]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
[Ada] struct ada_symbol_info minor reformatting & doc update.
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
0b302171
JB
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
fa864999 60#include "gdb_vecs.h"
14f9c5c9 61
ccefe4c4 62#include "psymtab.h"
40bc484c 63#include "value.h"
956a9fb9 64#include "mi/mi-common.h"
9ac4176b 65#include "arch-utils.h"
28010a5d 66#include "exceptions.h"
0fcd72ba 67#include "cli/cli-utils.h"
ccefe4c4 68
4c4b4cd2 69/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 70 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
71 Copied from valarith.c. */
72
73#ifndef TRUNCATION_TOWARDS_ZERO
74#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75#endif
76
d2e4a39e 77static struct type *desc_base_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct type *desc_bounds_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_bounds (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 86
556bdfd4 87static struct type *desc_data_target_type (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_data (struct value *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 92
d2e4a39e 93static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 94
d2e4a39e 95static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 100
d2e4a39e 101static struct type *desc_index_type (struct type *, int);
14f9c5c9 102
d2e4a39e 103static int desc_arity (struct type *);
14f9c5c9 104
d2e4a39e 105static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 106
d2e4a39e 107static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 108
40658b94
PH
109static int full_match (const char *, const char *);
110
40bc484c 111static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 112
4c4b4cd2 113static void ada_add_block_symbols (struct obstack *,
76a01679 114 struct block *, const char *,
2570f2b7 115 domain_enum, struct objfile *, int);
14f9c5c9 116
4c4b4cd2 117static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 118
76a01679 119static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 120 struct block *);
14f9c5c9 121
4c4b4cd2
PH
122static int num_defns_collected (struct obstack *);
123
124static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 125
4c4b4cd2 126static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 127 struct type *);
14f9c5c9 128
d2e4a39e 129static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 130 struct symbol *, struct block *);
14f9c5c9 131
d2e4a39e 132static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 133
4c4b4cd2
PH
134static char *ada_op_name (enum exp_opcode);
135
136static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 137
d2e4a39e 138static int numeric_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int integer_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int scalar_type_p (struct type *);
14f9c5c9 143
d2e4a39e 144static int discrete_type_p (struct type *);
14f9c5c9 145
aeb5907d
JB
146static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
4c4b4cd2 154static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 155 int, int, int *);
4c4b4cd2 156
d2e4a39e 157static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 158
b4ba55a1
JB
159static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
d2e4a39e 162static int is_dynamic_field (struct type *, int);
14f9c5c9 163
10a2c479 164static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 165 const gdb_byte *,
4c4b4cd2
PH
166 CORE_ADDR, struct value *);
167
168static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 169
28c85d6c 170static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 171
d2e4a39e 172static struct type *to_static_fixed_type (struct type *);
f192137b 173static struct type *static_unwrap_type (struct type *type);
14f9c5c9 174
d2e4a39e 175static struct value *unwrap_value (struct value *);
14f9c5c9 176
ad82864c 177static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 178
ad82864c 179static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 180
ad82864c
JB
181static long decode_packed_array_bitsize (struct type *);
182
183static struct value *decode_constrained_packed_array (struct value *);
184
185static int ada_is_packed_array_type (struct type *);
186
187static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 188
d2e4a39e 189static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 190 struct value **);
14f9c5c9 191
50810684 192static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 193
4c4b4cd2
PH
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
14f9c5c9 196
d2e4a39e 197static struct value *get_var_value (char *, char *);
14f9c5c9 198
d2e4a39e 199static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 200
d2e4a39e 201static int equiv_types (struct type *, struct type *);
14f9c5c9 202
d2e4a39e 203static int is_name_suffix (const char *);
14f9c5c9 204
73589123
PH
205static int advance_wild_match (const char **, const char *, int);
206
207static int wild_match (const char *, const char *);
14f9c5c9 208
d2e4a39e 209static struct value *ada_coerce_ref (struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static LONGEST pos_atr (struct value *);
212
3cb382c9 213static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 214
d2e4a39e 215static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 216
4c4b4cd2
PH
217static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
14f9c5c9 219
4c4b4cd2
PH
220static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
0d5cff50 226static int find_struct_field (const char *, struct type *, int,
52ce6436 227 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
228
229static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
4c4b4cd2
PH
232static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
4c4b4cd2
PH
236static int ada_is_direct_array_type (struct type *);
237
72d5681a
PH
238static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
714e53ab
PH
240
241static void check_size (const struct type *);
52ce6436
PH
242
243static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
247 struct expression *,
248 int *, enum noside);
52ce6436
PH
249
250static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
852dff6c
JB
274
275static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
276\f
277
76a01679 278
4c4b4cd2 279/* Maximum-sized dynamic type. */
14f9c5c9
AS
280static unsigned int varsize_limit;
281
4c4b4cd2
PH
282/* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284static char *ada_completer_word_break_characters =
285#ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287#else
14f9c5c9 288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 289#endif
14f9c5c9 290
4c4b4cd2 291/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 292static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 293 = "__gnat_ada_main_program_name";
14f9c5c9 294
4c4b4cd2
PH
295/* Limit on the number of warnings to raise per expression evaluation. */
296static int warning_limit = 2;
297
298/* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300static int warnings_issued = 0;
301
302static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304};
305
306static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308};
309
310/* Space for allocating results of ada_lookup_symbol_list. */
311static struct obstack symbol_list_obstack;
312
e802dbe0
JB
313 /* Inferior-specific data. */
314
315/* Per-inferior data for this module. */
316
317struct ada_inferior_data
318{
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
3eecfa55
JB
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
e802dbe0
JB
329};
330
331/* Our key to this module's inferior data. */
332static const struct inferior_data *ada_inferior_data;
333
334/* A cleanup routine for our inferior data. */
335static void
336ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337{
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343}
344
345/* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353static struct ada_inferior_data *
354get_ada_inferior_data (struct inferior *inf)
355{
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366}
367
368/* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371static void
372ada_inferior_exit (struct inferior *inf)
373{
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376}
377
4c4b4cd2
PH
378 /* Utilities */
379
720d1a40 380/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 381 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407static struct type *
408ada_typedef_target_type (struct type *type)
409{
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413}
414
41d27058
JB
415/* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419static const char *
420ada_unqualified_name (const char *decoded_name)
421{
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430}
431
432/* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435static char *
436add_angle_brackets (const char *str)
437{
438 static char *result = NULL;
439
440 xfree (result);
88c15c34 441 result = xstrprintf ("<%s>", str);
41d27058
JB
442 return result;
443}
96d887e8 444
4c4b4cd2
PH
445static char *
446ada_get_gdb_completer_word_break_characters (void)
447{
448 return ada_completer_word_break_characters;
449}
450
e79af960
JB
451/* Print an array element index using the Ada syntax. */
452
453static void
454ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 455 const struct value_print_options *options)
e79af960 456{
79a45b7d 457 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
458 fprintf_filtered (stream, " => ");
459}
460
f27cf670 461/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 463 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 464
f27cf670
AS
465void *
466grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 467{
d2e4a39e
AS
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
4c4b4cd2 472 *size = min_size;
f27cf670 473 vect = xrealloc (vect, *size * element_size);
d2e4a39e 474 }
f27cf670 475 return vect;
14f9c5c9
AS
476}
477
478/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 479 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
480
481static int
ebf56fd3 482field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
483{
484 int len = strlen (target);
5b4ee69b 485
d2e4a39e 486 return
4c4b4cd2
PH
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
14f9c5c9
AS
492}
493
494
872c8b51
JB
495/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
502
503int
504ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506{
507 int fieldno;
872c8b51
JB
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
512 return fieldno;
513
514 if (!maybe_missing)
323e0a4a 515 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 516 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
517
518 return -1;
519}
520
521/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
522
523int
d2e4a39e 524ada_name_prefix_len (const char *name)
14f9c5c9
AS
525{
526 if (name == NULL)
527 return 0;
d2e4a39e 528 else
14f9c5c9 529 {
d2e4a39e 530 const char *p = strstr (name, "___");
5b4ee69b 531
14f9c5c9 532 if (p == NULL)
4c4b4cd2 533 return strlen (name);
14f9c5c9 534 else
4c4b4cd2 535 return p - name;
14f9c5c9
AS
536 }
537}
538
4c4b4cd2
PH
539/* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
14f9c5c9 542static int
d2e4a39e 543is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
544{
545 int len1, len2;
5b4ee69b 546
14f9c5c9
AS
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
4c4b4cd2 551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
552}
553
4c4b4cd2
PH
554/* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
14f9c5c9 556
d2e4a39e 557static struct value *
4c4b4cd2 558coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 559{
61ee279c 560 type = ada_check_typedef (type);
df407dfe 561 if (value_type (val) == type)
4c4b4cd2 562 return val;
d2e4a39e 563 else
14f9c5c9 564 {
4c4b4cd2
PH
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
714e53ab 569 check_size (type);
4c4b4cd2 570
41e8491f
JK
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
74bcbdf3 580 set_value_component_location (result, val);
9bbda503
AC
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
42ae5230 583 set_value_address (result, value_address (val));
14f9c5c9
AS
584 return result;
585 }
586}
587
fc1a4b47
AC
588static const gdb_byte *
589cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
590{
591 if (valaddr == NULL)
592 return NULL;
593 else
594 return valaddr + offset;
595}
596
597static CORE_ADDR
ebf56fd3 598cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
599{
600 if (address == 0)
601 return 0;
d2e4a39e 602 else
14f9c5c9
AS
603 return address + offset;
604}
605
4c4b4cd2
PH
606/* Issue a warning (as for the definition of warning in utils.c, but
607 with exactly one argument rather than ...), unless the limit on the
608 number of warnings has passed during the evaluation of the current
609 expression. */
a2249542 610
77109804
AC
611/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
612 provided by "complaint". */
a0b31db1 613static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 614
14f9c5c9 615static void
a2249542 616lim_warning (const char *format, ...)
14f9c5c9 617{
a2249542 618 va_list args;
a2249542 619
5b4ee69b 620 va_start (args, format);
4c4b4cd2
PH
621 warnings_issued += 1;
622 if (warnings_issued <= warning_limit)
a2249542
MK
623 vwarning (format, args);
624
625 va_end (args);
4c4b4cd2
PH
626}
627
714e53ab
PH
628/* Issue an error if the size of an object of type T is unreasonable,
629 i.e. if it would be a bad idea to allocate a value of this type in
630 GDB. */
631
632static void
633check_size (const struct type *type)
634{
635 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 636 error (_("object size is larger than varsize-limit"));
714e53ab
PH
637}
638
0963b4bd 639/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 640static LONGEST
c3e5cd34 641max_of_size (int size)
4c4b4cd2 642{
76a01679 643 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 644
76a01679 645 return top_bit | (top_bit - 1);
4c4b4cd2
PH
646}
647
0963b4bd 648/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 649static LONGEST
c3e5cd34 650min_of_size (int size)
4c4b4cd2 651{
c3e5cd34 652 return -max_of_size (size) - 1;
4c4b4cd2
PH
653}
654
0963b4bd 655/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 656static ULONGEST
c3e5cd34 657umax_of_size (int size)
4c4b4cd2 658{
76a01679 659 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 660
76a01679 661 return top_bit | (top_bit - 1);
4c4b4cd2
PH
662}
663
0963b4bd 664/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
665static LONGEST
666max_of_type (struct type *t)
4c4b4cd2 667{
c3e5cd34
PH
668 if (TYPE_UNSIGNED (t))
669 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
670 else
671 return max_of_size (TYPE_LENGTH (t));
672}
673
0963b4bd 674/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
675static LONGEST
676min_of_type (struct type *t)
677{
678 if (TYPE_UNSIGNED (t))
679 return 0;
680 else
681 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
682}
683
684/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
685LONGEST
686ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 687{
76a01679 688 switch (TYPE_CODE (type))
4c4b4cd2
PH
689 {
690 case TYPE_CODE_RANGE:
690cc4eb 691 return TYPE_HIGH_BOUND (type);
4c4b4cd2 692 case TYPE_CODE_ENUM:
690cc4eb
PH
693 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
694 case TYPE_CODE_BOOL:
695 return 1;
696 case TYPE_CODE_CHAR:
76a01679 697 case TYPE_CODE_INT:
690cc4eb 698 return max_of_type (type);
4c4b4cd2 699 default:
43bbcdc2 700 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
701 }
702}
703
704/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
705LONGEST
706ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 707{
76a01679 708 switch (TYPE_CODE (type))
4c4b4cd2
PH
709 {
710 case TYPE_CODE_RANGE:
690cc4eb 711 return TYPE_LOW_BOUND (type);
4c4b4cd2 712 case TYPE_CODE_ENUM:
690cc4eb
PH
713 return TYPE_FIELD_BITPOS (type, 0);
714 case TYPE_CODE_BOOL:
715 return 0;
716 case TYPE_CODE_CHAR:
76a01679 717 case TYPE_CODE_INT:
690cc4eb 718 return min_of_type (type);
4c4b4cd2 719 default:
43bbcdc2 720 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
721 }
722}
723
724/* The identity on non-range types. For range types, the underlying
76a01679 725 non-range scalar type. */
4c4b4cd2
PH
726
727static struct type *
18af8284 728get_base_type (struct type *type)
4c4b4cd2
PH
729{
730 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
731 {
76a01679
JB
732 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
733 return type;
4c4b4cd2
PH
734 type = TYPE_TARGET_TYPE (type);
735 }
736 return type;
14f9c5c9 737}
41246937
JB
738
739/* Return a decoded version of the given VALUE. This means returning
740 a value whose type is obtained by applying all the GNAT-specific
741 encondings, making the resulting type a static but standard description
742 of the initial type. */
743
744struct value *
745ada_get_decoded_value (struct value *value)
746{
747 struct type *type = ada_check_typedef (value_type (value));
748
749 if (ada_is_array_descriptor_type (type)
750 || (ada_is_constrained_packed_array_type (type)
751 && TYPE_CODE (type) != TYPE_CODE_PTR))
752 {
753 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
754 value = ada_coerce_to_simple_array_ptr (value);
755 else
756 value = ada_coerce_to_simple_array (value);
757 }
758 else
759 value = ada_to_fixed_value (value);
760
761 return value;
762}
763
764/* Same as ada_get_decoded_value, but with the given TYPE.
765 Because there is no associated actual value for this type,
766 the resulting type might be a best-effort approximation in
767 the case of dynamic types. */
768
769struct type *
770ada_get_decoded_type (struct type *type)
771{
772 type = to_static_fixed_type (type);
773 if (ada_is_constrained_packed_array_type (type))
774 type = ada_coerce_to_simple_array_type (type);
775 return type;
776}
777
4c4b4cd2 778\f
76a01679 779
4c4b4cd2 780 /* Language Selection */
14f9c5c9
AS
781
782/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 783 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 784
14f9c5c9 785enum language
ccefe4c4 786ada_update_initial_language (enum language lang)
14f9c5c9 787{
d2e4a39e 788 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
789 (struct objfile *) NULL) != NULL)
790 return language_ada;
14f9c5c9
AS
791
792 return lang;
793}
96d887e8
PH
794
795/* If the main procedure is written in Ada, then return its name.
796 The result is good until the next call. Return NULL if the main
797 procedure doesn't appear to be in Ada. */
798
799char *
800ada_main_name (void)
801{
802 struct minimal_symbol *msym;
f9bc20b9 803 static char *main_program_name = NULL;
6c038f32 804
96d887e8
PH
805 /* For Ada, the name of the main procedure is stored in a specific
806 string constant, generated by the binder. Look for that symbol,
807 extract its address, and then read that string. If we didn't find
808 that string, then most probably the main procedure is not written
809 in Ada. */
810 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
811
812 if (msym != NULL)
813 {
f9bc20b9
JB
814 CORE_ADDR main_program_name_addr;
815 int err_code;
816
96d887e8
PH
817 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
818 if (main_program_name_addr == 0)
323e0a4a 819 error (_("Invalid address for Ada main program name."));
96d887e8 820
f9bc20b9
JB
821 xfree (main_program_name);
822 target_read_string (main_program_name_addr, &main_program_name,
823 1024, &err_code);
824
825 if (err_code != 0)
826 return NULL;
96d887e8
PH
827 return main_program_name;
828 }
829
830 /* The main procedure doesn't seem to be in Ada. */
831 return NULL;
832}
14f9c5c9 833\f
4c4b4cd2 834 /* Symbols */
d2e4a39e 835
4c4b4cd2
PH
836/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
837 of NULLs. */
14f9c5c9 838
d2e4a39e
AS
839const struct ada_opname_map ada_opname_table[] = {
840 {"Oadd", "\"+\"", BINOP_ADD},
841 {"Osubtract", "\"-\"", BINOP_SUB},
842 {"Omultiply", "\"*\"", BINOP_MUL},
843 {"Odivide", "\"/\"", BINOP_DIV},
844 {"Omod", "\"mod\"", BINOP_MOD},
845 {"Orem", "\"rem\"", BINOP_REM},
846 {"Oexpon", "\"**\"", BINOP_EXP},
847 {"Olt", "\"<\"", BINOP_LESS},
848 {"Ole", "\"<=\"", BINOP_LEQ},
849 {"Ogt", "\">\"", BINOP_GTR},
850 {"Oge", "\">=\"", BINOP_GEQ},
851 {"Oeq", "\"=\"", BINOP_EQUAL},
852 {"One", "\"/=\"", BINOP_NOTEQUAL},
853 {"Oand", "\"and\"", BINOP_BITWISE_AND},
854 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
855 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
856 {"Oconcat", "\"&\"", BINOP_CONCAT},
857 {"Oabs", "\"abs\"", UNOP_ABS},
858 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
859 {"Oadd", "\"+\"", UNOP_PLUS},
860 {"Osubtract", "\"-\"", UNOP_NEG},
861 {NULL, NULL}
14f9c5c9
AS
862};
863
4c4b4cd2
PH
864/* The "encoded" form of DECODED, according to GNAT conventions.
865 The result is valid until the next call to ada_encode. */
866
14f9c5c9 867char *
4c4b4cd2 868ada_encode (const char *decoded)
14f9c5c9 869{
4c4b4cd2
PH
870 static char *encoding_buffer = NULL;
871 static size_t encoding_buffer_size = 0;
d2e4a39e 872 const char *p;
14f9c5c9 873 int k;
d2e4a39e 874
4c4b4cd2 875 if (decoded == NULL)
14f9c5c9
AS
876 return NULL;
877
4c4b4cd2
PH
878 GROW_VECT (encoding_buffer, encoding_buffer_size,
879 2 * strlen (decoded) + 10);
14f9c5c9
AS
880
881 k = 0;
4c4b4cd2 882 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 883 {
cdc7bb92 884 if (*p == '.')
4c4b4cd2
PH
885 {
886 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
887 k += 2;
888 }
14f9c5c9 889 else if (*p == '"')
4c4b4cd2
PH
890 {
891 const struct ada_opname_map *mapping;
892
893 for (mapping = ada_opname_table;
1265e4aa
JB
894 mapping->encoded != NULL
895 && strncmp (mapping->decoded, p,
896 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
897 ;
898 if (mapping->encoded == NULL)
323e0a4a 899 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
900 strcpy (encoding_buffer + k, mapping->encoded);
901 k += strlen (mapping->encoded);
902 break;
903 }
d2e4a39e 904 else
4c4b4cd2
PH
905 {
906 encoding_buffer[k] = *p;
907 k += 1;
908 }
14f9c5c9
AS
909 }
910
4c4b4cd2
PH
911 encoding_buffer[k] = '\0';
912 return encoding_buffer;
14f9c5c9
AS
913}
914
915/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
916 quotes, unfolded, but with the quotes stripped away. Result good
917 to next call. */
918
d2e4a39e
AS
919char *
920ada_fold_name (const char *name)
14f9c5c9 921{
d2e4a39e 922 static char *fold_buffer = NULL;
14f9c5c9
AS
923 static size_t fold_buffer_size = 0;
924
925 int len = strlen (name);
d2e4a39e 926 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
927
928 if (name[0] == '\'')
929 {
d2e4a39e
AS
930 strncpy (fold_buffer, name + 1, len - 2);
931 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
932 }
933 else
934 {
935 int i;
5b4ee69b 936
14f9c5c9 937 for (i = 0; i <= len; i += 1)
4c4b4cd2 938 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
939 }
940
941 return fold_buffer;
942}
943
529cad9c
PH
944/* Return nonzero if C is either a digit or a lowercase alphabet character. */
945
946static int
947is_lower_alphanum (const char c)
948{
949 return (isdigit (c) || (isalpha (c) && islower (c)));
950}
951
c90092fe
JB
952/* ENCODED is the linkage name of a symbol and LEN contains its length.
953 This function saves in LEN the length of that same symbol name but
954 without either of these suffixes:
29480c32
JB
955 . .{DIGIT}+
956 . ${DIGIT}+
957 . ___{DIGIT}+
958 . __{DIGIT}+.
c90092fe 959
29480c32
JB
960 These are suffixes introduced by the compiler for entities such as
961 nested subprogram for instance, in order to avoid name clashes.
962 They do not serve any purpose for the debugger. */
963
964static void
965ada_remove_trailing_digits (const char *encoded, int *len)
966{
967 if (*len > 1 && isdigit (encoded[*len - 1]))
968 {
969 int i = *len - 2;
5b4ee69b 970
29480c32
JB
971 while (i > 0 && isdigit (encoded[i]))
972 i--;
973 if (i >= 0 && encoded[i] == '.')
974 *len = i;
975 else if (i >= 0 && encoded[i] == '$')
976 *len = i;
977 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
978 *len = i - 2;
979 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
980 *len = i - 1;
981 }
982}
983
984/* Remove the suffix introduced by the compiler for protected object
985 subprograms. */
986
987static void
988ada_remove_po_subprogram_suffix (const char *encoded, int *len)
989{
990 /* Remove trailing N. */
991
992 /* Protected entry subprograms are broken into two
993 separate subprograms: The first one is unprotected, and has
994 a 'N' suffix; the second is the protected version, and has
0963b4bd 995 the 'P' suffix. The second calls the first one after handling
29480c32
JB
996 the protection. Since the P subprograms are internally generated,
997 we leave these names undecoded, giving the user a clue that this
998 entity is internal. */
999
1000 if (*len > 1
1001 && encoded[*len - 1] == 'N'
1002 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1003 *len = *len - 1;
1004}
1005
69fadcdf
JB
1006/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1007
1008static void
1009ada_remove_Xbn_suffix (const char *encoded, int *len)
1010{
1011 int i = *len - 1;
1012
1013 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1014 i--;
1015
1016 if (encoded[i] != 'X')
1017 return;
1018
1019 if (i == 0)
1020 return;
1021
1022 if (isalnum (encoded[i-1]))
1023 *len = i;
1024}
1025
29480c32
JB
1026/* If ENCODED follows the GNAT entity encoding conventions, then return
1027 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1028 replaced by ENCODED.
14f9c5c9 1029
4c4b4cd2 1030 The resulting string is valid until the next call of ada_decode.
29480c32 1031 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1032 is returned. */
1033
1034const char *
1035ada_decode (const char *encoded)
14f9c5c9
AS
1036{
1037 int i, j;
1038 int len0;
d2e4a39e 1039 const char *p;
4c4b4cd2 1040 char *decoded;
14f9c5c9 1041 int at_start_name;
4c4b4cd2
PH
1042 static char *decoding_buffer = NULL;
1043 static size_t decoding_buffer_size = 0;
d2e4a39e 1044
29480c32
JB
1045 /* The name of the Ada main procedure starts with "_ada_".
1046 This prefix is not part of the decoded name, so skip this part
1047 if we see this prefix. */
4c4b4cd2
PH
1048 if (strncmp (encoded, "_ada_", 5) == 0)
1049 encoded += 5;
14f9c5c9 1050
29480c32
JB
1051 /* If the name starts with '_', then it is not a properly encoded
1052 name, so do not attempt to decode it. Similarly, if the name
1053 starts with '<', the name should not be decoded. */
4c4b4cd2 1054 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1055 goto Suppress;
1056
4c4b4cd2 1057 len0 = strlen (encoded);
4c4b4cd2 1058
29480c32
JB
1059 ada_remove_trailing_digits (encoded, &len0);
1060 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1061
4c4b4cd2
PH
1062 /* Remove the ___X.* suffix if present. Do not forget to verify that
1063 the suffix is located before the current "end" of ENCODED. We want
1064 to avoid re-matching parts of ENCODED that have previously been
1065 marked as discarded (by decrementing LEN0). */
1066 p = strstr (encoded, "___");
1067 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1068 {
1069 if (p[3] == 'X')
4c4b4cd2 1070 len0 = p - encoded;
14f9c5c9 1071 else
4c4b4cd2 1072 goto Suppress;
14f9c5c9 1073 }
4c4b4cd2 1074
29480c32
JB
1075 /* Remove any trailing TKB suffix. It tells us that this symbol
1076 is for the body of a task, but that information does not actually
1077 appear in the decoded name. */
1078
4c4b4cd2 1079 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1080 len0 -= 3;
76a01679 1081
a10967fa
JB
1082 /* Remove any trailing TB suffix. The TB suffix is slightly different
1083 from the TKB suffix because it is used for non-anonymous task
1084 bodies. */
1085
1086 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1087 len0 -= 2;
1088
29480c32
JB
1089 /* Remove trailing "B" suffixes. */
1090 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1091
4c4b4cd2 1092 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1093 len0 -= 1;
1094
4c4b4cd2 1095 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1096
4c4b4cd2
PH
1097 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1098 decoded = decoding_buffer;
14f9c5c9 1099
29480c32
JB
1100 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1101
4c4b4cd2 1102 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1103 {
4c4b4cd2
PH
1104 i = len0 - 2;
1105 while ((i >= 0 && isdigit (encoded[i]))
1106 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1107 i -= 1;
1108 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1109 len0 = i - 1;
1110 else if (encoded[i] == '$')
1111 len0 = i;
d2e4a39e 1112 }
14f9c5c9 1113
29480c32
JB
1114 /* The first few characters that are not alphabetic are not part
1115 of any encoding we use, so we can copy them over verbatim. */
1116
4c4b4cd2
PH
1117 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1118 decoded[j] = encoded[i];
14f9c5c9
AS
1119
1120 at_start_name = 1;
1121 while (i < len0)
1122 {
29480c32 1123 /* Is this a symbol function? */
4c4b4cd2
PH
1124 if (at_start_name && encoded[i] == 'O')
1125 {
1126 int k;
5b4ee69b 1127
4c4b4cd2
PH
1128 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1129 {
1130 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1131 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1132 op_len - 1) == 0)
1133 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1134 {
1135 strcpy (decoded + j, ada_opname_table[k].decoded);
1136 at_start_name = 0;
1137 i += op_len;
1138 j += strlen (ada_opname_table[k].decoded);
1139 break;
1140 }
1141 }
1142 if (ada_opname_table[k].encoded != NULL)
1143 continue;
1144 }
14f9c5c9
AS
1145 at_start_name = 0;
1146
529cad9c
PH
1147 /* Replace "TK__" with "__", which will eventually be translated
1148 into "." (just below). */
1149
4c4b4cd2
PH
1150 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1151 i += 2;
529cad9c 1152
29480c32
JB
1153 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1154 be translated into "." (just below). These are internal names
1155 generated for anonymous blocks inside which our symbol is nested. */
1156
1157 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1158 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1159 && isdigit (encoded [i+4]))
1160 {
1161 int k = i + 5;
1162
1163 while (k < len0 && isdigit (encoded[k]))
1164 k++; /* Skip any extra digit. */
1165
1166 /* Double-check that the "__B_{DIGITS}+" sequence we found
1167 is indeed followed by "__". */
1168 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1169 i = k;
1170 }
1171
529cad9c
PH
1172 /* Remove _E{DIGITS}+[sb] */
1173
1174 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1175 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1176 one implements the actual entry code, and has a suffix following
1177 the convention above; the second one implements the barrier and
1178 uses the same convention as above, except that the 'E' is replaced
1179 by a 'B'.
1180
1181 Just as above, we do not decode the name of barrier functions
1182 to give the user a clue that the code he is debugging has been
1183 internally generated. */
1184
1185 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1186 && isdigit (encoded[i+2]))
1187 {
1188 int k = i + 3;
1189
1190 while (k < len0 && isdigit (encoded[k]))
1191 k++;
1192
1193 if (k < len0
1194 && (encoded[k] == 'b' || encoded[k] == 's'))
1195 {
1196 k++;
1197 /* Just as an extra precaution, make sure that if this
1198 suffix is followed by anything else, it is a '_'.
1199 Otherwise, we matched this sequence by accident. */
1200 if (k == len0
1201 || (k < len0 && encoded[k] == '_'))
1202 i = k;
1203 }
1204 }
1205
1206 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1207 the GNAT front-end in protected object subprograms. */
1208
1209 if (i < len0 + 3
1210 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1211 {
1212 /* Backtrack a bit up until we reach either the begining of
1213 the encoded name, or "__". Make sure that we only find
1214 digits or lowercase characters. */
1215 const char *ptr = encoded + i - 1;
1216
1217 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1218 ptr--;
1219 if (ptr < encoded
1220 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1221 i++;
1222 }
1223
4c4b4cd2
PH
1224 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1225 {
29480c32
JB
1226 /* This is a X[bn]* sequence not separated from the previous
1227 part of the name with a non-alpha-numeric character (in other
1228 words, immediately following an alpha-numeric character), then
1229 verify that it is placed at the end of the encoded name. If
1230 not, then the encoding is not valid and we should abort the
1231 decoding. Otherwise, just skip it, it is used in body-nested
1232 package names. */
4c4b4cd2
PH
1233 do
1234 i += 1;
1235 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1236 if (i < len0)
1237 goto Suppress;
1238 }
cdc7bb92 1239 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1240 {
29480c32 1241 /* Replace '__' by '.'. */
4c4b4cd2
PH
1242 decoded[j] = '.';
1243 at_start_name = 1;
1244 i += 2;
1245 j += 1;
1246 }
14f9c5c9 1247 else
4c4b4cd2 1248 {
29480c32
JB
1249 /* It's a character part of the decoded name, so just copy it
1250 over. */
4c4b4cd2
PH
1251 decoded[j] = encoded[i];
1252 i += 1;
1253 j += 1;
1254 }
14f9c5c9 1255 }
4c4b4cd2 1256 decoded[j] = '\000';
14f9c5c9 1257
29480c32
JB
1258 /* Decoded names should never contain any uppercase character.
1259 Double-check this, and abort the decoding if we find one. */
1260
4c4b4cd2
PH
1261 for (i = 0; decoded[i] != '\0'; i += 1)
1262 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1263 goto Suppress;
1264
4c4b4cd2
PH
1265 if (strcmp (decoded, encoded) == 0)
1266 return encoded;
1267 else
1268 return decoded;
14f9c5c9
AS
1269
1270Suppress:
4c4b4cd2
PH
1271 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1272 decoded = decoding_buffer;
1273 if (encoded[0] == '<')
1274 strcpy (decoded, encoded);
14f9c5c9 1275 else
88c15c34 1276 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1277 return decoded;
1278
1279}
1280
1281/* Table for keeping permanent unique copies of decoded names. Once
1282 allocated, names in this table are never released. While this is a
1283 storage leak, it should not be significant unless there are massive
1284 changes in the set of decoded names in successive versions of a
1285 symbol table loaded during a single session. */
1286static struct htab *decoded_names_store;
1287
1288/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1289 in the language-specific part of GSYMBOL, if it has not been
1290 previously computed. Tries to save the decoded name in the same
1291 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1292 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1293 GSYMBOL).
4c4b4cd2
PH
1294 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1295 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1296 when a decoded name is cached in it. */
4c4b4cd2 1297
76a01679
JB
1298char *
1299ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1300{
76a01679 1301 char **resultp =
afa16725 1302 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1303
4c4b4cd2
PH
1304 if (*resultp == NULL)
1305 {
1306 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1307
714835d5 1308 if (gsymbol->obj_section != NULL)
76a01679 1309 {
714835d5 1310 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1311
714835d5
UW
1312 *resultp = obsavestring (decoded, strlen (decoded),
1313 &objf->objfile_obstack);
76a01679 1314 }
4c4b4cd2 1315 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1316 case, we put the result on the heap. Since we only decode
1317 when needed, we hope this usually does not cause a
1318 significant memory leak (FIXME). */
4c4b4cd2 1319 if (*resultp == NULL)
76a01679
JB
1320 {
1321 char **slot = (char **) htab_find_slot (decoded_names_store,
1322 decoded, INSERT);
5b4ee69b 1323
76a01679
JB
1324 if (*slot == NULL)
1325 *slot = xstrdup (decoded);
1326 *resultp = *slot;
1327 }
4c4b4cd2 1328 }
14f9c5c9 1329
4c4b4cd2
PH
1330 return *resultp;
1331}
76a01679 1332
2c0b251b 1333static char *
76a01679 1334ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1335{
1336 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1337}
1338
1339/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1340 suffixes that encode debugging information or leading _ada_ on
1341 SYM_NAME (see is_name_suffix commentary for the debugging
1342 information that is ignored). If WILD, then NAME need only match a
1343 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1344 either argument is NULL. */
14f9c5c9 1345
2c0b251b 1346static int
40658b94 1347match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1348{
1349 if (sym_name == NULL || name == NULL)
1350 return 0;
1351 else if (wild)
73589123 1352 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1353 else
1354 {
1355 int len_name = strlen (name);
5b4ee69b 1356
4c4b4cd2
PH
1357 return (strncmp (sym_name, name, len_name) == 0
1358 && is_name_suffix (sym_name + len_name))
1359 || (strncmp (sym_name, "_ada_", 5) == 0
1360 && strncmp (sym_name + 5, name, len_name) == 0
1361 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1362 }
14f9c5c9 1363}
14f9c5c9 1364\f
d2e4a39e 1365
4c4b4cd2 1366 /* Arrays */
14f9c5c9 1367
28c85d6c
JB
1368/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
1375 The GNAT encoding used to describle the array index type evolved a bit.
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391void
1392ada_fixup_array_indexes_type (struct type *index_desc_type)
1393{
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1398 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
1407 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1408 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1413 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1414 {
0d5cff50 1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
1419 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1420 }
1421}
1422
4c4b4cd2 1423/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1424
d2e4a39e
AS
1425static char *bound_name[] = {
1426 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1427 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1428};
1429
1430/* Maximum number of array dimensions we are prepared to handle. */
1431
4c4b4cd2 1432#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1433
14f9c5c9 1434
4c4b4cd2
PH
1435/* The desc_* routines return primitive portions of array descriptors
1436 (fat pointers). */
14f9c5c9
AS
1437
1438/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1439 level of indirection, if needed. */
1440
d2e4a39e
AS
1441static struct type *
1442desc_base_type (struct type *type)
14f9c5c9
AS
1443{
1444 if (type == NULL)
1445 return NULL;
61ee279c 1446 type = ada_check_typedef (type);
720d1a40
JB
1447 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1448 type = ada_typedef_target_type (type);
1449
1265e4aa
JB
1450 if (type != NULL
1451 && (TYPE_CODE (type) == TYPE_CODE_PTR
1452 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1453 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1454 else
1455 return type;
1456}
1457
4c4b4cd2
PH
1458/* True iff TYPE indicates a "thin" array pointer type. */
1459
14f9c5c9 1460static int
d2e4a39e 1461is_thin_pntr (struct type *type)
14f9c5c9 1462{
d2e4a39e 1463 return
14f9c5c9
AS
1464 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1465 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1466}
1467
4c4b4cd2
PH
1468/* The descriptor type for thin pointer type TYPE. */
1469
d2e4a39e
AS
1470static struct type *
1471thin_descriptor_type (struct type *type)
14f9c5c9 1472{
d2e4a39e 1473 struct type *base_type = desc_base_type (type);
5b4ee69b 1474
14f9c5c9
AS
1475 if (base_type == NULL)
1476 return NULL;
1477 if (is_suffix (ada_type_name (base_type), "___XVE"))
1478 return base_type;
d2e4a39e 1479 else
14f9c5c9 1480 {
d2e4a39e 1481 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1482
14f9c5c9 1483 if (alt_type == NULL)
4c4b4cd2 1484 return base_type;
14f9c5c9 1485 else
4c4b4cd2 1486 return alt_type;
14f9c5c9
AS
1487 }
1488}
1489
4c4b4cd2
PH
1490/* A pointer to the array data for thin-pointer value VAL. */
1491
d2e4a39e
AS
1492static struct value *
1493thin_data_pntr (struct value *val)
14f9c5c9 1494{
828292f2 1495 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1496 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1497
556bdfd4
UW
1498 data_type = lookup_pointer_type (data_type);
1499
14f9c5c9 1500 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1501 return value_cast (data_type, value_copy (val));
d2e4a39e 1502 else
42ae5230 1503 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1504}
1505
4c4b4cd2
PH
1506/* True iff TYPE indicates a "thick" array pointer type. */
1507
14f9c5c9 1508static int
d2e4a39e 1509is_thick_pntr (struct type *type)
14f9c5c9
AS
1510{
1511 type = desc_base_type (type);
1512 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1513 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1514}
1515
4c4b4cd2
PH
1516/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1517 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1518
d2e4a39e
AS
1519static struct type *
1520desc_bounds_type (struct type *type)
14f9c5c9 1521{
d2e4a39e 1522 struct type *r;
14f9c5c9
AS
1523
1524 type = desc_base_type (type);
1525
1526 if (type == NULL)
1527 return NULL;
1528 else if (is_thin_pntr (type))
1529 {
1530 type = thin_descriptor_type (type);
1531 if (type == NULL)
4c4b4cd2 1532 return NULL;
14f9c5c9
AS
1533 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1534 if (r != NULL)
61ee279c 1535 return ada_check_typedef (r);
14f9c5c9
AS
1536 }
1537 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1538 {
1539 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1540 if (r != NULL)
61ee279c 1541 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1542 }
1543 return NULL;
1544}
1545
1546/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1547 one, a pointer to its bounds data. Otherwise NULL. */
1548
d2e4a39e
AS
1549static struct value *
1550desc_bounds (struct value *arr)
14f9c5c9 1551{
df407dfe 1552 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1553
d2e4a39e 1554 if (is_thin_pntr (type))
14f9c5c9 1555 {
d2e4a39e 1556 struct type *bounds_type =
4c4b4cd2 1557 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1558 LONGEST addr;
1559
4cdfadb1 1560 if (bounds_type == NULL)
323e0a4a 1561 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1562
1563 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1564 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1565 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1566 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1567 addr = value_as_long (arr);
d2e4a39e 1568 else
42ae5230 1569 addr = value_address (arr);
14f9c5c9 1570
d2e4a39e 1571 return
4c4b4cd2
PH
1572 value_from_longest (lookup_pointer_type (bounds_type),
1573 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1574 }
1575
1576 else if (is_thick_pntr (type))
05e522ef
JB
1577 {
1578 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1579 _("Bad GNAT array descriptor"));
1580 struct type *p_bounds_type = value_type (p_bounds);
1581
1582 if (p_bounds_type
1583 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1584 {
1585 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1586
1587 if (TYPE_STUB (target_type))
1588 p_bounds = value_cast (lookup_pointer_type
1589 (ada_check_typedef (target_type)),
1590 p_bounds);
1591 }
1592 else
1593 error (_("Bad GNAT array descriptor"));
1594
1595 return p_bounds;
1596 }
14f9c5c9
AS
1597 else
1598 return NULL;
1599}
1600
4c4b4cd2
PH
1601/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1602 position of the field containing the address of the bounds data. */
1603
14f9c5c9 1604static int
d2e4a39e 1605fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1606{
1607 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1608}
1609
1610/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1611 size of the field containing the address of the bounds data. */
1612
14f9c5c9 1613static int
d2e4a39e 1614fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1615{
1616 type = desc_base_type (type);
1617
d2e4a39e 1618 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1619 return TYPE_FIELD_BITSIZE (type, 1);
1620 else
61ee279c 1621 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1622}
1623
4c4b4cd2 1624/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1625 pointer to one, the type of its array data (a array-with-no-bounds type);
1626 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1627 data. */
4c4b4cd2 1628
d2e4a39e 1629static struct type *
556bdfd4 1630desc_data_target_type (struct type *type)
14f9c5c9
AS
1631{
1632 type = desc_base_type (type);
1633
4c4b4cd2 1634 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1635 if (is_thin_pntr (type))
556bdfd4 1636 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1637 else if (is_thick_pntr (type))
556bdfd4
UW
1638 {
1639 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1640
1641 if (data_type
1642 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1643 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1644 }
1645
1646 return NULL;
14f9c5c9
AS
1647}
1648
1649/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1650 its array data. */
4c4b4cd2 1651
d2e4a39e
AS
1652static struct value *
1653desc_data (struct value *arr)
14f9c5c9 1654{
df407dfe 1655 struct type *type = value_type (arr);
5b4ee69b 1656
14f9c5c9
AS
1657 if (is_thin_pntr (type))
1658 return thin_data_pntr (arr);
1659 else if (is_thick_pntr (type))
d2e4a39e 1660 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1661 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1662 else
1663 return NULL;
1664}
1665
1666
1667/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1668 position of the field containing the address of the data. */
1669
14f9c5c9 1670static int
d2e4a39e 1671fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1672{
1673 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1674}
1675
1676/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1677 size of the field containing the address of the data. */
1678
14f9c5c9 1679static int
d2e4a39e 1680fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1681{
1682 type = desc_base_type (type);
1683
1684 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1685 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1686 else
14f9c5c9
AS
1687 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1688}
1689
4c4b4cd2 1690/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1691 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1692 bound, if WHICH is 1. The first bound is I=1. */
1693
d2e4a39e
AS
1694static struct value *
1695desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1696{
d2e4a39e 1697 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1698 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1699}
1700
1701/* If BOUNDS is an array-bounds structure type, return the bit position
1702 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1703 bound, if WHICH is 1. The first bound is I=1. */
1704
14f9c5c9 1705static int
d2e4a39e 1706desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1707{
d2e4a39e 1708 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1709}
1710
1711/* If BOUNDS is an array-bounds structure type, return the bit field size
1712 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1713 bound, if WHICH is 1. The first bound is I=1. */
1714
76a01679 1715static int
d2e4a39e 1716desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1717{
1718 type = desc_base_type (type);
1719
d2e4a39e
AS
1720 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1721 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1722 else
1723 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1724}
1725
1726/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1727 Ith bound (numbering from 1). Otherwise, NULL. */
1728
d2e4a39e
AS
1729static struct type *
1730desc_index_type (struct type *type, int i)
14f9c5c9
AS
1731{
1732 type = desc_base_type (type);
1733
1734 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1735 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1736 else
14f9c5c9
AS
1737 return NULL;
1738}
1739
4c4b4cd2
PH
1740/* The number of index positions in the array-bounds type TYPE.
1741 Return 0 if TYPE is NULL. */
1742
14f9c5c9 1743static int
d2e4a39e 1744desc_arity (struct type *type)
14f9c5c9
AS
1745{
1746 type = desc_base_type (type);
1747
1748 if (type != NULL)
1749 return TYPE_NFIELDS (type) / 2;
1750 return 0;
1751}
1752
4c4b4cd2
PH
1753/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1754 an array descriptor type (representing an unconstrained array
1755 type). */
1756
76a01679
JB
1757static int
1758ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1759{
1760 if (type == NULL)
1761 return 0;
61ee279c 1762 type = ada_check_typedef (type);
4c4b4cd2 1763 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1764 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1765}
1766
52ce6436 1767/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1768 * to one. */
52ce6436 1769
2c0b251b 1770static int
52ce6436
PH
1771ada_is_array_type (struct type *type)
1772{
1773 while (type != NULL
1774 && (TYPE_CODE (type) == TYPE_CODE_PTR
1775 || TYPE_CODE (type) == TYPE_CODE_REF))
1776 type = TYPE_TARGET_TYPE (type);
1777 return ada_is_direct_array_type (type);
1778}
1779
4c4b4cd2 1780/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1781
14f9c5c9 1782int
4c4b4cd2 1783ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1784{
1785 if (type == NULL)
1786 return 0;
61ee279c 1787 type = ada_check_typedef (type);
14f9c5c9 1788 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1789 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1790 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1791 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1792}
1793
4c4b4cd2
PH
1794/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1795
14f9c5c9 1796int
4c4b4cd2 1797ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1798{
556bdfd4 1799 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1800
1801 if (type == NULL)
1802 return 0;
61ee279c 1803 type = ada_check_typedef (type);
556bdfd4
UW
1804 return (data_type != NULL
1805 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1806 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1807}
1808
1809/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1810 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1811 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1812 is still needed. */
1813
14f9c5c9 1814int
ebf56fd3 1815ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1816{
d2e4a39e 1817 return
14f9c5c9
AS
1818 type != NULL
1819 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1820 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1821 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1822 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1823}
1824
1825
4c4b4cd2 1826/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1827 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1828 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1829 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1830 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1831 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1832 a descriptor. */
d2e4a39e
AS
1833struct type *
1834ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1835{
ad82864c
JB
1836 if (ada_is_constrained_packed_array_type (value_type (arr)))
1837 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1838
df407dfe
AC
1839 if (!ada_is_array_descriptor_type (value_type (arr)))
1840 return value_type (arr);
d2e4a39e
AS
1841
1842 if (!bounds)
ad82864c
JB
1843 {
1844 struct type *array_type =
1845 ada_check_typedef (desc_data_target_type (value_type (arr)));
1846
1847 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1848 TYPE_FIELD_BITSIZE (array_type, 0) =
1849 decode_packed_array_bitsize (value_type (arr));
1850
1851 return array_type;
1852 }
14f9c5c9
AS
1853 else
1854 {
d2e4a39e 1855 struct type *elt_type;
14f9c5c9 1856 int arity;
d2e4a39e 1857 struct value *descriptor;
14f9c5c9 1858
df407dfe
AC
1859 elt_type = ada_array_element_type (value_type (arr), -1);
1860 arity = ada_array_arity (value_type (arr));
14f9c5c9 1861
d2e4a39e 1862 if (elt_type == NULL || arity == 0)
df407dfe 1863 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1864
1865 descriptor = desc_bounds (arr);
d2e4a39e 1866 if (value_as_long (descriptor) == 0)
4c4b4cd2 1867 return NULL;
d2e4a39e 1868 while (arity > 0)
4c4b4cd2 1869 {
e9bb382b
UW
1870 struct type *range_type = alloc_type_copy (value_type (arr));
1871 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1872 struct value *low = desc_one_bound (descriptor, arity, 0);
1873 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1874
5b4ee69b 1875 arity -= 1;
df407dfe 1876 create_range_type (range_type, value_type (low),
529cad9c
PH
1877 longest_to_int (value_as_long (low)),
1878 longest_to_int (value_as_long (high)));
4c4b4cd2 1879 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1880
1881 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1882 {
1883 /* We need to store the element packed bitsize, as well as
1884 recompute the array size, because it was previously
1885 computed based on the unpacked element size. */
1886 LONGEST lo = value_as_long (low);
1887 LONGEST hi = value_as_long (high);
1888
1889 TYPE_FIELD_BITSIZE (elt_type, 0) =
1890 decode_packed_array_bitsize (value_type (arr));
1891 /* If the array has no element, then the size is already
1892 zero, and does not need to be recomputed. */
1893 if (lo < hi)
1894 {
1895 int array_bitsize =
1896 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1897
1898 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1899 }
1900 }
4c4b4cd2 1901 }
14f9c5c9
AS
1902
1903 return lookup_pointer_type (elt_type);
1904 }
1905}
1906
1907/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1908 Otherwise, returns either a standard GDB array with bounds set
1909 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1910 GDB array. Returns NULL if ARR is a null fat pointer. */
1911
d2e4a39e
AS
1912struct value *
1913ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1914{
df407dfe 1915 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1916 {
d2e4a39e 1917 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1918
14f9c5c9 1919 if (arrType == NULL)
4c4b4cd2 1920 return NULL;
14f9c5c9
AS
1921 return value_cast (arrType, value_copy (desc_data (arr)));
1922 }
ad82864c
JB
1923 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1925 else
1926 return arr;
1927}
1928
1929/* If ARR does not represent an array, returns ARR unchanged.
