]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
* i386-tdep.h (struct gdbarch_tdep): Add i386_eflags_type and
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
14f9c5c9 59
4c4b4cd2
PH
60/* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64#ifndef TRUNCATION_TOWARDS_ZERO
65#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66#endif
67
4c4b4cd2 68static void extract_string (CORE_ADDR addr, char *buf);
14f9c5c9 69
14f9c5c9
AS
70static void modify_general_field (char *, LONGEST, int, int);
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
4a399546
UW
104static struct value *ensure_lval (struct value *,
105 struct gdbarch *, CORE_ADDR *);
14f9c5c9 106
d2e4a39e 107static struct value *make_array_descriptor (struct type *, struct value *,
4a399546 108 struct gdbarch *, CORE_ADDR *);
14f9c5c9 109
4c4b4cd2 110static void ada_add_block_symbols (struct obstack *,
76a01679 111 struct block *, const char *,
2570f2b7 112 domain_enum, struct objfile *, int);
14f9c5c9 113
4c4b4cd2 114static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 115
76a01679 116static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 117 struct block *);
14f9c5c9 118
4c4b4cd2
PH
119static int num_defns_collected (struct obstack *);
120
121static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 122
d2e4a39e 123static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
76a01679
JB
124 *, const char *, int,
125 domain_enum, int);
14f9c5c9 126
4c4b4cd2 127static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
d2e4a39e 130static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 131 struct symbol *, struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
4c4b4cd2
PH
135static char *ada_op_name (enum exp_opcode);
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
153 struct block *);
154
4c4b4cd2 155static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 156 int, int, int *);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
d2e4a39e 168static struct type *to_fixed_range_type (char *, struct value *,
1ce677a4 169 struct type *);
14f9c5c9 170
d2e4a39e 171static struct type *to_static_fixed_type (struct type *);
f192137b 172static struct type *static_unwrap_type (struct type *type);
14f9c5c9 173
d2e4a39e 174static struct value *unwrap_value (struct value *);
14f9c5c9 175
d2e4a39e 176static struct type *packed_array_type (struct type *, long *);
14f9c5c9 177
d2e4a39e 178static struct type *decode_packed_array_type (struct type *);
14f9c5c9 179
d2e4a39e 180static struct value *decode_packed_array (struct value *);
14f9c5c9 181
d2e4a39e 182static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 183 struct value **);
14f9c5c9 184
52ce6436
PH
185static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
186
4c4b4cd2
PH
187static struct value *coerce_unspec_val_to_type (struct value *,
188 struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *get_var_value (char *, char *);
14f9c5c9 191
d2e4a39e 192static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 193
d2e4a39e 194static int equiv_types (struct type *, struct type *);
14f9c5c9 195
d2e4a39e 196static int is_name_suffix (const char *);
14f9c5c9 197
d2e4a39e 198static int wild_match (const char *, int, const char *);
14f9c5c9 199
d2e4a39e 200static struct value *ada_coerce_ref (struct value *);
14f9c5c9 201
4c4b4cd2
PH
202static LONGEST pos_atr (struct value *);
203
3cb382c9 204static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 205
d2e4a39e 206static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 207
4c4b4cd2
PH
208static struct symbol *standard_lookup (const char *, const struct block *,
209 domain_enum);
14f9c5c9 210
4c4b4cd2
PH
211static struct value *ada_search_struct_field (char *, struct value *, int,
212 struct type *);
213
214static struct value *ada_value_primitive_field (struct value *, int, int,
215 struct type *);
216
76a01679 217static int find_struct_field (char *, struct type *, int,
52ce6436 218 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
219
220static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
221 struct value *);
222
223static struct value *ada_to_fixed_value (struct value *);
14f9c5c9 224
4c4b4cd2
PH
225static int ada_resolve_function (struct ada_symbol_info *, int,
226 struct value **, int, const char *,
227 struct type *);
228
229static struct value *ada_coerce_to_simple_array (struct value *);
230
231static int ada_is_direct_array_type (struct type *);
232
72d5681a
PH
233static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
714e53ab
PH
235
236static void check_size (const struct type *);
52ce6436
PH
237
238static struct value *ada_index_struct_field (int, struct value *, int,
239 struct type *);
240
241static struct value *assign_aggregate (struct value *, struct value *,
242 struct expression *, int *, enum noside);
243
244static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
4c4b4cd2
PH
268\f
269
76a01679 270
4c4b4cd2 271/* Maximum-sized dynamic type. */
14f9c5c9
AS
272static unsigned int varsize_limit;
273
4c4b4cd2
PH
274/* FIXME: brobecker/2003-09-17: No longer a const because it is
275 returned by a function that does not return a const char *. */
276static char *ada_completer_word_break_characters =
277#ifdef VMS
278 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
279#else
14f9c5c9 280 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 281#endif
14f9c5c9 282
4c4b4cd2 283/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 284static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 285 = "__gnat_ada_main_program_name";
14f9c5c9 286
4c4b4cd2
PH
287/* Limit on the number of warnings to raise per expression evaluation. */
288static int warning_limit = 2;
289
290/* Number of warning messages issued; reset to 0 by cleanups after
291 expression evaluation. */
292static int warnings_issued = 0;
293
294static const char *known_runtime_file_name_patterns[] = {
295 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
296};
297
298static const char *known_auxiliary_function_name_patterns[] = {
299 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
300};
301
302/* Space for allocating results of ada_lookup_symbol_list. */
303static struct obstack symbol_list_obstack;
304
305 /* Utilities */
306
41d27058
JB
307/* Given DECODED_NAME a string holding a symbol name in its
308 decoded form (ie using the Ada dotted notation), returns
309 its unqualified name. */
310
311static const char *
312ada_unqualified_name (const char *decoded_name)
313{
314 const char *result = strrchr (decoded_name, '.');
315
316 if (result != NULL)
317 result++; /* Skip the dot... */
318 else
319 result = decoded_name;
320
321 return result;
322}
323
324/* Return a string starting with '<', followed by STR, and '>'.
325 The result is good until the next call. */
326
327static char *
328add_angle_brackets (const char *str)
329{
330 static char *result = NULL;
331
332 xfree (result);
88c15c34 333 result = xstrprintf ("<%s>", str);
41d27058
JB
334 return result;
335}
96d887e8 336
4c4b4cd2
PH
337static char *
338ada_get_gdb_completer_word_break_characters (void)
339{
340 return ada_completer_word_break_characters;
341}
342
e79af960
JB
343/* Print an array element index using the Ada syntax. */
344
345static void
346ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 347 const struct value_print_options *options)
e79af960 348{
79a45b7d 349 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
350 fprintf_filtered (stream, " => ");
351}
352
4c4b4cd2
PH
353/* Read the string located at ADDR from the inferior and store the
354 result into BUF. */
355
356static void
14f9c5c9
AS
357extract_string (CORE_ADDR addr, char *buf)
358{
d2e4a39e 359 int char_index = 0;
14f9c5c9 360
4c4b4cd2
PH
361 /* Loop, reading one byte at a time, until we reach the '\000'
362 end-of-string marker. */
d2e4a39e
AS
363 do
364 {
365 target_read_memory (addr + char_index * sizeof (char),
4c4b4cd2 366 buf + char_index * sizeof (char), sizeof (char));
d2e4a39e
AS
367 char_index++;
368 }
369 while (buf[char_index - 1] != '\000');
14f9c5c9
AS
370}
371
f27cf670 372/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 373 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 374 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 375
f27cf670
AS
376void *
377grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 378{
d2e4a39e
AS
379 if (*size < min_size)
380 {
381 *size *= 2;
382 if (*size < min_size)
4c4b4cd2 383 *size = min_size;
f27cf670 384 vect = xrealloc (vect, *size * element_size);
d2e4a39e 385 }
f27cf670 386 return vect;
14f9c5c9
AS
387}
388
389/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 390 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
391
392static int
ebf56fd3 393field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
394{
395 int len = strlen (target);
d2e4a39e 396 return
4c4b4cd2
PH
397 (strncmp (field_name, target, len) == 0
398 && (field_name[len] == '\0'
399 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
400 && strcmp (field_name + strlen (field_name) - 6,
401 "___XVN") != 0)));
14f9c5c9
AS
402}
403
404
872c8b51
JB
405/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
406 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
407 and return its index. This function also handles fields whose name
408 have ___ suffixes because the compiler sometimes alters their name
409 by adding such a suffix to represent fields with certain constraints.
410 If the field could not be found, return a negative number if
411 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
412
413int
414ada_get_field_index (const struct type *type, const char *field_name,
415 int maybe_missing)
416{
417 int fieldno;
872c8b51
JB
418 struct type *struct_type = check_typedef ((struct type *) type);
419
420 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
421 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
422 return fieldno;
423
424 if (!maybe_missing)
323e0a4a 425 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 426 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
427
428 return -1;
429}
430
431/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
432
433int
d2e4a39e 434ada_name_prefix_len (const char *name)
14f9c5c9
AS
435{
436 if (name == NULL)
437 return 0;
d2e4a39e 438 else
14f9c5c9 439 {
d2e4a39e 440 const char *p = strstr (name, "___");
14f9c5c9 441 if (p == NULL)
4c4b4cd2 442 return strlen (name);
14f9c5c9 443 else
4c4b4cd2 444 return p - name;
14f9c5c9
AS
445 }
446}
447
4c4b4cd2
PH
448/* Return non-zero if SUFFIX is a suffix of STR.
449 Return zero if STR is null. */
450
14f9c5c9 451static int
d2e4a39e 452is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
453{
454 int len1, len2;
455 if (str == NULL)
456 return 0;
457 len1 = strlen (str);
458 len2 = strlen (suffix);
4c4b4cd2 459 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
460}
461
4c4b4cd2
PH
462/* The contents of value VAL, treated as a value of type TYPE. The
463 result is an lval in memory if VAL is. */
14f9c5c9 464
d2e4a39e 465static struct value *
4c4b4cd2 466coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 467{
61ee279c 468 type = ada_check_typedef (type);
df407dfe 469 if (value_type (val) == type)
4c4b4cd2 470 return val;
d2e4a39e 471 else
14f9c5c9 472 {
4c4b4cd2
PH
473 struct value *result;
474
475 /* Make sure that the object size is not unreasonable before
476 trying to allocate some memory for it. */
714e53ab 477 check_size (type);
4c4b4cd2
PH
478
479 result = allocate_value (type);
74bcbdf3 480 set_value_component_location (result, val);
9bbda503
AC
481 set_value_bitsize (result, value_bitsize (val));
482 set_value_bitpos (result, value_bitpos (val));
42ae5230 483 set_value_address (result, value_address (val));
d69fe07e 484 if (value_lazy (val)
df407dfe 485 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 486 set_value_lazy (result, 1);
d2e4a39e 487 else
0fd88904 488 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 489 TYPE_LENGTH (type));
14f9c5c9
AS
490 return result;
491 }
492}
493
fc1a4b47
AC
494static const gdb_byte *
495cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
496{
497 if (valaddr == NULL)
498 return NULL;
499 else
500 return valaddr + offset;
501}
502
503static CORE_ADDR
ebf56fd3 504cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
505{
506 if (address == 0)
507 return 0;
d2e4a39e 508 else
14f9c5c9
AS
509 return address + offset;
510}
511
4c4b4cd2
PH
512/* Issue a warning (as for the definition of warning in utils.c, but
513 with exactly one argument rather than ...), unless the limit on the
514 number of warnings has passed during the evaluation of the current
515 expression. */
a2249542 516
77109804
AC
517/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
518 provided by "complaint". */
519static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
520
14f9c5c9 521static void
a2249542 522lim_warning (const char *format, ...)
14f9c5c9 523{
a2249542
MK
524 va_list args;
525 va_start (args, format);
526
4c4b4cd2
PH
527 warnings_issued += 1;
528 if (warnings_issued <= warning_limit)
a2249542
MK
529 vwarning (format, args);
530
531 va_end (args);
4c4b4cd2
PH
532}
533
714e53ab
PH
534/* Issue an error if the size of an object of type T is unreasonable,
535 i.e. if it would be a bad idea to allocate a value of this type in
536 GDB. */
537
538static void
539check_size (const struct type *type)
540{
541 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 542 error (_("object size is larger than varsize-limit"));
714e53ab
PH
543}
544
545
c3e5cd34
PH
546/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
547 gdbtypes.h, but some of the necessary definitions in that file
548 seem to have gone missing. */
549
550/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 551static LONGEST
c3e5cd34 552max_of_size (int size)
4c4b4cd2 553{
76a01679
JB
554 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
555 return top_bit | (top_bit - 1);
4c4b4cd2
PH
556}
557
c3e5cd34 558/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 559static LONGEST
c3e5cd34 560min_of_size (int size)
4c4b4cd2 561{
c3e5cd34 562 return -max_of_size (size) - 1;
4c4b4cd2
PH
563}
564
c3e5cd34 565/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 566static ULONGEST
c3e5cd34 567umax_of_size (int size)
4c4b4cd2 568{
76a01679
JB
569 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
570 return top_bit | (top_bit - 1);
4c4b4cd2
PH
571}
572
c3e5cd34
PH
573/* Maximum value of integral type T, as a signed quantity. */
574static LONGEST
575max_of_type (struct type *t)
4c4b4cd2 576{
c3e5cd34
PH
577 if (TYPE_UNSIGNED (t))
578 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
579 else
580 return max_of_size (TYPE_LENGTH (t));
581}
582
583/* Minimum value of integral type T, as a signed quantity. */
584static LONGEST
585min_of_type (struct type *t)
586{
587 if (TYPE_UNSIGNED (t))
588 return 0;
589 else
590 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
591}
592
593/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 594static LONGEST
4c4b4cd2
PH
595discrete_type_high_bound (struct type *type)
596{
76a01679 597 switch (TYPE_CODE (type))
4c4b4cd2
PH
598 {
599 case TYPE_CODE_RANGE:
690cc4eb 600 return TYPE_HIGH_BOUND (type);
4c4b4cd2 601 case TYPE_CODE_ENUM:
690cc4eb
PH
602 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
603 case TYPE_CODE_BOOL:
604 return 1;
605 case TYPE_CODE_CHAR:
76a01679 606 case TYPE_CODE_INT:
690cc4eb 607 return max_of_type (type);
4c4b4cd2 608 default:
323e0a4a 609 error (_("Unexpected type in discrete_type_high_bound."));
4c4b4cd2
PH
610 }
611}
612
613/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 614static LONGEST
4c4b4cd2
PH
615discrete_type_low_bound (struct type *type)
616{
76a01679 617 switch (TYPE_CODE (type))
4c4b4cd2
PH
618 {
619 case TYPE_CODE_RANGE:
690cc4eb 620 return TYPE_LOW_BOUND (type);
4c4b4cd2 621 case TYPE_CODE_ENUM:
690cc4eb
PH
622 return TYPE_FIELD_BITPOS (type, 0);
623 case TYPE_CODE_BOOL:
624 return 0;
625 case TYPE_CODE_CHAR:
76a01679 626 case TYPE_CODE_INT:
690cc4eb 627 return min_of_type (type);
4c4b4cd2 628 default:
323e0a4a 629 error (_("Unexpected type in discrete_type_low_bound."));
4c4b4cd2
PH
630 }
631}
632
633/* The identity on non-range types. For range types, the underlying
76a01679 634 non-range scalar type. */
4c4b4cd2
PH
635
636static struct type *
637base_type (struct type *type)
638{
639 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
640 {
76a01679
JB
641 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
642 return type;
4c4b4cd2
PH
643 type = TYPE_TARGET_TYPE (type);
644 }
645 return type;
14f9c5c9 646}
4c4b4cd2 647\f
76a01679 648
4c4b4cd2 649 /* Language Selection */
14f9c5c9
AS
650
651/* If the main program is in Ada, return language_ada, otherwise return LANG
652 (the main program is in Ada iif the adainit symbol is found).
653
4c4b4cd2 654 MAIN_PST is not used. */
d2e4a39e 655
14f9c5c9 656enum language
d2e4a39e 657ada_update_initial_language (enum language lang,
4c4b4cd2 658 struct partial_symtab *main_pst)
14f9c5c9 659{
d2e4a39e 660 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
661 (struct objfile *) NULL) != NULL)
662 return language_ada;
14f9c5c9
AS
663
664 return lang;
665}
96d887e8
PH
666
667/* If the main procedure is written in Ada, then return its name.
668 The result is good until the next call. Return NULL if the main
669 procedure doesn't appear to be in Ada. */
670
671char *
672ada_main_name (void)
673{
674 struct minimal_symbol *msym;
f9bc20b9 675 static char *main_program_name = NULL;
6c038f32 676
96d887e8
PH
677 /* For Ada, the name of the main procedure is stored in a specific
678 string constant, generated by the binder. Look for that symbol,
679 extract its address, and then read that string. If we didn't find
680 that string, then most probably the main procedure is not written
681 in Ada. */
682 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
683
684 if (msym != NULL)
685 {
f9bc20b9
JB
686 CORE_ADDR main_program_name_addr;
687 int err_code;
688
96d887e8
PH
689 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
690 if (main_program_name_addr == 0)
323e0a4a 691 error (_("Invalid address for Ada main program name."));
96d887e8 692
f9bc20b9
JB
693 xfree (main_program_name);
694 target_read_string (main_program_name_addr, &main_program_name,
695 1024, &err_code);
696
697 if (err_code != 0)
698 return NULL;
96d887e8
PH
699 return main_program_name;
700 }
701
702 /* The main procedure doesn't seem to be in Ada. */
703 return NULL;
704}
14f9c5c9 705\f
4c4b4cd2 706 /* Symbols */
d2e4a39e 707
4c4b4cd2
PH
708/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
709 of NULLs. */
14f9c5c9 710
d2e4a39e
AS
711const struct ada_opname_map ada_opname_table[] = {
712 {"Oadd", "\"+\"", BINOP_ADD},
713 {"Osubtract", "\"-\"", BINOP_SUB},
714 {"Omultiply", "\"*\"", BINOP_MUL},
715 {"Odivide", "\"/\"", BINOP_DIV},
716 {"Omod", "\"mod\"", BINOP_MOD},
717 {"Orem", "\"rem\"", BINOP_REM},
718 {"Oexpon", "\"**\"", BINOP_EXP},
719 {"Olt", "\"<\"", BINOP_LESS},
720 {"Ole", "\"<=\"", BINOP_LEQ},
721 {"Ogt", "\">\"", BINOP_GTR},
722 {"Oge", "\">=\"", BINOP_GEQ},
723 {"Oeq", "\"=\"", BINOP_EQUAL},
724 {"One", "\"/=\"", BINOP_NOTEQUAL},
725 {"Oand", "\"and\"", BINOP_BITWISE_AND},
726 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
727 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
728 {"Oconcat", "\"&\"", BINOP_CONCAT},
729 {"Oabs", "\"abs\"", UNOP_ABS},
730 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
731 {"Oadd", "\"+\"", UNOP_PLUS},
732 {"Osubtract", "\"-\"", UNOP_NEG},
733 {NULL, NULL}
14f9c5c9
AS
734};
735
4c4b4cd2
PH
736/* The "encoded" form of DECODED, according to GNAT conventions.
737 The result is valid until the next call to ada_encode. */
738
14f9c5c9 739char *
4c4b4cd2 740ada_encode (const char *decoded)
14f9c5c9 741{
4c4b4cd2
PH
742 static char *encoding_buffer = NULL;
743 static size_t encoding_buffer_size = 0;
d2e4a39e 744 const char *p;
14f9c5c9 745 int k;
d2e4a39e 746
4c4b4cd2 747 if (decoded == NULL)
14f9c5c9
AS
748 return NULL;
749
4c4b4cd2
PH
750 GROW_VECT (encoding_buffer, encoding_buffer_size,
751 2 * strlen (decoded) + 10);
14f9c5c9
AS
752
753 k = 0;
4c4b4cd2 754 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 755 {
cdc7bb92 756 if (*p == '.')
4c4b4cd2
PH
757 {
758 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
759 k += 2;
760 }
14f9c5c9 761 else if (*p == '"')
4c4b4cd2
PH
762 {
763 const struct ada_opname_map *mapping;
764
765 for (mapping = ada_opname_table;
1265e4aa
JB
766 mapping->encoded != NULL
767 && strncmp (mapping->decoded, p,
768 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
769 ;
770 if (mapping->encoded == NULL)
323e0a4a 771 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
772 strcpy (encoding_buffer + k, mapping->encoded);
773 k += strlen (mapping->encoded);
774 break;
775 }
d2e4a39e 776 else
4c4b4cd2
PH
777 {
778 encoding_buffer[k] = *p;
779 k += 1;
780 }
14f9c5c9
AS
781 }
782
4c4b4cd2
PH
783 encoding_buffer[k] = '\0';
784 return encoding_buffer;
14f9c5c9
AS
785}
786
787/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
788 quotes, unfolded, but with the quotes stripped away. Result good
789 to next call. */
790
d2e4a39e
AS
791char *
792ada_fold_name (const char *name)
14f9c5c9 793{
d2e4a39e 794 static char *fold_buffer = NULL;
14f9c5c9
AS
795 static size_t fold_buffer_size = 0;
796
797 int len = strlen (name);
d2e4a39e 798 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
799
800 if (name[0] == '\'')
801 {
d2e4a39e
AS
802 strncpy (fold_buffer, name + 1, len - 2);
803 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
804 }
805 else
806 {
807 int i;
808 for (i = 0; i <= len; i += 1)
4c4b4cd2 809 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
810 }
811
812 return fold_buffer;
813}
814
529cad9c
PH
815/* Return nonzero if C is either a digit or a lowercase alphabet character. */
816
817static int
818is_lower_alphanum (const char c)
819{
820 return (isdigit (c) || (isalpha (c) && islower (c)));
821}
822
29480c32
JB
823/* Remove either of these suffixes:
824 . .{DIGIT}+
825 . ${DIGIT}+
826 . ___{DIGIT}+
827 . __{DIGIT}+.
828 These are suffixes introduced by the compiler for entities such as
829 nested subprogram for instance, in order to avoid name clashes.
830 They do not serve any purpose for the debugger. */
831
832static void
833ada_remove_trailing_digits (const char *encoded, int *len)
834{
835 if (*len > 1 && isdigit (encoded[*len - 1]))
836 {
837 int i = *len - 2;
838 while (i > 0 && isdigit (encoded[i]))
839 i--;
840 if (i >= 0 && encoded[i] == '.')
841 *len = i;
842 else if (i >= 0 && encoded[i] == '$')
843 *len = i;
844 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
845 *len = i - 2;
846 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
847 *len = i - 1;
848 }
849}
850
851/* Remove the suffix introduced by the compiler for protected object
852 subprograms. */
853
854static void
855ada_remove_po_subprogram_suffix (const char *encoded, int *len)
856{
857 /* Remove trailing N. */
858
859 /* Protected entry subprograms are broken into two
860 separate subprograms: The first one is unprotected, and has
861 a 'N' suffix; the second is the protected version, and has
862 the 'P' suffix. The second calls the first one after handling
863 the protection. Since the P subprograms are internally generated,
864 we leave these names undecoded, giving the user a clue that this
865 entity is internal. */
866
867 if (*len > 1
868 && encoded[*len - 1] == 'N'
869 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
870 *len = *len - 1;
871}
872
873/* If ENCODED follows the GNAT entity encoding conventions, then return
874 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
875 replaced by ENCODED.
14f9c5c9 876
4c4b4cd2 877 The resulting string is valid until the next call of ada_decode.
29480c32 878 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
879 is returned. */
880
881const char *
882ada_decode (const char *encoded)
14f9c5c9
AS
883{
884 int i, j;
885 int len0;
d2e4a39e 886 const char *p;
4c4b4cd2 887 char *decoded;
14f9c5c9 888 int at_start_name;
4c4b4cd2
PH
889 static char *decoding_buffer = NULL;
890 static size_t decoding_buffer_size = 0;
d2e4a39e 891
29480c32
JB
892 /* The name of the Ada main procedure starts with "_ada_".
893 This prefix is not part of the decoded name, so skip this part
894 if we see this prefix. */
4c4b4cd2
PH
895 if (strncmp (encoded, "_ada_", 5) == 0)
896 encoded += 5;
14f9c5c9 897
29480c32
JB
898 /* If the name starts with '_', then it is not a properly encoded
899 name, so do not attempt to decode it. Similarly, if the name
900 starts with '<', the name should not be decoded. */
4c4b4cd2 901 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
902 goto Suppress;
903
4c4b4cd2 904 len0 = strlen (encoded);
4c4b4cd2 905
29480c32
JB
906 ada_remove_trailing_digits (encoded, &len0);
907 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 908
4c4b4cd2
PH
909 /* Remove the ___X.* suffix if present. Do not forget to verify that
910 the suffix is located before the current "end" of ENCODED. We want
911 to avoid re-matching parts of ENCODED that have previously been
912 marked as discarded (by decrementing LEN0). */
913 p = strstr (encoded, "___");
914 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
915 {
916 if (p[3] == 'X')
4c4b4cd2 917 len0 = p - encoded;
14f9c5c9 918 else
4c4b4cd2 919 goto Suppress;
14f9c5c9 920 }
4c4b4cd2 921
29480c32
JB
922 /* Remove any trailing TKB suffix. It tells us that this symbol
923 is for the body of a task, but that information does not actually
924 appear in the decoded name. */
925
4c4b4cd2 926 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 927 len0 -= 3;
76a01679 928
29480c32
JB
929 /* Remove trailing "B" suffixes. */
930 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
931
4c4b4cd2 932 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
933 len0 -= 1;
934
4c4b4cd2 935 /* Make decoded big enough for possible expansion by operator name. */
29480c32 936
4c4b4cd2
PH
937 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
938 decoded = decoding_buffer;
14f9c5c9 939
29480c32
JB
940 /* Remove trailing __{digit}+ or trailing ${digit}+. */
941
4c4b4cd2 942 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 943 {
4c4b4cd2
PH
944 i = len0 - 2;
945 while ((i >= 0 && isdigit (encoded[i]))
946 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
947 i -= 1;
948 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
949 len0 = i - 1;
950 else if (encoded[i] == '$')
951 len0 = i;
d2e4a39e 952 }
14f9c5c9 953
29480c32
JB
954 /* The first few characters that are not alphabetic are not part
955 of any encoding we use, so we can copy them over verbatim. */
956
4c4b4cd2
PH
957 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
958 decoded[j] = encoded[i];
14f9c5c9
AS
959
960 at_start_name = 1;
961 while (i < len0)
962 {
29480c32 963 /* Is this a symbol function? */
4c4b4cd2
PH
964 if (at_start_name && encoded[i] == 'O')
965 {
966 int k;
967 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
968 {
969 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
970 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
971 op_len - 1) == 0)
972 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
973 {
974 strcpy (decoded + j, ada_opname_table[k].decoded);
975 at_start_name = 0;
976 i += op_len;
977 j += strlen (ada_opname_table[k].decoded);
978 break;
979 }
980 }
981 if (ada_opname_table[k].encoded != NULL)
982 continue;
983 }
14f9c5c9
AS
984 at_start_name = 0;
985
529cad9c
PH
986 /* Replace "TK__" with "__", which will eventually be translated
987 into "." (just below). */
988
4c4b4cd2
PH
989 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
990 i += 2;
529cad9c 991
29480c32
JB
992 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
993 be translated into "." (just below). These are internal names
994 generated for anonymous blocks inside which our symbol is nested. */
995
996 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
997 && encoded [i+2] == 'B' && encoded [i+3] == '_'
998 && isdigit (encoded [i+4]))
999 {
1000 int k = i + 5;
1001
1002 while (k < len0 && isdigit (encoded[k]))
1003 k++; /* Skip any extra digit. */
1004
1005 /* Double-check that the "__B_{DIGITS}+" sequence we found
1006 is indeed followed by "__". */
1007 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1008 i = k;
1009 }
1010
529cad9c
PH
1011 /* Remove _E{DIGITS}+[sb] */
1012
1013 /* Just as for protected object subprograms, there are 2 categories
1014 of subprograms created by the compiler for each entry. The first
1015 one implements the actual entry code, and has a suffix following
1016 the convention above; the second one implements the barrier and
1017 uses the same convention as above, except that the 'E' is replaced
1018 by a 'B'.
1019
1020 Just as above, we do not decode the name of barrier functions
1021 to give the user a clue that the code he is debugging has been
1022 internally generated. */
1023
1024 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1025 && isdigit (encoded[i+2]))
1026 {
1027 int k = i + 3;
1028
1029 while (k < len0 && isdigit (encoded[k]))
1030 k++;
1031
1032 if (k < len0
1033 && (encoded[k] == 'b' || encoded[k] == 's'))
1034 {
1035 k++;
1036 /* Just as an extra precaution, make sure that if this
1037 suffix is followed by anything else, it is a '_'.
1038 Otherwise, we matched this sequence by accident. */
1039 if (k == len0
1040 || (k < len0 && encoded[k] == '_'))
1041 i = k;
1042 }
1043 }
1044
1045 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1046 the GNAT front-end in protected object subprograms. */
1047
1048 if (i < len0 + 3
1049 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1050 {
1051 /* Backtrack a bit up until we reach either the begining of
1052 the encoded name, or "__". Make sure that we only find
1053 digits or lowercase characters. */
1054 const char *ptr = encoded + i - 1;
1055
1056 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1057 ptr--;
1058 if (ptr < encoded
1059 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1060 i++;
1061 }
1062
4c4b4cd2
PH
1063 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1064 {
29480c32
JB
1065 /* This is a X[bn]* sequence not separated from the previous
1066 part of the name with a non-alpha-numeric character (in other
1067 words, immediately following an alpha-numeric character), then
1068 verify that it is placed at the end of the encoded name. If
1069 not, then the encoding is not valid and we should abort the
1070 decoding. Otherwise, just skip it, it is used in body-nested
1071 package names. */
4c4b4cd2
PH
1072 do
1073 i += 1;
1074 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1075 if (i < len0)
1076 goto Suppress;
1077 }
cdc7bb92 1078 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1079 {
29480c32 1080 /* Replace '__' by '.'. */
4c4b4cd2
PH
1081 decoded[j] = '.';
1082 at_start_name = 1;
1083 i += 2;
1084 j += 1;
1085 }
14f9c5c9 1086 else
4c4b4cd2 1087 {
29480c32
JB
1088 /* It's a character part of the decoded name, so just copy it
1089 over. */
4c4b4cd2
PH
1090 decoded[j] = encoded[i];
1091 i += 1;
1092 j += 1;
1093 }
14f9c5c9 1094 }
4c4b4cd2 1095 decoded[j] = '\000';
14f9c5c9 1096
29480c32
JB
1097 /* Decoded names should never contain any uppercase character.
1098 Double-check this, and abort the decoding if we find one. */
1099
4c4b4cd2
PH
1100 for (i = 0; decoded[i] != '\0'; i += 1)
1101 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1102 goto Suppress;
1103
4c4b4cd2
PH
1104 if (strcmp (decoded, encoded) == 0)
1105 return encoded;
1106 else
1107 return decoded;
14f9c5c9
AS
1108
1109Suppress:
4c4b4cd2
PH
1110 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1111 decoded = decoding_buffer;
1112 if (encoded[0] == '<')
1113 strcpy (decoded, encoded);
14f9c5c9 1114 else
88c15c34 1115 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1116 return decoded;
1117
1118}
1119
1120/* Table for keeping permanent unique copies of decoded names. Once
1121 allocated, names in this table are never released. While this is a
1122 storage leak, it should not be significant unless there are massive
1123 changes in the set of decoded names in successive versions of a
1124 symbol table loaded during a single session. */
1125static struct htab *decoded_names_store;
1126
1127/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1128 in the language-specific part of GSYMBOL, if it has not been
1129 previously computed. Tries to save the decoded name in the same
1130 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1131 in any case, the decoded symbol has a lifetime at least that of
1132 GSYMBOL).
1133 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1134 const, but nevertheless modified to a semantically equivalent form
1135 when a decoded name is cached in it.
76a01679 1136*/
4c4b4cd2 1137
76a01679
JB
1138char *
1139ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1140{
76a01679 1141 char **resultp =
4c4b4cd2
PH
1142 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1143 if (*resultp == NULL)
1144 {
1145 const char *decoded = ada_decode (gsymbol->name);
714835d5 1146 if (gsymbol->obj_section != NULL)
76a01679 1147 {
714835d5
UW
1148 struct objfile *objf = gsymbol->obj_section->objfile;
1149 *resultp = obsavestring (decoded, strlen (decoded),
1150 &objf->objfile_obstack);
76a01679 1151 }
4c4b4cd2 1152 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1153 case, we put the result on the heap. Since we only decode
1154 when needed, we hope this usually does not cause a
1155 significant memory leak (FIXME). */
4c4b4cd2 1156 if (*resultp == NULL)
76a01679
JB
1157 {
1158 char **slot = (char **) htab_find_slot (decoded_names_store,
1159 decoded, INSERT);
1160 if (*slot == NULL)
1161 *slot = xstrdup (decoded);
1162 *resultp = *slot;
1163 }
4c4b4cd2 1164 }
14f9c5c9 1165
4c4b4cd2
PH
1166 return *resultp;
1167}
76a01679 1168
2c0b251b 1169static char *
76a01679 1170ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1171{
1172 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1173}
1174
1175/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1176 suffixes that encode debugging information or leading _ada_ on
1177 SYM_NAME (see is_name_suffix commentary for the debugging
1178 information that is ignored). If WILD, then NAME need only match a
1179 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1180 either argument is NULL. */
14f9c5c9 1181
2c0b251b 1182static int
d2e4a39e 1183ada_match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1184{
1185 if (sym_name == NULL || name == NULL)
1186 return 0;
1187 else if (wild)
1188 return wild_match (name, strlen (name), sym_name);
d2e4a39e
AS
1189 else
1190 {
1191 int len_name = strlen (name);
4c4b4cd2
PH
1192 return (strncmp (sym_name, name, len_name) == 0
1193 && is_name_suffix (sym_name + len_name))
1194 || (strncmp (sym_name, "_ada_", 5) == 0
1195 && strncmp (sym_name + 5, name, len_name) == 0
1196 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1197 }
14f9c5c9 1198}
14f9c5c9 1199\f
d2e4a39e 1200
4c4b4cd2 1201 /* Arrays */
14f9c5c9 1202
4c4b4cd2 1203/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1204
d2e4a39e
AS
1205static char *bound_name[] = {
1206 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1207 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1208};
1209
1210/* Maximum number of array dimensions we are prepared to handle. */
1211
4c4b4cd2 1212#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1213
4c4b4cd2 1214/* Like modify_field, but allows bitpos > wordlength. */
14f9c5c9
AS
1215
1216static void
ebf56fd3 1217modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
14f9c5c9 1218{
4c4b4cd2 1219 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
14f9c5c9
AS
1220}
1221
1222
4c4b4cd2
PH
1223/* The desc_* routines return primitive portions of array descriptors
1224 (fat pointers). */
14f9c5c9
AS
1225
1226/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1227 level of indirection, if needed. */
1228
d2e4a39e
AS
1229static struct type *
1230desc_base_type (struct type *type)
14f9c5c9
AS
1231{
1232 if (type == NULL)
1233 return NULL;
61ee279c 1234 type = ada_check_typedef (type);
1265e4aa
JB
1235 if (type != NULL
1236 && (TYPE_CODE (type) == TYPE_CODE_PTR
1237 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1238 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1239 else
1240 return type;
1241}
1242
4c4b4cd2
PH
1243/* True iff TYPE indicates a "thin" array pointer type. */
1244
14f9c5c9 1245static int
d2e4a39e 1246is_thin_pntr (struct type *type)
14f9c5c9 1247{
d2e4a39e 1248 return
14f9c5c9
AS
1249 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1250 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1251}
1252
4c4b4cd2
PH
1253/* The descriptor type for thin pointer type TYPE. */
1254
d2e4a39e
AS
1255static struct type *
1256thin_descriptor_type (struct type *type)
14f9c5c9 1257{
d2e4a39e 1258 struct type *base_type = desc_base_type (type);
14f9c5c9
AS
1259 if (base_type == NULL)
1260 return NULL;
1261 if (is_suffix (ada_type_name (base_type), "___XVE"))
1262 return base_type;
d2e4a39e 1263 else
14f9c5c9 1264 {
d2e4a39e 1265 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
14f9c5c9 1266 if (alt_type == NULL)
4c4b4cd2 1267 return base_type;
14f9c5c9 1268 else
4c4b4cd2 1269 return alt_type;
14f9c5c9
AS
1270 }
1271}
1272
4c4b4cd2
PH
1273/* A pointer to the array data for thin-pointer value VAL. */
1274
d2e4a39e
AS
1275static struct value *
1276thin_data_pntr (struct value *val)
14f9c5c9 1277{
df407dfe 1278 struct type *type = value_type (val);
556bdfd4
UW
1279 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1280 data_type = lookup_pointer_type (data_type);
1281
14f9c5c9 1282 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1283 return value_cast (data_type, value_copy (val));
d2e4a39e 1284 else
42ae5230 1285 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1286}
1287
4c4b4cd2
PH
1288/* True iff TYPE indicates a "thick" array pointer type. */
1289
14f9c5c9 1290static int
d2e4a39e 1291is_thick_pntr (struct type *type)
14f9c5c9
AS
1292{
1293 type = desc_base_type (type);
1294 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1295 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1296}
1297
4c4b4cd2
PH
1298/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1299 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1300
d2e4a39e
AS
1301static struct type *
1302desc_bounds_type (struct type *type)
14f9c5c9 1303{
d2e4a39e 1304 struct type *r;
14f9c5c9
AS
1305
1306 type = desc_base_type (type);
1307
1308 if (type == NULL)
1309 return NULL;
1310 else if (is_thin_pntr (type))
1311 {
1312 type = thin_descriptor_type (type);
1313 if (type == NULL)
4c4b4cd2 1314 return NULL;
14f9c5c9
AS
1315 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1316 if (r != NULL)
61ee279c 1317 return ada_check_typedef (r);
14f9c5c9
AS
1318 }
1319 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1320 {
1321 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1322 if (r != NULL)
61ee279c 1323 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1324 }
1325 return NULL;
1326}
1327
1328/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1329 one, a pointer to its bounds data. Otherwise NULL. */
1330
d2e4a39e
AS
1331static struct value *
1332desc_bounds (struct value *arr)
14f9c5c9 1333{
df407dfe 1334 struct type *type = ada_check_typedef (value_type (arr));
d2e4a39e 1335 if (is_thin_pntr (type))
14f9c5c9 1336 {
d2e4a39e 1337 struct type *bounds_type =
4c4b4cd2 1338 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1339 LONGEST addr;
1340
4cdfadb1 1341 if (bounds_type == NULL)
323e0a4a 1342 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1343
1344 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1345 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1346 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1347 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1348 addr = value_as_long (arr);
d2e4a39e 1349 else
42ae5230 1350 addr = value_address (arr);
14f9c5c9 1351
d2e4a39e 1352 return
4c4b4cd2
PH
1353 value_from_longest (lookup_pointer_type (bounds_type),
1354 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1355 }
1356
1357 else if (is_thick_pntr (type))
d2e4a39e 1358 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
323e0a4a 1359 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1360 else
1361 return NULL;
1362}
1363
4c4b4cd2
PH
1364/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1365 position of the field containing the address of the bounds data. */
1366
14f9c5c9 1367static int
d2e4a39e 1368fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1369{
1370 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1371}
1372
1373/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1374 size of the field containing the address of the bounds data. */
1375
14f9c5c9 1376static int
d2e4a39e 1377fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1378{
1379 type = desc_base_type (type);
1380
d2e4a39e 1381 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1382 return TYPE_FIELD_BITSIZE (type, 1);
1383 else
61ee279c 1384 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1385}
1386
4c4b4cd2 1387/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1388 pointer to one, the type of its array data (a array-with-no-bounds type);
1389 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1390 data. */
4c4b4cd2 1391
d2e4a39e 1392static struct type *
556bdfd4 1393desc_data_target_type (struct type *type)
14f9c5c9
AS
1394{
1395 type = desc_base_type (type);
1396
4c4b4cd2 1397 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1398 if (is_thin_pntr (type))
556bdfd4 1399 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1400 else if (is_thick_pntr (type))
556bdfd4
UW
1401 {
1402 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1403
1404 if (data_type
1405 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1406 return TYPE_TARGET_TYPE (data_type);
1407 }
1408
1409 return NULL;
14f9c5c9
AS
1410}
1411
1412/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1413 its array data. */
4c4b4cd2 1414
d2e4a39e
AS
1415static struct value *
1416desc_data (struct value *arr)
14f9c5c9 1417{
df407dfe 1418 struct type *type = value_type (arr);
14f9c5c9
AS
1419 if (is_thin_pntr (type))
1420 return thin_data_pntr (arr);
1421 else if (is_thick_pntr (type))
d2e4a39e 1422 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1423 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1424 else
1425 return NULL;
1426}
1427
1428
1429/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1430 position of the field containing the address of the data. */
1431
14f9c5c9 1432static int
d2e4a39e 1433fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1434{
1435 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1436}
1437
1438/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1439 size of the field containing the address of the data. */
1440
14f9c5c9 1441static int
d2e4a39e 1442fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1443{
1444 type = desc_base_type (type);
1445
1446 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1447 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1448 else
14f9c5c9
AS
1449 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1450}
1451
4c4b4cd2 1452/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1453 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1454 bound, if WHICH is 1. The first bound is I=1. */
1455
d2e4a39e
AS
1456static struct value *
1457desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1458{
d2e4a39e 1459 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1460 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1461}
1462
1463/* If BOUNDS is an array-bounds structure type, return the bit position
1464 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1465 bound, if WHICH is 1. The first bound is I=1. */
1466
14f9c5c9 1467static int
d2e4a39e 1468desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1469{
d2e4a39e 1470 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1471}
1472
1473/* If BOUNDS is an array-bounds structure type, return the bit field size
1474 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1475 bound, if WHICH is 1. The first bound is I=1. */
1476
76a01679 1477static int
d2e4a39e 1478desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1479{
1480 type = desc_base_type (type);
1481
d2e4a39e
AS
1482 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1483 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1484 else
1485 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1486}
1487
1488/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1489 Ith bound (numbering from 1). Otherwise, NULL. */
1490
d2e4a39e
AS
1491static struct type *
1492desc_index_type (struct type *type, int i)
14f9c5c9
AS
1493{
1494 type = desc_base_type (type);
1495
1496 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1497 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1498 else
14f9c5c9
AS
1499 return NULL;
1500}
1501
4c4b4cd2
PH
1502/* The number of index positions in the array-bounds type TYPE.
