]>
Commit | Line | Data |
---|---|---|
197e01b6 | 1 | /* Ada language support routines for GDB, the GNU debugger. Copyright (C) |
10a2c479 | 2 | |
ae6a3a4c TJB |
3 | 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008, |
4 | 2009 Free Software Foundation, Inc. | |
14f9c5c9 | 5 | |
a9762ec7 | 6 | This file is part of GDB. |
14f9c5c9 | 7 | |
a9762ec7 JB |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 3 of the License, or | |
11 | (at your option) any later version. | |
14f9c5c9 | 12 | |
a9762ec7 JB |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
14f9c5c9 | 17 | |
a9762ec7 JB |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 20 | |
96d887e8 | 21 | |
4c4b4cd2 | 22 | #include "defs.h" |
14f9c5c9 | 23 | #include <stdio.h> |
0c30c098 | 24 | #include "gdb_string.h" |
14f9c5c9 AS |
25 | #include <ctype.h> |
26 | #include <stdarg.h> | |
27 | #include "demangle.h" | |
4c4b4cd2 PH |
28 | #include "gdb_regex.h" |
29 | #include "frame.h" | |
14f9c5c9 AS |
30 | #include "symtab.h" |
31 | #include "gdbtypes.h" | |
32 | #include "gdbcmd.h" | |
33 | #include "expression.h" | |
34 | #include "parser-defs.h" | |
35 | #include "language.h" | |
36 | #include "c-lang.h" | |
37 | #include "inferior.h" | |
38 | #include "symfile.h" | |
39 | #include "objfiles.h" | |
40 | #include "breakpoint.h" | |
41 | #include "gdbcore.h" | |
4c4b4cd2 PH |
42 | #include "hashtab.h" |
43 | #include "gdb_obstack.h" | |
14f9c5c9 | 44 | #include "ada-lang.h" |
4c4b4cd2 PH |
45 | #include "completer.h" |
46 | #include "gdb_stat.h" | |
47 | #ifdef UI_OUT | |
14f9c5c9 | 48 | #include "ui-out.h" |
4c4b4cd2 | 49 | #endif |
fe898f56 | 50 | #include "block.h" |
04714b91 | 51 | #include "infcall.h" |
de4f826b | 52 | #include "dictionary.h" |
60250e8b | 53 | #include "exceptions.h" |
f7f9143b JB |
54 | #include "annotate.h" |
55 | #include "valprint.h" | |
9bbc9174 | 56 | #include "source.h" |
0259addd | 57 | #include "observer.h" |
2ba95b9b | 58 | #include "vec.h" |
14f9c5c9 | 59 | |
4c4b4cd2 PH |
60 | /* Define whether or not the C operator '/' truncates towards zero for |
61 | differently signed operands (truncation direction is undefined in C). | |
62 | Copied from valarith.c. */ | |
63 | ||
64 | #ifndef TRUNCATION_TOWARDS_ZERO | |
65 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
66 | #endif | |
67 | ||
4c4b4cd2 | 68 | static void extract_string (CORE_ADDR addr, char *buf); |
14f9c5c9 | 69 | |
14f9c5c9 AS |
70 | static void modify_general_field (char *, LONGEST, int, int); |
71 | ||
d2e4a39e | 72 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 73 | |
d2e4a39e | 74 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 75 | |
d2e4a39e | 76 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 77 | |
d2e4a39e | 78 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 79 | |
d2e4a39e | 80 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 81 | |
556bdfd4 | 82 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 83 | |
d2e4a39e | 84 | static struct value *desc_data (struct value *); |
14f9c5c9 | 85 | |
d2e4a39e | 86 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 87 | |
d2e4a39e | 88 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 89 | |
d2e4a39e | 90 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 91 | |
d2e4a39e | 92 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 93 | |
d2e4a39e | 94 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 95 | |
d2e4a39e | 96 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 97 | |
d2e4a39e | 98 | static int desc_arity (struct type *); |
14f9c5c9 | 99 | |
d2e4a39e | 100 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 101 | |
d2e4a39e | 102 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 103 | |
4c4b4cd2 | 104 | static struct value *ensure_lval (struct value *, CORE_ADDR *); |
14f9c5c9 | 105 | |
d2e4a39e | 106 | static struct value *convert_actual (struct value *, struct type *, |
4c4b4cd2 | 107 | CORE_ADDR *); |
14f9c5c9 | 108 | |
d2e4a39e | 109 | static struct value *make_array_descriptor (struct type *, struct value *, |
4c4b4cd2 | 110 | CORE_ADDR *); |
14f9c5c9 | 111 | |
4c4b4cd2 | 112 | static void ada_add_block_symbols (struct obstack *, |
76a01679 | 113 | struct block *, const char *, |
2570f2b7 | 114 | domain_enum, struct objfile *, int); |
14f9c5c9 | 115 | |
4c4b4cd2 | 116 | static int is_nonfunction (struct ada_symbol_info *, int); |
14f9c5c9 | 117 | |
76a01679 | 118 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
2570f2b7 | 119 | struct block *); |
14f9c5c9 | 120 | |
4c4b4cd2 PH |
121 | static int num_defns_collected (struct obstack *); |
122 | ||
123 | static struct ada_symbol_info *defns_collected (struct obstack *, int); | |
14f9c5c9 | 124 | |
d2e4a39e | 125 | static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab |
76a01679 JB |
126 | *, const char *, int, |
127 | domain_enum, int); | |
14f9c5c9 | 128 | |
4c4b4cd2 | 129 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 130 | struct type *); |
14f9c5c9 | 131 | |
d2e4a39e | 132 | static void replace_operator_with_call (struct expression **, int, int, int, |
4c4b4cd2 | 133 | struct symbol *, struct block *); |
14f9c5c9 | 134 | |
d2e4a39e | 135 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 136 | |
4c4b4cd2 PH |
137 | static char *ada_op_name (enum exp_opcode); |
138 | ||
139 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 140 | |
d2e4a39e | 141 | static int numeric_type_p (struct type *); |
14f9c5c9 | 142 | |
d2e4a39e | 143 | static int integer_type_p (struct type *); |
14f9c5c9 | 144 | |
d2e4a39e | 145 | static int scalar_type_p (struct type *); |
14f9c5c9 | 146 | |
d2e4a39e | 147 | static int discrete_type_p (struct type *); |
14f9c5c9 | 148 | |
aeb5907d JB |
149 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
150 | const char **, | |
151 | int *, | |
152 | const char **); | |
153 | ||
154 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
155 | struct block *); | |
156 | ||
4c4b4cd2 | 157 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 158 | int, int, int *); |
4c4b4cd2 | 159 | |
d2e4a39e | 160 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 161 | |
d2e4a39e | 162 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 163 | |
10a2c479 | 164 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 165 | const gdb_byte *, |
4c4b4cd2 PH |
166 | CORE_ADDR, struct value *); |
167 | ||
168 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 169 | |
d2e4a39e | 170 | static struct type *to_fixed_range_type (char *, struct value *, |
4c4b4cd2 | 171 | struct objfile *); |
14f9c5c9 | 172 | |
d2e4a39e | 173 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 174 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 175 | |
d2e4a39e | 176 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 177 | |
d2e4a39e | 178 | static struct type *packed_array_type (struct type *, long *); |
14f9c5c9 | 179 | |
d2e4a39e | 180 | static struct type *decode_packed_array_type (struct type *); |
14f9c5c9 | 181 | |
d2e4a39e | 182 | static struct value *decode_packed_array (struct value *); |
14f9c5c9 | 183 | |
d2e4a39e | 184 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 185 | struct value **); |
14f9c5c9 | 186 | |
52ce6436 PH |
187 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int); |
188 | ||
4c4b4cd2 PH |
189 | static struct value *coerce_unspec_val_to_type (struct value *, |
190 | struct type *); | |
14f9c5c9 | 191 | |
d2e4a39e | 192 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 193 | |
d2e4a39e | 194 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 195 | |
d2e4a39e | 196 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 197 | |
d2e4a39e | 198 | static int is_name_suffix (const char *); |
14f9c5c9 | 199 | |
d2e4a39e | 200 | static int wild_match (const char *, int, const char *); |
14f9c5c9 | 201 | |
d2e4a39e | 202 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 203 | |
4c4b4cd2 PH |
204 | static LONGEST pos_atr (struct value *); |
205 | ||
3cb382c9 | 206 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 207 | |
d2e4a39e | 208 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 209 | |
4c4b4cd2 PH |
210 | static struct symbol *standard_lookup (const char *, const struct block *, |
211 | domain_enum); | |
14f9c5c9 | 212 | |
4c4b4cd2 PH |
213 | static struct value *ada_search_struct_field (char *, struct value *, int, |
214 | struct type *); | |
215 | ||
216 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
217 | struct type *); | |
218 | ||
76a01679 | 219 | static int find_struct_field (char *, struct type *, int, |
52ce6436 | 220 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
221 | |
222 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
223 | struct value *); | |
224 | ||
225 | static struct value *ada_to_fixed_value (struct value *); | |
14f9c5c9 | 226 | |
4c4b4cd2 PH |
227 | static int ada_resolve_function (struct ada_symbol_info *, int, |
228 | struct value **, int, const char *, | |
229 | struct type *); | |
230 | ||
231 | static struct value *ada_coerce_to_simple_array (struct value *); | |
232 | ||
233 | static int ada_is_direct_array_type (struct type *); | |
234 | ||
72d5681a PH |
235 | static void ada_language_arch_info (struct gdbarch *, |
236 | struct language_arch_info *); | |
714e53ab PH |
237 | |
238 | static void check_size (const struct type *); | |
52ce6436 PH |
239 | |
240 | static struct value *ada_index_struct_field (int, struct value *, int, | |
241 | struct type *); | |
242 | ||
243 | static struct value *assign_aggregate (struct value *, struct value *, | |
244 | struct expression *, int *, enum noside); | |
245 | ||
246 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
247 | struct expression *, | |
248 | int *, LONGEST *, int *, | |
249 | int, LONGEST, LONGEST); | |
250 | ||
251 | static void aggregate_assign_positional (struct value *, struct value *, | |
252 | struct expression *, | |
253 | int *, LONGEST *, int *, int, | |
254 | LONGEST, LONGEST); | |
255 | ||
256 | ||
257 | static void aggregate_assign_others (struct value *, struct value *, | |
258 | struct expression *, | |
259 | int *, LONGEST *, int, LONGEST, LONGEST); | |
260 | ||
261 | ||
262 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
263 | ||
264 | ||
265 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
266 | int *, enum noside); | |
267 | ||
268 | static void ada_forward_operator_length (struct expression *, int, int *, | |
269 | int *); | |
4c4b4cd2 PH |
270 | \f |
271 | ||
76a01679 | 272 | |
4c4b4cd2 | 273 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
274 | static unsigned int varsize_limit; |
275 | ||
4c4b4cd2 PH |
276 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
277 | returned by a function that does not return a const char *. */ | |
278 | static char *ada_completer_word_break_characters = | |
279 | #ifdef VMS | |
280 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
281 | #else | |
14f9c5c9 | 282 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 283 | #endif |
14f9c5c9 | 284 | |
4c4b4cd2 | 285 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 286 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 287 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 288 | |
4c4b4cd2 PH |
289 | /* Limit on the number of warnings to raise per expression evaluation. */ |
290 | static int warning_limit = 2; | |
291 | ||
292 | /* Number of warning messages issued; reset to 0 by cleanups after | |
293 | expression evaluation. */ | |
294 | static int warnings_issued = 0; | |
295 | ||
296 | static const char *known_runtime_file_name_patterns[] = { | |
297 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
298 | }; | |
299 | ||
300 | static const char *known_auxiliary_function_name_patterns[] = { | |
301 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
302 | }; | |
303 | ||
304 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
305 | static struct obstack symbol_list_obstack; | |
306 | ||
307 | /* Utilities */ | |
308 | ||
41d27058 JB |
309 | /* Given DECODED_NAME a string holding a symbol name in its |
310 | decoded form (ie using the Ada dotted notation), returns | |
311 | its unqualified name. */ | |
312 | ||
313 | static const char * | |
314 | ada_unqualified_name (const char *decoded_name) | |
315 | { | |
316 | const char *result = strrchr (decoded_name, '.'); | |
317 | ||
318 | if (result != NULL) | |
319 | result++; /* Skip the dot... */ | |
320 | else | |
321 | result = decoded_name; | |
322 | ||
323 | return result; | |
324 | } | |
325 | ||
326 | /* Return a string starting with '<', followed by STR, and '>'. | |
327 | The result is good until the next call. */ | |
328 | ||
329 | static char * | |
330 | add_angle_brackets (const char *str) | |
331 | { | |
332 | static char *result = NULL; | |
333 | ||
334 | xfree (result); | |
88c15c34 | 335 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
336 | return result; |
337 | } | |
96d887e8 | 338 | |
4c4b4cd2 PH |
339 | static char * |
340 | ada_get_gdb_completer_word_break_characters (void) | |
341 | { | |
342 | return ada_completer_word_break_characters; | |
343 | } | |
344 | ||
e79af960 JB |
345 | /* Print an array element index using the Ada syntax. */ |
346 | ||
347 | static void | |
348 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 349 | const struct value_print_options *options) |
e79af960 | 350 | { |
79a45b7d | 351 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
352 | fprintf_filtered (stream, " => "); |
353 | } | |
354 | ||
4c4b4cd2 PH |
355 | /* Read the string located at ADDR from the inferior and store the |
356 | result into BUF. */ | |
357 | ||
358 | static void | |
14f9c5c9 AS |
359 | extract_string (CORE_ADDR addr, char *buf) |
360 | { | |
d2e4a39e | 361 | int char_index = 0; |
14f9c5c9 | 362 | |
4c4b4cd2 PH |
363 | /* Loop, reading one byte at a time, until we reach the '\000' |
364 | end-of-string marker. */ | |
d2e4a39e AS |
365 | do |
366 | { | |
367 | target_read_memory (addr + char_index * sizeof (char), | |
4c4b4cd2 | 368 | buf + char_index * sizeof (char), sizeof (char)); |
d2e4a39e AS |
369 | char_index++; |
370 | } | |
371 | while (buf[char_index - 1] != '\000'); | |
14f9c5c9 AS |
372 | } |
373 | ||
f27cf670 | 374 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 375 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 376 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 377 | |
f27cf670 AS |
378 | void * |
379 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 380 | { |
d2e4a39e AS |
381 | if (*size < min_size) |
382 | { | |
383 | *size *= 2; | |
384 | if (*size < min_size) | |
4c4b4cd2 | 385 | *size = min_size; |
f27cf670 | 386 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 387 | } |
f27cf670 | 388 | return vect; |
14f9c5c9 AS |
389 | } |
390 | ||
391 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 392 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
393 | |
394 | static int | |
ebf56fd3 | 395 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
396 | { |
397 | int len = strlen (target); | |
d2e4a39e | 398 | return |
4c4b4cd2 PH |
399 | (strncmp (field_name, target, len) == 0 |
400 | && (field_name[len] == '\0' | |
401 | || (strncmp (field_name + len, "___", 3) == 0 | |
76a01679 JB |
402 | && strcmp (field_name + strlen (field_name) - 6, |
403 | "___XVN") != 0))); | |
14f9c5c9 AS |
404 | } |
405 | ||
406 | ||
872c8b51 JB |
407 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
408 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
409 | and return its index. This function also handles fields whose name | |
410 | have ___ suffixes because the compiler sometimes alters their name | |
411 | by adding such a suffix to represent fields with certain constraints. | |
412 | If the field could not be found, return a negative number if | |
413 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
414 | |
415 | int | |
416 | ada_get_field_index (const struct type *type, const char *field_name, | |
417 | int maybe_missing) | |
418 | { | |
419 | int fieldno; | |
872c8b51 JB |
420 | struct type *struct_type = check_typedef ((struct type *) type); |
421 | ||
422 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
423 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
424 | return fieldno; |
425 | ||
426 | if (!maybe_missing) | |
323e0a4a | 427 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 428 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
429 | |
430 | return -1; | |
431 | } | |
432 | ||
433 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
434 | |
435 | int | |
d2e4a39e | 436 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
437 | { |
438 | if (name == NULL) | |
439 | return 0; | |
d2e4a39e | 440 | else |
14f9c5c9 | 441 | { |
d2e4a39e | 442 | const char *p = strstr (name, "___"); |
14f9c5c9 | 443 | if (p == NULL) |
4c4b4cd2 | 444 | return strlen (name); |
14f9c5c9 | 445 | else |
4c4b4cd2 | 446 | return p - name; |
14f9c5c9 AS |
447 | } |
448 | } | |
449 | ||
4c4b4cd2 PH |
450 | /* Return non-zero if SUFFIX is a suffix of STR. |
451 | Return zero if STR is null. */ | |
452 | ||
14f9c5c9 | 453 | static int |
d2e4a39e | 454 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
455 | { |
456 | int len1, len2; | |
457 | if (str == NULL) | |
458 | return 0; | |
459 | len1 = strlen (str); | |
460 | len2 = strlen (suffix); | |
4c4b4cd2 | 461 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
462 | } |
463 | ||
4c4b4cd2 PH |
464 | /* The contents of value VAL, treated as a value of type TYPE. The |
465 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 466 | |
d2e4a39e | 467 | static struct value * |
4c4b4cd2 | 468 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 469 | { |
61ee279c | 470 | type = ada_check_typedef (type); |
df407dfe | 471 | if (value_type (val) == type) |
4c4b4cd2 | 472 | return val; |
d2e4a39e | 473 | else |
14f9c5c9 | 474 | { |
4c4b4cd2 PH |
475 | struct value *result; |
476 | ||
477 | /* Make sure that the object size is not unreasonable before | |
478 | trying to allocate some memory for it. */ | |
714e53ab | 479 | check_size (type); |
4c4b4cd2 PH |
480 | |
481 | result = allocate_value (type); | |
74bcbdf3 | 482 | set_value_component_location (result, val); |
9bbda503 AC |
483 | set_value_bitsize (result, value_bitsize (val)); |
484 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 485 | set_value_address (result, value_address (val)); |
d69fe07e | 486 | if (value_lazy (val) |
df407dfe | 487 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) |
dfa52d88 | 488 | set_value_lazy (result, 1); |
d2e4a39e | 489 | else |
0fd88904 | 490 | memcpy (value_contents_raw (result), value_contents (val), |
4c4b4cd2 | 491 | TYPE_LENGTH (type)); |
14f9c5c9 AS |
492 | return result; |
493 | } | |
494 | } | |
495 | ||
fc1a4b47 AC |
496 | static const gdb_byte * |
497 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
498 | { |
499 | if (valaddr == NULL) | |
500 | return NULL; | |
501 | else | |
502 | return valaddr + offset; | |
503 | } | |
504 | ||
505 | static CORE_ADDR | |
ebf56fd3 | 506 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
507 | { |
508 | if (address == 0) | |
509 | return 0; | |
d2e4a39e | 510 | else |
14f9c5c9 AS |
511 | return address + offset; |
512 | } | |
513 | ||
4c4b4cd2 PH |
514 | /* Issue a warning (as for the definition of warning in utils.c, but |
515 | with exactly one argument rather than ...), unless the limit on the | |
516 | number of warnings has passed during the evaluation of the current | |
517 | expression. */ | |
a2249542 | 518 | |
77109804 AC |
519 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
520 | provided by "complaint". */ | |
521 | static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2); | |
522 | ||
14f9c5c9 | 523 | static void |
a2249542 | 524 | lim_warning (const char *format, ...) |
14f9c5c9 | 525 | { |
a2249542 MK |
526 | va_list args; |
527 | va_start (args, format); | |
528 | ||
4c4b4cd2 PH |
529 | warnings_issued += 1; |
530 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
531 | vwarning (format, args); |
532 | ||
533 | va_end (args); | |
4c4b4cd2 PH |
534 | } |
535 | ||
714e53ab PH |
536 | /* Issue an error if the size of an object of type T is unreasonable, |
537 | i.e. if it would be a bad idea to allocate a value of this type in | |
538 | GDB. */ | |
539 | ||
540 | static void | |
541 | check_size (const struct type *type) | |
542 | { | |
543 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 544 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
545 | } |
546 | ||
547 | ||
c3e5cd34 PH |
548 | /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from |
549 | gdbtypes.h, but some of the necessary definitions in that file | |
550 | seem to have gone missing. */ | |
551 | ||
552 | /* Maximum value of a SIZE-byte signed integer type. */ | |
4c4b4cd2 | 553 | static LONGEST |
c3e5cd34 | 554 | max_of_size (int size) |
4c4b4cd2 | 555 | { |
76a01679 JB |
556 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
557 | return top_bit | (top_bit - 1); | |
4c4b4cd2 PH |
558 | } |
559 | ||
c3e5cd34 | 560 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 561 | static LONGEST |
c3e5cd34 | 562 | min_of_size (int size) |
4c4b4cd2 | 563 | { |
c3e5cd34 | 564 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
565 | } |
566 | ||
c3e5cd34 | 567 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 568 | static ULONGEST |
c3e5cd34 | 569 | umax_of_size (int size) |
4c4b4cd2 | 570 | { |
76a01679 JB |
571 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
572 | return top_bit | (top_bit - 1); | |
4c4b4cd2 PH |
573 | } |
574 | ||
c3e5cd34 PH |
575 | /* Maximum value of integral type T, as a signed quantity. */ |
576 | static LONGEST | |
577 | max_of_type (struct type *t) | |
4c4b4cd2 | 578 | { |
c3e5cd34 PH |
579 | if (TYPE_UNSIGNED (t)) |
580 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
581 | else | |
582 | return max_of_size (TYPE_LENGTH (t)); | |
583 | } | |
584 | ||
585 | /* Minimum value of integral type T, as a signed quantity. */ | |
586 | static LONGEST | |
587 | min_of_type (struct type *t) | |
588 | { | |
589 | if (TYPE_UNSIGNED (t)) | |
590 | return 0; | |
591 | else | |
592 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
593 | } |
594 | ||
595 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
690cc4eb | 596 | static LONGEST |
4c4b4cd2 PH |
597 | discrete_type_high_bound (struct type *type) |
598 | { | |
76a01679 | 599 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
600 | { |
601 | case TYPE_CODE_RANGE: | |
690cc4eb | 602 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 603 | case TYPE_CODE_ENUM: |
690cc4eb PH |
604 | return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1); |
605 | case TYPE_CODE_BOOL: | |
606 | return 1; | |
607 | case TYPE_CODE_CHAR: | |
76a01679 | 608 | case TYPE_CODE_INT: |
690cc4eb | 609 | return max_of_type (type); |
4c4b4cd2 | 610 | default: |
323e0a4a | 611 | error (_("Unexpected type in discrete_type_high_bound.")); |
4c4b4cd2 PH |
612 | } |
613 | } | |
614 | ||
615 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
690cc4eb | 616 | static LONGEST |
4c4b4cd2 PH |
617 | discrete_type_low_bound (struct type *type) |
618 | { | |
76a01679 | 619 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
620 | { |
621 | case TYPE_CODE_RANGE: | |
690cc4eb | 622 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 623 | case TYPE_CODE_ENUM: |
690cc4eb PH |
624 | return TYPE_FIELD_BITPOS (type, 0); |
625 | case TYPE_CODE_BOOL: | |
626 | return 0; | |
627 | case TYPE_CODE_CHAR: | |
76a01679 | 628 | case TYPE_CODE_INT: |
690cc4eb | 629 | return min_of_type (type); |
4c4b4cd2 | 630 | default: |
323e0a4a | 631 | error (_("Unexpected type in discrete_type_low_bound.")); |
4c4b4cd2 PH |
632 | } |
633 | } | |
634 | ||
635 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 636 | non-range scalar type. */ |
4c4b4cd2 PH |
637 | |
638 | static struct type * | |
639 | base_type (struct type *type) | |
640 | { | |
641 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
642 | { | |
76a01679 JB |
643 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
644 | return type; | |
4c4b4cd2 PH |
645 | type = TYPE_TARGET_TYPE (type); |
646 | } | |
647 | return type; | |
14f9c5c9 | 648 | } |
4c4b4cd2 | 649 | \f |
76a01679 | 650 | |
4c4b4cd2 | 651 | /* Language Selection */ |
14f9c5c9 AS |
652 | |
653 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
654 | (the main program is in Ada iif the adainit symbol is found). | |
655 | ||
4c4b4cd2 | 656 | MAIN_PST is not used. */ |
d2e4a39e | 657 | |
14f9c5c9 | 658 | enum language |
d2e4a39e | 659 | ada_update_initial_language (enum language lang, |
4c4b4cd2 | 660 | struct partial_symtab *main_pst) |
14f9c5c9 | 661 | { |
d2e4a39e | 662 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
4c4b4cd2 PH |
663 | (struct objfile *) NULL) != NULL) |
664 | return language_ada; | |
14f9c5c9 AS |
665 | |
666 | return lang; | |
667 | } | |
96d887e8 PH |
668 | |
669 | /* If the main procedure is written in Ada, then return its name. | |
670 | The result is good until the next call. Return NULL if the main | |
671 | procedure doesn't appear to be in Ada. */ | |
672 | ||
673 | char * | |
674 | ada_main_name (void) | |
675 | { | |
676 | struct minimal_symbol *msym; | |
f9bc20b9 | 677 | static char *main_program_name = NULL; |
6c038f32 | 678 | |
96d887e8 PH |
679 | /* For Ada, the name of the main procedure is stored in a specific |
680 | string constant, generated by the binder. Look for that symbol, | |
681 | extract its address, and then read that string. If we didn't find | |
682 | that string, then most probably the main procedure is not written | |
683 | in Ada. */ | |
684 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
685 | ||
686 | if (msym != NULL) | |
687 | { | |
f9bc20b9 JB |
688 | CORE_ADDR main_program_name_addr; |
689 | int err_code; | |
690 | ||
96d887e8 PH |
691 | main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym); |
692 | if (main_program_name_addr == 0) | |
323e0a4a | 693 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 694 | |
f9bc20b9 JB |
695 | xfree (main_program_name); |
696 | target_read_string (main_program_name_addr, &main_program_name, | |
697 | 1024, &err_code); | |
698 | ||
699 | if (err_code != 0) | |
700 | return NULL; | |
96d887e8 PH |
701 | return main_program_name; |
702 | } | |
703 | ||
704 | /* The main procedure doesn't seem to be in Ada. */ | |
705 | return NULL; | |
706 | } | |
14f9c5c9 | 707 | \f |
4c4b4cd2 | 708 | /* Symbols */ |
d2e4a39e | 709 | |
4c4b4cd2 PH |
710 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
711 | of NULLs. */ | |
14f9c5c9 | 712 | |
d2e4a39e AS |
713 | const struct ada_opname_map ada_opname_table[] = { |
714 | {"Oadd", "\"+\"", BINOP_ADD}, | |
715 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
716 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
717 | {"Odivide", "\"/\"", BINOP_DIV}, | |
718 | {"Omod", "\"mod\"", BINOP_MOD}, | |
719 | {"Orem", "\"rem\"", BINOP_REM}, | |
720 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
721 | {"Olt", "\"<\"", BINOP_LESS}, | |
722 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
723 | {"Ogt", "\">\"", BINOP_GTR}, | |
724 | {"Oge", "\">=\"", BINOP_GEQ}, | |
725 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
726 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
727 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
728 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
729 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
730 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
731 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
732 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
733 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
734 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
735 | {NULL, NULL} | |
14f9c5c9 AS |
736 | }; |
737 | ||
4c4b4cd2 PH |
738 | /* The "encoded" form of DECODED, according to GNAT conventions. |
739 | The result is valid until the next call to ada_encode. */ | |
740 | ||
14f9c5c9 | 741 | char * |
4c4b4cd2 | 742 | ada_encode (const char *decoded) |
14f9c5c9 | 743 | { |
4c4b4cd2 PH |
744 | static char *encoding_buffer = NULL; |
745 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 746 | const char *p; |
14f9c5c9 | 747 | int k; |
d2e4a39e | 748 | |
4c4b4cd2 | 749 | if (decoded == NULL) |
14f9c5c9 AS |
750 | return NULL; |
751 | ||
4c4b4cd2 PH |
752 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
753 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
754 | |
755 | k = 0; | |
4c4b4cd2 | 756 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 757 | { |
cdc7bb92 | 758 | if (*p == '.') |
4c4b4cd2 PH |
759 | { |
760 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
761 | k += 2; | |
762 | } | |
14f9c5c9 | 763 | else if (*p == '"') |
4c4b4cd2 PH |
764 | { |
765 | const struct ada_opname_map *mapping; | |
766 | ||
767 | for (mapping = ada_opname_table; | |
1265e4aa JB |
768 | mapping->encoded != NULL |
769 | && strncmp (mapping->decoded, p, | |
770 | strlen (mapping->decoded)) != 0; mapping += 1) | |
4c4b4cd2 PH |
771 | ; |
772 | if (mapping->encoded == NULL) | |
323e0a4a | 773 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
774 | strcpy (encoding_buffer + k, mapping->encoded); |
775 | k += strlen (mapping->encoded); | |
776 | break; | |
777 | } | |
d2e4a39e | 778 | else |
4c4b4cd2 PH |
779 | { |
780 | encoding_buffer[k] = *p; | |
781 | k += 1; | |
782 | } | |
14f9c5c9 AS |
783 | } |
784 | ||
4c4b4cd2 PH |
785 | encoding_buffer[k] = '\0'; |
786 | return encoding_buffer; | |
14f9c5c9 AS |
787 | } |
788 | ||
789 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
790 | quotes, unfolded, but with the quotes stripped away. Result good |
791 | to next call. */ | |
792 | ||
d2e4a39e AS |
793 | char * |
794 | ada_fold_name (const char *name) | |
14f9c5c9 | 795 | { |
d2e4a39e | 796 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
797 | static size_t fold_buffer_size = 0; |
798 | ||
799 | int len = strlen (name); | |
d2e4a39e | 800 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
801 | |
802 | if (name[0] == '\'') | |
803 | { | |
d2e4a39e AS |
804 | strncpy (fold_buffer, name + 1, len - 2); |
805 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
806 | } |
807 | else | |
808 | { | |
809 | int i; | |
810 | for (i = 0; i <= len; i += 1) | |
4c4b4cd2 | 811 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
812 | } |
813 | ||
814 | return fold_buffer; | |
815 | } | |
816 | ||
529cad9c PH |
817 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
818 | ||
819 | static int | |
820 | is_lower_alphanum (const char c) | |
821 | { | |
822 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
823 | } | |
824 | ||
29480c32 JB |
825 | /* Remove either of these suffixes: |
826 | . .{DIGIT}+ | |
827 | . ${DIGIT}+ | |
828 | . ___{DIGIT}+ | |
829 | . __{DIGIT}+. | |
830 | These are suffixes introduced by the compiler for entities such as | |
831 | nested subprogram for instance, in order to avoid name clashes. | |
832 | They do not serve any purpose for the debugger. */ | |
833 | ||
834 | static void | |
835 | ada_remove_trailing_digits (const char *encoded, int *len) | |
836 | { | |
837 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
838 | { | |
839 | int i = *len - 2; | |
840 | while (i > 0 && isdigit (encoded[i])) | |
841 | i--; | |
842 | if (i >= 0 && encoded[i] == '.') | |
843 | *len = i; | |
844 | else if (i >= 0 && encoded[i] == '$') | |
845 | *len = i; | |
846 | else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) | |
847 | *len = i - 2; | |
848 | else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) | |
849 | *len = i - 1; | |
850 | } | |
851 | } | |
852 | ||
853 | /* Remove the suffix introduced by the compiler for protected object | |
854 | subprograms. */ | |
855 | ||
856 | static void | |
857 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
858 | { | |
859 | /* Remove trailing N. */ | |
860 | ||
861 | /* Protected entry subprograms are broken into two | |
862 | separate subprograms: The first one is unprotected, and has | |
863 | a 'N' suffix; the second is the protected version, and has | |
864 | the 'P' suffix. The second calls the first one after handling | |
865 | the protection. Since the P subprograms are internally generated, | |
866 | we leave these names undecoded, giving the user a clue that this | |
867 | entity is internal. */ | |
868 | ||
869 | if (*len > 1 | |
870 | && encoded[*len - 1] == 'N' | |
871 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
872 | *len = *len - 1; | |
873 | } | |
874 | ||
875 | /* If ENCODED follows the GNAT entity encoding conventions, then return | |
876 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
877 | replaced by ENCODED. | |
14f9c5c9 | 878 | |
4c4b4cd2 | 879 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 880 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
881 | is returned. */ |
882 | ||
883 | const char * | |
884 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
885 | { |
886 | int i, j; | |
887 | int len0; | |
d2e4a39e | 888 | const char *p; |
4c4b4cd2 | 889 | char *decoded; |
14f9c5c9 | 890 | int at_start_name; |
4c4b4cd2 PH |
891 | static char *decoding_buffer = NULL; |
892 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 893 | |
29480c32 JB |
894 | /* The name of the Ada main procedure starts with "_ada_". |
895 | This prefix is not part of the decoded name, so skip this part | |
896 | if we see this prefix. */ | |
4c4b4cd2 PH |
897 | if (strncmp (encoded, "_ada_", 5) == 0) |
898 | encoded += 5; | |
14f9c5c9 | 899 | |
29480c32 JB |
900 | /* If the name starts with '_', then it is not a properly encoded |
901 | name, so do not attempt to decode it. Similarly, if the name | |
902 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 903 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
904 | goto Suppress; |
905 | ||
4c4b4cd2 | 906 | len0 = strlen (encoded); |
4c4b4cd2 | 907 | |
29480c32 JB |
908 | ada_remove_trailing_digits (encoded, &len0); |
909 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 910 | |
4c4b4cd2 PH |
911 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
912 | the suffix is located before the current "end" of ENCODED. We want | |
913 | to avoid re-matching parts of ENCODED that have previously been | |
914 | marked as discarded (by decrementing LEN0). */ | |
915 | p = strstr (encoded, "___"); | |
916 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
917 | { |
918 | if (p[3] == 'X') | |
4c4b4cd2 | 919 | len0 = p - encoded; |
14f9c5c9 | 920 | else |
4c4b4cd2 | 921 | goto Suppress; |
14f9c5c9 | 922 | } |
4c4b4cd2 | 923 | |
29480c32 JB |
924 | /* Remove any trailing TKB suffix. It tells us that this symbol |
925 | is for the body of a task, but that information does not actually | |
926 | appear in the decoded name. */ | |
927 | ||
4c4b4cd2 | 928 | if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) |
14f9c5c9 | 929 | len0 -= 3; |
76a01679 | 930 | |
29480c32 JB |
931 | /* Remove trailing "B" suffixes. */ |
932 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
933 | ||
4c4b4cd2 | 934 | if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) |
14f9c5c9 AS |
935 | len0 -= 1; |
936 | ||
4c4b4cd2 | 937 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 938 | |
4c4b4cd2 PH |
939 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
940 | decoded = decoding_buffer; | |
14f9c5c9 | 941 | |
29480c32 JB |
942 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
943 | ||
4c4b4cd2 | 944 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 945 | { |
4c4b4cd2 PH |
946 | i = len0 - 2; |
947 | while ((i >= 0 && isdigit (encoded[i])) | |
948 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
949 | i -= 1; | |
950 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
951 | len0 = i - 1; | |
952 | else if (encoded[i] == '$') | |
953 | len0 = i; | |
d2e4a39e | 954 | } |
14f9c5c9 | 955 | |
29480c32 JB |
956 | /* The first few characters that are not alphabetic are not part |
957 | of any encoding we use, so we can copy them over verbatim. */ | |
958 | ||
4c4b4cd2 PH |
959 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
960 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
961 | |
962 | at_start_name = 1; | |
963 | while (i < len0) | |
964 | { | |
29480c32 | 965 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
966 | if (at_start_name && encoded[i] == 'O') |
967 | { | |
968 | int k; | |
969 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) | |
970 | { | |
971 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
972 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
973 | op_len - 1) == 0) | |
974 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
975 | { |
976 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
977 | at_start_name = 0; | |
978 | i += op_len; | |
979 | j += strlen (ada_opname_table[k].decoded); | |
980 | break; | |
981 | } | |
982 | } | |
983 | if (ada_opname_table[k].encoded != NULL) | |
984 | continue; | |
985 | } | |
14f9c5c9 AS |
986 | at_start_name = 0; |
987 | ||
529cad9c PH |
988 | /* Replace "TK__" with "__", which will eventually be translated |
989 | into "." (just below). */ | |
990 | ||
4c4b4cd2 PH |
991 | if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) |
992 | i += 2; | |
529cad9c | 993 | |
29480c32 JB |
994 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
995 | be translated into "." (just below). These are internal names | |
996 | generated for anonymous blocks inside which our symbol is nested. */ | |
997 | ||
998 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
999 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1000 | && isdigit (encoded [i+4])) | |
1001 | { | |
1002 | int k = i + 5; | |
1003 | ||
1004 | while (k < len0 && isdigit (encoded[k])) | |
1005 | k++; /* Skip any extra digit. */ | |
1006 | ||
1007 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1008 | is indeed followed by "__". */ | |
1009 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1010 | i = k; | |
1011 | } | |
1012 | ||
529cad9c PH |
1013 | /* Remove _E{DIGITS}+[sb] */ |
1014 | ||
1015 | /* Just as for protected object subprograms, there are 2 categories | |
1016 | of subprograms created by the compiler for each entry. The first | |
1017 | one implements the actual entry code, and has a suffix following | |
1018 | the convention above; the second one implements the barrier and | |
1019 | uses the same convention as above, except that the 'E' is replaced | |
1020 | by a 'B'. | |
1021 | ||
1022 | Just as above, we do not decode the name of barrier functions | |
1023 | to give the user a clue that the code he is debugging has been | |
1024 | internally generated. */ | |
1025 | ||
1026 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1027 | && isdigit (encoded[i+2])) | |
1028 | { | |
1029 | int k = i + 3; | |
1030 | ||
1031 | while (k < len0 && isdigit (encoded[k])) | |
1032 | k++; | |
1033 | ||
1034 | if (k < len0 | |
1035 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1036 | { | |
1037 | k++; | |
1038 | /* Just as an extra precaution, make sure that if this | |
1039 | suffix is followed by anything else, it is a '_'. | |
1040 | Otherwise, we matched this sequence by accident. */ | |
1041 | if (k == len0 | |
1042 | || (k < len0 && encoded[k] == '_')) | |
1043 | i = k; | |
1044 | } | |
1045 | } | |
1046 | ||
1047 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1048 | the GNAT front-end in protected object subprograms. */ | |
1049 | ||
1050 | if (i < len0 + 3 | |
1051 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1052 | { | |
1053 | /* Backtrack a bit up until we reach either the begining of | |
1054 | the encoded name, or "__". Make sure that we only find | |
1055 | digits or lowercase characters. */ | |
1056 | const char *ptr = encoded + i - 1; | |
1057 | ||
1058 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1059 | ptr--; | |
1060 | if (ptr < encoded | |
1061 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1062 | i++; | |
1063 | } | |
1064 | ||
4c4b4cd2 PH |
1065 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1066 | { | |
29480c32 JB |
1067 | /* This is a X[bn]* sequence not separated from the previous |
1068 | part of the name with a non-alpha-numeric character (in other | |
1069 | words, immediately following an alpha-numeric character), then | |
1070 | verify that it is placed at the end of the encoded name. If | |
1071 | not, then the encoding is not valid and we should abort the | |
1072 | decoding. Otherwise, just skip it, it is used in body-nested | |
1073 | package names. */ | |
4c4b4cd2 PH |
1074 | do |
1075 | i += 1; | |
1076 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1077 | if (i < len0) | |
1078 | goto Suppress; | |
1079 | } | |
cdc7bb92 | 1080 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1081 | { |
29480c32 | 1082 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1083 | decoded[j] = '.'; |
1084 | at_start_name = 1; | |
1085 | i += 2; | |
1086 | j += 1; | |
1087 | } | |
14f9c5c9 | 1088 | else |
4c4b4cd2 | 1089 | { |
29480c32 JB |
1090 | /* It's a character part of the decoded name, so just copy it |
1091 | over. */ | |
4c4b4cd2 PH |
1092 | decoded[j] = encoded[i]; |
1093 | i += 1; | |
1094 | j += 1; | |
1095 | } | |
14f9c5c9 | 1096 | } |
4c4b4cd2 | 1097 | decoded[j] = '\000'; |
14f9c5c9 | 1098 | |
29480c32 JB |
1099 | /* Decoded names should never contain any uppercase character. |
1100 | Double-check this, and abort the decoding if we find one. */ | |
1101 | ||
4c4b4cd2 PH |
1102 | for (i = 0; decoded[i] != '\0'; i += 1) |
1103 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1104 | goto Suppress; |
1105 | ||
4c4b4cd2 PH |
1106 | if (strcmp (decoded, encoded) == 0) |
1107 | return encoded; | |
1108 | else | |
1109 | return decoded; | |
14f9c5c9 AS |
1110 | |
1111 | Suppress: | |
4c4b4cd2 PH |
1112 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1113 | decoded = decoding_buffer; | |
1114 | if (encoded[0] == '<') | |
1115 | strcpy (decoded, encoded); | |
14f9c5c9 | 1116 | else |
88c15c34 | 1117 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1118 | return decoded; |
1119 | ||
1120 | } | |
1121 | ||
1122 | /* Table for keeping permanent unique copies of decoded names. Once | |
1123 | allocated, names in this table are never released. While this is a | |
1124 | storage leak, it should not be significant unless there are massive | |
1125 | changes in the set of decoded names in successive versions of a | |
1126 | symbol table loaded during a single session. */ | |
1127 | static struct htab *decoded_names_store; | |
1128 | ||
1129 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1130 | in the language-specific part of GSYMBOL, if it has not been | |
1131 | previously computed. Tries to save the decoded name in the same | |
1132 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1133 | in any case, the decoded symbol has a lifetime at least that of | |
1134 | GSYMBOL). | |
1135 | The GSYMBOL parameter is "mutable" in the C++ sense: logically | |
1136 | const, but nevertheless modified to a semantically equivalent form | |
1137 | when a decoded name is cached in it. | |
76a01679 | 1138 | */ |
4c4b4cd2 | 1139 | |
76a01679 JB |
1140 | char * |
1141 | ada_decode_symbol (const struct general_symbol_info *gsymbol) | |
4c4b4cd2 | 1142 | { |
76a01679 | 1143 | char **resultp = |
4c4b4cd2 PH |
1144 | (char **) &gsymbol->language_specific.cplus_specific.demangled_name; |
1145 | if (*resultp == NULL) | |
1146 | { | |
1147 | const char *decoded = ada_decode (gsymbol->name); | |
714835d5 | 1148 | if (gsymbol->obj_section != NULL) |
76a01679 | 1149 | { |
714835d5 UW |
1150 | struct objfile *objf = gsymbol->obj_section->objfile; |
1151 | *resultp = obsavestring (decoded, strlen (decoded), | |
1152 | &objf->objfile_obstack); | |
76a01679 | 1153 | } |
4c4b4cd2 | 1154 | /* Sometimes, we can't find a corresponding objfile, in which |
76a01679 JB |
1155 | case, we put the result on the heap. Since we only decode |
1156 | when needed, we hope this usually does not cause a | |
1157 | significant memory leak (FIXME). */ | |
4c4b4cd2 | 1158 | if (*resultp == NULL) |
76a01679 JB |
1159 | { |
1160 | char **slot = (char **) htab_find_slot (decoded_names_store, | |
1161 | decoded, INSERT); | |
1162 | if (*slot == NULL) | |
1163 | *slot = xstrdup (decoded); | |
1164 | *resultp = *slot; | |
1165 | } | |
4c4b4cd2 | 1166 | } |
14f9c5c9 | 1167 | |
4c4b4cd2 PH |
1168 | return *resultp; |
1169 | } | |
76a01679 | 1170 | |
2c0b251b | 1171 | static char * |
76a01679 | 1172 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1173 | { |
1174 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1175 | } |
1176 | ||
1177 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1178 | suffixes that encode debugging information or leading _ada_ on |
1179 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1180 | information that is ignored). If WILD, then NAME need only match a | |
1181 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1182 | either argument is NULL. */ | |
14f9c5c9 | 1183 | |
2c0b251b | 1184 | static int |
d2e4a39e | 1185 | ada_match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1186 | { |
1187 | if (sym_name == NULL || name == NULL) | |
1188 | return 0; | |
1189 | else if (wild) | |
1190 | return wild_match (name, strlen (name), sym_name); | |
d2e4a39e AS |
1191 | else |
1192 | { | |
1193 | int len_name = strlen (name); | |
4c4b4cd2 PH |
1194 | return (strncmp (sym_name, name, len_name) == 0 |
1195 | && is_name_suffix (sym_name + len_name)) | |
1196 | || (strncmp (sym_name, "_ada_", 5) == 0 | |
1197 | && strncmp (sym_name + 5, name, len_name) == 0 | |
1198 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1199 | } |
14f9c5c9 | 1200 | } |
14f9c5c9 | 1201 | \f |
d2e4a39e | 1202 | |
4c4b4cd2 | 1203 | /* Arrays */ |
14f9c5c9 | 1204 | |
4c4b4cd2 | 1205 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1206 | |
d2e4a39e AS |
1207 | static char *bound_name[] = { |
1208 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1209 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1210 | }; | |
1211 | ||
1212 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1213 | ||
4c4b4cd2 | 1214 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1215 | |
4c4b4cd2 | 1216 | /* Like modify_field, but allows bitpos > wordlength. */ |
14f9c5c9 AS |
1217 | |
1218 | static void | |
ebf56fd3 | 1219 | modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize) |
14f9c5c9 | 1220 | { |
4c4b4cd2 | 1221 | modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize); |
14f9c5c9 AS |
1222 | } |
1223 | ||
1224 | ||
4c4b4cd2 PH |
1225 | /* The desc_* routines return primitive portions of array descriptors |
1226 | (fat pointers). */ | |
14f9c5c9 AS |
1227 | |
1228 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1229 | level of indirection, if needed. */ |
1230 | ||
d2e4a39e AS |
1231 | static struct type * |
1232 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1233 | { |
1234 | if (type == NULL) | |
1235 | return NULL; | |
61ee279c | 1236 | type = ada_check_typedef (type); |
1265e4aa JB |
1237 | if (type != NULL |
1238 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1239 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1240 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1241 | else |
1242 | return type; | |
1243 | } | |
1244 | ||
4c4b4cd2 PH |
1245 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1246 | ||
14f9c5c9 | 1247 | static int |
d2e4a39e | 1248 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1249 | { |
d2e4a39e | 1250 | return |
14f9c5c9 AS |
1251 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1252 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1253 | } | |
1254 | ||
4c4b4cd2 PH |
1255 | /* The descriptor type for thin pointer type TYPE. */ |
1256 | ||
d2e4a39e AS |
1257 | static struct type * |
1258 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1259 | { |
d2e4a39e | 1260 | struct type *base_type = desc_base_type (type); |
14f9c5c9 AS |
1261 | if (base_type == NULL) |
1262 | return NULL; | |
1263 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1264 | return base_type; | |
d2e4a39e | 1265 | else |
14f9c5c9 | 1266 | { |
d2e4a39e | 1267 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
14f9c5c9 | 1268 | if (alt_type == NULL) |
4c4b4cd2 | 1269 | return base_type; |
14f9c5c9 | 1270 | else |
4c4b4cd2 | 1271 | return alt_type; |
14f9c5c9 AS |
1272 | } |
1273 | } | |
1274 | ||
4c4b4cd2 PH |
1275 | /* A pointer to the array data for thin-pointer value VAL. */ |
1276 | ||
d2e4a39e AS |
1277 | static struct value * |
1278 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1279 | { |
df407dfe | 1280 | struct type *type = value_type (val); |
556bdfd4 UW |
1281 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
1282 | data_type = lookup_pointer_type (data_type); | |
1283 | ||
14f9c5c9 | 1284 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1285 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1286 | else |
42ae5230 | 1287 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1288 | } |
1289 | ||
4c4b4cd2 PH |
1290 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1291 | ||
14f9c5c9 | 1292 | static int |
d2e4a39e | 1293 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1294 | { |
1295 | type = desc_base_type (type); | |
1296 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1297 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1298 | } |
1299 | ||
4c4b4cd2 PH |
1300 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1301 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1302 | |
d2e4a39e AS |
1303 | static struct type * |
1304 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1305 | { |
d2e4a39e | 1306 | struct type *r; |
14f9c5c9 AS |
1307 | |
1308 | type = desc_base_type (type); | |
1309 | ||
1310 | if (type == NULL) | |
1311 | return NULL; | |
1312 | else if (is_thin_pntr (type)) | |
1313 | { | |
1314 | type = thin_descriptor_type (type); | |
1315 | if (type == NULL) | |
4c4b4cd2 | 1316 | return NULL; |
14f9c5c9 AS |
1317 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1318 | if (r != NULL) | |
61ee279c | 1319 | return ada_check_typedef (r); |
14f9c5c9 AS |
1320 | } |
1321 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1322 | { | |
1323 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1324 | if (r != NULL) | |
61ee279c | 1325 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1326 | } |
1327 | return NULL; | |
1328 | } | |
1329 | ||
1330 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1331 | one, a pointer to its bounds data. Otherwise NULL. */ |
1332 | ||
d2e4a39e AS |
1333 | static struct value * |
1334 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1335 | { |
df407dfe | 1336 | struct type *type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 1337 | if (is_thin_pntr (type)) |
14f9c5c9 | 1338 | { |
d2e4a39e | 1339 | struct type *bounds_type = |
4c4b4cd2 | 1340 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1341 | LONGEST addr; |
1342 | ||
4cdfadb1 | 1343 | if (bounds_type == NULL) |
323e0a4a | 1344 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1345 | |
1346 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1347 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1348 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1349 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1350 | addr = value_as_long (arr); |
d2e4a39e | 1351 | else |
42ae5230 | 1352 | addr = value_address (arr); |
14f9c5c9 | 1353 | |
d2e4a39e | 1354 | return |
4c4b4cd2 PH |
1355 | value_from_longest (lookup_pointer_type (bounds_type), |
1356 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1357 | } |
1358 | ||
1359 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1360 | return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, |
323e0a4a | 1361 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1362 | else |
1363 | return NULL; | |
1364 | } | |
1365 | ||
4c4b4cd2 PH |
1366 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1367 | position of the field containing the address of the bounds data. */ | |
1368 | ||
14f9c5c9 | 1369 | static int |
d2e4a39e | 1370 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1371 | { |
1372 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1373 | } | |
1374 | ||
1375 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1376 | size of the field containing the address of the bounds data. */ |
1377 | ||
14f9c5c9 | 1378 | static int |
d2e4a39e | 1379 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1380 | { |
1381 | type = desc_base_type (type); | |
1382 | ||
d2e4a39e | 1383 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1384 | return TYPE_FIELD_BITSIZE (type, 1); |
1385 | else | |
61ee279c | 1386 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1387 | } |
1388 | ||
4c4b4cd2 | 1389 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1390 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1391 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1392 | data. */ | |
4c4b4cd2 | 1393 | |
d2e4a39e | 1394 | static struct type * |
556bdfd4 | 1395 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1396 | { |
1397 | type = desc_base_type (type); | |
1398 | ||
4c4b4cd2 | 1399 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1400 | if (is_thin_pntr (type)) |
556bdfd4 | 1401 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1402 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1403 | { |
1404 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1405 | ||
1406 | if (data_type | |
1407 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
1408 | return TYPE_TARGET_TYPE (data_type); | |
1409 | } | |
1410 | ||
1411 | return NULL; | |
14f9c5c9 AS |
1412 | } |
1413 | ||
1414 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1415 | its array data. */ | |
4c4b4cd2 | 1416 | |
d2e4a39e AS |
1417 | static struct value * |
1418 | desc_data (struct value *arr) | |
14f9c5c9 | 1419 | { |
df407dfe | 1420 | struct type *type = value_type (arr); |
14f9c5c9 AS |
1421 | if (is_thin_pntr (type)) |
1422 | return thin_data_pntr (arr); | |
1423 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1424 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1425 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1426 | else |
1427 | return NULL; | |
1428 | } | |
1429 | ||
1430 | ||
1431 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1432 | position of the field containing the address of the data. */ |
1433 | ||
14f9c5c9 | 1434 | static int |
d2e4a39e | 1435 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1436 | { |
1437 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1438 | } | |
1439 | ||
1440 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1441 | size of the field containing the address of the data. */ |
1442 | ||
14f9c5c9 | 1443 | static int |
d2e4a39e | 1444 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1445 | { |
1446 | type = desc_base_type (type); | |
1447 | ||
1448 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1449 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1450 | else |
14f9c5c9 AS |
1451 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1452 | } | |
1453 | ||
4c4b4cd2 | 1454 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1455 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1456 | bound, if WHICH is 1. The first bound is I=1. */ |