1930 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1931 be ARR itself if it already is in the proper form). */
1932
720d1a40 1933struct value *
d2e4a39e 1934ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1935{
df407dfe 1936 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1937 {
d2e4a39e 1938 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1939
14f9c5c9 1940 if (arrVal == NULL)
323e0a4a 1941 error (_("Bounds unavailable for null array pointer."));
529cad9c 1942 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1943 return value_ind (arrVal);
1944 }
ad82864c
JB
1945 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1946 return decode_constrained_packed_array (arr);
d2e4a39e 1947 else
14f9c5c9
AS
1948 return arr;
1949}
1950
1951/* If TYPE represents a GNAT array type, return it translated to an
1952 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1953 packing). For other types, is the identity. */
1954
d2e4a39e
AS
1955struct type *
1956ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1957{
ad82864c
JB
1958 if (ada_is_constrained_packed_array_type (type))
1959 return decode_constrained_packed_array_type (type);
17280b9f
UW
1960
1961 if (ada_is_array_descriptor_type (type))
556bdfd4 1962 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1963
1964 return type;
14f9c5c9
AS
1965}
1966
4c4b4cd2
PH
1967/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1968
ad82864c
JB
1969static int
1970ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1971{
1972 if (type == NULL)
1973 return 0;
4c4b4cd2 1974 type = desc_base_type (type);
61ee279c 1975 type = ada_check_typedef (type);
d2e4a39e 1976 return
14f9c5c9
AS
1977 ada_type_name (type) != NULL
1978 && strstr (ada_type_name (type), "___XP") != NULL;
1979}
1980
ad82864c
JB
1981/* Non-zero iff TYPE represents a standard GNAT constrained
1982 packed-array type. */
1983
1984int
1985ada_is_constrained_packed_array_type (struct type *type)
1986{
1987 return ada_is_packed_array_type (type)
1988 && !ada_is_array_descriptor_type (type);
1989}
1990
1991/* Non-zero iff TYPE represents an array descriptor for a
1992 unconstrained packed-array type. */
1993
1994static int
1995ada_is_unconstrained_packed_array_type (struct type *type)
1996{
1997 return ada_is_packed_array_type (type)
1998 && ada_is_array_descriptor_type (type);
1999}
2000
2001/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2002 return the size of its elements in bits. */
2003
2004static long
2005decode_packed_array_bitsize (struct type *type)
2006{
0d5cff50
DE
2007 const char *raw_name;
2008 const char *tail;
ad82864c
JB
2009 long bits;
2010
720d1a40
JB
2011 /* Access to arrays implemented as fat pointers are encoded as a typedef
2012 of the fat pointer type. We need the name of the fat pointer type
2013 to do the decoding, so strip the typedef layer. */
2014 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2015 type = ada_typedef_target_type (type);
2016
2017 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2018 if (!raw_name)
2019 raw_name = ada_type_name (desc_base_type (type));
2020
2021 if (!raw_name)
2022 return 0;
2023
2024 tail = strstr (raw_name, "___XP");
720d1a40 2025 gdb_assert (tail != NULL);
ad82864c
JB
2026
2027 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2028 {
2029 lim_warning
2030 (_("could not understand bit size information on packed array"));
2031 return 0;
2032 }
2033
2034 return bits;
2035}
2036
14f9c5c9
AS
2037/* Given that TYPE is a standard GDB array type with all bounds filled
2038 in, and that the element size of its ultimate scalar constituents
2039 (that is, either its elements, or, if it is an array of arrays, its
2040 elements' elements, etc.) is *ELT_BITS, return an identical type,
2041 but with the bit sizes of its elements (and those of any
2042 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2043 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2044 in bits. */
2045
d2e4a39e 2046static struct type *
ad82864c 2047constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2048{
d2e4a39e
AS
2049 struct type *new_elt_type;
2050 struct type *new_type;
99b1c762
JB
2051 struct type *index_type_desc;
2052 struct type *index_type;
14f9c5c9
AS
2053 LONGEST low_bound, high_bound;
2054
61ee279c 2055 type = ada_check_typedef (type);
14f9c5c9
AS
2056 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2057 return type;
2058
99b1c762
JB
2059 index_type_desc = ada_find_parallel_type (type, "___XA");
2060 if (index_type_desc)
2061 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2062 NULL);
2063 else
2064 index_type = TYPE_INDEX_TYPE (type);
2065
e9bb382b 2066 new_type = alloc_type_copy (type);
ad82864c
JB
2067 new_elt_type =
2068 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2069 elt_bits);
99b1c762 2070 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2071 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2072 TYPE_NAME (new_type) = ada_type_name (type);
2073
99b1c762 2074 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2075 low_bound = high_bound = 0;
2076 if (high_bound < low_bound)
2077 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2078 else
14f9c5c9
AS
2079 {
2080 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2081 TYPE_LENGTH (new_type) =
4c4b4cd2 2082 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2083 }
2084
876cecd0 2085 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2086 return new_type;
2087}
2088
ad82864c
JB
2089/* The array type encoded by TYPE, where
2090 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2091
d2e4a39e 2092static struct type *
ad82864c 2093decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2094{
0d5cff50 2095 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2096 char *name;
0d5cff50 2097 const char *tail;
d2e4a39e 2098 struct type *shadow_type;
14f9c5c9 2099 long bits;
14f9c5c9 2100
727e3d2e
JB
2101 if (!raw_name)
2102 raw_name = ada_type_name (desc_base_type (type));
2103
2104 if (!raw_name)
2105 return NULL;
2106
2107 name = (char *) alloca (strlen (raw_name) + 1);
2108 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2109 type = desc_base_type (type);
2110
14f9c5c9
AS
2111 memcpy (name, raw_name, tail - raw_name);
2112 name[tail - raw_name] = '\000';
2113
b4ba55a1
JB
2114 shadow_type = ada_find_parallel_type_with_name (type, name);
2115
2116 if (shadow_type == NULL)
14f9c5c9 2117 {
323e0a4a 2118 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2119 return NULL;
2120 }
cb249c71 2121 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2122
2123 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2124 {
0963b4bd
MS
2125 lim_warning (_("could not understand bounds "
2126 "information on packed array"));
14f9c5c9
AS
2127 return NULL;
2128 }
d2e4a39e 2129
ad82864c
JB
2130 bits = decode_packed_array_bitsize (type);
2131 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2132}
2133
ad82864c
JB
2134/* Given that ARR is a struct value *indicating a GNAT constrained packed
2135 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2136 standard GDB array type except that the BITSIZEs of the array
2137 target types are set to the number of bits in each element, and the
4c4b4cd2 2138 type length is set appropriately. */
14f9c5c9 2139
d2e4a39e 2140static struct value *
ad82864c 2141decode_constrained_packed_array (struct value *arr)
14f9c5c9 2142{
4c4b4cd2 2143 struct type *type;
14f9c5c9 2144
4c4b4cd2 2145 arr = ada_coerce_ref (arr);
284614f0
JB
2146
2147 /* If our value is a pointer, then dererence it. Make sure that
2148 this operation does not cause the target type to be fixed, as
2149 this would indirectly cause this array to be decoded. The rest
2150 of the routine assumes that the array hasn't been decoded yet,
2151 so we use the basic "value_ind" routine to perform the dereferencing,
2152 as opposed to using "ada_value_ind". */
828292f2 2153 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2154 arr = value_ind (arr);
4c4b4cd2 2155
ad82864c 2156 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2157 if (type == NULL)
2158 {
323e0a4a 2159 error (_("can't unpack array"));
14f9c5c9
AS
2160 return NULL;
2161 }
61ee279c 2162
50810684 2163 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2164 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2165 {
2166 /* This is a (right-justified) modular type representing a packed
2167 array with no wrapper. In order to interpret the value through
2168 the (left-justified) packed array type we just built, we must
2169 first left-justify it. */
2170 int bit_size, bit_pos;
2171 ULONGEST mod;
2172
df407dfe 2173 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2174 bit_size = 0;
2175 while (mod > 0)
2176 {
2177 bit_size += 1;
2178 mod >>= 1;
2179 }
df407dfe 2180 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2181 arr = ada_value_primitive_packed_val (arr, NULL,
2182 bit_pos / HOST_CHAR_BIT,
2183 bit_pos % HOST_CHAR_BIT,
2184 bit_size,
2185 type);
2186 }
2187
4c4b4cd2 2188 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2189}
2190
2191
2192/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2193 given in IND. ARR must be a simple array. */
14f9c5c9 2194
d2e4a39e
AS
2195static struct value *
2196value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2197{
2198 int i;
2199 int bits, elt_off, bit_off;
2200 long elt_total_bit_offset;
d2e4a39e
AS
2201 struct type *elt_type;
2202 struct value *v;
14f9c5c9
AS
2203
2204 bits = 0;
2205 elt_total_bit_offset = 0;
df407dfe 2206 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2207 for (i = 0; i < arity; i += 1)
14f9c5c9 2208 {
d2e4a39e 2209 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2210 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2211 error
0963b4bd
MS
2212 (_("attempt to do packed indexing of "
2213 "something other than a packed array"));
14f9c5c9 2214 else
4c4b4cd2
PH
2215 {
2216 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2217 LONGEST lowerbound, upperbound;
2218 LONGEST idx;
2219
2220 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2221 {
323e0a4a 2222 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2223 lowerbound = upperbound = 0;
2224 }
2225
3cb382c9 2226 idx = pos_atr (ind[i]);
4c4b4cd2 2227 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2228 lim_warning (_("packed array index %ld out of bounds"),
2229 (long) idx);
4c4b4cd2
PH
2230 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2231 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2232 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2233 }
14f9c5c9
AS
2234 }
2235 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2236 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2237
2238 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2239 bits, elt_type);
14f9c5c9
AS
2240 return v;
2241}
2242
4c4b4cd2 2243/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2244
2245static int
d2e4a39e 2246has_negatives (struct type *type)
14f9c5c9 2247{
d2e4a39e
AS
2248 switch (TYPE_CODE (type))
2249 {
2250 default:
2251 return 0;
2252 case TYPE_CODE_INT:
2253 return !TYPE_UNSIGNED (type);
2254 case TYPE_CODE_RANGE:
2255 return TYPE_LOW_BOUND (type) < 0;
2256 }
14f9c5c9 2257}
d2e4a39e 2258
14f9c5c9
AS
2259
2260/* Create a new value of type TYPE from the contents of OBJ starting
2261 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2262 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2263 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2264 VALADDR is ignored unless OBJ is NULL, in which case,
2265 VALADDR+OFFSET must address the start of storage containing the
2266 packed value. The value returned in this case is never an lval.
2267 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2268
d2e4a39e 2269struct value *
fc1a4b47 2270ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2271 long offset, int bit_offset, int bit_size,
4c4b4cd2 2272 struct type *type)
14f9c5c9 2273{
d2e4a39e 2274 struct value *v;
4c4b4cd2
PH
2275 int src, /* Index into the source area */
2276 targ, /* Index into the target area */
2277 srcBitsLeft, /* Number of source bits left to move */
2278 nsrc, ntarg, /* Number of source and target bytes */
2279 unusedLS, /* Number of bits in next significant
2280 byte of source that are unused */
2281 accumSize; /* Number of meaningful bits in accum */
2282 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2283 unsigned char *unpacked;
4c4b4cd2 2284 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2285 unsigned char sign;
2286 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2287 /* Transmit bytes from least to most significant; delta is the direction
2288 the indices move. */
50810684 2289 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2290
61ee279c 2291 type = ada_check_typedef (type);
14f9c5c9
AS
2292
2293 if (obj == NULL)
2294 {
2295 v = allocate_value (type);
d2e4a39e 2296 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2297 }
9214ee5f 2298 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2299 {
53ba8333 2300 v = value_at (type, value_address (obj));
d2e4a39e 2301 bytes = (unsigned char *) alloca (len);
53ba8333 2302 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2303 }
d2e4a39e 2304 else
14f9c5c9
AS
2305 {
2306 v = allocate_value (type);
0fd88904 2307 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2308 }
d2e4a39e
AS
2309
2310 if (obj != NULL)
14f9c5c9 2311 {
53ba8333 2312 long new_offset = offset;
5b4ee69b 2313
74bcbdf3 2314 set_value_component_location (v, obj);
9bbda503
AC
2315 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2316 set_value_bitsize (v, bit_size);
df407dfe 2317 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2318 {
53ba8333 2319 ++new_offset;
9bbda503 2320 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2321 }
53ba8333
JB
2322 set_value_offset (v, new_offset);
2323
2324 /* Also set the parent value. This is needed when trying to
2325 assign a new value (in inferior memory). */
2326 set_value_parent (v, obj);
2327 value_incref (obj);
14f9c5c9
AS
2328 }
2329 else
9bbda503 2330 set_value_bitsize (v, bit_size);
0fd88904 2331 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2332
2333 srcBitsLeft = bit_size;
2334 nsrc = len;
2335 ntarg = TYPE_LENGTH (type);
2336 sign = 0;
2337 if (bit_size == 0)
2338 {
2339 memset (unpacked, 0, TYPE_LENGTH (type));
2340 return v;
2341 }
50810684 2342 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2343 {
d2e4a39e 2344 src = len - 1;
1265e4aa
JB
2345 if (has_negatives (type)
2346 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2347 sign = ~0;
d2e4a39e
AS
2348
2349 unusedLS =
4c4b4cd2
PH
2350 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2351 % HOST_CHAR_BIT;
14f9c5c9
AS
2352
2353 switch (TYPE_CODE (type))
4c4b4cd2
PH
2354 {
2355 case TYPE_CODE_ARRAY:
2356 case TYPE_CODE_UNION:
2357 case TYPE_CODE_STRUCT:
2358 /* Non-scalar values must be aligned at a byte boundary... */
2359 accumSize =
2360 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2361 /* ... And are placed at the beginning (most-significant) bytes
2362 of the target. */
529cad9c 2363 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2364 ntarg = targ + 1;
4c4b4cd2
PH
2365 break;
2366 default:
2367 accumSize = 0;
2368 targ = TYPE_LENGTH (type) - 1;
2369 break;
2370 }
14f9c5c9 2371 }
d2e4a39e 2372 else
14f9c5c9
AS
2373 {
2374 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2375
2376 src = targ = 0;
2377 unusedLS = bit_offset;
2378 accumSize = 0;
2379
d2e4a39e 2380 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2381 sign = ~0;
14f9c5c9 2382 }
d2e4a39e 2383
14f9c5c9
AS
2384 accum = 0;
2385 while (nsrc > 0)
2386 {
2387 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2388 part of the value. */
d2e4a39e 2389 unsigned int unusedMSMask =
4c4b4cd2
PH
2390 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2391 1;
2392 /* Sign-extend bits for this byte. */
14f9c5c9 2393 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2394
d2e4a39e 2395 accum |=
4c4b4cd2 2396 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2397 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2398 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2399 {
2400 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2401 accumSize -= HOST_CHAR_BIT;
2402 accum >>= HOST_CHAR_BIT;
2403 ntarg -= 1;
2404 targ += delta;
2405 }
14f9c5c9
AS
2406 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2407 unusedLS = 0;
2408 nsrc -= 1;
2409 src += delta;
2410 }
2411 while (ntarg > 0)
2412 {
2413 accum |= sign << accumSize;
2414 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2415 accumSize -= HOST_CHAR_BIT;
2416 accum >>= HOST_CHAR_BIT;
2417 ntarg -= 1;
2418 targ += delta;
2419 }
2420
2421 return v;
2422}
d2e4a39e 2423
14f9c5c9
AS
2424/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2425 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2426 not overlap. */
14f9c5c9 2427static void
fc1a4b47 2428move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2429 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2430{
2431 unsigned int accum, mask;
2432 int accum_bits, chunk_size;
2433
2434 target += targ_offset / HOST_CHAR_BIT;
2435 targ_offset %= HOST_CHAR_BIT;
2436 source += src_offset / HOST_CHAR_BIT;
2437 src_offset %= HOST_CHAR_BIT;
50810684 2438 if (bits_big_endian_p)
14f9c5c9
AS
2439 {
2440 accum = (unsigned char) *source;
2441 source += 1;
2442 accum_bits = HOST_CHAR_BIT - src_offset;
2443
d2e4a39e 2444 while (n > 0)
4c4b4cd2
PH
2445 {
2446 int unused_right;
5b4ee69b 2447
4c4b4cd2
PH
2448 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2449 accum_bits += HOST_CHAR_BIT;
2450 source += 1;
2451 chunk_size = HOST_CHAR_BIT - targ_offset;
2452 if (chunk_size > n)
2453 chunk_size = n;
2454 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2455 mask = ((1 << chunk_size) - 1) << unused_right;
2456 *target =
2457 (*target & ~mask)
2458 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2459 n -= chunk_size;
2460 accum_bits -= chunk_size;
2461 target += 1;
2462 targ_offset = 0;
2463 }
14f9c5c9
AS
2464 }
2465 else
2466 {
2467 accum = (unsigned char) *source >> src_offset;
2468 source += 1;
2469 accum_bits = HOST_CHAR_BIT - src_offset;
2470
d2e4a39e 2471 while (n > 0)
4c4b4cd2
PH
2472 {
2473 accum = accum + ((unsigned char) *source << accum_bits);
2474 accum_bits += HOST_CHAR_BIT;
2475 source += 1;
2476 chunk_size = HOST_CHAR_BIT - targ_offset;
2477 if (chunk_size > n)
2478 chunk_size = n;
2479 mask = ((1 << chunk_size) - 1) << targ_offset;
2480 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2481 n -= chunk_size;
2482 accum_bits -= chunk_size;
2483 accum >>= chunk_size;
2484 target += 1;
2485 targ_offset = 0;
2486 }
14f9c5c9
AS
2487 }
2488}
2489
14f9c5c9
AS
2490/* Store the contents of FROMVAL into the location of TOVAL.
2491 Return a new value with the location of TOVAL and contents of
2492 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2493 floating-point or non-scalar types. */
14f9c5c9 2494
d2e4a39e
AS
2495static struct value *
2496ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2497{
df407dfe
AC
2498 struct type *type = value_type (toval);
2499 int bits = value_bitsize (toval);
14f9c5c9 2500
52ce6436
PH
2501 toval = ada_coerce_ref (toval);
2502 fromval = ada_coerce_ref (fromval);
2503
2504 if (ada_is_direct_array_type (value_type (toval)))
2505 toval = ada_coerce_to_simple_array (toval);
2506 if (ada_is_direct_array_type (value_type (fromval)))
2507 fromval = ada_coerce_to_simple_array (fromval);
2508
88e3b34b 2509 if (!deprecated_value_modifiable (toval))
323e0a4a 2510 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2511
d2e4a39e 2512 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2513 && bits > 0
d2e4a39e 2514 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2515 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2516 {
df407dfe
AC
2517 int len = (value_bitpos (toval)
2518 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2519 int from_size;
d2e4a39e
AS
2520 char *buffer = (char *) alloca (len);
2521 struct value *val;
42ae5230 2522 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2523
2524 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2525 fromval = value_cast (type, fromval);
14f9c5c9 2526
52ce6436 2527 read_memory (to_addr, buffer, len);
aced2898
PH
2528 from_size = value_bitsize (fromval);
2529 if (from_size == 0)
2530 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2531 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2532 move_bits (buffer, value_bitpos (toval),
50810684 2533 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2534 else
50810684
UW
2535 move_bits (buffer, value_bitpos (toval),
2536 value_contents (fromval), 0, bits, 0);
52ce6436 2537 write_memory (to_addr, buffer, len);
8cebebb9
PP
2538 observer_notify_memory_changed (to_addr, len, buffer);
2539
14f9c5c9 2540 val = value_copy (toval);
0fd88904 2541 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2542 TYPE_LENGTH (type));
04624583 2543 deprecated_set_value_type (val, type);
d2e4a39e 2544
14f9c5c9
AS
2545 return val;
2546 }
2547
2548 return value_assign (toval, fromval);
2549}
2550
2551
52ce6436
PH
2552/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2553 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2554 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2555 * COMPONENT, and not the inferior's memory. The current contents
2556 * of COMPONENT are ignored. */
2557static void
2558value_assign_to_component (struct value *container, struct value *component,
2559 struct value *val)
2560{
2561 LONGEST offset_in_container =
42ae5230 2562 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2563 int bit_offset_in_container =
2564 value_bitpos (component) - value_bitpos (container);
2565 int bits;
2566
2567 val = value_cast (value_type (component), val);
2568
2569 if (value_bitsize (component) == 0)
2570 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2571 else
2572 bits = value_bitsize (component);
2573
50810684 2574 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2575 move_bits (value_contents_writeable (container) + offset_in_container,
2576 value_bitpos (container) + bit_offset_in_container,
2577 value_contents (val),
2578 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2579 bits, 1);
52ce6436
PH
2580 else
2581 move_bits (value_contents_writeable (container) + offset_in_container,
2582 value_bitpos (container) + bit_offset_in_container,
50810684 2583 value_contents (val), 0, bits, 0);
52ce6436
PH
2584}
2585
4c4b4cd2
PH
2586/* The value of the element of array ARR at the ARITY indices given in IND.
2587 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2588 thereto. */
2589
d2e4a39e
AS
2590struct value *
2591ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2592{
2593 int k;
d2e4a39e
AS
2594 struct value *elt;
2595 struct type *elt_type;
14f9c5c9
AS
2596
2597 elt = ada_coerce_to_simple_array (arr);
2598
df407dfe 2599 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2600 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2601 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2602 return value_subscript_packed (elt, arity, ind);
2603
2604 for (k = 0; k < arity; k += 1)
2605 {
2606 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2607 error (_("too many subscripts (%d expected)"), k);
2497b498 2608 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2609 }
2610 return elt;
2611}
2612
2613/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2614 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2615 IND. Does not read the entire array into memory. */
14f9c5c9 2616
2c0b251b 2617static struct value *
d2e4a39e 2618ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2619 struct value **ind)
14f9c5c9
AS
2620{
2621 int k;
2622
2623 for (k = 0; k < arity; k += 1)
2624 {
2625 LONGEST lwb, upb;
14f9c5c9
AS
2626
2627 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2628 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2629 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2630 value_copy (arr));
14f9c5c9 2631 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2632 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2633 type = TYPE_TARGET_TYPE (type);
2634 }
2635
2636 return value_ind (arr);
2637}
2638
0b5d8877 2639/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2640 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2641 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2642 per Ada rules. */
0b5d8877 2643static struct value *
f5938064
JG
2644ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2645 int low, int high)
0b5d8877 2646{
b0dd7688 2647 struct type *type0 = ada_check_typedef (type);
6c038f32 2648 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2649 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2650 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2651 struct type *index_type =
b0dd7688 2652 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2653 low, high);
6c038f32 2654 struct type *slice_type =
b0dd7688 2655 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2656
f5938064 2657 return value_at_lazy (slice_type, base);
0b5d8877
PH
2658}
2659
2660
2661static struct value *
2662ada_value_slice (struct value *array, int low, int high)
2663{
b0dd7688 2664 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2665 struct type *index_type =
0b5d8877 2666 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2667 struct type *slice_type =
0b5d8877 2668 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2669
6c038f32 2670 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2671}
2672
14f9c5c9
AS
2673/* If type is a record type in the form of a standard GNAT array
2674 descriptor, returns the number of dimensions for type. If arr is a
2675 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2676 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2677
2678int
d2e4a39e 2679ada_array_arity (struct type *type)
14f9c5c9
AS
2680{
2681 int arity;
2682
2683 if (type == NULL)
2684 return 0;
2685
2686 type = desc_base_type (type);
2687
2688 arity = 0;
d2e4a39e 2689 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2690 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2691 else
2692 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2693 {
4c4b4cd2 2694 arity += 1;
61ee279c 2695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2696 }
d2e4a39e 2697
14f9c5c9
AS
2698 return arity;
2699}
2700
2701/* If TYPE is a record type in the form of a standard GNAT array
2702 descriptor or a simple array type, returns the element type for
2703 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2704 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2705
d2e4a39e
AS
2706struct type *
2707ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2708{
2709 type = desc_base_type (type);
2710
d2e4a39e 2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2712 {
2713 int k;
d2e4a39e 2714 struct type *p_array_type;
14f9c5c9 2715
556bdfd4 2716 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2717
2718 k = ada_array_arity (type);
2719 if (k == 0)
4c4b4cd2 2720 return NULL;
d2e4a39e 2721
4c4b4cd2 2722 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2723 if (nindices >= 0 && k > nindices)
4c4b4cd2 2724 k = nindices;
d2e4a39e 2725 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2726 {
61ee279c 2727 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2728 k -= 1;
2729 }
14f9c5c9
AS
2730 return p_array_type;
2731 }
2732 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2733 {
2734 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2735 {
2736 type = TYPE_TARGET_TYPE (type);
2737 nindices -= 1;
2738 }
14f9c5c9
AS
2739 return type;
2740 }
2741
2742 return NULL;
2743}
2744
4c4b4cd2 2745/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2746 Does not examine memory. Throws an error if N is invalid or TYPE
2747 is not an array type. NAME is the name of the Ada attribute being
2748 evaluated ('range, 'first, 'last, or 'length); it is used in building
2749 the error message. */
14f9c5c9 2750
1eea4ebd
UW
2751static struct type *
2752ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2753{
4c4b4cd2
PH
2754 struct type *result_type;
2755
14f9c5c9
AS
2756 type = desc_base_type (type);
2757
1eea4ebd
UW
2758 if (n < 0 || n > ada_array_arity (type))
2759 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2760
4c4b4cd2 2761 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2762 {
2763 int i;
2764
2765 for (i = 1; i < n; i += 1)
4c4b4cd2 2766 type = TYPE_TARGET_TYPE (type);
262452ec 2767 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2768 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2769 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2770 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2771 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2772 result_type = NULL;
14f9c5c9 2773 }
d2e4a39e 2774 else
1eea4ebd
UW
2775 {
2776 result_type = desc_index_type (desc_bounds_type (type), n);
2777 if (result_type == NULL)
2778 error (_("attempt to take bound of something that is not an array"));
2779 }
2780
2781 return result_type;
14f9c5c9
AS
2782}
2783
2784/* Given that arr is an array type, returns the lower bound of the
2785 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2786 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2787 array-descriptor type. It works for other arrays with bounds supplied
2788 by run-time quantities other than discriminants. */
14f9c5c9 2789
abb68b3e 2790static LONGEST
1eea4ebd 2791ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2792{
1ce677a4 2793 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2794 int i;
262452ec
JK
2795
2796 gdb_assert (which == 0 || which == 1);
14f9c5c9 2797
ad82864c
JB
2798 if (ada_is_constrained_packed_array_type (arr_type))
2799 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2800
4c4b4cd2 2801 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2802 return (LONGEST) - which;
14f9c5c9
AS
2803
2804 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2805 type = TYPE_TARGET_TYPE (arr_type);
2806 else
2807 type = arr_type;
2808
1ce677a4
UW
2809 elt_type = type;
2810 for (i = n; i > 1; i--)
2811 elt_type = TYPE_TARGET_TYPE (type);
2812
14f9c5c9 2813 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2814 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2815 if (index_type_desc != NULL)
28c85d6c
JB
2816 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2817 NULL);
262452ec 2818 else
1ce677a4 2819 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2820
43bbcdc2
PH
2821 return
2822 (LONGEST) (which == 0
2823 ? ada_discrete_type_low_bound (index_type)
2824 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2825}
2826
2827/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2828 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2829 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2830 supplied by run-time quantities other than discriminants. */
14f9c5c9 2831
1eea4ebd 2832static LONGEST
4dc81987 2833ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2834{
df407dfe 2835 struct type *arr_type = value_type (arr);
14f9c5c9 2836
ad82864c
JB
2837 if (ada_is_constrained_packed_array_type (arr_type))
2838 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2839 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2840 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2841 else
1eea4ebd 2842 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2843}
2844
2845/* Given that arr is an array value, returns the length of the
2846 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2847 supplied by run-time quantities other than discriminants.
2848 Does not work for arrays indexed by enumeration types with representation
2849 clauses at the moment. */
14f9c5c9 2850
1eea4ebd 2851static LONGEST
d2e4a39e 2852ada_array_length (struct value *arr, int n)
14f9c5c9 2853{
df407dfe 2854 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2855
ad82864c
JB
2856 if (ada_is_constrained_packed_array_type (arr_type))
2857 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2858
4c4b4cd2 2859 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2860 return (ada_array_bound_from_type (arr_type, n, 1)
2861 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2862 else
1eea4ebd
UW
2863 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2864 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2865}
2866
2867/* An empty array whose type is that of ARR_TYPE (an array type),
2868 with bounds LOW to LOW-1. */
2869
2870static struct value *
2871empty_array (struct type *arr_type, int low)
2872{
b0dd7688 2873 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2874 struct type *index_type =
b0dd7688 2875 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2876 low, low - 1);
b0dd7688 2877 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2878
0b5d8877 2879 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2880}
14f9c5c9 2881\f
d2e4a39e 2882
4c4b4cd2 2883 /* Name resolution */
14f9c5c9 2884
4c4b4cd2
PH
2885/* The "decoded" name for the user-definable Ada operator corresponding
2886 to OP. */
14f9c5c9 2887
d2e4a39e 2888static const char *
4c4b4cd2 2889ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2890{
2891 int i;
2892
4c4b4cd2 2893 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2894 {
2895 if (ada_opname_table[i].op == op)
4c4b4cd2 2896 return ada_opname_table[i].decoded;
14f9c5c9 2897 }
323e0a4a 2898 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2899}
2900
2901
4c4b4cd2
PH
2902/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2903 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2904 undefined namespace) and converts operators that are
2905 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2906 non-null, it provides a preferred result type [at the moment, only
2907 type void has any effect---causing procedures to be preferred over
2908 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2909 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2910
4c4b4cd2
PH
2911static void
2912resolve (struct expression **expp, int void_context_p)
14f9c5c9 2913{
30b15541
UW
2914 struct type *context_type = NULL;
2915 int pc = 0;
2916
2917 if (void_context_p)
2918 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2919
2920 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2921}
2922
4c4b4cd2
PH
2923/* Resolve the operator of the subexpression beginning at
2924 position *POS of *EXPP. "Resolving" consists of replacing
2925 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2926 with their resolutions, replacing built-in operators with
2927 function calls to user-defined operators, where appropriate, and,
2928 when DEPROCEDURE_P is non-zero, converting function-valued variables
2929 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2930 are as in ada_resolve, above. */
14f9c5c9 2931
d2e4a39e 2932static struct value *
4c4b4cd2 2933resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2934 struct type *context_type)
14f9c5c9
AS
2935{
2936 int pc = *pos;
2937 int i;
4c4b4cd2 2938 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2939 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2940 struct value **argvec; /* Vector of operand types (alloca'ed). */
2941 int nargs; /* Number of operands. */
52ce6436 2942 int oplen;
14f9c5c9
AS
2943
2944 argvec = NULL;
2945 nargs = 0;
2946 exp = *expp;
2947
52ce6436
PH
2948 /* Pass one: resolve operands, saving their types and updating *pos,
2949 if needed. */
14f9c5c9
AS
2950 switch (op)
2951 {
4c4b4cd2
PH
2952 case OP_FUNCALL:
2953 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2954 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2955 *pos += 7;
4c4b4cd2
PH
2956 else
2957 {
2958 *pos += 3;
2959 resolve_subexp (expp, pos, 0, NULL);
2960 }
2961 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2962 break;
2963
14f9c5c9 2964 case UNOP_ADDR:
4c4b4cd2
PH
2965 *pos += 1;
2966 resolve_subexp (expp, pos, 0, NULL);
2967 break;
2968
52ce6436
PH
2969 case UNOP_QUAL:
2970 *pos += 3;
17466c1a 2971 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2972 break;
2973
52ce6436 2974 case OP_ATR_MODULUS:
4c4b4cd2
PH
2975 case OP_ATR_SIZE:
2976 case OP_ATR_TAG:
4c4b4cd2
PH
2977 case OP_ATR_FIRST:
2978 case OP_ATR_LAST:
2979 case OP_ATR_LENGTH:
2980 case OP_ATR_POS:
2981 case OP_ATR_VAL:
4c4b4cd2
PH
2982 case OP_ATR_MIN:
2983 case OP_ATR_MAX:
52ce6436
PH
2984 case TERNOP_IN_RANGE:
2985 case BINOP_IN_BOUNDS:
2986 case UNOP_IN_RANGE:
2987 case OP_AGGREGATE:
2988 case OP_OTHERS:
2989 case OP_CHOICES:
2990 case OP_POSITIONAL:
2991 case OP_DISCRETE_RANGE:
2992 case OP_NAME:
2993 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2994 *pos += oplen;
14f9c5c9
AS
2995 break;
2996
2997 case BINOP_ASSIGN:
2998 {
4c4b4cd2
PH
2999 struct value *arg1;
3000
3001 *pos += 1;
3002 arg1 = resolve_subexp (expp, pos, 0, NULL);
3003 if (arg1 == NULL)
3004 resolve_subexp (expp, pos, 1, NULL);
3005 else
df407dfe 3006 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3007 break;
14f9c5c9
AS
3008 }
3009
4c4b4cd2 3010 case UNOP_CAST:
4c4b4cd2
PH
3011 *pos += 3;
3012 nargs = 1;
3013 break;
14f9c5c9 3014
4c4b4cd2
PH
3015 case BINOP_ADD:
3016 case BINOP_SUB:
3017 case BINOP_MUL:
3018 case BINOP_DIV:
3019 case BINOP_REM:
3020 case BINOP_MOD:
3021 case BINOP_EXP:
3022 case BINOP_CONCAT:
3023 case BINOP_LOGICAL_AND:
3024 case BINOP_LOGICAL_OR:
3025 case BINOP_BITWISE_AND:
3026 case BINOP_BITWISE_IOR:
3027 case BINOP_BITWISE_XOR:
14f9c5c9 3028
4c4b4cd2
PH
3029 case BINOP_EQUAL:
3030 case BINOP_NOTEQUAL:
3031 case BINOP_LESS:
3032 case BINOP_GTR:
3033 case BINOP_LEQ:
3034 case BINOP_GEQ:
14f9c5c9 3035
4c4b4cd2
PH
3036 case BINOP_REPEAT:
3037 case BINOP_SUBSCRIPT:
3038 case BINOP_COMMA:
40c8aaa9
JB
3039 *pos += 1;
3040 nargs = 2;
3041 break;
14f9c5c9 3042
4c4b4cd2
PH
3043 case UNOP_NEG:
3044 case UNOP_PLUS:
3045 case UNOP_LOGICAL_NOT:
3046 case UNOP_ABS:
3047 case UNOP_IND:
3048 *pos += 1;
3049 nargs = 1;
3050 break;
14f9c5c9 3051
4c4b4cd2
PH
3052 case OP_LONG:
3053 case OP_DOUBLE:
3054 case OP_VAR_VALUE:
3055 *pos += 4;
3056 break;
14f9c5c9 3057
4c4b4cd2
PH
3058 case OP_TYPE:
3059 case OP_BOOL:
3060 case OP_LAST:
4c4b4cd2
PH
3061 case OP_INTERNALVAR:
3062 *pos += 3;
3063 break;
14f9c5c9 3064
4c4b4cd2
PH
3065 case UNOP_MEMVAL:
3066 *pos += 3;
3067 nargs = 1;
3068 break;
3069
67f3407f
DJ
3070 case OP_REGISTER:
3071 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3072 break;
3073
4c4b4cd2
PH
3074 case STRUCTOP_STRUCT:
3075 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3076 nargs = 1;
3077 break;
3078
4c4b4cd2 3079 case TERNOP_SLICE:
4c4b4cd2
PH
3080 *pos += 1;
3081 nargs = 3;
3082 break;
3083
52ce6436 3084 case OP_STRING:
14f9c5c9 3085 break;
4c4b4cd2
PH
3086
3087 default:
323e0a4a 3088 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3089 }
3090
76a01679 3091 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3092 for (i = 0; i < nargs; i += 1)
3093 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3094 argvec[i] = NULL;
3095 exp = *expp;
3096
3097 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3098 switch (op)
3099 {
3100 default:
3101 break;
3102
14f9c5c9 3103 case OP_VAR_VALUE:
4c4b4cd2 3104 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3105 {
3106 struct ada_symbol_info *candidates;
3107 int n_candidates;
3108
3109 n_candidates =
3110 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3111 (exp->elts[pc + 2].symbol),
3112 exp->elts[pc + 1].block, VAR_DOMAIN,
d9680e73 3113 &candidates, 1);
76a01679
JB
3114
3115 if (n_candidates > 1)
3116 {
3117 /* Types tend to get re-introduced locally, so if there
3118 are any local symbols that are not types, first filter
3119 out all types. */
3120 int j;
3121 for (j = 0; j < n_candidates; j += 1)
3122 switch (SYMBOL_CLASS (candidates[j].sym))
3123 {
3124 case LOC_REGISTER:
3125 case LOC_ARG:
3126 case LOC_REF_ARG:
76a01679
JB
3127 case LOC_REGPARM_ADDR:
3128 case LOC_LOCAL:
76a01679 3129 case LOC_COMPUTED:
76a01679
JB
3130 goto FoundNonType;
3131 default:
3132 break;
3133 }
3134 FoundNonType:
3135 if (j < n_candidates)
3136 {
3137 j = 0;
3138 while (j < n_candidates)
3139 {
3140 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3141 {
3142 candidates[j] = candidates[n_candidates - 1];
3143 n_candidates -= 1;
3144 }
3145 else
3146 j += 1;
3147 }
3148 }
3149 }
3150
3151 if (n_candidates == 0)
323e0a4a 3152 error (_("No definition found for %s"),
76a01679
JB
3153 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3154 else if (n_candidates == 1)
3155 i = 0;
3156 else if (deprocedure_p
3157 && !is_nonfunction (candidates, n_candidates))
3158 {
06d5cf63
JB
3159 i = ada_resolve_function
3160 (candidates, n_candidates, NULL, 0,
3161 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3162 context_type);
76a01679 3163 if (i < 0)
323e0a4a 3164 error (_("Could not find a match for %s"),
76a01679
JB
3165 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3166 }
3167 else
3168 {
323e0a4a 3169 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3170 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3171 user_select_syms (candidates, n_candidates, 1);
3172 i = 0;
3173 }
3174
3175 exp->elts[pc + 1].block = candidates[i].block;
3176 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3177 if (innermost_block == NULL
3178 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3179 innermost_block = candidates[i].block;
3180 }
3181
3182 if (deprocedure_p
3183 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3184 == TYPE_CODE_FUNC))
3185 {
3186 replace_operator_with_call (expp, pc, 0, 0,
3187 exp->elts[pc + 2].symbol,
3188 exp->elts[pc + 1].block);
3189 exp = *expp;
3190 }
14f9c5c9
AS
3191 break;
3192
3193 case OP_FUNCALL:
3194 {
4c4b4cd2 3195 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3196 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3197 {
3198 struct ada_symbol_info *candidates;
3199 int n_candidates;
3200
3201 n_candidates =
76a01679
JB
3202 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3203 (exp->elts[pc + 5].symbol),
3204 exp->elts[pc + 4].block, VAR_DOMAIN,
d9680e73 3205 &candidates, 1);
4c4b4cd2
PH
3206 if (n_candidates == 1)
3207 i = 0;
3208 else
3209 {
06d5cf63
JB
3210 i = ada_resolve_function
3211 (candidates, n_candidates,
3212 argvec, nargs,
3213 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3214 context_type);
4c4b4cd2 3215 if (i < 0)
323e0a4a 3216 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3217 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3218 }
3219
3220 exp->elts[pc + 4].block = candidates[i].block;
3221 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3222 if (innermost_block == NULL
3223 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3224 innermost_block = candidates[i].block;
3225 }
14f9c5c9
AS
3226 }
3227 break;
3228 case BINOP_ADD:
3229 case BINOP_SUB:
3230 case BINOP_MUL:
3231 case BINOP_DIV:
3232 case BINOP_REM:
3233 case BINOP_MOD:
3234 case BINOP_CONCAT:
3235 case BINOP_BITWISE_AND:
3236 case BINOP_BITWISE_IOR:
3237 case BINOP_BITWISE_XOR:
3238 case BINOP_EQUAL:
3239 case BINOP_NOTEQUAL:
3240 case BINOP_LESS:
3241 case BINOP_GTR:
3242 case BINOP_LEQ:
3243 case BINOP_GEQ:
3244 case BINOP_EXP:
3245 case UNOP_NEG:
3246 case UNOP_PLUS:
3247 case UNOP_LOGICAL_NOT:
3248 case UNOP_ABS:
3249 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3250 {
3251 struct ada_symbol_info *candidates;
3252 int n_candidates;
3253
3254 n_candidates =
3255 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3256 (struct block *) NULL, VAR_DOMAIN,
d9680e73 3257 &candidates, 1);
4c4b4cd2 3258 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3259 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3260 if (i < 0)
3261 break;
3262
76a01679
JB
3263 replace_operator_with_call (expp, pc, nargs, 1,
3264 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3265 exp = *expp;
3266 }
14f9c5c9 3267 break;
4c4b4cd2
PH
3268
3269 case OP_TYPE:
b3dbf008 3270 case OP_REGISTER:
4c4b4cd2 3271 return NULL;
14f9c5c9
AS
3272 }
3273
3274 *pos = pc;
3275 return evaluate_subexp_type (exp, pos);
3276}
3277
3278/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3279 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3280 a non-pointer. */
14f9c5c9 3281/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3282 liberal. */
14f9c5c9
AS
3283
3284static int
4dc81987 3285ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3286{
61ee279c
PH
3287 ftype = ada_check_typedef (ftype);
3288 atype = ada_check_typedef (atype);
14f9c5c9
AS
3289
3290 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3291 ftype = TYPE_TARGET_TYPE (ftype);
3292 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3293 atype = TYPE_TARGET_TYPE (atype);
3294
d2e4a39e 3295 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3296 {
3297 default:
5b3d5b7d 3298 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3299 case TYPE_CODE_PTR:
3300 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3301 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3302 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3303 else
1265e4aa
JB
3304 return (may_deref
3305 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3306 case TYPE_CODE_INT:
3307 case TYPE_CODE_ENUM:
3308 case TYPE_CODE_RANGE:
3309 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3310 {
3311 case TYPE_CODE_INT:
3312 case TYPE_CODE_ENUM:
3313 case TYPE_CODE_RANGE:
3314 return 1;
3315 default:
3316 return 0;
3317 }
14f9c5c9
AS
3318
3319 case TYPE_CODE_ARRAY:
d2e4a39e 3320 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3321 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3322
3323 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3324 if (ada_is_array_descriptor_type (ftype))
3325 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3326 || ada_is_array_descriptor_type (atype));
14f9c5c9 3327 else
4c4b4cd2
PH
3328 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3329 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3330
3331 case TYPE_CODE_UNION:
3332 case TYPE_CODE_FLT:
3333 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3334 }
3335}
3336
3337/* Return non-zero if the formals of FUNC "sufficiently match" the
3338 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3339 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3340 argument function. */
14f9c5c9
AS
3341
3342static int
d2e4a39e 3343ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3344{
3345 int i;
d2e4a39e 3346 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3347
1265e4aa
JB
3348 if (SYMBOL_CLASS (func) == LOC_CONST
3349 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3350 return (n_actuals == 0);
3351 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3352 return 0;
3353
3354 if (TYPE_NFIELDS (func_type) != n_actuals)
3355 return 0;
3356
3357 for (i = 0; i < n_actuals; i += 1)
3358 {
4c4b4cd2 3359 if (actuals[i] == NULL)
76a01679
JB
3360 return 0;
3361 else
3362 {
5b4ee69b
MS
3363 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3364 i));
df407dfe 3365 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3366
76a01679
JB
3367 if (!ada_type_match (ftype, atype, 1))
3368 return 0;
3369 }
14f9c5c9
AS
3370 }
3371 return 1;
3372}
3373
3374/* False iff function type FUNC_TYPE definitely does not produce a value
3375 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3376 FUNC_TYPE is not a valid function type with a non-null return type
3377 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3378
3379static int
d2e4a39e 3380return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3381{
d2e4a39e 3382 struct type *return_type;
14f9c5c9
AS
3383
3384 if (func_type == NULL)
3385 return 1;
3386
4c4b4cd2 3387 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3388 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3389 else
18af8284 3390 return_type = get_base_type (func_type);
14f9c5c9
AS
3391 if (return_type == NULL)
3392 return 1;
3393
18af8284 3394 context_type = get_base_type (context_type);
14f9c5c9
AS
3395
3396 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3397 return context_type == NULL || return_type == context_type;
3398 else if (context_type == NULL)
3399 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3400 else
3401 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3402}
3403
3404
4c4b4cd2 3405/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3406 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3407 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3408 that returns that type, then eliminate matches that don't. If
3409 CONTEXT_TYPE is void and there is at least one match that does not
3410 return void, eliminate all matches that do.
3411
14f9c5c9
AS
3412 Asks the user if there is more than one match remaining. Returns -1
3413 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3414 solely for messages. May re-arrange and modify SYMS in
3415 the process; the index returned is for the modified vector. */
14f9c5c9 3416
4c4b4cd2
PH
3417static int
3418ada_resolve_function (struct ada_symbol_info syms[],
3419 int nsyms, struct value **args, int nargs,
3420 const char *name, struct type *context_type)
14f9c5c9 3421{
30b15541 3422 int fallback;
14f9c5c9 3423 int k;
4c4b4cd2 3424 int m; /* Number of hits */
14f9c5c9 3425
d2e4a39e 3426 m = 0;
30b15541
UW
3427 /* In the first pass of the loop, we only accept functions matching
3428 context_type. If none are found, we add a second pass of the loop
3429 where every function is accepted. */
3430 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3431 {
3432 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3433 {
61ee279c 3434 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3435
3436 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3437 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3438 {
3439 syms[m] = syms[k];
3440 m += 1;
3441 }
3442 }
14f9c5c9
AS
3443 }
3444
3445 if (m == 0)
3446 return -1;
3447 else if (m > 1)
3448 {
323e0a4a 3449 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3450 user_select_syms (syms, m, 1);
14f9c5c9
AS
3451 return 0;
3452 }
3453 return 0;
3454}
3455
4c4b4cd2
PH
3456/* Returns true (non-zero) iff decoded name N0 should appear before N1
3457 in a listing of choices during disambiguation (see sort_choices, below).
3458 The idea is that overloadings of a subprogram name from the
3459 same package should sort in their source order. We settle for ordering
3460 such symbols by their trailing number (__N or $N). */
3461
14f9c5c9 3462static int
0d5cff50 3463encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3464{
3465 if (N1 == NULL)
3466 return 0;
3467 else if (N0 == NULL)
3468 return 1;
3469 else
3470 {
3471 int k0, k1;
5b4ee69b 3472
d2e4a39e 3473 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3474 ;
d2e4a39e 3475 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3476 ;
d2e4a39e 3477 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3478 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3479 {
3480 int n0, n1;
5b4ee69b 3481
4c4b4cd2
PH
3482 n0 = k0;
3483 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3484 n0 -= 1;
3485 n1 = k1;
3486 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3487 n1 -= 1;
3488 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3489 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3490 }
14f9c5c9
AS
3491 return (strcmp (N0, N1) < 0);
3492 }
3493}
d2e4a39e 3494
4c4b4cd2
PH
3495/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3496 encoded names. */
3497
d2e4a39e 3498static void
4c4b4cd2 3499sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3500{
4c4b4cd2 3501 int i;
5b4ee69b 3502
d2e4a39e 3503 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3504 {
4c4b4cd2 3505 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3506 int j;
3507
d2e4a39e 3508 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3509 {
3510 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3511 SYMBOL_LINKAGE_NAME (sym.sym)))
3512 break;
3513 syms[j + 1] = syms[j];
3514 }
d2e4a39e 3515 syms[j + 1] = sym;
14f9c5c9
AS
3516 }
3517}
3518
4c4b4cd2
PH
3519/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3520 by asking the user (if necessary), returning the number selected,
3521 and setting the first elements of SYMS items. Error if no symbols
3522 selected. */
14f9c5c9
AS
3523
3524/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3525 to be re-integrated one of these days. */
14f9c5c9
AS
3526
3527int
4c4b4cd2 3528user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3529{
3530 int i;
d2e4a39e 3531 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3532 int n_chosen;
3533 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3534 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3535
3536 if (max_results < 1)
323e0a4a 3537 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3538 if (nsyms <= 1)
3539 return nsyms;
3540
717d2f5a
JB
3541 if (select_mode == multiple_symbols_cancel)
3542 error (_("\
3543canceled because the command is ambiguous\n\
3544See set/show multiple-symbol."));
3545
3546 /* If select_mode is "all", then return all possible symbols.