1503 Return 0 if TYPE is NULL. */
1504
14f9c5c9 1505static int
d2e4a39e 1506desc_arity (struct type *type)
14f9c5c9
AS
1507{
1508 type = desc_base_type (type);
1509
1510 if (type != NULL)
1511 return TYPE_NFIELDS (type) / 2;
1512 return 0;
1513}
1514
4c4b4cd2
PH
1515/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1516 an array descriptor type (representing an unconstrained array
1517 type). */
1518
76a01679
JB
1519static int
1520ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1521{
1522 if (type == NULL)
1523 return 0;
61ee279c 1524 type = ada_check_typedef (type);
4c4b4cd2 1525 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1526 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1527}
1528
52ce6436
PH
1529/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1530 * to one. */
1531
2c0b251b 1532static int
52ce6436
PH
1533ada_is_array_type (struct type *type)
1534{
1535 while (type != NULL
1536 && (TYPE_CODE (type) == TYPE_CODE_PTR
1537 || TYPE_CODE (type) == TYPE_CODE_REF))
1538 type = TYPE_TARGET_TYPE (type);
1539 return ada_is_direct_array_type (type);
1540}
1541
4c4b4cd2 1542/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1543
14f9c5c9 1544int
4c4b4cd2 1545ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1546{
1547 if (type == NULL)
1548 return 0;
61ee279c 1549 type = ada_check_typedef (type);
14f9c5c9 1550 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1551 || (TYPE_CODE (type) == TYPE_CODE_PTR
1552 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1553}
1554
4c4b4cd2
PH
1555/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1556
14f9c5c9 1557int
4c4b4cd2 1558ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1559{
556bdfd4 1560 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1561
1562 if (type == NULL)
1563 return 0;
61ee279c 1564 type = ada_check_typedef (type);
556bdfd4
UW
1565 return (data_type != NULL
1566 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1567 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1568}
1569
1570/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1571 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1572 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1573 is still needed. */
1574
14f9c5c9 1575int
ebf56fd3 1576ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1577{
d2e4a39e 1578 return
14f9c5c9
AS
1579 type != NULL
1580 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1581 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1582 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1583 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1584}
1585
1586
4c4b4cd2 1587/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1588 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1589 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1590 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1591 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1592 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1593 a descriptor. */
d2e4a39e
AS
1594struct type *
1595ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1596{
df407dfe
AC
1597 if (ada_is_packed_array_type (value_type (arr)))
1598 return decode_packed_array_type (value_type (arr));
14f9c5c9 1599
df407dfe
AC
1600 if (!ada_is_array_descriptor_type (value_type (arr)))
1601 return value_type (arr);
d2e4a39e
AS
1602
1603 if (!bounds)
1604 return
556bdfd4 1605 ada_check_typedef (desc_data_target_type (value_type (arr)));
14f9c5c9
AS
1606 else
1607 {
d2e4a39e 1608 struct type *elt_type;
14f9c5c9 1609 int arity;
d2e4a39e 1610 struct value *descriptor;
df407dfe 1611 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
14f9c5c9 1612
df407dfe
AC
1613 elt_type = ada_array_element_type (value_type (arr), -1);
1614 arity = ada_array_arity (value_type (arr));
14f9c5c9 1615
d2e4a39e 1616 if (elt_type == NULL || arity == 0)
df407dfe 1617 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1618
1619 descriptor = desc_bounds (arr);
d2e4a39e 1620 if (value_as_long (descriptor) == 0)
4c4b4cd2 1621 return NULL;
d2e4a39e 1622 while (arity > 0)
4c4b4cd2
PH
1623 {
1624 struct type *range_type = alloc_type (objf);
1625 struct type *array_type = alloc_type (objf);
1626 struct value *low = desc_one_bound (descriptor, arity, 0);
1627 struct value *high = desc_one_bound (descriptor, arity, 1);
1628 arity -= 1;
1629
df407dfe 1630 create_range_type (range_type, value_type (low),
529cad9c
PH
1631 longest_to_int (value_as_long (low)),
1632 longest_to_int (value_as_long (high)));
4c4b4cd2
PH
1633 elt_type = create_array_type (array_type, elt_type, range_type);
1634 }
14f9c5c9
AS
1635
1636 return lookup_pointer_type (elt_type);
1637 }
1638}
1639
1640/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1641 Otherwise, returns either a standard GDB array with bounds set
1642 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1643 GDB array. Returns NULL if ARR is a null fat pointer. */
1644
d2e4a39e
AS
1645struct value *
1646ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1647{
df407dfe 1648 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1649 {
d2e4a39e 1650 struct type *arrType = ada_type_of_array (arr, 1);
14f9c5c9 1651 if (arrType == NULL)
4c4b4cd2 1652 return NULL;
14f9c5c9
AS
1653 return value_cast (arrType, value_copy (desc_data (arr)));
1654 }
df407dfe 1655 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9
AS
1656 return decode_packed_array (arr);
1657 else
1658 return arr;
1659}
1660
1661/* If ARR does not represent an array, returns ARR unchanged.
1662 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1663 be ARR itself if it already is in the proper form). */
1664
1665static struct value *
d2e4a39e 1666ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1667{
df407dfe 1668 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1669 {
d2e4a39e 1670 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
14f9c5c9 1671 if (arrVal == NULL)
323e0a4a 1672 error (_("Bounds unavailable for null array pointer."));
529cad9c 1673 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1674 return value_ind (arrVal);
1675 }
df407dfe 1676 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9 1677 return decode_packed_array (arr);
d2e4a39e 1678 else
14f9c5c9
AS
1679 return arr;
1680}
1681
1682/* If TYPE represents a GNAT array type, return it translated to an
1683 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1684 packing). For other types, is the identity. */
1685
d2e4a39e
AS
1686struct type *
1687ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1688{
17280b9f
UW
1689 if (ada_is_packed_array_type (type))
1690 return decode_packed_array_type (type);
1691
1692 if (ada_is_array_descriptor_type (type))
556bdfd4 1693 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1694
1695 return type;
14f9c5c9
AS
1696}
1697
4c4b4cd2
PH
1698/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1699
14f9c5c9 1700int
d2e4a39e 1701ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1702{
1703 if (type == NULL)
1704 return 0;
4c4b4cd2 1705 type = desc_base_type (type);
61ee279c 1706 type = ada_check_typedef (type);
d2e4a39e 1707 return
14f9c5c9
AS
1708 ada_type_name (type) != NULL
1709 && strstr (ada_type_name (type), "___XP") != NULL;
1710}
1711
1712/* Given that TYPE is a standard GDB array type with all bounds filled
1713 in, and that the element size of its ultimate scalar constituents
1714 (that is, either its elements, or, if it is an array of arrays, its
1715 elements' elements, etc.) is *ELT_BITS, return an identical type,
1716 but with the bit sizes of its elements (and those of any
1717 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1718 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1719 in bits. */
1720
d2e4a39e
AS
1721static struct type *
1722packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1723{
d2e4a39e
AS
1724 struct type *new_elt_type;
1725 struct type *new_type;
14f9c5c9
AS
1726 LONGEST low_bound, high_bound;
1727
61ee279c 1728 type = ada_check_typedef (type);
14f9c5c9
AS
1729 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1730 return type;
1731
1732 new_type = alloc_type (TYPE_OBJFILE (type));
61ee279c 1733 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
4c4b4cd2 1734 elt_bits);
262452ec 1735 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
1736 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1737 TYPE_NAME (new_type) = ada_type_name (type);
1738
262452ec 1739 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 1740 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1741 low_bound = high_bound = 0;
1742 if (high_bound < low_bound)
1743 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1744 else
14f9c5c9
AS
1745 {
1746 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1747 TYPE_LENGTH (new_type) =
4c4b4cd2 1748 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
1749 }
1750
876cecd0 1751 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
1752 return new_type;
1753}
1754
4c4b4cd2
PH
1755/* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1756
d2e4a39e
AS
1757static struct type *
1758decode_packed_array_type (struct type *type)
1759{
4c4b4cd2 1760 struct symbol *sym;
d2e4a39e 1761 struct block **blocks;
727e3d2e
JB
1762 char *raw_name = ada_type_name (ada_check_typedef (type));
1763 char *name;
1764 char *tail;
d2e4a39e 1765 struct type *shadow_type;
14f9c5c9
AS
1766 long bits;
1767 int i, n;
1768
727e3d2e
JB
1769 if (!raw_name)
1770 raw_name = ada_type_name (desc_base_type (type));
1771
1772 if (!raw_name)
1773 return NULL;
1774
1775 name = (char *) alloca (strlen (raw_name) + 1);
1776 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
1777 type = desc_base_type (type);
1778
14f9c5c9
AS
1779 memcpy (name, raw_name, tail - raw_name);
1780 name[tail - raw_name] = '\000';
1781
4c4b4cd2
PH
1782 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1783 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
14f9c5c9 1784 {
323e0a4a 1785 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
1786 return NULL;
1787 }
4c4b4cd2 1788 shadow_type = SYMBOL_TYPE (sym);
cb249c71 1789 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
1790
1791 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1792 {
323e0a4a 1793 lim_warning (_("could not understand bounds information on packed array"));
14f9c5c9
AS
1794 return NULL;
1795 }
d2e4a39e 1796
14f9c5c9
AS
1797 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1798 {
4c4b4cd2 1799 lim_warning
323e0a4a 1800 (_("could not understand bit size information on packed array"));
14f9c5c9
AS
1801 return NULL;
1802 }
d2e4a39e 1803
14f9c5c9
AS
1804 return packed_array_type (shadow_type, &bits);
1805}
1806
4c4b4cd2 1807/* Given that ARR is a struct value *indicating a GNAT packed array,
14f9c5c9
AS
1808 returns a simple array that denotes that array. Its type is a
1809 standard GDB array type except that the BITSIZEs of the array
1810 target types are set to the number of bits in each element, and the
4c4b4cd2 1811 type length is set appropriately. */
14f9c5c9 1812
d2e4a39e
AS
1813static struct value *
1814decode_packed_array (struct value *arr)
14f9c5c9 1815{
4c4b4cd2 1816 struct type *type;
14f9c5c9 1817
4c4b4cd2 1818 arr = ada_coerce_ref (arr);
284614f0
JB
1819
1820 /* If our value is a pointer, then dererence it. Make sure that
1821 this operation does not cause the target type to be fixed, as
1822 this would indirectly cause this array to be decoded. The rest
1823 of the routine assumes that the array hasn't been decoded yet,
1824 so we use the basic "value_ind" routine to perform the dereferencing,
1825 as opposed to using "ada_value_ind". */
df407dfe 1826 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
284614f0 1827 arr = value_ind (arr);
4c4b4cd2 1828
df407dfe 1829 type = decode_packed_array_type (value_type (arr));
14f9c5c9
AS
1830 if (type == NULL)
1831 {
323e0a4a 1832 error (_("can't unpack array"));
14f9c5c9
AS
1833 return NULL;
1834 }
61ee279c 1835
32c9a795
MD
1836 if (gdbarch_bits_big_endian (current_gdbarch)
1837 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
1838 {
1839 /* This is a (right-justified) modular type representing a packed
1840 array with no wrapper. In order to interpret the value through
1841 the (left-justified) packed array type we just built, we must
1842 first left-justify it. */
1843 int bit_size, bit_pos;
1844 ULONGEST mod;
1845
df407dfe 1846 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
1847 bit_size = 0;
1848 while (mod > 0)
1849 {
1850 bit_size += 1;
1851 mod >>= 1;
1852 }
df407dfe 1853 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
1854 arr = ada_value_primitive_packed_val (arr, NULL,
1855 bit_pos / HOST_CHAR_BIT,
1856 bit_pos % HOST_CHAR_BIT,
1857 bit_size,
1858 type);
1859 }
1860
4c4b4cd2 1861 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
1862}
1863
1864
1865/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 1866 given in IND. ARR must be a simple array. */
14f9c5c9 1867
d2e4a39e
AS
1868static struct value *
1869value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
1870{
1871 int i;
1872 int bits, elt_off, bit_off;
1873 long elt_total_bit_offset;
d2e4a39e
AS
1874 struct type *elt_type;
1875 struct value *v;
14f9c5c9
AS
1876
1877 bits = 0;
1878 elt_total_bit_offset = 0;
df407dfe 1879 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 1880 for (i = 0; i < arity; i += 1)
14f9c5c9 1881 {
d2e4a39e 1882 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
1883 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1884 error
323e0a4a 1885 (_("attempt to do packed indexing of something other than a packed array"));
14f9c5c9 1886 else
4c4b4cd2
PH
1887 {
1888 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1889 LONGEST lowerbound, upperbound;
1890 LONGEST idx;
1891
1892 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1893 {
323e0a4a 1894 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
1895 lowerbound = upperbound = 0;
1896 }
1897
3cb382c9 1898 idx = pos_atr (ind[i]);
4c4b4cd2 1899 if (idx < lowerbound || idx > upperbound)
323e0a4a 1900 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
4c4b4cd2
PH
1901 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1902 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 1903 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 1904 }
14f9c5c9
AS
1905 }
1906 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1907 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
1908
1909 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 1910 bits, elt_type);
14f9c5c9
AS
1911 return v;
1912}
1913
4c4b4cd2 1914/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
1915
1916static int
d2e4a39e 1917has_negatives (struct type *type)
14f9c5c9 1918{
d2e4a39e
AS
1919 switch (TYPE_CODE (type))
1920 {
1921 default:
1922 return 0;
1923 case TYPE_CODE_INT:
1924 return !TYPE_UNSIGNED (type);
1925 case TYPE_CODE_RANGE:
1926 return TYPE_LOW_BOUND (type) < 0;
1927 }
14f9c5c9 1928}
d2e4a39e 1929
14f9c5c9
AS
1930
1931/* Create a new value of type TYPE from the contents of OBJ starting
1932 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1933 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
4c4b4cd2
PH
1934 assigning through the result will set the field fetched from.
1935 VALADDR is ignored unless OBJ is NULL, in which case,
1936 VALADDR+OFFSET must address the start of storage containing the
1937 packed value. The value returned in this case is never an lval.
1938 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 1939
d2e4a39e 1940struct value *
fc1a4b47 1941ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 1942 long offset, int bit_offset, int bit_size,
4c4b4cd2 1943 struct type *type)
14f9c5c9 1944{
d2e4a39e 1945 struct value *v;
4c4b4cd2
PH
1946 int src, /* Index into the source area */
1947 targ, /* Index into the target area */
1948 srcBitsLeft, /* Number of source bits left to move */
1949 nsrc, ntarg, /* Number of source and target bytes */
1950 unusedLS, /* Number of bits in next significant
1951 byte of source that are unused */
1952 accumSize; /* Number of meaningful bits in accum */
1953 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 1954 unsigned char *unpacked;
4c4b4cd2 1955 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
1956 unsigned char sign;
1957 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
1958 /* Transmit bytes from least to most significant; delta is the direction
1959 the indices move. */
32c9a795 1960 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
14f9c5c9 1961
61ee279c 1962 type = ada_check_typedef (type);
14f9c5c9
AS
1963
1964 if (obj == NULL)
1965 {
1966 v = allocate_value (type);
d2e4a39e 1967 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 1968 }
9214ee5f 1969 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
1970 {
1971 v = value_at (type,
42ae5230 1972 value_address (obj) + offset);
d2e4a39e 1973 bytes = (unsigned char *) alloca (len);
42ae5230 1974 read_memory (value_address (v), bytes, len);
14f9c5c9 1975 }
d2e4a39e 1976 else
14f9c5c9
AS
1977 {
1978 v = allocate_value (type);
0fd88904 1979 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 1980 }
d2e4a39e
AS
1981
1982 if (obj != NULL)
14f9c5c9 1983 {
42ae5230 1984 CORE_ADDR new_addr;
74bcbdf3 1985 set_value_component_location (v, obj);
42ae5230 1986 new_addr = value_address (obj) + offset;
9bbda503
AC
1987 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1988 set_value_bitsize (v, bit_size);
df407dfe 1989 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 1990 {
42ae5230 1991 ++new_addr;
9bbda503 1992 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 1993 }
42ae5230 1994 set_value_address (v, new_addr);
14f9c5c9
AS
1995 }
1996 else
9bbda503 1997 set_value_bitsize (v, bit_size);
0fd88904 1998 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
1999
2000 srcBitsLeft = bit_size;
2001 nsrc = len;
2002 ntarg = TYPE_LENGTH (type);
2003 sign = 0;
2004 if (bit_size == 0)
2005 {
2006 memset (unpacked, 0, TYPE_LENGTH (type));
2007 return v;
2008 }
32c9a795 2009 else if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9 2010 {
d2e4a39e 2011 src = len - 1;
1265e4aa
JB
2012 if (has_negatives (type)
2013 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2014 sign = ~0;
d2e4a39e
AS
2015
2016 unusedLS =
4c4b4cd2
PH
2017 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2018 % HOST_CHAR_BIT;
14f9c5c9
AS
2019
2020 switch (TYPE_CODE (type))
4c4b4cd2
PH
2021 {
2022 case TYPE_CODE_ARRAY:
2023 case TYPE_CODE_UNION:
2024 case TYPE_CODE_STRUCT:
2025 /* Non-scalar values must be aligned at a byte boundary... */
2026 accumSize =
2027 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2028 /* ... And are placed at the beginning (most-significant) bytes
2029 of the target. */
529cad9c 2030 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2031 ntarg = targ + 1;
4c4b4cd2
PH
2032 break;
2033 default:
2034 accumSize = 0;
2035 targ = TYPE_LENGTH (type) - 1;
2036 break;
2037 }
14f9c5c9 2038 }
d2e4a39e 2039 else
14f9c5c9
AS
2040 {
2041 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2042
2043 src = targ = 0;
2044 unusedLS = bit_offset;
2045 accumSize = 0;
2046
d2e4a39e 2047 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2048 sign = ~0;
14f9c5c9 2049 }
d2e4a39e 2050
14f9c5c9
AS
2051 accum = 0;
2052 while (nsrc > 0)
2053 {
2054 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2055 part of the value. */
d2e4a39e 2056 unsigned int unusedMSMask =
4c4b4cd2
PH
2057 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2058 1;
2059 /* Sign-extend bits for this byte. */
14f9c5c9 2060 unsigned int signMask = sign & ~unusedMSMask;
d2e4a39e 2061 accum |=
4c4b4cd2 2062 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2063 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2064 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2065 {
2066 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2067 accumSize -= HOST_CHAR_BIT;
2068 accum >>= HOST_CHAR_BIT;
2069 ntarg -= 1;
2070 targ += delta;
2071 }
14f9c5c9
AS
2072 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2073 unusedLS = 0;
2074 nsrc -= 1;
2075 src += delta;
2076 }
2077 while (ntarg > 0)
2078 {
2079 accum |= sign << accumSize;
2080 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2081 accumSize -= HOST_CHAR_BIT;
2082 accum >>= HOST_CHAR_BIT;
2083 ntarg -= 1;
2084 targ += delta;
2085 }
2086
2087 return v;
2088}
d2e4a39e 2089
14f9c5c9
AS
2090/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2091 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2092 not overlap. */
14f9c5c9 2093static void
fc1a4b47 2094move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
0fd88904 2095 int src_offset, int n)
14f9c5c9
AS
2096{
2097 unsigned int accum, mask;
2098 int accum_bits, chunk_size;
2099
2100 target += targ_offset / HOST_CHAR_BIT;
2101 targ_offset %= HOST_CHAR_BIT;
2102 source += src_offset / HOST_CHAR_BIT;
2103 src_offset %= HOST_CHAR_BIT;
32c9a795 2104 if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9
AS
2105 {
2106 accum = (unsigned char) *source;
2107 source += 1;
2108 accum_bits = HOST_CHAR_BIT - src_offset;
2109
d2e4a39e 2110 while (n > 0)
4c4b4cd2
PH
2111 {
2112 int unused_right;
2113 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2114 accum_bits += HOST_CHAR_BIT;
2115 source += 1;
2116 chunk_size = HOST_CHAR_BIT - targ_offset;
2117 if (chunk_size > n)
2118 chunk_size = n;
2119 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2120 mask = ((1 << chunk_size) - 1) << unused_right;
2121 *target =
2122 (*target & ~mask)
2123 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2124 n -= chunk_size;
2125 accum_bits -= chunk_size;
2126 target += 1;
2127 targ_offset = 0;
2128 }
14f9c5c9
AS
2129 }
2130 else
2131 {
2132 accum = (unsigned char) *source >> src_offset;
2133 source += 1;
2134 accum_bits = HOST_CHAR_BIT - src_offset;
2135
d2e4a39e 2136 while (n > 0)
4c4b4cd2
PH
2137 {
2138 accum = accum + ((unsigned char) *source << accum_bits);
2139 accum_bits += HOST_CHAR_BIT;
2140 source += 1;
2141 chunk_size = HOST_CHAR_BIT - targ_offset;
2142 if (chunk_size > n)
2143 chunk_size = n;
2144 mask = ((1 << chunk_size) - 1) << targ_offset;
2145 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2146 n -= chunk_size;
2147 accum_bits -= chunk_size;
2148 accum >>= chunk_size;
2149 target += 1;
2150 targ_offset = 0;
2151 }
14f9c5c9
AS
2152 }
2153}
2154
14f9c5c9
AS
2155/* Store the contents of FROMVAL into the location of TOVAL.
2156 Return a new value with the location of TOVAL and contents of
2157 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2158 floating-point or non-scalar types. */
14f9c5c9 2159
d2e4a39e
AS
2160static struct value *
2161ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2162{
df407dfe
AC
2163 struct type *type = value_type (toval);
2164 int bits = value_bitsize (toval);
14f9c5c9 2165
52ce6436
PH
2166 toval = ada_coerce_ref (toval);
2167 fromval = ada_coerce_ref (fromval);
2168
2169 if (ada_is_direct_array_type (value_type (toval)))
2170 toval = ada_coerce_to_simple_array (toval);
2171 if (ada_is_direct_array_type (value_type (fromval)))
2172 fromval = ada_coerce_to_simple_array (fromval);
2173
88e3b34b 2174 if (!deprecated_value_modifiable (toval))
323e0a4a 2175 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2176
d2e4a39e 2177 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2178 && bits > 0
d2e4a39e 2179 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2180 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2181 {
df407dfe
AC
2182 int len = (value_bitpos (toval)
2183 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2184 int from_size;
d2e4a39e
AS
2185 char *buffer = (char *) alloca (len);
2186 struct value *val;
42ae5230 2187 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2188
2189 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2190 fromval = value_cast (type, fromval);
14f9c5c9 2191
52ce6436 2192 read_memory (to_addr, buffer, len);
aced2898
PH
2193 from_size = value_bitsize (fromval);
2194 if (from_size == 0)
2195 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
32c9a795 2196 if (gdbarch_bits_big_endian (current_gdbarch))
df407dfe 2197 move_bits (buffer, value_bitpos (toval),
aced2898 2198 value_contents (fromval), from_size - bits, bits);
14f9c5c9 2199 else
0fd88904 2200 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
4c4b4cd2 2201 0, bits);
52ce6436
PH
2202 write_memory (to_addr, buffer, len);
2203 if (deprecated_memory_changed_hook)
2204 deprecated_memory_changed_hook (to_addr, len);
2205
14f9c5c9 2206 val = value_copy (toval);
0fd88904 2207 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2208 TYPE_LENGTH (type));
04624583 2209 deprecated_set_value_type (val, type);
d2e4a39e 2210
14f9c5c9
AS
2211 return val;
2212 }
2213
2214 return value_assign (toval, fromval);
2215}
2216
2217
52ce6436
PH
2218/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2219 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2220 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2221 * COMPONENT, and not the inferior's memory. The current contents
2222 * of COMPONENT are ignored. */
2223static void
2224value_assign_to_component (struct value *container, struct value *component,
2225 struct value *val)
2226{
2227 LONGEST offset_in_container =
42ae5230 2228 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2229 int bit_offset_in_container =
2230 value_bitpos (component) - value_bitpos (container);
2231 int bits;
2232
2233 val = value_cast (value_type (component), val);
2234
2235 if (value_bitsize (component) == 0)
2236 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2237 else
2238 bits = value_bitsize (component);
2239
32c9a795 2240 if (gdbarch_bits_big_endian (current_gdbarch))
52ce6436
PH
2241 move_bits (value_contents_writeable (container) + offset_in_container,
2242 value_bitpos (container) + bit_offset_in_container,
2243 value_contents (val),
2244 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2245 bits);
2246 else
2247 move_bits (value_contents_writeable (container) + offset_in_container,
2248 value_bitpos (container) + bit_offset_in_container,
2249 value_contents (val), 0, bits);
2250}
2251
4c4b4cd2
PH
2252/* The value of the element of array ARR at the ARITY indices given in IND.
2253 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2254 thereto. */
2255
d2e4a39e
AS
2256struct value *
2257ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2258{
2259 int k;
d2e4a39e
AS
2260 struct value *elt;
2261 struct type *elt_type;
14f9c5c9
AS
2262
2263 elt = ada_coerce_to_simple_array (arr);
2264
df407dfe 2265 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2266 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2267 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2268 return value_subscript_packed (elt, arity, ind);
2269
2270 for (k = 0; k < arity; k += 1)
2271 {
2272 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2273 error (_("too many subscripts (%d expected)"), k);
2497b498 2274 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2275 }
2276 return elt;
2277}
2278
2279/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2280 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2281 IND. Does not read the entire array into memory. */
14f9c5c9 2282
2c0b251b 2283static struct value *
d2e4a39e 2284ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2285 struct value **ind)
14f9c5c9
AS
2286{
2287 int k;
2288
2289 for (k = 0; k < arity; k += 1)
2290 {
2291 LONGEST lwb, upb;
14f9c5c9
AS
2292
2293 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2294 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2295 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2296 value_copy (arr));
14f9c5c9 2297 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2298 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2299 type = TYPE_TARGET_TYPE (type);
2300 }
2301
2302 return value_ind (arr);
2303}
2304
0b5d8877 2305/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2306 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2307 elements starting at index LOW. The lower bound of this array is LOW, as
2308 per Ada rules. */
0b5d8877 2309static struct value *
f5938064
JG
2310ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2311 int low, int high)
0b5d8877 2312{
6c038f32 2313 CORE_ADDR base = value_as_address (array_ptr)
0b5d8877
PH
2314 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2315 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2316 struct type *index_type =
2317 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2318 low, high);
6c038f32 2319 struct type *slice_type =
0b5d8877 2320 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
f5938064 2321 return value_at_lazy (slice_type, base);
0b5d8877
PH
2322}
2323
2324
2325static struct value *
2326ada_value_slice (struct value *array, int low, int high)
2327{
df407dfe 2328 struct type *type = value_type (array);
6c038f32 2329 struct type *index_type =
0b5d8877 2330 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2331 struct type *slice_type =
0b5d8877 2332 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
6c038f32 2333 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2334}
2335
14f9c5c9
AS
2336/* If type is a record type in the form of a standard GNAT array
2337 descriptor, returns the number of dimensions for type. If arr is a
2338 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2339 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2340
2341int
d2e4a39e 2342ada_array_arity (struct type *type)
14f9c5c9
AS
2343{
2344 int arity;
2345
2346 if (type == NULL)
2347 return 0;
2348
2349 type = desc_base_type (type);
2350
2351 arity = 0;
d2e4a39e 2352 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2353 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2354 else
2355 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2356 {
4c4b4cd2 2357 arity += 1;
61ee279c 2358 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2359 }
d2e4a39e 2360
14f9c5c9
AS
2361 return arity;
2362}
2363
2364/* If TYPE is a record type in the form of a standard GNAT array
2365 descriptor or a simple array type, returns the element type for
2366 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2367 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2368
d2e4a39e
AS
2369struct type *
2370ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2371{
2372 type = desc_base_type (type);
2373
d2e4a39e 2374 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2375 {
2376 int k;
d2e4a39e 2377 struct type *p_array_type;
14f9c5c9 2378
556bdfd4 2379 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2380
2381 k = ada_array_arity (type);
2382 if (k == 0)
4c4b4cd2 2383 return NULL;
d2e4a39e 2384
4c4b4cd2 2385 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2386 if (nindices >= 0 && k > nindices)
4c4b4cd2 2387 k = nindices;
d2e4a39e 2388 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2389 {
61ee279c 2390 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2391 k -= 1;
2392 }
14f9c5c9
AS
2393 return p_array_type;
2394 }
2395 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2396 {
2397 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2398 {
2399 type = TYPE_TARGET_TYPE (type);
2400 nindices -= 1;
2401 }
14f9c5c9
AS
2402 return type;
2403 }
2404
2405 return NULL;
2406}
2407
4c4b4cd2 2408/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2409 Does not examine memory. Throws an error if N is invalid or TYPE
2410 is not an array type. NAME is the name of the Ada attribute being
2411 evaluated ('range, 'first, 'last, or 'length); it is used in building
2412 the error message. */
14f9c5c9 2413
1eea4ebd
UW
2414static struct type *
2415ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2416{
4c4b4cd2
PH
2417 struct type *result_type;
2418
14f9c5c9
AS
2419 type = desc_base_type (type);
2420
1eea4ebd
UW
2421 if (n < 0 || n > ada_array_arity (type))
2422 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2423
4c4b4cd2 2424 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2425 {
2426 int i;
2427
2428 for (i = 1; i < n; i += 1)
4c4b4cd2 2429 type = TYPE_TARGET_TYPE (type);
262452ec 2430 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2431 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2432 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2433 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2434 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2435 result_type = NULL;
14f9c5c9 2436 }
d2e4a39e 2437 else
1eea4ebd
UW
2438 {
2439 result_type = desc_index_type (desc_bounds_type (type), n);
2440 if (result_type == NULL)
2441 error (_("attempt to take bound of something that is not an array"));
2442 }
2443
2444 return result_type;
14f9c5c9
AS
2445}
2446
2447/* Given that arr is an array type, returns the lower bound of the
2448 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2449 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2450 array-descriptor type. It works for other arrays with bounds supplied
2451 by run-time quantities other than discriminants. */
14f9c5c9 2452
abb68b3e 2453static LONGEST
1eea4ebd 2454ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2455{
1ce677a4 2456 struct type *type, *elt_type, *index_type_desc, *index_type;
262452ec 2457 LONGEST retval;
1ce677a4 2458 int i;
262452ec
JK
2459
2460 gdb_assert (which == 0 || which == 1);
14f9c5c9
AS
2461
2462 if (ada_is_packed_array_type (arr_type))
2463 arr_type = decode_packed_array_type (arr_type);
2464
4c4b4cd2 2465 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2466 return (LONGEST) - which;
14f9c5c9
AS
2467
2468 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2469 type = TYPE_TARGET_TYPE (arr_type);
2470 else
2471 type = arr_type;
2472
1ce677a4
UW
2473 elt_type = type;
2474 for (i = n; i > 1; i--)
2475 elt_type = TYPE_TARGET_TYPE (type);
2476
14f9c5c9 2477 index_type_desc = ada_find_parallel_type (type, "___XA");
262452ec
JK
2478 if (index_type_desc != NULL)
2479 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
1ce677a4 2480 NULL, TYPE_INDEX_TYPE (elt_type));
262452ec 2481 else
1ce677a4 2482 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec
JK
2483
2484 switch (TYPE_CODE (index_type))
14f9c5c9 2485 {
262452ec
JK
2486 case TYPE_CODE_RANGE:
2487 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2488 : TYPE_HIGH_BOUND (index_type);
2489 break;
2490 case TYPE_CODE_ENUM:
2491 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2492 : TYPE_FIELD_BITPOS (index_type,
2493 TYPE_NFIELDS (index_type) - 1);
2494 break;
2495 default:
2496 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2497 }
abb68b3e 2498
262452ec 2499 return retval;
14f9c5c9
AS
2500}
2501
2502/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2503 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2504 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2505 supplied by run-time quantities other than discriminants. */
14f9c5c9 2506
1eea4ebd 2507static LONGEST
4dc81987 2508ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2509{
df407dfe 2510 struct type *arr_type = value_type (arr);
14f9c5c9
AS
2511
2512 if (ada_is_packed_array_type (arr_type))
2513 return ada_array_bound (decode_packed_array (arr), n, which);
4c4b4cd2 2514 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2515 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2516 else
1eea4ebd 2517 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2518}
2519
2520/* Given that arr is an array value, returns the length of the
2521 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2522 supplied by run-time quantities other than discriminants.
2523 Does not work for arrays indexed by enumeration types with representation
2524 clauses at the moment. */
14f9c5c9 2525
1eea4ebd 2526static LONGEST
d2e4a39e 2527ada_array_length (struct value *arr, int n)
14f9c5c9 2528{
df407dfe 2529 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9
AS
2530
2531 if (ada_is_packed_array_type (arr_type))
2532 return ada_array_length (decode_packed_array (arr), n);
2533
4c4b4cd2 2534 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2535 return (ada_array_bound_from_type (arr_type, n, 1)
2536 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2537 else
1eea4ebd
UW
2538 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2539 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2540}
2541
2542/* An empty array whose type is that of ARR_TYPE (an array type),
2543 with bounds LOW to LOW-1. */
2544
2545static struct value *
2546empty_array (struct type *arr_type, int low)
2547{
6c038f32 2548 struct type *index_type =
0b5d8877
PH
2549 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2550 low, low - 1);
2551 struct type *elt_type = ada_array_element_type (arr_type, 1);
2552 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2553}
14f9c5c9 2554\f
d2e4a39e 2555
4c4b4cd2 2556 /* Name resolution */
14f9c5c9 2557
4c4b4cd2
PH
2558/* The "decoded" name for the user-definable Ada operator corresponding
2559 to OP. */
14f9c5c9 2560
d2e4a39e 2561static const char *
4c4b4cd2 2562ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2563{
2564 int i;
2565
4c4b4cd2 2566 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2567 {
2568 if (ada_opname_table[i].op == op)
4c4b4cd2 2569 return ada_opname_table[i].decoded;
14f9c5c9 2570 }
323e0a4a 2571 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2572}
2573
2574
4c4b4cd2
PH
2575/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2576 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2577 undefined namespace) and converts operators that are
2578 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2579 non-null, it provides a preferred result type [at the moment, only
2580 type void has any effect---causing procedures to be preferred over
2581 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2582 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2583
4c4b4cd2
PH
2584static void
2585resolve (struct expression **expp, int void_context_p)
14f9c5c9 2586{
30b15541
UW
2587 struct type *context_type = NULL;
2588 int pc = 0;
2589
2590 if (void_context_p)
2591 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2592
2593 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2594}
2595
4c4b4cd2
PH
2596/* Resolve the operator of the subexpression beginning at
2597 position *POS of *EXPP. "Resolving" consists of replacing
2598 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2599 with their resolutions, replacing built-in operators with
2600 function calls to user-defined operators, where appropriate, and,
2601 when DEPROCEDURE_P is non-zero, converting function-valued variables
2602 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2603 are as in ada_resolve, above. */
14f9c5c9 2604
d2e4a39e 2605static struct value *
4c4b4cd2 2606resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2607 struct type *context_type)
14f9c5c9
AS
2608{
2609 int pc = *pos;
2610 int i;
4c4b4cd2 2611 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2612 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2613 struct value **argvec; /* Vector of operand types (alloca'ed). */
2614 int nargs; /* Number of operands. */
52ce6436 2615 int oplen;
14f9c5c9
AS
2616
2617 argvec = NULL;
2618 nargs = 0;
2619 exp = *expp;
2620
52ce6436
PH
2621 /* Pass one: resolve operands, saving their types and updating *pos,
2622 if needed. */
14f9c5c9
AS
2623 switch (op)
2624 {
4c4b4cd2
PH
2625 case OP_FUNCALL:
2626 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2627 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2628 *pos += 7;
4c4b4cd2
PH
2629 else
2630 {
2631 *pos += 3;
2632 resolve_subexp (expp, pos, 0, NULL);
2633 }
2634 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2635 break;
2636
14f9c5c9 2637 case UNOP_ADDR:
4c4b4cd2
PH
2638 *pos += 1;
2639 resolve_subexp (expp, pos, 0, NULL);
2640 break;
2641
52ce6436
PH
2642 case UNOP_QUAL:
2643 *pos += 3;
17466c1a 2644 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2645 break;
2646
52ce6436 2647 case OP_ATR_MODULUS:
4c4b4cd2
PH
2648 case OP_ATR_SIZE:
2649 case OP_ATR_TAG:
4c4b4cd2
PH
2650 case OP_ATR_FIRST:
2651 case OP_ATR_LAST:
2652 case OP_ATR_LENGTH:
2653 case OP_ATR_POS:
2654 case OP_ATR_VAL:
4c4b4cd2
PH
2655 case OP_ATR_MIN:
2656 case OP_ATR_MAX:
52ce6436
PH
2657 case TERNOP_IN_RANGE:
2658 case BINOP_IN_BOUNDS:
2659 case UNOP_IN_RANGE:
2660 case OP_AGGREGATE:
2661 case OP_OTHERS:
2662 case OP_CHOICES:
2663 case OP_POSITIONAL:
2664 case OP_DISCRETE_RANGE:
2665 case OP_NAME:
2666 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2667 *pos += oplen;
14f9c5c9
AS
2668 break;
2669
2670 case BINOP_ASSIGN:
2671 {
4c4b4cd2
PH
2672 struct value *arg1;
2673
2674 *pos += 1;
2675 arg1 = resolve_subexp (expp, pos, 0, NULL);
2676 if (arg1 == NULL)
2677 resolve_subexp (expp, pos, 1, NULL);
2678 else
df407dfe 2679 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2680 break;
14f9c5c9
AS
2681 }
2682
4c4b4cd2 2683 case UNOP_CAST:
4c4b4cd2
PH
2684 *pos += 3;
2685 nargs = 1;
2686 break;
14f9c5c9 2687
4c4b4cd2
PH
2688 case BINOP_ADD:
2689 case BINOP_SUB:
2690 case BINOP_MUL:
2691 case BINOP_DIV:
2692 case BINOP_REM:
2693 case BINOP_MOD:
2694 case BINOP_EXP:
2695 case BINOP_CONCAT:
2696 case BINOP_LOGICAL_AND:
2697 case BINOP_LOGICAL_OR:
2698 case BINOP_BITWISE_AND:
2699 case BINOP_BITWISE_IOR:
2700 case BINOP_BITWISE_XOR:
14f9c5c9 2701
4c4b4cd2
PH
2702 case BINOP_EQUAL:
2703 case BINOP_NOTEQUAL:
2704 case BINOP_LESS:
2705 case BINOP_GTR:
2706 case BINOP_LEQ:
2707 case BINOP_GEQ:
14f9c5c9 2708
4c4b4cd2
PH
2709 case BINOP_REPEAT:
2710 case BINOP_SUBSCRIPT:
2711 case BINOP_COMMA:
40c8aaa9
JB
2712 *pos += 1;
2713 nargs = 2;
2714 break;
14f9c5c9 2715
4c4b4cd2
PH
2716 case UNOP_NEG:
2717 case UNOP_PLUS:
2718 case UNOP_LOGICAL_NOT:
2719 case UNOP_ABS:
2720 case UNOP_IND:
2721 *pos += 1;
2722 nargs = 1;
2723 break;
14f9c5c9 2724
4c4b4cd2
PH
2725 case OP_LONG:
2726 case OP_DOUBLE:
2727 case OP_VAR_VALUE:
2728 *pos += 4;
2729 break;
14f9c5c9 2730
4c4b4cd2
PH
2731 case OP_TYPE:
2732 case OP_BOOL:
2733 case OP_LAST:
4c4b4cd2
PH
2734 case OP_INTERNALVAR:
2735 *pos += 3;
2736 break;
14f9c5c9 2737
4c4b4cd2
PH
2738 case UNOP_MEMVAL:
2739 *pos += 3;
2740 nargs = 1;
2741 break;
2742
67f3407f
DJ
2743 case OP_REGISTER:
2744 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2745 break;
2746
4c4b4cd2
PH
2747 case STRUCTOP_STRUCT:
2748 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2749 nargs = 1;
2750 break;
2751
4c4b4cd2 2752 case TERNOP_SLICE:
4c4b4cd2
PH
2753 *pos += 1;
2754 nargs = 3;
2755 break;
2756
52ce6436 2757 case OP_STRING:
14f9c5c9 2758 break;
4c4b4cd2
PH
2759
2760 default:
323e0a4a 2761 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
2762 }
2763
76a01679 2764 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
2765 for (i = 0; i < nargs; i += 1)
2766 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2767 argvec[i] = NULL;
2768 exp = *expp;
2769
2770 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
2771 switch (op)
2772 {
2773 default:
2774 break;
2775
14f9c5c9 2776 case OP_VAR_VALUE:
4c4b4cd2 2777 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
2778 {
2779 struct ada_symbol_info *candidates;
2780 int n_candidates;
2781
2782 n_candidates =
2783 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2784 (exp->elts[pc + 2].symbol),
2785 exp->elts[pc + 1].block, VAR_DOMAIN,
2786 &candidates);
2787
2788 if (n_candidates > 1)
2789 {
2790 /* Types tend to get re-introduced locally, so if there
2791 are any local symbols that are not types, first filter
2792 out all types. */
2793 int j;
2794 for (j = 0; j < n_candidates; j += 1)
2795 switch (SYMBOL_CLASS (candidates[j].sym))
2796 {
2797 case LOC_REGISTER:
2798 case LOC_ARG:
2799 case LOC_REF_ARG:
76a01679
JB
2800 case LOC_REGPARM_ADDR:
2801 case LOC_LOCAL:
76a01679 2802 case LOC_COMPUTED:
76a01679
JB
2803 goto FoundNonType;
2804 default:
2805 break;
2806 }
2807 FoundNonType:
2808 if (j < n_candidates)
2809 {
2810 j = 0;
2811 while (j < n_candidates)
2812 {
2813 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2814 {
2815 candidates[j] = candidates[n_candidates - 1];
2816 n_candidates -= 1;
2817 }
2818 else
2819 j += 1;
2820 }
2821 }
2822 }
2823
2824 if (n_candidates == 0)
323e0a4a 2825 error (_("No definition found for %s"),
76a01679
JB
2826 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2827 else if (n_candidates == 1)
2828 i = 0;
2829 else if (deprocedure_p
2830 && !is_nonfunction (candidates, n_candidates))
2831 {
06d5cf63
JB
2832 i = ada_resolve_function
2833 (candidates, n_candidates, NULL, 0,
2834 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2835 context_type);
76a01679 2836 if (i < 0)
323e0a4a 2837 error (_("Could not find a match for %s"),
76a01679
JB
2838 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2839 }
2840 else
2841 {
323e0a4a 2842 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
2843 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2844 user_select_syms (candidates, n_candidates, 1);
2845 i = 0;
2846 }
2847
2848 exp->elts[pc + 1].block = candidates[i].block;
2849 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
2850 if (innermost_block == NULL
2851 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
2852 innermost_block = candidates[i].block;
2853 }
2854
2855 if (deprocedure_p
2856 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2857 == TYPE_CODE_FUNC))
2858 {
2859 replace_operator_with_call (expp, pc, 0, 0,
2860 exp->elts[pc + 2].symbol,
2861 exp->elts[pc + 1].block);
2862 exp = *expp;
2863 }
14f9c5c9
AS
2864 break;
2865
2866 case OP_FUNCALL:
2867 {
4c4b4cd2 2868 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 2869 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
2870 {
2871 struct ada_symbol_info *candidates;
2872 int n_candidates;
2873
2874 n_candidates =
76a01679
JB
2875 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2876 (exp->elts[pc + 5].symbol),
2877 exp->elts[pc + 4].block, VAR_DOMAIN,
2878 &candidates);
4c4b4cd2
PH
2879 if (n_candidates == 1)
2880 i = 0;
2881 else
2882 {
06d5cf63
JB
2883 i = ada_resolve_function
2884 (candidates, n_candidates,
2885 argvec, nargs,
2886 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2887 context_type);
4c4b4cd2 2888 if (i < 0)
323e0a4a 2889 error (_("Could not find a match for %s"),
4c4b4cd2
PH
2890 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2891 }
2892
2893 exp->elts[pc + 4].block = candidates[i].block;
2894 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
2895 if (innermost_block == NULL
2896 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
2897 innermost_block = candidates[i].block;
2898 }
14f9c5c9
AS
2899 }
2900 break;
2901 case BINOP_ADD:
2902 case BINOP_SUB:
2903 case BINOP_MUL:
2904 case BINOP_DIV:
2905 case BINOP_REM:
2906 case BINOP_MOD:
2907 case BINOP_CONCAT:
2908 case BINOP_BITWISE_AND:
2909 case BINOP_BITWISE_IOR:
2910 case BINOP_BITWISE_XOR:
2911 case BINOP_EQUAL:
2912 case BINOP_NOTEQUAL:
2913 case BINOP_LESS:
2914 case BINOP_GTR:
2915 case BINOP_LEQ:
2916 case BINOP_GEQ:
2917 case BINOP_EXP:
2918 case UNOP_NEG:
2919 case UNOP_PLUS:
2920 case UNOP_LOGICAL_NOT:
2921 case UNOP_ABS:
2922 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
2923 {
2924 struct ada_symbol_info *candidates;
2925 int n_candidates;
2926
2927 n_candidates =
2928 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2929 (struct block *) NULL, VAR_DOMAIN,
2930 &candidates);
2931 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 2932 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
2933 if (i < 0)
2934 break;
2935
76a01679
JB
2936 replace_operator_with_call (expp, pc, nargs, 1,
2937 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
2938 exp = *expp;
2939 }
14f9c5c9 2940 break;
4c4b4cd2
PH
2941
2942 case OP_TYPE:
b3dbf008 2943 case OP_REGISTER:
4c4b4cd2 2944 return NULL;
14f9c5c9
AS
2945 }
2946
2947 *pos = pc;
2948 return evaluate_subexp_type (exp, pos);
2949}
2950
2951/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2
PH
2952 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2953 a non-pointer. A type of 'void' (which is never a valid expression type)
2954 by convention matches anything. */
14f9c5c9 2955/* The term "match" here is rather loose. The match is heuristic and
4c4b4cd2 2956 liberal. FIXME: TOO liberal, in fact. */
14f9c5c9
AS
2957
2958static int
4dc81987 2959ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 2960{
61ee279c
PH
2961 ftype = ada_check_typedef (ftype);
2962 atype = ada_check_typedef (atype);
14f9c5c9
AS
2963
2964 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2965 ftype = TYPE_TARGET_TYPE (ftype);
2966 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2967 atype = TYPE_TARGET_TYPE (atype);
2968
d2e4a39e 2969 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
14f9c5c9
AS
2970 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2971 return 1;
2972
d2e4a39e 2973 switch (TYPE_CODE (ftype))
14f9c5c9
AS
2974 {
2975 default:
2976 return 1;
2977 case TYPE_CODE_PTR:
2978 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
2979 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2980 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 2981 else
1265e4aa
JB
2982 return (may_deref
2983 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
2984 case TYPE_CODE_INT:
2985 case TYPE_CODE_ENUM:
2986 case TYPE_CODE_RANGE:
2987 switch (TYPE_CODE (atype))
4c4b4cd2
PH
2988 {
2989 case TYPE_CODE_INT:
2990 case TYPE_CODE_ENUM:
2991 case TYPE_CODE_RANGE:
2992 return 1;
2993 default:
2994 return 0;
2995 }
14f9c5c9
AS
2996
2997 case TYPE_CODE_ARRAY:
d2e4a39e 2998 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 2999 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3000
3001 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3002 if (ada_is_array_descriptor_type (ftype))
3003 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3004 || ada_is_array_descriptor_type (atype));
14f9c5c9 3005 else
4c4b4cd2
PH
3006 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3007 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3008
3009 case TYPE_CODE_UNION:
3010 case TYPE_CODE_FLT:
3011 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3012 }
3013}
3014
3015/* Return non-zero if the formals of FUNC "sufficiently match" the
3016 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3017 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3018 argument function. */
14f9c5c9
AS
3019
3020static int
d2e4a39e 3021ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3022{
3023 int i;
d2e4a39e 3024 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3025
1265e4aa
JB
3026 if (SYMBOL_CLASS (func) == LOC_CONST
3027 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3028 return (n_actuals == 0);
3029 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3030 return 0;
3031
3032 if (TYPE_NFIELDS (func_type) != n_actuals)
3033 return 0;
3034
3035 for (i = 0; i < n_actuals; i += 1)
3036 {
4c4b4cd2 3037 if (actuals[i] == NULL)
76a01679
JB
3038 return 0;
3039 else
3040 {
61ee279c 3041 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
df407dfe 3042 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3043
76a01679
JB
3044 if (!ada_type_match (ftype, atype, 1))
3045 return 0;
3046 }
14f9c5c9
AS
3047 }
3048 return 1;
3049}
3050
3051/* False iff function type FUNC_TYPE definitely does not produce a value
3052 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3053 FUNC_TYPE is not a valid function type with a non-null return type
3054 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3055
3056static int
d2e4a39e 3057return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3058{
d2e4a39e 3059 struct type *return_type;
14f9c5c9
AS
3060
3061 if (func_type == NULL)
3062 return 1;
3063
4c4b4cd2
PH
3064 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3065 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3066 else
3067 return_type = base_type (func_type);
14f9c5c9
AS
3068 if (return_type == NULL)
3069 return 1;
3070
4c4b4cd2 3071 context_type = base_type (context_type);
14f9c5c9
AS
3072
3073 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3074 return context_type == NULL || return_type == context_type;
3075 else if (context_type == NULL)
3076 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3077 else
3078 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3079}
3080
3081
4c4b4cd2 3082/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3083 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3084 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3085 that returns that type, then eliminate matches that don't. If
3086 CONTEXT_TYPE is void and there is at least one match that does not
3087 return void, eliminate all matches that do.
