. So what the debugger does is to create | |
10280 | "fixed" versions of the type that applies to the specific object. | |
10281 | We also informally refer to this opperation as "fixing" an object, | |
10282 | which means creating its associated fixed type. | |
10283 | ||
10284 | Example: when printing the value of variable "Yes" above, its fixed | |
10285 | type would look like this: | |
10286 | ||
10287 | type Rec is record | |
10288 | Empty : Boolean; | |
10289 | Value : Integer; | |
10290 | end record; | |
10291 | ||
10292 | On the other hand, if we printed the value of "No", its fixed type | |
10293 | would become: | |
10294 | ||
10295 | type Rec is record | |
10296 | Empty : Boolean; | |
10297 | end record; | |
10298 | ||
10299 | Things become a little more complicated when trying to fix an entity | |
10300 | with a dynamic type that directly contains another dynamic type, | |
10301 | such as an array of variant records, for instance. There are | |
10302 | two possible cases: Arrays, and records. | |
10303 | ||
21649b50 JB |
10304 | 3. ``Fixing'' Arrays: |
10305 | --------------------- | |
10306 | ||
10307 | The type structure in GDB describes an array in terms of its bounds, | |
10308 | and the type of its elements. By design, all elements in the array | |
10309 | have the same type and we cannot represent an array of variant elements | |
10310 | using the current type structure in GDB. When fixing an array, | |
10311 | we cannot fix the array element, as we would potentially need one | |
10312 | fixed type per element of the array. As a result, the best we can do | |
10313 | when fixing an array is to produce an array whose bounds and size | |
10314 | are correct (allowing us to read it from memory), but without having | |
10315 | touched its element type. Fixing each element will be done later, | |
10316 | when (if) necessary. | |
10317 | ||
10318 | Arrays are a little simpler to handle than records, because the same | |
10319 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 10320 | the amount of space actually used by each element differs from element |
21649b50 | 10321 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
10322 | |
10323 | type Rec_Array is array (1 .. 2) of Rec; | |
10324 | ||
1b536f04 JB |
10325 | The actual amount of memory occupied by each element might be different |
10326 | from element to element, depending on the value of their discriminant. | |
21649b50 | 10327 | But the amount of space reserved for each element in the array remains |
1b536f04 | 10328 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
10329 | the debugging information available, from which we can then determine |
10330 | the array size (we multiply the number of elements of the array by | |
10331 | the size of each element). | |
10332 | ||
10333 | The simplest case is when we have an array of a constrained element | |
10334 | type. For instance, consider the following type declarations: | |
10335 | ||
10336 | type Bounded_String (Max_Size : Integer) is | |
10337 | Length : Integer; | |
10338 | Buffer : String (1 .. Max_Size); | |
10339 | end record; | |
10340 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
10341 | ||
10342 | In this case, the compiler describes the array as an array of | |
10343 | variable-size elements (identified by its XVS suffix) for which | |
10344 | the size can be read in the parallel XVZ variable. | |
10345 | ||
10346 | In the case of an array of an unconstrained element type, the compiler | |
10347 | wraps the array element inside a private PAD type. This type should not | |
10348 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
10349 | that we also use the adjective "aligner" in our code to designate |
10350 | these wrapper types. | |
10351 | ||
1b536f04 | 10352 | In some cases, the size allocated for each element is statically |
21649b50 JB |
10353 | known. In that case, the PAD type already has the correct size, |
10354 | and the array element should remain unfixed. | |
10355 | ||
10356 | But there are cases when this size is not statically known. | |
10357 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
10358 | |
10359 | type Dynamic is array (1 .. Five) of Integer; | |
10360 | type Wrapper (Has_Length : Boolean := False) is record | |
10361 | Data : Dynamic; | |
10362 | case Has_Length is | |
10363 | when True => Length : Integer; | |
10364 | when False => null; | |
10365 | end case; | |
10366 | end record; | |
10367 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
10368 | ||
10369 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
10370 | Data => (others => 17), | |
10371 | Length => 1)); | |
10372 | ||
10373 | ||
10374 | The debugging info would describe variable Hello as being an | |
10375 | array of a PAD type. The size of that PAD type is not statically | |
10376 | known, but can be determined using a parallel XVZ variable. | |
10377 | In that case, a copy of the PAD type with the correct size should | |
10378 | be used for the fixed array. | |
10379 | ||
21649b50 JB |
10380 | 3. ``Fixing'' record type objects: |
10381 | ---------------------------------- | |
10382 | ||
10383 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
10384 | record types. In this case, in order to compute the associated |
10385 | fixed type, we need to determine the size and offset of each of | |
10386 | its components. This, in turn, requires us to compute the fixed | |
10387 | type of each of these components. | |
10388 | ||
10389 | Consider for instance the example: | |
10390 | ||
10391 | type Bounded_String (Max_Size : Natural) is record | |
10392 | Str : String (1 .. Max_Size); | |
10393 | Length : Natural; | |
10394 | end record; | |
10395 | My_String : Bounded_String (Max_Size => 10); | |
10396 | ||
10397 | In that case, the position of field "Length" depends on the size | |
10398 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 10399 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
10400 | we need to fix the type of field Str. Therefore, fixing a variant |
10401 | record requires us to fix each of its components. | |
10402 | ||
10403 | However, if a component does not have a dynamic size, the component | |
10404 | should not be fixed. In particular, fields that use a PAD type | |
10405 | should not fixed. Here is an example where this might happen | |
10406 | (assuming type Rec above): | |
10407 | ||
10408 | type Container (Big : Boolean) is record | |
10409 | First : Rec; | |
10410 | After : Integer; | |
10411 | case Big is | |
10412 | when True => Another : Integer; | |
10413 | when False => null; | |
10414 | end case; | |
10415 | end record; | |
10416 | My_Container : Container := (Big => False, | |
10417 | First => (Empty => True), | |
10418 | After => 42); | |
10419 | ||
10420 | In that example, the compiler creates a PAD type for component First, | |
10421 | whose size is constant, and then positions the component After just | |
10422 | right after it. The offset of component After is therefore constant | |
10423 | in this case. | |
10424 | ||
10425 | The debugger computes the position of each field based on an algorithm | |
10426 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
10427 | preceding it. Let's now imagine that the user is trying to print |
10428 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
10429 | end up computing the offset of field After based on the size of the |
10430 | fixed version of field First. And since in our example First has | |
10431 | only one actual field, the size of the fixed type is actually smaller | |
10432 | than the amount of space allocated to that field, and thus we would | |
10433 | compute the wrong offset of field After. | |
10434 | ||
21649b50 JB |
10435 | To make things more complicated, we need to watch out for dynamic |
10436 | components of variant records (identified by the ___XVL suffix in | |
10437 | the component name). Even if the target type is a PAD type, the size | |
10438 | of that type might not be statically known. So the PAD type needs | |
10439 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
10440 | we might end up with the wrong size for our component. This can be | |
10441 | observed with the following type declarations: | |
284614f0 JB |
10442 | |
10443 | type Octal is new Integer range 0 .. 7; | |
10444 | type Octal_Array is array (Positive range <>) of Octal; | |
10445 | pragma Pack (Octal_Array); | |
10446 | ||
10447 | type Octal_Buffer (Size : Positive) is record | |
10448 | Buffer : Octal_Array (1 .. Size); | |
10449 | Length : Integer; | |
10450 | end record; | |
10451 | ||
10452 | In that case, Buffer is a PAD type whose size is unset and needs | |
10453 | to be computed by fixing the unwrapped type. | |
10454 | ||
21649b50 JB |
10455 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
10456 | ---------------------------------------------------------- | |
10457 | ||
10458 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
10459 | thus far, be actually fixed? |
10460 | ||
10461 | The answer is: Only when referencing that element. For instance | |
10462 | when selecting one component of a record, this specific component | |
10463 | should be fixed at that point in time. Or when printing the value | |
10464 | of a record, each component should be fixed before its value gets | |
10465 | printed. Similarly for arrays, the element of the array should be | |
10466 | fixed when printing each element of the array, or when extracting | |
10467 | one element out of that array. On the other hand, fixing should | |
10468 | not be performed on the elements when taking a slice of an array! | |
10469 | ||
31432a67 | 10470 | Note that one of the side effects of miscomputing the offset and |
284614f0 JB |
10471 | size of each field is that we end up also miscomputing the size |
10472 | of the containing type. This can have adverse results when computing | |
10473 | the value of an entity. GDB fetches the value of an entity based | |
10474 | on the size of its type, and thus a wrong size causes GDB to fetch | |
10475 | the wrong amount of memory. In the case where the computed size is | |
10476 | too small, GDB fetches too little data to print the value of our | |
31432a67 | 10477 | entity. Results in this case are unpredictable, as we usually read |
284614f0 JB |
10478 | past the buffer containing the data =:-o. */ |
10479 | ||
ced9779b JB |
10480 | /* Evaluate a subexpression of EXP, at index *POS, and return a value |
10481 | for that subexpression cast to TO_TYPE. Advance *POS over the | |
10482 | subexpression. */ | |
10483 | ||
10484 | static value * | |
10485 | ada_evaluate_subexp_for_cast (expression *exp, int *pos, | |
10486 | enum noside noside, struct type *to_type) | |
10487 | { | |
10488 | int pc = *pos; | |
10489 | ||
10490 | if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE | |
10491 | || exp->elts[pc].opcode == OP_VAR_VALUE) | |
10492 | { | |
10493 | (*pos) += 4; | |
10494 | ||
10495 | value *val; | |
10496 | if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE) | |
10497 | { | |
10498 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10499 | return value_zero (to_type, not_lval); | |
10500 | ||
10501 | val = evaluate_var_msym_value (noside, | |
10502 | exp->elts[pc + 1].objfile, | |
10503 | exp->elts[pc + 2].msymbol); | |
10504 | } | |
10505 | else | |
10506 | val = evaluate_var_value (noside, | |
10507 | exp->elts[pc + 1].block, | |
10508 | exp->elts[pc + 2].symbol); | |
10509 | ||
10510 | if (noside == EVAL_SKIP) | |
10511 | return eval_skip_value (exp); | |
10512 | ||
10513 | val = ada_value_cast (to_type, val); | |
10514 | ||
10515 | /* Follow the Ada language semantics that do not allow taking | |
10516 | an address of the result of a cast (view conversion in Ada). */ | |
10517 | if (VALUE_LVAL (val) == lval_memory) | |
10518 | { | |
10519 | if (value_lazy (val)) | |
10520 | value_fetch_lazy (val); | |
10521 | VALUE_LVAL (val) = not_lval; | |
10522 | } | |
10523 | return val; | |
10524 | } | |
10525 | ||
10526 | value *val = evaluate_subexp (to_type, exp, pos, noside); | |
10527 | if (noside == EVAL_SKIP) | |
10528 | return eval_skip_value (exp); | |
10529 | return ada_value_cast (to_type, val); | |
10530 | } | |
10531 | ||
284614f0 JB |
10532 | /* Implement the evaluate_exp routine in the exp_descriptor structure |
10533 | for the Ada language. */ | |
10534 | ||
52ce6436 | 10535 | static struct value * |
ebf56fd3 | 10536 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 10537 | int *pos, enum noside noside) |
14f9c5c9 AS |
10538 | { |
10539 | enum exp_opcode op; | |
b5385fc0 | 10540 | int tem; |
14f9c5c9 | 10541 | int pc; |
5ec18f2b | 10542 | int preeval_pos; |
14f9c5c9 AS |
10543 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; |
10544 | struct type *type; | |
52ce6436 | 10545 | int nargs, oplen; |
d2e4a39e | 10546 | struct value **argvec; |
14f9c5c9 | 10547 | |
d2e4a39e AS |
10548 | pc = *pos; |
10549 | *pos += 1; | |
14f9c5c9 AS |
10550 | op = exp->elts[pc].opcode; |
10551 | ||
d2e4a39e | 10552 | switch (op) |
14f9c5c9 AS |
10553 | { |
10554 | default: | |
10555 | *pos -= 1; | |
6e48bd2c | 10556 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
ca1f964d JG |
10557 | |
10558 | if (noside == EVAL_NORMAL) | |
10559 | arg1 = unwrap_value (arg1); | |
6e48bd2c | 10560 | |
edd079d9 | 10561 | /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided, |
6e48bd2c JB |
10562 | then we need to perform the conversion manually, because |
10563 | evaluate_subexp_standard doesn't do it. This conversion is | |
10564 | necessary in Ada because the different kinds of float/fixed | |
10565 | types in Ada have different representations. | |
10566 | ||
10567 | Similarly, we need to perform the conversion from OP_LONG | |
10568 | ourselves. */ | |
edd079d9 | 10569 | if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL) |
b7e22850 | 10570 | arg1 = ada_value_cast (expect_type, arg1); |
6e48bd2c JB |
10571 | |
10572 | return arg1; | |
4c4b4cd2 PH |
10573 | |
10574 | case OP_STRING: | |
10575 | { | |
76a01679 | 10576 | struct value *result; |
5b4ee69b | 10577 | |
76a01679 JB |
10578 | *pos -= 1; |
10579 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10580 | /* The result type will have code OP_STRING, bashed there from | |
10581 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
10582 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
10583 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 10584 | return result; |
4c4b4cd2 | 10585 | } |
14f9c5c9 AS |
10586 | |
10587 | case UNOP_CAST: | |
10588 | (*pos) += 2; | |
10589 | type = exp->elts[pc + 1].type; | |
ced9779b | 10590 | return ada_evaluate_subexp_for_cast (exp, pos, noside, type); |
14f9c5c9 | 10591 | |
4c4b4cd2 PH |
10592 | case UNOP_QUAL: |
10593 | (*pos) += 2; | |
10594 | type = exp->elts[pc + 1].type; | |
10595 | return ada_evaluate_subexp (type, exp, pos, noside); | |
10596 | ||
14f9c5c9 AS |
10597 | case BINOP_ASSIGN: |
10598 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
10599 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
10600 | { | |
10601 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
10602 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
10603 | return arg1; | |
10604 | return ada_value_assign (arg1, arg1); | |
10605 | } | |
003f3813 JB |
10606 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
10607 | except if the lhs of our assignment is a convenience variable. | |
10608 | In the case of assigning to a convenience variable, the lhs | |
10609 | should be exactly the result of the evaluation of the rhs. */ | |
10610 | type = value_type (arg1); | |
10611 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
10612 | type = NULL; | |
10613 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 10614 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 10615 | return arg1; |
df407dfe AC |
10616 | if (ada_is_fixed_point_type (value_type (arg1))) |
10617 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
10618 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 10619 | error |
323e0a4a | 10620 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 10621 | else |
df407dfe | 10622 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 10623 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
10624 | |
10625 | case BINOP_ADD: | |
10626 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10627 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10628 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10629 | goto nosideret; |
2ac8a782 JB |
10630 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10631 | return (value_from_longest | |
10632 | (value_type (arg1), | |
10633 | value_as_long (arg1) + value_as_long (arg2))); | |
c40cc657 JB |
10634 | if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR) |
10635 | return (value_from_longest | |
10636 | (value_type (arg2), | |
10637 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
10638 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10639 | || ada_is_fixed_point_type (value_type (arg2))) | |
10640 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 10641 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
10642 | /* Do the addition, and cast the result to the type of the first |
10643 | argument. We cannot cast the result to a reference type, so if | |
10644 | ARG1 is a reference type, find its underlying type. */ | |
10645 | type = value_type (arg1); | |
10646 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10647 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10648 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10649 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
10650 | |
10651 | case BINOP_SUB: | |
10652 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10653 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10654 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10655 | goto nosideret; |
2ac8a782 JB |
10656 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10657 | return (value_from_longest | |
10658 | (value_type (arg1), | |
10659 | value_as_long (arg1) - value_as_long (arg2))); | |
c40cc657 JB |
10660 | if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR) |
10661 | return (value_from_longest | |
10662 | (value_type (arg2), | |
10663 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
10664 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10665 | || ada_is_fixed_point_type (value_type (arg2))) | |
10666 | && value_type (arg1) != value_type (arg2)) | |
0963b4bd MS |
10667 | error (_("Operands of fixed-point subtraction " |
10668 | "must have the same type")); | |
b7789565 JB |
10669 | /* Do the substraction, and cast the result to the type of the first |
10670 | argument. We cannot cast the result to a reference type, so if | |
10671 | ARG1 is a reference type, find its underlying type. */ | |
10672 | type = value_type (arg1); | |
10673 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10674 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10675 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10676 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
10677 | |
10678 | case BINOP_MUL: | |
10679 | case BINOP_DIV: | |
e1578042 JB |
10680 | case BINOP_REM: |
10681 | case BINOP_MOD: | |
14f9c5c9 AS |
10682 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10683 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10684 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10685 | goto nosideret; |
e1578042 | 10686 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
10687 | { |
10688 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10689 | return value_zero (value_type (arg1), not_lval); | |
10690 | } | |
14f9c5c9 | 10691 | else |
4c4b4cd2 | 10692 | { |
a53b7a21 | 10693 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 10694 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 10695 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 10696 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 10697 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 10698 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
10699 | return ada_value_binop (arg1, arg2, op); |
10700 | } | |
10701 | ||
4c4b4cd2 PH |
10702 | case BINOP_EQUAL: |
10703 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 10704 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 10705 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 10706 | if (noside == EVAL_SKIP) |
76a01679 | 10707 | goto nosideret; |
4c4b4cd2 | 10708 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10709 | tem = 0; |
4c4b4cd2 | 10710 | else |
f44316fa UW |
10711 | { |
10712 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10713 | tem = ada_value_equal (arg1, arg2); | |
10714 | } | |
4c4b4cd2 | 10715 | if (op == BINOP_NOTEQUAL) |
76a01679 | 10716 | tem = !tem; |
fbb06eb1 UW |
10717 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10718 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
10719 | |
10720 | case UNOP_NEG: | |
10721 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10722 | if (noside == EVAL_SKIP) | |
10723 | goto nosideret; | |
df407dfe AC |
10724 | else if (ada_is_fixed_point_type (value_type (arg1))) |
10725 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 10726 | else |
f44316fa UW |
10727 | { |
10728 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10729 | return value_neg (arg1); | |
10730 | } | |
4c4b4cd2 | 10731 | |
2330c6c6 JB |
10732 | case BINOP_LOGICAL_AND: |
10733 | case BINOP_LOGICAL_OR: | |
10734 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
10735 | { |
10736 | struct value *val; | |
10737 | ||
10738 | *pos -= 1; | |
10739 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
10740 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10741 | return value_cast (type, val); | |
000d5124 | 10742 | } |
2330c6c6 JB |
10743 | |
10744 | case BINOP_BITWISE_AND: | |
10745 | case BINOP_BITWISE_IOR: | |
10746 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
10747 | { |
10748 | struct value *val; | |
10749 | ||
10750 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
10751 | *pos = pc; | |
10752 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10753 | ||
10754 | return value_cast (value_type (arg1), val); | |
10755 | } | |
2330c6c6 | 10756 | |
14f9c5c9 AS |
10757 | case OP_VAR_VALUE: |
10758 | *pos -= 1; | |
6799def4 | 10759 | |
14f9c5c9 | 10760 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
10761 | { |
10762 | *pos += 4; | |
10763 | goto nosideret; | |
10764 | } | |
da5c522f JB |
10765 | |
10766 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
10767 | /* Only encountered when an unresolved symbol occurs in a |
10768 | context other than a function call, in which case, it is | |
52ce6436 | 10769 | invalid. */ |