3547 Only do that if more than one symbol can be selected, of course.
3548 Otherwise, display the menu as usual. */
3549 if (select_mode == multiple_symbols_all && max_results > 1)
3550 return nsyms;
3551
323e0a4a 3552 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3553 if (max_results > 1)
323e0a4a 3554 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3555
4c4b4cd2 3556 sort_choices (syms, nsyms);
14f9c5c9
AS
3557
3558 for (i = 0; i < nsyms; i += 1)
3559 {
4c4b4cd2
PH
3560 if (syms[i].sym == NULL)
3561 continue;
3562
3563 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3564 {
76a01679
JB
3565 struct symtab_and_line sal =
3566 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3567
323e0a4a
AC
3568 if (sal.symtab == NULL)
3569 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3570 i + first_choice,
3571 SYMBOL_PRINT_NAME (syms[i].sym),
3572 sal.line);
3573 else
3574 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3575 SYMBOL_PRINT_NAME (syms[i].sym),
3576 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3577 continue;
3578 }
d2e4a39e 3579 else
4c4b4cd2
PH
3580 {
3581 int is_enumeral =
3582 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3583 && SYMBOL_TYPE (syms[i].sym) != NULL
3584 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3585 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3586
3587 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3588 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3589 i + first_choice,
3590 SYMBOL_PRINT_NAME (syms[i].sym),
3591 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3592 else if (is_enumeral
3593 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3594 {
a3f17187 3595 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3596 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3597 gdb_stdout, -1, 0);
323e0a4a 3598 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3599 SYMBOL_PRINT_NAME (syms[i].sym));
3600 }
3601 else if (symtab != NULL)
3602 printf_unfiltered (is_enumeral
323e0a4a
AC
3603 ? _("[%d] %s in %s (enumeral)\n")
3604 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3605 i + first_choice,
3606 SYMBOL_PRINT_NAME (syms[i].sym),
3607 symtab->filename);
3608 else
3609 printf_unfiltered (is_enumeral
323e0a4a
AC
3610 ? _("[%d] %s (enumeral)\n")
3611 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3612 i + first_choice,
3613 SYMBOL_PRINT_NAME (syms[i].sym));
3614 }
14f9c5c9 3615 }
d2e4a39e 3616
14f9c5c9 3617 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3618 "overload-choice");
14f9c5c9
AS
3619
3620 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3621 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3622
3623 return n_chosen;
3624}
3625
3626/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3627 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3628 order in CHOICES[0 .. N-1], and return N.
3629
3630 The user types choices as a sequence of numbers on one line
3631 separated by blanks, encoding them as follows:
3632
4c4b4cd2 3633 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3634 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3635 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3636
4c4b4cd2 3637 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3638
3639 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3640 prompts (for use with the -f switch). */
14f9c5c9
AS
3641
3642int
d2e4a39e 3643get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3644 int is_all_choice, char *annotation_suffix)
14f9c5c9 3645{
d2e4a39e 3646 char *args;
0bcd0149 3647 char *prompt;
14f9c5c9
AS
3648 int n_chosen;
3649 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3650
14f9c5c9
AS
3651 prompt = getenv ("PS2");
3652 if (prompt == NULL)
0bcd0149 3653 prompt = "> ";
14f9c5c9 3654
0bcd0149 3655 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3656
14f9c5c9 3657 if (args == NULL)
323e0a4a 3658 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3659
3660 n_chosen = 0;
76a01679 3661
4c4b4cd2
PH
3662 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3663 order, as given in args. Choices are validated. */
14f9c5c9
AS
3664 while (1)
3665 {
d2e4a39e 3666 char *args2;
14f9c5c9
AS
3667 int choice, j;
3668
0fcd72ba 3669 args = skip_spaces (args);
14f9c5c9 3670 if (*args == '\0' && n_chosen == 0)
323e0a4a 3671 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3672 else if (*args == '\0')
4c4b4cd2 3673 break;
14f9c5c9
AS
3674
3675 choice = strtol (args, &args2, 10);
d2e4a39e 3676 if (args == args2 || choice < 0
4c4b4cd2 3677 || choice > n_choices + first_choice - 1)
323e0a4a 3678 error (_("Argument must be choice number"));
14f9c5c9
AS
3679 args = args2;
3680
d2e4a39e 3681 if (choice == 0)
323e0a4a 3682 error (_("cancelled"));
14f9c5c9
AS
3683
3684 if (choice < first_choice)
4c4b4cd2
PH
3685 {
3686 n_chosen = n_choices;
3687 for (j = 0; j < n_choices; j += 1)
3688 choices[j] = j;
3689 break;
3690 }
14f9c5c9
AS
3691 choice -= first_choice;
3692
d2e4a39e 3693 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3694 {
3695 }
14f9c5c9
AS
3696
3697 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3698 {
3699 int k;
5b4ee69b 3700
4c4b4cd2
PH
3701 for (k = n_chosen - 1; k > j; k -= 1)
3702 choices[k + 1] = choices[k];
3703 choices[j + 1] = choice;
3704 n_chosen += 1;
3705 }
14f9c5c9
AS
3706 }
3707
3708 if (n_chosen > max_results)
323e0a4a 3709 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3710
14f9c5c9
AS
3711 return n_chosen;
3712}
3713
4c4b4cd2
PH
3714/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3715 on the function identified by SYM and BLOCK, and taking NARGS
3716 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3717
3718static void
d2e4a39e 3719replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3720 int oplen, struct symbol *sym,
3721 struct block *block)
14f9c5c9
AS
3722{
3723 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3724 symbol, -oplen for operator being replaced). */
d2e4a39e 3725 struct expression *newexp = (struct expression *)
8c1a34e7 3726 xzalloc (sizeof (struct expression)
4c4b4cd2 3727 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3728 struct expression *exp = *expp;
14f9c5c9
AS
3729
3730 newexp->nelts = exp->nelts + 7 - oplen;
3731 newexp->language_defn = exp->language_defn;
3489610d 3732 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3733 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3734 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3735 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3736
3737 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3738 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3739
3740 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3741 newexp->elts[pc + 4].block = block;
3742 newexp->elts[pc + 5].symbol = sym;
3743
3744 *expp = newexp;
aacb1f0a 3745 xfree (exp);
d2e4a39e 3746}
14f9c5c9
AS
3747
3748/* Type-class predicates */
3749
4c4b4cd2
PH
3750/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3751 or FLOAT). */
14f9c5c9
AS
3752
3753static int
d2e4a39e 3754numeric_type_p (struct type *type)
14f9c5c9
AS
3755{
3756 if (type == NULL)
3757 return 0;
d2e4a39e
AS
3758 else
3759 {
3760 switch (TYPE_CODE (type))
4c4b4cd2
PH
3761 {
3762 case TYPE_CODE_INT:
3763 case TYPE_CODE_FLT:
3764 return 1;
3765 case TYPE_CODE_RANGE:
3766 return (type == TYPE_TARGET_TYPE (type)
3767 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3768 default:
3769 return 0;
3770 }
d2e4a39e 3771 }
14f9c5c9
AS
3772}
3773
4c4b4cd2 3774/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3775
3776static int
d2e4a39e 3777integer_type_p (struct type *type)
14f9c5c9
AS
3778{
3779 if (type == NULL)
3780 return 0;
d2e4a39e
AS
3781 else
3782 {
3783 switch (TYPE_CODE (type))
4c4b4cd2
PH
3784 {
3785 case TYPE_CODE_INT:
3786 return 1;
3787 case TYPE_CODE_RANGE:
3788 return (type == TYPE_TARGET_TYPE (type)
3789 || integer_type_p (TYPE_TARGET_TYPE (type)));
3790 default:
3791 return 0;
3792 }
d2e4a39e 3793 }
14f9c5c9
AS
3794}
3795
4c4b4cd2 3796/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3797
3798static int
d2e4a39e 3799scalar_type_p (struct type *type)
14f9c5c9
AS
3800{
3801 if (type == NULL)
3802 return 0;
d2e4a39e
AS
3803 else
3804 {
3805 switch (TYPE_CODE (type))
4c4b4cd2
PH
3806 {
3807 case TYPE_CODE_INT:
3808 case TYPE_CODE_RANGE:
3809 case TYPE_CODE_ENUM:
3810 case TYPE_CODE_FLT:
3811 return 1;
3812 default:
3813 return 0;
3814 }
d2e4a39e 3815 }
14f9c5c9
AS
3816}
3817
4c4b4cd2 3818/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3819
3820static int
d2e4a39e 3821discrete_type_p (struct type *type)
14f9c5c9
AS
3822{
3823 if (type == NULL)
3824 return 0;
d2e4a39e
AS
3825 else
3826 {
3827 switch (TYPE_CODE (type))
4c4b4cd2
PH
3828 {
3829 case TYPE_CODE_INT:
3830 case TYPE_CODE_RANGE:
3831 case TYPE_CODE_ENUM:
872f0337 3832 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3833 return 1;
3834 default:
3835 return 0;
3836 }
d2e4a39e 3837 }
14f9c5c9
AS
3838}
3839
4c4b4cd2
PH
3840/* Returns non-zero if OP with operands in the vector ARGS could be
3841 a user-defined function. Errs on the side of pre-defined operators
3842 (i.e., result 0). */
14f9c5c9
AS
3843
3844static int
d2e4a39e 3845possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3846{
76a01679 3847 struct type *type0 =
df407dfe 3848 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3849 struct type *type1 =
df407dfe 3850 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3851
4c4b4cd2
PH
3852 if (type0 == NULL)
3853 return 0;
3854
14f9c5c9
AS
3855 switch (op)
3856 {
3857 default:
3858 return 0;
3859
3860 case BINOP_ADD:
3861 case BINOP_SUB:
3862 case BINOP_MUL:
3863 case BINOP_DIV:
d2e4a39e 3864 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3865
3866 case BINOP_REM:
3867 case BINOP_MOD:
3868 case BINOP_BITWISE_AND:
3869 case BINOP_BITWISE_IOR:
3870 case BINOP_BITWISE_XOR:
d2e4a39e 3871 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3872
3873 case BINOP_EQUAL:
3874 case BINOP_NOTEQUAL:
3875 case BINOP_LESS:
3876 case BINOP_GTR:
3877 case BINOP_LEQ:
3878 case BINOP_GEQ:
d2e4a39e 3879 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3880
3881 case BINOP_CONCAT:
ee90b9ab 3882 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3883
3884 case BINOP_EXP:
d2e4a39e 3885 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3886
3887 case UNOP_NEG:
3888 case UNOP_PLUS:
3889 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3890 case UNOP_ABS:
3891 return (!numeric_type_p (type0));
14f9c5c9
AS
3892
3893 }
3894}
3895\f
4c4b4cd2 3896 /* Renaming */
14f9c5c9 3897
aeb5907d
JB
3898/* NOTES:
3899
3900 1. In the following, we assume that a renaming type's name may
3901 have an ___XD suffix. It would be nice if this went away at some
3902 point.
3903 2. We handle both the (old) purely type-based representation of
3904 renamings and the (new) variable-based encoding. At some point,
3905 it is devoutly to be hoped that the former goes away
3906 (FIXME: hilfinger-2007-07-09).
3907 3. Subprogram renamings are not implemented, although the XRS
3908 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3909
3910/* If SYM encodes a renaming,
3911
3912 <renaming> renames <renamed entity>,
3913
3914 sets *LEN to the length of the renamed entity's name,
3915 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3916 the string describing the subcomponent selected from the renamed
0963b4bd 3917 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3918 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3919 are undefined). Otherwise, returns a value indicating the category
3920 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3921 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3922 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3923 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3924 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3925 may be NULL, in which case they are not assigned.
3926
3927 [Currently, however, GCC does not generate subprogram renamings.] */
3928
3929enum ada_renaming_category
3930ada_parse_renaming (struct symbol *sym,
3931 const char **renamed_entity, int *len,
3932 const char **renaming_expr)
3933{
3934 enum ada_renaming_category kind;
3935 const char *info;
3936 const char *suffix;
3937
3938 if (sym == NULL)
3939 return ADA_NOT_RENAMING;
3940 switch (SYMBOL_CLASS (sym))
14f9c5c9 3941 {
aeb5907d
JB
3942 default:
3943 return ADA_NOT_RENAMING;
3944 case LOC_TYPEDEF:
3945 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3946 renamed_entity, len, renaming_expr);
3947 case LOC_LOCAL:
3948 case LOC_STATIC:
3949 case LOC_COMPUTED:
3950 case LOC_OPTIMIZED_OUT:
3951 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3952 if (info == NULL)
3953 return ADA_NOT_RENAMING;
3954 switch (info[5])
3955 {
3956 case '_':
3957 kind = ADA_OBJECT_RENAMING;
3958 info += 6;
3959 break;
3960 case 'E':
3961 kind = ADA_EXCEPTION_RENAMING;
3962 info += 7;
3963 break;
3964 case 'P':
3965 kind = ADA_PACKAGE_RENAMING;
3966 info += 7;
3967 break;
3968 case 'S':
3969 kind = ADA_SUBPROGRAM_RENAMING;
3970 info += 7;
3971 break;
3972 default:
3973 return ADA_NOT_RENAMING;
3974 }
14f9c5c9 3975 }
4c4b4cd2 3976
aeb5907d
JB
3977 if (renamed_entity != NULL)
3978 *renamed_entity = info;
3979 suffix = strstr (info, "___XE");
3980 if (suffix == NULL || suffix == info)
3981 return ADA_NOT_RENAMING;
3982 if (len != NULL)
3983 *len = strlen (info) - strlen (suffix);
3984 suffix += 5;
3985 if (renaming_expr != NULL)
3986 *renaming_expr = suffix;
3987 return kind;
3988}
3989
3990/* Assuming TYPE encodes a renaming according to the old encoding in
3991 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3992 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3993 ADA_NOT_RENAMING otherwise. */
3994static enum ada_renaming_category
3995parse_old_style_renaming (struct type *type,
3996 const char **renamed_entity, int *len,
3997 const char **renaming_expr)
3998{
3999 enum ada_renaming_category kind;
4000 const char *name;
4001 const char *info;
4002 const char *suffix;
14f9c5c9 4003
aeb5907d
JB
4004 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4005 || TYPE_NFIELDS (type) != 1)
4006 return ADA_NOT_RENAMING;
14f9c5c9 4007
aeb5907d
JB
4008 name = type_name_no_tag (type);
4009 if (name == NULL)
4010 return ADA_NOT_RENAMING;
4011
4012 name = strstr (name, "___XR");
4013 if (name == NULL)
4014 return ADA_NOT_RENAMING;
4015 switch (name[5])
4016 {
4017 case '\0':
4018 case '_':
4019 kind = ADA_OBJECT_RENAMING;
4020 break;
4021 case 'E':
4022 kind = ADA_EXCEPTION_RENAMING;
4023 break;
4024 case 'P':
4025 kind = ADA_PACKAGE_RENAMING;
4026 break;
4027 case 'S':
4028 kind = ADA_SUBPROGRAM_RENAMING;
4029 break;
4030 default:
4031 return ADA_NOT_RENAMING;
4032 }
14f9c5c9 4033
aeb5907d
JB
4034 info = TYPE_FIELD_NAME (type, 0);
4035 if (info == NULL)
4036 return ADA_NOT_RENAMING;
4037 if (renamed_entity != NULL)
4038 *renamed_entity = info;
4039 suffix = strstr (info, "___XE");
4040 if (renaming_expr != NULL)
4041 *renaming_expr = suffix + 5;
4042 if (suffix == NULL || suffix == info)
4043 return ADA_NOT_RENAMING;
4044 if (len != NULL)
4045 *len = suffix - info;
4046 return kind;
a5ee536b
JB
4047}
4048
4049/* Compute the value of the given RENAMING_SYM, which is expected to
4050 be a symbol encoding a renaming expression. BLOCK is the block
4051 used to evaluate the renaming. */
52ce6436 4052
a5ee536b
JB
4053static struct value *
4054ada_read_renaming_var_value (struct symbol *renaming_sym,
4055 struct block *block)
4056{
4057 char *sym_name;
4058 struct expression *expr;
4059 struct value *value;
4060 struct cleanup *old_chain = NULL;
4061
4062 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4063 old_chain = make_cleanup (xfree, sym_name);
4064 expr = parse_exp_1 (&sym_name, block, 0);
4065 make_cleanup (free_current_contents, &expr);
4066 value = evaluate_expression (expr);
4067
4068 do_cleanups (old_chain);
4069 return value;
4070}
14f9c5c9 4071\f
d2e4a39e 4072
4c4b4cd2 4073 /* Evaluation: Function Calls */
14f9c5c9 4074
4c4b4cd2 4075/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4076 lvalues, and otherwise has the side-effect of allocating memory
4077 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4078
d2e4a39e 4079static struct value *
40bc484c 4080ensure_lval (struct value *val)
14f9c5c9 4081{
40bc484c
JB
4082 if (VALUE_LVAL (val) == not_lval
4083 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4084 {
df407dfe 4085 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4086 const CORE_ADDR addr =
4087 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4088
40bc484c 4089 set_value_address (val, addr);
a84a8a0d 4090 VALUE_LVAL (val) = lval_memory;
40bc484c 4091 write_memory (addr, value_contents (val), len);
c3e5cd34 4092 }
14f9c5c9
AS
4093
4094 return val;
4095}
4096
4097/* Return the value ACTUAL, converted to be an appropriate value for a
4098 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4099 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4100 values not residing in memory, updating it as needed. */
14f9c5c9 4101
a93c0eb6 4102struct value *
40bc484c 4103ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4104{
df407dfe 4105 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4106 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4107 struct type *formal_target =
4108 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4109 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4110 struct type *actual_target =
4111 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4112 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4113
4c4b4cd2 4114 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4115 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4116 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4117 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4118 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4119 {
a84a8a0d 4120 struct value *result;
5b4ee69b 4121
14f9c5c9 4122 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4123 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4124 result = desc_data (actual);
14f9c5c9 4125 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4126 {
4127 if (VALUE_LVAL (actual) != lval_memory)
4128 {
4129 struct value *val;
5b4ee69b 4130
df407dfe 4131 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4132 val = allocate_value (actual_type);
990a07ab 4133 memcpy ((char *) value_contents_raw (val),
0fd88904 4134 (char *) value_contents (actual),
4c4b4cd2 4135 TYPE_LENGTH (actual_type));
40bc484c 4136 actual = ensure_lval (val);
4c4b4cd2 4137 }
a84a8a0d 4138 result = value_addr (actual);
4c4b4cd2 4139 }
a84a8a0d
JB
4140 else
4141 return actual;
4142 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
4143 }
4144 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4145 return ada_value_ind (actual);
4146
4147 return actual;
4148}
4149
438c98a1
JB
4150/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4151 type TYPE. This is usually an inefficient no-op except on some targets
4152 (such as AVR) where the representation of a pointer and an address
4153 differs. */
4154
4155static CORE_ADDR
4156value_pointer (struct value *value, struct type *type)
4157{
4158 struct gdbarch *gdbarch = get_type_arch (type);
4159 unsigned len = TYPE_LENGTH (type);
4160 gdb_byte *buf = alloca (len);
4161 CORE_ADDR addr;
4162
4163 addr = value_address (value);
4164 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4165 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4166 return addr;
4167}
4168
14f9c5c9 4169
4c4b4cd2
PH
4170/* Push a descriptor of type TYPE for array value ARR on the stack at
4171 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4172 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4173 to-descriptor type rather than a descriptor type), a struct value *
4174 representing a pointer to this descriptor. */
14f9c5c9 4175
d2e4a39e 4176static struct value *
40bc484c 4177make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4178{
d2e4a39e
AS
4179 struct type *bounds_type = desc_bounds_type (type);
4180 struct type *desc_type = desc_base_type (type);
4181 struct value *descriptor = allocate_value (desc_type);
4182 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4183 int i;
d2e4a39e 4184
0963b4bd
MS
4185 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4186 i > 0; i -= 1)
14f9c5c9 4187 {
19f220c3
JK
4188 modify_field (value_type (bounds), value_contents_writeable (bounds),
4189 ada_array_bound (arr, i, 0),
4190 desc_bound_bitpos (bounds_type, i, 0),
4191 desc_bound_bitsize (bounds_type, i, 0));
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 1),
4194 desc_bound_bitpos (bounds_type, i, 1),
4195 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4196 }
d2e4a39e 4197
40bc484c 4198 bounds = ensure_lval (bounds);
d2e4a39e 4199
19f220c3
JK
4200 modify_field (value_type (descriptor),
4201 value_contents_writeable (descriptor),
4202 value_pointer (ensure_lval (arr),
4203 TYPE_FIELD_TYPE (desc_type, 0)),
4204 fat_pntr_data_bitpos (desc_type),
4205 fat_pntr_data_bitsize (desc_type));
4206
4207 modify_field (value_type (descriptor),
4208 value_contents_writeable (descriptor),
4209 value_pointer (bounds,
4210 TYPE_FIELD_TYPE (desc_type, 1)),
4211 fat_pntr_bounds_bitpos (desc_type),
4212 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4213
40bc484c 4214 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4215
4216 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4217 return value_addr (descriptor);
4218 else
4219 return descriptor;
4220}
14f9c5c9 4221\f
963a6417 4222/* Dummy definitions for an experimental caching module that is not
0963b4bd 4223 * used in the public sources. */
96d887e8 4224
96d887e8
PH
4225static int
4226lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4227 struct symbol **sym, struct block **block)
96d887e8
PH
4228{
4229 return 0;
4230}
4231
4232static void
4233cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 4234 struct block *block)
96d887e8
PH
4235{
4236}
4c4b4cd2
PH
4237\f
4238 /* Symbol Lookup */
4239
c0431670
JB
4240/* Return nonzero if wild matching should be used when searching for
4241 all symbols matching LOOKUP_NAME.
4242
4243 LOOKUP_NAME is expected to be a symbol name after transformation
4244 for Ada lookups (see ada_name_for_lookup). */
4245
4246static int
4247should_use_wild_match (const char *lookup_name)
4248{
4249 return (strstr (lookup_name, "__") == NULL);
4250}
4251
4c4b4cd2
PH
4252/* Return the result of a standard (literal, C-like) lookup of NAME in
4253 given DOMAIN, visible from lexical block BLOCK. */
4254
4255static struct symbol *
4256standard_lookup (const char *name, const struct block *block,
4257 domain_enum domain)
4258{
4259 struct symbol *sym;
4c4b4cd2 4260
2570f2b7 4261 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4262 return sym;
2570f2b7
UW
4263 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4264 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4265 return sym;
4266}
4267
4268
4269/* Non-zero iff there is at least one non-function/non-enumeral symbol
4270 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4271 since they contend in overloading in the same way. */
4272static int
4273is_nonfunction (struct ada_symbol_info syms[], int n)
4274{
4275 int i;
4276
4277 for (i = 0; i < n; i += 1)
4278 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4279 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4280 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4281 return 1;
4282
4283 return 0;
4284}
4285
4286/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4287 struct types. Otherwise, they may not. */
14f9c5c9
AS
4288
4289static int
d2e4a39e 4290equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4291{
d2e4a39e 4292 if (type0 == type1)
14f9c5c9 4293 return 1;
d2e4a39e 4294 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4295 || TYPE_CODE (type0) != TYPE_CODE (type1))
4296 return 0;
d2e4a39e 4297 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4298 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4299 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4300 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4301 return 1;
d2e4a39e 4302
14f9c5c9
AS
4303 return 0;
4304}
4305
4306/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4307 no more defined than that of SYM1. */
14f9c5c9
AS
4308
4309static int
d2e4a39e 4310lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4311{
4312 if (sym0 == sym1)
4313 return 1;
176620f1 4314 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4315 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4316 return 0;
4317
d2e4a39e 4318 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4319 {
4320 case LOC_UNDEF:
4321 return 1;
4322 case LOC_TYPEDEF:
4323 {
4c4b4cd2
PH
4324 struct type *type0 = SYMBOL_TYPE (sym0);
4325 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4326 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4327 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4328 int len0 = strlen (name0);
5b4ee69b 4329
4c4b4cd2
PH
4330 return
4331 TYPE_CODE (type0) == TYPE_CODE (type1)
4332 && (equiv_types (type0, type1)
4333 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4334 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4335 }
4336 case LOC_CONST:
4337 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4338 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4339 default:
4340 return 0;
14f9c5c9
AS
4341 }
4342}
4343
4c4b4cd2
PH
4344/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4345 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4346
4347static void
76a01679
JB
4348add_defn_to_vec (struct obstack *obstackp,
4349 struct symbol *sym,
2570f2b7 4350 struct block *block)
14f9c5c9
AS
4351{
4352 int i;
4c4b4cd2 4353 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4354
529cad9c
PH
4355 /* Do not try to complete stub types, as the debugger is probably
4356 already scanning all symbols matching a certain name at the
4357 time when this function is called. Trying to replace the stub
4358 type by its associated full type will cause us to restart a scan
4359 which may lead to an infinite recursion. Instead, the client
4360 collecting the matching symbols will end up collecting several
4361 matches, with at least one of them complete. It can then filter
4362 out the stub ones if needed. */
4363
4c4b4cd2
PH
4364 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4365 {
4366 if (lesseq_defined_than (sym, prevDefns[i].sym))
4367 return;
4368 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4369 {
4370 prevDefns[i].sym = sym;
4371 prevDefns[i].block = block;
4c4b4cd2 4372 return;
76a01679 4373 }
4c4b4cd2
PH
4374 }
4375
4376 {
4377 struct ada_symbol_info info;
4378
4379 info.sym = sym;
4380 info.block = block;
4c4b4cd2
PH
4381 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4382 }
4383}
4384
4385/* Number of ada_symbol_info structures currently collected in
4386 current vector in *OBSTACKP. */
4387
76a01679
JB
4388static int
4389num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4390{
4391 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4392}
4393
4394/* Vector of ada_symbol_info structures currently collected in current
4395 vector in *OBSTACKP. If FINISH, close off the vector and return
4396 its final address. */
4397
76a01679 4398static struct ada_symbol_info *
4c4b4cd2
PH
4399defns_collected (struct obstack *obstackp, int finish)
4400{
4401 if (finish)
4402 return obstack_finish (obstackp);
4403 else
4404 return (struct ada_symbol_info *) obstack_base (obstackp);
4405}
4406
96d887e8
PH
4407/* Return a minimal symbol matching NAME according to Ada decoding
4408 rules. Returns NULL if there is no such minimal symbol. Names
4409 prefixed with "standard__" are handled specially: "standard__" is
4410 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4411
96d887e8
PH
4412struct minimal_symbol *
4413ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4414{
4c4b4cd2 4415 struct objfile *objfile;
96d887e8 4416 struct minimal_symbol *msymbol;
c0431670 4417 const int wild_match = should_use_wild_match (name);
4c4b4cd2 4418
c0431670
JB
4419 /* Special case: If the user specifies a symbol name inside package
4420 Standard, do a non-wild matching of the symbol name without
4421 the "standard__" prefix. This was primarily introduced in order
4422 to allow the user to specifically access the standard exceptions
4423 using, for instance, Standard.Constraint_Error when Constraint_Error
4424 is ambiguous (due to the user defining its own Constraint_Error
4425 entity inside its program). */
96d887e8 4426 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4427 name += sizeof ("standard__") - 1;
4c4b4cd2 4428
96d887e8
PH
4429 ALL_MSYMBOLS (objfile, msymbol)
4430 {
40658b94 4431 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
96d887e8
PH
4432 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4433 return msymbol;
4434 }
4c4b4cd2 4435
96d887e8
PH
4436 return NULL;
4437}
4c4b4cd2 4438
96d887e8
PH
4439/* For all subprograms that statically enclose the subprogram of the
4440 selected frame, add symbols matching identifier NAME in DOMAIN
4441 and their blocks to the list of data in OBSTACKP, as for
4442 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4443 wildcard prefix. */
4c4b4cd2 4444
96d887e8
PH
4445static void
4446add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4447 const char *name, domain_enum namespace,
96d887e8
PH
4448 int wild_match)
4449{
96d887e8 4450}
14f9c5c9 4451
96d887e8
PH
4452/* True if TYPE is definitely an artificial type supplied to a symbol
4453 for which no debugging information was given in the symbol file. */
14f9c5c9 4454
96d887e8
PH
4455static int
4456is_nondebugging_type (struct type *type)
4457{
0d5cff50 4458 const char *name = ada_type_name (type);
5b4ee69b 4459
96d887e8
PH
4460 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4461}
4c4b4cd2 4462
8f17729f
JB
4463/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4464 that are deemed "identical" for practical purposes.
4465
4466 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4467 types and that their number of enumerals is identical (in other
4468 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4469
4470static int
4471ada_identical_enum_types_p (struct type *type1, struct type *type2)
4472{
4473 int i;
4474
4475 /* The heuristic we use here is fairly conservative. We consider
4476 that 2 enumerate types are identical if they have the same
4477 number of enumerals and that all enumerals have the same
4478 underlying value and name. */
4479
4480 /* All enums in the type should have an identical underlying value. */
4481 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4482 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4483 return 0;
4484
4485 /* All enumerals should also have the same name (modulo any numerical
4486 suffix). */
4487 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4488 {
0d5cff50
DE
4489 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4490 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4491 int len_1 = strlen (name_1);
4492 int len_2 = strlen (name_2);
4493
4494 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4495 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4496 if (len_1 != len_2
4497 || strncmp (TYPE_FIELD_NAME (type1, i),
4498 TYPE_FIELD_NAME (type2, i),
4499 len_1) != 0)
4500 return 0;
4501 }
4502
4503 return 1;
4504}
4505
4506/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4507 that are deemed "identical" for practical purposes. Sometimes,
4508 enumerals are not strictly identical, but their types are so similar
4509 that they can be considered identical.
4510
4511 For instance, consider the following code:
4512
4513 type Color is (Black, Red, Green, Blue, White);
4514 type RGB_Color is new Color range Red .. Blue;
4515
4516 Type RGB_Color is a subrange of an implicit type which is a copy
4517 of type Color. If we call that implicit type RGB_ColorB ("B" is
4518 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4519 As a result, when an expression references any of the enumeral
4520 by name (Eg. "print green"), the expression is technically
4521 ambiguous and the user should be asked to disambiguate. But
4522 doing so would only hinder the user, since it wouldn't matter
4523 what choice he makes, the outcome would always be the same.
4524 So, for practical purposes, we consider them as the same. */
4525
4526static int
4527symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4528{
4529 int i;
4530
4531 /* Before performing a thorough comparison check of each type,
4532 we perform a series of inexpensive checks. We expect that these
4533 checks will quickly fail in the vast majority of cases, and thus
4534 help prevent the unnecessary use of a more expensive comparison.
4535 Said comparison also expects us to make some of these checks
4536 (see ada_identical_enum_types_p). */
4537
4538 /* Quick check: All symbols should have an enum type. */
4539 for (i = 0; i < nsyms; i++)
4540 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4541 return 0;
4542
4543 /* Quick check: They should all have the same value. */
4544 for (i = 1; i < nsyms; i++)
4545 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4546 return 0;
4547
4548 /* Quick check: They should all have the same number of enumerals. */
4549 for (i = 1; i < nsyms; i++)
4550 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4551 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4552 return 0;
4553
4554 /* All the sanity checks passed, so we might have a set of
4555 identical enumeration types. Perform a more complete
4556 comparison of the type of each symbol. */
4557 for (i = 1; i < nsyms; i++)
4558 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4559 SYMBOL_TYPE (syms[0].sym)))
4560 return 0;
4561
4562 return 1;
4563}
4564
96d887e8
PH
4565/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4566 duplicate other symbols in the list (The only case I know of where
4567 this happens is when object files containing stabs-in-ecoff are
4568 linked with files containing ordinary ecoff debugging symbols (or no
4569 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4570 Returns the number of items in the modified list. */
4c4b4cd2 4571
96d887e8
PH
4572static int
4573remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4574{
4575 int i, j;
4c4b4cd2 4576
8f17729f
JB
4577 /* We should never be called with less than 2 symbols, as there
4578 cannot be any extra symbol in that case. But it's easy to
4579 handle, since we have nothing to do in that case. */
4580 if (nsyms < 2)
4581 return nsyms;
4582
96d887e8
PH
4583 i = 0;
4584 while (i < nsyms)
4585 {
a35ddb44 4586 int remove_p = 0;
339c13b6
JB
4587
4588 /* If two symbols have the same name and one of them is a stub type,
4589 the get rid of the stub. */
4590
4591 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4592 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4593 {
4594 for (j = 0; j < nsyms; j++)
4595 {
4596 if (j != i
4597 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4598 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4599 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4600 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4601 remove_p = 1;
339c13b6
JB
4602 }
4603 }
4604
4605 /* Two symbols with the same name, same class and same address
4606 should be identical. */
4607
4608 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4609 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4610 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4611 {
4612 for (j = 0; j < nsyms; j += 1)
4613 {
4614 if (i != j
4615 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4616 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4617 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4618 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4619 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4620 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4621 remove_p = 1;
4c4b4cd2 4622 }
4c4b4cd2 4623 }
339c13b6 4624
a35ddb44 4625 if (remove_p)
339c13b6
JB
4626 {
4627 for (j = i + 1; j < nsyms; j += 1)
4628 syms[j - 1] = syms[j];
4629 nsyms -= 1;
4630 }
4631
96d887e8 4632 i += 1;
14f9c5c9 4633 }
8f17729f
JB
4634
4635 /* If all the remaining symbols are identical enumerals, then
4636 just keep the first one and discard the rest.
4637
4638 Unlike what we did previously, we do not discard any entry
4639 unless they are ALL identical. This is because the symbol
4640 comparison is not a strict comparison, but rather a practical
4641 comparison. If all symbols are considered identical, then
4642 we can just go ahead and use the first one and discard the rest.
4643 But if we cannot reduce the list to a single element, we have
4644 to ask the user to disambiguate anyways. And if we have to
4645 present a multiple-choice menu, it's less confusing if the list
4646 isn't missing some choices that were identical and yet distinct. */
4647 if (symbols_are_identical_enums (syms, nsyms))
4648 nsyms = 1;
4649
96d887e8 4650 return nsyms;
14f9c5c9
AS
4651}
4652
96d887e8
PH
4653/* Given a type that corresponds to a renaming entity, use the type name
4654 to extract the scope (package name or function name, fully qualified,
4655 and following the GNAT encoding convention) where this renaming has been
4656 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4657
96d887e8
PH
4658static char *
4659xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4660{
96d887e8 4661 /* The renaming types adhere to the following convention:
0963b4bd 4662 <scope>__<rename>___<XR extension>.
96d887e8
PH
4663 So, to extract the scope, we search for the "___XR" extension,
4664 and then backtrack until we find the first "__". */
76a01679 4665
96d887e8
PH
4666 const char *name = type_name_no_tag (renaming_type);
4667 char *suffix = strstr (name, "___XR");
4668 char *last;
4669 int scope_len;
4670 char *scope;
14f9c5c9 4671
96d887e8
PH
4672 /* Now, backtrack a bit until we find the first "__". Start looking
4673 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4674
96d887e8
PH
4675 for (last = suffix - 3; last > name; last--)
4676 if (last[0] == '_' && last[1] == '_')
4677 break;
76a01679 4678
96d887e8 4679 /* Make a copy of scope and return it. */
14f9c5c9 4680
96d887e8
PH
4681 scope_len = last - name;
4682 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4683
96d887e8
PH
4684 strncpy (scope, name, scope_len);
4685 scope[scope_len] = '\0';
4c4b4cd2 4686
96d887e8 4687 return scope;
4c4b4cd2
PH
4688}
4689
96d887e8 4690/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4691
96d887e8
PH
4692static int
4693is_package_name (const char *name)
4c4b4cd2 4694{
96d887e8
PH
4695 /* Here, We take advantage of the fact that no symbols are generated
4696 for packages, while symbols are generated for each function.
4697 So the condition for NAME represent a package becomes equivalent
4698 to NAME not existing in our list of symbols. There is only one
4699 small complication with library-level functions (see below). */
4c4b4cd2 4700
96d887e8 4701 char *fun_name;
76a01679 4702
96d887e8
PH
4703 /* If it is a function that has not been defined at library level,
4704 then we should be able to look it up in the symbols. */
4705 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4706 return 0;
14f9c5c9 4707
96d887e8
PH
4708 /* Library-level function names start with "_ada_". See if function
4709 "_ada_" followed by NAME can be found. */
14f9c5c9 4710
96d887e8 4711 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4712 functions names cannot contain "__" in them. */
96d887e8
PH
4713 if (strstr (name, "__") != NULL)
4714 return 0;
4c4b4cd2 4715
b435e160 4716 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4717
96d887e8
PH
4718 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4719}
14f9c5c9 4720
96d887e8 4721/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4722 not visible from FUNCTION_NAME. */
14f9c5c9 4723
96d887e8 4724static int
0d5cff50 4725old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4726{
aeb5907d
JB
4727 char *scope;
4728
4729 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4730 return 0;
4731
4732 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4733
96d887e8 4734 make_cleanup (xfree, scope);
14f9c5c9 4735
96d887e8
PH
4736 /* If the rename has been defined in a package, then it is visible. */
4737 if (is_package_name (scope))
aeb5907d 4738 return 0;
14f9c5c9 4739
96d887e8
PH
4740 /* Check that the rename is in the current function scope by checking
4741 that its name starts with SCOPE. */
76a01679 4742
96d887e8
PH
4743 /* If the function name starts with "_ada_", it means that it is
4744 a library-level function. Strip this prefix before doing the
4745 comparison, as the encoding for the renaming does not contain
4746 this prefix. */
4747 if (strncmp (function_name, "_ada_", 5) == 0)
4748 function_name += 5;
f26caa11 4749
aeb5907d 4750 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4751}
4752
aeb5907d
JB
4753/* Remove entries from SYMS that corresponds to a renaming entity that
4754 is not visible from the function associated with CURRENT_BLOCK or
4755 that is superfluous due to the presence of more specific renaming
4756 information. Places surviving symbols in the initial entries of
4757 SYMS and returns the number of surviving symbols.
96d887e8
PH
4758
4759 Rationale:
aeb5907d
JB
4760 First, in cases where an object renaming is implemented as a
4761 reference variable, GNAT may produce both the actual reference
4762 variable and the renaming encoding. In this case, we discard the
4763 latter.
4764
4765 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4766 entity. Unfortunately, STABS currently does not support the definition
4767 of types that are local to a given lexical block, so all renamings types
4768 are emitted at library level. As a consequence, if an application
4769 contains two renaming entities using the same name, and a user tries to
4770 print the value of one of these entities, the result of the ada symbol
4771 lookup will also contain the wrong renaming type.
f26caa11 4772
96d887e8
PH
4773 This function partially covers for this limitation by attempting to
4774 remove from the SYMS list renaming symbols that should be visible
4775 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4776 method with the current information available. The implementation
4777 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4778
4779 - When the user tries to print a rename in a function while there
4780 is another rename entity defined in a package: Normally, the
4781 rename in the function has precedence over the rename in the
4782 package, so the latter should be removed from the list. This is
4783 currently not the case.
4784
4785 - This function will incorrectly remove valid renames if
4786 the CURRENT_BLOCK corresponds to a function which symbol name
4787 has been changed by an "Export" pragma. As a consequence,
4788 the user will be unable to print such rename entities. */
4c4b4cd2 4789
14f9c5c9 4790static int
aeb5907d
JB
4791remove_irrelevant_renamings (struct ada_symbol_info *syms,
4792 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4793{
4794 struct symbol *current_function;
0d5cff50 4795 const char *current_function_name;
4c4b4cd2 4796 int i;
aeb5907d
JB
4797 int is_new_style_renaming;
4798
4799 /* If there is both a renaming foo___XR... encoded as a variable and
4800 a simple variable foo in the same block, discard the latter.
0963b4bd 4801 First, zero out such symbols, then compress. */
aeb5907d
JB
4802 is_new_style_renaming = 0;
4803 for (i = 0; i < nsyms; i += 1)
4804 {
4805 struct symbol *sym = syms[i].sym;
4806 struct block *block = syms[i].block;
4807 const char *name;
4808 const char *suffix;
4809
4810 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4811 continue;
4812 name = SYMBOL_LINKAGE_NAME (sym);
4813 suffix = strstr (name, "___XR");
4814
4815 if (suffix != NULL)
4816 {
4817 int name_len = suffix - name;
4818 int j;
5b4ee69b 4819
aeb5907d
JB
4820 is_new_style_renaming = 1;
4821 for (j = 0; j < nsyms; j += 1)
4822 if (i != j && syms[j].sym != NULL
4823 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4824 name_len) == 0
4825 && block == syms[j].block)
4826 syms[j].sym = NULL;
4827 }
4828 }
4829 if (is_new_style_renaming)
4830 {
4831 int j, k;
4832
4833 for (j = k = 0; j < nsyms; j += 1)
4834 if (syms[j].sym != NULL)
4835 {
4836 syms[k] = syms[j];
4837 k += 1;
4838 }
4839 return k;
4840 }
4c4b4cd2
PH
4841
4842 /* Extract the function name associated to CURRENT_BLOCK.
4843 Abort if unable to do so. */
76a01679 4844
4c4b4cd2
PH
4845 if (current_block == NULL)
4846 return nsyms;
76a01679 4847
7f0df278 4848 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4849 if (current_function == NULL)
4850 return nsyms;
4851
4852 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4853 if (current_function_name == NULL)
4854 return nsyms;
4855
4856 /* Check each of the symbols, and remove it from the list if it is
4857 a type corresponding to a renaming that is out of the scope of
4858 the current block. */
4859
4860 i = 0;
4861 while (i < nsyms)
4862 {
aeb5907d
JB
4863 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4864 == ADA_OBJECT_RENAMING
4865 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4866 {
4867 int j;
5b4ee69b 4868
aeb5907d 4869 for (j = i + 1; j < nsyms; j += 1)
76a01679 4870 syms[j - 1] = syms[j];
4c4b4cd2
PH
4871 nsyms -= 1;
4872 }
4873 else
4874 i += 1;
4875 }
4876
4877 return nsyms;
4878}
4879
339c13b6
JB
4880/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4881 whose name and domain match NAME and DOMAIN respectively.
4882 If no match was found, then extend the search to "enclosing"
4883 routines (in other words, if we're inside a nested function,
4884 search the symbols defined inside the enclosing functions).
4885
4886 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4887
4888static void
4889ada_add_local_symbols (struct obstack *obstackp, const char *name,
4890 struct block *block, domain_enum domain,
4891 int wild_match)
4892{
4893 int block_depth = 0;
4894
4895 while (block != NULL)
4896 {
4897 block_depth += 1;
4898 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4899
4900 /* If we found a non-function match, assume that's the one. */
4901 if (is_nonfunction (defns_collected (obstackp, 0),
4902 num_defns_collected (obstackp)))
4903 return;
4904
4905 block = BLOCK_SUPERBLOCK (block);
4906 }
4907
4908 /* If no luck so far, try to find NAME as a local symbol in some lexically
4909 enclosing subprogram. */
4910 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4911 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4912}
4913
ccefe4c4 4914/* An object of this type is used as the user_data argument when
40658b94 4915 calling the map_matching_symbols method. */
ccefe4c4 4916
40658b94 4917struct match_data
ccefe4c4 4918{
40658b94 4919 struct objfile *objfile;
ccefe4c4 4920 struct obstack *obstackp;
40658b94
PH
4921 struct symbol *arg_sym;
4922 int found_sym;
ccefe4c4
TT
4923};
4924
40658b94
PH
4925/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4926 to a list of symbols. DATA0 is a pointer to a struct match_data *
4927 containing the obstack that collects the symbol list, the file that SYM
4928 must come from, a flag indicating whether a non-argument symbol has
4929 been found in the current block, and the last argument symbol
4930 passed in SYM within the current block (if any). When SYM is null,
4931 marking the end of a block, the argument symbol is added if no
4932 other has been found. */
ccefe4c4 4933
40658b94
PH
4934static int
4935aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4936{
40658b94
PH
4937 struct match_data *data = (struct match_data *) data0;
4938
4939 if (sym == NULL)
4940 {
4941 if (!data->found_sym && data->arg_sym != NULL)
4942 add_defn_to_vec (data->obstackp,
4943 fixup_symbol_section (data->arg_sym, data->objfile),
4944 block);
4945 data->found_sym = 0;
4946 data->arg_sym = NULL;
4947 }
4948 else
4949 {
4950 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4951 return 0;
4952 else if (SYMBOL_IS_ARGUMENT (sym))
4953 data->arg_sym = sym;
4954 else
4955 {
4956 data->found_sym = 1;
4957 add_defn_to_vec (data->obstackp,
4958 fixup_symbol_section (sym, data->objfile),
4959 block);
4960 }
4961 }
4962 return 0;
4963}
4964
4965/* Compare STRING1 to STRING2, with results as for strcmp.
4966 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4967 implies compare_names (STRING1, STRING2) (they may differ as to
4968 what symbols compare equal). */
5b4ee69b 4969
40658b94
PH
4970static int
4971compare_names (const char *string1, const char *string2)
4972{
4973 while (*string1 != '\0' && *string2 != '\0')
4974 {
4975 if (isspace (*string1) || isspace (*string2))
4976 return strcmp_iw_ordered (string1, string2);
4977 if (*string1 != *string2)
4978 break;
4979 string1 += 1;
4980 string2 += 1;
4981 }
4982 switch (*string1)
4983 {
4984 case '(':
4985 return strcmp_iw_ordered (string1, string2);
4986 case '_':
4987 if (*string2 == '\0')
4988 {
052874e8 4989 if (is_name_suffix (string1))
40658b94
PH
4990 return 0;
4991 else
1a1d5513 4992 return 1;
40658b94 4993 }
dbb8534f 4994 /* FALLTHROUGH */
40658b94
PH
4995 default:
4996 if (*string2 == '(')
4997 return strcmp_iw_ordered (string1, string2);
4998 else
4999 return *string1 - *string2;
5000 }
ccefe4c4
TT
5001}
5002
339c13b6
JB
5003/* Add to OBSTACKP all non-local symbols whose name and domain match
5004 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5005 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5006
5007static void
40658b94
PH
5008add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5009 domain_enum domain, int global,
5010 int is_wild_match)
339c13b6
JB
5011{
5012 struct objfile *objfile;
40658b94 5013 struct match_data data;
339c13b6 5014
6475f2fe 5015 memset (&data, 0, sizeof data);
ccefe4c4 5016 data.obstackp = obstackp;
339c13b6 5017
ccefe4c4 5018 ALL_OBJFILES (objfile)
40658b94
PH
5019 {
5020 data.objfile = objfile;
5021
5022 if (is_wild_match)
5023 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5024 aux_add_nonlocal_symbols, &data,
5025 wild_match, NULL);
5026 else
5027 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5028 aux_add_nonlocal_symbols, &data,
5029 full_match, compare_names);
5030 }
5031
5032 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5033 {
5034 ALL_OBJFILES (objfile)
5035 {
5036 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5037 strcpy (name1, "_ada_");
5038 strcpy (name1 + sizeof ("_ada_") - 1, name);
5039 data.objfile = objfile;
0963b4bd
MS
5040 objfile->sf->qf->map_matching_symbols (name1, domain,
5041 objfile, global,
5042 aux_add_nonlocal_symbols,
5043 &data,
40658b94
PH
5044 full_match, compare_names);
5045 }
5046 }
339c13b6
JB
5047}
5048
4c4b4cd2
PH
5049/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
5050 scope and in global scopes, returning the number of matches. Sets
6c9353d3 5051 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
5052 indicating the symbols found and the blocks and symbol tables (if
5053 any) in which they were found. This vector are transient---good only to
5054 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
5055 symbol match within the nest of blocks whose innermost member is BLOCK0,
5056 is the one match returned (no other matches in that or
d9680e73
TT
5057 enclosing blocks is returned). If there are any matches in or
5058 surrounding BLOCK0, then these alone are returned. Otherwise, if
5059 FULL_SEARCH is non-zero, then the search extends to global and
5060 file-scope (static) symbol tables.