3088
14f9c5c9
AS
3089 Asks the user if there is more than one match remaining. Returns -1
3090 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3091 solely for messages. May re-arrange and modify SYMS in
3092 the process; the index returned is for the modified vector. */
14f9c5c9 3093
4c4b4cd2
PH
3094static int
3095ada_resolve_function (struct ada_symbol_info syms[],
3096 int nsyms, struct value **args, int nargs,
3097 const char *name, struct type *context_type)
14f9c5c9 3098{
30b15541 3099 int fallback;
14f9c5c9 3100 int k;
4c4b4cd2 3101 int m; /* Number of hits */
14f9c5c9 3102
d2e4a39e 3103 m = 0;
30b15541
UW
3104 /* In the first pass of the loop, we only accept functions matching
3105 context_type. If none are found, we add a second pass of the loop
3106 where every function is accepted. */
3107 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3108 {
3109 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3110 {
61ee279c 3111 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3112
3113 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3114 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3115 {
3116 syms[m] = syms[k];
3117 m += 1;
3118 }
3119 }
14f9c5c9
AS
3120 }
3121
3122 if (m == 0)
3123 return -1;
3124 else if (m > 1)
3125 {
323e0a4a 3126 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3127 user_select_syms (syms, m, 1);
14f9c5c9
AS
3128 return 0;
3129 }
3130 return 0;
3131}
3132
4c4b4cd2
PH
3133/* Returns true (non-zero) iff decoded name N0 should appear before N1
3134 in a listing of choices during disambiguation (see sort_choices, below).
3135 The idea is that overloadings of a subprogram name from the
3136 same package should sort in their source order. We settle for ordering
3137 such symbols by their trailing number (__N or $N). */
3138
14f9c5c9 3139static int
4c4b4cd2 3140encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3141{
3142 if (N1 == NULL)
3143 return 0;
3144 else if (N0 == NULL)
3145 return 1;
3146 else
3147 {
3148 int k0, k1;
d2e4a39e 3149 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3150 ;
d2e4a39e 3151 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3152 ;
d2e4a39e 3153 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3154 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3155 {
3156 int n0, n1;
3157 n0 = k0;
3158 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3159 n0 -= 1;
3160 n1 = k1;
3161 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3162 n1 -= 1;
3163 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3164 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3165 }
14f9c5c9
AS
3166 return (strcmp (N0, N1) < 0);
3167 }
3168}
d2e4a39e 3169
4c4b4cd2
PH
3170/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3171 encoded names. */
3172
d2e4a39e 3173static void
4c4b4cd2 3174sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3175{
4c4b4cd2 3176 int i;
d2e4a39e 3177 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3178 {
4c4b4cd2 3179 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3180 int j;
3181
d2e4a39e 3182 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3183 {
3184 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3185 SYMBOL_LINKAGE_NAME (sym.sym)))
3186 break;
3187 syms[j + 1] = syms[j];
3188 }
d2e4a39e 3189 syms[j + 1] = sym;
14f9c5c9
AS
3190 }
3191}
3192
4c4b4cd2
PH
3193/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3194 by asking the user (if necessary), returning the number selected,
3195 and setting the first elements of SYMS items. Error if no symbols
3196 selected. */
14f9c5c9
AS
3197
3198/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3199 to be re-integrated one of these days. */
14f9c5c9
AS
3200
3201int
4c4b4cd2 3202user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3203{
3204 int i;
d2e4a39e 3205 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3206 int n_chosen;
3207 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3208 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3209
3210 if (max_results < 1)
323e0a4a 3211 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3212 if (nsyms <= 1)
3213 return nsyms;
3214
717d2f5a
JB
3215 if (select_mode == multiple_symbols_cancel)
3216 error (_("\
3217canceled because the command is ambiguous\n\
3218See set/show multiple-symbol."));
3219
3220 /* If select_mode is "all", then return all possible symbols.
3221 Only do that if more than one symbol can be selected, of course.
3222 Otherwise, display the menu as usual. */
3223 if (select_mode == multiple_symbols_all && max_results > 1)
3224 return nsyms;
3225
323e0a4a 3226 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3227 if (max_results > 1)
323e0a4a 3228 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3229
4c4b4cd2 3230 sort_choices (syms, nsyms);
14f9c5c9
AS
3231
3232 for (i = 0; i < nsyms; i += 1)
3233 {
4c4b4cd2
PH
3234 if (syms[i].sym == NULL)
3235 continue;
3236
3237 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3238 {
76a01679
JB
3239 struct symtab_and_line sal =
3240 find_function_start_sal (syms[i].sym, 1);
323e0a4a
AC
3241 if (sal.symtab == NULL)
3242 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3243 i + first_choice,
3244 SYMBOL_PRINT_NAME (syms[i].sym),
3245 sal.line);
3246 else
3247 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3248 SYMBOL_PRINT_NAME (syms[i].sym),
3249 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3250 continue;
3251 }
d2e4a39e 3252 else
4c4b4cd2
PH
3253 {
3254 int is_enumeral =
3255 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3256 && SYMBOL_TYPE (syms[i].sym) != NULL
3257 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3258 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3259
3260 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3261 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3262 i + first_choice,
3263 SYMBOL_PRINT_NAME (syms[i].sym),
3264 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3265 else if (is_enumeral
3266 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3267 {
a3f17187 3268 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3269 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3270 gdb_stdout, -1, 0);
323e0a4a 3271 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3272 SYMBOL_PRINT_NAME (syms[i].sym));
3273 }
3274 else if (symtab != NULL)
3275 printf_unfiltered (is_enumeral
323e0a4a
AC
3276 ? _("[%d] %s in %s (enumeral)\n")
3277 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3278 i + first_choice,
3279 SYMBOL_PRINT_NAME (syms[i].sym),
3280 symtab->filename);
3281 else
3282 printf_unfiltered (is_enumeral
323e0a4a
AC
3283 ? _("[%d] %s (enumeral)\n")
3284 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3285 i + first_choice,
3286 SYMBOL_PRINT_NAME (syms[i].sym));
3287 }
14f9c5c9 3288 }
d2e4a39e 3289
14f9c5c9 3290 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3291 "overload-choice");
14f9c5c9
AS
3292
3293 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3294 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3295
3296 return n_chosen;
3297}
3298
3299/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3300 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3301 order in CHOICES[0 .. N-1], and return N.
3302
3303 The user types choices as a sequence of numbers on one line
3304 separated by blanks, encoding them as follows:
3305
4c4b4cd2 3306 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3307 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3308 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3309
4c4b4cd2 3310 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3311
3312 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3313 prompts (for use with the -f switch). */
14f9c5c9
AS
3314
3315int
d2e4a39e 3316get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3317 int is_all_choice, char *annotation_suffix)
14f9c5c9 3318{
d2e4a39e 3319 char *args;
0bcd0149 3320 char *prompt;
14f9c5c9
AS
3321 int n_chosen;
3322 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3323
14f9c5c9
AS
3324 prompt = getenv ("PS2");
3325 if (prompt == NULL)
0bcd0149 3326 prompt = "> ";
14f9c5c9 3327
0bcd0149 3328 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3329
14f9c5c9 3330 if (args == NULL)
323e0a4a 3331 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3332
3333 n_chosen = 0;
76a01679 3334
4c4b4cd2
PH
3335 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3336 order, as given in args. Choices are validated. */
14f9c5c9
AS
3337 while (1)
3338 {
d2e4a39e 3339 char *args2;
14f9c5c9
AS
3340 int choice, j;
3341
3342 while (isspace (*args))
4c4b4cd2 3343 args += 1;
14f9c5c9 3344 if (*args == '\0' && n_chosen == 0)
323e0a4a 3345 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3346 else if (*args == '\0')
4c4b4cd2 3347 break;
14f9c5c9
AS
3348
3349 choice = strtol (args, &args2, 10);
d2e4a39e 3350 if (args == args2 || choice < 0
4c4b4cd2 3351 || choice > n_choices + first_choice - 1)
323e0a4a 3352 error (_("Argument must be choice number"));
14f9c5c9
AS
3353 args = args2;
3354
d2e4a39e 3355 if (choice == 0)
323e0a4a 3356 error (_("cancelled"));
14f9c5c9
AS
3357
3358 if (choice < first_choice)
4c4b4cd2
PH
3359 {
3360 n_chosen = n_choices;
3361 for (j = 0; j < n_choices; j += 1)
3362 choices[j] = j;
3363 break;
3364 }
14f9c5c9
AS
3365 choice -= first_choice;
3366
d2e4a39e 3367 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3368 {
3369 }
14f9c5c9
AS
3370
3371 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3372 {
3373 int k;
3374 for (k = n_chosen - 1; k > j; k -= 1)
3375 choices[k + 1] = choices[k];
3376 choices[j + 1] = choice;
3377 n_chosen += 1;
3378 }
14f9c5c9
AS
3379 }
3380
3381 if (n_chosen > max_results)
323e0a4a 3382 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3383
14f9c5c9
AS
3384 return n_chosen;
3385}
3386
4c4b4cd2
PH
3387/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3388 on the function identified by SYM and BLOCK, and taking NARGS
3389 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3390
3391static void
d2e4a39e 3392replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3393 int oplen, struct symbol *sym,
3394 struct block *block)
14f9c5c9
AS
3395{
3396 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3397 symbol, -oplen for operator being replaced). */
d2e4a39e 3398 struct expression *newexp = (struct expression *)
14f9c5c9 3399 xmalloc (sizeof (struct expression)
4c4b4cd2 3400 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3401 struct expression *exp = *expp;
14f9c5c9
AS
3402
3403 newexp->nelts = exp->nelts + 7 - oplen;
3404 newexp->language_defn = exp->language_defn;
3405 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3406 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3407 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3408
3409 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3410 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3411
3412 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3413 newexp->elts[pc + 4].block = block;
3414 newexp->elts[pc + 5].symbol = sym;
3415
3416 *expp = newexp;
aacb1f0a 3417 xfree (exp);
d2e4a39e 3418}
14f9c5c9
AS
3419
3420/* Type-class predicates */
3421
4c4b4cd2
PH
3422/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3423 or FLOAT). */
14f9c5c9
AS
3424
3425static int
d2e4a39e 3426numeric_type_p (struct type *type)
14f9c5c9
AS
3427{
3428 if (type == NULL)
3429 return 0;
d2e4a39e
AS
3430 else
3431 {
3432 switch (TYPE_CODE (type))
4c4b4cd2
PH
3433 {
3434 case TYPE_CODE_INT:
3435 case TYPE_CODE_FLT:
3436 return 1;
3437 case TYPE_CODE_RANGE:
3438 return (type == TYPE_TARGET_TYPE (type)
3439 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3440 default:
3441 return 0;
3442 }
d2e4a39e 3443 }
14f9c5c9
AS
3444}
3445
4c4b4cd2 3446/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3447
3448static int
d2e4a39e 3449integer_type_p (struct type *type)
14f9c5c9
AS
3450{
3451 if (type == NULL)
3452 return 0;
d2e4a39e
AS
3453 else
3454 {
3455 switch (TYPE_CODE (type))
4c4b4cd2
PH
3456 {
3457 case TYPE_CODE_INT:
3458 return 1;
3459 case TYPE_CODE_RANGE:
3460 return (type == TYPE_TARGET_TYPE (type)
3461 || integer_type_p (TYPE_TARGET_TYPE (type)));
3462 default:
3463 return 0;
3464 }
d2e4a39e 3465 }
14f9c5c9
AS
3466}
3467
4c4b4cd2 3468/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3469
3470static int
d2e4a39e 3471scalar_type_p (struct type *type)
14f9c5c9
AS
3472{
3473 if (type == NULL)
3474 return 0;
d2e4a39e
AS
3475 else
3476 {
3477 switch (TYPE_CODE (type))
4c4b4cd2
PH
3478 {
3479 case TYPE_CODE_INT:
3480 case TYPE_CODE_RANGE:
3481 case TYPE_CODE_ENUM:
3482 case TYPE_CODE_FLT:
3483 return 1;
3484 default:
3485 return 0;
3486 }
d2e4a39e 3487 }
14f9c5c9
AS
3488}
3489
4c4b4cd2 3490/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3491
3492static int
d2e4a39e 3493discrete_type_p (struct type *type)
14f9c5c9
AS
3494{
3495 if (type == NULL)
3496 return 0;
d2e4a39e
AS
3497 else
3498 {
3499 switch (TYPE_CODE (type))
4c4b4cd2
PH
3500 {
3501 case TYPE_CODE_INT:
3502 case TYPE_CODE_RANGE:
3503 case TYPE_CODE_ENUM:
3504 return 1;
3505 default:
3506 return 0;
3507 }
d2e4a39e 3508 }
14f9c5c9
AS
3509}
3510
4c4b4cd2
PH
3511/* Returns non-zero if OP with operands in the vector ARGS could be
3512 a user-defined function. Errs on the side of pre-defined operators
3513 (i.e., result 0). */
14f9c5c9
AS
3514
3515static int
d2e4a39e 3516possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3517{
76a01679 3518 struct type *type0 =
df407dfe 3519 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3520 struct type *type1 =
df407dfe 3521 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3522
4c4b4cd2
PH
3523 if (type0 == NULL)
3524 return 0;
3525
14f9c5c9
AS
3526 switch (op)
3527 {
3528 default:
3529 return 0;
3530
3531 case BINOP_ADD:
3532 case BINOP_SUB:
3533 case BINOP_MUL:
3534 case BINOP_DIV:
d2e4a39e 3535 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3536
3537 case BINOP_REM:
3538 case BINOP_MOD:
3539 case BINOP_BITWISE_AND:
3540 case BINOP_BITWISE_IOR:
3541 case BINOP_BITWISE_XOR:
d2e4a39e 3542 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3543
3544 case BINOP_EQUAL:
3545 case BINOP_NOTEQUAL:
3546 case BINOP_LESS:
3547 case BINOP_GTR:
3548 case BINOP_LEQ:
3549 case BINOP_GEQ:
d2e4a39e 3550 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3551
3552 case BINOP_CONCAT:
ee90b9ab 3553 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3554
3555 case BINOP_EXP:
d2e4a39e 3556 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3557
3558 case UNOP_NEG:
3559 case UNOP_PLUS:
3560 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3561 case UNOP_ABS:
3562 return (!numeric_type_p (type0));
14f9c5c9
AS
3563
3564 }
3565}
3566\f
4c4b4cd2 3567 /* Renaming */
14f9c5c9 3568
aeb5907d
JB
3569/* NOTES:
3570
3571 1. In the following, we assume that a renaming type's name may
3572 have an ___XD suffix. It would be nice if this went away at some
3573 point.
3574 2. We handle both the (old) purely type-based representation of
3575 renamings and the (new) variable-based encoding. At some point,
3576 it is devoutly to be hoped that the former goes away
3577 (FIXME: hilfinger-2007-07-09).
3578 3. Subprogram renamings are not implemented, although the XRS
3579 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3580
3581/* If SYM encodes a renaming,
3582
3583 <renaming> renames <renamed entity>,
3584
3585 sets *LEN to the length of the renamed entity's name,
3586 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3587 the string describing the subcomponent selected from the renamed
3588 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3589 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3590 are undefined). Otherwise, returns a value indicating the category
3591 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3592 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3593 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3594 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3595 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3596 may be NULL, in which case they are not assigned.
3597
3598 [Currently, however, GCC does not generate subprogram renamings.] */
3599
3600enum ada_renaming_category
3601ada_parse_renaming (struct symbol *sym,
3602 const char **renamed_entity, int *len,
3603 const char **renaming_expr)
3604{
3605 enum ada_renaming_category kind;
3606 const char *info;
3607 const char *suffix;
3608
3609 if (sym == NULL)
3610 return ADA_NOT_RENAMING;
3611 switch (SYMBOL_CLASS (sym))
14f9c5c9 3612 {
aeb5907d
JB
3613 default:
3614 return ADA_NOT_RENAMING;
3615 case LOC_TYPEDEF:
3616 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3617 renamed_entity, len, renaming_expr);
3618 case LOC_LOCAL:
3619 case LOC_STATIC:
3620 case LOC_COMPUTED:
3621 case LOC_OPTIMIZED_OUT:
3622 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3623 if (info == NULL)
3624 return ADA_NOT_RENAMING;
3625 switch (info[5])
3626 {
3627 case '_':
3628 kind = ADA_OBJECT_RENAMING;
3629 info += 6;
3630 break;
3631 case 'E':
3632 kind = ADA_EXCEPTION_RENAMING;
3633 info += 7;
3634 break;
3635 case 'P':
3636 kind = ADA_PACKAGE_RENAMING;
3637 info += 7;
3638 break;
3639 case 'S':
3640 kind = ADA_SUBPROGRAM_RENAMING;
3641 info += 7;
3642 break;
3643 default:
3644 return ADA_NOT_RENAMING;
3645 }
14f9c5c9 3646 }
4c4b4cd2 3647
aeb5907d
JB
3648 if (renamed_entity != NULL)
3649 *renamed_entity = info;
3650 suffix = strstr (info, "___XE");
3651 if (suffix == NULL || suffix == info)
3652 return ADA_NOT_RENAMING;
3653 if (len != NULL)
3654 *len = strlen (info) - strlen (suffix);
3655 suffix += 5;
3656 if (renaming_expr != NULL)
3657 *renaming_expr = suffix;
3658 return kind;
3659}
3660
3661/* Assuming TYPE encodes a renaming according to the old encoding in
3662 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3663 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3664 ADA_NOT_RENAMING otherwise. */
3665static enum ada_renaming_category
3666parse_old_style_renaming (struct type *type,
3667 const char **renamed_entity, int *len,
3668 const char **renaming_expr)
3669{
3670 enum ada_renaming_category kind;
3671 const char *name;
3672 const char *info;
3673 const char *suffix;
14f9c5c9 3674
aeb5907d
JB
3675 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3676 || TYPE_NFIELDS (type) != 1)
3677 return ADA_NOT_RENAMING;
14f9c5c9 3678
aeb5907d
JB
3679 name = type_name_no_tag (type);
3680 if (name == NULL)
3681 return ADA_NOT_RENAMING;
3682
3683 name = strstr (name, "___XR");
3684 if (name == NULL)
3685 return ADA_NOT_RENAMING;
3686 switch (name[5])
3687 {
3688 case '\0':
3689 case '_':
3690 kind = ADA_OBJECT_RENAMING;
3691 break;
3692 case 'E':
3693 kind = ADA_EXCEPTION_RENAMING;
3694 break;
3695 case 'P':
3696 kind = ADA_PACKAGE_RENAMING;
3697 break;
3698 case 'S':
3699 kind = ADA_SUBPROGRAM_RENAMING;
3700 break;
3701 default:
3702 return ADA_NOT_RENAMING;
3703 }
14f9c5c9 3704
aeb5907d
JB
3705 info = TYPE_FIELD_NAME (type, 0);
3706 if (info == NULL)
3707 return ADA_NOT_RENAMING;
3708 if (renamed_entity != NULL)
3709 *renamed_entity = info;
3710 suffix = strstr (info, "___XE");
3711 if (renaming_expr != NULL)
3712 *renaming_expr = suffix + 5;
3713 if (suffix == NULL || suffix == info)
3714 return ADA_NOT_RENAMING;
3715 if (len != NULL)
3716 *len = suffix - info;
3717 return kind;
3718}
52ce6436 3719
14f9c5c9 3720\f
d2e4a39e 3721
4c4b4cd2 3722 /* Evaluation: Function Calls */
14f9c5c9 3723
4c4b4cd2
PH
3724/* Return an lvalue containing the value VAL. This is the identity on
3725 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3726 on the stack, using and updating *SP as the stack pointer, and
42ae5230 3727 returning an lvalue whose value_address points to the copy. */
14f9c5c9 3728
d2e4a39e 3729static struct value *
4a399546 3730ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3731{
c3e5cd34
PH
3732 if (! VALUE_LVAL (val))
3733 {
df407dfe 3734 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
c3e5cd34
PH
3735
3736 /* The following is taken from the structure-return code in
3737 call_function_by_hand. FIXME: Therefore, some refactoring seems
3738 indicated. */
4a399546 3739 if (gdbarch_inner_than (gdbarch, 1, 2))
c3e5cd34 3740 {
42ae5230 3741 /* Stack grows downward. Align SP and value_address (val) after
c3e5cd34
PH
3742 reserving sufficient space. */
3743 *sp -= len;
4a399546
UW
3744 if (gdbarch_frame_align_p (gdbarch))
3745 *sp = gdbarch_frame_align (gdbarch, *sp);
42ae5230 3746 set_value_address (val, *sp);
c3e5cd34
PH
3747 }
3748 else
3749 {
3750 /* Stack grows upward. Align the frame, allocate space, and
3751 then again, re-align the frame. */
4a399546
UW
3752 if (gdbarch_frame_align_p (gdbarch))
3753 *sp = gdbarch_frame_align (gdbarch, *sp);
42ae5230 3754 set_value_address (val, *sp);
c3e5cd34 3755 *sp += len;
4a399546
UW
3756 if (gdbarch_frame_align_p (gdbarch))
3757 *sp = gdbarch_frame_align (gdbarch, *sp);
c3e5cd34 3758 }
a84a8a0d 3759 VALUE_LVAL (val) = lval_memory;
14f9c5c9 3760
42ae5230 3761 write_memory (value_address (val), value_contents_raw (val), len);
c3e5cd34 3762 }
14f9c5c9
AS
3763
3764 return val;
3765}
3766
3767/* Return the value ACTUAL, converted to be an appropriate value for a
3768 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3769 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3770 values not residing in memory, updating it as needed. */
14f9c5c9 3771
a93c0eb6
JB
3772struct value *
3773ada_convert_actual (struct value *actual, struct type *formal_type0,
4a399546 3774 struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3775{
df407dfe 3776 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3777 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3778 struct type *formal_target =
3779 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3780 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
3781 struct type *actual_target =
3782 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 3783 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 3784
4c4b4cd2 3785 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 3786 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4a399546 3787 return make_array_descriptor (formal_type, actual, gdbarch, sp);
a84a8a0d
JB
3788 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3789 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 3790 {
a84a8a0d 3791 struct value *result;
14f9c5c9 3792 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 3793 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 3794 result = desc_data (actual);
14f9c5c9 3795 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
3796 {
3797 if (VALUE_LVAL (actual) != lval_memory)
3798 {
3799 struct value *val;
df407dfe 3800 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 3801 val = allocate_value (actual_type);
990a07ab 3802 memcpy ((char *) value_contents_raw (val),
0fd88904 3803 (char *) value_contents (actual),
4c4b4cd2 3804 TYPE_LENGTH (actual_type));
4a399546 3805 actual = ensure_lval (val, gdbarch, sp);
4c4b4cd2 3806 }
a84a8a0d 3807 result = value_addr (actual);
4c4b4cd2 3808 }
a84a8a0d
JB
3809 else
3810 return actual;
3811 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
3812 }
3813 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3814 return ada_value_ind (actual);
3815
3816 return actual;
3817}
3818
3819
4c4b4cd2
PH
3820/* Push a descriptor of type TYPE for array value ARR on the stack at
3821 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 3822 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
3823 to-descriptor type rather than a descriptor type), a struct value *
3824 representing a pointer to this descriptor. */
14f9c5c9 3825
d2e4a39e 3826static struct value *
4a399546
UW
3827make_array_descriptor (struct type *type, struct value *arr,
3828 struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3829{
d2e4a39e
AS
3830 struct type *bounds_type = desc_bounds_type (type);
3831 struct type *desc_type = desc_base_type (type);
3832 struct value *descriptor = allocate_value (desc_type);
3833 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 3834 int i;
d2e4a39e 3835
df407dfe 3836 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
14f9c5c9 3837 {
0fd88904 3838 modify_general_field (value_contents_writeable (bounds),
1eea4ebd 3839 ada_array_bound (arr, i, 0),
4c4b4cd2
PH
3840 desc_bound_bitpos (bounds_type, i, 0),
3841 desc_bound_bitsize (bounds_type, i, 0));
0fd88904 3842 modify_general_field (value_contents_writeable (bounds),
1eea4ebd 3843 ada_array_bound (arr, i, 1),
4c4b4cd2
PH
3844 desc_bound_bitpos (bounds_type, i, 1),
3845 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 3846 }
d2e4a39e 3847
4a399546 3848 bounds = ensure_lval (bounds, gdbarch, sp);
d2e4a39e 3849
0fd88904 3850 modify_general_field (value_contents_writeable (descriptor),
4a399546 3851 value_address (ensure_lval (arr, gdbarch, sp)),
76a01679
JB
3852 fat_pntr_data_bitpos (desc_type),
3853 fat_pntr_data_bitsize (desc_type));
4c4b4cd2 3854
0fd88904 3855 modify_general_field (value_contents_writeable (descriptor),
42ae5230 3856 value_address (bounds),
4c4b4cd2
PH
3857 fat_pntr_bounds_bitpos (desc_type),
3858 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 3859
4a399546 3860 descriptor = ensure_lval (descriptor, gdbarch, sp);
14f9c5c9
AS
3861
3862 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3863 return value_addr (descriptor);
3864 else
3865 return descriptor;
3866}
14f9c5c9 3867\f
963a6417
PH
3868/* Dummy definitions for an experimental caching module that is not
3869 * used in the public sources. */
96d887e8 3870
96d887e8
PH
3871static int
3872lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 3873 struct symbol **sym, struct block **block)
96d887e8
PH
3874{
3875 return 0;
3876}
3877
3878static void
3879cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 3880 struct block *block)
96d887e8
PH
3881{
3882}
4c4b4cd2
PH
3883\f
3884 /* Symbol Lookup */
3885
3886/* Return the result of a standard (literal, C-like) lookup of NAME in
3887 given DOMAIN, visible from lexical block BLOCK. */
3888
3889static struct symbol *
3890standard_lookup (const char *name, const struct block *block,
3891 domain_enum domain)
3892{
3893 struct symbol *sym;
4c4b4cd2 3894
2570f2b7 3895 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 3896 return sym;
2570f2b7
UW
3897 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3898 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
3899 return sym;
3900}
3901
3902
3903/* Non-zero iff there is at least one non-function/non-enumeral symbol
3904 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3905 since they contend in overloading in the same way. */
3906static int
3907is_nonfunction (struct ada_symbol_info syms[], int n)
3908{
3909 int i;
3910
3911 for (i = 0; i < n; i += 1)
3912 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3913 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3914 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
3915 return 1;
3916
3917 return 0;
3918}
3919
3920/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 3921 struct types. Otherwise, they may not. */
14f9c5c9
AS
3922
3923static int
d2e4a39e 3924equiv_types (struct type *type0, struct type *type1)
14f9c5c9 3925{
d2e4a39e 3926 if (type0 == type1)
14f9c5c9 3927 return 1;
d2e4a39e 3928 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
3929 || TYPE_CODE (type0) != TYPE_CODE (type1))
3930 return 0;
d2e4a39e 3931 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
3932 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3933 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 3934 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 3935 return 1;
d2e4a39e 3936
14f9c5c9
AS
3937 return 0;
3938}
3939
3940/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 3941 no more defined than that of SYM1. */
14f9c5c9
AS
3942
3943static int
d2e4a39e 3944lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
3945{
3946 if (sym0 == sym1)
3947 return 1;
176620f1 3948 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
3949 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3950 return 0;
3951
d2e4a39e 3952 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
3953 {
3954 case LOC_UNDEF:
3955 return 1;
3956 case LOC_TYPEDEF:
3957 {
4c4b4cd2
PH
3958 struct type *type0 = SYMBOL_TYPE (sym0);
3959 struct type *type1 = SYMBOL_TYPE (sym1);
3960 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3961 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3962 int len0 = strlen (name0);
3963 return
3964 TYPE_CODE (type0) == TYPE_CODE (type1)
3965 && (equiv_types (type0, type1)
3966 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3967 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
3968 }
3969 case LOC_CONST:
3970 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 3971 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
3972 default:
3973 return 0;
14f9c5c9
AS
3974 }
3975}
3976
4c4b4cd2
PH
3977/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3978 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
3979
3980static void
76a01679
JB
3981add_defn_to_vec (struct obstack *obstackp,
3982 struct symbol *sym,
2570f2b7 3983 struct block *block)
14f9c5c9
AS
3984{
3985 int i;
3986 size_t tmp;
4c4b4cd2 3987 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 3988
529cad9c
PH
3989 /* Do not try to complete stub types, as the debugger is probably
3990 already scanning all symbols matching a certain name at the
3991 time when this function is called. Trying to replace the stub
3992 type by its associated full type will cause us to restart a scan
3993 which may lead to an infinite recursion. Instead, the client
3994 collecting the matching symbols will end up collecting several
3995 matches, with at least one of them complete. It can then filter
3996 out the stub ones if needed. */
3997
4c4b4cd2
PH
3998 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3999 {
4000 if (lesseq_defined_than (sym, prevDefns[i].sym))
4001 return;
4002 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4003 {
4004 prevDefns[i].sym = sym;
4005 prevDefns[i].block = block;
4c4b4cd2 4006 return;
76a01679 4007 }
4c4b4cd2
PH
4008 }
4009
4010 {
4011 struct ada_symbol_info info;
4012
4013 info.sym = sym;
4014 info.block = block;
4c4b4cd2
PH
4015 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4016 }
4017}
4018
4019/* Number of ada_symbol_info structures currently collected in
4020 current vector in *OBSTACKP. */
4021
76a01679
JB
4022static int
4023num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4024{
4025 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4026}
4027
4028/* Vector of ada_symbol_info structures currently collected in current
4029 vector in *OBSTACKP. If FINISH, close off the vector and return
4030 its final address. */
4031
76a01679 4032static struct ada_symbol_info *
4c4b4cd2
PH
4033defns_collected (struct obstack *obstackp, int finish)
4034{
4035 if (finish)
4036 return obstack_finish (obstackp);
4037 else
4038 return (struct ada_symbol_info *) obstack_base (obstackp);
4039}
4040
96d887e8
PH
4041/* Look, in partial_symtab PST, for symbol NAME in given namespace.
4042 Check the global symbols if GLOBAL, the static symbols if not.
4043 Do wild-card match if WILD. */
4c4b4cd2 4044
96d887e8
PH
4045static struct partial_symbol *
4046ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4047 int global, domain_enum namespace, int wild)
4c4b4cd2 4048{
96d887e8
PH
4049 struct partial_symbol **start;
4050 int name_len = strlen (name);
4051 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4052 int i;
4c4b4cd2 4053
96d887e8 4054 if (length == 0)
4c4b4cd2 4055 {
96d887e8 4056 return (NULL);
4c4b4cd2
PH
4057 }
4058
96d887e8
PH
4059 start = (global ?
4060 pst->objfile->global_psymbols.list + pst->globals_offset :
4061 pst->objfile->static_psymbols.list + pst->statics_offset);
4c4b4cd2 4062
96d887e8 4063 if (wild)
4c4b4cd2 4064 {
96d887e8
PH
4065 for (i = 0; i < length; i += 1)
4066 {
4067 struct partial_symbol *psym = start[i];
4c4b4cd2 4068
5eeb2539
AR
4069 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4070 SYMBOL_DOMAIN (psym), namespace)
1265e4aa 4071 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
96d887e8
PH
4072 return psym;
4073 }
4074 return NULL;
4c4b4cd2 4075 }
96d887e8
PH
4076 else
4077 {
4078 if (global)
4079 {
4080 int U;
4081 i = 0;
4082 U = length - 1;
4083 while (U - i > 4)
4084 {
4085 int M = (U + i) >> 1;
4086 struct partial_symbol *psym = start[M];
4087 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4088 i = M + 1;
4089 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4090 U = M - 1;
4091 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4092 i = M + 1;
4093 else
4094 U = M;
4095 }
4096 }
4097 else
4098 i = 0;
4c4b4cd2 4099
96d887e8
PH
4100 while (i < length)
4101 {
4102 struct partial_symbol *psym = start[i];
4c4b4cd2 4103
5eeb2539
AR
4104 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4105 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4106 {
4107 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4c4b4cd2 4108
96d887e8
PH
4109 if (cmp < 0)
4110 {
4111 if (global)
4112 break;
4113 }
4114 else if (cmp == 0
4115 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4116 + name_len))
96d887e8
PH
4117 return psym;
4118 }
4119 i += 1;
4120 }
4c4b4cd2 4121
96d887e8
PH
4122 if (global)
4123 {
4124 int U;
4125 i = 0;
4126 U = length - 1;
4127 while (U - i > 4)
4128 {
4129 int M = (U + i) >> 1;
4130 struct partial_symbol *psym = start[M];
4131 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4132 i = M + 1;
4133 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4134 U = M - 1;
4135 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4136 i = M + 1;
4137 else
4138 U = M;
4139 }
4140 }
4141 else
4142 i = 0;
4c4b4cd2 4143
96d887e8
PH
4144 while (i < length)
4145 {
4146 struct partial_symbol *psym = start[i];
4c4b4cd2 4147
5eeb2539
AR
4148 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4149 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4150 {
4151 int cmp;
4c4b4cd2 4152
96d887e8
PH
4153 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4154 if (cmp == 0)
4155 {
4156 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4157 if (cmp == 0)
4158 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
76a01679 4159 name_len);
96d887e8 4160 }
4c4b4cd2 4161
96d887e8
PH
4162 if (cmp < 0)
4163 {
4164 if (global)
4165 break;
4166 }
4167 else if (cmp == 0
4168 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4169 + name_len + 5))
96d887e8
PH
4170 return psym;
4171 }
4172 i += 1;
4173 }
4174 }
4175 return NULL;
4c4b4cd2
PH
4176}
4177
96d887e8
PH
4178/* Return a minimal symbol matching NAME according to Ada decoding
4179 rules. Returns NULL if there is no such minimal symbol. Names
4180 prefixed with "standard__" are handled specially: "standard__" is
4181 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4182
96d887e8
PH
4183struct minimal_symbol *
4184ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4185{
4c4b4cd2 4186 struct objfile *objfile;
96d887e8
PH
4187 struct minimal_symbol *msymbol;
4188 int wild_match;
4c4b4cd2 4189
96d887e8 4190 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4191 {
96d887e8 4192 name += sizeof ("standard__") - 1;
4c4b4cd2 4193 wild_match = 0;
4c4b4cd2
PH
4194 }
4195 else
96d887e8 4196 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4197
96d887e8
PH
4198 ALL_MSYMBOLS (objfile, msymbol)
4199 {
4200 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4201 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4202 return msymbol;
4203 }
4c4b4cd2 4204
96d887e8
PH
4205 return NULL;
4206}
4c4b4cd2 4207
96d887e8
PH
4208/* For all subprograms that statically enclose the subprogram of the
4209 selected frame, add symbols matching identifier NAME in DOMAIN
4210 and their blocks to the list of data in OBSTACKP, as for
4211 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4212 wildcard prefix. */
4c4b4cd2 4213
96d887e8
PH
4214static void
4215add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4216 const char *name, domain_enum namespace,
96d887e8
PH
4217 int wild_match)
4218{
96d887e8 4219}
14f9c5c9 4220
96d887e8
PH
4221/* True if TYPE is definitely an artificial type supplied to a symbol
4222 for which no debugging information was given in the symbol file. */
14f9c5c9 4223
96d887e8
PH
4224static int
4225is_nondebugging_type (struct type *type)
4226{
4227 char *name = ada_type_name (type);
4228 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4229}
4c4b4cd2 4230
96d887e8
PH
4231/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4232 duplicate other symbols in the list (The only case I know of where
4233 this happens is when object files containing stabs-in-ecoff are
4234 linked with files containing ordinary ecoff debugging symbols (or no
4235 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4236 Returns the number of items in the modified list. */
4c4b4cd2 4237
96d887e8
PH
4238static int
4239remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4240{
4241 int i, j;
4c4b4cd2 4242
96d887e8
PH
4243 i = 0;
4244 while (i < nsyms)
4245 {
339c13b6
JB
4246 int remove = 0;
4247
4248 /* If two symbols have the same name and one of them is a stub type,
4249 the get rid of the stub. */
4250
4251 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4252 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4253 {
4254 for (j = 0; j < nsyms; j++)
4255 {
4256 if (j != i
4257 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4258 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4259 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4260 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4261 remove = 1;
4262 }
4263 }
4264
4265 /* Two symbols with the same name, same class and same address
4266 should be identical. */
4267
4268 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4269 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4270 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4271 {
4272 for (j = 0; j < nsyms; j += 1)
4273 {
4274 if (i != j
4275 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4276 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4277 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4278 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4279 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4280 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4281 remove = 1;
4c4b4cd2 4282 }
4c4b4cd2 4283 }
339c13b6
JB
4284
4285 if (remove)
4286 {
4287 for (j = i + 1; j < nsyms; j += 1)
4288 syms[j - 1] = syms[j];
4289 nsyms -= 1;
4290 }
4291
96d887e8 4292 i += 1;
14f9c5c9 4293 }
96d887e8 4294 return nsyms;
14f9c5c9
AS
4295}
4296
96d887e8
PH
4297/* Given a type that corresponds to a renaming entity, use the type name
4298 to extract the scope (package name or function name, fully qualified,
4299 and following the GNAT encoding convention) where this renaming has been
4300 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4301
96d887e8
PH
4302static char *
4303xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4304{
96d887e8
PH
4305 /* The renaming types adhere to the following convention:
4306 <scope>__<rename>___<XR extension>.
