]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
[Ada] avoid error message pollution with uninitialized tagged variable
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
0b302171
JB
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
fa864999 60#include "gdb_vecs.h"
14f9c5c9 61
ccefe4c4 62#include "psymtab.h"
40bc484c 63#include "value.h"
956a9fb9 64#include "mi/mi-common.h"
9ac4176b 65#include "arch-utils.h"
28010a5d 66#include "exceptions.h"
0fcd72ba 67#include "cli/cli-utils.h"
ccefe4c4 68
4c4b4cd2 69/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 70 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
71 Copied from valarith.c. */
72
73#ifndef TRUNCATION_TOWARDS_ZERO
74#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75#endif
76
d2e4a39e 77static struct type *desc_base_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct type *desc_bounds_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_bounds (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 86
556bdfd4 87static struct type *desc_data_target_type (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_data (struct value *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 92
d2e4a39e 93static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 94
d2e4a39e 95static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 100
d2e4a39e 101static struct type *desc_index_type (struct type *, int);
14f9c5c9 102
d2e4a39e 103static int desc_arity (struct type *);
14f9c5c9 104
d2e4a39e 105static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 106
d2e4a39e 107static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 108
40658b94
PH
109static int full_match (const char *, const char *);
110
40bc484c 111static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 112
4c4b4cd2 113static void ada_add_block_symbols (struct obstack *,
76a01679 114 struct block *, const char *,
2570f2b7 115 domain_enum, struct objfile *, int);
14f9c5c9 116
4c4b4cd2 117static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 118
76a01679 119static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 120 struct block *);
14f9c5c9 121
4c4b4cd2
PH
122static int num_defns_collected (struct obstack *);
123
124static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 125
4c4b4cd2 126static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 127 struct type *);
14f9c5c9 128
d2e4a39e 129static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 130 struct symbol *, struct block *);
14f9c5c9 131
d2e4a39e 132static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 133
4c4b4cd2
PH
134static char *ada_op_name (enum exp_opcode);
135
136static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 137
d2e4a39e 138static int numeric_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int integer_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int scalar_type_p (struct type *);
14f9c5c9 143
d2e4a39e 144static int discrete_type_p (struct type *);
14f9c5c9 145
aeb5907d
JB
146static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
4c4b4cd2 154static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 155 int, int, int *);
4c4b4cd2 156
d2e4a39e 157static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 158
b4ba55a1
JB
159static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
d2e4a39e 162static int is_dynamic_field (struct type *, int);
14f9c5c9 163
10a2c479 164static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 165 const gdb_byte *,
4c4b4cd2
PH
166 CORE_ADDR, struct value *);
167
168static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 169
28c85d6c 170static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 171
d2e4a39e 172static struct type *to_static_fixed_type (struct type *);
f192137b 173static struct type *static_unwrap_type (struct type *type);
14f9c5c9 174
d2e4a39e 175static struct value *unwrap_value (struct value *);
14f9c5c9 176
ad82864c 177static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 178
ad82864c 179static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 180
ad82864c
JB
181static long decode_packed_array_bitsize (struct type *);
182
183static struct value *decode_constrained_packed_array (struct value *);
184
185static int ada_is_packed_array_type (struct type *);
186
187static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 188
d2e4a39e 189static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 190 struct value **);
14f9c5c9 191
50810684 192static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 193
4c4b4cd2
PH
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
14f9c5c9 196
d2e4a39e 197static struct value *get_var_value (char *, char *);
14f9c5c9 198
d2e4a39e 199static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 200
d2e4a39e 201static int equiv_types (struct type *, struct type *);
14f9c5c9 202
d2e4a39e 203static int is_name_suffix (const char *);
14f9c5c9 204
73589123
PH
205static int advance_wild_match (const char **, const char *, int);
206
207static int wild_match (const char *, const char *);
14f9c5c9 208
d2e4a39e 209static struct value *ada_coerce_ref (struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static LONGEST pos_atr (struct value *);
212
3cb382c9 213static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 214
d2e4a39e 215static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 216
4c4b4cd2
PH
217static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
14f9c5c9 219
4c4b4cd2
PH
220static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
0d5cff50 226static int find_struct_field (const char *, struct type *, int,
52ce6436 227 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
228
229static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
4c4b4cd2
PH
232static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
4c4b4cd2
PH
236static int ada_is_direct_array_type (struct type *);
237
72d5681a
PH
238static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
714e53ab
PH
240
241static void check_size (const struct type *);
52ce6436
PH
242
243static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
247 struct expression *,
248 int *, enum noside);
52ce6436
PH
249
250static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
4c4b4cd2
PH
274\f
275
76a01679 276
4c4b4cd2 277/* Maximum-sized dynamic type. */
14f9c5c9
AS
278static unsigned int varsize_limit;
279
4c4b4cd2
PH
280/* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282static char *ada_completer_word_break_characters =
283#ifdef VMS
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285#else
14f9c5c9 286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 287#endif
14f9c5c9 288
4c4b4cd2 289/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 290static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 291 = "__gnat_ada_main_program_name";
14f9c5c9 292
4c4b4cd2
PH
293/* Limit on the number of warnings to raise per expression evaluation. */
294static int warning_limit = 2;
295
296/* Number of warning messages issued; reset to 0 by cleanups after
297 expression evaluation. */
298static int warnings_issued = 0;
299
300static const char *known_runtime_file_name_patterns[] = {
301 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
302};
303
304static const char *known_auxiliary_function_name_patterns[] = {
305 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
306};
307
308/* Space for allocating results of ada_lookup_symbol_list. */
309static struct obstack symbol_list_obstack;
310
e802dbe0
JB
311 /* Inferior-specific data. */
312
313/* Per-inferior data for this module. */
314
315struct ada_inferior_data
316{
317 /* The ada__tags__type_specific_data type, which is used when decoding
318 tagged types. With older versions of GNAT, this type was directly
319 accessible through a component ("tsd") in the object tag. But this
320 is no longer the case, so we cache it for each inferior. */
321 struct type *tsd_type;
3eecfa55
JB
322
323 /* The exception_support_info data. This data is used to determine
324 how to implement support for Ada exception catchpoints in a given
325 inferior. */
326 const struct exception_support_info *exception_info;
e802dbe0
JB
327};
328
329/* Our key to this module's inferior data. */
330static const struct inferior_data *ada_inferior_data;
331
332/* A cleanup routine for our inferior data. */
333static void
334ada_inferior_data_cleanup (struct inferior *inf, void *arg)
335{
336 struct ada_inferior_data *data;
337
338 data = inferior_data (inf, ada_inferior_data);
339 if (data != NULL)
340 xfree (data);
341}
342
343/* Return our inferior data for the given inferior (INF).
344
345 This function always returns a valid pointer to an allocated
346 ada_inferior_data structure. If INF's inferior data has not
347 been previously set, this functions creates a new one with all
348 fields set to zero, sets INF's inferior to it, and then returns
349 a pointer to that newly allocated ada_inferior_data. */
350
351static struct ada_inferior_data *
352get_ada_inferior_data (struct inferior *inf)
353{
354 struct ada_inferior_data *data;
355
356 data = inferior_data (inf, ada_inferior_data);
357 if (data == NULL)
358 {
359 data = XZALLOC (struct ada_inferior_data);
360 set_inferior_data (inf, ada_inferior_data, data);
361 }
362
363 return data;
364}
365
366/* Perform all necessary cleanups regarding our module's inferior data
367 that is required after the inferior INF just exited. */
368
369static void
370ada_inferior_exit (struct inferior *inf)
371{
372 ada_inferior_data_cleanup (inf, NULL);
373 set_inferior_data (inf, ada_inferior_data, NULL);
374}
375
4c4b4cd2
PH
376 /* Utilities */
377
720d1a40 378/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 379 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
380
381 Normally, we really expect a typedef type to only have 1 typedef layer.
382 In other words, we really expect the target type of a typedef type to be
383 a non-typedef type. This is particularly true for Ada units, because
384 the language does not have a typedef vs not-typedef distinction.
385 In that respect, the Ada compiler has been trying to eliminate as many
386 typedef definitions in the debugging information, since they generally
387 do not bring any extra information (we still use typedef under certain
388 circumstances related mostly to the GNAT encoding).
389
390 Unfortunately, we have seen situations where the debugging information
391 generated by the compiler leads to such multiple typedef layers. For
392 instance, consider the following example with stabs:
393
394 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
395 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
396
397 This is an error in the debugging information which causes type
398 pck__float_array___XUP to be defined twice, and the second time,
399 it is defined as a typedef of a typedef.
400
401 This is on the fringe of legality as far as debugging information is
402 concerned, and certainly unexpected. But it is easy to handle these
403 situations correctly, so we can afford to be lenient in this case. */
404
405static struct type *
406ada_typedef_target_type (struct type *type)
407{
408 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
409 type = TYPE_TARGET_TYPE (type);
410 return type;
411}
412
41d27058
JB
413/* Given DECODED_NAME a string holding a symbol name in its
414 decoded form (ie using the Ada dotted notation), returns
415 its unqualified name. */
416
417static const char *
418ada_unqualified_name (const char *decoded_name)
419{
420 const char *result = strrchr (decoded_name, '.');
421
422 if (result != NULL)
423 result++; /* Skip the dot... */
424 else
425 result = decoded_name;
426
427 return result;
428}
429
430/* Return a string starting with '<', followed by STR, and '>'.
431 The result is good until the next call. */
432
433static char *
434add_angle_brackets (const char *str)
435{
436 static char *result = NULL;
437
438 xfree (result);
88c15c34 439 result = xstrprintf ("<%s>", str);
41d27058
JB
440 return result;
441}
96d887e8 442
4c4b4cd2
PH
443static char *
444ada_get_gdb_completer_word_break_characters (void)
445{
446 return ada_completer_word_break_characters;
447}
448
e79af960
JB
449/* Print an array element index using the Ada syntax. */
450
451static void
452ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 453 const struct value_print_options *options)
e79af960 454{
79a45b7d 455 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
456 fprintf_filtered (stream, " => ");
457}
458
f27cf670 459/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 460 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 461 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 462
f27cf670
AS
463void *
464grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 465{
d2e4a39e
AS
466 if (*size < min_size)
467 {
468 *size *= 2;
469 if (*size < min_size)
4c4b4cd2 470 *size = min_size;
f27cf670 471 vect = xrealloc (vect, *size * element_size);
d2e4a39e 472 }
f27cf670 473 return vect;
14f9c5c9
AS
474}
475
476/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 477 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
478
479static int
ebf56fd3 480field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
481{
482 int len = strlen (target);
5b4ee69b 483
d2e4a39e 484 return
4c4b4cd2
PH
485 (strncmp (field_name, target, len) == 0
486 && (field_name[len] == '\0'
487 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
488 && strcmp (field_name + strlen (field_name) - 6,
489 "___XVN") != 0)));
14f9c5c9
AS
490}
491
492
872c8b51
JB
493/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
494 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
495 and return its index. This function also handles fields whose name
496 have ___ suffixes because the compiler sometimes alters their name
497 by adding such a suffix to represent fields with certain constraints.
498 If the field could not be found, return a negative number if
499 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
500
501int
502ada_get_field_index (const struct type *type, const char *field_name,
503 int maybe_missing)
504{
505 int fieldno;
872c8b51
JB
506 struct type *struct_type = check_typedef ((struct type *) type);
507
508 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
509 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
510 return fieldno;
511
512 if (!maybe_missing)
323e0a4a 513 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 514 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
515
516 return -1;
517}
518
519/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
520
521int
d2e4a39e 522ada_name_prefix_len (const char *name)
14f9c5c9
AS
523{
524 if (name == NULL)
525 return 0;
d2e4a39e 526 else
14f9c5c9 527 {
d2e4a39e 528 const char *p = strstr (name, "___");
5b4ee69b 529
14f9c5c9 530 if (p == NULL)
4c4b4cd2 531 return strlen (name);
14f9c5c9 532 else
4c4b4cd2 533 return p - name;
14f9c5c9
AS
534 }
535}
536
4c4b4cd2
PH
537/* Return non-zero if SUFFIX is a suffix of STR.
538 Return zero if STR is null. */
539
14f9c5c9 540static int
d2e4a39e 541is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
542{
543 int len1, len2;
5b4ee69b 544
14f9c5c9
AS
545 if (str == NULL)
546 return 0;
547 len1 = strlen (str);
548 len2 = strlen (suffix);
4c4b4cd2 549 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
550}
551
4c4b4cd2
PH
552/* The contents of value VAL, treated as a value of type TYPE. The
553 result is an lval in memory if VAL is. */
14f9c5c9 554
d2e4a39e 555static struct value *
4c4b4cd2 556coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 557{
61ee279c 558 type = ada_check_typedef (type);
df407dfe 559 if (value_type (val) == type)
4c4b4cd2 560 return val;
d2e4a39e 561 else
14f9c5c9 562 {
4c4b4cd2
PH
563 struct value *result;
564
565 /* Make sure that the object size is not unreasonable before
566 trying to allocate some memory for it. */
714e53ab 567 check_size (type);
4c4b4cd2 568
41e8491f
JK
569 if (value_lazy (val)
570 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
571 result = allocate_value_lazy (type);
572 else
573 {
574 result = allocate_value (type);
575 memcpy (value_contents_raw (result), value_contents (val),
576 TYPE_LENGTH (type));
577 }
74bcbdf3 578 set_value_component_location (result, val);
9bbda503
AC
579 set_value_bitsize (result, value_bitsize (val));
580 set_value_bitpos (result, value_bitpos (val));
42ae5230 581 set_value_address (result, value_address (val));
14f9c5c9
AS
582 return result;
583 }
584}
585
fc1a4b47
AC
586static const gdb_byte *
587cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
588{
589 if (valaddr == NULL)
590 return NULL;
591 else
592 return valaddr + offset;
593}
594
595static CORE_ADDR
ebf56fd3 596cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
597{
598 if (address == 0)
599 return 0;
d2e4a39e 600 else
14f9c5c9
AS
601 return address + offset;
602}
603
4c4b4cd2
PH
604/* Issue a warning (as for the definition of warning in utils.c, but
605 with exactly one argument rather than ...), unless the limit on the
606 number of warnings has passed during the evaluation of the current
607 expression. */
a2249542 608
77109804
AC
609/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
610 provided by "complaint". */
a0b31db1 611static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 612
14f9c5c9 613static void
a2249542 614lim_warning (const char *format, ...)
14f9c5c9 615{
a2249542 616 va_list args;
a2249542 617
5b4ee69b 618 va_start (args, format);
4c4b4cd2
PH
619 warnings_issued += 1;
620 if (warnings_issued <= warning_limit)
a2249542
MK
621 vwarning (format, args);
622
623 va_end (args);
4c4b4cd2
PH
624}
625
714e53ab
PH
626/* Issue an error if the size of an object of type T is unreasonable,
627 i.e. if it would be a bad idea to allocate a value of this type in
628 GDB. */
629
630static void
631check_size (const struct type *type)
632{
633 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 634 error (_("object size is larger than varsize-limit"));
714e53ab
PH
635}
636
0963b4bd 637/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 638static LONGEST
c3e5cd34 639max_of_size (int size)
4c4b4cd2 640{
76a01679 641 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 642
76a01679 643 return top_bit | (top_bit - 1);
4c4b4cd2
PH
644}
645
0963b4bd 646/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 647static LONGEST
c3e5cd34 648min_of_size (int size)
4c4b4cd2 649{
c3e5cd34 650 return -max_of_size (size) - 1;
4c4b4cd2
PH
651}
652
0963b4bd 653/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 654static ULONGEST
c3e5cd34 655umax_of_size (int size)
4c4b4cd2 656{
76a01679 657 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 658
76a01679 659 return top_bit | (top_bit - 1);
4c4b4cd2
PH
660}
661
0963b4bd 662/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
663static LONGEST
664max_of_type (struct type *t)
4c4b4cd2 665{
c3e5cd34
PH
666 if (TYPE_UNSIGNED (t))
667 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
668 else
669 return max_of_size (TYPE_LENGTH (t));
670}
671
0963b4bd 672/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
673static LONGEST
674min_of_type (struct type *t)
675{
676 if (TYPE_UNSIGNED (t))
677 return 0;
678 else
679 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
680}
681
682/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
683LONGEST
684ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 685{
76a01679 686 switch (TYPE_CODE (type))
4c4b4cd2
PH
687 {
688 case TYPE_CODE_RANGE:
690cc4eb 689 return TYPE_HIGH_BOUND (type);
4c4b4cd2 690 case TYPE_CODE_ENUM:
690cc4eb
PH
691 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
692 case TYPE_CODE_BOOL:
693 return 1;
694 case TYPE_CODE_CHAR:
76a01679 695 case TYPE_CODE_INT:
690cc4eb 696 return max_of_type (type);
4c4b4cd2 697 default:
43bbcdc2 698 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
699 }
700}
701
702/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
703LONGEST
704ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 705{
76a01679 706 switch (TYPE_CODE (type))
4c4b4cd2
PH
707 {
708 case TYPE_CODE_RANGE:
690cc4eb 709 return TYPE_LOW_BOUND (type);
4c4b4cd2 710 case TYPE_CODE_ENUM:
690cc4eb
PH
711 return TYPE_FIELD_BITPOS (type, 0);
712 case TYPE_CODE_BOOL:
713 return 0;
714 case TYPE_CODE_CHAR:
76a01679 715 case TYPE_CODE_INT:
690cc4eb 716 return min_of_type (type);
4c4b4cd2 717 default:
43bbcdc2 718 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
719 }
720}
721
722/* The identity on non-range types. For range types, the underlying
76a01679 723 non-range scalar type. */
4c4b4cd2
PH
724
725static struct type *
18af8284 726get_base_type (struct type *type)
4c4b4cd2
PH
727{
728 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
729 {
76a01679
JB
730 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
731 return type;
4c4b4cd2
PH
732 type = TYPE_TARGET_TYPE (type);
733 }
734 return type;
14f9c5c9 735}
41246937
JB
736
737/* Return a decoded version of the given VALUE. This means returning
738 a value whose type is obtained by applying all the GNAT-specific
739 encondings, making the resulting type a static but standard description
740 of the initial type. */
741
742struct value *
743ada_get_decoded_value (struct value *value)
744{
745 struct type *type = ada_check_typedef (value_type (value));
746
747 if (ada_is_array_descriptor_type (type)
748 || (ada_is_constrained_packed_array_type (type)
749 && TYPE_CODE (type) != TYPE_CODE_PTR))
750 {
751 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
752 value = ada_coerce_to_simple_array_ptr (value);
753 else
754 value = ada_coerce_to_simple_array (value);
755 }
756 else
757 value = ada_to_fixed_value (value);
758
759 return value;
760}
761
762/* Same as ada_get_decoded_value, but with the given TYPE.
763 Because there is no associated actual value for this type,
764 the resulting type might be a best-effort approximation in
765 the case of dynamic types. */
766
767struct type *
768ada_get_decoded_type (struct type *type)
769{
770 type = to_static_fixed_type (type);
771 if (ada_is_constrained_packed_array_type (type))
772 type = ada_coerce_to_simple_array_type (type);
773 return type;
774}
775
4c4b4cd2 776\f
76a01679 777
4c4b4cd2 778 /* Language Selection */
14f9c5c9
AS
779
780/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 781 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 782
14f9c5c9 783enum language
ccefe4c4 784ada_update_initial_language (enum language lang)
14f9c5c9 785{
d2e4a39e 786 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
787 (struct objfile *) NULL) != NULL)
788 return language_ada;
14f9c5c9
AS
789
790 return lang;
791}
96d887e8
PH
792
793/* If the main procedure is written in Ada, then return its name.
794 The result is good until the next call. Return NULL if the main
795 procedure doesn't appear to be in Ada. */
796
797char *
798ada_main_name (void)
799{
800 struct minimal_symbol *msym;
f9bc20b9 801 static char *main_program_name = NULL;
6c038f32 802
96d887e8
PH
803 /* For Ada, the name of the main procedure is stored in a specific
804 string constant, generated by the binder. Look for that symbol,
805 extract its address, and then read that string. If we didn't find
806 that string, then most probably the main procedure is not written
807 in Ada. */
808 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
809
810 if (msym != NULL)
811 {
f9bc20b9
JB
812 CORE_ADDR main_program_name_addr;
813 int err_code;
814
96d887e8
PH
815 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
816 if (main_program_name_addr == 0)
323e0a4a 817 error (_("Invalid address for Ada main program name."));
96d887e8 818
f9bc20b9
JB
819 xfree (main_program_name);
820 target_read_string (main_program_name_addr, &main_program_name,
821 1024, &err_code);
822
823 if (err_code != 0)
824 return NULL;
96d887e8
PH
825 return main_program_name;
826 }
827
828 /* The main procedure doesn't seem to be in Ada. */
829 return NULL;
830}
14f9c5c9 831\f
4c4b4cd2 832 /* Symbols */
d2e4a39e 833
4c4b4cd2
PH
834/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
835 of NULLs. */
14f9c5c9 836
d2e4a39e
AS
837const struct ada_opname_map ada_opname_table[] = {
838 {"Oadd", "\"+\"", BINOP_ADD},
839 {"Osubtract", "\"-\"", BINOP_SUB},
840 {"Omultiply", "\"*\"", BINOP_MUL},
841 {"Odivide", "\"/\"", BINOP_DIV},
842 {"Omod", "\"mod\"", BINOP_MOD},
843 {"Orem", "\"rem\"", BINOP_REM},
844 {"Oexpon", "\"**\"", BINOP_EXP},
845 {"Olt", "\"<\"", BINOP_LESS},
846 {"Ole", "\"<=\"", BINOP_LEQ},
847 {"Ogt", "\">\"", BINOP_GTR},
848 {"Oge", "\">=\"", BINOP_GEQ},
849 {"Oeq", "\"=\"", BINOP_EQUAL},
850 {"One", "\"/=\"", BINOP_NOTEQUAL},
851 {"Oand", "\"and\"", BINOP_BITWISE_AND},
852 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
853 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
854 {"Oconcat", "\"&\"", BINOP_CONCAT},
855 {"Oabs", "\"abs\"", UNOP_ABS},
856 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
857 {"Oadd", "\"+\"", UNOP_PLUS},
858 {"Osubtract", "\"-\"", UNOP_NEG},
859 {NULL, NULL}
14f9c5c9
AS
860};
861
4c4b4cd2
PH
862/* The "encoded" form of DECODED, according to GNAT conventions.
863 The result is valid until the next call to ada_encode. */
864
14f9c5c9 865char *
4c4b4cd2 866ada_encode (const char *decoded)
14f9c5c9 867{
4c4b4cd2
PH
868 static char *encoding_buffer = NULL;
869 static size_t encoding_buffer_size = 0;
d2e4a39e 870 const char *p;
14f9c5c9 871 int k;
d2e4a39e 872
4c4b4cd2 873 if (decoded == NULL)
14f9c5c9
AS
874 return NULL;
875
4c4b4cd2
PH
876 GROW_VECT (encoding_buffer, encoding_buffer_size,
877 2 * strlen (decoded) + 10);
14f9c5c9
AS
878
879 k = 0;
4c4b4cd2 880 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 881 {
cdc7bb92 882 if (*p == '.')
4c4b4cd2
PH
883 {
884 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
885 k += 2;
886 }
14f9c5c9 887 else if (*p == '"')
4c4b4cd2
PH
888 {
889 const struct ada_opname_map *mapping;
890
891 for (mapping = ada_opname_table;
1265e4aa
JB
892 mapping->encoded != NULL
893 && strncmp (mapping->decoded, p,
894 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
895 ;
896 if (mapping->encoded == NULL)
323e0a4a 897 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
898 strcpy (encoding_buffer + k, mapping->encoded);
899 k += strlen (mapping->encoded);
900 break;
901 }
d2e4a39e 902 else
4c4b4cd2
PH
903 {
904 encoding_buffer[k] = *p;
905 k += 1;
906 }
14f9c5c9
AS
907 }
908
4c4b4cd2
PH
909 encoding_buffer[k] = '\0';
910 return encoding_buffer;
14f9c5c9
AS
911}
912
913/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
914 quotes, unfolded, but with the quotes stripped away. Result good
915 to next call. */
916
d2e4a39e
AS
917char *
918ada_fold_name (const char *name)
14f9c5c9 919{
d2e4a39e 920 static char *fold_buffer = NULL;
14f9c5c9
AS
921 static size_t fold_buffer_size = 0;
922
923 int len = strlen (name);
d2e4a39e 924 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
925
926 if (name[0] == '\'')
927 {
d2e4a39e
AS
928 strncpy (fold_buffer, name + 1, len - 2);
929 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
930 }
931 else
932 {
933 int i;
5b4ee69b 934
14f9c5c9 935 for (i = 0; i <= len; i += 1)
4c4b4cd2 936 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
937 }
938
939 return fold_buffer;
940}
941
529cad9c
PH
942/* Return nonzero if C is either a digit or a lowercase alphabet character. */
943
944static int
945is_lower_alphanum (const char c)
946{
947 return (isdigit (c) || (isalpha (c) && islower (c)));
948}
949
c90092fe
JB
950/* ENCODED is the linkage name of a symbol and LEN contains its length.
951 This function saves in LEN the length of that same symbol name but
952 without either of these suffixes:
29480c32
JB
953 . .{DIGIT}+
954 . ${DIGIT}+
955 . ___{DIGIT}+
956 . __{DIGIT}+.
c90092fe 957
29480c32
JB
958 These are suffixes introduced by the compiler for entities such as
959 nested subprogram for instance, in order to avoid name clashes.
960 They do not serve any purpose for the debugger. */
961
962static void
963ada_remove_trailing_digits (const char *encoded, int *len)
964{
965 if (*len > 1 && isdigit (encoded[*len - 1]))
966 {
967 int i = *len - 2;
5b4ee69b 968
29480c32
JB
969 while (i > 0 && isdigit (encoded[i]))
970 i--;
971 if (i >= 0 && encoded[i] == '.')
972 *len = i;
973 else if (i >= 0 && encoded[i] == '$')
974 *len = i;
975 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
976 *len = i - 2;
977 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
978 *len = i - 1;
979 }
980}
981
982/* Remove the suffix introduced by the compiler for protected object
983 subprograms. */
984
985static void
986ada_remove_po_subprogram_suffix (const char *encoded, int *len)
987{
988 /* Remove trailing N. */
989
990 /* Protected entry subprograms are broken into two
991 separate subprograms: The first one is unprotected, and has
992 a 'N' suffix; the second is the protected version, and has
0963b4bd 993 the 'P' suffix. The second calls the first one after handling
29480c32
JB
994 the protection. Since the P subprograms are internally generated,
995 we leave these names undecoded, giving the user a clue that this
996 entity is internal. */
997
998 if (*len > 1
999 && encoded[*len - 1] == 'N'
1000 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1001 *len = *len - 1;
1002}
1003
69fadcdf
JB
1004/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1005
1006static void
1007ada_remove_Xbn_suffix (const char *encoded, int *len)
1008{
1009 int i = *len - 1;
1010
1011 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1012 i--;
1013
1014 if (encoded[i] != 'X')
1015 return;
1016
1017 if (i == 0)
1018 return;
1019
1020 if (isalnum (encoded[i-1]))
1021 *len = i;
1022}
1023
29480c32
JB
1024/* If ENCODED follows the GNAT entity encoding conventions, then return
1025 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1026 replaced by ENCODED.
14f9c5c9 1027
4c4b4cd2 1028 The resulting string is valid until the next call of ada_decode.
29480c32 1029 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1030 is returned. */
1031
1032const char *
1033ada_decode (const char *encoded)
14f9c5c9
AS
1034{
1035 int i, j;
1036 int len0;
d2e4a39e 1037 const char *p;
4c4b4cd2 1038 char *decoded;
14f9c5c9 1039 int at_start_name;
4c4b4cd2
PH
1040 static char *decoding_buffer = NULL;
1041 static size_t decoding_buffer_size = 0;
d2e4a39e 1042
29480c32
JB
1043 /* The name of the Ada main procedure starts with "_ada_".
1044 This prefix is not part of the decoded name, so skip this part
1045 if we see this prefix. */
4c4b4cd2
PH
1046 if (strncmp (encoded, "_ada_", 5) == 0)
1047 encoded += 5;
14f9c5c9 1048
29480c32
JB
1049 /* If the name starts with '_', then it is not a properly encoded
1050 name, so do not attempt to decode it. Similarly, if the name
1051 starts with '<', the name should not be decoded. */
4c4b4cd2 1052 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1053 goto Suppress;
1054
4c4b4cd2 1055 len0 = strlen (encoded);
4c4b4cd2 1056
29480c32
JB
1057 ada_remove_trailing_digits (encoded, &len0);
1058 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1059
4c4b4cd2
PH
1060 /* Remove the ___X.* suffix if present. Do not forget to verify that
1061 the suffix is located before the current "end" of ENCODED. We want
1062 to avoid re-matching parts of ENCODED that have previously been
1063 marked as discarded (by decrementing LEN0). */
1064 p = strstr (encoded, "___");
1065 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1066 {
1067 if (p[3] == 'X')
4c4b4cd2 1068 len0 = p - encoded;
14f9c5c9 1069 else
4c4b4cd2 1070 goto Suppress;
14f9c5c9 1071 }
4c4b4cd2 1072
29480c32
JB
1073 /* Remove any trailing TKB suffix. It tells us that this symbol
1074 is for the body of a task, but that information does not actually
1075 appear in the decoded name. */
1076
4c4b4cd2 1077 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1078 len0 -= 3;
76a01679 1079
a10967fa
JB
1080 /* Remove any trailing TB suffix. The TB suffix is slightly different
1081 from the TKB suffix because it is used for non-anonymous task
1082 bodies. */
1083
1084 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1085 len0 -= 2;
1086
29480c32
JB
1087 /* Remove trailing "B" suffixes. */
1088 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1089
4c4b4cd2 1090 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1091 len0 -= 1;
1092
4c4b4cd2 1093 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1094
4c4b4cd2
PH
1095 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1096 decoded = decoding_buffer;
14f9c5c9 1097
29480c32
JB
1098 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1099
4c4b4cd2 1100 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1101 {
4c4b4cd2
PH
1102 i = len0 - 2;
1103 while ((i >= 0 && isdigit (encoded[i]))
1104 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1105 i -= 1;
1106 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1107 len0 = i - 1;
1108 else if (encoded[i] == '$')
1109 len0 = i;
d2e4a39e 1110 }
14f9c5c9 1111
29480c32
JB
1112 /* The first few characters that are not alphabetic are not part
1113 of any encoding we use, so we can copy them over verbatim. */
1114
4c4b4cd2
PH
1115 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1116 decoded[j] = encoded[i];
14f9c5c9
AS
1117
1118 at_start_name = 1;
1119 while (i < len0)
1120 {
29480c32 1121 /* Is this a symbol function? */
4c4b4cd2
PH
1122 if (at_start_name && encoded[i] == 'O')
1123 {
1124 int k;
5b4ee69b 1125
4c4b4cd2
PH
1126 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1127 {
1128 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1129 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1130 op_len - 1) == 0)
1131 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1132 {
1133 strcpy (decoded + j, ada_opname_table[k].decoded);
1134 at_start_name = 0;
1135 i += op_len;
1136 j += strlen (ada_opname_table[k].decoded);
1137 break;
1138 }
1139 }
1140 if (ada_opname_table[k].encoded != NULL)
1141 continue;
1142 }
14f9c5c9
AS
1143 at_start_name = 0;
1144
529cad9c
PH
1145 /* Replace "TK__" with "__", which will eventually be translated
1146 into "." (just below). */
1147
4c4b4cd2
PH
1148 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1149 i += 2;
529cad9c 1150
29480c32
JB
1151 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1152 be translated into "." (just below). These are internal names
1153 generated for anonymous blocks inside which our symbol is nested. */
1154
1155 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1156 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1157 && isdigit (encoded [i+4]))
1158 {
1159 int k = i + 5;
1160
1161 while (k < len0 && isdigit (encoded[k]))
1162 k++; /* Skip any extra digit. */
1163
1164 /* Double-check that the "__B_{DIGITS}+" sequence we found
1165 is indeed followed by "__". */
1166 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1167 i = k;
1168 }
1169
529cad9c
PH
1170 /* Remove _E{DIGITS}+[sb] */
1171
1172 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1173 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1174 one implements the actual entry code, and has a suffix following
1175 the convention above; the second one implements the barrier and
1176 uses the same convention as above, except that the 'E' is replaced
1177 by a 'B'.
1178
1179 Just as above, we do not decode the name of barrier functions
1180 to give the user a clue that the code he is debugging has been
1181 internally generated. */
1182
1183 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1184 && isdigit (encoded[i+2]))
1185 {
1186 int k = i + 3;
1187
1188 while (k < len0 && isdigit (encoded[k]))
1189 k++;
1190
1191 if (k < len0
1192 && (encoded[k] == 'b' || encoded[k] == 's'))
1193 {
1194 k++;
1195 /* Just as an extra precaution, make sure that if this
1196 suffix is followed by anything else, it is a '_'.
1197 Otherwise, we matched this sequence by accident. */
1198 if (k == len0
1199 || (k < len0 && encoded[k] == '_'))
1200 i = k;
1201 }
1202 }
1203
1204 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1205 the GNAT front-end in protected object subprograms. */
1206
1207 if (i < len0 + 3
1208 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1209 {
1210 /* Backtrack a bit up until we reach either the begining of
1211 the encoded name, or "__". Make sure that we only find
1212 digits or lowercase characters. */
1213 const char *ptr = encoded + i - 1;
1214
1215 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1216 ptr--;
1217 if (ptr < encoded
1218 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1219 i++;
1220 }
1221
4c4b4cd2
PH
1222 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1223 {
29480c32
JB
1224 /* This is a X[bn]* sequence not separated from the previous
1225 part of the name with a non-alpha-numeric character (in other
1226 words, immediately following an alpha-numeric character), then
1227 verify that it is placed at the end of the encoded name. If
1228 not, then the encoding is not valid and we should abort the
1229 decoding. Otherwise, just skip it, it is used in body-nested
1230 package names. */
4c4b4cd2
PH
1231 do
1232 i += 1;
1233 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1234 if (i < len0)
1235 goto Suppress;
1236 }
cdc7bb92 1237 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1238 {
29480c32 1239 /* Replace '__' by '.'. */
4c4b4cd2
PH
1240 decoded[j] = '.';
1241 at_start_name = 1;
1242 i += 2;
1243 j += 1;
1244 }
14f9c5c9 1245 else
4c4b4cd2 1246 {
29480c32
JB
1247 /* It's a character part of the decoded name, so just copy it
1248 over. */
4c4b4cd2
PH
1249 decoded[j] = encoded[i];
1250 i += 1;
1251 j += 1;
1252 }
14f9c5c9 1253 }
4c4b4cd2 1254 decoded[j] = '\000';
14f9c5c9 1255
29480c32
JB
1256 /* Decoded names should never contain any uppercase character.
1257 Double-check this, and abort the decoding if we find one. */
1258
4c4b4cd2
PH
1259 for (i = 0; decoded[i] != '\0'; i += 1)
1260 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1261 goto Suppress;
1262
4c4b4cd2
PH
1263 if (strcmp (decoded, encoded) == 0)
1264 return encoded;
1265 else
1266 return decoded;
14f9c5c9
AS
1267
1268Suppress:
4c4b4cd2
PH
1269 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1270 decoded = decoding_buffer;
1271 if (encoded[0] == '<')
1272 strcpy (decoded, encoded);
14f9c5c9 1273 else
88c15c34 1274 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1275 return decoded;
1276
1277}
1278
1279/* Table for keeping permanent unique copies of decoded names. Once
1280 allocated, names in this table are never released. While this is a
1281 storage leak, it should not be significant unless there are massive
1282 changes in the set of decoded names in successive versions of a
1283 symbol table loaded during a single session. */
1284static struct htab *decoded_names_store;
1285
1286/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1287 in the language-specific part of GSYMBOL, if it has not been
1288 previously computed. Tries to save the decoded name in the same
1289 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1290 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1291 GSYMBOL).
4c4b4cd2
PH
1292 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1293 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1294 when a decoded name is cached in it. */
4c4b4cd2 1295
76a01679
JB
1296char *
1297ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1298{
76a01679 1299 char **resultp =
afa16725 1300 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1301
4c4b4cd2
PH
1302 if (*resultp == NULL)
1303 {
1304 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1305
714835d5 1306 if (gsymbol->obj_section != NULL)
76a01679 1307 {
714835d5 1308 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1309
714835d5
UW
1310 *resultp = obsavestring (decoded, strlen (decoded),
1311 &objf->objfile_obstack);
76a01679 1312 }
4c4b4cd2 1313 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1314 case, we put the result on the heap. Since we only decode
1315 when needed, we hope this usually does not cause a
1316 significant memory leak (FIXME). */
4c4b4cd2 1317 if (*resultp == NULL)
76a01679
JB
1318 {
1319 char **slot = (char **) htab_find_slot (decoded_names_store,
1320 decoded, INSERT);
5b4ee69b 1321
76a01679
JB
1322 if (*slot == NULL)
1323 *slot = xstrdup (decoded);
1324 *resultp = *slot;
1325 }
4c4b4cd2 1326 }
14f9c5c9 1327
4c4b4cd2
PH
1328 return *resultp;
1329}
76a01679 1330
2c0b251b 1331static char *
76a01679 1332ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1333{
1334 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1335}
1336
1337/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1338 suffixes that encode debugging information or leading _ada_ on
1339 SYM_NAME (see is_name_suffix commentary for the debugging
1340 information that is ignored). If WILD, then NAME need only match a
1341 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1342 either argument is NULL. */
14f9c5c9 1343
2c0b251b 1344static int
40658b94 1345match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1346{
1347 if (sym_name == NULL || name == NULL)
1348 return 0;
1349 else if (wild)
73589123 1350 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1351 else
1352 {
1353 int len_name = strlen (name);
5b4ee69b 1354
4c4b4cd2
PH
1355 return (strncmp (sym_name, name, len_name) == 0
1356 && is_name_suffix (sym_name + len_name))
1357 || (strncmp (sym_name, "_ada_", 5) == 0
1358 && strncmp (sym_name + 5, name, len_name) == 0
1359 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1360 }
14f9c5c9 1361}
14f9c5c9 1362\f
d2e4a39e 1363
4c4b4cd2 1364 /* Arrays */
14f9c5c9 1365
28c85d6c
JB
1366/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1367 generated by the GNAT compiler to describe the index type used
1368 for each dimension of an array, check whether it follows the latest
1369 known encoding. If not, fix it up to conform to the latest encoding.
1370 Otherwise, do nothing. This function also does nothing if
1371 INDEX_DESC_TYPE is NULL.
1372
1373 The GNAT encoding used to describle the array index type evolved a bit.
1374 Initially, the information would be provided through the name of each
1375 field of the structure type only, while the type of these fields was
1376 described as unspecified and irrelevant. The debugger was then expected
1377 to perform a global type lookup using the name of that field in order
1378 to get access to the full index type description. Because these global
1379 lookups can be very expensive, the encoding was later enhanced to make
1380 the global lookup unnecessary by defining the field type as being
1381 the full index type description.
1382
1383 The purpose of this routine is to allow us to support older versions
1384 of the compiler by detecting the use of the older encoding, and by
1385 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1386 we essentially replace each field's meaningless type by the associated
1387 index subtype). */
1388
1389void
1390ada_fixup_array_indexes_type (struct type *index_desc_type)
1391{
1392 int i;
1393
1394 if (index_desc_type == NULL)
1395 return;
1396 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1397
1398 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1399 to check one field only, no need to check them all). If not, return
1400 now.
1401
1402 If our INDEX_DESC_TYPE was generated using the older encoding,
1403 the field type should be a meaningless integer type whose name
1404 is not equal to the field name. */
1405 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1406 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1407 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1408 return;
1409
1410 /* Fixup each field of INDEX_DESC_TYPE. */
1411 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1412 {
0d5cff50 1413 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1414 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1415
1416 if (raw_type)
1417 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1418 }
1419}
1420
4c4b4cd2 1421/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1422
d2e4a39e
AS
1423static char *bound_name[] = {
1424 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1425 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1426};
1427
1428/* Maximum number of array dimensions we are prepared to handle. */
1429
4c4b4cd2 1430#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1431
14f9c5c9 1432
4c4b4cd2
PH
1433/* The desc_* routines return primitive portions of array descriptors
1434 (fat pointers). */
14f9c5c9
AS
1435
1436/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1437 level of indirection, if needed. */
1438
d2e4a39e
AS
1439static struct type *
1440desc_base_type (struct type *type)
14f9c5c9
AS
1441{
1442 if (type == NULL)
1443 return NULL;
61ee279c 1444 type = ada_check_typedef (type);
720d1a40
JB
1445 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1446 type = ada_typedef_target_type (type);
1447
1265e4aa
JB
1448 if (type != NULL
1449 && (TYPE_CODE (type) == TYPE_CODE_PTR
1450 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1451 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1452 else
1453 return type;
1454}
1455
4c4b4cd2
PH
1456/* True iff TYPE indicates a "thin" array pointer type. */
1457
14f9c5c9 1458static int
d2e4a39e 1459is_thin_pntr (struct type *type)
14f9c5c9 1460{
d2e4a39e 1461 return
14f9c5c9
AS
1462 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1463 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1464}
1465
4c4b4cd2
PH
1466/* The descriptor type for thin pointer type TYPE. */
1467
d2e4a39e
AS
1468static struct type *
1469thin_descriptor_type (struct type *type)
14f9c5c9 1470{
d2e4a39e 1471 struct type *base_type = desc_base_type (type);
5b4ee69b 1472
14f9c5c9
AS
1473 if (base_type == NULL)
1474 return NULL;
1475 if (is_suffix (ada_type_name (base_type), "___XVE"))
1476 return base_type;
d2e4a39e 1477 else
14f9c5c9 1478 {
d2e4a39e 1479 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1480
14f9c5c9 1481 if (alt_type == NULL)
4c4b4cd2 1482 return base_type;
14f9c5c9 1483 else
4c4b4cd2 1484 return alt_type;
14f9c5c9
AS
1485 }
1486}
1487
4c4b4cd2
PH
1488/* A pointer to the array data for thin-pointer value VAL. */
1489
d2e4a39e
AS
1490static struct value *
1491thin_data_pntr (struct value *val)
14f9c5c9 1492{
828292f2 1493 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1494 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1495
556bdfd4
UW
1496 data_type = lookup_pointer_type (data_type);
1497
14f9c5c9 1498 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1499 return value_cast (data_type, value_copy (val));
d2e4a39e 1500 else
42ae5230 1501 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1502}
1503
4c4b4cd2
PH
1504/* True iff TYPE indicates a "thick" array pointer type. */
1505
14f9c5c9 1506static int
d2e4a39e 1507is_thick_pntr (struct type *type)
14f9c5c9
AS
1508{
1509 type = desc_base_type (type);
1510 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1511 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1512}
1513
4c4b4cd2
PH
1514/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1515 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1516
d2e4a39e
AS
1517static struct type *
1518desc_bounds_type (struct type *type)
14f9c5c9 1519{
d2e4a39e 1520 struct type *r;
14f9c5c9
AS
1521
1522 type = desc_base_type (type);
1523
1524 if (type == NULL)
1525 return NULL;
1526 else if (is_thin_pntr (type))
1527 {
1528 type = thin_descriptor_type (type);
1529 if (type == NULL)
4c4b4cd2 1530 return NULL;
14f9c5c9
AS
1531 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1532 if (r != NULL)
61ee279c 1533 return ada_check_typedef (r);
14f9c5c9
AS
1534 }
1535 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1536 {
1537 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1538 if (r != NULL)
61ee279c 1539 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1540 }
1541 return NULL;
1542}
1543
1544/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1545 one, a pointer to its bounds data. Otherwise NULL. */
1546
d2e4a39e
AS
1547static struct value *
1548desc_bounds (struct value *arr)
14f9c5c9 1549{
df407dfe 1550 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1551
d2e4a39e 1552 if (is_thin_pntr (type))
14f9c5c9 1553 {
d2e4a39e 1554 struct type *bounds_type =
4c4b4cd2 1555 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1556 LONGEST addr;
1557
4cdfadb1 1558 if (bounds_type == NULL)
323e0a4a 1559 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1560
1561 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1562 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1563 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1564 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1565 addr = value_as_long (arr);
d2e4a39e 1566 else
42ae5230 1567 addr = value_address (arr);
14f9c5c9 1568
d2e4a39e 1569 return
4c4b4cd2
PH
1570 value_from_longest (lookup_pointer_type (bounds_type),
1571 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1572 }
1573
1574 else if (is_thick_pntr (type))
05e522ef
JB
1575 {
1576 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1577 _("Bad GNAT array descriptor"));
1578 struct type *p_bounds_type = value_type (p_bounds);
1579
1580 if (p_bounds_type
1581 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1582 {
1583 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1584
1585 if (TYPE_STUB (target_type))
1586 p_bounds = value_cast (lookup_pointer_type
1587 (ada_check_typedef (target_type)),
1588 p_bounds);
1589 }
1590 else
1591 error (_("Bad GNAT array descriptor"));
1592
1593 return p_bounds;
1594 }
14f9c5c9
AS
1595 else
1596 return NULL;
1597}
1598
4c4b4cd2
PH
1599/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1600 position of the field containing the address of the bounds data. */
1601
14f9c5c9 1602static int
d2e4a39e 1603fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1604{
1605 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1606}
1607
1608/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1609 size of the field containing the address of the bounds data. */
1610
14f9c5c9 1611static int
d2e4a39e 1612fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1613{
1614 type = desc_base_type (type);
1615
d2e4a39e 1616 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1617 return TYPE_FIELD_BITSIZE (type, 1);
1618 else
61ee279c 1619 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1620}
1621
4c4b4cd2 1622/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1623 pointer to one, the type of its array data (a array-with-no-bounds type);
1624 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1625 data. */
4c4b4cd2 1626
d2e4a39e 1627static struct type *
556bdfd4 1628desc_data_target_type (struct type *type)
14f9c5c9
AS
1629{
1630 type = desc_base_type (type);
1631
4c4b4cd2 1632 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1633 if (is_thin_pntr (type))
556bdfd4 1634 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1635 else if (is_thick_pntr (type))
556bdfd4
UW
1636 {
1637 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1638
1639 if (data_type
1640 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1641 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1642 }
1643
1644 return NULL;
14f9c5c9
AS
1645}
1646
1647/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1648 its array data. */
4c4b4cd2 1649
d2e4a39e
AS
1650static struct value *
1651desc_data (struct value *arr)
14f9c5c9 1652{
df407dfe 1653 struct type *type = value_type (arr);
5b4ee69b 1654
14f9c5c9
AS
1655 if (is_thin_pntr (type))
1656 return thin_data_pntr (arr);
1657 else if (is_thick_pntr (type))
d2e4a39e 1658 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1659 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1660 else
1661 return NULL;
1662}
1663
1664
1665/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1666 position of the field containing the address of the data. */
1667
14f9c5c9 1668static int
d2e4a39e 1669fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1670{
1671 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1672}
1673
1674/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1675 size of the field containing the address of the data. */
1676
14f9c5c9 1677static int
d2e4a39e 1678fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1679{
1680 type = desc_base_type (type);
1681
1682 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1683 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1684 else
14f9c5c9
AS
1685 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1686}
1687
4c4b4cd2 1688/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1689 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1690 bound, if WHICH is 1. The first bound is I=1. */
1691
d2e4a39e
AS
1692static struct value *
1693desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1694{
d2e4a39e 1695 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1696 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1697}
1698
1699/* If BOUNDS is an array-bounds structure type, return the bit position
1700 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1701 bound, if WHICH is 1. The first bound is I=1. */
1702
14f9c5c9 1703static int
d2e4a39e 1704desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1705{
d2e4a39e 1706 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1707}
1708
1709/* If BOUNDS is an array-bounds structure type, return the bit field size
1710 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1711 bound, if WHICH is 1. The first bound is I=1. */
1712
76a01679 1713static int
d2e4a39e 1714desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1715{
1716 type = desc_base_type (type);
1717
d2e4a39e
AS
1718 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1719 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1720 else
1721 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1722}
1723
1724/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1725 Ith bound (numbering from 1). Otherwise, NULL. */
1726
d2e4a39e
AS
1727static struct type *
1728desc_index_type (struct type *type, int i)
14f9c5c9
AS
1729{
1730 type = desc_base_type (type);
1731
1732 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1733 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1734 else
14f9c5c9
AS
1735 return NULL;
1736}
1737
4c4b4cd2
PH
1738/* The number of index positions in the array-bounds type TYPE.