323e0a4a | 10770 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 10771 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
da5c522f JB |
10772 | |
10773 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
4c4b4cd2 | 10774 | { |
0c1f74cf | 10775 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
10776 | /* Check to see if this is a tagged type. We also need to handle |
10777 | the case where the type is a reference to a tagged type, but | |
10778 | we have to be careful to exclude pointers to tagged types. | |
10779 | The latter should be shown as usual (as a pointer), whereas | |
10780 | a reference should mostly be transparent to the user. */ | |
10781 | if (ada_is_tagged_type (type, 0) | |
023db19c | 10782 | || (TYPE_CODE (type) == TYPE_CODE_REF |
31dbc1c5 | 10783 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) |
0d72a7c3 JB |
10784 | { |
10785 | /* Tagged types are a little special in the fact that the real | |
10786 | type is dynamic and can only be determined by inspecting the | |
10787 | object's tag. This means that we need to get the object's | |
10788 | value first (EVAL_NORMAL) and then extract the actual object | |
10789 | type from its tag. | |
10790 | ||
10791 | Note that we cannot skip the final step where we extract | |
10792 | the object type from its tag, because the EVAL_NORMAL phase | |
10793 | results in dynamic components being resolved into fixed ones. | |
10794 | This can cause problems when trying to print the type | |
10795 | description of tagged types whose parent has a dynamic size: | |
10796 | We use the type name of the "_parent" component in order | |
10797 | to print the name of the ancestor type in the type description. | |
10798 | If that component had a dynamic size, the resolution into | |
10799 | a fixed type would result in the loss of that type name, | |
10800 | thus preventing us from printing the name of the ancestor | |
10801 | type in the type description. */ | |
10802 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); | |
10803 | ||
10804 | if (TYPE_CODE (type) != TYPE_CODE_REF) | |
10805 | { | |
10806 | struct type *actual_type; | |
10807 | ||
10808 | actual_type = type_from_tag (ada_value_tag (arg1)); | |
10809 | if (actual_type == NULL) | |
10810 | /* If, for some reason, we were unable to determine | |
10811 | the actual type from the tag, then use the static | |
10812 | approximation that we just computed as a fallback. | |
10813 | This can happen if the debugging information is | |
10814 | incomplete, for instance. */ | |
10815 | actual_type = type; | |
10816 | return value_zero (actual_type, not_lval); | |
10817 | } | |
10818 | else | |
10819 | { | |
10820 | /* In the case of a ref, ada_coerce_ref takes care | |
10821 | of determining the actual type. But the evaluation | |
10822 | should return a ref as it should be valid to ask | |
10823 | for its address; so rebuild a ref after coerce. */ | |
10824 | arg1 = ada_coerce_ref (arg1); | |
a65cfae5 | 10825 | return value_ref (arg1, TYPE_CODE_REF); |
0d72a7c3 JB |
10826 | } |
10827 | } | |
0c1f74cf | 10828 | |
84754697 JB |
10829 | /* Records and unions for which GNAT encodings have been |
10830 | generated need to be statically fixed as well. | |
10831 | Otherwise, non-static fixing produces a type where | |
10832 | all dynamic properties are removed, which prevents "ptype" | |
10833 | from being able to completely describe the type. | |
10834 | For instance, a case statement in a variant record would be | |
10835 | replaced by the relevant components based on the actual | |
10836 | value of the discriminants. */ | |
10837 | if ((TYPE_CODE (type) == TYPE_CODE_STRUCT | |
10838 | && dynamic_template_type (type) != NULL) | |
10839 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
10840 | && ada_find_parallel_type (type, "___XVU") != NULL)) | |
10841 | { | |
10842 | *pos += 4; | |
10843 | return value_zero (to_static_fixed_type (type), not_lval); | |
10844 | } | |
4c4b4cd2 | 10845 | } |
da5c522f JB |
10846 | |
10847 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10848 | return ada_to_fixed_value (arg1); | |
4c4b4cd2 PH |
10849 | |
10850 | case OP_FUNCALL: | |
10851 | (*pos) += 2; | |
10852 | ||
10853 | /* Allocate arg vector, including space for the function to be | |
10854 | called in argvec[0] and a terminating NULL. */ | |
10855 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
8d749320 | 10856 | argvec = XALLOCAVEC (struct value *, nargs + 2); |
4c4b4cd2 PH |
10857 | |
10858 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 10859 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 10860 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
10861 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
10862 | else | |
10863 | { | |
10864 | for (tem = 0; tem <= nargs; tem += 1) | |
10865 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10866 | argvec[tem] = 0; | |
10867 | ||
10868 | if (noside == EVAL_SKIP) | |
10869 | goto nosideret; | |
10870 | } | |
10871 | ||
ad82864c JB |
10872 | if (ada_is_constrained_packed_array_type |
10873 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 10874 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
10875 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
10876 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
10877 | /* This is a packed array that has already been fixed, and | |
10878 | therefore already coerced to a simple array. Nothing further | |
10879 | to do. */ | |
10880 | ; | |
e6c2c623 PMR |
10881 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF) |
10882 | { | |
10883 | /* Make sure we dereference references so that all the code below | |
10884 | feels like it's really handling the referenced value. Wrapping | |
10885 | types (for alignment) may be there, so make sure we strip them as | |
10886 | well. */ | |
10887 | argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0])); | |
10888 | } | |
10889 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
10890 | && VALUE_LVAL (argvec[0]) == lval_memory) | |
10891 | argvec[0] = value_addr (argvec[0]); | |
4c4b4cd2 | 10892 | |
df407dfe | 10893 | type = ada_check_typedef (value_type (argvec[0])); |
720d1a40 JB |
10894 | |
10895 | /* Ada allows us to implicitly dereference arrays when subscripting | |
8f465ea7 JB |
10896 | them. So, if this is an array typedef (encoding use for array |
10897 | access types encoded as fat pointers), strip it now. */ | |
720d1a40 JB |
10898 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
10899 | type = ada_typedef_target_type (type); | |
10900 | ||
4c4b4cd2 PH |
10901 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
10902 | { | |
61ee279c | 10903 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
10904 | { |
10905 | case TYPE_CODE_FUNC: | |
61ee279c | 10906 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10907 | break; |
10908 | case TYPE_CODE_ARRAY: | |
10909 | break; | |
10910 | case TYPE_CODE_STRUCT: | |
10911 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
10912 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 10913 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10914 | break; |
10915 | default: | |
323e0a4a | 10916 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 10917 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
10918 | break; |
10919 | } | |
10920 | } | |
10921 | ||
10922 | switch (TYPE_CODE (type)) | |
10923 | { | |
10924 | case TYPE_CODE_FUNC: | |
10925 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
c8ea1972 | 10926 | { |
7022349d PA |
10927 | if (TYPE_TARGET_TYPE (type) == NULL) |
10928 | error_call_unknown_return_type (NULL); | |
10929 | return allocate_value (TYPE_TARGET_TYPE (type)); | |
c8ea1972 | 10930 | } |
7022349d | 10931 | return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1); |
c8ea1972 PH |
10932 | case TYPE_CODE_INTERNAL_FUNCTION: |
10933 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10934 | /* We don't know anything about what the internal | |
10935 | function might return, but we have to return | |
10936 | something. */ | |
10937 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10938 | not_lval); | |
10939 | else | |
10940 | return call_internal_function (exp->gdbarch, exp->language_defn, | |
10941 | argvec[0], nargs, argvec + 1); | |
10942 | ||
4c4b4cd2 PH |
10943 | case TYPE_CODE_STRUCT: |
10944 | { | |
10945 | int arity; | |
10946 | ||
4c4b4cd2 PH |
10947 | arity = ada_array_arity (type); |
10948 | type = ada_array_element_type (type, nargs); | |
10949 | if (type == NULL) | |
323e0a4a | 10950 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 10951 | if (arity != nargs) |
323e0a4a | 10952 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 10953 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 10954 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10955 | return |
10956 | unwrap_value (ada_value_subscript | |
10957 | (argvec[0], nargs, argvec + 1)); | |
10958 | } | |
10959 | case TYPE_CODE_ARRAY: | |
10960 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10961 | { | |
10962 | type = ada_array_element_type (type, nargs); | |
10963 | if (type == NULL) | |
323e0a4a | 10964 | error (_("element type of array unknown")); |
4c4b4cd2 | 10965 | else |
0a07e705 | 10966 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10967 | } |
10968 | return | |
10969 | unwrap_value (ada_value_subscript | |
10970 | (ada_coerce_to_simple_array (argvec[0]), | |
10971 | nargs, argvec + 1)); | |
10972 | case TYPE_CODE_PTR: /* Pointer to array */ | |
4c4b4cd2 PH |
10973 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
10974 | { | |
deede10c | 10975 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); |
4c4b4cd2 PH |
10976 | type = ada_array_element_type (type, nargs); |
10977 | if (type == NULL) | |
323e0a4a | 10978 | error (_("element type of array unknown")); |
4c4b4cd2 | 10979 | else |
0a07e705 | 10980 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10981 | } |
10982 | return | |
deede10c JB |
10983 | unwrap_value (ada_value_ptr_subscript (argvec[0], |
10984 | nargs, argvec + 1)); | |
4c4b4cd2 PH |
10985 | |
10986 | default: | |
e1d5a0d2 PH |
10987 | error (_("Attempt to index or call something other than an " |
10988 | "array or function")); | |
4c4b4cd2 PH |
10989 | } |
10990 | ||
10991 | case TERNOP_SLICE: | |
10992 | { | |
10993 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10994 | struct value *low_bound_val = | |
10995 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
10996 | struct value *high_bound_val = |
10997 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10998 | LONGEST low_bound; | |
10999 | LONGEST high_bound; | |
5b4ee69b | 11000 | |
994b9211 AC |
11001 | low_bound_val = coerce_ref (low_bound_val); |
11002 | high_bound_val = coerce_ref (high_bound_val); | |
aa715135 JG |
11003 | low_bound = value_as_long (low_bound_val); |
11004 | high_bound = value_as_long (high_bound_val); | |
963a6417 | 11005 | |
4c4b4cd2 PH |
11006 | if (noside == EVAL_SKIP) |
11007 | goto nosideret; | |
11008 | ||
4c4b4cd2 PH |
11009 | /* If this is a reference to an aligner type, then remove all |
11010 | the aligners. */ | |
df407dfe AC |
11011 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
11012 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
11013 | TYPE_TARGET_TYPE (value_type (array)) = | |
11014 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 11015 | |
ad82864c | 11016 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 11017 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
11018 | |
11019 | /* If this is a reference to an array or an array lvalue, | |
11020 | convert to a pointer. */ | |
df407dfe AC |
11021 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
11022 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
11023 | && VALUE_LVAL (array) == lval_memory)) |
11024 | array = value_addr (array); | |
11025 | ||
1265e4aa | 11026 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 11027 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 11028 | (value_type (array)))) |
0b5d8877 | 11029 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
11030 | |
11031 | array = ada_coerce_to_simple_array_ptr (array); | |
11032 | ||
714e53ab PH |
11033 | /* If we have more than one level of pointer indirection, |
11034 | dereference the value until we get only one level. */ | |
df407dfe AC |
11035 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
11036 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
11037 | == TYPE_CODE_PTR)) |
11038 | array = value_ind (array); | |
11039 | ||
11040 | /* Make sure we really do have an array type before going further, | |
11041 | to avoid a SEGV when trying to get the index type or the target | |
11042 | type later down the road if the debug info generated by | |
11043 | the compiler is incorrect or incomplete. */ | |
df407dfe | 11044 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 11045 | error (_("cannot take slice of non-array")); |
714e53ab | 11046 | |
828292f2 JB |
11047 | if (TYPE_CODE (ada_check_typedef (value_type (array))) |
11048 | == TYPE_CODE_PTR) | |
4c4b4cd2 | 11049 | { |
828292f2 JB |
11050 | struct type *type0 = ada_check_typedef (value_type (array)); |
11051 | ||
0b5d8877 | 11052 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
828292f2 | 11053 | return empty_array (TYPE_TARGET_TYPE (type0), low_bound); |
4c4b4cd2 PH |
11054 | else |
11055 | { | |
11056 | struct type *arr_type0 = | |
828292f2 | 11057 | to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); |
5b4ee69b | 11058 | |
f5938064 JG |
11059 | return ada_value_slice_from_ptr (array, arr_type0, |
11060 | longest_to_int (low_bound), | |
11061 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
11062 | } |
11063 | } | |
11064 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
11065 | return array; | |
11066 | else if (high_bound < low_bound) | |
df407dfe | 11067 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 11068 | else |
529cad9c PH |
11069 | return ada_value_slice (array, longest_to_int (low_bound), |
11070 | longest_to_int (high_bound)); | |
4c4b4cd2 | 11071 | } |
14f9c5c9 | 11072 | |
4c4b4cd2 PH |
11073 | case UNOP_IN_RANGE: |
11074 | (*pos) += 2; | |
11075 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 11076 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 11077 | |
14f9c5c9 | 11078 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 11079 | goto nosideret; |
14f9c5c9 | 11080 | |
4c4b4cd2 PH |
11081 | switch (TYPE_CODE (type)) |
11082 | { | |
11083 | default: | |
e1d5a0d2 PH |
11084 | lim_warning (_("Membership test incompletely implemented; " |
11085 | "always returns true")); | |
fbb06eb1 UW |
11086 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
11087 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
11088 | |
11089 | case TYPE_CODE_RANGE: | |
030b4912 UW |
11090 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
11091 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
11092 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
11093 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
11094 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
11095 | return | |
11096 | value_from_longest (type, | |
4c4b4cd2 PH |
11097 | (value_less (arg1, arg3) |
11098 | || value_equal (arg1, arg3)) | |
11099 | && (value_less (arg2, arg1) | |
11100 | || value_equal (arg2, arg1))); | |
11101 | } | |
11102 | ||
11103 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 11104 | (*pos) += 2; |
4c4b4cd2 PH |
11105 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11106 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 11107 | |
4c4b4cd2 PH |
11108 | if (noside == EVAL_SKIP) |
11109 | goto nosideret; | |
14f9c5c9 | 11110 | |
4c4b4cd2 | 11111 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
11112 | { |
11113 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
11114 | return value_zero (type, not_lval); | |
11115 | } | |
14f9c5c9 | 11116 | |
4c4b4cd2 | 11117 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 11118 | |
1eea4ebd UW |
11119 | type = ada_index_type (value_type (arg2), tem, "range"); |
11120 | if (!type) | |
11121 | type = value_type (arg1); | |
14f9c5c9 | 11122 | |
1eea4ebd UW |
11123 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
11124 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 11125 | |
f44316fa UW |
11126 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
11127 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 11128 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 11129 | return |
fbb06eb1 | 11130 | value_from_longest (type, |
4c4b4cd2 PH |
11131 | (value_less (arg1, arg3) |
11132 | || value_equal (arg1, arg3)) | |
11133 | && (value_less (arg2, arg1) | |
11134 | || value_equal (arg2, arg1))); | |
11135 | ||
11136 | case TERNOP_IN_RANGE: | |
11137 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11138 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11139 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11140 | ||
11141 | if (noside == EVAL_SKIP) | |
11142 | goto nosideret; | |
11143 | ||
f44316fa UW |
11144 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
11145 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 11146 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 11147 | return |
fbb06eb1 | 11148 | value_from_longest (type, |
4c4b4cd2 PH |
11149 | (value_less (arg1, arg3) |
11150 | || value_equal (arg1, arg3)) | |
11151 | && (value_less (arg2, arg1) | |
11152 | || value_equal (arg2, arg1))); | |
11153 | ||
11154 | case OP_ATR_FIRST: | |
11155 | case OP_ATR_LAST: | |
11156 | case OP_ATR_LENGTH: | |
11157 | { | |
76a01679 | 11158 | struct type *type_arg; |
5b4ee69b | 11159 | |
76a01679 JB |
11160 | if (exp->elts[*pos].opcode == OP_TYPE) |
11161 | { | |
11162 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
11163 | arg1 = NULL; | |
5bc23cb3 | 11164 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
11165 | } |
11166 | else | |
11167 | { | |
11168 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11169 | type_arg = NULL; | |
11170 | } | |
11171 | ||
11172 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 11173 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
11174 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
11175 | *pos += 4; | |
11176 | ||
11177 | if (noside == EVAL_SKIP) | |
11178 | goto nosideret; | |
11179 | ||
11180 | if (type_arg == NULL) | |
11181 | { | |
11182 | arg1 = ada_coerce_ref (arg1); | |
11183 | ||
ad82864c | 11184 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
11185 | arg1 = ada_coerce_to_simple_array (arg1); |
11186 | ||
aa4fb036 | 11187 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 11188 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
11189 | else |
11190 | { | |
11191 | type = ada_index_type (value_type (arg1), tem, | |
11192 | ada_attribute_name (op)); | |
11193 | if (type == NULL) | |
11194 | type = builtin_type (exp->gdbarch)->builtin_int; | |
11195 | } | |
76a01679 JB |
11196 | |
11197 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 11198 | return allocate_value (type); |
76a01679 JB |
11199 | |
11200 | switch (op) | |
11201 | { | |
11202 | default: /* Should never happen. */ | |
323e0a4a | 11203 | error (_("unexpected attribute encountered")); |
76a01679 | 11204 | case OP_ATR_FIRST: |
1eea4ebd UW |
11205 | return value_from_longest |
11206 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 11207 | case OP_ATR_LAST: |
1eea4ebd UW |
11208 | return value_from_longest |
11209 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 11210 | case OP_ATR_LENGTH: |
1eea4ebd UW |
11211 | return value_from_longest |
11212 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
11213 | } |
11214 | } | |
11215 | else if (discrete_type_p (type_arg)) | |
11216 | { | |
11217 | struct type *range_type; | |
0d5cff50 | 11218 | const char *name = ada_type_name (type_arg); |
5b4ee69b | 11219 | |
76a01679 JB |
11220 | range_type = NULL; |
11221 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 11222 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
11223 | if (range_type == NULL) |
11224 | range_type = type_arg; | |
11225 | switch (op) | |
11226 | { | |
11227 | default: | |
323e0a4a | 11228 | error (_("unexpected attribute encountered")); |
76a01679 | 11229 | case OP_ATR_FIRST: |
690cc4eb | 11230 | return value_from_longest |
43bbcdc2 | 11231 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 11232 | case OP_ATR_LAST: |
690cc4eb | 11233 | return value_from_longest |
43bbcdc2 | 11234 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 11235 | case OP_ATR_LENGTH: |
323e0a4a | 11236 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
11237 | } |
11238 | } | |
11239 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 11240 | error (_("unimplemented type attribute")); |
76a01679 JB |
11241 | else |
11242 | { | |
11243 | LONGEST low, high; | |
11244 | ||
ad82864c JB |
11245 | if (ada_is_constrained_packed_array_type (type_arg)) |
11246 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 11247 | |
aa4fb036 | 11248 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 11249 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
11250 | else |
11251 | { | |
11252 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); | |
11253 | if (type == NULL) | |
11254 | type = builtin_type (exp->gdbarch)->builtin_int; | |
11255 | } | |
1eea4ebd | 11256 | |
76a01679 JB |
11257 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
11258 | return allocate_value (type); | |
11259 | ||
11260 | switch (op) | |
11261 | { | |
11262 | default: | |
323e0a4a | 11263 | error (_("unexpected attribute encountered")); |
76a01679 | 11264 | case OP_ATR_FIRST: |
1eea4ebd | 11265 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
11266 | return value_from_longest (type, low); |
11267 | case OP_ATR_LAST: | |
1eea4ebd | 11268 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
11269 | return value_from_longest (type, high); |
11270 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
11271 | low = ada_array_bound_from_type (type_arg, tem, 0); |
11272 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
11273 | return value_from_longest (type, high - low + 1); |
11274 | } | |
11275 | } | |
14f9c5c9 AS |
11276 | } |
11277 | ||
4c4b4cd2 PH |
11278 | case OP_ATR_TAG: |
11279 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11280 | if (noside == EVAL_SKIP) | |
76a01679 | 11281 | goto nosideret; |
4c4b4cd2 PH |
11282 | |
11283 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 11284 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
11285 | |
11286 | return ada_value_tag (arg1); | |
11287 | ||
11288 | case OP_ATR_MIN: | |
11289 | case OP_ATR_MAX: | |
11290 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
11291 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11292 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11293 | if (noside == EVAL_SKIP) | |