1457 | ||
d2e4a39e AS |
1458 | static struct value * |
1459 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1460 | { |
d2e4a39e | 1461 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1462 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1463 | } |
1464 | ||
1465 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1466 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1467 | bound, if WHICH is 1. The first bound is I=1. */ |
1468 | ||
14f9c5c9 | 1469 | static int |
d2e4a39e | 1470 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1471 | { |
d2e4a39e | 1472 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1473 | } |
1474 | ||
1475 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1476 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1477 | bound, if WHICH is 1. The first bound is I=1. */ |
1478 | ||
76a01679 | 1479 | static int |
d2e4a39e | 1480 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1481 | { |
1482 | type = desc_base_type (type); | |
1483 | ||
d2e4a39e AS |
1484 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1485 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1486 | else | |
1487 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1488 | } |
1489 | ||
1490 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1491 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1492 | ||
d2e4a39e AS |
1493 | static struct type * |
1494 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1495 | { |
1496 | type = desc_base_type (type); | |
1497 | ||
1498 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1499 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1500 | else | |
14f9c5c9 AS |
1501 | return NULL; |
1502 | } | |
1503 | ||
4c4b4cd2 PH |
1504 | /* The number of index positions in the array-bounds type TYPE. |
1505 | Return 0 if TYPE is NULL. */ | |
1506 | ||
14f9c5c9 | 1507 | static int |
d2e4a39e | 1508 | desc_arity (struct type *type) |
14f9c5c9 AS |
1509 | { |
1510 | type = desc_base_type (type); | |
1511 | ||
1512 | if (type != NULL) | |
1513 | return TYPE_NFIELDS (type) / 2; | |
1514 | return 0; | |
1515 | } | |
1516 | ||
4c4b4cd2 PH |
1517 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1518 | an array descriptor type (representing an unconstrained array | |
1519 | type). */ | |
1520 | ||
76a01679 JB |
1521 | static int |
1522 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1523 | { |
1524 | if (type == NULL) | |
1525 | return 0; | |
61ee279c | 1526 | type = ada_check_typedef (type); |
4c4b4cd2 | 1527 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1528 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1529 | } |
1530 | ||
52ce6436 PH |
1531 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
1532 | * to one. */ | |
1533 | ||
2c0b251b | 1534 | static int |
52ce6436 PH |
1535 | ada_is_array_type (struct type *type) |
1536 | { | |
1537 | while (type != NULL | |
1538 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1539 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1540 | type = TYPE_TARGET_TYPE (type); | |
1541 | return ada_is_direct_array_type (type); | |
1542 | } | |
1543 | ||
4c4b4cd2 | 1544 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1545 | |
14f9c5c9 | 1546 | int |
4c4b4cd2 | 1547 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1548 | { |
1549 | if (type == NULL) | |
1550 | return 0; | |
61ee279c | 1551 | type = ada_check_typedef (type); |
14f9c5c9 | 1552 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 PH |
1553 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
1554 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1555 | } |
1556 | ||
4c4b4cd2 PH |
1557 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1558 | ||
14f9c5c9 | 1559 | int |
4c4b4cd2 | 1560 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1561 | { |
556bdfd4 | 1562 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1563 | |
1564 | if (type == NULL) | |
1565 | return 0; | |
61ee279c | 1566 | type = ada_check_typedef (type); |
556bdfd4 UW |
1567 | return (data_type != NULL |
1568 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1569 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1570 | } |
1571 | ||
1572 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1573 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1574 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1575 | is still needed. */ |
1576 | ||
14f9c5c9 | 1577 | int |
ebf56fd3 | 1578 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1579 | { |
d2e4a39e | 1580 | return |
14f9c5c9 AS |
1581 | type != NULL |
1582 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1583 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1584 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1585 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1586 | } |
1587 | ||
1588 | ||
4c4b4cd2 | 1589 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1590 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1591 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1592 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1593 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1594 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1595 | a descriptor. */ |
d2e4a39e AS |
1596 | struct type * |
1597 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1598 | { |
df407dfe AC |
1599 | if (ada_is_packed_array_type (value_type (arr))) |
1600 | return decode_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1601 | |
df407dfe AC |
1602 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1603 | return value_type (arr); | |
d2e4a39e AS |
1604 | |
1605 | if (!bounds) | |
1606 | return | |
556bdfd4 | 1607 | ada_check_typedef (desc_data_target_type (value_type (arr))); |
14f9c5c9 AS |
1608 | else |
1609 | { | |
d2e4a39e | 1610 | struct type *elt_type; |
14f9c5c9 | 1611 | int arity; |
d2e4a39e | 1612 | struct value *descriptor; |
df407dfe | 1613 | struct objfile *objf = TYPE_OBJFILE (value_type (arr)); |
14f9c5c9 | 1614 | |
df407dfe AC |
1615 | elt_type = ada_array_element_type (value_type (arr), -1); |
1616 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1617 | |
d2e4a39e | 1618 | if (elt_type == NULL || arity == 0) |
df407dfe | 1619 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1620 | |
1621 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1622 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1623 | return NULL; |
d2e4a39e | 1624 | while (arity > 0) |
4c4b4cd2 PH |
1625 | { |
1626 | struct type *range_type = alloc_type (objf); | |
1627 | struct type *array_type = alloc_type (objf); | |
1628 | struct value *low = desc_one_bound (descriptor, arity, 0); | |
1629 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
1630 | arity -= 1; | |
1631 | ||
df407dfe | 1632 | create_range_type (range_type, value_type (low), |
529cad9c PH |
1633 | longest_to_int (value_as_long (low)), |
1634 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 PH |
1635 | elt_type = create_array_type (array_type, elt_type, range_type); |
1636 | } | |
14f9c5c9 AS |
1637 | |
1638 | return lookup_pointer_type (elt_type); | |
1639 | } | |
1640 | } | |
1641 | ||
1642 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
1643 | Otherwise, returns either a standard GDB array with bounds set |
1644 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
1645 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
1646 | ||
d2e4a39e AS |
1647 | struct value * |
1648 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 1649 | { |
df407dfe | 1650 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1651 | { |
d2e4a39e | 1652 | struct type *arrType = ada_type_of_array (arr, 1); |
14f9c5c9 | 1653 | if (arrType == NULL) |
4c4b4cd2 | 1654 | return NULL; |
14f9c5c9 AS |
1655 | return value_cast (arrType, value_copy (desc_data (arr))); |
1656 | } | |
df407dfe | 1657 | else if (ada_is_packed_array_type (value_type (arr))) |
14f9c5c9 AS |
1658 | return decode_packed_array (arr); |
1659 | else | |
1660 | return arr; | |
1661 | } | |
1662 | ||
1663 | /* If ARR does not represent an array, returns ARR unchanged. | |
1664 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
1665 | be ARR itself if it already is in the proper form). */ |
1666 | ||
1667 | static struct value * | |
d2e4a39e | 1668 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 1669 | { |
df407dfe | 1670 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1671 | { |
d2e4a39e | 1672 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
14f9c5c9 | 1673 | if (arrVal == NULL) |
323e0a4a | 1674 | error (_("Bounds unavailable for null array pointer.")); |
529cad9c | 1675 | check_size (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
1676 | return value_ind (arrVal); |
1677 | } | |
df407dfe | 1678 | else if (ada_is_packed_array_type (value_type (arr))) |
14f9c5c9 | 1679 | return decode_packed_array (arr); |
d2e4a39e | 1680 | else |
14f9c5c9 AS |
1681 | return arr; |
1682 | } | |
1683 | ||
1684 | /* If TYPE represents a GNAT array type, return it translated to an | |
1685 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
1686 | packing). For other types, is the identity. */ |
1687 | ||
d2e4a39e AS |
1688 | struct type * |
1689 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 1690 | { |
17280b9f UW |
1691 | if (ada_is_packed_array_type (type)) |
1692 | return decode_packed_array_type (type); | |
1693 | ||
1694 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 1695 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
1696 | |
1697 | return type; | |
14f9c5c9 AS |
1698 | } |
1699 | ||
4c4b4cd2 PH |
1700 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
1701 | ||
14f9c5c9 | 1702 | int |
d2e4a39e | 1703 | ada_is_packed_array_type (struct type *type) |
14f9c5c9 AS |
1704 | { |
1705 | if (type == NULL) | |
1706 | return 0; | |
4c4b4cd2 | 1707 | type = desc_base_type (type); |
61ee279c | 1708 | type = ada_check_typedef (type); |
d2e4a39e | 1709 | return |
14f9c5c9 AS |
1710 | ada_type_name (type) != NULL |
1711 | && strstr (ada_type_name (type), "___XP") != NULL; | |
1712 | } | |
1713 | ||
1714 | /* Given that TYPE is a standard GDB array type with all bounds filled | |
1715 | in, and that the element size of its ultimate scalar constituents | |
1716 | (that is, either its elements, or, if it is an array of arrays, its | |
1717 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
1718 | but with the bit sizes of its elements (and those of any | |
1719 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 PH |
1720 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
1721 | in bits. */ | |
1722 | ||
d2e4a39e AS |
1723 | static struct type * |
1724 | packed_array_type (struct type *type, long *elt_bits) | |
14f9c5c9 | 1725 | { |
d2e4a39e AS |
1726 | struct type *new_elt_type; |
1727 | struct type *new_type; | |
14f9c5c9 AS |
1728 | LONGEST low_bound, high_bound; |
1729 | ||
61ee279c | 1730 | type = ada_check_typedef (type); |
14f9c5c9 AS |
1731 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
1732 | return type; | |
1733 | ||
1734 | new_type = alloc_type (TYPE_OBJFILE (type)); | |
61ee279c | 1735 | new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 1736 | elt_bits); |
262452ec | 1737 | create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type)); |
14f9c5c9 AS |
1738 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
1739 | TYPE_NAME (new_type) = ada_type_name (type); | |
1740 | ||
262452ec | 1741 | if (get_discrete_bounds (TYPE_INDEX_TYPE (type), |
4c4b4cd2 | 1742 | &low_bound, &high_bound) < 0) |
14f9c5c9 AS |
1743 | low_bound = high_bound = 0; |
1744 | if (high_bound < low_bound) | |
1745 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 1746 | else |
14f9c5c9 AS |
1747 | { |
1748 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 1749 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 1750 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
1751 | } |
1752 | ||
876cecd0 | 1753 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
1754 | return new_type; |
1755 | } | |
1756 | ||
4c4b4cd2 PH |
1757 | /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */ |
1758 | ||
d2e4a39e AS |
1759 | static struct type * |
1760 | decode_packed_array_type (struct type *type) | |
1761 | { | |
4c4b4cd2 | 1762 | struct symbol *sym; |
d2e4a39e | 1763 | struct block **blocks; |
727e3d2e JB |
1764 | char *raw_name = ada_type_name (ada_check_typedef (type)); |
1765 | char *name; | |
1766 | char *tail; | |
d2e4a39e | 1767 | struct type *shadow_type; |
14f9c5c9 AS |
1768 | long bits; |
1769 | int i, n; | |
1770 | ||
727e3d2e JB |
1771 | if (!raw_name) |
1772 | raw_name = ada_type_name (desc_base_type (type)); | |
1773 | ||
1774 | if (!raw_name) | |
1775 | return NULL; | |
1776 | ||
1777 | name = (char *) alloca (strlen (raw_name) + 1); | |
1778 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
1779 | type = desc_base_type (type); |
1780 | ||
14f9c5c9 AS |
1781 | memcpy (name, raw_name, tail - raw_name); |
1782 | name[tail - raw_name] = '\000'; | |
1783 | ||
4c4b4cd2 PH |
1784 | sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN); |
1785 | if (sym == NULL || SYMBOL_TYPE (sym) == NULL) | |
14f9c5c9 | 1786 | { |
323e0a4a | 1787 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
1788 | return NULL; |
1789 | } | |
4c4b4cd2 | 1790 | shadow_type = SYMBOL_TYPE (sym); |
cb249c71 | 1791 | CHECK_TYPEDEF (shadow_type); |
14f9c5c9 AS |
1792 | |
1793 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
1794 | { | |
323e0a4a | 1795 | lim_warning (_("could not understand bounds information on packed array")); |
14f9c5c9 AS |
1796 | return NULL; |
1797 | } | |
d2e4a39e | 1798 | |
14f9c5c9 AS |
1799 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) |
1800 | { | |
4c4b4cd2 | 1801 | lim_warning |
323e0a4a | 1802 | (_("could not understand bit size information on packed array")); |
14f9c5c9 AS |
1803 | return NULL; |
1804 | } | |
d2e4a39e | 1805 | |
14f9c5c9 AS |
1806 | return packed_array_type (shadow_type, &bits); |
1807 | } | |
1808 | ||
4c4b4cd2 | 1809 | /* Given that ARR is a struct value *indicating a GNAT packed array, |
14f9c5c9 AS |
1810 | returns a simple array that denotes that array. Its type is a |
1811 | standard GDB array type except that the BITSIZEs of the array | |
1812 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 1813 | type length is set appropriately. */ |
14f9c5c9 | 1814 | |
d2e4a39e AS |
1815 | static struct value * |
1816 | decode_packed_array (struct value *arr) | |
14f9c5c9 | 1817 | { |
4c4b4cd2 | 1818 | struct type *type; |
14f9c5c9 | 1819 | |
4c4b4cd2 | 1820 | arr = ada_coerce_ref (arr); |
284614f0 JB |
1821 | |
1822 | /* If our value is a pointer, then dererence it. Make sure that | |
1823 | this operation does not cause the target type to be fixed, as | |
1824 | this would indirectly cause this array to be decoded. The rest | |
1825 | of the routine assumes that the array hasn't been decoded yet, | |
1826 | so we use the basic "value_ind" routine to perform the dereferencing, | |
1827 | as opposed to using "ada_value_ind". */ | |
df407dfe | 1828 | if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR) |
284614f0 | 1829 | arr = value_ind (arr); |
4c4b4cd2 | 1830 | |
df407dfe | 1831 | type = decode_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
1832 | if (type == NULL) |
1833 | { | |
323e0a4a | 1834 | error (_("can't unpack array")); |
14f9c5c9 AS |
1835 | return NULL; |
1836 | } | |
61ee279c | 1837 | |
32c9a795 MD |
1838 | if (gdbarch_bits_big_endian (current_gdbarch) |
1839 | && ada_is_modular_type (value_type (arr))) | |
61ee279c PH |
1840 | { |
1841 | /* This is a (right-justified) modular type representing a packed | |
1842 | array with no wrapper. In order to interpret the value through | |
1843 | the (left-justified) packed array type we just built, we must | |
1844 | first left-justify it. */ | |
1845 | int bit_size, bit_pos; | |
1846 | ULONGEST mod; | |
1847 | ||
df407dfe | 1848 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
1849 | bit_size = 0; |
1850 | while (mod > 0) | |
1851 | { | |
1852 | bit_size += 1; | |
1853 | mod >>= 1; | |
1854 | } | |
df407dfe | 1855 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
1856 | arr = ada_value_primitive_packed_val (arr, NULL, |
1857 | bit_pos / HOST_CHAR_BIT, | |
1858 | bit_pos % HOST_CHAR_BIT, | |
1859 | bit_size, | |
1860 | type); | |
1861 | } | |
1862 | ||
4c4b4cd2 | 1863 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
1864 | } |
1865 | ||
1866 | ||
1867 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 1868 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 1869 | |
d2e4a39e AS |
1870 | static struct value * |
1871 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
1872 | { |
1873 | int i; | |
1874 | int bits, elt_off, bit_off; | |
1875 | long elt_total_bit_offset; | |
d2e4a39e AS |
1876 | struct type *elt_type; |
1877 | struct value *v; | |
14f9c5c9 AS |
1878 | |
1879 | bits = 0; | |
1880 | elt_total_bit_offset = 0; | |
df407dfe | 1881 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 1882 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 1883 | { |
d2e4a39e | 1884 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
1885 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
1886 | error | |
323e0a4a | 1887 | (_("attempt to do packed indexing of something other than a packed array")); |
14f9c5c9 | 1888 | else |
4c4b4cd2 PH |
1889 | { |
1890 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
1891 | LONGEST lowerbound, upperbound; | |
1892 | LONGEST idx; | |
1893 | ||
1894 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
1895 | { | |
323e0a4a | 1896 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
1897 | lowerbound = upperbound = 0; |
1898 | } | |
1899 | ||
3cb382c9 | 1900 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 1901 | if (idx < lowerbound || idx > upperbound) |
323e0a4a | 1902 | lim_warning (_("packed array index %ld out of bounds"), (long) idx); |
4c4b4cd2 PH |
1903 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
1904 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 1905 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 1906 | } |
14f9c5c9 AS |
1907 | } |
1908 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
1909 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
1910 | |
1911 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 1912 | bits, elt_type); |
14f9c5c9 AS |
1913 | return v; |
1914 | } | |
1915 | ||
4c4b4cd2 | 1916 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
1917 | |
1918 | static int | |
d2e4a39e | 1919 | has_negatives (struct type *type) |
14f9c5c9 | 1920 | { |
d2e4a39e AS |
1921 | switch (TYPE_CODE (type)) |
1922 | { | |
1923 | default: | |
1924 | return 0; | |
1925 | case TYPE_CODE_INT: | |
1926 | return !TYPE_UNSIGNED (type); | |
1927 | case TYPE_CODE_RANGE: | |
1928 | return TYPE_LOW_BOUND (type) < 0; | |
1929 | } | |
14f9c5c9 | 1930 | } |
d2e4a39e | 1931 | |
14f9c5c9 AS |
1932 | |
1933 | /* Create a new value of type TYPE from the contents of OBJ starting | |
1934 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
1935 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
4c4b4cd2 PH |
1936 | assigning through the result will set the field fetched from. |
1937 | VALADDR is ignored unless OBJ is NULL, in which case, | |
1938 | VALADDR+OFFSET must address the start of storage containing the | |
1939 | packed value. The value returned in this case is never an lval. | |
1940 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 1941 | |
d2e4a39e | 1942 | struct value * |
fc1a4b47 | 1943 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 1944 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 1945 | struct type *type) |
14f9c5c9 | 1946 | { |
d2e4a39e | 1947 | struct value *v; |
4c4b4cd2 PH |
1948 | int src, /* Index into the source area */ |
1949 | targ, /* Index into the target area */ | |
1950 | srcBitsLeft, /* Number of source bits left to move */ | |
1951 | nsrc, ntarg, /* Number of source and target bytes */ | |
1952 | unusedLS, /* Number of bits in next significant | |
1953 | byte of source that are unused */ | |
1954 | accumSize; /* Number of meaningful bits in accum */ | |
1955 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 1956 | unsigned char *unpacked; |
4c4b4cd2 | 1957 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
1958 | unsigned char sign; |
1959 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
1960 | /* Transmit bytes from least to most significant; delta is the direction |
1961 | the indices move. */ | |
32c9a795 | 1962 | int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1; |
14f9c5c9 | 1963 | |
61ee279c | 1964 | type = ada_check_typedef (type); |
14f9c5c9 AS |
1965 | |
1966 | if (obj == NULL) | |
1967 | { | |
1968 | v = allocate_value (type); | |
d2e4a39e | 1969 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 1970 | } |
9214ee5f | 1971 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 AS |
1972 | { |
1973 | v = value_at (type, | |
42ae5230 | 1974 | value_address (obj) + offset); |
d2e4a39e | 1975 | bytes = (unsigned char *) alloca (len); |
42ae5230 | 1976 | read_memory (value_address (v), bytes, len); |
14f9c5c9 | 1977 | } |
d2e4a39e | 1978 | else |
14f9c5c9 AS |
1979 | { |
1980 | v = allocate_value (type); | |
0fd88904 | 1981 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 1982 | } |
d2e4a39e AS |
1983 | |
1984 | if (obj != NULL) | |
14f9c5c9 | 1985 | { |
42ae5230 | 1986 | CORE_ADDR new_addr; |
74bcbdf3 | 1987 | set_value_component_location (v, obj); |
42ae5230 | 1988 | new_addr = value_address (obj) + offset; |
9bbda503 AC |
1989 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
1990 | set_value_bitsize (v, bit_size); | |
df407dfe | 1991 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 | 1992 | { |
42ae5230 | 1993 | ++new_addr; |
9bbda503 | 1994 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 1995 | } |
42ae5230 | 1996 | set_value_address (v, new_addr); |
14f9c5c9 AS |
1997 | } |
1998 | else | |
9bbda503 | 1999 | set_value_bitsize (v, bit_size); |
0fd88904 | 2000 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2001 | |
2002 | srcBitsLeft = bit_size; | |
2003 | nsrc = len; | |
2004 | ntarg = TYPE_LENGTH (type); | |
2005 | sign = 0; | |
2006 | if (bit_size == 0) | |
2007 | { | |
2008 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2009 | return v; | |
2010 | } | |
32c9a795 | 2011 | else if (gdbarch_bits_big_endian (current_gdbarch)) |
14f9c5c9 | 2012 | { |
d2e4a39e | 2013 | src = len - 1; |
1265e4aa JB |
2014 | if (has_negatives (type) |
2015 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2016 | sign = ~0; |
d2e4a39e AS |
2017 | |
2018 | unusedLS = | |
4c4b4cd2 PH |
2019 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2020 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2021 | |
2022 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2023 | { |
2024 | case TYPE_CODE_ARRAY: | |
2025 | case TYPE_CODE_UNION: | |
2026 | case TYPE_CODE_STRUCT: | |
2027 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2028 | accumSize = | |
2029 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2030 | /* ... And are placed at the beginning (most-significant) bytes | |
2031 | of the target. */ | |
529cad9c | 2032 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
0056e4d5 | 2033 | ntarg = targ + 1; |
4c4b4cd2 PH |
2034 | break; |
2035 | default: | |
2036 | accumSize = 0; | |
2037 | targ = TYPE_LENGTH (type) - 1; | |
2038 | break; | |
2039 | } | |
14f9c5c9 | 2040 | } |
d2e4a39e | 2041 | else |
14f9c5c9 AS |
2042 | { |
2043 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2044 | ||
2045 | src = targ = 0; | |
2046 | unusedLS = bit_offset; | |
2047 | accumSize = 0; | |
2048 | ||
d2e4a39e | 2049 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2050 | sign = ~0; |
14f9c5c9 | 2051 | } |
d2e4a39e | 2052 | |
14f9c5c9 AS |
2053 | accum = 0; |
2054 | while (nsrc > 0) | |
2055 | { | |
2056 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2057 | part of the value. */ |
d2e4a39e | 2058 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2059 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2060 | 1; | |
2061 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2062 | unsigned int signMask = sign & ~unusedMSMask; |
d2e4a39e | 2063 | accum |= |
4c4b4cd2 | 2064 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2065 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2066 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2067 | { |
2068 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2069 | accumSize -= HOST_CHAR_BIT; | |
2070 | accum >>= HOST_CHAR_BIT; | |
2071 | ntarg -= 1; | |
2072 | targ += delta; | |
2073 | } | |
14f9c5c9 AS |
2074 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2075 | unusedLS = 0; | |
2076 | nsrc -= 1; | |
2077 | src += delta; | |
2078 | } | |
2079 | while (ntarg > 0) | |
2080 | { | |
2081 | accum |= sign << accumSize; | |
2082 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2083 | accumSize -= HOST_CHAR_BIT; | |
2084 | accum >>= HOST_CHAR_BIT; | |
2085 | ntarg -= 1; | |
2086 | targ += delta; | |
2087 | } | |
2088 | ||
2089 | return v; | |
2090 | } | |
d2e4a39e | 2091 | |
14f9c5c9 AS |
2092 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2093 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2094 | not overlap. */ |
14f9c5c9 | 2095 | static void |
fc1a4b47 | 2096 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
0fd88904 | 2097 | int src_offset, int n) |
14f9c5c9 AS |
2098 | { |
2099 | unsigned int accum, mask; | |
2100 | int accum_bits, chunk_size; | |
2101 | ||
2102 | target += targ_offset / HOST_CHAR_BIT; | |
2103 | targ_offset %= HOST_CHAR_BIT; | |
2104 | source += src_offset / HOST_CHAR_BIT; | |
2105 | src_offset %= HOST_CHAR_BIT; | |
32c9a795 | 2106 | if (gdbarch_bits_big_endian (current_gdbarch)) |
14f9c5c9 AS |
2107 | { |
2108 | accum = (unsigned char) *source; | |
2109 | source += 1; | |
2110 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2111 | ||
d2e4a39e | 2112 | while (n > 0) |
4c4b4cd2 PH |
2113 | { |
2114 | int unused_right; | |
2115 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; | |
2116 | accum_bits += HOST_CHAR_BIT; | |
2117 | source += 1; | |
2118 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2119 | if (chunk_size > n) | |
2120 | chunk_size = n; | |
2121 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2122 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2123 | *target = | |
2124 | (*target & ~mask) | |
2125 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2126 | n -= chunk_size; | |
2127 | accum_bits -= chunk_size; | |
2128 | target += 1; | |
2129 | targ_offset = 0; | |
2130 | } | |
14f9c5c9 AS |
2131 | } |
2132 | else | |
2133 | { | |
2134 | accum = (unsigned char) *source >> src_offset; | |
2135 | source += 1; | |
2136 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2137 | ||
d2e4a39e | 2138 | while (n > 0) |
4c4b4cd2 PH |
2139 | { |
2140 | accum = accum + ((unsigned char) *source << accum_bits); | |
2141 | accum_bits += HOST_CHAR_BIT; | |
2142 | source += 1; | |
2143 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2144 | if (chunk_size > n) | |
2145 | chunk_size = n; | |
2146 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2147 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2148 | n -= chunk_size; | |
2149 | accum_bits -= chunk_size; | |
2150 | accum >>= chunk_size; | |
2151 | target += 1; | |
2152 | targ_offset = 0; | |
2153 | } | |
14f9c5c9 AS |
2154 | } |
2155 | } | |
2156 | ||
14f9c5c9 AS |
2157 | /* Store the contents of FROMVAL into the location of TOVAL. |
2158 | Return a new value with the location of TOVAL and contents of | |
2159 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2160 | floating-point or non-scalar types. */ |
14f9c5c9 | 2161 | |
d2e4a39e AS |
2162 | static struct value * |
2163 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2164 | { |
df407dfe AC |
2165 | struct type *type = value_type (toval); |
2166 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2167 | |
52ce6436 PH |
2168 | toval = ada_coerce_ref (toval); |
2169 | fromval = ada_coerce_ref (fromval); | |
2170 | ||
2171 | if (ada_is_direct_array_type (value_type (toval))) | |
2172 | toval = ada_coerce_to_simple_array (toval); | |
2173 | if (ada_is_direct_array_type (value_type (fromval))) | |
2174 | fromval = ada_coerce_to_simple_array (fromval); | |
2175 | ||
88e3b34b | 2176 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2177 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2178 | |
d2e4a39e | 2179 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2180 | && bits > 0 |
d2e4a39e | 2181 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2182 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2183 | { |
df407dfe AC |
2184 | int len = (value_bitpos (toval) |
2185 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2186 | int from_size; |
d2e4a39e AS |
2187 | char *buffer = (char *) alloca (len); |
2188 | struct value *val; | |
42ae5230 | 2189 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2190 | |
2191 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2192 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2193 | |
52ce6436 | 2194 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2195 | from_size = value_bitsize (fromval); |
2196 | if (from_size == 0) | |
2197 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
32c9a795 | 2198 | if (gdbarch_bits_big_endian (current_gdbarch)) |
df407dfe | 2199 | move_bits (buffer, value_bitpos (toval), |
aced2898 | 2200 | value_contents (fromval), from_size - bits, bits); |
14f9c5c9 | 2201 | else |
0fd88904 | 2202 | move_bits (buffer, value_bitpos (toval), value_contents (fromval), |
4c4b4cd2 | 2203 | 0, bits); |
52ce6436 PH |
2204 | write_memory (to_addr, buffer, len); |
2205 | if (deprecated_memory_changed_hook) | |
2206 | deprecated_memory_changed_hook (to_addr, len); | |
2207 | ||
14f9c5c9 | 2208 | val = value_copy (toval); |
0fd88904 | 2209 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2210 | TYPE_LENGTH (type)); |
04624583 | 2211 | deprecated_set_value_type (val, type); |
d2e4a39e | 2212 | |
14f9c5c9 AS |
2213 | return val; |
2214 | } | |
2215 | ||
2216 | return value_assign (toval, fromval); | |
2217 | } | |
2218 | ||
2219 | ||
52ce6436 PH |
2220 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2221 | * CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2222 | * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2223 | * COMPONENT, and not the inferior's memory. The current contents | |
2224 | * of COMPONENT are ignored. */ | |
2225 | static void | |
2226 | value_assign_to_component (struct value *container, struct value *component, | |
2227 | struct value *val) | |
2228 | { | |
2229 | LONGEST offset_in_container = | |
42ae5230 | 2230 | (LONGEST) (value_address (component) - value_address (container)); |
52ce6436 PH |
2231 | int bit_offset_in_container = |
2232 | value_bitpos (component) - value_bitpos (container); | |
2233 | int bits; | |
2234 | ||
2235 | val = value_cast (value_type (component), val); | |
2236 | ||
2237 | if (value_bitsize (component) == 0) | |
2238 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2239 | else | |
2240 | bits = value_bitsize (component); | |
2241 | ||
32c9a795 | 2242 | if (gdbarch_bits_big_endian (current_gdbarch)) |
52ce6436 PH |
2243 | move_bits (value_contents_writeable (container) + offset_in_container, |
2244 | value_bitpos (container) + bit_offset_in_container, | |
2245 | value_contents (val), | |
2246 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
2247 | bits); | |
2248 | else | |
2249 | move_bits (value_contents_writeable (container) + offset_in_container, | |
2250 | value_bitpos (container) + bit_offset_in_container, | |
2251 | value_contents (val), 0, bits); | |
2252 | } | |
2253 | ||
4c4b4cd2 PH |
2254 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2255 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2256 | thereto. */ |
2257 | ||
d2e4a39e AS |
2258 | struct value * |
2259 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2260 | { |
2261 | int k; | |
d2e4a39e AS |
2262 | struct value *elt; |
2263 | struct type *elt_type; | |
14f9c5c9 AS |
2264 | |
2265 | elt = ada_coerce_to_simple_array (arr); | |
2266 | ||
df407dfe | 2267 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2268 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2269 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2270 | return value_subscript_packed (elt, arity, ind); | |
2271 | ||
2272 | for (k = 0; k < arity; k += 1) | |
2273 | { | |
2274 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2275 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2276 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2277 | } |
2278 | return elt; | |
2279 | } | |
2280 | ||
2281 | /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the | |
2282 | value of the element of *ARR at the ARITY indices given in | |
4c4b4cd2 | 2283 | IND. Does not read the entire array into memory. */ |
14f9c5c9 | 2284 | |
2c0b251b | 2285 | static struct value * |
d2e4a39e | 2286 | ada_value_ptr_subscript (struct value *arr, struct type *type, int arity, |
4c4b4cd2 | 2287 | struct value **ind) |
14f9c5c9 AS |
2288 | { |
2289 | int k; | |
2290 | ||
2291 | for (k = 0; k < arity; k += 1) | |
2292 | { | |
2293 | LONGEST lwb, upb; | |
14f9c5c9 AS |
2294 | |
2295 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2296 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2297 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2298 | value_copy (arr)); |
14f9c5c9 | 2299 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
2497b498 | 2300 | arr = value_ptradd (arr, pos_atr (ind[k]) - lwb); |
14f9c5c9 AS |
2301 | type = TYPE_TARGET_TYPE (type); |
2302 | } | |
2303 | ||
2304 | return value_ind (arr); | |
2305 | } | |
2306 | ||
0b5d8877 | 2307 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
f5938064 JG |
2308 | actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1 |
2309 | elements starting at index LOW. The lower bound of this array is LOW, as | |
2310 | per Ada rules. */ | |
0b5d8877 | 2311 | static struct value * |
f5938064 JG |
2312 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2313 | int low, int high) | |
0b5d8877 | 2314 | { |
6c038f32 | 2315 | CORE_ADDR base = value_as_address (array_ptr) |
0b5d8877 PH |
2316 | + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type))) |
2317 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type))); | |
6c038f32 PH |
2318 | struct type *index_type = |
2319 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)), | |
0b5d8877 | 2320 | low, high); |
6c038f32 | 2321 | struct type *slice_type = |
0b5d8877 | 2322 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
f5938064 | 2323 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2324 | } |
2325 | ||
2326 | ||
2327 | static struct value * | |
2328 | ada_value_slice (struct value *array, int low, int high) | |
2329 | { | |
df407dfe | 2330 | struct type *type = value_type (array); |
6c038f32 | 2331 | struct type *index_type = |
0b5d8877 | 2332 | create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); |
6c038f32 | 2333 | struct type *slice_type = |
0b5d8877 | 2334 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
6c038f32 | 2335 | return value_cast (slice_type, value_slice (array, low, high - low + 1)); |
0b5d8877 PH |
2336 | } |
2337 | ||
14f9c5c9 AS |
2338 | /* If type is a record type in the form of a standard GNAT array |
2339 | descriptor, returns the number of dimensions for type. If arr is a | |
2340 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2341 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2342 | |
2343 | int | |
d2e4a39e | 2344 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2345 | { |
2346 | int arity; | |
2347 | ||
2348 | if (type == NULL) | |
2349 | return 0; | |
2350 | ||
2351 | type = desc_base_type (type); | |
2352 | ||
2353 | arity = 0; | |
d2e4a39e | 2354 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2355 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2356 | else |
2357 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2358 | { |
4c4b4cd2 | 2359 | arity += 1; |
61ee279c | 2360 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2361 | } |
d2e4a39e | 2362 | |
14f9c5c9 AS |
2363 | return arity; |
2364 | } | |
2365 | ||
2366 | /* If TYPE is a record type in the form of a standard GNAT array | |
2367 | descriptor or a simple array type, returns the element type for | |
2368 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2369 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2370 | |
d2e4a39e AS |
2371 | struct type * |
2372 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2373 | { |
2374 | type = desc_base_type (type); | |
2375 | ||
d2e4a39e | 2376 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2377 | { |
2378 | int k; | |
d2e4a39e | 2379 | struct type *p_array_type; |
14f9c5c9 | 2380 | |
556bdfd4 | 2381 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2382 | |
2383 | k = ada_array_arity (type); | |
2384 | if (k == 0) | |
4c4b4cd2 | 2385 | return NULL; |
d2e4a39e | 2386 | |
4c4b4cd2 | 2387 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2388 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2389 | k = nindices; |
d2e4a39e | 2390 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2391 | { |
61ee279c | 2392 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2393 | k -= 1; |
2394 | } | |
14f9c5c9 AS |
2395 | return p_array_type; |
2396 | } | |
2397 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2398 | { | |
2399 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2400 | { |
2401 | type = TYPE_TARGET_TYPE (type); | |
2402 | nindices -= 1; | |
2403 | } | |
14f9c5c9 AS |
2404 | return type; |
2405 | } | |
2406 | ||
2407 | return NULL; | |
2408 | } | |
2409 | ||
4c4b4cd2 PH |
2410 | /* The type of nth index in arrays of given type (n numbering from 1). |
2411 | Does not examine memory. */ | |
14f9c5c9 | 2412 | |
1eea4ebd UW |
2413 | static struct type * |
2414 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 2415 | { |
4c4b4cd2 PH |
2416 | struct type *result_type; |
2417 | ||
14f9c5c9 AS |
2418 | type = desc_base_type (type); |
2419 | ||
1eea4ebd UW |
2420 | if (n < 0 || n > ada_array_arity (type)) |
2421 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 2422 | |
4c4b4cd2 | 2423 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2424 | { |
2425 | int i; | |
2426 | ||
2427 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 2428 | type = TYPE_TARGET_TYPE (type); |
262452ec | 2429 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
2430 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
2431 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 2432 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
2433 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
2434 | result_type = NULL; | |
14f9c5c9 | 2435 | } |
d2e4a39e | 2436 | else |
1eea4ebd UW |
2437 | { |
2438 | result_type = desc_index_type (desc_bounds_type (type), n); | |
2439 | if (result_type == NULL) | |
2440 | error (_("attempt to take bound of something that is not an array")); | |
2441 | } | |
2442 | ||
2443 | return result_type; | |
14f9c5c9 AS |
2444 | } |
2445 | ||
2446 | /* Given that arr is an array type, returns the lower bound of the | |
2447 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 2448 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
2449 | array-descriptor type. It works for other arrays with bounds supplied |
2450 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 2451 | |
abb68b3e | 2452 | static LONGEST |
1eea4ebd | 2453 | ada_array_bound_from_type (struct type * arr_type, int n, int which) |
14f9c5c9 | 2454 | { |
262452ec JK |
2455 | struct type *type, *index_type_desc, *index_type; |
2456 | LONGEST retval; | |
2457 | ||
2458 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 AS |
2459 | |
2460 | if (ada_is_packed_array_type (arr_type)) | |
2461 | arr_type = decode_packed_array_type (arr_type); | |
2462 | ||
4c4b4cd2 | 2463 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2464 | return (LONGEST) - which; |
14f9c5c9 AS |
2465 | |
2466 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2467 | type = TYPE_TARGET_TYPE (arr_type); | |
2468 | else | |
2469 | type = arr_type; | |
2470 | ||
2471 | index_type_desc = ada_find_parallel_type (type, "___XA"); | |
262452ec JK |
2472 | if (index_type_desc != NULL) |
2473 | index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1), | |
2474 | NULL, TYPE_OBJFILE (arr_type)); | |
2475 | else | |
14f9c5c9 | 2476 | { |
d2e4a39e | 2477 | while (n > 1) |
4c4b4cd2 PH |
2478 | { |
2479 | type = TYPE_TARGET_TYPE (type); | |
2480 | n -= 1; | |
2481 | } | |
14f9c5c9 | 2482 | |
abb68b3e | 2483 | index_type = TYPE_INDEX_TYPE (type); |
14f9c5c9 | 2484 | } |
262452ec JK |
2485 | |
2486 | switch (TYPE_CODE (index_type)) | |
14f9c5c9 | 2487 | { |
262452ec JK |
2488 | case TYPE_CODE_RANGE: |
2489 | retval = which == 0 ? TYPE_LOW_BOUND (index_type) | |
2490 | : TYPE_HIGH_BOUND (index_type); | |
2491 | break; | |
2492 | case TYPE_CODE_ENUM: | |
2493 | retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0) | |
2494 | : TYPE_FIELD_BITPOS (index_type, | |
2495 | TYPE_NFIELDS (index_type) - 1); | |
2496 | break; | |
2497 | default: | |
2498 | internal_error (__FILE__, __LINE__, _("invalid type code of index type")); | |
2499 | } | |
abb68b3e | 2500 | |
262452ec | 2501 | return retval; |
14f9c5c9 AS |
2502 | } |
2503 | ||
2504 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
2505 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
2506 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 2507 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 2508 | |
1eea4ebd | 2509 | static LONGEST |
4dc81987 | 2510 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 2511 | { |
df407dfe | 2512 | struct type *arr_type = value_type (arr); |
14f9c5c9 AS |
2513 | |
2514 | if (ada_is_packed_array_type (arr_type)) | |
2515 | return ada_array_bound (decode_packed_array (arr), n, which); | |
4c4b4cd2 | 2516 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2517 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 2518 | else |
1eea4ebd | 2519 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
2520 | } |
2521 | ||
2522 | /* Given that arr is an array value, returns the length of the | |
2523 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
2524 | supplied by run-time quantities other than discriminants. |
2525 | Does not work for arrays indexed by enumeration types with representation | |
2526 | clauses at the moment. */ | |
14f9c5c9 | 2527 | |
1eea4ebd | 2528 | static LONGEST |
d2e4a39e | 2529 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 2530 | { |
df407dfe | 2531 | struct type *arr_type = ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
2532 | |
2533 | if (ada_is_packed_array_type (arr_type)) | |
2534 | return ada_array_length (decode_packed_array (arr), n); | |
2535 | ||
4c4b4cd2 | 2536 | if (ada_is_simple_array_type (arr_type)) |
1eea4ebd UW |
2537 | return (ada_array_bound_from_type (arr_type, n, 1) |
2538 | - ada_array_bound_from_type (arr_type, n, 0) + 1); | |
14f9c5c9 | 2539 | else |
1eea4ebd UW |
2540 | return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1)) |
2541 | - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1); | |
4c4b4cd2 PH |
2542 | } |
2543 | ||
2544 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
2545 | with bounds LOW to LOW-1. */ | |
2546 | ||
2547 | static struct value * | |
2548 | empty_array (struct type *arr_type, int low) | |
2549 | { | |
6c038f32 | 2550 | struct type *index_type = |
0b5d8877 PH |
2551 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)), |
2552 | low, low - 1); | |
2553 | struct type *elt_type = ada_array_element_type (arr_type, 1); | |
2554 | return allocate_value (create_array_type (NULL, elt_type, index_type)); | |
14f9c5c9 | 2555 | } |
14f9c5c9 | 2556 | \f |
d2e4a39e | 2557 | |
4c4b4cd2 | 2558 | /* Name resolution */ |
14f9c5c9 | 2559 | |
4c4b4cd2 PH |
2560 | /* The "decoded" name for the user-definable Ada operator corresponding |
2561 | to OP. */ | |
14f9c5c9 | 2562 | |
d2e4a39e | 2563 | static const char * |
4c4b4cd2 | 2564 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
2565 | { |
2566 | int i; | |
2567 | ||
4c4b4cd2 | 2568 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
2569 | { |
2570 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 2571 | return ada_opname_table[i].decoded; |
14f9c5c9 | 2572 | } |
323e0a4a | 2573 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
2574 | } |
2575 | ||
2576 | ||
4c4b4cd2 PH |
2577 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
2578 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
2579 | undefined namespace) and converts operators that are | |
2580 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
2581 | non-null, it provides a preferred result type [at the moment, only |
2582 | type void has any effect---causing procedures to be preferred over | |
2583 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 2584 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 2585 | |
4c4b4cd2 PH |
2586 | static void |
2587 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 AS |
2588 | { |
2589 | int pc; | |
2590 | pc = 0; | |
4c4b4cd2 | 2591 | resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL); |
14f9c5c9 AS |
2592 | } |
2593 | ||
4c4b4cd2 PH |
2594 | /* Resolve the operator of the subexpression beginning at |
2595 | position *POS of *EXPP. "Resolving" consists of replacing | |
2596 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
2597 | with their resolutions, replacing built-in operators with | |
2598 | function calls to user-defined operators, where appropriate, and, | |
2599 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
2600 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
2601 | are as in ada_resolve, above. */ | |
14f9c5c9 | 2602 | |
d2e4a39e | 2603 | static struct value * |
4c4b4cd2 | 2604 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 2605 | struct type *context_type) |
14f9c5c9 AS |
2606 | { |
2607 | int pc = *pos; | |
2608 | int i; | |
4c4b4cd2 | 2609 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 2610 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
2611 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
2612 | int nargs; /* Number of operands. */ | |
52ce6436 | 2613 | int oplen; |
14f9c5c9 AS |
2614 | |
2615 | argvec = NULL; | |
2616 | nargs = 0; | |
2617 | exp = *expp; | |
2618 | ||
52ce6436 PH |
2619 | /* Pass one: resolve operands, saving their types and updating *pos, |
2620 | if needed. */ | |
14f9c5c9 AS |
2621 | switch (op) |
2622 | { | |
4c4b4cd2 PH |
2623 | case OP_FUNCALL: |
2624 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
2625 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
2626 | *pos += 7; | |
4c4b4cd2 PH |
2627 | else |
2628 | { | |
2629 | *pos += 3; | |
2630 | resolve_subexp (expp, pos, 0, NULL); | |
2631 | } | |
2632 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
2633 | break; |
2634 | ||
14f9c5c9 | 2635 | case UNOP_ADDR: |
4c4b4cd2 PH |
2636 | *pos += 1; |
2637 | resolve_subexp (expp, pos, 0, NULL); | |
2638 | break; | |
2639 | ||
52ce6436 PH |
2640 | case UNOP_QUAL: |
2641 | *pos += 3; | |
17466c1a | 2642 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
2643 | break; |
2644 | ||
52ce6436 | 2645 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
2646 | case OP_ATR_SIZE: |
2647 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
2648 | case OP_ATR_FIRST: |
2649 | case OP_ATR_LAST: | |
2650 | case OP_ATR_LENGTH: | |
2651 | case OP_ATR_POS: | |
2652 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
2653 | case OP_ATR_MIN: |
2654 | case OP_ATR_MAX: | |
52ce6436 PH |
2655 | case TERNOP_IN_RANGE: |
2656 | case BINOP_IN_BOUNDS: | |
2657 | case UNOP_IN_RANGE: | |
2658 | case OP_AGGREGATE: | |
2659 | case OP_OTHERS: | |
2660 | case OP_CHOICES: | |
2661 | case OP_POSITIONAL: | |
2662 | case OP_DISCRETE_RANGE: | |
2663 | case OP_NAME: | |
2664 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
2665 | *pos += oplen; | |
14f9c5c9 AS |
2666 | break; |
2667 | ||
2668 | case BINOP_ASSIGN: | |
2669 | { | |
4c4b4cd2 PH |
2670 | struct value *arg1; |
2671 | ||
2672 | *pos += 1; | |
2673 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
2674 | if (arg1 == NULL) | |
2675 | resolve_subexp (expp, pos, 1, NULL); | |
2676 | else | |
df407dfe | 2677 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 2678 | break; |
14f9c5c9 AS |
2679 | } |
2680 | ||
4c4b4cd2 | 2681 | case UNOP_CAST: |
4c4b4cd2 PH |
2682 | *pos += 3; |
2683 | nargs = 1; | |
2684 | break; | |
14f9c5c9 | 2685 | |
4c4b4cd2 PH |
2686 | case BINOP_ADD: |
2687 | case BINOP_SUB: | |
2688 | case BINOP_MUL: | |
2689 | case BINOP_DIV: | |
2690 | case BINOP_REM: | |
2691 | case BINOP_MOD: | |
2692 | case BINOP_EXP: | |
2693 | case BINOP_CONCAT: | |
2694 | case BINOP_LOGICAL_AND: | |
2695 | case BINOP_LOGICAL_OR: | |
2696 | case BINOP_BITWISE_AND: | |
2697 | case BINOP_BITWISE_IOR: | |
2698 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 2699 | |
4c4b4cd2 PH |
2700 | case BINOP_EQUAL: |
2701 | case BINOP_NOTEQUAL: | |
2702 | case BINOP_LESS: | |
2703 | case BINOP_GTR: | |
2704 | case BINOP_LEQ: | |
2705 | case BINOP_GEQ: | |
14f9c5c9 | 2706 | |
4c4b4cd2 PH |
2707 | case BINOP_REPEAT: |
2708 | case BINOP_SUBSCRIPT: | |
2709 | case BINOP_COMMA: | |
40c8aaa9 JB |
2710 | *pos += 1; |
2711 | nargs = 2; | |
2712 | break; | |
14f9c5c9 | 2713 | |
4c4b4cd2 PH |
2714 | case UNOP_NEG: |
2715 | case UNOP_PLUS: | |
2716 | case UNOP_LOGICAL_NOT: | |
2717 | case UNOP_ABS: | |
2718 | case UNOP_IND: | |
2719 | *pos += 1; | |
2720 | nargs = 1; | |
2721 | break; | |
14f9c5c9 | 2722 | |
4c4b4cd2 PH |
2723 | case OP_LONG: |
2724 | case OP_DOUBLE: | |
2725 | case OP_VAR_VALUE: | |
2726 | *pos += 4; | |
2727 | break; | |
14f9c5c9 | 2728 | |
4c4b4cd2 PH |
2729 | case OP_TYPE: |
2730 | case OP_BOOL: | |
2731 | case OP_LAST: | |
4c4b4cd2 PH |
2732 | case OP_INTERNALVAR: |
2733 | *pos += 3; | |
2734 | break; | |
14f9c5c9 | 2735 | |
4c4b4cd2 PH |
2736 | case UNOP_MEMVAL: |
2737 | *pos += 3; | |
2738 | nargs = 1; | |
2739 | break; | |
2740 | ||
67f3407f DJ |
2741 | case OP_REGISTER: |
2742 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
2743 | break; | |
2744 | ||
4c4b4cd2 PH |
2745 | case STRUCTOP_STRUCT: |
2746 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
2747 | nargs = 1; | |
2748 | break; | |
2749 | ||
4c4b4cd2 | 2750 | case TERNOP_SLICE: |
4c4b4cd2 PH |
2751 | *pos += 1; |
2752 | nargs = 3; | |
2753 | break; | |
2754 | ||
52ce6436 | 2755 | case OP_STRING: |
14f9c5c9 | 2756 | break; |
4c4b4cd2 PH |
2757 | |
2758 | default: | |
323e0a4a | 2759 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
2760 | } |
2761 | ||
76a01679 | 2762 | argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); |
4c4b4cd2 PH |
2763 | for (i = 0; i < nargs; i += 1) |
2764 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
2765 | argvec[i] = NULL; | |
2766 | exp = *expp; | |
2767 | ||
2768 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
2769 | switch (op) |
2770 | { | |
2771 | default: | |
2772 | break; | |
2773 | ||
14f9c5c9 | 2774 | case OP_VAR_VALUE: |
4c4b4cd2 | 2775 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 JB |
2776 | { |
2777 | struct ada_symbol_info *candidates; | |
2778 | int n_candidates; | |
2779 | ||
2780 | n_candidates = | |
2781 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
2782 | (exp->elts[pc + 2].symbol), | |
2783 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
2784 | &candidates); | |
2785 | ||
2786 | if (n_candidates > 1) | |
2787 | { | |
2788 | /* Types tend to get re-introduced locally, so if there | |
2789 | are any local symbols that are not types, first filter | |
2790 | out all types. */ | |
2791 | int j; | |
2792 | for (j = 0; j < n_candidates; j += 1) | |
2793 | switch (SYMBOL_CLASS (candidates[j].sym)) | |
2794 | { | |
2795 | case LOC_REGISTER: | |
2796 | case LOC_ARG: | |
2797 | case LOC_REF_ARG: | |
76a01679 JB |
2798 | case LOC_REGPARM_ADDR: |
2799 | case LOC_LOCAL: | |
76a01679 | 2800 | case LOC_COMPUTED: |
76a01679 JB |
2801 | goto FoundNonType; |
2802 | default: | |
2803 | break; | |
2804 | } | |
2805 | FoundNonType: | |
2806 | if (j < n_candidates) | |
2807 | { | |
2808 | j = 0; | |
2809 | while (j < n_candidates) | |
2810 | { | |
2811 | if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) | |
2812 | { | |
2813 | candidates[j] = candidates[n_candidates - 1]; | |
2814 | n_candidates -= 1; | |
2815 | } | |
2816 | else | |
2817 | j += 1; | |
2818 | } | |
2819 | } | |
2820 | } | |
2821 | ||
2822 | if (n_candidates == 0) | |
323e0a4a | 2823 | error (_("No definition found for %s"), |
76a01679 JB |
2824 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
2825 | else if (n_candidates == 1) | |
2826 | i = 0; | |
2827 | else if (deprocedure_p | |
2828 | && !is_nonfunction (candidates, n_candidates)) | |
2829 | { | |
06d5cf63 JB |
2830 | i = ada_resolve_function |
2831 | (candidates, n_candidates, NULL, 0, | |
2832 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
2833 | context_type); | |
76a01679 | 2834 | if (i < 0) |
323e0a4a | 2835 | error (_("Could not find a match for %s"), |
76a01679 JB |
2836 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
2837 | } | |
2838 | else | |
2839 | { | |
323e0a4a | 2840 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
2841 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
2842 | user_select_syms (candidates, n_candidates, 1); | |
2843 | i = 0; | |
2844 | } | |
2845 | ||
2846 | exp->elts[pc + 1].block = candidates[i].block; | |
2847 | exp->elts[pc + 2].symbol = candidates[i].sym; | |
1265e4aa JB |
2848 | if (innermost_block == NULL |
2849 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
2850 | innermost_block = candidates[i].block; |
2851 | } | |
2852 | ||
2853 | if (deprocedure_p | |
2854 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
2855 | == TYPE_CODE_FUNC)) | |
2856 | { | |
2857 | replace_operator_with_call (expp, pc, 0, 0, | |
2858 | exp->elts[pc + 2].symbol, | |
2859 | exp->elts[pc + 1].block); | |
2860 | exp = *expp; | |
2861 | } | |
14f9c5c9 AS |
2862 | break; |
2863 | ||
2864 | case OP_FUNCALL: | |
2865 | { | |
4c4b4cd2 | 2866 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 2867 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 PH |
2868 | { |
2869 | struct ada_symbol_info *candidates; | |
2870 | int n_candidates; | |
2871 | ||
2872 | n_candidates = | |
76a01679 JB |
2873 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
2874 | (exp->elts[pc + 5].symbol), | |
2875 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
2876 | &candidates); | |
4c4b4cd2 PH |
2877 | if (n_candidates == 1) |
2878 | i = 0; | |
2879 | else | |
2880 | { | |
06d5cf63 JB |
2881 | i = ada_resolve_function |
2882 | (candidates, n_candidates, | |
2883 | argvec, nargs, | |
2884 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
2885 | context_type); | |
4c4b4cd2 | 2886 | if (i < 0) |
323e0a4a | 2887 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
2888 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
2889 | } | |
2890 | ||
2891 | exp->elts[pc + 4].block = candidates[i].block; | |
2892 | exp->elts[pc + 5].symbol = candidates[i].sym; | |
1265e4aa JB |
2893 | if (innermost_block == NULL |