1739 Return 0 if TYPE is NULL. */
1740
14f9c5c9 1741static int
d2e4a39e 1742desc_arity (struct type *type)
14f9c5c9
AS
1743{
1744 type = desc_base_type (type);
1745
1746 if (type != NULL)
1747 return TYPE_NFIELDS (type) / 2;
1748 return 0;
1749}
1750
4c4b4cd2
PH
1751/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1752 an array descriptor type (representing an unconstrained array
1753 type). */
1754
76a01679
JB
1755static int
1756ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1757{
1758 if (type == NULL)
1759 return 0;
61ee279c 1760 type = ada_check_typedef (type);
4c4b4cd2 1761 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1762 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1763}
1764
52ce6436 1765/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1766 * to one. */
52ce6436 1767
2c0b251b 1768static int
52ce6436
PH
1769ada_is_array_type (struct type *type)
1770{
1771 while (type != NULL
1772 && (TYPE_CODE (type) == TYPE_CODE_PTR
1773 || TYPE_CODE (type) == TYPE_CODE_REF))
1774 type = TYPE_TARGET_TYPE (type);
1775 return ada_is_direct_array_type (type);
1776}
1777
4c4b4cd2 1778/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1779
14f9c5c9 1780int
4c4b4cd2 1781ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1782{
1783 if (type == NULL)
1784 return 0;
61ee279c 1785 type = ada_check_typedef (type);
14f9c5c9 1786 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1787 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1788 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1789 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1790}
1791
4c4b4cd2
PH
1792/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1793
14f9c5c9 1794int
4c4b4cd2 1795ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1796{
556bdfd4 1797 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1798
1799 if (type == NULL)
1800 return 0;
61ee279c 1801 type = ada_check_typedef (type);
556bdfd4
UW
1802 return (data_type != NULL
1803 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1804 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1805}
1806
1807/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1808 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1809 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1810 is still needed. */
1811
14f9c5c9 1812int
ebf56fd3 1813ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1814{
d2e4a39e 1815 return
14f9c5c9
AS
1816 type != NULL
1817 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1818 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1819 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1820 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1821}
1822
1823
4c4b4cd2 1824/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1825 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1826 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1827 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1828 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1829 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1830 a descriptor. */
d2e4a39e
AS
1831struct type *
1832ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1833{
ad82864c
JB
1834 if (ada_is_constrained_packed_array_type (value_type (arr)))
1835 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1836
df407dfe
AC
1837 if (!ada_is_array_descriptor_type (value_type (arr)))
1838 return value_type (arr);
d2e4a39e
AS
1839
1840 if (!bounds)
ad82864c
JB
1841 {
1842 struct type *array_type =
1843 ada_check_typedef (desc_data_target_type (value_type (arr)));
1844
1845 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1846 TYPE_FIELD_BITSIZE (array_type, 0) =
1847 decode_packed_array_bitsize (value_type (arr));
1848
1849 return array_type;
1850 }
14f9c5c9
AS
1851 else
1852 {
d2e4a39e 1853 struct type *elt_type;
14f9c5c9 1854 int arity;
d2e4a39e 1855 struct value *descriptor;
14f9c5c9 1856
df407dfe
AC
1857 elt_type = ada_array_element_type (value_type (arr), -1);
1858 arity = ada_array_arity (value_type (arr));
14f9c5c9 1859
d2e4a39e 1860 if (elt_type == NULL || arity == 0)
df407dfe 1861 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1862
1863 descriptor = desc_bounds (arr);
d2e4a39e 1864 if (value_as_long (descriptor) == 0)
4c4b4cd2 1865 return NULL;
d2e4a39e 1866 while (arity > 0)
4c4b4cd2 1867 {
e9bb382b
UW
1868 struct type *range_type = alloc_type_copy (value_type (arr));
1869 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1870 struct value *low = desc_one_bound (descriptor, arity, 0);
1871 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1872
5b4ee69b 1873 arity -= 1;
df407dfe 1874 create_range_type (range_type, value_type (low),
529cad9c
PH
1875 longest_to_int (value_as_long (low)),
1876 longest_to_int (value_as_long (high)));
4c4b4cd2 1877 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1878
1879 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1880 {
1881 /* We need to store the element packed bitsize, as well as
1882 recompute the array size, because it was previously
1883 computed based on the unpacked element size. */
1884 LONGEST lo = value_as_long (low);
1885 LONGEST hi = value_as_long (high);
1886
1887 TYPE_FIELD_BITSIZE (elt_type, 0) =
1888 decode_packed_array_bitsize (value_type (arr));
1889 /* If the array has no element, then the size is already
1890 zero, and does not need to be recomputed. */
1891 if (lo < hi)
1892 {
1893 int array_bitsize =
1894 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1895
1896 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1897 }
1898 }
4c4b4cd2 1899 }
14f9c5c9
AS
1900
1901 return lookup_pointer_type (elt_type);
1902 }
1903}
1904
1905/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1906 Otherwise, returns either a standard GDB array with bounds set
1907 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1908 GDB array. Returns NULL if ARR is a null fat pointer. */
1909
d2e4a39e
AS
1910struct value *
1911ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1912{
df407dfe 1913 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1914 {
d2e4a39e 1915 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1916
14f9c5c9 1917 if (arrType == NULL)
4c4b4cd2 1918 return NULL;
14f9c5c9
AS
1919 return value_cast (arrType, value_copy (desc_data (arr)));
1920 }
ad82864c
JB
1921 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1922 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1923 else
1924 return arr;
1925}
1926
1927/* If ARR does not represent an array, returns ARR unchanged.
1928 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1929 be ARR itself if it already is in the proper form). */
1930
720d1a40 1931struct value *
d2e4a39e 1932ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1933{
df407dfe 1934 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1935 {
d2e4a39e 1936 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1937
14f9c5c9 1938 if (arrVal == NULL)
323e0a4a 1939 error (_("Bounds unavailable for null array pointer."));
529cad9c 1940 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1941 return value_ind (arrVal);
1942 }
ad82864c
JB
1943 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1944 return decode_constrained_packed_array (arr);
d2e4a39e 1945 else
14f9c5c9
AS
1946 return arr;
1947}
1948
1949/* If TYPE represents a GNAT array type, return it translated to an
1950 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1951 packing). For other types, is the identity. */
1952
d2e4a39e
AS
1953struct type *
1954ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1955{
ad82864c
JB
1956 if (ada_is_constrained_packed_array_type (type))
1957 return decode_constrained_packed_array_type (type);
17280b9f
UW
1958
1959 if (ada_is_array_descriptor_type (type))
556bdfd4 1960 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1961
1962 return type;
14f9c5c9
AS
1963}
1964
4c4b4cd2
PH
1965/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1966
ad82864c
JB
1967static int
1968ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1969{
1970 if (type == NULL)
1971 return 0;
4c4b4cd2 1972 type = desc_base_type (type);
61ee279c 1973 type = ada_check_typedef (type);
d2e4a39e 1974 return
14f9c5c9
AS
1975 ada_type_name (type) != NULL
1976 && strstr (ada_type_name (type), "___XP") != NULL;
1977}
1978
ad82864c
JB
1979/* Non-zero iff TYPE represents a standard GNAT constrained
1980 packed-array type. */
1981
1982int
1983ada_is_constrained_packed_array_type (struct type *type)
1984{
1985 return ada_is_packed_array_type (type)
1986 && !ada_is_array_descriptor_type (type);
1987}
1988
1989/* Non-zero iff TYPE represents an array descriptor for a
1990 unconstrained packed-array type. */
1991
1992static int
1993ada_is_unconstrained_packed_array_type (struct type *type)
1994{
1995 return ada_is_packed_array_type (type)
1996 && ada_is_array_descriptor_type (type);
1997}
1998
1999/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2000 return the size of its elements in bits. */
2001
2002static long
2003decode_packed_array_bitsize (struct type *type)
2004{
0d5cff50
DE
2005 const char *raw_name;
2006 const char *tail;
ad82864c
JB
2007 long bits;
2008
720d1a40
JB
2009 /* Access to arrays implemented as fat pointers are encoded as a typedef
2010 of the fat pointer type. We need the name of the fat pointer type
2011 to do the decoding, so strip the typedef layer. */
2012 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2013 type = ada_typedef_target_type (type);
2014
2015 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2016 if (!raw_name)
2017 raw_name = ada_type_name (desc_base_type (type));
2018
2019 if (!raw_name)
2020 return 0;
2021
2022 tail = strstr (raw_name, "___XP");
720d1a40 2023 gdb_assert (tail != NULL);
ad82864c
JB
2024
2025 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2026 {
2027 lim_warning
2028 (_("could not understand bit size information on packed array"));
2029 return 0;
2030 }
2031
2032 return bits;
2033}
2034
14f9c5c9
AS
2035/* Given that TYPE is a standard GDB array type with all bounds filled
2036 in, and that the element size of its ultimate scalar constituents
2037 (that is, either its elements, or, if it is an array of arrays, its
2038 elements' elements, etc.) is *ELT_BITS, return an identical type,
2039 but with the bit sizes of its elements (and those of any
2040 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2041 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2042 in bits. */
2043
d2e4a39e 2044static struct type *
ad82864c 2045constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2046{
d2e4a39e
AS
2047 struct type *new_elt_type;
2048 struct type *new_type;
99b1c762
JB
2049 struct type *index_type_desc;
2050 struct type *index_type;
14f9c5c9
AS
2051 LONGEST low_bound, high_bound;
2052
61ee279c 2053 type = ada_check_typedef (type);
14f9c5c9
AS
2054 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2055 return type;
2056
99b1c762
JB
2057 index_type_desc = ada_find_parallel_type (type, "___XA");
2058 if (index_type_desc)
2059 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2060 NULL);
2061 else
2062 index_type = TYPE_INDEX_TYPE (type);
2063
e9bb382b 2064 new_type = alloc_type_copy (type);
ad82864c
JB
2065 new_elt_type =
2066 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2067 elt_bits);
99b1c762 2068 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2069 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2070 TYPE_NAME (new_type) = ada_type_name (type);
2071
99b1c762 2072 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2073 low_bound = high_bound = 0;
2074 if (high_bound < low_bound)
2075 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2076 else
14f9c5c9
AS
2077 {
2078 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2079 TYPE_LENGTH (new_type) =
4c4b4cd2 2080 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2081 }
2082
876cecd0 2083 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2084 return new_type;
2085}
2086
ad82864c
JB
2087/* The array type encoded by TYPE, where
2088 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2089
d2e4a39e 2090static struct type *
ad82864c 2091decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2092{
0d5cff50 2093 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2094 char *name;
0d5cff50 2095 const char *tail;
d2e4a39e 2096 struct type *shadow_type;
14f9c5c9 2097 long bits;
14f9c5c9 2098
727e3d2e
JB
2099 if (!raw_name)
2100 raw_name = ada_type_name (desc_base_type (type));
2101
2102 if (!raw_name)
2103 return NULL;
2104
2105 name = (char *) alloca (strlen (raw_name) + 1);
2106 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2107 type = desc_base_type (type);
2108
14f9c5c9
AS
2109 memcpy (name, raw_name, tail - raw_name);
2110 name[tail - raw_name] = '\000';
2111
b4ba55a1
JB
2112 shadow_type = ada_find_parallel_type_with_name (type, name);
2113
2114 if (shadow_type == NULL)
14f9c5c9 2115 {
323e0a4a 2116 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2117 return NULL;
2118 }
cb249c71 2119 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2120
2121 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2122 {
0963b4bd
MS
2123 lim_warning (_("could not understand bounds "
2124 "information on packed array"));
14f9c5c9
AS
2125 return NULL;
2126 }
d2e4a39e 2127
ad82864c
JB
2128 bits = decode_packed_array_bitsize (type);
2129 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2130}
2131
ad82864c
JB
2132/* Given that ARR is a struct value *indicating a GNAT constrained packed
2133 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2134 standard GDB array type except that the BITSIZEs of the array
2135 target types are set to the number of bits in each element, and the
4c4b4cd2 2136 type length is set appropriately. */
14f9c5c9 2137
d2e4a39e 2138static struct value *
ad82864c 2139decode_constrained_packed_array (struct value *arr)
14f9c5c9 2140{
4c4b4cd2 2141 struct type *type;
14f9c5c9 2142
4c4b4cd2 2143 arr = ada_coerce_ref (arr);
284614f0
JB
2144
2145 /* If our value is a pointer, then dererence it. Make sure that
2146 this operation does not cause the target type to be fixed, as
2147 this would indirectly cause this array to be decoded. The rest
2148 of the routine assumes that the array hasn't been decoded yet,
2149 so we use the basic "value_ind" routine to perform the dereferencing,
2150 as opposed to using "ada_value_ind". */
828292f2 2151 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2152 arr = value_ind (arr);
4c4b4cd2 2153
ad82864c 2154 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2155 if (type == NULL)
2156 {
323e0a4a 2157 error (_("can't unpack array"));
14f9c5c9
AS
2158 return NULL;
2159 }
61ee279c 2160
50810684 2161 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2162 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2163 {
2164 /* This is a (right-justified) modular type representing a packed
2165 array with no wrapper. In order to interpret the value through
2166 the (left-justified) packed array type we just built, we must
2167 first left-justify it. */
2168 int bit_size, bit_pos;
2169 ULONGEST mod;
2170
df407dfe 2171 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2172 bit_size = 0;
2173 while (mod > 0)
2174 {
2175 bit_size += 1;
2176 mod >>= 1;
2177 }
df407dfe 2178 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2179 arr = ada_value_primitive_packed_val (arr, NULL,
2180 bit_pos / HOST_CHAR_BIT,
2181 bit_pos % HOST_CHAR_BIT,
2182 bit_size,
2183 type);
2184 }
2185
4c4b4cd2 2186 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2187}
2188
2189
2190/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2191 given in IND. ARR must be a simple array. */
14f9c5c9 2192
d2e4a39e
AS
2193static struct value *
2194value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2195{
2196 int i;
2197 int bits, elt_off, bit_off;
2198 long elt_total_bit_offset;
d2e4a39e
AS
2199 struct type *elt_type;
2200 struct value *v;
14f9c5c9
AS
2201
2202 bits = 0;
2203 elt_total_bit_offset = 0;
df407dfe 2204 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2205 for (i = 0; i < arity; i += 1)
14f9c5c9 2206 {
d2e4a39e 2207 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2208 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2209 error
0963b4bd
MS
2210 (_("attempt to do packed indexing of "
2211 "something other than a packed array"));
14f9c5c9 2212 else
4c4b4cd2
PH
2213 {
2214 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2215 LONGEST lowerbound, upperbound;
2216 LONGEST idx;
2217
2218 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2219 {
323e0a4a 2220 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2221 lowerbound = upperbound = 0;
2222 }
2223
3cb382c9 2224 idx = pos_atr (ind[i]);
4c4b4cd2 2225 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2226 lim_warning (_("packed array index %ld out of bounds"),
2227 (long) idx);
4c4b4cd2
PH
2228 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2229 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2230 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2231 }
14f9c5c9
AS
2232 }
2233 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2234 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2235
2236 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2237 bits, elt_type);
14f9c5c9
AS
2238 return v;
2239}
2240
4c4b4cd2 2241/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2242
2243static int
d2e4a39e 2244has_negatives (struct type *type)
14f9c5c9 2245{
d2e4a39e
AS
2246 switch (TYPE_CODE (type))
2247 {
2248 default:
2249 return 0;
2250 case TYPE_CODE_INT:
2251 return !TYPE_UNSIGNED (type);
2252 case TYPE_CODE_RANGE:
2253 return TYPE_LOW_BOUND (type) < 0;
2254 }
14f9c5c9 2255}
d2e4a39e 2256
14f9c5c9
AS
2257
2258/* Create a new value of type TYPE from the contents of OBJ starting
2259 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2260 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2261 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2262 VALADDR is ignored unless OBJ is NULL, in which case,
2263 VALADDR+OFFSET must address the start of storage containing the
2264 packed value. The value returned in this case is never an lval.
2265 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2266
d2e4a39e 2267struct value *
fc1a4b47 2268ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2269 long offset, int bit_offset, int bit_size,
4c4b4cd2 2270 struct type *type)
14f9c5c9 2271{
d2e4a39e 2272 struct value *v;
4c4b4cd2
PH
2273 int src, /* Index into the source area */
2274 targ, /* Index into the target area */
2275 srcBitsLeft, /* Number of source bits left to move */
2276 nsrc, ntarg, /* Number of source and target bytes */
2277 unusedLS, /* Number of bits in next significant
2278 byte of source that are unused */
2279 accumSize; /* Number of meaningful bits in accum */
2280 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2281 unsigned char *unpacked;
4c4b4cd2 2282 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2283 unsigned char sign;
2284 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2285 /* Transmit bytes from least to most significant; delta is the direction
2286 the indices move. */
50810684 2287 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2288
61ee279c 2289 type = ada_check_typedef (type);
14f9c5c9
AS
2290
2291 if (obj == NULL)
2292 {
2293 v = allocate_value (type);
d2e4a39e 2294 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2295 }
9214ee5f 2296 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2297 {
2298 v = value_at (type,
42ae5230 2299 value_address (obj) + offset);
d2e4a39e 2300 bytes = (unsigned char *) alloca (len);
42ae5230 2301 read_memory (value_address (v), bytes, len);
14f9c5c9 2302 }
d2e4a39e 2303 else
14f9c5c9
AS
2304 {
2305 v = allocate_value (type);
0fd88904 2306 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2307 }
d2e4a39e
AS
2308
2309 if (obj != NULL)
14f9c5c9 2310 {
42ae5230 2311 CORE_ADDR new_addr;
5b4ee69b 2312
74bcbdf3 2313 set_value_component_location (v, obj);
42ae5230 2314 new_addr = value_address (obj) + offset;
9bbda503
AC
2315 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2316 set_value_bitsize (v, bit_size);
df407dfe 2317 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2318 {
42ae5230 2319 ++new_addr;
9bbda503 2320 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2321 }
42ae5230 2322 set_value_address (v, new_addr);
14f9c5c9
AS
2323 }
2324 else
9bbda503 2325 set_value_bitsize (v, bit_size);
0fd88904 2326 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2327
2328 srcBitsLeft = bit_size;
2329 nsrc = len;
2330 ntarg = TYPE_LENGTH (type);
2331 sign = 0;
2332 if (bit_size == 0)
2333 {
2334 memset (unpacked, 0, TYPE_LENGTH (type));
2335 return v;
2336 }
50810684 2337 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2338 {
d2e4a39e 2339 src = len - 1;
1265e4aa
JB
2340 if (has_negatives (type)
2341 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2342 sign = ~0;
d2e4a39e
AS
2343
2344 unusedLS =
4c4b4cd2
PH
2345 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2346 % HOST_CHAR_BIT;
14f9c5c9
AS
2347
2348 switch (TYPE_CODE (type))
4c4b4cd2
PH
2349 {
2350 case TYPE_CODE_ARRAY:
2351 case TYPE_CODE_UNION:
2352 case TYPE_CODE_STRUCT:
2353 /* Non-scalar values must be aligned at a byte boundary... */
2354 accumSize =
2355 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2356 /* ... And are placed at the beginning (most-significant) bytes
2357 of the target. */
529cad9c 2358 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2359 ntarg = targ + 1;
4c4b4cd2
PH
2360 break;
2361 default:
2362 accumSize = 0;
2363 targ = TYPE_LENGTH (type) - 1;
2364 break;
2365 }
14f9c5c9 2366 }
d2e4a39e 2367 else
14f9c5c9
AS
2368 {
2369 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2370
2371 src = targ = 0;
2372 unusedLS = bit_offset;
2373 accumSize = 0;
2374
d2e4a39e 2375 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2376 sign = ~0;
14f9c5c9 2377 }
d2e4a39e 2378
14f9c5c9
AS
2379 accum = 0;
2380 while (nsrc > 0)
2381 {
2382 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2383 part of the value. */
d2e4a39e 2384 unsigned int unusedMSMask =
4c4b4cd2
PH
2385 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2386 1;
2387 /* Sign-extend bits for this byte. */
14f9c5c9 2388 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2389
d2e4a39e 2390 accum |=
4c4b4cd2 2391 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2392 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2393 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2394 {
2395 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2396 accumSize -= HOST_CHAR_BIT;
2397 accum >>= HOST_CHAR_BIT;
2398 ntarg -= 1;
2399 targ += delta;
2400 }
14f9c5c9
AS
2401 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2402 unusedLS = 0;
2403 nsrc -= 1;
2404 src += delta;
2405 }
2406 while (ntarg > 0)
2407 {
2408 accum |= sign << accumSize;
2409 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2410 accumSize -= HOST_CHAR_BIT;
2411 accum >>= HOST_CHAR_BIT;
2412 ntarg -= 1;
2413 targ += delta;
2414 }
2415
2416 return v;
2417}
d2e4a39e 2418
14f9c5c9
AS
2419/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2420 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2421 not overlap. */
14f9c5c9 2422static void
fc1a4b47 2423move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2424 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2425{
2426 unsigned int accum, mask;
2427 int accum_bits, chunk_size;
2428
2429 target += targ_offset / HOST_CHAR_BIT;
2430 targ_offset %= HOST_CHAR_BIT;
2431 source += src_offset / HOST_CHAR_BIT;
2432 src_offset %= HOST_CHAR_BIT;
50810684 2433 if (bits_big_endian_p)
14f9c5c9
AS
2434 {
2435 accum = (unsigned char) *source;
2436 source += 1;
2437 accum_bits = HOST_CHAR_BIT - src_offset;
2438
d2e4a39e 2439 while (n > 0)
4c4b4cd2
PH
2440 {
2441 int unused_right;
5b4ee69b 2442
4c4b4cd2
PH
2443 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2444 accum_bits += HOST_CHAR_BIT;
2445 source += 1;
2446 chunk_size = HOST_CHAR_BIT - targ_offset;
2447 if (chunk_size > n)
2448 chunk_size = n;
2449 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2450 mask = ((1 << chunk_size) - 1) << unused_right;
2451 *target =
2452 (*target & ~mask)
2453 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2454 n -= chunk_size;
2455 accum_bits -= chunk_size;
2456 target += 1;
2457 targ_offset = 0;
2458 }
14f9c5c9
AS
2459 }
2460 else
2461 {
2462 accum = (unsigned char) *source >> src_offset;
2463 source += 1;
2464 accum_bits = HOST_CHAR_BIT - src_offset;
2465
d2e4a39e 2466 while (n > 0)
4c4b4cd2
PH
2467 {
2468 accum = accum + ((unsigned char) *source << accum_bits);
2469 accum_bits += HOST_CHAR_BIT;
2470 source += 1;
2471 chunk_size = HOST_CHAR_BIT - targ_offset;
2472 if (chunk_size > n)
2473 chunk_size = n;
2474 mask = ((1 << chunk_size) - 1) << targ_offset;
2475 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2476 n -= chunk_size;
2477 accum_bits -= chunk_size;
2478 accum >>= chunk_size;
2479 target += 1;
2480 targ_offset = 0;
2481 }
14f9c5c9
AS
2482 }
2483}
2484
14f9c5c9
AS
2485/* Store the contents of FROMVAL into the location of TOVAL.
2486 Return a new value with the location of TOVAL and contents of
2487 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2488 floating-point or non-scalar types. */
14f9c5c9 2489
d2e4a39e
AS
2490static struct value *
2491ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2492{
df407dfe
AC
2493 struct type *type = value_type (toval);
2494 int bits = value_bitsize (toval);
14f9c5c9 2495
52ce6436
PH
2496 toval = ada_coerce_ref (toval);
2497 fromval = ada_coerce_ref (fromval);
2498
2499 if (ada_is_direct_array_type (value_type (toval)))
2500 toval = ada_coerce_to_simple_array (toval);
2501 if (ada_is_direct_array_type (value_type (fromval)))
2502 fromval = ada_coerce_to_simple_array (fromval);
2503
88e3b34b 2504 if (!deprecated_value_modifiable (toval))
323e0a4a 2505 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2506
d2e4a39e 2507 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2508 && bits > 0
d2e4a39e 2509 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2510 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2511 {
df407dfe
AC
2512 int len = (value_bitpos (toval)
2513 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2514 int from_size;
d2e4a39e
AS
2515 char *buffer = (char *) alloca (len);
2516 struct value *val;
42ae5230 2517 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2518
2519 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2520 fromval = value_cast (type, fromval);
14f9c5c9 2521
52ce6436 2522 read_memory (to_addr, buffer, len);
aced2898
PH
2523 from_size = value_bitsize (fromval);
2524 if (from_size == 0)
2525 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2526 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2527 move_bits (buffer, value_bitpos (toval),
50810684 2528 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2529 else
50810684
UW
2530 move_bits (buffer, value_bitpos (toval),
2531 value_contents (fromval), 0, bits, 0);
52ce6436 2532 write_memory (to_addr, buffer, len);
8cebebb9
PP
2533 observer_notify_memory_changed (to_addr, len, buffer);
2534
14f9c5c9 2535 val = value_copy (toval);
0fd88904 2536 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2537 TYPE_LENGTH (type));
04624583 2538 deprecated_set_value_type (val, type);
d2e4a39e 2539
14f9c5c9
AS
2540 return val;
2541 }
2542
2543 return value_assign (toval, fromval);
2544}
2545
2546
52ce6436
PH
2547/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2548 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2549 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2550 * COMPONENT, and not the inferior's memory. The current contents
2551 * of COMPONENT are ignored. */
2552static void
2553value_assign_to_component (struct value *container, struct value *component,
2554 struct value *val)
2555{
2556 LONGEST offset_in_container =
42ae5230 2557 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2558 int bit_offset_in_container =
2559 value_bitpos (component) - value_bitpos (container);
2560 int bits;
2561
2562 val = value_cast (value_type (component), val);
2563
2564 if (value_bitsize (component) == 0)
2565 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2566 else
2567 bits = value_bitsize (component);
2568
50810684 2569 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2570 move_bits (value_contents_writeable (container) + offset_in_container,
2571 value_bitpos (container) + bit_offset_in_container,
2572 value_contents (val),
2573 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2574 bits, 1);
52ce6436
PH
2575 else
2576 move_bits (value_contents_writeable (container) + offset_in_container,
2577 value_bitpos (container) + bit_offset_in_container,
50810684 2578 value_contents (val), 0, bits, 0);
52ce6436
PH
2579}
2580
4c4b4cd2
PH
2581/* The value of the element of array ARR at the ARITY indices given in IND.
2582 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2583 thereto. */
2584
d2e4a39e
AS
2585struct value *
2586ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2587{
2588 int k;
d2e4a39e
AS
2589 struct value *elt;
2590 struct type *elt_type;
14f9c5c9
AS
2591
2592 elt = ada_coerce_to_simple_array (arr);
2593
df407dfe 2594 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2595 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2596 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2597 return value_subscript_packed (elt, arity, ind);
2598
2599 for (k = 0; k < arity; k += 1)
2600 {
2601 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2602 error (_("too many subscripts (%d expected)"), k);
2497b498 2603 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2604 }
2605 return elt;
2606}
2607
2608/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2609 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2610 IND. Does not read the entire array into memory. */
14f9c5c9 2611
2c0b251b 2612static struct value *
d2e4a39e 2613ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2614 struct value **ind)
14f9c5c9
AS
2615{
2616 int k;
2617
2618 for (k = 0; k < arity; k += 1)
2619 {
2620 LONGEST lwb, upb;
14f9c5c9
AS
2621
2622 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2623 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2624 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2625 value_copy (arr));
14f9c5c9 2626 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2627 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2628 type = TYPE_TARGET_TYPE (type);
2629 }
2630
2631 return value_ind (arr);
2632}
2633
0b5d8877 2634/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2635 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2636 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2637 per Ada rules. */
0b5d8877 2638static struct value *
f5938064
JG
2639ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2640 int low, int high)
0b5d8877 2641{
b0dd7688 2642 struct type *type0 = ada_check_typedef (type);
6c038f32 2643 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2644 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2645 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2646 struct type *index_type =
b0dd7688 2647 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2648 low, high);
6c038f32 2649 struct type *slice_type =
b0dd7688 2650 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2651
f5938064 2652 return value_at_lazy (slice_type, base);
0b5d8877
PH
2653}
2654
2655
2656static struct value *
2657ada_value_slice (struct value *array, int low, int high)
2658{
b0dd7688 2659 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2660 struct type *index_type =
0b5d8877 2661 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2662 struct type *slice_type =
0b5d8877 2663 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2664
6c038f32 2665 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2666}
2667
14f9c5c9
AS
2668/* If type is a record type in the form of a standard GNAT array
2669 descriptor, returns the number of dimensions for type. If arr is a
2670 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2671 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2672
2673int
d2e4a39e 2674ada_array_arity (struct type *type)
14f9c5c9
AS
2675{
2676 int arity;
2677
2678 if (type == NULL)
2679 return 0;
2680
2681 type = desc_base_type (type);
2682
2683 arity = 0;
d2e4a39e 2684 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2685 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2686 else
2687 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2688 {
4c4b4cd2 2689 arity += 1;
61ee279c 2690 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2691 }
d2e4a39e 2692
14f9c5c9
AS
2693 return arity;
2694}
2695
2696/* If TYPE is a record type in the form of a standard GNAT array
2697 descriptor or a simple array type, returns the element type for
2698 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2699 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2700
d2e4a39e
AS
2701struct type *
2702ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2703{
2704 type = desc_base_type (type);
2705
d2e4a39e 2706 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2707 {
2708 int k;
d2e4a39e 2709 struct type *p_array_type;
14f9c5c9 2710
556bdfd4 2711 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2712
2713 k = ada_array_arity (type);
2714 if (k == 0)
4c4b4cd2 2715 return NULL;
d2e4a39e 2716
4c4b4cd2 2717 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2718 if (nindices >= 0 && k > nindices)
4c4b4cd2 2719 k = nindices;
d2e4a39e 2720 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2721 {
61ee279c 2722 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2723 k -= 1;
2724 }
14f9c5c9
AS
2725 return p_array_type;
2726 }
2727 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2728 {
2729 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2730 {
2731 type = TYPE_TARGET_TYPE (type);
2732 nindices -= 1;
2733 }
14f9c5c9
AS
2734 return type;
2735 }
2736
2737 return NULL;
2738}
2739
4c4b4cd2 2740/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2741 Does not examine memory. Throws an error if N is invalid or TYPE
2742 is not an array type. NAME is the name of the Ada attribute being
2743 evaluated ('range, 'first, 'last, or 'length); it is used in building
2744 the error message. */
14f9c5c9 2745
1eea4ebd
UW
2746static struct type *
2747ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2748{
4c4b4cd2
PH
2749 struct type *result_type;
2750
14f9c5c9
AS
2751 type = desc_base_type (type);
2752
1eea4ebd
UW
2753 if (n < 0 || n > ada_array_arity (type))
2754 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2755
4c4b4cd2 2756 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2757 {
2758 int i;
2759
2760 for (i = 1; i < n; i += 1)
4c4b4cd2 2761 type = TYPE_TARGET_TYPE (type);
262452ec 2762 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2763 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2764 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2765 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2766 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2767 result_type = NULL;
14f9c5c9 2768 }
d2e4a39e 2769 else
1eea4ebd
UW
2770 {
2771 result_type = desc_index_type (desc_bounds_type (type), n);
2772 if (result_type == NULL)
2773 error (_("attempt to take bound of something that is not an array"));
2774 }
2775
2776 return result_type;
14f9c5c9
AS
2777}
2778
2779/* Given that arr is an array type, returns the lower bound of the
2780 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2781 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2782 array-descriptor type. It works for other arrays with bounds supplied
2783 by run-time quantities other than discriminants. */
14f9c5c9 2784
abb68b3e 2785static LONGEST
1eea4ebd 2786ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2787{
1ce677a4 2788 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2789 int i;
262452ec
JK
2790
2791 gdb_assert (which == 0 || which == 1);
14f9c5c9 2792
ad82864c
JB
2793 if (ada_is_constrained_packed_array_type (arr_type))
2794 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2795
4c4b4cd2 2796 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2797 return (LONGEST) - which;
14f9c5c9
AS
2798
2799 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2800 type = TYPE_TARGET_TYPE (arr_type);
2801 else
2802 type = arr_type;
2803
1ce677a4
UW
2804 elt_type = type;
2805 for (i = n; i > 1; i--)
2806 elt_type = TYPE_TARGET_TYPE (type);
2807
14f9c5c9 2808 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2809 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2810 if (index_type_desc != NULL)
28c85d6c
JB
2811 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2812 NULL);
262452ec 2813 else
1ce677a4 2814 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2815
43bbcdc2
PH
2816 return
2817 (LONGEST) (which == 0
2818 ? ada_discrete_type_low_bound (index_type)
2819 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2820}
2821
2822/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2823 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2824 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2825 supplied by run-time quantities other than discriminants. */
14f9c5c9 2826
1eea4ebd 2827static LONGEST
4dc81987 2828ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2829{
df407dfe 2830 struct type *arr_type = value_type (arr);
14f9c5c9 2831
ad82864c
JB
2832 if (ada_is_constrained_packed_array_type (arr_type))
2833 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2834 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2835 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2836 else
1eea4ebd 2837 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2838}
2839
2840/* Given that arr is an array value, returns the length of the
2841 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2842 supplied by run-time quantities other than discriminants.
2843 Does not work for arrays indexed by enumeration types with representation
2844 clauses at the moment. */
14f9c5c9 2845
1eea4ebd 2846static LONGEST
d2e4a39e 2847ada_array_length (struct value *arr, int n)
14f9c5c9 2848{
df407dfe 2849 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2850
ad82864c
JB
2851 if (ada_is_constrained_packed_array_type (arr_type))
2852 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2853
4c4b4cd2 2854 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2855 return (ada_array_bound_from_type (arr_type, n, 1)
2856 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2857 else
1eea4ebd
UW
2858 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2859 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2860}
2861
2862/* An empty array whose type is that of ARR_TYPE (an array type),
2863 with bounds LOW to LOW-1. */
2864
2865static struct value *
2866empty_array (struct type *arr_type, int low)
2867{
b0dd7688 2868 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2869 struct type *index_type =
b0dd7688 2870 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2871 low, low - 1);
b0dd7688 2872 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2873
0b5d8877 2874 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2875}
14f9c5c9 2876\f
d2e4a39e 2877
4c4b4cd2 2878 /* Name resolution */
14f9c5c9 2879
4c4b4cd2
PH
2880/* The "decoded" name for the user-definable Ada operator corresponding
2881 to OP. */
14f9c5c9 2882
d2e4a39e 2883static const char *
4c4b4cd2 2884ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2885{
2886 int i;
2887
4c4b4cd2 2888 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2889 {
2890 if (ada_opname_table[i].op == op)
4c4b4cd2 2891 return ada_opname_table[i].decoded;
14f9c5c9 2892 }
323e0a4a 2893 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2894}
2895
2896
4c4b4cd2
PH
2897/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2898 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2899 undefined namespace) and converts operators that are
2900 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2901 non-null, it provides a preferred result type [at the moment, only
2902 type void has any effect---causing procedures to be preferred over
2903 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2904 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2905
4c4b4cd2
PH
2906static void
2907resolve (struct expression **expp, int void_context_p)
14f9c5c9 2908{
30b15541
UW
2909 struct type *context_type = NULL;
2910 int pc = 0;
2911
2912 if (void_context_p)
2913 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2914
2915 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2916}
2917
4c4b4cd2
PH
2918/* Resolve the operator of the subexpression beginning at
2919 position *POS of *EXPP. "Resolving" consists of replacing
2920 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2921 with their resolutions, replacing built-in operators with
2922 function calls to user-defined operators, where appropriate, and,
2923 when DEPROCEDURE_P is non-zero, converting function-valued variables
2924 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2925 are as in ada_resolve, above. */
14f9c5c9 2926
d2e4a39e 2927static struct value *
4c4b4cd2 2928resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2929 struct type *context_type)
14f9c5c9
AS
2930{
2931 int pc = *pos;
2932 int i;
4c4b4cd2 2933 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2934 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2935 struct value **argvec; /* Vector of operand types (alloca'ed). */
2936 int nargs; /* Number of operands. */
52ce6436 2937 int oplen;
14f9c5c9
AS
2938
2939 argvec = NULL;
2940 nargs = 0;
2941 exp = *expp;
2942
52ce6436
PH
2943 /* Pass one: resolve operands, saving their types and updating *pos,
2944 if needed. */
14f9c5c9
AS
2945 switch (op)
2946 {
4c4b4cd2
PH
2947 case OP_FUNCALL:
2948 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2949 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2950 *pos += 7;
4c4b4cd2
PH
2951 else
2952 {
2953 *pos += 3;
2954 resolve_subexp (expp, pos, 0, NULL);
2955 }
2956 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2957 break;
2958
14f9c5c9 2959 case UNOP_ADDR:
4c4b4cd2
PH
2960 *pos += 1;
2961 resolve_subexp (expp, pos, 0, NULL);
2962 break;
2963
52ce6436
PH
2964 case UNOP_QUAL:
2965 *pos += 3;
17466c1a 2966 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2967 break;
2968
52ce6436 2969 case OP_ATR_MODULUS:
4c4b4cd2
PH
2970 case OP_ATR_SIZE:
2971 case OP_ATR_TAG:
4c4b4cd2
PH
2972 case OP_ATR_FIRST:
2973 case OP_ATR_LAST:
2974 case OP_ATR_LENGTH:
2975 case OP_ATR_POS:
2976 case OP_ATR_VAL:
4c4b4cd2
PH
2977 case OP_ATR_MIN:
2978 case OP_ATR_MAX:
52ce6436
PH
2979 case TERNOP_IN_RANGE:
2980 case BINOP_IN_BOUNDS:
2981 case UNOP_IN_RANGE:
2982 case OP_AGGREGATE:
2983 case OP_OTHERS:
2984 case OP_CHOICES:
2985 case OP_POSITIONAL:
2986 case OP_DISCRETE_RANGE:
2987 case OP_NAME:
2988 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2989 *pos += oplen;
14f9c5c9
AS
2990 break;
2991
2992 case BINOP_ASSIGN:
2993 {
4c4b4cd2
PH
2994 struct value *arg1;
2995
2996 *pos += 1;
2997 arg1 = resolve_subexp (expp, pos, 0, NULL);
2998 if (arg1 == NULL)
2999 resolve_subexp (expp, pos, 1, NULL);
3000 else
df407dfe 3001 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3002 break;
14f9c5c9
AS
3003 }
3004
4c4b4cd2 3005 case UNOP_CAST:
4c4b4cd2
PH
3006 *pos += 3;
3007 nargs = 1;
3008 break;
14f9c5c9 3009
4c4b4cd2
PH
3010 case BINOP_ADD:
3011 case BINOP_SUB:
3012 case BINOP_MUL:
3013 case BINOP_DIV:
3014 case BINOP_REM:
3015 case BINOP_MOD:
3016 case BINOP_EXP:
3017 case BINOP_CONCAT:
3018 case BINOP_LOGICAL_AND:
3019 case BINOP_LOGICAL_OR:
3020 case BINOP_BITWISE_AND:
3021 case BINOP_BITWISE_IOR:
3022 case BINOP_BITWISE_XOR:
14f9c5c9 3023
4c4b4cd2
PH
3024 case BINOP_EQUAL:
3025 case BINOP_NOTEQUAL:
3026 case BINOP_LESS:
3027 case BINOP_GTR:
3028 case BINOP_LEQ:
3029 case BINOP_GEQ:
14f9c5c9 3030
4c4b4cd2
PH
3031 case BINOP_REPEAT:
3032 case BINOP_SUBSCRIPT:
3033 case BINOP_COMMA:
40c8aaa9
JB
3034 *pos += 1;
3035 nargs = 2;
3036 break;
14f9c5c9 3037
4c4b4cd2
PH
3038 case UNOP_NEG:
3039 case UNOP_PLUS:
3040 case UNOP_LOGICAL_NOT:
3041 case UNOP_ABS:
3042 case UNOP_IND:
3043 *pos += 1;
3044 nargs = 1;
3045 break;
14f9c5c9 3046
4c4b4cd2
PH
3047 case OP_LONG:
3048 case OP_DOUBLE:
3049 case OP_VAR_VALUE:
3050 *pos += 4;
3051 break;
14f9c5c9 3052
4c4b4cd2
PH
3053 case OP_TYPE:
3054 case OP_BOOL:
3055 case OP_LAST:
4c4b4cd2
PH
3056 case OP_INTERNALVAR:
3057 *pos += 3;
3058 break;
14f9c5c9 3059
4c4b4cd2
PH
3060 case UNOP_MEMVAL:
3061 *pos += 3;
3062 nargs = 1;
3063 break;
3064
67f3407f
DJ
3065 case OP_REGISTER:
3066 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3067 break;
3068
4c4b4cd2
PH
3069 case STRUCTOP_STRUCT:
3070 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3071 nargs = 1;
3072 break;
3073
4c4b4cd2 3074 case TERNOP_SLICE:
4c4b4cd2
PH
3075 *pos += 1;
3076 nargs = 3;
3077 break;
3078
52ce6436 3079 case OP_STRING:
14f9c5c9 3080 break;
4c4b4cd2
PH
3081
3082 default:
323e0a4a 3083 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3084 }
3085
76a01679 3086 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3087 for (i = 0; i < nargs; i += 1)
3088 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3089 argvec[i] = NULL;
3090 exp = *expp;
3091
3092 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3093 switch (op)
3094 {
3095 default:
3096 break;
3097
14f9c5c9 3098 case OP_VAR_VALUE:
4c4b4cd2 3099 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3100 {
3101 struct ada_symbol_info *candidates;
3102 int n_candidates;
3103
3104 n_candidates =
3105 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3106 (exp->elts[pc + 2].symbol),
3107 exp->elts[pc + 1].block, VAR_DOMAIN,
d9680e73 3108 &candidates, 1);
76a01679
JB
3109
3110 if (n_candidates > 1)
3111 {
3112 /* Types tend to get re-introduced locally, so if there
3113 are any local symbols that are not types, first filter
3114 out all types. */
3115 int j;
3116 for (j = 0; j < n_candidates; j += 1)
3117 switch (SYMBOL_CLASS (candidates[j].sym))
3118 {
3119 case LOC_REGISTER:
3120 case LOC_ARG:
3121 case LOC_REF_ARG:
76a01679
JB
3122 case LOC_REGPARM_ADDR:
3123 case LOC_LOCAL:
76a01679 3124 case LOC_COMPUTED:
76a01679
JB
3125 goto FoundNonType;
3126 default:
3127 break;
3128 }
3129 FoundNonType:
3130 if (j < n_candidates)
3131 {
3132 j = 0;
3133 while (j < n_candidates)
3134 {
3135 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3136 {
3137 candidates[j] = candidates[n_candidates - 1];
3138 n_candidates -= 1;
3139 }
3140 else
3141 j += 1;
3142 }
3143 }
3144 }
3145
3146 if (n_candidates == 0)
323e0a4a 3147 error (_("No definition found for %s"),
76a01679
JB
3148 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3149 else if (n_candidates == 1)
3150 i = 0;
3151 else if (deprocedure_p
3152 && !is_nonfunction (candidates, n_candidates))
3153 {
06d5cf63
JB
3154 i = ada_resolve_function
3155 (candidates, n_candidates, NULL, 0,
3156 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3157 context_type);
76a01679 3158 if (i < 0)
323e0a4a 3159 error (_("Could not find a match for %s"),
76a01679
JB
3160 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3161 }
3162 else
3163 {
323e0a4a 3164 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3165 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3166 user_select_syms (candidates, n_candidates, 1);
3167 i = 0;
3168 }
3169
3170 exp->elts[pc + 1].block = candidates[i].block;
3171 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3172 if (innermost_block == NULL
3173 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3174 innermost_block = candidates[i].block;
3175 }
3176
3177 if (deprocedure_p
3178 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3179 == TYPE_CODE_FUNC))
3180 {
3181 replace_operator_with_call (expp, pc, 0, 0,
3182 exp->elts[pc + 2].symbol,
3183 exp->elts[pc + 1].block);
3184 exp = *expp;
3185 }
14f9c5c9
AS
3186 break;
3187
3188 case OP_FUNCALL:
3189 {
4c4b4cd2 3190 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3191 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3192 {
3193 struct ada_symbol_info *candidates;
3194 int n_candidates;
3195
3196 n_candidates =
76a01679
JB
3197 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3198 (exp->elts[pc + 5].symbol),
3199 exp->elts[pc + 4].block, VAR_DOMAIN,
d9680e73 3200 &candidates, 1);
4c4b4cd2
PH
3201 if (n_candidates == 1)
3202 i = 0;
3203 else
3204 {
06d5cf63
JB
3205 i = ada_resolve_function
3206 (candidates, n_candidates,
3207 argvec, nargs,
3208 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3209 context_type);
4c4b4cd2 3210 if (i < 0)
323e0a4a 3211 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3212 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3213 }
3214
3215 exp->elts[pc + 4].block = candidates[i].block;
3216 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3217 if (innermost_block == NULL
3218 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3219 innermost_block = candidates[i].block;
3220 }
14f9c5c9
AS
3221 }
3222 break;
3223 case BINOP_ADD:
3224 case BINOP_SUB:
3225 case BINOP_MUL:
3226 case BINOP_DIV:
3227 case BINOP_REM:
3228 case BINOP_MOD:
3229 case BINOP_CONCAT:
3230 case BINOP_BITWISE_AND:
3231 case BINOP_BITWISE_IOR:
3232 case BINOP_BITWISE_XOR:
3233 case BINOP_EQUAL:
3234 case BINOP_NOTEQUAL:
3235 case BINOP_LESS:
3236 case BINOP_GTR:
3237 case BINOP_LEQ:
3238 case BINOP_GEQ:
3239 case BINOP_EXP:
3240 case UNOP_NEG:
3241 case UNOP_PLUS:
3242 case UNOP_LOGICAL_NOT:
3243 case UNOP_ABS:
3244 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3245 {
3246 struct ada_symbol_info *candidates;
3247 int n_candidates;
3248
3249 n_candidates =
3250 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3251 (struct block *) NULL, VAR_DOMAIN,
d9680e73 3252 &candidates, 1);
4c4b4cd2 3253 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3254 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3255 if (i < 0)
3256 break;
3257
76a01679
JB
3258 replace_operator_with_call (expp, pc, nargs, 1,
3259 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3260 exp = *expp;
3261 }
14f9c5c9 3262 break;
4c4b4cd2
PH
3263
3264 case OP_TYPE:
b3dbf008 3265 case OP_REGISTER:
4c4b4cd2 3266 return NULL;
14f9c5c9
AS
3267 }
3268
3269 *pos = pc;
3270 return evaluate_subexp_type (exp, pos);
3271}
3272
3273/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3274 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3275 a non-pointer. */
14f9c5c9 3276/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3277 liberal. */
14f9c5c9
AS
3278
3279static int
4dc81987 3280ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3281{
61ee279c
PH
3282 ftype = ada_check_typedef (ftype);
3283 atype = ada_check_typedef (atype);
14f9c5c9
AS
3284
3285 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3286 ftype = TYPE_TARGET_TYPE (ftype);
3287 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3288 atype = TYPE_TARGET_TYPE (atype);
3289
d2e4a39e 3290 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3291 {
3292 default:
5b3d5b7d 3293 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3294 case TYPE_CODE_PTR:
3295 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3296 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3297 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3298 else
1265e4aa
JB
3299 return (may_deref
3300 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3301 case TYPE_CODE_INT:
3302 case TYPE_CODE_ENUM:
3303 case TYPE_CODE_RANGE:
3304 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3305 {
3306 case TYPE_CODE_INT:
3307 case TYPE_CODE_ENUM:
3308 case TYPE_CODE_RANGE:
3309 return 1;
3310 default:
3311 return 0;
3312 }
14f9c5c9
AS
3313
3314 case TYPE_CODE_ARRAY:
d2e4a39e 3315 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3316 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3317
3318 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3319 if (ada_is_array_descriptor_type (ftype))
3320 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3321 || ada_is_array_descriptor_type (atype));
14f9c5c9 3322 else
4c4b4cd2
PH
3323 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3324 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3325
3326 case TYPE_CODE_UNION:
3327 case TYPE_CODE_FLT:
3328 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3329 }
3330}
3331
3332/* Return non-zero if the formals of FUNC "sufficiently match" the
3333 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3334 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3335 argument function. */
14f9c5c9
AS
3336
3337static int
d2e4a39e 3338ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3339{
3340 int i;
d2e4a39e 3341 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3342
1265e4aa
JB
3343 if (SYMBOL_CLASS (func) == LOC_CONST
3344 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3345 return (n_actuals == 0);
3346 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3347 return 0;
3348
3349 if (TYPE_NFIELDS (func_type) != n_actuals)
3350 return 0;
3351
3352 for (i = 0; i < n_actuals; i += 1)
3353 {
4c4b4cd2 3354 if (actuals[i] == NULL)
76a01679
JB
3355 return 0;
3356 else
3357 {
5b4ee69b
MS
3358 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3359 i));
df407dfe 3360 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3361
76a01679
JB
3362 if (!ada_type_match (ftype, atype, 1))
3363 return 0;
3364 }
14f9c5c9
AS
3365 }
3366 return 1;
3367}
3368
3369/* False iff function type FUNC_TYPE definitely does not produce a value
3370 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3371 FUNC_TYPE is not a valid function type with a non-null return type
3372 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3373
3374static int
d2e4a39e 3375return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3376{
d2e4a39e 3377 struct type *return_type;
14f9c5c9
AS
3378
3379 if (func_type == NULL)
3380 return 1;
3381
4c4b4cd2 3382 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3383 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3384 else
18af8284 3385 return_type = get_base_type (func_type);
14f9c5c9
AS
3386 if (return_type == NULL)
3387 return 1;
3388
18af8284 3389 context_type = get_base_type (context_type);
14f9c5c9
AS
3390
3391 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3392 return context_type == NULL || return_type == context_type;
3393 else if (context_type == NULL)
3394 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3395 else
3396 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3397}
3398
3399
4c4b4cd2 3400/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3401 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3402 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3403 that returns that type, then eliminate matches that don't. If
3404 CONTEXT_TYPE is void and there is at least one match that does not
3405 return void, eliminate all matches that do.