76a01679 | 11294 | goto nosideret; |
d2e4a39e | 11295 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 11296 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 11297 | else |
f44316fa UW |
11298 | { |
11299 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
11300 | return value_binop (arg1, arg2, | |
11301 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
11302 | } | |
14f9c5c9 | 11303 | |
4c4b4cd2 PH |
11304 | case OP_ATR_MODULUS: |
11305 | { | |
31dedfee | 11306 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 11307 | |
5b4ee69b | 11308 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
11309 | if (noside == EVAL_SKIP) |
11310 | goto nosideret; | |
4c4b4cd2 | 11311 | |
76a01679 | 11312 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 11313 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 11314 | |
76a01679 JB |
11315 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
11316 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
11317 | } |
11318 | ||
11319 | ||
11320 | case OP_ATR_POS: | |
11321 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
11322 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11323 | if (noside == EVAL_SKIP) | |
76a01679 | 11324 | goto nosideret; |
3cb382c9 UW |
11325 | type = builtin_type (exp->gdbarch)->builtin_int; |
11326 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
11327 | return value_zero (type, not_lval); | |
14f9c5c9 | 11328 | else |
3cb382c9 | 11329 | return value_pos_atr (type, arg1); |
14f9c5c9 | 11330 | |
4c4b4cd2 PH |
11331 | case OP_ATR_SIZE: |
11332 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
11333 | type = value_type (arg1); |
11334 | ||
11335 | /* If the argument is a reference, then dereference its type, since | |
11336 | the user is really asking for the size of the actual object, | |
11337 | not the size of the pointer. */ | |
11338 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
11339 | type = TYPE_TARGET_TYPE (type); | |
11340 | ||
4c4b4cd2 | 11341 | if (noside == EVAL_SKIP) |
76a01679 | 11342 | goto nosideret; |
4c4b4cd2 | 11343 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 11344 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 11345 | else |
22601c15 | 11346 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 11347 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
11348 | |
11349 | case OP_ATR_VAL: | |
11350 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 11351 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 11352 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 11353 | if (noside == EVAL_SKIP) |
76a01679 | 11354 | goto nosideret; |
4c4b4cd2 | 11355 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 11356 | return value_zero (type, not_lval); |
4c4b4cd2 | 11357 | else |
76a01679 | 11358 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
11359 | |
11360 | case BINOP_EXP: | |
11361 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11362 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11363 | if (noside == EVAL_SKIP) | |
11364 | goto nosideret; | |
11365 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 11366 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 11367 | else |
f44316fa UW |
11368 | { |
11369 | /* For integer exponentiation operations, | |
11370 | only promote the first argument. */ | |
11371 | if (is_integral_type (value_type (arg2))) | |
11372 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
11373 | else | |
11374 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
11375 | ||
11376 | return value_binop (arg1, arg2, op); | |
11377 | } | |
4c4b4cd2 PH |
11378 | |
11379 | case UNOP_PLUS: | |
11380 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11381 | if (noside == EVAL_SKIP) | |
11382 | goto nosideret; | |
11383 | else | |
11384 | return arg1; | |
11385 | ||
11386 | case UNOP_ABS: | |
11387 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11388 | if (noside == EVAL_SKIP) | |
11389 | goto nosideret; | |
f44316fa | 11390 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 11391 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 11392 | return value_neg (arg1); |
14f9c5c9 | 11393 | else |
4c4b4cd2 | 11394 | return arg1; |
14f9c5c9 AS |
11395 | |
11396 | case UNOP_IND: | |
5ec18f2b | 11397 | preeval_pos = *pos; |
6b0d7253 | 11398 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 11399 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 11400 | goto nosideret; |
df407dfe | 11401 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 11402 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
11403 | { |
11404 | if (ada_is_array_descriptor_type (type)) | |
11405 | /* GDB allows dereferencing GNAT array descriptors. */ | |
11406 | { | |
11407 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 11408 | |
4c4b4cd2 | 11409 | if (arrType == NULL) |
323e0a4a | 11410 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 11411 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
11412 | } |
11413 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
11414 | || TYPE_CODE (type) == TYPE_CODE_REF | |
11415 | /* In C you can dereference an array to get the 1st elt. */ | |
11416 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab | 11417 | { |
5ec18f2b JG |
11418 | /* As mentioned in the OP_VAR_VALUE case, tagged types can |
11419 | only be determined by inspecting the object's tag. | |
11420 | This means that we need to evaluate completely the | |
11421 | expression in order to get its type. */ | |
11422 | ||
023db19c JB |
11423 | if ((TYPE_CODE (type) == TYPE_CODE_REF |
11424 | || TYPE_CODE (type) == TYPE_CODE_PTR) | |
5ec18f2b JG |
11425 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)) |
11426 | { | |
11427 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
11428 | EVAL_NORMAL); | |
11429 | type = value_type (ada_value_ind (arg1)); | |
11430 | } | |
11431 | else | |
11432 | { | |
11433 | type = to_static_fixed_type | |
11434 | (ada_aligned_type | |
11435 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
11436 | } | |
c1b5a1a6 | 11437 | ada_ensure_varsize_limit (type); |
714e53ab PH |
11438 | return value_zero (type, lval_memory); |
11439 | } | |
4c4b4cd2 | 11440 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
11441 | { |
11442 | /* GDB allows dereferencing an int. */ | |
11443 | if (expect_type == NULL) | |
11444 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
11445 | lval_memory); | |
11446 | else | |
11447 | { | |
11448 | expect_type = | |
11449 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
11450 | return value_zero (expect_type, lval_memory); | |
11451 | } | |
11452 | } | |
4c4b4cd2 | 11453 | else |
323e0a4a | 11454 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 11455 | } |
0963b4bd | 11456 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 11457 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 11458 | |
96967637 JB |
11459 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
11460 | /* GDB allows dereferencing an int. If we were given | |
11461 | the expect_type, then use that as the target type. | |
11462 | Otherwise, assume that the target type is an int. */ | |
11463 | { | |
11464 | if (expect_type != NULL) | |
11465 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
11466 | arg1)); | |
11467 | else | |
11468 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
11469 | (CORE_ADDR) value_as_address (arg1)); | |
11470 | } | |
6b0d7253 | 11471 | |
4c4b4cd2 PH |
11472 | if (ada_is_array_descriptor_type (type)) |
11473 | /* GDB allows dereferencing GNAT array descriptors. */ | |
11474 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 11475 | else |
4c4b4cd2 | 11476 | return ada_value_ind (arg1); |
14f9c5c9 AS |
11477 | |
11478 | case STRUCTOP_STRUCT: | |
11479 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
11480 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
5ec18f2b | 11481 | preeval_pos = *pos; |
14f9c5c9 AS |
11482 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11483 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 11484 | goto nosideret; |
14f9c5c9 | 11485 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 11486 | { |
df407dfe | 11487 | struct type *type1 = value_type (arg1); |
5b4ee69b | 11488 | |
76a01679 JB |
11489 | if (ada_is_tagged_type (type1, 1)) |
11490 | { | |
11491 | type = ada_lookup_struct_elt_type (type1, | |
11492 | &exp->elts[pc + 2].string, | |
988f6b3d | 11493 | 1, 1); |
5ec18f2b JG |
11494 | |
11495 | /* If the field is not found, check if it exists in the | |
11496 | extension of this object's type. This means that we | |
11497 | need to evaluate completely the expression. */ | |
11498 | ||
76a01679 | 11499 | if (type == NULL) |
5ec18f2b JG |
11500 | { |
11501 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
11502 | EVAL_NORMAL); | |
11503 | arg1 = ada_value_struct_elt (arg1, | |
11504 | &exp->elts[pc + 2].string, | |
11505 | 0); | |
11506 | arg1 = unwrap_value (arg1); | |
11507 | type = value_type (ada_to_fixed_value (arg1)); | |
11508 | } | |
76a01679 JB |
11509 | } |
11510 | else | |
11511 | type = | |
11512 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
988f6b3d | 11513 | 0); |
76a01679 JB |
11514 | |
11515 | return value_zero (ada_aligned_type (type), lval_memory); | |
11516 | } | |
14f9c5c9 | 11517 | else |
a579cd9a MW |
11518 | { |
11519 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); | |
11520 | arg1 = unwrap_value (arg1); | |
11521 | return ada_to_fixed_value (arg1); | |
11522 | } | |
284614f0 | 11523 | |
14f9c5c9 | 11524 | case OP_TYPE: |
4c4b4cd2 PH |
11525 | /* The value is not supposed to be used. This is here to make it |
11526 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
11527 | (*pos) += 2; |
11528 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 11529 | goto nosideret; |
14f9c5c9 | 11530 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 11531 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 11532 | else |
323e0a4a | 11533 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
11534 | |
11535 | case OP_AGGREGATE: | |
11536 | case OP_CHOICES: | |
11537 | case OP_OTHERS: | |
11538 | case OP_DISCRETE_RANGE: | |
11539 | case OP_POSITIONAL: | |
11540 | case OP_NAME: | |
11541 | if (noside == EVAL_NORMAL) | |
11542 | switch (op) | |
11543 | { | |
11544 | case OP_NAME: | |
11545 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 11546 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
11547 | case OP_AGGREGATE: |
11548 | error (_("Aggregates only allowed on the right of an assignment")); | |
11549 | default: | |
0963b4bd MS |
11550 | internal_error (__FILE__, __LINE__, |
11551 | _("aggregate apparently mangled")); | |
52ce6436 PH |
11552 | } |
11553 | ||
11554 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
11555 | *pos += oplen - 1; | |
11556 | for (tem = 0; tem < nargs; tem += 1) | |
11557 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
11558 | goto nosideret; | |
14f9c5c9 AS |
11559 | } |
11560 | ||
11561 | nosideret: | |
ced9779b | 11562 | return eval_skip_value (exp); |
14f9c5c9 | 11563 | } |
14f9c5c9 | 11564 | \f |
d2e4a39e | 11565 | |
4c4b4cd2 | 11566 | /* Fixed point */ |
14f9c5c9 AS |
11567 | |
11568 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
11569 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 11570 | Otherwise, return NULL. */ |
14f9c5c9 | 11571 | |
d2e4a39e | 11572 | static const char * |
ebf56fd3 | 11573 | fixed_type_info (struct type *type) |
14f9c5c9 | 11574 | { |
d2e4a39e | 11575 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
11576 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
11577 | ||
d2e4a39e AS |
11578 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
11579 | { | |
14f9c5c9 | 11580 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 11581 | |
14f9c5c9 | 11582 | if (tail == NULL) |
4c4b4cd2 | 11583 | return NULL; |
d2e4a39e | 11584 | else |
4c4b4cd2 | 11585 | return tail + 5; |
14f9c5c9 AS |
11586 | } |
11587 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
11588 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
11589 | else | |
11590 | return NULL; | |
11591 | } | |
11592 | ||
4c4b4cd2 | 11593 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
11594 | |
11595 | int | |
ebf56fd3 | 11596 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
11597 | { |
11598 | return fixed_type_info (type) != NULL; | |
11599 | } | |
11600 | ||
4c4b4cd2 PH |
11601 | /* Return non-zero iff TYPE represents a System.Address type. */ |
11602 | ||
11603 | int | |
11604 | ada_is_system_address_type (struct type *type) | |
11605 | { | |
11606 | return (TYPE_NAME (type) | |
11607 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
11608 | } | |
11609 | ||
14f9c5c9 | 11610 | /* Assuming that TYPE is the representation of an Ada fixed-point |
50eff16b UW |
11611 | type, return the target floating-point type to be used to represent |
11612 | of this type during internal computation. */ | |
11613 | ||
11614 | static struct type * | |
11615 | ada_scaling_type (struct type *type) | |
11616 | { | |
11617 | return builtin_type (get_type_arch (type))->builtin_long_double; | |
11618 | } | |
11619 | ||
11620 | /* Assuming that TYPE is the representation of an Ada fixed-point | |
11621 | type, return its delta, or NULL if the type is malformed and the | |
4c4b4cd2 | 11622 | delta cannot be determined. */ |
14f9c5c9 | 11623 | |
50eff16b | 11624 | struct value * |
ebf56fd3 | 11625 | ada_delta (struct type *type) |
14f9c5c9 AS |
11626 | { |
11627 | const char *encoding = fixed_type_info (type); | |
50eff16b UW |
11628 | struct type *scale_type = ada_scaling_type (type); |
11629 | ||
11630 | long long num, den; | |
11631 | ||
11632 | if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2) | |
11633 | return nullptr; | |
d2e4a39e | 11634 | else |
50eff16b UW |
11635 | return value_binop (value_from_longest (scale_type, num), |
11636 | value_from_longest (scale_type, den), BINOP_DIV); | |
14f9c5c9 AS |
11637 | } |
11638 | ||
11639 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 11640 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 | 11641 | |
50eff16b UW |
11642 | struct value * |
11643 | ada_scaling_factor (struct type *type) | |
14f9c5c9 AS |
11644 | { |
11645 | const char *encoding = fixed_type_info (type); | |
50eff16b UW |
11646 | struct type *scale_type = ada_scaling_type (type); |
11647 | ||
11648 | long long num0, den0, num1, den1; | |
14f9c5c9 | 11649 | int n; |
d2e4a39e | 11650 | |
50eff16b | 11651 | n = sscanf (encoding, "_%lld_%lld_%lld_%lld", |
facc390f | 11652 | &num0, &den0, &num1, &den1); |
14f9c5c9 AS |
11653 | |
11654 | if (n < 2) | |
50eff16b | 11655 | return value_from_longest (scale_type, 1); |
14f9c5c9 | 11656 | else if (n == 4) |
50eff16b UW |
11657 | return value_binop (value_from_longest (scale_type, num1), |
11658 | value_from_longest (scale_type, den1), BINOP_DIV); | |
d2e4a39e | 11659 | else |
50eff16b UW |
11660 | return value_binop (value_from_longest (scale_type, num0), |
11661 | value_from_longest (scale_type, den0), BINOP_DIV); | |
14f9c5c9 AS |
11662 | } |
11663 | ||
14f9c5c9 | 11664 | \f |
d2e4a39e | 11665 | |
4c4b4cd2 | 11666 | /* Range types */ |
14f9c5c9 AS |
11667 | |
11668 | /* Scan STR beginning at position K for a discriminant name, and | |
11669 | return the value of that discriminant field of DVAL in *PX. If | |
11670 | PNEW_K is not null, put the position of the character beyond the | |
11671 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 11672 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
11673 | |
11674 | static int | |
108d56a4 | 11675 | scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 11676 | int *pnew_k) |
14f9c5c9 AS |
11677 | { |
11678 | static char *bound_buffer = NULL; | |
11679 | static size_t bound_buffer_len = 0; | |
5da1a4d3 | 11680 | const char *pstart, *pend, *bound; |
d2e4a39e | 11681 | struct value *bound_val; |
14f9c5c9 AS |
11682 | |
11683 | if (dval == NULL || str == NULL || str[k] == '\0') | |
11684 | return 0; | |
11685 | ||
5da1a4d3 SM |
11686 | pstart = str + k; |
11687 | pend = strstr (pstart, "__"); | |
14f9c5c9 AS |
11688 | if (pend == NULL) |
11689 | { | |
5da1a4d3 | 11690 | bound = pstart; |
14f9c5c9 AS |
11691 | k += strlen (bound); |
11692 | } | |
d2e4a39e | 11693 | else |
14f9c5c9 | 11694 | { |
5da1a4d3 SM |
11695 | int len = pend - pstart; |
11696 | ||
11697 | /* Strip __ and beyond. */ | |
11698 | GROW_VECT (bound_buffer, bound_buffer_len, len + 1); | |
11699 | strncpy (bound_buffer, pstart, len); | |
11700 | bound_buffer[len] = '\0'; | |
11701 | ||
14f9c5c9 | 11702 | bound = bound_buffer; |
d2e4a39e | 11703 | k = pend - str; |
14f9c5c9 | 11704 | } |
d2e4a39e | 11705 | |
df407dfe | 11706 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
11707 | if (bound_val == NULL) |
11708 | return 0; | |
11709 | ||
11710 | *px = value_as_long (bound_val); | |
11711 | if (pnew_k != NULL) | |
11712 | *pnew_k = k; | |
11713 | return 1; | |
11714 | } | |
11715 | ||
11716 | /* Value of variable named NAME in the current environment. If | |
11717 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
11718 | otherwise causes an error with message ERR_MSG. */ |
11719 | ||
d2e4a39e | 11720 | static struct value * |
edb0c9cb | 11721 | get_var_value (const char *name, const char *err_msg) |
14f9c5c9 | 11722 | { |
b5ec771e | 11723 | lookup_name_info lookup_name (name, symbol_name_match_type::FULL); |
14f9c5c9 | 11724 | |
54d343a2 | 11725 | std::vector<struct block_symbol> syms; |
b5ec771e PA |
11726 | int nsyms = ada_lookup_symbol_list_worker (lookup_name, |
11727 | get_selected_block (0), | |
11728 | VAR_DOMAIN, &syms, 1); | |
14f9c5c9 AS |
11729 | |
11730 | if (nsyms != 1) | |
11731 | { | |
11732 | if (err_msg == NULL) | |
4c4b4cd2 | 11733 | return 0; |
14f9c5c9 | 11734 | else |
8a3fe4f8 | 11735 | error (("%s"), err_msg); |
14f9c5c9 AS |
11736 | } |
11737 | ||
54d343a2 | 11738 | return value_of_variable (syms[0].symbol, syms[0].block); |
14f9c5c9 | 11739 | } |
d2e4a39e | 11740 | |
edb0c9cb PA |
11741 | /* Value of integer variable named NAME in the current environment. |
11742 | If no such variable is found, returns false. Otherwise, sets VALUE | |
11743 | to the variable's value and returns true. */ | |
4c4b4cd2 | 11744 | |
edb0c9cb PA |
11745 | bool |
11746 | get_int_var_value (const char *name, LONGEST &value) | |
14f9c5c9 | 11747 | { |
4c4b4cd2 | 11748 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 11749 | |
14f9c5c9 | 11750 | if (var_val == 0) |
edb0c9cb PA |
11751 | return false; |
11752 | ||
11753 | value = value_as_long (var_val); | |
11754 | return true; | |
14f9c5c9 | 11755 | } |
d2e4a39e | 11756 | |
14f9c5c9 AS |
11757 | |
11758 | /* Return a range type whose base type is that of the range type named | |
11759 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 11760 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
11761 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
11762 | corresponding range type from debug information; fall back to using it | |
11763 | if symbol lookup fails. If a new type must be created, allocate it | |
11764 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
11765 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 11766 | |
d2e4a39e | 11767 | static struct type * |
28c85d6c | 11768 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 11769 | { |
0d5cff50 | 11770 | const char *name; |
14f9c5c9 | 11771 | struct type *base_type; |
108d56a4 | 11772 | const char *subtype_info; |
14f9c5c9 | 11773 | |
28c85d6c JB |
11774 | gdb_assert (raw_type != NULL); |
11775 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 11776 | |
1ce677a4 | 11777 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
11778 | base_type = TYPE_TARGET_TYPE (raw_type); |
11779 | else | |
11780 | base_type = raw_type; | |
11781 | ||
28c85d6c | 11782 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
11783 | subtype_info = strstr (name, "___XD"); |
11784 | if (subtype_info == NULL) | |
690cc4eb | 11785 | { |
43bbcdc2 PH |
11786 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
11787 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 11788 | |
690cc4eb PH |
11789 | if (L < INT_MIN || U > INT_MAX) |
11790 | return raw_type; | |
11791 | else | |
0c9c3474 SA |
11792 | return create_static_range_type (alloc_type_copy (raw_type), raw_type, |
11793 | L, U); | |
690cc4eb | 11794 | } |
14f9c5c9 AS |
11795 | else |
11796 | { | |
11797 | static char *name_buf = NULL; | |
11798 | static size_t name_len = 0; | |
11799 | int prefix_len = subtype_info - name; | |
11800 | LONGEST L, U; | |
11801 | struct type *type; | |
108d56a4 | 11802 | const char *bounds_str; |
14f9c5c9 AS |
11803 | int n; |
11804 | ||
11805 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
11806 | strncpy (name_buf, name, prefix_len); | |
11807 | name_buf[prefix_len] = '\0'; | |
11808 | ||
11809 | subtype_info += 5; | |
11810 | bounds_str = strchr (subtype_info, '_'); | |
11811 | n = 1; | |
11812 | ||
d2e4a39e | 11813 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
11814 | { |
11815 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
11816 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
11817 | return raw_type; | |
11818 | if (bounds_str[n] == '_') | |
11819 | n += 2; | |
0963b4bd | 11820 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
4c4b4cd2 PH |
11821 | n += 1; |
11822 | subtype_info += 1; | |
11823 | } | |
d2e4a39e | 11824 | else |
4c4b4cd2 | 11825 | { |
4c4b4cd2 | 11826 | strcpy (name_buf + prefix_len, "___L"); |
edb0c9cb | 11827 | if (!get_int_var_value (name_buf, L)) |
4c4b4cd2 | 11828 | { |
323e0a4a | 11829 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
11830 | L = 1; |
11831 | } | |
11832 | } | |
14f9c5c9 | 11833 | |
d2e4a39e | 11834 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
11835 | { |
11836 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
11837 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
11838 | return raw_type; | |
11839 | } | |
d2e4a39e | 11840 | else |
4c4b4cd2 | 11841 | { |
4c4b4cd2 | 11842 | strcpy (name_buf + prefix_len, "___U"); |
edb0c9cb | 11843 | if (!get_int_var_value (name_buf, U)) |
4c4b4cd2 | 11844 | { |
323e0a4a | 11845 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
11846 | U = L; |
11847 | } | |
11848 | } | |
14f9c5c9 | 11849 | |
0c9c3474 SA |
11850 | type = create_static_range_type (alloc_type_copy (raw_type), |
11851 | base_type, L, U); | |
f5a91472 JB |
11852 | /* create_static_range_type alters the resulting type's length |
11853 | to match the size of the base_type, which is not what we want. | |
11854 | Set it back to the original range type's length. */ | |
11855 | TYPE_LENGTH (type) = TYPE_LENGTH (raw_type); | |