2894 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
2895 | innermost_block = candidates[i].block; |
2896 | } | |
14f9c5c9 AS |
2897 | } |
2898 | break; | |
2899 | case BINOP_ADD: | |
2900 | case BINOP_SUB: | |
2901 | case BINOP_MUL: | |
2902 | case BINOP_DIV: | |
2903 | case BINOP_REM: | |
2904 | case BINOP_MOD: | |
2905 | case BINOP_CONCAT: | |
2906 | case BINOP_BITWISE_AND: | |
2907 | case BINOP_BITWISE_IOR: | |
2908 | case BINOP_BITWISE_XOR: | |
2909 | case BINOP_EQUAL: | |
2910 | case BINOP_NOTEQUAL: | |
2911 | case BINOP_LESS: | |
2912 | case BINOP_GTR: | |
2913 | case BINOP_LEQ: | |
2914 | case BINOP_GEQ: | |
2915 | case BINOP_EXP: | |
2916 | case UNOP_NEG: | |
2917 | case UNOP_PLUS: | |
2918 | case UNOP_LOGICAL_NOT: | |
2919 | case UNOP_ABS: | |
2920 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 PH |
2921 | { |
2922 | struct ada_symbol_info *candidates; | |
2923 | int n_candidates; | |
2924 | ||
2925 | n_candidates = | |
2926 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
2927 | (struct block *) NULL, VAR_DOMAIN, | |
2928 | &candidates); | |
2929 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, | |
76a01679 | 2930 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
2931 | if (i < 0) |
2932 | break; | |
2933 | ||
76a01679 JB |
2934 | replace_operator_with_call (expp, pc, nargs, 1, |
2935 | candidates[i].sym, candidates[i].block); | |
4c4b4cd2 PH |
2936 | exp = *expp; |
2937 | } | |
14f9c5c9 | 2938 | break; |
4c4b4cd2 PH |
2939 | |
2940 | case OP_TYPE: | |
b3dbf008 | 2941 | case OP_REGISTER: |
4c4b4cd2 | 2942 | return NULL; |
14f9c5c9 AS |
2943 | } |
2944 | ||
2945 | *pos = pc; | |
2946 | return evaluate_subexp_type (exp, pos); | |
2947 | } | |
2948 | ||
2949 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 PH |
2950 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
2951 | a non-pointer. A type of 'void' (which is never a valid expression type) | |
2952 | by convention matches anything. */ | |
14f9c5c9 | 2953 | /* The term "match" here is rather loose. The match is heuristic and |
4c4b4cd2 | 2954 | liberal. FIXME: TOO liberal, in fact. */ |
14f9c5c9 AS |
2955 | |
2956 | static int | |
4dc81987 | 2957 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 2958 | { |
61ee279c PH |
2959 | ftype = ada_check_typedef (ftype); |
2960 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
2961 | |
2962 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
2963 | ftype = TYPE_TARGET_TYPE (ftype); | |
2964 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
2965 | atype = TYPE_TARGET_TYPE (atype); | |
2966 | ||
d2e4a39e | 2967 | if (TYPE_CODE (ftype) == TYPE_CODE_VOID |
14f9c5c9 AS |
2968 | || TYPE_CODE (atype) == TYPE_CODE_VOID) |
2969 | return 1; | |
2970 | ||
d2e4a39e | 2971 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
2972 | { |
2973 | default: | |
2974 | return 1; | |
2975 | case TYPE_CODE_PTR: | |
2976 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
2977 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
2978 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 2979 | else |
1265e4aa JB |
2980 | return (may_deref |
2981 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
2982 | case TYPE_CODE_INT: |
2983 | case TYPE_CODE_ENUM: | |
2984 | case TYPE_CODE_RANGE: | |
2985 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
2986 | { |
2987 | case TYPE_CODE_INT: | |
2988 | case TYPE_CODE_ENUM: | |
2989 | case TYPE_CODE_RANGE: | |
2990 | return 1; | |
2991 | default: | |
2992 | return 0; | |
2993 | } | |
14f9c5c9 AS |
2994 | |
2995 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 2996 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 2997 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
2998 | |
2999 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3000 | if (ada_is_array_descriptor_type (ftype)) |
3001 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3002 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3003 | else |
4c4b4cd2 PH |
3004 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3005 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3006 | |
3007 | case TYPE_CODE_UNION: | |
3008 | case TYPE_CODE_FLT: | |
3009 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3010 | } | |
3011 | } | |
3012 | ||
3013 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3014 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3015 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3016 | argument function. */ |
14f9c5c9 AS |
3017 | |
3018 | static int | |
d2e4a39e | 3019 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3020 | { |
3021 | int i; | |
d2e4a39e | 3022 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3023 | |
1265e4aa JB |
3024 | if (SYMBOL_CLASS (func) == LOC_CONST |
3025 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3026 | return (n_actuals == 0); |
3027 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3028 | return 0; | |
3029 | ||
3030 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3031 | return 0; | |
3032 | ||
3033 | for (i = 0; i < n_actuals; i += 1) | |
3034 | { | |
4c4b4cd2 | 3035 | if (actuals[i] == NULL) |
76a01679 JB |
3036 | return 0; |
3037 | else | |
3038 | { | |
61ee279c | 3039 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i)); |
df407dfe | 3040 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3041 | |
76a01679 JB |
3042 | if (!ada_type_match (ftype, atype, 1)) |
3043 | return 0; | |
3044 | } | |
14f9c5c9 AS |
3045 | } |
3046 | return 1; | |
3047 | } | |
3048 | ||
3049 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3050 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3051 | FUNC_TYPE is not a valid function type with a non-null return type | |
3052 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3053 | ||
3054 | static int | |
d2e4a39e | 3055 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3056 | { |
d2e4a39e | 3057 | struct type *return_type; |
14f9c5c9 AS |
3058 | |
3059 | if (func_type == NULL) | |
3060 | return 1; | |
3061 | ||
4c4b4cd2 PH |
3062 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
3063 | return_type = base_type (TYPE_TARGET_TYPE (func_type)); | |
3064 | else | |
3065 | return_type = base_type (func_type); | |
14f9c5c9 AS |
3066 | if (return_type == NULL) |
3067 | return 1; | |
3068 | ||
4c4b4cd2 | 3069 | context_type = base_type (context_type); |
14f9c5c9 AS |
3070 | |
3071 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3072 | return context_type == NULL || return_type == context_type; | |
3073 | else if (context_type == NULL) | |
3074 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3075 | else | |
3076 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3077 | } | |
3078 | ||
3079 | ||
4c4b4cd2 | 3080 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3081 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3082 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3083 | that returns that type, then eliminate matches that don't. If | |
3084 | CONTEXT_TYPE is void and there is at least one match that does not | |
3085 | return void, eliminate all matches that do. | |
3086 | ||
14f9c5c9 AS |
3087 | Asks the user if there is more than one match remaining. Returns -1 |
3088 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3089 | solely for messages. May re-arrange and modify SYMS in |
3090 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3091 | |
4c4b4cd2 PH |
3092 | static int |
3093 | ada_resolve_function (struct ada_symbol_info syms[], | |
3094 | int nsyms, struct value **args, int nargs, | |
3095 | const char *name, struct type *context_type) | |
14f9c5c9 AS |
3096 | { |
3097 | int k; | |
4c4b4cd2 | 3098 | int m; /* Number of hits */ |
d2e4a39e AS |
3099 | struct type *fallback; |
3100 | struct type *return_type; | |
14f9c5c9 AS |
3101 | |
3102 | return_type = context_type; | |
3103 | if (context_type == NULL) | |
3104 | fallback = builtin_type_void; | |
3105 | else | |
3106 | fallback = NULL; | |
3107 | ||
d2e4a39e | 3108 | m = 0; |
14f9c5c9 AS |
3109 | while (1) |
3110 | { | |
3111 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3112 | { |
61ee279c | 3113 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); |
4c4b4cd2 PH |
3114 | |
3115 | if (ada_args_match (syms[k].sym, args, nargs) | |
3116 | && return_match (type, return_type)) | |
3117 | { | |
3118 | syms[m] = syms[k]; | |
3119 | m += 1; | |
3120 | } | |
3121 | } | |
14f9c5c9 | 3122 | if (m > 0 || return_type == fallback) |
4c4b4cd2 | 3123 | break; |
14f9c5c9 | 3124 | else |
4c4b4cd2 | 3125 | return_type = fallback; |
14f9c5c9 AS |
3126 | } |
3127 | ||
3128 | if (m == 0) | |
3129 | return -1; | |
3130 | else if (m > 1) | |
3131 | { | |
323e0a4a | 3132 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3133 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3134 | return 0; |
3135 | } | |
3136 | return 0; | |
3137 | } | |
3138 | ||
4c4b4cd2 PH |
3139 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3140 | in a listing of choices during disambiguation (see sort_choices, below). | |
3141 | The idea is that overloadings of a subprogram name from the | |
3142 | same package should sort in their source order. We settle for ordering | |
3143 | such symbols by their trailing number (__N or $N). */ | |
3144 | ||
14f9c5c9 | 3145 | static int |
4c4b4cd2 | 3146 | encoded_ordered_before (char *N0, char *N1) |
14f9c5c9 AS |
3147 | { |
3148 | if (N1 == NULL) | |
3149 | return 0; | |
3150 | else if (N0 == NULL) | |
3151 | return 1; | |
3152 | else | |
3153 | { | |
3154 | int k0, k1; | |
d2e4a39e | 3155 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3156 | ; |
d2e4a39e | 3157 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3158 | ; |
d2e4a39e | 3159 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3160 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3161 | { | |
3162 | int n0, n1; | |
3163 | n0 = k0; | |
3164 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3165 | n0 -= 1; | |
3166 | n1 = k1; | |
3167 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3168 | n1 -= 1; | |
3169 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3170 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3171 | } | |
14f9c5c9 AS |
3172 | return (strcmp (N0, N1) < 0); |
3173 | } | |
3174 | } | |
d2e4a39e | 3175 | |
4c4b4cd2 PH |
3176 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3177 | encoded names. */ | |
3178 | ||
d2e4a39e | 3179 | static void |
4c4b4cd2 | 3180 | sort_choices (struct ada_symbol_info syms[], int nsyms) |
14f9c5c9 | 3181 | { |
4c4b4cd2 | 3182 | int i; |
d2e4a39e | 3183 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3184 | { |
4c4b4cd2 | 3185 | struct ada_symbol_info sym = syms[i]; |
14f9c5c9 AS |
3186 | int j; |
3187 | ||
d2e4a39e | 3188 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 PH |
3189 | { |
3190 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), | |
3191 | SYMBOL_LINKAGE_NAME (sym.sym))) | |
3192 | break; | |
3193 | syms[j + 1] = syms[j]; | |
3194 | } | |
d2e4a39e | 3195 | syms[j + 1] = sym; |
14f9c5c9 AS |
3196 | } |
3197 | } | |
3198 | ||
4c4b4cd2 PH |
3199 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3200 | by asking the user (if necessary), returning the number selected, | |
3201 | and setting the first elements of SYMS items. Error if no symbols | |
3202 | selected. */ | |
14f9c5c9 AS |
3203 | |
3204 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3205 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3206 | |
3207 | int | |
4c4b4cd2 | 3208 | user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3209 | { |
3210 | int i; | |
d2e4a39e | 3211 | int *chosen = (int *) alloca (sizeof (int) * nsyms); |
14f9c5c9 AS |
3212 | int n_chosen; |
3213 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3214 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3215 | |
3216 | if (max_results < 1) | |
323e0a4a | 3217 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3218 | if (nsyms <= 1) |
3219 | return nsyms; | |
3220 | ||
717d2f5a JB |
3221 | if (select_mode == multiple_symbols_cancel) |
3222 | error (_("\ | |
3223 | canceled because the command is ambiguous\n\ | |
3224 | See set/show multiple-symbol.")); | |
3225 | ||
3226 | /* If select_mode is "all", then return all possible symbols. | |
3227 | Only do that if more than one symbol can be selected, of course. | |
3228 | Otherwise, display the menu as usual. */ | |
3229 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3230 | return nsyms; | |
3231 | ||
323e0a4a | 3232 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3233 | if (max_results > 1) |
323e0a4a | 3234 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3235 | |
4c4b4cd2 | 3236 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3237 | |
3238 | for (i = 0; i < nsyms; i += 1) | |
3239 | { | |
4c4b4cd2 PH |
3240 | if (syms[i].sym == NULL) |
3241 | continue; | |
3242 | ||
3243 | if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) | |
3244 | { | |
76a01679 JB |
3245 | struct symtab_and_line sal = |
3246 | find_function_start_sal (syms[i].sym, 1); | |
323e0a4a AC |
3247 | if (sal.symtab == NULL) |
3248 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3249 | i + first_choice, | |
3250 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3251 | sal.line); | |
3252 | else | |
3253 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
3254 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3255 | sal.symtab->filename, sal.line); | |
4c4b4cd2 PH |
3256 | continue; |
3257 | } | |
d2e4a39e | 3258 | else |
4c4b4cd2 PH |
3259 | { |
3260 | int is_enumeral = | |
3261 | (SYMBOL_CLASS (syms[i].sym) == LOC_CONST | |
3262 | && SYMBOL_TYPE (syms[i].sym) != NULL | |
3263 | && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); | |
6f38eac8 | 3264 | struct symtab *symtab = syms[i].sym->symtab; |
4c4b4cd2 PH |
3265 | |
3266 | if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) | |
323e0a4a | 3267 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 PH |
3268 | i + first_choice, |
3269 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3270 | symtab->filename, SYMBOL_LINE (syms[i].sym)); | |
76a01679 JB |
3271 | else if (is_enumeral |
3272 | && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) | |
4c4b4cd2 | 3273 | { |
a3f17187 | 3274 | printf_unfiltered (("[%d] "), i + first_choice); |
76a01679 JB |
3275 | ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, |
3276 | gdb_stdout, -1, 0); | |
323e0a4a | 3277 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
4c4b4cd2 PH |
3278 | SYMBOL_PRINT_NAME (syms[i].sym)); |
3279 | } | |
3280 | else if (symtab != NULL) | |
3281 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3282 | ? _("[%d] %s in %s (enumeral)\n") |
3283 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 PH |
3284 | i + first_choice, |
3285 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3286 | symtab->filename); | |
3287 | else | |
3288 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3289 | ? _("[%d] %s (enumeral)\n") |
3290 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 PH |
3291 | i + first_choice, |
3292 | SYMBOL_PRINT_NAME (syms[i].sym)); | |
3293 | } | |
14f9c5c9 | 3294 | } |
d2e4a39e | 3295 | |
14f9c5c9 | 3296 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3297 | "overload-choice"); |
14f9c5c9 AS |
3298 | |
3299 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3300 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3301 | |
3302 | return n_chosen; | |
3303 | } | |
3304 | ||
3305 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3306 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3307 | order in CHOICES[0 .. N-1], and return N. |
3308 | ||
3309 | The user types choices as a sequence of numbers on one line | |
3310 | separated by blanks, encoding them as follows: | |
3311 | ||
4c4b4cd2 | 3312 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3313 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3314 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3315 | ||
4c4b4cd2 | 3316 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3317 | |
3318 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3319 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3320 | |
3321 | int | |
d2e4a39e | 3322 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3323 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3324 | { |
d2e4a39e | 3325 | char *args; |
0bcd0149 | 3326 | char *prompt; |
14f9c5c9 AS |
3327 | int n_chosen; |
3328 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3329 | |
14f9c5c9 AS |
3330 | prompt = getenv ("PS2"); |
3331 | if (prompt == NULL) | |
0bcd0149 | 3332 | prompt = "> "; |
14f9c5c9 | 3333 | |
0bcd0149 | 3334 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3335 | |
14f9c5c9 | 3336 | if (args == NULL) |
323e0a4a | 3337 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3338 | |
3339 | n_chosen = 0; | |
76a01679 | 3340 | |
4c4b4cd2 PH |
3341 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3342 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3343 | while (1) |
3344 | { | |
d2e4a39e | 3345 | char *args2; |
14f9c5c9 AS |
3346 | int choice, j; |
3347 | ||
3348 | while (isspace (*args)) | |
4c4b4cd2 | 3349 | args += 1; |
14f9c5c9 | 3350 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3351 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3352 | else if (*args == '\0') |
4c4b4cd2 | 3353 | break; |
14f9c5c9 AS |
3354 | |
3355 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3356 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3357 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3358 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3359 | args = args2; |
3360 | ||
d2e4a39e | 3361 | if (choice == 0) |
323e0a4a | 3362 | error (_("cancelled")); |
14f9c5c9 AS |
3363 | |
3364 | if (choice < first_choice) | |
4c4b4cd2 PH |
3365 | { |
3366 | n_chosen = n_choices; | |
3367 | for (j = 0; j < n_choices; j += 1) | |
3368 | choices[j] = j; | |
3369 | break; | |
3370 | } | |
14f9c5c9 AS |
3371 | choice -= first_choice; |
3372 | ||
d2e4a39e | 3373 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3374 | { |
3375 | } | |
14f9c5c9 AS |
3376 | |
3377 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3378 | { |
3379 | int k; | |
3380 | for (k = n_chosen - 1; k > j; k -= 1) | |
3381 | choices[k + 1] = choices[k]; | |
3382 | choices[j + 1] = choice; | |
3383 | n_chosen += 1; | |
3384 | } | |
14f9c5c9 AS |
3385 | } |
3386 | ||
3387 | if (n_chosen > max_results) | |
323e0a4a | 3388 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3389 | |
14f9c5c9 AS |
3390 | return n_chosen; |
3391 | } | |
3392 | ||
4c4b4cd2 PH |
3393 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3394 | on the function identified by SYM and BLOCK, and taking NARGS | |
3395 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3396 | |
3397 | static void | |
d2e4a39e | 3398 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 PH |
3399 | int oplen, struct symbol *sym, |
3400 | struct block *block) | |
14f9c5c9 AS |
3401 | { |
3402 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3403 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3404 | struct expression *newexp = (struct expression *) |
14f9c5c9 | 3405 | xmalloc (sizeof (struct expression) |
4c4b4cd2 | 3406 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3407 | struct expression *exp = *expp; |
14f9c5c9 AS |
3408 | |
3409 | newexp->nelts = exp->nelts + 7 - oplen; | |
3410 | newexp->language_defn = exp->language_defn; | |
3411 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); | |
d2e4a39e | 3412 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3413 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3414 | |
3415 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3416 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3417 | ||
3418 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3419 | newexp->elts[pc + 4].block = block; | |
3420 | newexp->elts[pc + 5].symbol = sym; | |
3421 | ||
3422 | *expp = newexp; | |
aacb1f0a | 3423 | xfree (exp); |
d2e4a39e | 3424 | } |
14f9c5c9 AS |
3425 | |
3426 | /* Type-class predicates */ | |
3427 | ||
4c4b4cd2 PH |
3428 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3429 | or FLOAT). */ | |
14f9c5c9 AS |
3430 | |
3431 | static int | |
d2e4a39e | 3432 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3433 | { |
3434 | if (type == NULL) | |
3435 | return 0; | |
d2e4a39e AS |
3436 | else |
3437 | { | |
3438 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3439 | { |
3440 | case TYPE_CODE_INT: | |
3441 | case TYPE_CODE_FLT: | |
3442 | return 1; | |
3443 | case TYPE_CODE_RANGE: | |
3444 | return (type == TYPE_TARGET_TYPE (type) | |
3445 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3446 | default: | |
3447 | return 0; | |
3448 | } | |
d2e4a39e | 3449 | } |
14f9c5c9 AS |
3450 | } |
3451 | ||
4c4b4cd2 | 3452 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3453 | |
3454 | static int | |
d2e4a39e | 3455 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3456 | { |
3457 | if (type == NULL) | |
3458 | return 0; | |
d2e4a39e AS |
3459 | else |
3460 | { | |
3461 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3462 | { |
3463 | case TYPE_CODE_INT: | |
3464 | return 1; | |
3465 | case TYPE_CODE_RANGE: | |
3466 | return (type == TYPE_TARGET_TYPE (type) | |
3467 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
3468 | default: | |
3469 | return 0; | |
3470 | } | |
d2e4a39e | 3471 | } |
14f9c5c9 AS |
3472 | } |
3473 | ||
4c4b4cd2 | 3474 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
3475 | |
3476 | static int | |
d2e4a39e | 3477 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
3478 | { |
3479 | if (type == NULL) | |
3480 | return 0; | |
d2e4a39e AS |
3481 | else |
3482 | { | |
3483 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3484 | { |
3485 | case TYPE_CODE_INT: | |
3486 | case TYPE_CODE_RANGE: | |
3487 | case TYPE_CODE_ENUM: | |
3488 | case TYPE_CODE_FLT: | |
3489 | return 1; | |
3490 | default: | |
3491 | return 0; | |
3492 | } | |
d2e4a39e | 3493 | } |
14f9c5c9 AS |
3494 | } |
3495 | ||
4c4b4cd2 | 3496 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
3497 | |
3498 | static int | |
d2e4a39e | 3499 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
3500 | { |
3501 | if (type == NULL) | |
3502 | return 0; | |
d2e4a39e AS |
3503 | else |
3504 | { | |
3505 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3506 | { |
3507 | case TYPE_CODE_INT: | |
3508 | case TYPE_CODE_RANGE: | |
3509 | case TYPE_CODE_ENUM: | |
3510 | return 1; | |
3511 | default: | |
3512 | return 0; | |
3513 | } | |
d2e4a39e | 3514 | } |
14f9c5c9 AS |
3515 | } |
3516 | ||
4c4b4cd2 PH |
3517 | /* Returns non-zero if OP with operands in the vector ARGS could be |
3518 | a user-defined function. Errs on the side of pre-defined operators | |
3519 | (i.e., result 0). */ | |
14f9c5c9 AS |
3520 | |
3521 | static int | |
d2e4a39e | 3522 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 3523 | { |
76a01679 | 3524 | struct type *type0 = |
df407dfe | 3525 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 3526 | struct type *type1 = |
df407dfe | 3527 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 3528 | |
4c4b4cd2 PH |
3529 | if (type0 == NULL) |
3530 | return 0; | |
3531 | ||
14f9c5c9 AS |
3532 | switch (op) |
3533 | { | |
3534 | default: | |
3535 | return 0; | |
3536 | ||
3537 | case BINOP_ADD: | |
3538 | case BINOP_SUB: | |
3539 | case BINOP_MUL: | |
3540 | case BINOP_DIV: | |
d2e4a39e | 3541 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
3542 | |
3543 | case BINOP_REM: | |
3544 | case BINOP_MOD: | |
3545 | case BINOP_BITWISE_AND: | |
3546 | case BINOP_BITWISE_IOR: | |
3547 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 3548 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3549 | |
3550 | case BINOP_EQUAL: | |
3551 | case BINOP_NOTEQUAL: | |
3552 | case BINOP_LESS: | |
3553 | case BINOP_GTR: | |
3554 | case BINOP_LEQ: | |
3555 | case BINOP_GEQ: | |
d2e4a39e | 3556 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
3557 | |
3558 | case BINOP_CONCAT: | |
ee90b9ab | 3559 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
3560 | |
3561 | case BINOP_EXP: | |
d2e4a39e | 3562 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3563 | |
3564 | case UNOP_NEG: | |
3565 | case UNOP_PLUS: | |
3566 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
3567 | case UNOP_ABS: |
3568 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
3569 | |
3570 | } | |
3571 | } | |
3572 | \f | |
4c4b4cd2 | 3573 | /* Renaming */ |
14f9c5c9 | 3574 | |
aeb5907d JB |
3575 | /* NOTES: |
3576 | ||
3577 | 1. In the following, we assume that a renaming type's name may | |
3578 | have an ___XD suffix. It would be nice if this went away at some | |
3579 | point. | |
3580 | 2. We handle both the (old) purely type-based representation of | |
3581 | renamings and the (new) variable-based encoding. At some point, | |
3582 | it is devoutly to be hoped that the former goes away | |
3583 | (FIXME: hilfinger-2007-07-09). | |
3584 | 3. Subprogram renamings are not implemented, although the XRS | |
3585 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
3586 | ||
3587 | /* If SYM encodes a renaming, | |
3588 | ||
3589 | <renaming> renames <renamed entity>, | |
3590 | ||
3591 | sets *LEN to the length of the renamed entity's name, | |
3592 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
3593 | the string describing the subcomponent selected from the renamed | |
3594 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming | |
3595 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR | |
3596 | are undefined). Otherwise, returns a value indicating the category | |
3597 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
3598 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
3599 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
3600 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
3601 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
3602 | may be NULL, in which case they are not assigned. | |
3603 | ||
3604 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
3605 | ||
3606 | enum ada_renaming_category | |
3607 | ada_parse_renaming (struct symbol *sym, | |
3608 | const char **renamed_entity, int *len, | |
3609 | const char **renaming_expr) | |
3610 | { | |
3611 | enum ada_renaming_category kind; | |
3612 | const char *info; | |
3613 | const char *suffix; | |
3614 | ||
3615 | if (sym == NULL) | |
3616 | return ADA_NOT_RENAMING; | |
3617 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 3618 | { |
aeb5907d JB |
3619 | default: |
3620 | return ADA_NOT_RENAMING; | |
3621 | case LOC_TYPEDEF: | |
3622 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
3623 | renamed_entity, len, renaming_expr); | |
3624 | case LOC_LOCAL: | |
3625 | case LOC_STATIC: | |
3626 | case LOC_COMPUTED: | |
3627 | case LOC_OPTIMIZED_OUT: | |
3628 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
3629 | if (info == NULL) | |
3630 | return ADA_NOT_RENAMING; | |
3631 | switch (info[5]) | |
3632 | { | |
3633 | case '_': | |
3634 | kind = ADA_OBJECT_RENAMING; | |
3635 | info += 6; | |
3636 | break; | |
3637 | case 'E': | |
3638 | kind = ADA_EXCEPTION_RENAMING; | |
3639 | info += 7; | |
3640 | break; | |
3641 | case 'P': | |
3642 | kind = ADA_PACKAGE_RENAMING; | |
3643 | info += 7; | |
3644 | break; | |
3645 | case 'S': | |
3646 | kind = ADA_SUBPROGRAM_RENAMING; | |
3647 | info += 7; | |
3648 | break; | |
3649 | default: | |
3650 | return ADA_NOT_RENAMING; | |
3651 | } | |
14f9c5c9 | 3652 | } |
4c4b4cd2 | 3653 | |
aeb5907d JB |
3654 | if (renamed_entity != NULL) |
3655 | *renamed_entity = info; | |
3656 | suffix = strstr (info, "___XE"); | |
3657 | if (suffix == NULL || suffix == info) | |
3658 | return ADA_NOT_RENAMING; | |
3659 | if (len != NULL) | |
3660 | *len = strlen (info) - strlen (suffix); | |
3661 | suffix += 5; | |
3662 | if (renaming_expr != NULL) | |
3663 | *renaming_expr = suffix; | |
3664 | return kind; | |
3665 | } | |
3666 | ||
3667 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
3668 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
3669 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
3670 | ADA_NOT_RENAMING otherwise. */ | |
3671 | static enum ada_renaming_category | |
3672 | parse_old_style_renaming (struct type *type, | |
3673 | const char **renamed_entity, int *len, | |
3674 | const char **renaming_expr) | |
3675 | { | |
3676 | enum ada_renaming_category kind; | |
3677 | const char *name; | |
3678 | const char *info; | |
3679 | const char *suffix; | |
14f9c5c9 | 3680 | |
aeb5907d JB |
3681 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
3682 | || TYPE_NFIELDS (type) != 1) | |
3683 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 3684 | |
aeb5907d JB |
3685 | name = type_name_no_tag (type); |
3686 | if (name == NULL) | |
3687 | return ADA_NOT_RENAMING; | |
3688 | ||
3689 | name = strstr (name, "___XR"); | |
3690 | if (name == NULL) | |
3691 | return ADA_NOT_RENAMING; | |
3692 | switch (name[5]) | |
3693 | { | |
3694 | case '\0': | |
3695 | case '_': | |
3696 | kind = ADA_OBJECT_RENAMING; | |
3697 | break; | |
3698 | case 'E': | |
3699 | kind = ADA_EXCEPTION_RENAMING; | |
3700 | break; | |
3701 | case 'P': | |
3702 | kind = ADA_PACKAGE_RENAMING; | |
3703 | break; | |
3704 | case 'S': | |
3705 | kind = ADA_SUBPROGRAM_RENAMING; | |
3706 | break; | |
3707 | default: | |
3708 | return ADA_NOT_RENAMING; | |
3709 | } | |
14f9c5c9 | 3710 | |
aeb5907d JB |
3711 | info = TYPE_FIELD_NAME (type, 0); |
3712 | if (info == NULL) | |
3713 | return ADA_NOT_RENAMING; | |
3714 | if (renamed_entity != NULL) | |
3715 | *renamed_entity = info; | |
3716 | suffix = strstr (info, "___XE"); | |
3717 | if (renaming_expr != NULL) | |
3718 | *renaming_expr = suffix + 5; | |
3719 | if (suffix == NULL || suffix == info) | |
3720 | return ADA_NOT_RENAMING; | |
3721 | if (len != NULL) | |
3722 | *len = suffix - info; | |
3723 | return kind; | |
3724 | } | |
52ce6436 | 3725 | |
14f9c5c9 | 3726 | \f |
d2e4a39e | 3727 | |
4c4b4cd2 | 3728 | /* Evaluation: Function Calls */ |
14f9c5c9 | 3729 | |
4c4b4cd2 PH |
3730 | /* Return an lvalue containing the value VAL. This is the identity on |
3731 | lvalues, and otherwise has the side-effect of pushing a copy of VAL | |
3732 | on the stack, using and updating *SP as the stack pointer, and | |
42ae5230 | 3733 | returning an lvalue whose value_address points to the copy. */ |
14f9c5c9 | 3734 | |
d2e4a39e | 3735 | static struct value * |
4c4b4cd2 | 3736 | ensure_lval (struct value *val, CORE_ADDR *sp) |
14f9c5c9 | 3737 | { |
c3e5cd34 PH |
3738 | if (! VALUE_LVAL (val)) |
3739 | { | |
df407dfe | 3740 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
c3e5cd34 PH |
3741 | |
3742 | /* The following is taken from the structure-return code in | |
3743 | call_function_by_hand. FIXME: Therefore, some refactoring seems | |
3744 | indicated. */ | |
4d1e7dd1 | 3745 | if (gdbarch_inner_than (current_gdbarch, 1, 2)) |
c3e5cd34 | 3746 | { |
42ae5230 | 3747 | /* Stack grows downward. Align SP and value_address (val) after |
c3e5cd34 PH |
3748 | reserving sufficient space. */ |
3749 | *sp -= len; | |
3750 | if (gdbarch_frame_align_p (current_gdbarch)) | |
3751 | *sp = gdbarch_frame_align (current_gdbarch, *sp); | |
42ae5230 | 3752 | set_value_address (val, *sp); |
c3e5cd34 PH |
3753 | } |
3754 | else | |
3755 | { | |
3756 | /* Stack grows upward. Align the frame, allocate space, and | |
3757 | then again, re-align the frame. */ | |
3758 | if (gdbarch_frame_align_p (current_gdbarch)) | |
3759 | *sp = gdbarch_frame_align (current_gdbarch, *sp); | |
42ae5230 | 3760 | set_value_address (val, *sp); |
c3e5cd34 PH |
3761 | *sp += len; |
3762 | if (gdbarch_frame_align_p (current_gdbarch)) | |
3763 | *sp = gdbarch_frame_align (current_gdbarch, *sp); | |
3764 | } | |
a84a8a0d | 3765 | VALUE_LVAL (val) = lval_memory; |
14f9c5c9 | 3766 | |
42ae5230 | 3767 | write_memory (value_address (val), value_contents_raw (val), len); |
c3e5cd34 | 3768 | } |
14f9c5c9 AS |
3769 | |
3770 | return val; | |
3771 | } | |
3772 | ||
3773 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
3774 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
3775 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 3776 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 3777 | |
a93c0eb6 JB |
3778 | struct value * |
3779 | ada_convert_actual (struct value *actual, struct type *formal_type0, | |
3780 | CORE_ADDR *sp) | |
14f9c5c9 | 3781 | { |
df407dfe | 3782 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 3783 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
3784 | struct type *formal_target = |
3785 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 3786 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
3787 | struct type *actual_target = |
3788 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 3789 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 3790 | |
4c4b4cd2 | 3791 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 AS |
3792 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
3793 | return make_array_descriptor (formal_type, actual, sp); | |
a84a8a0d JB |
3794 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
3795 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 3796 | { |
a84a8a0d | 3797 | struct value *result; |
14f9c5c9 | 3798 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3799 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 3800 | result = desc_data (actual); |
14f9c5c9 | 3801 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
3802 | { |
3803 | if (VALUE_LVAL (actual) != lval_memory) | |
3804 | { | |
3805 | struct value *val; | |
df407dfe | 3806 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 3807 | val = allocate_value (actual_type); |
990a07ab | 3808 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 3809 | (char *) value_contents (actual), |
4c4b4cd2 PH |
3810 | TYPE_LENGTH (actual_type)); |
3811 | actual = ensure_lval (val, sp); | |
3812 | } | |
a84a8a0d | 3813 | result = value_addr (actual); |
4c4b4cd2 | 3814 | } |
a84a8a0d JB |
3815 | else |
3816 | return actual; | |
3817 | return value_cast_pointers (formal_type, result); | |
14f9c5c9 AS |
3818 | } |
3819 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
3820 | return ada_value_ind (actual); | |
3821 | ||
3822 | return actual; | |
3823 | } | |
3824 | ||
3825 | ||
4c4b4cd2 PH |
3826 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
3827 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 3828 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
3829 | to-descriptor type rather than a descriptor type), a struct value * |
3830 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 3831 | |
d2e4a39e AS |
3832 | static struct value * |
3833 | make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp) | |
14f9c5c9 | 3834 | { |
d2e4a39e AS |
3835 | struct type *bounds_type = desc_bounds_type (type); |
3836 | struct type *desc_type = desc_base_type (type); | |
3837 | struct value *descriptor = allocate_value (desc_type); | |
3838 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 3839 | int i; |
d2e4a39e | 3840 | |
df407dfe | 3841 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1) |
14f9c5c9 | 3842 | { |
0fd88904 | 3843 | modify_general_field (value_contents_writeable (bounds), |
1eea4ebd | 3844 | ada_array_bound (arr, i, 0), |
4c4b4cd2 PH |
3845 | desc_bound_bitpos (bounds_type, i, 0), |
3846 | desc_bound_bitsize (bounds_type, i, 0)); | |
0fd88904 | 3847 | modify_general_field (value_contents_writeable (bounds), |
1eea4ebd | 3848 | ada_array_bound (arr, i, 1), |
4c4b4cd2 PH |
3849 | desc_bound_bitpos (bounds_type, i, 1), |
3850 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 3851 | } |
d2e4a39e | 3852 | |
4c4b4cd2 | 3853 | bounds = ensure_lval (bounds, sp); |
d2e4a39e | 3854 | |
0fd88904 | 3855 | modify_general_field (value_contents_writeable (descriptor), |
42ae5230 | 3856 | value_address (ensure_lval (arr, sp)), |
76a01679 JB |
3857 | fat_pntr_data_bitpos (desc_type), |
3858 | fat_pntr_data_bitsize (desc_type)); | |
4c4b4cd2 | 3859 | |
0fd88904 | 3860 | modify_general_field (value_contents_writeable (descriptor), |
42ae5230 | 3861 | value_address (bounds), |
4c4b4cd2 PH |
3862 | fat_pntr_bounds_bitpos (desc_type), |
3863 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 3864 | |
4c4b4cd2 | 3865 | descriptor = ensure_lval (descriptor, sp); |
14f9c5c9 AS |
3866 | |
3867 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
3868 | return value_addr (descriptor); | |
3869 | else | |
3870 | return descriptor; | |
3871 | } | |
14f9c5c9 | 3872 | \f |
963a6417 PH |
3873 | /* Dummy definitions for an experimental caching module that is not |
3874 | * used in the public sources. */ | |
96d887e8 | 3875 | |
96d887e8 PH |
3876 | static int |
3877 | lookup_cached_symbol (const char *name, domain_enum namespace, | |
2570f2b7 | 3878 | struct symbol **sym, struct block **block) |
96d887e8 PH |
3879 | { |
3880 | return 0; | |
3881 | } | |
3882 | ||
3883 | static void | |
3884 | cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, | |
2570f2b7 | 3885 | struct block *block) |
96d887e8 PH |
3886 | { |
3887 | } | |
4c4b4cd2 PH |
3888 | \f |
3889 | /* Symbol Lookup */ | |
3890 | ||
3891 | /* Return the result of a standard (literal, C-like) lookup of NAME in | |
3892 | given DOMAIN, visible from lexical block BLOCK. */ | |
3893 | ||
3894 | static struct symbol * | |
3895 | standard_lookup (const char *name, const struct block *block, | |
3896 | domain_enum domain) | |
3897 | { | |
3898 | struct symbol *sym; | |
4c4b4cd2 | 3899 | |
2570f2b7 | 3900 | if (lookup_cached_symbol (name, domain, &sym, NULL)) |
4c4b4cd2 | 3901 | return sym; |
2570f2b7 UW |
3902 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
3903 | cache_symbol (name, domain, sym, block_found); | |
4c4b4cd2 PH |
3904 | return sym; |
3905 | } | |
3906 | ||
3907 | ||
3908 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
3909 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
3910 | since they contend in overloading in the same way. */ | |
3911 | static int | |
3912 | is_nonfunction (struct ada_symbol_info syms[], int n) | |
3913 | { | |
3914 | int i; | |
3915 | ||
3916 | for (i = 0; i < n; i += 1) | |
3917 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC | |
3918 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM | |
3919 | || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) | |
14f9c5c9 AS |
3920 | return 1; |
3921 | ||
3922 | return 0; | |
3923 | } | |
3924 | ||
3925 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 3926 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
3927 | |
3928 | static int | |
d2e4a39e | 3929 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 3930 | { |
d2e4a39e | 3931 | if (type0 == type1) |
14f9c5c9 | 3932 | return 1; |
d2e4a39e | 3933 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
3934 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
3935 | return 0; | |
d2e4a39e | 3936 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
3937 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
3938 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 3939 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 3940 | return 1; |
d2e4a39e | 3941 | |
14f9c5c9 AS |
3942 | return 0; |
3943 | } | |
3944 | ||
3945 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 3946 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
3947 | |
3948 | static int | |
d2e4a39e | 3949 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
3950 | { |
3951 | if (sym0 == sym1) | |
3952 | return 1; | |
176620f1 | 3953 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
3954 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
3955 | return 0; | |
3956 | ||
d2e4a39e | 3957 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
3958 | { |
3959 | case LOC_UNDEF: | |
3960 | return 1; | |
3961 | case LOC_TYPEDEF: | |
3962 | { | |
4c4b4cd2 PH |
3963 | struct type *type0 = SYMBOL_TYPE (sym0); |
3964 | struct type *type1 = SYMBOL_TYPE (sym1); | |
3965 | char *name0 = SYMBOL_LINKAGE_NAME (sym0); | |
3966 | char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
3967 | int len0 = strlen (name0); | |
3968 | return | |
3969 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
3970 | && (equiv_types (type0, type1) | |
3971 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
3972 | && strncmp (name1 + len0, "___XV", 5) == 0)); | |
14f9c5c9 AS |
3973 | } |
3974 | case LOC_CONST: | |
3975 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 3976 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
3977 | default: |
3978 | return 0; | |
14f9c5c9 AS |
3979 | } |
3980 | } | |
3981 | ||
4c4b4cd2 PH |
3982 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info |
3983 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ | |
14f9c5c9 AS |
3984 | |
3985 | static void | |
76a01679 JB |
3986 | add_defn_to_vec (struct obstack *obstackp, |
3987 | struct symbol *sym, | |
2570f2b7 | 3988 | struct block *block) |
14f9c5c9 AS |
3989 | { |
3990 | int i; | |
3991 | size_t tmp; | |
4c4b4cd2 | 3992 | struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 3993 | |
529cad9c PH |
3994 | /* Do not try to complete stub types, as the debugger is probably |
3995 | already scanning all symbols matching a certain name at the | |
3996 | time when this function is called. Trying to replace the stub | |
3997 | type by its associated full type will cause us to restart a scan | |
3998 | which may lead to an infinite recursion. Instead, the client | |
3999 | collecting the matching symbols will end up collecting several | |
4000 | matches, with at least one of them complete. It can then filter | |
4001 | out the stub ones if needed. */ | |
4002 | ||
4c4b4cd2 PH |
4003 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4004 | { | |
4005 | if (lesseq_defined_than (sym, prevDefns[i].sym)) | |
4006 | return; | |
4007 | else if (lesseq_defined_than (prevDefns[i].sym, sym)) | |
4008 | { | |
4009 | prevDefns[i].sym = sym; | |
4010 | prevDefns[i].block = block; | |
4c4b4cd2 | 4011 | return; |
76a01679 | 4012 | } |
4c4b4cd2 PH |
4013 | } |
4014 | ||
4015 | { | |
4016 | struct ada_symbol_info info; | |
4017 | ||
4018 | info.sym = sym; | |
4019 | info.block = block; | |
4c4b4cd2 PH |
4020 | obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); |
4021 | } | |
4022 | } | |
4023 | ||
4024 | /* Number of ada_symbol_info structures currently collected in | |
4025 | current vector in *OBSTACKP. */ | |
4026 | ||
76a01679 JB |
4027 | static int |
4028 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 PH |
4029 | { |
4030 | return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); | |
4031 | } | |
4032 | ||
4033 | /* Vector of ada_symbol_info structures currently collected in current | |
4034 | vector in *OBSTACKP. If FINISH, close off the vector and return | |
4035 | its final address. */ | |
4036 | ||
76a01679 | 4037 | static struct ada_symbol_info * |
4c4b4cd2 PH |
4038 | defns_collected (struct obstack *obstackp, int finish) |
4039 | { | |
4040 | if (finish) | |
4041 | return obstack_finish (obstackp); | |
4042 | else | |
4043 | return (struct ada_symbol_info *) obstack_base (obstackp); | |
4044 | } | |
4045 | ||
96d887e8 PH |
4046 | /* Look, in partial_symtab PST, for symbol NAME in given namespace. |
4047 | Check the global symbols if GLOBAL, the static symbols if not. | |
4048 | Do wild-card match if WILD. */ | |
4c4b4cd2 | 4049 | |
96d887e8 PH |
4050 | static struct partial_symbol * |
4051 | ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name, | |
4052 | int global, domain_enum namespace, int wild) | |
4c4b4cd2 | 4053 | { |
96d887e8 PH |
4054 | struct partial_symbol **start; |
4055 | int name_len = strlen (name); | |
4056 | int length = (global ? pst->n_global_syms : pst->n_static_syms); | |
4057 | int i; | |
4c4b4cd2 | 4058 | |
96d887e8 | 4059 | if (length == 0) |
4c4b4cd2 | 4060 | { |
96d887e8 | 4061 | return (NULL); |
4c4b4cd2 PH |
4062 | } |
4063 | ||
96d887e8 PH |
4064 | start = (global ? |
4065 | pst->objfile->global_psymbols.list + pst->globals_offset : | |
4066 | pst->objfile->static_psymbols.list + pst->statics_offset); | |
4c4b4cd2 | 4067 | |
96d887e8 | 4068 | if (wild) |
4c4b4cd2 | 4069 | { |
96d887e8 PH |
4070 | for (i = 0; i < length; i += 1) |
4071 | { | |
4072 | struct partial_symbol *psym = start[i]; | |
4c4b4cd2 | 4073 | |
5eeb2539 AR |
4074 | if (symbol_matches_domain (SYMBOL_LANGUAGE (psym), |
4075 | SYMBOL_DOMAIN (psym), namespace) | |
1265e4aa | 4076 | && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym))) |
96d887e8 PH |
4077 | return psym; |
4078 | } | |
4079 | return NULL; | |
4c4b4cd2 | 4080 | } |
96d887e8 PH |
4081 | else |
4082 | { | |
4083 | if (global) | |
4084 | { | |
4085 | int U; | |
4086 | i = 0; | |
4087 | U = length - 1; | |
4088 | while (U - i > 4) | |
4089 | { | |
4090 | int M = (U + i) >> 1; | |
4091 | struct partial_symbol *psym = start[M]; | |
4092 | if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0]) | |
4093 | i = M + 1; | |
4094 | else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0]) | |
4095 | U = M - 1; | |
4096 | else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0) | |
4097 | i = M + 1; | |
4098 | else | |
4099 | U = M; | |
4100 | } | |
4101 | } | |
4102 | else | |
4103 | i = 0; | |
4c4b4cd2 | 4104 | |
96d887e8 PH |
4105 | while (i < length) |
4106 | { | |
4107 | struct partial_symbol *psym = start[i]; | |
4c4b4cd2 | 4108 | |
5eeb2539 AR |
4109 | if (symbol_matches_domain (SYMBOL_LANGUAGE (psym), |
4110 | SYMBOL_DOMAIN (psym), namespace)) | |
96d887e8 PH |
4111 | { |
4112 | int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len); | |
4c4b4cd2 | 4113 | |
96d887e8 PH |
4114 | if (cmp < 0) |
4115 | { | |
4116 | if (global) | |
4117 | break; | |
4118 | } | |
4119 | else if (cmp == 0 | |
4120 | && is_name_suffix (SYMBOL_LINKAGE_NAME (psym) | |
76a01679 | 4121 | + name_len)) |
96d887e8 PH |
4122 | return psym; |
4123 | } | |
4124 | i += 1; | |
4125 | } | |
4c4b4cd2 | 4126 | |
96d887e8 PH |
4127 | if (global) |
4128 | { | |
4129 | int U; | |
4130 | i = 0; | |
4131 | U = length - 1; | |
4132 | while (U - i > 4) | |
4133 | { | |
4134 | int M = (U + i) >> 1; | |
4135 | struct partial_symbol *psym = start[M]; | |
4136 | if (SYMBOL_LINKAGE_NAME (psym)[0] < '_') | |
4137 | i = M + 1; | |
4138 | else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_') | |
4139 | U = M - 1; | |
4140 | else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0) | |
4141 | i = M + 1; | |
4142 | else | |
4143 | U = M; | |
4144 | } | |
4145 | } | |
4146 | else | |
4147 | i = 0; | |
4c4b4cd2 | 4148 | |
96d887e8 PH |
4149 | while (i < length) |
4150 | { | |
4151 | struct partial_symbol *psym = start[i]; | |
4c4b4cd2 | 4152 | |
5eeb2539 AR |
4153 | if (symbol_matches_domain (SYMBOL_LANGUAGE (psym), |
4154 | SYMBOL_DOMAIN (psym), namespace)) | |
96d887e8 PH |
4155 | { |
4156 | int cmp; | |
4c4b4cd2 | 4157 | |
96d887e8 PH |
4158 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0]; |
4159 | if (cmp == 0) | |
4160 | { | |
4161 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5); | |
4162 | if (cmp == 0) | |
4163 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5, | |
76a01679 | 4164 | name_len); |
96d887e8 | 4165 | } |
4c4b4cd2 | 4166 | |
96d887e8 PH |
4167 | if (cmp < 0) |
4168 | { | |
4169 | if (global) | |
4170 | break; | |
4171 | } | |
4172 | else if (cmp == 0 | |
4173 | && is_name_suffix (SYMBOL_LINKAGE_NAME (psym) | |
76a01679 | 4174 | + name_len + 5)) |
96d887e8 PH |
4175 | return psym; |
4176 | } | |
4177 | i += 1; | |
4178 | } | |
4179 | } | |
4180 | return NULL; | |
4c4b4cd2 PH |
4181 | } |
4182 | ||
96d887e8 PH |
4183 | /* Return a minimal symbol matching NAME according to Ada decoding |
4184 | rules. Returns NULL if there is no such minimal symbol. Names | |
4185 | prefixed with "standard__" are handled specially: "standard__" is | |
4186 | first stripped off, and only static and global symbols are searched. */ | |
4c4b4cd2 | 4187 | |
96d887e8 PH |
4188 | struct minimal_symbol * |
4189 | ada_lookup_simple_minsym (const char *name) | |
4c4b4cd2 | 4190 | { |
4c4b4cd2 | 4191 | struct objfile *objfile; |
96d887e8 PH |
4192 | struct minimal_symbol *msymbol; |
4193 | int wild_match; | |
4c4b4cd2 | 4194 | |
96d887e8 | 4195 | if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) |
4c4b4cd2 | 4196 | { |
96d887e8 | 4197 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4198 | wild_match = 0; |
4c4b4cd2 PH |
4199 | } |
4200 | else | |
96d887e8 | 4201 | wild_match = (strstr (name, "__") == NULL); |
4c4b4cd2 | 4202 | |
96d887e8 PH |
4203 | ALL_MSYMBOLS (objfile, msymbol) |
4204 | { | |
4205 | if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match) | |
4206 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) | |
4207 | return msymbol; | |
4208 | } | |
4c4b4cd2 | 4209 | |
96d887e8 PH |
4210 | return NULL; |
4211 | } | |
4c4b4cd2 | 4212 | |
96d887e8 PH |
4213 | /* For all subprograms that statically enclose the subprogram of the |
4214 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4215 | and their blocks to the list of data in OBSTACKP, as for | |
4216 | ada_add_block_symbols (q.v.). If WILD, treat as NAME with a | |
4217 | wildcard prefix. */ | |
4c4b4cd2 | 4218 | |
96d887e8 PH |
4219 | static void |
4220 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
76a01679 | 4221 | const char *name, domain_enum namespace, |
96d887e8 PH |
4222 | int wild_match) |
4223 | { | |
96d887e8 | 4224 | } |
14f9c5c9 | 4225 | |
96d887e8 PH |
4226 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4227 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4228 | |
96d887e8 PH |
4229 | static int |
4230 | is_nondebugging_type (struct type *type) | |
4231 | { | |
4232 | char *name = ada_type_name (type); | |
4233 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); | |
4234 | } | |
4c4b4cd2 | 4235 | |
96d887e8 PH |
4236 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4237 | duplicate other symbols in the list (The only case I know of where | |
4238 | this happens is when object files containing stabs-in-ecoff are | |
4239 | linked with files containing ordinary ecoff debugging symbols (or no | |
4240 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4241 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4242 | |
96d887e8 PH |
4243 | static int |
4244 | remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) | |
4245 | { | |
4246 | int i, j; | |
4c4b4cd2 | 4247 | |
96d887e8 PH |
4248 | i = 0; |
4249 | while (i < nsyms) | |
4250 | { | |
339c13b6 JB |
4251 | int remove = 0; |
4252 | ||
4253 | /* If two symbols have the same name and one of them is a stub type, | |
4254 | the get rid of the stub. */ | |
4255 | ||
4256 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym)) | |
4257 | && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL) | |
4258 | { | |
4259 | for (j = 0; j < nsyms; j++) | |
4260 | { | |
4261 | if (j != i | |
4262 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym)) | |
4263 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4264 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
4265 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0) | |
4266 | remove = 1; | |
4267 | } | |
4268 | } | |
4269 | ||
4270 | /* Two symbols with the same name, same class and same address | |
4271 | should be identical. */ | |
4272 | ||
4273 | else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL | |
96d887e8 PH |
4274 | && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC |
4275 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) | |
4276 | { | |
4277 | for (j = 0; j < nsyms; j += 1) | |
4278 | { | |
4279 | if (i != j | |
4280 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4281 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
76a01679 | 4282 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 |
96d887e8 PH |
4283 | && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) |
4284 | && SYMBOL_VALUE_ADDRESS (syms[i].sym) | |
4285 | == SYMBOL_VALUE_ADDRESS (syms[j].sym)) | |
339c13b6 | 4286 | remove = 1; |
4c4b4cd2 | 4287 | } |
4c4b4cd2 | 4288 | } |
339c13b6 JB |
4289 | |
4290 | if (remove) | |
4291 | { | |
4292 | for (j = i + 1; j < nsyms; j += 1) | |
4293 | syms[j - 1] = syms[j]; | |
4294 | nsyms -= 1; | |
4295 | } | |
4296 | ||
96d887e8 | 4297 | i += 1; |
14f9c5c9 | 4298 | } |
96d887e8 | 4299 | return nsyms; |
14f9c5c9 AS |
4300 | } |
4301 | ||
96d887e8 PH |
4302 | /* Given a type that corresponds to a renaming entity, use the type name |
4303 | to extract the scope (package name or function name, fully qualified, | |
4304 | and following the GNAT encoding convention) where this renaming has been | |
4305 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 4306 | |
96d887e8 PH |
4307 | static char * |
4308 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 4309 | { |
96d887e8 PH |
4310 | /* The renaming types adhere to the following convention: |
4311 | <scope>__<rename>___<XR extension>. | |
4312 | So, to extract the scope, we search for the "___XR" extension, | |
4313 | and then backtrack until we find the first "__". */ | |
76a01679 | 4314 | |
96d887e8 PH |
4315 | const char *name = type_name_no_tag (renaming_type); |
4316 | char *suffix = strstr (name, "___XR"); | |
4317 | char *last; | |
4318 | int scope_len; | |
4319 | char *scope; | |
14f9c5c9 | 4320 | |
96d887e8 PH |
4321 | /* Now, backtrack a bit until we find the first "__". Start looking |
4322 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 4323 | |
96d887e8 PH |
4324 | for (last = suffix - 3; last > name; last--) |
4325 | if (last[0] == '_' && last[1] == '_') | |
4326 | break; | |
76a01679 | 4327 | |
96d887e8 | 4328 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 4329 | |
96d887e8 PH |
4330 | scope_len = last - name; |
4331 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 4332 | |
96d887e8 PH |
4333 | strncpy (scope, name, scope_len); |
4334 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 4335 | |
96d887e8 | 4336 | return scope; |
4c4b4cd2 PH |
4337 | } |
4338 | ||
96d887e8 | 4339 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 4340 | |
96d887e8 PH |
4341 | static int |
4342 | is_package_name (const char *name) | |
4c4b4cd2 | 4343 | { |
96d887e8 PH |
4344 | /* Here, We take advantage of the fact that no symbols are generated |
4345 | for packages, while symbols are generated for each function. | |
4346 | So the condition for NAME represent a package becomes equivalent | |
4347 | to NAME not existing in our list of symbols. There is only one | |
4348 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 4349 | |
96d887e8 | 4350 | char *fun_name; |
76a01679 | 4351 | |
96d887e8 PH |
4352 | /* If it is a function that has not been defined at library level, |
4353 | then we should be able to look it up in the symbols. */ | |
4354 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
4355 | return 0; | |
14f9c5c9 | 4356 | |
96d887e8 PH |
4357 | /* Library-level function names start with "_ada_". See if function |
4358 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 4359 | |
96d887e8 | 4360 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 4361 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
4362 | if (strstr (name, "__") != NULL) |
4363 | return 0; | |
4c4b4cd2 | 4364 | |
b435e160 | 4365 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 4366 | |
96d887e8 PH |