3406
14f9c5c9
AS
3407 Asks the user if there is more than one match remaining. Returns -1
3408 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3409 solely for messages. May re-arrange and modify SYMS in
3410 the process; the index returned is for the modified vector. */
14f9c5c9 3411
4c4b4cd2
PH
3412static int
3413ada_resolve_function (struct ada_symbol_info syms[],
3414 int nsyms, struct value **args, int nargs,
3415 const char *name, struct type *context_type)
14f9c5c9 3416{
30b15541 3417 int fallback;
14f9c5c9 3418 int k;
4c4b4cd2 3419 int m; /* Number of hits */
14f9c5c9 3420
d2e4a39e 3421 m = 0;
30b15541
UW
3422 /* In the first pass of the loop, we only accept functions matching
3423 context_type. If none are found, we add a second pass of the loop
3424 where every function is accepted. */
3425 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3426 {
3427 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3428 {
61ee279c 3429 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3430
3431 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3432 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3433 {
3434 syms[m] = syms[k];
3435 m += 1;
3436 }
3437 }
14f9c5c9
AS
3438 }
3439
3440 if (m == 0)
3441 return -1;
3442 else if (m > 1)
3443 {
323e0a4a 3444 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3445 user_select_syms (syms, m, 1);
14f9c5c9
AS
3446 return 0;
3447 }
3448 return 0;
3449}
3450
4c4b4cd2
PH
3451/* Returns true (non-zero) iff decoded name N0 should appear before N1
3452 in a listing of choices during disambiguation (see sort_choices, below).
3453 The idea is that overloadings of a subprogram name from the
3454 same package should sort in their source order. We settle for ordering
3455 such symbols by their trailing number (__N or $N). */
3456
14f9c5c9 3457static int
0d5cff50 3458encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3459{
3460 if (N1 == NULL)
3461 return 0;
3462 else if (N0 == NULL)
3463 return 1;
3464 else
3465 {
3466 int k0, k1;
5b4ee69b 3467
d2e4a39e 3468 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3469 ;
d2e4a39e 3470 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3471 ;
d2e4a39e 3472 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3473 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3474 {
3475 int n0, n1;
5b4ee69b 3476
4c4b4cd2
PH
3477 n0 = k0;
3478 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3479 n0 -= 1;
3480 n1 = k1;
3481 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3482 n1 -= 1;
3483 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3484 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3485 }
14f9c5c9
AS
3486 return (strcmp (N0, N1) < 0);
3487 }
3488}
d2e4a39e 3489
4c4b4cd2
PH
3490/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3491 encoded names. */
3492
d2e4a39e 3493static void
4c4b4cd2 3494sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3495{
4c4b4cd2 3496 int i;
5b4ee69b 3497
d2e4a39e 3498 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3499 {
4c4b4cd2 3500 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3501 int j;
3502
d2e4a39e 3503 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3504 {
3505 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3506 SYMBOL_LINKAGE_NAME (sym.sym)))
3507 break;
3508 syms[j + 1] = syms[j];
3509 }
d2e4a39e 3510 syms[j + 1] = sym;
14f9c5c9
AS
3511 }
3512}
3513
4c4b4cd2
PH
3514/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3515 by asking the user (if necessary), returning the number selected,
3516 and setting the first elements of SYMS items. Error if no symbols
3517 selected. */
14f9c5c9
AS
3518
3519/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3520 to be re-integrated one of these days. */
14f9c5c9
AS
3521
3522int
4c4b4cd2 3523user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3524{
3525 int i;
d2e4a39e 3526 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3527 int n_chosen;
3528 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3529 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3530
3531 if (max_results < 1)
323e0a4a 3532 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3533 if (nsyms <= 1)
3534 return nsyms;
3535
717d2f5a
JB
3536 if (select_mode == multiple_symbols_cancel)
3537 error (_("\
3538canceled because the command is ambiguous\n\
3539See set/show multiple-symbol."));
3540
3541 /* If select_mode is "all", then return all possible symbols.
3542 Only do that if more than one symbol can be selected, of course.
3543 Otherwise, display the menu as usual. */
3544 if (select_mode == multiple_symbols_all && max_results > 1)
3545 return nsyms;
3546
323e0a4a 3547 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3548 if (max_results > 1)
323e0a4a 3549 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3550
4c4b4cd2 3551 sort_choices (syms, nsyms);
14f9c5c9
AS
3552
3553 for (i = 0; i < nsyms; i += 1)
3554 {
4c4b4cd2
PH
3555 if (syms[i].sym == NULL)
3556 continue;
3557
3558 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3559 {
76a01679
JB
3560 struct symtab_and_line sal =
3561 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3562
323e0a4a
AC
3563 if (sal.symtab == NULL)
3564 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3565 i + first_choice,
3566 SYMBOL_PRINT_NAME (syms[i].sym),
3567 sal.line);
3568 else
3569 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3570 SYMBOL_PRINT_NAME (syms[i].sym),
3571 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3572 continue;
3573 }
d2e4a39e 3574 else
4c4b4cd2
PH
3575 {
3576 int is_enumeral =
3577 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3578 && SYMBOL_TYPE (syms[i].sym) != NULL
3579 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3580 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3581
3582 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3583 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3584 i + first_choice,
3585 SYMBOL_PRINT_NAME (syms[i].sym),
3586 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3587 else if (is_enumeral
3588 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3589 {
a3f17187 3590 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3591 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3592 gdb_stdout, -1, 0);
323e0a4a 3593 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3594 SYMBOL_PRINT_NAME (syms[i].sym));
3595 }
3596 else if (symtab != NULL)
3597 printf_unfiltered (is_enumeral
323e0a4a
AC
3598 ? _("[%d] %s in %s (enumeral)\n")
3599 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3600 i + first_choice,
3601 SYMBOL_PRINT_NAME (syms[i].sym),
3602 symtab->filename);
3603 else
3604 printf_unfiltered (is_enumeral
323e0a4a
AC
3605 ? _("[%d] %s (enumeral)\n")
3606 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3607 i + first_choice,
3608 SYMBOL_PRINT_NAME (syms[i].sym));
3609 }
14f9c5c9 3610 }
d2e4a39e 3611
14f9c5c9 3612 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3613 "overload-choice");
14f9c5c9
AS
3614
3615 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3616 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3617
3618 return n_chosen;
3619}
3620
3621/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3622 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3623 order in CHOICES[0 .. N-1], and return N.
3624
3625 The user types choices as a sequence of numbers on one line
3626 separated by blanks, encoding them as follows:
3627
4c4b4cd2 3628 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3629 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3630 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3631
4c4b4cd2 3632 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3633
3634 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3635 prompts (for use with the -f switch). */
14f9c5c9
AS
3636
3637int
d2e4a39e 3638get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3639 int is_all_choice, char *annotation_suffix)
14f9c5c9 3640{
d2e4a39e 3641 char *args;
0bcd0149 3642 char *prompt;
14f9c5c9
AS
3643 int n_chosen;
3644 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3645
14f9c5c9
AS
3646 prompt = getenv ("PS2");
3647 if (prompt == NULL)
0bcd0149 3648 prompt = "> ";
14f9c5c9 3649
0bcd0149 3650 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3651
14f9c5c9 3652 if (args == NULL)
323e0a4a 3653 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3654
3655 n_chosen = 0;
76a01679 3656
4c4b4cd2
PH
3657 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3658 order, as given in args. Choices are validated. */
14f9c5c9
AS
3659 while (1)
3660 {
d2e4a39e 3661 char *args2;
14f9c5c9
AS
3662 int choice, j;
3663
0fcd72ba 3664 args = skip_spaces (args);
14f9c5c9 3665 if (*args == '\0' && n_chosen == 0)
323e0a4a 3666 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3667 else if (*args == '\0')
4c4b4cd2 3668 break;
14f9c5c9
AS
3669
3670 choice = strtol (args, &args2, 10);
d2e4a39e 3671 if (args == args2 || choice < 0
4c4b4cd2 3672 || choice > n_choices + first_choice - 1)
323e0a4a 3673 error (_("Argument must be choice number"));
14f9c5c9
AS
3674 args = args2;
3675
d2e4a39e 3676 if (choice == 0)
323e0a4a 3677 error (_("cancelled"));
14f9c5c9
AS
3678
3679 if (choice < first_choice)
4c4b4cd2
PH
3680 {
3681 n_chosen = n_choices;
3682 for (j = 0; j < n_choices; j += 1)
3683 choices[j] = j;
3684 break;
3685 }
14f9c5c9
AS
3686 choice -= first_choice;
3687
d2e4a39e 3688 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3689 {
3690 }
14f9c5c9
AS
3691
3692 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3693 {
3694 int k;
5b4ee69b 3695
4c4b4cd2
PH
3696 for (k = n_chosen - 1; k > j; k -= 1)
3697 choices[k + 1] = choices[k];
3698 choices[j + 1] = choice;
3699 n_chosen += 1;
3700 }
14f9c5c9
AS
3701 }
3702
3703 if (n_chosen > max_results)
323e0a4a 3704 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3705
14f9c5c9
AS
3706 return n_chosen;
3707}
3708
4c4b4cd2
PH
3709/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3710 on the function identified by SYM and BLOCK, and taking NARGS
3711 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3712
3713static void
d2e4a39e 3714replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3715 int oplen, struct symbol *sym,
3716 struct block *block)
14f9c5c9
AS
3717{
3718 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3719 symbol, -oplen for operator being replaced). */
d2e4a39e 3720 struct expression *newexp = (struct expression *)
8c1a34e7 3721 xzalloc (sizeof (struct expression)
4c4b4cd2 3722 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3723 struct expression *exp = *expp;
14f9c5c9
AS
3724
3725 newexp->nelts = exp->nelts + 7 - oplen;
3726 newexp->language_defn = exp->language_defn;
3489610d 3727 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3728 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3729 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3730 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3731
3732 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3733 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3734
3735 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3736 newexp->elts[pc + 4].block = block;
3737 newexp->elts[pc + 5].symbol = sym;
3738
3739 *expp = newexp;
aacb1f0a 3740 xfree (exp);
d2e4a39e 3741}
14f9c5c9
AS
3742
3743/* Type-class predicates */
3744
4c4b4cd2
PH
3745/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3746 or FLOAT). */
14f9c5c9
AS
3747
3748static int
d2e4a39e 3749numeric_type_p (struct type *type)
14f9c5c9
AS
3750{
3751 if (type == NULL)
3752 return 0;
d2e4a39e
AS
3753 else
3754 {
3755 switch (TYPE_CODE (type))
4c4b4cd2
PH
3756 {
3757 case TYPE_CODE_INT:
3758 case TYPE_CODE_FLT:
3759 return 1;
3760 case TYPE_CODE_RANGE:
3761 return (type == TYPE_TARGET_TYPE (type)
3762 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3763 default:
3764 return 0;
3765 }
d2e4a39e 3766 }
14f9c5c9
AS
3767}
3768
4c4b4cd2 3769/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3770
3771static int
d2e4a39e 3772integer_type_p (struct type *type)
14f9c5c9
AS
3773{
3774 if (type == NULL)
3775 return 0;
d2e4a39e
AS
3776 else
3777 {
3778 switch (TYPE_CODE (type))
4c4b4cd2
PH
3779 {
3780 case TYPE_CODE_INT:
3781 return 1;
3782 case TYPE_CODE_RANGE:
3783 return (type == TYPE_TARGET_TYPE (type)
3784 || integer_type_p (TYPE_TARGET_TYPE (type)));
3785 default:
3786 return 0;
3787 }
d2e4a39e 3788 }
14f9c5c9
AS
3789}
3790
4c4b4cd2 3791/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3792
3793static int
d2e4a39e 3794scalar_type_p (struct type *type)
14f9c5c9
AS
3795{
3796 if (type == NULL)
3797 return 0;
d2e4a39e
AS
3798 else
3799 {
3800 switch (TYPE_CODE (type))
4c4b4cd2
PH
3801 {
3802 case TYPE_CODE_INT:
3803 case TYPE_CODE_RANGE:
3804 case TYPE_CODE_ENUM:
3805 case TYPE_CODE_FLT:
3806 return 1;
3807 default:
3808 return 0;
3809 }
d2e4a39e 3810 }
14f9c5c9
AS
3811}
3812
4c4b4cd2 3813/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3814
3815static int
d2e4a39e 3816discrete_type_p (struct type *type)
14f9c5c9
AS
3817{
3818 if (type == NULL)
3819 return 0;
d2e4a39e
AS
3820 else
3821 {
3822 switch (TYPE_CODE (type))
4c4b4cd2
PH
3823 {
3824 case TYPE_CODE_INT:
3825 case TYPE_CODE_RANGE:
3826 case TYPE_CODE_ENUM:
872f0337 3827 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3828 return 1;
3829 default:
3830 return 0;
3831 }
d2e4a39e 3832 }
14f9c5c9
AS
3833}
3834
4c4b4cd2
PH
3835/* Returns non-zero if OP with operands in the vector ARGS could be
3836 a user-defined function. Errs on the side of pre-defined operators
3837 (i.e., result 0). */
14f9c5c9
AS
3838
3839static int
d2e4a39e 3840possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3841{
76a01679 3842 struct type *type0 =
df407dfe 3843 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3844 struct type *type1 =
df407dfe 3845 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3846
4c4b4cd2
PH
3847 if (type0 == NULL)
3848 return 0;
3849
14f9c5c9
AS
3850 switch (op)
3851 {
3852 default:
3853 return 0;
3854
3855 case BINOP_ADD:
3856 case BINOP_SUB:
3857 case BINOP_MUL:
3858 case BINOP_DIV:
d2e4a39e 3859 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3860
3861 case BINOP_REM:
3862 case BINOP_MOD:
3863 case BINOP_BITWISE_AND:
3864 case BINOP_BITWISE_IOR:
3865 case BINOP_BITWISE_XOR:
d2e4a39e 3866 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3867
3868 case BINOP_EQUAL:
3869 case BINOP_NOTEQUAL:
3870 case BINOP_LESS:
3871 case BINOP_GTR:
3872 case BINOP_LEQ:
3873 case BINOP_GEQ:
d2e4a39e 3874 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3875
3876 case BINOP_CONCAT:
ee90b9ab 3877 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3878
3879 case BINOP_EXP:
d2e4a39e 3880 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3881
3882 case UNOP_NEG:
3883 case UNOP_PLUS:
3884 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3885 case UNOP_ABS:
3886 return (!numeric_type_p (type0));
14f9c5c9
AS
3887
3888 }
3889}
3890\f
4c4b4cd2 3891 /* Renaming */
14f9c5c9 3892
aeb5907d
JB
3893/* NOTES:
3894
3895 1. In the following, we assume that a renaming type's name may
3896 have an ___XD suffix. It would be nice if this went away at some
3897 point.
3898 2. We handle both the (old) purely type-based representation of
3899 renamings and the (new) variable-based encoding. At some point,
3900 it is devoutly to be hoped that the former goes away
3901 (FIXME: hilfinger-2007-07-09).
3902 3. Subprogram renamings are not implemented, although the XRS
3903 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3904
3905/* If SYM encodes a renaming,
3906
3907 <renaming> renames <renamed entity>,
3908
3909 sets *LEN to the length of the renamed entity's name,
3910 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3911 the string describing the subcomponent selected from the renamed
0963b4bd 3912 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3913 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3914 are undefined). Otherwise, returns a value indicating the category
3915 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3916 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3917 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3918 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3919 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3920 may be NULL, in which case they are not assigned.
3921
3922 [Currently, however, GCC does not generate subprogram renamings.] */
3923
3924enum ada_renaming_category
3925ada_parse_renaming (struct symbol *sym,
3926 const char **renamed_entity, int *len,
3927 const char **renaming_expr)
3928{
3929 enum ada_renaming_category kind;
3930 const char *info;
3931 const char *suffix;
3932
3933 if (sym == NULL)
3934 return ADA_NOT_RENAMING;
3935 switch (SYMBOL_CLASS (sym))
14f9c5c9 3936 {
aeb5907d
JB
3937 default:
3938 return ADA_NOT_RENAMING;
3939 case LOC_TYPEDEF:
3940 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3941 renamed_entity, len, renaming_expr);
3942 case LOC_LOCAL:
3943 case LOC_STATIC:
3944 case LOC_COMPUTED:
3945 case LOC_OPTIMIZED_OUT:
3946 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3947 if (info == NULL)
3948 return ADA_NOT_RENAMING;
3949 switch (info[5])
3950 {
3951 case '_':
3952 kind = ADA_OBJECT_RENAMING;
3953 info += 6;
3954 break;
3955 case 'E':
3956 kind = ADA_EXCEPTION_RENAMING;
3957 info += 7;
3958 break;
3959 case 'P':
3960 kind = ADA_PACKAGE_RENAMING;
3961 info += 7;
3962 break;
3963 case 'S':
3964 kind = ADA_SUBPROGRAM_RENAMING;
3965 info += 7;
3966 break;
3967 default:
3968 return ADA_NOT_RENAMING;
3969 }
14f9c5c9 3970 }
4c4b4cd2 3971
aeb5907d
JB
3972 if (renamed_entity != NULL)
3973 *renamed_entity = info;
3974 suffix = strstr (info, "___XE");
3975 if (suffix == NULL || suffix == info)
3976 return ADA_NOT_RENAMING;
3977 if (len != NULL)
3978 *len = strlen (info) - strlen (suffix);
3979 suffix += 5;
3980 if (renaming_expr != NULL)
3981 *renaming_expr = suffix;
3982 return kind;
3983}
3984
3985/* Assuming TYPE encodes a renaming according to the old encoding in
3986 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3987 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3988 ADA_NOT_RENAMING otherwise. */
3989static enum ada_renaming_category
3990parse_old_style_renaming (struct type *type,
3991 const char **renamed_entity, int *len,
3992 const char **renaming_expr)
3993{
3994 enum ada_renaming_category kind;
3995 const char *name;
3996 const char *info;
3997 const char *suffix;
14f9c5c9 3998
aeb5907d
JB
3999 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4000 || TYPE_NFIELDS (type) != 1)
4001 return ADA_NOT_RENAMING;
14f9c5c9 4002
aeb5907d
JB
4003 name = type_name_no_tag (type);
4004 if (name == NULL)
4005 return ADA_NOT_RENAMING;
4006
4007 name = strstr (name, "___XR");
4008 if (name == NULL)
4009 return ADA_NOT_RENAMING;
4010 switch (name[5])
4011 {
4012 case '\0':
4013 case '_':
4014 kind = ADA_OBJECT_RENAMING;
4015 break;
4016 case 'E':
4017 kind = ADA_EXCEPTION_RENAMING;
4018 break;
4019 case 'P':
4020 kind = ADA_PACKAGE_RENAMING;
4021 break;
4022 case 'S':
4023 kind = ADA_SUBPROGRAM_RENAMING;
4024 break;
4025 default:
4026 return ADA_NOT_RENAMING;
4027 }
14f9c5c9 4028
aeb5907d
JB
4029 info = TYPE_FIELD_NAME (type, 0);
4030 if (info == NULL)
4031 return ADA_NOT_RENAMING;
4032 if (renamed_entity != NULL)
4033 *renamed_entity = info;
4034 suffix = strstr (info, "___XE");
4035 if (renaming_expr != NULL)
4036 *renaming_expr = suffix + 5;
4037 if (suffix == NULL || suffix == info)
4038 return ADA_NOT_RENAMING;
4039 if (len != NULL)
4040 *len = suffix - info;
4041 return kind;
4042}
52ce6436 4043
14f9c5c9 4044\f
d2e4a39e 4045
4c4b4cd2 4046 /* Evaluation: Function Calls */
14f9c5c9 4047
4c4b4cd2 4048/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4049 lvalues, and otherwise has the side-effect of allocating memory
4050 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4051
d2e4a39e 4052static struct value *
40bc484c 4053ensure_lval (struct value *val)
14f9c5c9 4054{
40bc484c
JB
4055 if (VALUE_LVAL (val) == not_lval
4056 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4057 {
df407dfe 4058 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4059 const CORE_ADDR addr =
4060 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4061
40bc484c 4062 set_value_address (val, addr);
a84a8a0d 4063 VALUE_LVAL (val) = lval_memory;
40bc484c 4064 write_memory (addr, value_contents (val), len);
c3e5cd34 4065 }
14f9c5c9
AS
4066
4067 return val;
4068}
4069
4070/* Return the value ACTUAL, converted to be an appropriate value for a
4071 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4072 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4073 values not residing in memory, updating it as needed. */
14f9c5c9 4074
a93c0eb6 4075struct value *
40bc484c 4076ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4077{
df407dfe 4078 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4079 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4080 struct type *formal_target =
4081 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4082 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4083 struct type *actual_target =
4084 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4085 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4086
4c4b4cd2 4087 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4088 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4089 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4090 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4091 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4092 {
a84a8a0d 4093 struct value *result;
5b4ee69b 4094
14f9c5c9 4095 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4096 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4097 result = desc_data (actual);
14f9c5c9 4098 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4099 {
4100 if (VALUE_LVAL (actual) != lval_memory)
4101 {
4102 struct value *val;
5b4ee69b 4103
df407dfe 4104 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4105 val = allocate_value (actual_type);
990a07ab 4106 memcpy ((char *) value_contents_raw (val),
0fd88904 4107 (char *) value_contents (actual),
4c4b4cd2 4108 TYPE_LENGTH (actual_type));
40bc484c 4109 actual = ensure_lval (val);
4c4b4cd2 4110 }
a84a8a0d 4111 result = value_addr (actual);
4c4b4cd2 4112 }
a84a8a0d
JB
4113 else
4114 return actual;
4115 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
4116 }
4117 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4118 return ada_value_ind (actual);
4119
4120 return actual;
4121}
4122
438c98a1
JB
4123/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4124 type TYPE. This is usually an inefficient no-op except on some targets
4125 (such as AVR) where the representation of a pointer and an address
4126 differs. */
4127
4128static CORE_ADDR
4129value_pointer (struct value *value, struct type *type)
4130{
4131 struct gdbarch *gdbarch = get_type_arch (type);
4132 unsigned len = TYPE_LENGTH (type);
4133 gdb_byte *buf = alloca (len);
4134 CORE_ADDR addr;
4135
4136 addr = value_address (value);
4137 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4138 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4139 return addr;
4140}
4141
14f9c5c9 4142
4c4b4cd2
PH
4143/* Push a descriptor of type TYPE for array value ARR on the stack at
4144 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4145 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4146 to-descriptor type rather than a descriptor type), a struct value *
4147 representing a pointer to this descriptor. */
14f9c5c9 4148
d2e4a39e 4149static struct value *
40bc484c 4150make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4151{
d2e4a39e
AS
4152 struct type *bounds_type = desc_bounds_type (type);
4153 struct type *desc_type = desc_base_type (type);
4154 struct value *descriptor = allocate_value (desc_type);
4155 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4156 int i;
d2e4a39e 4157
0963b4bd
MS
4158 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4159 i > 0; i -= 1)
14f9c5c9 4160 {
19f220c3
JK
4161 modify_field (value_type (bounds), value_contents_writeable (bounds),
4162 ada_array_bound (arr, i, 0),
4163 desc_bound_bitpos (bounds_type, i, 0),
4164 desc_bound_bitsize (bounds_type, i, 0));
4165 modify_field (value_type (bounds), value_contents_writeable (bounds),
4166 ada_array_bound (arr, i, 1),
4167 desc_bound_bitpos (bounds_type, i, 1),
4168 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4169 }
d2e4a39e 4170
40bc484c 4171 bounds = ensure_lval (bounds);
d2e4a39e 4172
19f220c3
JK
4173 modify_field (value_type (descriptor),
4174 value_contents_writeable (descriptor),
4175 value_pointer (ensure_lval (arr),
4176 TYPE_FIELD_TYPE (desc_type, 0)),
4177 fat_pntr_data_bitpos (desc_type),
4178 fat_pntr_data_bitsize (desc_type));
4179
4180 modify_field (value_type (descriptor),
4181 value_contents_writeable (descriptor),
4182 value_pointer (bounds,
4183 TYPE_FIELD_TYPE (desc_type, 1)),
4184 fat_pntr_bounds_bitpos (desc_type),
4185 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4186
40bc484c 4187 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4188
4189 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4190 return value_addr (descriptor);
4191 else
4192 return descriptor;
4193}
14f9c5c9 4194\f
963a6417 4195/* Dummy definitions for an experimental caching module that is not
0963b4bd 4196 * used in the public sources. */
96d887e8 4197
96d887e8
PH
4198static int
4199lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4200 struct symbol **sym, struct block **block)
96d887e8
PH
4201{
4202 return 0;
4203}
4204
4205static void
4206cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 4207 struct block *block)
96d887e8
PH
4208{
4209}
4c4b4cd2
PH
4210\f
4211 /* Symbol Lookup */
4212
c0431670
JB
4213/* Return nonzero if wild matching should be used when searching for
4214 all symbols matching LOOKUP_NAME.
4215
4216 LOOKUP_NAME is expected to be a symbol name after transformation
4217 for Ada lookups (see ada_name_for_lookup). */
4218
4219static int
4220should_use_wild_match (const char *lookup_name)
4221{
4222 return (strstr (lookup_name, "__") == NULL);
4223}
4224
4c4b4cd2
PH
4225/* Return the result of a standard (literal, C-like) lookup of NAME in
4226 given DOMAIN, visible from lexical block BLOCK. */
4227
4228static struct symbol *
4229standard_lookup (const char *name, const struct block *block,
4230 domain_enum domain)
4231{
4232 struct symbol *sym;
4c4b4cd2 4233
2570f2b7 4234 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4235 return sym;
2570f2b7
UW
4236 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4237 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4238 return sym;
4239}
4240
4241
4242/* Non-zero iff there is at least one non-function/non-enumeral symbol
4243 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4244 since they contend in overloading in the same way. */
4245static int
4246is_nonfunction (struct ada_symbol_info syms[], int n)
4247{
4248 int i;
4249
4250 for (i = 0; i < n; i += 1)
4251 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4252 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4253 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4254 return 1;
4255
4256 return 0;
4257}
4258
4259/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4260 struct types. Otherwise, they may not. */
14f9c5c9
AS
4261
4262static int
d2e4a39e 4263equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4264{
d2e4a39e 4265 if (type0 == type1)
14f9c5c9 4266 return 1;
d2e4a39e 4267 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4268 || TYPE_CODE (type0) != TYPE_CODE (type1))
4269 return 0;
d2e4a39e 4270 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4271 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4272 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4273 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4274 return 1;
d2e4a39e 4275
14f9c5c9
AS
4276 return 0;
4277}
4278
4279/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4280 no more defined than that of SYM1. */
14f9c5c9
AS
4281
4282static int
d2e4a39e 4283lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4284{
4285 if (sym0 == sym1)
4286 return 1;
176620f1 4287 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4288 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4289 return 0;
4290
d2e4a39e 4291 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4292 {
4293 case LOC_UNDEF:
4294 return 1;
4295 case LOC_TYPEDEF:
4296 {
4c4b4cd2
PH
4297 struct type *type0 = SYMBOL_TYPE (sym0);
4298 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4299 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4300 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4301 int len0 = strlen (name0);
5b4ee69b 4302
4c4b4cd2
PH
4303 return
4304 TYPE_CODE (type0) == TYPE_CODE (type1)
4305 && (equiv_types (type0, type1)
4306 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4307 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4308 }
4309 case LOC_CONST:
4310 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4311 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4312 default:
4313 return 0;
14f9c5c9
AS
4314 }
4315}
4316
4c4b4cd2
PH
4317/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4318 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4319
4320static void
76a01679
JB
4321add_defn_to_vec (struct obstack *obstackp,
4322 struct symbol *sym,
2570f2b7 4323 struct block *block)
14f9c5c9
AS
4324{
4325 int i;
4c4b4cd2 4326 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4327
529cad9c
PH
4328 /* Do not try to complete stub types, as the debugger is probably
4329 already scanning all symbols matching a certain name at the
4330 time when this function is called. Trying to replace the stub
4331 type by its associated full type will cause us to restart a scan
4332 which may lead to an infinite recursion. Instead, the client
4333 collecting the matching symbols will end up collecting several
4334 matches, with at least one of them complete. It can then filter
4335 out the stub ones if needed. */
4336
4c4b4cd2
PH
4337 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4338 {
4339 if (lesseq_defined_than (sym, prevDefns[i].sym))
4340 return;
4341 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4342 {
4343 prevDefns[i].sym = sym;
4344 prevDefns[i].block = block;
4c4b4cd2 4345 return;
76a01679 4346 }
4c4b4cd2
PH
4347 }
4348
4349 {
4350 struct ada_symbol_info info;
4351
4352 info.sym = sym;
4353 info.block = block;
4c4b4cd2
PH
4354 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4355 }
4356}
4357
4358/* Number of ada_symbol_info structures currently collected in
4359 current vector in *OBSTACKP. */
4360
76a01679
JB
4361static int
4362num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4363{
4364 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4365}
4366
4367/* Vector of ada_symbol_info structures currently collected in current
4368 vector in *OBSTACKP. If FINISH, close off the vector and return
4369 its final address. */
4370
76a01679 4371static struct ada_symbol_info *
4c4b4cd2
PH
4372defns_collected (struct obstack *obstackp, int finish)
4373{
4374 if (finish)
4375 return obstack_finish (obstackp);
4376 else
4377 return (struct ada_symbol_info *) obstack_base (obstackp);
4378}
4379
96d887e8
PH
4380/* Return a minimal symbol matching NAME according to Ada decoding
4381 rules. Returns NULL if there is no such minimal symbol. Names
4382 prefixed with "standard__" are handled specially: "standard__" is
4383 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4384
96d887e8
PH
4385struct minimal_symbol *
4386ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4387{
4c4b4cd2 4388 struct objfile *objfile;
96d887e8 4389 struct minimal_symbol *msymbol;
c0431670 4390 const int wild_match = should_use_wild_match (name);
4c4b4cd2 4391
c0431670
JB
4392 /* Special case: If the user specifies a symbol name inside package
4393 Standard, do a non-wild matching of the symbol name without
4394 the "standard__" prefix. This was primarily introduced in order
4395 to allow the user to specifically access the standard exceptions
4396 using, for instance, Standard.Constraint_Error when Constraint_Error
4397 is ambiguous (due to the user defining its own Constraint_Error
4398 entity inside its program). */
96d887e8 4399 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4400 name += sizeof ("standard__") - 1;
4c4b4cd2 4401
96d887e8
PH
4402 ALL_MSYMBOLS (objfile, msymbol)
4403 {
40658b94 4404 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
96d887e8
PH
4405 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4406 return msymbol;
4407 }
4c4b4cd2 4408
96d887e8
PH
4409 return NULL;
4410}
4c4b4cd2 4411
96d887e8
PH
4412/* For all subprograms that statically enclose the subprogram of the
4413 selected frame, add symbols matching identifier NAME in DOMAIN
4414 and their blocks to the list of data in OBSTACKP, as for
4415 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4416 wildcard prefix. */
4c4b4cd2 4417
96d887e8
PH
4418static void
4419add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4420 const char *name, domain_enum namespace,
96d887e8
PH
4421 int wild_match)
4422{
96d887e8 4423}
14f9c5c9 4424
96d887e8
PH
4425/* True if TYPE is definitely an artificial type supplied to a symbol
4426 for which no debugging information was given in the symbol file. */
14f9c5c9 4427
96d887e8
PH
4428static int
4429is_nondebugging_type (struct type *type)
4430{
0d5cff50 4431 const char *name = ada_type_name (type);
5b4ee69b 4432
96d887e8
PH
4433 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4434}
4c4b4cd2 4435
8f17729f
JB
4436/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4437 that are deemed "identical" for practical purposes.
4438
4439 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4440 types and that their number of enumerals is identical (in other
4441 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4442
4443static int
4444ada_identical_enum_types_p (struct type *type1, struct type *type2)
4445{
4446 int i;
4447
4448 /* The heuristic we use here is fairly conservative. We consider
4449 that 2 enumerate types are identical if they have the same
4450 number of enumerals and that all enumerals have the same
4451 underlying value and name. */
4452
4453 /* All enums in the type should have an identical underlying value. */
4454 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4455 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4456 return 0;
4457
4458 /* All enumerals should also have the same name (modulo any numerical
4459 suffix). */
4460 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4461 {
0d5cff50
DE
4462 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4463 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4464 int len_1 = strlen (name_1);
4465 int len_2 = strlen (name_2);
4466
4467 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4468 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4469 if (len_1 != len_2
4470 || strncmp (TYPE_FIELD_NAME (type1, i),
4471 TYPE_FIELD_NAME (type2, i),
4472 len_1) != 0)
4473 return 0;
4474 }
4475
4476 return 1;
4477}
4478
4479/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4480 that are deemed "identical" for practical purposes. Sometimes,
4481 enumerals are not strictly identical, but their types are so similar
4482 that they can be considered identical.
4483
4484 For instance, consider the following code:
4485
4486 type Color is (Black, Red, Green, Blue, White);
4487 type RGB_Color is new Color range Red .. Blue;
4488
4489 Type RGB_Color is a subrange of an implicit type which is a copy
4490 of type Color. If we call that implicit type RGB_ColorB ("B" is
4491 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4492 As a result, when an expression references any of the enumeral
4493 by name (Eg. "print green"), the expression is technically
4494 ambiguous and the user should be asked to disambiguate. But
4495 doing so would only hinder the user, since it wouldn't matter
4496 what choice he makes, the outcome would always be the same.
4497 So, for practical purposes, we consider them as the same. */
4498
4499static int
4500symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4501{
4502 int i;
4503
4504 /* Before performing a thorough comparison check of each type,
4505 we perform a series of inexpensive checks. We expect that these
4506 checks will quickly fail in the vast majority of cases, and thus
4507 help prevent the unnecessary use of a more expensive comparison.
4508 Said comparison also expects us to make some of these checks
4509 (see ada_identical_enum_types_p). */
4510
4511 /* Quick check: All symbols should have an enum type. */
4512 for (i = 0; i < nsyms; i++)
4513 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4514 return 0;
4515
4516 /* Quick check: They should all have the same value. */
4517 for (i = 1; i < nsyms; i++)
4518 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4519 return 0;
4520
4521 /* Quick check: They should all have the same number of enumerals. */
4522 for (i = 1; i < nsyms; i++)
4523 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4524 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4525 return 0;
4526
4527 /* All the sanity checks passed, so we might have a set of
4528 identical enumeration types. Perform a more complete
4529 comparison of the type of each symbol. */
4530 for (i = 1; i < nsyms; i++)
4531 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4532 SYMBOL_TYPE (syms[0].sym)))
4533 return 0;
4534
4535 return 1;
4536}
4537
96d887e8
PH
4538/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4539 duplicate other symbols in the list (The only case I know of where
4540 this happens is when object files containing stabs-in-ecoff are
4541 linked with files containing ordinary ecoff debugging symbols (or no
4542 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4543 Returns the number of items in the modified list. */
4c4b4cd2 4544
96d887e8
PH
4545static int
4546remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4547{
4548 int i, j;
4c4b4cd2 4549
8f17729f
JB
4550 /* We should never be called with less than 2 symbols, as there
4551 cannot be any extra symbol in that case. But it's easy to
4552 handle, since we have nothing to do in that case. */
4553 if (nsyms < 2)
4554 return nsyms;
4555
96d887e8
PH
4556 i = 0;
4557 while (i < nsyms)
4558 {
a35ddb44 4559 int remove_p = 0;
339c13b6
JB
4560
4561 /* If two symbols have the same name and one of them is a stub type,
4562 the get rid of the stub. */
4563
4564 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4565 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4566 {
4567 for (j = 0; j < nsyms; j++)
4568 {
4569 if (j != i
4570 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4571 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4572 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4573 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4574 remove_p = 1;
339c13b6
JB
4575 }
4576 }
4577
4578 /* Two symbols with the same name, same class and same address
4579 should be identical. */
4580
4581 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4582 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4583 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4584 {
4585 for (j = 0; j < nsyms; j += 1)
4586 {
4587 if (i != j
4588 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4589 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4590 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4591 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4592 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4593 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4594 remove_p = 1;
4c4b4cd2 4595 }
4c4b4cd2 4596 }
339c13b6 4597
a35ddb44 4598 if (remove_p)
339c13b6
JB
4599 {
4600 for (j = i + 1; j < nsyms; j += 1)
4601 syms[j - 1] = syms[j];
4602 nsyms -= 1;
4603 }
4604
96d887e8 4605 i += 1;
14f9c5c9 4606 }
8f17729f
JB
4607
4608 /* If all the remaining symbols are identical enumerals, then
4609 just keep the first one and discard the rest.
4610
4611 Unlike what we did previously, we do not discard any entry
4612 unless they are ALL identical. This is because the symbol
4613 comparison is not a strict comparison, but rather a practical
4614 comparison. If all symbols are considered identical, then
4615 we can just go ahead and use the first one and discard the rest.
4616 But if we cannot reduce the list to a single element, we have
4617 to ask the user to disambiguate anyways. And if we have to
4618 present a multiple-choice menu, it's less confusing if the list
4619 isn't missing some choices that were identical and yet distinct. */
4620 if (symbols_are_identical_enums (syms, nsyms))
4621 nsyms = 1;
4622
96d887e8 4623 return nsyms;
14f9c5c9
AS
4624}
4625
96d887e8
PH
4626/* Given a type that corresponds to a renaming entity, use the type name
4627 to extract the scope (package name or function name, fully qualified,
4628 and following the GNAT encoding convention) where this renaming has been
4629 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4630
96d887e8
PH
4631static char *
4632xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4633{
96d887e8 4634 /* The renaming types adhere to the following convention:
0963b4bd 4635 <scope>__<rename>___<XR extension>.
96d887e8
PH
4636 So, to extract the scope, we search for the "___XR" extension,
4637 and then backtrack until we find the first "__". */
76a01679 4638
96d887e8
PH
4639 const char *name = type_name_no_tag (renaming_type);
4640 char *suffix = strstr (name, "___XR");
4641 char *last;
4642 int scope_len;
4643 char *scope;
14f9c5c9 4644
96d887e8
PH
4645 /* Now, backtrack a bit until we find the first "__". Start looking
4646 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4647
96d887e8
PH
4648 for (last = suffix - 3; last > name; last--)
4649 if (last[0] == '_' && last[1] == '_')
4650 break;
76a01679 4651
96d887e8 4652 /* Make a copy of scope and return it. */
14f9c5c9 4653
96d887e8
PH
4654 scope_len = last - name;
4655 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4656
96d887e8
PH
4657 strncpy (scope, name, scope_len);
4658 scope[scope_len] = '\0';
4c4b4cd2 4659
96d887e8 4660 return scope;
4c4b4cd2
PH
4661}
4662
96d887e8 4663/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4664
96d887e8
PH
4665static int
4666is_package_name (const char *name)
4c4b4cd2 4667{
96d887e8
PH
4668 /* Here, We take advantage of the fact that no symbols are generated
4669 for packages, while symbols are generated for each function.
4670 So the condition for NAME represent a package becomes equivalent
4671 to NAME not existing in our list of symbols. There is only one
4672 small complication with library-level functions (see below). */
4c4b4cd2 4673
96d887e8 4674 char *fun_name;
76a01679 4675
96d887e8
PH
4676 /* If it is a function that has not been defined at library level,
4677 then we should be able to look it up in the symbols. */
4678 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4679 return 0;
14f9c5c9 4680
96d887e8
PH
4681 /* Library-level function names start with "_ada_". See if function
4682 "_ada_" followed by NAME can be found. */
14f9c5c9 4683
96d887e8 4684 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4685 functions names cannot contain "__" in them. */
96d887e8
PH
4686 if (strstr (name, "__") != NULL)
4687 return 0;
4c4b4cd2 4688
b435e160 4689 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4690
96d887e8
PH
4691 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4692}
14f9c5c9 4693
96d887e8 4694/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4695 not visible from FUNCTION_NAME. */
14f9c5c9 4696
96d887e8 4697static int
0d5cff50 4698old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4699{
aeb5907d
JB
4700 char *scope;
4701
4702 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4703 return 0;
4704
4705 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4706
96d887e8 4707 make_cleanup (xfree, scope);
14f9c5c9 4708
96d887e8
PH
4709 /* If the rename has been defined in a package, then it is visible. */
4710 if (is_package_name (scope))
aeb5907d 4711 return 0;
14f9c5c9 4712
96d887e8
PH
4713 /* Check that the rename is in the current function scope by checking
4714 that its name starts with SCOPE. */
76a01679 4715
96d887e8
PH
4716 /* If the function name starts with "_ada_", it means that it is
4717 a library-level function. Strip this prefix before doing the
4718 comparison, as the encoding for the renaming does not contain
4719 this prefix. */
4720 if (strncmp (function_name, "_ada_", 5) == 0)
4721 function_name += 5;
f26caa11 4722
aeb5907d 4723 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4724}
4725
aeb5907d
JB
4726/* Remove entries from SYMS that corresponds to a renaming entity that
4727 is not visible from the function associated with CURRENT_BLOCK or
4728 that is superfluous due to the presence of more specific renaming
4729 information. Places surviving symbols in the initial entries of
4730 SYMS and returns the number of surviving symbols.
96d887e8
PH
4731
4732 Rationale:
aeb5907d
JB
4733 First, in cases where an object renaming is implemented as a
4734 reference variable, GNAT may produce both the actual reference
4735 variable and the renaming encoding. In this case, we discard the
4736 latter.
4737
4738 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4739 entity. Unfortunately, STABS currently does not support the definition
4740 of types that are local to a given lexical block, so all renamings types
4741 are emitted at library level. As a consequence, if an application
4742 contains two renaming entities using the same name, and a user tries to
4743 print the value of one of these entities, the result of the ada symbol
4744 lookup will also contain the wrong renaming type.
f26caa11 4745
96d887e8
PH
4746 This function partially covers for this limitation by attempting to
4747 remove from the SYMS list renaming symbols that should be visible
4748 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4749 method with the current information available. The implementation
4750 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4751
4752 - When the user tries to print a rename in a function while there
4753 is another rename entity defined in a package: Normally, the
4754 rename in the function has precedence over the rename in the
4755 package, so the latter should be removed from the list. This is
4756 currently not the case.
4757
4758 - This function will incorrectly remove valid renames if
4759 the CURRENT_BLOCK corresponds to a function which symbol name
4760 has been changed by an "Export" pragma. As a consequence,
4761 the user will be unable to print such rename entities. */
4c4b4cd2 4762
14f9c5c9 4763static int
aeb5907d
JB
4764remove_irrelevant_renamings (struct ada_symbol_info *syms,
4765 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4766{
4767 struct symbol *current_function;
0d5cff50 4768 const char *current_function_name;
4c4b4cd2 4769 int i;
aeb5907d
JB
4770 int is_new_style_renaming;
4771
4772 /* If there is both a renaming foo___XR... encoded as a variable and
4773 a simple variable foo in the same block, discard the latter.
0963b4bd 4774 First, zero out such symbols, then compress. */
aeb5907d
JB
4775 is_new_style_renaming = 0;
4776 for (i = 0; i < nsyms; i += 1)
4777 {
4778 struct symbol *sym = syms[i].sym;
4779 struct block *block = syms[i].block;
4780 const char *name;
4781 const char *suffix;
4782
4783 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4784 continue;
4785 name = SYMBOL_LINKAGE_NAME (sym);
4786 suffix = strstr (name, "___XR");
4787
4788 if (suffix != NULL)
4789 {
4790 int name_len = suffix - name;
4791 int j;
5b4ee69b 4792
aeb5907d
JB
4793 is_new_style_renaming = 1;
4794 for (j = 0; j < nsyms; j += 1)
4795 if (i != j && syms[j].sym != NULL
4796 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4797 name_len) == 0
4798 && block == syms[j].block)
4799 syms[j].sym = NULL;
4800 }
4801 }
4802 if (is_new_style_renaming)
4803 {
4804 int j, k;
4805
4806 for (j = k = 0; j < nsyms; j += 1)
4807 if (syms[j].sym != NULL)
4808 {
4809 syms[k] = syms[j];
4810 k += 1;
4811 }
4812 return k;
4813 }
4c4b4cd2
PH
4814
4815 /* Extract the function name associated to CURRENT_BLOCK.
4816 Abort if unable to do so. */
76a01679 4817
4c4b4cd2
PH
4818 if (current_block == NULL)
4819 return nsyms;
76a01679 4820
7f0df278 4821 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4822 if (current_function == NULL)
4823 return nsyms;
4824
4825 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4826 if (current_function_name == NULL)
4827 return nsyms;
4828
4829 /* Check each of the symbols, and remove it from the list if it is
4830 a type corresponding to a renaming that is out of the scope of
4831 the current block. */
4832
4833 i = 0;
4834 while (i < nsyms)
4835 {
aeb5907d
JB
4836 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4837 == ADA_OBJECT_RENAMING
4838 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4839 {
4840 int j;
5b4ee69b 4841
aeb5907d 4842 for (j = i + 1; j < nsyms; j += 1)
76a01679 4843 syms[j - 1] = syms[j];
4c4b4cd2
PH
4844 nsyms -= 1;
4845 }
4846 else
4847 i += 1;
4848 }
4849
4850 return nsyms;
4851}
4852
339c13b6
JB
4853/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4854 whose name and domain match NAME and DOMAIN respectively.
4855 If no match was found, then extend the search to "enclosing"
4856 routines (in other words, if we're inside a nested function,
4857 search the symbols defined inside the enclosing functions).
4858
4859 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4860
4861static void
4862ada_add_local_symbols (struct obstack *obstackp, const char *name,
4863 struct block *block, domain_enum domain,
4864 int wild_match)
4865{
4866 int block_depth = 0;
4867
4868 while (block != NULL)
4869 {
4870 block_depth += 1;
4871 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4872
4873 /* If we found a non-function match, assume that's the one. */
4874 if (is_nonfunction (defns_collected (obstackp, 0),
4875 num_defns_collected (obstackp)))
4876 return;
4877
4878 block = BLOCK_SUPERBLOCK (block);
4879 }
4880
4881 /* If no luck so far, try to find NAME as a local symbol in some lexically
4882 enclosing subprogram. */
4883 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4884 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4885}
4886
ccefe4c4 4887/* An object of this type is used as the user_data argument when
40658b94 4888 calling the map_matching_symbols method. */
ccefe4c4 4889
40658b94 4890struct match_data
ccefe4c4 4891{
40658b94 4892 struct objfile *objfile;
ccefe4c4 4893 struct obstack *obstackp;
40658b94
PH
4894 struct symbol *arg_sym;
4895 int found_sym;
ccefe4c4
TT
4896};
4897
40658b94
PH
4898/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4899 to a list of symbols. DATA0 is a pointer to a struct match_data *
4900 containing the obstack that collects the symbol list, the file that SYM
4901 must come from, a flag indicating whether a non-argument symbol has
4902 been found in the current block, and the last argument symbol
4903 passed in SYM within the current block (if any). When SYM is null,
4904 marking the end of a block, the argument symbol is added if no
4905 other has been found. */
ccefe4c4 4906
40658b94
PH
4907static int
4908aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4909{
40658b94
PH
4910 struct match_data *data = (struct match_data *) data0;
4911
4912 if (sym == NULL)
4913 {
4914 if (!data->found_sym && data->arg_sym != NULL)
4915 add_defn_to_vec (data->obstackp,
4916 fixup_symbol_section (data->arg_sym, data->objfile),
4917 block);
4918 data->found_sym = 0;
4919 data->arg_sym = NULL;
4920 }
4921 else
4922 {
4923 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4924 return 0;
4925 else if (SYMBOL_IS_ARGUMENT (sym))
4926 data->arg_sym = sym;
4927 else
4928 {
4929 data->found_sym = 1;
4930 add_defn_to_vec (data->obstackp,
4931 fixup_symbol_section (sym, data->objfile),
4932 block);
4933 }
4934 }
4935 return 0;
4936}
4937
4938/* Compare STRING1 to STRING2, with results as for strcmp.