d2e4a39e | 11856 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
11857 | return type; |
11858 | } | |
11859 | } | |
11860 | ||
4c4b4cd2 PH |
11861 | /* True iff NAME is the name of a range type. */ |
11862 | ||
14f9c5c9 | 11863 | int |
d2e4a39e | 11864 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
11865 | { |
11866 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 11867 | } |
14f9c5c9 | 11868 | \f |
d2e4a39e | 11869 | |
4c4b4cd2 PH |
11870 | /* Modular types */ |
11871 | ||
11872 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 11873 | |
14f9c5c9 | 11874 | int |
d2e4a39e | 11875 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 11876 | { |
18af8284 | 11877 | struct type *subranged_type = get_base_type (type); |
14f9c5c9 AS |
11878 | |
11879 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 11880 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 11881 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
11882 | } |
11883 | ||
4c4b4cd2 PH |
11884 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
11885 | ||
61ee279c | 11886 | ULONGEST |
0056e4d5 | 11887 | ada_modulus (struct type *type) |
14f9c5c9 | 11888 | { |
43bbcdc2 | 11889 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 11890 | } |
d2e4a39e | 11891 | \f |
f7f9143b JB |
11892 | |
11893 | /* Ada exception catchpoint support: | |
11894 | --------------------------------- | |
11895 | ||
11896 | We support 3 kinds of exception catchpoints: | |
11897 | . catchpoints on Ada exceptions | |
11898 | . catchpoints on unhandled Ada exceptions | |
11899 | . catchpoints on failed assertions | |
11900 | ||
11901 | Exceptions raised during failed assertions, or unhandled exceptions | |
11902 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
11903 | However, we can easily differentiate these two special cases, and having | |
11904 | the option to distinguish these two cases from the rest can be useful | |
11905 | to zero-in on certain situations. | |
11906 | ||
11907 | Exception catchpoints are a specialized form of breakpoint, | |
11908 | since they rely on inserting breakpoints inside known routines | |
11909 | of the GNAT runtime. The implementation therefore uses a standard | |
11910 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
11911 | of breakpoint_ops. | |
11912 | ||
0259addd JB |
11913 | Support in the runtime for exception catchpoints have been changed |
11914 | a few times already, and these changes affect the implementation | |
11915 | of these catchpoints. In order to be able to support several | |
11916 | variants of the runtime, we use a sniffer that will determine | |
28010a5d | 11917 | the runtime variant used by the program being debugged. */ |
f7f9143b | 11918 | |
82eacd52 JB |
11919 | /* Ada's standard exceptions. |
11920 | ||
11921 | The Ada 83 standard also defined Numeric_Error. But there so many | |
11922 | situations where it was unclear from the Ada 83 Reference Manual | |
11923 | (RM) whether Constraint_Error or Numeric_Error should be raised, | |
11924 | that the ARG (Ada Rapporteur Group) eventually issued a Binding | |
11925 | Interpretation saying that anytime the RM says that Numeric_Error | |
11926 | should be raised, the implementation may raise Constraint_Error. | |
11927 | Ada 95 went one step further and pretty much removed Numeric_Error | |
11928 | from the list of standard exceptions (it made it a renaming of | |
11929 | Constraint_Error, to help preserve compatibility when compiling | |
11930 | an Ada83 compiler). As such, we do not include Numeric_Error from | |
11931 | this list of standard exceptions. */ | |
3d0b0fa3 | 11932 | |
a121b7c1 | 11933 | static const char *standard_exc[] = { |
3d0b0fa3 JB |
11934 | "constraint_error", |
11935 | "program_error", | |
11936 | "storage_error", | |
11937 | "tasking_error" | |
11938 | }; | |
11939 | ||
0259addd JB |
11940 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
11941 | ||
11942 | /* A structure that describes how to support exception catchpoints | |
11943 | for a given executable. */ | |
11944 | ||
11945 | struct exception_support_info | |
11946 | { | |
11947 | /* The name of the symbol to break on in order to insert | |
11948 | a catchpoint on exceptions. */ | |
11949 | const char *catch_exception_sym; | |
11950 | ||
11951 | /* The name of the symbol to break on in order to insert | |
11952 | a catchpoint on unhandled exceptions. */ | |
11953 | const char *catch_exception_unhandled_sym; | |
11954 | ||
11955 | /* The name of the symbol to break on in order to insert | |
11956 | a catchpoint on failed assertions. */ | |
11957 | const char *catch_assert_sym; | |
11958 | ||
9f757bf7 XR |
11959 | /* The name of the symbol to break on in order to insert |
11960 | a catchpoint on exception handling. */ | |
11961 | const char *catch_handlers_sym; | |
11962 | ||
0259addd JB |
11963 | /* Assuming that the inferior just triggered an unhandled exception |
11964 | catchpoint, this function is responsible for returning the address | |
11965 | in inferior memory where the name of that exception is stored. | |
11966 | Return zero if the address could not be computed. */ | |
11967 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
11968 | }; | |
11969 | ||
11970 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
11971 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
11972 | ||
11973 | /* The following exception support info structure describes how to | |
11974 | implement exception catchpoints with the latest version of the | |
11975 | Ada runtime (as of 2007-03-06). */ | |
11976 | ||
11977 | static const struct exception_support_info default_exception_support_info = | |
11978 | { | |
11979 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
11980 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11981 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
9f757bf7 | 11982 | "__gnat_begin_handler", /* catch_handlers_sym */ |
0259addd JB |
11983 | ada_unhandled_exception_name_addr |
11984 | }; | |
11985 | ||
11986 | /* The following exception support info structure describes how to | |
11987 | implement exception catchpoints with a slightly older version | |
11988 | of the Ada runtime. */ | |
11989 | ||
11990 | static const struct exception_support_info exception_support_info_fallback = | |
11991 | { | |
11992 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
11993 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11994 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
9f757bf7 | 11995 | "__gnat_begin_handler", /* catch_handlers_sym */ |
0259addd JB |
11996 | ada_unhandled_exception_name_addr_from_raise |
11997 | }; | |
11998 | ||
f17011e0 JB |
11999 | /* Return nonzero if we can detect the exception support routines |
12000 | described in EINFO. | |
12001 | ||
12002 | This function errors out if an abnormal situation is detected | |
12003 | (for instance, if we find the exception support routines, but | |
12004 | that support is found to be incomplete). */ | |
12005 | ||
12006 | static int | |
12007 | ada_has_this_exception_support (const struct exception_support_info *einfo) | |
12008 | { | |
12009 | struct symbol *sym; | |
12010 | ||
12011 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
12012 | that should be compiled with debugging information. As a result, we | |
12013 | expect to find that symbol in the symtabs. */ | |
12014 | ||
12015 | sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN); | |
12016 | if (sym == NULL) | |
a6af7abe JB |
12017 | { |
12018 | /* Perhaps we did not find our symbol because the Ada runtime was | |
12019 | compiled without debugging info, or simply stripped of it. | |
12020 | It happens on some GNU/Linux distributions for instance, where | |
12021 | users have to install a separate debug package in order to get | |
12022 | the runtime's debugging info. In that situation, let the user | |
12023 | know why we cannot insert an Ada exception catchpoint. | |
12024 | ||
12025 | Note: Just for the purpose of inserting our Ada exception | |
12026 | catchpoint, we could rely purely on the associated minimal symbol. | |
12027 | But we would be operating in degraded mode anyway, since we are | |
12028 | still lacking the debugging info needed later on to extract | |
12029 | the name of the exception being raised (this name is printed in | |
12030 | the catchpoint message, and is also used when trying to catch | |
12031 | a specific exception). We do not handle this case for now. */ | |
3b7344d5 | 12032 | struct bound_minimal_symbol msym |
1c8e84b0 JB |
12033 | = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL); |
12034 | ||
3b7344d5 | 12035 | if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline) |
a6af7abe JB |
12036 | error (_("Your Ada runtime appears to be missing some debugging " |
12037 | "information.\nCannot insert Ada exception catchpoint " | |
12038 | "in this configuration.")); | |
12039 | ||
12040 | return 0; | |
12041 | } | |
f17011e0 JB |
12042 | |
12043 | /* Make sure that the symbol we found corresponds to a function. */ | |
12044 | ||
12045 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
12046 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
12047 | SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym)); | |
12048 | ||
12049 | return 1; | |
12050 | } | |
12051 | ||
0259addd JB |
12052 | /* Inspect the Ada runtime and determine which exception info structure |
12053 | should be used to provide support for exception catchpoints. | |
12054 | ||
3eecfa55 JB |
12055 | This function will always set the per-inferior exception_info, |
12056 | or raise an error. */ | |
0259addd JB |
12057 | |
12058 | static void | |
12059 | ada_exception_support_info_sniffer (void) | |
12060 | { | |
3eecfa55 | 12061 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
0259addd JB |
12062 | |
12063 | /* If the exception info is already known, then no need to recompute it. */ | |
3eecfa55 | 12064 | if (data->exception_info != NULL) |
0259addd JB |
12065 | return; |
12066 | ||
12067 | /* Check the latest (default) exception support info. */ | |
f17011e0 | 12068 | if (ada_has_this_exception_support (&default_exception_support_info)) |
0259addd | 12069 | { |
3eecfa55 | 12070 | data->exception_info = &default_exception_support_info; |
0259addd JB |
12071 | return; |
12072 | } | |
12073 | ||
12074 | /* Try our fallback exception suport info. */ | |
f17011e0 | 12075 | if (ada_has_this_exception_support (&exception_support_info_fallback)) |
0259addd | 12076 | { |
3eecfa55 | 12077 | data->exception_info = &exception_support_info_fallback; |
0259addd JB |
12078 | return; |
12079 | } | |
12080 | ||
12081 | /* Sometimes, it is normal for us to not be able to find the routine | |
12082 | we are looking for. This happens when the program is linked with | |
12083 | the shared version of the GNAT runtime, and the program has not been | |
12084 | started yet. Inform the user of these two possible causes if | |
12085 | applicable. */ | |
12086 | ||
ccefe4c4 | 12087 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
12088 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
12089 | ||
12090 | /* If the symbol does not exist, then check that the program is | |
12091 | already started, to make sure that shared libraries have been | |
12092 | loaded. If it is not started, this may mean that the symbol is | |
12093 | in a shared library. */ | |
12094 | ||
e99b03dc | 12095 | if (inferior_ptid.pid () == 0) |
0259addd JB |
12096 | error (_("Unable to insert catchpoint. Try to start the program first.")); |
12097 | ||
12098 | /* At this point, we know that we are debugging an Ada program and | |
12099 | that the inferior has been started, but we still are not able to | |
0963b4bd | 12100 | find the run-time symbols. That can mean that we are in |
0259addd JB |
12101 | configurable run time mode, or that a-except as been optimized |
12102 | out by the linker... In any case, at this point it is not worth | |
12103 | supporting this feature. */ | |
12104 | ||
7dda8cff | 12105 | error (_("Cannot insert Ada exception catchpoints in this configuration.")); |
0259addd JB |
12106 | } |
12107 | ||
f7f9143b JB |
12108 | /* True iff FRAME is very likely to be that of a function that is |
12109 | part of the runtime system. This is all very heuristic, but is | |
12110 | intended to be used as advice as to what frames are uninteresting | |
12111 | to most users. */ | |
12112 | ||
12113 | static int | |
12114 | is_known_support_routine (struct frame_info *frame) | |
12115 | { | |
692465f1 | 12116 | enum language func_lang; |
f7f9143b | 12117 | int i; |
f35a17b5 | 12118 | const char *fullname; |
f7f9143b | 12119 | |
4ed6b5be JB |
12120 | /* If this code does not have any debugging information (no symtab), |
12121 | This cannot be any user code. */ | |
f7f9143b | 12122 | |
51abb421 | 12123 | symtab_and_line sal = find_frame_sal (frame); |
f7f9143b JB |
12124 | if (sal.symtab == NULL) |
12125 | return 1; | |
12126 | ||
4ed6b5be JB |
12127 | /* If there is a symtab, but the associated source file cannot be |
12128 | located, then assume this is not user code: Selecting a frame | |
12129 | for which we cannot display the code would not be very helpful | |
12130 | for the user. This should also take care of case such as VxWorks | |
12131 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 12132 | |
f35a17b5 JK |
12133 | fullname = symtab_to_fullname (sal.symtab); |
12134 | if (access (fullname, R_OK) != 0) | |
f7f9143b JB |
12135 | return 1; |
12136 | ||
4ed6b5be JB |
12137 | /* Check the unit filename againt the Ada runtime file naming. |
12138 | We also check the name of the objfile against the name of some | |
12139 | known system libraries that sometimes come with debugging info | |
12140 | too. */ | |
12141 | ||
f7f9143b JB |
12142 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
12143 | { | |
12144 | re_comp (known_runtime_file_name_patterns[i]); | |
f69c91ad | 12145 | if (re_exec (lbasename (sal.symtab->filename))) |
f7f9143b | 12146 | return 1; |
eb822aa6 DE |
12147 | if (SYMTAB_OBJFILE (sal.symtab) != NULL |
12148 | && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab)))) | |
4ed6b5be | 12149 | return 1; |
f7f9143b JB |
12150 | } |
12151 | ||
4ed6b5be | 12152 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 12153 | |
c6dc63a1 TT |
12154 | gdb::unique_xmalloc_ptr<char> func_name |
12155 | = find_frame_funname (frame, &func_lang, NULL); | |
f7f9143b JB |
12156 | if (func_name == NULL) |
12157 | return 1; | |
12158 | ||
12159 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
12160 | { | |
12161 | re_comp (known_auxiliary_function_name_patterns[i]); | |
c6dc63a1 TT |
12162 | if (re_exec (func_name.get ())) |
12163 | return 1; | |
f7f9143b JB |
12164 | } |
12165 | ||
12166 | return 0; | |
12167 | } | |
12168 | ||
12169 | /* Find the first frame that contains debugging information and that is not | |
12170 | part of the Ada run-time, starting from FI and moving upward. */ | |
12171 | ||
0ef643c8 | 12172 | void |
f7f9143b JB |
12173 | ada_find_printable_frame (struct frame_info *fi) |
12174 | { | |
12175 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
12176 | { | |
12177 | if (!is_known_support_routine (fi)) | |
12178 | { | |
12179 | select_frame (fi); | |
12180 | break; | |
12181 | } | |
12182 | } | |
12183 | ||
12184 | } | |
12185 | ||
12186 | /* Assuming that the inferior just triggered an unhandled exception | |
12187 | catchpoint, return the address in inferior memory where the name | |
12188 | of the exception is stored. | |
12189 | ||
12190 | Return zero if the address could not be computed. */ | |
12191 | ||
12192 | static CORE_ADDR | |
12193 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
12194 | { |
12195 | return parse_and_eval_address ("e.full_name"); | |
12196 | } | |
12197 | ||
12198 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
12199 | should be used when the inferior uses an older version of the runtime, | |
12200 | where the exception name needs to be extracted from a specific frame | |
12201 | several frames up in the callstack. */ | |
12202 | ||
12203 | static CORE_ADDR | |
12204 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
12205 | { |
12206 | int frame_level; | |
12207 | struct frame_info *fi; | |
3eecfa55 | 12208 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
f7f9143b JB |
12209 | |
12210 | /* To determine the name of this exception, we need to select | |
12211 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
12212 | at least 3 levels up, so we simply skip the first 3 frames | |
12213 | without checking the name of their associated function. */ | |
12214 | fi = get_current_frame (); | |
12215 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
12216 | if (fi != NULL) | |
12217 | fi = get_prev_frame (fi); | |
12218 | ||
12219 | while (fi != NULL) | |
12220 | { | |
692465f1 JB |
12221 | enum language func_lang; |
12222 | ||
c6dc63a1 TT |
12223 | gdb::unique_xmalloc_ptr<char> func_name |
12224 | = find_frame_funname (fi, &func_lang, NULL); | |
55b87a52 KS |
12225 | if (func_name != NULL) |
12226 | { | |
c6dc63a1 | 12227 | if (strcmp (func_name.get (), |
55b87a52 KS |
12228 | data->exception_info->catch_exception_sym) == 0) |
12229 | break; /* We found the frame we were looking for... */ | |
55b87a52 | 12230 | } |
fb44b1a7 | 12231 | fi = get_prev_frame (fi); |
f7f9143b JB |
12232 | } |
12233 | ||
12234 | if (fi == NULL) | |
12235 | return 0; | |
12236 | ||
12237 | select_frame (fi); | |
12238 | return parse_and_eval_address ("id.full_name"); | |
12239 | } | |
12240 | ||
12241 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
12242 | (of any type), return the address in inferior memory where the name | |
12243 | of the exception is stored, if applicable. | |
12244 | ||
45db7c09 PA |
12245 | Assumes the selected frame is the current frame. |
12246 | ||
f7f9143b JB |
12247 | Return zero if the address could not be computed, or if not relevant. */ |
12248 | ||
12249 | static CORE_ADDR | |
761269c8 | 12250 | ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12251 | struct breakpoint *b) |
12252 | { | |
3eecfa55 JB |
12253 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
12254 | ||
f7f9143b JB |
12255 | switch (ex) |
12256 | { | |
761269c8 | 12257 | case ada_catch_exception: |
f7f9143b JB |
12258 | return (parse_and_eval_address ("e.full_name")); |
12259 | break; | |
12260 | ||
761269c8 | 12261 | case ada_catch_exception_unhandled: |
3eecfa55 | 12262 | return data->exception_info->unhandled_exception_name_addr (); |
f7f9143b | 12263 | break; |
9f757bf7 XR |
12264 | |
12265 | case ada_catch_handlers: | |
12266 | return 0; /* The runtimes does not provide access to the exception | |
12267 | name. */ | |
12268 | break; | |
12269 | ||
761269c8 | 12270 | case ada_catch_assert: |
f7f9143b JB |
12271 | return 0; /* Exception name is not relevant in this case. */ |
12272 | break; | |
12273 | ||
12274 | default: | |
12275 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12276 | break; | |
12277 | } | |
12278 | ||
12279 | return 0; /* Should never be reached. */ | |
12280 | } | |
12281 | ||
e547c119 JB |
12282 | /* Assuming the inferior is stopped at an exception catchpoint, |
12283 | return the message which was associated to the exception, if | |
12284 | available. Return NULL if the message could not be retrieved. | |
12285 | ||
e547c119 JB |
12286 | Note: The exception message can be associated to an exception |
12287 | either through the use of the Raise_Exception function, or | |
12288 | more simply (Ada 2005 and later), via: | |
12289 | ||
12290 | raise Exception_Name with "exception message"; | |
12291 | ||
12292 | */ | |
12293 | ||
6f46ac85 | 12294 | static gdb::unique_xmalloc_ptr<char> |
e547c119 JB |
12295 | ada_exception_message_1 (void) |
12296 | { | |
12297 | struct value *e_msg_val; | |
e547c119 | 12298 | int e_msg_len; |
e547c119 JB |
12299 | |
12300 | /* For runtimes that support this feature, the exception message | |
12301 | is passed as an unbounded string argument called "message". */ | |
12302 | e_msg_val = parse_and_eval ("message"); | |
12303 | if (e_msg_val == NULL) | |
12304 | return NULL; /* Exception message not supported. */ | |
12305 | ||
12306 | e_msg_val = ada_coerce_to_simple_array (e_msg_val); | |
12307 | gdb_assert (e_msg_val != NULL); | |
12308 | e_msg_len = TYPE_LENGTH (value_type (e_msg_val)); | |
12309 | ||
12310 | /* If the message string is empty, then treat it as if there was | |
12311 | no exception message. */ | |
12312 | if (e_msg_len <= 0) | |
12313 | return NULL; | |
12314 | ||
6f46ac85 TT |
12315 | gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1)); |
12316 | read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1); | |
12317 | e_msg.get ()[e_msg_len] = '\0'; | |
e547c119 | 12318 | |
e547c119 JB |
12319 | return e_msg; |
12320 | } | |
12321 | ||
12322 | /* Same as ada_exception_message_1, except that all exceptions are | |
12323 | contained here (returning NULL instead). */ | |
12324 | ||
6f46ac85 | 12325 | static gdb::unique_xmalloc_ptr<char> |
e547c119 JB |
12326 | ada_exception_message (void) |
12327 | { | |
6f46ac85 | 12328 | gdb::unique_xmalloc_ptr<char> e_msg; |
e547c119 JB |
12329 | |
12330 | TRY | |
12331 | { | |
12332 | e_msg = ada_exception_message_1 (); | |
12333 | } | |
12334 | CATCH (e, RETURN_MASK_ERROR) | |
12335 | { | |
6f46ac85 | 12336 | e_msg.reset (nullptr); |
e547c119 JB |
12337 | } |
12338 | END_CATCH | |
12339 | ||
12340 | return e_msg; | |
12341 | } | |
12342 | ||
f7f9143b JB |
12343 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains |
12344 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
12345 | When an error is intercepted, a warning with the error message is printed, | |
12346 | and zero is returned. */ | |
12347 | ||
12348 | static CORE_ADDR | |
761269c8 | 12349 | ada_exception_name_addr (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12350 | struct breakpoint *b) |
12351 | { | |
f7f9143b JB |
12352 | CORE_ADDR result = 0; |
12353 | ||
492d29ea | 12354 | TRY |
f7f9143b JB |
12355 | { |
12356 | result = ada_exception_name_addr_1 (ex, b); | |
12357 | } | |
12358 | ||
492d29ea | 12359 | CATCH (e, RETURN_MASK_ERROR) |
f7f9143b JB |
12360 | { |
12361 | warning (_("failed to get exception name: %s"), e.message); | |
12362 | return 0; | |
12363 | } | |
492d29ea | 12364 | END_CATCH |
f7f9143b JB |
12365 | |
12366 | return result; | |
12367 | } | |
12368 | ||
cb7de75e | 12369 | static std::string ada_exception_catchpoint_cond_string |
9f757bf7 XR |
12370 | (const char *excep_string, |
12371 | enum ada_exception_catchpoint_kind ex); | |
28010a5d PA |
12372 | |
12373 | /* Ada catchpoints. | |
12374 | ||
12375 | In the case of catchpoints on Ada exceptions, the catchpoint will | |