4c4b4cd2
PH
5061 Names prefixed with "standard__" are handled specially: "standard__"
5062 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
5063
5064int
4c4b4cd2 5065ada_lookup_symbol_list (const char *name0, const struct block *block0,
d9680e73
TT
5066 domain_enum namespace,
5067 struct ada_symbol_info **results,
5068 int full_search)
14f9c5c9
AS
5069{
5070 struct symbol *sym;
14f9c5c9 5071 struct block *block;
4c4b4cd2 5072 const char *name;
c0431670 5073 const int wild_match = should_use_wild_match (name0);
14f9c5c9 5074 int cacheIfUnique;
4c4b4cd2 5075 int ndefns;
14f9c5c9 5076
4c4b4cd2
PH
5077 obstack_free (&symbol_list_obstack, NULL);
5078 obstack_init (&symbol_list_obstack);
14f9c5c9 5079
14f9c5c9
AS
5080 cacheIfUnique = 0;
5081
5082 /* Search specified block and its superiors. */
5083
4c4b4cd2 5084 name = name0;
76a01679
JB
5085 block = (struct block *) block0; /* FIXME: No cast ought to be
5086 needed, but adding const will
5087 have a cascade effect. */
339c13b6
JB
5088
5089 /* Special case: If the user specifies a symbol name inside package
5090 Standard, do a non-wild matching of the symbol name without
5091 the "standard__" prefix. This was primarily introduced in order
5092 to allow the user to specifically access the standard exceptions
5093 using, for instance, Standard.Constraint_Error when Constraint_Error
5094 is ambiguous (due to the user defining its own Constraint_Error
5095 entity inside its program). */
4c4b4cd2
PH
5096 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5097 {
4c4b4cd2
PH
5098 block = NULL;
5099 name = name0 + sizeof ("standard__") - 1;
5100 }
5101
339c13b6 5102 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5103
339c13b6
JB
5104 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5105 wild_match);
d9680e73 5106 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
14f9c5c9 5107 goto done;
d2e4a39e 5108
339c13b6
JB
5109 /* No non-global symbols found. Check our cache to see if we have
5110 already performed this search before. If we have, then return
5111 the same result. */
5112
14f9c5c9 5113 cacheIfUnique = 1;
2570f2b7 5114 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5115 {
5116 if (sym != NULL)
2570f2b7 5117 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5118 goto done;
5119 }
14f9c5c9 5120
339c13b6
JB
5121 /* Search symbols from all global blocks. */
5122
40658b94
PH
5123 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5124 wild_match);
d2e4a39e 5125
4c4b4cd2 5126 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5127 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5128
4c4b4cd2 5129 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94
PH
5130 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5131 wild_match);
14f9c5c9 5132
4c4b4cd2
PH
5133done:
5134 ndefns = num_defns_collected (&symbol_list_obstack);
5135 *results = defns_collected (&symbol_list_obstack, 1);
5136
5137 ndefns = remove_extra_symbols (*results, ndefns);
5138
2ad01556 5139 if (ndefns == 0 && full_search)
2570f2b7 5140 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5141
2ad01556 5142 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5143 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5144
aeb5907d 5145 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5146
14f9c5c9
AS
5147 return ndefns;
5148}
5149
f8eba3c6
TT
5150/* If NAME is the name of an entity, return a string that should
5151 be used to look that entity up in Ada units. This string should
5152 be deallocated after use using xfree.
5153
5154 NAME can have any form that the "break" or "print" commands might
5155 recognize. In other words, it does not have to be the "natural"
5156 name, or the "encoded" name. */
5157
5158char *
5159ada_name_for_lookup (const char *name)
5160{
5161 char *canon;
5162 int nlen = strlen (name);
5163
5164 if (name[0] == '<' && name[nlen - 1] == '>')
5165 {
5166 canon = xmalloc (nlen - 1);
5167 memcpy (canon, name + 1, nlen - 2);
5168 canon[nlen - 2] = '\0';
5169 }
5170 else
5171 canon = xstrdup (ada_encode (ada_fold_name (name)));
5172 return canon;
5173}
5174
5175/* Implementation of the la_iterate_over_symbols method. */
5176
5177static void
5178ada_iterate_over_symbols (const struct block *block,
5179 const char *name, domain_enum domain,
8e704927 5180 symbol_found_callback_ftype *callback,
f8eba3c6
TT
5181 void *data)
5182{
5183 int ndefs, i;
5184 struct ada_symbol_info *results;
5185
d9680e73 5186 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
f8eba3c6
TT
5187 for (i = 0; i < ndefs; ++i)
5188 {
5189 if (! (*callback) (results[i].sym, data))
5190 break;
5191 }
5192}
5193
d2e4a39e 5194struct symbol *
aeb5907d 5195ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 5196 domain_enum namespace, struct block **block_found)
14f9c5c9 5197{
4c4b4cd2 5198 struct ada_symbol_info *candidates;
14f9c5c9
AS
5199 int n_candidates;
5200
d9680e73
TT
5201 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates,
5202 1);
14f9c5c9
AS
5203
5204 if (n_candidates == 0)
5205 return NULL;
4c4b4cd2 5206
aeb5907d
JB
5207 if (block_found != NULL)
5208 *block_found = candidates[0].block;
4c4b4cd2 5209
21b556f4 5210 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
5211}
5212
5213/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5214 scope and in global scopes, or NULL if none. NAME is folded and
5215 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5216 choosing the first symbol if there are multiple choices.
aeb5907d
JB
5217 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
5218 table in which the symbol was found (in both cases, these
5219 assignments occur only if the pointers are non-null). */
5220struct symbol *
5221ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5222 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
5223{
5224 if (is_a_field_of_this != NULL)
5225 *is_a_field_of_this = 0;
5226
5227 return
5228 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 5229 block0, namespace, NULL);
4c4b4cd2 5230}
14f9c5c9 5231
4c4b4cd2
PH
5232static struct symbol *
5233ada_lookup_symbol_nonlocal (const char *name,
76a01679 5234 const struct block *block,
21b556f4 5235 const domain_enum domain)
4c4b4cd2 5236{
94af9270 5237 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5238}
5239
5240
4c4b4cd2
PH
5241/* True iff STR is a possible encoded suffix of a normal Ada name
5242 that is to be ignored for matching purposes. Suffixes of parallel
5243 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5244 are given by any of the regular expressions:
4c4b4cd2 5245
babe1480
JB
5246 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5247 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5248 TKB [subprogram suffix for task bodies]
babe1480 5249 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5250 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5251
5252 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5253 match is performed. This sequence is used to differentiate homonyms,
5254 is an optional part of a valid name suffix. */
4c4b4cd2 5255
14f9c5c9 5256static int
d2e4a39e 5257is_name_suffix (const char *str)
14f9c5c9
AS
5258{
5259 int k;
4c4b4cd2
PH
5260 const char *matching;
5261 const int len = strlen (str);
5262
babe1480
JB
5263 /* Skip optional leading __[0-9]+. */
5264
4c4b4cd2
PH
5265 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5266 {
babe1480
JB
5267 str += 3;
5268 while (isdigit (str[0]))
5269 str += 1;
4c4b4cd2 5270 }
babe1480
JB
5271
5272 /* [.$][0-9]+ */
4c4b4cd2 5273
babe1480 5274 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5275 {
babe1480 5276 matching = str + 1;
4c4b4cd2
PH
5277 while (isdigit (matching[0]))
5278 matching += 1;
5279 if (matching[0] == '\0')
5280 return 1;
5281 }
5282
5283 /* ___[0-9]+ */
babe1480 5284
4c4b4cd2
PH
5285 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5286 {
5287 matching = str + 3;
5288 while (isdigit (matching[0]))
5289 matching += 1;
5290 if (matching[0] == '\0')
5291 return 1;
5292 }
5293
9ac7f98e
JB
5294 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5295
5296 if (strcmp (str, "TKB") == 0)
5297 return 1;
5298
529cad9c
PH
5299#if 0
5300 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5301 with a N at the end. Unfortunately, the compiler uses the same
5302 convention for other internal types it creates. So treating
529cad9c 5303 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5304 some regressions. For instance, consider the case of an enumerated
5305 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5306 name ends with N.
5307 Having a single character like this as a suffix carrying some
0963b4bd 5308 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5309 to be something like "_N" instead. In the meantime, do not do
5310 the following check. */
5311 /* Protected Object Subprograms */
5312 if (len == 1 && str [0] == 'N')
5313 return 1;
5314#endif
5315
5316 /* _E[0-9]+[bs]$ */
5317 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5318 {
5319 matching = str + 3;
5320 while (isdigit (matching[0]))
5321 matching += 1;
5322 if ((matching[0] == 'b' || matching[0] == 's')
5323 && matching [1] == '\0')
5324 return 1;
5325 }
5326
4c4b4cd2
PH
5327 /* ??? We should not modify STR directly, as we are doing below. This
5328 is fine in this case, but may become problematic later if we find
5329 that this alternative did not work, and want to try matching
5330 another one from the begining of STR. Since we modified it, we
5331 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5332 if (str[0] == 'X')
5333 {
5334 str += 1;
d2e4a39e 5335 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5336 {
5337 if (str[0] != 'n' && str[0] != 'b')
5338 return 0;
5339 str += 1;
5340 }
14f9c5c9 5341 }
babe1480 5342
14f9c5c9
AS
5343 if (str[0] == '\000')
5344 return 1;
babe1480 5345
d2e4a39e 5346 if (str[0] == '_')
14f9c5c9
AS
5347 {
5348 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5349 return 0;
d2e4a39e 5350 if (str[2] == '_')
4c4b4cd2 5351 {
61ee279c
PH
5352 if (strcmp (str + 3, "JM") == 0)
5353 return 1;
5354 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5355 the LJM suffix in favor of the JM one. But we will
5356 still accept LJM as a valid suffix for a reasonable
5357 amount of time, just to allow ourselves to debug programs
5358 compiled using an older version of GNAT. */
4c4b4cd2
PH
5359 if (strcmp (str + 3, "LJM") == 0)
5360 return 1;
5361 if (str[3] != 'X')
5362 return 0;
1265e4aa
JB
5363 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5364 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5365 return 1;
5366 if (str[4] == 'R' && str[5] != 'T')
5367 return 1;
5368 return 0;
5369 }
5370 if (!isdigit (str[2]))
5371 return 0;
5372 for (k = 3; str[k] != '\0'; k += 1)
5373 if (!isdigit (str[k]) && str[k] != '_')
5374 return 0;
14f9c5c9
AS
5375 return 1;
5376 }
4c4b4cd2 5377 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5378 {
4c4b4cd2
PH
5379 for (k = 2; str[k] != '\0'; k += 1)
5380 if (!isdigit (str[k]) && str[k] != '_')
5381 return 0;
14f9c5c9
AS
5382 return 1;
5383 }
5384 return 0;
5385}
d2e4a39e 5386
aeb5907d
JB
5387/* Return non-zero if the string starting at NAME and ending before
5388 NAME_END contains no capital letters. */
529cad9c
PH
5389
5390static int
5391is_valid_name_for_wild_match (const char *name0)
5392{
5393 const char *decoded_name = ada_decode (name0);
5394 int i;
5395
5823c3ef
JB
5396 /* If the decoded name starts with an angle bracket, it means that
5397 NAME0 does not follow the GNAT encoding format. It should then
5398 not be allowed as a possible wild match. */
5399 if (decoded_name[0] == '<')
5400 return 0;
5401
529cad9c
PH
5402 for (i=0; decoded_name[i] != '\0'; i++)
5403 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5404 return 0;
5405
5406 return 1;
5407}
5408
73589123
PH
5409/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5410 that could start a simple name. Assumes that *NAMEP points into
5411 the string beginning at NAME0. */
4c4b4cd2 5412
14f9c5c9 5413static int
73589123 5414advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5415{
73589123 5416 const char *name = *namep;
5b4ee69b 5417
5823c3ef 5418 while (1)
14f9c5c9 5419 {
aa27d0b3 5420 int t0, t1;
73589123
PH
5421
5422 t0 = *name;
5423 if (t0 == '_')
5424 {
5425 t1 = name[1];
5426 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5427 {
5428 name += 1;
5429 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5430 break;
5431 else
5432 name += 1;
5433 }
aa27d0b3
JB
5434 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5435 || name[2] == target0))
73589123
PH
5436 {
5437 name += 2;
5438 break;
5439 }
5440 else
5441 return 0;
5442 }
5443 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5444 name += 1;
5445 else
5823c3ef 5446 return 0;
73589123
PH
5447 }
5448
5449 *namep = name;
5450 return 1;
5451}
5452
5453/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5454 informational suffixes of NAME (i.e., for which is_name_suffix is
5455 true). Assumes that PATN is a lower-cased Ada simple name. */
5456
5457static int
5458wild_match (const char *name, const char *patn)
5459{
5460 const char *p, *n;
5461 const char *name0 = name;
5462
5463 while (1)
5464 {
5465 const char *match = name;
5466
5467 if (*name == *patn)
5468 {
5469 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5470 if (*p != *name)
5471 break;
5472 if (*p == '\0' && is_name_suffix (name))
5473 return match != name0 && !is_valid_name_for_wild_match (name0);
5474
5475 if (name[-1] == '_')
5476 name -= 1;
5477 }
5478 if (!advance_wild_match (&name, name0, *patn))
5479 return 1;
96d887e8 5480 }
96d887e8
PH
5481}
5482
40658b94
PH
5483/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5484 informational suffix. */
5485
c4d840bd
PH
5486static int
5487full_match (const char *sym_name, const char *search_name)
5488{
40658b94 5489 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5490}
5491
5492
96d887e8
PH
5493/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5494 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5495 (if necessary). If WILD, treat as NAME with a wildcard prefix.
96d887e8
PH
5496 OBJFILE is the section containing BLOCK.
5497 SYMTAB is recorded with each symbol added. */
5498
5499static void
5500ada_add_block_symbols (struct obstack *obstackp,
76a01679 5501 struct block *block, const char *name,
96d887e8 5502 domain_enum domain, struct objfile *objfile,
2570f2b7 5503 int wild)
96d887e8
PH
5504{
5505 struct dict_iterator iter;
5506 int name_len = strlen (name);
5507 /* A matching argument symbol, if any. */
5508 struct symbol *arg_sym;
5509 /* Set true when we find a matching non-argument symbol. */
5510 int found_sym;
5511 struct symbol *sym;
5512
5513 arg_sym = NULL;
5514 found_sym = 0;
5515 if (wild)
5516 {
c4d840bd
PH
5517 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5518 wild_match, &iter);
5519 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
76a01679 5520 {
5eeb2539
AR
5521 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5522 SYMBOL_DOMAIN (sym), domain)
73589123 5523 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5524 {
2a2d4dc3
AS
5525 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5526 continue;
5527 else if (SYMBOL_IS_ARGUMENT (sym))
5528 arg_sym = sym;
5529 else
5530 {
76a01679
JB
5531 found_sym = 1;
5532 add_defn_to_vec (obstackp,
5533 fixup_symbol_section (sym, objfile),
2570f2b7 5534 block);
76a01679
JB
5535 }
5536 }
5537 }
96d887e8
PH
5538 }
5539 else
5540 {
c4d840bd 5541 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
40658b94 5542 full_match, &iter);
c4d840bd 5543 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
76a01679 5544 {
5eeb2539
AR
5545 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5546 SYMBOL_DOMAIN (sym), domain))
76a01679 5547 {
c4d840bd
PH
5548 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5549 {
5550 if (SYMBOL_IS_ARGUMENT (sym))
5551 arg_sym = sym;
5552 else
2a2d4dc3 5553 {
c4d840bd
PH
5554 found_sym = 1;
5555 add_defn_to_vec (obstackp,
5556 fixup_symbol_section (sym, objfile),
5557 block);
2a2d4dc3 5558 }
c4d840bd 5559 }
76a01679
JB
5560 }
5561 }
96d887e8
PH
5562 }
5563
5564 if (!found_sym && arg_sym != NULL)
5565 {
76a01679
JB
5566 add_defn_to_vec (obstackp,
5567 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5568 block);
96d887e8
PH
5569 }
5570
5571 if (!wild)
5572 {
5573 arg_sym = NULL;
5574 found_sym = 0;
5575
5576 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5577 {
5eeb2539
AR
5578 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5579 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5580 {
5581 int cmp;
5582
5583 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5584 if (cmp == 0)
5585 {
5586 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5587 if (cmp == 0)
5588 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5589 name_len);
5590 }
5591
5592 if (cmp == 0
5593 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5594 {
2a2d4dc3
AS
5595 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5596 {
5597 if (SYMBOL_IS_ARGUMENT (sym))
5598 arg_sym = sym;
5599 else
5600 {
5601 found_sym = 1;
5602 add_defn_to_vec (obstackp,
5603 fixup_symbol_section (sym, objfile),
5604 block);
5605 }
5606 }
76a01679
JB
5607 }
5608 }
76a01679 5609 }
96d887e8
PH
5610
5611 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5612 They aren't parameters, right? */
5613 if (!found_sym && arg_sym != NULL)
5614 {
5615 add_defn_to_vec (obstackp,
76a01679 5616 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5617 block);
96d887e8
PH
5618 }
5619 }
5620}
5621\f
41d27058
JB
5622
5623 /* Symbol Completion */
5624
5625/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5626 name in a form that's appropriate for the completion. The result
5627 does not need to be deallocated, but is only good until the next call.
5628
5629 TEXT_LEN is equal to the length of TEXT.
5630 Perform a wild match if WILD_MATCH is set.
5631 ENCODED should be set if TEXT represents the start of a symbol name
5632 in its encoded form. */
5633
5634static const char *
5635symbol_completion_match (const char *sym_name,
5636 const char *text, int text_len,
5637 int wild_match, int encoded)
5638{
41d27058
JB
5639 const int verbatim_match = (text[0] == '<');
5640 int match = 0;
5641
5642 if (verbatim_match)
5643 {
5644 /* Strip the leading angle bracket. */
5645 text = text + 1;
5646 text_len--;
5647 }
5648
5649 /* First, test against the fully qualified name of the symbol. */
5650
5651 if (strncmp (sym_name, text, text_len) == 0)
5652 match = 1;
5653
5654 if (match && !encoded)
5655 {
5656 /* One needed check before declaring a positive match is to verify
5657 that iff we are doing a verbatim match, the decoded version
5658 of the symbol name starts with '<'. Otherwise, this symbol name
5659 is not a suitable completion. */
5660 const char *sym_name_copy = sym_name;
5661 int has_angle_bracket;
5662
5663 sym_name = ada_decode (sym_name);
5664 has_angle_bracket = (sym_name[0] == '<');
5665 match = (has_angle_bracket == verbatim_match);
5666 sym_name = sym_name_copy;
5667 }
5668
5669 if (match && !verbatim_match)
5670 {
5671 /* When doing non-verbatim match, another check that needs to
5672 be done is to verify that the potentially matching symbol name
5673 does not include capital letters, because the ada-mode would
5674 not be able to understand these symbol names without the
5675 angle bracket notation. */
5676 const char *tmp;
5677
5678 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5679 if (*tmp != '\0')
5680 match = 0;
5681 }
5682
5683 /* Second: Try wild matching... */
5684
5685 if (!match && wild_match)
5686 {
5687 /* Since we are doing wild matching, this means that TEXT
5688 may represent an unqualified symbol name. We therefore must
5689 also compare TEXT against the unqualified name of the symbol. */
5690 sym_name = ada_unqualified_name (ada_decode (sym_name));
5691
5692 if (strncmp (sym_name, text, text_len) == 0)
5693 match = 1;
5694 }
5695
5696 /* Finally: If we found a mach, prepare the result to return. */
5697
5698 if (!match)
5699 return NULL;
5700
5701 if (verbatim_match)
5702 sym_name = add_angle_brackets (sym_name);
5703
5704 if (!encoded)
5705 sym_name = ada_decode (sym_name);
5706
5707 return sym_name;
5708}
5709
5710/* A companion function to ada_make_symbol_completion_list().
5711 Check if SYM_NAME represents a symbol which name would be suitable
5712 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5713 it is appended at the end of the given string vector SV.
5714
5715 ORIG_TEXT is the string original string from the user command
5716 that needs to be completed. WORD is the entire command on which
5717 completion should be performed. These two parameters are used to
5718 determine which part of the symbol name should be added to the
5719 completion vector.
5720 if WILD_MATCH is set, then wild matching is performed.
5721 ENCODED should be set if TEXT represents a symbol name in its
5722 encoded formed (in which case the completion should also be
5723 encoded). */
5724
5725static void
d6565258 5726symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5727 const char *sym_name,
5728 const char *text, int text_len,
5729 const char *orig_text, const char *word,
5730 int wild_match, int encoded)
5731{
5732 const char *match = symbol_completion_match (sym_name, text, text_len,
5733 wild_match, encoded);
5734 char *completion;
5735
5736 if (match == NULL)
5737 return;
5738
5739 /* We found a match, so add the appropriate completion to the given
5740 string vector. */
5741
5742 if (word == orig_text)
5743 {
5744 completion = xmalloc (strlen (match) + 5);
5745 strcpy (completion, match);
5746 }
5747 else if (word > orig_text)
5748 {
5749 /* Return some portion of sym_name. */
5750 completion = xmalloc (strlen (match) + 5);
5751 strcpy (completion, match + (word - orig_text));
5752 }
5753 else
5754 {
5755 /* Return some of ORIG_TEXT plus sym_name. */
5756 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5757 strncpy (completion, word, orig_text - word);
5758 completion[orig_text - word] = '\0';
5759 strcat (completion, match);
5760 }
5761
d6565258 5762 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5763}
5764
ccefe4c4 5765/* An object of this type is passed as the user_data argument to the
7b08b9eb 5766 expand_partial_symbol_names method. */
ccefe4c4
TT
5767struct add_partial_datum
5768{
5769 VEC(char_ptr) **completions;
5770 char *text;
5771 int text_len;
5772 char *text0;
5773 char *word;
5774 int wild_match;
5775 int encoded;
5776};
5777
7b08b9eb
JK
5778/* A callback for expand_partial_symbol_names. */
5779static int
e078317b 5780ada_expand_partial_symbol_name (const char *name, void *user_data)
ccefe4c4
TT
5781{
5782 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5783
5784 return symbol_completion_match (name, data->text, data->text_len,
5785 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5786}
5787
41d27058
JB
5788/* Return a list of possible symbol names completing TEXT0. The list
5789 is NULL terminated. WORD is the entire command on which completion
5790 is made. */
5791
5792static char **
5793ada_make_symbol_completion_list (char *text0, char *word)
5794{
5795 char *text;
5796 int text_len;
5797 int wild_match;
5798 int encoded;
2ba95b9b 5799 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5800 struct symbol *sym;
5801 struct symtab *s;
41d27058
JB
5802 struct minimal_symbol *msymbol;
5803 struct objfile *objfile;
5804 struct block *b, *surrounding_static_block = 0;
5805 int i;
5806 struct dict_iterator iter;
5807
5808 if (text0[0] == '<')
5809 {
5810 text = xstrdup (text0);
5811 make_cleanup (xfree, text);
5812 text_len = strlen (text);
5813 wild_match = 0;
5814 encoded = 1;
5815 }
5816 else
5817 {
5818 text = xstrdup (ada_encode (text0));
5819 make_cleanup (xfree, text);
5820 text_len = strlen (text);
5821 for (i = 0; i < text_len; i++)
5822 text[i] = tolower (text[i]);
5823
5824 encoded = (strstr (text0, "__") != NULL);
5825 /* If the name contains a ".", then the user is entering a fully
5826 qualified entity name, and the match must not be done in wild
5827 mode. Similarly, if the user wants to complete what looks like
5828 an encoded name, the match must not be done in wild mode. */
5829 wild_match = (strchr (text0, '.') == NULL && !encoded);
5830 }
5831
5832 /* First, look at the partial symtab symbols. */
41d27058 5833 {
ccefe4c4
TT
5834 struct add_partial_datum data;
5835
5836 data.completions = &completions;
5837 data.text = text;
5838 data.text_len = text_len;
5839 data.text0 = text0;
5840 data.word = word;
5841 data.wild_match = wild_match;
5842 data.encoded = encoded;
7b08b9eb 5843 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
41d27058
JB
5844 }
5845
5846 /* At this point scan through the misc symbol vectors and add each
5847 symbol you find to the list. Eventually we want to ignore
5848 anything that isn't a text symbol (everything else will be
5849 handled by the psymtab code above). */
5850
5851 ALL_MSYMBOLS (objfile, msymbol)
5852 {
5853 QUIT;
d6565258 5854 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5855 text, text_len, text0, word, wild_match, encoded);
5856 }
5857
5858 /* Search upwards from currently selected frame (so that we can
5859 complete on local vars. */
5860
5861 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5862 {
5863 if (!BLOCK_SUPERBLOCK (b))
5864 surrounding_static_block = b; /* For elmin of dups */
5865
5866 ALL_BLOCK_SYMBOLS (b, iter, sym)
5867 {
d6565258 5868 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5869 text, text_len, text0, word,
5870 wild_match, encoded);
5871 }
5872 }
5873
5874 /* Go through the symtabs and check the externs and statics for
5875 symbols which match. */
5876
5877 ALL_SYMTABS (objfile, s)
5878 {
5879 QUIT;
5880 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5881 ALL_BLOCK_SYMBOLS (b, iter, sym)
5882 {
d6565258 5883 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5884 text, text_len, text0, word,
5885 wild_match, encoded);
5886 }
5887 }
5888
5889 ALL_SYMTABS (objfile, s)
5890 {
5891 QUIT;
5892 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5893 /* Don't do this block twice. */
5894 if (b == surrounding_static_block)
5895 continue;
5896 ALL_BLOCK_SYMBOLS (b, iter, sym)
5897 {
d6565258 5898 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5899 text, text_len, text0, word,
5900 wild_match, encoded);
5901 }
5902 }
5903
5904 /* Append the closing NULL entry. */
2ba95b9b 5905 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5906
2ba95b9b
JB
5907 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5908 return the copy. It's unfortunate that we have to make a copy
5909 of an array that we're about to destroy, but there is nothing much
5910 we can do about it. Fortunately, it's typically not a very large
5911 array. */
5912 {
5913 const size_t completions_size =
5914 VEC_length (char_ptr, completions) * sizeof (char *);
dc19db01 5915 char **result = xmalloc (completions_size);
2ba95b9b
JB
5916
5917 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5918
5919 VEC_free (char_ptr, completions);
5920 return result;
5921 }
41d27058
JB
5922}
5923
963a6417 5924 /* Field Access */
96d887e8 5925
73fb9985
JB
5926/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5927 for tagged types. */
5928
5929static int
5930ada_is_dispatch_table_ptr_type (struct type *type)
5931{
0d5cff50 5932 const char *name;
73fb9985
JB
5933
5934 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5935 return 0;
5936
5937 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5938 if (name == NULL)
5939 return 0;
5940
5941 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5942}
5943
963a6417
PH
5944/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5945 to be invisible to users. */
96d887e8 5946
963a6417
PH
5947int
5948ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5949{
963a6417
PH
5950 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5951 return 1;
ffde82bf 5952
73fb9985
JB
5953 /* Check the name of that field. */
5954 {
5955 const char *name = TYPE_FIELD_NAME (type, field_num);
5956
5957 /* Anonymous field names should not be printed.
5958 brobecker/2007-02-20: I don't think this can actually happen
5959 but we don't want to print the value of annonymous fields anyway. */
5960 if (name == NULL)
5961 return 1;
5962
ffde82bf
JB
5963 /* Normally, fields whose name start with an underscore ("_")
5964 are fields that have been internally generated by the compiler,
5965 and thus should not be printed. The "_parent" field is special,
5966 however: This is a field internally generated by the compiler
5967 for tagged types, and it contains the components inherited from
5968 the parent type. This field should not be printed as is, but
5969 should not be ignored either. */
73fb9985
JB
5970 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5971 return 1;
5972 }
5973
5974 /* If this is the dispatch table of a tagged type, then ignore. */
5975 if (ada_is_tagged_type (type, 1)
5976 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5977 return 1;
5978
5979 /* Not a special field, so it should not be ignored. */
5980 return 0;
963a6417 5981}
96d887e8 5982
963a6417 5983/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 5984 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5985
963a6417
PH
5986int
5987ada_is_tagged_type (struct type *type, int refok)
5988{
5989 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5990}
96d887e8 5991
963a6417 5992/* True iff TYPE represents the type of X'Tag */
96d887e8 5993
963a6417
PH
5994int
5995ada_is_tag_type (struct type *type)
5996{
5997 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5998 return 0;
5999 else
96d887e8 6000 {
963a6417 6001 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6002
963a6417
PH
6003 return (name != NULL
6004 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6005 }
96d887e8
PH
6006}
6007
963a6417 6008/* The type of the tag on VAL. */
76a01679 6009
963a6417
PH
6010struct type *
6011ada_tag_type (struct value *val)
96d887e8 6012{
df407dfe 6013 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6014}
96d887e8 6015
963a6417 6016/* The value of the tag on VAL. */
96d887e8 6017
963a6417
PH
6018struct value *
6019ada_value_tag (struct value *val)
6020{
03ee6b2e 6021 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6022}
6023
963a6417
PH
6024/* The value of the tag on the object of type TYPE whose contents are
6025 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6026 ADDRESS. */
96d887e8 6027
963a6417 6028static struct value *
10a2c479 6029value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6030 const gdb_byte *valaddr,
963a6417 6031 CORE_ADDR address)
96d887e8 6032{
b5385fc0 6033 int tag_byte_offset;
963a6417 6034 struct type *tag_type;
5b4ee69b 6035
963a6417 6036 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6037 NULL, NULL, NULL))
96d887e8 6038 {
fc1a4b47 6039 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6040 ? NULL
6041 : valaddr + tag_byte_offset);
963a6417 6042 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6043
963a6417 6044 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6045 }
963a6417
PH
6046 return NULL;
6047}
96d887e8 6048
963a6417
PH
6049static struct type *
6050type_from_tag (struct value *tag)
6051{
6052 const char *type_name = ada_tag_name (tag);
5b4ee69b 6053
963a6417
PH
6054 if (type_name != NULL)
6055 return ada_find_any_type (ada_encode (type_name));
6056 return NULL;
6057}
96d887e8 6058
1b611343
JB
6059/* Return the "ada__tags__type_specific_data" type. */
6060
6061static struct type *
6062ada_get_tsd_type (struct inferior *inf)
963a6417 6063{
1b611343 6064 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6065
1b611343
JB
6066 if (data->tsd_type == 0)
6067 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6068 return data->tsd_type;
6069}
529cad9c 6070
1b611343
JB
6071/* Return the TSD (type-specific data) associated to the given TAG.
6072 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6073
1b611343 6074 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6075
1b611343
JB
6076static struct value *
6077ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6078{
4c4b4cd2 6079 struct value *val;
1b611343 6080 struct type *type;
5b4ee69b 6081
1b611343
JB
6082 /* First option: The TSD is simply stored as a field of our TAG.
6083 Only older versions of GNAT would use this format, but we have
6084 to test it first, because there are no visible markers for
6085 the current approach except the absence of that field. */
529cad9c 6086
1b611343
JB
6087 val = ada_value_struct_elt (tag, "tsd", 1);
6088 if (val)
6089 return val;
e802dbe0 6090
1b611343
JB
6091 /* Try the second representation for the dispatch table (in which
6092 there is no explicit 'tsd' field in the referent of the tag pointer,
6093 and instead the tsd pointer is stored just before the dispatch
6094 table. */
e802dbe0 6095
1b611343
JB
6096 type = ada_get_tsd_type (current_inferior());
6097 if (type == NULL)
6098 return NULL;
6099 type = lookup_pointer_type (lookup_pointer_type (type));
6100 val = value_cast (type, tag);
6101 if (val == NULL)
6102 return NULL;
6103 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6104}
6105
1b611343
JB
6106/* Given the TSD of a tag (type-specific data), return a string
6107 containing the name of the associated type.
6108
6109 The returned value is good until the next call. May return NULL
6110 if we are unable to determine the tag name. */
6111
6112static char *
6113ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6114{
529cad9c
PH
6115 static char name[1024];
6116 char *p;
1b611343 6117 struct value *val;
529cad9c 6118
1b611343 6119 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6120 if (val == NULL)
1b611343 6121 return NULL;
4c4b4cd2
PH
6122 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6123 for (p = name; *p != '\0'; p += 1)
6124 if (isalpha (*p))
6125 *p = tolower (*p);
1b611343 6126 return name;
4c4b4cd2
PH
6127}
6128
6129/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6130 a C string.
6131
6132 Return NULL if the TAG is not an Ada tag, or if we were unable to
6133 determine the name of that tag. The result is good until the next
6134 call. */
4c4b4cd2
PH
6135
6136const char *
6137ada_tag_name (struct value *tag)
6138{
1b611343
JB
6139 volatile struct gdb_exception e;
6140 char *name = NULL;
5b4ee69b 6141
df407dfe 6142 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6143 return NULL;
1b611343
JB
6144
6145 /* It is perfectly possible that an exception be raised while trying
6146 to determine the TAG's name, even under normal circumstances:
6147 The associated variable may be uninitialized or corrupted, for
6148 instance. We do not let any exception propagate past this point.
6149 instead we return NULL.
6150
6151 We also do not print the error message either (which often is very
6152 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6153 the caller print a more meaningful message if necessary. */
6154 TRY_CATCH (e, RETURN_MASK_ERROR)
6155 {
6156 struct value *tsd = ada_get_tsd_from_tag (tag);
6157
6158 if (tsd != NULL)
6159 name = ada_tag_name_from_tsd (tsd);
6160 }
6161
6162 return name;
4c4b4cd2
PH
6163}
6164
6165/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6166
d2e4a39e 6167struct type *
ebf56fd3 6168ada_parent_type (struct type *type)
14f9c5c9
AS
6169{
6170 int i;
6171
61ee279c 6172 type = ada_check_typedef (type);
14f9c5c9
AS
6173
6174 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6175 return NULL;
6176
6177 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6178 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6179 {
6180 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6181
6182 /* If the _parent field is a pointer, then dereference it. */
6183 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6184 parent_type = TYPE_TARGET_TYPE (parent_type);
6185 /* If there is a parallel XVS type, get the actual base type. */
6186 parent_type = ada_get_base_type (parent_type);
6187
6188 return ada_check_typedef (parent_type);
6189 }
14f9c5c9
AS
6190
6191 return NULL;
6192}
6193
4c4b4cd2
PH
6194/* True iff field number FIELD_NUM of structure type TYPE contains the
6195 parent-type (inherited) fields of a derived type. Assumes TYPE is
6196 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6197
6198int
ebf56fd3 6199ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6200{
61ee279c 6201 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6202
4c4b4cd2
PH
6203 return (name != NULL
6204 && (strncmp (name, "PARENT", 6) == 0
6205 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6206}
6207
4c4b4cd2 6208/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6209 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6210 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6211 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6212 structures. */
14f9c5c9
AS
6213
6214int
ebf56fd3 6215ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6216{
d2e4a39e 6217 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6218
d2e4a39e 6219 return (name != NULL
4c4b4cd2
PH
6220 && (strncmp (name, "PARENT", 6) == 0
6221 || strcmp (name, "REP") == 0
6222 || strncmp (name, "_parent", 7) == 0
6223 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6224}
6225
4c4b4cd2
PH
6226/* True iff field number FIELD_NUM of structure or union type TYPE
6227 is a variant wrapper. Assumes TYPE is a structure type with at least
6228 FIELD_NUM+1 fields. */
14f9c5c9
AS
6229
6230int
ebf56fd3 6231ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6232{
d2e4a39e 6233 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6234
14f9c5c9 6235 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6236 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6237 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6238 == TYPE_CODE_UNION)));
14f9c5c9
AS
6239}
6240
6241/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6242 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6243 returns the type of the controlling discriminant for the variant.
6244 May return NULL if the type could not be found. */
14f9c5c9 6245
d2e4a39e 6246struct type *
ebf56fd3 6247ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6248{
d2e4a39e 6249 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6250
7c964f07 6251 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6252}
6253
4c4b4cd2 6254/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6255 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6256 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6257
6258int
ebf56fd3 6259ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6260{
d2e4a39e 6261 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6262
14f9c5c9
AS
6263 return (name != NULL && name[0] == 'O');
6264}
6265
6266/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6267 returns the name of the discriminant controlling the variant.
6268 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6269
d2e4a39e 6270char *
ebf56fd3 6271ada_variant_discrim_name (struct type *type0)
14f9c5c9 6272{
d2e4a39e 6273 static char *result = NULL;
14f9c5c9 6274 static size_t result_len = 0;
d2e4a39e
AS
6275 struct type *type;
6276 const char *name;
6277 const char *discrim_end;
6278 const char *discrim_start;
14f9c5c9
AS
6279
6280 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6281 type = TYPE_TARGET_TYPE (type0);
6282 else
6283 type = type0;
6284
6285 name = ada_type_name (type);
6286
6287 if (name == NULL || name[0] == '\000')
6288 return "";
6289
6290 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6291 discrim_end -= 1)
6292 {
4c4b4cd2
PH
6293 if (strncmp (discrim_end, "___XVN", 6) == 0)
6294 break;
14f9c5c9
AS
6295 }
6296 if (discrim_end == name)
6297 return "";
6298
d2e4a39e 6299 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6300 discrim_start -= 1)
6301 {
d2e4a39e 6302 if (discrim_start == name + 1)
4c4b4cd2 6303 return "";
76a01679 6304 if ((discrim_start > name + 3
4c4b4cd2
PH
6305 && strncmp (discrim_start - 3, "___", 3) == 0)
6306 || discrim_start[-1] == '.')
6307 break;
14f9c5c9
AS
6308 }
6309
6310 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6311 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6312 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6313 return result;
6314}
6315
4c4b4cd2
PH
6316/* Scan STR for a subtype-encoded number, beginning at position K.
6317 Put the position of the character just past the number scanned in
6318 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6319 Return 1 if there was a valid number at the given position, and 0
6320 otherwise. A "subtype-encoded" number consists of the absolute value
6321 in decimal, followed by the letter 'm' to indicate a negative number.
6322 Assumes 0m does not occur. */
14f9c5c9
AS
6323
6324int
d2e4a39e 6325ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6326{
6327 ULONGEST RU;
6328
d2e4a39e 6329 if (!isdigit (str[k]))
14f9c5c9
AS
6330 return 0;
6331
4c4b4cd2 6332 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6333 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6334 LONGEST. */
14f9c5c9
AS
6335 RU = 0;
6336 while (isdigit (str[k]))
6337 {
d2e4a39e 6338 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6339 k += 1;
6340 }
6341
d2e4a39e 6342 if (str[k] == 'm')
14f9c5c9
AS
6343 {
6344 if (R != NULL)
4c4b4cd2 6345 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6346 k += 1;
6347 }
6348 else if (R != NULL)
6349 *R = (LONGEST) RU;
6350
4c4b4cd2 6351 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6352 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6353 number representable as a LONGEST (although either would probably work
6354 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6355 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6356
6357 if (new_k != NULL)
6358 *new_k = k;
6359 return 1;
6360}
6361
4c4b4cd2
PH
6362/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6363 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6364 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6365
d2e4a39e 6366int
ebf56fd3 6367ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6368{
d2e4a39e 6369 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6370 int p;
6371
6372 p = 0;
6373 while (1)
6374 {
d2e4a39e 6375 switch (name[p])
4c4b4cd2
PH
6376 {
6377 case '\0':
6378 return 0;
6379 case 'S':
6380 {
6381 LONGEST W;
5b4ee69b 6382
4c4b4cd2
PH
6383 if (!ada_scan_number (name, p + 1, &W, &p))
6384 return 0;
6385 if (val == W)
6386 return 1;
6387 break;
6388 }
6389 case 'R':
6390 {
6391 LONGEST L, U;
5b4ee69b 6392
4c4b4cd2
PH
6393 if (!ada_scan_number (name, p + 1, &L, &p)
6394 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6395 return 0;
6396 if (val >= L && val <= U)
6397 return 1;
6398 break;
6399 }
6400 case 'O':
6401 return 1;
6402 default:
6403 return 0;
6404 }
6405 }
6406}
6407
0963b4bd 6408/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6409
6410/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6411 ARG_TYPE, extract and return the value of one of its (non-static)
6412 fields. FIELDNO says which field. Differs from value_primitive_field
6413 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6414
4c4b4cd2 6415static struct value *
d2e4a39e 6416ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6417 struct type *arg_type)
14f9c5c9 6418{
14f9c5c9
AS
6419 struct type *type;
6420
61ee279c 6421 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6422 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6423
4c4b4cd2 6424 /* Handle packed fields. */
14f9c5c9
AS
6425
6426 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6427 {
6428 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6429 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6430
0fd88904 6431 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6432 offset + bit_pos / 8,
6433 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6434 }
6435 else
6436 return value_primitive_field (arg1, offset, fieldno, arg_type);
6437}
6438
52ce6436
PH
6439/* Find field with name NAME in object of type TYPE. If found,
6440 set the following for each argument that is non-null:
6441 - *FIELD_TYPE_P to the field's type;
6442 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6443 an object of that type;
6444 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6445 - *BIT_SIZE_P to its size in bits if the field is packed, and
6446 0 otherwise;
6447 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6448 fields up to but not including the desired field, or by the total
6449 number of fields if not found. A NULL value of NAME never
6450 matches; the function just counts visible fields in this case.
6451
0963b4bd 6452 Returns 1 if found, 0 otherwise. */
52ce6436 6453
4c4b4cd2 6454static int
0d5cff50 6455find_struct_field (const char *name, struct type *type, int offset,
76a01679 6456 struct type **field_type_p,
52ce6436
PH
6457 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6458 int *index_p)
4c4b4cd2
PH
6459{
6460 int i;
6461
61ee279c 6462 type = ada_check_typedef (type);
76a01679 6463
52ce6436
PH
6464 if (field_type_p != NULL)
6465 *field_type_p = NULL;
6466 if (byte_offset_p != NULL)
d5d6fca5 6467 *byte_offset_p = 0;
52ce6436
PH
6468 if (bit_offset_p != NULL)
6469 *bit_offset_p = 0;
6470 if (bit_size_p != NULL)
6471 *bit_size_p = 0;
6472
6473 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6474 {
6475 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6476 int fld_offset = offset + bit_pos / 8;
0d5cff50 6477 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6478
4c4b4cd2
PH
6479 if (t_field_name == NULL)
6480 continue;
6481
52ce6436 6482 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6483 {
6484 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6485
52ce6436
PH
6486 if (field_type_p != NULL)
6487 *field_type_p = TYPE_FIELD_TYPE (type, i);
6488 if (byte_offset_p != NULL)
6489 *byte_offset_p = fld_offset;
6490 if (bit_offset_p != NULL)
6491 *bit_offset_p = bit_pos % 8;
6492 if (bit_size_p != NULL)
6493 *bit_size_p = bit_size;
76a01679
JB
6494 return 1;
6495 }
4c4b4cd2
PH
6496 else if (ada_is_wrapper_field (type, i))
6497 {
52ce6436
PH
6498 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6499 field_type_p, byte_offset_p, bit_offset_p,
6500 bit_size_p, index_p))
76a01679
JB
6501 return 1;
6502 }
4c4b4cd2
PH
6503 else if (ada_is_variant_part (type, i))
6504 {
52ce6436
PH
6505 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6506 fixed type?? */
4c4b4cd2 6507 int j;
52ce6436
PH
6508 struct type *field_type
6509 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6510
52ce6436 6511 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6512 {
76a01679
JB
6513 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6514 fld_offset
6515 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6516 field_type_p, byte_offset_p,
52ce6436 6517 bit_offset_p, bit_size_p, index_p))
76a01679 6518 return 1;
4c4b4cd2
PH
6519 }
6520 }
52ce6436
PH
6521 else if (index_p != NULL)
6522 *index_p += 1;
4c4b4cd2
PH
6523 }
6524 return 0;
6525}
6526
0963b4bd 6527/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6528
52ce6436
PH
6529static int
6530num_visible_fields (struct type *type)
6531{
6532 int n;
5b4ee69b 6533
52ce6436
PH
6534 n = 0;
6535 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6536 return n;
6537}
14f9c5c9 6538
4c4b4cd2 6539/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6540 and search in it assuming it has (class) type TYPE.
6541 If found, return value, else return NULL.
6542
4c4b4cd2 6543 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6544
4c4b4cd2 6545static struct value *
d2e4a39e 6546ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6547 struct type *type)
14f9c5c9
AS
6548{
6549 int i;
14f9c5c9 6550
5b4ee69b 6551 type = ada_check_typedef (type);
52ce6436 6552 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6553 {
0d5cff50 6554 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6555
6556 if (t_field_name == NULL)
4c4b4cd2 6557 continue;
14f9c5c9
AS
6558
6559 else if (field_name_match (t_field_name, name))
4c4b4cd2 6560 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6561
6562 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6563 {
0963b4bd 6564 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6565 ada_search_struct_field (name, arg,
6566 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6567 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6568
4c4b4cd2
PH
6569 if (v != NULL)
6570 return v;
6571 }
14f9c5c9
AS
6572
6573 else if (ada_is_variant_part (type, i))
4c4b4cd2 6574 {
0963b4bd 6575 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6576 int j;
5b4ee69b
MS
6577 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6578 i));
4c4b4cd2
PH
6579 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6580
52ce6436 6581 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6582 {
0963b4bd
MS
6583 struct value *v = ada_search_struct_field /* Force line
6584 break. */
06d5cf63
JB
6585 (name, arg,
6586 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6587 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6588
4c4b4cd2
PH
6589 if (v != NULL)
6590 return v;
6591 }
6592 }
14f9c5c9
AS
6593 }
6594 return NULL;
6595}
d2e4a39e 6596
52ce6436
PH
6597static struct value *ada_index_struct_field_1 (int *, struct value *,
6598 int, struct type *);
6599
6600
6601/* Return field #INDEX in ARG, where the index is that returned by
6602 * find_struct_field through its INDEX_P argument. Adjust the address
6603 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6604 * If found, return value, else return NULL. */
52ce6436
PH
6605
6606static struct value *
6607ada_index_struct_field (int index, struct value *arg, int offset,
6608 struct type *type)
6609{
6610 return ada_index_struct_field_1 (&index, arg, offset, type);
6611}
6612
6613
6614/* Auxiliary function for ada_index_struct_field. Like
6615 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6616 * *INDEX_P. */
52ce6436
PH
6617
6618static struct value *
6619ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6620 struct type *type)
6621{
6622 int i;
6623 type = ada_check_typedef (type);
6624
6625 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6626 {
6627 if (TYPE_FIELD_NAME (type, i) == NULL)
6628 continue;
6629 else if (ada_is_wrapper_field (type, i))
6630 {
0963b4bd 6631 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6632 ada_index_struct_field_1 (index_p, arg,
6633 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6634 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6635
52ce6436
PH
6636 if (v != NULL)
6637 return v;
6638 }
6639
6640 else if (ada_is_variant_part (type, i))
6641 {
6642 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6643 find_struct_field. */
52ce6436
PH
6644 error (_("Cannot assign this kind of variant record"));
6645 }
6646 else if (*index_p == 0)
6647 return ada_value_primitive_field (arg, offset, i, type);
6648 else
6649 *index_p -= 1;
6650 }
6651 return NULL;
6652}
6653
4c4b4cd2
PH
6654/* Given ARG, a value of type (pointer or reference to a)*
6655 structure/union, extract the component named NAME from the ultimate
6656 target structure/union and return it as a value with its
f5938064 6657 appropriate type.