4939 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4940 implies compare_names (STRING1, STRING2) (they may differ as to
4941 what symbols compare equal). */
5b4ee69b 4942
40658b94
PH
4943static int
4944compare_names (const char *string1, const char *string2)
4945{
4946 while (*string1 != '\0' && *string2 != '\0')
4947 {
4948 if (isspace (*string1) || isspace (*string2))
4949 return strcmp_iw_ordered (string1, string2);
4950 if (*string1 != *string2)
4951 break;
4952 string1 += 1;
4953 string2 += 1;
4954 }
4955 switch (*string1)
4956 {
4957 case '(':
4958 return strcmp_iw_ordered (string1, string2);
4959 case '_':
4960 if (*string2 == '\0')
4961 {
052874e8 4962 if (is_name_suffix (string1))
40658b94
PH
4963 return 0;
4964 else
1a1d5513 4965 return 1;
40658b94 4966 }
dbb8534f 4967 /* FALLTHROUGH */
40658b94
PH
4968 default:
4969 if (*string2 == '(')
4970 return strcmp_iw_ordered (string1, string2);
4971 else
4972 return *string1 - *string2;
4973 }
ccefe4c4
TT
4974}
4975
339c13b6
JB
4976/* Add to OBSTACKP all non-local symbols whose name and domain match
4977 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4978 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4979
4980static void
40658b94
PH
4981add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4982 domain_enum domain, int global,
4983 int is_wild_match)
339c13b6
JB
4984{
4985 struct objfile *objfile;
40658b94 4986 struct match_data data;
339c13b6 4987
6475f2fe 4988 memset (&data, 0, sizeof data);
ccefe4c4 4989 data.obstackp = obstackp;
339c13b6 4990
ccefe4c4 4991 ALL_OBJFILES (objfile)
40658b94
PH
4992 {
4993 data.objfile = objfile;
4994
4995 if (is_wild_match)
4996 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4997 aux_add_nonlocal_symbols, &data,
4998 wild_match, NULL);
4999 else
5000 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5001 aux_add_nonlocal_symbols, &data,
5002 full_match, compare_names);
5003 }
5004
5005 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5006 {
5007 ALL_OBJFILES (objfile)
5008 {
5009 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5010 strcpy (name1, "_ada_");
5011 strcpy (name1 + sizeof ("_ada_") - 1, name);
5012 data.objfile = objfile;
0963b4bd
MS
5013 objfile->sf->qf->map_matching_symbols (name1, domain,
5014 objfile, global,
5015 aux_add_nonlocal_symbols,
5016 &data,
40658b94
PH
5017 full_match, compare_names);
5018 }
5019 }
339c13b6
JB
5020}
5021
4c4b4cd2
PH
5022/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
5023 scope and in global scopes, returning the number of matches. Sets
6c9353d3 5024 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
5025 indicating the symbols found and the blocks and symbol tables (if
5026 any) in which they were found. This vector are transient---good only to
5027 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
5028 symbol match within the nest of blocks whose innermost member is BLOCK0,
5029 is the one match returned (no other matches in that or
d9680e73
TT
5030 enclosing blocks is returned). If there are any matches in or
5031 surrounding BLOCK0, then these alone are returned. Otherwise, if
5032 FULL_SEARCH is non-zero, then the search extends to global and
5033 file-scope (static) symbol tables.
4c4b4cd2
PH
5034 Names prefixed with "standard__" are handled specially: "standard__"
5035 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
5036
5037int
4c4b4cd2 5038ada_lookup_symbol_list (const char *name0, const struct block *block0,
d9680e73
TT
5039 domain_enum namespace,
5040 struct ada_symbol_info **results,
5041 int full_search)
14f9c5c9
AS
5042{
5043 struct symbol *sym;
14f9c5c9 5044 struct block *block;
4c4b4cd2 5045 const char *name;
c0431670 5046 const int wild_match = should_use_wild_match (name0);
14f9c5c9 5047 int cacheIfUnique;
4c4b4cd2 5048 int ndefns;
14f9c5c9 5049
4c4b4cd2
PH
5050 obstack_free (&symbol_list_obstack, NULL);
5051 obstack_init (&symbol_list_obstack);
14f9c5c9 5052
14f9c5c9
AS
5053 cacheIfUnique = 0;
5054
5055 /* Search specified block and its superiors. */
5056
4c4b4cd2 5057 name = name0;
76a01679
JB
5058 block = (struct block *) block0; /* FIXME: No cast ought to be
5059 needed, but adding const will
5060 have a cascade effect. */
339c13b6
JB
5061
5062 /* Special case: If the user specifies a symbol name inside package
5063 Standard, do a non-wild matching of the symbol name without
5064 the "standard__" prefix. This was primarily introduced in order
5065 to allow the user to specifically access the standard exceptions
5066 using, for instance, Standard.Constraint_Error when Constraint_Error
5067 is ambiguous (due to the user defining its own Constraint_Error
5068 entity inside its program). */
4c4b4cd2
PH
5069 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5070 {
4c4b4cd2
PH
5071 block = NULL;
5072 name = name0 + sizeof ("standard__") - 1;
5073 }
5074
339c13b6 5075 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5076
339c13b6
JB
5077 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5078 wild_match);
d9680e73 5079 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
14f9c5c9 5080 goto done;
d2e4a39e 5081
339c13b6
JB
5082 /* No non-global symbols found. Check our cache to see if we have
5083 already performed this search before. If we have, then return
5084 the same result. */
5085
14f9c5c9 5086 cacheIfUnique = 1;
2570f2b7 5087 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5088 {
5089 if (sym != NULL)
2570f2b7 5090 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5091 goto done;
5092 }
14f9c5c9 5093
339c13b6
JB
5094 /* Search symbols from all global blocks. */
5095
40658b94
PH
5096 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5097 wild_match);
d2e4a39e 5098
4c4b4cd2 5099 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5100 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5101
4c4b4cd2 5102 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94
PH
5103 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5104 wild_match);
14f9c5c9 5105
4c4b4cd2
PH
5106done:
5107 ndefns = num_defns_collected (&symbol_list_obstack);
5108 *results = defns_collected (&symbol_list_obstack, 1);
5109
5110 ndefns = remove_extra_symbols (*results, ndefns);
5111
2ad01556 5112 if (ndefns == 0 && full_search)
2570f2b7 5113 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5114
2ad01556 5115 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5116 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5117
aeb5907d 5118 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5119
14f9c5c9
AS
5120 return ndefns;
5121}
5122
f8eba3c6
TT
5123/* If NAME is the name of an entity, return a string that should
5124 be used to look that entity up in Ada units. This string should
5125 be deallocated after use using xfree.
5126
5127 NAME can have any form that the "break" or "print" commands might
5128 recognize. In other words, it does not have to be the "natural"
5129 name, or the "encoded" name. */
5130
5131char *
5132ada_name_for_lookup (const char *name)
5133{
5134 char *canon;
5135 int nlen = strlen (name);
5136
5137 if (name[0] == '<' && name[nlen - 1] == '>')
5138 {
5139 canon = xmalloc (nlen - 1);
5140 memcpy (canon, name + 1, nlen - 2);
5141 canon[nlen - 2] = '\0';
5142 }
5143 else
5144 canon = xstrdup (ada_encode (ada_fold_name (name)));
5145 return canon;
5146}
5147
5148/* Implementation of the la_iterate_over_symbols method. */
5149
5150static void
5151ada_iterate_over_symbols (const struct block *block,
5152 const char *name, domain_enum domain,
8e704927 5153 symbol_found_callback_ftype *callback,
f8eba3c6
TT
5154 void *data)
5155{
5156 int ndefs, i;
5157 struct ada_symbol_info *results;
5158
d9680e73 5159 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
f8eba3c6
TT
5160 for (i = 0; i < ndefs; ++i)
5161 {
5162 if (! (*callback) (results[i].sym, data))
5163 break;
5164 }
5165}
5166
d2e4a39e 5167struct symbol *
aeb5907d 5168ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 5169 domain_enum namespace, struct block **block_found)
14f9c5c9 5170{
4c4b4cd2 5171 struct ada_symbol_info *candidates;
14f9c5c9
AS
5172 int n_candidates;
5173
d9680e73
TT
5174 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates,
5175 1);
14f9c5c9
AS
5176
5177 if (n_candidates == 0)
5178 return NULL;
4c4b4cd2 5179
aeb5907d
JB
5180 if (block_found != NULL)
5181 *block_found = candidates[0].block;
4c4b4cd2 5182
21b556f4 5183 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
5184}
5185
5186/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5187 scope and in global scopes, or NULL if none. NAME is folded and
5188 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5189 choosing the first symbol if there are multiple choices.
aeb5907d
JB
5190 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
5191 table in which the symbol was found (in both cases, these
5192 assignments occur only if the pointers are non-null). */
5193struct symbol *
5194ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5195 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
5196{
5197 if (is_a_field_of_this != NULL)
5198 *is_a_field_of_this = 0;
5199
5200 return
5201 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 5202 block0, namespace, NULL);
4c4b4cd2 5203}
14f9c5c9 5204
4c4b4cd2
PH
5205static struct symbol *
5206ada_lookup_symbol_nonlocal (const char *name,
76a01679 5207 const struct block *block,
21b556f4 5208 const domain_enum domain)
4c4b4cd2 5209{
94af9270 5210 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5211}
5212
5213
4c4b4cd2
PH
5214/* True iff STR is a possible encoded suffix of a normal Ada name
5215 that is to be ignored for matching purposes. Suffixes of parallel
5216 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5217 are given by any of the regular expressions:
4c4b4cd2 5218
babe1480
JB
5219 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5220 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5221 TKB [subprogram suffix for task bodies]
babe1480 5222 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5223 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5224
5225 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5226 match is performed. This sequence is used to differentiate homonyms,
5227 is an optional part of a valid name suffix. */
4c4b4cd2 5228
14f9c5c9 5229static int
d2e4a39e 5230is_name_suffix (const char *str)
14f9c5c9
AS
5231{
5232 int k;
4c4b4cd2
PH
5233 const char *matching;
5234 const int len = strlen (str);
5235
babe1480
JB
5236 /* Skip optional leading __[0-9]+. */
5237
4c4b4cd2
PH
5238 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5239 {
babe1480
JB
5240 str += 3;
5241 while (isdigit (str[0]))
5242 str += 1;
4c4b4cd2 5243 }
babe1480
JB
5244
5245 /* [.$][0-9]+ */
4c4b4cd2 5246
babe1480 5247 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5248 {
babe1480 5249 matching = str + 1;
4c4b4cd2
PH
5250 while (isdigit (matching[0]))
5251 matching += 1;
5252 if (matching[0] == '\0')
5253 return 1;
5254 }
5255
5256 /* ___[0-9]+ */
babe1480 5257
4c4b4cd2
PH
5258 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5259 {
5260 matching = str + 3;
5261 while (isdigit (matching[0]))
5262 matching += 1;
5263 if (matching[0] == '\0')
5264 return 1;
5265 }
5266
9ac7f98e
JB
5267 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5268
5269 if (strcmp (str, "TKB") == 0)
5270 return 1;
5271
529cad9c
PH
5272#if 0
5273 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5274 with a N at the end. Unfortunately, the compiler uses the same
5275 convention for other internal types it creates. So treating
529cad9c 5276 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5277 some regressions. For instance, consider the case of an enumerated
5278 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5279 name ends with N.
5280 Having a single character like this as a suffix carrying some
0963b4bd 5281 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5282 to be something like "_N" instead. In the meantime, do not do
5283 the following check. */
5284 /* Protected Object Subprograms */
5285 if (len == 1 && str [0] == 'N')
5286 return 1;
5287#endif
5288
5289 /* _E[0-9]+[bs]$ */
5290 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5291 {
5292 matching = str + 3;
5293 while (isdigit (matching[0]))
5294 matching += 1;
5295 if ((matching[0] == 'b' || matching[0] == 's')
5296 && matching [1] == '\0')
5297 return 1;
5298 }
5299
4c4b4cd2
PH
5300 /* ??? We should not modify STR directly, as we are doing below. This
5301 is fine in this case, but may become problematic later if we find
5302 that this alternative did not work, and want to try matching
5303 another one from the begining of STR. Since we modified it, we
5304 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5305 if (str[0] == 'X')
5306 {
5307 str += 1;
d2e4a39e 5308 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5309 {
5310 if (str[0] != 'n' && str[0] != 'b')
5311 return 0;
5312 str += 1;
5313 }
14f9c5c9 5314 }
babe1480 5315
14f9c5c9
AS
5316 if (str[0] == '\000')
5317 return 1;
babe1480 5318
d2e4a39e 5319 if (str[0] == '_')
14f9c5c9
AS
5320 {
5321 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5322 return 0;
d2e4a39e 5323 if (str[2] == '_')
4c4b4cd2 5324 {
61ee279c
PH
5325 if (strcmp (str + 3, "JM") == 0)
5326 return 1;
5327 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5328 the LJM suffix in favor of the JM one. But we will
5329 still accept LJM as a valid suffix for a reasonable
5330 amount of time, just to allow ourselves to debug programs
5331 compiled using an older version of GNAT. */
4c4b4cd2
PH
5332 if (strcmp (str + 3, "LJM") == 0)
5333 return 1;
5334 if (str[3] != 'X')
5335 return 0;
1265e4aa
JB
5336 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5337 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5338 return 1;
5339 if (str[4] == 'R' && str[5] != 'T')
5340 return 1;
5341 return 0;
5342 }
5343 if (!isdigit (str[2]))
5344 return 0;
5345 for (k = 3; str[k] != '\0'; k += 1)
5346 if (!isdigit (str[k]) && str[k] != '_')
5347 return 0;
14f9c5c9
AS
5348 return 1;
5349 }
4c4b4cd2 5350 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5351 {
4c4b4cd2
PH
5352 for (k = 2; str[k] != '\0'; k += 1)
5353 if (!isdigit (str[k]) && str[k] != '_')
5354 return 0;
14f9c5c9
AS
5355 return 1;
5356 }
5357 return 0;
5358}
d2e4a39e 5359
aeb5907d
JB
5360/* Return non-zero if the string starting at NAME and ending before
5361 NAME_END contains no capital letters. */
529cad9c
PH
5362
5363static int
5364is_valid_name_for_wild_match (const char *name0)
5365{
5366 const char *decoded_name = ada_decode (name0);
5367 int i;
5368
5823c3ef
JB
5369 /* If the decoded name starts with an angle bracket, it means that
5370 NAME0 does not follow the GNAT encoding format. It should then
5371 not be allowed as a possible wild match. */
5372 if (decoded_name[0] == '<')
5373 return 0;
5374
529cad9c
PH
5375 for (i=0; decoded_name[i] != '\0'; i++)
5376 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5377 return 0;
5378
5379 return 1;
5380}
5381
73589123
PH
5382/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5383 that could start a simple name. Assumes that *NAMEP points into
5384 the string beginning at NAME0. */
4c4b4cd2 5385
14f9c5c9 5386static int
73589123 5387advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5388{
73589123 5389 const char *name = *namep;
5b4ee69b 5390
5823c3ef 5391 while (1)
14f9c5c9 5392 {
aa27d0b3 5393 int t0, t1;
73589123
PH
5394
5395 t0 = *name;
5396 if (t0 == '_')
5397 {
5398 t1 = name[1];
5399 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5400 {
5401 name += 1;
5402 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5403 break;
5404 else
5405 name += 1;
5406 }
aa27d0b3
JB
5407 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5408 || name[2] == target0))
73589123
PH
5409 {
5410 name += 2;
5411 break;
5412 }
5413 else
5414 return 0;
5415 }
5416 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5417 name += 1;
5418 else
5823c3ef 5419 return 0;
73589123
PH
5420 }
5421
5422 *namep = name;
5423 return 1;
5424}
5425
5426/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5427 informational suffixes of NAME (i.e., for which is_name_suffix is
5428 true). Assumes that PATN is a lower-cased Ada simple name. */
5429
5430static int
5431wild_match (const char *name, const char *patn)
5432{
5433 const char *p, *n;
5434 const char *name0 = name;
5435
5436 while (1)
5437 {
5438 const char *match = name;
5439
5440 if (*name == *patn)
5441 {
5442 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5443 if (*p != *name)
5444 break;
5445 if (*p == '\0' && is_name_suffix (name))
5446 return match != name0 && !is_valid_name_for_wild_match (name0);
5447
5448 if (name[-1] == '_')
5449 name -= 1;
5450 }
5451 if (!advance_wild_match (&name, name0, *patn))
5452 return 1;
96d887e8 5453 }
96d887e8
PH
5454}
5455
40658b94
PH
5456/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5457 informational suffix. */
5458
c4d840bd
PH
5459static int
5460full_match (const char *sym_name, const char *search_name)
5461{
40658b94 5462 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5463}
5464
5465
96d887e8
PH
5466/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5467 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5468 (if necessary). If WILD, treat as NAME with a wildcard prefix.
96d887e8
PH
5469 OBJFILE is the section containing BLOCK.
5470 SYMTAB is recorded with each symbol added. */
5471
5472static void
5473ada_add_block_symbols (struct obstack *obstackp,
76a01679 5474 struct block *block, const char *name,
96d887e8 5475 domain_enum domain, struct objfile *objfile,
2570f2b7 5476 int wild)
96d887e8
PH
5477{
5478 struct dict_iterator iter;
5479 int name_len = strlen (name);
5480 /* A matching argument symbol, if any. */
5481 struct symbol *arg_sym;
5482 /* Set true when we find a matching non-argument symbol. */
5483 int found_sym;
5484 struct symbol *sym;
5485
5486 arg_sym = NULL;
5487 found_sym = 0;
5488 if (wild)
5489 {
c4d840bd
PH
5490 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5491 wild_match, &iter);
5492 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
76a01679 5493 {
5eeb2539
AR
5494 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5495 SYMBOL_DOMAIN (sym), domain)
73589123 5496 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5497 {
2a2d4dc3
AS
5498 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5499 continue;
5500 else if (SYMBOL_IS_ARGUMENT (sym))
5501 arg_sym = sym;
5502 else
5503 {
76a01679
JB
5504 found_sym = 1;
5505 add_defn_to_vec (obstackp,
5506 fixup_symbol_section (sym, objfile),
2570f2b7 5507 block);
76a01679
JB
5508 }
5509 }
5510 }
96d887e8
PH
5511 }
5512 else
5513 {
c4d840bd 5514 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
40658b94 5515 full_match, &iter);
c4d840bd 5516 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
76a01679 5517 {
5eeb2539
AR
5518 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5519 SYMBOL_DOMAIN (sym), domain))
76a01679 5520 {
c4d840bd
PH
5521 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5522 {
5523 if (SYMBOL_IS_ARGUMENT (sym))
5524 arg_sym = sym;
5525 else
2a2d4dc3 5526 {
c4d840bd
PH
5527 found_sym = 1;
5528 add_defn_to_vec (obstackp,
5529 fixup_symbol_section (sym, objfile),
5530 block);
2a2d4dc3 5531 }
c4d840bd 5532 }
76a01679
JB
5533 }
5534 }
96d887e8
PH
5535 }
5536
5537 if (!found_sym && arg_sym != NULL)
5538 {
76a01679
JB
5539 add_defn_to_vec (obstackp,
5540 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5541 block);
96d887e8
PH
5542 }
5543
5544 if (!wild)
5545 {
5546 arg_sym = NULL;
5547 found_sym = 0;
5548
5549 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5550 {
5eeb2539
AR
5551 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5552 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5553 {
5554 int cmp;
5555
5556 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5557 if (cmp == 0)
5558 {
5559 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5560 if (cmp == 0)
5561 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5562 name_len);
5563 }
5564
5565 if (cmp == 0
5566 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5567 {
2a2d4dc3
AS
5568 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5569 {
5570 if (SYMBOL_IS_ARGUMENT (sym))
5571 arg_sym = sym;
5572 else
5573 {
5574 found_sym = 1;
5575 add_defn_to_vec (obstackp,
5576 fixup_symbol_section (sym, objfile),
5577 block);
5578 }
5579 }
76a01679
JB
5580 }
5581 }
76a01679 5582 }
96d887e8
PH
5583
5584 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5585 They aren't parameters, right? */
5586 if (!found_sym && arg_sym != NULL)
5587 {
5588 add_defn_to_vec (obstackp,
76a01679 5589 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5590 block);
96d887e8
PH
5591 }
5592 }
5593}
5594\f
41d27058
JB
5595
5596 /* Symbol Completion */
5597
5598/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5599 name in a form that's appropriate for the completion. The result
5600 does not need to be deallocated, but is only good until the next call.
5601
5602 TEXT_LEN is equal to the length of TEXT.
5603 Perform a wild match if WILD_MATCH is set.
5604 ENCODED should be set if TEXT represents the start of a symbol name
5605 in its encoded form. */
5606
5607static const char *
5608symbol_completion_match (const char *sym_name,
5609 const char *text, int text_len,
5610 int wild_match, int encoded)
5611{
41d27058
JB
5612 const int verbatim_match = (text[0] == '<');
5613 int match = 0;
5614
5615 if (verbatim_match)
5616 {
5617 /* Strip the leading angle bracket. */
5618 text = text + 1;
5619 text_len--;
5620 }
5621
5622 /* First, test against the fully qualified name of the symbol. */
5623
5624 if (strncmp (sym_name, text, text_len) == 0)
5625 match = 1;
5626
5627 if (match && !encoded)
5628 {
5629 /* One needed check before declaring a positive match is to verify
5630 that iff we are doing a verbatim match, the decoded version
5631 of the symbol name starts with '<'. Otherwise, this symbol name
5632 is not a suitable completion. */
5633 const char *sym_name_copy = sym_name;
5634 int has_angle_bracket;
5635
5636 sym_name = ada_decode (sym_name);
5637 has_angle_bracket = (sym_name[0] == '<');
5638 match = (has_angle_bracket == verbatim_match);
5639 sym_name = sym_name_copy;
5640 }
5641
5642 if (match && !verbatim_match)
5643 {
5644 /* When doing non-verbatim match, another check that needs to
5645 be done is to verify that the potentially matching symbol name
5646 does not include capital letters, because the ada-mode would
5647 not be able to understand these symbol names without the
5648 angle bracket notation. */
5649 const char *tmp;
5650
5651 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5652 if (*tmp != '\0')
5653 match = 0;
5654 }
5655
5656 /* Second: Try wild matching... */
5657
5658 if (!match && wild_match)
5659 {
5660 /* Since we are doing wild matching, this means that TEXT
5661 may represent an unqualified symbol name. We therefore must
5662 also compare TEXT against the unqualified name of the symbol. */
5663 sym_name = ada_unqualified_name (ada_decode (sym_name));
5664
5665 if (strncmp (sym_name, text, text_len) == 0)
5666 match = 1;
5667 }
5668
5669 /* Finally: If we found a mach, prepare the result to return. */
5670
5671 if (!match)
5672 return NULL;
5673
5674 if (verbatim_match)
5675 sym_name = add_angle_brackets (sym_name);
5676
5677 if (!encoded)
5678 sym_name = ada_decode (sym_name);
5679
5680 return sym_name;
5681}
5682
5683/* A companion function to ada_make_symbol_completion_list().
5684 Check if SYM_NAME represents a symbol which name would be suitable
5685 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5686 it is appended at the end of the given string vector SV.
5687
5688 ORIG_TEXT is the string original string from the user command
5689 that needs to be completed. WORD is the entire command on which
5690 completion should be performed. These two parameters are used to
5691 determine which part of the symbol name should be added to the
5692 completion vector.
5693 if WILD_MATCH is set, then wild matching is performed.
5694 ENCODED should be set if TEXT represents a symbol name in its
5695 encoded formed (in which case the completion should also be
5696 encoded). */
5697
5698static void
d6565258 5699symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5700 const char *sym_name,
5701 const char *text, int text_len,
5702 const char *orig_text, const char *word,
5703 int wild_match, int encoded)
5704{
5705 const char *match = symbol_completion_match (sym_name, text, text_len,
5706 wild_match, encoded);
5707 char *completion;
5708
5709 if (match == NULL)
5710 return;
5711
5712 /* We found a match, so add the appropriate completion to the given
5713 string vector. */
5714
5715 if (word == orig_text)
5716 {
5717 completion = xmalloc (strlen (match) + 5);
5718 strcpy (completion, match);
5719 }
5720 else if (word > orig_text)
5721 {
5722 /* Return some portion of sym_name. */
5723 completion = xmalloc (strlen (match) + 5);
5724 strcpy (completion, match + (word - orig_text));
5725 }
5726 else
5727 {
5728 /* Return some of ORIG_TEXT plus sym_name. */
5729 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5730 strncpy (completion, word, orig_text - word);
5731 completion[orig_text - word] = '\0';
5732 strcat (completion, match);
5733 }
5734
d6565258 5735 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5736}
5737
ccefe4c4 5738/* An object of this type is passed as the user_data argument to the
7b08b9eb 5739 expand_partial_symbol_names method. */
ccefe4c4
TT
5740struct add_partial_datum
5741{
5742 VEC(char_ptr) **completions;
5743 char *text;
5744 int text_len;
5745 char *text0;
5746 char *word;
5747 int wild_match;
5748 int encoded;
5749};
5750
7b08b9eb
JK
5751/* A callback for expand_partial_symbol_names. */
5752static int
e078317b 5753ada_expand_partial_symbol_name (const char *name, void *user_data)
ccefe4c4
TT
5754{
5755 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5756
5757 return symbol_completion_match (name, data->text, data->text_len,
5758 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5759}
5760
41d27058
JB
5761/* Return a list of possible symbol names completing TEXT0. The list
5762 is NULL terminated. WORD is the entire command on which completion
5763 is made. */
5764
5765static char **
5766ada_make_symbol_completion_list (char *text0, char *word)
5767{
5768 char *text;
5769 int text_len;
5770 int wild_match;
5771 int encoded;
2ba95b9b 5772 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5773 struct symbol *sym;
5774 struct symtab *s;
41d27058
JB
5775 struct minimal_symbol *msymbol;
5776 struct objfile *objfile;
5777 struct block *b, *surrounding_static_block = 0;
5778 int i;
5779 struct dict_iterator iter;
5780
5781 if (text0[0] == '<')
5782 {
5783 text = xstrdup (text0);
5784 make_cleanup (xfree, text);
5785 text_len = strlen (text);
5786 wild_match = 0;
5787 encoded = 1;
5788 }
5789 else
5790 {
5791 text = xstrdup (ada_encode (text0));
5792 make_cleanup (xfree, text);
5793 text_len = strlen (text);
5794 for (i = 0; i < text_len; i++)
5795 text[i] = tolower (text[i]);
5796
5797 encoded = (strstr (text0, "__") != NULL);
5798 /* If the name contains a ".", then the user is entering a fully
5799 qualified entity name, and the match must not be done in wild
5800 mode. Similarly, if the user wants to complete what looks like
5801 an encoded name, the match must not be done in wild mode. */
5802 wild_match = (strchr (text0, '.') == NULL && !encoded);
5803 }
5804
5805 /* First, look at the partial symtab symbols. */
41d27058 5806 {
ccefe4c4
TT
5807 struct add_partial_datum data;
5808
5809 data.completions = &completions;
5810 data.text = text;
5811 data.text_len = text_len;
5812 data.text0 = text0;
5813 data.word = word;
5814 data.wild_match = wild_match;
5815 data.encoded = encoded;
7b08b9eb 5816 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
41d27058
JB
5817 }
5818
5819 /* At this point scan through the misc symbol vectors and add each
5820 symbol you find to the list. Eventually we want to ignore
5821 anything that isn't a text symbol (everything else will be
5822 handled by the psymtab code above). */
5823
5824 ALL_MSYMBOLS (objfile, msymbol)
5825 {
5826 QUIT;
d6565258 5827 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5828 text, text_len, text0, word, wild_match, encoded);
5829 }
5830
5831 /* Search upwards from currently selected frame (so that we can
5832 complete on local vars. */
5833
5834 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5835 {
5836 if (!BLOCK_SUPERBLOCK (b))
5837 surrounding_static_block = b; /* For elmin of dups */
5838
5839 ALL_BLOCK_SYMBOLS (b, iter, sym)
5840 {
d6565258 5841 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5842 text, text_len, text0, word,
5843 wild_match, encoded);
5844 }
5845 }
5846
5847 /* Go through the symtabs and check the externs and statics for
5848 symbols which match. */
5849
5850 ALL_SYMTABS (objfile, s)
5851 {
5852 QUIT;
5853 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5854 ALL_BLOCK_SYMBOLS (b, iter, sym)
5855 {
d6565258 5856 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5857 text, text_len, text0, word,
5858 wild_match, encoded);
5859 }
5860 }
5861
5862 ALL_SYMTABS (objfile, s)
5863 {
5864 QUIT;
5865 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5866 /* Don't do this block twice. */
5867 if (b == surrounding_static_block)
5868 continue;
5869 ALL_BLOCK_SYMBOLS (b, iter, sym)
5870 {
d6565258 5871 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5872 text, text_len, text0, word,
5873 wild_match, encoded);
5874 }
5875 }
5876
5877 /* Append the closing NULL entry. */
2ba95b9b 5878 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5879
2ba95b9b
JB
5880 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5881 return the copy. It's unfortunate that we have to make a copy
5882 of an array that we're about to destroy, but there is nothing much
5883 we can do about it. Fortunately, it's typically not a very large
5884 array. */
5885 {
5886 const size_t completions_size =
5887 VEC_length (char_ptr, completions) * sizeof (char *);
dc19db01 5888 char **result = xmalloc (completions_size);
2ba95b9b
JB
5889
5890 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5891
5892 VEC_free (char_ptr, completions);
5893 return result;
5894 }
41d27058
JB
5895}
5896
963a6417 5897 /* Field Access */
96d887e8 5898
73fb9985
JB
5899/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5900 for tagged types. */
5901
5902static int
5903ada_is_dispatch_table_ptr_type (struct type *type)
5904{
0d5cff50 5905 const char *name;
73fb9985
JB
5906
5907 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5908 return 0;
5909
5910 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5911 if (name == NULL)
5912 return 0;
5913
5914 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5915}
5916
963a6417
PH
5917/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5918 to be invisible to users. */
96d887e8 5919
963a6417
PH
5920int
5921ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5922{
963a6417
PH
5923 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5924 return 1;
ffde82bf 5925
73fb9985
JB
5926 /* Check the name of that field. */
5927 {
5928 const char *name = TYPE_FIELD_NAME (type, field_num);
5929
5930 /* Anonymous field names should not be printed.
5931 brobecker/2007-02-20: I don't think this can actually happen
5932 but we don't want to print the value of annonymous fields anyway. */
5933 if (name == NULL)
5934 return 1;
5935
ffde82bf
JB
5936 /* Normally, fields whose name start with an underscore ("_")
5937 are fields that have been internally generated by the compiler,
5938 and thus should not be printed. The "_parent" field is special,
5939 however: This is a field internally generated by the compiler
5940 for tagged types, and it contains the components inherited from
5941 the parent type. This field should not be printed as is, but
5942 should not be ignored either. */
73fb9985
JB
5943 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5944 return 1;
5945 }
5946
5947 /* If this is the dispatch table of a tagged type, then ignore. */
5948 if (ada_is_tagged_type (type, 1)
5949 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5950 return 1;
5951
5952 /* Not a special field, so it should not be ignored. */
5953 return 0;
963a6417 5954}
96d887e8 5955
963a6417 5956/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 5957 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5958
963a6417
PH
5959int
5960ada_is_tagged_type (struct type *type, int refok)
5961{
5962 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5963}
96d887e8 5964
963a6417 5965/* True iff TYPE represents the type of X'Tag */
96d887e8 5966
963a6417
PH
5967int
5968ada_is_tag_type (struct type *type)
5969{
5970 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5971 return 0;
5972 else
96d887e8 5973 {
963a6417 5974 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 5975
963a6417
PH
5976 return (name != NULL
5977 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5978 }
96d887e8
PH
5979}
5980
963a6417 5981/* The type of the tag on VAL. */
76a01679 5982
963a6417
PH
5983struct type *
5984ada_tag_type (struct value *val)
96d887e8 5985{
df407dfe 5986 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5987}
96d887e8 5988
963a6417 5989/* The value of the tag on VAL. */
96d887e8 5990
963a6417
PH
5991struct value *
5992ada_value_tag (struct value *val)
5993{
03ee6b2e 5994 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5995}
5996
963a6417
PH
5997/* The value of the tag on the object of type TYPE whose contents are
5998 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 5999 ADDRESS. */
96d887e8 6000
963a6417 6001static struct value *
10a2c479 6002value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6003 const gdb_byte *valaddr,
963a6417 6004 CORE_ADDR address)
96d887e8 6005{
b5385fc0 6006 int tag_byte_offset;
963a6417 6007 struct type *tag_type;
5b4ee69b 6008
963a6417 6009 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6010 NULL, NULL, NULL))
96d887e8 6011 {
fc1a4b47 6012 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6013 ? NULL
6014 : valaddr + tag_byte_offset);
963a6417 6015 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6016
963a6417 6017 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6018 }
963a6417
PH
6019 return NULL;
6020}
96d887e8 6021
963a6417
PH
6022static struct type *
6023type_from_tag (struct value *tag)
6024{
6025 const char *type_name = ada_tag_name (tag);
5b4ee69b 6026
963a6417
PH
6027 if (type_name != NULL)
6028 return ada_find_any_type (ada_encode (type_name));
6029 return NULL;
6030}
96d887e8 6031
1b611343
JB
6032/* Return the "ada__tags__type_specific_data" type. */
6033
6034static struct type *
6035ada_get_tsd_type (struct inferior *inf)
963a6417 6036{
1b611343 6037 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6038
1b611343
JB
6039 if (data->tsd_type == 0)
6040 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6041 return data->tsd_type;
6042}
529cad9c 6043
1b611343
JB
6044/* Return the TSD (type-specific data) associated to the given TAG.
6045 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6046
1b611343 6047 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6048
1b611343
JB
6049static struct value *
6050ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6051{
4c4b4cd2 6052 struct value *val;
1b611343 6053 struct type *type;
5b4ee69b 6054
1b611343
JB
6055 /* First option: The TSD is simply stored as a field of our TAG.
6056 Only older versions of GNAT would use this format, but we have
6057 to test it first, because there are no visible markers for
6058 the current approach except the absence of that field. */
529cad9c 6059
1b611343
JB
6060 val = ada_value_struct_elt (tag, "tsd", 1);
6061 if (val)
6062 return val;
e802dbe0 6063
1b611343
JB
6064 /* Try the second representation for the dispatch table (in which
6065 there is no explicit 'tsd' field in the referent of the tag pointer,
6066 and instead the tsd pointer is stored just before the dispatch
6067 table. */
e802dbe0 6068
1b611343
JB
6069 type = ada_get_tsd_type (current_inferior());
6070 if (type == NULL)
6071 return NULL;
6072 type = lookup_pointer_type (lookup_pointer_type (type));
6073 val = value_cast (type, tag);
6074 if (val == NULL)
6075 return NULL;
6076 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6077}
6078
1b611343
JB
6079/* Given the TSD of a tag (type-specific data), return a string
6080 containing the name of the associated type.
6081
6082 The returned value is good until the next call. May return NULL
6083 if we are unable to determine the tag name. */
6084
6085static char *
6086ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6087{
529cad9c
PH
6088 static char name[1024];
6089 char *p;
1b611343 6090 struct value *val;
529cad9c 6091
1b611343 6092 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6093 if (val == NULL)
1b611343 6094 return NULL;
4c4b4cd2
PH
6095 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6096 for (p = name; *p != '\0'; p += 1)
6097 if (isalpha (*p))
6098 *p = tolower (*p);
1b611343 6099 return name;
4c4b4cd2
PH
6100}
6101
6102/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6103 a C string.
6104
6105 Return NULL if the TAG is not an Ada tag, or if we were unable to
6106 determine the name of that tag. The result is good until the next
6107 call. */
4c4b4cd2
PH
6108
6109const char *
6110ada_tag_name (struct value *tag)
6111{
1b611343
JB
6112 volatile struct gdb_exception e;
6113 char *name = NULL;
5b4ee69b 6114
df407dfe 6115 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6116 return NULL;
1b611343
JB
6117
6118 /* It is perfectly possible that an exception be raised while trying
6119 to determine the TAG's name, even under normal circumstances:
6120 The associated variable may be uninitialized or corrupted, for
6121 instance. We do not let any exception propagate past this point.
6122 instead we return NULL.
6123
6124 We also do not print the error message either (which often is very
6125 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6126 the caller print a more meaningful message if necessary. */
6127 TRY_CATCH (e, RETURN_MASK_ERROR)
6128 {
6129 struct value *tsd = ada_get_tsd_from_tag (tag);
6130
6131 if (tsd != NULL)
6132 name = ada_tag_name_from_tsd (tsd);
6133 }
6134
6135 return name;
4c4b4cd2
PH
6136}
6137
6138/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6139
d2e4a39e 6140struct type *
ebf56fd3 6141ada_parent_type (struct type *type)
14f9c5c9
AS
6142{
6143 int i;
6144
61ee279c 6145 type = ada_check_typedef (type);
14f9c5c9
AS
6146
6147 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6148 return NULL;
6149
6150 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6151 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6152 {
6153 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6154
6155 /* If the _parent field is a pointer, then dereference it. */
6156 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6157 parent_type = TYPE_TARGET_TYPE (parent_type);
6158 /* If there is a parallel XVS type, get the actual base type. */
6159 parent_type = ada_get_base_type (parent_type);
6160
6161 return ada_check_typedef (parent_type);
6162 }
14f9c5c9
AS
6163
6164 return NULL;
6165}
6166
4c4b4cd2
PH
6167/* True iff field number FIELD_NUM of structure type TYPE contains the
6168 parent-type (inherited) fields of a derived type. Assumes TYPE is
6169 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6170
6171int
ebf56fd3 6172ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6173{
61ee279c 6174 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6175
4c4b4cd2
PH
6176 return (name != NULL
6177 && (strncmp (name, "PARENT", 6) == 0
6178 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6179}
6180
4c4b4cd2 6181/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6182 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6183 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6184 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6185 structures. */
14f9c5c9
AS
6186
6187int
ebf56fd3 6188ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6189{
d2e4a39e 6190 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6191
d2e4a39e 6192 return (name != NULL
4c4b4cd2
PH
6193 && (strncmp (name, "PARENT", 6) == 0
6194 || strcmp (name, "REP") == 0
6195 || strncmp (name, "_parent", 7) == 0
6196 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6197}
6198
4c4b4cd2
PH
6199/* True iff field number FIELD_NUM of structure or union type TYPE
6200 is a variant wrapper. Assumes TYPE is a structure type with at least
6201 FIELD_NUM+1 fields. */
14f9c5c9
AS
6202
6203int
ebf56fd3 6204ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6205{
d2e4a39e 6206 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6207
14f9c5c9 6208 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6209 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6210 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6211 == TYPE_CODE_UNION)));
14f9c5c9
AS
6212}
6213
6214/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6215 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6216 returns the type of the controlling discriminant for the variant.
6217 May return NULL if the type could not be found. */
14f9c5c9 6218
d2e4a39e 6219struct type *
ebf56fd3 6220ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6221{
d2e4a39e 6222 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6223
7c964f07 6224 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6225}
6226
4c4b4cd2 6227/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6228 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6229 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6230
6231int
ebf56fd3 6232ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6233{
d2e4a39e 6234 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6235
14f9c5c9
AS
6236 return (name != NULL && name[0] == 'O');
6237}
6238
6239/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6240 returns the name of the discriminant controlling the variant.
6241 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6242
d2e4a39e 6243char *
ebf56fd3 6244ada_variant_discrim_name (struct type *type0)
14f9c5c9 6245{
d2e4a39e 6246 static char *result = NULL;
14f9c5c9 6247 static size_t result_len = 0;
d2e4a39e
AS
6248 struct type *type;
6249 const char *name;
6250 const char *discrim_end;
6251 const char *discrim_start;
14f9c5c9
AS
6252
6253 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6254 type = TYPE_TARGET_TYPE (type0);
6255 else
6256 type = type0;
6257
6258 name = ada_type_name (type);
6259
6260 if (name == NULL || name[0] == '\000')
6261 return "";
6262
6263 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6264 discrim_end -= 1)
6265 {
4c4b4cd2
PH
6266 if (strncmp (discrim_end, "___XVN", 6) == 0)
6267 break;
14f9c5c9
AS
6268 }
6269 if (discrim_end == name)
6270 return "";
6271
d2e4a39e 6272 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6273 discrim_start -= 1)
6274 {
d2e4a39e 6275 if (discrim_start == name + 1)
4c4b4cd2 6276 return "";
76a01679 6277 if ((discrim_start > name + 3
4c4b4cd2
PH
6278 && strncmp (discrim_start - 3, "___", 3) == 0)
6279 || discrim_start[-1] == '.')
6280 break;
14f9c5c9
AS
6281 }
6282
6283 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6284 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6285 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6286 return result;
6287}
6288
4c4b4cd2
PH
6289/* Scan STR for a subtype-encoded number, beginning at position K.
6290 Put the position of the character just past the number scanned in
6291 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6292 Return 1 if there was a valid number at the given position, and 0
6293 otherwise. A "subtype-encoded" number consists of the absolute value
6294 in decimal, followed by the letter 'm' to indicate a negative number.
6295 Assumes 0m does not occur. */
14f9c5c9
AS
6296
6297int
d2e4a39e 6298ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6299{
6300 ULONGEST RU;
6301
d2e4a39e 6302 if (!isdigit (str[k]))
14f9c5c9
AS
6303 return 0;
6304
4c4b4cd2 6305 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6306 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6307 LONGEST. */
14f9c5c9
AS
6308 RU = 0;
6309 while (isdigit (str[k]))
6310 {
d2e4a39e 6311 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6312 k += 1;
6313 }
6314
d2e4a39e 6315 if (str[k] == 'm')
14f9c5c9
AS
6316 {
6317 if (R != NULL)
4c4b4cd2 6318 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6319 k += 1;
6320 }
6321 else if (R != NULL)
6322 *R = (LONGEST) RU;
6323
4c4b4cd2 6324 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6325 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6326 number representable as a LONGEST (although either would probably work
6327 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6328 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6329
6330 if (new_k != NULL)
6331 *new_k = k;
6332 return 1;
6333}
6334
4c4b4cd2
PH
6335/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6336 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6337 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6338
d2e4a39e 6339int
ebf56fd3 6340ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6341{
d2e4a39e 6342 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6343 int p;
6344
6345 p = 0;
6346 while (1)
6347 {
d2e4a39e 6348 switch (name[p])
4c4b4cd2
PH
6349 {
6350 case '\0':
6351 return 0;
6352 case 'S':
6353 {
6354 LONGEST W;
5b4ee69b 6355
4c4b4cd2
PH
6356 if (!ada_scan_number (name, p + 1, &W, &p))
6357 return 0;
6358 if (val == W)
6359 return 1;
6360 break;
6361 }
6362 case 'R':
6363 {
6364 LONGEST L, U;
5b4ee69b 6365
4c4b4cd2
PH
6366 if (!ada_scan_number (name, p + 1, &L, &p)
6367 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6368 return 0;
6369 if (val >= L && val <= U)
6370 return 1;
6371 break;
6372 }
6373 case 'O':
6374 return 1;
6375 default:
6376 return 0;
6377 }
6378 }
6379}
6380
0963b4bd 6381/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6382
6383/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6384 ARG_TYPE, extract and return the value of one of its (non-static)
6385 fields. FIELDNO says which field. Differs from value_primitive_field
6386 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6387
4c4b4cd2 6388static struct value *
d2e4a39e 6389ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6390 struct type *arg_type)
14f9c5c9 6391{
14f9c5c9
AS
6392 struct type *type;
6393
61ee279c 6394 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6395 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6396
4c4b4cd2 6397 /* Handle packed fields. */
14f9c5c9
AS
6398
6399 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6400 {
6401 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6402 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6403
0fd88904 6404 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6405 offset + bit_pos / 8,
6406 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6407 }
6408 else
6409 return value_primitive_field (arg1, offset, fieldno, arg_type);
6410}
6411
52ce6436
PH
6412/* Find field with name NAME in object of type TYPE. If found,
6413 set the following for each argument that is non-null:
6414 - *FIELD_TYPE_P to the field's type;
6415 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6416 an object of that type;
6417 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6418 - *BIT_SIZE_P to its size in bits if the field is packed, and
6419 0 otherwise;
6420 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6421 fields up to but not including the desired field, or by the total
6422 number of fields if not found. A NULL value of NAME never
6423 matches; the function just counts visible fields in this case.
6424
0963b4bd 6425 Returns 1 if found, 0 otherwise. */
52ce6436 6426
4c4b4cd2 6427static int
0d5cff50 6428find_struct_field (const char *name, struct type *type, int offset,
76a01679 6429 struct type **field_type_p,
52ce6436
PH
6430 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6431 int *index_p)
4c4b4cd2
PH
6432{
6433 int i;
6434
61ee279c 6435 type = ada_check_typedef (type);
76a01679 6436
52ce6436
PH
6437 if (field_type_p != NULL)
6438 *field_type_p = NULL;
6439 if (byte_offset_p != NULL)
d5d6fca5 6440 *byte_offset_p = 0;
52ce6436
PH
6441 if (bit_offset_p != NULL)
6442 *bit_offset_p = 0;
6443 if (bit_size_p != NULL)
6444 *bit_size_p = 0;
6445
6446 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6447 {
6448 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6449 int fld_offset = offset + bit_pos / 8;
0d5cff50 6450 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6451
4c4b4cd2
PH
6452 if (t_field_name == NULL)
6453 continue;
6454
52ce6436 6455 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6456 {
6457 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6458
52ce6436
PH
6459 if (field_type_p != NULL)
6460 *field_type_p = TYPE_FIELD_TYPE (type, i);
6461 if (byte_offset_p != NULL)
6462 *byte_offset_p = fld_offset;
6463 if (bit_offset_p != NULL)
6464 *bit_offset_p = bit_pos % 8;
6465 if (bit_size_p != NULL)
6466 *bit_size_p = bit_size;
76a01679
JB
6467 return 1;
6468 }
4c4b4cd2
PH
6469 else if (ada_is_wrapper_field (type, i))
6470 {
52ce6436
PH
6471 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6472 field_type_p, byte_offset_p, bit_offset_p,
6473 bit_size_p, index_p))
76a01679
JB
6474 return 1;
6475 }
4c4b4cd2
PH
6476 else if (ada_is_variant_part (type, i))
6477 {
52ce6436
PH
6478 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6479 fixed type?? */
4c4b4cd2 6480 int j;
52ce6436
PH
6481 struct type *field_type
6482 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6483
52ce6436 6484 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6485 {
76a01679
JB
6486 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6487 fld_offset
6488 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6489 field_type_p, byte_offset_p,
52ce6436 6490 bit_offset_p, bit_size_p, index_p))
76a01679 6491 return 1;
4c4b4cd2
PH
6492 }
6493 }
52ce6436
PH
6494 else if (index_p != NULL)
6495 *index_p += 1;
4c4b4cd2
PH
6496 }
6497 return 0;
6498}
6499
0963b4bd 6500/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6501
52ce6436
PH
6502static int
6503num_visible_fields (struct type *type)
6504{
6505 int n;
5b4ee69b 6506
52ce6436
PH
6507 n = 0;
6508 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6509 return n;
6510}
14f9c5c9 6511
4c4b4cd2 6512/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6513 and search in it assuming it has (class) type TYPE.