4307 So, to extract the scope, we search for the "___XR" extension,
4308 and then backtrack until we find the first "__". */
76a01679 4309
96d887e8
PH
4310 const char *name = type_name_no_tag (renaming_type);
4311 char *suffix = strstr (name, "___XR");
4312 char *last;
4313 int scope_len;
4314 char *scope;
14f9c5c9 4315
96d887e8
PH
4316 /* Now, backtrack a bit until we find the first "__". Start looking
4317 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4318
96d887e8
PH
4319 for (last = suffix - 3; last > name; last--)
4320 if (last[0] == '_' && last[1] == '_')
4321 break;
76a01679 4322
96d887e8 4323 /* Make a copy of scope and return it. */
14f9c5c9 4324
96d887e8
PH
4325 scope_len = last - name;
4326 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4327
96d887e8
PH
4328 strncpy (scope, name, scope_len);
4329 scope[scope_len] = '\0';
4c4b4cd2 4330
96d887e8 4331 return scope;
4c4b4cd2
PH
4332}
4333
96d887e8 4334/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4335
96d887e8
PH
4336static int
4337is_package_name (const char *name)
4c4b4cd2 4338{
96d887e8
PH
4339 /* Here, We take advantage of the fact that no symbols are generated
4340 for packages, while symbols are generated for each function.
4341 So the condition for NAME represent a package becomes equivalent
4342 to NAME not existing in our list of symbols. There is only one
4343 small complication with library-level functions (see below). */
4c4b4cd2 4344
96d887e8 4345 char *fun_name;
76a01679 4346
96d887e8
PH
4347 /* If it is a function that has not been defined at library level,
4348 then we should be able to look it up in the symbols. */
4349 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4350 return 0;
14f9c5c9 4351
96d887e8
PH
4352 /* Library-level function names start with "_ada_". See if function
4353 "_ada_" followed by NAME can be found. */
14f9c5c9 4354
96d887e8 4355 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4356 functions names cannot contain "__" in them. */
96d887e8
PH
4357 if (strstr (name, "__") != NULL)
4358 return 0;
4c4b4cd2 4359
b435e160 4360 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4361
96d887e8
PH
4362 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4363}
14f9c5c9 4364
96d887e8 4365/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4366 not visible from FUNCTION_NAME. */
14f9c5c9 4367
96d887e8 4368static int
aeb5907d 4369old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4370{
aeb5907d
JB
4371 char *scope;
4372
4373 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4374 return 0;
4375
4376 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4377
96d887e8 4378 make_cleanup (xfree, scope);
14f9c5c9 4379
96d887e8
PH
4380 /* If the rename has been defined in a package, then it is visible. */
4381 if (is_package_name (scope))
aeb5907d 4382 return 0;
14f9c5c9 4383
96d887e8
PH
4384 /* Check that the rename is in the current function scope by checking
4385 that its name starts with SCOPE. */
76a01679 4386
96d887e8
PH
4387 /* If the function name starts with "_ada_", it means that it is
4388 a library-level function. Strip this prefix before doing the
4389 comparison, as the encoding for the renaming does not contain
4390 this prefix. */
4391 if (strncmp (function_name, "_ada_", 5) == 0)
4392 function_name += 5;
f26caa11 4393
aeb5907d 4394 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4395}
4396
aeb5907d
JB
4397/* Remove entries from SYMS that corresponds to a renaming entity that
4398 is not visible from the function associated with CURRENT_BLOCK or
4399 that is superfluous due to the presence of more specific renaming
4400 information. Places surviving symbols in the initial entries of
4401 SYMS and returns the number of surviving symbols.
96d887e8
PH
4402
4403 Rationale:
aeb5907d
JB
4404 First, in cases where an object renaming is implemented as a
4405 reference variable, GNAT may produce both the actual reference
4406 variable and the renaming encoding. In this case, we discard the
4407 latter.
4408
4409 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4410 entity. Unfortunately, STABS currently does not support the definition
4411 of types that are local to a given lexical block, so all renamings types
4412 are emitted at library level. As a consequence, if an application
4413 contains two renaming entities using the same name, and a user tries to
4414 print the value of one of these entities, the result of the ada symbol
4415 lookup will also contain the wrong renaming type.
f26caa11 4416
96d887e8
PH
4417 This function partially covers for this limitation by attempting to
4418 remove from the SYMS list renaming symbols that should be visible
4419 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4420 method with the current information available. The implementation
4421 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4422
4423 - When the user tries to print a rename in a function while there
4424 is another rename entity defined in a package: Normally, the
4425 rename in the function has precedence over the rename in the
4426 package, so the latter should be removed from the list. This is
4427 currently not the case.
4428
4429 - This function will incorrectly remove valid renames if
4430 the CURRENT_BLOCK corresponds to a function which symbol name
4431 has been changed by an "Export" pragma. As a consequence,
4432 the user will be unable to print such rename entities. */
4c4b4cd2 4433
14f9c5c9 4434static int
aeb5907d
JB
4435remove_irrelevant_renamings (struct ada_symbol_info *syms,
4436 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4437{
4438 struct symbol *current_function;
4439 char *current_function_name;
4440 int i;
aeb5907d
JB
4441 int is_new_style_renaming;
4442
4443 /* If there is both a renaming foo___XR... encoded as a variable and
4444 a simple variable foo in the same block, discard the latter.
4445 First, zero out such symbols, then compress. */
4446 is_new_style_renaming = 0;
4447 for (i = 0; i < nsyms; i += 1)
4448 {
4449 struct symbol *sym = syms[i].sym;
4450 struct block *block = syms[i].block;
4451 const char *name;
4452 const char *suffix;
4453
4454 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4455 continue;
4456 name = SYMBOL_LINKAGE_NAME (sym);
4457 suffix = strstr (name, "___XR");
4458
4459 if (suffix != NULL)
4460 {
4461 int name_len = suffix - name;
4462 int j;
4463 is_new_style_renaming = 1;
4464 for (j = 0; j < nsyms; j += 1)
4465 if (i != j && syms[j].sym != NULL
4466 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4467 name_len) == 0
4468 && block == syms[j].block)
4469 syms[j].sym = NULL;
4470 }
4471 }
4472 if (is_new_style_renaming)
4473 {
4474 int j, k;
4475
4476 for (j = k = 0; j < nsyms; j += 1)
4477 if (syms[j].sym != NULL)
4478 {
4479 syms[k] = syms[j];
4480 k += 1;
4481 }
4482 return k;
4483 }
4c4b4cd2
PH
4484
4485 /* Extract the function name associated to CURRENT_BLOCK.
4486 Abort if unable to do so. */
76a01679 4487
4c4b4cd2
PH
4488 if (current_block == NULL)
4489 return nsyms;
76a01679 4490
7f0df278 4491 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4492 if (current_function == NULL)
4493 return nsyms;
4494
4495 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4496 if (current_function_name == NULL)
4497 return nsyms;
4498
4499 /* Check each of the symbols, and remove it from the list if it is
4500 a type corresponding to a renaming that is out of the scope of
4501 the current block. */
4502
4503 i = 0;
4504 while (i < nsyms)
4505 {
aeb5907d
JB
4506 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4507 == ADA_OBJECT_RENAMING
4508 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4509 {
4510 int j;
aeb5907d 4511 for (j = i + 1; j < nsyms; j += 1)
76a01679 4512 syms[j - 1] = syms[j];
4c4b4cd2
PH
4513 nsyms -= 1;
4514 }
4515 else
4516 i += 1;
4517 }
4518
4519 return nsyms;
4520}
4521
339c13b6
JB
4522/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4523 whose name and domain match NAME and DOMAIN respectively.
4524 If no match was found, then extend the search to "enclosing"
4525 routines (in other words, if we're inside a nested function,
4526 search the symbols defined inside the enclosing functions).
4527
4528 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4529
4530static void
4531ada_add_local_symbols (struct obstack *obstackp, const char *name,
4532 struct block *block, domain_enum domain,
4533 int wild_match)
4534{
4535 int block_depth = 0;
4536
4537 while (block != NULL)
4538 {
4539 block_depth += 1;
4540 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4541
4542 /* If we found a non-function match, assume that's the one. */
4543 if (is_nonfunction (defns_collected (obstackp, 0),
4544 num_defns_collected (obstackp)))
4545 return;
4546
4547 block = BLOCK_SUPERBLOCK (block);
4548 }
4549
4550 /* If no luck so far, try to find NAME as a local symbol in some lexically
4551 enclosing subprogram. */
4552 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4553 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4554}
4555
4556/* Add to OBSTACKP all non-local symbols whose name and domain match
4557 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4558 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4559
4560static void
4561ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4562 domain_enum domain, int global,
4563 int wild_match)
4564{
4565 struct objfile *objfile;
4566 struct partial_symtab *ps;
4567
4568 ALL_PSYMTABS (objfile, ps)
4569 {
4570 QUIT;
4571 if (ps->readin
4572 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4573 {
4574 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4575 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4576
4577 if (s == NULL || !s->primary)
4578 continue;
4579 ada_add_block_symbols (obstackp,
4580 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4581 name, domain, objfile, wild_match);
4582 }
4583 }
4584}
4585
4c4b4cd2
PH
4586/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4587 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4588 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4589 indicating the symbols found and the blocks and symbol tables (if
4590 any) in which they were found. This vector are transient---good only to
4591 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4592 symbol match within the nest of blocks whose innermost member is BLOCK0,
4593 is the one match returned (no other matches in that or
4594 enclosing blocks is returned). If there are any matches in or
4595 surrounding BLOCK0, then these alone are returned. Otherwise, the
4596 search extends to global and file-scope (static) symbol tables.
4597 Names prefixed with "standard__" are handled specially: "standard__"
4598 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4599
4600int
4c4b4cd2 4601ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4602 domain_enum namespace,
4603 struct ada_symbol_info **results)
14f9c5c9
AS
4604{
4605 struct symbol *sym;
14f9c5c9 4606 struct block *block;
4c4b4cd2 4607 const char *name;
4c4b4cd2 4608 int wild_match;
14f9c5c9 4609 int cacheIfUnique;
4c4b4cd2 4610 int ndefns;
14f9c5c9 4611
4c4b4cd2
PH
4612 obstack_free (&symbol_list_obstack, NULL);
4613 obstack_init (&symbol_list_obstack);
14f9c5c9 4614
14f9c5c9
AS
4615 cacheIfUnique = 0;
4616
4617 /* Search specified block and its superiors. */
4618
4c4b4cd2
PH
4619 wild_match = (strstr (name0, "__") == NULL);
4620 name = name0;
76a01679
JB
4621 block = (struct block *) block0; /* FIXME: No cast ought to be
4622 needed, but adding const will
4623 have a cascade effect. */
339c13b6
JB
4624
4625 /* Special case: If the user specifies a symbol name inside package
4626 Standard, do a non-wild matching of the symbol name without
4627 the "standard__" prefix. This was primarily introduced in order
4628 to allow the user to specifically access the standard exceptions
4629 using, for instance, Standard.Constraint_Error when Constraint_Error
4630 is ambiguous (due to the user defining its own Constraint_Error
4631 entity inside its program). */
4c4b4cd2
PH
4632 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4633 {
4634 wild_match = 0;
4635 block = NULL;
4636 name = name0 + sizeof ("standard__") - 1;
4637 }
4638
339c13b6 4639 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4640
339c13b6
JB
4641 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4642 wild_match);
4c4b4cd2 4643 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4644 goto done;
d2e4a39e 4645
339c13b6
JB
4646 /* No non-global symbols found. Check our cache to see if we have
4647 already performed this search before. If we have, then return
4648 the same result. */
4649
14f9c5c9 4650 cacheIfUnique = 1;
2570f2b7 4651 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4652 {
4653 if (sym != NULL)
2570f2b7 4654 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4655 goto done;
4656 }
14f9c5c9 4657
339c13b6
JB
4658 /* Search symbols from all global blocks. */
4659
4660 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4661 wild_match);
d2e4a39e 4662
4c4b4cd2 4663 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4664 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4665
4c4b4cd2 4666 if (num_defns_collected (&symbol_list_obstack) == 0)
339c13b6
JB
4667 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4668 wild_match);
14f9c5c9 4669
4c4b4cd2
PH
4670done:
4671 ndefns = num_defns_collected (&symbol_list_obstack);
4672 *results = defns_collected (&symbol_list_obstack, 1);
4673
4674 ndefns = remove_extra_symbols (*results, ndefns);
4675
d2e4a39e 4676 if (ndefns == 0)
2570f2b7 4677 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4678
4c4b4cd2 4679 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4680 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4681
aeb5907d 4682 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4683
14f9c5c9
AS
4684 return ndefns;
4685}
4686
d2e4a39e 4687struct symbol *
aeb5907d 4688ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4689 domain_enum namespace, struct block **block_found)
14f9c5c9 4690{
4c4b4cd2 4691 struct ada_symbol_info *candidates;
14f9c5c9
AS
4692 int n_candidates;
4693
aeb5907d 4694 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4695
4696 if (n_candidates == 0)
4697 return NULL;
4c4b4cd2 4698
aeb5907d
JB
4699 if (block_found != NULL)
4700 *block_found = candidates[0].block;
4c4b4cd2 4701
21b556f4 4702 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4703}
4704
4705/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4706 scope and in global scopes, or NULL if none. NAME is folded and
4707 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4708 choosing the first symbol if there are multiple choices.
4709 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4710 table in which the symbol was found (in both cases, these
4711 assignments occur only if the pointers are non-null). */
4712struct symbol *
4713ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4714 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4715{
4716 if (is_a_field_of_this != NULL)
4717 *is_a_field_of_this = 0;
4718
4719 return
4720 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4721 block0, namespace, NULL);
4c4b4cd2 4722}
14f9c5c9 4723
4c4b4cd2
PH
4724static struct symbol *
4725ada_lookup_symbol_nonlocal (const char *name,
76a01679
JB
4726 const char *linkage_name,
4727 const struct block *block,
21b556f4 4728 const domain_enum domain)
4c4b4cd2
PH
4729{
4730 if (linkage_name == NULL)
4731 linkage_name = name;
76a01679 4732 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
21b556f4 4733 NULL);
14f9c5c9
AS
4734}
4735
4736
4c4b4cd2
PH
4737/* True iff STR is a possible encoded suffix of a normal Ada name
4738 that is to be ignored for matching purposes. Suffixes of parallel
4739 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4740 are given by any of the regular expressions:
4c4b4cd2 4741
babe1480
JB
4742 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4743 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4744 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4745 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4746
4747 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4748 match is performed. This sequence is used to differentiate homonyms,
4749 is an optional part of a valid name suffix. */
4c4b4cd2 4750
14f9c5c9 4751static int
d2e4a39e 4752is_name_suffix (const char *str)
14f9c5c9
AS
4753{
4754 int k;
4c4b4cd2
PH
4755 const char *matching;
4756 const int len = strlen (str);
4757
babe1480
JB
4758 /* Skip optional leading __[0-9]+. */
4759
4c4b4cd2
PH
4760 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4761 {
babe1480
JB
4762 str += 3;
4763 while (isdigit (str[0]))
4764 str += 1;
4c4b4cd2 4765 }
babe1480
JB
4766
4767 /* [.$][0-9]+ */
4c4b4cd2 4768
babe1480 4769 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 4770 {
babe1480 4771 matching = str + 1;
4c4b4cd2
PH
4772 while (isdigit (matching[0]))
4773 matching += 1;
4774 if (matching[0] == '\0')
4775 return 1;
4776 }
4777
4778 /* ___[0-9]+ */
babe1480 4779
4c4b4cd2
PH
4780 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4781 {
4782 matching = str + 3;
4783 while (isdigit (matching[0]))
4784 matching += 1;
4785 if (matching[0] == '\0')
4786 return 1;
4787 }
4788
529cad9c
PH
4789#if 0
4790 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4791 with a N at the end. Unfortunately, the compiler uses the same
4792 convention for other internal types it creates. So treating
4793 all entity names that end with an "N" as a name suffix causes
4794 some regressions. For instance, consider the case of an enumerated
4795 type. To support the 'Image attribute, it creates an array whose
4796 name ends with N.
4797 Having a single character like this as a suffix carrying some
4798 information is a bit risky. Perhaps we should change the encoding
4799 to be something like "_N" instead. In the meantime, do not do
4800 the following check. */
4801 /* Protected Object Subprograms */
4802 if (len == 1 && str [0] == 'N')
4803 return 1;
4804#endif
4805
4806 /* _E[0-9]+[bs]$ */
4807 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4808 {
4809 matching = str + 3;
4810 while (isdigit (matching[0]))
4811 matching += 1;
4812 if ((matching[0] == 'b' || matching[0] == 's')
4813 && matching [1] == '\0')
4814 return 1;
4815 }
4816
4c4b4cd2
PH
4817 /* ??? We should not modify STR directly, as we are doing below. This
4818 is fine in this case, but may become problematic later if we find
4819 that this alternative did not work, and want to try matching
4820 another one from the begining of STR. Since we modified it, we
4821 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
4822 if (str[0] == 'X')
4823 {
4824 str += 1;
d2e4a39e 4825 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
4826 {
4827 if (str[0] != 'n' && str[0] != 'b')
4828 return 0;
4829 str += 1;
4830 }
14f9c5c9 4831 }
babe1480 4832
14f9c5c9
AS
4833 if (str[0] == '\000')
4834 return 1;
babe1480 4835
d2e4a39e 4836 if (str[0] == '_')
14f9c5c9
AS
4837 {
4838 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 4839 return 0;
d2e4a39e 4840 if (str[2] == '_')
4c4b4cd2 4841 {
61ee279c
PH
4842 if (strcmp (str + 3, "JM") == 0)
4843 return 1;
4844 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4845 the LJM suffix in favor of the JM one. But we will
4846 still accept LJM as a valid suffix for a reasonable
4847 amount of time, just to allow ourselves to debug programs
4848 compiled using an older version of GNAT. */
4c4b4cd2
PH
4849 if (strcmp (str + 3, "LJM") == 0)
4850 return 1;
4851 if (str[3] != 'X')
4852 return 0;
1265e4aa
JB
4853 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4854 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
4855 return 1;
4856 if (str[4] == 'R' && str[5] != 'T')
4857 return 1;
4858 return 0;
4859 }
4860 if (!isdigit (str[2]))
4861 return 0;
4862 for (k = 3; str[k] != '\0'; k += 1)
4863 if (!isdigit (str[k]) && str[k] != '_')
4864 return 0;
14f9c5c9
AS
4865 return 1;
4866 }
4c4b4cd2 4867 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 4868 {
4c4b4cd2
PH
4869 for (k = 2; str[k] != '\0'; k += 1)
4870 if (!isdigit (str[k]) && str[k] != '_')
4871 return 0;
14f9c5c9
AS
4872 return 1;
4873 }
4874 return 0;
4875}
d2e4a39e 4876
aeb5907d
JB
4877/* Return non-zero if the string starting at NAME and ending before
4878 NAME_END contains no capital letters. */
529cad9c
PH
4879
4880static int
4881is_valid_name_for_wild_match (const char *name0)
4882{
4883 const char *decoded_name = ada_decode (name0);
4884 int i;
4885
5823c3ef
JB
4886 /* If the decoded name starts with an angle bracket, it means that
4887 NAME0 does not follow the GNAT encoding format. It should then
4888 not be allowed as a possible wild match. */
4889 if (decoded_name[0] == '<')
4890 return 0;
4891
529cad9c
PH
4892 for (i=0; decoded_name[i] != '\0'; i++)
4893 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4894 return 0;
4895
4896 return 1;
4897}
4898
4c4b4cd2
PH
4899/* True if NAME represents a name of the form A1.A2....An, n>=1 and
4900 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4901 informational suffixes of NAME (i.e., for which is_name_suffix is
4902 true). */
4903
14f9c5c9 4904static int
4c4b4cd2 4905wild_match (const char *patn0, int patn_len, const char *name0)
14f9c5c9 4906{
5823c3ef
JB
4907 char* match;
4908 const char* start;
4909 start = name0;
4910 while (1)
14f9c5c9 4911 {
5823c3ef
JB
4912 match = strstr (start, patn0);
4913 if (match == NULL)
4914 return 0;
4915 if ((match == name0
4916 || match[-1] == '.'
4917 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4918 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4919 && is_name_suffix (match + patn_len))
4920 return (match == name0 || is_valid_name_for_wild_match (name0));
4921 start = match + 1;
96d887e8 4922 }
96d887e8
PH
4923}
4924
96d887e8
PH
4925/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4926 vector *defn_symbols, updating the list of symbols in OBSTACKP
4927 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4928 OBJFILE is the section containing BLOCK.
4929 SYMTAB is recorded with each symbol added. */
4930
4931static void
4932ada_add_block_symbols (struct obstack *obstackp,
76a01679 4933 struct block *block, const char *name,
96d887e8 4934 domain_enum domain, struct objfile *objfile,
2570f2b7 4935 int wild)
96d887e8
PH
4936{
4937 struct dict_iterator iter;
4938 int name_len = strlen (name);
4939 /* A matching argument symbol, if any. */
4940 struct symbol *arg_sym;
4941 /* Set true when we find a matching non-argument symbol. */
4942 int found_sym;
4943 struct symbol *sym;
4944
4945 arg_sym = NULL;
4946 found_sym = 0;
4947 if (wild)
4948 {
4949 struct symbol *sym;
4950 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 4951 {
5eeb2539
AR
4952 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4953 SYMBOL_DOMAIN (sym), domain)
1265e4aa 4954 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
76a01679 4955 {
2a2d4dc3
AS
4956 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4957 continue;
4958 else if (SYMBOL_IS_ARGUMENT (sym))
4959 arg_sym = sym;
4960 else
4961 {
76a01679
JB
4962 found_sym = 1;
4963 add_defn_to_vec (obstackp,
4964 fixup_symbol_section (sym, objfile),
2570f2b7 4965 block);
76a01679
JB
4966 }
4967 }
4968 }
96d887e8
PH
4969 }
4970 else
4971 {
4972 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 4973 {
5eeb2539
AR
4974 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4975 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
4976 {
4977 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4978 if (cmp == 0
4979 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4980 {
2a2d4dc3
AS
4981 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4982 {
4983 if (SYMBOL_IS_ARGUMENT (sym))
4984 arg_sym = sym;
4985 else
4986 {
4987 found_sym = 1;
4988 add_defn_to_vec (obstackp,
4989 fixup_symbol_section (sym, objfile),
4990 block);
4991 }
4992 }
76a01679
JB
4993 }
4994 }
4995 }
96d887e8
PH
4996 }
4997
4998 if (!found_sym && arg_sym != NULL)
4999 {
76a01679
JB
5000 add_defn_to_vec (obstackp,
5001 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5002 block);
96d887e8
PH
5003 }
5004
5005 if (!wild)
5006 {
5007 arg_sym = NULL;
5008 found_sym = 0;
5009
5010 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5011 {
5eeb2539
AR
5012 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5013 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5014 {
5015 int cmp;
5016
5017 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5018 if (cmp == 0)
5019 {
5020 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5021 if (cmp == 0)
5022 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5023 name_len);
5024 }
5025
5026 if (cmp == 0
5027 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5028 {
2a2d4dc3
AS
5029 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5030 {
5031 if (SYMBOL_IS_ARGUMENT (sym))
5032 arg_sym = sym;
5033 else
5034 {
5035 found_sym = 1;
5036 add_defn_to_vec (obstackp,
5037 fixup_symbol_section (sym, objfile),
5038 block);
5039 }
5040 }
76a01679
JB
5041 }
5042 }
76a01679 5043 }
96d887e8
PH
5044
5045 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5046 They aren't parameters, right? */
5047 if (!found_sym && arg_sym != NULL)
5048 {
5049 add_defn_to_vec (obstackp,
76a01679 5050 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5051 block);
96d887e8
PH
5052 }
5053 }
5054}
5055\f
41d27058
JB
5056
5057 /* Symbol Completion */
5058
5059/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5060 name in a form that's appropriate for the completion. The result
5061 does not need to be deallocated, but is only good until the next call.
5062
5063 TEXT_LEN is equal to the length of TEXT.
5064 Perform a wild match if WILD_MATCH is set.
5065 ENCODED should be set if TEXT represents the start of a symbol name
5066 in its encoded form. */
5067
5068static const char *
5069symbol_completion_match (const char *sym_name,
5070 const char *text, int text_len,
5071 int wild_match, int encoded)
5072{
5073 char *result;
5074 const int verbatim_match = (text[0] == '<');
5075 int match = 0;
5076
5077 if (verbatim_match)
5078 {
5079 /* Strip the leading angle bracket. */
5080 text = text + 1;
5081 text_len--;
5082 }
5083
5084 /* First, test against the fully qualified name of the symbol. */
5085
5086 if (strncmp (sym_name, text, text_len) == 0)
5087 match = 1;
5088
5089 if (match && !encoded)
5090 {
5091 /* One needed check before declaring a positive match is to verify
5092 that iff we are doing a verbatim match, the decoded version
5093 of the symbol name starts with '<'. Otherwise, this symbol name
5094 is not a suitable completion. */
5095 const char *sym_name_copy = sym_name;
5096 int has_angle_bracket;
5097
5098 sym_name = ada_decode (sym_name);
5099 has_angle_bracket = (sym_name[0] == '<');
5100 match = (has_angle_bracket == verbatim_match);
5101 sym_name = sym_name_copy;
5102 }
5103
5104 if (match && !verbatim_match)
5105 {
5106 /* When doing non-verbatim match, another check that needs to
5107 be done is to verify that the potentially matching symbol name
5108 does not include capital letters, because the ada-mode would
5109 not be able to understand these symbol names without the
5110 angle bracket notation. */
5111 const char *tmp;
5112
5113 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5114 if (*tmp != '\0')
5115 match = 0;
5116 }
5117
5118 /* Second: Try wild matching... */
5119
5120 if (!match && wild_match)
5121 {
5122 /* Since we are doing wild matching, this means that TEXT
5123 may represent an unqualified symbol name. We therefore must
5124 also compare TEXT against the unqualified name of the symbol. */
5125 sym_name = ada_unqualified_name (ada_decode (sym_name));
5126
5127 if (strncmp (sym_name, text, text_len) == 0)
5128 match = 1;
5129 }
5130
5131 /* Finally: If we found a mach, prepare the result to return. */
5132
5133 if (!match)
5134 return NULL;
5135
5136 if (verbatim_match)
5137 sym_name = add_angle_brackets (sym_name);
5138
5139 if (!encoded)
5140 sym_name = ada_decode (sym_name);
5141
5142 return sym_name;
5143}
5144
2ba95b9b
JB
5145typedef char *char_ptr;
5146DEF_VEC_P (char_ptr);
5147
41d27058
JB
5148/* A companion function to ada_make_symbol_completion_list().
5149 Check if SYM_NAME represents a symbol which name would be suitable
5150 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5151 it is appended at the end of the given string vector SV.
5152
5153 ORIG_TEXT is the string original string from the user command
5154 that needs to be completed. WORD is the entire command on which
5155 completion should be performed. These two parameters are used to
5156 determine which part of the symbol name should be added to the
5157 completion vector.
5158 if WILD_MATCH is set, then wild matching is performed.
5159 ENCODED should be set if TEXT represents a symbol name in its
5160 encoded formed (in which case the completion should also be
5161 encoded). */
5162
5163static void
d6565258 5164symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5165 const char *sym_name,
5166 const char *text, int text_len,
5167 const char *orig_text, const char *word,
5168 int wild_match, int encoded)
5169{
5170 const char *match = symbol_completion_match (sym_name, text, text_len,
5171 wild_match, encoded);
5172 char *completion;
5173
5174 if (match == NULL)
5175 return;
5176
5177 /* We found a match, so add the appropriate completion to the given
5178 string vector. */
5179
5180 if (word == orig_text)
5181 {
5182 completion = xmalloc (strlen (match) + 5);
5183 strcpy (completion, match);
5184 }
5185 else if (word > orig_text)
5186 {
5187 /* Return some portion of sym_name. */
5188 completion = xmalloc (strlen (match) + 5);
5189 strcpy (completion, match + (word - orig_text));
5190 }
5191 else
5192 {
5193 /* Return some of ORIG_TEXT plus sym_name. */
5194 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5195 strncpy (completion, word, orig_text - word);
5196 completion[orig_text - word] = '\0';
5197 strcat (completion, match);
5198 }
5199
d6565258 5200 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5201}
5202
5203/* Return a list of possible symbol names completing TEXT0. The list
5204 is NULL terminated. WORD is the entire command on which completion
5205 is made. */
5206
5207static char **
5208ada_make_symbol_completion_list (char *text0, char *word)
5209{
5210 char *text;
5211 int text_len;
5212 int wild_match;
5213 int encoded;
2ba95b9b 5214 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5215 struct symbol *sym;
5216 struct symtab *s;
5217 struct partial_symtab *ps;
5218 struct minimal_symbol *msymbol;
5219 struct objfile *objfile;
5220 struct block *b, *surrounding_static_block = 0;
5221 int i;
5222 struct dict_iterator iter;
5223
5224 if (text0[0] == '<')
5225 {
5226 text = xstrdup (text0);
5227 make_cleanup (xfree, text);
5228 text_len = strlen (text);
5229 wild_match = 0;
5230 encoded = 1;
5231 }
5232 else
5233 {
5234 text = xstrdup (ada_encode (text0));
5235 make_cleanup (xfree, text);
5236 text_len = strlen (text);
5237 for (i = 0; i < text_len; i++)
5238 text[i] = tolower (text[i]);
5239
5240 encoded = (strstr (text0, "__") != NULL);
5241 /* If the name contains a ".", then the user is entering a fully
5242 qualified entity name, and the match must not be done in wild
5243 mode. Similarly, if the user wants to complete what looks like
5244 an encoded name, the match must not be done in wild mode. */
5245 wild_match = (strchr (text0, '.') == NULL && !encoded);
5246 }
5247
5248 /* First, look at the partial symtab symbols. */
5249 ALL_PSYMTABS (objfile, ps)
5250 {
5251 struct partial_symbol **psym;
5252
5253 /* If the psymtab's been read in we'll get it when we search
5254 through the blockvector. */
5255 if (ps->readin)
5256 continue;
5257
5258 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5259 psym < (objfile->global_psymbols.list + ps->globals_offset
5260 + ps->n_global_syms); psym++)
5261 {
5262 QUIT;
d6565258 5263 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5264 text, text_len, text0, word,
5265 wild_match, encoded);
5266 }
5267
5268 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5269 psym < (objfile->static_psymbols.list + ps->statics_offset
5270 + ps->n_static_syms); psym++)
5271 {
5272 QUIT;
d6565258 5273 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5274 text, text_len, text0, word,
5275 wild_match, encoded);
5276 }
5277 }
5278
5279 /* At this point scan through the misc symbol vectors and add each
5280 symbol you find to the list. Eventually we want to ignore
5281 anything that isn't a text symbol (everything else will be
5282 handled by the psymtab code above). */
5283
5284 ALL_MSYMBOLS (objfile, msymbol)
5285 {
5286 QUIT;
d6565258 5287 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5288 text, text_len, text0, word, wild_match, encoded);
5289 }
5290
5291 /* Search upwards from currently selected frame (so that we can
5292 complete on local vars. */
5293
5294 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5295 {
5296 if (!BLOCK_SUPERBLOCK (b))
5297 surrounding_static_block = b; /* For elmin of dups */
5298
5299 ALL_BLOCK_SYMBOLS (b, iter, sym)
5300 {
d6565258 5301 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5302 text, text_len, text0, word,
5303 wild_match, encoded);
5304 }
5305 }
5306
5307 /* Go through the symtabs and check the externs and statics for
5308 symbols which match. */
5309
5310 ALL_SYMTABS (objfile, s)
5311 {
5312 QUIT;
5313 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5314 ALL_BLOCK_SYMBOLS (b, iter, sym)
5315 {
d6565258 5316 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5317 text, text_len, text0, word,
5318 wild_match, encoded);
5319 }
5320 }
5321
5322 ALL_SYMTABS (objfile, s)
5323 {
5324 QUIT;
5325 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5326 /* Don't do this block twice. */
5327 if (b == surrounding_static_block)
5328 continue;
5329 ALL_BLOCK_SYMBOLS (b, iter, sym)
5330 {
d6565258 5331 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5332 text, text_len, text0, word,
5333 wild_match, encoded);
5334 }
5335 }
5336
5337 /* Append the closing NULL entry. */
2ba95b9b 5338 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5339
2ba95b9b
JB
5340 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5341 return the copy. It's unfortunate that we have to make a copy
5342 of an array that we're about to destroy, but there is nothing much
5343 we can do about it. Fortunately, it's typically not a very large
5344 array. */
5345 {
5346 const size_t completions_size =
5347 VEC_length (char_ptr, completions) * sizeof (char *);
5348 char **result = malloc (completions_size);
5349
5350 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5351
5352 VEC_free (char_ptr, completions);
5353 return result;
5354 }
41d27058
JB
5355}
5356
963a6417 5357 /* Field Access */
96d887e8 5358
73fb9985
JB
5359/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5360 for tagged types. */
5361
5362static int
5363ada_is_dispatch_table_ptr_type (struct type *type)
5364{
5365 char *name;
5366
5367 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5368 return 0;
5369
5370 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5371 if (name == NULL)
5372 return 0;
5373
5374 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5375}
5376
963a6417
PH
5377/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5378 to be invisible to users. */
96d887e8 5379
963a6417
PH
5380int
5381ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5382{
963a6417
PH
5383 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5384 return 1;
73fb9985
JB
5385
5386 /* Check the name of that field. */
5387 {
5388 const char *name = TYPE_FIELD_NAME (type, field_num);
5389
5390 /* Anonymous field names should not be printed.
5391 brobecker/2007-02-20: I don't think this can actually happen
5392 but we don't want to print the value of annonymous fields anyway. */
5393 if (name == NULL)
5394 return 1;
5395
5396 /* A field named "_parent" is internally generated by GNAT for
5397 tagged types, and should not be printed either. */
5398 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5399 return 1;
5400 }
5401
5402 /* If this is the dispatch table of a tagged type, then ignore. */
5403 if (ada_is_tagged_type (type, 1)
5404 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5405 return 1;
5406
5407 /* Not a special field, so it should not be ignored. */
5408 return 0;
963a6417 5409}
96d887e8 5410
963a6417
PH
5411/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5412 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5413
963a6417
PH
5414int
5415ada_is_tagged_type (struct type *type, int refok)
5416{
5417 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5418}
96d887e8 5419
963a6417 5420/* True iff TYPE represents the type of X'Tag */
96d887e8 5421
963a6417
PH
5422int
5423ada_is_tag_type (struct type *type)
5424{
5425 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5426 return 0;
5427 else
96d887e8 5428 {
963a6417
PH
5429 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5430 return (name != NULL
5431 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5432 }
96d887e8
PH
5433}
5434
963a6417 5435/* The type of the tag on VAL. */
76a01679 5436
963a6417
PH
5437struct type *
5438ada_tag_type (struct value *val)
96d887e8 5439{
df407dfe 5440 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5441}
96d887e8 5442
963a6417 5443/* The value of the tag on VAL. */
96d887e8 5444
963a6417
PH
5445struct value *
5446ada_value_tag (struct value *val)
5447{
03ee6b2e 5448 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5449}
5450
963a6417
PH
5451/* The value of the tag on the object of type TYPE whose contents are
5452 saved at VALADDR, if it is non-null, or is at memory address
5453 ADDRESS. */
96d887e8 5454
963a6417 5455static struct value *
10a2c479 5456value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5457 const gdb_byte *valaddr,
963a6417 5458 CORE_ADDR address)
96d887e8 5459{
963a6417
PH
5460 int tag_byte_offset, dummy1, dummy2;
5461 struct type *tag_type;
5462 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5463 NULL, NULL, NULL))
96d887e8 5464 {
fc1a4b47 5465 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5466 ? NULL
5467 : valaddr + tag_byte_offset);
963a6417 5468 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5469
963a6417 5470 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5471 }
963a6417
PH
5472 return NULL;
5473}
96d887e8 5474
963a6417
PH
5475static struct type *
5476type_from_tag (struct value *tag)
5477{
5478 const char *type_name = ada_tag_name (tag);
5479 if (type_name != NULL)
5480 return ada_find_any_type (ada_encode (type_name));
5481 return NULL;
5482}
96d887e8 5483
963a6417
PH
5484struct tag_args
5485{
5486 struct value *tag;
5487 char *name;
5488};
4c4b4cd2 5489
529cad9c
PH
5490
5491static int ada_tag_name_1 (void *);
5492static int ada_tag_name_2 (struct tag_args *);
5493
4c4b4cd2
PH
5494/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5495 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5496 The value stored in ARGS->name is valid until the next call to
5497 ada_tag_name_1. */
5498
5499static int
5500ada_tag_name_1 (void *args0)
5501{
5502 struct tag_args *args = (struct tag_args *) args0;
5503 static char name[1024];
76a01679 5504 char *p;
4c4b4cd2
PH
5505 struct value *val;
5506 args->name = NULL;
03ee6b2e 5507 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5508 if (val == NULL)
5509 return ada_tag_name_2 (args);
03ee6b2e 5510 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5511 if (val == NULL)
5512 return 0;
5513 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5514 for (p = name; *p != '\0'; p += 1)
5515 if (isalpha (*p))
5516 *p = tolower (*p);
5517 args->name = name;
5518 return 0;
5519}
5520
5521/* Utility function for ada_tag_name_1 that tries the second
5522 representation for the dispatch table (in which there is no
5523 explicit 'tsd' field in the referent of the tag pointer, and instead
5524 the tsd pointer is stored just before the dispatch table. */
5525
5526static int
5527ada_tag_name_2 (struct tag_args *args)
5528{
5529 struct type *info_type;
5530 static char name[1024];
5531 char *p;
5532 struct value *val, *valp;
5533
5534 args->name = NULL;
5535 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5536 if (info_type == NULL)
5537 return 0;
5538 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5539 valp = value_cast (info_type, args->tag);
5540 if (valp == NULL)
5541 return 0;
2497b498 5542 val = value_ind (value_ptradd (valp, -1));
4c4b4cd2
PH
5543 if (val == NULL)
5544 return 0;
03ee6b2e 5545 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5546 if (val == NULL)
5547 return 0;
5548 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5549 for (p = name; *p != '\0'; p += 1)
5550 if (isalpha (*p))
5551 *p = tolower (*p);
5552 args->name = name;
5553 return 0;
5554}
5555
5556/* The type name of the dynamic type denoted by the 'tag value TAG, as
5557 * a C string. */
5558
5559const char *
5560ada_tag_name (struct value *tag)
5561{
5562 struct tag_args args;
df407dfe 5563 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5564 return NULL;
76a01679 5565 args.tag = tag;
4c4b4cd2
PH
5566 args.name = NULL;
5567 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5568 return args.name;
5569}
5570
5571/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5572
d2e4a39e 5573struct type *
ebf56fd3 5574ada_parent_type (struct type *type)
14f9c5c9
AS
5575{
5576 int i;
5577
61ee279c 5578 type = ada_check_typedef (type);
14f9c5c9
AS
5579
5580 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5581 return NULL;
5582
5583 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5584 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5585 {
5586 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5587
5588 /* If the _parent field is a pointer, then dereference it. */
5589 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5590 parent_type = TYPE_TARGET_TYPE (parent_type);
5591 /* If there is a parallel XVS type, get the actual base type. */
5592 parent_type = ada_get_base_type (parent_type);
5593
5594 return ada_check_typedef (parent_type);
5595 }
14f9c5c9
AS
5596
5597 return NULL;
5598}
5599
4c4b4cd2
PH
5600/* True iff field number FIELD_NUM of structure type TYPE contains the
5601 parent-type (inherited) fields of a derived type. Assumes TYPE is
5602 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5603
5604int
ebf56fd3 5605ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5606{
61ee279c 5607 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
4c4b4cd2
PH
5608 return (name != NULL
5609 && (strncmp (name, "PARENT", 6) == 0
5610 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5611}
5612
4c4b4cd2 5613/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5614 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5615 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5616 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5617 structures. */
14f9c5c9
AS
5618
5619int
ebf56fd3 5620ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5621{
d2e4a39e
AS
5622 const char *name = TYPE_FIELD_NAME (type, field_num);
5623 return (name != NULL
4c4b4cd2
PH
5624 && (strncmp (name, "PARENT", 6) == 0
5625 || strcmp (name, "REP") == 0
5626 || strncmp (name, "_parent", 7) == 0
5627 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5628}
5629
4c4b4cd2
PH
5630/* True iff field number FIELD_NUM of structure or union type TYPE
5631 is a variant wrapper. Assumes TYPE is a structure type with at least
5632 FIELD_NUM+1 fields. */
14f9c5c9
AS
5633
5634int
ebf56fd3 5635ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5636{
d2e4a39e 5637 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
14f9c5c9 5638 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5639 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5640 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5641 == TYPE_CODE_UNION)));
14f9c5c9
AS
5642}
5643
5644/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5645 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
5646 returns the type of the controlling discriminant for the variant.