14f9c5c9 6658
4c4b4cd2
PH
6659 The routine searches for NAME among all members of the structure itself
6660 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6661 (e.g., '_parent').
6662
03ee6b2e
PH
6663 If NO_ERR, then simply return NULL in case of error, rather than
6664 calling error. */
14f9c5c9 6665
d2e4a39e 6666struct value *
03ee6b2e 6667ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6668{
4c4b4cd2 6669 struct type *t, *t1;
d2e4a39e 6670 struct value *v;
14f9c5c9 6671
4c4b4cd2 6672 v = NULL;
df407dfe 6673 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6674 if (TYPE_CODE (t) == TYPE_CODE_REF)
6675 {
6676 t1 = TYPE_TARGET_TYPE (t);
6677 if (t1 == NULL)
03ee6b2e 6678 goto BadValue;
61ee279c 6679 t1 = ada_check_typedef (t1);
4c4b4cd2 6680 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6681 {
994b9211 6682 arg = coerce_ref (arg);
76a01679
JB
6683 t = t1;
6684 }
4c4b4cd2 6685 }
14f9c5c9 6686
4c4b4cd2
PH
6687 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6688 {
6689 t1 = TYPE_TARGET_TYPE (t);
6690 if (t1 == NULL)
03ee6b2e 6691 goto BadValue;
61ee279c 6692 t1 = ada_check_typedef (t1);
4c4b4cd2 6693 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6694 {
6695 arg = value_ind (arg);
6696 t = t1;
6697 }
4c4b4cd2 6698 else
76a01679 6699 break;
4c4b4cd2 6700 }
14f9c5c9 6701
4c4b4cd2 6702 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6703 goto BadValue;
14f9c5c9 6704
4c4b4cd2
PH
6705 if (t1 == t)
6706 v = ada_search_struct_field (name, arg, 0, t);
6707 else
6708 {
6709 int bit_offset, bit_size, byte_offset;
6710 struct type *field_type;
6711 CORE_ADDR address;
6712
76a01679
JB
6713 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6714 address = value_as_address (arg);
4c4b4cd2 6715 else
0fd88904 6716 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6717
1ed6ede0 6718 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6719 if (find_struct_field (name, t1, 0,
6720 &field_type, &byte_offset, &bit_offset,
52ce6436 6721 &bit_size, NULL))
76a01679
JB
6722 {
6723 if (bit_size != 0)
6724 {
714e53ab
PH
6725 if (TYPE_CODE (t) == TYPE_CODE_REF)
6726 arg = ada_coerce_ref (arg);
6727 else
6728 arg = ada_value_ind (arg);
76a01679
JB
6729 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6730 bit_offset, bit_size,
6731 field_type);
6732 }
6733 else
f5938064 6734 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6735 }
6736 }
6737
03ee6b2e
PH
6738 if (v != NULL || no_err)
6739 return v;
6740 else
323e0a4a 6741 error (_("There is no member named %s."), name);
14f9c5c9 6742
03ee6b2e
PH
6743 BadValue:
6744 if (no_err)
6745 return NULL;
6746 else
0963b4bd
MS
6747 error (_("Attempt to extract a component of "
6748 "a value that is not a record."));
14f9c5c9
AS
6749}
6750
6751/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6752 If DISPP is non-null, add its byte displacement from the beginning of a
6753 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6754 work for packed fields).
6755
6756 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6757 followed by "___".
14f9c5c9 6758
0963b4bd 6759 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6760 be a (pointer or reference)+ to a struct or union, and the
6761 ultimate target type will be searched.
14f9c5c9
AS
6762
6763 Looks recursively into variant clauses and parent types.
6764
4c4b4cd2
PH
6765 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6766 TYPE is not a type of the right kind. */
14f9c5c9 6767
4c4b4cd2 6768static struct type *
76a01679
JB
6769ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6770 int noerr, int *dispp)
14f9c5c9
AS
6771{
6772 int i;
6773
6774 if (name == NULL)
6775 goto BadName;
6776
76a01679 6777 if (refok && type != NULL)
4c4b4cd2
PH
6778 while (1)
6779 {
61ee279c 6780 type = ada_check_typedef (type);
76a01679
JB
6781 if (TYPE_CODE (type) != TYPE_CODE_PTR
6782 && TYPE_CODE (type) != TYPE_CODE_REF)
6783 break;
6784 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6785 }
14f9c5c9 6786
76a01679 6787 if (type == NULL
1265e4aa
JB
6788 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6789 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6790 {
4c4b4cd2 6791 if (noerr)
76a01679 6792 return NULL;
4c4b4cd2 6793 else
76a01679
JB
6794 {
6795 target_terminal_ours ();
6796 gdb_flush (gdb_stdout);
323e0a4a
AC
6797 if (type == NULL)
6798 error (_("Type (null) is not a structure or union type"));
6799 else
6800 {
6801 /* XXX: type_sprint */
6802 fprintf_unfiltered (gdb_stderr, _("Type "));
6803 type_print (type, "", gdb_stderr, -1);
6804 error (_(" is not a structure or union type"));
6805 }
76a01679 6806 }
14f9c5c9
AS
6807 }
6808
6809 type = to_static_fixed_type (type);
6810
6811 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6812 {
0d5cff50 6813 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6814 struct type *t;
6815 int disp;
d2e4a39e 6816
14f9c5c9 6817 if (t_field_name == NULL)
4c4b4cd2 6818 continue;
14f9c5c9
AS
6819
6820 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6821 {
6822 if (dispp != NULL)
6823 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6824 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6825 }
14f9c5c9
AS
6826
6827 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6828 {
6829 disp = 0;
6830 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6831 0, 1, &disp);
6832 if (t != NULL)
6833 {
6834 if (dispp != NULL)
6835 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6836 return t;
6837 }
6838 }
14f9c5c9
AS
6839
6840 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6841 {
6842 int j;
5b4ee69b
MS
6843 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6844 i));
4c4b4cd2
PH
6845
6846 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6847 {
b1f33ddd
JB
6848 /* FIXME pnh 2008/01/26: We check for a field that is
6849 NOT wrapped in a struct, since the compiler sometimes
6850 generates these for unchecked variant types. Revisit
0963b4bd 6851 if the compiler changes this practice. */
0d5cff50 6852 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6853 disp = 0;
b1f33ddd
JB
6854 if (v_field_name != NULL
6855 && field_name_match (v_field_name, name))
6856 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6857 else
0963b4bd
MS
6858 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6859 j),
b1f33ddd
JB
6860 name, 0, 1, &disp);
6861
4c4b4cd2
PH
6862 if (t != NULL)
6863 {
6864 if (dispp != NULL)
6865 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6866 return t;
6867 }
6868 }
6869 }
14f9c5c9
AS
6870
6871 }
6872
6873BadName:
d2e4a39e 6874 if (!noerr)
14f9c5c9
AS
6875 {
6876 target_terminal_ours ();
6877 gdb_flush (gdb_stdout);
323e0a4a
AC
6878 if (name == NULL)
6879 {
6880 /* XXX: type_sprint */
6881 fprintf_unfiltered (gdb_stderr, _("Type "));
6882 type_print (type, "", gdb_stderr, -1);
6883 error (_(" has no component named <null>"));
6884 }
6885 else
6886 {
6887 /* XXX: type_sprint */
6888 fprintf_unfiltered (gdb_stderr, _("Type "));
6889 type_print (type, "", gdb_stderr, -1);
6890 error (_(" has no component named %s"), name);
6891 }
14f9c5c9
AS
6892 }
6893
6894 return NULL;
6895}
6896
b1f33ddd
JB
6897/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6898 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6899 represents an unchecked union (that is, the variant part of a
0963b4bd 6900 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
6901
6902static int
6903is_unchecked_variant (struct type *var_type, struct type *outer_type)
6904{
6905 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 6906
b1f33ddd
JB
6907 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6908 == NULL);
6909}
6910
6911
14f9c5c9
AS
6912/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6913 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6914 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6915 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6916
d2e4a39e 6917int
ebf56fd3 6918ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6919 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6920{
6921 int others_clause;
6922 int i;
d2e4a39e 6923 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6924 struct value *outer;
6925 struct value *discrim;
14f9c5c9
AS
6926 LONGEST discrim_val;
6927
0c281816
JB
6928 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6929 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6930 if (discrim == NULL)
14f9c5c9 6931 return -1;
0c281816 6932 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6933
6934 others_clause = -1;
6935 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6936 {
6937 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6938 others_clause = i;
14f9c5c9 6939 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6940 return i;
14f9c5c9
AS
6941 }
6942
6943 return others_clause;
6944}
d2e4a39e 6945\f
14f9c5c9
AS
6946
6947
4c4b4cd2 6948 /* Dynamic-Sized Records */
14f9c5c9
AS
6949
6950/* Strategy: The type ostensibly attached to a value with dynamic size
6951 (i.e., a size that is not statically recorded in the debugging
6952 data) does not accurately reflect the size or layout of the value.
6953 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6954 conventional types that are constructed on the fly. */
14f9c5c9
AS
6955
6956/* There is a subtle and tricky problem here. In general, we cannot
6957 determine the size of dynamic records without its data. However,
6958 the 'struct value' data structure, which GDB uses to represent
6959 quantities in the inferior process (the target), requires the size
6960 of the type at the time of its allocation in order to reserve space
6961 for GDB's internal copy of the data. That's why the
6962 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6963 rather than struct value*s.
14f9c5c9
AS
6964
6965 However, GDB's internal history variables ($1, $2, etc.) are
6966 struct value*s containing internal copies of the data that are not, in
6967 general, the same as the data at their corresponding addresses in
6968 the target. Fortunately, the types we give to these values are all
6969 conventional, fixed-size types (as per the strategy described
6970 above), so that we don't usually have to perform the
6971 'to_fixed_xxx_type' conversions to look at their values.
6972 Unfortunately, there is one exception: if one of the internal
6973 history variables is an array whose elements are unconstrained
6974 records, then we will need to create distinct fixed types for each
6975 element selected. */
6976
6977/* The upshot of all of this is that many routines take a (type, host
6978 address, target address) triple as arguments to represent a value.
6979 The host address, if non-null, is supposed to contain an internal
6980 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6981 target at the target address. */
14f9c5c9
AS
6982
6983/* Assuming that VAL0 represents a pointer value, the result of
6984 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6985 dynamic-sized types. */
14f9c5c9 6986
d2e4a39e
AS
6987struct value *
6988ada_value_ind (struct value *val0)
14f9c5c9 6989{
c48db5ca 6990 struct value *val = value_ind (val0);
5b4ee69b 6991
4c4b4cd2 6992 return ada_to_fixed_value (val);
14f9c5c9
AS
6993}
6994
6995/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6996 qualifiers on VAL0. */
6997
d2e4a39e
AS
6998static struct value *
6999ada_coerce_ref (struct value *val0)
7000{
df407dfe 7001 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7002 {
7003 struct value *val = val0;
5b4ee69b 7004
994b9211 7005 val = coerce_ref (val);
4c4b4cd2 7006 return ada_to_fixed_value (val);
d2e4a39e
AS
7007 }
7008 else
14f9c5c9
AS
7009 return val0;
7010}
7011
7012/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7013 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7014
7015static unsigned int
ebf56fd3 7016align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7017{
7018 return (off + alignment - 1) & ~(alignment - 1);
7019}
7020
4c4b4cd2 7021/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7022
7023static unsigned int
ebf56fd3 7024field_alignment (struct type *type, int f)
14f9c5c9 7025{
d2e4a39e 7026 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7027 int len;
14f9c5c9
AS
7028 int align_offset;
7029
64a1bf19
JB
7030 /* The field name should never be null, unless the debugging information
7031 is somehow malformed. In this case, we assume the field does not
7032 require any alignment. */
7033 if (name == NULL)
7034 return 1;
7035
7036 len = strlen (name);
7037
4c4b4cd2
PH
7038 if (!isdigit (name[len - 1]))
7039 return 1;
14f9c5c9 7040
d2e4a39e 7041 if (isdigit (name[len - 2]))
14f9c5c9
AS
7042 align_offset = len - 2;
7043 else
7044 align_offset = len - 1;
7045
4c4b4cd2 7046 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7047 return TARGET_CHAR_BIT;
7048
4c4b4cd2
PH
7049 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7050}
7051
852dff6c 7052/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7053
852dff6c
JB
7054static struct symbol *
7055ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7056{
7057 struct symbol *sym;
7058
7059 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7060 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7061 return sym;
7062
7063 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7064 return sym;
14f9c5c9
AS
7065}
7066
dddfab26
UW
7067/* Find a type named NAME. Ignores ambiguity. This routine will look
7068 solely for types defined by debug info, it will not search the GDB
7069 primitive types. */
4c4b4cd2 7070
852dff6c 7071static struct type *
ebf56fd3 7072ada_find_any_type (const char *name)
14f9c5c9 7073{
852dff6c 7074 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7075
14f9c5c9 7076 if (sym != NULL)
dddfab26 7077 return SYMBOL_TYPE (sym);
14f9c5c9 7078
dddfab26 7079 return NULL;
14f9c5c9
AS
7080}
7081
739593e0
JB
7082/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7083 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7084 symbol, in which case it is returned. Otherwise, this looks for
7085 symbols whose name is that of NAME_SYM suffixed with "___XR".
7086 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7087
7088struct symbol *
739593e0 7089ada_find_renaming_symbol (struct symbol *name_sym, struct block *block)
aeb5907d 7090{
739593e0 7091 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7092 struct symbol *sym;
7093
739593e0
JB
7094 if (strstr (name, "___XR") != NULL)
7095 return name_sym;
7096
aeb5907d
JB
7097 sym = find_old_style_renaming_symbol (name, block);
7098
7099 if (sym != NULL)
7100 return sym;
7101
0963b4bd 7102 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7103 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7104 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7105 return sym;
7106 else
7107 return NULL;
7108}
7109
7110static struct symbol *
7111find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 7112{
7f0df278 7113 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7114 char *rename;
7115
7116 if (function_sym != NULL)
7117 {
7118 /* If the symbol is defined inside a function, NAME is not fully
7119 qualified. This means we need to prepend the function name
7120 as well as adding the ``___XR'' suffix to build the name of
7121 the associated renaming symbol. */
0d5cff50 7122 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7123 /* Function names sometimes contain suffixes used
7124 for instance to qualify nested subprograms. When building
7125 the XR type name, we need to make sure that this suffix is
7126 not included. So do not include any suffix in the function
7127 name length below. */
69fadcdf 7128 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7129 const int rename_len = function_name_len + 2 /* "__" */
7130 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7131
529cad9c 7132 /* Strip the suffix if necessary. */
69fadcdf
JB
7133 ada_remove_trailing_digits (function_name, &function_name_len);
7134 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7135 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7136
4c4b4cd2
PH
7137 /* Library-level functions are a special case, as GNAT adds
7138 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7139 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7140 have this prefix, so we need to skip this prefix if present. */
7141 if (function_name_len > 5 /* "_ada_" */
7142 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7143 {
7144 function_name += 5;
7145 function_name_len -= 5;
7146 }
4c4b4cd2
PH
7147
7148 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7149 strncpy (rename, function_name, function_name_len);
7150 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7151 "__%s___XR", name);
4c4b4cd2
PH
7152 }
7153 else
7154 {
7155 const int rename_len = strlen (name) + 6;
5b4ee69b 7156
4c4b4cd2 7157 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7158 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7159 }
7160
852dff6c 7161 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7162}
7163
14f9c5c9 7164/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7165 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7166 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7167 otherwise return 0. */
7168
14f9c5c9 7169int
d2e4a39e 7170ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7171{
7172 if (type1 == NULL)
7173 return 1;
7174 else if (type0 == NULL)
7175 return 0;
7176 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7177 return 1;
7178 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7179 return 0;
4c4b4cd2
PH
7180 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7181 return 1;
ad82864c 7182 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7183 return 1;
4c4b4cd2
PH
7184 else if (ada_is_array_descriptor_type (type0)
7185 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7186 return 1;
aeb5907d
JB
7187 else
7188 {
7189 const char *type0_name = type_name_no_tag (type0);
7190 const char *type1_name = type_name_no_tag (type1);
7191
7192 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7193 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7194 return 1;
7195 }
14f9c5c9
AS
7196 return 0;
7197}
7198
7199/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7200 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7201
0d5cff50 7202const char *
d2e4a39e 7203ada_type_name (struct type *type)
14f9c5c9 7204{
d2e4a39e 7205 if (type == NULL)
14f9c5c9
AS
7206 return NULL;
7207 else if (TYPE_NAME (type) != NULL)
7208 return TYPE_NAME (type);
7209 else
7210 return TYPE_TAG_NAME (type);
7211}
7212
b4ba55a1
JB
7213/* Search the list of "descriptive" types associated to TYPE for a type
7214 whose name is NAME. */
7215
7216static struct type *
7217find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7218{
7219 struct type *result;
7220
7221 /* If there no descriptive-type info, then there is no parallel type
7222 to be found. */
7223 if (!HAVE_GNAT_AUX_INFO (type))
7224 return NULL;
7225
7226 result = TYPE_DESCRIPTIVE_TYPE (type);
7227 while (result != NULL)
7228 {
0d5cff50 7229 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7230
7231 if (result_name == NULL)
7232 {
7233 warning (_("unexpected null name on descriptive type"));
7234 return NULL;
7235 }
7236
7237 /* If the names match, stop. */
7238 if (strcmp (result_name, name) == 0)
7239 break;
7240
7241 /* Otherwise, look at the next item on the list, if any. */
7242 if (HAVE_GNAT_AUX_INFO (result))
7243 result = TYPE_DESCRIPTIVE_TYPE (result);
7244 else
7245 result = NULL;
7246 }
7247
7248 /* If we didn't find a match, see whether this is a packed array. With
7249 older compilers, the descriptive type information is either absent or
7250 irrelevant when it comes to packed arrays so the above lookup fails.
7251 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7252 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7253 return ada_find_any_type (name);
7254
7255 return result;
7256}
7257
7258/* Find a parallel type to TYPE with the specified NAME, using the
7259 descriptive type taken from the debugging information, if available,
7260 and otherwise using the (slower) name-based method. */
7261
7262static struct type *
7263ada_find_parallel_type_with_name (struct type *type, const char *name)
7264{
7265 struct type *result = NULL;
7266
7267 if (HAVE_GNAT_AUX_INFO (type))
7268 result = find_parallel_type_by_descriptive_type (type, name);
7269 else
7270 result = ada_find_any_type (name);
7271
7272 return result;
7273}
7274
7275/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7276 SUFFIX to the name of TYPE. */
14f9c5c9 7277
d2e4a39e 7278struct type *
ebf56fd3 7279ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7280{
0d5cff50
DE
7281 char *name;
7282 const char *typename = ada_type_name (type);
14f9c5c9 7283 int len;
d2e4a39e 7284
14f9c5c9
AS
7285 if (typename == NULL)
7286 return NULL;
7287
7288 len = strlen (typename);
7289
b4ba55a1 7290 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7291
7292 strcpy (name, typename);
7293 strcpy (name + len, suffix);
7294
b4ba55a1 7295 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7296}
7297
14f9c5c9 7298/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7299 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7300
d2e4a39e
AS
7301static struct type *
7302dynamic_template_type (struct type *type)
14f9c5c9 7303{
61ee279c 7304 type = ada_check_typedef (type);
14f9c5c9
AS
7305
7306 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7307 || ada_type_name (type) == NULL)
14f9c5c9 7308 return NULL;
d2e4a39e 7309 else
14f9c5c9
AS
7310 {
7311 int len = strlen (ada_type_name (type));
5b4ee69b 7312
4c4b4cd2
PH
7313 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7314 return type;
14f9c5c9 7315 else
4c4b4cd2 7316 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7317 }
7318}
7319
7320/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7321 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7322
d2e4a39e
AS
7323static int
7324is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7325{
7326 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7327
d2e4a39e 7328 return name != NULL
14f9c5c9
AS
7329 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7330 && strstr (name, "___XVL") != NULL;
7331}
7332
4c4b4cd2
PH
7333/* The index of the variant field of TYPE, or -1 if TYPE does not
7334 represent a variant record type. */
14f9c5c9 7335
d2e4a39e 7336static int
4c4b4cd2 7337variant_field_index (struct type *type)
14f9c5c9
AS
7338{
7339 int f;
7340
4c4b4cd2
PH
7341 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7342 return -1;
7343
7344 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7345 {
7346 if (ada_is_variant_part (type, f))
7347 return f;
7348 }
7349 return -1;
14f9c5c9
AS
7350}
7351
4c4b4cd2
PH
7352/* A record type with no fields. */
7353
d2e4a39e 7354static struct type *
e9bb382b 7355empty_record (struct type *template)
14f9c5c9 7356{
e9bb382b 7357 struct type *type = alloc_type_copy (template);
5b4ee69b 7358
14f9c5c9
AS
7359 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7360 TYPE_NFIELDS (type) = 0;
7361 TYPE_FIELDS (type) = NULL;
b1f33ddd 7362 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7363 TYPE_NAME (type) = "<empty>";
7364 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7365 TYPE_LENGTH (type) = 0;
7366 return type;
7367}
7368
7369/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7370 the value of type TYPE at VALADDR or ADDRESS (see comments at
7371 the beginning of this section) VAL according to GNAT conventions.
7372 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7373 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7374 an outer-level type (i.e., as opposed to a branch of a variant.) A
7375 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7376 of the variant.
14f9c5c9 7377
4c4b4cd2
PH
7378 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7379 length are not statically known are discarded. As a consequence,
7380 VALADDR, ADDRESS and DVAL0 are ignored.
7381
7382 NOTE: Limitations: For now, we assume that dynamic fields and
7383 variants occupy whole numbers of bytes. However, they need not be
7384 byte-aligned. */
7385
7386struct type *
10a2c479 7387ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7388 const gdb_byte *valaddr,
4c4b4cd2
PH
7389 CORE_ADDR address, struct value *dval0,
7390 int keep_dynamic_fields)
14f9c5c9 7391{
d2e4a39e
AS
7392 struct value *mark = value_mark ();
7393 struct value *dval;
7394 struct type *rtype;
14f9c5c9 7395 int nfields, bit_len;
4c4b4cd2 7396 int variant_field;
14f9c5c9 7397 long off;
d94e4f4f 7398 int fld_bit_len;
14f9c5c9
AS
7399 int f;
7400
4c4b4cd2
PH
7401 /* Compute the number of fields in this record type that are going
7402 to be processed: unless keep_dynamic_fields, this includes only
7403 fields whose position and length are static will be processed. */
7404 if (keep_dynamic_fields)
7405 nfields = TYPE_NFIELDS (type);
7406 else
7407 {
7408 nfields = 0;
76a01679 7409 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7410 && !ada_is_variant_part (type, nfields)
7411 && !is_dynamic_field (type, nfields))
7412 nfields++;
7413 }
7414
e9bb382b 7415 rtype = alloc_type_copy (type);
14f9c5c9
AS
7416 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7417 INIT_CPLUS_SPECIFIC (rtype);
7418 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7419 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7420 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7421 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7422 TYPE_NAME (rtype) = ada_type_name (type);
7423 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7424 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7425
d2e4a39e
AS
7426 off = 0;
7427 bit_len = 0;
4c4b4cd2
PH
7428 variant_field = -1;
7429
14f9c5c9
AS
7430 for (f = 0; f < nfields; f += 1)
7431 {
6c038f32
PH
7432 off = align_value (off, field_alignment (type, f))
7433 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 7434 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 7435 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7436
d2e4a39e 7437 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7438 {
7439 variant_field = f;
d94e4f4f 7440 fld_bit_len = 0;
4c4b4cd2 7441 }
14f9c5c9 7442 else if (is_dynamic_field (type, f))
4c4b4cd2 7443 {
284614f0
JB
7444 const gdb_byte *field_valaddr = valaddr;
7445 CORE_ADDR field_address = address;
7446 struct type *field_type =
7447 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7448
4c4b4cd2 7449 if (dval0 == NULL)
b5304971
JG
7450 {
7451 /* rtype's length is computed based on the run-time
7452 value of discriminants. If the discriminants are not
7453 initialized, the type size may be completely bogus and
0963b4bd 7454 GDB may fail to allocate a value for it. So check the
b5304971
JG
7455 size first before creating the value. */
7456 check_size (rtype);
7457 dval = value_from_contents_and_address (rtype, valaddr, address);
7458 }
4c4b4cd2
PH
7459 else
7460 dval = dval0;
7461
284614f0
JB
7462 /* If the type referenced by this field is an aligner type, we need
7463 to unwrap that aligner type, because its size might not be set.
7464 Keeping the aligner type would cause us to compute the wrong
7465 size for this field, impacting the offset of the all the fields
7466 that follow this one. */
7467 if (ada_is_aligner_type (field_type))
7468 {
7469 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7470
7471 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7472 field_address = cond_offset_target (field_address, field_offset);
7473 field_type = ada_aligned_type (field_type);
7474 }
7475
7476 field_valaddr = cond_offset_host (field_valaddr,
7477 off / TARGET_CHAR_BIT);
7478 field_address = cond_offset_target (field_address,
7479 off / TARGET_CHAR_BIT);
7480
7481 /* Get the fixed type of the field. Note that, in this case,
7482 we do not want to get the real type out of the tag: if
7483 the current field is the parent part of a tagged record,
7484 we will get the tag of the object. Clearly wrong: the real
7485 type of the parent is not the real type of the child. We
7486 would end up in an infinite loop. */
7487 field_type = ada_get_base_type (field_type);
7488 field_type = ada_to_fixed_type (field_type, field_valaddr,
7489 field_address, dval, 0);
27f2a97b
JB
7490 /* If the field size is already larger than the maximum
7491 object size, then the record itself will necessarily
7492 be larger than the maximum object size. We need to make
7493 this check now, because the size might be so ridiculously
7494 large (due to an uninitialized variable in the inferior)
7495 that it would cause an overflow when adding it to the
7496 record size. */
7497 check_size (field_type);
284614f0
JB
7498
7499 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7500 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7501 /* The multiplication can potentially overflow. But because
7502 the field length has been size-checked just above, and
7503 assuming that the maximum size is a reasonable value,
7504 an overflow should not happen in practice. So rather than
7505 adding overflow recovery code to this already complex code,
7506 we just assume that it's not going to happen. */
d94e4f4f 7507 fld_bit_len =
4c4b4cd2
PH
7508 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7509 }
14f9c5c9 7510 else
4c4b4cd2 7511 {
9f0dec2d
JB
7512 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7513
720d1a40
JB
7514 /* If our field is a typedef type (most likely a typedef of
7515 a fat pointer, encoding an array access), then we need to
7516 look at its target type to determine its characteristics.
7517 In particular, we would miscompute the field size if we took
7518 the size of the typedef (zero), instead of the size of
7519 the target type. */
7520 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7521 field_type = ada_typedef_target_type (field_type);
7522
9f0dec2d 7523 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
7524 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7525 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7526 fld_bit_len =
4c4b4cd2
PH
7527 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7528 else
d94e4f4f 7529 fld_bit_len =
9f0dec2d 7530 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
4c4b4cd2 7531 }
14f9c5c9 7532 if (off + fld_bit_len > bit_len)
4c4b4cd2 7533 bit_len = off + fld_bit_len;
d94e4f4f 7534 off += fld_bit_len;
4c4b4cd2
PH
7535 TYPE_LENGTH (rtype) =
7536 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7537 }
4c4b4cd2
PH
7538
7539 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7540 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7541 the record. This can happen in the presence of representation
7542 clauses. */
7543 if (variant_field >= 0)
7544 {
7545 struct type *branch_type;
7546
7547 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7548
7549 if (dval0 == NULL)
7550 dval = value_from_contents_and_address (rtype, valaddr, address);
7551 else
7552 dval = dval0;
7553
7554 branch_type =
7555 to_fixed_variant_branch_type
7556 (TYPE_FIELD_TYPE (type, variant_field),
7557 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7558 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7559 if (branch_type == NULL)
7560 {
7561 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7562 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7563 TYPE_NFIELDS (rtype) -= 1;
7564 }
7565 else
7566 {
7567 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7568 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7569 fld_bit_len =
7570 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7571 TARGET_CHAR_BIT;
7572 if (off + fld_bit_len > bit_len)
7573 bit_len = off + fld_bit_len;
7574 TYPE_LENGTH (rtype) =
7575 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7576 }
7577 }
7578
714e53ab
PH
7579 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7580 should contain the alignment of that record, which should be a strictly
7581 positive value. If null or negative, then something is wrong, most
7582 probably in the debug info. In that case, we don't round up the size
0963b4bd 7583 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7584 the current RTYPE length might be good enough for our purposes. */
7585 if (TYPE_LENGTH (type) <= 0)
7586 {
323e0a4a
AC
7587 if (TYPE_NAME (rtype))
7588 warning (_("Invalid type size for `%s' detected: %d."),
7589 TYPE_NAME (rtype), TYPE_LENGTH (type));
7590 else
7591 warning (_("Invalid type size for <unnamed> detected: %d."),
7592 TYPE_LENGTH (type));
714e53ab
PH
7593 }
7594 else
7595 {
7596 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7597 TYPE_LENGTH (type));
7598 }
14f9c5c9
AS
7599
7600 value_free_to_mark (mark);
d2e4a39e 7601 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7602 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7603 return rtype;
7604}
7605
4c4b4cd2
PH
7606/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7607 of 1. */
14f9c5c9 7608
d2e4a39e 7609static struct type *
fc1a4b47 7610template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7611 CORE_ADDR address, struct value *dval0)
7612{
7613 return ada_template_to_fixed_record_type_1 (type, valaddr,
7614 address, dval0, 1);
7615}
7616
7617/* An ordinary record type in which ___XVL-convention fields and
7618 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7619 static approximations, containing all possible fields. Uses
7620 no runtime values. Useless for use in values, but that's OK,
7621 since the results are used only for type determinations. Works on both
7622 structs and unions. Representation note: to save space, we memorize
7623 the result of this function in the TYPE_TARGET_TYPE of the
7624 template type. */
7625
7626static struct type *
7627template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7628{
7629 struct type *type;
7630 int nfields;
7631 int f;
7632
4c4b4cd2
PH
7633 if (TYPE_TARGET_TYPE (type0) != NULL)
7634 return TYPE_TARGET_TYPE (type0);
7635
7636 nfields = TYPE_NFIELDS (type0);
7637 type = type0;
14f9c5c9
AS
7638
7639 for (f = 0; f < nfields; f += 1)
7640 {
61ee279c 7641 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7642 struct type *new_type;
14f9c5c9 7643
4c4b4cd2
PH
7644 if (is_dynamic_field (type0, f))
7645 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7646 else
f192137b 7647 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7648 if (type == type0 && new_type != field_type)
7649 {
e9bb382b 7650 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7651 TYPE_CODE (type) = TYPE_CODE (type0);
7652 INIT_CPLUS_SPECIFIC (type);
7653 TYPE_NFIELDS (type) = nfields;
7654 TYPE_FIELDS (type) = (struct field *)
7655 TYPE_ALLOC (type, nfields * sizeof (struct field));
7656 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7657 sizeof (struct field) * nfields);
7658 TYPE_NAME (type) = ada_type_name (type0);
7659 TYPE_TAG_NAME (type) = NULL;
876cecd0 7660 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7661 TYPE_LENGTH (type) = 0;
7662 }
7663 TYPE_FIELD_TYPE (type, f) = new_type;
7664 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7665 }
14f9c5c9
AS
7666 return type;
7667}
7668
4c4b4cd2 7669/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7670 whose address in memory is ADDRESS, returns a revision of TYPE,
7671 which should be a non-dynamic-sized record, in which the variant
7672 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7673 for discriminant values in DVAL0, which can be NULL if the record
7674 contains the necessary discriminant values. */
7675
d2e4a39e 7676static struct type *
fc1a4b47 7677to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7678 CORE_ADDR address, struct value *dval0)
14f9c5c9 7679{
d2e4a39e 7680 struct value *mark = value_mark ();
4c4b4cd2 7681 struct value *dval;
d2e4a39e 7682 struct type *rtype;
14f9c5c9
AS
7683 struct type *branch_type;
7684 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7685 int variant_field = variant_field_index (type);
14f9c5c9 7686
4c4b4cd2 7687 if (variant_field == -1)
14f9c5c9
AS
7688 return type;
7689
4c4b4cd2
PH
7690 if (dval0 == NULL)
7691 dval = value_from_contents_and_address (type, valaddr, address);
7692 else
7693 dval = dval0;
7694
e9bb382b 7695 rtype = alloc_type_copy (type);
14f9c5c9 7696 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7697 INIT_CPLUS_SPECIFIC (rtype);
7698 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7699 TYPE_FIELDS (rtype) =
7700 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7701 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7702 sizeof (struct field) * nfields);
14f9c5c9
AS
7703 TYPE_NAME (rtype) = ada_type_name (type);
7704 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7705 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7706 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7707
4c4b4cd2
PH
7708 branch_type = to_fixed_variant_branch_type
7709 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7710 cond_offset_host (valaddr,
4c4b4cd2
PH
7711 TYPE_FIELD_BITPOS (type, variant_field)
7712 / TARGET_CHAR_BIT),
d2e4a39e 7713 cond_offset_target (address,
4c4b4cd2
PH
7714 TYPE_FIELD_BITPOS (type, variant_field)
7715 / TARGET_CHAR_BIT), dval);
d2e4a39e 7716 if (branch_type == NULL)
14f9c5c9 7717 {
4c4b4cd2 7718 int f;
5b4ee69b 7719
4c4b4cd2
PH
7720 for (f = variant_field + 1; f < nfields; f += 1)
7721 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7722 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7723 }
7724 else
7725 {
4c4b4cd2
PH
7726 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7727 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7728 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7729 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7730 }
4c4b4cd2 7731 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7732
4c4b4cd2 7733 value_free_to_mark (mark);
14f9c5c9
AS
7734 return rtype;
7735}
7736
7737/* An ordinary record type (with fixed-length fields) that describes
7738 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7739 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7740 should be in DVAL, a record value; it may be NULL if the object
7741 at ADDR itself contains any necessary discriminant values.
7742 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7743 values from the record are needed. Except in the case that DVAL,
7744 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7745 unchecked) is replaced by a particular branch of the variant.
7746
7747 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7748 is questionable and may be removed. It can arise during the
7749 processing of an unconstrained-array-of-record type where all the
7750 variant branches have exactly the same size. This is because in
7751 such cases, the compiler does not bother to use the XVS convention
7752 when encoding the record. I am currently dubious of this
7753 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7754
d2e4a39e 7755static struct type *
fc1a4b47 7756to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7757 CORE_ADDR address, struct value *dval)
14f9c5c9 7758{
d2e4a39e 7759 struct type *templ_type;
14f9c5c9 7760
876cecd0 7761 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7762 return type0;
7763
d2e4a39e 7764 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7765
7766 if (templ_type != NULL)
7767 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7768 else if (variant_field_index (type0) >= 0)
7769 {
7770 if (dval == NULL && valaddr == NULL && address == 0)
7771 return type0;
7772 return to_record_with_fixed_variant_part (type0, valaddr, address,
7773 dval);
7774 }
14f9c5c9
AS
7775 else
7776 {
876cecd0 7777 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7778 return type0;
7779 }
7780
7781}
7782
7783/* An ordinary record type (with fixed-length fields) that describes
7784 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7785 union type. Any necessary discriminants' values should be in DVAL,
7786 a record value. That is, this routine selects the appropriate
7787 branch of the union at ADDR according to the discriminant value
b1f33ddd 7788 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7789 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7790
d2e4a39e 7791static struct type *
fc1a4b47 7792to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7793 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7794{
7795 int which;
d2e4a39e
AS
7796 struct type *templ_type;
7797 struct type *var_type;
14f9c5c9
AS
7798
7799 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7800 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7801 else
14f9c5c9
AS
7802 var_type = var_type0;
7803
7804 templ_type = ada_find_parallel_type (var_type, "___XVU");
7805
7806 if (templ_type != NULL)
7807 var_type = templ_type;
7808
b1f33ddd
JB
7809 if (is_unchecked_variant (var_type, value_type (dval)))
7810 return var_type0;
d2e4a39e
AS
7811 which =
7812 ada_which_variant_applies (var_type,
0fd88904 7813 value_type (dval), value_contents (dval));
14f9c5c9
AS
7814
7815 if (which < 0)
e9bb382b 7816 return empty_record (var_type);
14f9c5c9 7817 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7818 return to_fixed_record_type
d2e4a39e
AS
7819 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7820 valaddr, address, dval);
4c4b4cd2 7821 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7822 return
7823 to_fixed_record_type
7824 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7825 else
7826 return TYPE_FIELD_TYPE (var_type, which);
7827}
7828
7829/* Assuming that TYPE0 is an array type describing the type of a value
7830 at ADDR, and that DVAL describes a record containing any
7831 discriminants used in TYPE0, returns a type for the value that
7832 contains no dynamic components (that is, no components whose sizes
7833 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7834 true, gives an error message if the resulting type's size is over
4c4b4cd2 7835 varsize_limit. */
14f9c5c9 7836
d2e4a39e
AS
7837static struct type *
7838to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7839 int ignore_too_big)
14f9c5c9 7840{
d2e4a39e
AS
7841 struct type *index_type_desc;
7842 struct type *result;
ad82864c 7843 int constrained_packed_array_p;
14f9c5c9 7844
b0dd7688 7845 type0 = ada_check_typedef (type0);
284614f0 7846 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7847 return type0;
14f9c5c9 7848
ad82864c
JB
7849 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7850 if (constrained_packed_array_p)
7851 type0 = decode_constrained_packed_array_type (type0);
284614f0 7852
14f9c5c9 7853 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 7854 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
7855 if (index_type_desc == NULL)
7856 {
61ee279c 7857 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 7858
14f9c5c9 7859 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7860 depend on the contents of the array in properly constructed
7861 debugging data. */
529cad9c
PH
7862 /* Create a fixed version of the array element type.
7863 We're not providing the address of an element here,
e1d5a0d2 7864 and thus the actual object value cannot be inspected to do
529cad9c
PH
7865 the conversion. This should not be a problem, since arrays of
7866 unconstrained objects are not allowed. In particular, all
7867 the elements of an array of a tagged type should all be of
7868 the same type specified in the debugging info. No need to
7869 consult the object tag. */
1ed6ede0 7870 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7871
284614f0
JB
7872 /* Make sure we always create a new array type when dealing with
7873 packed array types, since we're going to fix-up the array
7874 type length and element bitsize a little further down. */
ad82864c 7875 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7876 result = type0;
14f9c5c9 7877 else
e9bb382b 7878 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7879 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7880 }
7881 else
7882 {
7883 int i;
7884 struct type *elt_type0;
7885
7886 elt_type0 = type0;
7887 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7888 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7889
7890 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7891 depend on the contents of the array in properly constructed
7892 debugging data. */
529cad9c
PH
7893 /* Create a fixed version of the array element type.
7894 We're not providing the address of an element here,
e1d5a0d2 7895 and thus the actual object value cannot be inspected to do
529cad9c
PH
7896 the conversion. This should not be a problem, since arrays of
7897 unconstrained objects are not allowed. In particular, all
7898 the elements of an array of a tagged type should all be of
7899 the same type specified in the debugging info. No need to
7900 consult the object tag. */
1ed6ede0
JB
7901 result =
7902 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7903
7904 elt_type0 = type0;
14f9c5c9 7905 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7906 {
7907 struct type *range_type =
28c85d6c 7908 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 7909
e9bb382b 7910 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7911 result, range_type);
1ce677a4 7912 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7913 }
d2e4a39e 7914 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7915 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7916 }
7917
2e6fda7d
JB
7918 /* We want to preserve the type name. This can be useful when
7919 trying to get the type name of a value that has already been
7920 printed (for instance, if the user did "print VAR; whatis $". */
7921 TYPE_NAME (result) = TYPE_NAME (type0);
7922
ad82864c 7923 if (constrained_packed_array_p)
284614f0
JB
7924 {
7925 /* So far, the resulting type has been created as if the original
7926 type was a regular (non-packed) array type. As a result, the
7927 bitsize of the array elements needs to be set again, and the array
7928 length needs to be recomputed based on that bitsize. */
7929 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7930 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7931
7932 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7933 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7934 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7935 TYPE_LENGTH (result)++;
7936 }
7937
876cecd0 7938 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7939 return result;
d2e4a39e 7940}
14f9c5c9
AS
7941
7942
7943/* A standard type (containing no dynamically sized components)
7944 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7945 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7946 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7947 ADDRESS or in VALADDR contains these discriminants.
7948
1ed6ede0
JB
7949 If CHECK_TAG is not null, in the case of tagged types, this function
7950 attempts to locate the object's tag and use it to compute the actual
7951 type. However, when ADDRESS is null, we cannot use it to determine the
7952 location of the tag, and therefore compute the tagged type's actual type.
7953 So we return the tagged type without consulting the tag. */
529cad9c 7954
f192137b
JB
7955static struct type *
7956ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7957 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7958{
61ee279c 7959 type = ada_check_typedef (type);
d2e4a39e
AS
7960 switch (TYPE_CODE (type))
7961 {
7962 default:
14f9c5c9 7963 return type;
d2e4a39e 7964 case TYPE_CODE_STRUCT:
4c4b4cd2 7965 {
76a01679 7966 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7967 struct type *fixed_record_type =
7968 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 7969
529cad9c
PH
7970 /* If STATIC_TYPE is a tagged type and we know the object's address,
7971 then we can determine its tag, and compute the object's actual
0963b4bd 7972 type from there. Note that we have to use the fixed record
1ed6ede0
JB
7973 type (the parent part of the record may have dynamic fields
7974 and the way the location of _tag is expressed may depend on
7975 them). */
529cad9c 7976
1ed6ede0 7977 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7978 {
7979 struct type *real_type =
1ed6ede0
JB
7980 type_from_tag (value_tag_from_contents_and_address
7981 (fixed_record_type,
7982 valaddr,
7983 address));
5b4ee69b 7984
76a01679 7985 if (real_type != NULL)
1ed6ede0 7986 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7987 }
4af88198
JB
7988
7989 /* Check to see if there is a parallel ___XVZ variable.
7990 If there is, then it provides the actual size of our type. */
7991 else if (ada_type_name (fixed_record_type) != NULL)
7992 {
0d5cff50 7993 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
7994 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7995 int xvz_found = 0;
7996 LONGEST size;
7997
88c15c34 7998 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7999 size = get_int_var_value (xvz_name, &xvz_found);
8000 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8001 {
8002 fixed_record_type = copy_type (fixed_record_type);
8003 TYPE_LENGTH (fixed_record_type) = size;
8004
8005 /* The FIXED_RECORD_TYPE may have be a stub. We have
8006 observed this when the debugging info is STABS, and
8007 apparently it is something that is hard to fix.
8008
8009 In practice, we don't need the actual type definition
8010 at all, because the presence of the XVZ variable allows us
8011 to assume that there must be a XVS type as well, which we
8012 should be able to use later, when we need the actual type
8013 definition.
8014
8015 In the meantime, pretend that the "fixed" type we are
8016 returning is NOT a stub, because this can cause trouble
8017 when using this type to create new types targeting it.
8018 Indeed, the associated creation routines often check
8019 whether the target type is a stub and will try to replace
0963b4bd 8020 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8021 might cause the new type to have the wrong size too.
8022 Consider the case of an array, for instance, where the size
8023 of the array is computed from the number of elements in
8024 our array multiplied by the size of its element. */
8025 TYPE_STUB (fixed_record_type) = 0;
8026 }
8027 }
1ed6ede0 8028 return fixed_record_type;
4c4b4cd2 8029 }
d2e4a39e 8030 case TYPE_CODE_ARRAY:
4c4b4cd2 8031 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8032 case TYPE_CODE_UNION:
8033 if (dval == NULL)
4c4b4cd2 8034 return type;
d2e4a39e 8035 else
4c4b4cd2 8036 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8037 }
14f9c5c9
AS
8038}
8039
f192137b
JB
8040/* The same as ada_to_fixed_type_1, except that it preserves the type
8041 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8042
8043 The typedef layer needs be preserved in order to differentiate between
8044 arrays and array pointers when both types are implemented using the same
8045 fat pointer. In the array pointer case, the pointer is encoded as
8046 a typedef of the pointer type. For instance, considering:
8047
8048 type String_Access is access String;
8049 S1 : String_Access := null;
8050
8051 To the debugger, S1 is defined as a typedef of type String. But
8052 to the user, it is a pointer. So if the user tries to print S1,
8053 we should not dereference the array, but print the array address
8054 instead.
8055
8056 If we didn't preserve the typedef layer, we would lose the fact that
8057 the type is to be presented as a pointer (needs de-reference before
8058 being printed). And we would also use the source-level type name. */
f192137b
JB
8059
8060struct type *
8061ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8062 CORE_ADDR address, struct value *dval, int check_tag)
8063
8064{
8065 struct type *fixed_type =
8066 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8067
96dbd2c1
JB
8068 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8069 then preserve the typedef layer.
8070
8071 Implementation note: We can only check the main-type portion of
8072 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8073 from TYPE now returns a type that has the same instance flags
8074 as TYPE. For instance, if TYPE is a "typedef const", and its
8075 target type is a "struct", then the typedef elimination will return
8076 a "const" version of the target type. See check_typedef for more
8077 details about how the typedef layer elimination is done.
8078
8079 brobecker/2010-11-19: It seems to me that the only case where it is
8080 useful to preserve the typedef layer is when dealing with fat pointers.
8081 Perhaps, we could add a check for that and preserve the typedef layer
8082 only in that situation. But this seems unecessary so far, probably
8083 because we call check_typedef/ada_check_typedef pretty much everywhere.
8084 */
f192137b 8085 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8086 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8087 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8088 return type;
8089
8090 return fixed_type;
8091}
8092
14f9c5c9 8093/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8094 TYPE0, but based on no runtime data. */
14f9c5c9 8095
d2e4a39e
AS
8096static struct type *
8097to_static_fixed_type (struct type *type0)
14f9c5c9 8098{
d2e4a39e 8099 struct type *type;
14f9c5c9
AS
8100
8101 if (type0 == NULL)
8102 return NULL;
8103
876cecd0 8104 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8105 return type0;
8106
61ee279c 8107 type0 = ada_check_typedef (type0);
d2e4a39e 8108
14f9c5c9
AS
8109 switch (TYPE_CODE (type0))
8110 {
8111 default:
8112 return type0;
8113 case TYPE_CODE_STRUCT:
8114 type = dynamic_template_type (type0);
d2e4a39e 8115 if (type != NULL)
4c4b4cd2
PH
8116 return template_to_static_fixed_type (type);
8117 else
8118 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8119 case TYPE_CODE_UNION:
8120 type = ada_find_parallel_type (type0, "___XVU");
8121 if (type != NULL)
4c4b4cd2
PH
8122 return template_to_static_fixed_type (type);
8123 else
8124 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8125 }
8126}
8127
4c4b4cd2
PH
8128/* A static approximation of TYPE with all type wrappers removed. */
8129
d2e4a39e
AS
8130static struct type *
8131static_unwrap_type (struct type *type)
14f9c5c9
AS
8132{
8133 if (ada_is_aligner_type (type))
8134 {
61ee279c 8135 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8136 if (ada_type_name (type1) == NULL)
4c4b4cd2 8137 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8138
8139 return static_unwrap_type (type1);
8140 }
d2e4a39e 8141 else
14f9c5c9 8142 {
d2e4a39e 8143 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8144
d2e4a39e 8145 if (raw_real_type == type)
4c4b4cd2 8146 return type;
14f9c5c9 8147 else
4c4b4cd2 8148 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8149 }
8150}
8151
8152/* In some cases, incomplete and private types require
4c4b4cd2 8153 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8154 type Foo;
8155 type FooP is access Foo;
8156 V: FooP;
8157 type Foo is array ...;
4c4b4cd2 8158 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8159 cross-references to such types, we instead substitute for FooP a
8160 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8161 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8162
8163/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8164 exists, otherwise TYPE. */
8165
d2e4a39e 8166struct type *
61ee279c 8167ada_check_typedef (struct type *type)
14f9c5c9 8168{
727e3d2e
JB
8169 if (type == NULL)
8170 return NULL;
8171
720d1a40
JB
8172 /* If our type is a typedef type of a fat pointer, then we're done.