4367 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
4368 | } | |
14f9c5c9 | 4369 | |
96d887e8 | 4370 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 4371 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 4372 | |
96d887e8 | 4373 | static int |
aeb5907d | 4374 | old_renaming_is_invisible (const struct symbol *sym, char *function_name) |
96d887e8 | 4375 | { |
aeb5907d JB |
4376 | char *scope; |
4377 | ||
4378 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
4379 | return 0; | |
4380 | ||
4381 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
d2e4a39e | 4382 | |
96d887e8 | 4383 | make_cleanup (xfree, scope); |
14f9c5c9 | 4384 | |
96d887e8 PH |
4385 | /* If the rename has been defined in a package, then it is visible. */ |
4386 | if (is_package_name (scope)) | |
aeb5907d | 4387 | return 0; |
14f9c5c9 | 4388 | |
96d887e8 PH |
4389 | /* Check that the rename is in the current function scope by checking |
4390 | that its name starts with SCOPE. */ | |
76a01679 | 4391 | |
96d887e8 PH |
4392 | /* If the function name starts with "_ada_", it means that it is |
4393 | a library-level function. Strip this prefix before doing the | |
4394 | comparison, as the encoding for the renaming does not contain | |
4395 | this prefix. */ | |
4396 | if (strncmp (function_name, "_ada_", 5) == 0) | |
4397 | function_name += 5; | |
f26caa11 | 4398 | |
aeb5907d | 4399 | return (strncmp (function_name, scope, strlen (scope)) != 0); |
f26caa11 PH |
4400 | } |
4401 | ||
aeb5907d JB |
4402 | /* Remove entries from SYMS that corresponds to a renaming entity that |
4403 | is not visible from the function associated with CURRENT_BLOCK or | |
4404 | that is superfluous due to the presence of more specific renaming | |
4405 | information. Places surviving symbols in the initial entries of | |
4406 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
4407 | |
4408 | Rationale: | |
aeb5907d JB |
4409 | First, in cases where an object renaming is implemented as a |
4410 | reference variable, GNAT may produce both the actual reference | |
4411 | variable and the renaming encoding. In this case, we discard the | |
4412 | latter. | |
4413 | ||
4414 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
4415 | entity. Unfortunately, STABS currently does not support the definition |
4416 | of types that are local to a given lexical block, so all renamings types | |
4417 | are emitted at library level. As a consequence, if an application | |
4418 | contains two renaming entities using the same name, and a user tries to | |
4419 | print the value of one of these entities, the result of the ada symbol | |
4420 | lookup will also contain the wrong renaming type. | |
f26caa11 | 4421 | |
96d887e8 PH |
4422 | This function partially covers for this limitation by attempting to |
4423 | remove from the SYMS list renaming symbols that should be visible | |
4424 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
4425 | method with the current information available. The implementation | |
4426 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
4427 | ||
4428 | - When the user tries to print a rename in a function while there | |
4429 | is another rename entity defined in a package: Normally, the | |
4430 | rename in the function has precedence over the rename in the | |
4431 | package, so the latter should be removed from the list. This is | |
4432 | currently not the case. | |
4433 | ||
4434 | - This function will incorrectly remove valid renames if | |
4435 | the CURRENT_BLOCK corresponds to a function which symbol name | |
4436 | has been changed by an "Export" pragma. As a consequence, | |
4437 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 4438 | |
14f9c5c9 | 4439 | static int |
aeb5907d JB |
4440 | remove_irrelevant_renamings (struct ada_symbol_info *syms, |
4441 | int nsyms, const struct block *current_block) | |
4c4b4cd2 PH |
4442 | { |
4443 | struct symbol *current_function; | |
4444 | char *current_function_name; | |
4445 | int i; | |
aeb5907d JB |
4446 | int is_new_style_renaming; |
4447 | ||
4448 | /* If there is both a renaming foo___XR... encoded as a variable and | |
4449 | a simple variable foo in the same block, discard the latter. | |
4450 | First, zero out such symbols, then compress. */ | |
4451 | is_new_style_renaming = 0; | |
4452 | for (i = 0; i < nsyms; i += 1) | |
4453 | { | |
4454 | struct symbol *sym = syms[i].sym; | |
4455 | struct block *block = syms[i].block; | |
4456 | const char *name; | |
4457 | const char *suffix; | |
4458 | ||
4459 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4460 | continue; | |
4461 | name = SYMBOL_LINKAGE_NAME (sym); | |
4462 | suffix = strstr (name, "___XR"); | |
4463 | ||
4464 | if (suffix != NULL) | |
4465 | { | |
4466 | int name_len = suffix - name; | |
4467 | int j; | |
4468 | is_new_style_renaming = 1; | |
4469 | for (j = 0; j < nsyms; j += 1) | |
4470 | if (i != j && syms[j].sym != NULL | |
4471 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), | |
4472 | name_len) == 0 | |
4473 | && block == syms[j].block) | |
4474 | syms[j].sym = NULL; | |
4475 | } | |
4476 | } | |
4477 | if (is_new_style_renaming) | |
4478 | { | |
4479 | int j, k; | |
4480 | ||
4481 | for (j = k = 0; j < nsyms; j += 1) | |
4482 | if (syms[j].sym != NULL) | |
4483 | { | |
4484 | syms[k] = syms[j]; | |
4485 | k += 1; | |
4486 | } | |
4487 | return k; | |
4488 | } | |
4c4b4cd2 PH |
4489 | |
4490 | /* Extract the function name associated to CURRENT_BLOCK. | |
4491 | Abort if unable to do so. */ | |
76a01679 | 4492 | |
4c4b4cd2 PH |
4493 | if (current_block == NULL) |
4494 | return nsyms; | |
76a01679 | 4495 | |
7f0df278 | 4496 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
4497 | if (current_function == NULL) |
4498 | return nsyms; | |
4499 | ||
4500 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
4501 | if (current_function_name == NULL) | |
4502 | return nsyms; | |
4503 | ||
4504 | /* Check each of the symbols, and remove it from the list if it is | |
4505 | a type corresponding to a renaming that is out of the scope of | |
4506 | the current block. */ | |
4507 | ||
4508 | i = 0; | |
4509 | while (i < nsyms) | |
4510 | { | |
aeb5907d JB |
4511 | if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) |
4512 | == ADA_OBJECT_RENAMING | |
4513 | && old_renaming_is_invisible (syms[i].sym, current_function_name)) | |
4c4b4cd2 PH |
4514 | { |
4515 | int j; | |
aeb5907d | 4516 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 4517 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
4518 | nsyms -= 1; |
4519 | } | |
4520 | else | |
4521 | i += 1; | |
4522 | } | |
4523 | ||
4524 | return nsyms; | |
4525 | } | |
4526 | ||
339c13b6 JB |
4527 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
4528 | whose name and domain match NAME and DOMAIN respectively. | |
4529 | If no match was found, then extend the search to "enclosing" | |
4530 | routines (in other words, if we're inside a nested function, | |
4531 | search the symbols defined inside the enclosing functions). | |
4532 | ||
4533 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
4534 | ||
4535 | static void | |
4536 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
4537 | struct block *block, domain_enum domain, | |
4538 | int wild_match) | |
4539 | { | |
4540 | int block_depth = 0; | |
4541 | ||
4542 | while (block != NULL) | |
4543 | { | |
4544 | block_depth += 1; | |
4545 | ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match); | |
4546 | ||
4547 | /* If we found a non-function match, assume that's the one. */ | |
4548 | if (is_nonfunction (defns_collected (obstackp, 0), | |
4549 | num_defns_collected (obstackp))) | |
4550 | return; | |
4551 | ||
4552 | block = BLOCK_SUPERBLOCK (block); | |
4553 | } | |
4554 | ||
4555 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
4556 | enclosing subprogram. */ | |
4557 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
4558 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match); | |
4559 | } | |
4560 | ||
4561 | /* Add to OBSTACKP all non-local symbols whose name and domain match | |
4562 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
4563 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
4564 | ||
4565 | static void | |
4566 | ada_add_non_local_symbols (struct obstack *obstackp, const char *name, | |
4567 | domain_enum domain, int global, | |
4568 | int wild_match) | |
4569 | { | |
4570 | struct objfile *objfile; | |
4571 | struct partial_symtab *ps; | |
4572 | ||
4573 | ALL_PSYMTABS (objfile, ps) | |
4574 | { | |
4575 | QUIT; | |
4576 | if (ps->readin | |
4577 | || ada_lookup_partial_symbol (ps, name, global, domain, wild_match)) | |
4578 | { | |
4579 | struct symtab *s = PSYMTAB_TO_SYMTAB (ps); | |
4580 | const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK; | |
4581 | ||
4582 | if (s == NULL || !s->primary) | |
4583 | continue; | |
4584 | ada_add_block_symbols (obstackp, | |
4585 | BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind), | |
4586 | name, domain, objfile, wild_match); | |
4587 | } | |
4588 | } | |
4589 | } | |
4590 | ||
4c4b4cd2 PH |
4591 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing |
4592 | scope and in global scopes, returning the number of matches. Sets | |
6c9353d3 | 4593 | *RESULTS to point to a vector of (SYM,BLOCK) tuples, |
4c4b4cd2 PH |
4594 | indicating the symbols found and the blocks and symbol tables (if |
4595 | any) in which they were found. This vector are transient---good only to | |
4596 | the next call of ada_lookup_symbol_list. Any non-function/non-enumeral | |
4597 | symbol match within the nest of blocks whose innermost member is BLOCK0, | |
4598 | is the one match returned (no other matches in that or | |
4599 | enclosing blocks is returned). If there are any matches in or | |
4600 | surrounding BLOCK0, then these alone are returned. Otherwise, the | |
4601 | search extends to global and file-scope (static) symbol tables. | |
4602 | Names prefixed with "standard__" are handled specially: "standard__" | |
4603 | is first stripped off, and only static and global symbols are searched. */ | |
14f9c5c9 AS |
4604 | |
4605 | int | |
4c4b4cd2 | 4606 | ada_lookup_symbol_list (const char *name0, const struct block *block0, |
76a01679 JB |
4607 | domain_enum namespace, |
4608 | struct ada_symbol_info **results) | |
14f9c5c9 AS |
4609 | { |
4610 | struct symbol *sym; | |
14f9c5c9 | 4611 | struct block *block; |
4c4b4cd2 | 4612 | const char *name; |
4c4b4cd2 | 4613 | int wild_match; |
14f9c5c9 | 4614 | int cacheIfUnique; |
4c4b4cd2 | 4615 | int ndefns; |
14f9c5c9 | 4616 | |
4c4b4cd2 PH |
4617 | obstack_free (&symbol_list_obstack, NULL); |
4618 | obstack_init (&symbol_list_obstack); | |
14f9c5c9 | 4619 | |
14f9c5c9 AS |
4620 | cacheIfUnique = 0; |
4621 | ||
4622 | /* Search specified block and its superiors. */ | |
4623 | ||
4c4b4cd2 PH |
4624 | wild_match = (strstr (name0, "__") == NULL); |
4625 | name = name0; | |
76a01679 JB |
4626 | block = (struct block *) block0; /* FIXME: No cast ought to be |
4627 | needed, but adding const will | |
4628 | have a cascade effect. */ | |
339c13b6 JB |
4629 | |
4630 | /* Special case: If the user specifies a symbol name inside package | |
4631 | Standard, do a non-wild matching of the symbol name without | |
4632 | the "standard__" prefix. This was primarily introduced in order | |
4633 | to allow the user to specifically access the standard exceptions | |
4634 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4635 | is ambiguous (due to the user defining its own Constraint_Error | |
4636 | entity inside its program). */ | |
4c4b4cd2 PH |
4637 | if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) |
4638 | { | |
4639 | wild_match = 0; | |
4640 | block = NULL; | |
4641 | name = name0 + sizeof ("standard__") - 1; | |
4642 | } | |
4643 | ||
339c13b6 | 4644 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 4645 | |
339c13b6 JB |
4646 | ada_add_local_symbols (&symbol_list_obstack, name, block, namespace, |
4647 | wild_match); | |
4c4b4cd2 | 4648 | if (num_defns_collected (&symbol_list_obstack) > 0) |
14f9c5c9 | 4649 | goto done; |
d2e4a39e | 4650 | |
339c13b6 JB |
4651 | /* No non-global symbols found. Check our cache to see if we have |
4652 | already performed this search before. If we have, then return | |
4653 | the same result. */ | |
4654 | ||
14f9c5c9 | 4655 | cacheIfUnique = 1; |
2570f2b7 | 4656 | if (lookup_cached_symbol (name0, namespace, &sym, &block)) |
4c4b4cd2 PH |
4657 | { |
4658 | if (sym != NULL) | |
2570f2b7 | 4659 | add_defn_to_vec (&symbol_list_obstack, sym, block); |
4c4b4cd2 PH |
4660 | goto done; |
4661 | } | |
14f9c5c9 | 4662 | |
339c13b6 JB |
4663 | /* Search symbols from all global blocks. */ |
4664 | ||
4665 | ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1, | |
4666 | wild_match); | |
d2e4a39e | 4667 | |
4c4b4cd2 | 4668 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 4669 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 4670 | |
4c4b4cd2 | 4671 | if (num_defns_collected (&symbol_list_obstack) == 0) |
339c13b6 JB |
4672 | ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0, |
4673 | wild_match); | |
14f9c5c9 | 4674 | |
4c4b4cd2 PH |
4675 | done: |
4676 | ndefns = num_defns_collected (&symbol_list_obstack); | |
4677 | *results = defns_collected (&symbol_list_obstack, 1); | |
4678 | ||
4679 | ndefns = remove_extra_symbols (*results, ndefns); | |
4680 | ||
d2e4a39e | 4681 | if (ndefns == 0) |
2570f2b7 | 4682 | cache_symbol (name0, namespace, NULL, NULL); |
14f9c5c9 | 4683 | |
4c4b4cd2 | 4684 | if (ndefns == 1 && cacheIfUnique) |
2570f2b7 | 4685 | cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); |
14f9c5c9 | 4686 | |
aeb5907d | 4687 | ndefns = remove_irrelevant_renamings (*results, ndefns, block0); |
14f9c5c9 | 4688 | |
14f9c5c9 AS |
4689 | return ndefns; |
4690 | } | |
4691 | ||
d2e4a39e | 4692 | struct symbol * |
aeb5907d | 4693 | ada_lookup_encoded_symbol (const char *name, const struct block *block0, |
21b556f4 | 4694 | domain_enum namespace, struct block **block_found) |
14f9c5c9 | 4695 | { |
4c4b4cd2 | 4696 | struct ada_symbol_info *candidates; |
14f9c5c9 AS |
4697 | int n_candidates; |
4698 | ||
aeb5907d | 4699 | n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates); |
14f9c5c9 AS |
4700 | |
4701 | if (n_candidates == 0) | |
4702 | return NULL; | |
4c4b4cd2 | 4703 | |
aeb5907d JB |
4704 | if (block_found != NULL) |
4705 | *block_found = candidates[0].block; | |
4c4b4cd2 | 4706 | |
21b556f4 | 4707 | return fixup_symbol_section (candidates[0].sym, NULL); |
aeb5907d JB |
4708 | } |
4709 | ||
4710 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
4711 | scope and in global scopes, or NULL if none. NAME is folded and | |
4712 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
4713 | choosing the first symbol if there are multiple choices. | |
4714 | *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol | |
4715 | table in which the symbol was found (in both cases, these | |
4716 | assignments occur only if the pointers are non-null). */ | |
4717 | struct symbol * | |
4718 | ada_lookup_symbol (const char *name, const struct block *block0, | |
21b556f4 | 4719 | domain_enum namespace, int *is_a_field_of_this) |
aeb5907d JB |
4720 | { |
4721 | if (is_a_field_of_this != NULL) | |
4722 | *is_a_field_of_this = 0; | |
4723 | ||
4724 | return | |
4725 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), | |
21b556f4 | 4726 | block0, namespace, NULL); |
4c4b4cd2 | 4727 | } |
14f9c5c9 | 4728 | |
4c4b4cd2 PH |
4729 | static struct symbol * |
4730 | ada_lookup_symbol_nonlocal (const char *name, | |
76a01679 JB |
4731 | const char *linkage_name, |
4732 | const struct block *block, | |
21b556f4 | 4733 | const domain_enum domain) |
4c4b4cd2 PH |
4734 | { |
4735 | if (linkage_name == NULL) | |
4736 | linkage_name = name; | |
76a01679 | 4737 | return ada_lookup_symbol (linkage_name, block_static_block (block), domain, |
21b556f4 | 4738 | NULL); |
14f9c5c9 AS |
4739 | } |
4740 | ||
4741 | ||
4c4b4cd2 PH |
4742 | /* True iff STR is a possible encoded suffix of a normal Ada name |
4743 | that is to be ignored for matching purposes. Suffixes of parallel | |
4744 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 4745 | are given by any of the regular expressions: |
4c4b4cd2 | 4746 | |
babe1480 JB |
4747 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
4748 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
4749 | _E[0-9]+[bs]$ [protected object entry suffixes] | |
61ee279c | 4750 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
4751 | |
4752 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
4753 | match is performed. This sequence is used to differentiate homonyms, | |
4754 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 4755 | |
14f9c5c9 | 4756 | static int |
d2e4a39e | 4757 | is_name_suffix (const char *str) |
14f9c5c9 AS |
4758 | { |
4759 | int k; | |
4c4b4cd2 PH |
4760 | const char *matching; |
4761 | const int len = strlen (str); | |
4762 | ||
babe1480 JB |
4763 | /* Skip optional leading __[0-9]+. */ |
4764 | ||
4c4b4cd2 PH |
4765 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
4766 | { | |
babe1480 JB |
4767 | str += 3; |
4768 | while (isdigit (str[0])) | |
4769 | str += 1; | |
4c4b4cd2 | 4770 | } |
babe1480 JB |
4771 | |
4772 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 4773 | |
babe1480 | 4774 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 4775 | { |
babe1480 | 4776 | matching = str + 1; |
4c4b4cd2 PH |
4777 | while (isdigit (matching[0])) |
4778 | matching += 1; | |
4779 | if (matching[0] == '\0') | |
4780 | return 1; | |
4781 | } | |
4782 | ||
4783 | /* ___[0-9]+ */ | |
babe1480 | 4784 | |
4c4b4cd2 PH |
4785 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
4786 | { | |
4787 | matching = str + 3; | |
4788 | while (isdigit (matching[0])) | |
4789 | matching += 1; | |
4790 | if (matching[0] == '\0') | |
4791 | return 1; | |
4792 | } | |
4793 | ||
529cad9c PH |
4794 | #if 0 |
4795 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
4796 | with a N at the end. Unfortunately, the compiler uses the same | |
4797 | convention for other internal types it creates. So treating | |
4798 | all entity names that end with an "N" as a name suffix causes | |
4799 | some regressions. For instance, consider the case of an enumerated | |
4800 | type. To support the 'Image attribute, it creates an array whose | |
4801 | name ends with N. | |
4802 | Having a single character like this as a suffix carrying some | |
4803 | information is a bit risky. Perhaps we should change the encoding | |
4804 | to be something like "_N" instead. In the meantime, do not do | |
4805 | the following check. */ | |
4806 | /* Protected Object Subprograms */ | |
4807 | if (len == 1 && str [0] == 'N') | |
4808 | return 1; | |
4809 | #endif | |
4810 | ||
4811 | /* _E[0-9]+[bs]$ */ | |
4812 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
4813 | { | |
4814 | matching = str + 3; | |
4815 | while (isdigit (matching[0])) | |
4816 | matching += 1; | |
4817 | if ((matching[0] == 'b' || matching[0] == 's') | |
4818 | && matching [1] == '\0') | |
4819 | return 1; | |
4820 | } | |
4821 | ||
4c4b4cd2 PH |
4822 | /* ??? We should not modify STR directly, as we are doing below. This |
4823 | is fine in this case, but may become problematic later if we find | |
4824 | that this alternative did not work, and want to try matching | |
4825 | another one from the begining of STR. Since we modified it, we | |
4826 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
4827 | if (str[0] == 'X') |
4828 | { | |
4829 | str += 1; | |
d2e4a39e | 4830 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
4831 | { |
4832 | if (str[0] != 'n' && str[0] != 'b') | |
4833 | return 0; | |
4834 | str += 1; | |
4835 | } | |
14f9c5c9 | 4836 | } |
babe1480 | 4837 | |
14f9c5c9 AS |
4838 | if (str[0] == '\000') |
4839 | return 1; | |
babe1480 | 4840 | |
d2e4a39e | 4841 | if (str[0] == '_') |
14f9c5c9 AS |
4842 | { |
4843 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 4844 | return 0; |
d2e4a39e | 4845 | if (str[2] == '_') |
4c4b4cd2 | 4846 | { |
61ee279c PH |
4847 | if (strcmp (str + 3, "JM") == 0) |
4848 | return 1; | |
4849 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
4850 | the LJM suffix in favor of the JM one. But we will | |
4851 | still accept LJM as a valid suffix for a reasonable | |
4852 | amount of time, just to allow ourselves to debug programs | |
4853 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
4854 | if (strcmp (str + 3, "LJM") == 0) |
4855 | return 1; | |
4856 | if (str[3] != 'X') | |
4857 | return 0; | |
1265e4aa JB |
4858 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
4859 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
4860 | return 1; |
4861 | if (str[4] == 'R' && str[5] != 'T') | |
4862 | return 1; | |
4863 | return 0; | |
4864 | } | |
4865 | if (!isdigit (str[2])) | |
4866 | return 0; | |
4867 | for (k = 3; str[k] != '\0'; k += 1) | |
4868 | if (!isdigit (str[k]) && str[k] != '_') | |
4869 | return 0; | |
14f9c5c9 AS |
4870 | return 1; |
4871 | } | |
4c4b4cd2 | 4872 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 4873 | { |
4c4b4cd2 PH |
4874 | for (k = 2; str[k] != '\0'; k += 1) |
4875 | if (!isdigit (str[k]) && str[k] != '_') | |
4876 | return 0; | |
14f9c5c9 AS |
4877 | return 1; |
4878 | } | |
4879 | return 0; | |
4880 | } | |
d2e4a39e | 4881 | |
aeb5907d JB |
4882 | /* Return non-zero if the string starting at NAME and ending before |
4883 | NAME_END contains no capital letters. */ | |
529cad9c PH |
4884 | |
4885 | static int | |
4886 | is_valid_name_for_wild_match (const char *name0) | |
4887 | { | |
4888 | const char *decoded_name = ada_decode (name0); | |
4889 | int i; | |
4890 | ||
5823c3ef JB |
4891 | /* If the decoded name starts with an angle bracket, it means that |
4892 | NAME0 does not follow the GNAT encoding format. It should then | |
4893 | not be allowed as a possible wild match. */ | |
4894 | if (decoded_name[0] == '<') | |
4895 | return 0; | |
4896 | ||
529cad9c PH |
4897 | for (i=0; decoded_name[i] != '\0'; i++) |
4898 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
4899 | return 0; | |
4900 | ||
4901 | return 1; | |
4902 | } | |
4903 | ||
4c4b4cd2 PH |
4904 | /* True if NAME represents a name of the form A1.A2....An, n>=1 and |
4905 | PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores | |
4906 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
4907 | true). */ | |
4908 | ||
14f9c5c9 | 4909 | static int |
4c4b4cd2 | 4910 | wild_match (const char *patn0, int patn_len, const char *name0) |
14f9c5c9 | 4911 | { |
5823c3ef JB |
4912 | char* match; |
4913 | const char* start; | |
4914 | start = name0; | |
4915 | while (1) | |
14f9c5c9 | 4916 | { |
5823c3ef JB |
4917 | match = strstr (start, patn0); |
4918 | if (match == NULL) | |
4919 | return 0; | |
4920 | if ((match == name0 | |
4921 | || match[-1] == '.' | |
4922 | || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_') | |
4923 | || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0)) | |
4924 | && is_name_suffix (match + patn_len)) | |
4925 | return (match == name0 || is_valid_name_for_wild_match (name0)); | |
4926 | start = match + 1; | |
96d887e8 | 4927 | } |
96d887e8 PH |
4928 | } |
4929 | ||
96d887e8 PH |
4930 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
4931 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
4932 | (if necessary). If WILD, treat as NAME with a wildcard prefix. | |
4933 | OBJFILE is the section containing BLOCK. | |
4934 | SYMTAB is recorded with each symbol added. */ | |
4935 | ||
4936 | static void | |
4937 | ada_add_block_symbols (struct obstack *obstackp, | |
76a01679 | 4938 | struct block *block, const char *name, |
96d887e8 | 4939 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 4940 | int wild) |
96d887e8 PH |
4941 | { |
4942 | struct dict_iterator iter; | |
4943 | int name_len = strlen (name); | |
4944 | /* A matching argument symbol, if any. */ | |
4945 | struct symbol *arg_sym; | |
4946 | /* Set true when we find a matching non-argument symbol. */ | |
4947 | int found_sym; | |
4948 | struct symbol *sym; | |
4949 | ||
4950 | arg_sym = NULL; | |
4951 | found_sym = 0; | |
4952 | if (wild) | |
4953 | { | |
4954 | struct symbol *sym; | |
4955 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 4956 | { |
5eeb2539 AR |
4957 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
4958 | SYMBOL_DOMAIN (sym), domain) | |
1265e4aa | 4959 | && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym))) |
76a01679 | 4960 | { |
2a2d4dc3 AS |
4961 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
4962 | continue; | |
4963 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
4964 | arg_sym = sym; | |
4965 | else | |
4966 | { | |
76a01679 JB |
4967 | found_sym = 1; |
4968 | add_defn_to_vec (obstackp, | |
4969 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 4970 | block); |
76a01679 JB |
4971 | } |
4972 | } | |
4973 | } | |
96d887e8 PH |
4974 | } |
4975 | else | |
4976 | { | |
4977 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 4978 | { |
5eeb2539 AR |
4979 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
4980 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
4981 | { |
4982 | int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len); | |
4983 | if (cmp == 0 | |
4984 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len)) | |
4985 | { | |
2a2d4dc3 AS |
4986 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
4987 | { | |
4988 | if (SYMBOL_IS_ARGUMENT (sym)) | |
4989 | arg_sym = sym; | |
4990 | else | |
4991 | { | |
4992 | found_sym = 1; | |
4993 | add_defn_to_vec (obstackp, | |
4994 | fixup_symbol_section (sym, objfile), | |
4995 | block); | |
4996 | } | |
4997 | } | |
76a01679 JB |
4998 | } |
4999 | } | |
5000 | } | |
96d887e8 PH |
5001 | } |
5002 | ||
5003 | if (!found_sym && arg_sym != NULL) | |
5004 | { | |
76a01679 JB |
5005 | add_defn_to_vec (obstackp, |
5006 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 5007 | block); |
96d887e8 PH |
5008 | } |
5009 | ||
5010 | if (!wild) | |
5011 | { | |
5012 | arg_sym = NULL; | |
5013 | found_sym = 0; | |
5014 | ||
5015 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5016 | { |
5eeb2539 AR |
5017 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5018 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5019 | { |
5020 | int cmp; | |
5021 | ||
5022 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
5023 | if (cmp == 0) | |
5024 | { | |
5025 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); | |
5026 | if (cmp == 0) | |
5027 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
5028 | name_len); | |
5029 | } | |
5030 | ||
5031 | if (cmp == 0 | |
5032 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
5033 | { | |
2a2d4dc3 AS |
5034 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5035 | { | |
5036 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5037 | arg_sym = sym; | |
5038 | else | |
5039 | { | |
5040 | found_sym = 1; | |
5041 | add_defn_to_vec (obstackp, | |
5042 | fixup_symbol_section (sym, objfile), | |
5043 | block); | |
5044 | } | |
5045 | } | |
76a01679 JB |
5046 | } |
5047 | } | |
76a01679 | 5048 | } |
96d887e8 PH |
5049 | |
5050 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
5051 | They aren't parameters, right? */ | |
5052 | if (!found_sym && arg_sym != NULL) | |
5053 | { | |
5054 | add_defn_to_vec (obstackp, | |
76a01679 | 5055 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 5056 | block); |
96d887e8 PH |
5057 | } |
5058 | } | |
5059 | } | |
5060 | \f | |
41d27058 JB |
5061 | |
5062 | /* Symbol Completion */ | |
5063 | ||
5064 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
5065 | name in a form that's appropriate for the completion. The result | |
5066 | does not need to be deallocated, but is only good until the next call. | |
5067 | ||
5068 | TEXT_LEN is equal to the length of TEXT. | |
5069 | Perform a wild match if WILD_MATCH is set. | |
5070 | ENCODED should be set if TEXT represents the start of a symbol name | |
5071 | in its encoded form. */ | |
5072 | ||
5073 | static const char * | |
5074 | symbol_completion_match (const char *sym_name, | |
5075 | const char *text, int text_len, | |
5076 | int wild_match, int encoded) | |
5077 | { | |
5078 | char *result; | |
5079 | const int verbatim_match = (text[0] == '<'); | |
5080 | int match = 0; | |
5081 | ||
5082 | if (verbatim_match) | |
5083 | { | |
5084 | /* Strip the leading angle bracket. */ | |
5085 | text = text + 1; | |
5086 | text_len--; | |
5087 | } | |
5088 | ||
5089 | /* First, test against the fully qualified name of the symbol. */ | |
5090 | ||
5091 | if (strncmp (sym_name, text, text_len) == 0) | |
5092 | match = 1; | |
5093 | ||
5094 | if (match && !encoded) | |
5095 | { | |
5096 | /* One needed check before declaring a positive match is to verify | |
5097 | that iff we are doing a verbatim match, the decoded version | |
5098 | of the symbol name starts with '<'. Otherwise, this symbol name | |
5099 | is not a suitable completion. */ | |
5100 | const char *sym_name_copy = sym_name; | |
5101 | int has_angle_bracket; | |
5102 | ||
5103 | sym_name = ada_decode (sym_name); | |
5104 | has_angle_bracket = (sym_name[0] == '<'); | |
5105 | match = (has_angle_bracket == verbatim_match); | |
5106 | sym_name = sym_name_copy; | |
5107 | } | |
5108 | ||
5109 | if (match && !verbatim_match) | |
5110 | { | |
5111 | /* When doing non-verbatim match, another check that needs to | |
5112 | be done is to verify that the potentially matching symbol name | |
5113 | does not include capital letters, because the ada-mode would | |
5114 | not be able to understand these symbol names without the | |
5115 | angle bracket notation. */ | |
5116 | const char *tmp; | |
5117 | ||
5118 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
5119 | if (*tmp != '\0') | |
5120 | match = 0; | |
5121 | } | |
5122 | ||
5123 | /* Second: Try wild matching... */ | |
5124 | ||
5125 | if (!match && wild_match) | |
5126 | { | |
5127 | /* Since we are doing wild matching, this means that TEXT | |
5128 | may represent an unqualified symbol name. We therefore must | |
5129 | also compare TEXT against the unqualified name of the symbol. */ | |
5130 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
5131 | ||
5132 | if (strncmp (sym_name, text, text_len) == 0) | |
5133 | match = 1; | |
5134 | } | |
5135 | ||
5136 | /* Finally: If we found a mach, prepare the result to return. */ | |
5137 | ||
5138 | if (!match) | |
5139 | return NULL; | |
5140 | ||
5141 | if (verbatim_match) | |
5142 | sym_name = add_angle_brackets (sym_name); | |
5143 | ||
5144 | if (!encoded) | |
5145 | sym_name = ada_decode (sym_name); | |
5146 | ||
5147 | return sym_name; | |
5148 | } | |
5149 | ||
2ba95b9b JB |
5150 | typedef char *char_ptr; |
5151 | DEF_VEC_P (char_ptr); | |
5152 | ||
41d27058 JB |
5153 | /* A companion function to ada_make_symbol_completion_list(). |
5154 | Check if SYM_NAME represents a symbol which name would be suitable | |
5155 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
5156 | it is appended at the end of the given string vector SV. | |
5157 | ||
5158 | ORIG_TEXT is the string original string from the user command | |
5159 | that needs to be completed. WORD is the entire command on which | |
5160 | completion should be performed. These two parameters are used to | |
5161 | determine which part of the symbol name should be added to the | |
5162 | completion vector. | |
5163 | if WILD_MATCH is set, then wild matching is performed. | |
5164 | ENCODED should be set if TEXT represents a symbol name in its | |
5165 | encoded formed (in which case the completion should also be | |
5166 | encoded). */ | |
5167 | ||
5168 | static void | |
d6565258 | 5169 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
5170 | const char *sym_name, |
5171 | const char *text, int text_len, | |
5172 | const char *orig_text, const char *word, | |
5173 | int wild_match, int encoded) | |
5174 | { | |
5175 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
5176 | wild_match, encoded); | |
5177 | char *completion; | |
5178 | ||
5179 | if (match == NULL) | |
5180 | return; | |
5181 | ||
5182 | /* We found a match, so add the appropriate completion to the given | |
5183 | string vector. */ | |
5184 | ||
5185 | if (word == orig_text) | |
5186 | { | |
5187 | completion = xmalloc (strlen (match) + 5); | |
5188 | strcpy (completion, match); | |
5189 | } | |
5190 | else if (word > orig_text) | |
5191 | { | |
5192 | /* Return some portion of sym_name. */ | |
5193 | completion = xmalloc (strlen (match) + 5); | |
5194 | strcpy (completion, match + (word - orig_text)); | |
5195 | } | |
5196 | else | |
5197 | { | |
5198 | /* Return some of ORIG_TEXT plus sym_name. */ | |
5199 | completion = xmalloc (strlen (match) + (orig_text - word) + 5); | |
5200 | strncpy (completion, word, orig_text - word); | |
5201 | completion[orig_text - word] = '\0'; | |
5202 | strcat (completion, match); | |
5203 | } | |
5204 | ||
d6565258 | 5205 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
5206 | } |
5207 | ||
5208 | /* Return a list of possible symbol names completing TEXT0. The list | |
5209 | is NULL terminated. WORD is the entire command on which completion | |
5210 | is made. */ | |
5211 | ||
5212 | static char ** | |
5213 | ada_make_symbol_completion_list (char *text0, char *word) | |
5214 | { | |
5215 | char *text; | |
5216 | int text_len; | |
5217 | int wild_match; | |
5218 | int encoded; | |
2ba95b9b | 5219 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 JB |
5220 | struct symbol *sym; |
5221 | struct symtab *s; | |
5222 | struct partial_symtab *ps; | |
5223 | struct minimal_symbol *msymbol; | |
5224 | struct objfile *objfile; | |
5225 | struct block *b, *surrounding_static_block = 0; | |
5226 | int i; | |
5227 | struct dict_iterator iter; | |
5228 | ||
5229 | if (text0[0] == '<') | |
5230 | { | |
5231 | text = xstrdup (text0); | |
5232 | make_cleanup (xfree, text); | |
5233 | text_len = strlen (text); | |
5234 | wild_match = 0; | |
5235 | encoded = 1; | |
5236 | } | |
5237 | else | |
5238 | { | |
5239 | text = xstrdup (ada_encode (text0)); | |
5240 | make_cleanup (xfree, text); | |
5241 | text_len = strlen (text); | |
5242 | for (i = 0; i < text_len; i++) | |
5243 | text[i] = tolower (text[i]); | |
5244 | ||
5245 | encoded = (strstr (text0, "__") != NULL); | |
5246 | /* If the name contains a ".", then the user is entering a fully | |
5247 | qualified entity name, and the match must not be done in wild | |
5248 | mode. Similarly, if the user wants to complete what looks like | |
5249 | an encoded name, the match must not be done in wild mode. */ | |
5250 | wild_match = (strchr (text0, '.') == NULL && !encoded); | |
5251 | } | |
5252 | ||
5253 | /* First, look at the partial symtab symbols. */ | |
5254 | ALL_PSYMTABS (objfile, ps) | |
5255 | { | |
5256 | struct partial_symbol **psym; | |
5257 | ||
5258 | /* If the psymtab's been read in we'll get it when we search | |
5259 | through the blockvector. */ | |
5260 | if (ps->readin) | |
5261 | continue; | |
5262 | ||
5263 | for (psym = objfile->global_psymbols.list + ps->globals_offset; | |
5264 | psym < (objfile->global_psymbols.list + ps->globals_offset | |
5265 | + ps->n_global_syms); psym++) | |
5266 | { | |
5267 | QUIT; | |
d6565258 | 5268 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym), |
41d27058 JB |
5269 | text, text_len, text0, word, |
5270 | wild_match, encoded); | |
5271 | } | |
5272 | ||
5273 | for (psym = objfile->static_psymbols.list + ps->statics_offset; | |
5274 | psym < (objfile->static_psymbols.list + ps->statics_offset | |
5275 | + ps->n_static_syms); psym++) | |
5276 | { | |
5277 | QUIT; | |
d6565258 | 5278 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym), |
41d27058 JB |
5279 | text, text_len, text0, word, |
5280 | wild_match, encoded); | |
5281 | } | |
5282 | } | |
5283 | ||
5284 | /* At this point scan through the misc symbol vectors and add each | |
5285 | symbol you find to the list. Eventually we want to ignore | |
5286 | anything that isn't a text symbol (everything else will be | |
5287 | handled by the psymtab code above). */ | |
5288 | ||
5289 | ALL_MSYMBOLS (objfile, msymbol) | |
5290 | { | |
5291 | QUIT; | |
d6565258 | 5292 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol), |
41d27058 JB |
5293 | text, text_len, text0, word, wild_match, encoded); |
5294 | } | |
5295 | ||
5296 | /* Search upwards from currently selected frame (so that we can | |
5297 | complete on local vars. */ | |
5298 | ||
5299 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
5300 | { | |
5301 | if (!BLOCK_SUPERBLOCK (b)) | |
5302 | surrounding_static_block = b; /* For elmin of dups */ | |
5303 | ||
5304 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5305 | { | |
d6565258 | 5306 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5307 | text, text_len, text0, word, |
5308 | wild_match, encoded); | |
5309 | } | |
5310 | } | |
5311 | ||
5312 | /* Go through the symtabs and check the externs and statics for | |
5313 | symbols which match. */ | |
5314 | ||
5315 | ALL_SYMTABS (objfile, s) | |
5316 | { | |
5317 | QUIT; | |
5318 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
5319 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5320 | { | |
d6565258 | 5321 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5322 | text, text_len, text0, word, |
5323 | wild_match, encoded); | |
5324 | } | |
5325 | } | |
5326 | ||
5327 | ALL_SYMTABS (objfile, s) | |
5328 | { | |
5329 | QUIT; | |
5330 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
5331 | /* Don't do this block twice. */ | |
5332 | if (b == surrounding_static_block) | |
5333 | continue; | |
5334 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5335 | { | |
d6565258 | 5336 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5337 | text, text_len, text0, word, |
5338 | wild_match, encoded); | |
5339 | } | |
5340 | } | |
5341 | ||
5342 | /* Append the closing NULL entry. */ | |
2ba95b9b | 5343 | VEC_safe_push (char_ptr, completions, NULL); |
41d27058 | 5344 | |
2ba95b9b JB |
5345 | /* Make a copy of the COMPLETIONS VEC before we free it, and then |
5346 | return the copy. It's unfortunate that we have to make a copy | |
5347 | of an array that we're about to destroy, but there is nothing much | |
5348 | we can do about it. Fortunately, it's typically not a very large | |
5349 | array. */ | |
5350 | { | |
5351 | const size_t completions_size = | |
5352 | VEC_length (char_ptr, completions) * sizeof (char *); | |
5353 | char **result = malloc (completions_size); | |
5354 | ||
5355 | memcpy (result, VEC_address (char_ptr, completions), completions_size); | |
5356 | ||
5357 | VEC_free (char_ptr, completions); | |
5358 | return result; | |
5359 | } | |
41d27058 JB |
5360 | } |
5361 | ||
963a6417 | 5362 | /* Field Access */ |
96d887e8 | 5363 | |
73fb9985 JB |
5364 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
5365 | for tagged types. */ | |
5366 | ||
5367 | static int | |
5368 | ada_is_dispatch_table_ptr_type (struct type *type) | |
5369 | { | |
5370 | char *name; | |
5371 | ||
5372 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
5373 | return 0; | |
5374 | ||
5375 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
5376 | if (name == NULL) | |
5377 | return 0; | |
5378 | ||
5379 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
5380 | } | |
5381 | ||
963a6417 PH |
5382 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
5383 | to be invisible to users. */ | |
96d887e8 | 5384 | |
963a6417 PH |
5385 | int |
5386 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 5387 | { |
963a6417 PH |
5388 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
5389 | return 1; | |
73fb9985 JB |
5390 | |
5391 | /* Check the name of that field. */ | |
5392 | { | |
5393 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
5394 | ||
5395 | /* Anonymous field names should not be printed. | |
5396 | brobecker/2007-02-20: I don't think this can actually happen | |
5397 | but we don't want to print the value of annonymous fields anyway. */ | |
5398 | if (name == NULL) | |
5399 | return 1; | |
5400 | ||
5401 | /* A field named "_parent" is internally generated by GNAT for | |
5402 | tagged types, and should not be printed either. */ | |
5403 | if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) | |
5404 | return 1; | |
5405 | } | |
5406 | ||
5407 | /* If this is the dispatch table of a tagged type, then ignore. */ | |
5408 | if (ada_is_tagged_type (type, 1) | |
5409 | && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))) | |
5410 | return 1; | |
5411 | ||
5412 | /* Not a special field, so it should not be ignored. */ | |
5413 | return 0; | |
963a6417 | 5414 | } |
96d887e8 | 5415 | |
963a6417 PH |
5416 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
5417 | pointer or reference type whose ultimate target has a tag field. */ | |
96d887e8 | 5418 | |
963a6417 PH |
5419 | int |
5420 | ada_is_tagged_type (struct type *type, int refok) | |
5421 | { | |
5422 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
5423 | } | |
96d887e8 | 5424 | |
963a6417 | 5425 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 5426 | |
963a6417 PH |
5427 | int |
5428 | ada_is_tag_type (struct type *type) | |
5429 | { | |
5430 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) | |
5431 | return 0; | |
5432 | else | |
96d887e8 | 5433 | { |
963a6417 PH |
5434 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5435 | return (name != NULL | |
5436 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 5437 | } |
96d887e8 PH |
5438 | } |
5439 | ||
963a6417 | 5440 | /* The type of the tag on VAL. */ |
76a01679 | 5441 | |
963a6417 PH |
5442 | struct type * |
5443 | ada_tag_type (struct value *val) | |
96d887e8 | 5444 | { |
df407dfe | 5445 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 5446 | } |
96d887e8 | 5447 | |
963a6417 | 5448 | /* The value of the tag on VAL. */ |
96d887e8 | 5449 | |
963a6417 PH |
5450 | struct value * |
5451 | ada_value_tag (struct value *val) | |
5452 | { | |
03ee6b2e | 5453 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
5454 | } |
5455 | ||
963a6417 PH |
5456 | /* The value of the tag on the object of type TYPE whose contents are |
5457 | saved at VALADDR, if it is non-null, or is at memory address | |
5458 | ADDRESS. */ | |
96d887e8 | 5459 | |
963a6417 | 5460 | static struct value * |
10a2c479 | 5461 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 5462 | const gdb_byte *valaddr, |
963a6417 | 5463 | CORE_ADDR address) |
96d887e8 | 5464 | { |
963a6417 PH |
5465 | int tag_byte_offset, dummy1, dummy2; |
5466 | struct type *tag_type; | |
5467 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, | |
52ce6436 | 5468 | NULL, NULL, NULL)) |
96d887e8 | 5469 | { |
fc1a4b47 | 5470 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
5471 | ? NULL |
5472 | : valaddr + tag_byte_offset); | |
963a6417 | 5473 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 5474 | |
963a6417 | 5475 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 5476 | } |
963a6417 PH |
5477 | return NULL; |
5478 | } | |
96d887e8 | 5479 | |
963a6417 PH |
5480 | static struct type * |
5481 | type_from_tag (struct value *tag) | |
5482 | { | |
5483 | const char *type_name = ada_tag_name (tag); | |
5484 | if (type_name != NULL) | |
5485 | return ada_find_any_type (ada_encode (type_name)); | |
5486 | return NULL; | |
5487 | } | |
96d887e8 | 5488 | |
963a6417 PH |
5489 | struct tag_args |
5490 | { | |
5491 | struct value *tag; | |
5492 | char *name; | |
5493 | }; | |
4c4b4cd2 | 5494 | |
529cad9c PH |
5495 | |
5496 | static int ada_tag_name_1 (void *); | |
5497 | static int ada_tag_name_2 (struct tag_args *); | |
5498 | ||
4c4b4cd2 PH |
5499 | /* Wrapper function used by ada_tag_name. Given a struct tag_args* |
5500 | value ARGS, sets ARGS->name to the tag name of ARGS->tag. | |
5501 | The value stored in ARGS->name is valid until the next call to | |
5502 | ada_tag_name_1. */ | |
5503 | ||
5504 | static int | |
5505 | ada_tag_name_1 (void *args0) | |
5506 | { | |
5507 | struct tag_args *args = (struct tag_args *) args0; | |
5508 | static char name[1024]; | |
76a01679 | 5509 | char *p; |
4c4b4cd2 PH |
5510 | struct value *val; |
5511 | args->name = NULL; | |
03ee6b2e | 5512 | val = ada_value_struct_elt (args->tag, "tsd", 1); |
529cad9c PH |
5513 | if (val == NULL) |
5514 | return ada_tag_name_2 (args); | |
03ee6b2e | 5515 | val = ada_value_struct_elt (val, "expanded_name", 1); |
529cad9c PH |
5516 | if (val == NULL) |
5517 | return 0; | |
5518 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5519 | for (p = name; *p != '\0'; p += 1) | |
5520 | if (isalpha (*p)) | |
5521 | *p = tolower (*p); | |
5522 | args->name = name; | |
5523 | return 0; | |
5524 | } | |
5525 | ||
5526 | /* Utility function for ada_tag_name_1 that tries the second | |
5527 | representation for the dispatch table (in which there is no | |
5528 | explicit 'tsd' field in the referent of the tag pointer, and instead | |
5529 | the tsd pointer is stored just before the dispatch table. */ | |
5530 | ||
5531 | static int | |
5532 | ada_tag_name_2 (struct tag_args *args) | |
5533 | { | |
5534 | struct type *info_type; | |
5535 | static char name[1024]; | |
5536 | char *p; | |
5537 | struct value *val, *valp; | |
5538 | ||
5539 | args->name = NULL; | |
5540 | info_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
5541 | if (info_type == NULL) | |
5542 | return 0; | |
5543 | info_type = lookup_pointer_type (lookup_pointer_type (info_type)); | |
5544 | valp = value_cast (info_type, args->tag); | |
5545 | if (valp == NULL) | |
5546 | return 0; | |
2497b498 | 5547 | val = value_ind (value_ptradd (valp, -1)); |
4c4b4cd2 PH |
5548 | if (val == NULL) |
5549 | return 0; | |
03ee6b2e | 5550 | val = ada_value_struct_elt (val, "expanded_name", 1); |
4c4b4cd2 PH |
5551 | if (val == NULL) |
5552 | return 0; | |
5553 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5554 | for (p = name; *p != '\0'; p += 1) | |
5555 | if (isalpha (*p)) | |
5556 | *p = tolower (*p); | |
5557 | args->name = name; | |
5558 | return 0; | |
5559 | } | |
5560 | ||
5561 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
5562 | * a C string. */ | |
5563 | ||
5564 | const char * | |
5565 | ada_tag_name (struct value *tag) | |
5566 | { | |
5567 | struct tag_args args; | |
df407dfe | 5568 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 5569 | return NULL; |
76a01679 | 5570 | args.tag = tag; |
4c4b4cd2 PH |
5571 | args.name = NULL; |
5572 | catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL); | |
5573 | return args.name; | |
5574 | } | |
5575 | ||
5576 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 5577 | |
d2e4a39e | 5578 | struct type * |
ebf56fd3 | 5579 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
5580 | { |
5581 | int i; | |
5582 | ||
61ee279c | 5583 | type = ada_check_typedef (type); |
14f9c5c9 AS |
5584 | |
5585 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
5586 | return NULL; | |
5587 | ||
5588 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
5589 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
5590 | { |
5591 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
5592 | ||
5593 | /* If the _parent field is a pointer, then dereference it. */ | |
5594 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
5595 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
5596 | /* If there is a parallel XVS type, get the actual base type. */ | |
5597 | parent_type = ada_get_base_type (parent_type); | |
5598 | ||
5599 | return ada_check_typedef (parent_type); | |
5600 | } | |
14f9c5c9 AS |
5601 | |
5602 | return NULL; | |
5603 | } | |
5604 | ||
4c4b4cd2 PH |
5605 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
5606 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
5607 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
5608 | |
5609 | int | |
ebf56fd3 | 5610 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 5611 | { |
61ee279c | 5612 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
4c4b4cd2 PH |
5613 | return (name != NULL |
5614 | && (strncmp (name, "PARENT", 6) == 0 | |
5615 | || strncmp (name, "_parent", 7) == 0)); | |
14f9c5c9 AS |
5616 | } |
5617 | ||
4c4b4cd2 | 5618 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 5619 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 5620 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 5621 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 5622 | structures. */ |
14f9c5c9 AS |
5623 | |
5624 | int | |
ebf56fd3 | 5625 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 5626 | { |
d2e4a39e AS |
5627 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5628 | return (name != NULL | |
4c4b4cd2 PH |
5629 | && (strncmp (name, "PARENT", 6) == 0 |
5630 | || strcmp (name, "REP") == 0 | |
5631 | || strncmp (name, "_parent", 7) == 0 | |
5632 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
14f9c5c9 AS |
5633 | } |
5634 | ||
4c4b4cd2 PH |
5635 | /* True iff field number FIELD_NUM of structure or union type TYPE |
5636 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
5637 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
5638 | |
5639 | int | |
ebf56fd3 | 5640 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 5641 | { |
d2e4a39e | 5642 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
14f9c5c9 | 5643 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 5644 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
5645 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
5646 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
5647 | } |
5648 | ||
5649 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 5650 | whose discriminants are contained in the record type OUTER_TYPE, |
14f9c5c9 AS |
5651 | returns the type of the controlling discriminant for the variant. */ |
5652 | ||
d2e4a39e | 5653 | struct type * |
ebf56fd3 | 5654 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 5655 | { |
d2e4a39e | 5656 | char *name = ada_variant_discrim_name (var_type); |
76a01679 | 5657 | struct type *type = |
4c4b4cd2 | 5658 | ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 | 5659 | if (type == NULL) |
6d84d3d8 | 5660 | return builtin_type_int32; |
14f9c5c9 AS |
5661 | else |
5662 | return type; | |
5663 | } | |
5664 | ||
4c4b4cd2 | 5665 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 5666 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 5667 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
5668 | |
5669 | int | |
ebf56fd3 | 5670 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 5671 | { |
d2e4a39e | 5672 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
5673 | return (name != NULL && name[0] == 'O'); |
5674 | } | |
5675 | ||
5676 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
5677 | returns the name of the discriminant controlling the variant. |
5678 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 5679 | |
d2e4a39e | 5680 | char * |
ebf56fd3 | 5681 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 5682 | { |
d2e4a39e | 5683 | static char *result = NULL; |
14f9c5c9 | 5684 | static size_t result_len = 0; |
d2e4a39e AS |
5685 | struct type *type; |
5686 | const char *name; | |
5687 | const char *discrim_end; | |
5688 | const char *discrim_start; | |
14f9c5c9 AS |
5689 | |
5690 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
5691 | type = TYPE_TARGET_TYPE (type0); | |
5692 | else | |
5693 | type = type0; | |
5694 | ||
5695 | name = ada_type_name (type); | |
5696 | ||
5697 | if (name == NULL || name[0] == '\000') | |
5698 | return ""; | |
5699 | ||
5700 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
5701 | discrim_end -= 1) | |
5702 | { | |
4c4b4cd2 PH |
5703 | if (strncmp (discrim_end, "___XVN", 6) == 0) |
5704 | break; | |
14f9c5c9 AS |
5705 | } |
5706 | if (discrim_end == name) | |
5707 | return ""; | |
5708 | ||
d2e4a39e | 5709 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
5710 | discrim_start -= 1) |
5711 | { | |
d2e4a39e | 5712 | if (discrim_start == name + 1) |
4c4b4cd2 | 5713 | return ""; |
76a01679 | 5714 | if ((discrim_start > name + 3 |
4c4b4cd2 PH |
5715 | && strncmp (discrim_start - 3, "___", 3) == 0) |
5716 | || discrim_start[-1] == '.') | |
5717 | break; | |
14f9c5c9 AS |
5718 | } |
5719 | ||
5720 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
5721 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 5722 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
5723 | return result; |
5724 | } | |
5725 | ||
4c4b4cd2 PH |
5726 | /* Scan STR for a subtype-encoded number, beginning at position K. |
5727 | Put the position of the character just past the number scanned in | |
5728 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
5729 | Return 1 if there was a valid number at the given position, and 0 | |
5730 | otherwise. A "subtype-encoded" number consists of the absolute value | |
5731 | in decimal, followed by the letter 'm' to indicate a negative number. | |
5732 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
5733 | |
5734 | int | |
d2e4a39e | 5735 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
5736 | { |
5737 | ULONGEST RU; | |
5738 | ||
d2e4a39e | 5739 | if (!isdigit (str[k])) |
14f9c5c9 AS |
5740 | return 0; |
5741 | ||
4c4b4cd2 | 5742 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 5743 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 5744 | LONGEST. */ |
14f9c5c9 AS |
5745 | RU = 0; |
5746 | while (isdigit (str[k])) | |
5747 | { | |
d2e4a39e | 5748 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
5749 | k += 1; |
5750 | } | |
5751 | ||
d2e4a39e | 5752 | if (str[k] == 'm') |
14f9c5c9 AS |
5753 | { |
5754 | if (R != NULL) | |
4c4b4cd2 | 5755 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
5756 | k += 1; |
5757 | } | |
5758 | else if (R != NULL) | |
5759 | *R = (LONGEST) RU; | |
5760 | ||
4c4b4cd2 | 5761 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
5762 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
5763 | number representable as a LONGEST (although either would probably work | |
5764 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 5765 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
5766 | |
5767 | if (new_k != NULL) | |
5768 | *new_k = k; | |
5769 | return 1; | |
5770 | } | |
5771 | ||
4c4b4cd2 PH |
5772 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
5773 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
5774 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 5775 | |
d2e4a39e | 5776 | int |
ebf56fd3 | 5777 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 5778 | { |
d2e4a39e | 5779 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
5780 | int p; |
5781 | ||
5782 | p = 0; | |
5783 | while (1) | |
5784 | { | |
d2e4a39e | 5785 | switch (name[p]) |
4c4b4cd2 PH |
5786 | { |
5787 | case '\0': | |
5788 | return 0; | |
5789 | case 'S': | |
5790 | { | |
5791 | LONGEST W; | |
5792 | if (!ada_scan_number (name, p + 1, &W, &p)) | |
5793 | return 0; | |
5794 | if (val == W) | |
5795 | return 1; | |
5796 | break; | |
5797 | } | |
5798 | case 'R': | |
5799 | { | |
5800 | LONGEST L, U; | |
5801 | if (!ada_scan_number (name, p + 1, &L, &p) | |
5802 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
5803 | return 0; | |
5804 | if (val >= L && val <= U) | |
5805 | return 1; | |
5806 | break; | |
5807 | } | |
5808 | case 'O': | |
5809 | return 1; | |
5810 | default: | |
5811 | return 0; | |
5812 | } | |
5813 | } | |