12376 | stop the target on every exception the program throws. When a user | |
12377 | specifies the name of a specific exception, we translate this | |
12378 | request into a condition expression (in text form), and then parse | |
12379 | it into an expression stored in each of the catchpoint's locations. | |
12380 | We then use this condition to check whether the exception that was | |
12381 | raised is the one the user is interested in. If not, then the | |
12382 | target is resumed again. We store the name of the requested | |
12383 | exception, in order to be able to re-set the condition expression | |
12384 | when symbols change. */ | |
12385 | ||
12386 | /* An instance of this type is used to represent an Ada catchpoint | |
5625a286 | 12387 | breakpoint location. */ |
28010a5d | 12388 | |
5625a286 | 12389 | class ada_catchpoint_location : public bp_location |
28010a5d | 12390 | { |
5625a286 PA |
12391 | public: |
12392 | ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner) | |
12393 | : bp_location (ops, owner) | |
12394 | {} | |
28010a5d PA |
12395 | |
12396 | /* The condition that checks whether the exception that was raised | |
12397 | is the specific exception the user specified on catchpoint | |
12398 | creation. */ | |
4d01a485 | 12399 | expression_up excep_cond_expr; |
28010a5d PA |
12400 | }; |
12401 | ||
12402 | /* Implement the DTOR method in the bp_location_ops structure for all | |
12403 | Ada exception catchpoint kinds. */ | |
12404 | ||
12405 | static void | |
12406 | ada_catchpoint_location_dtor (struct bp_location *bl) | |
12407 | { | |
12408 | struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl; | |
12409 | ||
4d01a485 | 12410 | al->excep_cond_expr.reset (); |
28010a5d PA |
12411 | } |
12412 | ||
12413 | /* The vtable to be used in Ada catchpoint locations. */ | |
12414 | ||
12415 | static const struct bp_location_ops ada_catchpoint_location_ops = | |
12416 | { | |
12417 | ada_catchpoint_location_dtor | |
12418 | }; | |
12419 | ||
c1fc2657 | 12420 | /* An instance of this type is used to represent an Ada catchpoint. */ |
28010a5d | 12421 | |
c1fc2657 | 12422 | struct ada_catchpoint : public breakpoint |
28010a5d | 12423 | { |
28010a5d | 12424 | /* The name of the specific exception the user specified. */ |
bc18fbb5 | 12425 | std::string excep_string; |
28010a5d PA |
12426 | }; |
12427 | ||
12428 | /* Parse the exception condition string in the context of each of the | |
12429 | catchpoint's locations, and store them for later evaluation. */ | |
12430 | ||
12431 | static void | |
9f757bf7 XR |
12432 | create_excep_cond_exprs (struct ada_catchpoint *c, |
12433 | enum ada_exception_catchpoint_kind ex) | |
28010a5d | 12434 | { |
28010a5d | 12435 | struct bp_location *bl; |
28010a5d PA |
12436 | |
12437 | /* Nothing to do if there's no specific exception to catch. */ | |
bc18fbb5 | 12438 | if (c->excep_string.empty ()) |
28010a5d PA |
12439 | return; |
12440 | ||
12441 | /* Same if there are no locations... */ | |
c1fc2657 | 12442 | if (c->loc == NULL) |
28010a5d PA |
12443 | return; |
12444 | ||
12445 | /* Compute the condition expression in text form, from the specific | |
12446 | expection we want to catch. */ | |
cb7de75e | 12447 | std::string cond_string |
bc18fbb5 | 12448 | = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex); |
28010a5d PA |
12449 | |
12450 | /* Iterate over all the catchpoint's locations, and parse an | |
12451 | expression for each. */ | |
c1fc2657 | 12452 | for (bl = c->loc; bl != NULL; bl = bl->next) |
28010a5d PA |
12453 | { |
12454 | struct ada_catchpoint_location *ada_loc | |
12455 | = (struct ada_catchpoint_location *) bl; | |
4d01a485 | 12456 | expression_up exp; |
28010a5d PA |
12457 | |
12458 | if (!bl->shlib_disabled) | |
12459 | { | |
bbc13ae3 | 12460 | const char *s; |
28010a5d | 12461 | |
cb7de75e | 12462 | s = cond_string.c_str (); |
492d29ea | 12463 | TRY |
28010a5d | 12464 | { |
036e657b JB |
12465 | exp = parse_exp_1 (&s, bl->address, |
12466 | block_for_pc (bl->address), | |
12467 | 0); | |
28010a5d | 12468 | } |
492d29ea | 12469 | CATCH (e, RETURN_MASK_ERROR) |
849f2b52 JB |
12470 | { |
12471 | warning (_("failed to reevaluate internal exception condition " | |
12472 | "for catchpoint %d: %s"), | |
c1fc2657 | 12473 | c->number, e.message); |
849f2b52 | 12474 | } |
492d29ea | 12475 | END_CATCH |
28010a5d PA |
12476 | } |
12477 | ||
b22e99fd | 12478 | ada_loc->excep_cond_expr = std::move (exp); |
28010a5d | 12479 | } |
28010a5d PA |
12480 | } |
12481 | ||
28010a5d PA |
12482 | /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops |
12483 | structure for all exception catchpoint kinds. */ | |
12484 | ||
12485 | static struct bp_location * | |
761269c8 | 12486 | allocate_location_exception (enum ada_exception_catchpoint_kind ex, |
28010a5d PA |
12487 | struct breakpoint *self) |
12488 | { | |
5625a286 | 12489 | return new ada_catchpoint_location (&ada_catchpoint_location_ops, self); |
28010a5d PA |
12490 | } |
12491 | ||
12492 | /* Implement the RE_SET method in the breakpoint_ops structure for all | |
12493 | exception catchpoint kinds. */ | |
12494 | ||
12495 | static void | |
761269c8 | 12496 | re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b) |
28010a5d PA |
12497 | { |
12498 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
12499 | ||
12500 | /* Call the base class's method. This updates the catchpoint's | |
12501 | locations. */ | |
2060206e | 12502 | bkpt_breakpoint_ops.re_set (b); |
28010a5d PA |
12503 | |
12504 | /* Reparse the exception conditional expressions. One for each | |
12505 | location. */ | |
9f757bf7 | 12506 | create_excep_cond_exprs (c, ex); |
28010a5d PA |
12507 | } |
12508 | ||
12509 | /* Returns true if we should stop for this breakpoint hit. If the | |
12510 | user specified a specific exception, we only want to cause a stop | |
12511 | if the program thrown that exception. */ | |
12512 | ||
12513 | static int | |
12514 | should_stop_exception (const struct bp_location *bl) | |
12515 | { | |
12516 | struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; | |
12517 | const struct ada_catchpoint_location *ada_loc | |
12518 | = (const struct ada_catchpoint_location *) bl; | |
28010a5d PA |
12519 | int stop; |
12520 | ||
12521 | /* With no specific exception, should always stop. */ | |
bc18fbb5 | 12522 | if (c->excep_string.empty ()) |
28010a5d PA |
12523 | return 1; |
12524 | ||
12525 | if (ada_loc->excep_cond_expr == NULL) | |
12526 | { | |
12527 | /* We will have a NULL expression if back when we were creating | |
12528 | the expressions, this location's had failed to parse. */ | |
12529 | return 1; | |
12530 | } | |
12531 | ||
12532 | stop = 1; | |
492d29ea | 12533 | TRY |
28010a5d PA |
12534 | { |
12535 | struct value *mark; | |
12536 | ||
12537 | mark = value_mark (); | |
4d01a485 | 12538 | stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ())); |
28010a5d PA |
12539 | value_free_to_mark (mark); |
12540 | } | |
492d29ea PA |
12541 | CATCH (ex, RETURN_MASK_ALL) |
12542 | { | |
12543 | exception_fprintf (gdb_stderr, ex, | |
12544 | _("Error in testing exception condition:\n")); | |
12545 | } | |
12546 | END_CATCH | |
12547 | ||
28010a5d PA |
12548 | return stop; |
12549 | } | |
12550 | ||
12551 | /* Implement the CHECK_STATUS method in the breakpoint_ops structure | |
12552 | for all exception catchpoint kinds. */ | |
12553 | ||
12554 | static void | |
761269c8 | 12555 | check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
28010a5d PA |
12556 | { |
12557 | bs->stop = should_stop_exception (bs->bp_location_at); | |
12558 | } | |
12559 | ||
f7f9143b JB |
12560 | /* Implement the PRINT_IT method in the breakpoint_ops structure |
12561 | for all exception catchpoint kinds. */ | |
12562 | ||
12563 | static enum print_stop_action | |
761269c8 | 12564 | print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
f7f9143b | 12565 | { |
79a45e25 | 12566 | struct ui_out *uiout = current_uiout; |
348d480f PA |
12567 | struct breakpoint *b = bs->breakpoint_at; |
12568 | ||
956a9fb9 | 12569 | annotate_catchpoint (b->number); |
f7f9143b | 12570 | |
112e8700 | 12571 | if (uiout->is_mi_like_p ()) |
f7f9143b | 12572 | { |
112e8700 | 12573 | uiout->field_string ("reason", |
956a9fb9 | 12574 | async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); |
112e8700 | 12575 | uiout->field_string ("disp", bpdisp_text (b->disposition)); |
f7f9143b JB |
12576 | } |
12577 | ||
112e8700 SM |
12578 | uiout->text (b->disposition == disp_del |
12579 | ? "\nTemporary catchpoint " : "\nCatchpoint "); | |
12580 | uiout->field_int ("bkptno", b->number); | |
12581 | uiout->text (", "); | |
f7f9143b | 12582 | |
45db7c09 PA |
12583 | /* ada_exception_name_addr relies on the selected frame being the |
12584 | current frame. Need to do this here because this function may be | |
12585 | called more than once when printing a stop, and below, we'll | |
12586 | select the first frame past the Ada run-time (see | |
12587 | ada_find_printable_frame). */ | |
12588 | select_frame (get_current_frame ()); | |
12589 | ||
f7f9143b JB |
12590 | switch (ex) |
12591 | { | |
761269c8 JB |
12592 | case ada_catch_exception: |
12593 | case ada_catch_exception_unhandled: | |
9f757bf7 | 12594 | case ada_catch_handlers: |
956a9fb9 JB |
12595 | { |
12596 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
12597 | char exception_name[256]; | |
12598 | ||
12599 | if (addr != 0) | |
12600 | { | |
c714b426 PA |
12601 | read_memory (addr, (gdb_byte *) exception_name, |
12602 | sizeof (exception_name) - 1); | |
956a9fb9 JB |
12603 | exception_name [sizeof (exception_name) - 1] = '\0'; |
12604 | } | |
12605 | else | |
12606 | { | |
12607 | /* For some reason, we were unable to read the exception | |
12608 | name. This could happen if the Runtime was compiled | |
12609 | without debugging info, for instance. In that case, | |
12610 | just replace the exception name by the generic string | |
12611 | "exception" - it will read as "an exception" in the | |
12612 | notification we are about to print. */ | |
967cff16 | 12613 | memcpy (exception_name, "exception", sizeof ("exception")); |
956a9fb9 JB |
12614 | } |
12615 | /* In the case of unhandled exception breakpoints, we print | |
12616 | the exception name as "unhandled EXCEPTION_NAME", to make | |
12617 | it clearer to the user which kind of catchpoint just got | |
12618 | hit. We used ui_out_text to make sure that this extra | |
12619 | info does not pollute the exception name in the MI case. */ | |
761269c8 | 12620 | if (ex == ada_catch_exception_unhandled) |
112e8700 SM |
12621 | uiout->text ("unhandled "); |
12622 | uiout->field_string ("exception-name", exception_name); | |
956a9fb9 JB |
12623 | } |
12624 | break; | |
761269c8 | 12625 | case ada_catch_assert: |
956a9fb9 JB |
12626 | /* In this case, the name of the exception is not really |
12627 | important. Just print "failed assertion" to make it clearer | |
12628 | that his program just hit an assertion-failure catchpoint. | |
12629 | We used ui_out_text because this info does not belong in | |
12630 | the MI output. */ | |
112e8700 | 12631 | uiout->text ("failed assertion"); |
956a9fb9 | 12632 | break; |
f7f9143b | 12633 | } |
e547c119 | 12634 | |
6f46ac85 | 12635 | gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message (); |
e547c119 JB |
12636 | if (exception_message != NULL) |
12637 | { | |
e547c119 | 12638 | uiout->text (" ("); |
6f46ac85 | 12639 | uiout->field_string ("exception-message", exception_message.get ()); |
e547c119 | 12640 | uiout->text (")"); |
e547c119 JB |
12641 | } |
12642 | ||
112e8700 | 12643 | uiout->text (" at "); |
956a9fb9 | 12644 | ada_find_printable_frame (get_current_frame ()); |
f7f9143b JB |
12645 | |
12646 | return PRINT_SRC_AND_LOC; | |
12647 | } | |
12648 | ||
12649 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
12650 | for all exception catchpoint kinds. */ | |
12651 | ||
12652 | static void | |
761269c8 | 12653 | print_one_exception (enum ada_exception_catchpoint_kind ex, |
a6d9a66e | 12654 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12655 | { |
79a45e25 | 12656 | struct ui_out *uiout = current_uiout; |
28010a5d | 12657 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45b7d TT |
12658 | struct value_print_options opts; |
12659 | ||
12660 | get_user_print_options (&opts); | |
12661 | if (opts.addressprint) | |
f7f9143b JB |
12662 | { |
12663 | annotate_field (4); | |
112e8700 | 12664 | uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
12665 | } |
12666 | ||
12667 | annotate_field (5); | |
a6d9a66e | 12668 | *last_loc = b->loc; |
f7f9143b JB |
12669 | switch (ex) |
12670 | { | |
761269c8 | 12671 | case ada_catch_exception: |
bc18fbb5 | 12672 | if (!c->excep_string.empty ()) |
f7f9143b | 12673 | { |
bc18fbb5 TT |
12674 | std::string msg = string_printf (_("`%s' Ada exception"), |
12675 | c->excep_string.c_str ()); | |
28010a5d | 12676 | |
112e8700 | 12677 | uiout->field_string ("what", msg); |
f7f9143b JB |
12678 | } |
12679 | else | |
112e8700 | 12680 | uiout->field_string ("what", "all Ada exceptions"); |
f7f9143b JB |
12681 | |
12682 | break; | |
12683 | ||
761269c8 | 12684 | case ada_catch_exception_unhandled: |
112e8700 | 12685 | uiout->field_string ("what", "unhandled Ada exceptions"); |
f7f9143b JB |
12686 | break; |
12687 | ||
9f757bf7 | 12688 | case ada_catch_handlers: |
bc18fbb5 | 12689 | if (!c->excep_string.empty ()) |
9f757bf7 XR |
12690 | { |
12691 | uiout->field_fmt ("what", | |
12692 | _("`%s' Ada exception handlers"), | |
bc18fbb5 | 12693 | c->excep_string.c_str ()); |
9f757bf7 XR |
12694 | } |
12695 | else | |
12696 | uiout->field_string ("what", "all Ada exceptions handlers"); | |
12697 | break; | |
12698 | ||
761269c8 | 12699 | case ada_catch_assert: |
112e8700 | 12700 | uiout->field_string ("what", "failed Ada assertions"); |
f7f9143b JB |
12701 | break; |
12702 | ||
12703 | default: | |
12704 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12705 | break; | |
12706 | } | |
12707 | } | |
12708 | ||
12709 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
12710 | for all exception catchpoint kinds. */ | |
12711 | ||
12712 | static void | |
761269c8 | 12713 | print_mention_exception (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12714 | struct breakpoint *b) |
12715 | { | |
28010a5d | 12716 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45e25 | 12717 | struct ui_out *uiout = current_uiout; |
28010a5d | 12718 | |
112e8700 | 12719 | uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ") |
00eb2c4a | 12720 | : _("Catchpoint ")); |
112e8700 SM |
12721 | uiout->field_int ("bkptno", b->number); |
12722 | uiout->text (": "); | |
00eb2c4a | 12723 | |
f7f9143b JB |
12724 | switch (ex) |
12725 | { | |
761269c8 | 12726 | case ada_catch_exception: |
bc18fbb5 | 12727 | if (!c->excep_string.empty ()) |
00eb2c4a | 12728 | { |
862d101a | 12729 | std::string info = string_printf (_("`%s' Ada exception"), |
bc18fbb5 | 12730 | c->excep_string.c_str ()); |
862d101a | 12731 | uiout->text (info.c_str ()); |
00eb2c4a | 12732 | } |
f7f9143b | 12733 | else |
112e8700 | 12734 | uiout->text (_("all Ada exceptions")); |
f7f9143b JB |
12735 | break; |
12736 | ||
761269c8 | 12737 | case ada_catch_exception_unhandled: |
112e8700 | 12738 | uiout->text (_("unhandled Ada exceptions")); |
f7f9143b | 12739 | break; |
9f757bf7 XR |
12740 | |
12741 | case ada_catch_handlers: | |
bc18fbb5 | 12742 | if (!c->excep_string.empty ()) |
9f757bf7 XR |
12743 | { |
12744 | std::string info | |
12745 | = string_printf (_("`%s' Ada exception handlers"), | |
bc18fbb5 | 12746 | c->excep_string.c_str ()); |
9f757bf7 XR |
12747 | uiout->text (info.c_str ()); |
12748 | } | |
12749 | else | |
12750 | uiout->text (_("all Ada exceptions handlers")); | |
12751 | break; | |
12752 | ||
761269c8 | 12753 | case ada_catch_assert: |
112e8700 | 12754 | uiout->text (_("failed Ada assertions")); |
f7f9143b JB |
12755 | break; |
12756 | ||
12757 | default: | |
12758 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12759 | break; | |
12760 | } | |
12761 | } | |
12762 | ||
6149aea9 PA |
12763 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
12764 | for all exception catchpoint kinds. */ | |
12765 | ||
12766 | static void | |
761269c8 | 12767 | print_recreate_exception (enum ada_exception_catchpoint_kind ex, |
6149aea9 PA |
12768 | struct breakpoint *b, struct ui_file *fp) |
12769 | { | |
28010a5d PA |
12770 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
12771 | ||
6149aea9 PA |
12772 | switch (ex) |
12773 | { | |
761269c8 | 12774 | case ada_catch_exception: |
6149aea9 | 12775 | fprintf_filtered (fp, "catch exception"); |
bc18fbb5 TT |
12776 | if (!c->excep_string.empty ()) |
12777 | fprintf_filtered (fp, " %s", c->excep_string.c_str ()); | |
6149aea9 PA |
12778 | break; |
12779 | ||
761269c8 | 12780 | case ada_catch_exception_unhandled: |
78076abc | 12781 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
12782 | break; |
12783 | ||
9f757bf7 XR |
12784 | case ada_catch_handlers: |
12785 | fprintf_filtered (fp, "catch handlers"); | |
12786 | break; | |
12787 | ||
761269c8 | 12788 | case ada_catch_assert: |
6149aea9 PA |
12789 | fprintf_filtered (fp, "catch assert"); |
12790 | break; | |
12791 | ||
12792 | default: | |
12793 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12794 | } | |
d9b3f62e | 12795 | print_recreate_thread (b, fp); |
6149aea9 PA |
12796 | } |
12797 | ||
f7f9143b JB |
12798 | /* Virtual table for "catch exception" breakpoints. */ |
12799 | ||
28010a5d PA |
12800 | static struct bp_location * |
12801 | allocate_location_catch_exception (struct breakpoint *self) | |
12802 | { | |
761269c8 | 12803 | return allocate_location_exception (ada_catch_exception, self); |
28010a5d PA |
12804 | } |
12805 | ||
12806 | static void | |
12807 | re_set_catch_exception (struct breakpoint *b) | |
12808 | { | |
761269c8 | 12809 | re_set_exception (ada_catch_exception, b); |
28010a5d PA |
12810 | } |
12811 | ||
12812 | static void | |
12813 | check_status_catch_exception (bpstat bs) | |
12814 | { | |
761269c8 | 12815 | check_status_exception (ada_catch_exception, bs); |
28010a5d PA |
12816 | } |
12817 | ||
f7f9143b | 12818 | static enum print_stop_action |
348d480f | 12819 | print_it_catch_exception (bpstat bs) |
f7f9143b | 12820 | { |
761269c8 | 12821 | return print_it_exception (ada_catch_exception, bs); |
f7f9143b JB |
12822 | } |
12823 | ||
12824 | static void | |
a6d9a66e | 12825 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12826 | { |
761269c8 | 12827 | print_one_exception (ada_catch_exception, b, last_loc); |
f7f9143b JB |
12828 | } |
12829 | ||
12830 | static void | |
12831 | print_mention_catch_exception (struct breakpoint *b) | |
12832 | { | |
761269c8 | 12833 | print_mention_exception (ada_catch_exception, b); |
f7f9143b JB |
12834 | } |
12835 | ||
6149aea9 PA |
12836 | static void |
12837 | print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) | |
12838 | { | |
761269c8 | 12839 | print_recreate_exception (ada_catch_exception, b, fp); |
6149aea9 PA |
12840 | } |
12841 | ||
2060206e | 12842 | static struct breakpoint_ops catch_exception_breakpoint_ops; |
f7f9143b JB |
12843 | |
12844 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
12845 | ||
28010a5d PA |
12846 | static struct bp_location * |
12847 | allocate_location_catch_exception_unhandled (struct breakpoint *self) | |
12848 | { | |
761269c8 | 12849 | return allocate_location_exception (ada_catch_exception_unhandled, self); |
28010a5d PA |
12850 | } |
12851 | ||
12852 | static void | |
12853 | re_set_catch_exception_unhandled (struct breakpoint *b) | |
12854 | { | |
761269c8 | 12855 | re_set_exception (ada_catch_exception_unhandled, b); |
28010a5d PA |
12856 | } |
12857 | ||
12858 | static void | |
12859 | check_status_catch_exception_unhandled (bpstat bs) | |
12860 | { | |
761269c8 | 12861 | check_status_exception (ada_catch_exception_unhandled, bs); |
28010a5d PA |
12862 | } |
12863 | ||
f7f9143b | 12864 | static enum print_stop_action |
348d480f | 12865 | print_it_catch_exception_unhandled (bpstat bs) |
f7f9143b | 12866 | { |
761269c8 | 12867 | return print_it_exception (ada_catch_exception_unhandled, bs); |
f7f9143b JB |
12868 | } |
12869 | ||
12870 | static void | |
a6d9a66e UW |
12871 | print_one_catch_exception_unhandled (struct breakpoint *b, |
12872 | struct bp_location **last_loc) | |
f7f9143b | 12873 | { |
761269c8 | 12874 | print_one_exception (ada_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
12875 | } |
12876 | ||
12877 | static void | |
12878 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
12879 | { | |
761269c8 | 12880 | print_mention_exception (ada_catch_exception_unhandled, b); |
f7f9143b JB |
12881 | } |
12882 | ||
6149aea9 PA |
12883 | static void |
12884 | print_recreate_catch_exception_unhandled (struct breakpoint *b, | |
12885 | struct ui_file *fp) | |
12886 | { | |
761269c8 | 12887 | print_recreate_exception (ada_catch_exception_unhandled, b, fp); |
6149aea9 PA |
12888 | } |
12889 | ||
2060206e | 12890 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops; |
f7f9143b JB |
12891 | |
12892 | /* Virtual table for "catch assert" breakpoints. */ | |
12893 | ||
28010a5d PA |
12894 | static struct bp_location * |
12895 | allocate_location_catch_assert (struct breakpoint *self) | |
12896 | { | |
761269c8 | 12897 | return allocate_location_exception (ada_catch_assert, self); |
28010a5d PA |
12898 | } |
12899 | ||
12900 | static void | |
12901 | re_set_catch_assert (struct breakpoint *b) | |
12902 | { | |
761269c8 | 12903 | re_set_exception (ada_catch_assert, b); |
28010a5d PA |
12904 | } |
12905 | ||
12906 | static void | |
12907 | check_status_catch_assert (bpstat bs) | |
12908 | { | |
761269c8 | 12909 | check_status_exception (ada_catch_assert, bs); |
28010a5d PA |
12910 | } |
12911 | ||
f7f9143b | 12912 | static enum print_stop_action |
348d480f | 12913 | print_it_catch_assert (bpstat bs) |
f7f9143b | 12914 | { |
761269c8 | 12915 | return print_it_exception (ada_catch_assert, bs); |
f7f9143b JB |
12916 | } |
12917 | ||
12918 | static void | |
a6d9a66e | 12919 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12920 | { |
761269c8 | 12921 | print_one_exception (ada_catch_assert, b, last_loc); |
f7f9143b JB |
12922 | } |
12923 | ||
12924 | static void | |
12925 | print_mention_catch_assert (struct breakpoint *b) | |
12926 | { | |
761269c8 | 12927 | print_mention_exception (ada_catch_assert, b); |
f7f9143b JB |
12928 | } |
12929 | ||
6149aea9 PA |
12930 | static void |
12931 | print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) | |
12932 | { | |
761269c8 | 12933 | print_recreate_exception (ada_catch_assert, b, fp); |
6149aea9 PA |
12934 | } |
12935 | ||
2060206e | 12936 | static struct breakpoint_ops catch_assert_breakpoint_ops; |
f7f9143b | 12937 | |