5647 May return NULL if the type could not be found. */
14f9c5c9 5648
d2e4a39e 5649struct type *
ebf56fd3 5650ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5651{
d2e4a39e 5652 char *name = ada_variant_discrim_name (var_type);
7c964f07 5653 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
5654}
5655
4c4b4cd2 5656/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5657 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5658 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5659
5660int
ebf56fd3 5661ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5662{
d2e4a39e 5663 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5664 return (name != NULL && name[0] == 'O');
5665}
5666
5667/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5668 returns the name of the discriminant controlling the variant.
5669 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5670
d2e4a39e 5671char *
ebf56fd3 5672ada_variant_discrim_name (struct type *type0)
14f9c5c9 5673{
d2e4a39e 5674 static char *result = NULL;
14f9c5c9 5675 static size_t result_len = 0;
d2e4a39e
AS
5676 struct type *type;
5677 const char *name;
5678 const char *discrim_end;
5679 const char *discrim_start;
14f9c5c9
AS
5680
5681 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5682 type = TYPE_TARGET_TYPE (type0);
5683 else
5684 type = type0;
5685
5686 name = ada_type_name (type);
5687
5688 if (name == NULL || name[0] == '\000')
5689 return "";
5690
5691 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5692 discrim_end -= 1)
5693 {
4c4b4cd2
PH
5694 if (strncmp (discrim_end, "___XVN", 6) == 0)
5695 break;
14f9c5c9
AS
5696 }
5697 if (discrim_end == name)
5698 return "";
5699
d2e4a39e 5700 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
5701 discrim_start -= 1)
5702 {
d2e4a39e 5703 if (discrim_start == name + 1)
4c4b4cd2 5704 return "";
76a01679 5705 if ((discrim_start > name + 3
4c4b4cd2
PH
5706 && strncmp (discrim_start - 3, "___", 3) == 0)
5707 || discrim_start[-1] == '.')
5708 break;
14f9c5c9
AS
5709 }
5710
5711 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5712 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 5713 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
5714 return result;
5715}
5716
4c4b4cd2
PH
5717/* Scan STR for a subtype-encoded number, beginning at position K.
5718 Put the position of the character just past the number scanned in
5719 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5720 Return 1 if there was a valid number at the given position, and 0
5721 otherwise. A "subtype-encoded" number consists of the absolute value
5722 in decimal, followed by the letter 'm' to indicate a negative number.
5723 Assumes 0m does not occur. */
14f9c5c9
AS
5724
5725int
d2e4a39e 5726ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
5727{
5728 ULONGEST RU;
5729
d2e4a39e 5730 if (!isdigit (str[k]))
14f9c5c9
AS
5731 return 0;
5732
4c4b4cd2 5733 /* Do it the hard way so as not to make any assumption about
14f9c5c9 5734 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 5735 LONGEST. */
14f9c5c9
AS
5736 RU = 0;
5737 while (isdigit (str[k]))
5738 {
d2e4a39e 5739 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
5740 k += 1;
5741 }
5742
d2e4a39e 5743 if (str[k] == 'm')
14f9c5c9
AS
5744 {
5745 if (R != NULL)
4c4b4cd2 5746 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
5747 k += 1;
5748 }
5749 else if (R != NULL)
5750 *R = (LONGEST) RU;
5751
4c4b4cd2 5752 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
5753 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5754 number representable as a LONGEST (although either would probably work
5755 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 5756 above is always equivalent to the negative of RU. */
14f9c5c9
AS
5757
5758 if (new_k != NULL)
5759 *new_k = k;
5760 return 1;
5761}
5762
4c4b4cd2
PH
5763/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5764 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5765 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 5766
d2e4a39e 5767int
ebf56fd3 5768ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 5769{
d2e4a39e 5770 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5771 int p;
5772
5773 p = 0;
5774 while (1)
5775 {
d2e4a39e 5776 switch (name[p])
4c4b4cd2
PH
5777 {
5778 case '\0':
5779 return 0;
5780 case 'S':
5781 {
5782 LONGEST W;
5783 if (!ada_scan_number (name, p + 1, &W, &p))
5784 return 0;
5785 if (val == W)
5786 return 1;
5787 break;
5788 }
5789 case 'R':
5790 {
5791 LONGEST L, U;
5792 if (!ada_scan_number (name, p + 1, &L, &p)
5793 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5794 return 0;
5795 if (val >= L && val <= U)
5796 return 1;
5797 break;
5798 }
5799 case 'O':
5800 return 1;
5801 default:
5802 return 0;
5803 }
5804 }
5805}
5806
5807/* FIXME: Lots of redundancy below. Try to consolidate. */
5808
5809/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5810 ARG_TYPE, extract and return the value of one of its (non-static)
5811 fields. FIELDNO says which field. Differs from value_primitive_field
5812 only in that it can handle packed values of arbitrary type. */
14f9c5c9 5813
4c4b4cd2 5814static struct value *
d2e4a39e 5815ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 5816 struct type *arg_type)
14f9c5c9 5817{
14f9c5c9
AS
5818 struct type *type;
5819
61ee279c 5820 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
5821 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5822
4c4b4cd2 5823 /* Handle packed fields. */
14f9c5c9
AS
5824
5825 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5826 {
5827 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5828 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 5829
0fd88904 5830 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
5831 offset + bit_pos / 8,
5832 bit_pos % 8, bit_size, type);
14f9c5c9
AS
5833 }
5834 else
5835 return value_primitive_field (arg1, offset, fieldno, arg_type);
5836}
5837
52ce6436
PH
5838/* Find field with name NAME in object of type TYPE. If found,
5839 set the following for each argument that is non-null:
5840 - *FIELD_TYPE_P to the field's type;
5841 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5842 an object of that type;
5843 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5844 - *BIT_SIZE_P to its size in bits if the field is packed, and
5845 0 otherwise;
5846 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5847 fields up to but not including the desired field, or by the total
5848 number of fields if not found. A NULL value of NAME never
5849 matches; the function just counts visible fields in this case.
5850
5851 Returns 1 if found, 0 otherwise. */
5852
4c4b4cd2 5853static int
76a01679
JB
5854find_struct_field (char *name, struct type *type, int offset,
5855 struct type **field_type_p,
52ce6436
PH
5856 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5857 int *index_p)
4c4b4cd2
PH
5858{
5859 int i;
5860
61ee279c 5861 type = ada_check_typedef (type);
76a01679 5862
52ce6436
PH
5863 if (field_type_p != NULL)
5864 *field_type_p = NULL;
5865 if (byte_offset_p != NULL)
d5d6fca5 5866 *byte_offset_p = 0;
52ce6436
PH
5867 if (bit_offset_p != NULL)
5868 *bit_offset_p = 0;
5869 if (bit_size_p != NULL)
5870 *bit_size_p = 0;
5871
5872 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
5873 {
5874 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5875 int fld_offset = offset + bit_pos / 8;
5876 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 5877
4c4b4cd2
PH
5878 if (t_field_name == NULL)
5879 continue;
5880
52ce6436 5881 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
5882 {
5883 int bit_size = TYPE_FIELD_BITSIZE (type, i);
52ce6436
PH
5884 if (field_type_p != NULL)
5885 *field_type_p = TYPE_FIELD_TYPE (type, i);
5886 if (byte_offset_p != NULL)
5887 *byte_offset_p = fld_offset;
5888 if (bit_offset_p != NULL)
5889 *bit_offset_p = bit_pos % 8;
5890 if (bit_size_p != NULL)
5891 *bit_size_p = bit_size;
76a01679
JB
5892 return 1;
5893 }
4c4b4cd2
PH
5894 else if (ada_is_wrapper_field (type, i))
5895 {
52ce6436
PH
5896 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5897 field_type_p, byte_offset_p, bit_offset_p,
5898 bit_size_p, index_p))
76a01679
JB
5899 return 1;
5900 }
4c4b4cd2
PH
5901 else if (ada_is_variant_part (type, i))
5902 {
52ce6436
PH
5903 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5904 fixed type?? */
4c4b4cd2 5905 int j;
52ce6436
PH
5906 struct type *field_type
5907 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 5908
52ce6436 5909 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 5910 {
76a01679
JB
5911 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5912 fld_offset
5913 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5914 field_type_p, byte_offset_p,
52ce6436 5915 bit_offset_p, bit_size_p, index_p))
76a01679 5916 return 1;
4c4b4cd2
PH
5917 }
5918 }
52ce6436
PH
5919 else if (index_p != NULL)
5920 *index_p += 1;
4c4b4cd2
PH
5921 }
5922 return 0;
5923}
5924
52ce6436 5925/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 5926
52ce6436
PH
5927static int
5928num_visible_fields (struct type *type)
5929{
5930 int n;
5931 n = 0;
5932 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5933 return n;
5934}
14f9c5c9 5935
4c4b4cd2 5936/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
5937 and search in it assuming it has (class) type TYPE.
5938 If found, return value, else return NULL.
5939
4c4b4cd2 5940 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 5941
4c4b4cd2 5942static struct value *
d2e4a39e 5943ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 5944 struct type *type)
14f9c5c9
AS
5945{
5946 int i;
61ee279c 5947 type = ada_check_typedef (type);
14f9c5c9 5948
52ce6436 5949 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
5950 {
5951 char *t_field_name = TYPE_FIELD_NAME (type, i);
5952
5953 if (t_field_name == NULL)
4c4b4cd2 5954 continue;
14f9c5c9
AS
5955
5956 else if (field_name_match (t_field_name, name))
4c4b4cd2 5957 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
5958
5959 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 5960 {
06d5cf63
JB
5961 struct value *v = /* Do not let indent join lines here. */
5962 ada_search_struct_field (name, arg,
5963 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5964 TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
5965 if (v != NULL)
5966 return v;
5967 }
14f9c5c9
AS
5968
5969 else if (ada_is_variant_part (type, i))
4c4b4cd2 5970 {
52ce6436 5971 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 5972 int j;
61ee279c 5973 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
5974 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5975
52ce6436 5976 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 5977 {
06d5cf63
JB
5978 struct value *v = ada_search_struct_field /* Force line break. */
5979 (name, arg,
5980 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5981 TYPE_FIELD_TYPE (field_type, j));
4c4b4cd2
PH
5982 if (v != NULL)
5983 return v;
5984 }
5985 }
14f9c5c9
AS
5986 }
5987 return NULL;
5988}
d2e4a39e 5989
52ce6436
PH
5990static struct value *ada_index_struct_field_1 (int *, struct value *,
5991 int, struct type *);
5992
5993
5994/* Return field #INDEX in ARG, where the index is that returned by
5995 * find_struct_field through its INDEX_P argument. Adjust the address
5996 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5997 * If found, return value, else return NULL. */
5998
5999static struct value *
6000ada_index_struct_field (int index, struct value *arg, int offset,
6001 struct type *type)
6002{
6003 return ada_index_struct_field_1 (&index, arg, offset, type);
6004}
6005
6006
6007/* Auxiliary function for ada_index_struct_field. Like
6008 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6009 * *INDEX_P. */
6010
6011static struct value *
6012ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6013 struct type *type)
6014{
6015 int i;
6016 type = ada_check_typedef (type);
6017
6018 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6019 {
6020 if (TYPE_FIELD_NAME (type, i) == NULL)
6021 continue;
6022 else if (ada_is_wrapper_field (type, i))
6023 {
6024 struct value *v = /* Do not let indent join lines here. */
6025 ada_index_struct_field_1 (index_p, arg,
6026 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6027 TYPE_FIELD_TYPE (type, i));
6028 if (v != NULL)
6029 return v;
6030 }
6031
6032 else if (ada_is_variant_part (type, i))
6033 {
6034 /* PNH: Do we ever get here? See ada_search_struct_field,
6035 find_struct_field. */
6036 error (_("Cannot assign this kind of variant record"));
6037 }
6038 else if (*index_p == 0)
6039 return ada_value_primitive_field (arg, offset, i, type);
6040 else
6041 *index_p -= 1;
6042 }
6043 return NULL;
6044}
6045
4c4b4cd2
PH
6046/* Given ARG, a value of type (pointer or reference to a)*
6047 structure/union, extract the component named NAME from the ultimate
6048 target structure/union and return it as a value with its
f5938064 6049 appropriate type.
14f9c5c9 6050
4c4b4cd2
PH
6051 The routine searches for NAME among all members of the structure itself
6052 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6053 (e.g., '_parent').
6054
03ee6b2e
PH
6055 If NO_ERR, then simply return NULL in case of error, rather than
6056 calling error. */
14f9c5c9 6057
d2e4a39e 6058struct value *
03ee6b2e 6059ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6060{
4c4b4cd2 6061 struct type *t, *t1;
d2e4a39e 6062 struct value *v;
14f9c5c9 6063
4c4b4cd2 6064 v = NULL;
df407dfe 6065 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6066 if (TYPE_CODE (t) == TYPE_CODE_REF)
6067 {
6068 t1 = TYPE_TARGET_TYPE (t);
6069 if (t1 == NULL)
03ee6b2e 6070 goto BadValue;
61ee279c 6071 t1 = ada_check_typedef (t1);
4c4b4cd2 6072 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6073 {
994b9211 6074 arg = coerce_ref (arg);
76a01679
JB
6075 t = t1;
6076 }
4c4b4cd2 6077 }
14f9c5c9 6078
4c4b4cd2
PH
6079 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6080 {
6081 t1 = TYPE_TARGET_TYPE (t);
6082 if (t1 == NULL)
03ee6b2e 6083 goto BadValue;
61ee279c 6084 t1 = ada_check_typedef (t1);
4c4b4cd2 6085 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6086 {
6087 arg = value_ind (arg);
6088 t = t1;
6089 }
4c4b4cd2 6090 else
76a01679 6091 break;
4c4b4cd2 6092 }
14f9c5c9 6093
4c4b4cd2 6094 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6095 goto BadValue;
14f9c5c9 6096
4c4b4cd2
PH
6097 if (t1 == t)
6098 v = ada_search_struct_field (name, arg, 0, t);
6099 else
6100 {
6101 int bit_offset, bit_size, byte_offset;
6102 struct type *field_type;
6103 CORE_ADDR address;
6104
76a01679
JB
6105 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6106 address = value_as_address (arg);
4c4b4cd2 6107 else
0fd88904 6108 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6109
1ed6ede0 6110 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6111 if (find_struct_field (name, t1, 0,
6112 &field_type, &byte_offset, &bit_offset,
52ce6436 6113 &bit_size, NULL))
76a01679
JB
6114 {
6115 if (bit_size != 0)
6116 {
714e53ab
PH
6117 if (TYPE_CODE (t) == TYPE_CODE_REF)
6118 arg = ada_coerce_ref (arg);
6119 else
6120 arg = ada_value_ind (arg);
76a01679
JB
6121 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6122 bit_offset, bit_size,
6123 field_type);
6124 }
6125 else
f5938064 6126 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6127 }
6128 }
6129
03ee6b2e
PH
6130 if (v != NULL || no_err)
6131 return v;
6132 else
323e0a4a 6133 error (_("There is no member named %s."), name);
14f9c5c9 6134
03ee6b2e
PH
6135 BadValue:
6136 if (no_err)
6137 return NULL;
6138 else
6139 error (_("Attempt to extract a component of a value that is not a record."));
14f9c5c9
AS
6140}
6141
6142/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6143 If DISPP is non-null, add its byte displacement from the beginning of a
6144 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6145 work for packed fields).
6146
6147 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6148 followed by "___".
14f9c5c9 6149
4c4b4cd2
PH
6150 TYPE can be either a struct or union. If REFOK, TYPE may also
6151 be a (pointer or reference)+ to a struct or union, and the
6152 ultimate target type will be searched.
14f9c5c9
AS
6153
6154 Looks recursively into variant clauses and parent types.
6155
4c4b4cd2
PH
6156 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6157 TYPE is not a type of the right kind. */
14f9c5c9 6158
4c4b4cd2 6159static struct type *
76a01679
JB
6160ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6161 int noerr, int *dispp)
14f9c5c9
AS
6162{
6163 int i;
6164
6165 if (name == NULL)
6166 goto BadName;
6167
76a01679 6168 if (refok && type != NULL)
4c4b4cd2
PH
6169 while (1)
6170 {
61ee279c 6171 type = ada_check_typedef (type);
76a01679
JB
6172 if (TYPE_CODE (type) != TYPE_CODE_PTR
6173 && TYPE_CODE (type) != TYPE_CODE_REF)
6174 break;
6175 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6176 }
14f9c5c9 6177
76a01679 6178 if (type == NULL
1265e4aa
JB
6179 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6180 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6181 {
4c4b4cd2 6182 if (noerr)
76a01679 6183 return NULL;
4c4b4cd2 6184 else
76a01679
JB
6185 {
6186 target_terminal_ours ();
6187 gdb_flush (gdb_stdout);
323e0a4a
AC
6188 if (type == NULL)
6189 error (_("Type (null) is not a structure or union type"));
6190 else
6191 {
6192 /* XXX: type_sprint */
6193 fprintf_unfiltered (gdb_stderr, _("Type "));
6194 type_print (type, "", gdb_stderr, -1);
6195 error (_(" is not a structure or union type"));
6196 }
76a01679 6197 }
14f9c5c9
AS
6198 }
6199
6200 type = to_static_fixed_type (type);
6201
6202 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6203 {
6204 char *t_field_name = TYPE_FIELD_NAME (type, i);
6205 struct type *t;
6206 int disp;
d2e4a39e 6207
14f9c5c9 6208 if (t_field_name == NULL)
4c4b4cd2 6209 continue;
14f9c5c9
AS
6210
6211 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6212 {
6213 if (dispp != NULL)
6214 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6215 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6216 }
14f9c5c9
AS
6217
6218 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6219 {
6220 disp = 0;
6221 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6222 0, 1, &disp);
6223 if (t != NULL)
6224 {
6225 if (dispp != NULL)
6226 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6227 return t;
6228 }
6229 }
14f9c5c9
AS
6230
6231 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6232 {
6233 int j;
61ee279c 6234 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6235
6236 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6237 {
b1f33ddd
JB
6238 /* FIXME pnh 2008/01/26: We check for a field that is
6239 NOT wrapped in a struct, since the compiler sometimes
6240 generates these for unchecked variant types. Revisit
6241 if the compiler changes this practice. */
6242 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6243 disp = 0;
b1f33ddd
JB
6244 if (v_field_name != NULL
6245 && field_name_match (v_field_name, name))
6246 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6247 else
6248 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6249 name, 0, 1, &disp);
6250
4c4b4cd2
PH
6251 if (t != NULL)
6252 {
6253 if (dispp != NULL)
6254 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6255 return t;
6256 }
6257 }
6258 }
14f9c5c9
AS
6259
6260 }
6261
6262BadName:
d2e4a39e 6263 if (!noerr)
14f9c5c9
AS
6264 {
6265 target_terminal_ours ();
6266 gdb_flush (gdb_stdout);
323e0a4a
AC
6267 if (name == NULL)
6268 {
6269 /* XXX: type_sprint */
6270 fprintf_unfiltered (gdb_stderr, _("Type "));
6271 type_print (type, "", gdb_stderr, -1);
6272 error (_(" has no component named <null>"));
6273 }
6274 else
6275 {
6276 /* XXX: type_sprint */
6277 fprintf_unfiltered (gdb_stderr, _("Type "));
6278 type_print (type, "", gdb_stderr, -1);
6279 error (_(" has no component named %s"), name);
6280 }
14f9c5c9
AS
6281 }
6282
6283 return NULL;
6284}
6285
b1f33ddd
JB
6286/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6287 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6288 represents an unchecked union (that is, the variant part of a
6289 record that is named in an Unchecked_Union pragma). */
6290
6291static int
6292is_unchecked_variant (struct type *var_type, struct type *outer_type)
6293{
6294 char *discrim_name = ada_variant_discrim_name (var_type);
6295 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6296 == NULL);
6297}
6298
6299
14f9c5c9
AS
6300/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6301 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6302 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6303 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6304
d2e4a39e 6305int
ebf56fd3 6306ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6307 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6308{
6309 int others_clause;
6310 int i;
d2e4a39e 6311 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6312 struct value *outer;
6313 struct value *discrim;
14f9c5c9
AS
6314 LONGEST discrim_val;
6315
0c281816
JB
6316 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6317 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6318 if (discrim == NULL)
14f9c5c9 6319 return -1;
0c281816 6320 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6321
6322 others_clause = -1;
6323 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6324 {
6325 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6326 others_clause = i;
14f9c5c9 6327 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6328 return i;
14f9c5c9
AS
6329 }
6330
6331 return others_clause;
6332}
d2e4a39e 6333\f
14f9c5c9
AS
6334
6335
4c4b4cd2 6336 /* Dynamic-Sized Records */
14f9c5c9
AS
6337
6338/* Strategy: The type ostensibly attached to a value with dynamic size
6339 (i.e., a size that is not statically recorded in the debugging
6340 data) does not accurately reflect the size or layout of the value.
6341 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6342 conventional types that are constructed on the fly. */
14f9c5c9
AS
6343
6344/* There is a subtle and tricky problem here. In general, we cannot
6345 determine the size of dynamic records without its data. However,
6346 the 'struct value' data structure, which GDB uses to represent
6347 quantities in the inferior process (the target), requires the size
6348 of the type at the time of its allocation in order to reserve space
6349 for GDB's internal copy of the data. That's why the
6350 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6351 rather than struct value*s.
14f9c5c9
AS
6352
6353 However, GDB's internal history variables ($1, $2, etc.) are
6354 struct value*s containing internal copies of the data that are not, in
6355 general, the same as the data at their corresponding addresses in
6356 the target. Fortunately, the types we give to these values are all
6357 conventional, fixed-size types (as per the strategy described
6358 above), so that we don't usually have to perform the
6359 'to_fixed_xxx_type' conversions to look at their values.
6360 Unfortunately, there is one exception: if one of the internal
6361 history variables is an array whose elements are unconstrained
6362 records, then we will need to create distinct fixed types for each
6363 element selected. */
6364
6365/* The upshot of all of this is that many routines take a (type, host
6366 address, target address) triple as arguments to represent a value.
6367 The host address, if non-null, is supposed to contain an internal
6368 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6369 target at the target address. */
14f9c5c9
AS
6370
6371/* Assuming that VAL0 represents a pointer value, the result of
6372 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6373 dynamic-sized types. */
14f9c5c9 6374
d2e4a39e
AS
6375struct value *
6376ada_value_ind (struct value *val0)
14f9c5c9 6377{
d2e4a39e 6378 struct value *val = unwrap_value (value_ind (val0));
4c4b4cd2 6379 return ada_to_fixed_value (val);
14f9c5c9
AS
6380}
6381
6382/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6383 qualifiers on VAL0. */
6384
d2e4a39e
AS
6385static struct value *
6386ada_coerce_ref (struct value *val0)
6387{
df407dfe 6388 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6389 {
6390 struct value *val = val0;
994b9211 6391 val = coerce_ref (val);
d2e4a39e 6392 val = unwrap_value (val);
4c4b4cd2 6393 return ada_to_fixed_value (val);
d2e4a39e
AS
6394 }
6395 else
14f9c5c9
AS
6396 return val0;
6397}
6398
6399/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6400 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6401
6402static unsigned int
ebf56fd3 6403align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6404{
6405 return (off + alignment - 1) & ~(alignment - 1);
6406}
6407
4c4b4cd2 6408/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6409
6410static unsigned int
ebf56fd3 6411field_alignment (struct type *type, int f)
14f9c5c9 6412{
d2e4a39e 6413 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6414 int len;
14f9c5c9
AS
6415 int align_offset;
6416
64a1bf19
JB
6417 /* The field name should never be null, unless the debugging information
6418 is somehow malformed. In this case, we assume the field does not
6419 require any alignment. */
6420 if (name == NULL)
6421 return 1;
6422
6423 len = strlen (name);
6424
4c4b4cd2
PH
6425 if (!isdigit (name[len - 1]))
6426 return 1;
14f9c5c9 6427
d2e4a39e 6428 if (isdigit (name[len - 2]))
14f9c5c9
AS
6429 align_offset = len - 2;
6430 else
6431 align_offset = len - 1;
6432
4c4b4cd2 6433 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6434 return TARGET_CHAR_BIT;
6435
4c4b4cd2
PH
6436 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6437}
6438
6439/* Find a symbol named NAME. Ignores ambiguity. */
6440
6441struct symbol *
6442ada_find_any_symbol (const char *name)
6443{
6444 struct symbol *sym;
6445
6446 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6447 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6448 return sym;
6449
6450 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6451 return sym;
14f9c5c9
AS
6452}
6453
dddfab26
UW
6454/* Find a type named NAME. Ignores ambiguity. This routine will look
6455 solely for types defined by debug info, it will not search the GDB
6456 primitive types. */
4c4b4cd2 6457
d2e4a39e 6458struct type *
ebf56fd3 6459ada_find_any_type (const char *name)
14f9c5c9 6460{
4c4b4cd2 6461 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6462
14f9c5c9 6463 if (sym != NULL)
dddfab26 6464 return SYMBOL_TYPE (sym);
14f9c5c9 6465
dddfab26 6466 return NULL;
14f9c5c9
AS
6467}
6468
aeb5907d
JB
6469/* Given NAME and an associated BLOCK, search all symbols for
6470 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6471 associated to NAME. Return this symbol if found, return
6472 NULL otherwise. */
6473
6474struct symbol *
6475ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6476{
6477 struct symbol *sym;
6478
6479 sym = find_old_style_renaming_symbol (name, block);
6480
6481 if (sym != NULL)
6482 return sym;
6483
6484 /* Not right yet. FIXME pnh 7/20/2007. */
6485 sym = ada_find_any_symbol (name);
6486 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6487 return sym;
6488 else
6489 return NULL;
6490}
6491
6492static struct symbol *
6493find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6494{
7f0df278 6495 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6496 char *rename;
6497
6498 if (function_sym != NULL)
6499 {
6500 /* If the symbol is defined inside a function, NAME is not fully
6501 qualified. This means we need to prepend the function name
6502 as well as adding the ``___XR'' suffix to build the name of
6503 the associated renaming symbol. */
6504 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6505 /* Function names sometimes contain suffixes used
6506 for instance to qualify nested subprograms. When building
6507 the XR type name, we need to make sure that this suffix is
6508 not included. So do not include any suffix in the function
6509 name length below. */
6510 const int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6511 const int rename_len = function_name_len + 2 /* "__" */
6512 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6513
529cad9c
PH
6514 /* Strip the suffix if necessary. */
6515 function_name[function_name_len] = '\0';
6516
4c4b4cd2
PH
6517 /* Library-level functions are a special case, as GNAT adds
6518 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6519 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6520 have this prefix, so we need to skip this prefix if present. */
6521 if (function_name_len > 5 /* "_ada_" */
6522 && strstr (function_name, "_ada_") == function_name)
6523 function_name = function_name + 5;
6524
6525 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34
PM
6526 xsnprintf (rename, rename_len * sizeof (char), "%s__%s___XR",
6527 function_name, name);
4c4b4cd2
PH
6528 }
6529 else
6530 {
6531 const int rename_len = strlen (name) + 6;
6532 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 6533 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
6534 }
6535
6536 return ada_find_any_symbol (rename);
6537}
6538
14f9c5c9 6539/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6540 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6541 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6542 otherwise return 0. */
6543
14f9c5c9 6544int
d2e4a39e 6545ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6546{
6547 if (type1 == NULL)
6548 return 1;
6549 else if (type0 == NULL)
6550 return 0;
6551 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6552 return 1;
6553 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6554 return 0;
4c4b4cd2
PH
6555 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6556 return 1;
14f9c5c9
AS
6557 else if (ada_is_packed_array_type (type0))
6558 return 1;
4c4b4cd2
PH
6559 else if (ada_is_array_descriptor_type (type0)
6560 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6561 return 1;
aeb5907d
JB
6562 else
6563 {
6564 const char *type0_name = type_name_no_tag (type0);
6565 const char *type1_name = type_name_no_tag (type1);
6566
6567 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6568 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6569 return 1;
6570 }
14f9c5c9
AS
6571 return 0;
6572}
6573
6574/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6575 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6576
d2e4a39e
AS
6577char *
6578ada_type_name (struct type *type)
14f9c5c9 6579{
d2e4a39e 6580 if (type == NULL)
14f9c5c9
AS
6581 return NULL;
6582 else if (TYPE_NAME (type) != NULL)
6583 return TYPE_NAME (type);
6584 else
6585 return TYPE_TAG_NAME (type);
6586}
6587
6588/* Find a parallel type to TYPE whose name is formed by appending
4c4b4cd2 6589 SUFFIX to the name of TYPE. */
14f9c5c9 6590
d2e4a39e 6591struct type *
ebf56fd3 6592ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6593{
d2e4a39e 6594 static char *name;
14f9c5c9 6595 static size_t name_len = 0;
14f9c5c9 6596 int len;
d2e4a39e
AS
6597 char *typename = ada_type_name (type);
6598
14f9c5c9
AS
6599 if (typename == NULL)
6600 return NULL;
6601
6602 len = strlen (typename);
6603
d2e4a39e 6604 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
14f9c5c9
AS
6605
6606 strcpy (name, typename);
6607 strcpy (name + len, suffix);
6608
6609 return ada_find_any_type (name);
6610}
6611
6612
6613/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6614 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6615
d2e4a39e
AS
6616static struct type *
6617dynamic_template_type (struct type *type)
14f9c5c9 6618{
61ee279c 6619 type = ada_check_typedef (type);
14f9c5c9
AS
6620
6621 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6622 || ada_type_name (type) == NULL)
14f9c5c9 6623 return NULL;
d2e4a39e 6624 else
14f9c5c9
AS
6625 {
6626 int len = strlen (ada_type_name (type));
4c4b4cd2
PH
6627 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6628 return type;
14f9c5c9 6629 else
4c4b4cd2 6630 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
6631 }
6632}
6633
6634/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 6635 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 6636
d2e4a39e
AS
6637static int
6638is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
6639{
6640 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
d2e4a39e 6641 return name != NULL
14f9c5c9
AS
6642 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6643 && strstr (name, "___XVL") != NULL;
6644}
6645
4c4b4cd2
PH
6646/* The index of the variant field of TYPE, or -1 if TYPE does not
6647 represent a variant record type. */
14f9c5c9 6648
d2e4a39e 6649static int
4c4b4cd2 6650variant_field_index (struct type *type)
14f9c5c9
AS
6651{
6652 int f;
6653
4c4b4cd2
PH
6654 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6655 return -1;
6656
6657 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6658 {
6659 if (ada_is_variant_part (type, f))
6660 return f;
6661 }
6662 return -1;
14f9c5c9
AS
6663}
6664
4c4b4cd2
PH
6665/* A record type with no fields. */
6666
d2e4a39e
AS
6667static struct type *
6668empty_record (struct objfile *objfile)
14f9c5c9 6669{
d2e4a39e 6670 struct type *type = alloc_type (objfile);
14f9c5c9
AS
6671 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6672 TYPE_NFIELDS (type) = 0;
6673 TYPE_FIELDS (type) = NULL;
b1f33ddd 6674 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
6675 TYPE_NAME (type) = "<empty>";
6676 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
6677 TYPE_LENGTH (type) = 0;
6678 return type;
6679}
6680
6681/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
6682 the value of type TYPE at VALADDR or ADDRESS (see comments at
6683 the beginning of this section) VAL according to GNAT conventions.
6684 DVAL0 should describe the (portion of a) record that contains any
df407dfe 6685 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
6686 an outer-level type (i.e., as opposed to a branch of a variant.) A
6687 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 6688 of the variant.
14f9c5c9 6689
4c4b4cd2
PH
6690 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6691 length are not statically known are discarded. As a consequence,
6692 VALADDR, ADDRESS and DVAL0 are ignored.
6693
6694 NOTE: Limitations: For now, we assume that dynamic fields and
6695 variants occupy whole numbers of bytes. However, they need not be
6696 byte-aligned. */
6697
6698struct type *
10a2c479 6699ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 6700 const gdb_byte *valaddr,
4c4b4cd2
PH
6701 CORE_ADDR address, struct value *dval0,
6702 int keep_dynamic_fields)
14f9c5c9 6703{
d2e4a39e
AS
6704 struct value *mark = value_mark ();
6705 struct value *dval;
6706 struct type *rtype;
14f9c5c9 6707 int nfields, bit_len;
4c4b4cd2 6708 int variant_field;
14f9c5c9 6709 long off;
4c4b4cd2 6710 int fld_bit_len, bit_incr;
14f9c5c9
AS
6711 int f;
6712
4c4b4cd2
PH
6713 /* Compute the number of fields in this record type that are going
6714 to be processed: unless keep_dynamic_fields, this includes only
6715 fields whose position and length are static will be processed. */
6716 if (keep_dynamic_fields)
6717 nfields = TYPE_NFIELDS (type);
6718 else
6719 {
6720 nfields = 0;
76a01679 6721 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
6722 && !ada_is_variant_part (type, nfields)
6723 && !is_dynamic_field (type, nfields))
6724 nfields++;
6725 }
6726
14f9c5c9
AS
6727 rtype = alloc_type (TYPE_OBJFILE (type));
6728 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6729 INIT_CPLUS_SPECIFIC (rtype);
6730 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 6731 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
6732 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6733 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6734 TYPE_NAME (rtype) = ada_type_name (type);
6735 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6736 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 6737
d2e4a39e
AS
6738 off = 0;
6739 bit_len = 0;
4c4b4cd2
PH
6740 variant_field = -1;
6741
14f9c5c9
AS
6742 for (f = 0; f < nfields; f += 1)
6743 {
6c038f32
PH
6744 off = align_value (off, field_alignment (type, f))
6745 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 6746 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 6747 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 6748
d2e4a39e 6749 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
6750 {
6751 variant_field = f;
6752 fld_bit_len = bit_incr = 0;
6753 }
14f9c5c9 6754 else if (is_dynamic_field (type, f))
4c4b4cd2 6755 {
284614f0
JB
6756 const gdb_byte *field_valaddr = valaddr;
6757 CORE_ADDR field_address = address;
6758 struct type *field_type =
6759 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6760
4c4b4cd2 6761 if (dval0 == NULL)
b5304971
JG
6762 {
6763 /* rtype's length is computed based on the run-time
6764 value of discriminants. If the discriminants are not
6765 initialized, the type size may be completely bogus and
6766 GDB may fail to allocate a value for it. So check the
6767 size first before creating the value. */
6768 check_size (rtype);
6769 dval = value_from_contents_and_address (rtype, valaddr, address);
6770 }
4c4b4cd2
PH
6771 else
6772 dval = dval0;
6773
284614f0
JB
6774 /* If the type referenced by this field is an aligner type, we need
6775 to unwrap that aligner type, because its size might not be set.
6776 Keeping the aligner type would cause us to compute the wrong
6777 size for this field, impacting the offset of the all the fields
6778 that follow this one. */
6779 if (ada_is_aligner_type (field_type))
6780 {
6781 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6782
6783 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6784 field_address = cond_offset_target (field_address, field_offset);
6785 field_type = ada_aligned_type (field_type);
6786 }
6787
6788 field_valaddr = cond_offset_host (field_valaddr,
6789 off / TARGET_CHAR_BIT);
6790 field_address = cond_offset_target (field_address,
6791 off / TARGET_CHAR_BIT);
6792
6793 /* Get the fixed type of the field. Note that, in this case,
6794 we do not want to get the real type out of the tag: if
6795 the current field is the parent part of a tagged record,
6796 we will get the tag of the object. Clearly wrong: the real
6797 type of the parent is not the real type of the child. We
6798 would end up in an infinite loop. */
6799 field_type = ada_get_base_type (field_type);
6800 field_type = ada_to_fixed_type (field_type, field_valaddr,
6801 field_address, dval, 0);
6802
6803 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
6804 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6805 bit_incr = fld_bit_len =
6806 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6807 }
14f9c5c9 6808 else
4c4b4cd2
PH
6809 {
6810 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6811 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6812 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6813 bit_incr = fld_bit_len =
6814 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6815 else
6816 bit_incr = fld_bit_len =
6817 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6818 }
14f9c5c9 6819 if (off + fld_bit_len > bit_len)
4c4b4cd2 6820 bit_len = off + fld_bit_len;
14f9c5c9 6821 off += bit_incr;
4c4b4cd2
PH
6822 TYPE_LENGTH (rtype) =
6823 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 6824 }
4c4b4cd2
PH
6825
6826 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 6827 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
6828 the record. This can happen in the presence of representation
6829 clauses. */
6830 if (variant_field >= 0)
6831 {
6832 struct type *branch_type;
6833
6834 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6835
6836 if (dval0 == NULL)
6837 dval = value_from_contents_and_address (rtype, valaddr, address);
6838 else
6839 dval = dval0;
6840
6841 branch_type =
6842 to_fixed_variant_branch_type
6843 (TYPE_FIELD_TYPE (type, variant_field),
6844 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6845 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6846 if (branch_type == NULL)
6847 {
6848 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6849 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6850 TYPE_NFIELDS (rtype) -= 1;
6851 }
6852 else
6853 {
6854 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6855 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6856 fld_bit_len =
6857 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6858 TARGET_CHAR_BIT;
6859 if (off + fld_bit_len > bit_len)
6860 bit_len = off + fld_bit_len;
6861 TYPE_LENGTH (rtype) =
6862 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6863 }
6864 }
6865
714e53ab
PH
6866 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6867 should contain the alignment of that record, which should be a strictly
6868 positive value. If null or negative, then something is wrong, most
6869 probably in the debug info. In that case, we don't round up the size
6870 of the resulting type. If this record is not part of another structure,
6871 the current RTYPE length might be good enough for our purposes. */
6872 if (TYPE_LENGTH (type) <= 0)
6873 {
323e0a4a
AC
6874 if (TYPE_NAME (rtype))
6875 warning (_("Invalid type size for `%s' detected: %d."),
6876 TYPE_NAME (rtype), TYPE_LENGTH (type));
6877 else
6878 warning (_("Invalid type size for <unnamed> detected: %d."),
6879 TYPE_LENGTH (type));
714e53ab
PH
6880 }
6881 else
6882 {
6883 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6884 TYPE_LENGTH (type));
6885 }
14f9c5c9
AS
6886
6887 value_free_to_mark (mark);
d2e4a39e 6888 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 6889 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
6890 return rtype;
6891}
6892
4c4b4cd2
PH
6893/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6894 of 1. */
14f9c5c9 6895
d2e4a39e 6896static struct type *
fc1a4b47 6897template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
6898 CORE_ADDR address, struct value *dval0)
6899{
6900 return ada_template_to_fixed_record_type_1 (type, valaddr,
6901 address, dval0, 1);
6902}
6903
6904/* An ordinary record type in which ___XVL-convention fields and
6905 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6906 static approximations, containing all possible fields. Uses
6907 no runtime values. Useless for use in values, but that's OK,
6908 since the results are used only for type determinations. Works on both
6909 structs and unions. Representation note: to save space, we memorize
6910 the result of this function in the TYPE_TARGET_TYPE of the
6911 template type. */
6912
6913static struct type *
6914template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
6915{
6916 struct type *type;
6917 int nfields;
6918 int f;
6919
4c4b4cd2
PH
6920 if (TYPE_TARGET_TYPE (type0) != NULL)
6921 return TYPE_TARGET_TYPE (type0);
6922
6923 nfields = TYPE_NFIELDS (type0);
6924 type = type0;
14f9c5c9
AS
6925
6926 for (f = 0; f < nfields; f += 1)
6927 {
61ee279c 6928 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 6929 struct type *new_type;
14f9c5c9 6930
4c4b4cd2
PH
6931 if (is_dynamic_field (type0, f))
6932 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 6933 else
f192137b 6934 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
6935 if (type == type0 && new_type != field_type)
6936 {
6937 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6938 TYPE_CODE (type) = TYPE_CODE (type0);
6939 INIT_CPLUS_SPECIFIC (type);
6940 TYPE_NFIELDS (type) = nfields;
6941 TYPE_FIELDS (type) = (struct field *)
6942 TYPE_ALLOC (type, nfields * sizeof (struct field));
6943 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6944 sizeof (struct field) * nfields);
6945 TYPE_NAME (type) = ada_type_name (type0);
6946 TYPE_TAG_NAME (type) = NULL;
876cecd0 6947 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
6948 TYPE_LENGTH (type) = 0;
6949 }
6950 TYPE_FIELD_TYPE (type, f) = new_type;
6951 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 6952 }
14f9c5c9
AS
6953 return type;
6954}
6955
4c4b4cd2 6956/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
6957 whose address in memory is ADDRESS, returns a revision of TYPE,
6958 which should be a non-dynamic-sized record, in which the variant
6959 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
6960 for discriminant values in DVAL0, which can be NULL if the record
6961 contains the necessary discriminant values. */
6962
d2e4a39e 6963static struct type *
fc1a4b47 6964to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 6965 CORE_ADDR address, struct value *dval0)
14f9c5c9 6966{
d2e4a39e 6967 struct value *mark = value_mark ();
4c4b4cd2 6968 struct value *dval;
d2e4a39e 6969 struct type *rtype;
14f9c5c9
AS
6970 struct type *branch_type;
6971 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 6972 int variant_field = variant_field_index (type);
14f9c5c9 6973
4c4b4cd2 6974 if (variant_field == -1)
14f9c5c9
AS
6975 return type;
6976
4c4b4cd2
PH
6977 if (dval0 == NULL)
6978 dval = value_from_contents_and_address (type, valaddr, address);
6979 else
6980 dval = dval0;
6981
14f9c5c9
AS
6982 rtype = alloc_type (TYPE_OBJFILE (type));
6983 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
6984 INIT_CPLUS_SPECIFIC (rtype);
6985 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
6986 TYPE_FIELDS (rtype) =
6987 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6988 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 6989 sizeof (struct field) * nfields);
14f9c5c9
AS
6990 TYPE_NAME (rtype) = ada_type_name (type);
6991 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6992 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
6993 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6994
4c4b4cd2
PH
6995 branch_type = to_fixed_variant_branch_type
6996 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 6997 cond_offset_host (valaddr,
4c4b4cd2
PH
6998 TYPE_FIELD_BITPOS (type, variant_field)
6999 / TARGET_CHAR_BIT),
d2e4a39e 7000 cond_offset_target (address,
4c4b4cd2
PH
7001 TYPE_FIELD_BITPOS (type, variant_field)
7002 / TARGET_CHAR_BIT), dval);
d2e4a39e 7003 if (branch_type == NULL)
14f9c5c9 7004 {
4c4b4cd2
PH
7005 int f;
7006 for (f = variant_field + 1; f < nfields; f += 1)
7007 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7008 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7009 }
7010 else
7011 {
4c4b4cd2
PH
7012 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7013 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7014 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7015 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7016 }
4c4b4cd2 7017 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7018
4c4b4cd2 7019 value_free_to_mark (mark);
14f9c5c9
AS
7020 return rtype;
7021}
7022
7023/* An ordinary record type (with fixed-length fields) that describes
7024 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7025 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7026 should be in DVAL, a record value; it may be NULL if the object
7027 at ADDR itself contains any necessary discriminant values.