5814 | } | |
5815 | ||
5816 | /* FIXME: Lots of redundancy below. Try to consolidate. */ | |
5817 | ||
5818 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
5819 | ARG_TYPE, extract and return the value of one of its (non-static) | |
5820 | fields. FIELDNO says which field. Differs from value_primitive_field | |
5821 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 5822 | |
4c4b4cd2 | 5823 | static struct value * |
d2e4a39e | 5824 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 5825 | struct type *arg_type) |
14f9c5c9 | 5826 | { |
14f9c5c9 AS |
5827 | struct type *type; |
5828 | ||
61ee279c | 5829 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
5830 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
5831 | ||
4c4b4cd2 | 5832 | /* Handle packed fields. */ |
14f9c5c9 AS |
5833 | |
5834 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
5835 | { | |
5836 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
5837 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 5838 | |
0fd88904 | 5839 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
5840 | offset + bit_pos / 8, |
5841 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
5842 | } |
5843 | else | |
5844 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
5845 | } | |
5846 | ||
52ce6436 PH |
5847 | /* Find field with name NAME in object of type TYPE. If found, |
5848 | set the following for each argument that is non-null: | |
5849 | - *FIELD_TYPE_P to the field's type; | |
5850 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
5851 | an object of that type; | |
5852 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
5853 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
5854 | 0 otherwise; | |
5855 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
5856 | fields up to but not including the desired field, or by the total | |
5857 | number of fields if not found. A NULL value of NAME never | |
5858 | matches; the function just counts visible fields in this case. | |
5859 | ||
5860 | Returns 1 if found, 0 otherwise. */ | |
5861 | ||
4c4b4cd2 | 5862 | static int |
76a01679 JB |
5863 | find_struct_field (char *name, struct type *type, int offset, |
5864 | struct type **field_type_p, | |
52ce6436 PH |
5865 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
5866 | int *index_p) | |
4c4b4cd2 PH |
5867 | { |
5868 | int i; | |
5869 | ||
61ee279c | 5870 | type = ada_check_typedef (type); |
76a01679 | 5871 | |
52ce6436 PH |
5872 | if (field_type_p != NULL) |
5873 | *field_type_p = NULL; | |
5874 | if (byte_offset_p != NULL) | |
d5d6fca5 | 5875 | *byte_offset_p = 0; |
52ce6436 PH |
5876 | if (bit_offset_p != NULL) |
5877 | *bit_offset_p = 0; | |
5878 | if (bit_size_p != NULL) | |
5879 | *bit_size_p = 0; | |
5880 | ||
5881 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
5882 | { |
5883 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
5884 | int fld_offset = offset + bit_pos / 8; | |
5885 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
76a01679 | 5886 | |
4c4b4cd2 PH |
5887 | if (t_field_name == NULL) |
5888 | continue; | |
5889 | ||
52ce6436 | 5890 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
5891 | { |
5892 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
52ce6436 PH |
5893 | if (field_type_p != NULL) |
5894 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
5895 | if (byte_offset_p != NULL) | |
5896 | *byte_offset_p = fld_offset; | |
5897 | if (bit_offset_p != NULL) | |
5898 | *bit_offset_p = bit_pos % 8; | |
5899 | if (bit_size_p != NULL) | |
5900 | *bit_size_p = bit_size; | |
76a01679 JB |
5901 | return 1; |
5902 | } | |
4c4b4cd2 PH |
5903 | else if (ada_is_wrapper_field (type, i)) |
5904 | { | |
52ce6436 PH |
5905 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
5906 | field_type_p, byte_offset_p, bit_offset_p, | |
5907 | bit_size_p, index_p)) | |
76a01679 JB |
5908 | return 1; |
5909 | } | |
4c4b4cd2 PH |
5910 | else if (ada_is_variant_part (type, i)) |
5911 | { | |
52ce6436 PH |
5912 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
5913 | fixed type?? */ | |
4c4b4cd2 | 5914 | int j; |
52ce6436 PH |
5915 | struct type *field_type |
5916 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 5917 | |
52ce6436 | 5918 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 5919 | { |
76a01679 JB |
5920 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
5921 | fld_offset | |
5922 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
5923 | field_type_p, byte_offset_p, | |
52ce6436 | 5924 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 5925 | return 1; |
4c4b4cd2 PH |
5926 | } |
5927 | } | |
52ce6436 PH |
5928 | else if (index_p != NULL) |
5929 | *index_p += 1; | |
4c4b4cd2 PH |
5930 | } |
5931 | return 0; | |
5932 | } | |
5933 | ||
52ce6436 | 5934 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 5935 | |
52ce6436 PH |
5936 | static int |
5937 | num_visible_fields (struct type *type) | |
5938 | { | |
5939 | int n; | |
5940 | n = 0; | |
5941 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
5942 | return n; | |
5943 | } | |
14f9c5c9 | 5944 | |
4c4b4cd2 | 5945 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
5946 | and search in it assuming it has (class) type TYPE. |
5947 | If found, return value, else return NULL. | |
5948 | ||
4c4b4cd2 | 5949 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 5950 | |
4c4b4cd2 | 5951 | static struct value * |
d2e4a39e | 5952 | ada_search_struct_field (char *name, struct value *arg, int offset, |
4c4b4cd2 | 5953 | struct type *type) |
14f9c5c9 AS |
5954 | { |
5955 | int i; | |
61ee279c | 5956 | type = ada_check_typedef (type); |
14f9c5c9 | 5957 | |
52ce6436 | 5958 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 AS |
5959 | { |
5960 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
5961 | ||
5962 | if (t_field_name == NULL) | |
4c4b4cd2 | 5963 | continue; |
14f9c5c9 AS |
5964 | |
5965 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 5966 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
5967 | |
5968 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 5969 | { |
06d5cf63 JB |
5970 | struct value *v = /* Do not let indent join lines here. */ |
5971 | ada_search_struct_field (name, arg, | |
5972 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
5973 | TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 PH |
5974 | if (v != NULL) |
5975 | return v; | |
5976 | } | |
14f9c5c9 AS |
5977 | |
5978 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 5979 | { |
52ce6436 | 5980 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 5981 | int j; |
61ee279c | 5982 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 PH |
5983 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
5984 | ||
52ce6436 | 5985 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 5986 | { |
06d5cf63 JB |
5987 | struct value *v = ada_search_struct_field /* Force line break. */ |
5988 | (name, arg, | |
5989 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
5990 | TYPE_FIELD_TYPE (field_type, j)); | |
4c4b4cd2 PH |
5991 | if (v != NULL) |
5992 | return v; | |
5993 | } | |
5994 | } | |
14f9c5c9 AS |
5995 | } |
5996 | return NULL; | |
5997 | } | |
d2e4a39e | 5998 | |
52ce6436 PH |
5999 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
6000 | int, struct type *); | |
6001 | ||
6002 | ||
6003 | /* Return field #INDEX in ARG, where the index is that returned by | |
6004 | * find_struct_field through its INDEX_P argument. Adjust the address | |
6005 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
6006 | * If found, return value, else return NULL. */ | |
6007 | ||
6008 | static struct value * | |
6009 | ada_index_struct_field (int index, struct value *arg, int offset, | |
6010 | struct type *type) | |
6011 | { | |
6012 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
6013 | } | |
6014 | ||
6015 | ||
6016 | /* Auxiliary function for ada_index_struct_field. Like | |
6017 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
6018 | * *INDEX_P. */ | |
6019 | ||
6020 | static struct value * | |
6021 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
6022 | struct type *type) | |
6023 | { | |
6024 | int i; | |
6025 | type = ada_check_typedef (type); | |
6026 | ||
6027 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6028 | { | |
6029 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
6030 | continue; | |
6031 | else if (ada_is_wrapper_field (type, i)) | |
6032 | { | |
6033 | struct value *v = /* Do not let indent join lines here. */ | |
6034 | ada_index_struct_field_1 (index_p, arg, | |
6035 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6036 | TYPE_FIELD_TYPE (type, i)); | |
6037 | if (v != NULL) | |
6038 | return v; | |
6039 | } | |
6040 | ||
6041 | else if (ada_is_variant_part (type, i)) | |
6042 | { | |
6043 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
6044 | find_struct_field. */ | |
6045 | error (_("Cannot assign this kind of variant record")); | |
6046 | } | |
6047 | else if (*index_p == 0) | |
6048 | return ada_value_primitive_field (arg, offset, i, type); | |
6049 | else | |
6050 | *index_p -= 1; | |
6051 | } | |
6052 | return NULL; | |
6053 | } | |
6054 | ||
4c4b4cd2 PH |
6055 | /* Given ARG, a value of type (pointer or reference to a)* |
6056 | structure/union, extract the component named NAME from the ultimate | |
6057 | target structure/union and return it as a value with its | |
f5938064 | 6058 | appropriate type. |
14f9c5c9 | 6059 | |
4c4b4cd2 PH |
6060 | The routine searches for NAME among all members of the structure itself |
6061 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
6062 | (e.g., '_parent'). |
6063 | ||
03ee6b2e PH |
6064 | If NO_ERR, then simply return NULL in case of error, rather than |
6065 | calling error. */ | |
14f9c5c9 | 6066 | |
d2e4a39e | 6067 | struct value * |
03ee6b2e | 6068 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 6069 | { |
4c4b4cd2 | 6070 | struct type *t, *t1; |
d2e4a39e | 6071 | struct value *v; |
14f9c5c9 | 6072 | |
4c4b4cd2 | 6073 | v = NULL; |
df407dfe | 6074 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
6075 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6076 | { | |
6077 | t1 = TYPE_TARGET_TYPE (t); | |
6078 | if (t1 == NULL) | |
03ee6b2e | 6079 | goto BadValue; |
61ee279c | 6080 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6081 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 6082 | { |
994b9211 | 6083 | arg = coerce_ref (arg); |
76a01679 JB |
6084 | t = t1; |
6085 | } | |
4c4b4cd2 | 6086 | } |
14f9c5c9 | 6087 | |
4c4b4cd2 PH |
6088 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
6089 | { | |
6090 | t1 = TYPE_TARGET_TYPE (t); | |
6091 | if (t1 == NULL) | |
03ee6b2e | 6092 | goto BadValue; |
61ee279c | 6093 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6094 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
6095 | { |
6096 | arg = value_ind (arg); | |
6097 | t = t1; | |
6098 | } | |
4c4b4cd2 | 6099 | else |
76a01679 | 6100 | break; |
4c4b4cd2 | 6101 | } |
14f9c5c9 | 6102 | |
4c4b4cd2 | 6103 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 6104 | goto BadValue; |
14f9c5c9 | 6105 | |
4c4b4cd2 PH |
6106 | if (t1 == t) |
6107 | v = ada_search_struct_field (name, arg, 0, t); | |
6108 | else | |
6109 | { | |
6110 | int bit_offset, bit_size, byte_offset; | |
6111 | struct type *field_type; | |
6112 | CORE_ADDR address; | |
6113 | ||
76a01679 JB |
6114 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
6115 | address = value_as_address (arg); | |
4c4b4cd2 | 6116 | else |
0fd88904 | 6117 | address = unpack_pointer (t, value_contents (arg)); |
14f9c5c9 | 6118 | |
1ed6ede0 | 6119 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
6120 | if (find_struct_field (name, t1, 0, |
6121 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 6122 | &bit_size, NULL)) |
76a01679 JB |
6123 | { |
6124 | if (bit_size != 0) | |
6125 | { | |
714e53ab PH |
6126 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6127 | arg = ada_coerce_ref (arg); | |
6128 | else | |
6129 | arg = ada_value_ind (arg); | |
76a01679 JB |
6130 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
6131 | bit_offset, bit_size, | |
6132 | field_type); | |
6133 | } | |
6134 | else | |
f5938064 | 6135 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
6136 | } |
6137 | } | |
6138 | ||
03ee6b2e PH |
6139 | if (v != NULL || no_err) |
6140 | return v; | |
6141 | else | |
323e0a4a | 6142 | error (_("There is no member named %s."), name); |
14f9c5c9 | 6143 | |
03ee6b2e PH |
6144 | BadValue: |
6145 | if (no_err) | |
6146 | return NULL; | |
6147 | else | |
6148 | error (_("Attempt to extract a component of a value that is not a record.")); | |
14f9c5c9 AS |
6149 | } |
6150 | ||
6151 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
6152 | If DISPP is non-null, add its byte displacement from the beginning of a |
6153 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
6154 | work for packed fields). |
6155 | ||
6156 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 6157 | followed by "___". |
14f9c5c9 | 6158 | |
4c4b4cd2 PH |
6159 | TYPE can be either a struct or union. If REFOK, TYPE may also |
6160 | be a (pointer or reference)+ to a struct or union, and the | |
6161 | ultimate target type will be searched. | |
14f9c5c9 AS |
6162 | |
6163 | Looks recursively into variant clauses and parent types. | |
6164 | ||
4c4b4cd2 PH |
6165 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
6166 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 6167 | |
4c4b4cd2 | 6168 | static struct type * |
76a01679 JB |
6169 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
6170 | int noerr, int *dispp) | |
14f9c5c9 AS |
6171 | { |
6172 | int i; | |
6173 | ||
6174 | if (name == NULL) | |
6175 | goto BadName; | |
6176 | ||
76a01679 | 6177 | if (refok && type != NULL) |
4c4b4cd2 PH |
6178 | while (1) |
6179 | { | |
61ee279c | 6180 | type = ada_check_typedef (type); |
76a01679 JB |
6181 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
6182 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
6183 | break; | |
6184 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 6185 | } |
14f9c5c9 | 6186 | |
76a01679 | 6187 | if (type == NULL |
1265e4aa JB |
6188 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
6189 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 6190 | { |
4c4b4cd2 | 6191 | if (noerr) |
76a01679 | 6192 | return NULL; |
4c4b4cd2 | 6193 | else |
76a01679 JB |
6194 | { |
6195 | target_terminal_ours (); | |
6196 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6197 | if (type == NULL) |
6198 | error (_("Type (null) is not a structure or union type")); | |
6199 | else | |
6200 | { | |
6201 | /* XXX: type_sprint */ | |
6202 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6203 | type_print (type, "", gdb_stderr, -1); | |
6204 | error (_(" is not a structure or union type")); | |
6205 | } | |
76a01679 | 6206 | } |
14f9c5c9 AS |
6207 | } |
6208 | ||
6209 | type = to_static_fixed_type (type); | |
6210 | ||
6211 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6212 | { | |
6213 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
6214 | struct type *t; | |
6215 | int disp; | |
d2e4a39e | 6216 | |
14f9c5c9 | 6217 | if (t_field_name == NULL) |
4c4b4cd2 | 6218 | continue; |
14f9c5c9 AS |
6219 | |
6220 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
6221 | { |
6222 | if (dispp != NULL) | |
6223 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
61ee279c | 6224 | return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 | 6225 | } |
14f9c5c9 AS |
6226 | |
6227 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
6228 | { |
6229 | disp = 0; | |
6230 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
6231 | 0, 1, &disp); | |
6232 | if (t != NULL) | |
6233 | { | |
6234 | if (dispp != NULL) | |
6235 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6236 | return t; | |
6237 | } | |
6238 | } | |
14f9c5c9 AS |
6239 | |
6240 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
6241 | { |
6242 | int j; | |
61ee279c | 6243 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 PH |
6244 | |
6245 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
6246 | { | |
b1f33ddd JB |
6247 | /* FIXME pnh 2008/01/26: We check for a field that is |
6248 | NOT wrapped in a struct, since the compiler sometimes | |
6249 | generates these for unchecked variant types. Revisit | |
6250 | if the compiler changes this practice. */ | |
6251 | char *v_field_name = TYPE_FIELD_NAME (field_type, j); | |
4c4b4cd2 | 6252 | disp = 0; |
b1f33ddd JB |
6253 | if (v_field_name != NULL |
6254 | && field_name_match (v_field_name, name)) | |
6255 | t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j)); | |
6256 | else | |
6257 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j), | |
6258 | name, 0, 1, &disp); | |
6259 | ||
4c4b4cd2 PH |
6260 | if (t != NULL) |
6261 | { | |
6262 | if (dispp != NULL) | |
6263 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6264 | return t; | |
6265 | } | |
6266 | } | |
6267 | } | |
14f9c5c9 AS |
6268 | |
6269 | } | |
6270 | ||
6271 | BadName: | |
d2e4a39e | 6272 | if (!noerr) |
14f9c5c9 AS |
6273 | { |
6274 | target_terminal_ours (); | |
6275 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6276 | if (name == NULL) |
6277 | { | |
6278 | /* XXX: type_sprint */ | |
6279 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6280 | type_print (type, "", gdb_stderr, -1); | |
6281 | error (_(" has no component named <null>")); | |
6282 | } | |
6283 | else | |
6284 | { | |
6285 | /* XXX: type_sprint */ | |
6286 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6287 | type_print (type, "", gdb_stderr, -1); | |
6288 | error (_(" has no component named %s"), name); | |
6289 | } | |
14f9c5c9 AS |
6290 | } |
6291 | ||
6292 | return NULL; | |
6293 | } | |
6294 | ||
b1f33ddd JB |
6295 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6296 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
6297 | represents an unchecked union (that is, the variant part of a | |
6298 | record that is named in an Unchecked_Union pragma). */ | |
6299 | ||
6300 | static int | |
6301 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
6302 | { | |
6303 | char *discrim_name = ada_variant_discrim_name (var_type); | |
6304 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) | |
6305 | == NULL); | |
6306 | } | |
6307 | ||
6308 | ||
14f9c5c9 AS |
6309 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6310 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
6311 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
6312 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 6313 | |
d2e4a39e | 6314 | int |
ebf56fd3 | 6315 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 6316 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
6317 | { |
6318 | int others_clause; | |
6319 | int i; | |
d2e4a39e | 6320 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
6321 | struct value *outer; |
6322 | struct value *discrim; | |
14f9c5c9 AS |
6323 | LONGEST discrim_val; |
6324 | ||
0c281816 JB |
6325 | outer = value_from_contents_and_address (outer_type, outer_valaddr, 0); |
6326 | discrim = ada_value_struct_elt (outer, discrim_name, 1); | |
6327 | if (discrim == NULL) | |
14f9c5c9 | 6328 | return -1; |
0c281816 | 6329 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
6330 | |
6331 | others_clause = -1; | |
6332 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
6333 | { | |
6334 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 6335 | others_clause = i; |
14f9c5c9 | 6336 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 6337 | return i; |
14f9c5c9 AS |
6338 | } |
6339 | ||
6340 | return others_clause; | |
6341 | } | |
d2e4a39e | 6342 | \f |
14f9c5c9 AS |
6343 | |
6344 | ||
4c4b4cd2 | 6345 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
6346 | |
6347 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
6348 | (i.e., a size that is not statically recorded in the debugging | |
6349 | data) does not accurately reflect the size or layout of the value. | |
6350 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 6351 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
6352 | |
6353 | /* There is a subtle and tricky problem here. In general, we cannot | |
6354 | determine the size of dynamic records without its data. However, | |
6355 | the 'struct value' data structure, which GDB uses to represent | |
6356 | quantities in the inferior process (the target), requires the size | |
6357 | of the type at the time of its allocation in order to reserve space | |
6358 | for GDB's internal copy of the data. That's why the | |
6359 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 6360 | rather than struct value*s. |
14f9c5c9 AS |
6361 | |
6362 | However, GDB's internal history variables ($1, $2, etc.) are | |
6363 | struct value*s containing internal copies of the data that are not, in | |
6364 | general, the same as the data at their corresponding addresses in | |
6365 | the target. Fortunately, the types we give to these values are all | |
6366 | conventional, fixed-size types (as per the strategy described | |
6367 | above), so that we don't usually have to perform the | |
6368 | 'to_fixed_xxx_type' conversions to look at their values. | |
6369 | Unfortunately, there is one exception: if one of the internal | |
6370 | history variables is an array whose elements are unconstrained | |
6371 | records, then we will need to create distinct fixed types for each | |
6372 | element selected. */ | |
6373 | ||
6374 | /* The upshot of all of this is that many routines take a (type, host | |
6375 | address, target address) triple as arguments to represent a value. | |
6376 | The host address, if non-null, is supposed to contain an internal | |
6377 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 6378 | target at the target address. */ |
14f9c5c9 AS |
6379 | |
6380 | /* Assuming that VAL0 represents a pointer value, the result of | |
6381 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 6382 | dynamic-sized types. */ |
14f9c5c9 | 6383 | |
d2e4a39e AS |
6384 | struct value * |
6385 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 6386 | { |
d2e4a39e | 6387 | struct value *val = unwrap_value (value_ind (val0)); |
4c4b4cd2 | 6388 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
6389 | } |
6390 | ||
6391 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
6392 | qualifiers on VAL0. */ |
6393 | ||
d2e4a39e AS |
6394 | static struct value * |
6395 | ada_coerce_ref (struct value *val0) | |
6396 | { | |
df407dfe | 6397 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
6398 | { |
6399 | struct value *val = val0; | |
994b9211 | 6400 | val = coerce_ref (val); |
d2e4a39e | 6401 | val = unwrap_value (val); |
4c4b4cd2 | 6402 | return ada_to_fixed_value (val); |
d2e4a39e AS |
6403 | } |
6404 | else | |
14f9c5c9 AS |
6405 | return val0; |
6406 | } | |
6407 | ||
6408 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 6409 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
6410 | |
6411 | static unsigned int | |
ebf56fd3 | 6412 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
6413 | { |
6414 | return (off + alignment - 1) & ~(alignment - 1); | |
6415 | } | |
6416 | ||
4c4b4cd2 | 6417 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
6418 | |
6419 | static unsigned int | |
ebf56fd3 | 6420 | field_alignment (struct type *type, int f) |
14f9c5c9 | 6421 | { |
d2e4a39e | 6422 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 6423 | int len; |
14f9c5c9 AS |
6424 | int align_offset; |
6425 | ||
64a1bf19 JB |
6426 | /* The field name should never be null, unless the debugging information |
6427 | is somehow malformed. In this case, we assume the field does not | |
6428 | require any alignment. */ | |
6429 | if (name == NULL) | |
6430 | return 1; | |
6431 | ||
6432 | len = strlen (name); | |
6433 | ||
4c4b4cd2 PH |
6434 | if (!isdigit (name[len - 1])) |
6435 | return 1; | |
14f9c5c9 | 6436 | |
d2e4a39e | 6437 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
6438 | align_offset = len - 2; |
6439 | else | |
6440 | align_offset = len - 1; | |
6441 | ||
4c4b4cd2 | 6442 | if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) |
14f9c5c9 AS |
6443 | return TARGET_CHAR_BIT; |
6444 | ||
4c4b4cd2 PH |
6445 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
6446 | } | |
6447 | ||
6448 | /* Find a symbol named NAME. Ignores ambiguity. */ | |
6449 | ||
6450 | struct symbol * | |
6451 | ada_find_any_symbol (const char *name) | |
6452 | { | |
6453 | struct symbol *sym; | |
6454 | ||
6455 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
6456 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
6457 | return sym; | |
6458 | ||
6459 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); | |
6460 | return sym; | |
14f9c5c9 AS |
6461 | } |
6462 | ||
dddfab26 UW |
6463 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
6464 | solely for types defined by debug info, it will not search the GDB | |
6465 | primitive types. */ | |
4c4b4cd2 | 6466 | |
d2e4a39e | 6467 | struct type * |
ebf56fd3 | 6468 | ada_find_any_type (const char *name) |
14f9c5c9 | 6469 | { |
4c4b4cd2 | 6470 | struct symbol *sym = ada_find_any_symbol (name); |
14f9c5c9 | 6471 | |
14f9c5c9 | 6472 | if (sym != NULL) |
dddfab26 | 6473 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 6474 | |
dddfab26 | 6475 | return NULL; |
14f9c5c9 AS |
6476 | } |
6477 | ||
aeb5907d JB |
6478 | /* Given NAME and an associated BLOCK, search all symbols for |
6479 | NAME suffixed with "___XR", which is the ``renaming'' symbol | |
4c4b4cd2 PH |
6480 | associated to NAME. Return this symbol if found, return |
6481 | NULL otherwise. */ | |
6482 | ||
6483 | struct symbol * | |
6484 | ada_find_renaming_symbol (const char *name, struct block *block) | |
aeb5907d JB |
6485 | { |
6486 | struct symbol *sym; | |
6487 | ||
6488 | sym = find_old_style_renaming_symbol (name, block); | |
6489 | ||
6490 | if (sym != NULL) | |
6491 | return sym; | |
6492 | ||
6493 | /* Not right yet. FIXME pnh 7/20/2007. */ | |
6494 | sym = ada_find_any_symbol (name); | |
6495 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) | |
6496 | return sym; | |
6497 | else | |
6498 | return NULL; | |
6499 | } | |
6500 | ||
6501 | static struct symbol * | |
6502 | find_old_style_renaming_symbol (const char *name, struct block *block) | |
4c4b4cd2 | 6503 | { |
7f0df278 | 6504 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
6505 | char *rename; |
6506 | ||
6507 | if (function_sym != NULL) | |
6508 | { | |
6509 | /* If the symbol is defined inside a function, NAME is not fully | |
6510 | qualified. This means we need to prepend the function name | |
6511 | as well as adding the ``___XR'' suffix to build the name of | |
6512 | the associated renaming symbol. */ | |
6513 | char *function_name = SYMBOL_LINKAGE_NAME (function_sym); | |
529cad9c PH |
6514 | /* Function names sometimes contain suffixes used |
6515 | for instance to qualify nested subprograms. When building | |
6516 | the XR type name, we need to make sure that this suffix is | |
6517 | not included. So do not include any suffix in the function | |
6518 | name length below. */ | |
6519 | const int function_name_len = ada_name_prefix_len (function_name); | |
76a01679 JB |
6520 | const int rename_len = function_name_len + 2 /* "__" */ |
6521 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 6522 | |
529cad9c PH |
6523 | /* Strip the suffix if necessary. */ |
6524 | function_name[function_name_len] = '\0'; | |
6525 | ||
4c4b4cd2 PH |
6526 | /* Library-level functions are a special case, as GNAT adds |
6527 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 6528 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
6529 | have this prefix, so we need to skip this prefix if present. */ |
6530 | if (function_name_len > 5 /* "_ada_" */ | |
6531 | && strstr (function_name, "_ada_") == function_name) | |
6532 | function_name = function_name + 5; | |
6533 | ||
6534 | rename = (char *) alloca (rename_len * sizeof (char)); | |
88c15c34 PM |
6535 | xsnprintf (rename, rename_len * sizeof (char), "%s__%s___XR", |
6536 | function_name, name); | |
4c4b4cd2 PH |
6537 | } |
6538 | else | |
6539 | { | |
6540 | const int rename_len = strlen (name) + 6; | |
6541 | rename = (char *) alloca (rename_len * sizeof (char)); | |
88c15c34 | 6542 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
6543 | } |
6544 | ||
6545 | return ada_find_any_symbol (rename); | |
6546 | } | |
6547 | ||
14f9c5c9 | 6548 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 6549 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 6550 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
6551 | otherwise return 0. */ |
6552 | ||
14f9c5c9 | 6553 | int |
d2e4a39e | 6554 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
6555 | { |
6556 | if (type1 == NULL) | |
6557 | return 1; | |
6558 | else if (type0 == NULL) | |
6559 | return 0; | |
6560 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
6561 | return 1; | |
6562 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
6563 | return 0; | |
4c4b4cd2 PH |
6564 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
6565 | return 1; | |
14f9c5c9 AS |
6566 | else if (ada_is_packed_array_type (type0)) |
6567 | return 1; | |
4c4b4cd2 PH |
6568 | else if (ada_is_array_descriptor_type (type0) |
6569 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 6570 | return 1; |
aeb5907d JB |
6571 | else |
6572 | { | |
6573 | const char *type0_name = type_name_no_tag (type0); | |
6574 | const char *type1_name = type_name_no_tag (type1); | |
6575 | ||
6576 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
6577 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
6578 | return 1; | |
6579 | } | |
14f9c5c9 AS |
6580 | return 0; |
6581 | } | |
6582 | ||
6583 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
6584 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
6585 | ||
d2e4a39e AS |
6586 | char * |
6587 | ada_type_name (struct type *type) | |
14f9c5c9 | 6588 | { |
d2e4a39e | 6589 | if (type == NULL) |
14f9c5c9 AS |
6590 | return NULL; |
6591 | else if (TYPE_NAME (type) != NULL) | |
6592 | return TYPE_NAME (type); | |
6593 | else | |
6594 | return TYPE_TAG_NAME (type); | |
6595 | } | |
6596 | ||
6597 | /* Find a parallel type to TYPE whose name is formed by appending | |
4c4b4cd2 | 6598 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 6599 | |
d2e4a39e | 6600 | struct type * |
ebf56fd3 | 6601 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 6602 | { |
d2e4a39e | 6603 | static char *name; |
14f9c5c9 | 6604 | static size_t name_len = 0; |
14f9c5c9 | 6605 | int len; |
d2e4a39e AS |
6606 | char *typename = ada_type_name (type); |
6607 | ||
14f9c5c9 AS |
6608 | if (typename == NULL) |
6609 | return NULL; | |
6610 | ||
6611 | len = strlen (typename); | |
6612 | ||
d2e4a39e | 6613 | GROW_VECT (name, name_len, len + strlen (suffix) + 1); |
14f9c5c9 AS |
6614 | |
6615 | strcpy (name, typename); | |
6616 | strcpy (name + len, suffix); | |
6617 | ||
6618 | return ada_find_any_type (name); | |
6619 | } | |
6620 | ||
6621 | ||
6622 | /* If TYPE is a variable-size record type, return the corresponding template | |
4c4b4cd2 | 6623 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 6624 | |
d2e4a39e AS |
6625 | static struct type * |
6626 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 6627 | { |
61ee279c | 6628 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6629 | |
6630 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 6631 | || ada_type_name (type) == NULL) |
14f9c5c9 | 6632 | return NULL; |
d2e4a39e | 6633 | else |
14f9c5c9 AS |
6634 | { |
6635 | int len = strlen (ada_type_name (type)); | |
4c4b4cd2 PH |
6636 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
6637 | return type; | |
14f9c5c9 | 6638 | else |
4c4b4cd2 | 6639 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
6640 | } |
6641 | } | |
6642 | ||
6643 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 6644 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 6645 | |
d2e4a39e AS |
6646 | static int |
6647 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
6648 | { |
6649 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
d2e4a39e | 6650 | return name != NULL |
14f9c5c9 AS |
6651 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
6652 | && strstr (name, "___XVL") != NULL; | |
6653 | } | |
6654 | ||
4c4b4cd2 PH |
6655 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
6656 | represent a variant record type. */ | |
14f9c5c9 | 6657 | |
d2e4a39e | 6658 | static int |
4c4b4cd2 | 6659 | variant_field_index (struct type *type) |
14f9c5c9 AS |
6660 | { |
6661 | int f; | |
6662 | ||
4c4b4cd2 PH |
6663 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
6664 | return -1; | |
6665 | ||
6666 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
6667 | { | |
6668 | if (ada_is_variant_part (type, f)) | |
6669 | return f; | |
6670 | } | |
6671 | return -1; | |
14f9c5c9 AS |
6672 | } |
6673 | ||
4c4b4cd2 PH |
6674 | /* A record type with no fields. */ |
6675 | ||
d2e4a39e AS |
6676 | static struct type * |
6677 | empty_record (struct objfile *objfile) | |
14f9c5c9 | 6678 | { |
d2e4a39e | 6679 | struct type *type = alloc_type (objfile); |
14f9c5c9 AS |
6680 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
6681 | TYPE_NFIELDS (type) = 0; | |
6682 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 6683 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
6684 | TYPE_NAME (type) = "<empty>"; |
6685 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
6686 | TYPE_LENGTH (type) = 0; |
6687 | return type; | |
6688 | } | |
6689 | ||
6690 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
6691 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
6692 | the beginning of this section) VAL according to GNAT conventions. | |
6693 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 6694 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
6695 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
6696 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 6697 | of the variant. |
14f9c5c9 | 6698 | |
4c4b4cd2 PH |
6699 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
6700 | length are not statically known are discarded. As a consequence, | |
6701 | VALADDR, ADDRESS and DVAL0 are ignored. | |
6702 | ||
6703 | NOTE: Limitations: For now, we assume that dynamic fields and | |
6704 | variants occupy whole numbers of bytes. However, they need not be | |
6705 | byte-aligned. */ | |
6706 | ||
6707 | struct type * | |
10a2c479 | 6708 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 6709 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
6710 | CORE_ADDR address, struct value *dval0, |
6711 | int keep_dynamic_fields) | |
14f9c5c9 | 6712 | { |
d2e4a39e AS |
6713 | struct value *mark = value_mark (); |
6714 | struct value *dval; | |
6715 | struct type *rtype; | |
14f9c5c9 | 6716 | int nfields, bit_len; |
4c4b4cd2 | 6717 | int variant_field; |
14f9c5c9 | 6718 | long off; |
4c4b4cd2 | 6719 | int fld_bit_len, bit_incr; |
14f9c5c9 AS |
6720 | int f; |
6721 | ||
4c4b4cd2 PH |
6722 | /* Compute the number of fields in this record type that are going |
6723 | to be processed: unless keep_dynamic_fields, this includes only | |
6724 | fields whose position and length are static will be processed. */ | |
6725 | if (keep_dynamic_fields) | |
6726 | nfields = TYPE_NFIELDS (type); | |
6727 | else | |
6728 | { | |
6729 | nfields = 0; | |
76a01679 | 6730 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
6731 | && !ada_is_variant_part (type, nfields) |
6732 | && !is_dynamic_field (type, nfields)) | |
6733 | nfields++; | |
6734 | } | |
6735 | ||
14f9c5c9 AS |
6736 | rtype = alloc_type (TYPE_OBJFILE (type)); |
6737 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; | |
6738 | INIT_CPLUS_SPECIFIC (rtype); | |
6739 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 6740 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
6741 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
6742 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
6743 | TYPE_NAME (rtype) = ada_type_name (type); | |
6744 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 6745 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 6746 | |
d2e4a39e AS |
6747 | off = 0; |
6748 | bit_len = 0; | |
4c4b4cd2 PH |
6749 | variant_field = -1; |
6750 | ||
14f9c5c9 AS |
6751 | for (f = 0; f < nfields; f += 1) |
6752 | { | |
6c038f32 PH |
6753 | off = align_value (off, field_alignment (type, f)) |
6754 | + TYPE_FIELD_BITPOS (type, f); | |
14f9c5c9 | 6755 | TYPE_FIELD_BITPOS (rtype, f) = off; |
d2e4a39e | 6756 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 6757 | |
d2e4a39e | 6758 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
6759 | { |
6760 | variant_field = f; | |
6761 | fld_bit_len = bit_incr = 0; | |
6762 | } | |
14f9c5c9 | 6763 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 6764 | { |
284614f0 JB |
6765 | const gdb_byte *field_valaddr = valaddr; |
6766 | CORE_ADDR field_address = address; | |
6767 | struct type *field_type = | |
6768 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
6769 | ||
4c4b4cd2 | 6770 | if (dval0 == NULL) |
b5304971 JG |
6771 | { |
6772 | /* rtype's length is computed based on the run-time | |
6773 | value of discriminants. If the discriminants are not | |
6774 | initialized, the type size may be completely bogus and | |
6775 | GDB may fail to allocate a value for it. So check the | |
6776 | size first before creating the value. */ | |
6777 | check_size (rtype); | |
6778 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
6779 | } | |
4c4b4cd2 PH |
6780 | else |
6781 | dval = dval0; | |
6782 | ||
284614f0 JB |
6783 | /* If the type referenced by this field is an aligner type, we need |
6784 | to unwrap that aligner type, because its size might not be set. | |
6785 | Keeping the aligner type would cause us to compute the wrong | |
6786 | size for this field, impacting the offset of the all the fields | |
6787 | that follow this one. */ | |
6788 | if (ada_is_aligner_type (field_type)) | |
6789 | { | |
6790 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
6791 | ||
6792 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
6793 | field_address = cond_offset_target (field_address, field_offset); | |
6794 | field_type = ada_aligned_type (field_type); | |
6795 | } | |
6796 | ||
6797 | field_valaddr = cond_offset_host (field_valaddr, | |
6798 | off / TARGET_CHAR_BIT); | |
6799 | field_address = cond_offset_target (field_address, | |
6800 | off / TARGET_CHAR_BIT); | |
6801 | ||
6802 | /* Get the fixed type of the field. Note that, in this case, | |
6803 | we do not want to get the real type out of the tag: if | |
6804 | the current field is the parent part of a tagged record, | |
6805 | we will get the tag of the object. Clearly wrong: the real | |
6806 | type of the parent is not the real type of the child. We | |
6807 | would end up in an infinite loop. */ | |
6808 | field_type = ada_get_base_type (field_type); | |
6809 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
6810 | field_address, dval, 0); | |
6811 | ||
6812 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 PH |
6813 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
6814 | bit_incr = fld_bit_len = | |
6815 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; | |
6816 | } | |
14f9c5c9 | 6817 | else |
4c4b4cd2 PH |
6818 | { |
6819 | TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); | |
6820 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); | |
6821 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
6822 | bit_incr = fld_bit_len = | |
6823 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); | |
6824 | else | |
6825 | bit_incr = fld_bit_len = | |
6826 | TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT; | |
6827 | } | |
14f9c5c9 | 6828 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 6829 | bit_len = off + fld_bit_len; |
14f9c5c9 | 6830 | off += bit_incr; |
4c4b4cd2 PH |
6831 | TYPE_LENGTH (rtype) = |
6832 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 6833 | } |
4c4b4cd2 PH |
6834 | |
6835 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 6836 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
6837 | the record. This can happen in the presence of representation |
6838 | clauses. */ | |
6839 | if (variant_field >= 0) | |
6840 | { | |
6841 | struct type *branch_type; | |
6842 | ||
6843 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
6844 | ||
6845 | if (dval0 == NULL) | |
6846 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
6847 | else | |
6848 | dval = dval0; | |
6849 | ||
6850 | branch_type = | |
6851 | to_fixed_variant_branch_type | |
6852 | (TYPE_FIELD_TYPE (type, variant_field), | |
6853 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
6854 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
6855 | if (branch_type == NULL) | |
6856 | { | |
6857 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
6858 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
6859 | TYPE_NFIELDS (rtype) -= 1; | |
6860 | } | |
6861 | else | |
6862 | { | |
6863 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
6864 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
6865 | fld_bit_len = | |
6866 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
6867 | TARGET_CHAR_BIT; | |
6868 | if (off + fld_bit_len > bit_len) | |
6869 | bit_len = off + fld_bit_len; | |
6870 | TYPE_LENGTH (rtype) = | |
6871 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
6872 | } | |
6873 | } | |
6874 | ||
714e53ab PH |
6875 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
6876 | should contain the alignment of that record, which should be a strictly | |
6877 | positive value. If null or negative, then something is wrong, most | |
6878 | probably in the debug info. In that case, we don't round up the size | |
6879 | of the resulting type. If this record is not part of another structure, | |
6880 | the current RTYPE length might be good enough for our purposes. */ | |
6881 | if (TYPE_LENGTH (type) <= 0) | |
6882 | { | |
323e0a4a AC |
6883 | if (TYPE_NAME (rtype)) |
6884 | warning (_("Invalid type size for `%s' detected: %d."), | |
6885 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
6886 | else | |
6887 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
6888 | TYPE_LENGTH (type)); | |
714e53ab PH |
6889 | } |
6890 | else | |
6891 | { | |
6892 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
6893 | TYPE_LENGTH (type)); | |
6894 | } | |
14f9c5c9 AS |
6895 | |
6896 | value_free_to_mark (mark); | |
d2e4a39e | 6897 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 6898 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
6899 | return rtype; |
6900 | } | |
6901 | ||
4c4b4cd2 PH |
6902 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
6903 | of 1. */ | |
14f9c5c9 | 6904 | |
d2e4a39e | 6905 | static struct type * |
fc1a4b47 | 6906 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
6907 | CORE_ADDR address, struct value *dval0) |
6908 | { | |
6909 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
6910 | address, dval0, 1); | |
6911 | } | |
6912 | ||
6913 | /* An ordinary record type in which ___XVL-convention fields and | |
6914 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
6915 | static approximations, containing all possible fields. Uses | |
6916 | no runtime values. Useless for use in values, but that's OK, | |
6917 | since the results are used only for type determinations. Works on both | |
6918 | structs and unions. Representation note: to save space, we memorize | |
6919 | the result of this function in the TYPE_TARGET_TYPE of the | |
6920 | template type. */ | |
6921 | ||
6922 | static struct type * | |
6923 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
6924 | { |
6925 | struct type *type; | |
6926 | int nfields; | |
6927 | int f; | |
6928 | ||
4c4b4cd2 PH |
6929 | if (TYPE_TARGET_TYPE (type0) != NULL) |
6930 | return TYPE_TARGET_TYPE (type0); | |
6931 | ||
6932 | nfields = TYPE_NFIELDS (type0); | |
6933 | type = type0; | |
14f9c5c9 AS |
6934 | |
6935 | for (f = 0; f < nfields; f += 1) | |
6936 | { | |
61ee279c | 6937 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); |
4c4b4cd2 | 6938 | struct type *new_type; |
14f9c5c9 | 6939 | |
4c4b4cd2 PH |
6940 | if (is_dynamic_field (type0, f)) |
6941 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
14f9c5c9 | 6942 | else |
f192137b | 6943 | new_type = static_unwrap_type (field_type); |
4c4b4cd2 PH |
6944 | if (type == type0 && new_type != field_type) |
6945 | { | |
6946 | TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0)); | |
6947 | TYPE_CODE (type) = TYPE_CODE (type0); | |
6948 | INIT_CPLUS_SPECIFIC (type); | |
6949 | TYPE_NFIELDS (type) = nfields; | |
6950 | TYPE_FIELDS (type) = (struct field *) | |
6951 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
6952 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
6953 | sizeof (struct field) * nfields); | |
6954 | TYPE_NAME (type) = ada_type_name (type0); | |
6955 | TYPE_TAG_NAME (type) = NULL; | |
876cecd0 | 6956 | TYPE_FIXED_INSTANCE (type) = 1; |
4c4b4cd2 PH |
6957 | TYPE_LENGTH (type) = 0; |
6958 | } | |
6959 | TYPE_FIELD_TYPE (type, f) = new_type; | |
6960 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
14f9c5c9 | 6961 | } |
14f9c5c9 AS |
6962 | return type; |
6963 | } | |
6964 | ||
4c4b4cd2 | 6965 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
6966 | whose address in memory is ADDRESS, returns a revision of TYPE, |
6967 | which should be a non-dynamic-sized record, in which the variant | |
6968 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
6969 | for discriminant values in DVAL0, which can be NULL if the record |
6970 | contains the necessary discriminant values. */ | |
6971 | ||
d2e4a39e | 6972 | static struct type * |
fc1a4b47 | 6973 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 6974 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 6975 | { |
d2e4a39e | 6976 | struct value *mark = value_mark (); |
4c4b4cd2 | 6977 | struct value *dval; |
d2e4a39e | 6978 | struct type *rtype; |
14f9c5c9 AS |
6979 | struct type *branch_type; |
6980 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 6981 | int variant_field = variant_field_index (type); |
14f9c5c9 | 6982 | |
4c4b4cd2 | 6983 | if (variant_field == -1) |
14f9c5c9 AS |
6984 | return type; |
6985 | ||
4c4b4cd2 PH |
6986 | if (dval0 == NULL) |
6987 | dval = value_from_contents_and_address (type, valaddr, address); | |
6988 | else | |
6989 | dval = dval0; | |
6990 | ||
14f9c5c9 AS |
6991 | rtype = alloc_type (TYPE_OBJFILE (type)); |
6992 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; | |
4c4b4cd2 PH |
6993 | INIT_CPLUS_SPECIFIC (rtype); |
6994 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
6995 | TYPE_FIELDS (rtype) = |
6996 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
6997 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 6998 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
6999 | TYPE_NAME (rtype) = ada_type_name (type); |
7000 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7001 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
7002 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
7003 | ||
4c4b4cd2 PH |
7004 | branch_type = to_fixed_variant_branch_type |
7005 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 7006 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
7007 | TYPE_FIELD_BITPOS (type, variant_field) |
7008 | / TARGET_CHAR_BIT), | |
d2e4a39e | 7009 | cond_offset_target (address, |
4c4b4cd2 PH |
7010 | TYPE_FIELD_BITPOS (type, variant_field) |
7011 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 7012 | if (branch_type == NULL) |
14f9c5c9 | 7013 | { |
4c4b4cd2 PH |
7014 | int f; |
7015 | for (f = variant_field + 1; f < nfields; f += 1) | |
7016 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 7017 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
7018 | } |
7019 | else | |
7020 | { | |
4c4b4cd2 PH |
7021 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
7022 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7023 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 7024 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 7025 | } |
4c4b4cd2 | 7026 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 7027 | |
4c4b4cd2 | 7028 | value_free_to_mark (mark); |
14f9c5c9 AS |
7029 | return rtype; |
7030 | } | |
7031 | ||
7032 | /* An ordinary record type (with fixed-length fields) that describes | |
7033 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
7034 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
7035 | should be in DVAL, a record value; it may be NULL if the object |
7036 | at ADDR itself contains any necessary discriminant values. | |
7037 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
7038 | values from the record are needed. Except in the case that DVAL, | |
7039 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
7040 | unchecked) is replaced by a particular branch of the variant. | |
7041 | ||
7042 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
7043 | is questionable and may be removed. It can arise during the | |
7044 | processing of an unconstrained-array-of-record type where all the | |
7045 | variant branches have exactly the same size. This is because in | |
7046 | such cases, the compiler does not bother to use the XVS convention | |
7047 | when encoding the record. I am currently dubious of this | |
7048 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 7049 | |
d2e4a39e | 7050 | static struct type * |
fc1a4b47 | 7051 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7052 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 7053 | { |
d2e4a39e | 7054 | struct type *templ_type; |
14f9c5c9 | 7055 | |
876cecd0 | 7056 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7057 | return type0; |
7058 | ||
d2e4a39e | 7059 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
7060 | |
7061 | if (templ_type != NULL) | |
7062 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
7063 | else if (variant_field_index (type0) >= 0) |
7064 | { | |
7065 | if (dval == NULL && valaddr == NULL && address == 0) | |
7066 | return type0; | |
7067 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
7068 | dval); | |
7069 | } | |
14f9c5c9 AS |
7070 | else |
7071 | { | |
876cecd0 | 7072 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
7073 | return type0; |
7074 | } | |
7075 | ||
7076 | } | |
7077 | ||
7078 | /* An ordinary record type (with fixed-length fields) that describes | |
7079 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
7080 | union type. Any necessary discriminants' values should be in DVAL, | |
7081 | a record value. That is, this routine selects the appropriate | |
7082 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd JB |
7083 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
7084 | it represents a variant subject to a pragma Unchecked_Union. */ | |
14f9c5c9 | 7085 | |
d2e4a39e | 7086 | static struct type * |
fc1a4b47 | 7087 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7088 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
7089 | { |
7090 | int which; | |
d2e4a39e AS |
7091 | struct type *templ_type; |
7092 | struct type *var_type; | |
14f9c5c9 AS |
7093 | |
7094 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
7095 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 7096 | else |
14f9c5c9 AS |
7097 | var_type = var_type0; |
7098 | ||
7099 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
7100 | ||
7101 | if (templ_type != NULL) | |
7102 | var_type = templ_type; | |
7103 | ||
b1f33ddd JB |
7104 | if (is_unchecked_variant (var_type, value_type (dval))) |
7105 | return var_type0; | |
d2e4a39e AS |
7106 | which = |
7107 | ada_which_variant_applies (var_type, | |
0fd88904 | 7108 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
7109 | |
7110 | if (which < 0) | |
7111 | return empty_record (TYPE_OBJFILE (var_type)); | |
7112 | else if (is_dynamic_field (var_type, which)) | |
4c4b4cd2 | 7113 | return to_fixed_record_type |
d2e4a39e AS |
7114 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
7115 | valaddr, address, dval); | |
4c4b4cd2 | 7116 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
7117 | return |
7118 | to_fixed_record_type | |
7119 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
7120 | else |
7121 | return TYPE_FIELD_TYPE (var_type, which); | |
7122 | } | |
7123 | ||
7124 | /* Assuming that TYPE0 is an array type describing the type of a value | |
7125 | at ADDR, and that DVAL describes a record containing any | |
7126 | discriminants used in TYPE0, returns a type for the value that | |
7127 | contains no dynamic components (that is, no components whose sizes | |
7128 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
7129 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 7130 | varsize_limit. */ |
14f9c5c9 | 7131 | |
d2e4a39e AS |
7132 | static struct type * |
7133 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 7134 | int ignore_too_big) |
14f9c5c9 | 7135 | { |
d2e4a39e AS |
7136 | struct type *index_type_desc; |
7137 | struct type *result; | |
284614f0 | 7138 | int packed_array_p; |
14f9c5c9 | 7139 | |
284614f0 | 7140 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 7141 | return type0; |
14f9c5c9 | 7142 | |
284614f0 JB |
7143 | packed_array_p = ada_is_packed_array_type (type0); |
7144 | if (packed_array_p) | |
7145 | type0 = decode_packed_array_type (type0); | |
7146 | ||
14f9c5c9 AS |
7147 | index_type_desc = ada_find_parallel_type (type0, "___XA"); |
7148 | if (index_type_desc == NULL) | |
7149 | { | |
61ee279c | 7150 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
14f9c5c9 | 7151 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
7152 | depend on the contents of the array in properly constructed |
7153 | debugging data. */ | |
529cad9c PH |
7154 | /* Create a fixed version of the array element type. |
7155 | We're not providing the address of an element here, | |
e1d5a0d2 | 7156 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7157 | the conversion. This should not be a problem, since arrays of |
7158 | unconstrained objects are not allowed. In particular, all | |
7159 | the elements of an array of a tagged type should all be of | |
7160 | the same type specified in the debugging info. No need to | |
7161 | consult the object tag. */ | |
1ed6ede0 | 7162 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 7163 | |
284614f0 JB |
7164 | /* Make sure we always create a new array type when dealing with |
7165 | packed array types, since we're going to fix-up the array | |
7166 | type length and element bitsize a little further down. */ | |
7167 | if (elt_type0 == elt_type && !packed_array_p) | |
4c4b4cd2 | 7168 | result = type0; |
14f9c5c9 | 7169 | else |
4c4b4cd2 PH |
7170 | result = create_array_type (alloc_type (TYPE_OBJFILE (type0)), |
7171 | elt_type, TYPE_INDEX_TYPE (type0)); | |
14f9c5c9 AS |
7172 | } |
7173 | else | |
7174 | { | |
7175 | int i; | |
7176 | struct type *elt_type0; | |
7177 | ||
7178 | elt_type0 = type0; | |
7179 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 7180 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
7181 | |
7182 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
7183 | depend on the contents of the array in properly constructed |
7184 | debugging data. */ | |
529cad9c PH |
7185 | /* Create a fixed version of the array element type. |