9f757bf7 XR |
12938 | /* Virtual table for "catch handlers" breakpoints. */ |
12939 | ||
12940 | static struct bp_location * | |
12941 | allocate_location_catch_handlers (struct breakpoint *self) | |
12942 | { | |
12943 | return allocate_location_exception (ada_catch_handlers, self); | |
12944 | } | |
12945 | ||
12946 | static void | |
12947 | re_set_catch_handlers (struct breakpoint *b) | |
12948 | { | |
12949 | re_set_exception (ada_catch_handlers, b); | |
12950 | } | |
12951 | ||
12952 | static void | |
12953 | check_status_catch_handlers (bpstat bs) | |
12954 | { | |
12955 | check_status_exception (ada_catch_handlers, bs); | |
12956 | } | |
12957 | ||
12958 | static enum print_stop_action | |
12959 | print_it_catch_handlers (bpstat bs) | |
12960 | { | |
12961 | return print_it_exception (ada_catch_handlers, bs); | |
12962 | } | |
12963 | ||
12964 | static void | |
12965 | print_one_catch_handlers (struct breakpoint *b, | |
12966 | struct bp_location **last_loc) | |
12967 | { | |
12968 | print_one_exception (ada_catch_handlers, b, last_loc); | |
12969 | } | |
12970 | ||
12971 | static void | |
12972 | print_mention_catch_handlers (struct breakpoint *b) | |
12973 | { | |
12974 | print_mention_exception (ada_catch_handlers, b); | |
12975 | } | |
12976 | ||
12977 | static void | |
12978 | print_recreate_catch_handlers (struct breakpoint *b, | |
12979 | struct ui_file *fp) | |
12980 | { | |
12981 | print_recreate_exception (ada_catch_handlers, b, fp); | |
12982 | } | |
12983 | ||
12984 | static struct breakpoint_ops catch_handlers_breakpoint_ops; | |
12985 | ||
f7f9143b JB |
12986 | /* Split the arguments specified in a "catch exception" command. |
12987 | Set EX to the appropriate catchpoint type. | |
28010a5d | 12988 | Set EXCEP_STRING to the name of the specific exception if |
5845583d | 12989 | specified by the user. |
9f757bf7 XR |
12990 | IS_CATCH_HANDLERS_CMD: True if the arguments are for a |
12991 | "catch handlers" command. False otherwise. | |
5845583d JB |
12992 | If a condition is found at the end of the arguments, the condition |
12993 | expression is stored in COND_STRING (memory must be deallocated | |
12994 | after use). Otherwise COND_STRING is set to NULL. */ | |
f7f9143b JB |
12995 | |
12996 | static void | |
a121b7c1 | 12997 | catch_ada_exception_command_split (const char *args, |
9f757bf7 | 12998 | bool is_catch_handlers_cmd, |
761269c8 | 12999 | enum ada_exception_catchpoint_kind *ex, |
bc18fbb5 TT |
13000 | std::string *excep_string, |
13001 | std::string *cond_string) | |
f7f9143b | 13002 | { |
bc18fbb5 | 13003 | std::string exception_name; |
f7f9143b | 13004 | |
bc18fbb5 TT |
13005 | exception_name = extract_arg (&args); |
13006 | if (exception_name == "if") | |
5845583d JB |
13007 | { |
13008 | /* This is not an exception name; this is the start of a condition | |
13009 | expression for a catchpoint on all exceptions. So, "un-get" | |
13010 | this token, and set exception_name to NULL. */ | |
bc18fbb5 | 13011 | exception_name.clear (); |
5845583d JB |
13012 | args -= 2; |
13013 | } | |
f7f9143b | 13014 | |
5845583d | 13015 | /* Check to see if we have a condition. */ |
f7f9143b | 13016 | |
f1735a53 | 13017 | args = skip_spaces (args); |
61012eef | 13018 | if (startswith (args, "if") |
5845583d JB |
13019 | && (isspace (args[2]) || args[2] == '\0')) |
13020 | { | |
13021 | args += 2; | |
f1735a53 | 13022 | args = skip_spaces (args); |
5845583d JB |
13023 | |
13024 | if (args[0] == '\0') | |
13025 | error (_("Condition missing after `if' keyword")); | |
bc18fbb5 | 13026 | *cond_string = args; |
5845583d JB |
13027 | |
13028 | args += strlen (args); | |
13029 | } | |
13030 | ||
13031 | /* Check that we do not have any more arguments. Anything else | |
13032 | is unexpected. */ | |
f7f9143b JB |
13033 | |
13034 | if (args[0] != '\0') | |
13035 | error (_("Junk at end of expression")); | |
13036 | ||
9f757bf7 XR |
13037 | if (is_catch_handlers_cmd) |
13038 | { | |
13039 | /* Catch handling of exceptions. */ | |
13040 | *ex = ada_catch_handlers; | |
13041 | *excep_string = exception_name; | |
13042 | } | |
bc18fbb5 | 13043 | else if (exception_name.empty ()) |
f7f9143b JB |
13044 | { |
13045 | /* Catch all exceptions. */ | |
761269c8 | 13046 | *ex = ada_catch_exception; |
bc18fbb5 | 13047 | excep_string->clear (); |
f7f9143b | 13048 | } |
bc18fbb5 | 13049 | else if (exception_name == "unhandled") |
f7f9143b JB |
13050 | { |
13051 | /* Catch unhandled exceptions. */ | |
761269c8 | 13052 | *ex = ada_catch_exception_unhandled; |
bc18fbb5 | 13053 | excep_string->clear (); |
f7f9143b JB |
13054 | } |
13055 | else | |
13056 | { | |
13057 | /* Catch a specific exception. */ | |
761269c8 | 13058 | *ex = ada_catch_exception; |
28010a5d | 13059 | *excep_string = exception_name; |
f7f9143b JB |
13060 | } |
13061 | } | |
13062 | ||
13063 | /* Return the name of the symbol on which we should break in order to | |
13064 | implement a catchpoint of the EX kind. */ | |
13065 | ||
13066 | static const char * | |
761269c8 | 13067 | ada_exception_sym_name (enum ada_exception_catchpoint_kind ex) |
f7f9143b | 13068 | { |
3eecfa55 JB |
13069 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
13070 | ||
13071 | gdb_assert (data->exception_info != NULL); | |
0259addd | 13072 | |
f7f9143b JB |
13073 | switch (ex) |
13074 | { | |
761269c8 | 13075 | case ada_catch_exception: |
3eecfa55 | 13076 | return (data->exception_info->catch_exception_sym); |
f7f9143b | 13077 | break; |
761269c8 | 13078 | case ada_catch_exception_unhandled: |
3eecfa55 | 13079 | return (data->exception_info->catch_exception_unhandled_sym); |
f7f9143b | 13080 | break; |
761269c8 | 13081 | case ada_catch_assert: |
3eecfa55 | 13082 | return (data->exception_info->catch_assert_sym); |
f7f9143b | 13083 | break; |
9f757bf7 XR |
13084 | case ada_catch_handlers: |
13085 | return (data->exception_info->catch_handlers_sym); | |
13086 | break; | |
f7f9143b JB |
13087 | default: |
13088 | internal_error (__FILE__, __LINE__, | |
13089 | _("unexpected catchpoint kind (%d)"), ex); | |
13090 | } | |
13091 | } | |
13092 | ||
13093 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
13094 | of the EX kind. */ | |
13095 | ||
c0a91b2b | 13096 | static const struct breakpoint_ops * |
761269c8 | 13097 | ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex) |
f7f9143b JB |
13098 | { |
13099 | switch (ex) | |
13100 | { | |
761269c8 | 13101 | case ada_catch_exception: |
f7f9143b JB |
13102 | return (&catch_exception_breakpoint_ops); |
13103 | break; | |
761269c8 | 13104 | case ada_catch_exception_unhandled: |
f7f9143b JB |
13105 | return (&catch_exception_unhandled_breakpoint_ops); |
13106 | break; | |
761269c8 | 13107 | case ada_catch_assert: |
f7f9143b JB |
13108 | return (&catch_assert_breakpoint_ops); |
13109 | break; | |
9f757bf7 XR |
13110 | case ada_catch_handlers: |
13111 | return (&catch_handlers_breakpoint_ops); | |
13112 | break; | |
f7f9143b JB |
13113 | default: |
13114 | internal_error (__FILE__, __LINE__, | |
13115 | _("unexpected catchpoint kind (%d)"), ex); | |
13116 | } | |
13117 | } | |
13118 | ||
13119 | /* Return the condition that will be used to match the current exception | |
13120 | being raised with the exception that the user wants to catch. This | |
13121 | assumes that this condition is used when the inferior just triggered | |
13122 | an exception catchpoint. | |
cb7de75e | 13123 | EX: the type of catchpoints used for catching Ada exceptions. */ |
f7f9143b | 13124 | |
cb7de75e | 13125 | static std::string |
9f757bf7 XR |
13126 | ada_exception_catchpoint_cond_string (const char *excep_string, |
13127 | enum ada_exception_catchpoint_kind ex) | |
f7f9143b | 13128 | { |
3d0b0fa3 | 13129 | int i; |
9f757bf7 | 13130 | bool is_standard_exc = false; |
cb7de75e | 13131 | std::string result; |
9f757bf7 XR |
13132 | |
13133 | if (ex == ada_catch_handlers) | |
13134 | { | |
13135 | /* For exception handlers catchpoints, the condition string does | |
13136 | not use the same parameter as for the other exceptions. */ | |
cb7de75e TT |
13137 | result = ("long_integer (GNAT_GCC_exception_Access" |
13138 | "(gcc_exception).all.occurrence.id)"); | |
9f757bf7 XR |
13139 | } |
13140 | else | |
cb7de75e | 13141 | result = "long_integer (e)"; |
3d0b0fa3 | 13142 | |
0963b4bd | 13143 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 | 13144 | runtime units that have been compiled without debugging info; if |
28010a5d | 13145 | EXCEP_STRING is the not-fully-qualified name of a standard |
3d0b0fa3 JB |
13146 | exception (e.g. "constraint_error") then, during the evaluation |
13147 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 13148 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
13149 | may then be set only on user-defined exceptions which have the |
13150 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
13151 | ||
13152 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 13153 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
13154 | exception constraint_error" is rewritten into "catch exception |
13155 | standard.constraint_error". | |
13156 | ||
13157 | If an exception named contraint_error is defined in another package of | |
13158 | the inferior program, then the only way to specify this exception as a | |
13159 | breakpoint condition is to use its fully-qualified named: | |
13160 | e.g. my_package.constraint_error. */ | |
13161 | ||
13162 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
13163 | { | |
28010a5d | 13164 | if (strcmp (standard_exc [i], excep_string) == 0) |
3d0b0fa3 | 13165 | { |
9f757bf7 XR |
13166 | is_standard_exc = true; |
13167 | break; | |
3d0b0fa3 JB |
13168 | } |
13169 | } | |
9f757bf7 | 13170 | |
cb7de75e TT |
13171 | result += " = "; |
13172 | ||
9f757bf7 | 13173 | if (is_standard_exc) |
cb7de75e | 13174 | string_appendf (result, "long_integer (&standard.%s)", excep_string); |
9f757bf7 | 13175 | else |
cb7de75e | 13176 | string_appendf (result, "long_integer (&%s)", excep_string); |
9f757bf7 | 13177 | |
9f757bf7 | 13178 | return result; |
f7f9143b JB |
13179 | } |
13180 | ||
13181 | /* Return the symtab_and_line that should be used to insert an exception | |
13182 | catchpoint of the TYPE kind. | |
13183 | ||
28010a5d PA |
13184 | ADDR_STRING returns the name of the function where the real |
13185 | breakpoint that implements the catchpoints is set, depending on the | |
13186 | type of catchpoint we need to create. */ | |
f7f9143b JB |
13187 | |
13188 | static struct symtab_and_line | |
bc18fbb5 | 13189 | ada_exception_sal (enum ada_exception_catchpoint_kind ex, |
f2fc3015 | 13190 | const char **addr_string, const struct breakpoint_ops **ops) |
f7f9143b JB |
13191 | { |
13192 | const char *sym_name; | |
13193 | struct symbol *sym; | |
f7f9143b | 13194 | |
0259addd JB |
13195 | /* First, find out which exception support info to use. */ |
13196 | ada_exception_support_info_sniffer (); | |
13197 | ||
13198 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b | 13199 | the Ada exceptions requested by the user. */ |
f7f9143b JB |
13200 | sym_name = ada_exception_sym_name (ex); |
13201 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
13202 | ||
57aff202 JB |
13203 | if (sym == NULL) |
13204 | error (_("Catchpoint symbol not found: %s"), sym_name); | |
13205 | ||
13206 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
13207 | error (_("Unable to insert catchpoint. %s is not a function."), sym_name); | |
f7f9143b JB |
13208 | |
13209 | /* Set ADDR_STRING. */ | |
f7f9143b JB |
13210 | *addr_string = xstrdup (sym_name); |
13211 | ||
f7f9143b | 13212 | /* Set OPS. */ |
4b9eee8c | 13213 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b | 13214 | |
f17011e0 | 13215 | return find_function_start_sal (sym, 1); |
f7f9143b JB |
13216 | } |
13217 | ||
b4a5b78b | 13218 | /* Create an Ada exception catchpoint. |
f7f9143b | 13219 | |
b4a5b78b | 13220 | EX_KIND is the kind of exception catchpoint to be created. |
5845583d | 13221 | |
bc18fbb5 | 13222 | If EXCEPT_STRING is empty, this catchpoint is expected to trigger |
2df4d1d5 | 13223 | for all exceptions. Otherwise, EXCEPT_STRING indicates the name |
bc18fbb5 | 13224 | of the exception to which this catchpoint applies. |
2df4d1d5 | 13225 | |
bc18fbb5 | 13226 | COND_STRING, if not empty, is the catchpoint condition. |
f7f9143b | 13227 | |
b4a5b78b JB |
13228 | TEMPFLAG, if nonzero, means that the underlying breakpoint |
13229 | should be temporary. | |
28010a5d | 13230 | |
b4a5b78b | 13231 | FROM_TTY is the usual argument passed to all commands implementations. */ |
28010a5d | 13232 | |
349774ef | 13233 | void |
28010a5d | 13234 | create_ada_exception_catchpoint (struct gdbarch *gdbarch, |
761269c8 | 13235 | enum ada_exception_catchpoint_kind ex_kind, |
bc18fbb5 | 13236 | const std::string &excep_string, |
56ecd069 | 13237 | const std::string &cond_string, |
28010a5d | 13238 | int tempflag, |
349774ef | 13239 | int disabled, |
28010a5d PA |
13240 | int from_tty) |
13241 | { | |
f2fc3015 | 13242 | const char *addr_string = NULL; |
b4a5b78b | 13243 | const struct breakpoint_ops *ops = NULL; |
bc18fbb5 | 13244 | struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops); |
28010a5d | 13245 | |
b270e6f9 TT |
13246 | std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ()); |
13247 | init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string, | |
349774ef | 13248 | ops, tempflag, disabled, from_tty); |
28010a5d | 13249 | c->excep_string = excep_string; |
9f757bf7 | 13250 | create_excep_cond_exprs (c.get (), ex_kind); |
56ecd069 XR |
13251 | if (!cond_string.empty ()) |
13252 | set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty); | |
b270e6f9 | 13253 | install_breakpoint (0, std::move (c), 1); |
f7f9143b JB |
13254 | } |
13255 | ||
9ac4176b PA |
13256 | /* Implement the "catch exception" command. */ |
13257 | ||
13258 | static void | |
eb4c3f4a | 13259 | catch_ada_exception_command (const char *arg_entry, int from_tty, |
9ac4176b PA |
13260 | struct cmd_list_element *command) |
13261 | { | |
a121b7c1 | 13262 | const char *arg = arg_entry; |
9ac4176b PA |
13263 | struct gdbarch *gdbarch = get_current_arch (); |
13264 | int tempflag; | |
761269c8 | 13265 | enum ada_exception_catchpoint_kind ex_kind; |
bc18fbb5 | 13266 | std::string excep_string; |
56ecd069 | 13267 | std::string cond_string; |
9ac4176b PA |
13268 | |
13269 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
13270 | ||
13271 | if (!arg) | |
13272 | arg = ""; | |
9f757bf7 | 13273 | catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string, |
bc18fbb5 | 13274 | &cond_string); |
9f757bf7 XR |
13275 | create_ada_exception_catchpoint (gdbarch, ex_kind, |
13276 | excep_string, cond_string, | |
13277 | tempflag, 1 /* enabled */, | |
13278 | from_tty); | |
13279 | } | |
13280 | ||
13281 | /* Implement the "catch handlers" command. */ | |
13282 | ||
13283 | static void | |
13284 | catch_ada_handlers_command (const char *arg_entry, int from_tty, | |
13285 | struct cmd_list_element *command) | |
13286 | { | |
13287 | const char *arg = arg_entry; | |
13288 | struct gdbarch *gdbarch = get_current_arch (); | |
13289 | int tempflag; | |
13290 | enum ada_exception_catchpoint_kind ex_kind; | |
bc18fbb5 | 13291 | std::string excep_string; |
56ecd069 | 13292 | std::string cond_string; |
9f757bf7 XR |
13293 | |
13294 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
13295 | ||
13296 | if (!arg) | |
13297 | arg = ""; | |
13298 | catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string, | |
bc18fbb5 | 13299 | &cond_string); |
b4a5b78b JB |
13300 | create_ada_exception_catchpoint (gdbarch, ex_kind, |
13301 | excep_string, cond_string, | |
349774ef JB |
13302 | tempflag, 1 /* enabled */, |
13303 | from_tty); | |
9ac4176b PA |
13304 | } |
13305 | ||
b4a5b78b | 13306 | /* Split the arguments specified in a "catch assert" command. |
5845583d | 13307 | |
b4a5b78b JB |
13308 | ARGS contains the command's arguments (or the empty string if |
13309 | no arguments were passed). | |
5845583d JB |
13310 | |
13311 | If ARGS contains a condition, set COND_STRING to that condition | |
b4a5b78b | 13312 | (the memory needs to be deallocated after use). */ |
5845583d | 13313 | |
b4a5b78b | 13314 | static void |
56ecd069 | 13315 | catch_ada_assert_command_split (const char *args, std::string &cond_string) |
f7f9143b | 13316 | { |
f1735a53 | 13317 | args = skip_spaces (args); |
f7f9143b | 13318 | |
5845583d | 13319 | /* Check whether a condition was provided. */ |
61012eef | 13320 | if (startswith (args, "if") |
5845583d | 13321 | && (isspace (args[2]) || args[2] == '\0')) |
f7f9143b | 13322 | { |
5845583d | 13323 | args += 2; |
f1735a53 | 13324 | args = skip_spaces (args); |
5845583d JB |
13325 | if (args[0] == '\0') |
13326 | error (_("condition missing after `if' keyword")); | |
56ecd069 | 13327 | cond_string.assign (args); |
f7f9143b JB |
13328 | } |
13329 | ||
5845583d JB |
13330 | /* Otherwise, there should be no other argument at the end of |
13331 | the command. */ | |
13332 | else if (args[0] != '\0') | |
13333 | error (_("Junk at end of arguments.")); | |
f7f9143b JB |
13334 | } |
13335 | ||
9ac4176b PA |
13336 | /* Implement the "catch assert" command. */ |
13337 | ||
13338 | static void | |
eb4c3f4a | 13339 | catch_assert_command (const char *arg_entry, int from_tty, |
9ac4176b PA |
13340 | struct cmd_list_element *command) |
13341 | { | |
a121b7c1 | 13342 | const char *arg = arg_entry; |
9ac4176b PA |
13343 | struct gdbarch *gdbarch = get_current_arch (); |
13344 | int tempflag; | |
56ecd069 | 13345 | std::string cond_string; |
9ac4176b PA |
13346 | |
13347 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
13348 | ||
13349 | if (!arg) | |
13350 | arg = ""; | |
56ecd069 | 13351 | catch_ada_assert_command_split (arg, cond_string); |
761269c8 | 13352 | create_ada_exception_catchpoint (gdbarch, ada_catch_assert, |
241db429 | 13353 | "", cond_string, |
349774ef JB |
13354 | tempflag, 1 /* enabled */, |
13355 | from_tty); | |
9ac4176b | 13356 | } |
778865d3 JB |
13357 | |
13358 | /* Return non-zero if the symbol SYM is an Ada exception object. */ | |
13359 | ||
13360 | static int | |
13361 | ada_is_exception_sym (struct symbol *sym) | |
13362 | { | |
a737d952 | 13363 | const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym)); |
778865d3 JB |
13364 | |
13365 | return (SYMBOL_CLASS (sym) != LOC_TYPEDEF | |
13366 | && SYMBOL_CLASS (sym) != LOC_BLOCK | |
13367 | && SYMBOL_CLASS (sym) != LOC_CONST | |
13368 | && SYMBOL_CLASS (sym) != LOC_UNRESOLVED | |
13369 | && type_name != NULL && strcmp (type_name, "exception") == 0); | |
13370 | } | |
13371 | ||
13372 | /* Given a global symbol SYM, return non-zero iff SYM is a non-standard | |
13373 | Ada exception object. This matches all exceptions except the ones | |
13374 | defined by the Ada language. */ | |
13375 | ||
13376 | static int | |
13377 | ada_is_non_standard_exception_sym (struct symbol *sym) | |
13378 | { | |
13379 | int i; | |
13380 | ||
13381 | if (!ada_is_exception_sym (sym)) | |
13382 | return 0; | |
13383 | ||
13384 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
13385 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0) | |
13386 | return 0; /* A standard exception. */ | |
13387 | ||
13388 | /* Numeric_Error is also a standard exception, so exclude it. | |
13389 | See the STANDARD_EXC description for more details as to why | |
13390 | this exception is not listed in that array. */ | |
13391 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0) | |
13392 | return 0; | |
13393 | ||
13394 | return 1; | |
13395 | } | |
13396 | ||
ab816a27 | 13397 | /* A helper function for std::sort, comparing two struct ada_exc_info |
778865d3 JB |
13398 | objects. |
13399 | ||
13400 | The comparison is determined first by exception name, and then | |
13401 | by exception address. */ | |
13402 | ||
ab816a27 | 13403 | bool |
cc536b21 | 13404 | ada_exc_info::operator< (const ada_exc_info &other) const |
778865d3 | 13405 | { |
778865d3 JB |
13406 | int result; |
13407 | ||
ab816a27 TT |
13408 | result = strcmp (name, other.name); |
13409 | if (result < 0) | |
13410 | return true; | |
13411 | if (result == 0 && addr < other.addr) | |
13412 | return true; | |
13413 | return false; | |
13414 | } | |
778865d3 | 13415 | |
ab816a27 | 13416 | bool |
cc536b21 | 13417 | ada_exc_info::operator== (const ada_exc_info &other) const |
ab816a27 TT |
13418 | { |
13419 | return addr == other.addr && strcmp (name, other.name) == 0; | |
778865d3 JB |
13420 | } |
13421 | ||
13422 | /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison | |
13423 | routine, but keeping the first SKIP elements untouched. | |
13424 | ||
13425 | All duplicates are also removed. */ | |
13426 | ||
13427 | static void | |
ab816a27 | 13428 | sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions, |
778865d3 JB |
13429 | int skip) |
13430 | { | |
ab816a27 TT |
13431 | std::sort (exceptions->begin () + skip, exceptions->end ()); |
13432 | exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()), | |
13433 | exceptions->end ()); | |
778865d3 JB |
13434 | } |
13435 | ||
778865d3 JB |
13436 | /* Add all exceptions defined by the Ada standard whose name match |
13437 | a regular expression. | |
13438 | ||
13439 | If PREG is not NULL, then this regexp_t object is used to | |
13440 | perform the symbol name matching. Otherwise, no name-based | |
13441 | filtering is performed. | |
13442 | ||
13443 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13444 | gets pushed. */ | |
13445 | ||
13446 | static void | |
2d7cc5c7 | 13447 | ada_add_standard_exceptions (compiled_regex *preg, |
ab816a27 | 13448 | std::vector<ada_exc_info> *exceptions) |
778865d3 JB |
13449 | { |
13450 | int i; | |
13451 | ||
13452 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
13453 | { | |
13454 | if (preg == NULL | |
2d7cc5c7 | 13455 | || preg->exec (standard_exc[i], 0, NULL, 0) == 0) |
778865d3 JB |
13456 | { |
13457 | struct bound_minimal_symbol msymbol | |
13458 | = ada_lookup_simple_minsym (standard_exc[i]); | |
13459 | ||
13460 | if (msymbol.minsym != NULL) | |
13461 | { | |
13462 | struct ada_exc_info info | |
77e371c0 | 13463 | = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)}; |
778865d3 | 13464 | |
ab816a27 | 13465 | exceptions->push_back (info); |
778865d3 JB |
13466 | } |
13467 | } | |
13468 | } | |
13469 | } | |
13470 | ||
13471 | /* Add all Ada exceptions defined locally and accessible from the given | |
13472 | FRAME. | |
13473 | ||
13474 | If PREG is not NULL, then this regexp_t object is used to | |
13475 | perform the symbol name matching. Otherwise, no name-based | |
13476 | filtering is performed. | |
13477 | ||
13478 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13479 | gets pushed. */ | |
13480 | ||
13481 | static void | |