7028 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7029 values from the record are needed. Except in the case that DVAL,
7030 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7031 unchecked) is replaced by a particular branch of the variant.
7032
7033 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7034 is questionable and may be removed. It can arise during the
7035 processing of an unconstrained-array-of-record type where all the
7036 variant branches have exactly the same size. This is because in
7037 such cases, the compiler does not bother to use the XVS convention
7038 when encoding the record. I am currently dubious of this
7039 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7040
d2e4a39e 7041static struct type *
fc1a4b47 7042to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7043 CORE_ADDR address, struct value *dval)
14f9c5c9 7044{
d2e4a39e 7045 struct type *templ_type;
14f9c5c9 7046
876cecd0 7047 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7048 return type0;
7049
d2e4a39e 7050 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7051
7052 if (templ_type != NULL)
7053 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7054 else if (variant_field_index (type0) >= 0)
7055 {
7056 if (dval == NULL && valaddr == NULL && address == 0)
7057 return type0;
7058 return to_record_with_fixed_variant_part (type0, valaddr, address,
7059 dval);
7060 }
14f9c5c9
AS
7061 else
7062 {
876cecd0 7063 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7064 return type0;
7065 }
7066
7067}
7068
7069/* An ordinary record type (with fixed-length fields) that describes
7070 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7071 union type. Any necessary discriminants' values should be in DVAL,
7072 a record value. That is, this routine selects the appropriate
7073 branch of the union at ADDR according to the discriminant value
b1f33ddd
JB
7074 indicated in the union's type name. Returns VAR_TYPE0 itself if
7075 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7076
d2e4a39e 7077static struct type *
fc1a4b47 7078to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7079 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7080{
7081 int which;
d2e4a39e
AS
7082 struct type *templ_type;
7083 struct type *var_type;
14f9c5c9
AS
7084
7085 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7086 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7087 else
14f9c5c9
AS
7088 var_type = var_type0;
7089
7090 templ_type = ada_find_parallel_type (var_type, "___XVU");
7091
7092 if (templ_type != NULL)
7093 var_type = templ_type;
7094
b1f33ddd
JB
7095 if (is_unchecked_variant (var_type, value_type (dval)))
7096 return var_type0;
d2e4a39e
AS
7097 which =
7098 ada_which_variant_applies (var_type,
0fd88904 7099 value_type (dval), value_contents (dval));
14f9c5c9
AS
7100
7101 if (which < 0)
7102 return empty_record (TYPE_OBJFILE (var_type));
7103 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7104 return to_fixed_record_type
d2e4a39e
AS
7105 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7106 valaddr, address, dval);
4c4b4cd2 7107 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7108 return
7109 to_fixed_record_type
7110 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7111 else
7112 return TYPE_FIELD_TYPE (var_type, which);
7113}
7114
7115/* Assuming that TYPE0 is an array type describing the type of a value
7116 at ADDR, and that DVAL describes a record containing any
7117 discriminants used in TYPE0, returns a type for the value that
7118 contains no dynamic components (that is, no components whose sizes
7119 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7120 true, gives an error message if the resulting type's size is over
4c4b4cd2 7121 varsize_limit. */
14f9c5c9 7122
d2e4a39e
AS
7123static struct type *
7124to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7125 int ignore_too_big)
14f9c5c9 7126{
d2e4a39e
AS
7127 struct type *index_type_desc;
7128 struct type *result;
284614f0 7129 int packed_array_p;
14f9c5c9 7130
284614f0 7131 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7132 return type0;
14f9c5c9 7133
284614f0
JB
7134 packed_array_p = ada_is_packed_array_type (type0);
7135 if (packed_array_p)
7136 type0 = decode_packed_array_type (type0);
7137
14f9c5c9
AS
7138 index_type_desc = ada_find_parallel_type (type0, "___XA");
7139 if (index_type_desc == NULL)
7140 {
61ee279c 7141 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
14f9c5c9 7142 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7143 depend on the contents of the array in properly constructed
7144 debugging data. */
529cad9c
PH
7145 /* Create a fixed version of the array element type.
7146 We're not providing the address of an element here,
e1d5a0d2 7147 and thus the actual object value cannot be inspected to do
529cad9c
PH
7148 the conversion. This should not be a problem, since arrays of
7149 unconstrained objects are not allowed. In particular, all
7150 the elements of an array of a tagged type should all be of
7151 the same type specified in the debugging info. No need to
7152 consult the object tag. */
1ed6ede0 7153 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7154
284614f0
JB
7155 /* Make sure we always create a new array type when dealing with
7156 packed array types, since we're going to fix-up the array
7157 type length and element bitsize a little further down. */
7158 if (elt_type0 == elt_type && !packed_array_p)
4c4b4cd2 7159 result = type0;
14f9c5c9 7160 else
4c4b4cd2
PH
7161 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7162 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7163 }
7164 else
7165 {
7166 int i;
7167 struct type *elt_type0;
7168
7169 elt_type0 = type0;
7170 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7171 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7172
7173 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7174 depend on the contents of the array in properly constructed
7175 debugging data. */
529cad9c
PH
7176 /* Create a fixed version of the array element type.
7177 We're not providing the address of an element here,
e1d5a0d2 7178 and thus the actual object value cannot be inspected to do
529cad9c
PH
7179 the conversion. This should not be a problem, since arrays of
7180 unconstrained objects are not allowed. In particular, all
7181 the elements of an array of a tagged type should all be of
7182 the same type specified in the debugging info. No need to
7183 consult the object tag. */
1ed6ede0
JB
7184 result =
7185 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7186
7187 elt_type0 = type0;
14f9c5c9 7188 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7189 {
7190 struct type *range_type =
7191 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
1ce677a4
UW
7192 dval, TYPE_INDEX_TYPE (elt_type0));
7193 result = create_array_type (alloc_type (TYPE_OBJFILE (elt_type0)),
4c4b4cd2 7194 result, range_type);
1ce677a4 7195 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7196 }
d2e4a39e 7197 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7198 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7199 }
7200
284614f0
JB
7201 if (packed_array_p)
7202 {
7203 /* So far, the resulting type has been created as if the original
7204 type was a regular (non-packed) array type. As a result, the
7205 bitsize of the array elements needs to be set again, and the array
7206 length needs to be recomputed based on that bitsize. */
7207 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7208 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7209
7210 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7211 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7212 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7213 TYPE_LENGTH (result)++;
7214 }
7215
876cecd0 7216 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7217 return result;
d2e4a39e 7218}
14f9c5c9
AS
7219
7220
7221/* A standard type (containing no dynamically sized components)
7222 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7223 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7224 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7225 ADDRESS or in VALADDR contains these discriminants.
7226
1ed6ede0
JB
7227 If CHECK_TAG is not null, in the case of tagged types, this function
7228 attempts to locate the object's tag and use it to compute the actual
7229 type. However, when ADDRESS is null, we cannot use it to determine the
7230 location of the tag, and therefore compute the tagged type's actual type.
7231 So we return the tagged type without consulting the tag. */
529cad9c 7232
f192137b
JB
7233static struct type *
7234ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7235 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7236{
61ee279c 7237 type = ada_check_typedef (type);
d2e4a39e
AS
7238 switch (TYPE_CODE (type))
7239 {
7240 default:
14f9c5c9 7241 return type;
d2e4a39e 7242 case TYPE_CODE_STRUCT:
4c4b4cd2 7243 {
76a01679 7244 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7245 struct type *fixed_record_type =
7246 to_fixed_record_type (type, valaddr, address, NULL);
529cad9c
PH
7247 /* If STATIC_TYPE is a tagged type and we know the object's address,
7248 then we can determine its tag, and compute the object's actual
1ed6ede0
JB
7249 type from there. Note that we have to use the fixed record
7250 type (the parent part of the record may have dynamic fields
7251 and the way the location of _tag is expressed may depend on
7252 them). */
529cad9c 7253
1ed6ede0 7254 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7255 {
7256 struct type *real_type =
1ed6ede0
JB
7257 type_from_tag (value_tag_from_contents_and_address
7258 (fixed_record_type,
7259 valaddr,
7260 address));
76a01679 7261 if (real_type != NULL)
1ed6ede0 7262 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7263 }
4af88198
JB
7264
7265 /* Check to see if there is a parallel ___XVZ variable.
7266 If there is, then it provides the actual size of our type. */
7267 else if (ada_type_name (fixed_record_type) != NULL)
7268 {
7269 char *name = ada_type_name (fixed_record_type);
7270 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7271 int xvz_found = 0;
7272 LONGEST size;
7273
88c15c34 7274 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7275 size = get_int_var_value (xvz_name, &xvz_found);
7276 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7277 {
7278 fixed_record_type = copy_type (fixed_record_type);
7279 TYPE_LENGTH (fixed_record_type) = size;
7280
7281 /* The FIXED_RECORD_TYPE may have be a stub. We have
7282 observed this when the debugging info is STABS, and
7283 apparently it is something that is hard to fix.
7284
7285 In practice, we don't need the actual type definition
7286 at all, because the presence of the XVZ variable allows us
7287 to assume that there must be a XVS type as well, which we
7288 should be able to use later, when we need the actual type
7289 definition.
7290
7291 In the meantime, pretend that the "fixed" type we are
7292 returning is NOT a stub, because this can cause trouble
7293 when using this type to create new types targeting it.
7294 Indeed, the associated creation routines often check
7295 whether the target type is a stub and will try to replace
7296 it, thus using a type with the wrong size. This, in turn,
7297 might cause the new type to have the wrong size too.
7298 Consider the case of an array, for instance, where the size
7299 of the array is computed from the number of elements in
7300 our array multiplied by the size of its element. */
7301 TYPE_STUB (fixed_record_type) = 0;
7302 }
7303 }
1ed6ede0 7304 return fixed_record_type;
4c4b4cd2 7305 }
d2e4a39e 7306 case TYPE_CODE_ARRAY:
4c4b4cd2 7307 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7308 case TYPE_CODE_UNION:
7309 if (dval == NULL)
4c4b4cd2 7310 return type;
d2e4a39e 7311 else
4c4b4cd2 7312 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7313 }
14f9c5c9
AS
7314}
7315
f192137b
JB
7316/* The same as ada_to_fixed_type_1, except that it preserves the type
7317 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7318 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7319
7320struct type *
7321ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7322 CORE_ADDR address, struct value *dval, int check_tag)
7323
7324{
7325 struct type *fixed_type =
7326 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7327
7328 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7329 && TYPE_TARGET_TYPE (type) == fixed_type)
7330 return type;
7331
7332 return fixed_type;
7333}
7334
14f9c5c9 7335/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7336 TYPE0, but based on no runtime data. */
14f9c5c9 7337
d2e4a39e
AS
7338static struct type *
7339to_static_fixed_type (struct type *type0)
14f9c5c9 7340{
d2e4a39e 7341 struct type *type;
14f9c5c9
AS
7342
7343 if (type0 == NULL)
7344 return NULL;
7345
876cecd0 7346 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7347 return type0;
7348
61ee279c 7349 type0 = ada_check_typedef (type0);
d2e4a39e 7350
14f9c5c9
AS
7351 switch (TYPE_CODE (type0))
7352 {
7353 default:
7354 return type0;
7355 case TYPE_CODE_STRUCT:
7356 type = dynamic_template_type (type0);
d2e4a39e 7357 if (type != NULL)
4c4b4cd2
PH
7358 return template_to_static_fixed_type (type);
7359 else
7360 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7361 case TYPE_CODE_UNION:
7362 type = ada_find_parallel_type (type0, "___XVU");
7363 if (type != NULL)
4c4b4cd2
PH
7364 return template_to_static_fixed_type (type);
7365 else
7366 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7367 }
7368}
7369
4c4b4cd2
PH
7370/* A static approximation of TYPE with all type wrappers removed. */
7371
d2e4a39e
AS
7372static struct type *
7373static_unwrap_type (struct type *type)
14f9c5c9
AS
7374{
7375 if (ada_is_aligner_type (type))
7376 {
61ee279c 7377 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7378 if (ada_type_name (type1) == NULL)
4c4b4cd2 7379 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7380
7381 return static_unwrap_type (type1);
7382 }
d2e4a39e 7383 else
14f9c5c9 7384 {
d2e4a39e
AS
7385 struct type *raw_real_type = ada_get_base_type (type);
7386 if (raw_real_type == type)
4c4b4cd2 7387 return type;
14f9c5c9 7388 else
4c4b4cd2 7389 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7390 }
7391}
7392
7393/* In some cases, incomplete and private types require
4c4b4cd2 7394 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7395 type Foo;
7396 type FooP is access Foo;
7397 V: FooP;
7398 type Foo is array ...;
4c4b4cd2 7399 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7400 cross-references to such types, we instead substitute for FooP a
7401 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7402 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7403
7404/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7405 exists, otherwise TYPE. */
7406
d2e4a39e 7407struct type *
61ee279c 7408ada_check_typedef (struct type *type)
14f9c5c9 7409{
727e3d2e
JB
7410 if (type == NULL)
7411 return NULL;
7412
14f9c5c9
AS
7413 CHECK_TYPEDEF (type);
7414 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7415 || !TYPE_STUB (type)
14f9c5c9
AS
7416 || TYPE_TAG_NAME (type) == NULL)
7417 return type;
d2e4a39e 7418 else
14f9c5c9 7419 {
d2e4a39e
AS
7420 char *name = TYPE_TAG_NAME (type);
7421 struct type *type1 = ada_find_any_type (name);
14f9c5c9
AS
7422 return (type1 == NULL) ? type : type1;
7423 }
7424}
7425
7426/* A value representing the data at VALADDR/ADDRESS as described by
7427 type TYPE0, but with a standard (static-sized) type that correctly
7428 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7429 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7430 creation of struct values]. */
14f9c5c9 7431
4c4b4cd2
PH
7432static struct value *
7433ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7434 struct value *val0)
14f9c5c9 7435{
1ed6ede0 7436 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
14f9c5c9
AS
7437 if (type == type0 && val0 != NULL)
7438 return val0;
d2e4a39e 7439 else
4c4b4cd2
PH
7440 return value_from_contents_and_address (type, 0, address);
7441}
7442
7443/* A value representing VAL, but with a standard (static-sized) type
7444 that correctly describes it. Does not necessarily create a new
7445 value. */
7446
7447static struct value *
7448ada_to_fixed_value (struct value *val)
7449{
df407dfe 7450 return ada_to_fixed_value_create (value_type (val),
42ae5230 7451 value_address (val),
4c4b4cd2 7452 val);
14f9c5c9
AS
7453}
7454
4c4b4cd2 7455/* A value representing VAL, but with a standard (static-sized) type
14f9c5c9
AS
7456 chosen to approximate the real type of VAL as well as possible, but
7457 without consulting any runtime values. For Ada dynamic-sized
4c4b4cd2 7458 types, therefore, the type of the result is likely to be inaccurate. */
14f9c5c9 7459
2c0b251b 7460static struct value *
d2e4a39e 7461ada_to_static_fixed_value (struct value *val)
14f9c5c9 7462{
d2e4a39e 7463 struct type *type =
df407dfe
AC
7464 to_static_fixed_type (static_unwrap_type (value_type (val)));
7465 if (type == value_type (val))
14f9c5c9
AS
7466 return val;
7467 else
4c4b4cd2 7468 return coerce_unspec_val_to_type (val, type);
14f9c5c9 7469}
d2e4a39e 7470\f
14f9c5c9 7471
14f9c5c9
AS
7472/* Attributes */
7473
4c4b4cd2
PH
7474/* Table mapping attribute numbers to names.
7475 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7476
d2e4a39e 7477static const char *attribute_names[] = {
14f9c5c9
AS
7478 "<?>",
7479
d2e4a39e 7480 "first",
14f9c5c9
AS
7481 "last",
7482 "length",
7483 "image",
14f9c5c9
AS
7484 "max",
7485 "min",
4c4b4cd2
PH
7486 "modulus",
7487 "pos",
7488 "size",
7489 "tag",
14f9c5c9 7490 "val",
14f9c5c9
AS
7491 0
7492};
7493
d2e4a39e 7494const char *
4c4b4cd2 7495ada_attribute_name (enum exp_opcode n)
14f9c5c9 7496{
4c4b4cd2
PH
7497 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7498 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7499 else
7500 return attribute_names[0];
7501}
7502
4c4b4cd2 7503/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7504
4c4b4cd2
PH
7505static LONGEST
7506pos_atr (struct value *arg)
14f9c5c9 7507{
24209737
PH
7508 struct value *val = coerce_ref (arg);
7509 struct type *type = value_type (val);
14f9c5c9 7510
d2e4a39e 7511 if (!discrete_type_p (type))
323e0a4a 7512 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7513
7514 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7515 {
7516 int i;
24209737 7517 LONGEST v = value_as_long (val);
14f9c5c9 7518
d2e4a39e 7519 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7520 {
7521 if (v == TYPE_FIELD_BITPOS (type, i))
7522 return i;
7523 }
323e0a4a 7524 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7525 }
7526 else
24209737 7527 return value_as_long (val);
4c4b4cd2
PH
7528}
7529
7530static struct value *
3cb382c9 7531value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 7532{
3cb382c9 7533 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
7534}
7535
4c4b4cd2 7536/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7537
d2e4a39e
AS
7538static struct value *
7539value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7540{
d2e4a39e 7541 if (!discrete_type_p (type))
323e0a4a 7542 error (_("'VAL only defined on discrete types"));
df407dfe 7543 if (!integer_type_p (value_type (arg)))
323e0a4a 7544 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7545
7546 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7547 {
7548 long pos = value_as_long (arg);
7549 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7550 error (_("argument to 'VAL out of range"));
d2e4a39e 7551 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7552 }
7553 else
7554 return value_from_longest (type, value_as_long (arg));
7555}
14f9c5c9 7556\f
d2e4a39e 7557
4c4b4cd2 7558 /* Evaluation */
14f9c5c9 7559
4c4b4cd2
PH
7560/* True if TYPE appears to be an Ada character type.
7561 [At the moment, this is true only for Character and Wide_Character;
7562 It is a heuristic test that could stand improvement]. */
14f9c5c9 7563
d2e4a39e
AS
7564int
7565ada_is_character_type (struct type *type)
14f9c5c9 7566{
7b9f71f2
JB
7567 const char *name;
7568
7569 /* If the type code says it's a character, then assume it really is,
7570 and don't check any further. */
7571 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7572 return 1;
7573
7574 /* Otherwise, assume it's a character type iff it is a discrete type
7575 with a known character type name. */
7576 name = ada_type_name (type);
7577 return (name != NULL
7578 && (TYPE_CODE (type) == TYPE_CODE_INT
7579 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7580 && (strcmp (name, "character") == 0
7581 || strcmp (name, "wide_character") == 0
5a517ebd 7582 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 7583 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
7584}
7585
4c4b4cd2 7586/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
7587
7588int
ebf56fd3 7589ada_is_string_type (struct type *type)
14f9c5c9 7590{
61ee279c 7591 type = ada_check_typedef (type);
d2e4a39e 7592 if (type != NULL
14f9c5c9 7593 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
7594 && (ada_is_simple_array_type (type)
7595 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
7596 && ada_array_arity (type) == 1)
7597 {
7598 struct type *elttype = ada_array_element_type (type, 1);
7599
7600 return ada_is_character_type (elttype);
7601 }
d2e4a39e 7602 else
14f9c5c9
AS
7603 return 0;
7604}
7605
7606
7607/* True if TYPE is a struct type introduced by the compiler to force the
7608 alignment of a value. Such types have a single field with a
4c4b4cd2 7609 distinctive name. */
14f9c5c9
AS
7610
7611int
ebf56fd3 7612ada_is_aligner_type (struct type *type)
14f9c5c9 7613{
61ee279c 7614 type = ada_check_typedef (type);
714e53ab
PH
7615
7616 /* If we can find a parallel XVS type, then the XVS type should
7617 be used instead of this type. And hence, this is not an aligner
7618 type. */
7619 if (ada_find_parallel_type (type, "___XVS") != NULL)
7620 return 0;
7621
14f9c5c9 7622 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
7623 && TYPE_NFIELDS (type) == 1
7624 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
7625}
7626
7627/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 7628 the parallel type. */
14f9c5c9 7629
d2e4a39e
AS
7630struct type *
7631ada_get_base_type (struct type *raw_type)
14f9c5c9 7632{
d2e4a39e
AS
7633 struct type *real_type_namer;
7634 struct type *raw_real_type;
14f9c5c9
AS
7635
7636 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7637 return raw_type;
7638
284614f0
JB
7639 if (ada_is_aligner_type (raw_type))
7640 /* The encoding specifies that we should always use the aligner type.
7641 So, even if this aligner type has an associated XVS type, we should
7642 simply ignore it.
7643
7644 According to the compiler gurus, an XVS type parallel to an aligner
7645 type may exist because of a stabs limitation. In stabs, aligner
7646 types are empty because the field has a variable-sized type, and
7647 thus cannot actually be used as an aligner type. As a result,
7648 we need the associated parallel XVS type to decode the type.
7649 Since the policy in the compiler is to not change the internal
7650 representation based on the debugging info format, we sometimes
7651 end up having a redundant XVS type parallel to the aligner type. */
7652 return raw_type;
7653
14f9c5c9 7654 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 7655 if (real_type_namer == NULL
14f9c5c9
AS
7656 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7657 || TYPE_NFIELDS (real_type_namer) != 1)
7658 return raw_type;
7659
7660 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
d2e4a39e 7661 if (raw_real_type == NULL)
14f9c5c9
AS
7662 return raw_type;
7663 else
7664 return raw_real_type;
d2e4a39e 7665}
14f9c5c9 7666
4c4b4cd2 7667/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 7668
d2e4a39e
AS
7669struct type *
7670ada_aligned_type (struct type *type)
14f9c5c9
AS
7671{
7672 if (ada_is_aligner_type (type))
7673 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7674 else
7675 return ada_get_base_type (type);
7676}
7677
7678
7679/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 7680 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 7681
fc1a4b47
AC
7682const gdb_byte *
7683ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 7684{
d2e4a39e 7685 if (ada_is_aligner_type (type))
14f9c5c9 7686 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
7687 valaddr +
7688 TYPE_FIELD_BITPOS (type,
7689 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
7690 else
7691 return valaddr;
7692}
7693
4c4b4cd2
PH
7694
7695
14f9c5c9 7696/* The printed representation of an enumeration literal with encoded
4c4b4cd2 7697 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
7698const char *
7699ada_enum_name (const char *name)
14f9c5c9 7700{
4c4b4cd2
PH
7701 static char *result;
7702 static size_t result_len = 0;
d2e4a39e 7703 char *tmp;
14f9c5c9 7704
4c4b4cd2
PH
7705 /* First, unqualify the enumeration name:
7706 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
7707 all the preceeding characters, the unqualified name starts
7708 right after that dot.
4c4b4cd2 7709 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
7710 translates dots into "__". Search forward for double underscores,
7711 but stop searching when we hit an overloading suffix, which is
7712 of the form "__" followed by digits. */
4c4b4cd2 7713
c3e5cd34
PH
7714 tmp = strrchr (name, '.');
7715 if (tmp != NULL)
4c4b4cd2
PH
7716 name = tmp + 1;
7717 else
14f9c5c9 7718 {
4c4b4cd2
PH
7719 while ((tmp = strstr (name, "__")) != NULL)
7720 {
7721 if (isdigit (tmp[2]))
7722 break;
7723 else
7724 name = tmp + 2;
7725 }
14f9c5c9
AS
7726 }
7727
7728 if (name[0] == 'Q')
7729 {
14f9c5c9
AS
7730 int v;
7731 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
7732 {
7733 if (sscanf (name + 2, "%x", &v) != 1)
7734 return name;
7735 }
14f9c5c9 7736 else
4c4b4cd2 7737 return name;
14f9c5c9 7738
4c4b4cd2 7739 GROW_VECT (result, result_len, 16);
14f9c5c9 7740 if (isascii (v) && isprint (v))
88c15c34 7741 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 7742 else if (name[1] == 'U')
88c15c34 7743 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 7744 else
88c15c34 7745 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
7746
7747 return result;
7748 }
d2e4a39e 7749 else
4c4b4cd2 7750 {
c3e5cd34
PH
7751 tmp = strstr (name, "__");
7752 if (tmp == NULL)
7753 tmp = strstr (name, "$");
7754 if (tmp != NULL)
4c4b4cd2
PH
7755 {
7756 GROW_VECT (result, result_len, tmp - name + 1);
7757 strncpy (result, name, tmp - name);
7758 result[tmp - name] = '\0';
7759 return result;
7760 }
7761
7762 return name;
7763 }
14f9c5c9
AS
7764}
7765
14f9c5c9
AS
7766/* Evaluate the subexpression of EXP starting at *POS as for
7767 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 7768 expression. */
14f9c5c9 7769
d2e4a39e
AS
7770static struct value *
7771evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 7772{
4b27a620 7773 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
7774}
7775
7776/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 7777 value it wraps. */
14f9c5c9 7778
d2e4a39e
AS
7779static struct value *
7780unwrap_value (struct value *val)
14f9c5c9 7781{
df407dfe 7782 struct type *type = ada_check_typedef (value_type (val));
14f9c5c9
AS
7783 if (ada_is_aligner_type (type))
7784 {
de4d072f 7785 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 7786 struct type *val_type = ada_check_typedef (value_type (v));
14f9c5c9 7787 if (ada_type_name (val_type) == NULL)
4c4b4cd2 7788 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
7789
7790 return unwrap_value (v);
7791 }
d2e4a39e 7792 else
14f9c5c9 7793 {
d2e4a39e 7794 struct type *raw_real_type =
61ee279c 7795 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 7796
14f9c5c9 7797 if (type == raw_real_type)
4c4b4cd2 7798 return val;
14f9c5c9 7799
d2e4a39e 7800 return
4c4b4cd2
PH
7801 coerce_unspec_val_to_type
7802 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 7803 value_address (val),
1ed6ede0 7804 NULL, 1));
14f9c5c9
AS
7805 }
7806}
d2e4a39e
AS
7807
7808static struct value *
7809cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
7810{
7811 LONGEST val;
7812
df407dfe 7813 if (type == value_type (arg))
14f9c5c9 7814 return arg;
df407dfe 7815 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 7816 val = ada_float_to_fixed (type,
df407dfe 7817 ada_fixed_to_float (value_type (arg),
4c4b4cd2 7818 value_as_long (arg)));
d2e4a39e 7819 else
14f9c5c9 7820 {
a53b7a21 7821 DOUBLEST argd = value_as_double (arg);
14f9c5c9
AS
7822 val = ada_float_to_fixed (type, argd);
7823 }
7824
7825 return value_from_longest (type, val);
7826}
7827
d2e4a39e 7828static struct value *
a53b7a21 7829cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 7830{
df407dfe 7831 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 7832 value_as_long (arg));
a53b7a21 7833 return value_from_double (type, val);
14f9c5c9
AS
7834}
7835
4c4b4cd2
PH
7836/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7837 return the converted value. */
7838
d2e4a39e
AS
7839static struct value *
7840coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 7841{
df407dfe 7842 struct type *type2 = value_type (val);
14f9c5c9
AS
7843 if (type == type2)
7844 return val;
7845
61ee279c
PH
7846 type2 = ada_check_typedef (type2);
7847 type = ada_check_typedef (type);
14f9c5c9 7848
d2e4a39e
AS
7849 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7850 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
7851 {
7852 val = ada_value_ind (val);
df407dfe 7853 type2 = value_type (val);
14f9c5c9
AS
7854 }
7855
d2e4a39e 7856 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
7857 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7858 {
7859 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
7860 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7861 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 7862 error (_("Incompatible types in assignment"));
04624583 7863 deprecated_set_value_type (val, type);
14f9c5c9 7864 }
d2e4a39e 7865 return val;
14f9c5c9
AS
7866}
7867
4c4b4cd2
PH
7868static struct value *
7869ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7870{
7871 struct value *val;
7872 struct type *type1, *type2;
7873 LONGEST v, v1, v2;
7874
994b9211
AC
7875 arg1 = coerce_ref (arg1);
7876 arg2 = coerce_ref (arg2);
df407dfe
AC
7877 type1 = base_type (ada_check_typedef (value_type (arg1)));
7878 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 7879
76a01679
JB
7880 if (TYPE_CODE (type1) != TYPE_CODE_INT
7881 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
7882 return value_binop (arg1, arg2, op);
7883
76a01679 7884 switch (op)
4c4b4cd2
PH
7885 {
7886 case BINOP_MOD:
7887 case BINOP_DIV:
7888 case BINOP_REM:
7889 break;
7890 default:
7891 return value_binop (arg1, arg2, op);
7892 }
7893
7894 v2 = value_as_long (arg2);
7895 if (v2 == 0)
323e0a4a 7896 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
7897
7898 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7899 return value_binop (arg1, arg2, op);
7900
7901 v1 = value_as_long (arg1);
7902 switch (op)
7903 {
7904 case BINOP_DIV:
7905 v = v1 / v2;
76a01679
JB
7906 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7907 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
7908 break;
7909 case BINOP_REM:
7910 v = v1 % v2;
76a01679
JB
7911 if (v * v1 < 0)
7912 v -= v2;
4c4b4cd2
PH
7913 break;
7914 default:
7915 /* Should not reach this point. */
7916 v = 0;
7917 }
7918
7919 val = allocate_value (type1);
990a07ab 7920 store_unsigned_integer (value_contents_raw (val),
df407dfe 7921 TYPE_LENGTH (value_type (val)), v);
4c4b4cd2
PH
7922 return val;
7923}
7924
7925static int
7926ada_value_equal (struct value *arg1, struct value *arg2)
7927{
df407dfe
AC
7928 if (ada_is_direct_array_type (value_type (arg1))
7929 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 7930 {
f58b38bf
JB
7931 /* Automatically dereference any array reference before
7932 we attempt to perform the comparison. */
7933 arg1 = ada_coerce_ref (arg1);
7934 arg2 = ada_coerce_ref (arg2);
7935
4c4b4cd2
PH
7936 arg1 = ada_coerce_to_simple_array (arg1);
7937 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
7938 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7939 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 7940 error (_("Attempt to compare array with non-array"));
4c4b4cd2 7941 /* FIXME: The following works only for types whose
76a01679
JB
7942 representations use all bits (no padding or undefined bits)
7943 and do not have user-defined equality. */
7944 return
df407dfe 7945 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 7946 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 7947 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
7948 }
7949 return value_equal (arg1, arg2);
7950}
7951
52ce6436
PH
7952/* Total number of component associations in the aggregate starting at
7953 index PC in EXP. Assumes that index PC is the start of an
7954 OP_AGGREGATE. */
7955
7956static int
7957num_component_specs (struct expression *exp, int pc)
7958{
7959 int n, m, i;
7960 m = exp->elts[pc + 1].longconst;
7961 pc += 3;
7962 n = 0;
7963 for (i = 0; i < m; i += 1)
7964 {
7965 switch (exp->elts[pc].opcode)
7966 {
7967 default:
7968 n += 1;
7969 break;
7970 case OP_CHOICES:
7971 n += exp->elts[pc + 1].longconst;
7972 break;
7973 }
7974 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7975 }
7976 return n;
7977}
7978
7979/* Assign the result of evaluating EXP starting at *POS to the INDEXth
7980 component of LHS (a simple array or a record), updating *POS past
7981 the expression, assuming that LHS is contained in CONTAINER. Does
7982 not modify the inferior's memory, nor does it modify LHS (unless
7983 LHS == CONTAINER). */
7984
7985static void
7986assign_component (struct value *container, struct value *lhs, LONGEST index,
7987 struct expression *exp, int *pos)
7988{
7989 struct value *mark = value_mark ();
7990 struct value *elt;
7991 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7992 {
22601c15
UW
7993 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
7994 struct value *index_val = value_from_longest (index_type, index);
52ce6436
PH
7995 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7996 }
7997 else
7998 {
7999 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8000 elt = ada_to_fixed_value (unwrap_value (elt));
8001 }
8002
8003 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8004 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8005 else
8006 value_assign_to_component (container, elt,
8007 ada_evaluate_subexp (NULL, exp, pos,
8008 EVAL_NORMAL));
8009
8010 value_free_to_mark (mark);
8011}
8012
8013/* Assuming that LHS represents an lvalue having a record or array
8014 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8015 of that aggregate's value to LHS, advancing *POS past the
8016 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8017 lvalue containing LHS (possibly LHS itself). Does not modify
8018 the inferior's memory, nor does it modify the contents of
8019 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8020
8021static struct value *
8022assign_aggregate (struct value *container,
8023 struct value *lhs, struct expression *exp,
8024 int *pos, enum noside noside)
8025{
8026 struct type *lhs_type;
8027 int n = exp->elts[*pos+1].longconst;
8028 LONGEST low_index, high_index;
8029 int num_specs;
8030 LONGEST *indices;
8031 int max_indices, num_indices;
8032 int is_array_aggregate;
8033 int i;
8034 struct value *mark = value_mark ();
8035
8036 *pos += 3;
8037 if (noside != EVAL_NORMAL)
8038 {
8039 int i;
8040 for (i = 0; i < n; i += 1)
8041 ada_evaluate_subexp (NULL, exp, pos, noside);
8042 return container;
8043 }
8044
8045 container = ada_coerce_ref (container);
8046 if (ada_is_direct_array_type (value_type (container)))
8047 container = ada_coerce_to_simple_array (container);
8048 lhs = ada_coerce_ref (lhs);
8049 if (!deprecated_value_modifiable (lhs))
8050 error (_("Left operand of assignment is not a modifiable lvalue."));
8051
8052 lhs_type = value_type (lhs);
8053 if (ada_is_direct_array_type (lhs_type))
8054 {
8055 lhs = ada_coerce_to_simple_array (lhs);
8056 lhs_type = value_type (lhs);
8057 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8058 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8059 is_array_aggregate = 1;
8060 }
8061 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8062 {
8063 low_index = 0;
8064 high_index = num_visible_fields (lhs_type) - 1;
8065 is_array_aggregate = 0;
8066 }
8067 else
8068 error (_("Left-hand side must be array or record."));
8069
8070 num_specs = num_component_specs (exp, *pos - 3);
8071 max_indices = 4 * num_specs + 4;
8072 indices = alloca (max_indices * sizeof (indices[0]));
8073 indices[0] = indices[1] = low_index - 1;
8074 indices[2] = indices[3] = high_index + 1;
8075 num_indices = 4;
8076
8077 for (i = 0; i < n; i += 1)
8078 {
8079 switch (exp->elts[*pos].opcode)
8080 {
8081 case OP_CHOICES:
8082 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8083 &num_indices, max_indices,
8084 low_index, high_index);
8085 break;
8086 case OP_POSITIONAL:
8087 aggregate_assign_positional (container, lhs, exp, pos, indices,
8088 &num_indices, max_indices,
8089 low_index, high_index);
8090 break;
8091 case OP_OTHERS:
8092 if (i != n-1)
8093 error (_("Misplaced 'others' clause"));
8094 aggregate_assign_others (container, lhs, exp, pos, indices,
8095 num_indices, low_index, high_index);
8096 break;
8097 default:
8098 error (_("Internal error: bad aggregate clause"));
8099 }
8100 }
8101
8102 return container;
8103}
8104
8105/* Assign into the component of LHS indexed by the OP_POSITIONAL
8106 construct at *POS, updating *POS past the construct, given that
8107 the positions are relative to lower bound LOW, where HIGH is the
8108 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8109 updating *NUM_INDICES as needed. CONTAINER is as for
8110 assign_aggregate. */
8111static void
8112aggregate_assign_positional (struct value *container,
8113 struct value *lhs, struct expression *exp,
8114 int *pos, LONGEST *indices, int *num_indices,
8115 int max_indices, LONGEST low, LONGEST high)
8116{
8117 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8118
8119 if (ind - 1 == high)
e1d5a0d2 8120 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8121 if (ind <= high)
8122 {
8123 add_component_interval (ind, ind, indices, num_indices, max_indices);
8124 *pos += 3;
8125 assign_component (container, lhs, ind, exp, pos);
8126 }
8127 else
8128 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8129}
8130
8131/* Assign into the components of LHS indexed by the OP_CHOICES
8132 construct at *POS, updating *POS past the construct, given that
8133 the allowable indices are LOW..HIGH. Record the indices assigned
8134 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8135 needed. CONTAINER is as for assign_aggregate. */
8136static void
8137aggregate_assign_from_choices (struct value *container,
8138 struct value *lhs, struct expression *exp,
8139 int *pos, LONGEST *indices, int *num_indices,
8140 int max_indices, LONGEST low, LONGEST high)
8141{
8142 int j;
8143 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8144 int choice_pos, expr_pc;
8145 int is_array = ada_is_direct_array_type (value_type (lhs));
8146
8147 choice_pos = *pos += 3;
8148
8149 for (j = 0; j < n_choices; j += 1)
8150 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8151 expr_pc = *pos;
8152 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8153
8154 for (j = 0; j < n_choices; j += 1)
8155 {
8156 LONGEST lower, upper;
8157 enum exp_opcode op = exp->elts[choice_pos].opcode;
8158 if (op == OP_DISCRETE_RANGE)
8159 {
8160 choice_pos += 1;
8161 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8162 EVAL_NORMAL));
8163 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8164 EVAL_NORMAL));
8165 }
8166 else if (is_array)
8167 {
8168 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8169 EVAL_NORMAL));
8170 upper = lower;
8171 }
8172 else
8173 {
8174 int ind;
8175 char *name;
8176 switch (op)
8177 {
8178 case OP_NAME:
8179 name = &exp->elts[choice_pos + 2].string;
8180 break;
8181 case OP_VAR_VALUE:
8182 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8183 break;
8184 default:
8185 error (_("Invalid record component association."));
8186 }
8187 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8188 ind = 0;
8189 if (! find_struct_field (name, value_type (lhs), 0,
8190 NULL, NULL, NULL, NULL, &ind))
8191 error (_("Unknown component name: %s."), name);
8192 lower = upper = ind;
8193 }
8194
8195 if (lower <= upper && (lower < low || upper > high))
8196 error (_("Index in component association out of bounds."));
8197
8198 add_component_interval (lower, upper, indices, num_indices,
8199 max_indices);
8200 while (lower <= upper)
8201 {
8202 int pos1;
8203 pos1 = expr_pc;
8204 assign_component (container, lhs, lower, exp, &pos1);
8205 lower += 1;
8206 }
8207 }
8208}
8209
8210/* Assign the value of the expression in the OP_OTHERS construct in
8211 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8212 have not been previously assigned. The index intervals already assigned
8213 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8214 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8215static void
8216aggregate_assign_others (struct value *container,
8217 struct value *lhs, struct expression *exp,
8218 int *pos, LONGEST *indices, int num_indices,
8219 LONGEST low, LONGEST high)
8220{
8221 int i;
8222 int expr_pc = *pos+1;
8223
8224 for (i = 0; i < num_indices - 2; i += 2)
8225 {
8226 LONGEST ind;
8227 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8228 {
8229 int pos;
8230 pos = expr_pc;
8231 assign_component (container, lhs, ind, exp, &pos);
8232 }
8233 }
8234 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8235}
8236
8237/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8238 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8239 modifying *SIZE as needed. It is an error if *SIZE exceeds
8240 MAX_SIZE. The resulting intervals do not overlap. */
8241static void
8242add_component_interval (LONGEST low, LONGEST high,
8243 LONGEST* indices, int *size, int max_size)
8244{
8245 int i, j;
8246 for (i = 0; i < *size; i += 2) {
8247 if (high >= indices[i] && low <= indices[i + 1])
8248 {
8249 int kh;
8250 for (kh = i + 2; kh < *size; kh += 2)
8251 if (high < indices[kh])
8252 break;
8253 if (low < indices[i])
8254 indices[i] = low;
8255 indices[i + 1] = indices[kh - 1];
8256 if (high > indices[i + 1])
8257 indices[i + 1] = high;
8258 memcpy (indices + i + 2, indices + kh, *size - kh);
8259 *size -= kh - i - 2;
8260 return;
8261 }
8262 else if (high < indices[i])
8263 break;
8264 }
8265
8266 if (*size == max_size)
8267 error (_("Internal error: miscounted aggregate components."));
8268 *size += 2;
8269 for (j = *size-1; j >= i+2; j -= 1)
8270 indices[j] = indices[j - 2];
8271 indices[i] = low;
8272 indices[i + 1] = high;
8273}
8274
6e48bd2c
JB
8275/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8276 is different. */
8277
8278static struct value *
8279ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8280{
8281 if (type == ada_check_typedef (value_type (arg2)))
8282 return arg2;
8283
8284 if (ada_is_fixed_point_type (type))
8285 return (cast_to_fixed (type, arg2));
8286
8287 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8288 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8289
8290 return value_cast (type, arg2);
8291}
8292
284614f0
JB
8293/* Evaluating Ada expressions, and printing their result.