7186 | We're not providing the address of an element here, | |
e1d5a0d2 | 7187 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7188 | the conversion. This should not be a problem, since arrays of |
7189 | unconstrained objects are not allowed. In particular, all | |
7190 | the elements of an array of a tagged type should all be of | |
7191 | the same type specified in the debugging info. No need to | |
7192 | consult the object tag. */ | |
1ed6ede0 JB |
7193 | result = |
7194 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
14f9c5c9 | 7195 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
7196 | { |
7197 | struct type *range_type = | |
7198 | to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i), | |
7199 | dval, TYPE_OBJFILE (type0)); | |
7200 | result = create_array_type (alloc_type (TYPE_OBJFILE (type0)), | |
7201 | result, range_type); | |
7202 | } | |
d2e4a39e | 7203 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 7204 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7205 | } |
7206 | ||
284614f0 JB |
7207 | if (packed_array_p) |
7208 | { | |
7209 | /* So far, the resulting type has been created as if the original | |
7210 | type was a regular (non-packed) array type. As a result, the | |
7211 | bitsize of the array elements needs to be set again, and the array | |
7212 | length needs to be recomputed based on that bitsize. */ | |
7213 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
7214 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
7215 | ||
7216 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
7217 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
7218 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
7219 | TYPE_LENGTH (result)++; | |
7220 | } | |
7221 | ||
876cecd0 | 7222 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 7223 | return result; |
d2e4a39e | 7224 | } |
14f9c5c9 AS |
7225 | |
7226 | ||
7227 | /* A standard type (containing no dynamically sized components) | |
7228 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
7229 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 7230 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
7231 | ADDRESS or in VALADDR contains these discriminants. |
7232 | ||
1ed6ede0 JB |
7233 | If CHECK_TAG is not null, in the case of tagged types, this function |
7234 | attempts to locate the object's tag and use it to compute the actual | |
7235 | type. However, when ADDRESS is null, we cannot use it to determine the | |
7236 | location of the tag, and therefore compute the tagged type's actual type. | |
7237 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 7238 | |
f192137b JB |
7239 | static struct type * |
7240 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 7241 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 7242 | { |
61ee279c | 7243 | type = ada_check_typedef (type); |
d2e4a39e AS |
7244 | switch (TYPE_CODE (type)) |
7245 | { | |
7246 | default: | |
14f9c5c9 | 7247 | return type; |
d2e4a39e | 7248 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 7249 | { |
76a01679 | 7250 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
7251 | struct type *fixed_record_type = |
7252 | to_fixed_record_type (type, valaddr, address, NULL); | |
529cad9c PH |
7253 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
7254 | then we can determine its tag, and compute the object's actual | |
1ed6ede0 JB |
7255 | type from there. Note that we have to use the fixed record |
7256 | type (the parent part of the record may have dynamic fields | |
7257 | and the way the location of _tag is expressed may depend on | |
7258 | them). */ | |
529cad9c | 7259 | |
1ed6ede0 | 7260 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 JB |
7261 | { |
7262 | struct type *real_type = | |
1ed6ede0 JB |
7263 | type_from_tag (value_tag_from_contents_and_address |
7264 | (fixed_record_type, | |
7265 | valaddr, | |
7266 | address)); | |
76a01679 | 7267 | if (real_type != NULL) |
1ed6ede0 | 7268 | return to_fixed_record_type (real_type, valaddr, address, NULL); |
76a01679 | 7269 | } |
4af88198 JB |
7270 | |
7271 | /* Check to see if there is a parallel ___XVZ variable. | |
7272 | If there is, then it provides the actual size of our type. */ | |
7273 | else if (ada_type_name (fixed_record_type) != NULL) | |
7274 | { | |
7275 | char *name = ada_type_name (fixed_record_type); | |
7276 | char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */); | |
7277 | int xvz_found = 0; | |
7278 | LONGEST size; | |
7279 | ||
88c15c34 | 7280 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
4af88198 JB |
7281 | size = get_int_var_value (xvz_name, &xvz_found); |
7282 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
7283 | { | |
7284 | fixed_record_type = copy_type (fixed_record_type); | |
7285 | TYPE_LENGTH (fixed_record_type) = size; | |
7286 | ||
7287 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
7288 | observed this when the debugging info is STABS, and | |
7289 | apparently it is something that is hard to fix. | |
7290 | ||
7291 | In practice, we don't need the actual type definition | |
7292 | at all, because the presence of the XVZ variable allows us | |
7293 | to assume that there must be a XVS type as well, which we | |
7294 | should be able to use later, when we need the actual type | |
7295 | definition. | |
7296 | ||
7297 | In the meantime, pretend that the "fixed" type we are | |
7298 | returning is NOT a stub, because this can cause trouble | |
7299 | when using this type to create new types targeting it. | |
7300 | Indeed, the associated creation routines often check | |
7301 | whether the target type is a stub and will try to replace | |
7302 | it, thus using a type with the wrong size. This, in turn, | |
7303 | might cause the new type to have the wrong size too. | |
7304 | Consider the case of an array, for instance, where the size | |
7305 | of the array is computed from the number of elements in | |
7306 | our array multiplied by the size of its element. */ | |
7307 | TYPE_STUB (fixed_record_type) = 0; | |
7308 | } | |
7309 | } | |
1ed6ede0 | 7310 | return fixed_record_type; |
4c4b4cd2 | 7311 | } |
d2e4a39e | 7312 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 7313 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
7314 | case TYPE_CODE_UNION: |
7315 | if (dval == NULL) | |
4c4b4cd2 | 7316 | return type; |
d2e4a39e | 7317 | else |
4c4b4cd2 | 7318 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 7319 | } |
14f9c5c9 AS |
7320 | } |
7321 | ||
f192137b JB |
7322 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
7323 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
7324 | ada_to_fixed_type_1 would return the type referenced by TYPE. */ | |
7325 | ||
7326 | struct type * | |
7327 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
7328 | CORE_ADDR address, struct value *dval, int check_tag) | |
7329 | ||
7330 | { | |
7331 | struct type *fixed_type = | |
7332 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
7333 | ||
7334 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
7335 | && TYPE_TARGET_TYPE (type) == fixed_type) | |
7336 | return type; | |
7337 | ||
7338 | return fixed_type; | |
7339 | } | |
7340 | ||
14f9c5c9 | 7341 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 7342 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 7343 | |
d2e4a39e AS |
7344 | static struct type * |
7345 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 7346 | { |
d2e4a39e | 7347 | struct type *type; |
14f9c5c9 AS |
7348 | |
7349 | if (type0 == NULL) | |
7350 | return NULL; | |
7351 | ||
876cecd0 | 7352 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7353 | return type0; |
7354 | ||
61ee279c | 7355 | type0 = ada_check_typedef (type0); |
d2e4a39e | 7356 | |
14f9c5c9 AS |
7357 | switch (TYPE_CODE (type0)) |
7358 | { | |
7359 | default: | |
7360 | return type0; | |
7361 | case TYPE_CODE_STRUCT: | |
7362 | type = dynamic_template_type (type0); | |
d2e4a39e | 7363 | if (type != NULL) |
4c4b4cd2 PH |
7364 | return template_to_static_fixed_type (type); |
7365 | else | |
7366 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
7367 | case TYPE_CODE_UNION: |
7368 | type = ada_find_parallel_type (type0, "___XVU"); | |
7369 | if (type != NULL) | |
4c4b4cd2 PH |
7370 | return template_to_static_fixed_type (type); |
7371 | else | |
7372 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
7373 | } |
7374 | } | |
7375 | ||
4c4b4cd2 PH |
7376 | /* A static approximation of TYPE with all type wrappers removed. */ |
7377 | ||
d2e4a39e AS |
7378 | static struct type * |
7379 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
7380 | { |
7381 | if (ada_is_aligner_type (type)) | |
7382 | { | |
61ee279c | 7383 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 7384 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 7385 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
7386 | |
7387 | return static_unwrap_type (type1); | |
7388 | } | |
d2e4a39e | 7389 | else |
14f9c5c9 | 7390 | { |
d2e4a39e AS |
7391 | struct type *raw_real_type = ada_get_base_type (type); |
7392 | if (raw_real_type == type) | |
4c4b4cd2 | 7393 | return type; |
14f9c5c9 | 7394 | else |
4c4b4cd2 | 7395 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
7396 | } |
7397 | } | |
7398 | ||
7399 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 7400 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
7401 | type Foo; |
7402 | type FooP is access Foo; | |
7403 | V: FooP; | |
7404 | type Foo is array ...; | |
4c4b4cd2 | 7405 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
7406 | cross-references to such types, we instead substitute for FooP a |
7407 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 7408 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
7409 | |
7410 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
7411 | exists, otherwise TYPE. */ |
7412 | ||
d2e4a39e | 7413 | struct type * |
61ee279c | 7414 | ada_check_typedef (struct type *type) |
14f9c5c9 | 7415 | { |
727e3d2e JB |
7416 | if (type == NULL) |
7417 | return NULL; | |
7418 | ||
14f9c5c9 AS |
7419 | CHECK_TYPEDEF (type); |
7420 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM | |
529cad9c | 7421 | || !TYPE_STUB (type) |
14f9c5c9 AS |
7422 | || TYPE_TAG_NAME (type) == NULL) |
7423 | return type; | |
d2e4a39e | 7424 | else |
14f9c5c9 | 7425 | { |
d2e4a39e AS |
7426 | char *name = TYPE_TAG_NAME (type); |
7427 | struct type *type1 = ada_find_any_type (name); | |
14f9c5c9 AS |
7428 | return (type1 == NULL) ? type : type1; |
7429 | } | |
7430 | } | |
7431 | ||
7432 | /* A value representing the data at VALADDR/ADDRESS as described by | |
7433 | type TYPE0, but with a standard (static-sized) type that correctly | |
7434 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
7435 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 7436 | creation of struct values]. */ |
14f9c5c9 | 7437 | |
4c4b4cd2 PH |
7438 | static struct value * |
7439 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
7440 | struct value *val0) | |
14f9c5c9 | 7441 | { |
1ed6ede0 | 7442 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
14f9c5c9 AS |
7443 | if (type == type0 && val0 != NULL) |
7444 | return val0; | |
d2e4a39e | 7445 | else |
4c4b4cd2 PH |
7446 | return value_from_contents_and_address (type, 0, address); |
7447 | } | |
7448 | ||
7449 | /* A value representing VAL, but with a standard (static-sized) type | |
7450 | that correctly describes it. Does not necessarily create a new | |
7451 | value. */ | |
7452 | ||
7453 | static struct value * | |
7454 | ada_to_fixed_value (struct value *val) | |
7455 | { | |
df407dfe | 7456 | return ada_to_fixed_value_create (value_type (val), |
42ae5230 | 7457 | value_address (val), |
4c4b4cd2 | 7458 | val); |
14f9c5c9 AS |
7459 | } |
7460 | ||
4c4b4cd2 | 7461 | /* A value representing VAL, but with a standard (static-sized) type |
14f9c5c9 AS |
7462 | chosen to approximate the real type of VAL as well as possible, but |
7463 | without consulting any runtime values. For Ada dynamic-sized | |
4c4b4cd2 | 7464 | types, therefore, the type of the result is likely to be inaccurate. */ |
14f9c5c9 | 7465 | |
2c0b251b | 7466 | static struct value * |
d2e4a39e | 7467 | ada_to_static_fixed_value (struct value *val) |
14f9c5c9 | 7468 | { |
d2e4a39e | 7469 | struct type *type = |
df407dfe AC |
7470 | to_static_fixed_type (static_unwrap_type (value_type (val))); |
7471 | if (type == value_type (val)) | |
14f9c5c9 AS |
7472 | return val; |
7473 | else | |
4c4b4cd2 | 7474 | return coerce_unspec_val_to_type (val, type); |
14f9c5c9 | 7475 | } |
d2e4a39e | 7476 | \f |
14f9c5c9 | 7477 | |
14f9c5c9 AS |
7478 | /* Attributes */ |
7479 | ||
4c4b4cd2 PH |
7480 | /* Table mapping attribute numbers to names. |
7481 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 7482 | |
d2e4a39e | 7483 | static const char *attribute_names[] = { |
14f9c5c9 AS |
7484 | "<?>", |
7485 | ||
d2e4a39e | 7486 | "first", |
14f9c5c9 AS |
7487 | "last", |
7488 | "length", | |
7489 | "image", | |
14f9c5c9 AS |
7490 | "max", |
7491 | "min", | |
4c4b4cd2 PH |
7492 | "modulus", |
7493 | "pos", | |
7494 | "size", | |
7495 | "tag", | |
14f9c5c9 | 7496 | "val", |
14f9c5c9 AS |
7497 | 0 |
7498 | }; | |
7499 | ||
d2e4a39e | 7500 | const char * |
4c4b4cd2 | 7501 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 7502 | { |
4c4b4cd2 PH |
7503 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
7504 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
7505 | else |
7506 | return attribute_names[0]; | |
7507 | } | |
7508 | ||
4c4b4cd2 | 7509 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 7510 | |
4c4b4cd2 PH |
7511 | static LONGEST |
7512 | pos_atr (struct value *arg) | |
14f9c5c9 | 7513 | { |
24209737 PH |
7514 | struct value *val = coerce_ref (arg); |
7515 | struct type *type = value_type (val); | |
14f9c5c9 | 7516 | |
d2e4a39e | 7517 | if (!discrete_type_p (type)) |
323e0a4a | 7518 | error (_("'POS only defined on discrete types")); |
14f9c5c9 AS |
7519 | |
7520 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
7521 | { | |
7522 | int i; | |
24209737 | 7523 | LONGEST v = value_as_long (val); |
14f9c5c9 | 7524 | |
d2e4a39e | 7525 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
4c4b4cd2 PH |
7526 | { |
7527 | if (v == TYPE_FIELD_BITPOS (type, i)) | |
7528 | return i; | |
7529 | } | |
323e0a4a | 7530 | error (_("enumeration value is invalid: can't find 'POS")); |
14f9c5c9 AS |
7531 | } |
7532 | else | |
24209737 | 7533 | return value_as_long (val); |
4c4b4cd2 PH |
7534 | } |
7535 | ||
7536 | static struct value * | |
3cb382c9 | 7537 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 7538 | { |
3cb382c9 | 7539 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
7540 | } |
7541 | ||
4c4b4cd2 | 7542 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 7543 | |
d2e4a39e AS |
7544 | static struct value * |
7545 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 7546 | { |
d2e4a39e | 7547 | if (!discrete_type_p (type)) |
323e0a4a | 7548 | error (_("'VAL only defined on discrete types")); |
df407dfe | 7549 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 7550 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
7551 | |
7552 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
7553 | { | |
7554 | long pos = value_as_long (arg); | |
7555 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) | |
323e0a4a | 7556 | error (_("argument to 'VAL out of range")); |
d2e4a39e | 7557 | return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos)); |
14f9c5c9 AS |
7558 | } |
7559 | else | |
7560 | return value_from_longest (type, value_as_long (arg)); | |
7561 | } | |
14f9c5c9 | 7562 | \f |
d2e4a39e | 7563 | |
4c4b4cd2 | 7564 | /* Evaluation */ |
14f9c5c9 | 7565 | |
4c4b4cd2 PH |
7566 | /* True if TYPE appears to be an Ada character type. |
7567 | [At the moment, this is true only for Character and Wide_Character; | |
7568 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 7569 | |
d2e4a39e AS |
7570 | int |
7571 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 7572 | { |
7b9f71f2 JB |
7573 | const char *name; |
7574 | ||
7575 | /* If the type code says it's a character, then assume it really is, | |
7576 | and don't check any further. */ | |
7577 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
7578 | return 1; | |
7579 | ||
7580 | /* Otherwise, assume it's a character type iff it is a discrete type | |
7581 | with a known character type name. */ | |
7582 | name = ada_type_name (type); | |
7583 | return (name != NULL | |
7584 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
7585 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
7586 | && (strcmp (name, "character") == 0 | |
7587 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 7588 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 7589 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
7590 | } |
7591 | ||
4c4b4cd2 | 7592 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
7593 | |
7594 | int | |
ebf56fd3 | 7595 | ada_is_string_type (struct type *type) |
14f9c5c9 | 7596 | { |
61ee279c | 7597 | type = ada_check_typedef (type); |
d2e4a39e | 7598 | if (type != NULL |
14f9c5c9 | 7599 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
7600 | && (ada_is_simple_array_type (type) |
7601 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
7602 | && ada_array_arity (type) == 1) |
7603 | { | |
7604 | struct type *elttype = ada_array_element_type (type, 1); | |
7605 | ||
7606 | return ada_is_character_type (elttype); | |
7607 | } | |
d2e4a39e | 7608 | else |
14f9c5c9 AS |
7609 | return 0; |
7610 | } | |
7611 | ||
7612 | ||
7613 | /* True if TYPE is a struct type introduced by the compiler to force the | |
7614 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 7615 | distinctive name. */ |
14f9c5c9 AS |
7616 | |
7617 | int | |
ebf56fd3 | 7618 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 7619 | { |
61ee279c | 7620 | type = ada_check_typedef (type); |
714e53ab PH |
7621 | |
7622 | /* If we can find a parallel XVS type, then the XVS type should | |
7623 | be used instead of this type. And hence, this is not an aligner | |
7624 | type. */ | |
7625 | if (ada_find_parallel_type (type, "___XVS") != NULL) | |
7626 | return 0; | |
7627 | ||
14f9c5c9 | 7628 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
7629 | && TYPE_NFIELDS (type) == 1 |
7630 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
7631 | } |
7632 | ||
7633 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 7634 | the parallel type. */ |
14f9c5c9 | 7635 | |
d2e4a39e AS |
7636 | struct type * |
7637 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 7638 | { |
d2e4a39e AS |
7639 | struct type *real_type_namer; |
7640 | struct type *raw_real_type; | |
14f9c5c9 AS |
7641 | |
7642 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
7643 | return raw_type; | |
7644 | ||
284614f0 JB |
7645 | if (ada_is_aligner_type (raw_type)) |
7646 | /* The encoding specifies that we should always use the aligner type. | |
7647 | So, even if this aligner type has an associated XVS type, we should | |
7648 | simply ignore it. | |
7649 | ||
7650 | According to the compiler gurus, an XVS type parallel to an aligner | |
7651 | type may exist because of a stabs limitation. In stabs, aligner | |
7652 | types are empty because the field has a variable-sized type, and | |
7653 | thus cannot actually be used as an aligner type. As a result, | |
7654 | we need the associated parallel XVS type to decode the type. | |
7655 | Since the policy in the compiler is to not change the internal | |
7656 | representation based on the debugging info format, we sometimes | |
7657 | end up having a redundant XVS type parallel to the aligner type. */ | |
7658 | return raw_type; | |
7659 | ||
14f9c5c9 | 7660 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 7661 | if (real_type_namer == NULL |
14f9c5c9 AS |
7662 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
7663 | || TYPE_NFIELDS (real_type_namer) != 1) | |
7664 | return raw_type; | |
7665 | ||
7666 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
d2e4a39e | 7667 | if (raw_real_type == NULL) |
14f9c5c9 AS |
7668 | return raw_type; |
7669 | else | |
7670 | return raw_real_type; | |
d2e4a39e | 7671 | } |
14f9c5c9 | 7672 | |
4c4b4cd2 | 7673 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 7674 | |
d2e4a39e AS |
7675 | struct type * |
7676 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
7677 | { |
7678 | if (ada_is_aligner_type (type)) | |
7679 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
7680 | else | |
7681 | return ada_get_base_type (type); | |
7682 | } | |
7683 | ||
7684 | ||
7685 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 7686 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 7687 | |
fc1a4b47 AC |
7688 | const gdb_byte * |
7689 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 7690 | { |
d2e4a39e | 7691 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 7692 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
7693 | valaddr + |
7694 | TYPE_FIELD_BITPOS (type, | |
7695 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
7696 | else |
7697 | return valaddr; | |
7698 | } | |
7699 | ||
4c4b4cd2 PH |
7700 | |
7701 | ||
14f9c5c9 | 7702 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 7703 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
7704 | const char * |
7705 | ada_enum_name (const char *name) | |
14f9c5c9 | 7706 | { |
4c4b4cd2 PH |
7707 | static char *result; |
7708 | static size_t result_len = 0; | |
d2e4a39e | 7709 | char *tmp; |
14f9c5c9 | 7710 | |
4c4b4cd2 PH |
7711 | /* First, unqualify the enumeration name: |
7712 | 1. Search for the last '.' character. If we find one, then skip | |
76a01679 JB |
7713 | all the preceeding characters, the unqualified name starts |
7714 | right after that dot. | |
4c4b4cd2 | 7715 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
7716 | translates dots into "__". Search forward for double underscores, |
7717 | but stop searching when we hit an overloading suffix, which is | |
7718 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 7719 | |
c3e5cd34 PH |
7720 | tmp = strrchr (name, '.'); |
7721 | if (tmp != NULL) | |
4c4b4cd2 PH |
7722 | name = tmp + 1; |
7723 | else | |
14f9c5c9 | 7724 | { |
4c4b4cd2 PH |
7725 | while ((tmp = strstr (name, "__")) != NULL) |
7726 | { | |
7727 | if (isdigit (tmp[2])) | |
7728 | break; | |
7729 | else | |
7730 | name = tmp + 2; | |
7731 | } | |
14f9c5c9 AS |
7732 | } |
7733 | ||
7734 | if (name[0] == 'Q') | |
7735 | { | |
14f9c5c9 AS |
7736 | int v; |
7737 | if (name[1] == 'U' || name[1] == 'W') | |
4c4b4cd2 PH |
7738 | { |
7739 | if (sscanf (name + 2, "%x", &v) != 1) | |
7740 | return name; | |
7741 | } | |
14f9c5c9 | 7742 | else |
4c4b4cd2 | 7743 | return name; |
14f9c5c9 | 7744 | |
4c4b4cd2 | 7745 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 7746 | if (isascii (v) && isprint (v)) |
88c15c34 | 7747 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 7748 | else if (name[1] == 'U') |
88c15c34 | 7749 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 7750 | else |
88c15c34 | 7751 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
7752 | |
7753 | return result; | |
7754 | } | |
d2e4a39e | 7755 | else |
4c4b4cd2 | 7756 | { |
c3e5cd34 PH |
7757 | tmp = strstr (name, "__"); |
7758 | if (tmp == NULL) | |
7759 | tmp = strstr (name, "$"); | |
7760 | if (tmp != NULL) | |
4c4b4cd2 PH |
7761 | { |
7762 | GROW_VECT (result, result_len, tmp - name + 1); | |
7763 | strncpy (result, name, tmp - name); | |
7764 | result[tmp - name] = '\0'; | |
7765 | return result; | |
7766 | } | |
7767 | ||
7768 | return name; | |
7769 | } | |
14f9c5c9 AS |
7770 | } |
7771 | ||
14f9c5c9 AS |
7772 | /* Evaluate the subexpression of EXP starting at *POS as for |
7773 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 7774 | expression. */ |
14f9c5c9 | 7775 | |
d2e4a39e AS |
7776 | static struct value * |
7777 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 7778 | { |
4b27a620 | 7779 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
7780 | } |
7781 | ||
7782 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 7783 | value it wraps. */ |
14f9c5c9 | 7784 | |
d2e4a39e AS |
7785 | static struct value * |
7786 | unwrap_value (struct value *val) | |
14f9c5c9 | 7787 | { |
df407dfe | 7788 | struct type *type = ada_check_typedef (value_type (val)); |
14f9c5c9 AS |
7789 | if (ada_is_aligner_type (type)) |
7790 | { | |
de4d072f | 7791 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 7792 | struct type *val_type = ada_check_typedef (value_type (v)); |
14f9c5c9 | 7793 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 7794 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
7795 | |
7796 | return unwrap_value (v); | |
7797 | } | |
d2e4a39e | 7798 | else |
14f9c5c9 | 7799 | { |
d2e4a39e | 7800 | struct type *raw_real_type = |
61ee279c | 7801 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 7802 | |
14f9c5c9 | 7803 | if (type == raw_real_type) |
4c4b4cd2 | 7804 | return val; |
14f9c5c9 | 7805 | |
d2e4a39e | 7806 | return |
4c4b4cd2 PH |
7807 | coerce_unspec_val_to_type |
7808 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 7809 | value_address (val), |
1ed6ede0 | 7810 | NULL, 1)); |
14f9c5c9 AS |
7811 | } |
7812 | } | |
d2e4a39e AS |
7813 | |
7814 | static struct value * | |
7815 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
7816 | { |
7817 | LONGEST val; | |
7818 | ||
df407dfe | 7819 | if (type == value_type (arg)) |
14f9c5c9 | 7820 | return arg; |
df407dfe | 7821 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 7822 | val = ada_float_to_fixed (type, |
df407dfe | 7823 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 7824 | value_as_long (arg))); |
d2e4a39e | 7825 | else |
14f9c5c9 | 7826 | { |
a53b7a21 | 7827 | DOUBLEST argd = value_as_double (arg); |
14f9c5c9 AS |
7828 | val = ada_float_to_fixed (type, argd); |
7829 | } | |
7830 | ||
7831 | return value_from_longest (type, val); | |
7832 | } | |
7833 | ||
d2e4a39e | 7834 | static struct value * |
a53b7a21 | 7835 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 7836 | { |
df407dfe | 7837 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 7838 | value_as_long (arg)); |
a53b7a21 | 7839 | return value_from_double (type, val); |
14f9c5c9 AS |
7840 | } |
7841 | ||
4c4b4cd2 PH |
7842 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
7843 | return the converted value. */ | |
7844 | ||
d2e4a39e AS |
7845 | static struct value * |
7846 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 7847 | { |
df407dfe | 7848 | struct type *type2 = value_type (val); |
14f9c5c9 AS |
7849 | if (type == type2) |
7850 | return val; | |
7851 | ||
61ee279c PH |
7852 | type2 = ada_check_typedef (type2); |
7853 | type = ada_check_typedef (type); | |
14f9c5c9 | 7854 | |
d2e4a39e AS |
7855 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
7856 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
7857 | { |
7858 | val = ada_value_ind (val); | |
df407dfe | 7859 | type2 = value_type (val); |
14f9c5c9 AS |
7860 | } |
7861 | ||
d2e4a39e | 7862 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
7863 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
7864 | { | |
7865 | if (TYPE_LENGTH (type2) != TYPE_LENGTH (type) | |
4c4b4cd2 PH |
7866 | || TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) |
7867 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type2))) | |
323e0a4a | 7868 | error (_("Incompatible types in assignment")); |
04624583 | 7869 | deprecated_set_value_type (val, type); |
14f9c5c9 | 7870 | } |
d2e4a39e | 7871 | return val; |
14f9c5c9 AS |
7872 | } |
7873 | ||
4c4b4cd2 PH |
7874 | static struct value * |
7875 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
7876 | { | |
7877 | struct value *val; | |
7878 | struct type *type1, *type2; | |
7879 | LONGEST v, v1, v2; | |
7880 | ||
994b9211 AC |
7881 | arg1 = coerce_ref (arg1); |
7882 | arg2 = coerce_ref (arg2); | |
df407dfe AC |
7883 | type1 = base_type (ada_check_typedef (value_type (arg1))); |
7884 | type2 = base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 7885 | |
76a01679 JB |
7886 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
7887 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
7888 | return value_binop (arg1, arg2, op); |
7889 | ||
76a01679 | 7890 | switch (op) |
4c4b4cd2 PH |
7891 | { |
7892 | case BINOP_MOD: | |
7893 | case BINOP_DIV: | |
7894 | case BINOP_REM: | |
7895 | break; | |
7896 | default: | |
7897 | return value_binop (arg1, arg2, op); | |
7898 | } | |
7899 | ||
7900 | v2 = value_as_long (arg2); | |
7901 | if (v2 == 0) | |
323e0a4a | 7902 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
7903 | |
7904 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
7905 | return value_binop (arg1, arg2, op); | |
7906 | ||
7907 | v1 = value_as_long (arg1); | |
7908 | switch (op) | |
7909 | { | |
7910 | case BINOP_DIV: | |
7911 | v = v1 / v2; | |
76a01679 JB |
7912 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
7913 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
7914 | break; |
7915 | case BINOP_REM: | |
7916 | v = v1 % v2; | |
76a01679 JB |
7917 | if (v * v1 < 0) |
7918 | v -= v2; | |
4c4b4cd2 PH |
7919 | break; |
7920 | default: | |
7921 | /* Should not reach this point. */ | |
7922 | v = 0; | |
7923 | } | |
7924 | ||
7925 | val = allocate_value (type1); | |
990a07ab | 7926 | store_unsigned_integer (value_contents_raw (val), |
df407dfe | 7927 | TYPE_LENGTH (value_type (val)), v); |
4c4b4cd2 PH |
7928 | return val; |
7929 | } | |
7930 | ||
7931 | static int | |
7932 | ada_value_equal (struct value *arg1, struct value *arg2) | |
7933 | { | |
df407dfe AC |
7934 | if (ada_is_direct_array_type (value_type (arg1)) |
7935 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 7936 | { |
f58b38bf JB |
7937 | /* Automatically dereference any array reference before |
7938 | we attempt to perform the comparison. */ | |
7939 | arg1 = ada_coerce_ref (arg1); | |
7940 | arg2 = ada_coerce_ref (arg2); | |
7941 | ||
4c4b4cd2 PH |
7942 | arg1 = ada_coerce_to_simple_array (arg1); |
7943 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
7944 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
7945 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 7946 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 7947 | /* FIXME: The following works only for types whose |
76a01679 JB |
7948 | representations use all bits (no padding or undefined bits) |
7949 | and do not have user-defined equality. */ | |
7950 | return | |
df407dfe | 7951 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 7952 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 7953 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
7954 | } |
7955 | return value_equal (arg1, arg2); | |
7956 | } | |
7957 | ||
52ce6436 PH |
7958 | /* Total number of component associations in the aggregate starting at |
7959 | index PC in EXP. Assumes that index PC is the start of an | |
7960 | OP_AGGREGATE. */ | |
7961 | ||
7962 | static int | |
7963 | num_component_specs (struct expression *exp, int pc) | |
7964 | { | |
7965 | int n, m, i; | |
7966 | m = exp->elts[pc + 1].longconst; | |
7967 | pc += 3; | |
7968 | n = 0; | |
7969 | for (i = 0; i < m; i += 1) | |
7970 | { | |
7971 | switch (exp->elts[pc].opcode) | |
7972 | { | |
7973 | default: | |
7974 | n += 1; | |
7975 | break; | |
7976 | case OP_CHOICES: | |
7977 | n += exp->elts[pc + 1].longconst; | |
7978 | break; | |
7979 | } | |
7980 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
7981 | } | |
7982 | return n; | |
7983 | } | |
7984 | ||
7985 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
7986 | component of LHS (a simple array or a record), updating *POS past | |
7987 | the expression, assuming that LHS is contained in CONTAINER. Does | |
7988 | not modify the inferior's memory, nor does it modify LHS (unless | |
7989 | LHS == CONTAINER). */ | |
7990 | ||
7991 | static void | |
7992 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
7993 | struct expression *exp, int *pos) | |
7994 | { | |
7995 | struct value *mark = value_mark (); | |
7996 | struct value *elt; | |
7997 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) | |
7998 | { | |
6d84d3d8 | 7999 | struct value *index_val = value_from_longest (builtin_type_int32, index); |
52ce6436 PH |
8000 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
8001 | } | |
8002 | else | |
8003 | { | |
8004 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
8005 | elt = ada_to_fixed_value (unwrap_value (elt)); | |
8006 | } | |
8007 | ||
8008 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
8009 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
8010 | else | |
8011 | value_assign_to_component (container, elt, | |
8012 | ada_evaluate_subexp (NULL, exp, pos, | |
8013 | EVAL_NORMAL)); | |
8014 | ||
8015 | value_free_to_mark (mark); | |
8016 | } | |
8017 | ||
8018 | /* Assuming that LHS represents an lvalue having a record or array | |
8019 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
8020 | of that aggregate's value to LHS, advancing *POS past the | |
8021 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
8022 | lvalue containing LHS (possibly LHS itself). Does not modify | |
8023 | the inferior's memory, nor does it modify the contents of | |
8024 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ | |
8025 | ||
8026 | static struct value * | |
8027 | assign_aggregate (struct value *container, | |
8028 | struct value *lhs, struct expression *exp, | |
8029 | int *pos, enum noside noside) | |
8030 | { | |
8031 | struct type *lhs_type; | |
8032 | int n = exp->elts[*pos+1].longconst; | |
8033 | LONGEST low_index, high_index; | |
8034 | int num_specs; | |
8035 | LONGEST *indices; | |
8036 | int max_indices, num_indices; | |
8037 | int is_array_aggregate; | |
8038 | int i; | |
8039 | struct value *mark = value_mark (); | |
8040 | ||
8041 | *pos += 3; | |
8042 | if (noside != EVAL_NORMAL) | |
8043 | { | |
8044 | int i; | |
8045 | for (i = 0; i < n; i += 1) | |
8046 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
8047 | return container; | |
8048 | } | |
8049 | ||
8050 | container = ada_coerce_ref (container); | |
8051 | if (ada_is_direct_array_type (value_type (container))) | |
8052 | container = ada_coerce_to_simple_array (container); | |
8053 | lhs = ada_coerce_ref (lhs); | |
8054 | if (!deprecated_value_modifiable (lhs)) | |
8055 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
8056 | ||
8057 | lhs_type = value_type (lhs); | |
8058 | if (ada_is_direct_array_type (lhs_type)) | |
8059 | { | |
8060 | lhs = ada_coerce_to_simple_array (lhs); | |
8061 | lhs_type = value_type (lhs); | |
8062 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
8063 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
8064 | is_array_aggregate = 1; | |
8065 | } | |
8066 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
8067 | { | |
8068 | low_index = 0; | |
8069 | high_index = num_visible_fields (lhs_type) - 1; | |
8070 | is_array_aggregate = 0; | |
8071 | } | |
8072 | else | |
8073 | error (_("Left-hand side must be array or record.")); | |
8074 | ||
8075 | num_specs = num_component_specs (exp, *pos - 3); | |
8076 | max_indices = 4 * num_specs + 4; | |
8077 | indices = alloca (max_indices * sizeof (indices[0])); | |
8078 | indices[0] = indices[1] = low_index - 1; | |
8079 | indices[2] = indices[3] = high_index + 1; | |
8080 | num_indices = 4; | |
8081 | ||
8082 | for (i = 0; i < n; i += 1) | |
8083 | { | |
8084 | switch (exp->elts[*pos].opcode) | |
8085 | { | |
8086 | case OP_CHOICES: | |
8087 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
8088 | &num_indices, max_indices, | |
8089 | low_index, high_index); | |
8090 | break; | |
8091 | case OP_POSITIONAL: | |
8092 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
8093 | &num_indices, max_indices, | |
8094 | low_index, high_index); | |
8095 | break; | |
8096 | case OP_OTHERS: | |
8097 | if (i != n-1) | |
8098 | error (_("Misplaced 'others' clause")); | |
8099 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
8100 | num_indices, low_index, high_index); | |
8101 | break; | |
8102 | default: | |
8103 | error (_("Internal error: bad aggregate clause")); | |
8104 | } | |
8105 | } | |
8106 | ||
8107 | return container; | |
8108 | } | |
8109 | ||
8110 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
8111 | construct at *POS, updating *POS past the construct, given that | |
8112 | the positions are relative to lower bound LOW, where HIGH is the | |
8113 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
8114 | updating *NUM_INDICES as needed. CONTAINER is as for | |
8115 | assign_aggregate. */ | |
8116 | static void | |
8117 | aggregate_assign_positional (struct value *container, | |
8118 | struct value *lhs, struct expression *exp, | |
8119 | int *pos, LONGEST *indices, int *num_indices, | |
8120 | int max_indices, LONGEST low, LONGEST high) | |
8121 | { | |
8122 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
8123 | ||
8124 | if (ind - 1 == high) | |
e1d5a0d2 | 8125 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
8126 | if (ind <= high) |
8127 | { | |
8128 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
8129 | *pos += 3; | |
8130 | assign_component (container, lhs, ind, exp, pos); | |
8131 | } | |
8132 | else | |
8133 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8134 | } | |
8135 | ||
8136 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
8137 | construct at *POS, updating *POS past the construct, given that | |
8138 | the allowable indices are LOW..HIGH. Record the indices assigned | |
8139 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
8140 | needed. CONTAINER is as for assign_aggregate. */ | |
8141 | static void | |
8142 | aggregate_assign_from_choices (struct value *container, | |
8143 | struct value *lhs, struct expression *exp, | |
8144 | int *pos, LONGEST *indices, int *num_indices, | |
8145 | int max_indices, LONGEST low, LONGEST high) | |
8146 | { | |
8147 | int j; | |
8148 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
8149 | int choice_pos, expr_pc; | |
8150 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
8151 | ||
8152 | choice_pos = *pos += 3; | |
8153 | ||
8154 | for (j = 0; j < n_choices; j += 1) | |
8155 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8156 | expr_pc = *pos; | |
8157 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8158 | ||
8159 | for (j = 0; j < n_choices; j += 1) | |
8160 | { | |
8161 | LONGEST lower, upper; | |
8162 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
8163 | if (op == OP_DISCRETE_RANGE) | |
8164 | { | |
8165 | choice_pos += 1; | |
8166 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8167 | EVAL_NORMAL)); | |
8168 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8169 | EVAL_NORMAL)); | |
8170 | } | |
8171 | else if (is_array) | |
8172 | { | |
8173 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
8174 | EVAL_NORMAL)); | |
8175 | upper = lower; | |
8176 | } | |
8177 | else | |
8178 | { | |
8179 | int ind; | |
8180 | char *name; | |
8181 | switch (op) | |
8182 | { | |
8183 | case OP_NAME: | |
8184 | name = &exp->elts[choice_pos + 2].string; | |
8185 | break; | |
8186 | case OP_VAR_VALUE: | |
8187 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
8188 | break; | |
8189 | default: | |
8190 | error (_("Invalid record component association.")); | |
8191 | } | |
8192 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
8193 | ind = 0; | |
8194 | if (! find_struct_field (name, value_type (lhs), 0, | |
8195 | NULL, NULL, NULL, NULL, &ind)) | |
8196 | error (_("Unknown component name: %s."), name); | |
8197 | lower = upper = ind; | |
8198 | } | |
8199 | ||
8200 | if (lower <= upper && (lower < low || upper > high)) | |
8201 | error (_("Index in component association out of bounds.")); | |
8202 | ||
8203 | add_component_interval (lower, upper, indices, num_indices, | |
8204 | max_indices); | |
8205 | while (lower <= upper) | |
8206 | { | |
8207 | int pos1; | |
8208 | pos1 = expr_pc; | |
8209 | assign_component (container, lhs, lower, exp, &pos1); | |
8210 | lower += 1; | |
8211 | } | |
8212 | } | |
8213 | } | |
8214 | ||
8215 | /* Assign the value of the expression in the OP_OTHERS construct in | |
8216 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
8217 | have not been previously assigned. The index intervals already assigned | |
8218 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
8219 | OP_OTHERS clause. CONTAINER is as for assign_aggregate*/ | |
8220 | static void | |
8221 | aggregate_assign_others (struct value *container, | |
8222 | struct value *lhs, struct expression *exp, | |
8223 | int *pos, LONGEST *indices, int num_indices, | |
8224 | LONGEST low, LONGEST high) | |
8225 | { | |
8226 | int i; | |
8227 | int expr_pc = *pos+1; | |
8228 | ||
8229 | for (i = 0; i < num_indices - 2; i += 2) | |
8230 | { | |
8231 | LONGEST ind; | |
8232 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) | |
8233 | { | |
8234 | int pos; | |
8235 | pos = expr_pc; | |
8236 | assign_component (container, lhs, ind, exp, &pos); | |
8237 | } | |
8238 | } | |
8239 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8240 | } | |
8241 | ||
8242 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
8243 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
8244 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
8245 | MAX_SIZE. The resulting intervals do not overlap. */ | |
8246 | static void | |
8247 | add_component_interval (LONGEST low, LONGEST high, | |
8248 | LONGEST* indices, int *size, int max_size) | |
8249 | { | |
8250 | int i, j; | |
8251 | for (i = 0; i < *size; i += 2) { | |
8252 | if (high >= indices[i] && low <= indices[i + 1]) | |
8253 | { | |
8254 | int kh; | |
8255 | for (kh = i + 2; kh < *size; kh += 2) | |
8256 | if (high < indices[kh]) | |
8257 | break; | |
8258 | if (low < indices[i]) | |
8259 | indices[i] = low; | |
8260 | indices[i + 1] = indices[kh - 1]; | |
8261 | if (high > indices[i + 1]) | |
8262 | indices[i + 1] = high; | |
8263 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
8264 | *size -= kh - i - 2; | |
8265 | return; | |
8266 | } | |
8267 | else if (high < indices[i]) | |
8268 | break; | |
8269 | } | |
8270 | ||
8271 | if (*size == max_size) | |
8272 | error (_("Internal error: miscounted aggregate components.")); | |
8273 | *size += 2; | |
8274 | for (j = *size-1; j >= i+2; j -= 1) | |
8275 | indices[j] = indices[j - 2]; | |
8276 | indices[i] = low; | |
8277 | indices[i + 1] = high; | |
8278 | } | |
8279 | ||
6e48bd2c JB |
8280 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
8281 | is different. */ | |
8282 | ||
8283 | static struct value * | |
8284 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
8285 | { | |
8286 | if (type == ada_check_typedef (value_type (arg2))) | |
8287 | return arg2; | |
8288 | ||
8289 | if (ada_is_fixed_point_type (type)) | |
8290 | return (cast_to_fixed (type, arg2)); | |
8291 | ||
8292 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 8293 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
8294 | |
8295 | return value_cast (type, arg2); | |
8296 | } | |
8297 | ||
284614f0 JB |
8298 | /* Evaluating Ada expressions, and printing their result. |
8299 | ------------------------------------------------------ | |
8300 | ||
8301 | We usually evaluate an Ada expression in order to print its value. | |
8302 | We also evaluate an expression in order to print its type, which | |
8303 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
8304 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
8305 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
8306 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
8307 | similar. | |
8308 | ||
8309 | Evaluating expressions is a little more complicated for Ada entities | |
8310 | than it is for entities in languages such as C. The main reason for | |
8311 | this is that Ada provides types whose definition might be dynamic. | |
8312 | One example of such types is variant records. Or another example | |
8313 | would be an array whose bounds can only be known at run time. | |
8314 | ||
8315 | The following description is a general guide as to what should be | |
8316 | done (and what should NOT be done) in order to evaluate an expression | |
8317 | involving such types, and when. This does not cover how the semantic | |
8318 | information is encoded by GNAT as this is covered separatly. For the | |
8319 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
8320 | in the GNAT sources. | |
8321 | ||
8322 | Ideally, we should embed each part of this description next to its | |
8323 | associated code. Unfortunately, the amount of code is so vast right | |
8324 | now that it's hard to see whether the code handling a particular | |
8325 | situation might be duplicated or not. One day, when the code is | |
8326 | cleaned up, this guide might become redundant with the comments | |
8327 | inserted in the code, and we might want to remove it. | |
8328 | ||
8329 | When evaluating Ada expressions, the tricky issue is that they may | |
8330 | reference entities whose type contents and size are not statically | |
8331 | known. Consider for instance a variant record: | |
8332 | ||
8333 | type Rec (Empty : Boolean := True) is record | |
8334 | case Empty is | |
8335 | when True => null; | |
8336 | when False => Value : Integer; | |
8337 | end case; | |
8338 | end record; | |
8339 | Yes : Rec := (Empty => False, Value => 1); | |
8340 | No : Rec := (empty => True); | |
8341 | ||
8342 | The size and contents of that record depends on the value of the | |
8343 | descriminant (Rec.Empty). At this point, neither the debugging | |
8344 | information nor the associated type structure in GDB are able to | |
8345 | express such dynamic types. So what the debugger does is to create | |
8346 | "fixed" versions of the type that applies to the specific object. | |
8347 | We also informally refer to this opperation as "fixing" an object, | |
8348 | which means creating its associated fixed type. | |
8349 | ||
8350 | Example: when printing the value of variable "Yes" above, its fixed | |
8351 | type would look like this: | |
8352 | ||
8353 | type Rec is record | |
8354 | Empty : Boolean; | |
8355 | Value : Integer; | |
8356 | end record; | |
8357 | ||
8358 | On the other hand, if we printed the value of "No", its fixed type | |
8359 | would become: | |
8360 | ||
8361 | type Rec is record | |
8362 | Empty : Boolean; | |
8363 | end record; | |
8364 | ||
8365 | Things become a little more complicated when trying to fix an entity | |
8366 | with a dynamic type that directly contains another dynamic type, | |
8367 | such as an array of variant records, for instance. There are | |
8368 | two possible cases: Arrays, and records. | |
8369 | ||
8370 | Arrays are a little simpler to handle, because the same amount of | |
8371 | memory is allocated for each element of the array, even if the amount | |
8372 | of space used by each element changes from element to element. | |
8373 | Consider for instance the following array of type Rec: | |
8374 | ||
8375 | type Rec_Array is array (1 .. 2) of Rec; | |
8376 | ||
8377 | The type structure in GDB describes an array in terms of its | |
8378 | bounds, and the type of its elements. By design, all elements | |
8379 | in the array have the same type. So we cannot use a fixed type | |
8380 | for the array elements in this case, since the fixed type depends | |
8381 | on the actual value of each element. | |
8382 | ||
8383 | Fortunately, what happens in practice is that each element of | |
8384 | the array has the same size, which is the maximum size that | |
8385 | might be needed in order to hold an object of the element type. | |
8386 | And the compiler shows it in the debugging information by wrapping | |
8387 | the array element inside a private PAD type. This type should not | |
8388 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
8389 | that we also use the adjective "aligner" in our code to designate | |
8390 | these wrapper types. | |
8391 | ||
8392 | These wrapper types should have a constant size, which is the size | |
8393 | of each element of the array. In the case when the size is statically | |
8394 | known, the PAD type will already have the right size, and the array | |
8395 | element type should remain unfixed. But there are cases when | |
8396 | this size is not statically known. For instance, assuming that | |
8397 | "Five" is an integer variable: | |
8398 | ||
8399 | type Dynamic is array (1 .. Five) of Integer; | |
8400 | type Wrapper (Has_Length : Boolean := False) is record | |
8401 | Data : Dynamic; | |
8402 | case Has_Length is | |
8403 | when True => Length : Integer; | |
8404 | when False => null; | |
8405 | end case; | |
8406 | end record; | |
8407 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
8408 | ||
8409 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
8410 | Data => (others => 17), | |
8411 | Length => 1)); | |
8412 | ||
8413 | ||
8414 | The debugging info would describe variable Hello as being an | |
8415 | array of a PAD type. The size of that PAD type is not statically | |
8416 | known, but can be determined using a parallel XVZ variable. | |
8417 | In that case, a copy of the PAD type with the correct size should | |
8418 | be used for the fixed array. | |
8419 | ||
8420 | However, things are slightly different in the case of dynamic | |
8421 | record types. In this case, in order to compute the associated | |
8422 | fixed type, we need to determine the size and offset of each of | |
8423 | its components. This, in turn, requires us to compute the fixed | |
8424 | type of each of these components. | |
8425 | ||
8426 | Consider for instance the example: | |
8427 | ||
8428 | type Bounded_String (Max_Size : Natural) is record | |
8429 | Str : String (1 .. Max_Size); | |
8430 | Length : Natural; | |
8431 | end record; | |
8432 | My_String : Bounded_String (Max_Size => 10); | |
8433 | ||
8434 | In that case, the position of field "Length" depends on the size | |
8435 | of field Str, which itself depends on the value of the Max_Size | |
8436 | discriminant. In order to fix the type of variable My_String, | |
8437 | we need to fix the type of field Str. Therefore, fixing a variant | |
8438 | record requires us to fix each of its components. | |
8439 | ||
8440 | However, if a component does not have a dynamic size, the component | |
8441 | should not be fixed. In particular, fields that use a PAD type | |
8442 | should not fixed. Here is an example where this might happen | |
8443 | (assuming type Rec above): | |
8444 | ||
8445 | type Container (Big : Boolean) is record | |
8446 | First : Rec; | |
8447 | After : Integer; | |
8448 | case Big is | |
8449 | when True => Another : Integer; | |
8450 | when False => null; | |
8451 | end case; | |
8452 | end record; | |
8453 | My_Container : Container := (Big => False, | |
8454 | First => (Empty => True), | |
8455 | After => 42); | |
8456 | ||
8457 | In that example, the compiler creates a PAD type for component First, | |
8458 | whose size is constant, and then positions the component After just | |
8459 | right after it. The offset of component After is therefore constant | |
8460 | in this case. | |
8461 | ||
8462 | The debugger computes the position of each field based on an algorithm | |
8463 | that uses, among other things, the actual position and size of the field | |
8464 | preceding it. Let's now imagine that the user is trying to print the | |
8465 | value of My_Container. If the type fixing was recursive, we would | |
8466 | end up computing the offset of field After based on the size of the | |
8467 | fixed version of field First. And since in our example First has | |
8468 | only one actual field, the size of the fixed type is actually smaller | |
8469 | than the amount of space allocated to that field, and thus we would | |
8470 | compute the wrong offset of field After. | |
8471 | ||
8472 | Unfortunately, we need to watch out for dynamic components of variant | |
8473 | records (identified by the ___XVL suffix in the component name). | |
8474 | Even if the target type is a PAD type, the size of that type might | |
8475 | not be statically known. So the PAD type needs to be unwrapped and | |
8476 | the resulting type needs to be fixed. Otherwise, we might end up | |
8477 | with the wrong size for our component. This can be observed with | |
8478 | the following type declarations: | |
8479 | ||
8480 | type Octal is new Integer range 0 .. 7; | |
8481 | type Octal_Array is array (Positive range <>) of Octal; | |
8482 | pragma Pack (Octal_Array); | |
8483 | ||
8484 | type Octal_Buffer (Size : Positive) is record | |
8485 | Buffer : Octal_Array (1 .. Size); | |
8486 | Length : Integer; | |
8487 | end record; | |
8488 | ||
8489 | In that case, Buffer is a PAD type whose size is unset and needs | |
8490 | to be computed by fixing the unwrapped type. | |
8491 | ||
8492 | Lastly, when should the sub-elements of a type that remained unfixed | |
8493 | thus far, be actually fixed? | |
8494 | ||
8495 | The answer is: Only when referencing that element. For instance | |
8496 | when selecting one component of a record, this specific component | |
8497 | should be fixed at that point in time. Or when printing the value | |
8498 | of a record, each component should be fixed before its value gets | |
8499 | printed. Similarly for arrays, the element of the array should be | |
8500 | fixed when printing each element of the array, or when extracting | |
8501 | one element out of that array. On the other hand, fixing should | |
8502 | not be performed on the elements when taking a slice of an array! | |
8503 | ||
8504 | Note that one of the side-effects of miscomputing the offset and | |
8505 | size of each field is that we end up also miscomputing the size | |
8506 | of the containing type. This can have adverse results when computing | |
8507 | the value of an entity. GDB fetches the value of an entity based | |
8508 | on the size of its type, and thus a wrong size causes GDB to fetch | |
8509 | the wrong amount of memory. In the case where the computed size is | |
8510 | too small, GDB fetches too little data to print the value of our | |
8511 | entiry. Results in this case as unpredicatble, as we usually read | |
8512 | past the buffer containing the data =:-o. */ | |
8513 | ||
8514 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
8515 | for the Ada language. */ | |
8516 | ||
52ce6436 | 8517 | static struct value * |
ebf56fd3 | 8518 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 8519 | int *pos, enum noside noside) |
14f9c5c9 AS |
8520 | { |
8521 | enum exp_opcode op; | |
14f9c5c9 AS |
8522 | int tem, tem2, tem3; |
8523 | int pc; | |
8524 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; | |
8525 | struct type *type; | |
52ce6436 | 8526 | int nargs, oplen; |
d2e4a39e | 8527 | struct value **argvec; |
14f9c5c9 | 8528 | |
d2e4a39e AS |
8529 | pc = *pos; |
8530 | *pos += 1; | |
14f9c5c9 AS |
8531 | op = exp->elts[pc].opcode; |
8532 | ||
d2e4a39e | 8533 | switch (op) |
14f9c5c9 AS |
8534 | { |
8535 | default: | |
8536 | *pos -= 1; | |
6e48bd2c JB |
8537 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
8538 | arg1 = unwrap_value (arg1); | |
8539 | ||
8540 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
8541 | then we need to perform the conversion manually, because | |
8542 | evaluate_subexp_standard doesn't do it. This conversion is | |