6514 If found, return value, else return NULL.
6515
4c4b4cd2 6516 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6517
4c4b4cd2 6518static struct value *
d2e4a39e 6519ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6520 struct type *type)
14f9c5c9
AS
6521{
6522 int i;
14f9c5c9 6523
5b4ee69b 6524 type = ada_check_typedef (type);
52ce6436 6525 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6526 {
0d5cff50 6527 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6528
6529 if (t_field_name == NULL)
4c4b4cd2 6530 continue;
14f9c5c9
AS
6531
6532 else if (field_name_match (t_field_name, name))
4c4b4cd2 6533 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6534
6535 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6536 {
0963b4bd 6537 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6538 ada_search_struct_field (name, arg,
6539 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6540 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6541
4c4b4cd2
PH
6542 if (v != NULL)
6543 return v;
6544 }
14f9c5c9
AS
6545
6546 else if (ada_is_variant_part (type, i))
4c4b4cd2 6547 {
0963b4bd 6548 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6549 int j;
5b4ee69b
MS
6550 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6551 i));
4c4b4cd2
PH
6552 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6553
52ce6436 6554 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6555 {
0963b4bd
MS
6556 struct value *v = ada_search_struct_field /* Force line
6557 break. */
06d5cf63
JB
6558 (name, arg,
6559 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6560 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6561
4c4b4cd2
PH
6562 if (v != NULL)
6563 return v;
6564 }
6565 }
14f9c5c9
AS
6566 }
6567 return NULL;
6568}
d2e4a39e 6569
52ce6436
PH
6570static struct value *ada_index_struct_field_1 (int *, struct value *,
6571 int, struct type *);
6572
6573
6574/* Return field #INDEX in ARG, where the index is that returned by
6575 * find_struct_field through its INDEX_P argument. Adjust the address
6576 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6577 * If found, return value, else return NULL. */
52ce6436
PH
6578
6579static struct value *
6580ada_index_struct_field (int index, struct value *arg, int offset,
6581 struct type *type)
6582{
6583 return ada_index_struct_field_1 (&index, arg, offset, type);
6584}
6585
6586
6587/* Auxiliary function for ada_index_struct_field. Like
6588 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6589 * *INDEX_P. */
52ce6436
PH
6590
6591static struct value *
6592ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6593 struct type *type)
6594{
6595 int i;
6596 type = ada_check_typedef (type);
6597
6598 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6599 {
6600 if (TYPE_FIELD_NAME (type, i) == NULL)
6601 continue;
6602 else if (ada_is_wrapper_field (type, i))
6603 {
0963b4bd 6604 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6605 ada_index_struct_field_1 (index_p, arg,
6606 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6607 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6608
52ce6436
PH
6609 if (v != NULL)
6610 return v;
6611 }
6612
6613 else if (ada_is_variant_part (type, i))
6614 {
6615 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6616 find_struct_field. */
52ce6436
PH
6617 error (_("Cannot assign this kind of variant record"));
6618 }
6619 else if (*index_p == 0)
6620 return ada_value_primitive_field (arg, offset, i, type);
6621 else
6622 *index_p -= 1;
6623 }
6624 return NULL;
6625}
6626
4c4b4cd2
PH
6627/* Given ARG, a value of type (pointer or reference to a)*
6628 structure/union, extract the component named NAME from the ultimate
6629 target structure/union and return it as a value with its
f5938064 6630 appropriate type.
14f9c5c9 6631
4c4b4cd2
PH
6632 The routine searches for NAME among all members of the structure itself
6633 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6634 (e.g., '_parent').
6635
03ee6b2e
PH
6636 If NO_ERR, then simply return NULL in case of error, rather than
6637 calling error. */
14f9c5c9 6638
d2e4a39e 6639struct value *
03ee6b2e 6640ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6641{
4c4b4cd2 6642 struct type *t, *t1;
d2e4a39e 6643 struct value *v;
14f9c5c9 6644
4c4b4cd2 6645 v = NULL;
df407dfe 6646 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6647 if (TYPE_CODE (t) == TYPE_CODE_REF)
6648 {
6649 t1 = TYPE_TARGET_TYPE (t);
6650 if (t1 == NULL)
03ee6b2e 6651 goto BadValue;
61ee279c 6652 t1 = ada_check_typedef (t1);
4c4b4cd2 6653 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6654 {
994b9211 6655 arg = coerce_ref (arg);
76a01679
JB
6656 t = t1;
6657 }
4c4b4cd2 6658 }
14f9c5c9 6659
4c4b4cd2
PH
6660 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6661 {
6662 t1 = TYPE_TARGET_TYPE (t);
6663 if (t1 == NULL)
03ee6b2e 6664 goto BadValue;
61ee279c 6665 t1 = ada_check_typedef (t1);
4c4b4cd2 6666 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6667 {
6668 arg = value_ind (arg);
6669 t = t1;
6670 }
4c4b4cd2 6671 else
76a01679 6672 break;
4c4b4cd2 6673 }
14f9c5c9 6674
4c4b4cd2 6675 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6676 goto BadValue;
14f9c5c9 6677
4c4b4cd2
PH
6678 if (t1 == t)
6679 v = ada_search_struct_field (name, arg, 0, t);
6680 else
6681 {
6682 int bit_offset, bit_size, byte_offset;
6683 struct type *field_type;
6684 CORE_ADDR address;
6685
76a01679
JB
6686 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6687 address = value_as_address (arg);
4c4b4cd2 6688 else
0fd88904 6689 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6690
1ed6ede0 6691 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6692 if (find_struct_field (name, t1, 0,
6693 &field_type, &byte_offset, &bit_offset,
52ce6436 6694 &bit_size, NULL))
76a01679
JB
6695 {
6696 if (bit_size != 0)
6697 {
714e53ab
PH
6698 if (TYPE_CODE (t) == TYPE_CODE_REF)
6699 arg = ada_coerce_ref (arg);
6700 else
6701 arg = ada_value_ind (arg);
76a01679
JB
6702 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6703 bit_offset, bit_size,
6704 field_type);
6705 }
6706 else
f5938064 6707 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6708 }
6709 }
6710
03ee6b2e
PH
6711 if (v != NULL || no_err)
6712 return v;
6713 else
323e0a4a 6714 error (_("There is no member named %s."), name);
14f9c5c9 6715
03ee6b2e
PH
6716 BadValue:
6717 if (no_err)
6718 return NULL;
6719 else
0963b4bd
MS
6720 error (_("Attempt to extract a component of "
6721 "a value that is not a record."));
14f9c5c9
AS
6722}
6723
6724/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6725 If DISPP is non-null, add its byte displacement from the beginning of a
6726 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6727 work for packed fields).
6728
6729 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6730 followed by "___".
14f9c5c9 6731
0963b4bd 6732 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6733 be a (pointer or reference)+ to a struct or union, and the
6734 ultimate target type will be searched.
14f9c5c9
AS
6735
6736 Looks recursively into variant clauses and parent types.
6737
4c4b4cd2
PH
6738 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6739 TYPE is not a type of the right kind. */
14f9c5c9 6740
4c4b4cd2 6741static struct type *
76a01679
JB
6742ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6743 int noerr, int *dispp)
14f9c5c9
AS
6744{
6745 int i;
6746
6747 if (name == NULL)
6748 goto BadName;
6749
76a01679 6750 if (refok && type != NULL)
4c4b4cd2
PH
6751 while (1)
6752 {
61ee279c 6753 type = ada_check_typedef (type);
76a01679
JB
6754 if (TYPE_CODE (type) != TYPE_CODE_PTR
6755 && TYPE_CODE (type) != TYPE_CODE_REF)
6756 break;
6757 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6758 }
14f9c5c9 6759
76a01679 6760 if (type == NULL
1265e4aa
JB
6761 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6762 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6763 {
4c4b4cd2 6764 if (noerr)
76a01679 6765 return NULL;
4c4b4cd2 6766 else
76a01679
JB
6767 {
6768 target_terminal_ours ();
6769 gdb_flush (gdb_stdout);
323e0a4a
AC
6770 if (type == NULL)
6771 error (_("Type (null) is not a structure or union type"));
6772 else
6773 {
6774 /* XXX: type_sprint */
6775 fprintf_unfiltered (gdb_stderr, _("Type "));
6776 type_print (type, "", gdb_stderr, -1);
6777 error (_(" is not a structure or union type"));
6778 }
76a01679 6779 }
14f9c5c9
AS
6780 }
6781
6782 type = to_static_fixed_type (type);
6783
6784 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6785 {
0d5cff50 6786 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6787 struct type *t;
6788 int disp;
d2e4a39e 6789
14f9c5c9 6790 if (t_field_name == NULL)
4c4b4cd2 6791 continue;
14f9c5c9
AS
6792
6793 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6794 {
6795 if (dispp != NULL)
6796 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6797 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6798 }
14f9c5c9
AS
6799
6800 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6801 {
6802 disp = 0;
6803 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6804 0, 1, &disp);
6805 if (t != NULL)
6806 {
6807 if (dispp != NULL)
6808 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6809 return t;
6810 }
6811 }
14f9c5c9
AS
6812
6813 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6814 {
6815 int j;
5b4ee69b
MS
6816 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6817 i));
4c4b4cd2
PH
6818
6819 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6820 {
b1f33ddd
JB
6821 /* FIXME pnh 2008/01/26: We check for a field that is
6822 NOT wrapped in a struct, since the compiler sometimes
6823 generates these for unchecked variant types. Revisit
0963b4bd 6824 if the compiler changes this practice. */
0d5cff50 6825 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6826 disp = 0;
b1f33ddd
JB
6827 if (v_field_name != NULL
6828 && field_name_match (v_field_name, name))
6829 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6830 else
0963b4bd
MS
6831 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6832 j),
b1f33ddd
JB
6833 name, 0, 1, &disp);
6834
4c4b4cd2
PH
6835 if (t != NULL)
6836 {
6837 if (dispp != NULL)
6838 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6839 return t;
6840 }
6841 }
6842 }
14f9c5c9
AS
6843
6844 }
6845
6846BadName:
d2e4a39e 6847 if (!noerr)
14f9c5c9
AS
6848 {
6849 target_terminal_ours ();
6850 gdb_flush (gdb_stdout);
323e0a4a
AC
6851 if (name == NULL)
6852 {
6853 /* XXX: type_sprint */
6854 fprintf_unfiltered (gdb_stderr, _("Type "));
6855 type_print (type, "", gdb_stderr, -1);
6856 error (_(" has no component named <null>"));
6857 }
6858 else
6859 {
6860 /* XXX: type_sprint */
6861 fprintf_unfiltered (gdb_stderr, _("Type "));
6862 type_print (type, "", gdb_stderr, -1);
6863 error (_(" has no component named %s"), name);
6864 }
14f9c5c9
AS
6865 }
6866
6867 return NULL;
6868}
6869
b1f33ddd
JB
6870/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6871 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6872 represents an unchecked union (that is, the variant part of a
0963b4bd 6873 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
6874
6875static int
6876is_unchecked_variant (struct type *var_type, struct type *outer_type)
6877{
6878 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 6879
b1f33ddd
JB
6880 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6881 == NULL);
6882}
6883
6884
14f9c5c9
AS
6885/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6886 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6887 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6888 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6889
d2e4a39e 6890int
ebf56fd3 6891ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6892 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6893{
6894 int others_clause;
6895 int i;
d2e4a39e 6896 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6897 struct value *outer;
6898 struct value *discrim;
14f9c5c9
AS
6899 LONGEST discrim_val;
6900
0c281816
JB
6901 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6902 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6903 if (discrim == NULL)
14f9c5c9 6904 return -1;
0c281816 6905 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6906
6907 others_clause = -1;
6908 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6909 {
6910 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6911 others_clause = i;
14f9c5c9 6912 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6913 return i;
14f9c5c9
AS
6914 }
6915
6916 return others_clause;
6917}
d2e4a39e 6918\f
14f9c5c9
AS
6919
6920
4c4b4cd2 6921 /* Dynamic-Sized Records */
14f9c5c9
AS
6922
6923/* Strategy: The type ostensibly attached to a value with dynamic size
6924 (i.e., a size that is not statically recorded in the debugging
6925 data) does not accurately reflect the size or layout of the value.
6926 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6927 conventional types that are constructed on the fly. */
14f9c5c9
AS
6928
6929/* There is a subtle and tricky problem here. In general, we cannot
6930 determine the size of dynamic records without its data. However,
6931 the 'struct value' data structure, which GDB uses to represent
6932 quantities in the inferior process (the target), requires the size
6933 of the type at the time of its allocation in order to reserve space
6934 for GDB's internal copy of the data. That's why the
6935 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6936 rather than struct value*s.
14f9c5c9
AS
6937
6938 However, GDB's internal history variables ($1, $2, etc.) are
6939 struct value*s containing internal copies of the data that are not, in
6940 general, the same as the data at their corresponding addresses in
6941 the target. Fortunately, the types we give to these values are all
6942 conventional, fixed-size types (as per the strategy described
6943 above), so that we don't usually have to perform the
6944 'to_fixed_xxx_type' conversions to look at their values.
6945 Unfortunately, there is one exception: if one of the internal
6946 history variables is an array whose elements are unconstrained
6947 records, then we will need to create distinct fixed types for each
6948 element selected. */
6949
6950/* The upshot of all of this is that many routines take a (type, host
6951 address, target address) triple as arguments to represent a value.
6952 The host address, if non-null, is supposed to contain an internal
6953 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6954 target at the target address. */
14f9c5c9
AS
6955
6956/* Assuming that VAL0 represents a pointer value, the result of
6957 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6958 dynamic-sized types. */
14f9c5c9 6959
d2e4a39e
AS
6960struct value *
6961ada_value_ind (struct value *val0)
14f9c5c9 6962{
c48db5ca 6963 struct value *val = value_ind (val0);
5b4ee69b 6964
4c4b4cd2 6965 return ada_to_fixed_value (val);
14f9c5c9
AS
6966}
6967
6968/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6969 qualifiers on VAL0. */
6970
d2e4a39e
AS
6971static struct value *
6972ada_coerce_ref (struct value *val0)
6973{
df407dfe 6974 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6975 {
6976 struct value *val = val0;
5b4ee69b 6977
994b9211 6978 val = coerce_ref (val);
4c4b4cd2 6979 return ada_to_fixed_value (val);
d2e4a39e
AS
6980 }
6981 else
14f9c5c9
AS
6982 return val0;
6983}
6984
6985/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6986 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6987
6988static unsigned int
ebf56fd3 6989align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6990{
6991 return (off + alignment - 1) & ~(alignment - 1);
6992}
6993
4c4b4cd2 6994/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6995
6996static unsigned int
ebf56fd3 6997field_alignment (struct type *type, int f)
14f9c5c9 6998{
d2e4a39e 6999 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7000 int len;
14f9c5c9
AS
7001 int align_offset;
7002
64a1bf19
JB
7003 /* The field name should never be null, unless the debugging information
7004 is somehow malformed. In this case, we assume the field does not
7005 require any alignment. */
7006 if (name == NULL)
7007 return 1;
7008
7009 len = strlen (name);
7010
4c4b4cd2
PH
7011 if (!isdigit (name[len - 1]))
7012 return 1;
14f9c5c9 7013
d2e4a39e 7014 if (isdigit (name[len - 2]))
14f9c5c9
AS
7015 align_offset = len - 2;
7016 else
7017 align_offset = len - 1;
7018
4c4b4cd2 7019 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7020 return TARGET_CHAR_BIT;
7021
4c4b4cd2
PH
7022 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7023}
7024
7025/* Find a symbol named NAME. Ignores ambiguity. */
7026
7027struct symbol *
7028ada_find_any_symbol (const char *name)
7029{
7030 struct symbol *sym;
7031
7032 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7033 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7034 return sym;
7035
7036 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7037 return sym;
14f9c5c9
AS
7038}
7039
dddfab26
UW
7040/* Find a type named NAME. Ignores ambiguity. This routine will look
7041 solely for types defined by debug info, it will not search the GDB
7042 primitive types. */
4c4b4cd2 7043
d2e4a39e 7044struct type *
ebf56fd3 7045ada_find_any_type (const char *name)
14f9c5c9 7046{
4c4b4cd2 7047 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 7048
14f9c5c9 7049 if (sym != NULL)
dddfab26 7050 return SYMBOL_TYPE (sym);
14f9c5c9 7051
dddfab26 7052 return NULL;
14f9c5c9
AS
7053}
7054
aeb5907d
JB
7055/* Given NAME and an associated BLOCK, search all symbols for
7056 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
7057 associated to NAME. Return this symbol if found, return
7058 NULL otherwise. */
7059
7060struct symbol *
7061ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
7062{
7063 struct symbol *sym;
7064
7065 sym = find_old_style_renaming_symbol (name, block);
7066
7067 if (sym != NULL)
7068 return sym;
7069
0963b4bd 7070 /* Not right yet. FIXME pnh 7/20/2007. */
aeb5907d
JB
7071 sym = ada_find_any_symbol (name);
7072 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7073 return sym;
7074 else
7075 return NULL;
7076}
7077
7078static struct symbol *
7079find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 7080{
7f0df278 7081 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7082 char *rename;
7083
7084 if (function_sym != NULL)
7085 {
7086 /* If the symbol is defined inside a function, NAME is not fully
7087 qualified. This means we need to prepend the function name
7088 as well as adding the ``___XR'' suffix to build the name of
7089 the associated renaming symbol. */
0d5cff50 7090 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7091 /* Function names sometimes contain suffixes used
7092 for instance to qualify nested subprograms. When building
7093 the XR type name, we need to make sure that this suffix is
7094 not included. So do not include any suffix in the function
7095 name length below. */
69fadcdf 7096 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7097 const int rename_len = function_name_len + 2 /* "__" */
7098 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7099
529cad9c 7100 /* Strip the suffix if necessary. */
69fadcdf
JB
7101 ada_remove_trailing_digits (function_name, &function_name_len);
7102 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7103 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7104
4c4b4cd2
PH
7105 /* Library-level functions are a special case, as GNAT adds
7106 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7107 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7108 have this prefix, so we need to skip this prefix if present. */
7109 if (function_name_len > 5 /* "_ada_" */
7110 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7111 {
7112 function_name += 5;
7113 function_name_len -= 5;
7114 }
4c4b4cd2
PH
7115
7116 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7117 strncpy (rename, function_name, function_name_len);
7118 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7119 "__%s___XR", name);
4c4b4cd2
PH
7120 }
7121 else
7122 {
7123 const int rename_len = strlen (name) + 6;
5b4ee69b 7124
4c4b4cd2 7125 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7126 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7127 }
7128
7129 return ada_find_any_symbol (rename);
7130}
7131
14f9c5c9 7132/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7133 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7134 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7135 otherwise return 0. */
7136
14f9c5c9 7137int
d2e4a39e 7138ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7139{
7140 if (type1 == NULL)
7141 return 1;
7142 else if (type0 == NULL)
7143 return 0;
7144 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7145 return 1;
7146 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7147 return 0;
4c4b4cd2
PH
7148 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7149 return 1;
ad82864c 7150 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7151 return 1;
4c4b4cd2
PH
7152 else if (ada_is_array_descriptor_type (type0)
7153 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7154 return 1;
aeb5907d
JB
7155 else
7156 {
7157 const char *type0_name = type_name_no_tag (type0);
7158 const char *type1_name = type_name_no_tag (type1);
7159
7160 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7161 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7162 return 1;
7163 }
14f9c5c9
AS
7164 return 0;
7165}
7166
7167/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7168 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7169
0d5cff50 7170const char *
d2e4a39e 7171ada_type_name (struct type *type)
14f9c5c9 7172{
d2e4a39e 7173 if (type == NULL)
14f9c5c9
AS
7174 return NULL;
7175 else if (TYPE_NAME (type) != NULL)
7176 return TYPE_NAME (type);
7177 else
7178 return TYPE_TAG_NAME (type);
7179}
7180
b4ba55a1
JB
7181/* Search the list of "descriptive" types associated to TYPE for a type
7182 whose name is NAME. */
7183
7184static struct type *
7185find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7186{
7187 struct type *result;
7188
7189 /* If there no descriptive-type info, then there is no parallel type
7190 to be found. */
7191 if (!HAVE_GNAT_AUX_INFO (type))
7192 return NULL;
7193
7194 result = TYPE_DESCRIPTIVE_TYPE (type);
7195 while (result != NULL)
7196 {
0d5cff50 7197 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7198
7199 if (result_name == NULL)
7200 {
7201 warning (_("unexpected null name on descriptive type"));
7202 return NULL;
7203 }
7204
7205 /* If the names match, stop. */
7206 if (strcmp (result_name, name) == 0)
7207 break;
7208
7209 /* Otherwise, look at the next item on the list, if any. */
7210 if (HAVE_GNAT_AUX_INFO (result))
7211 result = TYPE_DESCRIPTIVE_TYPE (result);
7212 else
7213 result = NULL;
7214 }
7215
7216 /* If we didn't find a match, see whether this is a packed array. With
7217 older compilers, the descriptive type information is either absent or
7218 irrelevant when it comes to packed arrays so the above lookup fails.
7219 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7220 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7221 return ada_find_any_type (name);
7222
7223 return result;
7224}
7225
7226/* Find a parallel type to TYPE with the specified NAME, using the
7227 descriptive type taken from the debugging information, if available,
7228 and otherwise using the (slower) name-based method. */
7229
7230static struct type *
7231ada_find_parallel_type_with_name (struct type *type, const char *name)
7232{
7233 struct type *result = NULL;
7234
7235 if (HAVE_GNAT_AUX_INFO (type))
7236 result = find_parallel_type_by_descriptive_type (type, name);
7237 else
7238 result = ada_find_any_type (name);
7239
7240 return result;
7241}
7242
7243/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7244 SUFFIX to the name of TYPE. */
14f9c5c9 7245
d2e4a39e 7246struct type *
ebf56fd3 7247ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7248{
0d5cff50
DE
7249 char *name;
7250 const char *typename = ada_type_name (type);
14f9c5c9 7251 int len;
d2e4a39e 7252
14f9c5c9
AS
7253 if (typename == NULL)
7254 return NULL;
7255
7256 len = strlen (typename);
7257
b4ba55a1 7258 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7259
7260 strcpy (name, typename);
7261 strcpy (name + len, suffix);
7262
b4ba55a1 7263 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7264}
7265
14f9c5c9 7266/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7267 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7268
d2e4a39e
AS
7269static struct type *
7270dynamic_template_type (struct type *type)
14f9c5c9 7271{
61ee279c 7272 type = ada_check_typedef (type);
14f9c5c9
AS
7273
7274 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7275 || ada_type_name (type) == NULL)
14f9c5c9 7276 return NULL;
d2e4a39e 7277 else
14f9c5c9
AS
7278 {
7279 int len = strlen (ada_type_name (type));
5b4ee69b 7280
4c4b4cd2
PH
7281 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7282 return type;
14f9c5c9 7283 else
4c4b4cd2 7284 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7285 }
7286}
7287
7288/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7289 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7290
d2e4a39e
AS
7291static int
7292is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7293{
7294 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7295
d2e4a39e 7296 return name != NULL
14f9c5c9
AS
7297 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7298 && strstr (name, "___XVL") != NULL;
7299}
7300
4c4b4cd2
PH
7301/* The index of the variant field of TYPE, or -1 if TYPE does not
7302 represent a variant record type. */
14f9c5c9 7303
d2e4a39e 7304static int
4c4b4cd2 7305variant_field_index (struct type *type)
14f9c5c9
AS
7306{
7307 int f;
7308
4c4b4cd2
PH
7309 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7310 return -1;
7311
7312 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7313 {
7314 if (ada_is_variant_part (type, f))
7315 return f;
7316 }
7317 return -1;
14f9c5c9
AS
7318}
7319
4c4b4cd2
PH
7320/* A record type with no fields. */
7321
d2e4a39e 7322static struct type *
e9bb382b 7323empty_record (struct type *template)
14f9c5c9 7324{
e9bb382b 7325 struct type *type = alloc_type_copy (template);
5b4ee69b 7326
14f9c5c9
AS
7327 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7328 TYPE_NFIELDS (type) = 0;
7329 TYPE_FIELDS (type) = NULL;
b1f33ddd 7330 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7331 TYPE_NAME (type) = "<empty>";
7332 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7333 TYPE_LENGTH (type) = 0;
7334 return type;
7335}
7336
7337/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7338 the value of type TYPE at VALADDR or ADDRESS (see comments at
7339 the beginning of this section) VAL according to GNAT conventions.
7340 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7341 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7342 an outer-level type (i.e., as opposed to a branch of a variant.) A
7343 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7344 of the variant.
14f9c5c9 7345
4c4b4cd2
PH
7346 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7347 length are not statically known are discarded. As a consequence,
7348 VALADDR, ADDRESS and DVAL0 are ignored.
7349
7350 NOTE: Limitations: For now, we assume that dynamic fields and
7351 variants occupy whole numbers of bytes. However, they need not be
7352 byte-aligned. */
7353
7354struct type *
10a2c479 7355ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7356 const gdb_byte *valaddr,
4c4b4cd2
PH
7357 CORE_ADDR address, struct value *dval0,
7358 int keep_dynamic_fields)
14f9c5c9 7359{
d2e4a39e
AS
7360 struct value *mark = value_mark ();
7361 struct value *dval;
7362 struct type *rtype;
14f9c5c9 7363 int nfields, bit_len;
4c4b4cd2 7364 int variant_field;
14f9c5c9 7365 long off;
d94e4f4f 7366 int fld_bit_len;
14f9c5c9
AS
7367 int f;
7368
4c4b4cd2
PH
7369 /* Compute the number of fields in this record type that are going
7370 to be processed: unless keep_dynamic_fields, this includes only
7371 fields whose position and length are static will be processed. */
7372 if (keep_dynamic_fields)
7373 nfields = TYPE_NFIELDS (type);
7374 else
7375 {
7376 nfields = 0;
76a01679 7377 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7378 && !ada_is_variant_part (type, nfields)
7379 && !is_dynamic_field (type, nfields))
7380 nfields++;
7381 }
7382
e9bb382b 7383 rtype = alloc_type_copy (type);
14f9c5c9
AS
7384 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7385 INIT_CPLUS_SPECIFIC (rtype);
7386 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7387 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7388 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7389 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7390 TYPE_NAME (rtype) = ada_type_name (type);
7391 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7392 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7393
d2e4a39e
AS
7394 off = 0;
7395 bit_len = 0;
4c4b4cd2
PH
7396 variant_field = -1;
7397
14f9c5c9
AS
7398 for (f = 0; f < nfields; f += 1)
7399 {
6c038f32
PH
7400 off = align_value (off, field_alignment (type, f))
7401 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 7402 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 7403 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7404
d2e4a39e 7405 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7406 {
7407 variant_field = f;
d94e4f4f 7408 fld_bit_len = 0;
4c4b4cd2 7409 }
14f9c5c9 7410 else if (is_dynamic_field (type, f))
4c4b4cd2 7411 {
284614f0
JB
7412 const gdb_byte *field_valaddr = valaddr;
7413 CORE_ADDR field_address = address;
7414 struct type *field_type =
7415 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7416
4c4b4cd2 7417 if (dval0 == NULL)
b5304971
JG
7418 {
7419 /* rtype's length is computed based on the run-time
7420 value of discriminants. If the discriminants are not
7421 initialized, the type size may be completely bogus and
0963b4bd 7422 GDB may fail to allocate a value for it. So check the
b5304971
JG
7423 size first before creating the value. */
7424 check_size (rtype);
7425 dval = value_from_contents_and_address (rtype, valaddr, address);
7426 }
4c4b4cd2
PH
7427 else
7428 dval = dval0;
7429
284614f0
JB
7430 /* If the type referenced by this field is an aligner type, we need
7431 to unwrap that aligner type, because its size might not be set.
7432 Keeping the aligner type would cause us to compute the wrong
7433 size for this field, impacting the offset of the all the fields
7434 that follow this one. */
7435 if (ada_is_aligner_type (field_type))
7436 {
7437 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7438
7439 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7440 field_address = cond_offset_target (field_address, field_offset);
7441 field_type = ada_aligned_type (field_type);
7442 }
7443
7444 field_valaddr = cond_offset_host (field_valaddr,
7445 off / TARGET_CHAR_BIT);
7446 field_address = cond_offset_target (field_address,
7447 off / TARGET_CHAR_BIT);
7448
7449 /* Get the fixed type of the field. Note that, in this case,
7450 we do not want to get the real type out of the tag: if
7451 the current field is the parent part of a tagged record,
7452 we will get the tag of the object. Clearly wrong: the real
7453 type of the parent is not the real type of the child. We
7454 would end up in an infinite loop. */
7455 field_type = ada_get_base_type (field_type);
7456 field_type = ada_to_fixed_type (field_type, field_valaddr,
7457 field_address, dval, 0);
27f2a97b
JB
7458 /* If the field size is already larger than the maximum
7459 object size, then the record itself will necessarily
7460 be larger than the maximum object size. We need to make
7461 this check now, because the size might be so ridiculously
7462 large (due to an uninitialized variable in the inferior)
7463 that it would cause an overflow when adding it to the
7464 record size. */
7465 check_size (field_type);
284614f0
JB
7466
7467 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7468 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7469 /* The multiplication can potentially overflow. But because
7470 the field length has been size-checked just above, and
7471 assuming that the maximum size is a reasonable value,
7472 an overflow should not happen in practice. So rather than
7473 adding overflow recovery code to this already complex code,
7474 we just assume that it's not going to happen. */
d94e4f4f 7475 fld_bit_len =
4c4b4cd2
PH
7476 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7477 }
14f9c5c9 7478 else
4c4b4cd2 7479 {
9f0dec2d
JB
7480 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7481
720d1a40
JB
7482 /* If our field is a typedef type (most likely a typedef of
7483 a fat pointer, encoding an array access), then we need to
7484 look at its target type to determine its characteristics.
7485 In particular, we would miscompute the field size if we took
7486 the size of the typedef (zero), instead of the size of
7487 the target type. */
7488 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7489 field_type = ada_typedef_target_type (field_type);
7490
9f0dec2d 7491 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
7492 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7493 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7494 fld_bit_len =
4c4b4cd2
PH
7495 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7496 else
d94e4f4f 7497 fld_bit_len =
9f0dec2d 7498 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
4c4b4cd2 7499 }
14f9c5c9 7500 if (off + fld_bit_len > bit_len)
4c4b4cd2 7501 bit_len = off + fld_bit_len;
d94e4f4f 7502 off += fld_bit_len;
4c4b4cd2
PH
7503 TYPE_LENGTH (rtype) =
7504 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7505 }
4c4b4cd2
PH
7506
7507 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7508 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7509 the record. This can happen in the presence of representation
7510 clauses. */
7511 if (variant_field >= 0)
7512 {
7513 struct type *branch_type;
7514
7515 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7516
7517 if (dval0 == NULL)
7518 dval = value_from_contents_and_address (rtype, valaddr, address);
7519 else
7520 dval = dval0;
7521
7522 branch_type =
7523 to_fixed_variant_branch_type
7524 (TYPE_FIELD_TYPE (type, variant_field),
7525 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7526 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7527 if (branch_type == NULL)
7528 {
7529 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7530 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7531 TYPE_NFIELDS (rtype) -= 1;
7532 }
7533 else
7534 {
7535 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7536 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7537 fld_bit_len =
7538 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7539 TARGET_CHAR_BIT;
7540 if (off + fld_bit_len > bit_len)
7541 bit_len = off + fld_bit_len;
7542 TYPE_LENGTH (rtype) =
7543 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7544 }
7545 }
7546
714e53ab
PH
7547 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7548 should contain the alignment of that record, which should be a strictly
7549 positive value. If null or negative, then something is wrong, most
7550 probably in the debug info. In that case, we don't round up the size
0963b4bd 7551 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7552 the current RTYPE length might be good enough for our purposes. */
7553 if (TYPE_LENGTH (type) <= 0)
7554 {
323e0a4a
AC
7555 if (TYPE_NAME (rtype))
7556 warning (_("Invalid type size for `%s' detected: %d."),
7557 TYPE_NAME (rtype), TYPE_LENGTH (type));
7558 else
7559 warning (_("Invalid type size for <unnamed> detected: %d."),
7560 TYPE_LENGTH (type));
714e53ab
PH
7561 }
7562 else
7563 {
7564 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7565 TYPE_LENGTH (type));
7566 }
14f9c5c9
AS
7567
7568 value_free_to_mark (mark);
d2e4a39e 7569 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7570 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7571 return rtype;
7572}
7573
4c4b4cd2
PH
7574/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7575 of 1. */
14f9c5c9 7576
d2e4a39e 7577static struct type *
fc1a4b47 7578template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7579 CORE_ADDR address, struct value *dval0)
7580{
7581 return ada_template_to_fixed_record_type_1 (type, valaddr,
7582 address, dval0, 1);
7583}
7584
7585/* An ordinary record type in which ___XVL-convention fields and
7586 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7587 static approximations, containing all possible fields. Uses
7588 no runtime values. Useless for use in values, but that's OK,
7589 since the results are used only for type determinations. Works on both
7590 structs and unions. Representation note: to save space, we memorize
7591 the result of this function in the TYPE_TARGET_TYPE of the
7592 template type. */
7593
7594static struct type *
7595template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7596{
7597 struct type *type;
7598 int nfields;
7599 int f;
7600
4c4b4cd2
PH
7601 if (TYPE_TARGET_TYPE (type0) != NULL)
7602 return TYPE_TARGET_TYPE (type0);
7603
7604 nfields = TYPE_NFIELDS (type0);
7605 type = type0;
14f9c5c9
AS
7606
7607 for (f = 0; f < nfields; f += 1)
7608 {
61ee279c 7609 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7610 struct type *new_type;
14f9c5c9 7611
4c4b4cd2
PH
7612 if (is_dynamic_field (type0, f))
7613 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7614 else
f192137b 7615 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7616 if (type == type0 && new_type != field_type)
7617 {
e9bb382b 7618 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7619 TYPE_CODE (type) = TYPE_CODE (type0);
7620 INIT_CPLUS_SPECIFIC (type);
7621 TYPE_NFIELDS (type) = nfields;
7622 TYPE_FIELDS (type) = (struct field *)
7623 TYPE_ALLOC (type, nfields * sizeof (struct field));
7624 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7625 sizeof (struct field) * nfields);
7626 TYPE_NAME (type) = ada_type_name (type0);
7627 TYPE_TAG_NAME (type) = NULL;
876cecd0 7628 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7629 TYPE_LENGTH (type) = 0;
7630 }
7631 TYPE_FIELD_TYPE (type, f) = new_type;
7632 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7633 }
14f9c5c9
AS
7634 return type;
7635}
7636
4c4b4cd2 7637/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7638 whose address in memory is ADDRESS, returns a revision of TYPE,
7639 which should be a non-dynamic-sized record, in which the variant
7640 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7641 for discriminant values in DVAL0, which can be NULL if the record
7642 contains the necessary discriminant values. */
7643
d2e4a39e 7644static struct type *
fc1a4b47 7645to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7646 CORE_ADDR address, struct value *dval0)
14f9c5c9 7647{
d2e4a39e 7648 struct value *mark = value_mark ();
4c4b4cd2 7649 struct value *dval;
d2e4a39e 7650 struct type *rtype;
14f9c5c9
AS
7651 struct type *branch_type;
7652 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7653 int variant_field = variant_field_index (type);
14f9c5c9 7654
4c4b4cd2 7655 if (variant_field == -1)
14f9c5c9
AS
7656 return type;
7657
4c4b4cd2
PH
7658 if (dval0 == NULL)
7659 dval = value_from_contents_and_address (type, valaddr, address);
7660 else
7661 dval = dval0;
7662
e9bb382b 7663 rtype = alloc_type_copy (type);
14f9c5c9 7664 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7665 INIT_CPLUS_SPECIFIC (rtype);
7666 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7667 TYPE_FIELDS (rtype) =
7668 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7669 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7670 sizeof (struct field) * nfields);
14f9c5c9
AS
7671 TYPE_NAME (rtype) = ada_type_name (type);
7672 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7673 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7674 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7675
4c4b4cd2
PH
7676 branch_type = to_fixed_variant_branch_type
7677 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7678 cond_offset_host (valaddr,
4c4b4cd2
PH
7679 TYPE_FIELD_BITPOS (type, variant_field)
7680 / TARGET_CHAR_BIT),
d2e4a39e 7681 cond_offset_target (address,
4c4b4cd2
PH
7682 TYPE_FIELD_BITPOS (type, variant_field)
7683 / TARGET_CHAR_BIT), dval);
d2e4a39e 7684 if (branch_type == NULL)
14f9c5c9 7685 {
4c4b4cd2 7686 int f;
5b4ee69b 7687
4c4b4cd2
PH
7688 for (f = variant_field + 1; f < nfields; f += 1)
7689 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7690 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7691 }
7692 else
7693 {
4c4b4cd2
PH
7694 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7695 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7696 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7697 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7698 }
4c4b4cd2 7699 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7700
4c4b4cd2 7701 value_free_to_mark (mark);
14f9c5c9
AS
7702 return rtype;
7703}
7704
7705/* An ordinary record type (with fixed-length fields) that describes
7706 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7707 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7708 should be in DVAL, a record value; it may be NULL if the object
7709 at ADDR itself contains any necessary discriminant values.
7710 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7711 values from the record are needed. Except in the case that DVAL,
7712 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7713 unchecked) is replaced by a particular branch of the variant.
7714
7715 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7716 is questionable and may be removed. It can arise during the
7717 processing of an unconstrained-array-of-record type where all the
7718 variant branches have exactly the same size. This is because in
7719 such cases, the compiler does not bother to use the XVS convention
7720 when encoding the record. I am currently dubious of this
7721 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7722
d2e4a39e 7723static struct type *
fc1a4b47 7724to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7725 CORE_ADDR address, struct value *dval)
14f9c5c9 7726{
d2e4a39e 7727 struct type *templ_type;
14f9c5c9 7728
876cecd0 7729 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7730 return type0;
7731
d2e4a39e 7732 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7733
7734 if (templ_type != NULL)
7735 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7736 else if (variant_field_index (type0) >= 0)
7737 {
7738 if (dval == NULL && valaddr == NULL && address == 0)
7739 return type0;
7740 return to_record_with_fixed_variant_part (type0, valaddr, address,
7741 dval);
7742 }
14f9c5c9
AS
7743 else
7744 {
876cecd0 7745 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7746 return type0;
7747 }
7748
7749}
7750
7751/* An ordinary record type (with fixed-length fields) that describes
7752 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7753 union type. Any necessary discriminants' values should be in DVAL,
7754 a record value. That is, this routine selects the appropriate
7755 branch of the union at ADDR according to the discriminant value
b1f33ddd 7756 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7757 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7758
d2e4a39e 7759static struct type *
fc1a4b47 7760to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7761 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7762{
7763 int which;
d2e4a39e
AS
7764 struct type *templ_type;
7765 struct type *var_type;
14f9c5c9
AS
7766
7767 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7768 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7769 else
14f9c5c9
AS
7770 var_type = var_type0;
7771
7772 templ_type = ada_find_parallel_type (var_type, "___XVU");
7773
7774 if (templ_type != NULL)
7775 var_type = templ_type;
7776
b1f33ddd
JB
7777 if (is_unchecked_variant (var_type, value_type (dval)))
7778 return var_type0;
d2e4a39e
AS
7779 which =
7780 ada_which_variant_applies (var_type,
0fd88904 7781 value_type (dval), value_contents (dval));
14f9c5c9
AS
7782
7783 if (which < 0)
e9bb382b 7784 return empty_record (var_type);
14f9c5c9 7785 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7786 return to_fixed_record_type
d2e4a39e
AS
7787 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7788 valaddr, address, dval);
4c4b4cd2 7789 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7790 return
7791 to_fixed_record_type
7792 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7793 else
7794 return TYPE_FIELD_TYPE (var_type, which);
7795}
7796
7797/* Assuming that TYPE0 is an array type describing the type of a value
7798 at ADDR, and that DVAL describes a record containing any
7799 discriminants used in TYPE0, returns a type for the value that
7800 contains no dynamic components (that is, no components whose sizes
7801 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7802 true, gives an error message if the resulting type's size is over
4c4b4cd2 7803 varsize_limit. */
14f9c5c9 7804
d2e4a39e
AS
7805static struct type *
7806to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7807 int ignore_too_big)
14f9c5c9 7808{
d2e4a39e
AS
7809 struct type *index_type_desc;
7810 struct type *result;
ad82864c 7811 int constrained_packed_array_p;
14f9c5c9 7812
b0dd7688 7813 type0 = ada_check_typedef (type0);
284614f0 7814 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7815 return type0;
14f9c5c9 7816
ad82864c
JB
7817 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7818 if (constrained_packed_array_p)
7819 type0 = decode_constrained_packed_array_type (type0);
284614f0 7820
14f9c5c9 7821 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 7822 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
7823 if (index_type_desc == NULL)
7824 {
61ee279c 7825 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 7826
14f9c5c9 7827 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7828 depend on the contents of the array in properly constructed
7829 debugging data. */
529cad9c
PH
7830 /* Create a fixed version of the array element type.
7831 We're not providing the address of an element here,
e1d5a0d2 7832 and thus the actual object value cannot be inspected to do
529cad9c
PH
7833 the conversion. This should not be a problem, since arrays of
7834 unconstrained objects are not allowed. In particular, all
7835 the elements of an array of a tagged type should all be of
7836 the same type specified in the debugging info. No need to
7837 consult the object tag. */
1ed6ede0 7838 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7839
284614f0
JB
7840 /* Make sure we always create a new array type when dealing with
7841 packed array types, since we're going to fix-up the array
7842 type length and element bitsize a little further down. */
ad82864c 7843 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7844 result = type0;
14f9c5c9 7845 else
e9bb382b 7846 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7847 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7848 }
7849 else
7850 {
7851 int i;
7852 struct type *elt_type0;
7853
7854 elt_type0 = type0;
7855 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7856 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7857
7858 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7859 depend on the contents of the array in properly constructed
7860 debugging data. */
529cad9c
PH
7861 /* Create a fixed version of the array element type.
7862 We're not providing the address of an element here,
e1d5a0d2 7863 and thus the actual object value cannot be inspected to do
529cad9c
PH
7864 the conversion. This should not be a problem, since arrays of
7865 unconstrained objects are not allowed. In particular, all
7866 the elements of an array of a tagged type should all be of
7867 the same type specified in the debugging info. No need to
7868 consult the object tag. */
1ed6ede0
JB
7869 result =
7870 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7871
7872 elt_type0 = type0;
14f9c5c9 7873 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7874 {
7875 struct type *range_type =
28c85d6c 7876 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 7877
e9bb382b 7878 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7879 result, range_type);
1ce677a4 7880 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7881 }
d2e4a39e 7882 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7883 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7884 }
7885
2e6fda7d
JB
7886 /* We want to preserve the type name. This can be useful when
7887 trying to get the type name of a value that has already been
7888 printed (for instance, if the user did "print VAR; whatis $". */
7889 TYPE_NAME (result) = TYPE_NAME (type0);
7890
ad82864c 7891 if (constrained_packed_array_p)
284614f0
JB
7892 {
7893 /* So far, the resulting type has been created as if the original
7894 type was a regular (non-packed) array type. As a result, the
7895 bitsize of the array elements needs to be set again, and the array
7896 length needs to be recomputed based on that bitsize. */
7897 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7898 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7899
7900 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7901 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7902 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7903 TYPE_LENGTH (result)++;
7904 }
7905
876cecd0 7906 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7907 return result;
d2e4a39e 7908}
14f9c5c9
AS
7909
7910
7911/* A standard type (containing no dynamically sized components)
7912 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7913 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7914 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7915 ADDRESS or in VALADDR contains these discriminants.
7916
1ed6ede0
JB
7917 If CHECK_TAG is not null, in the case of tagged types, this function
7918 attempts to locate the object's tag and use it to compute the actual
7919 type. However, when ADDRESS is null, we cannot use it to determine the
7920 location of the tag, and therefore compute the tagged type's actual type.
7921 So we return the tagged type without consulting the tag. */
529cad9c 7922
f192137b
JB
7923static struct type *
7924ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7925 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7926{
61ee279c 7927 type = ada_check_typedef (type);
d2e4a39e
AS
7928 switch (TYPE_CODE (type))
7929 {
7930 default:
14f9c5c9 7931 return type;
d2e4a39e 7932 case TYPE_CODE_STRUCT:
4c4b4cd2 7933 {
76a01679 7934 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7935 struct type *fixed_record_type =
7936 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 7937
529cad9c
PH
7938 /* If STATIC_TYPE is a tagged type and we know the object's address,
7939 then we can determine its tag, and compute the object's actual
0963b4bd 7940 type from there. Note that we have to use the fixed record
1ed6ede0
JB
7941 type (the parent part of the record may have dynamic fields
7942 and the way the location of _tag is expressed may depend on
7943 them). */
529cad9c 7944
1ed6ede0 7945 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7946 {
7947 struct type *real_type =
1ed6ede0
JB
7948 type_from_tag (value_tag_from_contents_and_address
7949 (fixed_record_type,
7950 valaddr,
7951 address));
5b4ee69b 7952
76a01679 7953 if (real_type != NULL)
1ed6ede0 7954 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7955 }
4af88198
JB
7956
7957 /* Check to see if there is a parallel ___XVZ variable.
7958 If there is, then it provides the actual size of our type. */
7959 else if (ada_type_name (fixed_record_type) != NULL)
7960 {
0d5cff50 7961 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
7962 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7963 int xvz_found = 0;
7964 LONGEST size;
7965
88c15c34 7966 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7967 size = get_int_var_value (xvz_name, &xvz_found);
7968 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7969 {
7970 fixed_record_type = copy_type (fixed_record_type);
7971 TYPE_LENGTH (fixed_record_type) = size;
7972
7973 /* The FIXED_RECORD_TYPE may have be a stub. We have
7974 observed this when the debugging info is STABS, and
7975 apparently it is something that is hard to fix.
7976
7977 In practice, we don't need the actual type definition
7978 at all, because the presence of the XVZ variable allows us
7979 to assume that there must be a XVS type as well, which we
7980 should be able to use later, when we need the actual type
7981 definition.
7982
7983 In the meantime, pretend that the "fixed" type we are
7984 returning is NOT a stub, because this can cause trouble
7985 when using this type to create new types targeting it.
7986 Indeed, the associated creation routines often check
7987 whether the target type is a stub and will try to replace
0963b4bd 7988 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
7989 might cause the new type to have the wrong size too.
7990 Consider the case of an array, for instance, where the size
7991 of the array is computed from the number of elements in
7992 our array multiplied by the size of its element. */
7993 TYPE_STUB (fixed_record_type) = 0;
7994 }
7995 }
1ed6ede0 7996 return fixed_record_type;
4c4b4cd2 7997 }
d2e4a39e 7998 case TYPE_CODE_ARRAY:
4c4b4cd2 7999 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8000 case TYPE_CODE_UNION:
8001 if (dval == NULL)
4c4b4cd2 8002 return type;
d2e4a39e 8003 else
4c4b4cd2 8004 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8005 }
14f9c5c9
AS
8006}
8007
f192137b
JB
8008/* The same as ada_to_fixed_type_1, except that it preserves the type
8009 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8010
8011 The typedef layer needs be preserved in order to differentiate between
8012 arrays and array pointers when both types are implemented using the same
8013 fat pointer. In the array pointer case, the pointer is encoded as
8014 a typedef of the pointer type. For instance, considering:
8015
8016 type String_Access is access String;
8017 S1 : String_Access := null;
8018
8019 To the debugger, S1 is defined as a typedef of type String. But
8020 to the user, it is a pointer. So if the user tries to print S1,
8021 we should not dereference the array, but print the array address
8022 instead.
8023
8024 If we didn't preserve the typedef layer, we would lose the fact that
8025 the type is to be presented as a pointer (needs de-reference before
8026 being printed). And we would also use the source-level type name. */
f192137b
JB
8027
8028struct type *
8029ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8030 CORE_ADDR address, struct value *dval, int check_tag)
8031
8032{
8033 struct type *fixed_type =
8034 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8035
96dbd2c1
JB
8036 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8037 then preserve the typedef layer.
8038
8039 Implementation note: We can only check the main-type portion of
8040 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8041 from TYPE now returns a type that has the same instance flags
8042 as TYPE. For instance, if TYPE is a "typedef const", and its
8043 target type is a "struct", then the typedef elimination will return
8044 a "const" version of the target type. See check_typedef for more
8045 details about how the typedef layer elimination is done.
8046
8047 brobecker/2010-11-19: It seems to me that the only case where it is
8048 useful to preserve the typedef layer is when dealing with fat pointers.
8049 Perhaps, we could add a check for that and preserve the typedef layer
8050 only in that situation. But this seems unecessary so far, probably
8051 because we call check_typedef/ada_check_typedef pretty much everywhere.