8294 ------------------------------------------------------
8295
8296 We usually evaluate an Ada expression in order to print its value.
8297 We also evaluate an expression in order to print its type, which
8298 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8299 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8300 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8301 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8302 similar.
8303
8304 Evaluating expressions is a little more complicated for Ada entities
8305 than it is for entities in languages such as C. The main reason for
8306 this is that Ada provides types whose definition might be dynamic.
8307 One example of such types is variant records. Or another example
8308 would be an array whose bounds can only be known at run time.
8309
8310 The following description is a general guide as to what should be
8311 done (and what should NOT be done) in order to evaluate an expression
8312 involving such types, and when. This does not cover how the semantic
8313 information is encoded by GNAT as this is covered separatly. For the
8314 document used as the reference for the GNAT encoding, see exp_dbug.ads
8315 in the GNAT sources.
8316
8317 Ideally, we should embed each part of this description next to its
8318 associated code. Unfortunately, the amount of code is so vast right
8319 now that it's hard to see whether the code handling a particular
8320 situation might be duplicated or not. One day, when the code is
8321 cleaned up, this guide might become redundant with the comments
8322 inserted in the code, and we might want to remove it.
8323
8324 When evaluating Ada expressions, the tricky issue is that they may
8325 reference entities whose type contents and size are not statically
8326 known. Consider for instance a variant record:
8327
8328 type Rec (Empty : Boolean := True) is record
8329 case Empty is
8330 when True => null;
8331 when False => Value : Integer;
8332 end case;
8333 end record;
8334 Yes : Rec := (Empty => False, Value => 1);
8335 No : Rec := (empty => True);
8336
8337 The size and contents of that record depends on the value of the
8338 descriminant (Rec.Empty). At this point, neither the debugging
8339 information nor the associated type structure in GDB are able to
8340 express such dynamic types. So what the debugger does is to create
8341 "fixed" versions of the type that applies to the specific object.
8342 We also informally refer to this opperation as "fixing" an object,
8343 which means creating its associated fixed type.
8344
8345 Example: when printing the value of variable "Yes" above, its fixed
8346 type would look like this:
8347
8348 type Rec is record
8349 Empty : Boolean;
8350 Value : Integer;
8351 end record;
8352
8353 On the other hand, if we printed the value of "No", its fixed type
8354 would become:
8355
8356 type Rec is record
8357 Empty : Boolean;
8358 end record;
8359
8360 Things become a little more complicated when trying to fix an entity
8361 with a dynamic type that directly contains another dynamic type,
8362 such as an array of variant records, for instance. There are
8363 two possible cases: Arrays, and records.
8364
8365 Arrays are a little simpler to handle, because the same amount of
8366 memory is allocated for each element of the array, even if the amount
8367 of space used by each element changes from element to element.
8368 Consider for instance the following array of type Rec:
8369
8370 type Rec_Array is array (1 .. 2) of Rec;
8371
8372 The type structure in GDB describes an array in terms of its
8373 bounds, and the type of its elements. By design, all elements
8374 in the array have the same type. So we cannot use a fixed type
8375 for the array elements in this case, since the fixed type depends
8376 on the actual value of each element.
8377
8378 Fortunately, what happens in practice is that each element of
8379 the array has the same size, which is the maximum size that
8380 might be needed in order to hold an object of the element type.
8381 And the compiler shows it in the debugging information by wrapping
8382 the array element inside a private PAD type. This type should not
8383 be shown to the user, and must be "unwrap"'ed before printing. Note
8384 that we also use the adjective "aligner" in our code to designate
8385 these wrapper types.
8386
8387 These wrapper types should have a constant size, which is the size
8388 of each element of the array. In the case when the size is statically
8389 known, the PAD type will already have the right size, and the array
8390 element type should remain unfixed. But there are cases when
8391 this size is not statically known. For instance, assuming that
8392 "Five" is an integer variable:
8393
8394 type Dynamic is array (1 .. Five) of Integer;
8395 type Wrapper (Has_Length : Boolean := False) is record
8396 Data : Dynamic;
8397 case Has_Length is
8398 when True => Length : Integer;
8399 when False => null;
8400 end case;
8401 end record;
8402 type Wrapper_Array is array (1 .. 2) of Wrapper;
8403
8404 Hello : Wrapper_Array := (others => (Has_Length => True,
8405 Data => (others => 17),
8406 Length => 1));
8407
8408
8409 The debugging info would describe variable Hello as being an
8410 array of a PAD type. The size of that PAD type is not statically
8411 known, but can be determined using a parallel XVZ variable.
8412 In that case, a copy of the PAD type with the correct size should
8413 be used for the fixed array.
8414
8415 However, things are slightly different in the case of dynamic
8416 record types. In this case, in order to compute the associated
8417 fixed type, we need to determine the size and offset of each of
8418 its components. This, in turn, requires us to compute the fixed
8419 type of each of these components.
8420
8421 Consider for instance the example:
8422
8423 type Bounded_String (Max_Size : Natural) is record
8424 Str : String (1 .. Max_Size);
8425 Length : Natural;
8426 end record;
8427 My_String : Bounded_String (Max_Size => 10);
8428
8429 In that case, the position of field "Length" depends on the size
8430 of field Str, which itself depends on the value of the Max_Size
8431 discriminant. In order to fix the type of variable My_String,
8432 we need to fix the type of field Str. Therefore, fixing a variant
8433 record requires us to fix each of its components.
8434
8435 However, if a component does not have a dynamic size, the component
8436 should not be fixed. In particular, fields that use a PAD type
8437 should not fixed. Here is an example where this might happen
8438 (assuming type Rec above):
8439
8440 type Container (Big : Boolean) is record
8441 First : Rec;
8442 After : Integer;
8443 case Big is
8444 when True => Another : Integer;
8445 when False => null;
8446 end case;
8447 end record;
8448 My_Container : Container := (Big => False,
8449 First => (Empty => True),
8450 After => 42);
8451
8452 In that example, the compiler creates a PAD type for component First,
8453 whose size is constant, and then positions the component After just
8454 right after it. The offset of component After is therefore constant
8455 in this case.
8456
8457 The debugger computes the position of each field based on an algorithm
8458 that uses, among other things, the actual position and size of the field
8459 preceding it. Let's now imagine that the user is trying to print the
8460 value of My_Container. If the type fixing was recursive, we would
8461 end up computing the offset of field After based on the size of the
8462 fixed version of field First. And since in our example First has
8463 only one actual field, the size of the fixed type is actually smaller
8464 than the amount of space allocated to that field, and thus we would
8465 compute the wrong offset of field After.
8466
8467 Unfortunately, we need to watch out for dynamic components of variant
8468 records (identified by the ___XVL suffix in the component name).
8469 Even if the target type is a PAD type, the size of that type might
8470 not be statically known. So the PAD type needs to be unwrapped and
8471 the resulting type needs to be fixed. Otherwise, we might end up
8472 with the wrong size for our component. This can be observed with
8473 the following type declarations:
8474
8475 type Octal is new Integer range 0 .. 7;
8476 type Octal_Array is array (Positive range <>) of Octal;
8477 pragma Pack (Octal_Array);
8478
8479 type Octal_Buffer (Size : Positive) is record
8480 Buffer : Octal_Array (1 .. Size);
8481 Length : Integer;
8482 end record;
8483
8484 In that case, Buffer is a PAD type whose size is unset and needs
8485 to be computed by fixing the unwrapped type.
8486
8487 Lastly, when should the sub-elements of a type that remained unfixed
8488 thus far, be actually fixed?
8489
8490 The answer is: Only when referencing that element. For instance
8491 when selecting one component of a record, this specific component
8492 should be fixed at that point in time. Or when printing the value
8493 of a record, each component should be fixed before its value gets
8494 printed. Similarly for arrays, the element of the array should be
8495 fixed when printing each element of the array, or when extracting
8496 one element out of that array. On the other hand, fixing should
8497 not be performed on the elements when taking a slice of an array!
8498
8499 Note that one of the side-effects of miscomputing the offset and
8500 size of each field is that we end up also miscomputing the size
8501 of the containing type. This can have adverse results when computing
8502 the value of an entity. GDB fetches the value of an entity based
8503 on the size of its type, and thus a wrong size causes GDB to fetch
8504 the wrong amount of memory. In the case where the computed size is
8505 too small, GDB fetches too little data to print the value of our
8506 entiry. Results in this case as unpredicatble, as we usually read
8507 past the buffer containing the data =:-o. */
8508
8509/* Implement the evaluate_exp routine in the exp_descriptor structure
8510 for the Ada language. */
8511
52ce6436 8512static struct value *
ebf56fd3 8513ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 8514 int *pos, enum noside noside)
14f9c5c9
AS
8515{
8516 enum exp_opcode op;
14f9c5c9
AS
8517 int tem, tem2, tem3;
8518 int pc;
8519 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8520 struct type *type;
52ce6436 8521 int nargs, oplen;
d2e4a39e 8522 struct value **argvec;
14f9c5c9 8523
d2e4a39e
AS
8524 pc = *pos;
8525 *pos += 1;
14f9c5c9
AS
8526 op = exp->elts[pc].opcode;
8527
d2e4a39e 8528 switch (op)
14f9c5c9
AS
8529 {
8530 default:
8531 *pos -= 1;
6e48bd2c
JB
8532 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8533 arg1 = unwrap_value (arg1);
8534
8535 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8536 then we need to perform the conversion manually, because
8537 evaluate_subexp_standard doesn't do it. This conversion is
8538 necessary in Ada because the different kinds of float/fixed
8539 types in Ada have different representations.
8540
8541 Similarly, we need to perform the conversion from OP_LONG
8542 ourselves. */
8543 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8544 arg1 = ada_value_cast (expect_type, arg1, noside);
8545
8546 return arg1;
4c4b4cd2
PH
8547
8548 case OP_STRING:
8549 {
76a01679
JB
8550 struct value *result;
8551 *pos -= 1;
8552 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8553 /* The result type will have code OP_STRING, bashed there from
8554 OP_ARRAY. Bash it back. */
df407dfe
AC
8555 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8556 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 8557 return result;
4c4b4cd2 8558 }
14f9c5c9
AS
8559
8560 case UNOP_CAST:
8561 (*pos) += 2;
8562 type = exp->elts[pc + 1].type;
8563 arg1 = evaluate_subexp (type, exp, pos, noside);
8564 if (noside == EVAL_SKIP)
4c4b4cd2 8565 goto nosideret;
6e48bd2c 8566 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
8567 return arg1;
8568
4c4b4cd2
PH
8569 case UNOP_QUAL:
8570 (*pos) += 2;
8571 type = exp->elts[pc + 1].type;
8572 return ada_evaluate_subexp (type, exp, pos, noside);
8573
14f9c5c9
AS
8574 case BINOP_ASSIGN:
8575 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
8576 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8577 {
8578 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8579 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8580 return arg1;
8581 return ada_value_assign (arg1, arg1);
8582 }
003f3813
JB
8583 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8584 except if the lhs of our assignment is a convenience variable.
8585 In the case of assigning to a convenience variable, the lhs
8586 should be exactly the result of the evaluation of the rhs. */
8587 type = value_type (arg1);
8588 if (VALUE_LVAL (arg1) == lval_internalvar)
8589 type = NULL;
8590 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 8591 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8592 return arg1;
df407dfe
AC
8593 if (ada_is_fixed_point_type (value_type (arg1)))
8594 arg2 = cast_to_fixed (value_type (arg1), arg2);
8595 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 8596 error
323e0a4a 8597 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 8598 else
df407dfe 8599 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 8600 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
8601
8602 case BINOP_ADD:
8603 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8604 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8605 if (noside == EVAL_SKIP)
4c4b4cd2 8606 goto nosideret;
2ac8a782
JB
8607 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8608 return (value_from_longest
8609 (value_type (arg1),
8610 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
8611 if ((ada_is_fixed_point_type (value_type (arg1))
8612 || ada_is_fixed_point_type (value_type (arg2)))
8613 && value_type (arg1) != value_type (arg2))
323e0a4a 8614 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
8615 /* Do the addition, and cast the result to the type of the first
8616 argument. We cannot cast the result to a reference type, so if
8617 ARG1 is a reference type, find its underlying type. */
8618 type = value_type (arg1);
8619 while (TYPE_CODE (type) == TYPE_CODE_REF)
8620 type = TYPE_TARGET_TYPE (type);
f44316fa 8621 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8622 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
8623
8624 case BINOP_SUB:
8625 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8626 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8627 if (noside == EVAL_SKIP)
4c4b4cd2 8628 goto nosideret;
2ac8a782
JB
8629 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8630 return (value_from_longest
8631 (value_type (arg1),
8632 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
8633 if ((ada_is_fixed_point_type (value_type (arg1))
8634 || ada_is_fixed_point_type (value_type (arg2)))
8635 && value_type (arg1) != value_type (arg2))
323e0a4a 8636 error (_("Operands of fixed-point subtraction must have the same type"));
b7789565
JB
8637 /* Do the substraction, and cast the result to the type of the first
8638 argument. We cannot cast the result to a reference type, so if
8639 ARG1 is a reference type, find its underlying type. */
8640 type = value_type (arg1);
8641 while (TYPE_CODE (type) == TYPE_CODE_REF)
8642 type = TYPE_TARGET_TYPE (type);
f44316fa 8643 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8644 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
8645
8646 case BINOP_MUL:
8647 case BINOP_DIV:
e1578042
JB
8648 case BINOP_REM:
8649 case BINOP_MOD:
14f9c5c9
AS
8650 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8651 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8652 if (noside == EVAL_SKIP)
4c4b4cd2 8653 goto nosideret;
e1578042 8654 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
8655 {
8656 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8657 return value_zero (value_type (arg1), not_lval);
8658 }
14f9c5c9 8659 else
4c4b4cd2 8660 {
a53b7a21 8661 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 8662 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 8663 arg1 = cast_from_fixed (type, arg1);
df407dfe 8664 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8665 arg2 = cast_from_fixed (type, arg2);
f44316fa 8666 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
8667 return ada_value_binop (arg1, arg2, op);
8668 }
8669
4c4b4cd2
PH
8670 case BINOP_EQUAL:
8671 case BINOP_NOTEQUAL:
14f9c5c9 8672 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 8673 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 8674 if (noside == EVAL_SKIP)
76a01679 8675 goto nosideret;
4c4b4cd2 8676 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8677 tem = 0;
4c4b4cd2 8678 else
f44316fa
UW
8679 {
8680 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8681 tem = ada_value_equal (arg1, arg2);
8682 }
4c4b4cd2 8683 if (op == BINOP_NOTEQUAL)
76a01679 8684 tem = !tem;
fbb06eb1
UW
8685 type = language_bool_type (exp->language_defn, exp->gdbarch);
8686 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
8687
8688 case UNOP_NEG:
8689 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8690 if (noside == EVAL_SKIP)
8691 goto nosideret;
df407dfe
AC
8692 else if (ada_is_fixed_point_type (value_type (arg1)))
8693 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 8694 else
f44316fa
UW
8695 {
8696 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8697 return value_neg (arg1);
8698 }
4c4b4cd2 8699
2330c6c6
JB
8700 case BINOP_LOGICAL_AND:
8701 case BINOP_LOGICAL_OR:
8702 case UNOP_LOGICAL_NOT:
000d5124
JB
8703 {
8704 struct value *val;
8705
8706 *pos -= 1;
8707 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
8708 type = language_bool_type (exp->language_defn, exp->gdbarch);
8709 return value_cast (type, val);
000d5124 8710 }
2330c6c6
JB
8711
8712 case BINOP_BITWISE_AND:
8713 case BINOP_BITWISE_IOR:
8714 case BINOP_BITWISE_XOR:
000d5124
JB
8715 {
8716 struct value *val;
8717
8718 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8719 *pos = pc;
8720 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8721
8722 return value_cast (value_type (arg1), val);
8723 }
2330c6c6 8724
14f9c5c9
AS
8725 case OP_VAR_VALUE:
8726 *pos -= 1;
6799def4 8727
14f9c5c9 8728 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8729 {
8730 *pos += 4;
8731 goto nosideret;
8732 }
8733 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
8734 /* Only encountered when an unresolved symbol occurs in a
8735 context other than a function call, in which case, it is
52ce6436 8736 invalid. */
323e0a4a 8737 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 8738 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 8739 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8740 {
0c1f74cf
JB
8741 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8742 if (ada_is_tagged_type (type, 0))
8743 {
8744 /* Tagged types are a little special in the fact that the real
8745 type is dynamic and can only be determined by inspecting the
8746 object's tag. This means that we need to get the object's
8747 value first (EVAL_NORMAL) and then extract the actual object
8748 type from its tag.
8749
8750 Note that we cannot skip the final step where we extract
8751 the object type from its tag, because the EVAL_NORMAL phase
8752 results in dynamic components being resolved into fixed ones.
8753 This can cause problems when trying to print the type
8754 description of tagged types whose parent has a dynamic size:
8755 We use the type name of the "_parent" component in order
8756 to print the name of the ancestor type in the type description.
8757 If that component had a dynamic size, the resolution into
8758 a fixed type would result in the loss of that type name,
8759 thus preventing us from printing the name of the ancestor
8760 type in the type description. */
b79819ba
JB
8761 struct type *actual_type;
8762
0c1f74cf 8763 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
8764 actual_type = type_from_tag (ada_value_tag (arg1));
8765 if (actual_type == NULL)
8766 /* If, for some reason, we were unable to determine
8767 the actual type from the tag, then use the static
8768 approximation that we just computed as a fallback.
8769 This can happen if the debugging information is
8770 incomplete, for instance. */
8771 actual_type = type;
8772
8773 return value_zero (actual_type, not_lval);
0c1f74cf
JB
8774 }
8775
4c4b4cd2
PH
8776 *pos += 4;
8777 return value_zero
8778 (to_static_fixed_type
8779 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8780 not_lval);
8781 }
d2e4a39e 8782 else
4c4b4cd2 8783 {
284614f0
JB
8784 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8785 arg1 = unwrap_value (arg1);
4c4b4cd2
PH
8786 return ada_to_fixed_value (arg1);
8787 }
8788
8789 case OP_FUNCALL:
8790 (*pos) += 2;
8791
8792 /* Allocate arg vector, including space for the function to be
8793 called in argvec[0] and a terminating NULL. */
8794 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8795 argvec =
8796 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8797
8798 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 8799 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 8800 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
8801 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8802 else
8803 {
8804 for (tem = 0; tem <= nargs; tem += 1)
8805 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8806 argvec[tem] = 0;
8807
8808 if (noside == EVAL_SKIP)
8809 goto nosideret;
8810 }
8811
df407dfe 8812 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 8813 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
8814 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8815 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8816 /* This is a packed array that has already been fixed, and
8817 therefore already coerced to a simple array. Nothing further
8818 to do. */
8819 ;
df407dfe
AC
8820 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8821 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 8822 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
8823 argvec[0] = value_addr (argvec[0]);
8824
df407dfe 8825 type = ada_check_typedef (value_type (argvec[0]));
4c4b4cd2
PH
8826 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8827 {
61ee279c 8828 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
8829 {
8830 case TYPE_CODE_FUNC:
61ee279c 8831 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8832 break;
8833 case TYPE_CODE_ARRAY:
8834 break;
8835 case TYPE_CODE_STRUCT:
8836 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8837 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 8838 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8839 break;
8840 default:
323e0a4a 8841 error (_("cannot subscript or call something of type `%s'"),
df407dfe 8842 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
8843 break;
8844 }
8845 }
8846
8847 switch (TYPE_CODE (type))
8848 {
8849 case TYPE_CODE_FUNC:
8850 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8851 return allocate_value (TYPE_TARGET_TYPE (type));
8852 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8853 case TYPE_CODE_STRUCT:
8854 {
8855 int arity;
8856
4c4b4cd2
PH
8857 arity = ada_array_arity (type);
8858 type = ada_array_element_type (type, nargs);
8859 if (type == NULL)
323e0a4a 8860 error (_("cannot subscript or call a record"));
4c4b4cd2 8861 if (arity != nargs)
323e0a4a 8862 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 8863 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 8864 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8865 return
8866 unwrap_value (ada_value_subscript
8867 (argvec[0], nargs, argvec + 1));
8868 }
8869 case TYPE_CODE_ARRAY:
8870 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8871 {
8872 type = ada_array_element_type (type, nargs);
8873 if (type == NULL)
323e0a4a 8874 error (_("element type of array unknown"));
4c4b4cd2 8875 else
0a07e705 8876 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8877 }
8878 return
8879 unwrap_value (ada_value_subscript
8880 (ada_coerce_to_simple_array (argvec[0]),
8881 nargs, argvec + 1));
8882 case TYPE_CODE_PTR: /* Pointer to array */
8883 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8884 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8885 {
8886 type = ada_array_element_type (type, nargs);
8887 if (type == NULL)
323e0a4a 8888 error (_("element type of array unknown"));
4c4b4cd2 8889 else
0a07e705 8890 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8891 }
8892 return
8893 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8894 nargs, argvec + 1));
8895
8896 default:
e1d5a0d2
PH
8897 error (_("Attempt to index or call something other than an "
8898 "array or function"));
4c4b4cd2
PH
8899 }
8900
8901 case TERNOP_SLICE:
8902 {
8903 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8904 struct value *low_bound_val =
8905 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
8906 struct value *high_bound_val =
8907 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8908 LONGEST low_bound;
8909 LONGEST high_bound;
994b9211
AC
8910 low_bound_val = coerce_ref (low_bound_val);
8911 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
8912 low_bound = pos_atr (low_bound_val);
8913 high_bound = pos_atr (high_bound_val);
963a6417 8914
4c4b4cd2
PH
8915 if (noside == EVAL_SKIP)
8916 goto nosideret;
8917
4c4b4cd2
PH
8918 /* If this is a reference to an aligner type, then remove all
8919 the aligners. */
df407dfe
AC
8920 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8921 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8922 TYPE_TARGET_TYPE (value_type (array)) =
8923 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 8924
df407dfe 8925 if (ada_is_packed_array_type (value_type (array)))
323e0a4a 8926 error (_("cannot slice a packed array"));
4c4b4cd2
PH
8927
8928 /* If this is a reference to an array or an array lvalue,
8929 convert to a pointer. */
df407dfe
AC
8930 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8931 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
8932 && VALUE_LVAL (array) == lval_memory))
8933 array = value_addr (array);
8934
1265e4aa 8935 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 8936 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 8937 (value_type (array))))
0b5d8877 8938 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
8939
8940 array = ada_coerce_to_simple_array_ptr (array);
8941
714e53ab
PH
8942 /* If we have more than one level of pointer indirection,
8943 dereference the value until we get only one level. */
df407dfe
AC
8944 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8945 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
8946 == TYPE_CODE_PTR))
8947 array = value_ind (array);
8948
8949 /* Make sure we really do have an array type before going further,
8950 to avoid a SEGV when trying to get the index type or the target
8951 type later down the road if the debug info generated by
8952 the compiler is incorrect or incomplete. */
df407dfe 8953 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 8954 error (_("cannot take slice of non-array"));
714e53ab 8955
df407dfe 8956 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 8957 {
0b5d8877 8958 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 8959 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
8960 low_bound);
8961 else
8962 {
8963 struct type *arr_type0 =
df407dfe 8964 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 8965 NULL, 1);
f5938064
JG
8966 return ada_value_slice_from_ptr (array, arr_type0,
8967 longest_to_int (low_bound),
8968 longest_to_int (high_bound));
4c4b4cd2
PH
8969 }
8970 }
8971 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8972 return array;
8973 else if (high_bound < low_bound)
df407dfe 8974 return empty_array (value_type (array), low_bound);
4c4b4cd2 8975 else
529cad9c
PH
8976 return ada_value_slice (array, longest_to_int (low_bound),
8977 longest_to_int (high_bound));
4c4b4cd2 8978 }
14f9c5c9 8979
4c4b4cd2
PH
8980 case UNOP_IN_RANGE:
8981 (*pos) += 2;
8982 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 8983 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 8984
14f9c5c9 8985 if (noside == EVAL_SKIP)
4c4b4cd2 8986 goto nosideret;
14f9c5c9 8987
4c4b4cd2
PH
8988 switch (TYPE_CODE (type))
8989 {
8990 default:
e1d5a0d2
PH
8991 lim_warning (_("Membership test incompletely implemented; "
8992 "always returns true"));
fbb06eb1
UW
8993 type = language_bool_type (exp->language_defn, exp->gdbarch);
8994 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
8995
8996 case TYPE_CODE_RANGE:
030b4912
UW
8997 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
8998 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
8999 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9000 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9001 type = language_bool_type (exp->language_defn, exp->gdbarch);
9002 return
9003 value_from_longest (type,
4c4b4cd2
PH
9004 (value_less (arg1, arg3)
9005 || value_equal (arg1, arg3))
9006 && (value_less (arg2, arg1)
9007 || value_equal (arg2, arg1)));
9008 }
9009
9010 case BINOP_IN_BOUNDS:
14f9c5c9 9011 (*pos) += 2;
4c4b4cd2
PH
9012 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9013 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9014
4c4b4cd2
PH
9015 if (noside == EVAL_SKIP)
9016 goto nosideret;
14f9c5c9 9017
4c4b4cd2 9018 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9019 {
9020 type = language_bool_type (exp->language_defn, exp->gdbarch);
9021 return value_zero (type, not_lval);
9022 }
14f9c5c9 9023
4c4b4cd2 9024 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9025
1eea4ebd
UW
9026 type = ada_index_type (value_type (arg2), tem, "range");
9027 if (!type)
9028 type = value_type (arg1);
14f9c5c9 9029
1eea4ebd
UW
9030 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9031 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9032
f44316fa
UW
9033 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9034 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9035 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9036 return
fbb06eb1 9037 value_from_longest (type,
4c4b4cd2
PH
9038 (value_less (arg1, arg3)
9039 || value_equal (arg1, arg3))
9040 && (value_less (arg2, arg1)
9041 || value_equal (arg2, arg1)));
9042
9043 case TERNOP_IN_RANGE:
9044 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9045 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9046 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9047
9048 if (noside == EVAL_SKIP)
9049 goto nosideret;
9050
f44316fa
UW
9051 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9052 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9053 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9054 return
fbb06eb1 9055 value_from_longest (type,
4c4b4cd2
PH
9056 (value_less (arg1, arg3)
9057 || value_equal (arg1, arg3))
9058 && (value_less (arg2, arg1)
9059 || value_equal (arg2, arg1)));
9060
9061 case OP_ATR_FIRST:
9062 case OP_ATR_LAST:
9063 case OP_ATR_LENGTH:
9064 {
76a01679
JB
9065 struct type *type_arg;
9066 if (exp->elts[*pos].opcode == OP_TYPE)
9067 {
9068 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9069 arg1 = NULL;
5bc23cb3 9070 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9071 }
9072 else
9073 {
9074 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9075 type_arg = NULL;
9076 }
9077
9078 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9079 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9080 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9081 *pos += 4;
9082
9083 if (noside == EVAL_SKIP)
9084 goto nosideret;
9085
9086 if (type_arg == NULL)
9087 {
9088 arg1 = ada_coerce_ref (arg1);
9089
df407dfe 9090 if (ada_is_packed_array_type (value_type (arg1)))
76a01679
JB
9091 arg1 = ada_coerce_to_simple_array (arg1);
9092
1eea4ebd
UW
9093 type = ada_index_type (value_type (arg1), tem,
9094 ada_attribute_name (op));
9095 if (type == NULL)
9096 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9097
9098 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9099 return allocate_value (type);
76a01679
JB
9100
9101 switch (op)
9102 {
9103 default: /* Should never happen. */
323e0a4a 9104 error (_("unexpected attribute encountered"));
76a01679 9105 case OP_ATR_FIRST:
1eea4ebd
UW
9106 return value_from_longest
9107 (type, ada_array_bound (arg1, tem, 0));
76a01679 9108 case OP_ATR_LAST:
1eea4ebd
UW
9109 return value_from_longest
9110 (type, ada_array_bound (arg1, tem, 1));
76a01679 9111 case OP_ATR_LENGTH:
1eea4ebd
UW
9112 return value_from_longest
9113 (type, ada_array_length (arg1, tem));
76a01679
JB
9114 }
9115 }
9116 else if (discrete_type_p (type_arg))
9117 {
9118 struct type *range_type;
9119 char *name = ada_type_name (type_arg);
9120 range_type = NULL;
9121 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
1ce677a4 9122 range_type = to_fixed_range_type (name, NULL, type_arg);
76a01679
JB
9123 if (range_type == NULL)
9124 range_type = type_arg;
9125 switch (op)
9126 {
9127 default:
323e0a4a 9128 error (_("unexpected attribute encountered"));
76a01679 9129 case OP_ATR_FIRST:
690cc4eb
PH
9130 return value_from_longest
9131 (range_type, discrete_type_low_bound (range_type));
76a01679 9132 case OP_ATR_LAST:
690cc4eb
PH
9133 return value_from_longest
9134 (range_type, discrete_type_high_bound (range_type));
76a01679 9135 case OP_ATR_LENGTH:
323e0a4a 9136 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9137 }
9138 }
9139 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9140 error (_("unimplemented type attribute"));
76a01679
JB
9141 else
9142 {
9143 LONGEST low, high;
9144
9145 if (ada_is_packed_array_type (type_arg))
9146 type_arg = decode_packed_array_type (type_arg);
9147
1eea4ebd 9148 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9149 if (type == NULL)
1eea4ebd
UW
9150 type = builtin_type (exp->gdbarch)->builtin_int;
9151
76a01679
JB
9152 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9153 return allocate_value (type);
9154
9155 switch (op)
9156 {
9157 default:
323e0a4a 9158 error (_("unexpected attribute encountered"));
76a01679 9159 case OP_ATR_FIRST:
1eea4ebd 9160 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9161 return value_from_longest (type, low);
9162 case OP_ATR_LAST:
1eea4ebd 9163 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9164 return value_from_longest (type, high);
9165 case OP_ATR_LENGTH:
1eea4ebd
UW
9166 low = ada_array_bound_from_type (type_arg, tem, 0);
9167 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9168 return value_from_longest (type, high - low + 1);
9169 }
9170 }
14f9c5c9
AS
9171 }
9172
4c4b4cd2
PH
9173 case OP_ATR_TAG:
9174 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9175 if (noside == EVAL_SKIP)
76a01679 9176 goto nosideret;
4c4b4cd2
PH
9177
9178 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9179 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9180
9181 return ada_value_tag (arg1);
9182
9183 case OP_ATR_MIN:
9184 case OP_ATR_MAX:
9185 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9186 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9187 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9188 if (noside == EVAL_SKIP)
76a01679 9189 goto nosideret;
d2e4a39e 9190 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9191 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9192 else
f44316fa
UW
9193 {
9194 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9195 return value_binop (arg1, arg2,
9196 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9197 }
14f9c5c9 9198
4c4b4cd2
PH
9199 case OP_ATR_MODULUS:
9200 {
31dedfee 9201 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679 9202 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
4c4b4cd2 9203
76a01679
JB
9204 if (noside == EVAL_SKIP)
9205 goto nosideret;
4c4b4cd2 9206
76a01679 9207 if (!ada_is_modular_type (type_arg))
323e0a4a 9208 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9209
76a01679
JB
9210 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9211 ada_modulus (type_arg));
4c4b4cd2
PH
9212 }
9213
9214
9215 case OP_ATR_POS:
9216 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9217 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9218 if (noside == EVAL_SKIP)
76a01679 9219 goto nosideret;
3cb382c9
UW
9220 type = builtin_type (exp->gdbarch)->builtin_int;
9221 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9222 return value_zero (type, not_lval);
14f9c5c9 9223 else
3cb382c9 9224 return value_pos_atr (type, arg1);
14f9c5c9 9225
4c4b4cd2
PH
9226 case OP_ATR_SIZE:
9227 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9228 type = value_type (arg1);
9229
9230 /* If the argument is a reference, then dereference its type, since
9231 the user is really asking for the size of the actual object,
9232 not the size of the pointer. */
9233 if (TYPE_CODE (type) == TYPE_CODE_REF)
9234 type = TYPE_TARGET_TYPE (type);
9235
4c4b4cd2 9236 if (noside == EVAL_SKIP)
76a01679 9237 goto nosideret;
4c4b4cd2 9238 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 9239 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 9240 else
22601c15 9241 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 9242 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9243
9244 case OP_ATR_VAL:
9245 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9246 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9247 type = exp->elts[pc + 2].type;
14f9c5c9 9248 if (noside == EVAL_SKIP)
76a01679 9249 goto nosideret;
4c4b4cd2 9250 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9251 return value_zero (type, not_lval);
4c4b4cd2 9252 else
76a01679 9253 return value_val_atr (type, arg1);
4c4b4cd2
PH
9254
9255 case BINOP_EXP:
9256 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9257 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9258 if (noside == EVAL_SKIP)
9259 goto nosideret;
9260 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9261 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9262 else
f44316fa
UW
9263 {
9264 /* For integer exponentiation operations,
9265 only promote the first argument. */
9266 if (is_integral_type (value_type (arg2)))
9267 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9268 else
9269 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9270
9271 return value_binop (arg1, arg2, op);
9272 }
4c4b4cd2
PH
9273
9274 case UNOP_PLUS:
9275 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9276 if (noside == EVAL_SKIP)
9277 goto nosideret;
9278 else
9279 return arg1;
9280
9281 case UNOP_ABS:
9282 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9283 if (noside == EVAL_SKIP)
9284 goto nosideret;
f44316fa 9285 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9286 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9287 return value_neg (arg1);
14f9c5c9 9288 else
4c4b4cd2 9289 return arg1;
14f9c5c9
AS
9290
9291 case UNOP_IND:
6b0d7253 9292 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9293 if (noside == EVAL_SKIP)
4c4b4cd2 9294 goto nosideret;
df407dfe 9295 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9296 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9297 {
9298 if (ada_is_array_descriptor_type (type))
9299 /* GDB allows dereferencing GNAT array descriptors. */
9300 {
9301 struct type *arrType = ada_type_of_array (arg1, 0);
9302 if (arrType == NULL)
323e0a4a 9303 error (_("Attempt to dereference null array pointer."));
00a4c844 9304 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9305 }
9306 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9307 || TYPE_CODE (type) == TYPE_CODE_REF
9308 /* In C you can dereference an array to get the 1st elt. */
9309 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9310 {
9311 type = to_static_fixed_type
9312 (ada_aligned_type
9313 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9314 check_size (type);
9315 return value_zero (type, lval_memory);
9316 }
4c4b4cd2 9317 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9318 {
9319 /* GDB allows dereferencing an int. */
9320 if (expect_type == NULL)
9321 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9322 lval_memory);
9323 else
9324 {
9325 expect_type =
9326 to_static_fixed_type (ada_aligned_type (expect_type));
9327 return value_zero (expect_type, lval_memory);
9328 }
9329 }
4c4b4cd2 9330 else
323e0a4a 9331 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9332 }
76a01679 9333 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9334 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9335
96967637
JB
9336 if (TYPE_CODE (type) == TYPE_CODE_INT)
9337 /* GDB allows dereferencing an int. If we were given
9338 the expect_type, then use that as the target type.
9339 Otherwise, assume that the target type is an int. */
9340 {
9341 if (expect_type != NULL)
9342 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9343 arg1));
9344 else
9345 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9346 (CORE_ADDR) value_as_address (arg1));
9347 }
6b0d7253 9348
4c4b4cd2
PH
9349 if (ada_is_array_descriptor_type (type))
9350 /* GDB allows dereferencing GNAT array descriptors. */
9351 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9352 else
4c4b4cd2 9353 return ada_value_ind (arg1);
14f9c5c9
AS
9354
9355 case STRUCTOP_STRUCT:
9356 tem = longest_to_int (exp->elts[pc + 1].longconst);
9357 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9358 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9359 if (noside == EVAL_SKIP)
4c4b4cd2 9360 goto nosideret;
14f9c5c9 9361 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9362 {
df407dfe 9363 struct type *type1 = value_type (arg1);
76a01679
JB
9364 if (ada_is_tagged_type (type1, 1))
9365 {
9366 type = ada_lookup_struct_elt_type (type1,
9367 &exp->elts[pc + 2].string,
9368 1, 1, NULL);
9369 if (type == NULL)
9370 /* In this case, we assume that the field COULD exist
9371 in some extension of the type. Return an object of
9372 "type" void, which will match any formal
9373 (see ada_type_match). */
30b15541
UW
9374 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9375 lval_memory);
76a01679
JB
9376 }
9377 else
9378 type =
9379 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9380 0, NULL);
9381
9382 return value_zero (ada_aligned_type (type), lval_memory);
9383 }
14f9c5c9 9384 else
284614f0
JB
9385 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9386 arg1 = unwrap_value (arg1);
9387 return ada_to_fixed_value (arg1);
9388
14f9c5c9 9389 case OP_TYPE:
4c4b4cd2
PH
9390 /* The value is not supposed to be used. This is here to make it
9391 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9392 (*pos) += 2;
9393 if (noside == EVAL_SKIP)
4c4b4cd2 9394 goto nosideret;
14f9c5c9 9395 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9396 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9397 else
323e0a4a 9398 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9399
9400 case OP_AGGREGATE:
9401 case OP_CHOICES:
9402 case OP_OTHERS:
9403 case OP_DISCRETE_RANGE:
9404 case OP_POSITIONAL:
9405 case OP_NAME:
9406 if (noside == EVAL_NORMAL)
9407 switch (op)
9408 {
9409 case OP_NAME:
9410 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9411 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9412 case OP_AGGREGATE:
9413 error (_("Aggregates only allowed on the right of an assignment"));
9414 default:
e1d5a0d2 9415 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
52ce6436
PH
9416 }
9417
9418 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9419 *pos += oplen - 1;
9420 for (tem = 0; tem < nargs; tem += 1)
9421 ada_evaluate_subexp (NULL, exp, pos, noside);
9422 goto nosideret;
14f9c5c9
AS
9423 }
9424
9425nosideret:
22601c15 9426 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 9427}
14f9c5c9 9428\f
d2e4a39e 9429
4c4b4cd2 9430 /* Fixed point */
14f9c5c9
AS
9431
9432/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9433 type name that encodes the 'small and 'delta information.