8173 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8174 what allows us to distinguish between fat pointers that represent
8175 array types, and fat pointers that represent array access types
8176 (in both cases, the compiler implements them as fat pointers). */
8177 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8178 && is_thick_pntr (ada_typedef_target_type (type)))
8179 return type;
8180
14f9c5c9
AS
8181 CHECK_TYPEDEF (type);
8182 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8183 || !TYPE_STUB (type)
14f9c5c9
AS
8184 || TYPE_TAG_NAME (type) == NULL)
8185 return type;
d2e4a39e 8186 else
14f9c5c9 8187 {
0d5cff50 8188 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8189 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8190
05e522ef
JB
8191 if (type1 == NULL)
8192 return type;
8193
8194 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8195 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8196 types, only for the typedef-to-array types). If that's the case,
8197 strip the typedef layer. */
8198 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8199 type1 = ada_check_typedef (type1);
8200
8201 return type1;
14f9c5c9
AS
8202 }
8203}
8204
8205/* A value representing the data at VALADDR/ADDRESS as described by
8206 type TYPE0, but with a standard (static-sized) type that correctly
8207 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8208 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8209 creation of struct values]. */
14f9c5c9 8210
4c4b4cd2
PH
8211static struct value *
8212ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8213 struct value *val0)
14f9c5c9 8214{
1ed6ede0 8215 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8216
14f9c5c9
AS
8217 if (type == type0 && val0 != NULL)
8218 return val0;
d2e4a39e 8219 else
4c4b4cd2
PH
8220 return value_from_contents_and_address (type, 0, address);
8221}
8222
8223/* A value representing VAL, but with a standard (static-sized) type
8224 that correctly describes it. Does not necessarily create a new
8225 value. */
8226
0c3acc09 8227struct value *
4c4b4cd2
PH
8228ada_to_fixed_value (struct value *val)
8229{
c48db5ca
JB
8230 val = unwrap_value (val);
8231 val = ada_to_fixed_value_create (value_type (val),
8232 value_address (val),
8233 val);
8234 return val;
14f9c5c9 8235}
d2e4a39e 8236\f
14f9c5c9 8237
14f9c5c9
AS
8238/* Attributes */
8239
4c4b4cd2
PH
8240/* Table mapping attribute numbers to names.
8241 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8242
d2e4a39e 8243static const char *attribute_names[] = {
14f9c5c9
AS
8244 "<?>",
8245
d2e4a39e 8246 "first",
14f9c5c9
AS
8247 "last",
8248 "length",
8249 "image",
14f9c5c9
AS
8250 "max",
8251 "min",
4c4b4cd2
PH
8252 "modulus",
8253 "pos",
8254 "size",
8255 "tag",
14f9c5c9 8256 "val",
14f9c5c9
AS
8257 0
8258};
8259
d2e4a39e 8260const char *
4c4b4cd2 8261ada_attribute_name (enum exp_opcode n)
14f9c5c9 8262{
4c4b4cd2
PH
8263 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8264 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8265 else
8266 return attribute_names[0];
8267}
8268
4c4b4cd2 8269/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8270
4c4b4cd2
PH
8271static LONGEST
8272pos_atr (struct value *arg)
14f9c5c9 8273{
24209737
PH
8274 struct value *val = coerce_ref (arg);
8275 struct type *type = value_type (val);
14f9c5c9 8276
d2e4a39e 8277 if (!discrete_type_p (type))
323e0a4a 8278 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8279
8280 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8281 {
8282 int i;
24209737 8283 LONGEST v = value_as_long (val);
14f9c5c9 8284
d2e4a39e 8285 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
8286 {
8287 if (v == TYPE_FIELD_BITPOS (type, i))
8288 return i;
8289 }
323e0a4a 8290 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8291 }
8292 else
24209737 8293 return value_as_long (val);
4c4b4cd2
PH
8294}
8295
8296static struct value *
3cb382c9 8297value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8298{
3cb382c9 8299 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8300}
8301
4c4b4cd2 8302/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8303
d2e4a39e
AS
8304static struct value *
8305value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8306{
d2e4a39e 8307 if (!discrete_type_p (type))
323e0a4a 8308 error (_("'VAL only defined on discrete types"));
df407dfe 8309 if (!integer_type_p (value_type (arg)))
323e0a4a 8310 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8311
8312 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8313 {
8314 long pos = value_as_long (arg);
5b4ee69b 8315
14f9c5c9 8316 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8317 error (_("argument to 'VAL out of range"));
d2e4a39e 8318 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
8319 }
8320 else
8321 return value_from_longest (type, value_as_long (arg));
8322}
14f9c5c9 8323\f
d2e4a39e 8324
4c4b4cd2 8325 /* Evaluation */
14f9c5c9 8326
4c4b4cd2
PH
8327/* True if TYPE appears to be an Ada character type.
8328 [At the moment, this is true only for Character and Wide_Character;
8329 It is a heuristic test that could stand improvement]. */
14f9c5c9 8330
d2e4a39e
AS
8331int
8332ada_is_character_type (struct type *type)
14f9c5c9 8333{
7b9f71f2
JB
8334 const char *name;
8335
8336 /* If the type code says it's a character, then assume it really is,
8337 and don't check any further. */
8338 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8339 return 1;
8340
8341 /* Otherwise, assume it's a character type iff it is a discrete type
8342 with a known character type name. */
8343 name = ada_type_name (type);
8344 return (name != NULL
8345 && (TYPE_CODE (type) == TYPE_CODE_INT
8346 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8347 && (strcmp (name, "character") == 0
8348 || strcmp (name, "wide_character") == 0
5a517ebd 8349 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8350 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8351}
8352
4c4b4cd2 8353/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8354
8355int
ebf56fd3 8356ada_is_string_type (struct type *type)
14f9c5c9 8357{
61ee279c 8358 type = ada_check_typedef (type);
d2e4a39e 8359 if (type != NULL
14f9c5c9 8360 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8361 && (ada_is_simple_array_type (type)
8362 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8363 && ada_array_arity (type) == 1)
8364 {
8365 struct type *elttype = ada_array_element_type (type, 1);
8366
8367 return ada_is_character_type (elttype);
8368 }
d2e4a39e 8369 else
14f9c5c9
AS
8370 return 0;
8371}
8372
5bf03f13
JB
8373/* The compiler sometimes provides a parallel XVS type for a given
8374 PAD type. Normally, it is safe to follow the PAD type directly,
8375 but older versions of the compiler have a bug that causes the offset
8376 of its "F" field to be wrong. Following that field in that case
8377 would lead to incorrect results, but this can be worked around
8378 by ignoring the PAD type and using the associated XVS type instead.
8379
8380 Set to True if the debugger should trust the contents of PAD types.
8381 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8382static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8383
8384/* True if TYPE is a struct type introduced by the compiler to force the
8385 alignment of a value. Such types have a single field with a
4c4b4cd2 8386 distinctive name. */
14f9c5c9
AS
8387
8388int
ebf56fd3 8389ada_is_aligner_type (struct type *type)
14f9c5c9 8390{
61ee279c 8391 type = ada_check_typedef (type);
714e53ab 8392
5bf03f13 8393 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8394 return 0;
8395
14f9c5c9 8396 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8397 && TYPE_NFIELDS (type) == 1
8398 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8399}
8400
8401/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8402 the parallel type. */
14f9c5c9 8403
d2e4a39e
AS
8404struct type *
8405ada_get_base_type (struct type *raw_type)
14f9c5c9 8406{
d2e4a39e
AS
8407 struct type *real_type_namer;
8408 struct type *raw_real_type;
14f9c5c9
AS
8409
8410 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8411 return raw_type;
8412
284614f0
JB
8413 if (ada_is_aligner_type (raw_type))
8414 /* The encoding specifies that we should always use the aligner type.
8415 So, even if this aligner type has an associated XVS type, we should
8416 simply ignore it.
8417
8418 According to the compiler gurus, an XVS type parallel to an aligner
8419 type may exist because of a stabs limitation. In stabs, aligner
8420 types are empty because the field has a variable-sized type, and
8421 thus cannot actually be used as an aligner type. As a result,
8422 we need the associated parallel XVS type to decode the type.
8423 Since the policy in the compiler is to not change the internal
8424 representation based on the debugging info format, we sometimes
8425 end up having a redundant XVS type parallel to the aligner type. */
8426 return raw_type;
8427
14f9c5c9 8428 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8429 if (real_type_namer == NULL
14f9c5c9
AS
8430 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8431 || TYPE_NFIELDS (real_type_namer) != 1)
8432 return raw_type;
8433
f80d3ff2
JB
8434 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8435 {
8436 /* This is an older encoding form where the base type needs to be
8437 looked up by name. We prefer the newer enconding because it is
8438 more efficient. */
8439 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8440 if (raw_real_type == NULL)
8441 return raw_type;
8442 else
8443 return raw_real_type;
8444 }
8445
8446 /* The field in our XVS type is a reference to the base type. */
8447 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8448}
14f9c5c9 8449
4c4b4cd2 8450/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8451
d2e4a39e
AS
8452struct type *
8453ada_aligned_type (struct type *type)
14f9c5c9
AS
8454{
8455 if (ada_is_aligner_type (type))
8456 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8457 else
8458 return ada_get_base_type (type);
8459}
8460
8461
8462/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8463 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8464
fc1a4b47
AC
8465const gdb_byte *
8466ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8467{
d2e4a39e 8468 if (ada_is_aligner_type (type))
14f9c5c9 8469 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8470 valaddr +
8471 TYPE_FIELD_BITPOS (type,
8472 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8473 else
8474 return valaddr;
8475}
8476
4c4b4cd2
PH
8477
8478
14f9c5c9 8479/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8480 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8481const char *
8482ada_enum_name (const char *name)
14f9c5c9 8483{
4c4b4cd2
PH
8484 static char *result;
8485 static size_t result_len = 0;
d2e4a39e 8486 char *tmp;
14f9c5c9 8487
4c4b4cd2
PH
8488 /* First, unqualify the enumeration name:
8489 1. Search for the last '.' character. If we find one, then skip
177b42fe 8490 all the preceding characters, the unqualified name starts
76a01679 8491 right after that dot.
4c4b4cd2 8492 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8493 translates dots into "__". Search forward for double underscores,
8494 but stop searching when we hit an overloading suffix, which is
8495 of the form "__" followed by digits. */
4c4b4cd2 8496
c3e5cd34
PH
8497 tmp = strrchr (name, '.');
8498 if (tmp != NULL)
4c4b4cd2
PH
8499 name = tmp + 1;
8500 else
14f9c5c9 8501 {
4c4b4cd2
PH
8502 while ((tmp = strstr (name, "__")) != NULL)
8503 {
8504 if (isdigit (tmp[2]))
8505 break;
8506 else
8507 name = tmp + 2;
8508 }
14f9c5c9
AS
8509 }
8510
8511 if (name[0] == 'Q')
8512 {
14f9c5c9 8513 int v;
5b4ee69b 8514
14f9c5c9 8515 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8516 {
8517 if (sscanf (name + 2, "%x", &v) != 1)
8518 return name;
8519 }
14f9c5c9 8520 else
4c4b4cd2 8521 return name;
14f9c5c9 8522
4c4b4cd2 8523 GROW_VECT (result, result_len, 16);
14f9c5c9 8524 if (isascii (v) && isprint (v))
88c15c34 8525 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8526 else if (name[1] == 'U')
88c15c34 8527 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8528 else
88c15c34 8529 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8530
8531 return result;
8532 }
d2e4a39e 8533 else
4c4b4cd2 8534 {
c3e5cd34
PH
8535 tmp = strstr (name, "__");
8536 if (tmp == NULL)
8537 tmp = strstr (name, "$");
8538 if (tmp != NULL)
4c4b4cd2
PH
8539 {
8540 GROW_VECT (result, result_len, tmp - name + 1);
8541 strncpy (result, name, tmp - name);
8542 result[tmp - name] = '\0';
8543 return result;
8544 }
8545
8546 return name;
8547 }
14f9c5c9
AS
8548}
8549
14f9c5c9
AS
8550/* Evaluate the subexpression of EXP starting at *POS as for
8551 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8552 expression. */
14f9c5c9 8553
d2e4a39e
AS
8554static struct value *
8555evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8556{
4b27a620 8557 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8558}
8559
8560/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8561 value it wraps. */
14f9c5c9 8562
d2e4a39e
AS
8563static struct value *
8564unwrap_value (struct value *val)
14f9c5c9 8565{
df407dfe 8566 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8567
14f9c5c9
AS
8568 if (ada_is_aligner_type (type))
8569 {
de4d072f 8570 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8571 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8572
14f9c5c9 8573 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8574 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8575
8576 return unwrap_value (v);
8577 }
d2e4a39e 8578 else
14f9c5c9 8579 {
d2e4a39e 8580 struct type *raw_real_type =
61ee279c 8581 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8582
5bf03f13
JB
8583 /* If there is no parallel XVS or XVE type, then the value is
8584 already unwrapped. Return it without further modification. */
8585 if ((type == raw_real_type)
8586 && ada_find_parallel_type (type, "___XVE") == NULL)
8587 return val;
14f9c5c9 8588
d2e4a39e 8589 return
4c4b4cd2
PH
8590 coerce_unspec_val_to_type
8591 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8592 value_address (val),
1ed6ede0 8593 NULL, 1));
14f9c5c9
AS
8594 }
8595}
d2e4a39e
AS
8596
8597static struct value *
8598cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8599{
8600 LONGEST val;
8601
df407dfe 8602 if (type == value_type (arg))
14f9c5c9 8603 return arg;
df407dfe 8604 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8605 val = ada_float_to_fixed (type,
df407dfe 8606 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8607 value_as_long (arg)));
d2e4a39e 8608 else
14f9c5c9 8609 {
a53b7a21 8610 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8611
14f9c5c9
AS
8612 val = ada_float_to_fixed (type, argd);
8613 }
8614
8615 return value_from_longest (type, val);
8616}
8617
d2e4a39e 8618static struct value *
a53b7a21 8619cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8620{
df407dfe 8621 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8622 value_as_long (arg));
5b4ee69b 8623
a53b7a21 8624 return value_from_double (type, val);
14f9c5c9
AS
8625}
8626
4c4b4cd2
PH
8627/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8628 return the converted value. */
8629
d2e4a39e
AS
8630static struct value *
8631coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8632{
df407dfe 8633 struct type *type2 = value_type (val);
5b4ee69b 8634
14f9c5c9
AS
8635 if (type == type2)
8636 return val;
8637
61ee279c
PH
8638 type2 = ada_check_typedef (type2);
8639 type = ada_check_typedef (type);
14f9c5c9 8640
d2e4a39e
AS
8641 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8642 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8643 {
8644 val = ada_value_ind (val);
df407dfe 8645 type2 = value_type (val);
14f9c5c9
AS
8646 }
8647
d2e4a39e 8648 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8649 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8650 {
8651 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
8652 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8653 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 8654 error (_("Incompatible types in assignment"));
04624583 8655 deprecated_set_value_type (val, type);
14f9c5c9 8656 }
d2e4a39e 8657 return val;
14f9c5c9
AS
8658}
8659
4c4b4cd2
PH
8660static struct value *
8661ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8662{
8663 struct value *val;
8664 struct type *type1, *type2;
8665 LONGEST v, v1, v2;
8666
994b9211
AC
8667 arg1 = coerce_ref (arg1);
8668 arg2 = coerce_ref (arg2);
18af8284
JB
8669 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8670 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8671
76a01679
JB
8672 if (TYPE_CODE (type1) != TYPE_CODE_INT
8673 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8674 return value_binop (arg1, arg2, op);
8675
76a01679 8676 switch (op)
4c4b4cd2
PH
8677 {
8678 case BINOP_MOD:
8679 case BINOP_DIV:
8680 case BINOP_REM:
8681 break;
8682 default:
8683 return value_binop (arg1, arg2, op);
8684 }
8685
8686 v2 = value_as_long (arg2);
8687 if (v2 == 0)
323e0a4a 8688 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8689
8690 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8691 return value_binop (arg1, arg2, op);
8692
8693 v1 = value_as_long (arg1);
8694 switch (op)
8695 {
8696 case BINOP_DIV:
8697 v = v1 / v2;
76a01679
JB
8698 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8699 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8700 break;
8701 case BINOP_REM:
8702 v = v1 % v2;
76a01679
JB
8703 if (v * v1 < 0)
8704 v -= v2;
4c4b4cd2
PH
8705 break;
8706 default:
8707 /* Should not reach this point. */
8708 v = 0;
8709 }
8710
8711 val = allocate_value (type1);
990a07ab 8712 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8713 TYPE_LENGTH (value_type (val)),
8714 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8715 return val;
8716}
8717
8718static int
8719ada_value_equal (struct value *arg1, struct value *arg2)
8720{
df407dfe
AC
8721 if (ada_is_direct_array_type (value_type (arg1))
8722 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8723 {
f58b38bf
JB
8724 /* Automatically dereference any array reference before
8725 we attempt to perform the comparison. */
8726 arg1 = ada_coerce_ref (arg1);
8727 arg2 = ada_coerce_ref (arg2);
8728
4c4b4cd2
PH
8729 arg1 = ada_coerce_to_simple_array (arg1);
8730 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8731 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8732 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8733 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8734 /* FIXME: The following works only for types whose
76a01679
JB
8735 representations use all bits (no padding or undefined bits)
8736 and do not have user-defined equality. */
8737 return
df407dfe 8738 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8739 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8740 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8741 }
8742 return value_equal (arg1, arg2);
8743}
8744
52ce6436
PH
8745/* Total number of component associations in the aggregate starting at
8746 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8747 OP_AGGREGATE. */
52ce6436
PH
8748
8749static int
8750num_component_specs (struct expression *exp, int pc)
8751{
8752 int n, m, i;
5b4ee69b 8753
52ce6436
PH
8754 m = exp->elts[pc + 1].longconst;
8755 pc += 3;
8756 n = 0;
8757 for (i = 0; i < m; i += 1)
8758 {
8759 switch (exp->elts[pc].opcode)
8760 {
8761 default:
8762 n += 1;
8763 break;
8764 case OP_CHOICES:
8765 n += exp->elts[pc + 1].longconst;
8766 break;
8767 }
8768 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8769 }
8770 return n;
8771}
8772
8773/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8774 component of LHS (a simple array or a record), updating *POS past
8775 the expression, assuming that LHS is contained in CONTAINER. Does
8776 not modify the inferior's memory, nor does it modify LHS (unless
8777 LHS == CONTAINER). */
8778
8779static void
8780assign_component (struct value *container, struct value *lhs, LONGEST index,
8781 struct expression *exp, int *pos)
8782{
8783 struct value *mark = value_mark ();
8784 struct value *elt;
5b4ee69b 8785
52ce6436
PH
8786 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8787 {
22601c15
UW
8788 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8789 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 8790
52ce6436
PH
8791 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8792 }
8793 else
8794 {
8795 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 8796 elt = ada_to_fixed_value (elt);
52ce6436
PH
8797 }
8798
8799 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8800 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8801 else
8802 value_assign_to_component (container, elt,
8803 ada_evaluate_subexp (NULL, exp, pos,
8804 EVAL_NORMAL));
8805
8806 value_free_to_mark (mark);
8807}
8808
8809/* Assuming that LHS represents an lvalue having a record or array
8810 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8811 of that aggregate's value to LHS, advancing *POS past the
8812 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8813 lvalue containing LHS (possibly LHS itself). Does not modify
8814 the inferior's memory, nor does it modify the contents of
0963b4bd 8815 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
8816
8817static struct value *
8818assign_aggregate (struct value *container,
8819 struct value *lhs, struct expression *exp,
8820 int *pos, enum noside noside)
8821{
8822 struct type *lhs_type;
8823 int n = exp->elts[*pos+1].longconst;
8824 LONGEST low_index, high_index;
8825 int num_specs;
8826 LONGEST *indices;
8827 int max_indices, num_indices;
8828 int is_array_aggregate;
8829 int i;
52ce6436
PH
8830
8831 *pos += 3;
8832 if (noside != EVAL_NORMAL)
8833 {
52ce6436
PH
8834 for (i = 0; i < n; i += 1)
8835 ada_evaluate_subexp (NULL, exp, pos, noside);
8836 return container;
8837 }
8838
8839 container = ada_coerce_ref (container);
8840 if (ada_is_direct_array_type (value_type (container)))
8841 container = ada_coerce_to_simple_array (container);
8842 lhs = ada_coerce_ref (lhs);
8843 if (!deprecated_value_modifiable (lhs))
8844 error (_("Left operand of assignment is not a modifiable lvalue."));
8845
8846 lhs_type = value_type (lhs);
8847 if (ada_is_direct_array_type (lhs_type))
8848 {
8849 lhs = ada_coerce_to_simple_array (lhs);
8850 lhs_type = value_type (lhs);
8851 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8852 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8853 is_array_aggregate = 1;
8854 }
8855 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8856 {
8857 low_index = 0;
8858 high_index = num_visible_fields (lhs_type) - 1;
8859 is_array_aggregate = 0;
8860 }
8861 else
8862 error (_("Left-hand side must be array or record."));
8863
8864 num_specs = num_component_specs (exp, *pos - 3);
8865 max_indices = 4 * num_specs + 4;
8866 indices = alloca (max_indices * sizeof (indices[0]));
8867 indices[0] = indices[1] = low_index - 1;
8868 indices[2] = indices[3] = high_index + 1;
8869 num_indices = 4;
8870
8871 for (i = 0; i < n; i += 1)
8872 {
8873 switch (exp->elts[*pos].opcode)
8874 {
1fbf5ada
JB
8875 case OP_CHOICES:
8876 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8877 &num_indices, max_indices,
8878 low_index, high_index);
8879 break;
8880 case OP_POSITIONAL:
8881 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
8882 &num_indices, max_indices,
8883 low_index, high_index);
1fbf5ada
JB
8884 break;
8885 case OP_OTHERS:
8886 if (i != n-1)
8887 error (_("Misplaced 'others' clause"));
8888 aggregate_assign_others (container, lhs, exp, pos, indices,
8889 num_indices, low_index, high_index);
8890 break;
8891 default:
8892 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
8893 }
8894 }
8895
8896 return container;
8897}
8898
8899/* Assign into the component of LHS indexed by the OP_POSITIONAL
8900 construct at *POS, updating *POS past the construct, given that
8901 the positions are relative to lower bound LOW, where HIGH is the
8902 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8903 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 8904 assign_aggregate. */
52ce6436
PH
8905static void
8906aggregate_assign_positional (struct value *container,
8907 struct value *lhs, struct expression *exp,
8908 int *pos, LONGEST *indices, int *num_indices,
8909 int max_indices, LONGEST low, LONGEST high)
8910{
8911 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8912
8913 if (ind - 1 == high)
e1d5a0d2 8914 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8915 if (ind <= high)
8916 {
8917 add_component_interval (ind, ind, indices, num_indices, max_indices);
8918 *pos += 3;
8919 assign_component (container, lhs, ind, exp, pos);
8920 }
8921 else
8922 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8923}
8924
8925/* Assign into the components of LHS indexed by the OP_CHOICES
8926 construct at *POS, updating *POS past the construct, given that
8927 the allowable indices are LOW..HIGH. Record the indices assigned
8928 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 8929 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8930static void
8931aggregate_assign_from_choices (struct value *container,
8932 struct value *lhs, struct expression *exp,
8933 int *pos, LONGEST *indices, int *num_indices,
8934 int max_indices, LONGEST low, LONGEST high)
8935{
8936 int j;
8937 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8938 int choice_pos, expr_pc;
8939 int is_array = ada_is_direct_array_type (value_type (lhs));
8940
8941 choice_pos = *pos += 3;
8942
8943 for (j = 0; j < n_choices; j += 1)
8944 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8945 expr_pc = *pos;
8946 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8947
8948 for (j = 0; j < n_choices; j += 1)
8949 {
8950 LONGEST lower, upper;
8951 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 8952
52ce6436
PH
8953 if (op == OP_DISCRETE_RANGE)
8954 {
8955 choice_pos += 1;
8956 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8957 EVAL_NORMAL));
8958 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8959 EVAL_NORMAL));
8960 }
8961 else if (is_array)
8962 {
8963 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8964 EVAL_NORMAL));
8965 upper = lower;
8966 }
8967 else
8968 {
8969 int ind;
0d5cff50 8970 const char *name;
5b4ee69b 8971
52ce6436
PH
8972 switch (op)
8973 {
8974 case OP_NAME:
8975 name = &exp->elts[choice_pos + 2].string;
8976 break;
8977 case OP_VAR_VALUE:
8978 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8979 break;
8980 default:
8981 error (_("Invalid record component association."));
8982 }
8983 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8984 ind = 0;
8985 if (! find_struct_field (name, value_type (lhs), 0,
8986 NULL, NULL, NULL, NULL, &ind))
8987 error (_("Unknown component name: %s."), name);
8988 lower = upper = ind;
8989 }
8990
8991 if (lower <= upper && (lower < low || upper > high))
8992 error (_("Index in component association out of bounds."));
8993
8994 add_component_interval (lower, upper, indices, num_indices,
8995 max_indices);
8996 while (lower <= upper)
8997 {
8998 int pos1;
5b4ee69b 8999
52ce6436
PH
9000 pos1 = expr_pc;
9001 assign_component (container, lhs, lower, exp, &pos1);
9002 lower += 1;
9003 }
9004 }
9005}
9006
9007/* Assign the value of the expression in the OP_OTHERS construct in
9008 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9009 have not been previously assigned. The index intervals already assigned
9010 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9011 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9012static void
9013aggregate_assign_others (struct value *container,
9014 struct value *lhs, struct expression *exp,
9015 int *pos, LONGEST *indices, int num_indices,
9016 LONGEST low, LONGEST high)
9017{
9018 int i;
5ce64950 9019 int expr_pc = *pos + 1;
52ce6436
PH
9020
9021 for (i = 0; i < num_indices - 2; i += 2)
9022 {
9023 LONGEST ind;
5b4ee69b 9024
52ce6436
PH
9025 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9026 {
5ce64950 9027 int localpos;
5b4ee69b 9028
5ce64950
MS
9029 localpos = expr_pc;
9030 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9031 }
9032 }
9033 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9034}
9035
9036/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9037 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9038 modifying *SIZE as needed. It is an error if *SIZE exceeds
9039 MAX_SIZE. The resulting intervals do not overlap. */
9040static void
9041add_component_interval (LONGEST low, LONGEST high,
9042 LONGEST* indices, int *size, int max_size)
9043{
9044 int i, j;
5b4ee69b 9045
52ce6436
PH
9046 for (i = 0; i < *size; i += 2) {
9047 if (high >= indices[i] && low <= indices[i + 1])
9048 {
9049 int kh;
5b4ee69b 9050
52ce6436
PH
9051 for (kh = i + 2; kh < *size; kh += 2)
9052 if (high < indices[kh])
9053 break;
9054 if (low < indices[i])
9055 indices[i] = low;
9056 indices[i + 1] = indices[kh - 1];
9057 if (high > indices[i + 1])
9058 indices[i + 1] = high;
9059 memcpy (indices + i + 2, indices + kh, *size - kh);
9060 *size -= kh - i - 2;
9061 return;
9062 }
9063 else if (high < indices[i])
9064 break;
9065 }
9066
9067 if (*size == max_size)
9068 error (_("Internal error: miscounted aggregate components."));
9069 *size += 2;
9070 for (j = *size-1; j >= i+2; j -= 1)
9071 indices[j] = indices[j - 2];
9072 indices[i] = low;
9073 indices[i + 1] = high;
9074}
9075
6e48bd2c
JB
9076/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9077 is different. */
9078
9079static struct value *
9080ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9081{
9082 if (type == ada_check_typedef (value_type (arg2)))
9083 return arg2;
9084
9085 if (ada_is_fixed_point_type (type))
9086 return (cast_to_fixed (type, arg2));
9087
9088 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9089 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9090
9091 return value_cast (type, arg2);
9092}
9093
284614f0
JB
9094/* Evaluating Ada expressions, and printing their result.
9095 ------------------------------------------------------
9096
21649b50
JB
9097 1. Introduction:
9098 ----------------
9099
284614f0
JB
9100 We usually evaluate an Ada expression in order to print its value.
9101 We also evaluate an expression in order to print its type, which
9102 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9103 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9104 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9105 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9106 similar.
9107
9108 Evaluating expressions is a little more complicated for Ada entities
9109 than it is for entities in languages such as C. The main reason for
9110 this is that Ada provides types whose definition might be dynamic.
9111 One example of such types is variant records. Or another example
9112 would be an array whose bounds can only be known at run time.
9113
9114 The following description is a general guide as to what should be
9115 done (and what should NOT be done) in order to evaluate an expression
9116 involving such types, and when. This does not cover how the semantic
9117 information is encoded by GNAT as this is covered separatly. For the
9118 document used as the reference for the GNAT encoding, see exp_dbug.ads
9119 in the GNAT sources.
9120
9121 Ideally, we should embed each part of this description next to its
9122 associated code. Unfortunately, the amount of code is so vast right
9123 now that it's hard to see whether the code handling a particular
9124 situation might be duplicated or not. One day, when the code is
9125 cleaned up, this guide might become redundant with the comments
9126 inserted in the code, and we might want to remove it.
9127
21649b50
JB
9128 2. ``Fixing'' an Entity, the Simple Case:
9129 -----------------------------------------
9130
284614f0
JB
9131 When evaluating Ada expressions, the tricky issue is that they may
9132 reference entities whose type contents and size are not statically
9133 known. Consider for instance a variant record:
9134
9135 type Rec (Empty : Boolean := True) is record
9136 case Empty is
9137 when True => null;
9138 when False => Value : Integer;
9139 end case;
9140 end record;
9141 Yes : Rec := (Empty => False, Value => 1);
9142 No : Rec := (empty => True);
9143
9144 The size and contents of that record depends on the value of the
9145 descriminant (Rec.Empty). At this point, neither the debugging
9146 information nor the associated type structure in GDB are able to
9147 express such dynamic types. So what the debugger does is to create
9148 "fixed" versions of the type that applies to the specific object.
9149 We also informally refer to this opperation as "fixing" an object,
9150 which means creating its associated fixed type.
9151
9152 Example: when printing the value of variable "Yes" above, its fixed
9153 type would look like this:
9154
9155 type Rec is record
9156 Empty : Boolean;
9157 Value : Integer;
9158 end record;
9159
9160 On the other hand, if we printed the value of "No", its fixed type
9161 would become:
9162
9163 type Rec is record
9164 Empty : Boolean;
9165 end record;
9166
9167 Things become a little more complicated when trying to fix an entity
9168 with a dynamic type that directly contains another dynamic type,
9169 such as an array of variant records, for instance. There are
9170 two possible cases: Arrays, and records.
9171
21649b50
JB
9172 3. ``Fixing'' Arrays:
9173 ---------------------
9174
9175 The type structure in GDB describes an array in terms of its bounds,
9176 and the type of its elements. By design, all elements in the array
9177 have the same type and we cannot represent an array of variant elements
9178 using the current type structure in GDB. When fixing an array,
9179 we cannot fix the array element, as we would potentially need one
9180 fixed type per element of the array. As a result, the best we can do
9181 when fixing an array is to produce an array whose bounds and size
9182 are correct (allowing us to read it from memory), but without having
9183 touched its element type. Fixing each element will be done later,
9184 when (if) necessary.
9185
9186 Arrays are a little simpler to handle than records, because the same
9187 amount of memory is allocated for each element of the array, even if
1b536f04 9188 the amount of space actually used by each element differs from element
21649b50 9189 to element. Consider for instance the following array of type Rec:
284614f0
JB
9190
9191 type Rec_Array is array (1 .. 2) of Rec;
9192
1b536f04
JB
9193 The actual amount of memory occupied by each element might be different
9194 from element to element, depending on the value of their discriminant.
21649b50 9195 But the amount of space reserved for each element in the array remains
1b536f04 9196 fixed regardless. So we simply need to compute that size using
21649b50
JB
9197 the debugging information available, from which we can then determine
9198 the array size (we multiply the number of elements of the array by
9199 the size of each element).
9200
9201 The simplest case is when we have an array of a constrained element
9202 type. For instance, consider the following type declarations:
9203
9204 type Bounded_String (Max_Size : Integer) is
9205 Length : Integer;
9206 Buffer : String (1 .. Max_Size);
9207 end record;
9208 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9209
9210 In this case, the compiler describes the array as an array of
9211 variable-size elements (identified by its XVS suffix) for which
9212 the size can be read in the parallel XVZ variable.
9213
9214 In the case of an array of an unconstrained element type, the compiler
9215 wraps the array element inside a private PAD type. This type should not
9216 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9217 that we also use the adjective "aligner" in our code to designate
9218 these wrapper types.
9219
1b536f04 9220 In some cases, the size allocated for each element is statically
21649b50
JB
9221 known. In that case, the PAD type already has the correct size,
9222 and the array element should remain unfixed.
9223
9224 But there are cases when this size is not statically known.
9225 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9226
9227 type Dynamic is array (1 .. Five) of Integer;
9228 type Wrapper (Has_Length : Boolean := False) is record
9229 Data : Dynamic;
9230 case Has_Length is
9231 when True => Length : Integer;
9232 when False => null;
9233 end case;
9234 end record;
9235 type Wrapper_Array is array (1 .. 2) of Wrapper;
9236
9237 Hello : Wrapper_Array := (others => (Has_Length => True,
9238 Data => (others => 17),
9239 Length => 1));
9240
9241
9242 The debugging info would describe variable Hello as being an
9243 array of a PAD type. The size of that PAD type is not statically
9244 known, but can be determined using a parallel XVZ variable.
9245 In that case, a copy of the PAD type with the correct size should
9246 be used for the fixed array.
9247
21649b50
JB
9248 3. ``Fixing'' record type objects:
9249 ----------------------------------
9250
9251 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9252 record types. In this case, in order to compute the associated
9253 fixed type, we need to determine the size and offset of each of
9254 its components. This, in turn, requires us to compute the fixed
9255 type of each of these components.
9256
9257 Consider for instance the example:
9258
9259 type Bounded_String (Max_Size : Natural) is record
9260 Str : String (1 .. Max_Size);
9261 Length : Natural;
9262 end record;
9263 My_String : Bounded_String (Max_Size => 10);
9264
9265 In that case, the position of field "Length" depends on the size
9266 of field Str, which itself depends on the value of the Max_Size
21649b50 9267 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9268 we need to fix the type of field Str. Therefore, fixing a variant
9269 record requires us to fix each of its components.
9270
9271 However, if a component does not have a dynamic size, the component
9272 should not be fixed. In particular, fields that use a PAD type
9273 should not fixed. Here is an example where this might happen
9274 (assuming type Rec above):
9275
9276 type Container (Big : Boolean) is record
9277 First : Rec;
9278 After : Integer;
9279 case Big is
9280 when True => Another : Integer;
9281 when False => null;
9282 end case;
9283 end record;
9284 My_Container : Container := (Big => False,
9285 First => (Empty => True),
9286 After => 42);
9287
9288 In that example, the compiler creates a PAD type for component First,
9289 whose size is constant, and then positions the component After just
9290 right after it. The offset of component After is therefore constant
9291 in this case.
9292
9293 The debugger computes the position of each field based on an algorithm
9294 that uses, among other things, the actual position and size of the field
21649b50
JB
9295 preceding it. Let's now imagine that the user is trying to print
9296 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9297 end up computing the offset of field After based on the size of the
9298 fixed version of field First. And since in our example First has
9299 only one actual field, the size of the fixed type is actually smaller
9300 than the amount of space allocated to that field, and thus we would
9301 compute the wrong offset of field After.
9302
21649b50
JB
9303 To make things more complicated, we need to watch out for dynamic
9304 components of variant records (identified by the ___XVL suffix in
9305 the component name). Even if the target type is a PAD type, the size
9306 of that type might not be statically known. So the PAD type needs
9307 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9308 we might end up with the wrong size for our component. This can be
9309 observed with the following type declarations:
284614f0
JB
9310
9311 type Octal is new Integer range 0 .. 7;
9312 type Octal_Array is array (Positive range <>) of Octal;
9313 pragma Pack (Octal_Array);
9314
9315 type Octal_Buffer (Size : Positive) is record
9316 Buffer : Octal_Array (1 .. Size);
9317 Length : Integer;
9318 end record;
9319
9320 In that case, Buffer is a PAD type whose size is unset and needs
9321 to be computed by fixing the unwrapped type.
9322
21649b50
JB
9323 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9324 ----------------------------------------------------------
9325
9326 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9327 thus far, be actually fixed?
9328
9329 The answer is: Only when referencing that element. For instance
9330 when selecting one component of a record, this specific component
9331 should be fixed at that point in time. Or when printing the value
9332 of a record, each component should be fixed before its value gets
9333 printed. Similarly for arrays, the element of the array should be
9334 fixed when printing each element of the array, or when extracting
9335 one element out of that array. On the other hand, fixing should
9336 not be performed on the elements when taking a slice of an array!
9337
9338 Note that one of the side-effects of miscomputing the offset and
9339 size of each field is that we end up also miscomputing the size
9340 of the containing type. This can have adverse results when computing
9341 the value of an entity. GDB fetches the value of an entity based
9342 on the size of its type, and thus a wrong size causes GDB to fetch
9343 the wrong amount of memory. In the case where the computed size is
9344 too small, GDB fetches too little data to print the value of our
9345 entiry. Results in this case as unpredicatble, as we usually read
9346 past the buffer containing the data =:-o. */
9347
9348/* Implement the evaluate_exp routine in the exp_descriptor structure
9349 for the Ada language. */
9350
52ce6436 9351static struct value *
ebf56fd3 9352ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9353 int *pos, enum noside noside)
14f9c5c9
AS
9354{
9355 enum exp_opcode op;
b5385fc0 9356 int tem;
14f9c5c9
AS
9357 int pc;
9358 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9359 struct type *type;
52ce6436 9360 int nargs, oplen;
d2e4a39e 9361 struct value **argvec;
14f9c5c9 9362
d2e4a39e
AS
9363 pc = *pos;
9364 *pos += 1;
14f9c5c9
AS
9365 op = exp->elts[pc].opcode;
9366
d2e4a39e 9367 switch (op)
14f9c5c9
AS
9368 {
9369 default:
9370 *pos -= 1;
6e48bd2c
JB
9371 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9372 arg1 = unwrap_value (arg1);
9373
9374 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9375 then we need to perform the conversion manually, because
9376 evaluate_subexp_standard doesn't do it. This conversion is
9377 necessary in Ada because the different kinds of float/fixed
9378 types in Ada have different representations.
9379
9380 Similarly, we need to perform the conversion from OP_LONG
9381 ourselves. */
9382 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9383 arg1 = ada_value_cast (expect_type, arg1, noside);
9384
9385 return arg1;
4c4b4cd2
PH
9386
9387 case OP_STRING:
9388 {
76a01679 9389 struct value *result;
5b4ee69b 9390
76a01679
JB
9391 *pos -= 1;
9392 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9393 /* The result type will have code OP_STRING, bashed there from
9394 OP_ARRAY. Bash it back. */
df407dfe
AC
9395 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9396 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9397 return result;
4c4b4cd2 9398 }
14f9c5c9
AS
9399
9400 case UNOP_CAST:
9401 (*pos) += 2;
9402 type = exp->elts[pc + 1].type;
9403 arg1 = evaluate_subexp (type, exp, pos, noside);
9404 if (noside == EVAL_SKIP)
4c4b4cd2 9405 goto nosideret;
6e48bd2c 9406 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9407 return arg1;
9408
4c4b4cd2
PH
9409 case UNOP_QUAL:
9410 (*pos) += 2;
9411 type = exp->elts[pc + 1].type;
9412 return ada_evaluate_subexp (type, exp, pos, noside);
9413
14f9c5c9
AS
9414 case BINOP_ASSIGN:
9415 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9416 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9417 {
9418 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9419 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9420 return arg1;
9421 return ada_value_assign (arg1, arg1);
9422 }
003f3813
JB
9423 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9424 except if the lhs of our assignment is a convenience variable.
9425 In the case of assigning to a convenience variable, the lhs
9426 should be exactly the result of the evaluation of the rhs. */
9427 type = value_type (arg1);
9428 if (VALUE_LVAL (arg1) == lval_internalvar)
9429 type = NULL;
9430 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9431 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9432 return arg1;
df407dfe
AC
9433 if (ada_is_fixed_point_type (value_type (arg1)))
9434 arg2 = cast_to_fixed (value_type (arg1), arg2);
9435 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9436 error
323e0a4a 9437 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9438 else
df407dfe 9439 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9440 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9441
9442 case BINOP_ADD:
9443 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9444 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9445 if (noside == EVAL_SKIP)
4c4b4cd2 9446 goto nosideret;
2ac8a782
JB
9447 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9448 return (value_from_longest
9449 (value_type (arg1),
9450 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9451 if ((ada_is_fixed_point_type (value_type (arg1))
9452 || ada_is_fixed_point_type (value_type (arg2)))
9453 && value_type (arg1) != value_type (arg2))
323e0a4a 9454 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9455 /* Do the addition, and cast the result to the type of the first
9456 argument. We cannot cast the result to a reference type, so if
9457 ARG1 is a reference type, find its underlying type. */
9458 type = value_type (arg1);
9459 while (TYPE_CODE (type) == TYPE_CODE_REF)
9460 type = TYPE_TARGET_TYPE (type);
f44316fa 9461 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9462 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9463
9464 case BINOP_SUB:
9465 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9466 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9467 if (noside == EVAL_SKIP)
4c4b4cd2 9468 goto nosideret;
2ac8a782
JB
9469 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9470 return (value_from_longest
9471 (value_type (arg1),
9472 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9473 if ((ada_is_fixed_point_type (value_type (arg1))
9474 || ada_is_fixed_point_type (value_type (arg2)))
9475 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9476 error (_("Operands of fixed-point subtraction "
9477 "must have the same type"));
b7789565
JB
9478 /* Do the substraction, and cast the result to the type of the first
9479 argument. We cannot cast the result to a reference type, so if
9480 ARG1 is a reference type, find its underlying type. */
9481 type = value_type (arg1);
9482 while (TYPE_CODE (type) == TYPE_CODE_REF)
9483 type = TYPE_TARGET_TYPE (type);
f44316fa 9484 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9485 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9486
9487 case BINOP_MUL:
9488 case BINOP_DIV:
e1578042
JB
9489 case BINOP_REM:
9490 case BINOP_MOD:
14f9c5c9
AS
9491 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9492 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9493 if (noside == EVAL_SKIP)
4c4b4cd2 9494 goto nosideret;
e1578042 9495 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9496 {
9497 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9498 return value_zero (value_type (arg1), not_lval);
9499 }
14f9c5c9 9500 else
4c4b4cd2 9501 {
a53b7a21 9502 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9503 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9504 arg1 = cast_from_fixed (type, arg1);
df407dfe 9505 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9506 arg2 = cast_from_fixed (type, arg2);
f44316fa 9507 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9508 return ada_value_binop (arg1, arg2, op);
9509 }
9510
4c4b4cd2
PH
9511 case BINOP_EQUAL:
9512 case BINOP_NOTEQUAL:
14f9c5c9 9513 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9514 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9515 if (noside == EVAL_SKIP)
76a01679 9516 goto nosideret;
4c4b4cd2 9517 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9518 tem = 0;
4c4b4cd2 9519 else
f44316fa
UW
9520 {
9521 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9522 tem = ada_value_equal (arg1, arg2);
9523 }
4c4b4cd2 9524 if (op == BINOP_NOTEQUAL)
76a01679 9525 tem = !tem;
fbb06eb1
UW
9526 type = language_bool_type (exp->language_defn, exp->gdbarch);
9527 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9528
9529 case UNOP_NEG:
9530 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9531 if (noside == EVAL_SKIP)
9532 goto nosideret;
df407dfe
AC
9533 else if (ada_is_fixed_point_type (value_type (arg1)))
9534 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9535 else
f44316fa
UW
9536 {
9537 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9538 return value_neg (arg1);
9539 }
4c4b4cd2 9540
2330c6c6
JB
9541 case BINOP_LOGICAL_AND:
9542 case BINOP_LOGICAL_OR:
9543 case UNOP_LOGICAL_NOT:
000d5124
JB
9544 {
9545 struct value *val;
9546
9547 *pos -= 1;
9548 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9549 type = language_bool_type (exp->language_defn, exp->gdbarch);
9550 return value_cast (type, val);
000d5124 9551 }
2330c6c6
JB
9552
9553 case BINOP_BITWISE_AND:
9554 case BINOP_BITWISE_IOR:
9555 case BINOP_BITWISE_XOR:
000d5124
JB
9556 {
9557 struct value *val;
9558
9559 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9560 *pos = pc;
9561 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9562
9563 return value_cast (value_type (arg1), val);
9564 }
2330c6c6 9565
14f9c5c9
AS
9566 case OP_VAR_VALUE:
9567 *pos -= 1;
6799def4 9568
14f9c5c9 9569 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9570 {
9571 *pos += 4;
9572 goto nosideret;
9573 }
9574 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9575 /* Only encountered when an unresolved symbol occurs in a
9576 context other than a function call, in which case, it is
52ce6436 9577 invalid. */
323e0a4a 9578 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9579 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9580 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9581 {
0c1f74cf 9582 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9583 /* Check to see if this is a tagged type. We also need to handle
9584 the case where the type is a reference to a tagged type, but
9585 we have to be careful to exclude pointers to tagged types.
9586 The latter should be shown as usual (as a pointer), whereas
9587 a reference should mostly be transparent to the user. */
9588 if (ada_is_tagged_type (type, 0)
9589 || (TYPE_CODE(type) == TYPE_CODE_REF
9590 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9591 {
9592 /* Tagged types are a little special in the fact that the real
9593 type is dynamic and can only be determined by inspecting the
9594 object's tag. This means that we need to get the object's
9595 value first (EVAL_NORMAL) and then extract the actual object
9596 type from its tag.
9597
9598 Note that we cannot skip the final step where we extract
9599 the object type from its tag, because the EVAL_NORMAL phase
9600 results in dynamic components being resolved into fixed ones.
9601 This can cause problems when trying to print the type
9602 description of tagged types whose parent has a dynamic size:
9603 We use the type name of the "_parent" component in order
9604 to print the name of the ancestor type in the type description.
9605 If that component had a dynamic size, the resolution into
9606 a fixed type would result in the loss of that type name,
9607 thus preventing us from printing the name of the ancestor
9608 type in the type description. */
b79819ba
JB
9609 struct type *actual_type;
9610
0c1f74cf 9611 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
9612 actual_type = type_from_tag (ada_value_tag (arg1));
9613 if (actual_type == NULL)
9614 /* If, for some reason, we were unable to determine
9615 the actual type from the tag, then use the static
9616 approximation that we just computed as a fallback.