8052 */
f192137b 8053 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8054 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8055 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8056 return type;
8057
8058 return fixed_type;
8059}
8060
14f9c5c9 8061/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8062 TYPE0, but based on no runtime data. */
14f9c5c9 8063
d2e4a39e
AS
8064static struct type *
8065to_static_fixed_type (struct type *type0)
14f9c5c9 8066{
d2e4a39e 8067 struct type *type;
14f9c5c9
AS
8068
8069 if (type0 == NULL)
8070 return NULL;
8071
876cecd0 8072 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8073 return type0;
8074
61ee279c 8075 type0 = ada_check_typedef (type0);
d2e4a39e 8076
14f9c5c9
AS
8077 switch (TYPE_CODE (type0))
8078 {
8079 default:
8080 return type0;
8081 case TYPE_CODE_STRUCT:
8082 type = dynamic_template_type (type0);
d2e4a39e 8083 if (type != NULL)
4c4b4cd2
PH
8084 return template_to_static_fixed_type (type);
8085 else
8086 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8087 case TYPE_CODE_UNION:
8088 type = ada_find_parallel_type (type0, "___XVU");
8089 if (type != NULL)
4c4b4cd2
PH
8090 return template_to_static_fixed_type (type);
8091 else
8092 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8093 }
8094}
8095
4c4b4cd2
PH
8096/* A static approximation of TYPE with all type wrappers removed. */
8097
d2e4a39e
AS
8098static struct type *
8099static_unwrap_type (struct type *type)
14f9c5c9
AS
8100{
8101 if (ada_is_aligner_type (type))
8102 {
61ee279c 8103 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8104 if (ada_type_name (type1) == NULL)
4c4b4cd2 8105 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8106
8107 return static_unwrap_type (type1);
8108 }
d2e4a39e 8109 else
14f9c5c9 8110 {
d2e4a39e 8111 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8112
d2e4a39e 8113 if (raw_real_type == type)
4c4b4cd2 8114 return type;
14f9c5c9 8115 else
4c4b4cd2 8116 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8117 }
8118}
8119
8120/* In some cases, incomplete and private types require
4c4b4cd2 8121 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8122 type Foo;
8123 type FooP is access Foo;
8124 V: FooP;
8125 type Foo is array ...;
4c4b4cd2 8126 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8127 cross-references to such types, we instead substitute for FooP a
8128 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8129 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8130
8131/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8132 exists, otherwise TYPE. */
8133
d2e4a39e 8134struct type *
61ee279c 8135ada_check_typedef (struct type *type)
14f9c5c9 8136{
727e3d2e
JB
8137 if (type == NULL)
8138 return NULL;
8139
720d1a40
JB
8140 /* If our type is a typedef type of a fat pointer, then we're done.
8141 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8142 what allows us to distinguish between fat pointers that represent
8143 array types, and fat pointers that represent array access types
8144 (in both cases, the compiler implements them as fat pointers). */
8145 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8146 && is_thick_pntr (ada_typedef_target_type (type)))
8147 return type;
8148
14f9c5c9
AS
8149 CHECK_TYPEDEF (type);
8150 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8151 || !TYPE_STUB (type)
14f9c5c9
AS
8152 || TYPE_TAG_NAME (type) == NULL)
8153 return type;
d2e4a39e 8154 else
14f9c5c9 8155 {
0d5cff50 8156 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8157 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8158
05e522ef
JB
8159 if (type1 == NULL)
8160 return type;
8161
8162 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8163 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8164 types, only for the typedef-to-array types). If that's the case,
8165 strip the typedef layer. */
8166 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8167 type1 = ada_check_typedef (type1);
8168
8169 return type1;
14f9c5c9
AS
8170 }
8171}
8172
8173/* A value representing the data at VALADDR/ADDRESS as described by
8174 type TYPE0, but with a standard (static-sized) type that correctly
8175 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8176 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8177 creation of struct values]. */
14f9c5c9 8178
4c4b4cd2
PH
8179static struct value *
8180ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8181 struct value *val0)
14f9c5c9 8182{
1ed6ede0 8183 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8184
14f9c5c9
AS
8185 if (type == type0 && val0 != NULL)
8186 return val0;
d2e4a39e 8187 else
4c4b4cd2
PH
8188 return value_from_contents_and_address (type, 0, address);
8189}
8190
8191/* A value representing VAL, but with a standard (static-sized) type
8192 that correctly describes it. Does not necessarily create a new
8193 value. */
8194
0c3acc09 8195struct value *
4c4b4cd2
PH
8196ada_to_fixed_value (struct value *val)
8197{
c48db5ca
JB
8198 val = unwrap_value (val);
8199 val = ada_to_fixed_value_create (value_type (val),
8200 value_address (val),
8201 val);
8202 return val;
14f9c5c9 8203}
d2e4a39e 8204\f
14f9c5c9 8205
14f9c5c9
AS
8206/* Attributes */
8207
4c4b4cd2
PH
8208/* Table mapping attribute numbers to names.
8209 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8210
d2e4a39e 8211static const char *attribute_names[] = {
14f9c5c9
AS
8212 "<?>",
8213
d2e4a39e 8214 "first",
14f9c5c9
AS
8215 "last",
8216 "length",
8217 "image",
14f9c5c9
AS
8218 "max",
8219 "min",
4c4b4cd2
PH
8220 "modulus",
8221 "pos",
8222 "size",
8223 "tag",
14f9c5c9 8224 "val",
14f9c5c9
AS
8225 0
8226};
8227
d2e4a39e 8228const char *
4c4b4cd2 8229ada_attribute_name (enum exp_opcode n)
14f9c5c9 8230{
4c4b4cd2
PH
8231 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8232 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8233 else
8234 return attribute_names[0];
8235}
8236
4c4b4cd2 8237/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8238
4c4b4cd2
PH
8239static LONGEST
8240pos_atr (struct value *arg)
14f9c5c9 8241{
24209737
PH
8242 struct value *val = coerce_ref (arg);
8243 struct type *type = value_type (val);
14f9c5c9 8244
d2e4a39e 8245 if (!discrete_type_p (type))
323e0a4a 8246 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8247
8248 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8249 {
8250 int i;
24209737 8251 LONGEST v = value_as_long (val);
14f9c5c9 8252
d2e4a39e 8253 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
8254 {
8255 if (v == TYPE_FIELD_BITPOS (type, i))
8256 return i;
8257 }
323e0a4a 8258 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8259 }
8260 else
24209737 8261 return value_as_long (val);
4c4b4cd2
PH
8262}
8263
8264static struct value *
3cb382c9 8265value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8266{
3cb382c9 8267 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8268}
8269
4c4b4cd2 8270/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8271
d2e4a39e
AS
8272static struct value *
8273value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8274{
d2e4a39e 8275 if (!discrete_type_p (type))
323e0a4a 8276 error (_("'VAL only defined on discrete types"));
df407dfe 8277 if (!integer_type_p (value_type (arg)))
323e0a4a 8278 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8279
8280 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8281 {
8282 long pos = value_as_long (arg);
5b4ee69b 8283
14f9c5c9 8284 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8285 error (_("argument to 'VAL out of range"));
d2e4a39e 8286 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
8287 }
8288 else
8289 return value_from_longest (type, value_as_long (arg));
8290}
14f9c5c9 8291\f
d2e4a39e 8292
4c4b4cd2 8293 /* Evaluation */
14f9c5c9 8294
4c4b4cd2
PH
8295/* True if TYPE appears to be an Ada character type.
8296 [At the moment, this is true only for Character and Wide_Character;
8297 It is a heuristic test that could stand improvement]. */
14f9c5c9 8298
d2e4a39e
AS
8299int
8300ada_is_character_type (struct type *type)
14f9c5c9 8301{
7b9f71f2
JB
8302 const char *name;
8303
8304 /* If the type code says it's a character, then assume it really is,
8305 and don't check any further. */
8306 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8307 return 1;
8308
8309 /* Otherwise, assume it's a character type iff it is a discrete type
8310 with a known character type name. */
8311 name = ada_type_name (type);
8312 return (name != NULL
8313 && (TYPE_CODE (type) == TYPE_CODE_INT
8314 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8315 && (strcmp (name, "character") == 0
8316 || strcmp (name, "wide_character") == 0
5a517ebd 8317 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8318 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8319}
8320
4c4b4cd2 8321/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8322
8323int
ebf56fd3 8324ada_is_string_type (struct type *type)
14f9c5c9 8325{
61ee279c 8326 type = ada_check_typedef (type);
d2e4a39e 8327 if (type != NULL
14f9c5c9 8328 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8329 && (ada_is_simple_array_type (type)
8330 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8331 && ada_array_arity (type) == 1)
8332 {
8333 struct type *elttype = ada_array_element_type (type, 1);
8334
8335 return ada_is_character_type (elttype);
8336 }
d2e4a39e 8337 else
14f9c5c9
AS
8338 return 0;
8339}
8340
5bf03f13
JB
8341/* The compiler sometimes provides a parallel XVS type for a given
8342 PAD type. Normally, it is safe to follow the PAD type directly,
8343 but older versions of the compiler have a bug that causes the offset
8344 of its "F" field to be wrong. Following that field in that case
8345 would lead to incorrect results, but this can be worked around
8346 by ignoring the PAD type and using the associated XVS type instead.
8347
8348 Set to True if the debugger should trust the contents of PAD types.
8349 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8350static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8351
8352/* True if TYPE is a struct type introduced by the compiler to force the
8353 alignment of a value. Such types have a single field with a
4c4b4cd2 8354 distinctive name. */
14f9c5c9
AS
8355
8356int
ebf56fd3 8357ada_is_aligner_type (struct type *type)
14f9c5c9 8358{
61ee279c 8359 type = ada_check_typedef (type);
714e53ab 8360
5bf03f13 8361 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8362 return 0;
8363
14f9c5c9 8364 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8365 && TYPE_NFIELDS (type) == 1
8366 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8367}
8368
8369/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8370 the parallel type. */
14f9c5c9 8371
d2e4a39e
AS
8372struct type *
8373ada_get_base_type (struct type *raw_type)
14f9c5c9 8374{
d2e4a39e
AS
8375 struct type *real_type_namer;
8376 struct type *raw_real_type;
14f9c5c9
AS
8377
8378 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8379 return raw_type;
8380
284614f0
JB
8381 if (ada_is_aligner_type (raw_type))
8382 /* The encoding specifies that we should always use the aligner type.
8383 So, even if this aligner type has an associated XVS type, we should
8384 simply ignore it.
8385
8386 According to the compiler gurus, an XVS type parallel to an aligner
8387 type may exist because of a stabs limitation. In stabs, aligner
8388 types are empty because the field has a variable-sized type, and
8389 thus cannot actually be used as an aligner type. As a result,
8390 we need the associated parallel XVS type to decode the type.
8391 Since the policy in the compiler is to not change the internal
8392 representation based on the debugging info format, we sometimes
8393 end up having a redundant XVS type parallel to the aligner type. */
8394 return raw_type;
8395
14f9c5c9 8396 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8397 if (real_type_namer == NULL
14f9c5c9
AS
8398 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8399 || TYPE_NFIELDS (real_type_namer) != 1)
8400 return raw_type;
8401
f80d3ff2
JB
8402 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8403 {
8404 /* This is an older encoding form where the base type needs to be
8405 looked up by name. We prefer the newer enconding because it is
8406 more efficient. */
8407 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8408 if (raw_real_type == NULL)
8409 return raw_type;
8410 else
8411 return raw_real_type;
8412 }
8413
8414 /* The field in our XVS type is a reference to the base type. */
8415 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8416}
14f9c5c9 8417
4c4b4cd2 8418/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8419
d2e4a39e
AS
8420struct type *
8421ada_aligned_type (struct type *type)
14f9c5c9
AS
8422{
8423 if (ada_is_aligner_type (type))
8424 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8425 else
8426 return ada_get_base_type (type);
8427}
8428
8429
8430/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8431 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8432
fc1a4b47
AC
8433const gdb_byte *
8434ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8435{
d2e4a39e 8436 if (ada_is_aligner_type (type))
14f9c5c9 8437 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8438 valaddr +
8439 TYPE_FIELD_BITPOS (type,
8440 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8441 else
8442 return valaddr;
8443}
8444
4c4b4cd2
PH
8445
8446
14f9c5c9 8447/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8448 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8449const char *
8450ada_enum_name (const char *name)
14f9c5c9 8451{
4c4b4cd2
PH
8452 static char *result;
8453 static size_t result_len = 0;
d2e4a39e 8454 char *tmp;
14f9c5c9 8455
4c4b4cd2
PH
8456 /* First, unqualify the enumeration name:
8457 1. Search for the last '.' character. If we find one, then skip
177b42fe 8458 all the preceding characters, the unqualified name starts
76a01679 8459 right after that dot.
4c4b4cd2 8460 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8461 translates dots into "__". Search forward for double underscores,
8462 but stop searching when we hit an overloading suffix, which is
8463 of the form "__" followed by digits. */
4c4b4cd2 8464
c3e5cd34
PH
8465 tmp = strrchr (name, '.');
8466 if (tmp != NULL)
4c4b4cd2
PH
8467 name = tmp + 1;
8468 else
14f9c5c9 8469 {
4c4b4cd2
PH
8470 while ((tmp = strstr (name, "__")) != NULL)
8471 {
8472 if (isdigit (tmp[2]))
8473 break;
8474 else
8475 name = tmp + 2;
8476 }
14f9c5c9
AS
8477 }
8478
8479 if (name[0] == 'Q')
8480 {
14f9c5c9 8481 int v;
5b4ee69b 8482
14f9c5c9 8483 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8484 {
8485 if (sscanf (name + 2, "%x", &v) != 1)
8486 return name;
8487 }
14f9c5c9 8488 else
4c4b4cd2 8489 return name;
14f9c5c9 8490
4c4b4cd2 8491 GROW_VECT (result, result_len, 16);
14f9c5c9 8492 if (isascii (v) && isprint (v))
88c15c34 8493 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8494 else if (name[1] == 'U')
88c15c34 8495 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8496 else
88c15c34 8497 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8498
8499 return result;
8500 }
d2e4a39e 8501 else
4c4b4cd2 8502 {
c3e5cd34
PH
8503 tmp = strstr (name, "__");
8504 if (tmp == NULL)
8505 tmp = strstr (name, "$");
8506 if (tmp != NULL)
4c4b4cd2
PH
8507 {
8508 GROW_VECT (result, result_len, tmp - name + 1);
8509 strncpy (result, name, tmp - name);
8510 result[tmp - name] = '\0';
8511 return result;
8512 }
8513
8514 return name;
8515 }
14f9c5c9
AS
8516}
8517
14f9c5c9
AS
8518/* Evaluate the subexpression of EXP starting at *POS as for
8519 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8520 expression. */
14f9c5c9 8521
d2e4a39e
AS
8522static struct value *
8523evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8524{
4b27a620 8525 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8526}
8527
8528/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8529 value it wraps. */
14f9c5c9 8530
d2e4a39e
AS
8531static struct value *
8532unwrap_value (struct value *val)
14f9c5c9 8533{
df407dfe 8534 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8535
14f9c5c9
AS
8536 if (ada_is_aligner_type (type))
8537 {
de4d072f 8538 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8539 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8540
14f9c5c9 8541 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8542 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8543
8544 return unwrap_value (v);
8545 }
d2e4a39e 8546 else
14f9c5c9 8547 {
d2e4a39e 8548 struct type *raw_real_type =
61ee279c 8549 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8550
5bf03f13
JB
8551 /* If there is no parallel XVS or XVE type, then the value is
8552 already unwrapped. Return it without further modification. */
8553 if ((type == raw_real_type)
8554 && ada_find_parallel_type (type, "___XVE") == NULL)
8555 return val;
14f9c5c9 8556
d2e4a39e 8557 return
4c4b4cd2
PH
8558 coerce_unspec_val_to_type
8559 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8560 value_address (val),
1ed6ede0 8561 NULL, 1));
14f9c5c9
AS
8562 }
8563}
d2e4a39e
AS
8564
8565static struct value *
8566cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8567{
8568 LONGEST val;
8569
df407dfe 8570 if (type == value_type (arg))
14f9c5c9 8571 return arg;
df407dfe 8572 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8573 val = ada_float_to_fixed (type,
df407dfe 8574 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8575 value_as_long (arg)));
d2e4a39e 8576 else
14f9c5c9 8577 {
a53b7a21 8578 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8579
14f9c5c9
AS
8580 val = ada_float_to_fixed (type, argd);
8581 }
8582
8583 return value_from_longest (type, val);
8584}
8585
d2e4a39e 8586static struct value *
a53b7a21 8587cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8588{
df407dfe 8589 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8590 value_as_long (arg));
5b4ee69b 8591
a53b7a21 8592 return value_from_double (type, val);
14f9c5c9
AS
8593}
8594
4c4b4cd2
PH
8595/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8596 return the converted value. */
8597
d2e4a39e
AS
8598static struct value *
8599coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8600{
df407dfe 8601 struct type *type2 = value_type (val);
5b4ee69b 8602
14f9c5c9
AS
8603 if (type == type2)
8604 return val;
8605
61ee279c
PH
8606 type2 = ada_check_typedef (type2);
8607 type = ada_check_typedef (type);
14f9c5c9 8608
d2e4a39e
AS
8609 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8610 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8611 {
8612 val = ada_value_ind (val);
df407dfe 8613 type2 = value_type (val);
14f9c5c9
AS
8614 }
8615
d2e4a39e 8616 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8617 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8618 {
8619 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
8620 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8621 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 8622 error (_("Incompatible types in assignment"));
04624583 8623 deprecated_set_value_type (val, type);
14f9c5c9 8624 }
d2e4a39e 8625 return val;
14f9c5c9
AS
8626}
8627
4c4b4cd2
PH
8628static struct value *
8629ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8630{
8631 struct value *val;
8632 struct type *type1, *type2;
8633 LONGEST v, v1, v2;
8634
994b9211
AC
8635 arg1 = coerce_ref (arg1);
8636 arg2 = coerce_ref (arg2);
18af8284
JB
8637 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8638 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8639
76a01679
JB
8640 if (TYPE_CODE (type1) != TYPE_CODE_INT
8641 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8642 return value_binop (arg1, arg2, op);
8643
76a01679 8644 switch (op)
4c4b4cd2
PH
8645 {
8646 case BINOP_MOD:
8647 case BINOP_DIV:
8648 case BINOP_REM:
8649 break;
8650 default:
8651 return value_binop (arg1, arg2, op);
8652 }
8653
8654 v2 = value_as_long (arg2);
8655 if (v2 == 0)
323e0a4a 8656 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8657
8658 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8659 return value_binop (arg1, arg2, op);
8660
8661 v1 = value_as_long (arg1);
8662 switch (op)
8663 {
8664 case BINOP_DIV:
8665 v = v1 / v2;
76a01679
JB
8666 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8667 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8668 break;
8669 case BINOP_REM:
8670 v = v1 % v2;
76a01679
JB
8671 if (v * v1 < 0)
8672 v -= v2;
4c4b4cd2
PH
8673 break;
8674 default:
8675 /* Should not reach this point. */
8676 v = 0;
8677 }
8678
8679 val = allocate_value (type1);
990a07ab 8680 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8681 TYPE_LENGTH (value_type (val)),
8682 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8683 return val;
8684}
8685
8686static int
8687ada_value_equal (struct value *arg1, struct value *arg2)
8688{
df407dfe
AC
8689 if (ada_is_direct_array_type (value_type (arg1))
8690 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8691 {
f58b38bf
JB
8692 /* Automatically dereference any array reference before
8693 we attempt to perform the comparison. */
8694 arg1 = ada_coerce_ref (arg1);
8695 arg2 = ada_coerce_ref (arg2);
8696
4c4b4cd2
PH
8697 arg1 = ada_coerce_to_simple_array (arg1);
8698 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8699 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8700 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8701 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8702 /* FIXME: The following works only for types whose
76a01679
JB
8703 representations use all bits (no padding or undefined bits)
8704 and do not have user-defined equality. */
8705 return
df407dfe 8706 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8707 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8708 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8709 }
8710 return value_equal (arg1, arg2);
8711}
8712
52ce6436
PH
8713/* Total number of component associations in the aggregate starting at
8714 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8715 OP_AGGREGATE. */
52ce6436
PH
8716
8717static int
8718num_component_specs (struct expression *exp, int pc)
8719{
8720 int n, m, i;
5b4ee69b 8721
52ce6436
PH
8722 m = exp->elts[pc + 1].longconst;
8723 pc += 3;
8724 n = 0;
8725 for (i = 0; i < m; i += 1)
8726 {
8727 switch (exp->elts[pc].opcode)
8728 {
8729 default:
8730 n += 1;
8731 break;
8732 case OP_CHOICES:
8733 n += exp->elts[pc + 1].longconst;
8734 break;
8735 }
8736 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8737 }
8738 return n;
8739}
8740
8741/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8742 component of LHS (a simple array or a record), updating *POS past
8743 the expression, assuming that LHS is contained in CONTAINER. Does
8744 not modify the inferior's memory, nor does it modify LHS (unless
8745 LHS == CONTAINER). */
8746
8747static void
8748assign_component (struct value *container, struct value *lhs, LONGEST index,
8749 struct expression *exp, int *pos)
8750{
8751 struct value *mark = value_mark ();
8752 struct value *elt;
5b4ee69b 8753
52ce6436
PH
8754 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8755 {
22601c15
UW
8756 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8757 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 8758
52ce6436
PH
8759 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8760 }
8761 else
8762 {
8763 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 8764 elt = ada_to_fixed_value (elt);
52ce6436
PH
8765 }
8766
8767 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8768 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8769 else
8770 value_assign_to_component (container, elt,
8771 ada_evaluate_subexp (NULL, exp, pos,
8772 EVAL_NORMAL));
8773
8774 value_free_to_mark (mark);
8775}
8776
8777/* Assuming that LHS represents an lvalue having a record or array
8778 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8779 of that aggregate's value to LHS, advancing *POS past the
8780 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8781 lvalue containing LHS (possibly LHS itself). Does not modify
8782 the inferior's memory, nor does it modify the contents of
0963b4bd 8783 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
8784
8785static struct value *
8786assign_aggregate (struct value *container,
8787 struct value *lhs, struct expression *exp,
8788 int *pos, enum noside noside)
8789{
8790 struct type *lhs_type;
8791 int n = exp->elts[*pos+1].longconst;
8792 LONGEST low_index, high_index;
8793 int num_specs;
8794 LONGEST *indices;
8795 int max_indices, num_indices;
8796 int is_array_aggregate;
8797 int i;
52ce6436
PH
8798
8799 *pos += 3;
8800 if (noside != EVAL_NORMAL)
8801 {
52ce6436
PH
8802 for (i = 0; i < n; i += 1)
8803 ada_evaluate_subexp (NULL, exp, pos, noside);
8804 return container;
8805 }
8806
8807 container = ada_coerce_ref (container);
8808 if (ada_is_direct_array_type (value_type (container)))
8809 container = ada_coerce_to_simple_array (container);
8810 lhs = ada_coerce_ref (lhs);
8811 if (!deprecated_value_modifiable (lhs))
8812 error (_("Left operand of assignment is not a modifiable lvalue."));
8813
8814 lhs_type = value_type (lhs);
8815 if (ada_is_direct_array_type (lhs_type))
8816 {
8817 lhs = ada_coerce_to_simple_array (lhs);
8818 lhs_type = value_type (lhs);
8819 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8820 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8821 is_array_aggregate = 1;
8822 }
8823 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8824 {
8825 low_index = 0;
8826 high_index = num_visible_fields (lhs_type) - 1;
8827 is_array_aggregate = 0;
8828 }
8829 else
8830 error (_("Left-hand side must be array or record."));
8831
8832 num_specs = num_component_specs (exp, *pos - 3);
8833 max_indices = 4 * num_specs + 4;
8834 indices = alloca (max_indices * sizeof (indices[0]));
8835 indices[0] = indices[1] = low_index - 1;
8836 indices[2] = indices[3] = high_index + 1;
8837 num_indices = 4;
8838
8839 for (i = 0; i < n; i += 1)
8840 {
8841 switch (exp->elts[*pos].opcode)
8842 {
1fbf5ada
JB
8843 case OP_CHOICES:
8844 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8845 &num_indices, max_indices,
8846 low_index, high_index);
8847 break;
8848 case OP_POSITIONAL:
8849 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
8850 &num_indices, max_indices,
8851 low_index, high_index);
1fbf5ada
JB
8852 break;
8853 case OP_OTHERS:
8854 if (i != n-1)
8855 error (_("Misplaced 'others' clause"));
8856 aggregate_assign_others (container, lhs, exp, pos, indices,
8857 num_indices, low_index, high_index);
8858 break;
8859 default:
8860 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
8861 }
8862 }
8863
8864 return container;
8865}
8866
8867/* Assign into the component of LHS indexed by the OP_POSITIONAL
8868 construct at *POS, updating *POS past the construct, given that
8869 the positions are relative to lower bound LOW, where HIGH is the
8870 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8871 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 8872 assign_aggregate. */
52ce6436
PH
8873static void
8874aggregate_assign_positional (struct value *container,
8875 struct value *lhs, struct expression *exp,
8876 int *pos, LONGEST *indices, int *num_indices,
8877 int max_indices, LONGEST low, LONGEST high)
8878{
8879 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8880
8881 if (ind - 1 == high)
e1d5a0d2 8882 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8883 if (ind <= high)
8884 {
8885 add_component_interval (ind, ind, indices, num_indices, max_indices);
8886 *pos += 3;
8887 assign_component (container, lhs, ind, exp, pos);
8888 }
8889 else
8890 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8891}
8892
8893/* Assign into the components of LHS indexed by the OP_CHOICES
8894 construct at *POS, updating *POS past the construct, given that
8895 the allowable indices are LOW..HIGH. Record the indices assigned
8896 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 8897 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8898static void
8899aggregate_assign_from_choices (struct value *container,
8900 struct value *lhs, struct expression *exp,
8901 int *pos, LONGEST *indices, int *num_indices,
8902 int max_indices, LONGEST low, LONGEST high)
8903{
8904 int j;
8905 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8906 int choice_pos, expr_pc;
8907 int is_array = ada_is_direct_array_type (value_type (lhs));
8908
8909 choice_pos = *pos += 3;
8910
8911 for (j = 0; j < n_choices; j += 1)
8912 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8913 expr_pc = *pos;
8914 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8915
8916 for (j = 0; j < n_choices; j += 1)
8917 {
8918 LONGEST lower, upper;
8919 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 8920
52ce6436
PH
8921 if (op == OP_DISCRETE_RANGE)
8922 {
8923 choice_pos += 1;
8924 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8925 EVAL_NORMAL));
8926 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8927 EVAL_NORMAL));
8928 }
8929 else if (is_array)
8930 {
8931 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8932 EVAL_NORMAL));
8933 upper = lower;
8934 }
8935 else
8936 {
8937 int ind;
0d5cff50 8938 const char *name;
5b4ee69b 8939
52ce6436
PH
8940 switch (op)
8941 {
8942 case OP_NAME:
8943 name = &exp->elts[choice_pos + 2].string;
8944 break;
8945 case OP_VAR_VALUE:
8946 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8947 break;
8948 default:
8949 error (_("Invalid record component association."));
8950 }
8951 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8952 ind = 0;
8953 if (! find_struct_field (name, value_type (lhs), 0,
8954 NULL, NULL, NULL, NULL, &ind))
8955 error (_("Unknown component name: %s."), name);
8956 lower = upper = ind;
8957 }
8958
8959 if (lower <= upper && (lower < low || upper > high))
8960 error (_("Index in component association out of bounds."));
8961
8962 add_component_interval (lower, upper, indices, num_indices,
8963 max_indices);
8964 while (lower <= upper)
8965 {
8966 int pos1;
5b4ee69b 8967
52ce6436
PH
8968 pos1 = expr_pc;
8969 assign_component (container, lhs, lower, exp, &pos1);
8970 lower += 1;
8971 }
8972 }
8973}
8974
8975/* Assign the value of the expression in the OP_OTHERS construct in
8976 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8977 have not been previously assigned. The index intervals already assigned
8978 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 8979 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8980static void
8981aggregate_assign_others (struct value *container,
8982 struct value *lhs, struct expression *exp,
8983 int *pos, LONGEST *indices, int num_indices,
8984 LONGEST low, LONGEST high)
8985{
8986 int i;
5ce64950 8987 int expr_pc = *pos + 1;
52ce6436
PH
8988
8989 for (i = 0; i < num_indices - 2; i += 2)
8990 {
8991 LONGEST ind;
5b4ee69b 8992
52ce6436
PH
8993 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8994 {
5ce64950 8995 int localpos;
5b4ee69b 8996
5ce64950
MS
8997 localpos = expr_pc;
8998 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
8999 }
9000 }
9001 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9002}
9003
9004/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9005 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9006 modifying *SIZE as needed. It is an error if *SIZE exceeds
9007 MAX_SIZE. The resulting intervals do not overlap. */
9008static void
9009add_component_interval (LONGEST low, LONGEST high,
9010 LONGEST* indices, int *size, int max_size)
9011{
9012 int i, j;
5b4ee69b 9013
52ce6436
PH
9014 for (i = 0; i < *size; i += 2) {
9015 if (high >= indices[i] && low <= indices[i + 1])
9016 {
9017 int kh;
5b4ee69b 9018
52ce6436
PH
9019 for (kh = i + 2; kh < *size; kh += 2)
9020 if (high < indices[kh])
9021 break;
9022 if (low < indices[i])
9023 indices[i] = low;
9024 indices[i + 1] = indices[kh - 1];
9025 if (high > indices[i + 1])
9026 indices[i + 1] = high;
9027 memcpy (indices + i + 2, indices + kh, *size - kh);
9028 *size -= kh - i - 2;
9029 return;
9030 }
9031 else if (high < indices[i])
9032 break;
9033 }
9034
9035 if (*size == max_size)
9036 error (_("Internal error: miscounted aggregate components."));
9037 *size += 2;
9038 for (j = *size-1; j >= i+2; j -= 1)
9039 indices[j] = indices[j - 2];
9040 indices[i] = low;
9041 indices[i + 1] = high;
9042}
9043
6e48bd2c
JB
9044/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9045 is different. */
9046
9047static struct value *
9048ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9049{
9050 if (type == ada_check_typedef (value_type (arg2)))
9051 return arg2;
9052
9053 if (ada_is_fixed_point_type (type))
9054 return (cast_to_fixed (type, arg2));
9055
9056 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9057 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9058
9059 return value_cast (type, arg2);
9060}
9061
284614f0
JB
9062/* Evaluating Ada expressions, and printing their result.
9063 ------------------------------------------------------
9064
21649b50
JB
9065 1. Introduction:
9066 ----------------
9067
284614f0
JB
9068 We usually evaluate an Ada expression in order to print its value.
9069 We also evaluate an expression in order to print its type, which
9070 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9071 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9072 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9073 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9074 similar.
9075
9076 Evaluating expressions is a little more complicated for Ada entities
9077 than it is for entities in languages such as C. The main reason for
9078 this is that Ada provides types whose definition might be dynamic.
9079 One example of such types is variant records. Or another example
9080 would be an array whose bounds can only be known at run time.
9081
9082 The following description is a general guide as to what should be
9083 done (and what should NOT be done) in order to evaluate an expression
9084 involving such types, and when. This does not cover how the semantic
9085 information is encoded by GNAT as this is covered separatly. For the
9086 document used as the reference for the GNAT encoding, see exp_dbug.ads
9087 in the GNAT sources.
9088
9089 Ideally, we should embed each part of this description next to its
9090 associated code. Unfortunately, the amount of code is so vast right
9091 now that it's hard to see whether the code handling a particular
9092 situation might be duplicated or not. One day, when the code is
9093 cleaned up, this guide might become redundant with the comments
9094 inserted in the code, and we might want to remove it.
9095
21649b50
JB
9096 2. ``Fixing'' an Entity, the Simple Case:
9097 -----------------------------------------
9098
284614f0
JB
9099 When evaluating Ada expressions, the tricky issue is that they may
9100 reference entities whose type contents and size are not statically
9101 known. Consider for instance a variant record:
9102
9103 type Rec (Empty : Boolean := True) is record
9104 case Empty is
9105 when True => null;
9106 when False => Value : Integer;
9107 end case;
9108 end record;
9109 Yes : Rec := (Empty => False, Value => 1);
9110 No : Rec := (empty => True);
9111
9112 The size and contents of that record depends on the value of the
9113 descriminant (Rec.Empty). At this point, neither the debugging
9114 information nor the associated type structure in GDB are able to
9115 express such dynamic types. So what the debugger does is to create
9116 "fixed" versions of the type that applies to the specific object.
9117 We also informally refer to this opperation as "fixing" an object,
9118 which means creating its associated fixed type.
9119
9120 Example: when printing the value of variable "Yes" above, its fixed
9121 type would look like this:
9122
9123 type Rec is record
9124 Empty : Boolean;
9125 Value : Integer;
9126 end record;
9127
9128 On the other hand, if we printed the value of "No", its fixed type
9129 would become:
9130
9131 type Rec is record
9132 Empty : Boolean;
9133 end record;
9134
9135 Things become a little more complicated when trying to fix an entity
9136 with a dynamic type that directly contains another dynamic type,
9137 such as an array of variant records, for instance. There are
9138 two possible cases: Arrays, and records.
9139
21649b50
JB
9140 3. ``Fixing'' Arrays:
9141 ---------------------
9142
9143 The type structure in GDB describes an array in terms of its bounds,
9144 and the type of its elements. By design, all elements in the array
9145 have the same type and we cannot represent an array of variant elements
9146 using the current type structure in GDB. When fixing an array,
9147 we cannot fix the array element, as we would potentially need one
9148 fixed type per element of the array. As a result, the best we can do
9149 when fixing an array is to produce an array whose bounds and size
9150 are correct (allowing us to read it from memory), but without having
9151 touched its element type. Fixing each element will be done later,
9152 when (if) necessary.
9153
9154 Arrays are a little simpler to handle than records, because the same
9155 amount of memory is allocated for each element of the array, even if
1b536f04 9156 the amount of space actually used by each element differs from element
21649b50 9157 to element. Consider for instance the following array of type Rec:
284614f0
JB
9158
9159 type Rec_Array is array (1 .. 2) of Rec;
9160
1b536f04
JB
9161 The actual amount of memory occupied by each element might be different
9162 from element to element, depending on the value of their discriminant.
21649b50 9163 But the amount of space reserved for each element in the array remains
1b536f04 9164 fixed regardless. So we simply need to compute that size using
21649b50
JB
9165 the debugging information available, from which we can then determine
9166 the array size (we multiply the number of elements of the array by
9167 the size of each element).
9168
9169 The simplest case is when we have an array of a constrained element
9170 type. For instance, consider the following type declarations:
9171
9172 type Bounded_String (Max_Size : Integer) is
9173 Length : Integer;
9174 Buffer : String (1 .. Max_Size);
9175 end record;
9176 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9177
9178 In this case, the compiler describes the array as an array of
9179 variable-size elements (identified by its XVS suffix) for which
9180 the size can be read in the parallel XVZ variable.
9181
9182 In the case of an array of an unconstrained element type, the compiler
9183 wraps the array element inside a private PAD type. This type should not
9184 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9185 that we also use the adjective "aligner" in our code to designate
9186 these wrapper types.
9187
1b536f04 9188 In some cases, the size allocated for each element is statically
21649b50
JB
9189 known. In that case, the PAD type already has the correct size,
9190 and the array element should remain unfixed.
9191
9192 But there are cases when this size is not statically known.
9193 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9194
9195 type Dynamic is array (1 .. Five) of Integer;
9196 type Wrapper (Has_Length : Boolean := False) is record
9197 Data : Dynamic;
9198 case Has_Length is
9199 when True => Length : Integer;
9200 when False => null;
9201 end case;
9202 end record;
9203 type Wrapper_Array is array (1 .. 2) of Wrapper;
9204
9205 Hello : Wrapper_Array := (others => (Has_Length => True,
9206 Data => (others => 17),
9207 Length => 1));
9208
9209
9210 The debugging info would describe variable Hello as being an
9211 array of a PAD type. The size of that PAD type is not statically
9212 known, but can be determined using a parallel XVZ variable.
9213 In that case, a copy of the PAD type with the correct size should
9214 be used for the fixed array.
9215
21649b50
JB
9216 3. ``Fixing'' record type objects:
9217 ----------------------------------
9218
9219 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9220 record types. In this case, in order to compute the associated
9221 fixed type, we need to determine the size and offset of each of
9222 its components. This, in turn, requires us to compute the fixed
9223 type of each of these components.
9224
9225 Consider for instance the example:
9226
9227 type Bounded_String (Max_Size : Natural) is record
9228 Str : String (1 .. Max_Size);
9229 Length : Natural;
9230 end record;
9231 My_String : Bounded_String (Max_Size => 10);
9232
9233 In that case, the position of field "Length" depends on the size
9234 of field Str, which itself depends on the value of the Max_Size
21649b50 9235 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9236 we need to fix the type of field Str. Therefore, fixing a variant
9237 record requires us to fix each of its components.
9238
9239 However, if a component does not have a dynamic size, the component
9240 should not be fixed. In particular, fields that use a PAD type
9241 should not fixed. Here is an example where this might happen
9242 (assuming type Rec above):
9243
9244 type Container (Big : Boolean) is record
9245 First : Rec;
9246 After : Integer;
9247 case Big is
9248 when True => Another : Integer;
9249 when False => null;
9250 end case;
9251 end record;
9252 My_Container : Container := (Big => False,
9253 First => (Empty => True),
9254 After => 42);
9255
9256 In that example, the compiler creates a PAD type for component First,
9257 whose size is constant, and then positions the component After just
9258 right after it. The offset of component After is therefore constant
9259 in this case.
9260
9261 The debugger computes the position of each field based on an algorithm
9262 that uses, among other things, the actual position and size of the field
21649b50
JB
9263 preceding it. Let's now imagine that the user is trying to print
9264 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9265 end up computing the offset of field After based on the size of the
9266 fixed version of field First. And since in our example First has
9267 only one actual field, the size of the fixed type is actually smaller
9268 than the amount of space allocated to that field, and thus we would
9269 compute the wrong offset of field After.
9270
21649b50
JB
9271 To make things more complicated, we need to watch out for dynamic
9272 components of variant records (identified by the ___XVL suffix in
9273 the component name). Even if the target type is a PAD type, the size
9274 of that type might not be statically known. So the PAD type needs
9275 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9276 we might end up with the wrong size for our component. This can be
9277 observed with the following type declarations:
284614f0
JB
9278
9279 type Octal is new Integer range 0 .. 7;
9280 type Octal_Array is array (Positive range <>) of Octal;
9281 pragma Pack (Octal_Array);
9282
9283 type Octal_Buffer (Size : Positive) is record
9284 Buffer : Octal_Array (1 .. Size);
9285 Length : Integer;
9286 end record;
9287
9288 In that case, Buffer is a PAD type whose size is unset and needs
9289 to be computed by fixing the unwrapped type.
9290
21649b50
JB
9291 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9292 ----------------------------------------------------------
9293
9294 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9295 thus far, be actually fixed?
9296
9297 The answer is: Only when referencing that element. For instance
9298 when selecting one component of a record, this specific component
9299 should be fixed at that point in time. Or when printing the value
9300 of a record, each component should be fixed before its value gets
9301 printed. Similarly for arrays, the element of the array should be
9302 fixed when printing each element of the array, or when extracting
9303 one element out of that array. On the other hand, fixing should
9304 not be performed on the elements when taking a slice of an array!
9305
9306 Note that one of the side-effects of miscomputing the offset and
9307 size of each field is that we end up also miscomputing the size
9308 of the containing type. This can have adverse results when computing
9309 the value of an entity. GDB fetches the value of an entity based
9310 on the size of its type, and thus a wrong size causes GDB to fetch
9311 the wrong amount of memory. In the case where the computed size is
9312 too small, GDB fetches too little data to print the value of our
9313 entiry. Results in this case as unpredicatble, as we usually read
9314 past the buffer containing the data =:-o. */
9315
9316/* Implement the evaluate_exp routine in the exp_descriptor structure
9317 for the Ada language. */
9318
52ce6436 9319static struct value *
ebf56fd3 9320ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9321 int *pos, enum noside noside)
14f9c5c9
AS
9322{
9323 enum exp_opcode op;
b5385fc0 9324 int tem;
14f9c5c9
AS
9325 int pc;
9326 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9327 struct type *type;
52ce6436 9328 int nargs, oplen;
d2e4a39e 9329 struct value **argvec;
14f9c5c9 9330
d2e4a39e
AS
9331 pc = *pos;
9332 *pos += 1;
14f9c5c9
AS
9333 op = exp->elts[pc].opcode;
9334
d2e4a39e 9335 switch (op)
14f9c5c9
AS
9336 {
9337 default:
9338 *pos -= 1;
6e48bd2c
JB
9339 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9340 arg1 = unwrap_value (arg1);
9341
9342 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9343 then we need to perform the conversion manually, because
9344 evaluate_subexp_standard doesn't do it. This conversion is
9345 necessary in Ada because the different kinds of float/fixed
9346 types in Ada have different representations.
9347
9348 Similarly, we need to perform the conversion from OP_LONG
9349 ourselves. */
9350 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9351 arg1 = ada_value_cast (expect_type, arg1, noside);
9352
9353 return arg1;
4c4b4cd2
PH
9354
9355 case OP_STRING:
9356 {
76a01679 9357 struct value *result;
5b4ee69b 9358
76a01679
JB
9359 *pos -= 1;
9360 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9361 /* The result type will have code OP_STRING, bashed there from
9362 OP_ARRAY. Bash it back. */
df407dfe
AC
9363 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9364 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9365 return result;
4c4b4cd2 9366 }
14f9c5c9
AS
9367
9368 case UNOP_CAST:
9369 (*pos) += 2;
9370 type = exp->elts[pc + 1].type;
9371 arg1 = evaluate_subexp (type, exp, pos, noside);
9372 if (noside == EVAL_SKIP)
4c4b4cd2 9373 goto nosideret;
6e48bd2c 9374 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9375 return arg1;
9376
4c4b4cd2
PH
9377 case UNOP_QUAL:
9378 (*pos) += 2;
9379 type = exp->elts[pc + 1].type;
9380 return ada_evaluate_subexp (type, exp, pos, noside);
9381
14f9c5c9
AS
9382 case BINOP_ASSIGN:
9383 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9384 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9385 {
9386 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9387 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9388 return arg1;
9389 return ada_value_assign (arg1, arg1);
9390 }
003f3813
JB
9391 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9392 except if the lhs of our assignment is a convenience variable.
9393 In the case of assigning to a convenience variable, the lhs
9394 should be exactly the result of the evaluation of the rhs. */
9395 type = value_type (arg1);
9396 if (VALUE_LVAL (arg1) == lval_internalvar)
9397 type = NULL;
9398 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9399 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9400 return arg1;
df407dfe
AC
9401 if (ada_is_fixed_point_type (value_type (arg1)))
9402 arg2 = cast_to_fixed (value_type (arg1), arg2);
9403 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9404 error
323e0a4a 9405 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9406 else
df407dfe 9407 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9408 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9409
9410 case BINOP_ADD:
9411 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9412 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9413 if (noside == EVAL_SKIP)
4c4b4cd2 9414 goto nosideret;
2ac8a782
JB
9415 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9416 return (value_from_longest
9417 (value_type (arg1),
9418 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9419 if ((ada_is_fixed_point_type (value_type (arg1))
9420 || ada_is_fixed_point_type (value_type (arg2)))
9421 && value_type (arg1) != value_type (arg2))
323e0a4a 9422 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9423 /* Do the addition, and cast the result to the type of the first
9424 argument. We cannot cast the result to a reference type, so if
9425 ARG1 is a reference type, find its underlying type. */
9426 type = value_type (arg1);
9427 while (TYPE_CODE (type) == TYPE_CODE_REF)
9428 type = TYPE_TARGET_TYPE (type);
f44316fa 9429 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9430 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9431
9432 case BINOP_SUB:
9433 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9434 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9435 if (noside == EVAL_SKIP)
4c4b4cd2 9436 goto nosideret;
2ac8a782
JB
9437 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9438 return (value_from_longest
9439 (value_type (arg1),
9440 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9441 if ((ada_is_fixed_point_type (value_type (arg1))
9442 || ada_is_fixed_point_type (value_type (arg2)))
9443 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9444 error (_("Operands of fixed-point subtraction "
9445 "must have the same type"));
b7789565
JB
9446 /* Do the substraction, and cast the result to the type of the first
9447 argument. We cannot cast the result to a reference type, so if
9448 ARG1 is a reference type, find its underlying type. */
9449 type = value_type (arg1);
9450 while (TYPE_CODE (type) == TYPE_CODE_REF)
9451 type = TYPE_TARGET_TYPE (type);
f44316fa 9452 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9453 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9454
9455 case BINOP_MUL:
9456 case BINOP_DIV:
e1578042
JB
9457 case BINOP_REM:
9458 case BINOP_MOD:
14f9c5c9
AS
9459 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9460 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9461 if (noside == EVAL_SKIP)
4c4b4cd2 9462 goto nosideret;
e1578042 9463 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9464 {
9465 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9466 return value_zero (value_type (arg1), not_lval);
9467 }
14f9c5c9 9468 else
4c4b4cd2 9469 {
a53b7a21 9470 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9471 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9472 arg1 = cast_from_fixed (type, arg1);
df407dfe 9473 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9474 arg2 = cast_from_fixed (type, arg2);
f44316fa 9475 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9476 return ada_value_binop (arg1, arg2, op);
9477 }
9478
4c4b4cd2
PH
9479 case BINOP_EQUAL:
9480 case BINOP_NOTEQUAL:
14f9c5c9 9481 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9482 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9483 if (noside == EVAL_SKIP)
76a01679 9484 goto nosideret;
4c4b4cd2 9485 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9486 tem = 0;
4c4b4cd2 9487 else
f44316fa
UW
9488 {
9489 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9490 tem = ada_value_equal (arg1, arg2);
9491 }
4c4b4cd2 9492 if (op == BINOP_NOTEQUAL)
76a01679 9493 tem = !tem;
fbb06eb1
UW
9494 type = language_bool_type (exp->language_defn, exp->gdbarch);
9495 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9496
9497 case UNOP_NEG:
9498 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9499 if (noside == EVAL_SKIP)
9500 goto nosideret;
df407dfe
AC
9501 else if (ada_is_fixed_point_type (value_type (arg1)))
9502 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9503 else
f44316fa
UW
9504 {
9505 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9506 return value_neg (arg1);
9507 }
4c4b4cd2 9508
2330c6c6
JB
9509 case BINOP_LOGICAL_AND:
9510 case BINOP_LOGICAL_OR:
9511 case UNOP_LOGICAL_NOT:
000d5124
JB
9512 {
9513 struct value *val;
9514
9515 *pos -= 1;
9516 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9517 type = language_bool_type (exp->language_defn, exp->gdbarch);
9518 return value_cast (type, val);
000d5124 9519 }
2330c6c6
JB
9520
9521 case BINOP_BITWISE_AND:
9522 case BINOP_BITWISE_IOR:
9523 case BINOP_BITWISE_XOR:
000d5124
JB
9524 {
9525 struct value *val;
9526
9527 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9528 *pos = pc;
9529 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9530
9531 return value_cast (value_type (arg1), val);
9532 }
2330c6c6 9533
14f9c5c9
AS
9534 case OP_VAR_VALUE:
9535 *pos -= 1;
6799def4 9536
14f9c5c9 9537 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9538 {
9539 *pos += 4;
9540 goto nosideret;
9541 }
9542 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9543 /* Only encountered when an unresolved symbol occurs in a
9544 context other than a function call, in which case, it is
52ce6436 9545 invalid. */
323e0a4a 9546 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9547 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9548 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9549 {
0c1f74cf 9550 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9551 /* Check to see if this is a tagged type. We also need to handle
9552 the case where the type is a reference to a tagged type, but
9553 we have to be careful to exclude pointers to tagged types.
9554 The latter should be shown as usual (as a pointer), whereas
9555 a reference should mostly be transparent to the user. */
9556 if (ada_is_tagged_type (type, 0)
9557 || (TYPE_CODE(type) == TYPE_CODE_REF
9558 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9559 {
9560 /* Tagged types are a little special in the fact that the real
9561 type is dynamic and can only be determined by inspecting the
9562 object's tag. This means that we need to get the object's
9563 value first (EVAL_NORMAL) and then extract the actual object
9564 type from its tag.
9565
9566 Note that we cannot skip the final step where we extract
9567 the object type from its tag, because the EVAL_NORMAL phase
9568 results in dynamic components being resolved into fixed ones.
9569 This can cause problems when trying to print the type
9570 description of tagged types whose parent has a dynamic size:
9571 We use the type name of the "_parent" component in order
9572 to print the name of the ancestor type in the type description.