2d7cc5c7 PA |
13482 | ada_add_exceptions_from_frame (compiled_regex *preg, |
13483 | struct frame_info *frame, | |
ab816a27 | 13484 | std::vector<ada_exc_info> *exceptions) |
778865d3 | 13485 | { |
3977b71f | 13486 | const struct block *block = get_frame_block (frame, 0); |
778865d3 JB |
13487 | |
13488 | while (block != 0) | |
13489 | { | |
13490 | struct block_iterator iter; | |
13491 | struct symbol *sym; | |
13492 | ||
13493 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
13494 | { | |
13495 | switch (SYMBOL_CLASS (sym)) | |
13496 | { | |
13497 | case LOC_TYPEDEF: | |
13498 | case LOC_BLOCK: | |
13499 | case LOC_CONST: | |
13500 | break; | |
13501 | default: | |
13502 | if (ada_is_exception_sym (sym)) | |
13503 | { | |
13504 | struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym), | |
13505 | SYMBOL_VALUE_ADDRESS (sym)}; | |
13506 | ||
ab816a27 | 13507 | exceptions->push_back (info); |
778865d3 JB |
13508 | } |
13509 | } | |
13510 | } | |
13511 | if (BLOCK_FUNCTION (block) != NULL) | |
13512 | break; | |
13513 | block = BLOCK_SUPERBLOCK (block); | |
13514 | } | |
13515 | } | |
13516 | ||
14bc53a8 PA |
13517 | /* Return true if NAME matches PREG or if PREG is NULL. */ |
13518 | ||
13519 | static bool | |
2d7cc5c7 | 13520 | name_matches_regex (const char *name, compiled_regex *preg) |
14bc53a8 PA |
13521 | { |
13522 | return (preg == NULL | |
2d7cc5c7 | 13523 | || preg->exec (ada_decode (name), 0, NULL, 0) == 0); |
14bc53a8 PA |
13524 | } |
13525 | ||
778865d3 JB |
13526 | /* Add all exceptions defined globally whose name name match |
13527 | a regular expression, excluding standard exceptions. | |
13528 | ||
13529 | The reason we exclude standard exceptions is that they need | |
13530 | to be handled separately: Standard exceptions are defined inside | |
13531 | a runtime unit which is normally not compiled with debugging info, | |
13532 | and thus usually do not show up in our symbol search. However, | |
13533 | if the unit was in fact built with debugging info, we need to | |
13534 | exclude them because they would duplicate the entry we found | |
13535 | during the special loop that specifically searches for those | |
13536 | standard exceptions. | |
13537 | ||
13538 | If PREG is not NULL, then this regexp_t object is used to | |
13539 | perform the symbol name matching. Otherwise, no name-based | |
13540 | filtering is performed. | |
13541 | ||
13542 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13543 | gets pushed. */ | |
13544 | ||
13545 | static void | |
2d7cc5c7 | 13546 | ada_add_global_exceptions (compiled_regex *preg, |
ab816a27 | 13547 | std::vector<ada_exc_info> *exceptions) |
778865d3 JB |
13548 | { |
13549 | struct objfile *objfile; | |
43f3e411 | 13550 | struct compunit_symtab *s; |
778865d3 | 13551 | |
14bc53a8 PA |
13552 | /* In Ada, the symbol "search name" is a linkage name, whereas the |
13553 | regular expression used to do the matching refers to the natural | |
13554 | name. So match against the decoded name. */ | |
13555 | expand_symtabs_matching (NULL, | |
b5ec771e | 13556 | lookup_name_info::match_any (), |
14bc53a8 PA |
13557 | [&] (const char *search_name) |
13558 | { | |
13559 | const char *decoded = ada_decode (search_name); | |
13560 | return name_matches_regex (decoded, preg); | |
13561 | }, | |
13562 | NULL, | |
13563 | VARIABLES_DOMAIN); | |
778865d3 | 13564 | |
43f3e411 | 13565 | ALL_COMPUNITS (objfile, s) |
778865d3 | 13566 | { |
43f3e411 | 13567 | const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s); |
778865d3 JB |
13568 | int i; |
13569 | ||
13570 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) | |
13571 | { | |
13572 | struct block *b = BLOCKVECTOR_BLOCK (bv, i); | |
13573 | struct block_iterator iter; | |
13574 | struct symbol *sym; | |
13575 | ||
13576 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
13577 | if (ada_is_non_standard_exception_sym (sym) | |
14bc53a8 | 13578 | && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg)) |
778865d3 JB |
13579 | { |
13580 | struct ada_exc_info info | |
13581 | = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)}; | |
13582 | ||
ab816a27 | 13583 | exceptions->push_back (info); |
778865d3 JB |
13584 | } |
13585 | } | |
13586 | } | |
13587 | } | |
13588 | ||
13589 | /* Implements ada_exceptions_list with the regular expression passed | |
13590 | as a regex_t, rather than a string. | |
13591 | ||
13592 | If not NULL, PREG is used to filter out exceptions whose names | |
13593 | do not match. Otherwise, all exceptions are listed. */ | |
13594 | ||
ab816a27 | 13595 | static std::vector<ada_exc_info> |
2d7cc5c7 | 13596 | ada_exceptions_list_1 (compiled_regex *preg) |
778865d3 | 13597 | { |
ab816a27 | 13598 | std::vector<ada_exc_info> result; |
778865d3 JB |
13599 | int prev_len; |
13600 | ||
13601 | /* First, list the known standard exceptions. These exceptions | |
13602 | need to be handled separately, as they are usually defined in | |
13603 | runtime units that have been compiled without debugging info. */ | |
13604 | ||
13605 | ada_add_standard_exceptions (preg, &result); | |
13606 | ||
13607 | /* Next, find all exceptions whose scope is local and accessible | |
13608 | from the currently selected frame. */ | |
13609 | ||
13610 | if (has_stack_frames ()) | |
13611 | { | |
ab816a27 | 13612 | prev_len = result.size (); |
778865d3 JB |
13613 | ada_add_exceptions_from_frame (preg, get_selected_frame (NULL), |
13614 | &result); | |
ab816a27 | 13615 | if (result.size () > prev_len) |
778865d3 JB |
13616 | sort_remove_dups_ada_exceptions_list (&result, prev_len); |
13617 | } | |
13618 | ||
13619 | /* Add all exceptions whose scope is global. */ | |
13620 | ||
ab816a27 | 13621 | prev_len = result.size (); |
778865d3 | 13622 | ada_add_global_exceptions (preg, &result); |
ab816a27 | 13623 | if (result.size () > prev_len) |
778865d3 JB |
13624 | sort_remove_dups_ada_exceptions_list (&result, prev_len); |
13625 | ||
778865d3 JB |
13626 | return result; |
13627 | } | |
13628 | ||
13629 | /* Return a vector of ada_exc_info. | |
13630 | ||
13631 | If REGEXP is NULL, all exceptions are included in the result. | |
13632 | Otherwise, it should contain a valid regular expression, | |
13633 | and only the exceptions whose names match that regular expression | |
13634 | are included in the result. | |
13635 | ||
13636 | The exceptions are sorted in the following order: | |
13637 | - Standard exceptions (defined by the Ada language), in | |
13638 | alphabetical order; | |
13639 | - Exceptions only visible from the current frame, in | |
13640 | alphabetical order; | |
13641 | - Exceptions whose scope is global, in alphabetical order. */ | |
13642 | ||
ab816a27 | 13643 | std::vector<ada_exc_info> |
778865d3 JB |
13644 | ada_exceptions_list (const char *regexp) |
13645 | { | |
2d7cc5c7 PA |
13646 | if (regexp == NULL) |
13647 | return ada_exceptions_list_1 (NULL); | |
778865d3 | 13648 | |
2d7cc5c7 PA |
13649 | compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression")); |
13650 | return ada_exceptions_list_1 (®); | |
778865d3 JB |
13651 | } |
13652 | ||
13653 | /* Implement the "info exceptions" command. */ | |
13654 | ||
13655 | static void | |
1d12d88f | 13656 | info_exceptions_command (const char *regexp, int from_tty) |
778865d3 | 13657 | { |
778865d3 | 13658 | struct gdbarch *gdbarch = get_current_arch (); |
778865d3 | 13659 | |
ab816a27 | 13660 | std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp); |
778865d3 JB |
13661 | |
13662 | if (regexp != NULL) | |
13663 | printf_filtered | |
13664 | (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp); | |
13665 | else | |
13666 | printf_filtered (_("All defined Ada exceptions:\n")); | |
13667 | ||
ab816a27 TT |
13668 | for (const ada_exc_info &info : exceptions) |
13669 | printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr)); | |
778865d3 JB |
13670 | } |
13671 | ||
4c4b4cd2 PH |
13672 | /* Operators */ |
13673 | /* Information about operators given special treatment in functions | |
13674 | below. */ | |
13675 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
13676 | ||
13677 | #define ADA_OPERATORS \ | |
13678 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
13679 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
13680 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
13681 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
13682 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
13683 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
13684 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
13685 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
13686 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
13687 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
13688 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
13689 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
13690 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
13691 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
13692 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
13693 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
13694 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
13695 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
13696 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
13697 | |
13698 | static void | |
554794dc SDJ |
13699 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
13700 | int *argsp) | |
4c4b4cd2 PH |
13701 | { |
13702 | switch (exp->elts[pc - 1].opcode) | |
13703 | { | |
76a01679 | 13704 | default: |
4c4b4cd2 PH |
13705 | operator_length_standard (exp, pc, oplenp, argsp); |
13706 | break; | |
13707 | ||
13708 | #define OP_DEFN(op, len, args, binop) \ | |
13709 | case op: *oplenp = len; *argsp = args; break; | |
13710 | ADA_OPERATORS; | |
13711 | #undef OP_DEFN | |
52ce6436 PH |
13712 | |
13713 | case OP_AGGREGATE: | |
13714 | *oplenp = 3; | |
13715 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
13716 | break; | |
13717 | ||
13718 | case OP_CHOICES: | |
13719 | *oplenp = 3; | |
13720 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
13721 | break; | |
4c4b4cd2 PH |
13722 | } |
13723 | } | |
13724 | ||
c0201579 JK |
13725 | /* Implementation of the exp_descriptor method operator_check. */ |
13726 | ||
13727 | static int | |
13728 | ada_operator_check (struct expression *exp, int pos, | |
13729 | int (*objfile_func) (struct objfile *objfile, void *data), | |
13730 | void *data) | |
13731 | { | |
13732 | const union exp_element *const elts = exp->elts; | |
13733 | struct type *type = NULL; | |
13734 | ||
13735 | switch (elts[pos].opcode) | |
13736 | { | |
13737 | case UNOP_IN_RANGE: | |
13738 | case UNOP_QUAL: | |
13739 | type = elts[pos + 1].type; | |
13740 | break; | |
13741 | ||
13742 | default: | |
13743 | return operator_check_standard (exp, pos, objfile_func, data); | |
13744 | } | |
13745 | ||
13746 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
13747 | ||
13748 | if (type && TYPE_OBJFILE (type) | |
13749 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
13750 | return 1; | |
13751 | ||
13752 | return 0; | |
13753 | } | |
13754 | ||
a121b7c1 | 13755 | static const char * |
4c4b4cd2 PH |
13756 | ada_op_name (enum exp_opcode opcode) |
13757 | { | |
13758 | switch (opcode) | |
13759 | { | |
76a01679 | 13760 | default: |
4c4b4cd2 | 13761 | return op_name_standard (opcode); |
52ce6436 | 13762 | |
4c4b4cd2 PH |
13763 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
13764 | ADA_OPERATORS; | |
13765 | #undef OP_DEFN | |
52ce6436 PH |
13766 | |
13767 | case OP_AGGREGATE: | |
13768 | return "OP_AGGREGATE"; | |
13769 | case OP_CHOICES: | |
13770 | return "OP_CHOICES"; | |
13771 | case OP_NAME: | |
13772 | return "OP_NAME"; | |
4c4b4cd2 PH |
13773 | } |
13774 | } | |
13775 | ||
13776 | /* As for operator_length, but assumes PC is pointing at the first | |
13777 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 13778 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
13779 | |
13780 | static void | |
76a01679 JB |
13781 | ada_forward_operator_length (struct expression *exp, int pc, |
13782 | int *oplenp, int *argsp) | |
4c4b4cd2 | 13783 | { |
76a01679 | 13784 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
13785 | { |
13786 | default: | |
13787 | *oplenp = *argsp = 0; | |
13788 | break; | |
52ce6436 | 13789 | |
4c4b4cd2 PH |
13790 | #define OP_DEFN(op, len, args, binop) \ |
13791 | case op: *oplenp = len; *argsp = args; break; | |
13792 | ADA_OPERATORS; | |
13793 | #undef OP_DEFN | |
52ce6436 PH |
13794 | |
13795 | case OP_AGGREGATE: | |
13796 | *oplenp = 3; | |
13797 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
13798 | break; | |
13799 | ||
13800 | case OP_CHOICES: | |
13801 | *oplenp = 3; | |
13802 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
13803 | break; | |
13804 | ||
13805 | case OP_STRING: | |
13806 | case OP_NAME: | |
13807 | { | |
13808 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 13809 | |
52ce6436 PH |
13810 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
13811 | *argsp = 0; | |
13812 | break; | |
13813 | } | |
4c4b4cd2 PH |
13814 | } |
13815 | } | |
13816 | ||
13817 | static int | |
13818 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
13819 | { | |
13820 | enum exp_opcode op = exp->elts[elt].opcode; | |
13821 | int oplen, nargs; | |
13822 | int pc = elt; | |
13823 | int i; | |
76a01679 | 13824 | |
4c4b4cd2 PH |
13825 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
13826 | ||
76a01679 | 13827 | switch (op) |
4c4b4cd2 | 13828 | { |
76a01679 | 13829 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
13830 | case OP_ATR_FIRST: |
13831 | case OP_ATR_LAST: | |
13832 | case OP_ATR_LENGTH: | |
13833 | case OP_ATR_IMAGE: | |
13834 | case OP_ATR_MAX: | |
13835 | case OP_ATR_MIN: | |
13836 | case OP_ATR_MODULUS: | |
13837 | case OP_ATR_POS: | |
13838 | case OP_ATR_SIZE: | |
13839 | case OP_ATR_TAG: | |
13840 | case OP_ATR_VAL: | |
13841 | break; | |
13842 | ||
13843 | case UNOP_IN_RANGE: | |
13844 | case UNOP_QUAL: | |
323e0a4a AC |
13845 | /* XXX: gdb_sprint_host_address, type_sprint */ |
13846 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
13847 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
13848 | fprintf_filtered (stream, " ("); | |
13849 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
13850 | fprintf_filtered (stream, ")"); | |
13851 | break; | |
13852 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
13853 | fprintf_filtered (stream, " (%d)", |
13854 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
13855 | break; |
13856 | case TERNOP_IN_RANGE: | |
13857 | break; | |
13858 | ||
52ce6436 PH |
13859 | case OP_AGGREGATE: |
13860 | case OP_OTHERS: | |
13861 | case OP_DISCRETE_RANGE: | |
13862 | case OP_POSITIONAL: | |
13863 | case OP_CHOICES: | |
13864 | break; | |
13865 | ||
13866 | case OP_NAME: | |
13867 | case OP_STRING: | |
13868 | { | |
13869 | char *name = &exp->elts[elt + 2].string; | |
13870 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 13871 | |
52ce6436 PH |
13872 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
13873 | break; | |
13874 | } | |
13875 | ||
4c4b4cd2 PH |
13876 | default: |
13877 | return dump_subexp_body_standard (exp, stream, elt); | |
13878 | } | |
13879 | ||
13880 | elt += oplen; | |
13881 | for (i = 0; i < nargs; i += 1) | |
13882 | elt = dump_subexp (exp, stream, elt); | |
13883 | ||
13884 | return elt; | |
13885 | } | |
13886 | ||
13887 | /* The Ada extension of print_subexp (q.v.). */ | |
13888 | ||
76a01679 JB |
13889 | static void |
13890 | ada_print_subexp (struct expression *exp, int *pos, | |
13891 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 13892 | { |
52ce6436 | 13893 | int oplen, nargs, i; |
4c4b4cd2 PH |
13894 | int pc = *pos; |
13895 | enum exp_opcode op = exp->elts[pc].opcode; | |
13896 | ||
13897 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
13898 | ||
52ce6436 | 13899 | *pos += oplen; |
4c4b4cd2 PH |
13900 | switch (op) |
13901 | { | |
13902 | default: | |
52ce6436 | 13903 | *pos -= oplen; |
4c4b4cd2 PH |
13904 | print_subexp_standard (exp, pos, stream, prec); |
13905 | return; | |
13906 | ||
13907 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
13908 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
13909 | return; | |
13910 | ||
13911 | case BINOP_IN_BOUNDS: | |
323e0a4a | 13912 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13913 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13914 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 13915 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13916 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 13917 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
13918 | fprintf_filtered (stream, "(%ld)", |
13919 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
13920 | return; |
13921 | ||
13922 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 13923 | if (prec >= PREC_EQUAL) |
76a01679 | 13924 | fputs_filtered ("(", stream); |
323e0a4a | 13925 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13926 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13927 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
13928 | print_subexp (exp, pos, stream, PREC_EQUAL); |
13929 | fputs_filtered (" .. ", stream); | |
13930 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
13931 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
13932 | fputs_filtered (")", stream); |
13933 | return; | |
4c4b4cd2 PH |
13934 | |
13935 | case OP_ATR_FIRST: | |
13936 | case OP_ATR_LAST: | |
13937 | case OP_ATR_LENGTH: | |
13938 | case OP_ATR_IMAGE: | |
13939 | case OP_ATR_MAX: | |
13940 | case OP_ATR_MIN: | |
13941 | case OP_ATR_MODULUS: | |
13942 | case OP_ATR_POS: | |
13943 | case OP_ATR_SIZE: | |
13944 | case OP_ATR_TAG: | |
13945 | case OP_ATR_VAL: | |
4c4b4cd2 | 13946 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
13947 | { |
13948 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
79d43c61 TT |
13949 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0, |
13950 | &type_print_raw_options); | |
76a01679 JB |
13951 | *pos += 3; |
13952 | } | |
4c4b4cd2 | 13953 | else |
76a01679 | 13954 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
13955 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
13956 | if (nargs > 1) | |
76a01679 JB |
13957 | { |
13958 | int tem; | |
5b4ee69b | 13959 | |
76a01679 JB |
13960 | for (tem = 1; tem < nargs; tem += 1) |
13961 | { | |
13962 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
13963 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
13964 | } | |
13965 | fputs_filtered (")", stream); | |
13966 | } | |
4c4b4cd2 | 13967 | return; |
14f9c5c9 | 13968 | |
4c4b4cd2 | 13969 | case UNOP_QUAL: |
4c4b4cd2 PH |
13970 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
13971 | fputs_filtered ("'(", stream); | |
13972 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
13973 | fputs_filtered (")", stream); | |
13974 | return; | |
14f9c5c9 | 13975 | |
4c4b4cd2 | 13976 | case UNOP_IN_RANGE: |
323e0a4a | 13977 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13978 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13979 | fputs_filtered (" in ", stream); |
79d43c61 TT |
13980 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0, |
13981 | &type_print_raw_options); | |
4c4b4cd2 | 13982 | return; |
52ce6436 PH |
13983 | |
13984 | case OP_DISCRETE_RANGE: | |
13985 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13986 | fputs_filtered ("..", stream); | |
13987 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13988 | return; | |
13989 | ||
13990 | case OP_OTHERS: | |
13991 | fputs_filtered ("others => ", stream); | |
13992 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13993 | return; | |
13994 | ||
13995 | case OP_CHOICES: | |
13996 | for (i = 0; i < nargs-1; i += 1) | |
13997 | { | |
13998 | if (i > 0) | |
13999 | fputs_filtered ("|", stream); | |
14000 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
14001 | } | |
14002 | fputs_filtered (" => ", stream); | |
14003 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
14004 | return; | |
14005 | ||
14006 | case OP_POSITIONAL: | |
14007 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
14008 | return; | |
14009 | ||
14010 | case OP_AGGREGATE: | |
14011 | fputs_filtered ("(", stream); | |
14012 | for (i = 0; i < nargs; i += 1) | |
14013 | { | |
14014 | if (i > 0) | |
14015 | fputs_filtered (", ", stream); | |
14016 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
14017 | } | |
14018 | fputs_filtered (")", stream); | |
14019 | return; | |
4c4b4cd2 PH |
14020 | } |
14021 | } | |
14f9c5c9 AS |
14022 | |
14023 | /* Table mapping opcodes into strings for printing operators | |
14024 | and precedences of the operators. */ | |
14025 | ||
d2e4a39e AS |
14026 | static const struct op_print ada_op_print_tab[] = { |
14027 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
14028 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
14029 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
14030 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
14031 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
14032 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
14033 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
14034 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
14035 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
14036 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
14037 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
14038 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
14039 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
14040 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
14041 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
14042 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
14043 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
14044 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
14045 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
14046 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
14047 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
14048 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
14049 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
14050 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
14051 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
14052 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
14053 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
14054 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
14055 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
14056 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
14057 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
f486487f | 14058 | {NULL, OP_NULL, PREC_SUFFIX, 0} |
14f9c5c9 AS |
14059 | }; |
14060 | \f | |
72d5681a PH |