9617 This can happen if the debugging information is
9618 incomplete, for instance. */
9619 actual_type = type;
9620
9621 return value_zero (actual_type, not_lval);
0c1f74cf
JB
9622 }
9623
4c4b4cd2
PH
9624 *pos += 4;
9625 return value_zero
9626 (to_static_fixed_type
9627 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9628 not_lval);
9629 }
d2e4a39e 9630 else
4c4b4cd2 9631 {
284614f0 9632 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
4c4b4cd2
PH
9633 return ada_to_fixed_value (arg1);
9634 }
9635
9636 case OP_FUNCALL:
9637 (*pos) += 2;
9638
9639 /* Allocate arg vector, including space for the function to be
9640 called in argvec[0] and a terminating NULL. */
9641 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9642 argvec =
9643 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9644
9645 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9646 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9647 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9648 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9649 else
9650 {
9651 for (tem = 0; tem <= nargs; tem += 1)
9652 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9653 argvec[tem] = 0;
9654
9655 if (noside == EVAL_SKIP)
9656 goto nosideret;
9657 }
9658
ad82864c
JB
9659 if (ada_is_constrained_packed_array_type
9660 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9661 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9662 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9663 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9664 /* This is a packed array that has already been fixed, and
9665 therefore already coerced to a simple array. Nothing further
9666 to do. */
9667 ;
df407dfe
AC
9668 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9669 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9670 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9671 argvec[0] = value_addr (argvec[0]);
9672
df407dfe 9673 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9674
9675 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
9676 them. So, if this is an array typedef (encoding use for array
9677 access types encoded as fat pointers), strip it now. */
720d1a40
JB
9678 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9679 type = ada_typedef_target_type (type);
9680
4c4b4cd2
PH
9681 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9682 {
61ee279c 9683 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9684 {
9685 case TYPE_CODE_FUNC:
61ee279c 9686 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9687 break;
9688 case TYPE_CODE_ARRAY:
9689 break;
9690 case TYPE_CODE_STRUCT:
9691 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9692 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9693 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9694 break;
9695 default:
323e0a4a 9696 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9697 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9698 break;
9699 }
9700 }
9701
9702 switch (TYPE_CODE (type))
9703 {
9704 case TYPE_CODE_FUNC:
9705 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9706 return allocate_value (TYPE_TARGET_TYPE (type));
9707 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9708 case TYPE_CODE_STRUCT:
9709 {
9710 int arity;
9711
4c4b4cd2
PH
9712 arity = ada_array_arity (type);
9713 type = ada_array_element_type (type, nargs);
9714 if (type == NULL)
323e0a4a 9715 error (_("cannot subscript or call a record"));
4c4b4cd2 9716 if (arity != nargs)
323e0a4a 9717 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9718 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9719 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9720 return
9721 unwrap_value (ada_value_subscript
9722 (argvec[0], nargs, argvec + 1));
9723 }
9724 case TYPE_CODE_ARRAY:
9725 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9726 {
9727 type = ada_array_element_type (type, nargs);
9728 if (type == NULL)
323e0a4a 9729 error (_("element type of array unknown"));
4c4b4cd2 9730 else
0a07e705 9731 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9732 }
9733 return
9734 unwrap_value (ada_value_subscript
9735 (ada_coerce_to_simple_array (argvec[0]),
9736 nargs, argvec + 1));
9737 case TYPE_CODE_PTR: /* Pointer to array */
9738 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9739 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9740 {
9741 type = ada_array_element_type (type, nargs);
9742 if (type == NULL)
323e0a4a 9743 error (_("element type of array unknown"));
4c4b4cd2 9744 else
0a07e705 9745 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9746 }
9747 return
9748 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9749 nargs, argvec + 1));
9750
9751 default:
e1d5a0d2
PH
9752 error (_("Attempt to index or call something other than an "
9753 "array or function"));
4c4b4cd2
PH
9754 }
9755
9756 case TERNOP_SLICE:
9757 {
9758 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9759 struct value *low_bound_val =
9760 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9761 struct value *high_bound_val =
9762 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9763 LONGEST low_bound;
9764 LONGEST high_bound;
5b4ee69b 9765
994b9211
AC
9766 low_bound_val = coerce_ref (low_bound_val);
9767 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
9768 low_bound = pos_atr (low_bound_val);
9769 high_bound = pos_atr (high_bound_val);
963a6417 9770
4c4b4cd2
PH
9771 if (noside == EVAL_SKIP)
9772 goto nosideret;
9773
4c4b4cd2
PH
9774 /* If this is a reference to an aligner type, then remove all
9775 the aligners. */
df407dfe
AC
9776 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9777 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9778 TYPE_TARGET_TYPE (value_type (array)) =
9779 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 9780
ad82864c 9781 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 9782 error (_("cannot slice a packed array"));
4c4b4cd2
PH
9783
9784 /* If this is a reference to an array or an array lvalue,
9785 convert to a pointer. */
df407dfe
AC
9786 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9787 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
9788 && VALUE_LVAL (array) == lval_memory))
9789 array = value_addr (array);
9790
1265e4aa 9791 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 9792 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 9793 (value_type (array))))
0b5d8877 9794 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
9795
9796 array = ada_coerce_to_simple_array_ptr (array);
9797
714e53ab
PH
9798 /* If we have more than one level of pointer indirection,
9799 dereference the value until we get only one level. */
df407dfe
AC
9800 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9801 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9802 == TYPE_CODE_PTR))
9803 array = value_ind (array);
9804
9805 /* Make sure we really do have an array type before going further,
9806 to avoid a SEGV when trying to get the index type or the target
9807 type later down the road if the debug info generated by
9808 the compiler is incorrect or incomplete. */
df407dfe 9809 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9810 error (_("cannot take slice of non-array"));
714e53ab 9811
828292f2
JB
9812 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9813 == TYPE_CODE_PTR)
4c4b4cd2 9814 {
828292f2
JB
9815 struct type *type0 = ada_check_typedef (value_type (array));
9816
0b5d8877 9817 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 9818 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
9819 else
9820 {
9821 struct type *arr_type0 =
828292f2 9822 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 9823
f5938064
JG
9824 return ada_value_slice_from_ptr (array, arr_type0,
9825 longest_to_int (low_bound),
9826 longest_to_int (high_bound));
4c4b4cd2
PH
9827 }
9828 }
9829 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9830 return array;
9831 else if (high_bound < low_bound)
df407dfe 9832 return empty_array (value_type (array), low_bound);
4c4b4cd2 9833 else
529cad9c
PH
9834 return ada_value_slice (array, longest_to_int (low_bound),
9835 longest_to_int (high_bound));
4c4b4cd2 9836 }
14f9c5c9 9837
4c4b4cd2
PH
9838 case UNOP_IN_RANGE:
9839 (*pos) += 2;
9840 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9841 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9842
14f9c5c9 9843 if (noside == EVAL_SKIP)
4c4b4cd2 9844 goto nosideret;
14f9c5c9 9845
4c4b4cd2
PH
9846 switch (TYPE_CODE (type))
9847 {
9848 default:
e1d5a0d2
PH
9849 lim_warning (_("Membership test incompletely implemented; "
9850 "always returns true"));
fbb06eb1
UW
9851 type = language_bool_type (exp->language_defn, exp->gdbarch);
9852 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9853
9854 case TYPE_CODE_RANGE:
030b4912
UW
9855 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9856 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9857 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9858 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9859 type = language_bool_type (exp->language_defn, exp->gdbarch);
9860 return
9861 value_from_longest (type,
4c4b4cd2
PH
9862 (value_less (arg1, arg3)
9863 || value_equal (arg1, arg3))
9864 && (value_less (arg2, arg1)
9865 || value_equal (arg2, arg1)));
9866 }
9867
9868 case BINOP_IN_BOUNDS:
14f9c5c9 9869 (*pos) += 2;
4c4b4cd2
PH
9870 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9871 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9872
4c4b4cd2
PH
9873 if (noside == EVAL_SKIP)
9874 goto nosideret;
14f9c5c9 9875
4c4b4cd2 9876 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9877 {
9878 type = language_bool_type (exp->language_defn, exp->gdbarch);
9879 return value_zero (type, not_lval);
9880 }
14f9c5c9 9881
4c4b4cd2 9882 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9883
1eea4ebd
UW
9884 type = ada_index_type (value_type (arg2), tem, "range");
9885 if (!type)
9886 type = value_type (arg1);
14f9c5c9 9887
1eea4ebd
UW
9888 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9889 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9890
f44316fa
UW
9891 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9892 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9893 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9894 return
fbb06eb1 9895 value_from_longest (type,
4c4b4cd2
PH
9896 (value_less (arg1, arg3)
9897 || value_equal (arg1, arg3))
9898 && (value_less (arg2, arg1)
9899 || value_equal (arg2, arg1)));
9900
9901 case TERNOP_IN_RANGE:
9902 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9903 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9904 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9905
9906 if (noside == EVAL_SKIP)
9907 goto nosideret;
9908
f44316fa
UW
9909 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9910 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9911 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9912 return
fbb06eb1 9913 value_from_longest (type,
4c4b4cd2
PH
9914 (value_less (arg1, arg3)
9915 || value_equal (arg1, arg3))
9916 && (value_less (arg2, arg1)
9917 || value_equal (arg2, arg1)));
9918
9919 case OP_ATR_FIRST:
9920 case OP_ATR_LAST:
9921 case OP_ATR_LENGTH:
9922 {
76a01679 9923 struct type *type_arg;
5b4ee69b 9924
76a01679
JB
9925 if (exp->elts[*pos].opcode == OP_TYPE)
9926 {
9927 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9928 arg1 = NULL;
5bc23cb3 9929 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9930 }
9931 else
9932 {
9933 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9934 type_arg = NULL;
9935 }
9936
9937 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9938 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9939 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9940 *pos += 4;
9941
9942 if (noside == EVAL_SKIP)
9943 goto nosideret;
9944
9945 if (type_arg == NULL)
9946 {
9947 arg1 = ada_coerce_ref (arg1);
9948
ad82864c 9949 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
9950 arg1 = ada_coerce_to_simple_array (arg1);
9951
1eea4ebd
UW
9952 type = ada_index_type (value_type (arg1), tem,
9953 ada_attribute_name (op));
9954 if (type == NULL)
9955 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9956
9957 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9958 return allocate_value (type);
76a01679
JB
9959
9960 switch (op)
9961 {
9962 default: /* Should never happen. */
323e0a4a 9963 error (_("unexpected attribute encountered"));
76a01679 9964 case OP_ATR_FIRST:
1eea4ebd
UW
9965 return value_from_longest
9966 (type, ada_array_bound (arg1, tem, 0));
76a01679 9967 case OP_ATR_LAST:
1eea4ebd
UW
9968 return value_from_longest
9969 (type, ada_array_bound (arg1, tem, 1));
76a01679 9970 case OP_ATR_LENGTH:
1eea4ebd
UW
9971 return value_from_longest
9972 (type, ada_array_length (arg1, tem));
76a01679
JB
9973 }
9974 }
9975 else if (discrete_type_p (type_arg))
9976 {
9977 struct type *range_type;
0d5cff50 9978 const char *name = ada_type_name (type_arg);
5b4ee69b 9979
76a01679
JB
9980 range_type = NULL;
9981 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 9982 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
9983 if (range_type == NULL)
9984 range_type = type_arg;
9985 switch (op)
9986 {
9987 default:
323e0a4a 9988 error (_("unexpected attribute encountered"));
76a01679 9989 case OP_ATR_FIRST:
690cc4eb 9990 return value_from_longest
43bbcdc2 9991 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 9992 case OP_ATR_LAST:
690cc4eb 9993 return value_from_longest
43bbcdc2 9994 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 9995 case OP_ATR_LENGTH:
323e0a4a 9996 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9997 }
9998 }
9999 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10000 error (_("unimplemented type attribute"));
76a01679
JB
10001 else
10002 {
10003 LONGEST low, high;
10004
ad82864c
JB
10005 if (ada_is_constrained_packed_array_type (type_arg))
10006 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10007
1eea4ebd 10008 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 10009 if (type == NULL)
1eea4ebd
UW
10010 type = builtin_type (exp->gdbarch)->builtin_int;
10011
76a01679
JB
10012 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10013 return allocate_value (type);
10014
10015 switch (op)
10016 {
10017 default:
323e0a4a 10018 error (_("unexpected attribute encountered"));
76a01679 10019 case OP_ATR_FIRST:
1eea4ebd 10020 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10021 return value_from_longest (type, low);
10022 case OP_ATR_LAST:
1eea4ebd 10023 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10024 return value_from_longest (type, high);
10025 case OP_ATR_LENGTH:
1eea4ebd
UW
10026 low = ada_array_bound_from_type (type_arg, tem, 0);
10027 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10028 return value_from_longest (type, high - low + 1);
10029 }
10030 }
14f9c5c9
AS
10031 }
10032
4c4b4cd2
PH
10033 case OP_ATR_TAG:
10034 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10035 if (noside == EVAL_SKIP)
76a01679 10036 goto nosideret;
4c4b4cd2
PH
10037
10038 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10039 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10040
10041 return ada_value_tag (arg1);
10042
10043 case OP_ATR_MIN:
10044 case OP_ATR_MAX:
10045 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10046 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10047 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10048 if (noside == EVAL_SKIP)
76a01679 10049 goto nosideret;
d2e4a39e 10050 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10051 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10052 else
f44316fa
UW
10053 {
10054 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10055 return value_binop (arg1, arg2,
10056 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10057 }
14f9c5c9 10058
4c4b4cd2
PH
10059 case OP_ATR_MODULUS:
10060 {
31dedfee 10061 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10062
5b4ee69b 10063 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10064 if (noside == EVAL_SKIP)
10065 goto nosideret;
4c4b4cd2 10066
76a01679 10067 if (!ada_is_modular_type (type_arg))
323e0a4a 10068 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10069
76a01679
JB
10070 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10071 ada_modulus (type_arg));
4c4b4cd2
PH
10072 }
10073
10074
10075 case OP_ATR_POS:
10076 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10077 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10078 if (noside == EVAL_SKIP)
76a01679 10079 goto nosideret;
3cb382c9
UW
10080 type = builtin_type (exp->gdbarch)->builtin_int;
10081 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10082 return value_zero (type, not_lval);
14f9c5c9 10083 else
3cb382c9 10084 return value_pos_atr (type, arg1);
14f9c5c9 10085
4c4b4cd2
PH
10086 case OP_ATR_SIZE:
10087 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10088 type = value_type (arg1);
10089
10090 /* If the argument is a reference, then dereference its type, since
10091 the user is really asking for the size of the actual object,
10092 not the size of the pointer. */
10093 if (TYPE_CODE (type) == TYPE_CODE_REF)
10094 type = TYPE_TARGET_TYPE (type);
10095
4c4b4cd2 10096 if (noside == EVAL_SKIP)
76a01679 10097 goto nosideret;
4c4b4cd2 10098 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10099 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10100 else
22601c15 10101 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10102 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10103
10104 case OP_ATR_VAL:
10105 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10106 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10107 type = exp->elts[pc + 2].type;
14f9c5c9 10108 if (noside == EVAL_SKIP)
76a01679 10109 goto nosideret;
4c4b4cd2 10110 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10111 return value_zero (type, not_lval);
4c4b4cd2 10112 else
76a01679 10113 return value_val_atr (type, arg1);
4c4b4cd2
PH
10114
10115 case BINOP_EXP:
10116 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10117 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10118 if (noside == EVAL_SKIP)
10119 goto nosideret;
10120 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10121 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10122 else
f44316fa
UW
10123 {
10124 /* For integer exponentiation operations,
10125 only promote the first argument. */
10126 if (is_integral_type (value_type (arg2)))
10127 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10128 else
10129 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10130
10131 return value_binop (arg1, arg2, op);
10132 }
4c4b4cd2
PH
10133
10134 case UNOP_PLUS:
10135 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10136 if (noside == EVAL_SKIP)
10137 goto nosideret;
10138 else
10139 return arg1;
10140
10141 case UNOP_ABS:
10142 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10143 if (noside == EVAL_SKIP)
10144 goto nosideret;
f44316fa 10145 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10146 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10147 return value_neg (arg1);
14f9c5c9 10148 else
4c4b4cd2 10149 return arg1;
14f9c5c9
AS
10150
10151 case UNOP_IND:
6b0d7253 10152 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10153 if (noside == EVAL_SKIP)
4c4b4cd2 10154 goto nosideret;
df407dfe 10155 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10156 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10157 {
10158 if (ada_is_array_descriptor_type (type))
10159 /* GDB allows dereferencing GNAT array descriptors. */
10160 {
10161 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10162
4c4b4cd2 10163 if (arrType == NULL)
323e0a4a 10164 error (_("Attempt to dereference null array pointer."));
00a4c844 10165 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10166 }
10167 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10168 || TYPE_CODE (type) == TYPE_CODE_REF
10169 /* In C you can dereference an array to get the 1st elt. */
10170 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
10171 {
10172 type = to_static_fixed_type
10173 (ada_aligned_type
10174 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10175 check_size (type);
10176 return value_zero (type, lval_memory);
10177 }
4c4b4cd2 10178 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10179 {
10180 /* GDB allows dereferencing an int. */
10181 if (expect_type == NULL)
10182 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10183 lval_memory);
10184 else
10185 {
10186 expect_type =
10187 to_static_fixed_type (ada_aligned_type (expect_type));
10188 return value_zero (expect_type, lval_memory);
10189 }
10190 }
4c4b4cd2 10191 else
323e0a4a 10192 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10193 }
0963b4bd 10194 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10195 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10196
96967637
JB
10197 if (TYPE_CODE (type) == TYPE_CODE_INT)
10198 /* GDB allows dereferencing an int. If we were given
10199 the expect_type, then use that as the target type.
10200 Otherwise, assume that the target type is an int. */
10201 {
10202 if (expect_type != NULL)
10203 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10204 arg1));
10205 else
10206 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10207 (CORE_ADDR) value_as_address (arg1));
10208 }
6b0d7253 10209
4c4b4cd2
PH
10210 if (ada_is_array_descriptor_type (type))
10211 /* GDB allows dereferencing GNAT array descriptors. */
10212 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10213 else
4c4b4cd2 10214 return ada_value_ind (arg1);
14f9c5c9
AS
10215
10216 case STRUCTOP_STRUCT:
10217 tem = longest_to_int (exp->elts[pc + 1].longconst);
10218 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10219 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10220 if (noside == EVAL_SKIP)
4c4b4cd2 10221 goto nosideret;
14f9c5c9 10222 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10223 {
df407dfe 10224 struct type *type1 = value_type (arg1);
5b4ee69b 10225
76a01679
JB
10226 if (ada_is_tagged_type (type1, 1))
10227 {
10228 type = ada_lookup_struct_elt_type (type1,
10229 &exp->elts[pc + 2].string,
10230 1, 1, NULL);
10231 if (type == NULL)
10232 /* In this case, we assume that the field COULD exist
10233 in some extension of the type. Return an object of
10234 "type" void, which will match any formal
0963b4bd 10235 (see ada_type_match). */
30b15541
UW
10236 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10237 lval_memory);
76a01679
JB
10238 }
10239 else
10240 type =
10241 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10242 0, NULL);
10243
10244 return value_zero (ada_aligned_type (type), lval_memory);
10245 }
14f9c5c9 10246 else
284614f0
JB
10247 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10248 arg1 = unwrap_value (arg1);
10249 return ada_to_fixed_value (arg1);
10250
14f9c5c9 10251 case OP_TYPE:
4c4b4cd2
PH
10252 /* The value is not supposed to be used. This is here to make it
10253 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10254 (*pos) += 2;
10255 if (noside == EVAL_SKIP)
4c4b4cd2 10256 goto nosideret;
14f9c5c9 10257 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10258 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10259 else
323e0a4a 10260 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10261
10262 case OP_AGGREGATE:
10263 case OP_CHOICES:
10264 case OP_OTHERS:
10265 case OP_DISCRETE_RANGE:
10266 case OP_POSITIONAL:
10267 case OP_NAME:
10268 if (noside == EVAL_NORMAL)
10269 switch (op)
10270 {
10271 case OP_NAME:
10272 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10273 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10274 case OP_AGGREGATE:
10275 error (_("Aggregates only allowed on the right of an assignment"));
10276 default:
0963b4bd
MS
10277 internal_error (__FILE__, __LINE__,
10278 _("aggregate apparently mangled"));
52ce6436
PH
10279 }
10280
10281 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10282 *pos += oplen - 1;
10283 for (tem = 0; tem < nargs; tem += 1)
10284 ada_evaluate_subexp (NULL, exp, pos, noside);
10285 goto nosideret;
14f9c5c9
AS
10286 }
10287
10288nosideret:
22601c15 10289 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10290}
14f9c5c9 10291\f
d2e4a39e 10292
4c4b4cd2 10293 /* Fixed point */
14f9c5c9
AS
10294
10295/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10296 type name that encodes the 'small and 'delta information.
4c4b4cd2 10297 Otherwise, return NULL. */
14f9c5c9 10298
d2e4a39e 10299static const char *
ebf56fd3 10300fixed_type_info (struct type *type)
14f9c5c9 10301{
d2e4a39e 10302 const char *name = ada_type_name (type);
14f9c5c9
AS
10303 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10304
d2e4a39e
AS
10305 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10306 {
14f9c5c9 10307 const char *tail = strstr (name, "___XF_");
5b4ee69b 10308
14f9c5c9 10309 if (tail == NULL)
4c4b4cd2 10310 return NULL;
d2e4a39e 10311 else
4c4b4cd2 10312 return tail + 5;
14f9c5c9
AS
10313 }
10314 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10315 return fixed_type_info (TYPE_TARGET_TYPE (type));
10316 else
10317 return NULL;
10318}
10319
4c4b4cd2 10320/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10321
10322int
ebf56fd3 10323ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10324{
10325 return fixed_type_info (type) != NULL;
10326}
10327
4c4b4cd2
PH
10328/* Return non-zero iff TYPE represents a System.Address type. */
10329
10330int
10331ada_is_system_address_type (struct type *type)
10332{
10333 return (TYPE_NAME (type)
10334 && strcmp (TYPE_NAME (type), "system__address") == 0);
10335}
10336
14f9c5c9
AS
10337/* Assuming that TYPE is the representation of an Ada fixed-point
10338 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10339 delta cannot be determined. */
14f9c5c9
AS
10340
10341DOUBLEST
ebf56fd3 10342ada_delta (struct type *type)
14f9c5c9
AS
10343{
10344 const char *encoding = fixed_type_info (type);
facc390f 10345 DOUBLEST num, den;
14f9c5c9 10346
facc390f
JB
10347 /* Strictly speaking, num and den are encoded as integer. However,
10348 they may not fit into a long, and they will have to be converted
10349 to DOUBLEST anyway. So scan them as DOUBLEST. */
10350 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10351 &num, &den) < 2)
14f9c5c9 10352 return -1.0;
d2e4a39e 10353 else
facc390f 10354 return num / den;
14f9c5c9
AS
10355}
10356
10357/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10358 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10359
10360static DOUBLEST
ebf56fd3 10361scaling_factor (struct type *type)
14f9c5c9
AS
10362{
10363 const char *encoding = fixed_type_info (type);
facc390f 10364 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10365 int n;
d2e4a39e 10366
facc390f
JB
10367 /* Strictly speaking, num's and den's are encoded as integer. However,
10368 they may not fit into a long, and they will have to be converted
10369 to DOUBLEST anyway. So scan them as DOUBLEST. */
10370 n = sscanf (encoding,
10371 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10372 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10373 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10374
10375 if (n < 2)
10376 return 1.0;
10377 else if (n == 4)
facc390f 10378 return num1 / den1;
d2e4a39e 10379 else
facc390f 10380 return num0 / den0;
14f9c5c9
AS
10381}
10382
10383
10384/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10385 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10386
10387DOUBLEST
ebf56fd3 10388ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10389{
d2e4a39e 10390 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10391}
10392
4c4b4cd2
PH
10393/* The representation of a fixed-point value of type TYPE
10394 corresponding to the value X. */
14f9c5c9
AS
10395
10396LONGEST
ebf56fd3 10397ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10398{
10399 return (LONGEST) (x / scaling_factor (type) + 0.5);
10400}
10401
14f9c5c9 10402\f
d2e4a39e 10403
4c4b4cd2 10404 /* Range types */
14f9c5c9
AS
10405
10406/* Scan STR beginning at position K for a discriminant name, and
10407 return the value of that discriminant field of DVAL in *PX. If
10408 PNEW_K is not null, put the position of the character beyond the
10409 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10410 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10411
10412static int
07d8f827 10413scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10414 int *pnew_k)
14f9c5c9
AS
10415{
10416 static char *bound_buffer = NULL;
10417 static size_t bound_buffer_len = 0;
10418 char *bound;
10419 char *pend;
d2e4a39e 10420 struct value *bound_val;
14f9c5c9
AS
10421
10422 if (dval == NULL || str == NULL || str[k] == '\0')
10423 return 0;
10424
d2e4a39e 10425 pend = strstr (str + k, "__");
14f9c5c9
AS
10426 if (pend == NULL)
10427 {
d2e4a39e 10428 bound = str + k;
14f9c5c9
AS
10429 k += strlen (bound);
10430 }
d2e4a39e 10431 else
14f9c5c9 10432 {
d2e4a39e 10433 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10434 bound = bound_buffer;
d2e4a39e
AS
10435 strncpy (bound_buffer, str + k, pend - (str + k));
10436 bound[pend - (str + k)] = '\0';
10437 k = pend - str;
14f9c5c9 10438 }
d2e4a39e 10439
df407dfe 10440 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10441 if (bound_val == NULL)
10442 return 0;
10443
10444 *px = value_as_long (bound_val);
10445 if (pnew_k != NULL)
10446 *pnew_k = k;
10447 return 1;
10448}
10449
10450/* Value of variable named NAME in the current environment. If
10451 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10452 otherwise causes an error with message ERR_MSG. */
10453
d2e4a39e
AS
10454static struct value *
10455get_var_value (char *name, char *err_msg)
14f9c5c9 10456{
4c4b4cd2 10457 struct ada_symbol_info *syms;
14f9c5c9
AS
10458 int nsyms;
10459
4c4b4cd2 10460 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
d9680e73 10461 &syms, 1);
14f9c5c9
AS
10462
10463 if (nsyms != 1)
10464 {
10465 if (err_msg == NULL)
4c4b4cd2 10466 return 0;
14f9c5c9 10467 else
8a3fe4f8 10468 error (("%s"), err_msg);
14f9c5c9
AS
10469 }
10470
4c4b4cd2 10471 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10472}
d2e4a39e 10473
14f9c5c9 10474/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10475 no such variable found, returns 0, and sets *FLAG to 0. If
10476 successful, sets *FLAG to 1. */
10477
14f9c5c9 10478LONGEST
4c4b4cd2 10479get_int_var_value (char *name, int *flag)
14f9c5c9 10480{
4c4b4cd2 10481 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10482
14f9c5c9
AS
10483 if (var_val == 0)
10484 {
10485 if (flag != NULL)
4c4b4cd2 10486 *flag = 0;
14f9c5c9
AS
10487 return 0;
10488 }
10489 else
10490 {
10491 if (flag != NULL)
4c4b4cd2 10492 *flag = 1;
14f9c5c9
AS
10493 return value_as_long (var_val);
10494 }
10495}
d2e4a39e 10496
14f9c5c9
AS
10497
10498/* Return a range type whose base type is that of the range type named
10499 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10500 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10501 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10502 corresponding range type from debug information; fall back to using it
10503 if symbol lookup fails. If a new type must be created, allocate it
10504 like ORIG_TYPE was. The bounds information, in general, is encoded
10505 in NAME, the base type given in the named range type. */
14f9c5c9 10506
d2e4a39e 10507static struct type *
28c85d6c 10508to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10509{
0d5cff50 10510 const char *name;
14f9c5c9 10511 struct type *base_type;
d2e4a39e 10512 char *subtype_info;
14f9c5c9 10513
28c85d6c
JB
10514 gdb_assert (raw_type != NULL);
10515 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10516
1ce677a4 10517 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10518 base_type = TYPE_TARGET_TYPE (raw_type);
10519 else
10520 base_type = raw_type;
10521
28c85d6c 10522 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10523 subtype_info = strstr (name, "___XD");
10524 if (subtype_info == NULL)
690cc4eb 10525 {
43bbcdc2
PH
10526 LONGEST L = ada_discrete_type_low_bound (raw_type);
10527 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10528
690cc4eb
PH
10529 if (L < INT_MIN || U > INT_MAX)
10530 return raw_type;
10531 else
28c85d6c 10532 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10533 ada_discrete_type_low_bound (raw_type),
10534 ada_discrete_type_high_bound (raw_type));
690cc4eb 10535 }
14f9c5c9
AS
10536 else
10537 {
10538 static char *name_buf = NULL;
10539 static size_t name_len = 0;
10540 int prefix_len = subtype_info - name;
10541 LONGEST L, U;
10542 struct type *type;
10543 char *bounds_str;
10544 int n;
10545
10546 GROW_VECT (name_buf, name_len, prefix_len + 5);
10547 strncpy (name_buf, name, prefix_len);
10548 name_buf[prefix_len] = '\0';
10549
10550 subtype_info += 5;
10551 bounds_str = strchr (subtype_info, '_');
10552 n = 1;
10553
d2e4a39e 10554 if (*subtype_info == 'L')
4c4b4cd2
PH
10555 {
10556 if (!ada_scan_number (bounds_str, n, &L, &n)
10557 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10558 return raw_type;
10559 if (bounds_str[n] == '_')
10560 n += 2;
0963b4bd 10561 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10562 n += 1;
10563 subtype_info += 1;
10564 }
d2e4a39e 10565 else
4c4b4cd2
PH
10566 {
10567 int ok;
5b4ee69b 10568
4c4b4cd2
PH
10569 strcpy (name_buf + prefix_len, "___L");
10570 L = get_int_var_value (name_buf, &ok);
10571 if (!ok)
10572 {
323e0a4a 10573 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10574 L = 1;
10575 }
10576 }
14f9c5c9 10577
d2e4a39e 10578 if (*subtype_info == 'U')
4c4b4cd2
PH
10579 {
10580 if (!ada_scan_number (bounds_str, n, &U, &n)
10581 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10582 return raw_type;
10583 }
d2e4a39e 10584 else
4c4b4cd2
PH
10585 {
10586 int ok;
5b4ee69b 10587
4c4b4cd2
PH
10588 strcpy (name_buf + prefix_len, "___U");
10589 U = get_int_var_value (name_buf, &ok);
10590 if (!ok)
10591 {
323e0a4a 10592 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10593 U = L;
10594 }
10595 }
14f9c5c9 10596
28c85d6c 10597 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10598 TYPE_NAME (type) = name;
14f9c5c9
AS
10599 return type;
10600 }
10601}
10602
4c4b4cd2
PH
10603/* True iff NAME is the name of a range type. */
10604
14f9c5c9 10605int
d2e4a39e 10606ada_is_range_type_name (const char *name)
14f9c5c9
AS
10607{
10608 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10609}
14f9c5c9 10610\f
d2e4a39e 10611
4c4b4cd2
PH
10612 /* Modular types */
10613
10614/* True iff TYPE is an Ada modular type. */
14f9c5c9 10615
14f9c5c9 10616int
d2e4a39e 10617ada_is_modular_type (struct type *type)
14f9c5c9 10618{
18af8284 10619 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
10620
10621 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10622 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10623 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10624}
10625
4c4b4cd2
PH
10626/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10627
61ee279c 10628ULONGEST
0056e4d5 10629ada_modulus (struct type *type)
14f9c5c9 10630{
43bbcdc2 10631 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10632}
d2e4a39e 10633\f
f7f9143b
JB
10634
10635/* Ada exception catchpoint support:
10636 ---------------------------------
10637
10638 We support 3 kinds of exception catchpoints:
10639 . catchpoints on Ada exceptions
10640 . catchpoints on unhandled Ada exceptions
10641 . catchpoints on failed assertions
10642
10643 Exceptions raised during failed assertions, or unhandled exceptions
10644 could perfectly be caught with the general catchpoint on Ada exceptions.
10645 However, we can easily differentiate these two special cases, and having
10646 the option to distinguish these two cases from the rest can be useful
10647 to zero-in on certain situations.
10648
10649 Exception catchpoints are a specialized form of breakpoint,
10650 since they rely on inserting breakpoints inside known routines
10651 of the GNAT runtime. The implementation therefore uses a standard
10652 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10653 of breakpoint_ops.
10654
0259addd
JB
10655 Support in the runtime for exception catchpoints have been changed
10656 a few times already, and these changes affect the implementation
10657 of these catchpoints. In order to be able to support several
10658 variants of the runtime, we use a sniffer that will determine
28010a5d 10659 the runtime variant used by the program being debugged. */
f7f9143b
JB
10660
10661/* The different types of catchpoints that we introduced for catching
10662 Ada exceptions. */
10663
10664enum exception_catchpoint_kind
10665{
10666 ex_catch_exception,
10667 ex_catch_exception_unhandled,
10668 ex_catch_assert
10669};
10670
3d0b0fa3
JB
10671/* Ada's standard exceptions. */
10672
10673static char *standard_exc[] = {
10674 "constraint_error",
10675 "program_error",
10676 "storage_error",
10677 "tasking_error"
10678};
10679
0259addd
JB
10680typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10681
10682/* A structure that describes how to support exception catchpoints
10683 for a given executable. */
10684
10685struct exception_support_info
10686{
10687 /* The name of the symbol to break on in order to insert
10688 a catchpoint on exceptions. */
10689 const char *catch_exception_sym;
10690
10691 /* The name of the symbol to break on in order to insert
10692 a catchpoint on unhandled exceptions. */
10693 const char *catch_exception_unhandled_sym;
10694
10695 /* The name of the symbol to break on in order to insert
10696 a catchpoint on failed assertions. */
10697 const char *catch_assert_sym;
10698
10699 /* Assuming that the inferior just triggered an unhandled exception
10700 catchpoint, this function is responsible for returning the address
10701 in inferior memory where the name of that exception is stored.
10702 Return zero if the address could not be computed. */
10703 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10704};
10705
10706static CORE_ADDR ada_unhandled_exception_name_addr (void);
10707static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10708
10709/* The following exception support info structure describes how to
10710 implement exception catchpoints with the latest version of the
10711 Ada runtime (as of 2007-03-06). */
10712
10713static const struct exception_support_info default_exception_support_info =
10714{
10715 "__gnat_debug_raise_exception", /* catch_exception_sym */
10716 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10717 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10718 ada_unhandled_exception_name_addr
10719};
10720
10721/* The following exception support info structure describes how to
10722 implement exception catchpoints with a slightly older version
10723 of the Ada runtime. */
10724
10725static const struct exception_support_info exception_support_info_fallback =
10726{
10727 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10728 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10729 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10730 ada_unhandled_exception_name_addr_from_raise
10731};
10732
f17011e0
JB
10733/* Return nonzero if we can detect the exception support routines
10734 described in EINFO.
10735
10736 This function errors out if an abnormal situation is detected
10737 (for instance, if we find the exception support routines, but
10738 that support is found to be incomplete). */
10739
10740static int
10741ada_has_this_exception_support (const struct exception_support_info *einfo)
10742{
10743 struct symbol *sym;
10744
10745 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10746 that should be compiled with debugging information. As a result, we
10747 expect to find that symbol in the symtabs. */
10748
10749 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10750 if (sym == NULL)
a6af7abe
JB
10751 {
10752 /* Perhaps we did not find our symbol because the Ada runtime was
10753 compiled without debugging info, or simply stripped of it.
10754 It happens on some GNU/Linux distributions for instance, where
10755 users have to install a separate debug package in order to get
10756 the runtime's debugging info. In that situation, let the user
10757 know why we cannot insert an Ada exception catchpoint.
10758
10759 Note: Just for the purpose of inserting our Ada exception
10760 catchpoint, we could rely purely on the associated minimal symbol.
10761 But we would be operating in degraded mode anyway, since we are
10762 still lacking the debugging info needed later on to extract
10763 the name of the exception being raised (this name is printed in
10764 the catchpoint message, and is also used when trying to catch
10765 a specific exception). We do not handle this case for now. */
10766 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10767 error (_("Your Ada runtime appears to be missing some debugging "
10768 "information.\nCannot insert Ada exception catchpoint "
10769 "in this configuration."));
10770
10771 return 0;
10772 }
f17011e0
JB
10773
10774 /* Make sure that the symbol we found corresponds to a function. */
10775
10776 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10777 error (_("Symbol \"%s\" is not a function (class = %d)"),
10778 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10779
10780 return 1;
10781}
10782
0259addd
JB
10783/* Inspect the Ada runtime and determine which exception info structure
10784 should be used to provide support for exception catchpoints.
10785
3eecfa55
JB
10786 This function will always set the per-inferior exception_info,
10787 or raise an error. */
0259addd
JB
10788
10789static void
10790ada_exception_support_info_sniffer (void)
10791{
3eecfa55 10792 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
10793 struct symbol *sym;
10794
10795 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 10796 if (data->exception_info != NULL)
0259addd
JB
10797 return;
10798
10799 /* Check the latest (default) exception support info. */
f17011e0 10800 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 10801 {
3eecfa55 10802 data->exception_info = &default_exception_support_info;
0259addd
JB
10803 return;
10804 }
10805
10806 /* Try our fallback exception suport info. */
f17011e0 10807 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 10808 {
3eecfa55 10809 data->exception_info = &exception_support_info_fallback;
0259addd
JB
10810 return;
10811 }
10812
10813 /* Sometimes, it is normal for us to not be able to find the routine
10814 we are looking for. This happens when the program is linked with
10815 the shared version of the GNAT runtime, and the program has not been
10816 started yet. Inform the user of these two possible causes if
10817 applicable. */
10818
ccefe4c4 10819 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
10820 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10821
10822 /* If the symbol does not exist, then check that the program is
10823 already started, to make sure that shared libraries have been
10824 loaded. If it is not started, this may mean that the symbol is
10825 in a shared library. */
10826
10827 if (ptid_get_pid (inferior_ptid) == 0)
10828 error (_("Unable to insert catchpoint. Try to start the program first."));
10829
10830 /* At this point, we know that we are debugging an Ada program and
10831 that the inferior has been started, but we still are not able to
0963b4bd 10832 find the run-time symbols. That can mean that we are in
0259addd
JB
10833 configurable run time mode, or that a-except as been optimized
10834 out by the linker... In any case, at this point it is not worth
10835 supporting this feature. */
10836
7dda8cff 10837 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
10838}
10839
f7f9143b
JB
10840/* True iff FRAME is very likely to be that of a function that is
10841 part of the runtime system. This is all very heuristic, but is
10842 intended to be used as advice as to what frames are uninteresting
10843 to most users. */
10844
10845static int
10846is_known_support_routine (struct frame_info *frame)
10847{
4ed6b5be 10848 struct symtab_and_line sal;
0d5cff50 10849 const char *func_name;
692465f1 10850 enum language func_lang;
f7f9143b 10851 int i;
f7f9143b 10852
4ed6b5be
JB
10853 /* If this code does not have any debugging information (no symtab),
10854 This cannot be any user code. */
f7f9143b 10855
4ed6b5be 10856 find_frame_sal (frame, &sal);
f7f9143b
JB
10857 if (sal.symtab == NULL)
10858 return 1;
10859
4ed6b5be
JB
10860 /* If there is a symtab, but the associated source file cannot be
10861 located, then assume this is not user code: Selecting a frame
10862 for which we cannot display the code would not be very helpful
10863 for the user. This should also take care of case such as VxWorks
10864 where the kernel has some debugging info provided for a few units. */
f7f9143b 10865
9bbc9174 10866 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10867 return 1;
10868
4ed6b5be
JB
10869 /* Check the unit filename againt the Ada runtime file naming.
10870 We also check the name of the objfile against the name of some
10871 known system libraries that sometimes come with debugging info
10872 too. */
10873
f7f9143b
JB
10874 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10875 {
10876 re_comp (known_runtime_file_name_patterns[i]);
10877 if (re_exec (sal.symtab->filename))
10878 return 1;
4ed6b5be
JB
10879 if (sal.symtab->objfile != NULL
10880 && re_exec (sal.symtab->objfile->name))
10881 return 1;
f7f9143b
JB
10882 }
10883
4ed6b5be 10884 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10885
e9e07ba6 10886 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
10887 if (func_name == NULL)
10888 return 1;
10889
10890 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10891 {
10892 re_comp (known_auxiliary_function_name_patterns[i]);
10893 if (re_exec (func_name))
10894 return 1;
10895 }
10896
10897 return 0;
10898}
10899
10900/* Find the first frame that contains debugging information and that is not
10901 part of the Ada run-time, starting from FI and moving upward. */
10902
0ef643c8 10903void
f7f9143b
JB
10904ada_find_printable_frame (struct frame_info *fi)
10905{
10906 for (; fi != NULL; fi = get_prev_frame (fi))
10907 {
10908 if (!is_known_support_routine (fi))
10909 {
10910 select_frame (fi);
10911 break;
10912 }
10913 }
10914
10915}
10916
10917/* Assuming that the inferior just triggered an unhandled exception
10918 catchpoint, return the address in inferior memory where the name
10919 of the exception is stored.
10920
10921 Return zero if the address could not be computed. */
10922
10923static CORE_ADDR
10924ada_unhandled_exception_name_addr (void)
0259addd
JB
10925{
10926 return parse_and_eval_address ("e.full_name");
10927}
10928
10929/* Same as ada_unhandled_exception_name_addr, except that this function
10930 should be used when the inferior uses an older version of the runtime,
10931 where the exception name needs to be extracted from a specific frame
10932 several frames up in the callstack. */
10933
10934static CORE_ADDR
10935ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10936{
10937 int frame_level;
10938 struct frame_info *fi;
3eecfa55 10939 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
10940
10941 /* To determine the name of this exception, we need to select
10942 the frame corresponding to RAISE_SYM_NAME. This frame is
10943 at least 3 levels up, so we simply skip the first 3 frames
10944 without checking the name of their associated function. */
10945 fi = get_current_frame ();
10946 for (frame_level = 0; frame_level < 3; frame_level += 1)
10947 if (fi != NULL)
10948 fi = get_prev_frame (fi);
10949
10950 while (fi != NULL)
10951 {
0d5cff50 10952 const char *func_name;
692465f1
JB
10953 enum language func_lang;
10954
e9e07ba6 10955 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 10956 if (func_name != NULL
3eecfa55 10957 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10958 break; /* We found the frame we were looking for... */
10959 fi = get_prev_frame (fi);
10960 }
10961
10962 if (fi == NULL)
10963 return 0;
10964
10965 select_frame (fi);
10966 return parse_and_eval_address ("id.full_name");
10967}
10968
10969/* Assuming the inferior just triggered an Ada exception catchpoint
10970 (of any type), return the address in inferior memory where the name
10971 of the exception is stored, if applicable.
10972
10973 Return zero if the address could not be computed, or if not relevant. */
10974
10975static CORE_ADDR
10976ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10977 struct breakpoint *b)
10978{
3eecfa55
JB
10979 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10980
f7f9143b
JB
10981 switch (ex)
10982 {
10983 case ex_catch_exception:
10984 return (parse_and_eval_address ("e.full_name"));
10985 break;
10986
10987 case ex_catch_exception_unhandled:
3eecfa55 10988 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10989 break;
10990
10991 case ex_catch_assert:
10992 return 0; /* Exception name is not relevant in this case. */
10993 break;
10994
10995 default:
10996 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10997 break;
10998 }
10999
11000 return 0; /* Should never be reached. */
11001}
11002
11003/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11004 any error that ada_exception_name_addr_1 might cause to be thrown.
11005 When an error is intercepted, a warning with the error message is printed,
11006 and zero is returned. */
11007
11008static CORE_ADDR
11009ada_exception_name_addr (enum exception_catchpoint_kind ex,
11010 struct breakpoint *b)
11011{
bfd189b1 11012 volatile struct gdb_exception e;
f7f9143b
JB
11013 CORE_ADDR result = 0;
11014
11015 TRY_CATCH (e, RETURN_MASK_ERROR)
11016 {
11017 result = ada_exception_name_addr_1 (ex, b);
11018 }
11019
11020 if (e.reason < 0)
11021 {
11022 warning (_("failed to get exception name: %s"), e.message);
11023 return 0;
11024 }
11025
11026 return result;
11027}
11028
28010a5d
PA
11029static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11030 char *, char **,
c0a91b2b 11031 const struct breakpoint_ops **);
28010a5d
PA
11032static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11033
11034/* Ada catchpoints.
11035
11036 In the case of catchpoints on Ada exceptions, the catchpoint will
11037 stop the target on every exception the program throws. When a user
11038 specifies the name of a specific exception, we translate this
11039 request into a condition expression (in text form), and then parse
11040 it into an expression stored in each of the catchpoint's locations.
11041 We then use this condition to check whether the exception that was
11042 raised is the one the user is interested in. If not, then the
11043 target is resumed again. We store the name of the requested
11044 exception, in order to be able to re-set the condition expression
11045 when symbols change. */
11046
11047/* An instance of this type is used to represent an Ada catchpoint
11048 breakpoint location. It includes a "struct bp_location" as a kind
11049 of base class; users downcast to "struct bp_location *" when
11050 needed. */
11051
11052struct ada_catchpoint_location
11053{
11054 /* The base class. */
11055 struct bp_location base;
11056
11057 /* The condition that checks whether the exception that was raised
11058 is the specific exception the user specified on catchpoint
11059 creation. */
11060 struct expression *excep_cond_expr;
11061};
11062
11063/* Implement the DTOR method in the bp_location_ops structure for all
11064 Ada exception catchpoint kinds. */
11065
11066static void
11067ada_catchpoint_location_dtor (struct bp_location *bl)
11068{
11069 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11070
11071 xfree (al->excep_cond_expr);
11072}
11073
11074/* The vtable to be used in Ada catchpoint locations. */
11075
11076static const struct bp_location_ops ada_catchpoint_location_ops =
11077{
11078 ada_catchpoint_location_dtor
11079};
11080
11081/* An instance of this type is used to represent an Ada catchpoint.