9573 If that component had a dynamic size, the resolution into
9574 a fixed type would result in the loss of that type name,
9575 thus preventing us from printing the name of the ancestor
9576 type in the type description. */
b79819ba
JB
9577 struct type *actual_type;
9578
0c1f74cf 9579 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
9580 actual_type = type_from_tag (ada_value_tag (arg1));
9581 if (actual_type == NULL)
9582 /* If, for some reason, we were unable to determine
9583 the actual type from the tag, then use the static
9584 approximation that we just computed as a fallback.
9585 This can happen if the debugging information is
9586 incomplete, for instance. */
9587 actual_type = type;
9588
9589 return value_zero (actual_type, not_lval);
0c1f74cf
JB
9590 }
9591
4c4b4cd2
PH
9592 *pos += 4;
9593 return value_zero
9594 (to_static_fixed_type
9595 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9596 not_lval);
9597 }
d2e4a39e 9598 else
4c4b4cd2 9599 {
284614f0 9600 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
4c4b4cd2
PH
9601 return ada_to_fixed_value (arg1);
9602 }
9603
9604 case OP_FUNCALL:
9605 (*pos) += 2;
9606
9607 /* Allocate arg vector, including space for the function to be
9608 called in argvec[0] and a terminating NULL. */
9609 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9610 argvec =
9611 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9612
9613 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9614 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9615 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9616 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9617 else
9618 {
9619 for (tem = 0; tem <= nargs; tem += 1)
9620 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9621 argvec[tem] = 0;
9622
9623 if (noside == EVAL_SKIP)
9624 goto nosideret;
9625 }
9626
ad82864c
JB
9627 if (ada_is_constrained_packed_array_type
9628 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9629 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9630 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9631 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9632 /* This is a packed array that has already been fixed, and
9633 therefore already coerced to a simple array. Nothing further
9634 to do. */
9635 ;
df407dfe
AC
9636 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9637 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9638 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9639 argvec[0] = value_addr (argvec[0]);
9640
df407dfe 9641 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9642
9643 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
9644 them. So, if this is an array typedef (encoding use for array
9645 access types encoded as fat pointers), strip it now. */
720d1a40
JB
9646 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9647 type = ada_typedef_target_type (type);
9648
4c4b4cd2
PH
9649 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9650 {
61ee279c 9651 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9652 {
9653 case TYPE_CODE_FUNC:
61ee279c 9654 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9655 break;
9656 case TYPE_CODE_ARRAY:
9657 break;
9658 case TYPE_CODE_STRUCT:
9659 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9660 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9661 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9662 break;
9663 default:
323e0a4a 9664 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9665 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9666 break;
9667 }
9668 }
9669
9670 switch (TYPE_CODE (type))
9671 {
9672 case TYPE_CODE_FUNC:
9673 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9674 return allocate_value (TYPE_TARGET_TYPE (type));
9675 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9676 case TYPE_CODE_STRUCT:
9677 {
9678 int arity;
9679
4c4b4cd2
PH
9680 arity = ada_array_arity (type);
9681 type = ada_array_element_type (type, nargs);
9682 if (type == NULL)
323e0a4a 9683 error (_("cannot subscript or call a record"));
4c4b4cd2 9684 if (arity != nargs)
323e0a4a 9685 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9686 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9687 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9688 return
9689 unwrap_value (ada_value_subscript
9690 (argvec[0], nargs, argvec + 1));
9691 }
9692 case TYPE_CODE_ARRAY:
9693 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9694 {
9695 type = ada_array_element_type (type, nargs);
9696 if (type == NULL)
323e0a4a 9697 error (_("element type of array unknown"));
4c4b4cd2 9698 else
0a07e705 9699 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9700 }
9701 return
9702 unwrap_value (ada_value_subscript
9703 (ada_coerce_to_simple_array (argvec[0]),
9704 nargs, argvec + 1));
9705 case TYPE_CODE_PTR: /* Pointer to array */
9706 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9707 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9708 {
9709 type = ada_array_element_type (type, nargs);
9710 if (type == NULL)
323e0a4a 9711 error (_("element type of array unknown"));
4c4b4cd2 9712 else
0a07e705 9713 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9714 }
9715 return
9716 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9717 nargs, argvec + 1));
9718
9719 default:
e1d5a0d2
PH
9720 error (_("Attempt to index or call something other than an "
9721 "array or function"));
4c4b4cd2
PH
9722 }
9723
9724 case TERNOP_SLICE:
9725 {
9726 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9727 struct value *low_bound_val =
9728 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9729 struct value *high_bound_val =
9730 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9731 LONGEST low_bound;
9732 LONGEST high_bound;
5b4ee69b 9733
994b9211
AC
9734 low_bound_val = coerce_ref (low_bound_val);
9735 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
9736 low_bound = pos_atr (low_bound_val);
9737 high_bound = pos_atr (high_bound_val);
963a6417 9738
4c4b4cd2
PH
9739 if (noside == EVAL_SKIP)
9740 goto nosideret;
9741
4c4b4cd2
PH
9742 /* If this is a reference to an aligner type, then remove all
9743 the aligners. */
df407dfe
AC
9744 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9745 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9746 TYPE_TARGET_TYPE (value_type (array)) =
9747 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 9748
ad82864c 9749 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 9750 error (_("cannot slice a packed array"));
4c4b4cd2
PH
9751
9752 /* If this is a reference to an array or an array lvalue,
9753 convert to a pointer. */
df407dfe
AC
9754 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9755 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
9756 && VALUE_LVAL (array) == lval_memory))
9757 array = value_addr (array);
9758
1265e4aa 9759 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 9760 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 9761 (value_type (array))))
0b5d8877 9762 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
9763
9764 array = ada_coerce_to_simple_array_ptr (array);
9765
714e53ab
PH
9766 /* If we have more than one level of pointer indirection,
9767 dereference the value until we get only one level. */
df407dfe
AC
9768 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9769 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9770 == TYPE_CODE_PTR))
9771 array = value_ind (array);
9772
9773 /* Make sure we really do have an array type before going further,
9774 to avoid a SEGV when trying to get the index type or the target
9775 type later down the road if the debug info generated by
9776 the compiler is incorrect or incomplete. */
df407dfe 9777 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9778 error (_("cannot take slice of non-array"));
714e53ab 9779
828292f2
JB
9780 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9781 == TYPE_CODE_PTR)
4c4b4cd2 9782 {
828292f2
JB
9783 struct type *type0 = ada_check_typedef (value_type (array));
9784
0b5d8877 9785 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 9786 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
9787 else
9788 {
9789 struct type *arr_type0 =
828292f2 9790 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 9791
f5938064
JG
9792 return ada_value_slice_from_ptr (array, arr_type0,
9793 longest_to_int (low_bound),
9794 longest_to_int (high_bound));
4c4b4cd2
PH
9795 }
9796 }
9797 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9798 return array;
9799 else if (high_bound < low_bound)
df407dfe 9800 return empty_array (value_type (array), low_bound);
4c4b4cd2 9801 else
529cad9c
PH
9802 return ada_value_slice (array, longest_to_int (low_bound),
9803 longest_to_int (high_bound));
4c4b4cd2 9804 }
14f9c5c9 9805
4c4b4cd2
PH
9806 case UNOP_IN_RANGE:
9807 (*pos) += 2;
9808 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9809 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9810
14f9c5c9 9811 if (noside == EVAL_SKIP)
4c4b4cd2 9812 goto nosideret;
14f9c5c9 9813
4c4b4cd2
PH
9814 switch (TYPE_CODE (type))
9815 {
9816 default:
e1d5a0d2
PH
9817 lim_warning (_("Membership test incompletely implemented; "
9818 "always returns true"));
fbb06eb1
UW
9819 type = language_bool_type (exp->language_defn, exp->gdbarch);
9820 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9821
9822 case TYPE_CODE_RANGE:
030b4912
UW
9823 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9824 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9825 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9826 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9827 type = language_bool_type (exp->language_defn, exp->gdbarch);
9828 return
9829 value_from_longest (type,
4c4b4cd2
PH
9830 (value_less (arg1, arg3)
9831 || value_equal (arg1, arg3))
9832 && (value_less (arg2, arg1)
9833 || value_equal (arg2, arg1)));
9834 }
9835
9836 case BINOP_IN_BOUNDS:
14f9c5c9 9837 (*pos) += 2;
4c4b4cd2
PH
9838 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9839 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9840
4c4b4cd2
PH
9841 if (noside == EVAL_SKIP)
9842 goto nosideret;
14f9c5c9 9843
4c4b4cd2 9844 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9845 {
9846 type = language_bool_type (exp->language_defn, exp->gdbarch);
9847 return value_zero (type, not_lval);
9848 }
14f9c5c9 9849
4c4b4cd2 9850 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9851
1eea4ebd
UW
9852 type = ada_index_type (value_type (arg2), tem, "range");
9853 if (!type)
9854 type = value_type (arg1);
14f9c5c9 9855
1eea4ebd
UW
9856 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9857 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9858
f44316fa
UW
9859 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9860 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9861 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9862 return
fbb06eb1 9863 value_from_longest (type,
4c4b4cd2
PH
9864 (value_less (arg1, arg3)
9865 || value_equal (arg1, arg3))
9866 && (value_less (arg2, arg1)
9867 || value_equal (arg2, arg1)));
9868
9869 case TERNOP_IN_RANGE:
9870 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9871 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9872 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9873
9874 if (noside == EVAL_SKIP)
9875 goto nosideret;
9876
f44316fa
UW
9877 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9878 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9879 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9880 return
fbb06eb1 9881 value_from_longest (type,
4c4b4cd2
PH
9882 (value_less (arg1, arg3)
9883 || value_equal (arg1, arg3))
9884 && (value_less (arg2, arg1)
9885 || value_equal (arg2, arg1)));
9886
9887 case OP_ATR_FIRST:
9888 case OP_ATR_LAST:
9889 case OP_ATR_LENGTH:
9890 {
76a01679 9891 struct type *type_arg;
5b4ee69b 9892
76a01679
JB
9893 if (exp->elts[*pos].opcode == OP_TYPE)
9894 {
9895 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9896 arg1 = NULL;
5bc23cb3 9897 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9898 }
9899 else
9900 {
9901 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9902 type_arg = NULL;
9903 }
9904
9905 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9906 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9907 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9908 *pos += 4;
9909
9910 if (noside == EVAL_SKIP)
9911 goto nosideret;
9912
9913 if (type_arg == NULL)
9914 {
9915 arg1 = ada_coerce_ref (arg1);
9916
ad82864c 9917 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
9918 arg1 = ada_coerce_to_simple_array (arg1);
9919
1eea4ebd
UW
9920 type = ada_index_type (value_type (arg1), tem,
9921 ada_attribute_name (op));
9922 if (type == NULL)
9923 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9924
9925 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9926 return allocate_value (type);
76a01679
JB
9927
9928 switch (op)
9929 {
9930 default: /* Should never happen. */
323e0a4a 9931 error (_("unexpected attribute encountered"));
76a01679 9932 case OP_ATR_FIRST:
1eea4ebd
UW
9933 return value_from_longest
9934 (type, ada_array_bound (arg1, tem, 0));
76a01679 9935 case OP_ATR_LAST:
1eea4ebd
UW
9936 return value_from_longest
9937 (type, ada_array_bound (arg1, tem, 1));
76a01679 9938 case OP_ATR_LENGTH:
1eea4ebd
UW
9939 return value_from_longest
9940 (type, ada_array_length (arg1, tem));
76a01679
JB
9941 }
9942 }
9943 else if (discrete_type_p (type_arg))
9944 {
9945 struct type *range_type;
0d5cff50 9946 const char *name = ada_type_name (type_arg);
5b4ee69b 9947
76a01679
JB
9948 range_type = NULL;
9949 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 9950 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
9951 if (range_type == NULL)
9952 range_type = type_arg;
9953 switch (op)
9954 {
9955 default:
323e0a4a 9956 error (_("unexpected attribute encountered"));
76a01679 9957 case OP_ATR_FIRST:
690cc4eb 9958 return value_from_longest
43bbcdc2 9959 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 9960 case OP_ATR_LAST:
690cc4eb 9961 return value_from_longest
43bbcdc2 9962 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 9963 case OP_ATR_LENGTH:
323e0a4a 9964 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9965 }
9966 }
9967 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9968 error (_("unimplemented type attribute"));
76a01679
JB
9969 else
9970 {
9971 LONGEST low, high;
9972
ad82864c
JB
9973 if (ada_is_constrained_packed_array_type (type_arg))
9974 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 9975
1eea4ebd 9976 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9977 if (type == NULL)
1eea4ebd
UW
9978 type = builtin_type (exp->gdbarch)->builtin_int;
9979
76a01679
JB
9980 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9981 return allocate_value (type);
9982
9983 switch (op)
9984 {
9985 default:
323e0a4a 9986 error (_("unexpected attribute encountered"));
76a01679 9987 case OP_ATR_FIRST:
1eea4ebd 9988 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9989 return value_from_longest (type, low);
9990 case OP_ATR_LAST:
1eea4ebd 9991 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9992 return value_from_longest (type, high);
9993 case OP_ATR_LENGTH:
1eea4ebd
UW
9994 low = ada_array_bound_from_type (type_arg, tem, 0);
9995 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9996 return value_from_longest (type, high - low + 1);
9997 }
9998 }
14f9c5c9
AS
9999 }
10000
4c4b4cd2
PH
10001 case OP_ATR_TAG:
10002 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10003 if (noside == EVAL_SKIP)
76a01679 10004 goto nosideret;
4c4b4cd2
PH
10005
10006 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10007 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10008
10009 return ada_value_tag (arg1);
10010
10011 case OP_ATR_MIN:
10012 case OP_ATR_MAX:
10013 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10014 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10015 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10016 if (noside == EVAL_SKIP)
76a01679 10017 goto nosideret;
d2e4a39e 10018 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10019 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10020 else
f44316fa
UW
10021 {
10022 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10023 return value_binop (arg1, arg2,
10024 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10025 }
14f9c5c9 10026
4c4b4cd2
PH
10027 case OP_ATR_MODULUS:
10028 {
31dedfee 10029 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10030
5b4ee69b 10031 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10032 if (noside == EVAL_SKIP)
10033 goto nosideret;
4c4b4cd2 10034
76a01679 10035 if (!ada_is_modular_type (type_arg))
323e0a4a 10036 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10037
76a01679
JB
10038 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10039 ada_modulus (type_arg));
4c4b4cd2
PH
10040 }
10041
10042
10043 case OP_ATR_POS:
10044 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10045 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10046 if (noside == EVAL_SKIP)
76a01679 10047 goto nosideret;
3cb382c9
UW
10048 type = builtin_type (exp->gdbarch)->builtin_int;
10049 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10050 return value_zero (type, not_lval);
14f9c5c9 10051 else
3cb382c9 10052 return value_pos_atr (type, arg1);
14f9c5c9 10053
4c4b4cd2
PH
10054 case OP_ATR_SIZE:
10055 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10056 type = value_type (arg1);
10057
10058 /* If the argument is a reference, then dereference its type, since
10059 the user is really asking for the size of the actual object,
10060 not the size of the pointer. */
10061 if (TYPE_CODE (type) == TYPE_CODE_REF)
10062 type = TYPE_TARGET_TYPE (type);
10063
4c4b4cd2 10064 if (noside == EVAL_SKIP)
76a01679 10065 goto nosideret;
4c4b4cd2 10066 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10067 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10068 else
22601c15 10069 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10070 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10071
10072 case OP_ATR_VAL:
10073 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10074 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10075 type = exp->elts[pc + 2].type;
14f9c5c9 10076 if (noside == EVAL_SKIP)
76a01679 10077 goto nosideret;
4c4b4cd2 10078 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10079 return value_zero (type, not_lval);
4c4b4cd2 10080 else
76a01679 10081 return value_val_atr (type, arg1);
4c4b4cd2
PH
10082
10083 case BINOP_EXP:
10084 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10085 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10086 if (noside == EVAL_SKIP)
10087 goto nosideret;
10088 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10089 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10090 else
f44316fa
UW
10091 {
10092 /* For integer exponentiation operations,
10093 only promote the first argument. */
10094 if (is_integral_type (value_type (arg2)))
10095 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10096 else
10097 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10098
10099 return value_binop (arg1, arg2, op);
10100 }
4c4b4cd2
PH
10101
10102 case UNOP_PLUS:
10103 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10104 if (noside == EVAL_SKIP)
10105 goto nosideret;
10106 else
10107 return arg1;
10108
10109 case UNOP_ABS:
10110 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10111 if (noside == EVAL_SKIP)
10112 goto nosideret;
f44316fa 10113 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10114 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10115 return value_neg (arg1);
14f9c5c9 10116 else
4c4b4cd2 10117 return arg1;
14f9c5c9
AS
10118
10119 case UNOP_IND:
6b0d7253 10120 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10121 if (noside == EVAL_SKIP)
4c4b4cd2 10122 goto nosideret;
df407dfe 10123 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10124 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10125 {
10126 if (ada_is_array_descriptor_type (type))
10127 /* GDB allows dereferencing GNAT array descriptors. */
10128 {
10129 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10130
4c4b4cd2 10131 if (arrType == NULL)
323e0a4a 10132 error (_("Attempt to dereference null array pointer."));
00a4c844 10133 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10134 }
10135 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10136 || TYPE_CODE (type) == TYPE_CODE_REF
10137 /* In C you can dereference an array to get the 1st elt. */
10138 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
10139 {
10140 type = to_static_fixed_type
10141 (ada_aligned_type
10142 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10143 check_size (type);
10144 return value_zero (type, lval_memory);
10145 }
4c4b4cd2 10146 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10147 {
10148 /* GDB allows dereferencing an int. */
10149 if (expect_type == NULL)
10150 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10151 lval_memory);
10152 else
10153 {
10154 expect_type =
10155 to_static_fixed_type (ada_aligned_type (expect_type));
10156 return value_zero (expect_type, lval_memory);
10157 }
10158 }
4c4b4cd2 10159 else
323e0a4a 10160 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10161 }
0963b4bd 10162 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10163 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10164
96967637
JB
10165 if (TYPE_CODE (type) == TYPE_CODE_INT)
10166 /* GDB allows dereferencing an int. If we were given
10167 the expect_type, then use that as the target type.
10168 Otherwise, assume that the target type is an int. */
10169 {
10170 if (expect_type != NULL)
10171 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10172 arg1));
10173 else
10174 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10175 (CORE_ADDR) value_as_address (arg1));
10176 }
6b0d7253 10177
4c4b4cd2
PH
10178 if (ada_is_array_descriptor_type (type))
10179 /* GDB allows dereferencing GNAT array descriptors. */
10180 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10181 else
4c4b4cd2 10182 return ada_value_ind (arg1);
14f9c5c9
AS
10183
10184 case STRUCTOP_STRUCT:
10185 tem = longest_to_int (exp->elts[pc + 1].longconst);
10186 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10187 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10188 if (noside == EVAL_SKIP)
4c4b4cd2 10189 goto nosideret;
14f9c5c9 10190 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10191 {
df407dfe 10192 struct type *type1 = value_type (arg1);
5b4ee69b 10193
76a01679
JB
10194 if (ada_is_tagged_type (type1, 1))
10195 {
10196 type = ada_lookup_struct_elt_type (type1,
10197 &exp->elts[pc + 2].string,
10198 1, 1, NULL);
10199 if (type == NULL)
10200 /* In this case, we assume that the field COULD exist
10201 in some extension of the type. Return an object of
10202 "type" void, which will match any formal
0963b4bd 10203 (see ada_type_match). */
30b15541
UW
10204 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10205 lval_memory);
76a01679
JB
10206 }
10207 else
10208 type =
10209 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10210 0, NULL);
10211
10212 return value_zero (ada_aligned_type (type), lval_memory);
10213 }
14f9c5c9 10214 else
284614f0
JB
10215 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10216 arg1 = unwrap_value (arg1);
10217 return ada_to_fixed_value (arg1);
10218
14f9c5c9 10219 case OP_TYPE:
4c4b4cd2
PH
10220 /* The value is not supposed to be used. This is here to make it
10221 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10222 (*pos) += 2;
10223 if (noside == EVAL_SKIP)
4c4b4cd2 10224 goto nosideret;
14f9c5c9 10225 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10226 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10227 else
323e0a4a 10228 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10229
10230 case OP_AGGREGATE:
10231 case OP_CHOICES:
10232 case OP_OTHERS:
10233 case OP_DISCRETE_RANGE:
10234 case OP_POSITIONAL:
10235 case OP_NAME:
10236 if (noside == EVAL_NORMAL)
10237 switch (op)
10238 {
10239 case OP_NAME:
10240 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10241 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10242 case OP_AGGREGATE:
10243 error (_("Aggregates only allowed on the right of an assignment"));
10244 default:
0963b4bd
MS
10245 internal_error (__FILE__, __LINE__,
10246 _("aggregate apparently mangled"));
52ce6436
PH
10247 }
10248
10249 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10250 *pos += oplen - 1;
10251 for (tem = 0; tem < nargs; tem += 1)
10252 ada_evaluate_subexp (NULL, exp, pos, noside);
10253 goto nosideret;
14f9c5c9
AS
10254 }
10255
10256nosideret:
22601c15 10257 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10258}
14f9c5c9 10259\f
d2e4a39e 10260
4c4b4cd2 10261 /* Fixed point */
14f9c5c9
AS
10262
10263/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10264 type name that encodes the 'small and 'delta information.
4c4b4cd2 10265 Otherwise, return NULL. */
14f9c5c9 10266
d2e4a39e 10267static const char *
ebf56fd3 10268fixed_type_info (struct type *type)
14f9c5c9 10269{
d2e4a39e 10270 const char *name = ada_type_name (type);
14f9c5c9
AS
10271 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10272
d2e4a39e
AS
10273 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10274 {
14f9c5c9 10275 const char *tail = strstr (name, "___XF_");
5b4ee69b 10276
14f9c5c9 10277 if (tail == NULL)
4c4b4cd2 10278 return NULL;
d2e4a39e 10279 else
4c4b4cd2 10280 return tail + 5;
14f9c5c9
AS
10281 }
10282 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10283 return fixed_type_info (TYPE_TARGET_TYPE (type));
10284 else
10285 return NULL;
10286}
10287
4c4b4cd2 10288/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10289
10290int
ebf56fd3 10291ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10292{
10293 return fixed_type_info (type) != NULL;
10294}
10295
4c4b4cd2
PH
10296/* Return non-zero iff TYPE represents a System.Address type. */
10297
10298int
10299ada_is_system_address_type (struct type *type)
10300{
10301 return (TYPE_NAME (type)
10302 && strcmp (TYPE_NAME (type), "system__address") == 0);
10303}
10304
14f9c5c9
AS
10305/* Assuming that TYPE is the representation of an Ada fixed-point
10306 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10307 delta cannot be determined. */
14f9c5c9
AS
10308
10309DOUBLEST
ebf56fd3 10310ada_delta (struct type *type)
14f9c5c9
AS
10311{
10312 const char *encoding = fixed_type_info (type);
facc390f 10313 DOUBLEST num, den;
14f9c5c9 10314
facc390f
JB
10315 /* Strictly speaking, num and den are encoded as integer. However,
10316 they may not fit into a long, and they will have to be converted
10317 to DOUBLEST anyway. So scan them as DOUBLEST. */
10318 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10319 &num, &den) < 2)
14f9c5c9 10320 return -1.0;
d2e4a39e 10321 else
facc390f 10322 return num / den;
14f9c5c9
AS
10323}
10324
10325/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10326 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10327
10328static DOUBLEST
ebf56fd3 10329scaling_factor (struct type *type)
14f9c5c9
AS
10330{
10331 const char *encoding = fixed_type_info (type);
facc390f 10332 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10333 int n;
d2e4a39e 10334
facc390f
JB
10335 /* Strictly speaking, num's and den's are encoded as integer. However,
10336 they may not fit into a long, and they will have to be converted
10337 to DOUBLEST anyway. So scan them as DOUBLEST. */
10338 n = sscanf (encoding,
10339 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10340 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10341 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10342
10343 if (n < 2)
10344 return 1.0;
10345 else if (n == 4)
facc390f 10346 return num1 / den1;
d2e4a39e 10347 else
facc390f 10348 return num0 / den0;
14f9c5c9
AS
10349}
10350
10351
10352/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10353 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10354
10355DOUBLEST
ebf56fd3 10356ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10357{
d2e4a39e 10358 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10359}
10360
4c4b4cd2
PH
10361/* The representation of a fixed-point value of type TYPE
10362 corresponding to the value X. */
14f9c5c9
AS
10363
10364LONGEST
ebf56fd3 10365ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10366{
10367 return (LONGEST) (x / scaling_factor (type) + 0.5);
10368}
10369
14f9c5c9 10370\f
d2e4a39e 10371
4c4b4cd2 10372 /* Range types */
14f9c5c9
AS
10373
10374/* Scan STR beginning at position K for a discriminant name, and
10375 return the value of that discriminant field of DVAL in *PX. If
10376 PNEW_K is not null, put the position of the character beyond the
10377 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10378 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10379
10380static int
07d8f827 10381scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10382 int *pnew_k)
14f9c5c9
AS
10383{
10384 static char *bound_buffer = NULL;
10385 static size_t bound_buffer_len = 0;
10386 char *bound;
10387 char *pend;
d2e4a39e 10388 struct value *bound_val;
14f9c5c9
AS
10389
10390 if (dval == NULL || str == NULL || str[k] == '\0')
10391 return 0;
10392
d2e4a39e 10393 pend = strstr (str + k, "__");
14f9c5c9
AS
10394 if (pend == NULL)
10395 {
d2e4a39e 10396 bound = str + k;
14f9c5c9
AS
10397 k += strlen (bound);
10398 }
d2e4a39e 10399 else
14f9c5c9 10400 {
d2e4a39e 10401 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10402 bound = bound_buffer;
d2e4a39e
AS
10403 strncpy (bound_buffer, str + k, pend - (str + k));
10404 bound[pend - (str + k)] = '\0';
10405 k = pend - str;
14f9c5c9 10406 }
d2e4a39e 10407
df407dfe 10408 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10409 if (bound_val == NULL)
10410 return 0;
10411
10412 *px = value_as_long (bound_val);
10413 if (pnew_k != NULL)
10414 *pnew_k = k;
10415 return 1;
10416}
10417
10418/* Value of variable named NAME in the current environment. If
10419 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10420 otherwise causes an error with message ERR_MSG. */
10421
d2e4a39e
AS
10422static struct value *
10423get_var_value (char *name, char *err_msg)
14f9c5c9 10424{
4c4b4cd2 10425 struct ada_symbol_info *syms;
14f9c5c9
AS
10426 int nsyms;
10427
4c4b4cd2 10428 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
d9680e73 10429 &syms, 1);
14f9c5c9
AS
10430
10431 if (nsyms != 1)
10432 {
10433 if (err_msg == NULL)
4c4b4cd2 10434 return 0;
14f9c5c9 10435 else
8a3fe4f8 10436 error (("%s"), err_msg);
14f9c5c9
AS
10437 }
10438
4c4b4cd2 10439 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10440}
d2e4a39e 10441
14f9c5c9 10442/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10443 no such variable found, returns 0, and sets *FLAG to 0. If
10444 successful, sets *FLAG to 1. */
10445
14f9c5c9 10446LONGEST
4c4b4cd2 10447get_int_var_value (char *name, int *flag)
14f9c5c9 10448{
4c4b4cd2 10449 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10450
14f9c5c9
AS
10451 if (var_val == 0)
10452 {
10453 if (flag != NULL)
4c4b4cd2 10454 *flag = 0;
14f9c5c9
AS
10455 return 0;
10456 }
10457 else
10458 {
10459 if (flag != NULL)
4c4b4cd2 10460 *flag = 1;
14f9c5c9
AS
10461 return value_as_long (var_val);
10462 }
10463}
d2e4a39e 10464
14f9c5c9
AS
10465
10466/* Return a range type whose base type is that of the range type named
10467 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10468 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10469 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10470 corresponding range type from debug information; fall back to using it
10471 if symbol lookup fails. If a new type must be created, allocate it
10472 like ORIG_TYPE was. The bounds information, in general, is encoded
10473 in NAME, the base type given in the named range type. */
14f9c5c9 10474
d2e4a39e 10475static struct type *
28c85d6c 10476to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10477{
0d5cff50 10478 const char *name;
14f9c5c9 10479 struct type *base_type;
d2e4a39e 10480 char *subtype_info;
14f9c5c9 10481
28c85d6c
JB
10482 gdb_assert (raw_type != NULL);
10483 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10484
1ce677a4 10485 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10486 base_type = TYPE_TARGET_TYPE (raw_type);
10487 else
10488 base_type = raw_type;
10489
28c85d6c 10490 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10491 subtype_info = strstr (name, "___XD");
10492 if (subtype_info == NULL)
690cc4eb 10493 {
43bbcdc2
PH
10494 LONGEST L = ada_discrete_type_low_bound (raw_type);
10495 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10496
690cc4eb
PH
10497 if (L < INT_MIN || U > INT_MAX)
10498 return raw_type;
10499 else
28c85d6c 10500 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10501 ada_discrete_type_low_bound (raw_type),
10502 ada_discrete_type_high_bound (raw_type));
690cc4eb 10503 }
14f9c5c9
AS
10504 else
10505 {
10506 static char *name_buf = NULL;
10507 static size_t name_len = 0;
10508 int prefix_len = subtype_info - name;
10509 LONGEST L, U;
10510 struct type *type;
10511 char *bounds_str;
10512 int n;
10513
10514 GROW_VECT (name_buf, name_len, prefix_len + 5);
10515 strncpy (name_buf, name, prefix_len);
10516 name_buf[prefix_len] = '\0';
10517
10518 subtype_info += 5;
10519 bounds_str = strchr (subtype_info, '_');
10520 n = 1;
10521
d2e4a39e 10522 if (*subtype_info == 'L')
4c4b4cd2
PH
10523 {
10524 if (!ada_scan_number (bounds_str, n, &L, &n)
10525 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10526 return raw_type;
10527 if (bounds_str[n] == '_')
10528 n += 2;
0963b4bd 10529 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10530 n += 1;
10531 subtype_info += 1;
10532 }
d2e4a39e 10533 else
4c4b4cd2
PH
10534 {
10535 int ok;
5b4ee69b 10536
4c4b4cd2
PH
10537 strcpy (name_buf + prefix_len, "___L");
10538 L = get_int_var_value (name_buf, &ok);
10539 if (!ok)
10540 {
323e0a4a 10541 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10542 L = 1;
10543 }
10544 }
14f9c5c9 10545
d2e4a39e 10546 if (*subtype_info == 'U')
4c4b4cd2
PH
10547 {
10548 if (!ada_scan_number (bounds_str, n, &U, &n)
10549 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10550 return raw_type;
10551 }
d2e4a39e 10552 else
4c4b4cd2
PH
10553 {
10554 int ok;
5b4ee69b 10555
4c4b4cd2
PH
10556 strcpy (name_buf + prefix_len, "___U");
10557 U = get_int_var_value (name_buf, &ok);
10558 if (!ok)
10559 {
323e0a4a 10560 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10561 U = L;
10562 }
10563 }
14f9c5c9 10564
28c85d6c 10565 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10566 TYPE_NAME (type) = name;
14f9c5c9
AS
10567 return type;
10568 }
10569}
10570
4c4b4cd2
PH
10571/* True iff NAME is the name of a range type. */
10572
14f9c5c9 10573int
d2e4a39e 10574ada_is_range_type_name (const char *name)
14f9c5c9
AS
10575{
10576 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10577}
14f9c5c9 10578\f
d2e4a39e 10579
4c4b4cd2
PH
10580 /* Modular types */
10581
10582/* True iff TYPE is an Ada modular type. */
14f9c5c9 10583
14f9c5c9 10584int
d2e4a39e 10585ada_is_modular_type (struct type *type)
14f9c5c9 10586{
18af8284 10587 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
10588
10589 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10590 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10591 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10592}
10593
0056e4d5
JB
10594/* Try to determine the lower and upper bounds of the given modular type
10595 using the type name only. Return non-zero and set L and U as the lower
10596 and upper bounds (respectively) if successful. */
10597
10598int
10599ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10600{
0d5cff50
DE
10601 const char *name = ada_type_name (type);
10602 const char *suffix;
0056e4d5
JB
10603 int k;
10604 LONGEST U;
10605
10606 if (name == NULL)
10607 return 0;
10608
10609 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10610 we are looking for static bounds, which means an __XDLU suffix.
10611 Moreover, we know that the lower bound of modular types is always
10612 zero, so the actual suffix should start with "__XDLU_0__", and
10613 then be followed by the upper bound value. */
10614 suffix = strstr (name, "__XDLU_0__");
10615 if (suffix == NULL)
10616 return 0;
10617 k = 10;
10618 if (!ada_scan_number (suffix, k, &U, NULL))
10619 return 0;
10620
10621 *modulus = (ULONGEST) U + 1;
10622 return 1;
10623}
10624
4c4b4cd2
PH
10625/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10626
61ee279c 10627ULONGEST
0056e4d5 10628ada_modulus (struct type *type)
14f9c5c9 10629{
43bbcdc2 10630 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10631}
d2e4a39e 10632\f
f7f9143b
JB
10633
10634/* Ada exception catchpoint support:
10635 ---------------------------------
10636
10637 We support 3 kinds of exception catchpoints:
10638 . catchpoints on Ada exceptions
10639 . catchpoints on unhandled Ada exceptions
10640 . catchpoints on failed assertions
10641
10642 Exceptions raised during failed assertions, or unhandled exceptions
10643 could perfectly be caught with the general catchpoint on Ada exceptions.
10644 However, we can easily differentiate these two special cases, and having
10645 the option to distinguish these two cases from the rest can be useful
10646 to zero-in on certain situations.
10647
10648 Exception catchpoints are a specialized form of breakpoint,
10649 since they rely on inserting breakpoints inside known routines
10650 of the GNAT runtime. The implementation therefore uses a standard
10651 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10652 of breakpoint_ops.
10653
0259addd
JB
10654 Support in the runtime for exception catchpoints have been changed
10655 a few times already, and these changes affect the implementation
10656 of these catchpoints. In order to be able to support several
10657 variants of the runtime, we use a sniffer that will determine
28010a5d 10658 the runtime variant used by the program being debugged. */
f7f9143b
JB
10659
10660/* The different types of catchpoints that we introduced for catching
10661 Ada exceptions. */
10662
10663enum exception_catchpoint_kind
10664{
10665 ex_catch_exception,
10666 ex_catch_exception_unhandled,
10667 ex_catch_assert
10668};
10669
3d0b0fa3
JB
10670/* Ada's standard exceptions. */
10671
10672static char *standard_exc[] = {
10673 "constraint_error",
10674 "program_error",
10675 "storage_error",
10676 "tasking_error"
10677};
10678
0259addd
JB
10679typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10680
10681/* A structure that describes how to support exception catchpoints
10682 for a given executable. */
10683
10684struct exception_support_info
10685{
10686 /* The name of the symbol to break on in order to insert
10687 a catchpoint on exceptions. */
10688 const char *catch_exception_sym;
10689
10690 /* The name of the symbol to break on in order to insert
10691 a catchpoint on unhandled exceptions. */
10692 const char *catch_exception_unhandled_sym;
10693
10694 /* The name of the symbol to break on in order to insert
10695 a catchpoint on failed assertions. */
10696 const char *catch_assert_sym;
10697
10698 /* Assuming that the inferior just triggered an unhandled exception
10699 catchpoint, this function is responsible for returning the address
10700 in inferior memory where the name of that exception is stored.
10701 Return zero if the address could not be computed. */
10702 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10703};
10704
10705static CORE_ADDR ada_unhandled_exception_name_addr (void);
10706static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10707
10708/* The following exception support info structure describes how to
10709 implement exception catchpoints with the latest version of the
10710 Ada runtime (as of 2007-03-06). */
10711
10712static const struct exception_support_info default_exception_support_info =
10713{
10714 "__gnat_debug_raise_exception", /* catch_exception_sym */
10715 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10716 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10717 ada_unhandled_exception_name_addr
10718};
10719
10720/* The following exception support info structure describes how to
10721 implement exception catchpoints with a slightly older version
10722 of the Ada runtime. */
10723
10724static const struct exception_support_info exception_support_info_fallback =
10725{
10726 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10727 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10728 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10729 ada_unhandled_exception_name_addr_from_raise
10730};
10731
f17011e0
JB
10732/* Return nonzero if we can detect the exception support routines
10733 described in EINFO.
10734
10735 This function errors out if an abnormal situation is detected
10736 (for instance, if we find the exception support routines, but
10737 that support is found to be incomplete). */
10738
10739static int
10740ada_has_this_exception_support (const struct exception_support_info *einfo)
10741{
10742 struct symbol *sym;
10743
10744 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10745 that should be compiled with debugging information. As a result, we
10746 expect to find that symbol in the symtabs. */
10747
10748 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10749 if (sym == NULL)
a6af7abe
JB
10750 {
10751 /* Perhaps we did not find our symbol because the Ada runtime was
10752 compiled without debugging info, or simply stripped of it.
10753 It happens on some GNU/Linux distributions for instance, where
10754 users have to install a separate debug package in order to get
10755 the runtime's debugging info. In that situation, let the user
10756 know why we cannot insert an Ada exception catchpoint.
10757
10758 Note: Just for the purpose of inserting our Ada exception
10759 catchpoint, we could rely purely on the associated minimal symbol.
10760 But we would be operating in degraded mode anyway, since we are
10761 still lacking the debugging info needed later on to extract
10762 the name of the exception being raised (this name is printed in
10763 the catchpoint message, and is also used when trying to catch
10764 a specific exception). We do not handle this case for now. */
10765 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10766 error (_("Your Ada runtime appears to be missing some debugging "
10767 "information.\nCannot insert Ada exception catchpoint "
10768 "in this configuration."));
10769
10770 return 0;
10771 }
f17011e0
JB
10772
10773 /* Make sure that the symbol we found corresponds to a function. */
10774
10775 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10776 error (_("Symbol \"%s\" is not a function (class = %d)"),
10777 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10778
10779 return 1;
10780}
10781
0259addd
JB
10782/* Inspect the Ada runtime and determine which exception info structure
10783 should be used to provide support for exception catchpoints.
10784
3eecfa55
JB
10785 This function will always set the per-inferior exception_info,
10786 or raise an error. */
0259addd
JB
10787
10788static void
10789ada_exception_support_info_sniffer (void)
10790{
3eecfa55 10791 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
10792 struct symbol *sym;
10793
10794 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 10795 if (data->exception_info != NULL)
0259addd
JB
10796 return;
10797
10798 /* Check the latest (default) exception support info. */
f17011e0 10799 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 10800 {
3eecfa55 10801 data->exception_info = &default_exception_support_info;
0259addd
JB
10802 return;
10803 }
10804
10805 /* Try our fallback exception suport info. */
f17011e0 10806 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 10807 {
3eecfa55 10808 data->exception_info = &exception_support_info_fallback;
0259addd
JB
10809 return;
10810 }
10811
10812 /* Sometimes, it is normal for us to not be able to find the routine
10813 we are looking for. This happens when the program is linked with
10814 the shared version of the GNAT runtime, and the program has not been
10815 started yet. Inform the user of these two possible causes if
10816 applicable. */
10817
ccefe4c4 10818 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
10819 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10820
10821 /* If the symbol does not exist, then check that the program is
10822 already started, to make sure that shared libraries have been
10823 loaded. If it is not started, this may mean that the symbol is
10824 in a shared library. */
10825
10826 if (ptid_get_pid (inferior_ptid) == 0)
10827 error (_("Unable to insert catchpoint. Try to start the program first."));
10828
10829 /* At this point, we know that we are debugging an Ada program and
10830 that the inferior has been started, but we still are not able to
0963b4bd 10831 find the run-time symbols. That can mean that we are in
0259addd
JB
10832 configurable run time mode, or that a-except as been optimized
10833 out by the linker... In any case, at this point it is not worth
10834 supporting this feature. */
10835
7dda8cff 10836 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
10837}
10838
f7f9143b
JB
10839/* True iff FRAME is very likely to be that of a function that is
10840 part of the runtime system. This is all very heuristic, but is
10841 intended to be used as advice as to what frames are uninteresting
10842 to most users. */
10843
10844static int
10845is_known_support_routine (struct frame_info *frame)
10846{
4ed6b5be 10847 struct symtab_and_line sal;
0d5cff50 10848 const char *func_name;
692465f1 10849 enum language func_lang;
f7f9143b 10850 int i;
f7f9143b 10851
4ed6b5be
JB
10852 /* If this code does not have any debugging information (no symtab),
10853 This cannot be any user code. */
f7f9143b 10854
4ed6b5be 10855 find_frame_sal (frame, &sal);
f7f9143b
JB
10856 if (sal.symtab == NULL)
10857 return 1;
10858
4ed6b5be
JB
10859 /* If there is a symtab, but the associated source file cannot be
10860 located, then assume this is not user code: Selecting a frame
10861 for which we cannot display the code would not be very helpful
10862 for the user. This should also take care of case such as VxWorks
10863 where the kernel has some debugging info provided for a few units. */
f7f9143b 10864
9bbc9174 10865 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10866 return 1;
10867
4ed6b5be
JB
10868 /* Check the unit filename againt the Ada runtime file naming.
10869 We also check the name of the objfile against the name of some
10870 known system libraries that sometimes come with debugging info
10871 too. */
10872
f7f9143b
JB
10873 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10874 {
10875 re_comp (known_runtime_file_name_patterns[i]);
10876 if (re_exec (sal.symtab->filename))
10877 return 1;
4ed6b5be
JB
10878 if (sal.symtab->objfile != NULL
10879 && re_exec (sal.symtab->objfile->name))
10880 return 1;
f7f9143b
JB
10881 }
10882
4ed6b5be 10883 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10884
e9e07ba6 10885 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
10886 if (func_name == NULL)
10887 return 1;
10888
10889 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10890 {
10891 re_comp (known_auxiliary_function_name_patterns[i]);
10892 if (re_exec (func_name))
10893 return 1;
10894 }
10895
10896 return 0;
10897}
10898
10899/* Find the first frame that contains debugging information and that is not
10900 part of the Ada run-time, starting from FI and moving upward. */
10901
0ef643c8 10902void
f7f9143b
JB
10903ada_find_printable_frame (struct frame_info *fi)
10904{
10905 for (; fi != NULL; fi = get_prev_frame (fi))
10906 {
10907 if (!is_known_support_routine (fi))
10908 {
10909 select_frame (fi);
10910 break;
10911 }
10912 }
10913
10914}
10915
10916/* Assuming that the inferior just triggered an unhandled exception
10917 catchpoint, return the address in inferior memory where the name
10918 of the exception is stored.
10919
10920 Return zero if the address could not be computed. */
10921
10922static CORE_ADDR
10923ada_unhandled_exception_name_addr (void)
0259addd
JB
10924{
10925 return parse_and_eval_address ("e.full_name");
10926}
10927
10928/* Same as ada_unhandled_exception_name_addr, except that this function
10929 should be used when the inferior uses an older version of the runtime,
10930 where the exception name needs to be extracted from a specific frame
10931 several frames up in the callstack. */
10932
10933static CORE_ADDR
10934ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10935{
10936 int frame_level;
10937 struct frame_info *fi;
3eecfa55 10938 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
10939
10940 /* To determine the name of this exception, we need to select
10941 the frame corresponding to RAISE_SYM_NAME. This frame is
10942 at least 3 levels up, so we simply skip the first 3 frames
10943 without checking the name of their associated function. */
10944 fi = get_current_frame ();
10945 for (frame_level = 0; frame_level < 3; frame_level += 1)
10946 if (fi != NULL)
10947 fi = get_prev_frame (fi);
10948
10949 while (fi != NULL)
10950 {
0d5cff50 10951 const char *func_name;
692465f1
JB
10952 enum language func_lang;
10953
e9e07ba6 10954 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 10955 if (func_name != NULL
3eecfa55 10956 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10957 break; /* We found the frame we were looking for... */
10958 fi = get_prev_frame (fi);
10959 }
10960
10961 if (fi == NULL)
10962 return 0;
10963
10964 select_frame (fi);
10965 return parse_and_eval_address ("id.full_name");
10966}
10967
10968/* Assuming the inferior just triggered an Ada exception catchpoint
10969 (of any type), return the address in inferior memory where the name
10970 of the exception is stored, if applicable.
10971
10972 Return zero if the address could not be computed, or if not relevant. */
10973
10974static CORE_ADDR
10975ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10976 struct breakpoint *b)
10977{
3eecfa55
JB
10978 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10979
f7f9143b
JB
10980 switch (ex)
10981 {
10982 case ex_catch_exception:
10983 return (parse_and_eval_address ("e.full_name"));
10984 break;
10985
10986 case ex_catch_exception_unhandled:
3eecfa55 10987 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10988 break;
10989
10990 case ex_catch_assert:
10991 return 0; /* Exception name is not relevant in this case. */
10992 break;
10993
10994 default:
10995 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10996 break;
10997 }
10998
10999 return 0; /* Should never be reached. */
11000}
11001
11002/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11003 any error that ada_exception_name_addr_1 might cause to be thrown.
11004 When an error is intercepted, a warning with the error message is printed,
11005 and zero is returned. */
11006
11007static CORE_ADDR
11008ada_exception_name_addr (enum exception_catchpoint_kind ex,
11009 struct breakpoint *b)
11010{
bfd189b1 11011 volatile struct gdb_exception e;
f7f9143b
JB
11012 CORE_ADDR result = 0;
11013
11014 TRY_CATCH (e, RETURN_MASK_ERROR)
11015 {
11016 result = ada_exception_name_addr_1 (ex, b);
11017 }
11018
11019 if (e.reason < 0)
11020 {
11021 warning (_("failed to get exception name: %s"), e.message);
11022 return 0;
11023 }
11024
11025 return result;
11026}
11027
28010a5d
PA
11028static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11029 char *, char **,
c0a91b2b 11030 const struct breakpoint_ops **);
28010a5d
PA
11031static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11032
11033/* Ada catchpoints.
11034
11035 In the case of catchpoints on Ada exceptions, the catchpoint will
11036 stop the target on every exception the program throws. When a user
11037 specifies the name of a specific exception, we translate this
11038 request into a condition expression (in text form), and then parse
11039 it into an expression stored in each of the catchpoint's locations.
11040 We then use this condition to check whether the exception that was
11041 raised is the one the user is interested in. If not, then the
11042 target is resumed again. We store the name of the requested
11043 exception, in order to be able to re-set the condition expression
11044 when symbols change. */
11045
11046/* An instance of this type is used to represent an Ada catchpoint
11047 breakpoint location. It includes a "struct bp_location" as a kind
11048 of base class; users downcast to "struct bp_location *" when
11049 needed. */
11050
11051struct ada_catchpoint_location
11052{
11053 /* The base class. */
11054 struct bp_location base;
11055
11056 /* The condition that checks whether the exception that was raised
11057 is the specific exception the user specified on catchpoint
11058 creation. */
11059 struct expression *excep_cond_expr;
11060};
11061
11062/* Implement the DTOR method in the bp_location_ops structure for all
11063 Ada exception catchpoint kinds. */
11064
11065static void
11066ada_catchpoint_location_dtor (struct bp_location *bl)
11067{
11068 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11069
11070 xfree (al->excep_cond_expr);
11071}
11072
11073/* The vtable to be used in Ada catchpoint locations. */
11074
11075static const struct bp_location_ops ada_catchpoint_location_ops =
11076{
11077 ada_catchpoint_location_dtor
11078};
11079
11080/* An instance of this type is used to represent an Ada catchpoint.