8543 | necessary in Ada because the different kinds of float/fixed | |
8544 | types in Ada have different representations. | |
8545 | ||
8546 | Similarly, we need to perform the conversion from OP_LONG | |
8547 | ourselves. */ | |
8548 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
8549 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
8550 | ||
8551 | return arg1; | |
4c4b4cd2 PH |
8552 | |
8553 | case OP_STRING: | |
8554 | { | |
76a01679 JB |
8555 | struct value *result; |
8556 | *pos -= 1; | |
8557 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
8558 | /* The result type will have code OP_STRING, bashed there from | |
8559 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
8560 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
8561 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 8562 | return result; |
4c4b4cd2 | 8563 | } |
14f9c5c9 AS |
8564 | |
8565 | case UNOP_CAST: | |
8566 | (*pos) += 2; | |
8567 | type = exp->elts[pc + 1].type; | |
8568 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
8569 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8570 | goto nosideret; |
6e48bd2c | 8571 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
8572 | return arg1; |
8573 | ||
4c4b4cd2 PH |
8574 | case UNOP_QUAL: |
8575 | (*pos) += 2; | |
8576 | type = exp->elts[pc + 1].type; | |
8577 | return ada_evaluate_subexp (type, exp, pos, noside); | |
8578 | ||
14f9c5c9 AS |
8579 | case BINOP_ASSIGN: |
8580 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
8581 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
8582 | { | |
8583 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
8584 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
8585 | return arg1; | |
8586 | return ada_value_assign (arg1, arg1); | |
8587 | } | |
003f3813 JB |
8588 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
8589 | except if the lhs of our assignment is a convenience variable. | |
8590 | In the case of assigning to a convenience variable, the lhs | |
8591 | should be exactly the result of the evaluation of the rhs. */ | |
8592 | type = value_type (arg1); | |
8593 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
8594 | type = NULL; | |
8595 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 8596 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 8597 | return arg1; |
df407dfe AC |
8598 | if (ada_is_fixed_point_type (value_type (arg1))) |
8599 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
8600 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 8601 | error |
323e0a4a | 8602 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 8603 | else |
df407dfe | 8604 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 8605 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
8606 | |
8607 | case BINOP_ADD: | |
8608 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8609 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8610 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8611 | goto nosideret; |
2ac8a782 JB |
8612 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
8613 | return (value_from_longest | |
8614 | (value_type (arg1), | |
8615 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
8616 | if ((ada_is_fixed_point_type (value_type (arg1)) |
8617 | || ada_is_fixed_point_type (value_type (arg2))) | |
8618 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 8619 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
8620 | /* Do the addition, and cast the result to the type of the first |
8621 | argument. We cannot cast the result to a reference type, so if | |
8622 | ARG1 is a reference type, find its underlying type. */ | |
8623 | type = value_type (arg1); | |
8624 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
8625 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 8626 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 8627 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
8628 | |
8629 | case BINOP_SUB: | |
8630 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8631 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8632 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8633 | goto nosideret; |
2ac8a782 JB |
8634 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
8635 | return (value_from_longest | |
8636 | (value_type (arg1), | |
8637 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
8638 | if ((ada_is_fixed_point_type (value_type (arg1)) |
8639 | || ada_is_fixed_point_type (value_type (arg2))) | |
8640 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 8641 | error (_("Operands of fixed-point subtraction must have the same type")); |
b7789565 JB |
8642 | /* Do the substraction, and cast the result to the type of the first |
8643 | argument. We cannot cast the result to a reference type, so if | |
8644 | ARG1 is a reference type, find its underlying type. */ | |
8645 | type = value_type (arg1); | |
8646 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
8647 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 8648 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 8649 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
8650 | |
8651 | case BINOP_MUL: | |
8652 | case BINOP_DIV: | |
e1578042 JB |
8653 | case BINOP_REM: |
8654 | case BINOP_MOD: | |
14f9c5c9 AS |
8655 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
8656 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8657 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8658 | goto nosideret; |
e1578042 | 8659 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
8660 | { |
8661 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
8662 | return value_zero (value_type (arg1), not_lval); | |
8663 | } | |
14f9c5c9 | 8664 | else |
4c4b4cd2 | 8665 | { |
a53b7a21 | 8666 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 8667 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 8668 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 8669 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 8670 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 8671 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
8672 | return ada_value_binop (arg1, arg2, op); |
8673 | } | |
8674 | ||
4c4b4cd2 PH |
8675 | case BINOP_EQUAL: |
8676 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 8677 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 8678 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 8679 | if (noside == EVAL_SKIP) |
76a01679 | 8680 | goto nosideret; |
4c4b4cd2 | 8681 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 8682 | tem = 0; |
4c4b4cd2 | 8683 | else |
f44316fa UW |
8684 | { |
8685 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
8686 | tem = ada_value_equal (arg1, arg2); | |
8687 | } | |
4c4b4cd2 | 8688 | if (op == BINOP_NOTEQUAL) |
76a01679 | 8689 | tem = !tem; |
fbb06eb1 UW |
8690 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
8691 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
8692 | |
8693 | case UNOP_NEG: | |
8694 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8695 | if (noside == EVAL_SKIP) | |
8696 | goto nosideret; | |
df407dfe AC |
8697 | else if (ada_is_fixed_point_type (value_type (arg1))) |
8698 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 8699 | else |
f44316fa UW |
8700 | { |
8701 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
8702 | return value_neg (arg1); | |
8703 | } | |
4c4b4cd2 | 8704 | |
2330c6c6 JB |
8705 | case BINOP_LOGICAL_AND: |
8706 | case BINOP_LOGICAL_OR: | |
8707 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
8708 | { |
8709 | struct value *val; | |
8710 | ||
8711 | *pos -= 1; | |
8712 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
8713 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
8714 | return value_cast (type, val); | |
000d5124 | 8715 | } |
2330c6c6 JB |
8716 | |
8717 | case BINOP_BITWISE_AND: | |
8718 | case BINOP_BITWISE_IOR: | |
8719 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
8720 | { |
8721 | struct value *val; | |
8722 | ||
8723 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
8724 | *pos = pc; | |
8725 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
8726 | ||
8727 | return value_cast (value_type (arg1), val); | |
8728 | } | |
2330c6c6 | 8729 | |
14f9c5c9 AS |
8730 | case OP_VAR_VALUE: |
8731 | *pos -= 1; | |
6799def4 | 8732 | |
14f9c5c9 | 8733 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
8734 | { |
8735 | *pos += 4; | |
8736 | goto nosideret; | |
8737 | } | |
8738 | else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
8739 | /* Only encountered when an unresolved symbol occurs in a |
8740 | context other than a function call, in which case, it is | |
52ce6436 | 8741 | invalid. */ |
323e0a4a | 8742 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 8743 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
14f9c5c9 | 8744 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 8745 | { |
0c1f74cf JB |
8746 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
8747 | if (ada_is_tagged_type (type, 0)) | |
8748 | { | |
8749 | /* Tagged types are a little special in the fact that the real | |
8750 | type is dynamic and can only be determined by inspecting the | |
8751 | object's tag. This means that we need to get the object's | |
8752 | value first (EVAL_NORMAL) and then extract the actual object | |
8753 | type from its tag. | |
8754 | ||
8755 | Note that we cannot skip the final step where we extract | |
8756 | the object type from its tag, because the EVAL_NORMAL phase | |
8757 | results in dynamic components being resolved into fixed ones. | |
8758 | This can cause problems when trying to print the type | |
8759 | description of tagged types whose parent has a dynamic size: | |
8760 | We use the type name of the "_parent" component in order | |
8761 | to print the name of the ancestor type in the type description. | |
8762 | If that component had a dynamic size, the resolution into | |
8763 | a fixed type would result in the loss of that type name, | |
8764 | thus preventing us from printing the name of the ancestor | |
8765 | type in the type description. */ | |
b79819ba JB |
8766 | struct type *actual_type; |
8767 | ||
0c1f74cf | 8768 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); |
b79819ba JB |
8769 | actual_type = type_from_tag (ada_value_tag (arg1)); |
8770 | if (actual_type == NULL) | |
8771 | /* If, for some reason, we were unable to determine | |
8772 | the actual type from the tag, then use the static | |
8773 | approximation that we just computed as a fallback. | |
8774 | This can happen if the debugging information is | |
8775 | incomplete, for instance. */ | |
8776 | actual_type = type; | |
8777 | ||
8778 | return value_zero (actual_type, not_lval); | |
0c1f74cf JB |
8779 | } |
8780 | ||
4c4b4cd2 PH |
8781 | *pos += 4; |
8782 | return value_zero | |
8783 | (to_static_fixed_type | |
8784 | (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))), | |
8785 | not_lval); | |
8786 | } | |
d2e4a39e | 8787 | else |
4c4b4cd2 | 8788 | { |
284614f0 JB |
8789 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
8790 | arg1 = unwrap_value (arg1); | |
4c4b4cd2 PH |
8791 | return ada_to_fixed_value (arg1); |
8792 | } | |
8793 | ||
8794 | case OP_FUNCALL: | |
8795 | (*pos) += 2; | |
8796 | ||
8797 | /* Allocate arg vector, including space for the function to be | |
8798 | called in argvec[0] and a terminating NULL. */ | |
8799 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
8800 | argvec = | |
8801 | (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); | |
8802 | ||
8803 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 8804 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 8805 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
8806 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
8807 | else | |
8808 | { | |
8809 | for (tem = 0; tem <= nargs; tem += 1) | |
8810 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8811 | argvec[tem] = 0; | |
8812 | ||
8813 | if (noside == EVAL_SKIP) | |
8814 | goto nosideret; | |
8815 | } | |
8816 | ||
df407dfe | 8817 | if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0])))) |
4c4b4cd2 | 8818 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
8819 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
8820 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
8821 | /* This is a packed array that has already been fixed, and | |
8822 | therefore already coerced to a simple array. Nothing further | |
8823 | to do. */ | |
8824 | ; | |
df407dfe AC |
8825 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF |
8826 | || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
76a01679 | 8827 | && VALUE_LVAL (argvec[0]) == lval_memory)) |
4c4b4cd2 PH |
8828 | argvec[0] = value_addr (argvec[0]); |
8829 | ||
df407dfe | 8830 | type = ada_check_typedef (value_type (argvec[0])); |
4c4b4cd2 PH |
8831 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
8832 | { | |
61ee279c | 8833 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
8834 | { |
8835 | case TYPE_CODE_FUNC: | |
61ee279c | 8836 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
8837 | break; |
8838 | case TYPE_CODE_ARRAY: | |
8839 | break; | |
8840 | case TYPE_CODE_STRUCT: | |
8841 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
8842 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 8843 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
8844 | break; |
8845 | default: | |
323e0a4a | 8846 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 8847 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
8848 | break; |
8849 | } | |
8850 | } | |
8851 | ||
8852 | switch (TYPE_CODE (type)) | |
8853 | { | |
8854 | case TYPE_CODE_FUNC: | |
8855 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8856 | return allocate_value (TYPE_TARGET_TYPE (type)); | |
8857 | return call_function_by_hand (argvec[0], nargs, argvec + 1); | |
8858 | case TYPE_CODE_STRUCT: | |
8859 | { | |
8860 | int arity; | |
8861 | ||
4c4b4cd2 PH |
8862 | arity = ada_array_arity (type); |
8863 | type = ada_array_element_type (type, nargs); | |
8864 | if (type == NULL) | |
323e0a4a | 8865 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 8866 | if (arity != nargs) |
323e0a4a | 8867 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 8868 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 8869 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
8870 | return |
8871 | unwrap_value (ada_value_subscript | |
8872 | (argvec[0], nargs, argvec + 1)); | |
8873 | } | |
8874 | case TYPE_CODE_ARRAY: | |
8875 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8876 | { | |
8877 | type = ada_array_element_type (type, nargs); | |
8878 | if (type == NULL) | |
323e0a4a | 8879 | error (_("element type of array unknown")); |
4c4b4cd2 | 8880 | else |
0a07e705 | 8881 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
8882 | } |
8883 | return | |
8884 | unwrap_value (ada_value_subscript | |
8885 | (ada_coerce_to_simple_array (argvec[0]), | |
8886 | nargs, argvec + 1)); | |
8887 | case TYPE_CODE_PTR: /* Pointer to array */ | |
8888 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); | |
8889 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8890 | { | |
8891 | type = ada_array_element_type (type, nargs); | |
8892 | if (type == NULL) | |
323e0a4a | 8893 | error (_("element type of array unknown")); |
4c4b4cd2 | 8894 | else |
0a07e705 | 8895 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
8896 | } |
8897 | return | |
8898 | unwrap_value (ada_value_ptr_subscript (argvec[0], type, | |
8899 | nargs, argvec + 1)); | |
8900 | ||
8901 | default: | |
e1d5a0d2 PH |
8902 | error (_("Attempt to index or call something other than an " |
8903 | "array or function")); | |
4c4b4cd2 PH |
8904 | } |
8905 | ||
8906 | case TERNOP_SLICE: | |
8907 | { | |
8908 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8909 | struct value *low_bound_val = | |
8910 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
8911 | struct value *high_bound_val = |
8912 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8913 | LONGEST low_bound; | |
8914 | LONGEST high_bound; | |
994b9211 AC |
8915 | low_bound_val = coerce_ref (low_bound_val); |
8916 | high_bound_val = coerce_ref (high_bound_val); | |
714e53ab PH |
8917 | low_bound = pos_atr (low_bound_val); |
8918 | high_bound = pos_atr (high_bound_val); | |
963a6417 | 8919 | |
4c4b4cd2 PH |
8920 | if (noside == EVAL_SKIP) |
8921 | goto nosideret; | |
8922 | ||
4c4b4cd2 PH |
8923 | /* If this is a reference to an aligner type, then remove all |
8924 | the aligners. */ | |
df407dfe AC |
8925 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
8926 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
8927 | TYPE_TARGET_TYPE (value_type (array)) = | |
8928 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 8929 | |
df407dfe | 8930 | if (ada_is_packed_array_type (value_type (array))) |
323e0a4a | 8931 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
8932 | |
8933 | /* If this is a reference to an array or an array lvalue, | |
8934 | convert to a pointer. */ | |
df407dfe AC |
8935 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
8936 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
8937 | && VALUE_LVAL (array) == lval_memory)) |
8938 | array = value_addr (array); | |
8939 | ||
1265e4aa | 8940 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 8941 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 8942 | (value_type (array)))) |
0b5d8877 | 8943 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
8944 | |
8945 | array = ada_coerce_to_simple_array_ptr (array); | |
8946 | ||
714e53ab PH |
8947 | /* If we have more than one level of pointer indirection, |
8948 | dereference the value until we get only one level. */ | |
df407dfe AC |
8949 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
8950 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
8951 | == TYPE_CODE_PTR)) |
8952 | array = value_ind (array); | |
8953 | ||
8954 | /* Make sure we really do have an array type before going further, | |
8955 | to avoid a SEGV when trying to get the index type or the target | |
8956 | type later down the road if the debug info generated by | |
8957 | the compiler is incorrect or incomplete. */ | |
df407dfe | 8958 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 8959 | error (_("cannot take slice of non-array")); |
714e53ab | 8960 | |
df407dfe | 8961 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR) |
4c4b4cd2 | 8962 | { |
0b5d8877 | 8963 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 8964 | return empty_array (TYPE_TARGET_TYPE (value_type (array)), |
4c4b4cd2 PH |
8965 | low_bound); |
8966 | else | |
8967 | { | |
8968 | struct type *arr_type0 = | |
df407dfe | 8969 | to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)), |
4c4b4cd2 | 8970 | NULL, 1); |
f5938064 JG |
8971 | return ada_value_slice_from_ptr (array, arr_type0, |
8972 | longest_to_int (low_bound), | |
8973 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
8974 | } |
8975 | } | |
8976 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8977 | return array; | |
8978 | else if (high_bound < low_bound) | |
df407dfe | 8979 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 8980 | else |
529cad9c PH |
8981 | return ada_value_slice (array, longest_to_int (low_bound), |
8982 | longest_to_int (high_bound)); | |
4c4b4cd2 | 8983 | } |
14f9c5c9 | 8984 | |
4c4b4cd2 PH |
8985 | case UNOP_IN_RANGE: |
8986 | (*pos) += 2; | |
8987 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 8988 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 8989 | |
14f9c5c9 | 8990 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 8991 | goto nosideret; |
14f9c5c9 | 8992 | |
4c4b4cd2 PH |
8993 | switch (TYPE_CODE (type)) |
8994 | { | |
8995 | default: | |
e1d5a0d2 PH |
8996 | lim_warning (_("Membership test incompletely implemented; " |
8997 | "always returns true")); | |
fbb06eb1 UW |
8998 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
8999 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
9000 | |
9001 | case TYPE_CODE_RANGE: | |
030b4912 UW |
9002 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
9003 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
9004 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9005 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
9006 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9007 | return | |
9008 | value_from_longest (type, | |
4c4b4cd2 PH |
9009 | (value_less (arg1, arg3) |
9010 | || value_equal (arg1, arg3)) | |
9011 | && (value_less (arg2, arg1) | |
9012 | || value_equal (arg2, arg1))); | |
9013 | } | |
9014 | ||
9015 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 9016 | (*pos) += 2; |
4c4b4cd2 PH |
9017 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9018 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 9019 | |
4c4b4cd2 PH |
9020 | if (noside == EVAL_SKIP) |
9021 | goto nosideret; | |
14f9c5c9 | 9022 | |
4c4b4cd2 | 9023 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
9024 | { |
9025 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
9026 | return value_zero (type, not_lval); | |
9027 | } | |
14f9c5c9 | 9028 | |
4c4b4cd2 | 9029 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 9030 | |
1eea4ebd UW |
9031 | type = ada_index_type (value_type (arg2), tem, "range"); |
9032 | if (!type) | |
9033 | type = value_type (arg1); | |
14f9c5c9 | 9034 | |
1eea4ebd UW |
9035 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
9036 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 9037 | |
f44316fa UW |
9038 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9039 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9040 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9041 | return |
fbb06eb1 | 9042 | value_from_longest (type, |
4c4b4cd2 PH |
9043 | (value_less (arg1, arg3) |
9044 | || value_equal (arg1, arg3)) | |
9045 | && (value_less (arg2, arg1) | |
9046 | || value_equal (arg2, arg1))); | |
9047 | ||
9048 | case TERNOP_IN_RANGE: | |
9049 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9050 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9051 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9052 | ||
9053 | if (noside == EVAL_SKIP) | |
9054 | goto nosideret; | |
9055 | ||
f44316fa UW |
9056 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9057 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9058 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9059 | return |
fbb06eb1 | 9060 | value_from_longest (type, |
4c4b4cd2 PH |
9061 | (value_less (arg1, arg3) |
9062 | || value_equal (arg1, arg3)) | |
9063 | && (value_less (arg2, arg1) | |
9064 | || value_equal (arg2, arg1))); | |
9065 | ||
9066 | case OP_ATR_FIRST: | |
9067 | case OP_ATR_LAST: | |
9068 | case OP_ATR_LENGTH: | |
9069 | { | |
76a01679 JB |
9070 | struct type *type_arg; |
9071 | if (exp->elts[*pos].opcode == OP_TYPE) | |
9072 | { | |
9073 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
9074 | arg1 = NULL; | |
5bc23cb3 | 9075 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
9076 | } |
9077 | else | |
9078 | { | |
9079 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9080 | type_arg = NULL; | |
9081 | } | |
9082 | ||
9083 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 9084 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
9085 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
9086 | *pos += 4; | |
9087 | ||
9088 | if (noside == EVAL_SKIP) | |
9089 | goto nosideret; | |
9090 | ||
9091 | if (type_arg == NULL) | |
9092 | { | |
9093 | arg1 = ada_coerce_ref (arg1); | |
9094 | ||
df407dfe | 9095 | if (ada_is_packed_array_type (value_type (arg1))) |
76a01679 JB |
9096 | arg1 = ada_coerce_to_simple_array (arg1); |
9097 | ||
1eea4ebd UW |
9098 | type = ada_index_type (value_type (arg1), tem, |
9099 | ada_attribute_name (op)); | |
9100 | if (type == NULL) | |
9101 | type = builtin_type (exp->gdbarch)->builtin_int; | |
76a01679 JB |
9102 | |
9103 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 9104 | return allocate_value (type); |
76a01679 JB |
9105 | |
9106 | switch (op) | |
9107 | { | |
9108 | default: /* Should never happen. */ | |
323e0a4a | 9109 | error (_("unexpected attribute encountered")); |
76a01679 | 9110 | case OP_ATR_FIRST: |
1eea4ebd UW |
9111 | return value_from_longest |
9112 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 9113 | case OP_ATR_LAST: |
1eea4ebd UW |
9114 | return value_from_longest |
9115 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 9116 | case OP_ATR_LENGTH: |
1eea4ebd UW |
9117 | return value_from_longest |
9118 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
9119 | } |
9120 | } | |
9121 | else if (discrete_type_p (type_arg)) | |
9122 | { | |
9123 | struct type *range_type; | |
9124 | char *name = ada_type_name (type_arg); | |
9125 | range_type = NULL; | |
9126 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
9127 | range_type = | |
9128 | to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg)); | |
9129 | if (range_type == NULL) | |
9130 | range_type = type_arg; | |
9131 | switch (op) | |
9132 | { | |
9133 | default: | |
323e0a4a | 9134 | error (_("unexpected attribute encountered")); |
76a01679 | 9135 | case OP_ATR_FIRST: |
690cc4eb PH |
9136 | return value_from_longest |
9137 | (range_type, discrete_type_low_bound (range_type)); | |
76a01679 | 9138 | case OP_ATR_LAST: |
690cc4eb PH |
9139 | return value_from_longest |
9140 | (range_type, discrete_type_high_bound (range_type)); | |
76a01679 | 9141 | case OP_ATR_LENGTH: |
323e0a4a | 9142 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
9143 | } |
9144 | } | |
9145 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 9146 | error (_("unimplemented type attribute")); |
76a01679 JB |
9147 | else |
9148 | { | |
9149 | LONGEST low, high; | |
9150 | ||
9151 | if (ada_is_packed_array_type (type_arg)) | |
9152 | type_arg = decode_packed_array_type (type_arg); | |
9153 | ||
1eea4ebd | 9154 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); |
76a01679 | 9155 | if (type == NULL) |
1eea4ebd UW |
9156 | type = builtin_type (exp->gdbarch)->builtin_int; |
9157 | ||
76a01679 JB |
9158 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9159 | return allocate_value (type); | |
9160 | ||
9161 | switch (op) | |
9162 | { | |
9163 | default: | |
323e0a4a | 9164 | error (_("unexpected attribute encountered")); |
76a01679 | 9165 | case OP_ATR_FIRST: |
1eea4ebd | 9166 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
9167 | return value_from_longest (type, low); |
9168 | case OP_ATR_LAST: | |
1eea4ebd | 9169 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
9170 | return value_from_longest (type, high); |
9171 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
9172 | low = ada_array_bound_from_type (type_arg, tem, 0); |
9173 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
9174 | return value_from_longest (type, high - low + 1); |
9175 | } | |
9176 | } | |
14f9c5c9 AS |
9177 | } |
9178 | ||
4c4b4cd2 PH |
9179 | case OP_ATR_TAG: |
9180 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9181 | if (noside == EVAL_SKIP) | |
76a01679 | 9182 | goto nosideret; |
4c4b4cd2 PH |
9183 | |
9184 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 9185 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
9186 | |
9187 | return ada_value_tag (arg1); | |
9188 | ||
9189 | case OP_ATR_MIN: | |
9190 | case OP_ATR_MAX: | |
9191 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9192 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9193 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9194 | if (noside == EVAL_SKIP) | |
76a01679 | 9195 | goto nosideret; |
d2e4a39e | 9196 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 9197 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 9198 | else |
f44316fa UW |
9199 | { |
9200 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9201 | return value_binop (arg1, arg2, | |
9202 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
9203 | } | |
14f9c5c9 | 9204 | |
4c4b4cd2 PH |
9205 | case OP_ATR_MODULUS: |
9206 | { | |
31dedfee | 9207 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 | 9208 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
4c4b4cd2 | 9209 | |
76a01679 JB |
9210 | if (noside == EVAL_SKIP) |
9211 | goto nosideret; | |
4c4b4cd2 | 9212 | |
76a01679 | 9213 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 9214 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 9215 | |
76a01679 JB |
9216 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
9217 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
9218 | } |
9219 | ||
9220 | ||
9221 | case OP_ATR_POS: | |
9222 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9223 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9224 | if (noside == EVAL_SKIP) | |
76a01679 | 9225 | goto nosideret; |
3cb382c9 UW |
9226 | type = builtin_type (exp->gdbarch)->builtin_int; |
9227 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9228 | return value_zero (type, not_lval); | |
14f9c5c9 | 9229 | else |
3cb382c9 | 9230 | return value_pos_atr (type, arg1); |
14f9c5c9 | 9231 | |
4c4b4cd2 PH |
9232 | case OP_ATR_SIZE: |
9233 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
9234 | type = value_type (arg1); |
9235 | ||
9236 | /* If the argument is a reference, then dereference its type, since | |
9237 | the user is really asking for the size of the actual object, | |
9238 | not the size of the pointer. */ | |
9239 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
9240 | type = TYPE_TARGET_TYPE (type); | |
9241 | ||
4c4b4cd2 | 9242 | if (noside == EVAL_SKIP) |
76a01679 | 9243 | goto nosideret; |
4c4b4cd2 | 9244 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
6d2e05aa | 9245 | return value_zero (builtin_type_int32, not_lval); |
4c4b4cd2 | 9246 | else |
6d2e05aa | 9247 | return value_from_longest (builtin_type_int32, |
8c1c099f | 9248 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
9249 | |
9250 | case OP_ATR_VAL: | |
9251 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 9252 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 9253 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 9254 | if (noside == EVAL_SKIP) |
76a01679 | 9255 | goto nosideret; |
4c4b4cd2 | 9256 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9257 | return value_zero (type, not_lval); |
4c4b4cd2 | 9258 | else |
76a01679 | 9259 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
9260 | |
9261 | case BINOP_EXP: | |
9262 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9263 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9264 | if (noside == EVAL_SKIP) | |
9265 | goto nosideret; | |
9266 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 9267 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 9268 | else |
f44316fa UW |
9269 | { |
9270 | /* For integer exponentiation operations, | |
9271 | only promote the first argument. */ | |
9272 | if (is_integral_type (value_type (arg2))) | |
9273 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
9274 | else | |
9275 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9276 | ||
9277 | return value_binop (arg1, arg2, op); | |
9278 | } | |
4c4b4cd2 PH |
9279 | |
9280 | case UNOP_PLUS: | |
9281 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9282 | if (noside == EVAL_SKIP) | |
9283 | goto nosideret; | |
9284 | else | |
9285 | return arg1; | |
9286 | ||
9287 | case UNOP_ABS: | |
9288 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9289 | if (noside == EVAL_SKIP) | |
9290 | goto nosideret; | |
f44316fa | 9291 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 9292 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 9293 | return value_neg (arg1); |
14f9c5c9 | 9294 | else |
4c4b4cd2 | 9295 | return arg1; |
14f9c5c9 AS |
9296 | |
9297 | case UNOP_IND: | |
6b0d7253 | 9298 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 9299 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 9300 | goto nosideret; |
df407dfe | 9301 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 9302 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
9303 | { |
9304 | if (ada_is_array_descriptor_type (type)) | |
9305 | /* GDB allows dereferencing GNAT array descriptors. */ | |
9306 | { | |
9307 | struct type *arrType = ada_type_of_array (arg1, 0); | |
9308 | if (arrType == NULL) | |
323e0a4a | 9309 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 9310 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
9311 | } |
9312 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
9313 | || TYPE_CODE (type) == TYPE_CODE_REF | |
9314 | /* In C you can dereference an array to get the 1st elt. */ | |
9315 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab PH |
9316 | { |
9317 | type = to_static_fixed_type | |
9318 | (ada_aligned_type | |
9319 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
9320 | check_size (type); | |
9321 | return value_zero (type, lval_memory); | |
9322 | } | |
4c4b4cd2 | 9323 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
9324 | { |
9325 | /* GDB allows dereferencing an int. */ | |
9326 | if (expect_type == NULL) | |
9327 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
9328 | lval_memory); | |
9329 | else | |
9330 | { | |
9331 | expect_type = | |
9332 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
9333 | return value_zero (expect_type, lval_memory); | |
9334 | } | |
9335 | } | |
4c4b4cd2 | 9336 | else |
323e0a4a | 9337 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 9338 | } |
76a01679 | 9339 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 9340 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 9341 | |
96967637 JB |
9342 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
9343 | /* GDB allows dereferencing an int. If we were given | |
9344 | the expect_type, then use that as the target type. | |
9345 | Otherwise, assume that the target type is an int. */ | |
9346 | { | |
9347 | if (expect_type != NULL) | |
9348 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
9349 | arg1)); | |
9350 | else | |
9351 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
9352 | (CORE_ADDR) value_as_address (arg1)); | |
9353 | } | |
6b0d7253 | 9354 | |
4c4b4cd2 PH |
9355 | if (ada_is_array_descriptor_type (type)) |
9356 | /* GDB allows dereferencing GNAT array descriptors. */ | |
9357 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 9358 | else |
4c4b4cd2 | 9359 | return ada_value_ind (arg1); |
14f9c5c9 AS |
9360 | |
9361 | case STRUCTOP_STRUCT: | |
9362 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
9363 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
9364 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9365 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9366 | goto nosideret; |
14f9c5c9 | 9367 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9368 | { |
df407dfe | 9369 | struct type *type1 = value_type (arg1); |
76a01679 JB |
9370 | if (ada_is_tagged_type (type1, 1)) |
9371 | { | |
9372 | type = ada_lookup_struct_elt_type (type1, | |
9373 | &exp->elts[pc + 2].string, | |
9374 | 1, 1, NULL); | |
9375 | if (type == NULL) | |
9376 | /* In this case, we assume that the field COULD exist | |
9377 | in some extension of the type. Return an object of | |
9378 | "type" void, which will match any formal | |
9379 | (see ada_type_match). */ | |
9380 | return value_zero (builtin_type_void, lval_memory); | |
9381 | } | |
9382 | else | |
9383 | type = | |
9384 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
9385 | 0, NULL); | |
9386 | ||
9387 | return value_zero (ada_aligned_type (type), lval_memory); | |
9388 | } | |
14f9c5c9 | 9389 | else |
284614f0 JB |
9390 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); |
9391 | arg1 = unwrap_value (arg1); | |
9392 | return ada_to_fixed_value (arg1); | |
9393 | ||
14f9c5c9 | 9394 | case OP_TYPE: |
4c4b4cd2 PH |
9395 | /* The value is not supposed to be used. This is here to make it |
9396 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
9397 | (*pos) += 2; |
9398 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9399 | goto nosideret; |
14f9c5c9 | 9400 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 9401 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 9402 | else |
323e0a4a | 9403 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
9404 | |
9405 | case OP_AGGREGATE: | |
9406 | case OP_CHOICES: | |
9407 | case OP_OTHERS: | |
9408 | case OP_DISCRETE_RANGE: | |
9409 | case OP_POSITIONAL: | |
9410 | case OP_NAME: | |
9411 | if (noside == EVAL_NORMAL) | |
9412 | switch (op) | |
9413 | { | |
9414 | case OP_NAME: | |
9415 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 9416 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
9417 | case OP_AGGREGATE: |
9418 | error (_("Aggregates only allowed on the right of an assignment")); | |
9419 | default: | |
e1d5a0d2 | 9420 | internal_error (__FILE__, __LINE__, _("aggregate apparently mangled")); |
52ce6436 PH |
9421 | } |
9422 | ||
9423 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
9424 | *pos += oplen - 1; | |
9425 | for (tem = 0; tem < nargs; tem += 1) | |
9426 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9427 | goto nosideret; | |
14f9c5c9 AS |
9428 | } |
9429 | ||
9430 | nosideret: | |
cb18ec49 | 9431 | return value_from_longest (builtin_type_int8, (LONGEST) 1); |
14f9c5c9 | 9432 | } |
14f9c5c9 | 9433 | \f |
d2e4a39e | 9434 | |
4c4b4cd2 | 9435 | /* Fixed point */ |
14f9c5c9 AS |
9436 | |
9437 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
9438 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 9439 | Otherwise, return NULL. */ |
14f9c5c9 | 9440 | |
d2e4a39e | 9441 | static const char * |
ebf56fd3 | 9442 | fixed_type_info (struct type *type) |
14f9c5c9 | 9443 | { |
d2e4a39e | 9444 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
9445 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
9446 | ||
d2e4a39e AS |
9447 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
9448 | { | |
14f9c5c9 AS |
9449 | const char *tail = strstr (name, "___XF_"); |
9450 | if (tail == NULL) | |
4c4b4cd2 | 9451 | return NULL; |
d2e4a39e | 9452 | else |
4c4b4cd2 | 9453 | return tail + 5; |
14f9c5c9 AS |
9454 | } |
9455 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
9456 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
9457 | else | |
9458 | return NULL; | |
9459 | } | |
9460 | ||
4c4b4cd2 | 9461 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
9462 | |
9463 | int | |
ebf56fd3 | 9464 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
9465 | { |
9466 | return fixed_type_info (type) != NULL; | |
9467 | } | |
9468 | ||
4c4b4cd2 PH |
9469 | /* Return non-zero iff TYPE represents a System.Address type. */ |
9470 | ||
9471 | int | |
9472 | ada_is_system_address_type (struct type *type) | |
9473 | { | |
9474 | return (TYPE_NAME (type) | |
9475 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
9476 | } | |
9477 | ||
14f9c5c9 AS |
9478 | /* Assuming that TYPE is the representation of an Ada fixed-point |
9479 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 9480 | delta cannot be determined. */ |
14f9c5c9 AS |
9481 | |
9482 | DOUBLEST | |
ebf56fd3 | 9483 | ada_delta (struct type *type) |
14f9c5c9 AS |
9484 | { |
9485 | const char *encoding = fixed_type_info (type); | |
facc390f | 9486 | DOUBLEST num, den; |
14f9c5c9 | 9487 | |
facc390f JB |
9488 | /* Strictly speaking, num and den are encoded as integer. However, |
9489 | they may not fit into a long, and they will have to be converted | |
9490 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
9491 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
9492 | &num, &den) < 2) | |
14f9c5c9 | 9493 | return -1.0; |
d2e4a39e | 9494 | else |
facc390f | 9495 | return num / den; |
14f9c5c9 AS |
9496 | } |
9497 | ||
9498 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 9499 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
9500 | |
9501 | static DOUBLEST | |
ebf56fd3 | 9502 | scaling_factor (struct type *type) |
14f9c5c9 AS |
9503 | { |
9504 | const char *encoding = fixed_type_info (type); | |
facc390f | 9505 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 9506 | int n; |
d2e4a39e | 9507 | |
facc390f JB |
9508 | /* Strictly speaking, num's and den's are encoded as integer. However, |
9509 | they may not fit into a long, and they will have to be converted | |
9510 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
9511 | n = sscanf (encoding, | |
9512 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
9513 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
9514 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
9515 | |
9516 | if (n < 2) | |
9517 | return 1.0; | |
9518 | else if (n == 4) | |
facc390f | 9519 | return num1 / den1; |
d2e4a39e | 9520 | else |
facc390f | 9521 | return num0 / den0; |
14f9c5c9 AS |
9522 | } |
9523 | ||
9524 | ||
9525 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 9526 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
9527 | |
9528 | DOUBLEST | |
ebf56fd3 | 9529 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 9530 | { |
d2e4a39e | 9531 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
9532 | } |
9533 | ||
4c4b4cd2 PH |
9534 | /* The representation of a fixed-point value of type TYPE |
9535 | corresponding to the value X. */ | |
14f9c5c9 AS |
9536 | |
9537 | LONGEST | |
ebf56fd3 | 9538 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
9539 | { |
9540 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
9541 | } | |
9542 | ||
9543 | ||
4c4b4cd2 | 9544 | /* VAX floating formats */ |
14f9c5c9 AS |
9545 | |
9546 | /* Non-zero iff TYPE represents one of the special VAX floating-point | |
4c4b4cd2 PH |
9547 | types. */ |
9548 | ||
14f9c5c9 | 9549 | int |
d2e4a39e | 9550 | ada_is_vax_floating_type (struct type *type) |
14f9c5c9 | 9551 | { |
d2e4a39e | 9552 | int name_len = |
14f9c5c9 | 9553 | (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type)); |
d2e4a39e | 9554 | return |
14f9c5c9 | 9555 | name_len > 6 |
d2e4a39e | 9556 | && (TYPE_CODE (type) == TYPE_CODE_INT |
4c4b4cd2 PH |
9557 | || TYPE_CODE (type) == TYPE_CODE_RANGE) |
9558 | && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0; | |
14f9c5c9 AS |
9559 | } |
9560 | ||
9561 | /* The type of special VAX floating-point type this is, assuming | |
4c4b4cd2 PH |
9562 | ada_is_vax_floating_point. */ |
9563 | ||
14f9c5c9 | 9564 | int |
d2e4a39e | 9565 | ada_vax_float_type_suffix (struct type *type) |
14f9c5c9 | 9566 | { |
d2e4a39e | 9567 | return ada_type_name (type)[strlen (ada_type_name (type)) - 1]; |
14f9c5c9 AS |
9568 | } |
9569 | ||
4c4b4cd2 | 9570 | /* A value representing the special debugging function that outputs |
14f9c5c9 | 9571 | VAX floating-point values of the type represented by TYPE. Assumes |
4c4b4cd2 PH |
9572 | ada_is_vax_floating_type (TYPE). */ |
9573 | ||
d2e4a39e AS |
9574 | struct value * |
9575 | ada_vax_float_print_function (struct type *type) | |
9576 | { | |
9577 | switch (ada_vax_float_type_suffix (type)) | |
9578 | { | |
9579 | case 'F': | |
9580 | return get_var_value ("DEBUG_STRING_F", 0); | |
9581 | case 'D': | |
9582 | return get_var_value ("DEBUG_STRING_D", 0); | |
9583 | case 'G': | |
9584 | return get_var_value ("DEBUG_STRING_G", 0); | |
9585 | default: | |
323e0a4a | 9586 | error (_("invalid VAX floating-point type")); |
d2e4a39e | 9587 | } |
14f9c5c9 | 9588 | } |
14f9c5c9 | 9589 | \f |
d2e4a39e | 9590 | |
4c4b4cd2 | 9591 | /* Range types */ |
14f9c5c9 AS |
9592 | |
9593 | /* Scan STR beginning at position K for a discriminant name, and | |
9594 | return the value of that discriminant field of DVAL in *PX. If | |
9595 | PNEW_K is not null, put the position of the character beyond the | |
9596 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 9597 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
9598 | |
9599 | static int | |
07d8f827 | 9600 | scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 9601 | int *pnew_k) |
14f9c5c9 AS |
9602 | { |
9603 | static char *bound_buffer = NULL; | |
9604 | static size_t bound_buffer_len = 0; | |
9605 | char *bound; | |
9606 | char *pend; | |
d2e4a39e | 9607 | struct value *bound_val; |
14f9c5c9 AS |
9608 | |
9609 | if (dval == NULL || str == NULL || str[k] == '\0') | |
9610 | return 0; | |
9611 | ||
d2e4a39e | 9612 | pend = strstr (str + k, "__"); |
14f9c5c9 AS |
9613 | if (pend == NULL) |
9614 | { | |
d2e4a39e | 9615 | bound = str + k; |
14f9c5c9 AS |
9616 | k += strlen (bound); |
9617 | } | |
d2e4a39e | 9618 | else |
14f9c5c9 | 9619 | { |
d2e4a39e | 9620 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); |
14f9c5c9 | 9621 | bound = bound_buffer; |
d2e4a39e AS |
9622 | strncpy (bound_buffer, str + k, pend - (str + k)); |
9623 | bound[pend - (str + k)] = '\0'; | |
9624 | k = pend - str; | |
14f9c5c9 | 9625 | } |
d2e4a39e | 9626 | |
df407dfe | 9627 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
9628 | if (bound_val == NULL) |
9629 | return 0; | |
9630 | ||
9631 | *px = value_as_long (bound_val); | |
9632 | if (pnew_k != NULL) | |
9633 | *pnew_k = k; | |
9634 | return 1; | |
9635 | } | |
9636 | ||
9637 | /* Value of variable named NAME in the current environment. If | |
9638 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
9639 | otherwise causes an error with message ERR_MSG. */ |
9640 | ||
d2e4a39e AS |
9641 | static struct value * |
9642 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 9643 | { |
4c4b4cd2 | 9644 | struct ada_symbol_info *syms; |
14f9c5c9 AS |
9645 | int nsyms; |
9646 | ||
4c4b4cd2 PH |
9647 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
9648 | &syms); | |
14f9c5c9 AS |
9649 | |
9650 | if (nsyms != 1) | |
9651 | { | |
9652 | if (err_msg == NULL) | |
4c4b4cd2 | 9653 | return 0; |
14f9c5c9 | 9654 | else |
8a3fe4f8 | 9655 | error (("%s"), err_msg); |
14f9c5c9 AS |
9656 | } |
9657 | ||
4c4b4cd2 | 9658 | return value_of_variable (syms[0].sym, syms[0].block); |
14f9c5c9 | 9659 | } |
d2e4a39e | 9660 | |
14f9c5c9 | 9661 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
9662 | no such variable found, returns 0, and sets *FLAG to 0. If |
9663 | successful, sets *FLAG to 1. */ | |
9664 | ||
14f9c5c9 | 9665 | LONGEST |
4c4b4cd2 | 9666 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 9667 | { |
4c4b4cd2 | 9668 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 9669 | |
14f9c5c9 AS |
9670 | if (var_val == 0) |
9671 | { | |
9672 | if (flag != NULL) | |
4c4b4cd2 | 9673 | *flag = 0; |
14f9c5c9 AS |
9674 | return 0; |
9675 | } | |
9676 | else | |
9677 | { | |
9678 | if (flag != NULL) | |
4c4b4cd2 | 9679 | *flag = 1; |
14f9c5c9 AS |
9680 | return value_as_long (var_val); |
9681 | } | |
9682 | } | |
d2e4a39e | 9683 | |
14f9c5c9 AS |
9684 | |
9685 | /* Return a range type whose base type is that of the range type named | |
9686 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 9687 | from NAME according to the GNAT range encoding conventions. |
14f9c5c9 AS |
9688 | Extract discriminant values, if needed, from DVAL. If a new type |
9689 | must be created, allocate in OBJFILE's space. The bounds | |
9690 | information, in general, is encoded in NAME, the base type given in | |
4c4b4cd2 | 9691 | the named range type. */ |
14f9c5c9 | 9692 | |
d2e4a39e | 9693 | static struct type * |
ebf56fd3 | 9694 | to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile) |
14f9c5c9 AS |
9695 | { |
9696 | struct type *raw_type = ada_find_any_type (name); | |
9697 | struct type *base_type; | |
d2e4a39e | 9698 | char *subtype_info; |
14f9c5c9 | 9699 | |
dddfab26 UW |
9700 | /* Also search primitive types if type symbol could not be found. */ |
9701 | if (raw_type == NULL) | |
9702 | raw_type = language_lookup_primitive_type_by_name | |
9703 | (language_def (language_ada), current_gdbarch, name); | |
9704 | ||
14f9c5c9 | 9705 | if (raw_type == NULL) |
6d84d3d8 | 9706 | base_type = builtin_type_int32; |
14f9c5c9 AS |
9707 | else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
9708 | base_type = TYPE_TARGET_TYPE (raw_type); | |
9709 | else | |
9710 | base_type = raw_type; | |
9711 | ||
9712 | subtype_info = strstr (name, "___XD"); | |
9713 | if (subtype_info == NULL) | |
690cc4eb PH |
9714 | { |
9715 | LONGEST L = discrete_type_low_bound (raw_type); | |
9716 | LONGEST U = discrete_type_high_bound (raw_type); | |
9717 | if (L < INT_MIN || U > INT_MAX) | |
9718 | return raw_type; | |
9719 | else | |
9720 | return create_range_type (alloc_type (objfile), raw_type, | |
9721 | discrete_type_low_bound (raw_type), | |
9722 | discrete_type_high_bound (raw_type)); | |
9723 | } | |
14f9c5c9 AS |
9724 | else |
9725 | { | |
9726 | static char *name_buf = NULL; | |
9727 | static size_t name_len = 0; | |
9728 | int prefix_len = subtype_info - name; | |
9729 | LONGEST L, U; | |
9730 | struct type *type; | |
9731 | char *bounds_str; | |
9732 | int n; | |
9733 | ||
9734 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
9735 | strncpy (name_buf, name, prefix_len); | |
9736 | name_buf[prefix_len] = '\0'; | |
9737 | ||
9738 | subtype_info += 5; | |
9739 | bounds_str = strchr (subtype_info, '_'); | |
9740 | n = 1; | |
9741 | ||
d2e4a39e | 9742 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
9743 | { |
9744 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
9745 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
9746 | return raw_type; | |
9747 | if (bounds_str[n] == '_') | |
9748 | n += 2; | |
9749 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ | |
9750 | n += 1; | |
9751 | subtype_info += 1; | |
9752 | } | |
d2e4a39e | 9753 | else |
4c4b4cd2 PH |
9754 | { |
9755 | int ok; | |
9756 | strcpy (name_buf + prefix_len, "___L"); | |
9757 | L = get_int_var_value (name_buf, &ok); | |
9758 | if (!ok) | |
9759 | { | |
323e0a4a | 9760 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
9761 | L = 1; |
9762 | } | |
9763 | } | |
14f9c5c9 | 9764 | |
d2e4a39e | 9765 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
9766 | { |
9767 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
9768 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
9769 | return raw_type; | |
9770 | } | |
d2e4a39e | 9771 | else |
4c4b4cd2 PH |
9772 | { |
9773 | int ok; | |
9774 | strcpy (name_buf + prefix_len, "___U"); | |
9775 | U = get_int_var_value (name_buf, &ok); | |
9776 | if (!ok) | |
9777 | { | |
323e0a4a | 9778 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
9779 | U = L; |
9780 | } | |
9781 | } | |
14f9c5c9 | 9782 | |
d2e4a39e | 9783 | if (objfile == NULL) |
4c4b4cd2 | 9784 | objfile = TYPE_OBJFILE (base_type); |
14f9c5c9 | 9785 | type = create_range_type (alloc_type (objfile), base_type, L, U); |
d2e4a39e | 9786 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
9787 | return type; |
9788 | } | |
9789 | } | |
9790 | ||
4c4b4cd2 PH |
9791 | /* True iff NAME is the name of a range type. */ |
9792 | ||
14f9c5c9 | 9793 | int |
d2e4a39e | 9794 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
9795 | { |
9796 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 9797 | } |
14f9c5c9 | 9798 | \f |
d2e4a39e | 9799 | |
4c4b4cd2 PH |
9800 | /* Modular types */ |
9801 | ||
9802 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 9803 | |
14f9c5c9 | 9804 | int |
d2e4a39e | 9805 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 9806 | { |
4c4b4cd2 | 9807 | struct type *subranged_type = base_type (type); |
14f9c5c9 AS |
9808 | |
9809 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 9810 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 9811 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
9812 | } |
9813 | ||
0056e4d5 JB |
9814 | /* Try to determine the lower and upper bounds of the given modular type |
9815 | using the type name only. Return non-zero and set L and U as the lower | |
9816 | and upper bounds (respectively) if successful. */ | |
9817 | ||
9818 | int | |
9819 | ada_modulus_from_name (struct type *type, ULONGEST *modulus) | |
9820 | { | |
9821 | char *name = ada_type_name (type); | |
9822 | char *suffix; | |
9823 | int k; | |
9824 | LONGEST U; | |
9825 | ||
9826 | if (name == NULL) | |
9827 | return 0; | |
9828 | ||
9829 | /* Discrete type bounds are encoded using an __XD suffix. In our case, | |
9830 | we are looking for static bounds, which means an __XDLU suffix. | |
9831 | Moreover, we know that the lower bound of modular types is always | |
9832 | zero, so the actual suffix should start with "__XDLU_0__", and | |
9833 | then be followed by the upper bound value. */ | |
9834 | suffix = strstr (name, "__XDLU_0__"); | |
9835 | if (suffix == NULL) | |
9836 | return 0; | |
9837 | k = 10; | |
9838 | if (!ada_scan_number (suffix, k, &U, NULL)) | |
9839 | return 0; | |
9840 | ||
9841 | *modulus = (ULONGEST) U + 1; | |
9842 | return 1; | |
9843 | } | |
9844 | ||
4c4b4cd2 PH |
9845 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
9846 | ||
61ee279c | 9847 | ULONGEST |
0056e4d5 | 9848 | ada_modulus (struct type *type) |
14f9c5c9 | 9849 | { |
0056e4d5 JB |
9850 | ULONGEST modulus; |
9851 | ||
9852 | /* Normally, the modulus of a modular type is equal to the value of | |
9853 | its upper bound + 1. However, the upper bound is currently stored | |
9854 | as an int, which is not always big enough to hold the actual bound | |
9855 | value. To workaround this, try to take advantage of the encoding | |
9856 | that GNAT uses with with discrete types. To avoid some unnecessary | |
9857 | parsing, we do this only when the size of TYPE is greater than | |
9858 | the size of the field holding the bound. */ | |
9859 | if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type)) | |
9860 | && ada_modulus_from_name (type, &modulus)) | |
9861 | return modulus; | |
9862 | ||
d37209fd | 9863 | return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 9864 | } |
d2e4a39e | 9865 | \f |
f7f9143b JB |
9866 | |
9867 | /* Ada exception catchpoint support: | |
9868 | --------------------------------- | |
9869 | ||
9870 | We support 3 kinds of exception catchpoints: | |
9871 | . catchpoints on Ada exceptions | |
9872 | . catchpoints on unhandled Ada exceptions | |
9873 | . catchpoints on failed assertions | |
9874 | ||
9875 | Exceptions raised during failed assertions, or unhandled exceptions | |
9876 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
9877 | However, we can easily differentiate these two special cases, and having | |
9878 | the option to distinguish these two cases from the rest can be useful | |
9879 | to zero-in on certain situations. | |
9880 | ||
9881 | Exception catchpoints are a specialized form of breakpoint, | |
9882 | since they rely on inserting breakpoints inside known routines | |
9883 | of the GNAT runtime. The implementation therefore uses a standard | |
9884 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
9885 | of breakpoint_ops. | |
9886 | ||
0259addd JB |
9887 | Support in the runtime for exception catchpoints have been changed |
9888 | a few times already, and these changes affect the implementation | |
9889 | of these catchpoints. In order to be able to support several | |
9890 | variants of the runtime, we use a sniffer that will determine | |
9891 | the runtime variant used by the program being debugged. | |
9892 | ||
f7f9143b JB |
9893 | At this time, we do not support the use of conditions on Ada exception |
9894 | catchpoints. The COND and COND_STRING fields are therefore set | |
9895 | to NULL (most of the time, see below). | |
9896 | ||
9897 | Conditions where EXP_STRING, COND, and COND_STRING are used: | |
9898 | ||
9899 | When a user specifies the name of a specific exception in the case | |