11082 It includes a "struct breakpoint" as a kind of base class; users
11083 downcast to "struct breakpoint *" when needed. */
11084
11085struct ada_catchpoint
11086{
11087 /* The base class. */
11088 struct breakpoint base;
11089
11090 /* The name of the specific exception the user specified. */
11091 char *excep_string;
11092};
11093
11094/* Parse the exception condition string in the context of each of the
11095 catchpoint's locations, and store them for later evaluation. */
11096
11097static void
11098create_excep_cond_exprs (struct ada_catchpoint *c)
11099{
11100 struct cleanup *old_chain;
11101 struct bp_location *bl;
11102 char *cond_string;
11103
11104 /* Nothing to do if there's no specific exception to catch. */
11105 if (c->excep_string == NULL)
11106 return;
11107
11108 /* Same if there are no locations... */
11109 if (c->base.loc == NULL)
11110 return;
11111
11112 /* Compute the condition expression in text form, from the specific
11113 expection we want to catch. */
11114 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11115 old_chain = make_cleanup (xfree, cond_string);
11116
11117 /* Iterate over all the catchpoint's locations, and parse an
11118 expression for each. */
11119 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11120 {
11121 struct ada_catchpoint_location *ada_loc
11122 = (struct ada_catchpoint_location *) bl;
11123 struct expression *exp = NULL;
11124
11125 if (!bl->shlib_disabled)
11126 {
11127 volatile struct gdb_exception e;
11128 char *s;
11129
11130 s = cond_string;
11131 TRY_CATCH (e, RETURN_MASK_ERROR)
11132 {
11133 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11134 }
11135 if (e.reason < 0)
11136 warning (_("failed to reevaluate internal exception condition "
11137 "for catchpoint %d: %s"),
11138 c->base.number, e.message);
11139 }
11140
11141 ada_loc->excep_cond_expr = exp;
11142 }
11143
11144 do_cleanups (old_chain);
11145}
11146
11147/* Implement the DTOR method in the breakpoint_ops structure for all
11148 exception catchpoint kinds. */
11149
11150static void
11151dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11152{
11153 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11154
11155 xfree (c->excep_string);
348d480f 11156
2060206e 11157 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11158}
11159
11160/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11161 structure for all exception catchpoint kinds. */
11162
11163static struct bp_location *
11164allocate_location_exception (enum exception_catchpoint_kind ex,
11165 struct breakpoint *self)
11166{
11167 struct ada_catchpoint_location *loc;
11168
11169 loc = XNEW (struct ada_catchpoint_location);
11170 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11171 loc->excep_cond_expr = NULL;
11172 return &loc->base;
11173}
11174
11175/* Implement the RE_SET method in the breakpoint_ops structure for all
11176 exception catchpoint kinds. */
11177
11178static void
11179re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11180{
11181 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11182
11183 /* Call the base class's method. This updates the catchpoint's
11184 locations. */
2060206e 11185 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11186
11187 /* Reparse the exception conditional expressions. One for each
11188 location. */
11189 create_excep_cond_exprs (c);
11190}
11191
11192/* Returns true if we should stop for this breakpoint hit. If the
11193 user specified a specific exception, we only want to cause a stop
11194 if the program thrown that exception. */
11195
11196static int
11197should_stop_exception (const struct bp_location *bl)
11198{
11199 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11200 const struct ada_catchpoint_location *ada_loc
11201 = (const struct ada_catchpoint_location *) bl;
11202 volatile struct gdb_exception ex;
11203 int stop;
11204
11205 /* With no specific exception, should always stop. */
11206 if (c->excep_string == NULL)
11207 return 1;
11208
11209 if (ada_loc->excep_cond_expr == NULL)
11210 {
11211 /* We will have a NULL expression if back when we were creating
11212 the expressions, this location's had failed to parse. */
11213 return 1;
11214 }
11215
11216 stop = 1;
11217 TRY_CATCH (ex, RETURN_MASK_ALL)
11218 {
11219 struct value *mark;
11220
11221 mark = value_mark ();
11222 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11223 value_free_to_mark (mark);
11224 }
11225 if (ex.reason < 0)
11226 exception_fprintf (gdb_stderr, ex,
11227 _("Error in testing exception condition:\n"));
11228 return stop;
11229}
11230
11231/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11232 for all exception catchpoint kinds. */
11233
11234static void
11235check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11236{
11237 bs->stop = should_stop_exception (bs->bp_location_at);
11238}
11239
f7f9143b
JB
11240/* Implement the PRINT_IT method in the breakpoint_ops structure
11241 for all exception catchpoint kinds. */
11242
11243static enum print_stop_action
348d480f 11244print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11245{
79a45e25 11246 struct ui_out *uiout = current_uiout;
348d480f
PA
11247 struct breakpoint *b = bs->breakpoint_at;
11248
956a9fb9 11249 annotate_catchpoint (b->number);
f7f9143b 11250
956a9fb9 11251 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11252 {
956a9fb9
JB
11253 ui_out_field_string (uiout, "reason",
11254 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11255 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11256 }
11257
00eb2c4a
JB
11258 ui_out_text (uiout,
11259 b->disposition == disp_del ? "\nTemporary catchpoint "
11260 : "\nCatchpoint ");
956a9fb9
JB
11261 ui_out_field_int (uiout, "bkptno", b->number);
11262 ui_out_text (uiout, ", ");
f7f9143b 11263
f7f9143b
JB
11264 switch (ex)
11265 {
11266 case ex_catch_exception:
f7f9143b 11267 case ex_catch_exception_unhandled:
956a9fb9
JB
11268 {
11269 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11270 char exception_name[256];
11271
11272 if (addr != 0)
11273 {
11274 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11275 exception_name [sizeof (exception_name) - 1] = '\0';
11276 }
11277 else
11278 {
11279 /* For some reason, we were unable to read the exception
11280 name. This could happen if the Runtime was compiled
11281 without debugging info, for instance. In that case,
11282 just replace the exception name by the generic string
11283 "exception" - it will read as "an exception" in the
11284 notification we are about to print. */
967cff16 11285 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11286 }
11287 /* In the case of unhandled exception breakpoints, we print
11288 the exception name as "unhandled EXCEPTION_NAME", to make
11289 it clearer to the user which kind of catchpoint just got
11290 hit. We used ui_out_text to make sure that this extra
11291 info does not pollute the exception name in the MI case. */
11292 if (ex == ex_catch_exception_unhandled)
11293 ui_out_text (uiout, "unhandled ");
11294 ui_out_field_string (uiout, "exception-name", exception_name);
11295 }
11296 break;
f7f9143b 11297 case ex_catch_assert:
956a9fb9
JB
11298 /* In this case, the name of the exception is not really
11299 important. Just print "failed assertion" to make it clearer
11300 that his program just hit an assertion-failure catchpoint.
11301 We used ui_out_text because this info does not belong in
11302 the MI output. */
11303 ui_out_text (uiout, "failed assertion");
11304 break;
f7f9143b 11305 }
956a9fb9
JB
11306 ui_out_text (uiout, " at ");
11307 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11308
11309 return PRINT_SRC_AND_LOC;
11310}
11311
11312/* Implement the PRINT_ONE method in the breakpoint_ops structure
11313 for all exception catchpoint kinds. */
11314
11315static void
11316print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 11317 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11318{
79a45e25 11319 struct ui_out *uiout = current_uiout;
28010a5d 11320 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11321 struct value_print_options opts;
11322
11323 get_user_print_options (&opts);
11324 if (opts.addressprint)
f7f9143b
JB
11325 {
11326 annotate_field (4);
5af949e3 11327 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11328 }
11329
11330 annotate_field (5);
a6d9a66e 11331 *last_loc = b->loc;
f7f9143b
JB
11332 switch (ex)
11333 {
11334 case ex_catch_exception:
28010a5d 11335 if (c->excep_string != NULL)
f7f9143b 11336 {
28010a5d
PA
11337 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11338
f7f9143b
JB
11339 ui_out_field_string (uiout, "what", msg);
11340 xfree (msg);
11341 }
11342 else
11343 ui_out_field_string (uiout, "what", "all Ada exceptions");
11344
11345 break;
11346
11347 case ex_catch_exception_unhandled:
11348 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11349 break;
11350
11351 case ex_catch_assert:
11352 ui_out_field_string (uiout, "what", "failed Ada assertions");
11353 break;
11354
11355 default:
11356 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11357 break;
11358 }
11359}
11360
11361/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11362 for all exception catchpoint kinds. */
11363
11364static void
11365print_mention_exception (enum exception_catchpoint_kind ex,
11366 struct breakpoint *b)
11367{
28010a5d 11368 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11369 struct ui_out *uiout = current_uiout;
28010a5d 11370
00eb2c4a
JB
11371 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11372 : _("Catchpoint "));
11373 ui_out_field_int (uiout, "bkptno", b->number);
11374 ui_out_text (uiout, ": ");
11375
f7f9143b
JB
11376 switch (ex)
11377 {
11378 case ex_catch_exception:
28010a5d 11379 if (c->excep_string != NULL)
00eb2c4a
JB
11380 {
11381 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11382 struct cleanup *old_chain = make_cleanup (xfree, info);
11383
11384 ui_out_text (uiout, info);
11385 do_cleanups (old_chain);
11386 }
f7f9143b 11387 else
00eb2c4a 11388 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
11389 break;
11390
11391 case ex_catch_exception_unhandled:
00eb2c4a 11392 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
11393 break;
11394
11395 case ex_catch_assert:
00eb2c4a 11396 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
11397 break;
11398
11399 default:
11400 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11401 break;
11402 }
11403}
11404
6149aea9
PA
11405/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11406 for all exception catchpoint kinds. */
11407
11408static void
11409print_recreate_exception (enum exception_catchpoint_kind ex,
11410 struct breakpoint *b, struct ui_file *fp)
11411{
28010a5d
PA
11412 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11413
6149aea9
PA
11414 switch (ex)
11415 {
11416 case ex_catch_exception:
11417 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11418 if (c->excep_string != NULL)
11419 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11420 break;
11421
11422 case ex_catch_exception_unhandled:
78076abc 11423 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11424 break;
11425
11426 case ex_catch_assert:
11427 fprintf_filtered (fp, "catch assert");
11428 break;
11429
11430 default:
11431 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11432 }
d9b3f62e 11433 print_recreate_thread (b, fp);
6149aea9
PA
11434}
11435
f7f9143b
JB
11436/* Virtual table for "catch exception" breakpoints. */
11437
28010a5d
PA
11438static void
11439dtor_catch_exception (struct breakpoint *b)
11440{
11441 dtor_exception (ex_catch_exception, b);
11442}
11443
11444static struct bp_location *
11445allocate_location_catch_exception (struct breakpoint *self)
11446{
11447 return allocate_location_exception (ex_catch_exception, self);
11448}
11449
11450static void
11451re_set_catch_exception (struct breakpoint *b)
11452{
11453 re_set_exception (ex_catch_exception, b);
11454}
11455
11456static void
11457check_status_catch_exception (bpstat bs)
11458{
11459 check_status_exception (ex_catch_exception, bs);
11460}
11461
f7f9143b 11462static enum print_stop_action
348d480f 11463print_it_catch_exception (bpstat bs)
f7f9143b 11464{
348d480f 11465 return print_it_exception (ex_catch_exception, bs);
f7f9143b
JB
11466}
11467
11468static void
a6d9a66e 11469print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11470{
a6d9a66e 11471 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
11472}
11473
11474static void
11475print_mention_catch_exception (struct breakpoint *b)
11476{
11477 print_mention_exception (ex_catch_exception, b);
11478}
11479
6149aea9
PA
11480static void
11481print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11482{
11483 print_recreate_exception (ex_catch_exception, b, fp);
11484}
11485
2060206e 11486static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
11487
11488/* Virtual table for "catch exception unhandled" breakpoints. */
11489
28010a5d
PA
11490static void
11491dtor_catch_exception_unhandled (struct breakpoint *b)
11492{
11493 dtor_exception (ex_catch_exception_unhandled, b);
11494}
11495
11496static struct bp_location *
11497allocate_location_catch_exception_unhandled (struct breakpoint *self)
11498{
11499 return allocate_location_exception (ex_catch_exception_unhandled, self);
11500}
11501
11502static void
11503re_set_catch_exception_unhandled (struct breakpoint *b)
11504{
11505 re_set_exception (ex_catch_exception_unhandled, b);
11506}
11507
11508static void
11509check_status_catch_exception_unhandled (bpstat bs)
11510{
11511 check_status_exception (ex_catch_exception_unhandled, bs);
11512}
11513
f7f9143b 11514static enum print_stop_action
348d480f 11515print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 11516{
348d480f 11517 return print_it_exception (ex_catch_exception_unhandled, bs);
f7f9143b
JB
11518}
11519
11520static void
a6d9a66e
UW
11521print_one_catch_exception_unhandled (struct breakpoint *b,
11522 struct bp_location **last_loc)
f7f9143b 11523{
a6d9a66e 11524 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
11525}
11526
11527static void
11528print_mention_catch_exception_unhandled (struct breakpoint *b)
11529{
11530 print_mention_exception (ex_catch_exception_unhandled, b);
11531}
11532
6149aea9
PA
11533static void
11534print_recreate_catch_exception_unhandled (struct breakpoint *b,
11535 struct ui_file *fp)
11536{
11537 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11538}
11539
2060206e 11540static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
11541
11542/* Virtual table for "catch assert" breakpoints. */
11543
28010a5d
PA
11544static void
11545dtor_catch_assert (struct breakpoint *b)
11546{
11547 dtor_exception (ex_catch_assert, b);
11548}
11549
11550static struct bp_location *
11551allocate_location_catch_assert (struct breakpoint *self)
11552{
11553 return allocate_location_exception (ex_catch_assert, self);
11554}
11555
11556static void
11557re_set_catch_assert (struct breakpoint *b)
11558{
11559 return re_set_exception (ex_catch_assert, b);
11560}
11561
11562static void
11563check_status_catch_assert (bpstat bs)
11564{
11565 check_status_exception (ex_catch_assert, bs);
11566}
11567
f7f9143b 11568static enum print_stop_action
348d480f 11569print_it_catch_assert (bpstat bs)
f7f9143b 11570{
348d480f 11571 return print_it_exception (ex_catch_assert, bs);
f7f9143b
JB
11572}
11573
11574static void
a6d9a66e 11575print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11576{
a6d9a66e 11577 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
11578}
11579
11580static void
11581print_mention_catch_assert (struct breakpoint *b)
11582{
11583 print_mention_exception (ex_catch_assert, b);
11584}
11585
6149aea9
PA
11586static void
11587print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11588{
11589 print_recreate_exception (ex_catch_assert, b, fp);
11590}
11591
2060206e 11592static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 11593
f7f9143b
JB
11594/* Return a newly allocated copy of the first space-separated token
11595 in ARGSP, and then adjust ARGSP to point immediately after that
11596 token.
11597
11598 Return NULL if ARGPS does not contain any more tokens. */
11599
11600static char *
11601ada_get_next_arg (char **argsp)
11602{
11603 char *args = *argsp;
11604 char *end;
11605 char *result;
11606
0fcd72ba 11607 args = skip_spaces (args);
f7f9143b
JB
11608 if (args[0] == '\0')
11609 return NULL; /* No more arguments. */
11610
11611 /* Find the end of the current argument. */
11612
0fcd72ba 11613 end = skip_to_space (args);
f7f9143b
JB
11614
11615 /* Adjust ARGSP to point to the start of the next argument. */
11616
11617 *argsp = end;
11618
11619 /* Make a copy of the current argument and return it. */
11620
11621 result = xmalloc (end - args + 1);
11622 strncpy (result, args, end - args);
11623 result[end - args] = '\0';
11624
11625 return result;
11626}
11627
11628/* Split the arguments specified in a "catch exception" command.
11629 Set EX to the appropriate catchpoint type.
28010a5d 11630 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
11631 specified by the user.
11632 If a condition is found at the end of the arguments, the condition
11633 expression is stored in COND_STRING (memory must be deallocated
11634 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
11635
11636static void
11637catch_ada_exception_command_split (char *args,
11638 enum exception_catchpoint_kind *ex,
5845583d
JB
11639 char **excep_string,
11640 char **cond_string)
f7f9143b
JB
11641{
11642 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11643 char *exception_name;
5845583d 11644 char *cond = NULL;
f7f9143b
JB
11645
11646 exception_name = ada_get_next_arg (&args);
5845583d
JB
11647 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11648 {
11649 /* This is not an exception name; this is the start of a condition
11650 expression for a catchpoint on all exceptions. So, "un-get"
11651 this token, and set exception_name to NULL. */
11652 xfree (exception_name);
11653 exception_name = NULL;
11654 args -= 2;
11655 }
f7f9143b
JB
11656 make_cleanup (xfree, exception_name);
11657
5845583d 11658 /* Check to see if we have a condition. */
f7f9143b 11659
0fcd72ba 11660 args = skip_spaces (args);
5845583d
JB
11661 if (strncmp (args, "if", 2) == 0
11662 && (isspace (args[2]) || args[2] == '\0'))
11663 {
11664 args += 2;
11665 args = skip_spaces (args);
11666
11667 if (args[0] == '\0')
11668 error (_("Condition missing after `if' keyword"));
11669 cond = xstrdup (args);
11670 make_cleanup (xfree, cond);
11671
11672 args += strlen (args);
11673 }
11674
11675 /* Check that we do not have any more arguments. Anything else
11676 is unexpected. */
f7f9143b
JB
11677
11678 if (args[0] != '\0')
11679 error (_("Junk at end of expression"));
11680
11681 discard_cleanups (old_chain);
11682
11683 if (exception_name == NULL)
11684 {
11685 /* Catch all exceptions. */
11686 *ex = ex_catch_exception;
28010a5d 11687 *excep_string = NULL;
f7f9143b
JB
11688 }
11689 else if (strcmp (exception_name, "unhandled") == 0)
11690 {
11691 /* Catch unhandled exceptions. */
11692 *ex = ex_catch_exception_unhandled;
28010a5d 11693 *excep_string = NULL;
f7f9143b
JB
11694 }
11695 else
11696 {
11697 /* Catch a specific exception. */
11698 *ex = ex_catch_exception;
28010a5d 11699 *excep_string = exception_name;
f7f9143b 11700 }
5845583d 11701 *cond_string = cond;
f7f9143b
JB
11702}
11703
11704/* Return the name of the symbol on which we should break in order to
11705 implement a catchpoint of the EX kind. */
11706
11707static const char *
11708ada_exception_sym_name (enum exception_catchpoint_kind ex)
11709{
3eecfa55
JB
11710 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11711
11712 gdb_assert (data->exception_info != NULL);
0259addd 11713
f7f9143b
JB
11714 switch (ex)
11715 {
11716 case ex_catch_exception:
3eecfa55 11717 return (data->exception_info->catch_exception_sym);
f7f9143b
JB
11718 break;
11719 case ex_catch_exception_unhandled:
3eecfa55 11720 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11721 break;
11722 case ex_catch_assert:
3eecfa55 11723 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
11724 break;
11725 default:
11726 internal_error (__FILE__, __LINE__,
11727 _("unexpected catchpoint kind (%d)"), ex);
11728 }
11729}
11730
11731/* Return the breakpoint ops "virtual table" used for catchpoints
11732 of the EX kind. */
11733
c0a91b2b 11734static const struct breakpoint_ops *
4b9eee8c 11735ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11736{
11737 switch (ex)
11738 {
11739 case ex_catch_exception:
11740 return (&catch_exception_breakpoint_ops);
11741 break;
11742 case ex_catch_exception_unhandled:
11743 return (&catch_exception_unhandled_breakpoint_ops);
11744 break;
11745 case ex_catch_assert:
11746 return (&catch_assert_breakpoint_ops);
11747 break;
11748 default:
11749 internal_error (__FILE__, __LINE__,
11750 _("unexpected catchpoint kind (%d)"), ex);
11751 }
11752}
11753
11754/* Return the condition that will be used to match the current exception
11755 being raised with the exception that the user wants to catch. This
11756 assumes that this condition is used when the inferior just triggered
11757 an exception catchpoint.
11758
11759 The string returned is a newly allocated string that needs to be
11760 deallocated later. */
11761
11762static char *
28010a5d 11763ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 11764{
3d0b0fa3
JB
11765 int i;
11766
0963b4bd 11767 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 11768 runtime units that have been compiled without debugging info; if
28010a5d 11769 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
11770 exception (e.g. "constraint_error") then, during the evaluation
11771 of the condition expression, the symbol lookup on this name would
0963b4bd 11772 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
11773 may then be set only on user-defined exceptions which have the
11774 same not-fully-qualified name (e.g. my_package.constraint_error).
11775
11776 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 11777 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
11778 exception constraint_error" is rewritten into "catch exception
11779 standard.constraint_error".
11780
11781 If an exception named contraint_error is defined in another package of
11782 the inferior program, then the only way to specify this exception as a
11783 breakpoint condition is to use its fully-qualified named:
11784 e.g. my_package.constraint_error. */
11785
11786 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11787 {
28010a5d 11788 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
11789 {
11790 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 11791 excep_string);
3d0b0fa3
JB
11792 }
11793 }
28010a5d 11794 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
11795}
11796
11797/* Return the symtab_and_line that should be used to insert an exception
11798 catchpoint of the TYPE kind.
11799
28010a5d
PA
11800 EXCEP_STRING should contain the name of a specific exception that
11801 the catchpoint should catch, or NULL otherwise.
f7f9143b 11802
28010a5d
PA
11803 ADDR_STRING returns the name of the function where the real
11804 breakpoint that implements the catchpoints is set, depending on the
11805 type of catchpoint we need to create. */
f7f9143b
JB
11806
11807static struct symtab_and_line
28010a5d 11808ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 11809 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
11810{
11811 const char *sym_name;
11812 struct symbol *sym;
f7f9143b 11813
0259addd
JB
11814 /* First, find out which exception support info to use. */
11815 ada_exception_support_info_sniffer ();
11816
11817 /* Then lookup the function on which we will break in order to catch
f7f9143b 11818 the Ada exceptions requested by the user. */
f7f9143b
JB
11819 sym_name = ada_exception_sym_name (ex);
11820 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11821
f17011e0
JB
11822 /* We can assume that SYM is not NULL at this stage. If the symbol
11823 did not exist, ada_exception_support_info_sniffer would have
11824 raised an exception.
f7f9143b 11825
f17011e0
JB
11826 Also, ada_exception_support_info_sniffer should have already
11827 verified that SYM is a function symbol. */
11828 gdb_assert (sym != NULL);
11829 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
11830
11831 /* Set ADDR_STRING. */
f7f9143b
JB
11832 *addr_string = xstrdup (sym_name);
11833
f7f9143b 11834 /* Set OPS. */
4b9eee8c 11835 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 11836
f17011e0 11837 return find_function_start_sal (sym, 1);
f7f9143b
JB
11838}
11839
11840/* Parse the arguments (ARGS) of the "catch exception" command.
11841
f7f9143b
JB
11842 If the user asked the catchpoint to catch only a specific
11843 exception, then save the exception name in ADDR_STRING.
11844
5845583d
JB
11845 If the user provided a condition, then set COND_STRING to
11846 that condition expression (the memory must be deallocated
11847 after use). Otherwise, set COND_STRING to NULL.
11848
f7f9143b
JB
11849 See ada_exception_sal for a description of all the remaining
11850 function arguments of this function. */
11851
9ac4176b 11852static struct symtab_and_line
f7f9143b 11853ada_decode_exception_location (char *args, char **addr_string,
28010a5d 11854 char **excep_string,
5845583d 11855 char **cond_string,
c0a91b2b 11856 const struct breakpoint_ops **ops)
f7f9143b
JB
11857{
11858 enum exception_catchpoint_kind ex;
11859
5845583d 11860 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
28010a5d
PA
11861 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11862}
11863
11864/* Create an Ada exception catchpoint. */
11865
11866static void
11867create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11868 struct symtab_and_line sal,
11869 char *addr_string,
11870 char *excep_string,
5845583d 11871 char *cond_string,
c0a91b2b 11872 const struct breakpoint_ops *ops,
28010a5d
PA
11873 int tempflag,
11874 int from_tty)
11875{
11876 struct ada_catchpoint *c;
11877
11878 c = XNEW (struct ada_catchpoint);
11879 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11880 ops, tempflag, from_tty);
11881 c->excep_string = excep_string;
11882 create_excep_cond_exprs (c);
5845583d
JB
11883 if (cond_string != NULL)
11884 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 11885 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
11886}
11887
9ac4176b
PA
11888/* Implement the "catch exception" command. */
11889
11890static void
11891catch_ada_exception_command (char *arg, int from_tty,
11892 struct cmd_list_element *command)
11893{
11894 struct gdbarch *gdbarch = get_current_arch ();
11895 int tempflag;
11896 struct symtab_and_line sal;
11897 char *addr_string = NULL;
28010a5d 11898 char *excep_string = NULL;
5845583d 11899 char *cond_string = NULL;
c0a91b2b 11900 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
11901
11902 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11903
11904 if (!arg)
11905 arg = "";
5845583d
JB
11906 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
11907 &cond_string, &ops);
28010a5d 11908 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
11909 excep_string, cond_string, ops,
11910 tempflag, from_tty);
9ac4176b
PA
11911}
11912
5845583d
JB
11913/* Assuming that ARGS contains the arguments of a "catch assert"
11914 command, parse those arguments and return a symtab_and_line object
11915 for a failed assertion catchpoint.
11916
11917 Set ADDR_STRING to the name of the function where the real
11918 breakpoint that implements the catchpoint is set.
11919
11920 If ARGS contains a condition, set COND_STRING to that condition
11921 (the memory needs to be deallocated after use). Otherwise, set
11922 COND_STRING to NULL. */
11923
9ac4176b 11924static struct symtab_and_line
f7f9143b 11925ada_decode_assert_location (char *args, char **addr_string,
5845583d 11926 char **cond_string,
c0a91b2b 11927 const struct breakpoint_ops **ops)
f7f9143b 11928{
5845583d 11929 args = skip_spaces (args);
f7f9143b 11930
5845583d
JB
11931 /* Check whether a condition was provided. */
11932 if (strncmp (args, "if", 2) == 0
11933 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 11934 {
5845583d 11935 args += 2;
0fcd72ba 11936 args = skip_spaces (args);
5845583d
JB
11937 if (args[0] == '\0')
11938 error (_("condition missing after `if' keyword"));
11939 *cond_string = xstrdup (args);
f7f9143b
JB
11940 }
11941
5845583d
JB
11942 /* Otherwise, there should be no other argument at the end of
11943 the command. */
11944 else if (args[0] != '\0')
11945 error (_("Junk at end of arguments."));
11946
28010a5d 11947 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
f7f9143b
JB
11948}
11949
9ac4176b
PA
11950/* Implement the "catch assert" command. */
11951
11952static void
11953catch_assert_command (char *arg, int from_tty,
11954 struct cmd_list_element *command)
11955{
11956 struct gdbarch *gdbarch = get_current_arch ();
11957 int tempflag;
11958 struct symtab_and_line sal;
11959 char *addr_string = NULL;
5845583d 11960 char *cond_string = NULL;
c0a91b2b 11961 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
11962
11963 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11964
11965 if (!arg)
11966 arg = "";
5845583d 11967 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
28010a5d 11968 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
11969 NULL, cond_string, ops, tempflag,
11970 from_tty);
9ac4176b 11971}
4c4b4cd2
PH
11972 /* Operators */
11973/* Information about operators given special treatment in functions
11974 below. */
11975/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11976
11977#define ADA_OPERATORS \
11978 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11979 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11980 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11981 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11982 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11983 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11984 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11985 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11986 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11987 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11988 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11989 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11990 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11991 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11992 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
11993 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11994 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11995 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11996 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
11997
11998static void
554794dc
SDJ
11999ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12000 int *argsp)
4c4b4cd2
PH
12001{
12002 switch (exp->elts[pc - 1].opcode)
12003 {
76a01679 12004 default:
4c4b4cd2
PH
12005 operator_length_standard (exp, pc, oplenp, argsp);
12006 break;
12007
12008#define OP_DEFN(op, len, args, binop) \
12009 case op: *oplenp = len; *argsp = args; break;
12010 ADA_OPERATORS;
12011#undef OP_DEFN
52ce6436
PH
12012
12013 case OP_AGGREGATE:
12014 *oplenp = 3;
12015 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12016 break;
12017
12018 case OP_CHOICES:
12019 *oplenp = 3;
12020 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12021 break;
4c4b4cd2
PH
12022 }
12023}
12024
c0201579
JK
12025/* Implementation of the exp_descriptor method operator_check. */
12026
12027static int
12028ada_operator_check (struct expression *exp, int pos,
12029 int (*objfile_func) (struct objfile *objfile, void *data),
12030 void *data)
12031{
12032 const union exp_element *const elts = exp->elts;
12033 struct type *type = NULL;
12034
12035 switch (elts[pos].opcode)
12036 {
12037 case UNOP_IN_RANGE:
12038 case UNOP_QUAL:
12039 type = elts[pos + 1].type;
12040 break;
12041
12042 default:
12043 return operator_check_standard (exp, pos, objfile_func, data);
12044 }
12045
12046 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12047
12048 if (type && TYPE_OBJFILE (type)
12049 && (*objfile_func) (TYPE_OBJFILE (type), data))
12050 return 1;
12051
12052 return 0;
12053}
12054
4c4b4cd2
PH
12055static char *
12056ada_op_name (enum exp_opcode opcode)
12057{
12058 switch (opcode)
12059 {
76a01679 12060 default:
4c4b4cd2 12061 return op_name_standard (opcode);
52ce6436 12062
4c4b4cd2
PH
12063#define OP_DEFN(op, len, args, binop) case op: return #op;
12064 ADA_OPERATORS;
12065#undef OP_DEFN
52ce6436
PH
12066
12067 case OP_AGGREGATE:
12068 return "OP_AGGREGATE";
12069 case OP_CHOICES:
12070 return "OP_CHOICES";
12071 case OP_NAME:
12072 return "OP_NAME";
4c4b4cd2
PH
12073 }
12074}
12075
12076/* As for operator_length, but assumes PC is pointing at the first
12077 element of the operator, and gives meaningful results only for the
52ce6436 12078 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
12079
12080static void
76a01679
JB
12081ada_forward_operator_length (struct expression *exp, int pc,
12082 int *oplenp, int *argsp)
4c4b4cd2 12083{
76a01679 12084 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
12085 {
12086 default:
12087 *oplenp = *argsp = 0;
12088 break;
52ce6436 12089
4c4b4cd2
PH
12090#define OP_DEFN(op, len, args, binop) \
12091 case op: *oplenp = len; *argsp = args; break;
12092 ADA_OPERATORS;
12093#undef OP_DEFN
52ce6436
PH
12094
12095 case OP_AGGREGATE:
12096 *oplenp = 3;
12097 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12098 break;
12099
12100 case OP_CHOICES:
12101 *oplenp = 3;
12102 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12103 break;
12104
12105 case OP_STRING:
12106 case OP_NAME:
12107 {
12108 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 12109
52ce6436
PH
12110 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12111 *argsp = 0;
12112 break;
12113 }
4c4b4cd2
PH
12114 }
12115}
12116
12117static int
12118ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12119{
12120 enum exp_opcode op = exp->elts[elt].opcode;
12121 int oplen, nargs;
12122 int pc = elt;
12123 int i;
76a01679 12124
4c4b4cd2
PH
12125 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12126
76a01679 12127 switch (op)
4c4b4cd2 12128 {
76a01679 12129 /* Ada attributes ('Foo). */
4c4b4cd2
PH
12130 case OP_ATR_FIRST:
12131 case OP_ATR_LAST:
12132 case OP_ATR_LENGTH:
12133 case OP_ATR_IMAGE:
12134 case OP_ATR_MAX:
12135 case OP_ATR_MIN:
12136 case OP_ATR_MODULUS:
12137 case OP_ATR_POS:
12138 case OP_ATR_SIZE:
12139 case OP_ATR_TAG:
12140 case OP_ATR_VAL:
12141 break;
12142
12143 case UNOP_IN_RANGE:
12144 case UNOP_QUAL:
323e0a4a
AC
12145 /* XXX: gdb_sprint_host_address, type_sprint */
12146 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
12147 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12148 fprintf_filtered (stream, " (");
12149 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12150 fprintf_filtered (stream, ")");
12151 break;
12152 case BINOP_IN_BOUNDS:
52ce6436
PH
12153 fprintf_filtered (stream, " (%d)",
12154 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
12155 break;
12156 case TERNOP_IN_RANGE:
12157 break;
12158
52ce6436
PH
12159 case OP_AGGREGATE:
12160 case OP_OTHERS:
12161 case OP_DISCRETE_RANGE:
12162 case OP_POSITIONAL:
12163 case OP_CHOICES:
12164 break;
12165
12166 case OP_NAME:
12167 case OP_STRING:
12168 {
12169 char *name = &exp->elts[elt + 2].string;
12170 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 12171
52ce6436
PH
12172 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12173 break;
12174 }
12175
4c4b4cd2
PH
12176 default:
12177 return dump_subexp_body_standard (exp, stream, elt);
12178 }
12179
12180 elt += oplen;
12181 for (i = 0; i < nargs; i += 1)
12182 elt = dump_subexp (exp, stream, elt);
12183
12184 return elt;
12185}
12186
12187/* The Ada extension of print_subexp (q.v.). */
12188
76a01679
JB
12189static void
12190ada_print_subexp (struct expression *exp, int *pos,
12191 struct ui_file *stream, enum precedence prec)
4c4b4cd2 12192{
52ce6436 12193 int oplen, nargs, i;
4c4b4cd2
PH
12194 int pc = *pos;
12195 enum exp_opcode op = exp->elts[pc].opcode;
12196
12197 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12198
52ce6436 12199 *pos += oplen;
4c4b4cd2
PH
12200 switch (op)
12201 {
12202 default:
52ce6436 12203 *pos -= oplen;
4c4b4cd2
PH
12204 print_subexp_standard (exp, pos, stream, prec);
12205 return;
12206
12207 case OP_VAR_VALUE:
4c4b4cd2
PH
12208 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12209 return;
12210
12211 case BINOP_IN_BOUNDS:
323e0a4a 12212 /* XXX: sprint_subexp */
4c4b4cd2 12213 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12214 fputs_filtered (" in ", stream);
4c4b4cd2 12215 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12216 fputs_filtered ("'range", stream);
4c4b4cd2 12217 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
12218 fprintf_filtered (stream, "(%ld)",
12219 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
12220 return;
12221
12222 case TERNOP_IN_RANGE:
4c4b4cd2 12223 if (prec >= PREC_EQUAL)
76a01679 12224 fputs_filtered ("(", stream);
323e0a4a 12225 /* XXX: sprint_subexp */
4c4b4cd2 12226 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12227 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12228 print_subexp (exp, pos, stream, PREC_EQUAL);
12229 fputs_filtered (" .. ", stream);
12230 print_subexp (exp, pos, stream, PREC_EQUAL);
12231 if (prec >= PREC_EQUAL)
76a01679
JB
12232 fputs_filtered (")", stream);
12233 return;
4c4b4cd2
PH
12234
12235 case OP_ATR_FIRST:
12236 case OP_ATR_LAST:
12237 case OP_ATR_LENGTH:
12238 case OP_ATR_IMAGE:
12239 case OP_ATR_MAX:
12240 case OP_ATR_MIN:
12241 case OP_ATR_MODULUS:
12242 case OP_ATR_POS:
12243 case OP_ATR_SIZE:
12244 case OP_ATR_TAG:
12245 case OP_ATR_VAL:
4c4b4cd2 12246 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
12247 {
12248 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12249 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12250 *pos += 3;
12251 }
4c4b4cd2 12252 else
76a01679 12253 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
12254 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12255 if (nargs > 1)
76a01679
JB
12256 {
12257 int tem;
5b4ee69b 12258
76a01679
JB
12259 for (tem = 1; tem < nargs; tem += 1)
12260 {
12261 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12262 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12263 }
12264 fputs_filtered (")", stream);
12265 }
4c4b4cd2 12266 return;
14f9c5c9 12267
4c4b4cd2 12268 case UNOP_QUAL:
4c4b4cd2
PH
12269 type_print (exp->elts[pc + 1].type, "", stream, 0);
12270 fputs_filtered ("'(", stream);
12271 print_subexp (exp, pos, stream, PREC_PREFIX);
12272 fputs_filtered (")", stream);
12273 return;
14f9c5c9 12274
4c4b4cd2 12275 case UNOP_IN_RANGE:
323e0a4a 12276 /* XXX: sprint_subexp */
4c4b4cd2 12277 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12278 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12279 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12280 return;
52ce6436
PH
12281
12282 case OP_DISCRETE_RANGE:
12283 print_subexp (exp, pos, stream, PREC_SUFFIX);
12284 fputs_filtered ("..", stream);
12285 print_subexp (exp, pos, stream, PREC_SUFFIX);
12286 return;
12287
12288 case OP_OTHERS:
12289 fputs_filtered ("others => ", stream);
12290 print_subexp (exp, pos, stream, PREC_SUFFIX);
12291 return;
12292
12293 case OP_CHOICES:
12294 for (i = 0; i < nargs-1; i += 1)
12295 {
12296 if (i > 0)
12297 fputs_filtered ("|", stream);
12298 print_subexp (exp, pos, stream, PREC_SUFFIX);
12299 }
12300 fputs_filtered (" => ", stream);
12301 print_subexp (exp, pos, stream, PREC_SUFFIX);
12302 return;
12303
12304 case OP_POSITIONAL:
12305 print_subexp (exp, pos, stream, PREC_SUFFIX);
12306 return;
12307
12308 case OP_AGGREGATE:
12309 fputs_filtered ("(", stream);
12310 for (i = 0; i < nargs; i += 1)
12311 {
12312 if (i > 0)
12313 fputs_filtered (", ", stream);
12314 print_subexp (exp, pos, stream, PREC_SUFFIX);
12315 }
12316 fputs_filtered (")", stream);
12317 return;
4c4b4cd2
PH
12318 }
12319}
14f9c5c9
AS
12320
12321/* Table mapping opcodes into strings for printing operators
12322 and precedences of the operators. */
12323
d2e4a39e
AS
12324static const struct op_print ada_op_print_tab[] = {
12325 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12326 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12327 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12328 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12329 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12330 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12331 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12332 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12333 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12334 {">=", BINOP_GEQ, PREC_ORDER, 0},
12335 {">", BINOP_GTR, PREC_ORDER, 0},
12336 {"<", BINOP_LESS, PREC_ORDER, 0},
12337 {">>", BINOP_RSH, PREC_SHIFT, 0},
12338 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12339 {"+", BINOP_ADD, PREC_ADD, 0},
12340 {"-", BINOP_SUB, PREC_ADD, 0},
12341 {"&", BINOP_CONCAT, PREC_ADD, 0},
12342 {"*", BINOP_MUL, PREC_MUL, 0},
12343 {"/", BINOP_DIV, PREC_MUL, 0},
12344 {"rem", BINOP_REM, PREC_MUL, 0},
12345 {"mod", BINOP_MOD, PREC_MUL, 0},
12346 {"**", BINOP_EXP, PREC_REPEAT, 0},
12347 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12348 {"-", UNOP_NEG, PREC_PREFIX, 0},
12349 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12350 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12351 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12352 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
12353 {".all", UNOP_IND, PREC_SUFFIX, 1},
12354 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12355 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 12356 {NULL, 0, 0, 0}
14f9c5c9
AS
12357};
12358\f
72d5681a
PH
12359enum ada_primitive_types {
12360 ada_primitive_type_int,
12361 ada_primitive_type_long,
12362 ada_primitive_type_short,
12363 ada_primitive_type_char,
12364 ada_primitive_type_float,
12365 ada_primitive_type_double,
12366 ada_primitive_type_void,
12367 ada_primitive_type_long_long,
12368 ada_primitive_type_long_double,
12369 ada_primitive_type_natural,
12370 ada_primitive_type_positive,
12371 ada_primitive_type_system_address,
12372 nr_ada_primitive_types
12373};
6c038f32
PH
12374
12375static void
d4a9a881 12376ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
12377 struct language_arch_info *lai)
12378{
d4a9a881 12379 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 12380
72d5681a 12381 lai->primitive_type_vector
d4a9a881 12382 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 12383 struct type *);
e9bb382b
UW
12384
12385 lai->primitive_type_vector [ada_primitive_type_int]
12386 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12387 0, "integer");
12388 lai->primitive_type_vector [ada_primitive_type_long]
12389 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12390 0, "long_integer");
12391 lai->primitive_type_vector [ada_primitive_type_short]
12392 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12393 0, "short_integer");
12394 lai->string_char_type
12395 = lai->primitive_type_vector [ada_primitive_type_char]
12396 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12397 lai->primitive_type_vector [ada_primitive_type_float]
12398 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12399 "float", NULL);
12400 lai->primitive_type_vector [ada_primitive_type_double]
12401 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12402 "long_float", NULL);
12403 lai->primitive_type_vector [ada_primitive_type_long_long]
12404 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12405 0, "long_long_integer");
12406 lai->primitive_type_vector [ada_primitive_type_long_double]
12407 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12408 "long_long_float", NULL);
12409 lai->primitive_type_vector [ada_primitive_type_natural]
12410 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12411 0, "natural");
12412 lai->primitive_type_vector [ada_primitive_type_positive]
12413 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12414 0, "positive");
12415 lai->primitive_type_vector [ada_primitive_type_void]
12416 = builtin->builtin_void;
12417
12418 lai->primitive_type_vector [ada_primitive_type_system_address]
12419 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
12420 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12421 = "system__address";
fbb06eb1 12422
47e729a8 12423 lai->bool_type_symbol = NULL;
fbb06eb1 12424 lai->bool_type_default = builtin->builtin_bool;
6c038f32 12425}
6c038f32
PH
12426\f
12427 /* Language vector */
12428
12429/* Not really used, but needed in the ada_language_defn. */
12430
12431static void
6c7a06a3 12432emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 12433{
6c7a06a3 12434 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
12435}
12436
12437static int
12438parse (void)
12439{
12440 warnings_issued = 0;
12441 return ada_parse ();
12442}
12443
12444static const struct exp_descriptor ada_exp_descriptor = {
12445 ada_print_subexp,
12446 ada_operator_length,
c0201579 12447 ada_operator_check,
6c038f32
PH
12448 ada_op_name,
12449 ada_dump_subexp_body,
12450 ada_evaluate_subexp
12451};
12452
1a119f36 12453/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
12454 for Ada. */
12455
1a119f36
JB
12456static symbol_name_cmp_ftype
12457ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
12458{
12459 if (should_use_wild_match (lookup_name))
12460 return wild_match;
12461 else
12462 return compare_names;
12463}
12464
a5ee536b
JB
12465/* Implement the "la_read_var_value" language_defn method for Ada. */
12466
12467static struct value *
12468ada_read_var_value (struct symbol *var, struct frame_info *frame)
12469{
12470 struct block *frame_block = NULL;
12471 struct symbol *renaming_sym = NULL;
12472
12473 /* The only case where default_read_var_value is not sufficient
12474 is when VAR is a renaming... */
12475 if (frame)
12476 frame_block = get_frame_block (frame, NULL);
12477 if (frame_block)
12478 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12479 if (renaming_sym != NULL)
12480 return ada_read_renaming_var_value (renaming_sym, frame_block);
12481
12482 /* This is a typical case where we expect the default_read_var_value
12483 function to work. */
12484 return default_read_var_value (var, frame);
12485}
12486
6c038f32
PH
12487const struct language_defn ada_language_defn = {
12488 "ada", /* Language name */
12489 language_ada,
6c038f32
PH
12490 range_check_off,
12491 type_check_off,
12492 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12493 that's not quite what this means. */
6c038f32 12494 array_row_major,
9a044a89 12495 macro_expansion_no,
6c038f32
PH
12496 &ada_exp_descriptor,
12497 parse,
12498 ada_error,
12499 resolve,
12500 ada_printchar, /* Print a character constant */
12501 ada_printstr, /* Function to print string constant */
12502 emit_char, /* Function to print single char (not used) */
6c038f32 12503 ada_print_type, /* Print a type using appropriate syntax */
be942545 12504 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
12505 ada_val_print, /* Print a value using appropriate syntax */
12506 ada_value_print, /* Print a top-level value */
a5ee536b 12507 ada_read_var_value, /* la_read_var_value */
6c038f32 12508 NULL, /* Language specific skip_trampoline */
2b2d9e11 12509 NULL, /* name_of_this */
6c038f32
PH
12510 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12511 basic_lookup_transparent_type, /* lookup_transparent_type */
12512 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
12513 NULL, /* Language specific
12514 class_name_from_physname */
6c038f32
PH
12515 ada_op_print_tab, /* expression operators for printing */
12516 0, /* c-style arrays */
12517 1, /* String lower bound */
6c038f32 12518 ada_get_gdb_completer_word_break_characters,
41d27058 12519 ada_make_symbol_completion_list,
72d5681a 12520 ada_language_arch_info,
e79af960 12521 ada_print_array_index,
41f1b697 12522 default_pass_by_reference,
ae6a3a4c 12523 c_get_string,
1a119f36 12524 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 12525 ada_iterate_over_symbols,
6c038f32
PH
12526 LANG_MAGIC
12527};
12528
2c0b251b
PA
12529/* Provide a prototype to silence -Wmissing-prototypes. */
12530extern initialize_file_ftype _initialize_ada_language;
12531
5bf03f13
JB
12532/* Command-list for the "set/show ada" prefix command. */
12533static struct cmd_list_element *set_ada_list;
12534static struct cmd_list_element *show_ada_list;
12535
12536/* Implement the "set ada" prefix command. */
12537
12538static void
12539set_ada_command (char *arg, int from_tty)
12540{
12541 printf_unfiltered (_(\
12542"\"set ada\" must be followed by the name of a setting.\n"));
12543 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12544}
12545
12546/* Implement the "show ada" prefix command. */
12547
12548static void
12549show_ada_command (char *args, int from_tty)
12550{
12551 cmd_show_list (show_ada_list, from_tty, "");
12552}
12553
2060206e
PA
12554static void
12555initialize_ada_catchpoint_ops (void)
12556{
12557 struct breakpoint_ops *ops;
12558
12559 initialize_breakpoint_ops ();
12560
12561 ops = &catch_exception_breakpoint_ops;
12562 *ops = bkpt_breakpoint_ops;
12563 ops->dtor = dtor_catch_exception;
12564 ops->allocate_location = allocate_location_catch_exception;
12565 ops->re_set = re_set_catch_exception;
12566 ops->check_status = check_status_catch_exception;
12567 ops->print_it = print_it_catch_exception;
12568 ops->print_one = print_one_catch_exception;
12569 ops->print_mention = print_mention_catch_exception;
12570 ops->print_recreate = print_recreate_catch_exception;
12571
12572 ops = &catch_exception_unhandled_breakpoint_ops;
12573 *ops = bkpt_breakpoint_ops;
12574 ops->dtor = dtor_catch_exception_unhandled;
12575 ops->allocate_location = allocate_location_catch_exception_unhandled;
12576 ops->re_set = re_set_catch_exception_unhandled;
12577 ops->check_status = check_status_catch_exception_unhandled;
12578 ops->print_it = print_it_catch_exception_unhandled;
12579 ops->print_one = print_one_catch_exception_unhandled;
12580 ops->print_mention = print_mention_catch_exception_unhandled;
12581 ops->print_recreate = print_recreate_catch_exception_unhandled;
12582
12583 ops = &catch_assert_breakpoint_ops;
12584 *ops = bkpt_breakpoint_ops;
12585 ops->dtor = dtor_catch_assert;
12586 ops->allocate_location = allocate_location_catch_assert;
12587 ops->re_set = re_set_catch_assert;
12588 ops->check_status = check_status_catch_assert;
12589 ops->print_it = print_it_catch_assert;
12590 ops->print_one = print_one_catch_assert;
12591 ops->print_mention = print_mention_catch_assert;
12592 ops->print_recreate = print_recreate_catch_assert;
12593}
12594
d2e4a39e 12595void
6c038f32 12596_initialize_ada_language (void)
14f9c5c9 12597{
6c038f32
PH
12598 add_language (&ada_language_defn);
12599
2060206e
PA
12600 initialize_ada_catchpoint_ops ();
12601
5bf03f13
JB
12602 add_prefix_cmd ("ada", no_class, set_ada_command,
12603 _("Prefix command for changing Ada-specfic settings"),
12604 &set_ada_list, "set ada ", 0, &setlist);
12605
12606 add_prefix_cmd ("ada", no_class, show_ada_command,
12607 _("Generic command for showing Ada-specific settings."),
12608 &show_ada_list, "show ada ", 0, &showlist);
12609
12610 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12611 &trust_pad_over_xvs, _("\
12612Enable or disable an optimization trusting PAD types over XVS types"), _("\
12613Show whether an optimization trusting PAD types over XVS types is activated"),
12614 _("\
12615This is related to the encoding used by the GNAT compiler. The debugger\n\
12616should normally trust the contents of PAD types, but certain older versions\n\
12617of GNAT have a bug that sometimes causes the information in the PAD type\n\
12618to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12619work around this bug. It is always safe to turn this option \"off\", but\n\
12620this incurs a slight performance penalty, so it is recommended to NOT change\n\
12621this option to \"off\" unless necessary."),
12622 NULL, NULL, &set_ada_list, &show_ada_list);
12623
9ac4176b
PA
12624 add_catch_command ("exception", _("\
12625Catch Ada exceptions, when raised.\n\
12626With an argument, catch only exceptions with the given name."),
12627 catch_ada_exception_command,
12628 NULL,
12629 CATCH_PERMANENT,
12630 CATCH_TEMPORARY);
12631 add_catch_command ("assert", _("\
12632Catch failed Ada assertions, when raised.\n\
12633With an argument, catch only exceptions with the given name."),
12634 catch_assert_command,
12635 NULL,
12636 CATCH_PERMANENT,
12637 CATCH_TEMPORARY);
12638
6c038f32 12639 varsize_limit = 65536;
6c038f32
PH
12640
12641 obstack_init (&symbol_list_obstack);
12642
12643 decoded_names_store = htab_create_alloc
12644 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12645 NULL, xcalloc, xfree);
6b69afc4 12646
e802dbe0
JB
12647 /* Setup per-inferior data. */
12648 observer_attach_inferior_exit (ada_inferior_exit);
12649 ada_inferior_data
12650 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
14f9c5c9 12651}