11081 It includes a "struct breakpoint" as a kind of base class; users
11082 downcast to "struct breakpoint *" when needed. */
11083
11084struct ada_catchpoint
11085{
11086 /* The base class. */
11087 struct breakpoint base;
11088
11089 /* The name of the specific exception the user specified. */
11090 char *excep_string;
11091};
11092
11093/* Parse the exception condition string in the context of each of the
11094 catchpoint's locations, and store them for later evaluation. */
11095
11096static void
11097create_excep_cond_exprs (struct ada_catchpoint *c)
11098{
11099 struct cleanup *old_chain;
11100 struct bp_location *bl;
11101 char *cond_string;
11102
11103 /* Nothing to do if there's no specific exception to catch. */
11104 if (c->excep_string == NULL)
11105 return;
11106
11107 /* Same if there are no locations... */
11108 if (c->base.loc == NULL)
11109 return;
11110
11111 /* Compute the condition expression in text form, from the specific
11112 expection we want to catch. */
11113 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11114 old_chain = make_cleanup (xfree, cond_string);
11115
11116 /* Iterate over all the catchpoint's locations, and parse an
11117 expression for each. */
11118 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11119 {
11120 struct ada_catchpoint_location *ada_loc
11121 = (struct ada_catchpoint_location *) bl;
11122 struct expression *exp = NULL;
11123
11124 if (!bl->shlib_disabled)
11125 {
11126 volatile struct gdb_exception e;
11127 char *s;
11128
11129 s = cond_string;
11130 TRY_CATCH (e, RETURN_MASK_ERROR)
11131 {
11132 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11133 }
11134 if (e.reason < 0)
11135 warning (_("failed to reevaluate internal exception condition "
11136 "for catchpoint %d: %s"),
11137 c->base.number, e.message);
11138 }
11139
11140 ada_loc->excep_cond_expr = exp;
11141 }
11142
11143 do_cleanups (old_chain);
11144}
11145
11146/* Implement the DTOR method in the breakpoint_ops structure for all
11147 exception catchpoint kinds. */
11148
11149static void
11150dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11151{
11152 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11153
11154 xfree (c->excep_string);
348d480f 11155
2060206e 11156 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11157}
11158
11159/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11160 structure for all exception catchpoint kinds. */
11161
11162static struct bp_location *
11163allocate_location_exception (enum exception_catchpoint_kind ex,
11164 struct breakpoint *self)
11165{
11166 struct ada_catchpoint_location *loc;
11167
11168 loc = XNEW (struct ada_catchpoint_location);
11169 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11170 loc->excep_cond_expr = NULL;
11171 return &loc->base;
11172}
11173
11174/* Implement the RE_SET method in the breakpoint_ops structure for all
11175 exception catchpoint kinds. */
11176
11177static void
11178re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11179{
11180 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11181
11182 /* Call the base class's method. This updates the catchpoint's
11183 locations. */
2060206e 11184 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11185
11186 /* Reparse the exception conditional expressions. One for each
11187 location. */
11188 create_excep_cond_exprs (c);
11189}
11190
11191/* Returns true if we should stop for this breakpoint hit. If the
11192 user specified a specific exception, we only want to cause a stop
11193 if the program thrown that exception. */
11194
11195static int
11196should_stop_exception (const struct bp_location *bl)
11197{
11198 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11199 const struct ada_catchpoint_location *ada_loc
11200 = (const struct ada_catchpoint_location *) bl;
11201 volatile struct gdb_exception ex;
11202 int stop;
11203
11204 /* With no specific exception, should always stop. */
11205 if (c->excep_string == NULL)
11206 return 1;
11207
11208 if (ada_loc->excep_cond_expr == NULL)
11209 {
11210 /* We will have a NULL expression if back when we were creating
11211 the expressions, this location's had failed to parse. */
11212 return 1;
11213 }
11214
11215 stop = 1;
11216 TRY_CATCH (ex, RETURN_MASK_ALL)
11217 {
11218 struct value *mark;
11219
11220 mark = value_mark ();
11221 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11222 value_free_to_mark (mark);
11223 }
11224 if (ex.reason < 0)
11225 exception_fprintf (gdb_stderr, ex,
11226 _("Error in testing exception condition:\n"));
11227 return stop;
11228}
11229
11230/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11231 for all exception catchpoint kinds. */
11232
11233static void
11234check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11235{
11236 bs->stop = should_stop_exception (bs->bp_location_at);
11237}
11238
f7f9143b
JB
11239/* Implement the PRINT_IT method in the breakpoint_ops structure
11240 for all exception catchpoint kinds. */
11241
11242static enum print_stop_action
348d480f 11243print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11244{
79a45e25 11245 struct ui_out *uiout = current_uiout;
348d480f
PA
11246 struct breakpoint *b = bs->breakpoint_at;
11247
956a9fb9 11248 annotate_catchpoint (b->number);
f7f9143b 11249
956a9fb9 11250 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11251 {
956a9fb9
JB
11252 ui_out_field_string (uiout, "reason",
11253 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11254 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11255 }
11256
00eb2c4a
JB
11257 ui_out_text (uiout,
11258 b->disposition == disp_del ? "\nTemporary catchpoint "
11259 : "\nCatchpoint ");
956a9fb9
JB
11260 ui_out_field_int (uiout, "bkptno", b->number);
11261 ui_out_text (uiout, ", ");
f7f9143b 11262
f7f9143b
JB
11263 switch (ex)
11264 {
11265 case ex_catch_exception:
f7f9143b 11266 case ex_catch_exception_unhandled:
956a9fb9
JB
11267 {
11268 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11269 char exception_name[256];
11270
11271 if (addr != 0)
11272 {
11273 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11274 exception_name [sizeof (exception_name) - 1] = '\0';
11275 }
11276 else
11277 {
11278 /* For some reason, we were unable to read the exception
11279 name. This could happen if the Runtime was compiled
11280 without debugging info, for instance. In that case,
11281 just replace the exception name by the generic string
11282 "exception" - it will read as "an exception" in the
11283 notification we are about to print. */
967cff16 11284 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11285 }
11286 /* In the case of unhandled exception breakpoints, we print
11287 the exception name as "unhandled EXCEPTION_NAME", to make
11288 it clearer to the user which kind of catchpoint just got
11289 hit. We used ui_out_text to make sure that this extra
11290 info does not pollute the exception name in the MI case. */
11291 if (ex == ex_catch_exception_unhandled)
11292 ui_out_text (uiout, "unhandled ");
11293 ui_out_field_string (uiout, "exception-name", exception_name);
11294 }
11295 break;
f7f9143b 11296 case ex_catch_assert:
956a9fb9
JB
11297 /* In this case, the name of the exception is not really
11298 important. Just print "failed assertion" to make it clearer
11299 that his program just hit an assertion-failure catchpoint.
11300 We used ui_out_text because this info does not belong in
11301 the MI output. */
11302 ui_out_text (uiout, "failed assertion");
11303 break;
f7f9143b 11304 }
956a9fb9
JB
11305 ui_out_text (uiout, " at ");
11306 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11307
11308 return PRINT_SRC_AND_LOC;
11309}
11310
11311/* Implement the PRINT_ONE method in the breakpoint_ops structure
11312 for all exception catchpoint kinds. */
11313
11314static void
11315print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 11316 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11317{
79a45e25 11318 struct ui_out *uiout = current_uiout;
28010a5d 11319 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11320 struct value_print_options opts;
11321
11322 get_user_print_options (&opts);
11323 if (opts.addressprint)
f7f9143b
JB
11324 {
11325 annotate_field (4);
5af949e3 11326 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11327 }
11328
11329 annotate_field (5);
a6d9a66e 11330 *last_loc = b->loc;
f7f9143b
JB
11331 switch (ex)
11332 {
11333 case ex_catch_exception:
28010a5d 11334 if (c->excep_string != NULL)
f7f9143b 11335 {
28010a5d
PA
11336 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11337
f7f9143b
JB
11338 ui_out_field_string (uiout, "what", msg);
11339 xfree (msg);
11340 }
11341 else
11342 ui_out_field_string (uiout, "what", "all Ada exceptions");
11343
11344 break;
11345
11346 case ex_catch_exception_unhandled:
11347 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11348 break;
11349
11350 case ex_catch_assert:
11351 ui_out_field_string (uiout, "what", "failed Ada assertions");
11352 break;
11353
11354 default:
11355 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11356 break;
11357 }
11358}
11359
11360/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11361 for all exception catchpoint kinds. */
11362
11363static void
11364print_mention_exception (enum exception_catchpoint_kind ex,
11365 struct breakpoint *b)
11366{
28010a5d 11367 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11368 struct ui_out *uiout = current_uiout;
28010a5d 11369
00eb2c4a
JB
11370 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11371 : _("Catchpoint "));
11372 ui_out_field_int (uiout, "bkptno", b->number);
11373 ui_out_text (uiout, ": ");
11374
f7f9143b
JB
11375 switch (ex)
11376 {
11377 case ex_catch_exception:
28010a5d 11378 if (c->excep_string != NULL)
00eb2c4a
JB
11379 {
11380 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11381 struct cleanup *old_chain = make_cleanup (xfree, info);
11382
11383 ui_out_text (uiout, info);
11384 do_cleanups (old_chain);
11385 }
f7f9143b 11386 else
00eb2c4a 11387 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
11388 break;
11389
11390 case ex_catch_exception_unhandled:
00eb2c4a 11391 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
11392 break;
11393
11394 case ex_catch_assert:
00eb2c4a 11395 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
11396 break;
11397
11398 default:
11399 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11400 break;
11401 }
11402}
11403
6149aea9
PA
11404/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11405 for all exception catchpoint kinds. */
11406
11407static void
11408print_recreate_exception (enum exception_catchpoint_kind ex,
11409 struct breakpoint *b, struct ui_file *fp)
11410{
28010a5d
PA
11411 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11412
6149aea9
PA
11413 switch (ex)
11414 {
11415 case ex_catch_exception:
11416 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11417 if (c->excep_string != NULL)
11418 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11419 break;
11420
11421 case ex_catch_exception_unhandled:
78076abc 11422 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11423 break;
11424
11425 case ex_catch_assert:
11426 fprintf_filtered (fp, "catch assert");
11427 break;
11428
11429 default:
11430 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11431 }
d9b3f62e 11432 print_recreate_thread (b, fp);
6149aea9
PA
11433}
11434
f7f9143b
JB
11435/* Virtual table for "catch exception" breakpoints. */
11436
28010a5d
PA
11437static void
11438dtor_catch_exception (struct breakpoint *b)
11439{
11440 dtor_exception (ex_catch_exception, b);
11441}
11442
11443static struct bp_location *
11444allocate_location_catch_exception (struct breakpoint *self)
11445{
11446 return allocate_location_exception (ex_catch_exception, self);
11447}
11448
11449static void
11450re_set_catch_exception (struct breakpoint *b)
11451{
11452 re_set_exception (ex_catch_exception, b);
11453}
11454
11455static void
11456check_status_catch_exception (bpstat bs)
11457{
11458 check_status_exception (ex_catch_exception, bs);
11459}
11460
f7f9143b 11461static enum print_stop_action
348d480f 11462print_it_catch_exception (bpstat bs)
f7f9143b 11463{
348d480f 11464 return print_it_exception (ex_catch_exception, bs);
f7f9143b
JB
11465}
11466
11467static void
a6d9a66e 11468print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11469{
a6d9a66e 11470 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
11471}
11472
11473static void
11474print_mention_catch_exception (struct breakpoint *b)
11475{
11476 print_mention_exception (ex_catch_exception, b);
11477}
11478
6149aea9
PA
11479static void
11480print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11481{
11482 print_recreate_exception (ex_catch_exception, b, fp);
11483}
11484
2060206e 11485static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
11486
11487/* Virtual table for "catch exception unhandled" breakpoints. */
11488
28010a5d
PA
11489static void
11490dtor_catch_exception_unhandled (struct breakpoint *b)
11491{
11492 dtor_exception (ex_catch_exception_unhandled, b);
11493}
11494
11495static struct bp_location *
11496allocate_location_catch_exception_unhandled (struct breakpoint *self)
11497{
11498 return allocate_location_exception (ex_catch_exception_unhandled, self);
11499}
11500
11501static void
11502re_set_catch_exception_unhandled (struct breakpoint *b)
11503{
11504 re_set_exception (ex_catch_exception_unhandled, b);
11505}
11506
11507static void
11508check_status_catch_exception_unhandled (bpstat bs)
11509{
11510 check_status_exception (ex_catch_exception_unhandled, bs);
11511}
11512
f7f9143b 11513static enum print_stop_action
348d480f 11514print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 11515{
348d480f 11516 return print_it_exception (ex_catch_exception_unhandled, bs);
f7f9143b
JB
11517}
11518
11519static void
a6d9a66e
UW
11520print_one_catch_exception_unhandled (struct breakpoint *b,
11521 struct bp_location **last_loc)
f7f9143b 11522{
a6d9a66e 11523 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
11524}
11525
11526static void
11527print_mention_catch_exception_unhandled (struct breakpoint *b)
11528{
11529 print_mention_exception (ex_catch_exception_unhandled, b);
11530}
11531
6149aea9
PA
11532static void
11533print_recreate_catch_exception_unhandled (struct breakpoint *b,
11534 struct ui_file *fp)
11535{
11536 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11537}
11538
2060206e 11539static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
11540
11541/* Virtual table for "catch assert" breakpoints. */
11542
28010a5d
PA
11543static void
11544dtor_catch_assert (struct breakpoint *b)
11545{
11546 dtor_exception (ex_catch_assert, b);
11547}
11548
11549static struct bp_location *
11550allocate_location_catch_assert (struct breakpoint *self)
11551{
11552 return allocate_location_exception (ex_catch_assert, self);
11553}
11554
11555static void
11556re_set_catch_assert (struct breakpoint *b)
11557{
11558 return re_set_exception (ex_catch_assert, b);
11559}
11560
11561static void
11562check_status_catch_assert (bpstat bs)
11563{
11564 check_status_exception (ex_catch_assert, bs);
11565}
11566
f7f9143b 11567static enum print_stop_action
348d480f 11568print_it_catch_assert (bpstat bs)
f7f9143b 11569{
348d480f 11570 return print_it_exception (ex_catch_assert, bs);
f7f9143b
JB
11571}
11572
11573static void
a6d9a66e 11574print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11575{
a6d9a66e 11576 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
11577}
11578
11579static void
11580print_mention_catch_assert (struct breakpoint *b)
11581{
11582 print_mention_exception (ex_catch_assert, b);
11583}
11584
6149aea9
PA
11585static void
11586print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11587{
11588 print_recreate_exception (ex_catch_assert, b, fp);
11589}
11590
2060206e 11591static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 11592
f7f9143b
JB
11593/* Return a newly allocated copy of the first space-separated token
11594 in ARGSP, and then adjust ARGSP to point immediately after that
11595 token.
11596
11597 Return NULL if ARGPS does not contain any more tokens. */
11598
11599static char *
11600ada_get_next_arg (char **argsp)
11601{
11602 char *args = *argsp;
11603 char *end;
11604 char *result;
11605
0fcd72ba 11606 args = skip_spaces (args);
f7f9143b
JB
11607 if (args[0] == '\0')
11608 return NULL; /* No more arguments. */
11609
11610 /* Find the end of the current argument. */
11611
0fcd72ba 11612 end = skip_to_space (args);
f7f9143b
JB
11613
11614 /* Adjust ARGSP to point to the start of the next argument. */
11615
11616 *argsp = end;
11617
11618 /* Make a copy of the current argument and return it. */
11619
11620 result = xmalloc (end - args + 1);
11621 strncpy (result, args, end - args);
11622 result[end - args] = '\0';
11623
11624 return result;
11625}
11626
11627/* Split the arguments specified in a "catch exception" command.
11628 Set EX to the appropriate catchpoint type.
28010a5d 11629 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
11630 specified by the user.
11631 If a condition is found at the end of the arguments, the condition
11632 expression is stored in COND_STRING (memory must be deallocated
11633 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
11634
11635static void
11636catch_ada_exception_command_split (char *args,
11637 enum exception_catchpoint_kind *ex,
5845583d
JB
11638 char **excep_string,
11639 char **cond_string)
f7f9143b
JB
11640{
11641 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11642 char *exception_name;
5845583d 11643 char *cond = NULL;
f7f9143b
JB
11644
11645 exception_name = ada_get_next_arg (&args);
5845583d
JB
11646 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11647 {
11648 /* This is not an exception name; this is the start of a condition
11649 expression for a catchpoint on all exceptions. So, "un-get"
11650 this token, and set exception_name to NULL. */
11651 xfree (exception_name);
11652 exception_name = NULL;
11653 args -= 2;
11654 }
f7f9143b
JB
11655 make_cleanup (xfree, exception_name);
11656
5845583d 11657 /* Check to see if we have a condition. */
f7f9143b 11658
0fcd72ba 11659 args = skip_spaces (args);
5845583d
JB
11660 if (strncmp (args, "if", 2) == 0
11661 && (isspace (args[2]) || args[2] == '\0'))
11662 {
11663 args += 2;
11664 args = skip_spaces (args);
11665
11666 if (args[0] == '\0')
11667 error (_("Condition missing after `if' keyword"));
11668 cond = xstrdup (args);
11669 make_cleanup (xfree, cond);
11670
11671 args += strlen (args);
11672 }
11673
11674 /* Check that we do not have any more arguments. Anything else
11675 is unexpected. */
f7f9143b
JB
11676
11677 if (args[0] != '\0')
11678 error (_("Junk at end of expression"));
11679
11680 discard_cleanups (old_chain);
11681
11682 if (exception_name == NULL)
11683 {
11684 /* Catch all exceptions. */
11685 *ex = ex_catch_exception;
28010a5d 11686 *excep_string = NULL;
f7f9143b
JB
11687 }
11688 else if (strcmp (exception_name, "unhandled") == 0)
11689 {
11690 /* Catch unhandled exceptions. */
11691 *ex = ex_catch_exception_unhandled;
28010a5d 11692 *excep_string = NULL;
f7f9143b
JB
11693 }
11694 else
11695 {
11696 /* Catch a specific exception. */
11697 *ex = ex_catch_exception;
28010a5d 11698 *excep_string = exception_name;
f7f9143b 11699 }
5845583d 11700 *cond_string = cond;
f7f9143b
JB
11701}
11702
11703/* Return the name of the symbol on which we should break in order to
11704 implement a catchpoint of the EX kind. */
11705
11706static const char *
11707ada_exception_sym_name (enum exception_catchpoint_kind ex)
11708{
3eecfa55
JB
11709 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11710
11711 gdb_assert (data->exception_info != NULL);
0259addd 11712
f7f9143b
JB
11713 switch (ex)
11714 {
11715 case ex_catch_exception:
3eecfa55 11716 return (data->exception_info->catch_exception_sym);
f7f9143b
JB
11717 break;
11718 case ex_catch_exception_unhandled:
3eecfa55 11719 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11720 break;
11721 case ex_catch_assert:
3eecfa55 11722 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
11723 break;
11724 default:
11725 internal_error (__FILE__, __LINE__,
11726 _("unexpected catchpoint kind (%d)"), ex);
11727 }
11728}
11729
11730/* Return the breakpoint ops "virtual table" used for catchpoints
11731 of the EX kind. */
11732
c0a91b2b 11733static const struct breakpoint_ops *
4b9eee8c 11734ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11735{
11736 switch (ex)
11737 {
11738 case ex_catch_exception:
11739 return (&catch_exception_breakpoint_ops);
11740 break;
11741 case ex_catch_exception_unhandled:
11742 return (&catch_exception_unhandled_breakpoint_ops);
11743 break;
11744 case ex_catch_assert:
11745 return (&catch_assert_breakpoint_ops);
11746 break;
11747 default:
11748 internal_error (__FILE__, __LINE__,
11749 _("unexpected catchpoint kind (%d)"), ex);
11750 }
11751}
11752
11753/* Return the condition that will be used to match the current exception
11754 being raised with the exception that the user wants to catch. This
11755 assumes that this condition is used when the inferior just triggered
11756 an exception catchpoint.
11757
11758 The string returned is a newly allocated string that needs to be
11759 deallocated later. */
11760
11761static char *
28010a5d 11762ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 11763{
3d0b0fa3
JB
11764 int i;
11765
0963b4bd 11766 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 11767 runtime units that have been compiled without debugging info; if
28010a5d 11768 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
11769 exception (e.g. "constraint_error") then, during the evaluation
11770 of the condition expression, the symbol lookup on this name would
0963b4bd 11771 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
11772 may then be set only on user-defined exceptions which have the
11773 same not-fully-qualified name (e.g. my_package.constraint_error).
11774
11775 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 11776 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
11777 exception constraint_error" is rewritten into "catch exception
11778 standard.constraint_error".
11779
11780 If an exception named contraint_error is defined in another package of
11781 the inferior program, then the only way to specify this exception as a
11782 breakpoint condition is to use its fully-qualified named:
11783 e.g. my_package.constraint_error. */
11784
11785 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11786 {
28010a5d 11787 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
11788 {
11789 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 11790 excep_string);
3d0b0fa3
JB
11791 }
11792 }
28010a5d 11793 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
11794}
11795
11796/* Return the symtab_and_line that should be used to insert an exception
11797 catchpoint of the TYPE kind.
11798
28010a5d
PA
11799 EXCEP_STRING should contain the name of a specific exception that
11800 the catchpoint should catch, or NULL otherwise.
f7f9143b 11801
28010a5d
PA
11802 ADDR_STRING returns the name of the function where the real
11803 breakpoint that implements the catchpoints is set, depending on the
11804 type of catchpoint we need to create. */
f7f9143b
JB
11805
11806static struct symtab_and_line
28010a5d 11807ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 11808 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
11809{
11810 const char *sym_name;
11811 struct symbol *sym;
f7f9143b 11812
0259addd
JB
11813 /* First, find out which exception support info to use. */
11814 ada_exception_support_info_sniffer ();
11815
11816 /* Then lookup the function on which we will break in order to catch
f7f9143b 11817 the Ada exceptions requested by the user. */
f7f9143b
JB
11818 sym_name = ada_exception_sym_name (ex);
11819 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11820
f17011e0
JB
11821 /* We can assume that SYM is not NULL at this stage. If the symbol
11822 did not exist, ada_exception_support_info_sniffer would have
11823 raised an exception.
f7f9143b 11824
f17011e0
JB
11825 Also, ada_exception_support_info_sniffer should have already
11826 verified that SYM is a function symbol. */
11827 gdb_assert (sym != NULL);
11828 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
11829
11830 /* Set ADDR_STRING. */
f7f9143b
JB
11831 *addr_string = xstrdup (sym_name);
11832
f7f9143b 11833 /* Set OPS. */
4b9eee8c 11834 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 11835
f17011e0 11836 return find_function_start_sal (sym, 1);
f7f9143b
JB
11837}
11838
11839/* Parse the arguments (ARGS) of the "catch exception" command.
11840
f7f9143b
JB
11841 If the user asked the catchpoint to catch only a specific
11842 exception, then save the exception name in ADDR_STRING.
11843
5845583d
JB
11844 If the user provided a condition, then set COND_STRING to
11845 that condition expression (the memory must be deallocated
11846 after use). Otherwise, set COND_STRING to NULL.
11847
f7f9143b
JB
11848 See ada_exception_sal for a description of all the remaining
11849 function arguments of this function. */
11850
9ac4176b 11851static struct symtab_and_line
f7f9143b 11852ada_decode_exception_location (char *args, char **addr_string,
28010a5d 11853 char **excep_string,
5845583d 11854 char **cond_string,
c0a91b2b 11855 const struct breakpoint_ops **ops)
f7f9143b
JB
11856{
11857 enum exception_catchpoint_kind ex;
11858
5845583d 11859 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
28010a5d
PA
11860 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11861}
11862
11863/* Create an Ada exception catchpoint. */
11864
11865static void
11866create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11867 struct symtab_and_line sal,
11868 char *addr_string,
11869 char *excep_string,
5845583d 11870 char *cond_string,
c0a91b2b 11871 const struct breakpoint_ops *ops,
28010a5d
PA
11872 int tempflag,
11873 int from_tty)
11874{
11875 struct ada_catchpoint *c;
11876
11877 c = XNEW (struct ada_catchpoint);
11878 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11879 ops, tempflag, from_tty);
11880 c->excep_string = excep_string;
11881 create_excep_cond_exprs (c);
5845583d
JB
11882 if (cond_string != NULL)
11883 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 11884 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
11885}
11886
9ac4176b
PA
11887/* Implement the "catch exception" command. */
11888
11889static void
11890catch_ada_exception_command (char *arg, int from_tty,
11891 struct cmd_list_element *command)
11892{
11893 struct gdbarch *gdbarch = get_current_arch ();
11894 int tempflag;
11895 struct symtab_and_line sal;
11896 char *addr_string = NULL;
28010a5d 11897 char *excep_string = NULL;
5845583d 11898 char *cond_string = NULL;
c0a91b2b 11899 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
11900
11901 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11902
11903 if (!arg)
11904 arg = "";
5845583d
JB
11905 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
11906 &cond_string, &ops);
28010a5d 11907 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
11908 excep_string, cond_string, ops,
11909 tempflag, from_tty);
9ac4176b
PA
11910}
11911
5845583d
JB
11912/* Assuming that ARGS contains the arguments of a "catch assert"
11913 command, parse those arguments and return a symtab_and_line object
11914 for a failed assertion catchpoint.
11915
11916 Set ADDR_STRING to the name of the function where the real
11917 breakpoint that implements the catchpoint is set.
11918
11919 If ARGS contains a condition, set COND_STRING to that condition
11920 (the memory needs to be deallocated after use). Otherwise, set
11921 COND_STRING to NULL. */
11922
9ac4176b 11923static struct symtab_and_line
f7f9143b 11924ada_decode_assert_location (char *args, char **addr_string,
5845583d 11925 char **cond_string,
c0a91b2b 11926 const struct breakpoint_ops **ops)
f7f9143b 11927{
5845583d 11928 args = skip_spaces (args);
f7f9143b 11929
5845583d
JB
11930 /* Check whether a condition was provided. */
11931 if (strncmp (args, "if", 2) == 0
11932 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 11933 {
5845583d 11934 args += 2;
0fcd72ba 11935 args = skip_spaces (args);
5845583d
JB
11936 if (args[0] == '\0')
11937 error (_("condition missing after `if' keyword"));
11938 *cond_string = xstrdup (args);
f7f9143b
JB
11939 }
11940
5845583d
JB
11941 /* Otherwise, there should be no other argument at the end of
11942 the command. */
11943 else if (args[0] != '\0')
11944 error (_("Junk at end of arguments."));
11945
28010a5d 11946 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
f7f9143b
JB
11947}
11948
9ac4176b
PA
11949/* Implement the "catch assert" command. */
11950
11951static void
11952catch_assert_command (char *arg, int from_tty,
11953 struct cmd_list_element *command)
11954{
11955 struct gdbarch *gdbarch = get_current_arch ();
11956 int tempflag;
11957 struct symtab_and_line sal;
11958 char *addr_string = NULL;
5845583d 11959 char *cond_string = NULL;
c0a91b2b 11960 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
11961
11962 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11963
11964 if (!arg)
11965 arg = "";
5845583d 11966 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
28010a5d 11967 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
11968 NULL, cond_string, ops, tempflag,
11969 from_tty);
9ac4176b 11970}
4c4b4cd2
PH
11971 /* Operators */
11972/* Information about operators given special treatment in functions
11973 below. */
11974/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11975
11976#define ADA_OPERATORS \
11977 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11978 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11979 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11980 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11981 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11982 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11983 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11984 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11985 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11986 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11987 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11988 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11989 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11990 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11991 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
11992 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11993 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11994 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11995 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
11996
11997static void
554794dc
SDJ
11998ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11999 int *argsp)
4c4b4cd2
PH
12000{
12001 switch (exp->elts[pc - 1].opcode)
12002 {
76a01679 12003 default:
4c4b4cd2
PH
12004 operator_length_standard (exp, pc, oplenp, argsp);
12005 break;
12006
12007#define OP_DEFN(op, len, args, binop) \
12008 case op: *oplenp = len; *argsp = args; break;
12009 ADA_OPERATORS;
12010#undef OP_DEFN
52ce6436
PH
12011
12012 case OP_AGGREGATE:
12013 *oplenp = 3;
12014 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12015 break;
12016
12017 case OP_CHOICES:
12018 *oplenp = 3;
12019 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12020 break;
4c4b4cd2
PH
12021 }
12022}
12023
c0201579
JK
12024/* Implementation of the exp_descriptor method operator_check. */
12025
12026static int
12027ada_operator_check (struct expression *exp, int pos,
12028 int (*objfile_func) (struct objfile *objfile, void *data),
12029 void *data)
12030{
12031 const union exp_element *const elts = exp->elts;
12032 struct type *type = NULL;
12033
12034 switch (elts[pos].opcode)
12035 {
12036 case UNOP_IN_RANGE:
12037 case UNOP_QUAL:
12038 type = elts[pos + 1].type;
12039 break;
12040
12041 default:
12042 return operator_check_standard (exp, pos, objfile_func, data);
12043 }
12044
12045 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12046
12047 if (type && TYPE_OBJFILE (type)
12048 && (*objfile_func) (TYPE_OBJFILE (type), data))
12049 return 1;
12050
12051 return 0;
12052}
12053
4c4b4cd2
PH
12054static char *
12055ada_op_name (enum exp_opcode opcode)
12056{
12057 switch (opcode)
12058 {
76a01679 12059 default:
4c4b4cd2 12060 return op_name_standard (opcode);
52ce6436 12061
4c4b4cd2
PH
12062#define OP_DEFN(op, len, args, binop) case op: return #op;
12063 ADA_OPERATORS;
12064#undef OP_DEFN
52ce6436
PH
12065
12066 case OP_AGGREGATE:
12067 return "OP_AGGREGATE";
12068 case OP_CHOICES:
12069 return "OP_CHOICES";
12070 case OP_NAME:
12071 return "OP_NAME";
4c4b4cd2
PH
12072 }
12073}
12074
12075/* As for operator_length, but assumes PC is pointing at the first
12076 element of the operator, and gives meaningful results only for the
52ce6436 12077 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
12078
12079static void
76a01679
JB
12080ada_forward_operator_length (struct expression *exp, int pc,
12081 int *oplenp, int *argsp)
4c4b4cd2 12082{
76a01679 12083 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
12084 {
12085 default:
12086 *oplenp = *argsp = 0;
12087 break;
52ce6436 12088
4c4b4cd2
PH
12089#define OP_DEFN(op, len, args, binop) \
12090 case op: *oplenp = len; *argsp = args; break;
12091 ADA_OPERATORS;
12092#undef OP_DEFN
52ce6436
PH
12093
12094 case OP_AGGREGATE:
12095 *oplenp = 3;
12096 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12097 break;
12098
12099 case OP_CHOICES:
12100 *oplenp = 3;
12101 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12102 break;
12103
12104 case OP_STRING:
12105 case OP_NAME:
12106 {
12107 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 12108
52ce6436
PH
12109 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12110 *argsp = 0;
12111 break;
12112 }
4c4b4cd2
PH
12113 }
12114}
12115
12116static int
12117ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12118{
12119 enum exp_opcode op = exp->elts[elt].opcode;
12120 int oplen, nargs;
12121 int pc = elt;
12122 int i;
76a01679 12123
4c4b4cd2
PH
12124 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12125
76a01679 12126 switch (op)
4c4b4cd2 12127 {
76a01679 12128 /* Ada attributes ('Foo). */
4c4b4cd2
PH
12129 case OP_ATR_FIRST:
12130 case OP_ATR_LAST:
12131 case OP_ATR_LENGTH:
12132 case OP_ATR_IMAGE:
12133 case OP_ATR_MAX:
12134 case OP_ATR_MIN:
12135 case OP_ATR_MODULUS:
12136 case OP_ATR_POS:
12137 case OP_ATR_SIZE:
12138 case OP_ATR_TAG:
12139 case OP_ATR_VAL:
12140 break;
12141
12142 case UNOP_IN_RANGE:
12143 case UNOP_QUAL:
323e0a4a
AC
12144 /* XXX: gdb_sprint_host_address, type_sprint */
12145 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
12146 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12147 fprintf_filtered (stream, " (");
12148 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12149 fprintf_filtered (stream, ")");
12150 break;
12151 case BINOP_IN_BOUNDS:
52ce6436
PH
12152 fprintf_filtered (stream, " (%d)",
12153 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
12154 break;
12155 case TERNOP_IN_RANGE:
12156 break;
12157
52ce6436
PH
12158 case OP_AGGREGATE:
12159 case OP_OTHERS:
12160 case OP_DISCRETE_RANGE:
12161 case OP_POSITIONAL:
12162 case OP_CHOICES:
12163 break;
12164
12165 case OP_NAME:
12166 case OP_STRING:
12167 {
12168 char *name = &exp->elts[elt + 2].string;
12169 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 12170
52ce6436
PH
12171 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12172 break;
12173 }
12174
4c4b4cd2
PH
12175 default:
12176 return dump_subexp_body_standard (exp, stream, elt);
12177 }
12178
12179 elt += oplen;
12180 for (i = 0; i < nargs; i += 1)
12181 elt = dump_subexp (exp, stream, elt);
12182
12183 return elt;
12184}
12185
12186/* The Ada extension of print_subexp (q.v.). */
12187
76a01679
JB
12188static void
12189ada_print_subexp (struct expression *exp, int *pos,
12190 struct ui_file *stream, enum precedence prec)
4c4b4cd2 12191{
52ce6436 12192 int oplen, nargs, i;
4c4b4cd2
PH
12193 int pc = *pos;
12194 enum exp_opcode op = exp->elts[pc].opcode;
12195
12196 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12197
52ce6436 12198 *pos += oplen;
4c4b4cd2
PH
12199 switch (op)
12200 {
12201 default:
52ce6436 12202 *pos -= oplen;
4c4b4cd2
PH
12203 print_subexp_standard (exp, pos, stream, prec);
12204 return;
12205
12206 case OP_VAR_VALUE:
4c4b4cd2
PH
12207 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12208 return;
12209
12210 case BINOP_IN_BOUNDS:
323e0a4a 12211 /* XXX: sprint_subexp */
4c4b4cd2 12212 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12213 fputs_filtered (" in ", stream);
4c4b4cd2 12214 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12215 fputs_filtered ("'range", stream);
4c4b4cd2 12216 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
12217 fprintf_filtered (stream, "(%ld)",
12218 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
12219 return;
12220
12221 case TERNOP_IN_RANGE:
4c4b4cd2 12222 if (prec >= PREC_EQUAL)
76a01679 12223 fputs_filtered ("(", stream);
323e0a4a 12224 /* XXX: sprint_subexp */
4c4b4cd2 12225 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12226 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12227 print_subexp (exp, pos, stream, PREC_EQUAL);
12228 fputs_filtered (" .. ", stream);
12229 print_subexp (exp, pos, stream, PREC_EQUAL);
12230 if (prec >= PREC_EQUAL)
76a01679
JB
12231 fputs_filtered (")", stream);
12232 return;
4c4b4cd2
PH
12233
12234 case OP_ATR_FIRST:
12235 case OP_ATR_LAST:
12236 case OP_ATR_LENGTH:
12237 case OP_ATR_IMAGE:
12238 case OP_ATR_MAX:
12239 case OP_ATR_MIN:
12240 case OP_ATR_MODULUS:
12241 case OP_ATR_POS:
12242 case OP_ATR_SIZE:
12243 case OP_ATR_TAG:
12244 case OP_ATR_VAL:
4c4b4cd2 12245 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
12246 {
12247 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12248 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12249 *pos += 3;
12250 }
4c4b4cd2 12251 else
76a01679 12252 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
12253 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12254 if (nargs > 1)
76a01679
JB
12255 {
12256 int tem;
5b4ee69b 12257
76a01679
JB
12258 for (tem = 1; tem < nargs; tem += 1)
12259 {
12260 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12261 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12262 }
12263 fputs_filtered (")", stream);
12264 }
4c4b4cd2 12265 return;
14f9c5c9 12266
4c4b4cd2 12267 case UNOP_QUAL:
4c4b4cd2
PH
12268 type_print (exp->elts[pc + 1].type, "", stream, 0);
12269 fputs_filtered ("'(", stream);
12270 print_subexp (exp, pos, stream, PREC_PREFIX);
12271 fputs_filtered (")", stream);
12272 return;
14f9c5c9 12273
4c4b4cd2 12274 case UNOP_IN_RANGE:
323e0a4a 12275 /* XXX: sprint_subexp */
4c4b4cd2 12276 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12277 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12278 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12279 return;
52ce6436
PH
12280
12281 case OP_DISCRETE_RANGE:
12282 print_subexp (exp, pos, stream, PREC_SUFFIX);
12283 fputs_filtered ("..", stream);
12284 print_subexp (exp, pos, stream, PREC_SUFFIX);
12285 return;
12286
12287 case OP_OTHERS:
12288 fputs_filtered ("others => ", stream);
12289 print_subexp (exp, pos, stream, PREC_SUFFIX);
12290 return;
12291
12292 case OP_CHOICES:
12293 for (i = 0; i < nargs-1; i += 1)
12294 {
12295 if (i > 0)
12296 fputs_filtered ("|", stream);
12297 print_subexp (exp, pos, stream, PREC_SUFFIX);
12298 }
12299 fputs_filtered (" => ", stream);
12300 print_subexp (exp, pos, stream, PREC_SUFFIX);
12301 return;
12302
12303 case OP_POSITIONAL:
12304 print_subexp (exp, pos, stream, PREC_SUFFIX);
12305 return;
12306
12307 case OP_AGGREGATE:
12308 fputs_filtered ("(", stream);
12309 for (i = 0; i < nargs; i += 1)
12310 {
12311 if (i > 0)
12312 fputs_filtered (", ", stream);
12313 print_subexp (exp, pos, stream, PREC_SUFFIX);
12314 }
12315 fputs_filtered (")", stream);
12316 return;
4c4b4cd2
PH
12317 }
12318}
14f9c5c9
AS
12319
12320/* Table mapping opcodes into strings for printing operators
12321 and precedences of the operators. */
12322
d2e4a39e
AS
12323static const struct op_print ada_op_print_tab[] = {
12324 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12325 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12326 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12327 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12328 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12329 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12330 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12331 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12332 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12333 {">=", BINOP_GEQ, PREC_ORDER, 0},
12334 {">", BINOP_GTR, PREC_ORDER, 0},
12335 {"<", BINOP_LESS, PREC_ORDER, 0},
12336 {">>", BINOP_RSH, PREC_SHIFT, 0},
12337 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12338 {"+", BINOP_ADD, PREC_ADD, 0},
12339 {"-", BINOP_SUB, PREC_ADD, 0},
12340 {"&", BINOP_CONCAT, PREC_ADD, 0},
12341 {"*", BINOP_MUL, PREC_MUL, 0},
12342 {"/", BINOP_DIV, PREC_MUL, 0},
12343 {"rem", BINOP_REM, PREC_MUL, 0},
12344 {"mod", BINOP_MOD, PREC_MUL, 0},
12345 {"**", BINOP_EXP, PREC_REPEAT, 0},
12346 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12347 {"-", UNOP_NEG, PREC_PREFIX, 0},
12348 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12349 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12350 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12351 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
12352 {".all", UNOP_IND, PREC_SUFFIX, 1},
12353 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12354 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 12355 {NULL, 0, 0, 0}
14f9c5c9
AS
12356};
12357\f
72d5681a
PH
12358enum ada_primitive_types {
12359 ada_primitive_type_int,
12360 ada_primitive_type_long,
12361 ada_primitive_type_short,
12362 ada_primitive_type_char,
12363 ada_primitive_type_float,
12364 ada_primitive_type_double,
12365 ada_primitive_type_void,
12366 ada_primitive_type_long_long,
12367 ada_primitive_type_long_double,
12368 ada_primitive_type_natural,
12369 ada_primitive_type_positive,
12370 ada_primitive_type_system_address,
12371 nr_ada_primitive_types
12372};
6c038f32
PH
12373
12374static void
d4a9a881 12375ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
12376 struct language_arch_info *lai)
12377{
d4a9a881 12378 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 12379
72d5681a 12380 lai->primitive_type_vector
d4a9a881 12381 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 12382 struct type *);
e9bb382b
UW
12383
12384 lai->primitive_type_vector [ada_primitive_type_int]
12385 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12386 0, "integer");
12387 lai->primitive_type_vector [ada_primitive_type_long]
12388 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12389 0, "long_integer");
12390 lai->primitive_type_vector [ada_primitive_type_short]
12391 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12392 0, "short_integer");
12393 lai->string_char_type
12394 = lai->primitive_type_vector [ada_primitive_type_char]
12395 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12396 lai->primitive_type_vector [ada_primitive_type_float]
12397 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12398 "float", NULL);
12399 lai->primitive_type_vector [ada_primitive_type_double]
12400 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12401 "long_float", NULL);
12402 lai->primitive_type_vector [ada_primitive_type_long_long]
12403 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12404 0, "long_long_integer");
12405 lai->primitive_type_vector [ada_primitive_type_long_double]
12406 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12407 "long_long_float", NULL);
12408 lai->primitive_type_vector [ada_primitive_type_natural]
12409 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12410 0, "natural");
12411 lai->primitive_type_vector [ada_primitive_type_positive]
12412 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12413 0, "positive");
12414 lai->primitive_type_vector [ada_primitive_type_void]
12415 = builtin->builtin_void;
12416
12417 lai->primitive_type_vector [ada_primitive_type_system_address]
12418 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
12419 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12420 = "system__address";
fbb06eb1 12421
47e729a8 12422 lai->bool_type_symbol = NULL;
fbb06eb1 12423 lai->bool_type_default = builtin->builtin_bool;
6c038f32 12424}
6c038f32
PH
12425\f
12426 /* Language vector */
12427
12428/* Not really used, but needed in the ada_language_defn. */
12429
12430static void
6c7a06a3 12431emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 12432{
6c7a06a3 12433 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
12434}
12435
12436static int
12437parse (void)
12438{
12439 warnings_issued = 0;
12440 return ada_parse ();
12441}
12442
12443static const struct exp_descriptor ada_exp_descriptor = {
12444 ada_print_subexp,
12445 ada_operator_length,
c0201579 12446 ada_operator_check,
6c038f32
PH
12447 ada_op_name,
12448 ada_dump_subexp_body,
12449 ada_evaluate_subexp
12450};
12451
1a119f36 12452/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
12453 for Ada. */
12454
1a119f36
JB
12455static symbol_name_cmp_ftype
12456ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
12457{
12458 if (should_use_wild_match (lookup_name))
12459 return wild_match;
12460 else
12461 return compare_names;
12462}
12463
6c038f32
PH
12464const struct language_defn ada_language_defn = {
12465 "ada", /* Language name */
12466 language_ada,
6c038f32
PH
12467 range_check_off,
12468 type_check_off,
12469 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12470 that's not quite what this means. */
6c038f32 12471 array_row_major,
9a044a89 12472 macro_expansion_no,
6c038f32
PH
12473 &ada_exp_descriptor,
12474 parse,
12475 ada_error,
12476 resolve,
12477 ada_printchar, /* Print a character constant */
12478 ada_printstr, /* Function to print string constant */
12479 emit_char, /* Function to print single char (not used) */
6c038f32 12480 ada_print_type, /* Print a type using appropriate syntax */
be942545 12481 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
12482 ada_val_print, /* Print a value using appropriate syntax */
12483 ada_value_print, /* Print a top-level value */
12484 NULL, /* Language specific skip_trampoline */
2b2d9e11 12485 NULL, /* name_of_this */
6c038f32
PH
12486 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12487 basic_lookup_transparent_type, /* lookup_transparent_type */
12488 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
12489 NULL, /* Language specific
12490 class_name_from_physname */
6c038f32
PH
12491 ada_op_print_tab, /* expression operators for printing */
12492 0, /* c-style arrays */
12493 1, /* String lower bound */
6c038f32 12494 ada_get_gdb_completer_word_break_characters,
41d27058 12495 ada_make_symbol_completion_list,
72d5681a 12496 ada_language_arch_info,
e79af960 12497 ada_print_array_index,
41f1b697 12498 default_pass_by_reference,
ae6a3a4c 12499 c_get_string,
1a119f36 12500 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 12501 ada_iterate_over_symbols,
6c038f32
PH
12502 LANG_MAGIC
12503};
12504
2c0b251b
PA
12505/* Provide a prototype to silence -Wmissing-prototypes. */
12506extern initialize_file_ftype _initialize_ada_language;
12507
5bf03f13
JB
12508/* Command-list for the "set/show ada" prefix command. */
12509static struct cmd_list_element *set_ada_list;
12510static struct cmd_list_element *show_ada_list;
12511
12512/* Implement the "set ada" prefix command. */
12513
12514static void
12515set_ada_command (char *arg, int from_tty)
12516{
12517 printf_unfiltered (_(\
12518"\"set ada\" must be followed by the name of a setting.\n"));
12519 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12520}
12521
12522/* Implement the "show ada" prefix command. */
12523
12524static void
12525show_ada_command (char *args, int from_tty)
12526{
12527 cmd_show_list (show_ada_list, from_tty, "");
12528}
12529
2060206e
PA
12530static void
12531initialize_ada_catchpoint_ops (void)
12532{
12533 struct breakpoint_ops *ops;
12534
12535 initialize_breakpoint_ops ();
12536
12537 ops = &catch_exception_breakpoint_ops;
12538 *ops = bkpt_breakpoint_ops;
12539 ops->dtor = dtor_catch_exception;
12540 ops->allocate_location = allocate_location_catch_exception;
12541 ops->re_set = re_set_catch_exception;
12542 ops->check_status = check_status_catch_exception;
12543 ops->print_it = print_it_catch_exception;
12544 ops->print_one = print_one_catch_exception;
12545 ops->print_mention = print_mention_catch_exception;
12546 ops->print_recreate = print_recreate_catch_exception;
12547
12548 ops = &catch_exception_unhandled_breakpoint_ops;
12549 *ops = bkpt_breakpoint_ops;
12550 ops->dtor = dtor_catch_exception_unhandled;
12551 ops->allocate_location = allocate_location_catch_exception_unhandled;
12552 ops->re_set = re_set_catch_exception_unhandled;
12553 ops->check_status = check_status_catch_exception_unhandled;
12554 ops->print_it = print_it_catch_exception_unhandled;
12555 ops->print_one = print_one_catch_exception_unhandled;
12556 ops->print_mention = print_mention_catch_exception_unhandled;
12557 ops->print_recreate = print_recreate_catch_exception_unhandled;
12558
12559 ops = &catch_assert_breakpoint_ops;
12560 *ops = bkpt_breakpoint_ops;
12561 ops->dtor = dtor_catch_assert;
12562 ops->allocate_location = allocate_location_catch_assert;
12563 ops->re_set = re_set_catch_assert;
12564 ops->check_status = check_status_catch_assert;
12565 ops->print_it = print_it_catch_assert;
12566 ops->print_one = print_one_catch_assert;
12567 ops->print_mention = print_mention_catch_assert;
12568 ops->print_recreate = print_recreate_catch_assert;
12569}
12570
d2e4a39e 12571void
6c038f32 12572_initialize_ada_language (void)
14f9c5c9 12573{
6c038f32
PH
12574 add_language (&ada_language_defn);
12575
2060206e
PA
12576 initialize_ada_catchpoint_ops ();
12577
5bf03f13
JB
12578 add_prefix_cmd ("ada", no_class, set_ada_command,
12579 _("Prefix command for changing Ada-specfic settings"),
12580 &set_ada_list, "set ada ", 0, &setlist);
12581
12582 add_prefix_cmd ("ada", no_class, show_ada_command,
12583 _("Generic command for showing Ada-specific settings."),
12584 &show_ada_list, "show ada ", 0, &showlist);
12585
12586 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12587 &trust_pad_over_xvs, _("\
12588Enable or disable an optimization trusting PAD types over XVS types"), _("\
12589Show whether an optimization trusting PAD types over XVS types is activated"),
12590 _("\
12591This is related to the encoding used by the GNAT compiler. The debugger\n\
12592should normally trust the contents of PAD types, but certain older versions\n\
12593of GNAT have a bug that sometimes causes the information in the PAD type\n\
12594to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12595work around this bug. It is always safe to turn this option \"off\", but\n\
12596this incurs a slight performance penalty, so it is recommended to NOT change\n\
12597this option to \"off\" unless necessary."),
12598 NULL, NULL, &set_ada_list, &show_ada_list);
12599
9ac4176b
PA
12600 add_catch_command ("exception", _("\
12601Catch Ada exceptions, when raised.\n\
12602With an argument, catch only exceptions with the given name."),
12603 catch_ada_exception_command,
12604 NULL,
12605 CATCH_PERMANENT,
12606 CATCH_TEMPORARY);
12607 add_catch_command ("assert", _("\
12608Catch failed Ada assertions, when raised.\n\
12609With an argument, catch only exceptions with the given name."),
12610 catch_assert_command,
12611 NULL,
12612 CATCH_PERMANENT,
12613 CATCH_TEMPORARY);
12614
6c038f32 12615 varsize_limit = 65536;
6c038f32
PH
12616
12617 obstack_init (&symbol_list_obstack);
12618
12619 decoded_names_store = htab_create_alloc
12620 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12621 NULL, xcalloc, xfree);
6b69afc4 12622
e802dbe0
JB
12623 /* Setup per-inferior data. */
12624 observer_attach_inferior_exit (ada_inferior_exit);
12625 ada_inferior_data
12626 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
14f9c5c9 12627}