14061 | enum ada_primitive_types { |
14062 | ada_primitive_type_int, | |
14063 | ada_primitive_type_long, | |
14064 | ada_primitive_type_short, | |
14065 | ada_primitive_type_char, | |
14066 | ada_primitive_type_float, | |
14067 | ada_primitive_type_double, | |
14068 | ada_primitive_type_void, | |
14069 | ada_primitive_type_long_long, | |
14070 | ada_primitive_type_long_double, | |
14071 | ada_primitive_type_natural, | |
14072 | ada_primitive_type_positive, | |
14073 | ada_primitive_type_system_address, | |
08f49010 | 14074 | ada_primitive_type_storage_offset, |
72d5681a PH |
14075 | nr_ada_primitive_types |
14076 | }; | |
6c038f32 PH |
14077 | |
14078 | static void | |
d4a9a881 | 14079 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
14080 | struct language_arch_info *lai) |
14081 | { | |
d4a9a881 | 14082 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 14083 | |
72d5681a | 14084 | lai->primitive_type_vector |
d4a9a881 | 14085 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 14086 | struct type *); |
e9bb382b UW |
14087 | |
14088 | lai->primitive_type_vector [ada_primitive_type_int] | |
14089 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
14090 | 0, "integer"); | |
14091 | lai->primitive_type_vector [ada_primitive_type_long] | |
14092 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
14093 | 0, "long_integer"); | |
14094 | lai->primitive_type_vector [ada_primitive_type_short] | |
14095 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
14096 | 0, "short_integer"); | |
14097 | lai->string_char_type | |
14098 | = lai->primitive_type_vector [ada_primitive_type_char] | |
cd7c1778 | 14099 | = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); |
e9bb382b UW |
14100 | lai->primitive_type_vector [ada_primitive_type_float] |
14101 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
49f190bc | 14102 | "float", gdbarch_float_format (gdbarch)); |
e9bb382b UW |
14103 | lai->primitive_type_vector [ada_primitive_type_double] |
14104 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
49f190bc | 14105 | "long_float", gdbarch_double_format (gdbarch)); |
e9bb382b UW |
14106 | lai->primitive_type_vector [ada_primitive_type_long_long] |
14107 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
14108 | 0, "long_long_integer"); | |
14109 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
5f3bceb6 | 14110 | = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch), |
49f190bc | 14111 | "long_long_float", gdbarch_long_double_format (gdbarch)); |
e9bb382b UW |
14112 | lai->primitive_type_vector [ada_primitive_type_natural] |
14113 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
14114 | 0, "natural"); | |
14115 | lai->primitive_type_vector [ada_primitive_type_positive] | |
14116 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
14117 | 0, "positive"); | |
14118 | lai->primitive_type_vector [ada_primitive_type_void] | |
14119 | = builtin->builtin_void; | |
14120 | ||
14121 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
77b7c781 UW |
14122 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, |
14123 | "void")); | |
72d5681a PH |
14124 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
14125 | = "system__address"; | |
fbb06eb1 | 14126 | |
08f49010 XR |
14127 | /* Create the equivalent of the System.Storage_Elements.Storage_Offset |
14128 | type. This is a signed integral type whose size is the same as | |
14129 | the size of addresses. */ | |
14130 | { | |
14131 | unsigned int addr_length = TYPE_LENGTH | |
14132 | (lai->primitive_type_vector [ada_primitive_type_system_address]); | |
14133 | ||
14134 | lai->primitive_type_vector [ada_primitive_type_storage_offset] | |
14135 | = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0, | |
14136 | "storage_offset"); | |
14137 | } | |
14138 | ||
47e729a8 | 14139 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 14140 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 14141 | } |
6c038f32 PH |
14142 | \f |
14143 | /* Language vector */ | |
14144 | ||
14145 | /* Not really used, but needed in the ada_language_defn. */ | |
14146 | ||
14147 | static void | |
6c7a06a3 | 14148 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 14149 | { |
6c7a06a3 | 14150 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
14151 | } |
14152 | ||
14153 | static int | |
410a0ff2 | 14154 | parse (struct parser_state *ps) |
6c038f32 PH |
14155 | { |
14156 | warnings_issued = 0; | |
410a0ff2 | 14157 | return ada_parse (ps); |
6c038f32 PH |
14158 | } |
14159 | ||
14160 | static const struct exp_descriptor ada_exp_descriptor = { | |
14161 | ada_print_subexp, | |
14162 | ada_operator_length, | |
c0201579 | 14163 | ada_operator_check, |
6c038f32 PH |
14164 | ada_op_name, |
14165 | ada_dump_subexp_body, | |
14166 | ada_evaluate_subexp | |
14167 | }; | |
14168 | ||
b5ec771e PA |
14169 | /* symbol_name_matcher_ftype adapter for wild_match. */ |
14170 | ||
14171 | static bool | |
14172 | do_wild_match (const char *symbol_search_name, | |
14173 | const lookup_name_info &lookup_name, | |
a207cff2 | 14174 | completion_match_result *comp_match_res) |
b5ec771e PA |
14175 | { |
14176 | return wild_match (symbol_search_name, ada_lookup_name (lookup_name)); | |
14177 | } | |
14178 | ||
14179 | /* symbol_name_matcher_ftype adapter for full_match. */ | |
14180 | ||
14181 | static bool | |
14182 | do_full_match (const char *symbol_search_name, | |
14183 | const lookup_name_info &lookup_name, | |
a207cff2 | 14184 | completion_match_result *comp_match_res) |
b5ec771e PA |
14185 | { |
14186 | return full_match (symbol_search_name, ada_lookup_name (lookup_name)); | |
14187 | } | |
14188 | ||
14189 | /* Build the Ada lookup name for LOOKUP_NAME. */ | |
14190 | ||
14191 | ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name) | |
14192 | { | |
14193 | const std::string &user_name = lookup_name.name (); | |
14194 | ||
14195 | if (user_name[0] == '<') | |
14196 | { | |
14197 | if (user_name.back () == '>') | |
14198 | m_encoded_name = user_name.substr (1, user_name.size () - 2); | |
14199 | else | |
14200 | m_encoded_name = user_name.substr (1, user_name.size () - 1); | |
14201 | m_encoded_p = true; | |
14202 | m_verbatim_p = true; | |
14203 | m_wild_match_p = false; | |
14204 | m_standard_p = false; | |
14205 | } | |
14206 | else | |
14207 | { | |
14208 | m_verbatim_p = false; | |
14209 | ||
14210 | m_encoded_p = user_name.find ("__") != std::string::npos; | |
14211 | ||
14212 | if (!m_encoded_p) | |
14213 | { | |
14214 | const char *folded = ada_fold_name (user_name.c_str ()); | |
14215 | const char *encoded = ada_encode_1 (folded, false); | |
14216 | if (encoded != NULL) | |
14217 | m_encoded_name = encoded; | |
14218 | else | |
14219 | m_encoded_name = user_name; | |
14220 | } | |
14221 | else | |
14222 | m_encoded_name = user_name; | |
14223 | ||
14224 | /* Handle the 'package Standard' special case. See description | |
14225 | of m_standard_p. */ | |
14226 | if (startswith (m_encoded_name.c_str (), "standard__")) | |
14227 | { | |
14228 | m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1); | |
14229 | m_standard_p = true; | |
14230 | } | |
14231 | else | |
14232 | m_standard_p = false; | |
74ccd7f5 | 14233 | |
b5ec771e PA |
14234 | /* If the name contains a ".", then the user is entering a fully |
14235 | qualified entity name, and the match must not be done in wild | |
14236 | mode. Similarly, if the user wants to complete what looks | |
14237 | like an encoded name, the match must not be done in wild | |
14238 | mode. Also, in the standard__ special case always do | |
14239 | non-wild matching. */ | |
14240 | m_wild_match_p | |
14241 | = (lookup_name.match_type () != symbol_name_match_type::FULL | |
14242 | && !m_encoded_p | |
14243 | && !m_standard_p | |
14244 | && user_name.find ('.') == std::string::npos); | |
14245 | } | |
14246 | } | |
14247 | ||
14248 | /* symbol_name_matcher_ftype method for Ada. This only handles | |
14249 | completion mode. */ | |
14250 | ||
14251 | static bool | |
14252 | ada_symbol_name_matches (const char *symbol_search_name, | |
14253 | const lookup_name_info &lookup_name, | |
a207cff2 | 14254 | completion_match_result *comp_match_res) |
74ccd7f5 | 14255 | { |
b5ec771e PA |
14256 | return lookup_name.ada ().matches (symbol_search_name, |
14257 | lookup_name.match_type (), | |
a207cff2 | 14258 | comp_match_res); |
b5ec771e PA |
14259 | } |
14260 | ||
de63c46b PA |
14261 | /* A name matcher that matches the symbol name exactly, with |
14262 | strcmp. */ | |
14263 | ||
14264 | static bool | |
14265 | literal_symbol_name_matcher (const char *symbol_search_name, | |
14266 | const lookup_name_info &lookup_name, | |
14267 | completion_match_result *comp_match_res) | |
14268 | { | |
14269 | const std::string &name = lookup_name.name (); | |
14270 | ||
14271 | int cmp = (lookup_name.completion_mode () | |
14272 | ? strncmp (symbol_search_name, name.c_str (), name.size ()) | |
14273 | : strcmp (symbol_search_name, name.c_str ())); | |
14274 | if (cmp == 0) | |
14275 | { | |
14276 | if (comp_match_res != NULL) | |
14277 | comp_match_res->set_match (symbol_search_name); | |
14278 | return true; | |
14279 | } | |
14280 | else | |
14281 | return false; | |
14282 | } | |
14283 | ||
b5ec771e PA |
14284 | /* Implement the "la_get_symbol_name_matcher" language_defn method for |
14285 | Ada. */ | |
14286 | ||
14287 | static symbol_name_matcher_ftype * | |
14288 | ada_get_symbol_name_matcher (const lookup_name_info &lookup_name) | |
14289 | { | |
de63c46b PA |
14290 | if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME) |
14291 | return literal_symbol_name_matcher; | |
14292 | ||
b5ec771e PA |
14293 | if (lookup_name.completion_mode ()) |
14294 | return ada_symbol_name_matches; | |
74ccd7f5 | 14295 | else |
b5ec771e PA |
14296 | { |
14297 | if (lookup_name.ada ().wild_match_p ()) | |
14298 | return do_wild_match; | |
14299 | else | |
14300 | return do_full_match; | |
14301 | } | |
74ccd7f5 JB |
14302 | } |
14303 | ||
a5ee536b JB |
14304 | /* Implement the "la_read_var_value" language_defn method for Ada. */ |
14305 | ||
14306 | static struct value * | |
63e43d3a PMR |
14307 | ada_read_var_value (struct symbol *var, const struct block *var_block, |
14308 | struct frame_info *frame) | |
a5ee536b | 14309 | { |
3977b71f | 14310 | const struct block *frame_block = NULL; |
a5ee536b JB |
14311 | struct symbol *renaming_sym = NULL; |
14312 | ||
14313 | /* The only case where default_read_var_value is not sufficient | |
14314 | is when VAR is a renaming... */ | |
14315 | if (frame) | |
14316 | frame_block = get_frame_block (frame, NULL); | |
14317 | if (frame_block) | |
14318 | renaming_sym = ada_find_renaming_symbol (var, frame_block); | |
14319 | if (renaming_sym != NULL) | |
14320 | return ada_read_renaming_var_value (renaming_sym, frame_block); | |
14321 | ||
14322 | /* This is a typical case where we expect the default_read_var_value | |
14323 | function to work. */ | |
63e43d3a | 14324 | return default_read_var_value (var, var_block, frame); |
a5ee536b JB |
14325 | } |
14326 | ||
56618e20 TT |
14327 | static const char *ada_extensions[] = |
14328 | { | |
14329 | ".adb", ".ads", ".a", ".ada", ".dg", NULL | |
14330 | }; | |
14331 | ||
47e77640 | 14332 | extern const struct language_defn ada_language_defn = { |
6c038f32 | 14333 | "ada", /* Language name */ |
6abde28f | 14334 | "Ada", |
6c038f32 | 14335 | language_ada, |
6c038f32 | 14336 | range_check_off, |
6c038f32 PH |
14337 | case_sensitive_on, /* Yes, Ada is case-insensitive, but |
14338 | that's not quite what this means. */ | |
6c038f32 | 14339 | array_row_major, |
9a044a89 | 14340 | macro_expansion_no, |
56618e20 | 14341 | ada_extensions, |
6c038f32 PH |
14342 | &ada_exp_descriptor, |
14343 | parse, | |
6c038f32 PH |
14344 | resolve, |
14345 | ada_printchar, /* Print a character constant */ | |
14346 | ada_printstr, /* Function to print string constant */ | |
14347 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 14348 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 14349 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
14350 | ada_val_print, /* Print a value using appropriate syntax */ |
14351 | ada_value_print, /* Print a top-level value */ | |
a5ee536b | 14352 | ada_read_var_value, /* la_read_var_value */ |
6c038f32 | 14353 | NULL, /* Language specific skip_trampoline */ |
2b2d9e11 | 14354 | NULL, /* name_of_this */ |
59cc4834 | 14355 | true, /* la_store_sym_names_in_linkage_form_p */ |
6c038f32 PH |
14356 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
14357 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
14358 | ada_la_decode, /* Language specific symbol demangler */ | |
8b302db8 | 14359 | ada_sniff_from_mangled_name, |
0963b4bd MS |
14360 | NULL, /* Language specific |
14361 | class_name_from_physname */ | |
6c038f32 PH |
14362 | ada_op_print_tab, /* expression operators for printing */ |
14363 | 0, /* c-style arrays */ | |
14364 | 1, /* String lower bound */ | |
6c038f32 | 14365 | ada_get_gdb_completer_word_break_characters, |
eb3ff9a5 | 14366 | ada_collect_symbol_completion_matches, |
72d5681a | 14367 | ada_language_arch_info, |
e79af960 | 14368 | ada_print_array_index, |
41f1b697 | 14369 | default_pass_by_reference, |
ae6a3a4c | 14370 | c_get_string, |
e2b7af72 | 14371 | ada_watch_location_expression, |
b5ec771e | 14372 | ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */ |
f8eba3c6 | 14373 | ada_iterate_over_symbols, |
5ffa0793 | 14374 | default_search_name_hash, |
a53b64ea | 14375 | &ada_varobj_ops, |
bb2ec1b3 TT |
14376 | NULL, |
14377 | NULL, | |
6c038f32 PH |
14378 | LANG_MAGIC |
14379 | }; | |
14380 | ||
5bf03f13 JB |
14381 | /* Command-list for the "set/show ada" prefix command. */ |
14382 | static struct cmd_list_element *set_ada_list; | |
14383 | static struct cmd_list_element *show_ada_list; | |
14384 | ||
14385 | /* Implement the "set ada" prefix command. */ | |
14386 | ||
14387 | static void | |
981a3fb3 | 14388 | set_ada_command (const char *arg, int from_tty) |
5bf03f13 JB |
14389 | { |
14390 | printf_unfiltered (_(\ | |
14391 | "\"set ada\" must be followed by the name of a setting.\n")); | |
635c7e8a | 14392 | help_list (set_ada_list, "set ada ", all_commands, gdb_stdout); |
5bf03f13 JB |
14393 | } |
14394 | ||
14395 | /* Implement the "show ada" prefix command. */ | |
14396 | ||
14397 | static void | |
981a3fb3 | 14398 | show_ada_command (const char *args, int from_tty) |
5bf03f13 JB |
14399 | { |
14400 | cmd_show_list (show_ada_list, from_tty, ""); | |
14401 | } | |
14402 | ||
2060206e PA |
14403 | static void |
14404 | initialize_ada_catchpoint_ops (void) | |
14405 | { | |
14406 | struct breakpoint_ops *ops; | |
14407 | ||
14408 | initialize_breakpoint_ops (); | |
14409 | ||
14410 | ops = &catch_exception_breakpoint_ops; | |
14411 | *ops = bkpt_breakpoint_ops; | |
2060206e PA |
14412 | ops->allocate_location = allocate_location_catch_exception; |
14413 | ops->re_set = re_set_catch_exception; | |
14414 | ops->check_status = check_status_catch_exception; | |
14415 | ops->print_it = print_it_catch_exception; | |
14416 | ops->print_one = print_one_catch_exception; | |
14417 | ops->print_mention = print_mention_catch_exception; | |
14418 | ops->print_recreate = print_recreate_catch_exception; | |
14419 | ||
14420 | ops = &catch_exception_unhandled_breakpoint_ops; | |
14421 | *ops = bkpt_breakpoint_ops; | |
2060206e PA |
14422 | ops->allocate_location = allocate_location_catch_exception_unhandled; |
14423 | ops->re_set = re_set_catch_exception_unhandled; | |
14424 | ops->check_status = check_status_catch_exception_unhandled; | |
14425 | ops->print_it = print_it_catch_exception_unhandled; | |
14426 | ops->print_one = print_one_catch_exception_unhandled; | |
14427 | ops->print_mention = print_mention_catch_exception_unhandled; | |
14428 | ops->print_recreate = print_recreate_catch_exception_unhandled; | |
14429 | ||
14430 | ops = &catch_assert_breakpoint_ops; | |
14431 | *ops = bkpt_breakpoint_ops; | |
2060206e PA |
14432 | ops->allocate_location = allocate_location_catch_assert; |
14433 | ops->re_set = re_set_catch_assert; | |
14434 | ops->check_status = check_status_catch_assert; | |
14435 | ops->print_it = print_it_catch_assert; | |
14436 | ops->print_one = print_one_catch_assert; | |
14437 | ops->print_mention = print_mention_catch_assert; | |
14438 | ops->print_recreate = print_recreate_catch_assert; | |
9f757bf7 XR |
14439 | |
14440 | ops = &catch_handlers_breakpoint_ops; | |
14441 | *ops = bkpt_breakpoint_ops; | |
14442 | ops->allocate_location = allocate_location_catch_handlers; | |
14443 | ops->re_set = re_set_catch_handlers; | |
14444 | ops->check_status = check_status_catch_handlers; | |
14445 | ops->print_it = print_it_catch_handlers; | |
14446 | ops->print_one = print_one_catch_handlers; | |
14447 | ops->print_mention = print_mention_catch_handlers; | |
14448 | ops->print_recreate = print_recreate_catch_handlers; | |
2060206e PA |
14449 | } |
14450 | ||
3d9434b5 JB |
14451 | /* This module's 'new_objfile' observer. */ |
14452 | ||
14453 | static void | |
14454 | ada_new_objfile_observer (struct objfile *objfile) | |
14455 | { | |
14456 | ada_clear_symbol_cache (); | |
14457 | } | |
14458 | ||
14459 | /* This module's 'free_objfile' observer. */ | |
14460 | ||
14461 | static void | |
14462 | ada_free_objfile_observer (struct objfile *objfile) | |
14463 | { | |
14464 | ada_clear_symbol_cache (); | |
14465 | } | |
14466 | ||
d2e4a39e | 14467 | void |
6c038f32 | 14468 | _initialize_ada_language (void) |
14f9c5c9 | 14469 | { |
2060206e PA |
14470 | initialize_ada_catchpoint_ops (); |
14471 | ||
5bf03f13 | 14472 | add_prefix_cmd ("ada", no_class, set_ada_command, |
470678d7 | 14473 | _("Prefix command for changing Ada-specific settings"), |
5bf03f13 JB |
14474 | &set_ada_list, "set ada ", 0, &setlist); |
14475 | ||
14476 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
14477 | _("Generic command for showing Ada-specific settings."), | |
14478 | &show_ada_list, "show ada ", 0, &showlist); | |
14479 | ||
14480 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
14481 | &trust_pad_over_xvs, _("\ | |
14482 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
14483 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
14484 | _("\ | |
14485 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
14486 | should normally trust the contents of PAD types, but certain older versions\n\ | |
14487 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
14488 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
14489 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
14490 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
14491 | this option to \"off\" unless necessary."), | |
14492 | NULL, NULL, &set_ada_list, &show_ada_list); | |
14493 | ||
d72413e6 PMR |
14494 | add_setshow_boolean_cmd ("print-signatures", class_vars, |
14495 | &print_signatures, _("\ | |
14496 | Enable or disable the output of formal and return types for functions in the \ | |
14497 | overloads selection menu"), _("\ | |
14498 | Show whether the output of formal and return types for functions in the \ | |
14499 | overloads selection menu is activated"), | |
14500 | NULL, NULL, NULL, &set_ada_list, &show_ada_list); | |
14501 | ||
9ac4176b PA |
14502 | add_catch_command ("exception", _("\ |
14503 | Catch Ada exceptions, when raised.\n\ | |
14504 | With an argument, catch only exceptions with the given name."), | |
14505 | catch_ada_exception_command, | |
14506 | NULL, | |
14507 | CATCH_PERMANENT, | |
14508 | CATCH_TEMPORARY); | |
9f757bf7 XR |
14509 | |
14510 | add_catch_command ("handlers", _("\ | |
14511 | Catch Ada exceptions, when handled.\n\ | |
14512 | With an argument, catch only exceptions with the given name."), | |
14513 | catch_ada_handlers_command, | |
14514 | NULL, | |
14515 | CATCH_PERMANENT, | |
14516 | CATCH_TEMPORARY); | |
9ac4176b PA |
14517 | add_catch_command ("assert", _("\ |
14518 | Catch failed Ada assertions, when raised.\n\ | |
14519 | With an argument, catch only exceptions with the given name."), | |
14520 | catch_assert_command, | |
14521 | NULL, | |
14522 | CATCH_PERMANENT, | |
14523 | CATCH_TEMPORARY); | |
14524 | ||
6c038f32 | 14525 | varsize_limit = 65536; |
3fcded8f JB |
14526 | add_setshow_uinteger_cmd ("varsize-limit", class_support, |
14527 | &varsize_limit, _("\ | |
14528 | Set the maximum number of bytes allowed in a variable-size object."), _("\ | |
14529 | Show the maximum number of bytes allowed in a variable-size object."), _("\ | |
14530 | Attempts to access an object whose size is not a compile-time constant\n\ | |
14531 | and exceeds this limit will cause an error."), | |
14532 | NULL, NULL, &setlist, &showlist); | |
6c038f32 | 14533 | |
778865d3 JB |
14534 | add_info ("exceptions", info_exceptions_command, |
14535 | _("\ | |
14536 | List all Ada exception names.\n\ | |
14537 | If a regular expression is passed as an argument, only those matching\n\ | |
14538 | the regular expression are listed.")); | |
14539 | ||
c6044dd1 JB |
14540 | add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd, |
14541 | _("Set Ada maintenance-related variables."), | |
14542 | &maint_set_ada_cmdlist, "maintenance set ada ", | |
14543 | 0/*allow-unknown*/, &maintenance_set_cmdlist); | |
14544 | ||
14545 | add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd, | |
14546 | _("Show Ada maintenance-related variables"), | |
14547 | &maint_show_ada_cmdlist, "maintenance show ada ", | |
14548 | 0/*allow-unknown*/, &maintenance_show_cmdlist); | |
14549 | ||
14550 | add_setshow_boolean_cmd | |
14551 | ("ignore-descriptive-types", class_maintenance, | |
14552 | &ada_ignore_descriptive_types_p, | |
14553 | _("Set whether descriptive types generated by GNAT should be ignored."), | |
14554 | _("Show whether descriptive types generated by GNAT should be ignored."), | |
14555 | _("\ | |
14556 | When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\ | |
14557 | DWARF attribute."), | |
14558 | NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist); | |
14559 | ||
459a2e4c TT |
14560 | decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash, |
14561 | NULL, xcalloc, xfree); | |
6b69afc4 | 14562 | |
3d9434b5 | 14563 | /* The ada-lang observers. */ |
76727919 TT |
14564 | gdb::observers::new_objfile.attach (ada_new_objfile_observer); |
14565 | gdb::observers::free_objfile.attach (ada_free_objfile_observer); | |
14566 | gdb::observers::inferior_exit.attach (ada_inferior_exit); | |
ee01b665 JB |
14567 | |
14568 | /* Setup various context-specific data. */ | |
e802dbe0 | 14569 | ada_inferior_data |
8e260fc0 | 14570 | = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup); |
ee01b665 JB |
14571 | ada_pspace_data_handle |
14572 | = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup); | |
14f9c5c9 | 14573 | } |