9900 | of catchpoints on Ada exceptions, we store the name of that exception | |
9901 | in the EXP_STRING. We then translate this request into an actual | |
9902 | condition stored in COND_STRING, and then parse it into an expression | |
9903 | stored in COND. */ | |
9904 | ||
9905 | /* The different types of catchpoints that we introduced for catching | |
9906 | Ada exceptions. */ | |
9907 | ||
9908 | enum exception_catchpoint_kind | |
9909 | { | |
9910 | ex_catch_exception, | |
9911 | ex_catch_exception_unhandled, | |
9912 | ex_catch_assert | |
9913 | }; | |
9914 | ||
3d0b0fa3 JB |
9915 | /* Ada's standard exceptions. */ |
9916 | ||
9917 | static char *standard_exc[] = { | |
9918 | "constraint_error", | |
9919 | "program_error", | |
9920 | "storage_error", | |
9921 | "tasking_error" | |
9922 | }; | |
9923 | ||
0259addd JB |
9924 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
9925 | ||
9926 | /* A structure that describes how to support exception catchpoints | |
9927 | for a given executable. */ | |
9928 | ||
9929 | struct exception_support_info | |
9930 | { | |
9931 | /* The name of the symbol to break on in order to insert | |
9932 | a catchpoint on exceptions. */ | |
9933 | const char *catch_exception_sym; | |
9934 | ||
9935 | /* The name of the symbol to break on in order to insert | |
9936 | a catchpoint on unhandled exceptions. */ | |
9937 | const char *catch_exception_unhandled_sym; | |
9938 | ||
9939 | /* The name of the symbol to break on in order to insert | |
9940 | a catchpoint on failed assertions. */ | |
9941 | const char *catch_assert_sym; | |
9942 | ||
9943 | /* Assuming that the inferior just triggered an unhandled exception | |
9944 | catchpoint, this function is responsible for returning the address | |
9945 | in inferior memory where the name of that exception is stored. | |
9946 | Return zero if the address could not be computed. */ | |
9947 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
9948 | }; | |
9949 | ||
9950 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
9951 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
9952 | ||
9953 | /* The following exception support info structure describes how to | |
9954 | implement exception catchpoints with the latest version of the | |
9955 | Ada runtime (as of 2007-03-06). */ | |
9956 | ||
9957 | static const struct exception_support_info default_exception_support_info = | |
9958 | { | |
9959 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
9960 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
9961 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
9962 | ada_unhandled_exception_name_addr | |
9963 | }; | |
9964 | ||
9965 | /* The following exception support info structure describes how to | |
9966 | implement exception catchpoints with a slightly older version | |
9967 | of the Ada runtime. */ | |
9968 | ||
9969 | static const struct exception_support_info exception_support_info_fallback = | |
9970 | { | |
9971 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
9972 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
9973 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
9974 | ada_unhandled_exception_name_addr_from_raise | |
9975 | }; | |
9976 | ||
9977 | /* For each executable, we sniff which exception info structure to use | |
9978 | and cache it in the following global variable. */ | |
9979 | ||
9980 | static const struct exception_support_info *exception_info = NULL; | |
9981 | ||
9982 | /* Inspect the Ada runtime and determine which exception info structure | |
9983 | should be used to provide support for exception catchpoints. | |
9984 | ||
9985 | This function will always set exception_info, or raise an error. */ | |
9986 | ||
9987 | static void | |
9988 | ada_exception_support_info_sniffer (void) | |
9989 | { | |
9990 | struct symbol *sym; | |
9991 | ||
9992 | /* If the exception info is already known, then no need to recompute it. */ | |
9993 | if (exception_info != NULL) | |
9994 | return; | |
9995 | ||
9996 | /* Check the latest (default) exception support info. */ | |
9997 | sym = standard_lookup (default_exception_support_info.catch_exception_sym, | |
9998 | NULL, VAR_DOMAIN); | |
9999 | if (sym != NULL) | |
10000 | { | |
10001 | exception_info = &default_exception_support_info; | |
10002 | return; | |
10003 | } | |
10004 | ||
10005 | /* Try our fallback exception suport info. */ | |
10006 | sym = standard_lookup (exception_support_info_fallback.catch_exception_sym, | |
10007 | NULL, VAR_DOMAIN); | |
10008 | if (sym != NULL) | |
10009 | { | |
10010 | exception_info = &exception_support_info_fallback; | |
10011 | return; | |
10012 | } | |
10013 | ||
10014 | /* Sometimes, it is normal for us to not be able to find the routine | |
10015 | we are looking for. This happens when the program is linked with | |
10016 | the shared version of the GNAT runtime, and the program has not been | |
10017 | started yet. Inform the user of these two possible causes if | |
10018 | applicable. */ | |
10019 | ||
10020 | if (ada_update_initial_language (language_unknown, NULL) != language_ada) | |
10021 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); | |
10022 | ||
10023 | /* If the symbol does not exist, then check that the program is | |
10024 | already started, to make sure that shared libraries have been | |
10025 | loaded. If it is not started, this may mean that the symbol is | |
10026 | in a shared library. */ | |
10027 | ||
10028 | if (ptid_get_pid (inferior_ptid) == 0) | |
10029 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
10030 | ||
10031 | /* At this point, we know that we are debugging an Ada program and | |
10032 | that the inferior has been started, but we still are not able to | |
10033 | find the run-time symbols. That can mean that we are in | |
10034 | configurable run time mode, or that a-except as been optimized | |
10035 | out by the linker... In any case, at this point it is not worth | |
10036 | supporting this feature. */ | |
10037 | ||
10038 | error (_("Cannot insert catchpoints in this configuration.")); | |
10039 | } | |
10040 | ||
10041 | /* An observer of "executable_changed" events. | |
10042 | Its role is to clear certain cached values that need to be recomputed | |
10043 | each time a new executable is loaded by GDB. */ | |
10044 | ||
10045 | static void | |
781b42b0 | 10046 | ada_executable_changed_observer (void) |
0259addd JB |
10047 | { |
10048 | /* If the executable changed, then it is possible that the Ada runtime | |
10049 | is different. So we need to invalidate the exception support info | |
10050 | cache. */ | |
10051 | exception_info = NULL; | |
10052 | } | |
10053 | ||
f7f9143b JB |
10054 | /* Return the name of the function at PC, NULL if could not find it. |
10055 | This function only checks the debugging information, not the symbol | |
10056 | table. */ | |
10057 | ||
10058 | static char * | |
10059 | function_name_from_pc (CORE_ADDR pc) | |
10060 | { | |
10061 | char *func_name; | |
10062 | ||
10063 | if (!find_pc_partial_function (pc, &func_name, NULL, NULL)) | |
10064 | return NULL; | |
10065 | ||
10066 | return func_name; | |
10067 | } | |
10068 | ||
10069 | /* True iff FRAME is very likely to be that of a function that is | |
10070 | part of the runtime system. This is all very heuristic, but is | |
10071 | intended to be used as advice as to what frames are uninteresting | |
10072 | to most users. */ | |
10073 | ||
10074 | static int | |
10075 | is_known_support_routine (struct frame_info *frame) | |
10076 | { | |
4ed6b5be | 10077 | struct symtab_and_line sal; |
f7f9143b JB |
10078 | char *func_name; |
10079 | int i; | |
f7f9143b | 10080 | |
4ed6b5be JB |
10081 | /* If this code does not have any debugging information (no symtab), |
10082 | This cannot be any user code. */ | |
f7f9143b | 10083 | |
4ed6b5be | 10084 | find_frame_sal (frame, &sal); |
f7f9143b JB |
10085 | if (sal.symtab == NULL) |
10086 | return 1; | |
10087 | ||
4ed6b5be JB |
10088 | /* If there is a symtab, but the associated source file cannot be |
10089 | located, then assume this is not user code: Selecting a frame | |
10090 | for which we cannot display the code would not be very helpful | |
10091 | for the user. This should also take care of case such as VxWorks | |
10092 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 10093 | |
9bbc9174 | 10094 | if (symtab_to_fullname (sal.symtab) == NULL) |
f7f9143b JB |
10095 | return 1; |
10096 | ||
4ed6b5be JB |
10097 | /* Check the unit filename againt the Ada runtime file naming. |
10098 | We also check the name of the objfile against the name of some | |
10099 | known system libraries that sometimes come with debugging info | |
10100 | too. */ | |
10101 | ||
f7f9143b JB |
10102 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
10103 | { | |
10104 | re_comp (known_runtime_file_name_patterns[i]); | |
10105 | if (re_exec (sal.symtab->filename)) | |
10106 | return 1; | |
4ed6b5be JB |
10107 | if (sal.symtab->objfile != NULL |
10108 | && re_exec (sal.symtab->objfile->name)) | |
10109 | return 1; | |
f7f9143b JB |
10110 | } |
10111 | ||
4ed6b5be | 10112 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 10113 | |
4ed6b5be | 10114 | func_name = function_name_from_pc (get_frame_address_in_block (frame)); |
f7f9143b JB |
10115 | if (func_name == NULL) |
10116 | return 1; | |
10117 | ||
10118 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
10119 | { | |
10120 | re_comp (known_auxiliary_function_name_patterns[i]); | |
10121 | if (re_exec (func_name)) | |
10122 | return 1; | |
10123 | } | |
10124 | ||
10125 | return 0; | |
10126 | } | |
10127 | ||
10128 | /* Find the first frame that contains debugging information and that is not | |
10129 | part of the Ada run-time, starting from FI and moving upward. */ | |
10130 | ||
0ef643c8 | 10131 | void |
f7f9143b JB |
10132 | ada_find_printable_frame (struct frame_info *fi) |
10133 | { | |
10134 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
10135 | { | |
10136 | if (!is_known_support_routine (fi)) | |
10137 | { | |
10138 | select_frame (fi); | |
10139 | break; | |
10140 | } | |
10141 | } | |
10142 | ||
10143 | } | |
10144 | ||
10145 | /* Assuming that the inferior just triggered an unhandled exception | |
10146 | catchpoint, return the address in inferior memory where the name | |
10147 | of the exception is stored. | |
10148 | ||
10149 | Return zero if the address could not be computed. */ | |
10150 | ||
10151 | static CORE_ADDR | |
10152 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
10153 | { |
10154 | return parse_and_eval_address ("e.full_name"); | |
10155 | } | |
10156 | ||
10157 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
10158 | should be used when the inferior uses an older version of the runtime, | |
10159 | where the exception name needs to be extracted from a specific frame | |
10160 | several frames up in the callstack. */ | |
10161 | ||
10162 | static CORE_ADDR | |
10163 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
10164 | { |
10165 | int frame_level; | |
10166 | struct frame_info *fi; | |
10167 | ||
10168 | /* To determine the name of this exception, we need to select | |
10169 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
10170 | at least 3 levels up, so we simply skip the first 3 frames | |
10171 | without checking the name of their associated function. */ | |
10172 | fi = get_current_frame (); | |
10173 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
10174 | if (fi != NULL) | |
10175 | fi = get_prev_frame (fi); | |
10176 | ||
10177 | while (fi != NULL) | |
10178 | { | |
10179 | const char *func_name = | |
10180 | function_name_from_pc (get_frame_address_in_block (fi)); | |
10181 | if (func_name != NULL | |
0259addd | 10182 | && strcmp (func_name, exception_info->catch_exception_sym) == 0) |
f7f9143b JB |
10183 | break; /* We found the frame we were looking for... */ |
10184 | fi = get_prev_frame (fi); | |
10185 | } | |
10186 | ||
10187 | if (fi == NULL) | |
10188 | return 0; | |
10189 | ||
10190 | select_frame (fi); | |
10191 | return parse_and_eval_address ("id.full_name"); | |
10192 | } | |
10193 | ||
10194 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
10195 | (of any type), return the address in inferior memory where the name | |
10196 | of the exception is stored, if applicable. | |
10197 | ||
10198 | Return zero if the address could not be computed, or if not relevant. */ | |
10199 | ||
10200 | static CORE_ADDR | |
10201 | ada_exception_name_addr_1 (enum exception_catchpoint_kind ex, | |
10202 | struct breakpoint *b) | |
10203 | { | |
10204 | switch (ex) | |
10205 | { | |
10206 | case ex_catch_exception: | |
10207 | return (parse_and_eval_address ("e.full_name")); | |
10208 | break; | |
10209 | ||
10210 | case ex_catch_exception_unhandled: | |
0259addd | 10211 | return exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
10212 | break; |
10213 | ||
10214 | case ex_catch_assert: | |
10215 | return 0; /* Exception name is not relevant in this case. */ | |
10216 | break; | |
10217 | ||
10218 | default: | |
10219 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10220 | break; | |
10221 | } | |
10222 | ||
10223 | return 0; /* Should never be reached. */ | |
10224 | } | |
10225 | ||
10226 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
10227 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
10228 | When an error is intercepted, a warning with the error message is printed, | |
10229 | and zero is returned. */ | |
10230 | ||
10231 | static CORE_ADDR | |
10232 | ada_exception_name_addr (enum exception_catchpoint_kind ex, | |
10233 | struct breakpoint *b) | |
10234 | { | |
10235 | struct gdb_exception e; | |
10236 | CORE_ADDR result = 0; | |
10237 | ||
10238 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
10239 | { | |
10240 | result = ada_exception_name_addr_1 (ex, b); | |
10241 | } | |
10242 | ||
10243 | if (e.reason < 0) | |
10244 | { | |
10245 | warning (_("failed to get exception name: %s"), e.message); | |
10246 | return 0; | |
10247 | } | |
10248 | ||
10249 | return result; | |
10250 | } | |
10251 | ||
10252 | /* Implement the PRINT_IT method in the breakpoint_ops structure | |
10253 | for all exception catchpoint kinds. */ | |
10254 | ||
10255 | static enum print_stop_action | |
10256 | print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
10257 | { | |
10258 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
10259 | char exception_name[256]; | |
10260 | ||
10261 | if (addr != 0) | |
10262 | { | |
10263 | read_memory (addr, exception_name, sizeof (exception_name) - 1); | |
10264 | exception_name [sizeof (exception_name) - 1] = '\0'; | |
10265 | } | |
10266 | ||
10267 | ada_find_printable_frame (get_current_frame ()); | |
10268 | ||
10269 | annotate_catchpoint (b->number); | |
10270 | switch (ex) | |
10271 | { | |
10272 | case ex_catch_exception: | |
10273 | if (addr != 0) | |
10274 | printf_filtered (_("\nCatchpoint %d, %s at "), | |
10275 | b->number, exception_name); | |
10276 | else | |
10277 | printf_filtered (_("\nCatchpoint %d, exception at "), b->number); | |
10278 | break; | |
10279 | case ex_catch_exception_unhandled: | |
10280 | if (addr != 0) | |
10281 | printf_filtered (_("\nCatchpoint %d, unhandled %s at "), | |
10282 | b->number, exception_name); | |
10283 | else | |
10284 | printf_filtered (_("\nCatchpoint %d, unhandled exception at "), | |
10285 | b->number); | |
10286 | break; | |
10287 | case ex_catch_assert: | |
10288 | printf_filtered (_("\nCatchpoint %d, failed assertion at "), | |
10289 | b->number); | |
10290 | break; | |
10291 | } | |
10292 | ||
10293 | return PRINT_SRC_AND_LOC; | |
10294 | } | |
10295 | ||
10296 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
10297 | for all exception catchpoint kinds. */ | |
10298 | ||
10299 | static void | |
10300 | print_one_exception (enum exception_catchpoint_kind ex, | |
10301 | struct breakpoint *b, CORE_ADDR *last_addr) | |
10302 | { | |
79a45b7d TT |
10303 | struct value_print_options opts; |
10304 | ||
10305 | get_user_print_options (&opts); | |
10306 | if (opts.addressprint) | |
f7f9143b JB |
10307 | { |
10308 | annotate_field (4); | |
10309 | ui_out_field_core_addr (uiout, "addr", b->loc->address); | |
10310 | } | |
10311 | ||
10312 | annotate_field (5); | |
10313 | *last_addr = b->loc->address; | |
10314 | switch (ex) | |
10315 | { | |
10316 | case ex_catch_exception: | |
10317 | if (b->exp_string != NULL) | |
10318 | { | |
10319 | char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string); | |
10320 | ||
10321 | ui_out_field_string (uiout, "what", msg); | |
10322 | xfree (msg); | |
10323 | } | |
10324 | else | |
10325 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
10326 | ||
10327 | break; | |
10328 | ||
10329 | case ex_catch_exception_unhandled: | |
10330 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); | |
10331 | break; | |
10332 | ||
10333 | case ex_catch_assert: | |
10334 | ui_out_field_string (uiout, "what", "failed Ada assertions"); | |
10335 | break; | |
10336 | ||
10337 | default: | |
10338 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10339 | break; | |
10340 | } | |
10341 | } | |
10342 | ||
10343 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
10344 | for all exception catchpoint kinds. */ | |
10345 | ||
10346 | static void | |
10347 | print_mention_exception (enum exception_catchpoint_kind ex, | |
10348 | struct breakpoint *b) | |
10349 | { | |
10350 | switch (ex) | |
10351 | { | |
10352 | case ex_catch_exception: | |
10353 | if (b->exp_string != NULL) | |
10354 | printf_filtered (_("Catchpoint %d: `%s' Ada exception"), | |
10355 | b->number, b->exp_string); | |
10356 | else | |
10357 | printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number); | |
10358 | ||
10359 | break; | |
10360 | ||
10361 | case ex_catch_exception_unhandled: | |
10362 | printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"), | |
10363 | b->number); | |
10364 | break; | |
10365 | ||
10366 | case ex_catch_assert: | |
10367 | printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number); | |
10368 | break; | |
10369 | ||
10370 | default: | |
10371 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10372 | break; | |
10373 | } | |
10374 | } | |
10375 | ||
10376 | /* Virtual table for "catch exception" breakpoints. */ | |
10377 | ||
10378 | static enum print_stop_action | |
10379 | print_it_catch_exception (struct breakpoint *b) | |
10380 | { | |
10381 | return print_it_exception (ex_catch_exception, b); | |
10382 | } | |
10383 | ||
10384 | static void | |
10385 | print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr) | |
10386 | { | |
10387 | print_one_exception (ex_catch_exception, b, last_addr); | |
10388 | } | |
10389 | ||
10390 | static void | |
10391 | print_mention_catch_exception (struct breakpoint *b) | |
10392 | { | |
10393 | print_mention_exception (ex_catch_exception, b); | |
10394 | } | |
10395 | ||
10396 | static struct breakpoint_ops catch_exception_breakpoint_ops = | |
10397 | { | |
ce78b96d JB |
10398 | NULL, /* insert */ |
10399 | NULL, /* remove */ | |
10400 | NULL, /* breakpoint_hit */ | |
f7f9143b JB |
10401 | print_it_catch_exception, |
10402 | print_one_catch_exception, | |
10403 | print_mention_catch_exception | |
10404 | }; | |
10405 | ||
10406 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
10407 | ||
10408 | static enum print_stop_action | |
10409 | print_it_catch_exception_unhandled (struct breakpoint *b) | |
10410 | { | |
10411 | return print_it_exception (ex_catch_exception_unhandled, b); | |
10412 | } | |
10413 | ||
10414 | static void | |
10415 | print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr) | |
10416 | { | |
10417 | print_one_exception (ex_catch_exception_unhandled, b, last_addr); | |
10418 | } | |
10419 | ||
10420 | static void | |
10421 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
10422 | { | |
10423 | print_mention_exception (ex_catch_exception_unhandled, b); | |
10424 | } | |
10425 | ||
10426 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = { | |
ce78b96d JB |
10427 | NULL, /* insert */ |
10428 | NULL, /* remove */ | |
10429 | NULL, /* breakpoint_hit */ | |
f7f9143b JB |
10430 | print_it_catch_exception_unhandled, |
10431 | print_one_catch_exception_unhandled, | |
10432 | print_mention_catch_exception_unhandled | |
10433 | }; | |
10434 | ||
10435 | /* Virtual table for "catch assert" breakpoints. */ | |
10436 | ||
10437 | static enum print_stop_action | |
10438 | print_it_catch_assert (struct breakpoint *b) | |
10439 | { | |
10440 | return print_it_exception (ex_catch_assert, b); | |
10441 | } | |
10442 | ||
10443 | static void | |
10444 | print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr) | |
10445 | { | |
10446 | print_one_exception (ex_catch_assert, b, last_addr); | |
10447 | } | |
10448 | ||
10449 | static void | |
10450 | print_mention_catch_assert (struct breakpoint *b) | |
10451 | { | |
10452 | print_mention_exception (ex_catch_assert, b); | |
10453 | } | |
10454 | ||
10455 | static struct breakpoint_ops catch_assert_breakpoint_ops = { | |
ce78b96d JB |
10456 | NULL, /* insert */ |
10457 | NULL, /* remove */ | |
10458 | NULL, /* breakpoint_hit */ | |
f7f9143b JB |
10459 | print_it_catch_assert, |
10460 | print_one_catch_assert, | |
10461 | print_mention_catch_assert | |
10462 | }; | |
10463 | ||
10464 | /* Return non-zero if B is an Ada exception catchpoint. */ | |
10465 | ||
10466 | int | |
10467 | ada_exception_catchpoint_p (struct breakpoint *b) | |
10468 | { | |
10469 | return (b->ops == &catch_exception_breakpoint_ops | |
10470 | || b->ops == &catch_exception_unhandled_breakpoint_ops | |
10471 | || b->ops == &catch_assert_breakpoint_ops); | |
10472 | } | |
10473 | ||
f7f9143b JB |
10474 | /* Return a newly allocated copy of the first space-separated token |
10475 | in ARGSP, and then adjust ARGSP to point immediately after that | |
10476 | token. | |
10477 | ||
10478 | Return NULL if ARGPS does not contain any more tokens. */ | |
10479 | ||
10480 | static char * | |
10481 | ada_get_next_arg (char **argsp) | |
10482 | { | |
10483 | char *args = *argsp; | |
10484 | char *end; | |
10485 | char *result; | |
10486 | ||
10487 | /* Skip any leading white space. */ | |
10488 | ||
10489 | while (isspace (*args)) | |
10490 | args++; | |
10491 | ||
10492 | if (args[0] == '\0') | |
10493 | return NULL; /* No more arguments. */ | |
10494 | ||
10495 | /* Find the end of the current argument. */ | |
10496 | ||
10497 | end = args; | |
10498 | while (*end != '\0' && !isspace (*end)) | |
10499 | end++; | |
10500 | ||
10501 | /* Adjust ARGSP to point to the start of the next argument. */ | |
10502 | ||
10503 | *argsp = end; | |
10504 | ||
10505 | /* Make a copy of the current argument and return it. */ | |
10506 | ||
10507 | result = xmalloc (end - args + 1); | |
10508 | strncpy (result, args, end - args); | |
10509 | result[end - args] = '\0'; | |
10510 | ||
10511 | return result; | |
10512 | } | |
10513 | ||
10514 | /* Split the arguments specified in a "catch exception" command. | |
10515 | Set EX to the appropriate catchpoint type. | |
10516 | Set EXP_STRING to the name of the specific exception if | |
10517 | specified by the user. */ | |
10518 | ||
10519 | static void | |
10520 | catch_ada_exception_command_split (char *args, | |
10521 | enum exception_catchpoint_kind *ex, | |
10522 | char **exp_string) | |
10523 | { | |
10524 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
10525 | char *exception_name; | |
10526 | ||
10527 | exception_name = ada_get_next_arg (&args); | |
10528 | make_cleanup (xfree, exception_name); | |
10529 | ||
10530 | /* Check that we do not have any more arguments. Anything else | |
10531 | is unexpected. */ | |
10532 | ||
10533 | while (isspace (*args)) | |
10534 | args++; | |
10535 | ||
10536 | if (args[0] != '\0') | |
10537 | error (_("Junk at end of expression")); | |
10538 | ||
10539 | discard_cleanups (old_chain); | |
10540 | ||
10541 | if (exception_name == NULL) | |
10542 | { | |
10543 | /* Catch all exceptions. */ | |
10544 | *ex = ex_catch_exception; | |
10545 | *exp_string = NULL; | |
10546 | } | |
10547 | else if (strcmp (exception_name, "unhandled") == 0) | |
10548 | { | |
10549 | /* Catch unhandled exceptions. */ | |
10550 | *ex = ex_catch_exception_unhandled; | |
10551 | *exp_string = NULL; | |
10552 | } | |
10553 | else | |
10554 | { | |
10555 | /* Catch a specific exception. */ | |
10556 | *ex = ex_catch_exception; | |
10557 | *exp_string = exception_name; | |
10558 | } | |
10559 | } | |
10560 | ||
10561 | /* Return the name of the symbol on which we should break in order to | |
10562 | implement a catchpoint of the EX kind. */ | |
10563 | ||
10564 | static const char * | |
10565 | ada_exception_sym_name (enum exception_catchpoint_kind ex) | |
10566 | { | |
0259addd JB |
10567 | gdb_assert (exception_info != NULL); |
10568 | ||
f7f9143b JB |
10569 | switch (ex) |
10570 | { | |
10571 | case ex_catch_exception: | |
0259addd | 10572 | return (exception_info->catch_exception_sym); |
f7f9143b JB |
10573 | break; |
10574 | case ex_catch_exception_unhandled: | |
0259addd | 10575 | return (exception_info->catch_exception_unhandled_sym); |
f7f9143b JB |
10576 | break; |
10577 | case ex_catch_assert: | |
0259addd | 10578 | return (exception_info->catch_assert_sym); |
f7f9143b JB |
10579 | break; |
10580 | default: | |
10581 | internal_error (__FILE__, __LINE__, | |
10582 | _("unexpected catchpoint kind (%d)"), ex); | |
10583 | } | |
10584 | } | |
10585 | ||
10586 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
10587 | of the EX kind. */ | |
10588 | ||
10589 | static struct breakpoint_ops * | |
4b9eee8c | 10590 | ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex) |
f7f9143b JB |
10591 | { |
10592 | switch (ex) | |
10593 | { | |
10594 | case ex_catch_exception: | |
10595 | return (&catch_exception_breakpoint_ops); | |
10596 | break; | |
10597 | case ex_catch_exception_unhandled: | |
10598 | return (&catch_exception_unhandled_breakpoint_ops); | |
10599 | break; | |
10600 | case ex_catch_assert: | |
10601 | return (&catch_assert_breakpoint_ops); | |
10602 | break; | |
10603 | default: | |
10604 | internal_error (__FILE__, __LINE__, | |
10605 | _("unexpected catchpoint kind (%d)"), ex); | |
10606 | } | |
10607 | } | |
10608 | ||
10609 | /* Return the condition that will be used to match the current exception | |
10610 | being raised with the exception that the user wants to catch. This | |
10611 | assumes that this condition is used when the inferior just triggered | |
10612 | an exception catchpoint. | |
10613 | ||
10614 | The string returned is a newly allocated string that needs to be | |
10615 | deallocated later. */ | |
10616 | ||
10617 | static char * | |
10618 | ada_exception_catchpoint_cond_string (const char *exp_string) | |
10619 | { | |
3d0b0fa3 JB |
10620 | int i; |
10621 | ||
10622 | /* The standard exceptions are a special case. They are defined in | |
10623 | runtime units that have been compiled without debugging info; if | |
10624 | EXP_STRING is the not-fully-qualified name of a standard | |
10625 | exception (e.g. "constraint_error") then, during the evaluation | |
10626 | of the condition expression, the symbol lookup on this name would | |
10627 | *not* return this standard exception. The catchpoint condition | |
10628 | may then be set only on user-defined exceptions which have the | |
10629 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
10630 | ||
10631 | To avoid this unexcepted behavior, these standard exceptions are | |
10632 | systematically prefixed by "standard". This means that "catch | |
10633 | exception constraint_error" is rewritten into "catch exception | |
10634 | standard.constraint_error". | |
10635 | ||
10636 | If an exception named contraint_error is defined in another package of | |
10637 | the inferior program, then the only way to specify this exception as a | |
10638 | breakpoint condition is to use its fully-qualified named: | |
10639 | e.g. my_package.constraint_error. */ | |
10640 | ||
10641 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
10642 | { | |
10643 | if (strcmp (standard_exc [i], exp_string) == 0) | |
10644 | { | |
10645 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
10646 | exp_string); | |
10647 | } | |
10648 | } | |
f7f9143b JB |
10649 | return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string); |
10650 | } | |
10651 | ||
10652 | /* Return the expression corresponding to COND_STRING evaluated at SAL. */ | |
10653 | ||
10654 | static struct expression * | |
10655 | ada_parse_catchpoint_condition (char *cond_string, | |
10656 | struct symtab_and_line sal) | |
10657 | { | |
10658 | return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0)); | |
10659 | } | |
10660 | ||
10661 | /* Return the symtab_and_line that should be used to insert an exception | |
10662 | catchpoint of the TYPE kind. | |
10663 | ||
10664 | EX_STRING should contain the name of a specific exception | |
10665 | that the catchpoint should catch, or NULL otherwise. | |
10666 | ||
10667 | The idea behind all the remaining parameters is that their names match | |
10668 | the name of certain fields in the breakpoint structure that are used to | |
10669 | handle exception catchpoints. This function returns the value to which | |
10670 | these fields should be set, depending on the type of catchpoint we need | |
10671 | to create. | |
10672 | ||
10673 | If COND and COND_STRING are both non-NULL, any value they might | |
10674 | hold will be free'ed, and then replaced by newly allocated ones. | |
10675 | These parameters are left untouched otherwise. */ | |
10676 | ||
10677 | static struct symtab_and_line | |
10678 | ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string, | |
10679 | char **addr_string, char **cond_string, | |
10680 | struct expression **cond, struct breakpoint_ops **ops) | |
10681 | { | |
10682 | const char *sym_name; | |
10683 | struct symbol *sym; | |
10684 | struct symtab_and_line sal; | |
10685 | ||
0259addd JB |
10686 | /* First, find out which exception support info to use. */ |
10687 | ada_exception_support_info_sniffer (); | |
10688 | ||
10689 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b JB |
10690 | the Ada exceptions requested by the user. */ |
10691 | ||
10692 | sym_name = ada_exception_sym_name (ex); | |
10693 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
10694 | ||
10695 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
10696 | that should be compiled with debugging information. As a result, we | |
10697 | expect to find that symbol in the symtabs. If we don't find it, then | |
10698 | the target most likely does not support Ada exceptions, or we cannot | |
10699 | insert exception breakpoints yet, because the GNAT runtime hasn't been | |
10700 | loaded yet. */ | |
10701 | ||
10702 | /* brobecker/2006-12-26: It is conceivable that the runtime was compiled | |
10703 | in such a way that no debugging information is produced for the symbol | |
10704 | we are looking for. In this case, we could search the minimal symbols | |
10705 | as a fall-back mechanism. This would still be operating in degraded | |
10706 | mode, however, as we would still be missing the debugging information | |
10707 | that is needed in order to extract the name of the exception being | |
10708 | raised (this name is printed in the catchpoint message, and is also | |
10709 | used when trying to catch a specific exception). We do not handle | |
10710 | this case for now. */ | |
10711 | ||
10712 | if (sym == NULL) | |
0259addd | 10713 | error (_("Unable to break on '%s' in this configuration."), sym_name); |
f7f9143b JB |
10714 | |
10715 | /* Make sure that the symbol we found corresponds to a function. */ | |
10716 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
10717 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
10718 | sym_name, SYMBOL_CLASS (sym)); | |
10719 | ||
10720 | sal = find_function_start_sal (sym, 1); | |
10721 | ||
10722 | /* Set ADDR_STRING. */ | |
10723 | ||
10724 | *addr_string = xstrdup (sym_name); | |
10725 | ||
10726 | /* Set the COND and COND_STRING (if not NULL). */ | |
10727 | ||
10728 | if (cond_string != NULL && cond != NULL) | |
10729 | { | |
10730 | if (*cond_string != NULL) | |
10731 | { | |
10732 | xfree (*cond_string); | |
10733 | *cond_string = NULL; | |
10734 | } | |
10735 | if (*cond != NULL) | |
10736 | { | |
10737 | xfree (*cond); | |
10738 | *cond = NULL; | |
10739 | } | |
10740 | if (exp_string != NULL) | |
10741 | { | |
10742 | *cond_string = ada_exception_catchpoint_cond_string (exp_string); | |
10743 | *cond = ada_parse_catchpoint_condition (*cond_string, sal); | |
10744 | } | |
10745 | } | |
10746 | ||
10747 | /* Set OPS. */ | |
4b9eee8c | 10748 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b JB |
10749 | |
10750 | return sal; | |
10751 | } | |
10752 | ||
10753 | /* Parse the arguments (ARGS) of the "catch exception" command. | |
10754 | ||
10755 | Set TYPE to the appropriate exception catchpoint type. | |
10756 | If the user asked the catchpoint to catch only a specific | |
10757 | exception, then save the exception name in ADDR_STRING. | |
10758 | ||
10759 | See ada_exception_sal for a description of all the remaining | |
10760 | function arguments of this function. */ | |
10761 | ||
10762 | struct symtab_and_line | |
10763 | ada_decode_exception_location (char *args, char **addr_string, | |
10764 | char **exp_string, char **cond_string, | |
10765 | struct expression **cond, | |
10766 | struct breakpoint_ops **ops) | |
10767 | { | |
10768 | enum exception_catchpoint_kind ex; | |
10769 | ||
10770 | catch_ada_exception_command_split (args, &ex, exp_string); | |
10771 | return ada_exception_sal (ex, *exp_string, addr_string, cond_string, | |
10772 | cond, ops); | |
10773 | } | |
10774 | ||
10775 | struct symtab_and_line | |
10776 | ada_decode_assert_location (char *args, char **addr_string, | |
10777 | struct breakpoint_ops **ops) | |
10778 | { | |
10779 | /* Check that no argument where provided at the end of the command. */ | |
10780 | ||
10781 | if (args != NULL) | |
10782 | { | |
10783 | while (isspace (*args)) | |
10784 | args++; | |
10785 | if (*args != '\0') | |
10786 | error (_("Junk at end of arguments.")); | |
10787 | } | |
10788 | ||
10789 | return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL, | |
10790 | ops); | |
10791 | } | |
10792 | ||
4c4b4cd2 PH |
10793 | /* Operators */ |
10794 | /* Information about operators given special treatment in functions | |
10795 | below. */ | |
10796 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
10797 | ||
10798 | #define ADA_OPERATORS \ | |
10799 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
10800 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
10801 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
10802 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
10803 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
10804 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
10805 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
10806 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
10807 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
10808 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
10809 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
10810 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
10811 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
10812 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
10813 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
10814 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
10815 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
10816 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
10817 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
10818 | |
10819 | static void | |
10820 | ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp) | |
10821 | { | |
10822 | switch (exp->elts[pc - 1].opcode) | |
10823 | { | |
76a01679 | 10824 | default: |
4c4b4cd2 PH |
10825 | operator_length_standard (exp, pc, oplenp, argsp); |
10826 | break; | |
10827 | ||
10828 | #define OP_DEFN(op, len, args, binop) \ | |
10829 | case op: *oplenp = len; *argsp = args; break; | |
10830 | ADA_OPERATORS; | |
10831 | #undef OP_DEFN | |
52ce6436 PH |
10832 | |
10833 | case OP_AGGREGATE: | |
10834 | *oplenp = 3; | |
10835 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
10836 | break; | |
10837 | ||
10838 | case OP_CHOICES: | |
10839 | *oplenp = 3; | |
10840 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
10841 | break; | |
4c4b4cd2 PH |
10842 | } |
10843 | } | |
10844 | ||
10845 | static char * | |
10846 | ada_op_name (enum exp_opcode opcode) | |
10847 | { | |
10848 | switch (opcode) | |
10849 | { | |
76a01679 | 10850 | default: |
4c4b4cd2 | 10851 | return op_name_standard (opcode); |
52ce6436 | 10852 | |
4c4b4cd2 PH |
10853 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
10854 | ADA_OPERATORS; | |
10855 | #undef OP_DEFN | |
52ce6436 PH |
10856 | |
10857 | case OP_AGGREGATE: | |
10858 | return "OP_AGGREGATE"; | |
10859 | case OP_CHOICES: | |
10860 | return "OP_CHOICES"; | |
10861 | case OP_NAME: | |
10862 | return "OP_NAME"; | |
4c4b4cd2 PH |
10863 | } |
10864 | } | |
10865 | ||
10866 | /* As for operator_length, but assumes PC is pointing at the first | |
10867 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 10868 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
10869 | |
10870 | static void | |
76a01679 JB |
10871 | ada_forward_operator_length (struct expression *exp, int pc, |
10872 | int *oplenp, int *argsp) | |
4c4b4cd2 | 10873 | { |
76a01679 | 10874 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
10875 | { |
10876 | default: | |
10877 | *oplenp = *argsp = 0; | |
10878 | break; | |
52ce6436 | 10879 | |
4c4b4cd2 PH |
10880 | #define OP_DEFN(op, len, args, binop) \ |
10881 | case op: *oplenp = len; *argsp = args; break; | |
10882 | ADA_OPERATORS; | |
10883 | #undef OP_DEFN | |
52ce6436 PH |
10884 | |
10885 | case OP_AGGREGATE: | |
10886 | *oplenp = 3; | |
10887 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
10888 | break; | |
10889 | ||
10890 | case OP_CHOICES: | |
10891 | *oplenp = 3; | |
10892 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
10893 | break; | |
10894 | ||
10895 | case OP_STRING: | |
10896 | case OP_NAME: | |
10897 | { | |
10898 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
10899 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); | |
10900 | *argsp = 0; | |
10901 | break; | |
10902 | } | |
4c4b4cd2 PH |
10903 | } |
10904 | } | |
10905 | ||
10906 | static int | |
10907 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
10908 | { | |
10909 | enum exp_opcode op = exp->elts[elt].opcode; | |
10910 | int oplen, nargs; | |
10911 | int pc = elt; | |
10912 | int i; | |
76a01679 | 10913 | |
4c4b4cd2 PH |
10914 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
10915 | ||
76a01679 | 10916 | switch (op) |
4c4b4cd2 | 10917 | { |
76a01679 | 10918 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
10919 | case OP_ATR_FIRST: |
10920 | case OP_ATR_LAST: | |
10921 | case OP_ATR_LENGTH: | |
10922 | case OP_ATR_IMAGE: | |
10923 | case OP_ATR_MAX: | |
10924 | case OP_ATR_MIN: | |
10925 | case OP_ATR_MODULUS: | |
10926 | case OP_ATR_POS: | |
10927 | case OP_ATR_SIZE: | |
10928 | case OP_ATR_TAG: | |
10929 | case OP_ATR_VAL: | |
10930 | break; | |
10931 | ||
10932 | case UNOP_IN_RANGE: | |
10933 | case UNOP_QUAL: | |
323e0a4a AC |
10934 | /* XXX: gdb_sprint_host_address, type_sprint */ |
10935 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
10936 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
10937 | fprintf_filtered (stream, " ("); | |
10938 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
10939 | fprintf_filtered (stream, ")"); | |
10940 | break; | |
10941 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
10942 | fprintf_filtered (stream, " (%d)", |
10943 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
10944 | break; |
10945 | case TERNOP_IN_RANGE: | |
10946 | break; | |
10947 | ||
52ce6436 PH |
10948 | case OP_AGGREGATE: |
10949 | case OP_OTHERS: | |
10950 | case OP_DISCRETE_RANGE: | |
10951 | case OP_POSITIONAL: | |
10952 | case OP_CHOICES: | |
10953 | break; | |
10954 | ||
10955 | case OP_NAME: | |
10956 | case OP_STRING: | |
10957 | { | |
10958 | char *name = &exp->elts[elt + 2].string; | |
10959 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
10960 | fprintf_filtered (stream, "Text: `%.*s'", len, name); | |
10961 | break; | |
10962 | } | |
10963 | ||
4c4b4cd2 PH |
10964 | default: |
10965 | return dump_subexp_body_standard (exp, stream, elt); | |
10966 | } | |
10967 | ||
10968 | elt += oplen; | |
10969 | for (i = 0; i < nargs; i += 1) | |
10970 | elt = dump_subexp (exp, stream, elt); | |
10971 | ||
10972 | return elt; | |
10973 | } | |
10974 | ||
10975 | /* The Ada extension of print_subexp (q.v.). */ | |
10976 | ||
76a01679 JB |
10977 | static void |
10978 | ada_print_subexp (struct expression *exp, int *pos, | |
10979 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 10980 | { |
52ce6436 | 10981 | int oplen, nargs, i; |
4c4b4cd2 PH |
10982 | int pc = *pos; |
10983 | enum exp_opcode op = exp->elts[pc].opcode; | |
10984 | ||
10985 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
10986 | ||
52ce6436 | 10987 | *pos += oplen; |
4c4b4cd2 PH |
10988 | switch (op) |
10989 | { | |
10990 | default: | |
52ce6436 | 10991 | *pos -= oplen; |
4c4b4cd2 PH |
10992 | print_subexp_standard (exp, pos, stream, prec); |
10993 | return; | |
10994 | ||
10995 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
10996 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
10997 | return; | |
10998 | ||
10999 | case BINOP_IN_BOUNDS: | |
323e0a4a | 11000 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 11001 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11002 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 11003 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11004 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 11005 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
11006 | fprintf_filtered (stream, "(%ld)", |
11007 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
11008 | return; |
11009 | ||
11010 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 11011 | if (prec >= PREC_EQUAL) |
76a01679 | 11012 | fputs_filtered ("(", stream); |
323e0a4a | 11013 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 11014 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11015 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
11016 | print_subexp (exp, pos, stream, PREC_EQUAL); |
11017 | fputs_filtered (" .. ", stream); | |
11018 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
11019 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
11020 | fputs_filtered (")", stream); |
11021 | return; | |
4c4b4cd2 PH |
11022 | |
11023 | case OP_ATR_FIRST: | |
11024 | case OP_ATR_LAST: | |
11025 | case OP_ATR_LENGTH: | |
11026 | case OP_ATR_IMAGE: | |
11027 | case OP_ATR_MAX: | |
11028 | case OP_ATR_MIN: | |
11029 | case OP_ATR_MODULUS: | |
11030 | case OP_ATR_POS: | |
11031 | case OP_ATR_SIZE: | |
11032 | case OP_ATR_TAG: | |
11033 | case OP_ATR_VAL: | |
4c4b4cd2 | 11034 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
11035 | { |
11036 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
11037 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0); | |
11038 | *pos += 3; | |
11039 | } | |
4c4b4cd2 | 11040 | else |
76a01679 | 11041 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
11042 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
11043 | if (nargs > 1) | |
76a01679 JB |
11044 | { |
11045 | int tem; | |
11046 | for (tem = 1; tem < nargs; tem += 1) | |
11047 | { | |
11048 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
11049 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
11050 | } | |
11051 | fputs_filtered (")", stream); | |
11052 | } | |
4c4b4cd2 | 11053 | return; |
14f9c5c9 | 11054 | |
4c4b4cd2 | 11055 | case UNOP_QUAL: |
4c4b4cd2 PH |
11056 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
11057 | fputs_filtered ("'(", stream); | |
11058 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
11059 | fputs_filtered (")", stream); | |
11060 | return; | |
14f9c5c9 | 11061 | |
4c4b4cd2 | 11062 | case UNOP_IN_RANGE: |
323e0a4a | 11063 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 11064 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11065 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
11066 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0); |
11067 | return; | |
52ce6436 PH |
11068 | |
11069 | case OP_DISCRETE_RANGE: | |
11070 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11071 | fputs_filtered ("..", stream); | |
11072 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11073 | return; | |
11074 | ||
11075 | case OP_OTHERS: | |
11076 | fputs_filtered ("others => ", stream); | |
11077 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11078 | return; | |
11079 | ||
11080 | case OP_CHOICES: | |
11081 | for (i = 0; i < nargs-1; i += 1) | |
11082 | { | |
11083 | if (i > 0) | |
11084 | fputs_filtered ("|", stream); | |
11085 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11086 | } | |
11087 | fputs_filtered (" => ", stream); | |
11088 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11089 | return; | |
11090 | ||
11091 | case OP_POSITIONAL: | |
11092 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11093 | return; | |
11094 | ||
11095 | case OP_AGGREGATE: | |
11096 | fputs_filtered ("(", stream); | |
11097 | for (i = 0; i < nargs; i += 1) | |
11098 | { | |
11099 | if (i > 0) | |
11100 | fputs_filtered (", ", stream); | |
11101 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11102 | } | |
11103 | fputs_filtered (")", stream); | |
11104 | return; | |
4c4b4cd2 PH |
11105 | } |
11106 | } | |
14f9c5c9 AS |
11107 | |
11108 | /* Table mapping opcodes into strings for printing operators | |
11109 | and precedences of the operators. */ | |
11110 | ||
d2e4a39e AS |
11111 | static const struct op_print ada_op_print_tab[] = { |
11112 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
11113 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
11114 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
11115 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
11116 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
11117 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
11118 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
11119 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
11120 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
11121 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
11122 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
11123 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
11124 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
11125 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
11126 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
11127 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
11128 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
11129 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
11130 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
11131 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
11132 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
11133 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
11134 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
11135 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
11136 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
11137 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
11138 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
11139 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
11140 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
11141 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
11142 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
d2e4a39e | 11143 | {NULL, 0, 0, 0} |
14f9c5c9 AS |
11144 | }; |
11145 | \f | |
72d5681a PH |
11146 | enum ada_primitive_types { |
11147 | ada_primitive_type_int, | |
11148 | ada_primitive_type_long, | |
11149 | ada_primitive_type_short, | |
11150 | ada_primitive_type_char, | |
11151 | ada_primitive_type_float, | |
11152 | ada_primitive_type_double, | |
11153 | ada_primitive_type_void, | |
11154 | ada_primitive_type_long_long, | |
11155 | ada_primitive_type_long_double, | |
11156 | ada_primitive_type_natural, | |
11157 | ada_primitive_type_positive, | |
11158 | ada_primitive_type_system_address, | |
11159 | nr_ada_primitive_types | |
11160 | }; | |
6c038f32 PH |
11161 | |
11162 | static void | |
d4a9a881 | 11163 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
11164 | struct language_arch_info *lai) |
11165 | { | |
d4a9a881 | 11166 | const struct builtin_type *builtin = builtin_type (gdbarch); |
72d5681a | 11167 | lai->primitive_type_vector |
d4a9a881 | 11168 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a PH |
11169 | struct type *); |
11170 | lai->primitive_type_vector [ada_primitive_type_int] = | |
9a76efb6 | 11171 | init_type (TYPE_CODE_INT, |
d4a9a881 | 11172 | gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 11173 | 0, "integer", (struct objfile *) NULL); |
72d5681a | 11174 | lai->primitive_type_vector [ada_primitive_type_long] = |
9a76efb6 | 11175 | init_type (TYPE_CODE_INT, |
d4a9a881 | 11176 | gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 11177 | 0, "long_integer", (struct objfile *) NULL); |
72d5681a | 11178 | lai->primitive_type_vector [ada_primitive_type_short] = |
9a76efb6 | 11179 | init_type (TYPE_CODE_INT, |
d4a9a881 | 11180 | gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 11181 | 0, "short_integer", (struct objfile *) NULL); |
61ee279c PH |
11182 | lai->string_char_type = |
11183 | lai->primitive_type_vector [ada_primitive_type_char] = | |
6c038f32 PH |
11184 | init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, |
11185 | 0, "character", (struct objfile *) NULL); | |
72d5681a | 11186 | lai->primitive_type_vector [ada_primitive_type_float] = |
ea06eb3d | 11187 | init_type (TYPE_CODE_FLT, |
d4a9a881 | 11188 | gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT, |
6c038f32 | 11189 | 0, "float", (struct objfile *) NULL); |
72d5681a | 11190 | lai->primitive_type_vector [ada_primitive_type_double] = |
ea06eb3d | 11191 | init_type (TYPE_CODE_FLT, |
d4a9a881 | 11192 | gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT, |
6c038f32 | 11193 | 0, "long_float", (struct objfile *) NULL); |
72d5681a | 11194 | lai->primitive_type_vector [ada_primitive_type_long_long] = |
9a76efb6 | 11195 | init_type (TYPE_CODE_INT, |
d4a9a881 | 11196 | gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT, |
6c038f32 | 11197 | 0, "long_long_integer", (struct objfile *) NULL); |
72d5681a | 11198 | lai->primitive_type_vector [ada_primitive_type_long_double] = |
ea06eb3d | 11199 | init_type (TYPE_CODE_FLT, |
d4a9a881 | 11200 | gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT, |
6c038f32 | 11201 | 0, "long_long_float", (struct objfile *) NULL); |
72d5681a | 11202 | lai->primitive_type_vector [ada_primitive_type_natural] = |
9a76efb6 | 11203 | init_type (TYPE_CODE_INT, |
d4a9a881 | 11204 | gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 11205 | 0, "natural", (struct objfile *) NULL); |
72d5681a | 11206 | lai->primitive_type_vector [ada_primitive_type_positive] = |
9a76efb6 | 11207 | init_type (TYPE_CODE_INT, |
d4a9a881 | 11208 | gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 11209 | 0, "positive", (struct objfile *) NULL); |
72d5681a | 11210 | lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void; |
6c038f32 | 11211 | |
72d5681a | 11212 | lai->primitive_type_vector [ada_primitive_type_system_address] = |
6c038f32 PH |
11213 | lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void", |
11214 | (struct objfile *) NULL)); | |
72d5681a PH |
11215 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
11216 | = "system__address"; | |
fbb06eb1 | 11217 | |
47e729a8 | 11218 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 11219 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 11220 | } |
6c038f32 PH |
11221 | \f |
11222 | /* Language vector */ | |
11223 | ||
11224 | /* Not really used, but needed in the ada_language_defn. */ | |
11225 | ||
11226 | static void | |
6c7a06a3 | 11227 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 11228 | { |
6c7a06a3 | 11229 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
11230 | } |
11231 | ||
11232 | static int | |
11233 | parse (void) | |
11234 | { | |
11235 | warnings_issued = 0; | |
11236 | return ada_parse (); | |
11237 | } | |
11238 | ||
11239 | static const struct exp_descriptor ada_exp_descriptor = { | |
11240 | ada_print_subexp, | |
11241 | ada_operator_length, | |
11242 | ada_op_name, | |
11243 | ada_dump_subexp_body, | |
11244 | ada_evaluate_subexp | |
11245 | }; | |
11246 | ||
11247 | const struct language_defn ada_language_defn = { | |
11248 | "ada", /* Language name */ | |
11249 | language_ada, | |
6c038f32 PH |
11250 | range_check_off, |
11251 | type_check_off, | |
11252 | case_sensitive_on, /* Yes, Ada is case-insensitive, but | |
11253 | that's not quite what this means. */ | |
6c038f32 | 11254 | array_row_major, |
9a044a89 | 11255 | macro_expansion_no, |
6c038f32 PH |
11256 | &ada_exp_descriptor, |
11257 | parse, | |
11258 | ada_error, | |
11259 | resolve, | |
11260 | ada_printchar, /* Print a character constant */ | |
11261 | ada_printstr, /* Function to print string constant */ | |
11262 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 11263 | ada_print_type, /* Print a type using appropriate syntax */ |
5c6ce71d | 11264 | default_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
11265 | ada_val_print, /* Print a value using appropriate syntax */ |
11266 | ada_value_print, /* Print a top-level value */ | |
11267 | NULL, /* Language specific skip_trampoline */ | |
2b2d9e11 | 11268 | NULL, /* name_of_this */ |
6c038f32 PH |
11269 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
11270 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
11271 | ada_la_decode, /* Language specific symbol demangler */ | |
11272 | NULL, /* Language specific class_name_from_physname */ | |
11273 | ada_op_print_tab, /* expression operators for printing */ | |
11274 | 0, /* c-style arrays */ | |
11275 | 1, /* String lower bound */ | |
6c038f32 | 11276 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 11277 | ada_make_symbol_completion_list, |
72d5681a | 11278 | ada_language_arch_info, |
e79af960 | 11279 | ada_print_array_index, |
41f1b697 | 11280 | default_pass_by_reference, |
ae6a3a4c | 11281 | c_get_string, |
6c038f32 PH |
11282 | LANG_MAGIC |
11283 | }; | |
11284 | ||
2c0b251b PA |
11285 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
11286 | extern initialize_file_ftype _initialize_ada_language; | |
11287 | ||
d2e4a39e | 11288 | void |
6c038f32 | 11289 | _initialize_ada_language (void) |
14f9c5c9 | 11290 | { |
6c038f32 PH |
11291 | add_language (&ada_language_defn); |
11292 | ||
11293 | varsize_limit = 65536; | |
6c038f32 PH |
11294 | |
11295 | obstack_init (&symbol_list_obstack); | |
11296 | ||
11297 | decoded_names_store = htab_create_alloc | |
11298 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
11299 | NULL, xcalloc, xfree); | |
6b69afc4 JB |
11300 | |
11301 | observer_attach_executable_changed (ada_executable_changed_observer); | |
14f9c5c9 | 11302 | } |