4c4b4cd2 9434 Otherwise, return NULL. */
14f9c5c9 9435
d2e4a39e 9436static const char *
ebf56fd3 9437fixed_type_info (struct type *type)
14f9c5c9 9438{
d2e4a39e 9439 const char *name = ada_type_name (type);
14f9c5c9
AS
9440 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9441
d2e4a39e
AS
9442 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9443 {
14f9c5c9
AS
9444 const char *tail = strstr (name, "___XF_");
9445 if (tail == NULL)
4c4b4cd2 9446 return NULL;
d2e4a39e 9447 else
4c4b4cd2 9448 return tail + 5;
14f9c5c9
AS
9449 }
9450 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9451 return fixed_type_info (TYPE_TARGET_TYPE (type));
9452 else
9453 return NULL;
9454}
9455
4c4b4cd2 9456/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
9457
9458int
ebf56fd3 9459ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
9460{
9461 return fixed_type_info (type) != NULL;
9462}
9463
4c4b4cd2
PH
9464/* Return non-zero iff TYPE represents a System.Address type. */
9465
9466int
9467ada_is_system_address_type (struct type *type)
9468{
9469 return (TYPE_NAME (type)
9470 && strcmp (TYPE_NAME (type), "system__address") == 0);
9471}
9472
14f9c5c9
AS
9473/* Assuming that TYPE is the representation of an Ada fixed-point
9474 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 9475 delta cannot be determined. */
14f9c5c9
AS
9476
9477DOUBLEST
ebf56fd3 9478ada_delta (struct type *type)
14f9c5c9
AS
9479{
9480 const char *encoding = fixed_type_info (type);
facc390f 9481 DOUBLEST num, den;
14f9c5c9 9482
facc390f
JB
9483 /* Strictly speaking, num and den are encoded as integer. However,
9484 they may not fit into a long, and they will have to be converted
9485 to DOUBLEST anyway. So scan them as DOUBLEST. */
9486 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9487 &num, &den) < 2)
14f9c5c9 9488 return -1.0;
d2e4a39e 9489 else
facc390f 9490 return num / den;
14f9c5c9
AS
9491}
9492
9493/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 9494 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
9495
9496static DOUBLEST
ebf56fd3 9497scaling_factor (struct type *type)
14f9c5c9
AS
9498{
9499 const char *encoding = fixed_type_info (type);
facc390f 9500 DOUBLEST num0, den0, num1, den1;
14f9c5c9 9501 int n;
d2e4a39e 9502
facc390f
JB
9503 /* Strictly speaking, num's and den's are encoded as integer. However,
9504 they may not fit into a long, and they will have to be converted
9505 to DOUBLEST anyway. So scan them as DOUBLEST. */
9506 n = sscanf (encoding,
9507 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9508 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9509 &num0, &den0, &num1, &den1);
14f9c5c9
AS
9510
9511 if (n < 2)
9512 return 1.0;
9513 else if (n == 4)
facc390f 9514 return num1 / den1;
d2e4a39e 9515 else
facc390f 9516 return num0 / den0;
14f9c5c9
AS
9517}
9518
9519
9520/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 9521 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
9522
9523DOUBLEST
ebf56fd3 9524ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 9525{
d2e4a39e 9526 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
9527}
9528
4c4b4cd2
PH
9529/* The representation of a fixed-point value of type TYPE
9530 corresponding to the value X. */
14f9c5c9
AS
9531
9532LONGEST
ebf56fd3 9533ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
9534{
9535 return (LONGEST) (x / scaling_factor (type) + 0.5);
9536}
9537
9538
4c4b4cd2 9539 /* VAX floating formats */
14f9c5c9
AS
9540
9541/* Non-zero iff TYPE represents one of the special VAX floating-point
4c4b4cd2
PH
9542 types. */
9543
14f9c5c9 9544int
d2e4a39e 9545ada_is_vax_floating_type (struct type *type)
14f9c5c9 9546{
d2e4a39e 9547 int name_len =
14f9c5c9 9548 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
d2e4a39e 9549 return
14f9c5c9 9550 name_len > 6
d2e4a39e 9551 && (TYPE_CODE (type) == TYPE_CODE_INT
4c4b4cd2
PH
9552 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9553 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
14f9c5c9
AS
9554}
9555
9556/* The type of special VAX floating-point type this is, assuming
4c4b4cd2
PH
9557 ada_is_vax_floating_point. */
9558
14f9c5c9 9559int
d2e4a39e 9560ada_vax_float_type_suffix (struct type *type)
14f9c5c9 9561{
d2e4a39e 9562 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
14f9c5c9
AS
9563}
9564
4c4b4cd2 9565/* A value representing the special debugging function that outputs
14f9c5c9 9566 VAX floating-point values of the type represented by TYPE. Assumes
4c4b4cd2
PH
9567 ada_is_vax_floating_type (TYPE). */
9568
d2e4a39e
AS
9569struct value *
9570ada_vax_float_print_function (struct type *type)
9571{
9572 switch (ada_vax_float_type_suffix (type))
9573 {
9574 case 'F':
9575 return get_var_value ("DEBUG_STRING_F", 0);
9576 case 'D':
9577 return get_var_value ("DEBUG_STRING_D", 0);
9578 case 'G':
9579 return get_var_value ("DEBUG_STRING_G", 0);
9580 default:
323e0a4a 9581 error (_("invalid VAX floating-point type"));
d2e4a39e 9582 }
14f9c5c9 9583}
14f9c5c9 9584\f
d2e4a39e 9585
4c4b4cd2 9586 /* Range types */
14f9c5c9
AS
9587
9588/* Scan STR beginning at position K for a discriminant name, and
9589 return the value of that discriminant field of DVAL in *PX. If
9590 PNEW_K is not null, put the position of the character beyond the
9591 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 9592 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
9593
9594static int
07d8f827 9595scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 9596 int *pnew_k)
14f9c5c9
AS
9597{
9598 static char *bound_buffer = NULL;
9599 static size_t bound_buffer_len = 0;
9600 char *bound;
9601 char *pend;
d2e4a39e 9602 struct value *bound_val;
14f9c5c9
AS
9603
9604 if (dval == NULL || str == NULL || str[k] == '\0')
9605 return 0;
9606
d2e4a39e 9607 pend = strstr (str + k, "__");
14f9c5c9
AS
9608 if (pend == NULL)
9609 {
d2e4a39e 9610 bound = str + k;
14f9c5c9
AS
9611 k += strlen (bound);
9612 }
d2e4a39e 9613 else
14f9c5c9 9614 {
d2e4a39e 9615 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 9616 bound = bound_buffer;
d2e4a39e
AS
9617 strncpy (bound_buffer, str + k, pend - (str + k));
9618 bound[pend - (str + k)] = '\0';
9619 k = pend - str;
14f9c5c9 9620 }
d2e4a39e 9621
df407dfe 9622 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
9623 if (bound_val == NULL)
9624 return 0;
9625
9626 *px = value_as_long (bound_val);
9627 if (pnew_k != NULL)
9628 *pnew_k = k;
9629 return 1;
9630}
9631
9632/* Value of variable named NAME in the current environment. If
9633 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
9634 otherwise causes an error with message ERR_MSG. */
9635
d2e4a39e
AS
9636static struct value *
9637get_var_value (char *name, char *err_msg)
14f9c5c9 9638{
4c4b4cd2 9639 struct ada_symbol_info *syms;
14f9c5c9
AS
9640 int nsyms;
9641
4c4b4cd2
PH
9642 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9643 &syms);
14f9c5c9
AS
9644
9645 if (nsyms != 1)
9646 {
9647 if (err_msg == NULL)
4c4b4cd2 9648 return 0;
14f9c5c9 9649 else
8a3fe4f8 9650 error (("%s"), err_msg);
14f9c5c9
AS
9651 }
9652
4c4b4cd2 9653 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 9654}
d2e4a39e 9655
14f9c5c9 9656/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
9657 no such variable found, returns 0, and sets *FLAG to 0. If
9658 successful, sets *FLAG to 1. */
9659
14f9c5c9 9660LONGEST
4c4b4cd2 9661get_int_var_value (char *name, int *flag)
14f9c5c9 9662{
4c4b4cd2 9663 struct value *var_val = get_var_value (name, 0);
d2e4a39e 9664
14f9c5c9
AS
9665 if (var_val == 0)
9666 {
9667 if (flag != NULL)
4c4b4cd2 9668 *flag = 0;
14f9c5c9
AS
9669 return 0;
9670 }
9671 else
9672 {
9673 if (flag != NULL)
4c4b4cd2 9674 *flag = 1;
14f9c5c9
AS
9675 return value_as_long (var_val);
9676 }
9677}
d2e4a39e 9678
14f9c5c9
AS
9679
9680/* Return a range type whose base type is that of the range type named
9681 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 9682 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
9683 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9684 corresponding range type from debug information; fall back to using it
9685 if symbol lookup fails. If a new type must be created, allocate it
9686 like ORIG_TYPE was. The bounds information, in general, is encoded
9687 in NAME, the base type given in the named range type. */
14f9c5c9 9688
d2e4a39e 9689static struct type *
1ce677a4 9690to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
14f9c5c9
AS
9691{
9692 struct type *raw_type = ada_find_any_type (name);
9693 struct type *base_type;
d2e4a39e 9694 char *subtype_info;
14f9c5c9 9695
1ce677a4 9696 /* Fall back to the original type if symbol lookup failed. */
dddfab26 9697 if (raw_type == NULL)
1ce677a4 9698 raw_type = orig_type;
dddfab26 9699
1ce677a4 9700 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
9701 base_type = TYPE_TARGET_TYPE (raw_type);
9702 else
9703 base_type = raw_type;
9704
9705 subtype_info = strstr (name, "___XD");
9706 if (subtype_info == NULL)
690cc4eb
PH
9707 {
9708 LONGEST L = discrete_type_low_bound (raw_type);
9709 LONGEST U = discrete_type_high_bound (raw_type);
9710 if (L < INT_MIN || U > INT_MAX)
9711 return raw_type;
9712 else
1ce677a4
UW
9713 return create_range_type (alloc_type (TYPE_OBJFILE (orig_type)),
9714 raw_type,
690cc4eb
PH
9715 discrete_type_low_bound (raw_type),
9716 discrete_type_high_bound (raw_type));
9717 }
14f9c5c9
AS
9718 else
9719 {
9720 static char *name_buf = NULL;
9721 static size_t name_len = 0;
9722 int prefix_len = subtype_info - name;
9723 LONGEST L, U;
9724 struct type *type;
9725 char *bounds_str;
9726 int n;
9727
9728 GROW_VECT (name_buf, name_len, prefix_len + 5);
9729 strncpy (name_buf, name, prefix_len);
9730 name_buf[prefix_len] = '\0';
9731
9732 subtype_info += 5;
9733 bounds_str = strchr (subtype_info, '_');
9734 n = 1;
9735
d2e4a39e 9736 if (*subtype_info == 'L')
4c4b4cd2
PH
9737 {
9738 if (!ada_scan_number (bounds_str, n, &L, &n)
9739 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9740 return raw_type;
9741 if (bounds_str[n] == '_')
9742 n += 2;
9743 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9744 n += 1;
9745 subtype_info += 1;
9746 }
d2e4a39e 9747 else
4c4b4cd2
PH
9748 {
9749 int ok;
9750 strcpy (name_buf + prefix_len, "___L");
9751 L = get_int_var_value (name_buf, &ok);
9752 if (!ok)
9753 {
323e0a4a 9754 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
9755 L = 1;
9756 }
9757 }
14f9c5c9 9758
d2e4a39e 9759 if (*subtype_info == 'U')
4c4b4cd2
PH
9760 {
9761 if (!ada_scan_number (bounds_str, n, &U, &n)
9762 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9763 return raw_type;
9764 }
d2e4a39e 9765 else
4c4b4cd2
PH
9766 {
9767 int ok;
9768 strcpy (name_buf + prefix_len, "___U");
9769 U = get_int_var_value (name_buf, &ok);
9770 if (!ok)
9771 {
323e0a4a 9772 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
9773 U = L;
9774 }
9775 }
14f9c5c9 9776
1ce677a4
UW
9777 type = create_range_type (alloc_type (TYPE_OBJFILE (orig_type)),
9778 base_type, L, U);
d2e4a39e 9779 TYPE_NAME (type) = name;
14f9c5c9
AS
9780 return type;
9781 }
9782}
9783
4c4b4cd2
PH
9784/* True iff NAME is the name of a range type. */
9785
14f9c5c9 9786int
d2e4a39e 9787ada_is_range_type_name (const char *name)
14f9c5c9
AS
9788{
9789 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 9790}
14f9c5c9 9791\f
d2e4a39e 9792
4c4b4cd2
PH
9793 /* Modular types */
9794
9795/* True iff TYPE is an Ada modular type. */
14f9c5c9 9796
14f9c5c9 9797int
d2e4a39e 9798ada_is_modular_type (struct type *type)
14f9c5c9 9799{
4c4b4cd2 9800 struct type *subranged_type = base_type (type);
14f9c5c9
AS
9801
9802 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 9803 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 9804 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
9805}
9806
0056e4d5
JB
9807/* Try to determine the lower and upper bounds of the given modular type
9808 using the type name only. Return non-zero and set L and U as the lower
9809 and upper bounds (respectively) if successful. */
9810
9811int
9812ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9813{
9814 char *name = ada_type_name (type);
9815 char *suffix;
9816 int k;
9817 LONGEST U;
9818
9819 if (name == NULL)
9820 return 0;
9821
9822 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9823 we are looking for static bounds, which means an __XDLU suffix.
9824 Moreover, we know that the lower bound of modular types is always
9825 zero, so the actual suffix should start with "__XDLU_0__", and
9826 then be followed by the upper bound value. */
9827 suffix = strstr (name, "__XDLU_0__");
9828 if (suffix == NULL)
9829 return 0;
9830 k = 10;
9831 if (!ada_scan_number (suffix, k, &U, NULL))
9832 return 0;
9833
9834 *modulus = (ULONGEST) U + 1;
9835 return 1;
9836}
9837
4c4b4cd2
PH
9838/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9839
61ee279c 9840ULONGEST
0056e4d5 9841ada_modulus (struct type *type)
14f9c5c9 9842{
0056e4d5
JB
9843 ULONGEST modulus;
9844
9845 /* Normally, the modulus of a modular type is equal to the value of
9846 its upper bound + 1. However, the upper bound is currently stored
9847 as an int, which is not always big enough to hold the actual bound
9848 value. To workaround this, try to take advantage of the encoding
9849 that GNAT uses with with discrete types. To avoid some unnecessary
9850 parsing, we do this only when the size of TYPE is greater than
9851 the size of the field holding the bound. */
9852 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9853 && ada_modulus_from_name (type, &modulus))
9854 return modulus;
9855
d37209fd 9856 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 9857}
d2e4a39e 9858\f
f7f9143b
JB
9859
9860/* Ada exception catchpoint support:
9861 ---------------------------------
9862
9863 We support 3 kinds of exception catchpoints:
9864 . catchpoints on Ada exceptions
9865 . catchpoints on unhandled Ada exceptions
9866 . catchpoints on failed assertions
9867
9868 Exceptions raised during failed assertions, or unhandled exceptions
9869 could perfectly be caught with the general catchpoint on Ada exceptions.
9870 However, we can easily differentiate these two special cases, and having
9871 the option to distinguish these two cases from the rest can be useful
9872 to zero-in on certain situations.
9873
9874 Exception catchpoints are a specialized form of breakpoint,
9875 since they rely on inserting breakpoints inside known routines
9876 of the GNAT runtime. The implementation therefore uses a standard
9877 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9878 of breakpoint_ops.
9879
0259addd
JB
9880 Support in the runtime for exception catchpoints have been changed
9881 a few times already, and these changes affect the implementation
9882 of these catchpoints. In order to be able to support several
9883 variants of the runtime, we use a sniffer that will determine
9884 the runtime variant used by the program being debugged.
9885
f7f9143b
JB
9886 At this time, we do not support the use of conditions on Ada exception
9887 catchpoints. The COND and COND_STRING fields are therefore set
9888 to NULL (most of the time, see below).
9889
9890 Conditions where EXP_STRING, COND, and COND_STRING are used:
9891
9892 When a user specifies the name of a specific exception in the case
9893 of catchpoints on Ada exceptions, we store the name of that exception
9894 in the EXP_STRING. We then translate this request into an actual
9895 condition stored in COND_STRING, and then parse it into an expression
9896 stored in COND. */
9897
9898/* The different types of catchpoints that we introduced for catching
9899 Ada exceptions. */
9900
9901enum exception_catchpoint_kind
9902{
9903 ex_catch_exception,
9904 ex_catch_exception_unhandled,
9905 ex_catch_assert
9906};
9907
3d0b0fa3
JB
9908/* Ada's standard exceptions. */
9909
9910static char *standard_exc[] = {
9911 "constraint_error",
9912 "program_error",
9913 "storage_error",
9914 "tasking_error"
9915};
9916
0259addd
JB
9917typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9918
9919/* A structure that describes how to support exception catchpoints
9920 for a given executable. */
9921
9922struct exception_support_info
9923{
9924 /* The name of the symbol to break on in order to insert
9925 a catchpoint on exceptions. */
9926 const char *catch_exception_sym;
9927
9928 /* The name of the symbol to break on in order to insert
9929 a catchpoint on unhandled exceptions. */
9930 const char *catch_exception_unhandled_sym;
9931
9932 /* The name of the symbol to break on in order to insert
9933 a catchpoint on failed assertions. */
9934 const char *catch_assert_sym;
9935
9936 /* Assuming that the inferior just triggered an unhandled exception
9937 catchpoint, this function is responsible for returning the address
9938 in inferior memory where the name of that exception is stored.
9939 Return zero if the address could not be computed. */
9940 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9941};
9942
9943static CORE_ADDR ada_unhandled_exception_name_addr (void);
9944static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9945
9946/* The following exception support info structure describes how to
9947 implement exception catchpoints with the latest version of the
9948 Ada runtime (as of 2007-03-06). */
9949
9950static const struct exception_support_info default_exception_support_info =
9951{
9952 "__gnat_debug_raise_exception", /* catch_exception_sym */
9953 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9954 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9955 ada_unhandled_exception_name_addr
9956};
9957
9958/* The following exception support info structure describes how to
9959 implement exception catchpoints with a slightly older version
9960 of the Ada runtime. */
9961
9962static const struct exception_support_info exception_support_info_fallback =
9963{
9964 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9965 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9966 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9967 ada_unhandled_exception_name_addr_from_raise
9968};
9969
9970/* For each executable, we sniff which exception info structure to use
9971 and cache it in the following global variable. */
9972
9973static const struct exception_support_info *exception_info = NULL;
9974
9975/* Inspect the Ada runtime and determine which exception info structure
9976 should be used to provide support for exception catchpoints.
9977
9978 This function will always set exception_info, or raise an error. */
9979
9980static void
9981ada_exception_support_info_sniffer (void)
9982{
9983 struct symbol *sym;
9984
9985 /* If the exception info is already known, then no need to recompute it. */
9986 if (exception_info != NULL)
9987 return;
9988
9989 /* Check the latest (default) exception support info. */
9990 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9991 NULL, VAR_DOMAIN);
9992 if (sym != NULL)
9993 {
9994 exception_info = &default_exception_support_info;
9995 return;
9996 }
9997
9998 /* Try our fallback exception suport info. */
9999 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10000 NULL, VAR_DOMAIN);
10001 if (sym != NULL)
10002 {
10003 exception_info = &exception_support_info_fallback;
10004 return;
10005 }
10006
10007 /* Sometimes, it is normal for us to not be able to find the routine
10008 we are looking for. This happens when the program is linked with
10009 the shared version of the GNAT runtime, and the program has not been
10010 started yet. Inform the user of these two possible causes if
10011 applicable. */
10012
10013 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10014 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10015
10016 /* If the symbol does not exist, then check that the program is
10017 already started, to make sure that shared libraries have been
10018 loaded. If it is not started, this may mean that the symbol is
10019 in a shared library. */
10020
10021 if (ptid_get_pid (inferior_ptid) == 0)
10022 error (_("Unable to insert catchpoint. Try to start the program first."));
10023
10024 /* At this point, we know that we are debugging an Ada program and
10025 that the inferior has been started, but we still are not able to
10026 find the run-time symbols. That can mean that we are in
10027 configurable run time mode, or that a-except as been optimized
10028 out by the linker... In any case, at this point it is not worth
10029 supporting this feature. */
10030
10031 error (_("Cannot insert catchpoints in this configuration."));
10032}
10033
10034/* An observer of "executable_changed" events.
10035 Its role is to clear certain cached values that need to be recomputed
10036 each time a new executable is loaded by GDB. */
10037
10038static void
781b42b0 10039ada_executable_changed_observer (void)
0259addd
JB
10040{
10041 /* If the executable changed, then it is possible that the Ada runtime
10042 is different. So we need to invalidate the exception support info
10043 cache. */
10044 exception_info = NULL;
10045}
10046
f7f9143b
JB
10047/* Return the name of the function at PC, NULL if could not find it.
10048 This function only checks the debugging information, not the symbol
10049 table. */
10050
10051static char *
10052function_name_from_pc (CORE_ADDR pc)
10053{
10054 char *func_name;
10055
10056 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
10057 return NULL;
10058
10059 return func_name;
10060}
10061
10062/* True iff FRAME is very likely to be that of a function that is
10063 part of the runtime system. This is all very heuristic, but is
10064 intended to be used as advice as to what frames are uninteresting
10065 to most users. */
10066
10067static int
10068is_known_support_routine (struct frame_info *frame)
10069{
4ed6b5be 10070 struct symtab_and_line sal;
f7f9143b
JB
10071 char *func_name;
10072 int i;
f7f9143b 10073
4ed6b5be
JB
10074 /* If this code does not have any debugging information (no symtab),
10075 This cannot be any user code. */
f7f9143b 10076
4ed6b5be 10077 find_frame_sal (frame, &sal);
f7f9143b
JB
10078 if (sal.symtab == NULL)
10079 return 1;
10080
4ed6b5be
JB
10081 /* If there is a symtab, but the associated source file cannot be
10082 located, then assume this is not user code: Selecting a frame
10083 for which we cannot display the code would not be very helpful
10084 for the user. This should also take care of case such as VxWorks
10085 where the kernel has some debugging info provided for a few units. */
f7f9143b 10086
9bbc9174 10087 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10088 return 1;
10089
4ed6b5be
JB
10090 /* Check the unit filename againt the Ada runtime file naming.
10091 We also check the name of the objfile against the name of some
10092 known system libraries that sometimes come with debugging info
10093 too. */
10094
f7f9143b
JB
10095 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10096 {
10097 re_comp (known_runtime_file_name_patterns[i]);
10098 if (re_exec (sal.symtab->filename))
10099 return 1;
4ed6b5be
JB
10100 if (sal.symtab->objfile != NULL
10101 && re_exec (sal.symtab->objfile->name))
10102 return 1;
f7f9143b
JB
10103 }
10104
4ed6b5be 10105 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10106
4ed6b5be 10107 func_name = function_name_from_pc (get_frame_address_in_block (frame));
f7f9143b
JB
10108 if (func_name == NULL)
10109 return 1;
10110
10111 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10112 {
10113 re_comp (known_auxiliary_function_name_patterns[i]);
10114 if (re_exec (func_name))
10115 return 1;
10116 }
10117
10118 return 0;
10119}
10120
10121/* Find the first frame that contains debugging information and that is not
10122 part of the Ada run-time, starting from FI and moving upward. */
10123
0ef643c8 10124void
f7f9143b
JB
10125ada_find_printable_frame (struct frame_info *fi)
10126{
10127 for (; fi != NULL; fi = get_prev_frame (fi))
10128 {
10129 if (!is_known_support_routine (fi))
10130 {
10131 select_frame (fi);
10132 break;
10133 }
10134 }
10135
10136}
10137
10138/* Assuming that the inferior just triggered an unhandled exception
10139 catchpoint, return the address in inferior memory where the name
10140 of the exception is stored.
10141
10142 Return zero if the address could not be computed. */
10143
10144static CORE_ADDR
10145ada_unhandled_exception_name_addr (void)
0259addd
JB
10146{
10147 return parse_and_eval_address ("e.full_name");
10148}
10149
10150/* Same as ada_unhandled_exception_name_addr, except that this function
10151 should be used when the inferior uses an older version of the runtime,
10152 where the exception name needs to be extracted from a specific frame
10153 several frames up in the callstack. */
10154
10155static CORE_ADDR
10156ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10157{
10158 int frame_level;
10159 struct frame_info *fi;
10160
10161 /* To determine the name of this exception, we need to select
10162 the frame corresponding to RAISE_SYM_NAME. This frame is
10163 at least 3 levels up, so we simply skip the first 3 frames
10164 without checking the name of their associated function. */
10165 fi = get_current_frame ();
10166 for (frame_level = 0; frame_level < 3; frame_level += 1)
10167 if (fi != NULL)
10168 fi = get_prev_frame (fi);
10169
10170 while (fi != NULL)
10171 {
10172 const char *func_name =
10173 function_name_from_pc (get_frame_address_in_block (fi));
10174 if (func_name != NULL
0259addd 10175 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10176 break; /* We found the frame we were looking for... */
10177 fi = get_prev_frame (fi);
10178 }
10179
10180 if (fi == NULL)
10181 return 0;
10182
10183 select_frame (fi);
10184 return parse_and_eval_address ("id.full_name");
10185}
10186
10187/* Assuming the inferior just triggered an Ada exception catchpoint
10188 (of any type), return the address in inferior memory where the name
10189 of the exception is stored, if applicable.
10190
10191 Return zero if the address could not be computed, or if not relevant. */
10192
10193static CORE_ADDR
10194ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10195 struct breakpoint *b)
10196{
10197 switch (ex)
10198 {
10199 case ex_catch_exception:
10200 return (parse_and_eval_address ("e.full_name"));
10201 break;
10202
10203 case ex_catch_exception_unhandled:
0259addd 10204 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10205 break;
10206
10207 case ex_catch_assert:
10208 return 0; /* Exception name is not relevant in this case. */
10209 break;
10210
10211 default:
10212 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10213 break;
10214 }
10215
10216 return 0; /* Should never be reached. */
10217}
10218
10219/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10220 any error that ada_exception_name_addr_1 might cause to be thrown.
10221 When an error is intercepted, a warning with the error message is printed,
10222 and zero is returned. */
10223
10224static CORE_ADDR
10225ada_exception_name_addr (enum exception_catchpoint_kind ex,
10226 struct breakpoint *b)
10227{
10228 struct gdb_exception e;
10229 CORE_ADDR result = 0;
10230
10231 TRY_CATCH (e, RETURN_MASK_ERROR)
10232 {
10233 result = ada_exception_name_addr_1 (ex, b);
10234 }
10235
10236 if (e.reason < 0)
10237 {
10238 warning (_("failed to get exception name: %s"), e.message);
10239 return 0;
10240 }
10241
10242 return result;
10243}
10244
10245/* Implement the PRINT_IT method in the breakpoint_ops structure
10246 for all exception catchpoint kinds. */
10247
10248static enum print_stop_action
10249print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10250{
10251 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10252 char exception_name[256];
10253
10254 if (addr != 0)
10255 {
10256 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10257 exception_name [sizeof (exception_name) - 1] = '\0';
10258 }
10259
10260 ada_find_printable_frame (get_current_frame ());
10261
10262 annotate_catchpoint (b->number);
10263 switch (ex)
10264 {
10265 case ex_catch_exception:
10266 if (addr != 0)
10267 printf_filtered (_("\nCatchpoint %d, %s at "),
10268 b->number, exception_name);
10269 else
10270 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10271 break;
10272 case ex_catch_exception_unhandled:
10273 if (addr != 0)
10274 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10275 b->number, exception_name);
10276 else
10277 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10278 b->number);
10279 break;
10280 case ex_catch_assert:
10281 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10282 b->number);
10283 break;
10284 }
10285
10286 return PRINT_SRC_AND_LOC;
10287}
10288
10289/* Implement the PRINT_ONE method in the breakpoint_ops structure
10290 for all exception catchpoint kinds. */
10291
10292static void
10293print_one_exception (enum exception_catchpoint_kind ex,
10294 struct breakpoint *b, CORE_ADDR *last_addr)
10295{
79a45b7d
TT
10296 struct value_print_options opts;
10297
10298 get_user_print_options (&opts);
10299 if (opts.addressprint)
f7f9143b
JB
10300 {
10301 annotate_field (4);
10302 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10303 }
10304
10305 annotate_field (5);
10306 *last_addr = b->loc->address;
10307 switch (ex)
10308 {
10309 case ex_catch_exception:
10310 if (b->exp_string != NULL)
10311 {
10312 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10313
10314 ui_out_field_string (uiout, "what", msg);
10315 xfree (msg);
10316 }
10317 else
10318 ui_out_field_string (uiout, "what", "all Ada exceptions");
10319
10320 break;
10321
10322 case ex_catch_exception_unhandled:
10323 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10324 break;
10325
10326 case ex_catch_assert:
10327 ui_out_field_string (uiout, "what", "failed Ada assertions");
10328 break;
10329
10330 default:
10331 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10332 break;
10333 }
10334}
10335
10336/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10337 for all exception catchpoint kinds. */
10338
10339static void
10340print_mention_exception (enum exception_catchpoint_kind ex,
10341 struct breakpoint *b)
10342{
10343 switch (ex)
10344 {
10345 case ex_catch_exception:
10346 if (b->exp_string != NULL)
10347 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10348 b->number, b->exp_string);
10349 else
10350 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10351
10352 break;
10353
10354 case ex_catch_exception_unhandled:
10355 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10356 b->number);
10357 break;
10358
10359 case ex_catch_assert:
10360 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10361 break;
10362
10363 default:
10364 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10365 break;
10366 }
10367}
10368
10369/* Virtual table for "catch exception" breakpoints. */
10370
10371static enum print_stop_action
10372print_it_catch_exception (struct breakpoint *b)
10373{
10374 return print_it_exception (ex_catch_exception, b);
10375}
10376
10377static void
10378print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10379{
10380 print_one_exception (ex_catch_exception, b, last_addr);
10381}
10382
10383static void
10384print_mention_catch_exception (struct breakpoint *b)
10385{
10386 print_mention_exception (ex_catch_exception, b);
10387}
10388
10389static struct breakpoint_ops catch_exception_breakpoint_ops =
10390{
ce78b96d
JB
10391 NULL, /* insert */
10392 NULL, /* remove */
10393 NULL, /* breakpoint_hit */
f7f9143b
JB
10394 print_it_catch_exception,
10395 print_one_catch_exception,
10396 print_mention_catch_exception
10397};
10398
10399/* Virtual table for "catch exception unhandled" breakpoints. */
10400
10401static enum print_stop_action
10402print_it_catch_exception_unhandled (struct breakpoint *b)
10403{
10404 return print_it_exception (ex_catch_exception_unhandled, b);
10405}
10406
10407static void
10408print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10409{
10410 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10411}
10412
10413static void
10414print_mention_catch_exception_unhandled (struct breakpoint *b)
10415{
10416 print_mention_exception (ex_catch_exception_unhandled, b);
10417}
10418
10419static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
ce78b96d
JB
10420 NULL, /* insert */
10421 NULL, /* remove */
10422 NULL, /* breakpoint_hit */
f7f9143b
JB
10423 print_it_catch_exception_unhandled,
10424 print_one_catch_exception_unhandled,
10425 print_mention_catch_exception_unhandled
10426};
10427
10428/* Virtual table for "catch assert" breakpoints. */
10429
10430static enum print_stop_action
10431print_it_catch_assert (struct breakpoint *b)
10432{
10433 return print_it_exception (ex_catch_assert, b);
10434}
10435
10436static void
10437print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10438{
10439 print_one_exception (ex_catch_assert, b, last_addr);
10440}
10441
10442static void
10443print_mention_catch_assert (struct breakpoint *b)
10444{
10445 print_mention_exception (ex_catch_assert, b);
10446}
10447
10448static struct breakpoint_ops catch_assert_breakpoint_ops = {
ce78b96d
JB
10449 NULL, /* insert */
10450 NULL, /* remove */
10451 NULL, /* breakpoint_hit */
f7f9143b
JB
10452 print_it_catch_assert,
10453 print_one_catch_assert,
10454 print_mention_catch_assert
10455};
10456
10457/* Return non-zero if B is an Ada exception catchpoint. */
10458
10459int
10460ada_exception_catchpoint_p (struct breakpoint *b)
10461{
10462 return (b->ops == &catch_exception_breakpoint_ops
10463 || b->ops == &catch_exception_unhandled_breakpoint_ops
10464 || b->ops == &catch_assert_breakpoint_ops);
10465}
10466
f7f9143b
JB
10467/* Return a newly allocated copy of the first space-separated token
10468 in ARGSP, and then adjust ARGSP to point immediately after that
10469 token.
10470
10471 Return NULL if ARGPS does not contain any more tokens. */
10472
10473static char *
10474ada_get_next_arg (char **argsp)
10475{
10476 char *args = *argsp;
10477 char *end;
10478 char *result;
10479
10480 /* Skip any leading white space. */
10481
10482 while (isspace (*args))
10483 args++;
10484
10485 if (args[0] == '\0')
10486 return NULL; /* No more arguments. */
10487
10488 /* Find the end of the current argument. */
10489
10490 end = args;
10491 while (*end != '\0' && !isspace (*end))
10492 end++;
10493
10494 /* Adjust ARGSP to point to the start of the next argument. */
10495
10496 *argsp = end;
10497
10498 /* Make a copy of the current argument and return it. */
10499
10500 result = xmalloc (end - args + 1);
10501 strncpy (result, args, end - args);
10502 result[end - args] = '\0';
10503
10504 return result;
10505}
10506
10507/* Split the arguments specified in a "catch exception" command.
10508 Set EX to the appropriate catchpoint type.
10509 Set EXP_STRING to the name of the specific exception if
10510 specified by the user. */
10511
10512static void
10513catch_ada_exception_command_split (char *args,
10514 enum exception_catchpoint_kind *ex,
10515 char **exp_string)
10516{
10517 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10518 char *exception_name;
10519
10520 exception_name = ada_get_next_arg (&args);
10521 make_cleanup (xfree, exception_name);
10522
10523 /* Check that we do not have any more arguments. Anything else
10524 is unexpected. */
10525
10526 while (isspace (*args))
10527 args++;
10528
10529 if (args[0] != '\0')
10530 error (_("Junk at end of expression"));
10531
10532 discard_cleanups (old_chain);
10533
10534 if (exception_name == NULL)
10535 {
10536 /* Catch all exceptions. */
10537 *ex = ex_catch_exception;
10538 *exp_string = NULL;
10539 }
10540 else if (strcmp (exception_name, "unhandled") == 0)
10541 {
10542 /* Catch unhandled exceptions. */
10543 *ex = ex_catch_exception_unhandled;
10544 *exp_string = NULL;
10545 }
10546 else
10547 {
10548 /* Catch a specific exception. */
10549 *ex = ex_catch_exception;
10550 *exp_string = exception_name;
10551 }
10552}
10553
10554/* Return the name of the symbol on which we should break in order to
10555 implement a catchpoint of the EX kind. */
10556
10557static const char *
10558ada_exception_sym_name (enum exception_catchpoint_kind ex)
10559{
0259addd
JB
10560 gdb_assert (exception_info != NULL);
10561
f7f9143b
JB
10562 switch (ex)
10563 {
10564 case ex_catch_exception:
0259addd 10565 return (exception_info->catch_exception_sym);
f7f9143b
JB
10566 break;
10567 case ex_catch_exception_unhandled:
0259addd 10568 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
10569 break;
10570 case ex_catch_assert:
0259addd 10571 return (exception_info->catch_assert_sym);
f7f9143b
JB
10572 break;
10573 default:
10574 internal_error (__FILE__, __LINE__,
10575 _("unexpected catchpoint kind (%d)"), ex);
10576 }
10577}
10578
10579/* Return the breakpoint ops "virtual table" used for catchpoints
10580 of the EX kind. */
10581
10582static struct breakpoint_ops *
4b9eee8c 10583ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
10584{
10585 switch (ex)
10586 {
10587 case ex_catch_exception:
10588 return (&catch_exception_breakpoint_ops);
10589 break;
10590 case ex_catch_exception_unhandled:
10591 return (&catch_exception_unhandled_breakpoint_ops);
10592 break;
10593 case ex_catch_assert:
10594 return (&catch_assert_breakpoint_ops);
10595 break;
10596 default:
10597 internal_error (__FILE__, __LINE__,
10598 _("unexpected catchpoint kind (%d)"), ex);
10599 }
10600}
10601
10602/* Return the condition that will be used to match the current exception
10603 being raised with the exception that the user wants to catch. This
10604 assumes that this condition is used when the inferior just triggered
10605 an exception catchpoint.
10606
10607 The string returned is a newly allocated string that needs to be
10608 deallocated later. */
10609
10610static char *
10611ada_exception_catchpoint_cond_string (const char *exp_string)
10612{
3d0b0fa3
JB
10613 int i;
10614
10615 /* The standard exceptions are a special case. They are defined in
10616 runtime units that have been compiled without debugging info; if
10617 EXP_STRING is the not-fully-qualified name of a standard
10618 exception (e.g. "constraint_error") then, during the evaluation
10619 of the condition expression, the symbol lookup on this name would
10620 *not* return this standard exception. The catchpoint condition
10621 may then be set only on user-defined exceptions which have the
10622 same not-fully-qualified name (e.g. my_package.constraint_error).
10623
10624 To avoid this unexcepted behavior, these standard exceptions are
10625 systematically prefixed by "standard". This means that "catch
10626 exception constraint_error" is rewritten into "catch exception
10627 standard.constraint_error".
10628
10629 If an exception named contraint_error is defined in another package of
10630 the inferior program, then the only way to specify this exception as a
10631 breakpoint condition is to use its fully-qualified named:
10632 e.g. my_package.constraint_error. */
10633
10634 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10635 {
10636 if (strcmp (standard_exc [i], exp_string) == 0)
10637 {
10638 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10639 exp_string);
10640 }
10641 }
f7f9143b
JB
10642 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10643}
10644
10645/* Return the expression corresponding to COND_STRING evaluated at SAL. */
10646
10647static struct expression *
10648ada_parse_catchpoint_condition (char *cond_string,
10649 struct symtab_and_line sal)
10650{
10651 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10652}
10653
10654/* Return the symtab_and_line that should be used to insert an exception
10655 catchpoint of the TYPE kind.
10656
10657 EX_STRING should contain the name of a specific exception
10658 that the catchpoint should catch, or NULL otherwise.
10659
10660 The idea behind all the remaining parameters is that their names match
10661 the name of certain fields in the breakpoint structure that are used to
10662 handle exception catchpoints. This function returns the value to which
10663 these fields should be set, depending on the type of catchpoint we need
10664 to create.
10665
10666 If COND and COND_STRING are both non-NULL, any value they might
10667 hold will be free'ed, and then replaced by newly allocated ones.
10668 These parameters are left untouched otherwise. */
10669
10670static struct symtab_and_line
10671ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10672 char **addr_string, char **cond_string,
10673 struct expression **cond, struct breakpoint_ops **ops)
10674{
10675 const char *sym_name;
10676 struct symbol *sym;
10677 struct symtab_and_line sal;
10678
0259addd
JB
10679 /* First, find out which exception support info to use. */
10680 ada_exception_support_info_sniffer ();
10681
10682 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
10683 the Ada exceptions requested by the user. */
10684
10685 sym_name = ada_exception_sym_name (ex);
10686 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10687
10688 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10689 that should be compiled with debugging information. As a result, we
10690 expect to find that symbol in the symtabs. If we don't find it, then
10691 the target most likely does not support Ada exceptions, or we cannot
10692 insert exception breakpoints yet, because the GNAT runtime hasn't been
10693 loaded yet. */
10694
10695 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10696 in such a way that no debugging information is produced for the symbol
10697 we are looking for. In this case, we could search the minimal symbols
10698 as a fall-back mechanism. This would still be operating in degraded
10699 mode, however, as we would still be missing the debugging information
10700 that is needed in order to extract the name of the exception being
10701 raised (this name is printed in the catchpoint message, and is also
10702 used when trying to catch a specific exception). We do not handle
10703 this case for now. */
10704
10705 if (sym == NULL)
0259addd 10706 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
10707
10708 /* Make sure that the symbol we found corresponds to a function. */
10709 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10710 error (_("Symbol \"%s\" is not a function (class = %d)"),
10711 sym_name, SYMBOL_CLASS (sym));
10712
10713 sal = find_function_start_sal (sym, 1);
10714
10715 /* Set ADDR_STRING. */
10716
10717 *addr_string = xstrdup (sym_name);
10718
10719 /* Set the COND and COND_STRING (if not NULL). */
10720
10721 if (cond_string != NULL && cond != NULL)
10722 {
10723 if (*cond_string != NULL)
10724 {
10725 xfree (*cond_string);
10726 *cond_string = NULL;
10727 }
10728 if (*cond != NULL)
10729 {
10730 xfree (*cond);
10731 *cond = NULL;
10732 }
10733 if (exp_string != NULL)
10734 {
10735 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10736 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10737 }
10738 }
10739
10740 /* Set OPS. */
4b9eee8c 10741 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
10742
10743 return sal;
10744}
10745
10746/* Parse the arguments (ARGS) of the "catch exception" command.
10747
10748 Set TYPE to the appropriate exception catchpoint type.
10749 If the user asked the catchpoint to catch only a specific
10750 exception, then save the exception name in ADDR_STRING.
10751
10752 See ada_exception_sal for a description of all the remaining
10753 function arguments of this function. */
10754
10755struct symtab_and_line
10756ada_decode_exception_location (char *args, char **addr_string,
10757 char **exp_string, char **cond_string,
10758 struct expression **cond,
10759 struct breakpoint_ops **ops)
10760{
10761 enum exception_catchpoint_kind ex;
10762
10763 catch_ada_exception_command_split (args, &ex, exp_string);
10764 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10765 cond, ops);
10766}
10767
10768struct symtab_and_line
10769ada_decode_assert_location (char *args, char **addr_string,
10770 struct breakpoint_ops **ops)
10771{
10772 /* Check that no argument where provided at the end of the command. */
10773
10774 if (args != NULL)
10775 {
10776 while (isspace (*args))
10777 args++;
10778 if (*args != '\0')
10779 error (_("Junk at end of arguments."));
10780 }
10781
10782 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10783 ops);
10784}
10785
4c4b4cd2
PH
10786 /* Operators */
10787/* Information about operators given special treatment in functions
10788 below. */
10789/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10790
10791#define ADA_OPERATORS \
10792 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10793 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10794 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10795 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10796 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10797 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10798 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10799 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10800 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10801 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10802 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10803 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10804 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10805 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10806 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
10807 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10808 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10809 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10810 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
10811
10812static void
10813ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10814{
10815 switch (exp->elts[pc - 1].opcode)
10816 {
76a01679 10817 default:
4c4b4cd2
PH
10818 operator_length_standard (exp, pc, oplenp, argsp);
10819 break;
10820
10821#define OP_DEFN(op, len, args, binop) \
10822 case op: *oplenp = len; *argsp = args; break;
10823 ADA_OPERATORS;
10824#undef OP_DEFN
52ce6436
PH
10825
10826 case OP_AGGREGATE:
10827 *oplenp = 3;
10828 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10829 break;
10830
10831 case OP_CHOICES:
10832 *oplenp = 3;
10833 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10834 break;
4c4b4cd2
PH
10835 }
10836}
10837
10838static char *
10839ada_op_name (enum exp_opcode opcode)
10840{
10841 switch (opcode)
10842 {
76a01679 10843 default:
4c4b4cd2 10844 return op_name_standard (opcode);
52ce6436 10845
4c4b4cd2
PH
10846#define OP_DEFN(op, len, args, binop) case op: return #op;
10847 ADA_OPERATORS;
10848#undef OP_DEFN
52ce6436
PH
10849
10850 case OP_AGGREGATE:
10851 return "OP_AGGREGATE";
10852 case OP_CHOICES:
10853 return "OP_CHOICES";
10854 case OP_NAME:
10855 return "OP_NAME";
4c4b4cd2
PH
10856 }
10857}
10858
10859/* As for operator_length, but assumes PC is pointing at the first
10860 element of the operator, and gives meaningful results only for the
52ce6436 10861 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
10862
10863static void
76a01679
JB
10864ada_forward_operator_length (struct expression *exp, int pc,
10865 int *oplenp, int *argsp)
4c4b4cd2 10866{
76a01679 10867 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
10868 {
10869 default:
10870 *oplenp = *argsp = 0;
10871 break;
52ce6436 10872
4c4b4cd2
PH
10873#define OP_DEFN(op, len, args, binop) \
10874 case op: *oplenp = len; *argsp = args; break;
10875 ADA_OPERATORS;
10876#undef OP_DEFN
52ce6436
PH
10877
10878 case OP_AGGREGATE:
10879 *oplenp = 3;
10880 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10881 break;
10882
10883 case OP_CHOICES:
10884 *oplenp = 3;
10885 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10886 break;
10887
10888 case OP_STRING:
10889 case OP_NAME:
10890 {
10891 int len = longest_to_int (exp->elts[pc + 1].longconst);
10892 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10893 *argsp = 0;
10894 break;
10895 }
4c4b4cd2
PH
10896 }
10897}
10898
10899static int
10900ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10901{
10902 enum exp_opcode op = exp->elts[elt].opcode;
10903 int oplen, nargs;
10904 int pc = elt;
10905 int i;
76a01679 10906
4c4b4cd2
PH
10907 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10908
76a01679 10909 switch (op)
4c4b4cd2 10910 {
76a01679 10911 /* Ada attributes ('Foo). */
4c4b4cd2
PH
10912 case OP_ATR_FIRST:
10913 case OP_ATR_LAST:
10914 case OP_ATR_LENGTH:
10915 case OP_ATR_IMAGE:
10916 case OP_ATR_MAX:
10917 case OP_ATR_MIN:
10918 case OP_ATR_MODULUS:
10919 case OP_ATR_POS:
10920 case OP_ATR_SIZE:
10921 case OP_ATR_TAG:
10922 case OP_ATR_VAL:
10923 break;
10924
10925 case UNOP_IN_RANGE:
10926 case UNOP_QUAL:
323e0a4a
AC
10927 /* XXX: gdb_sprint_host_address, type_sprint */
10928 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
10929 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10930 fprintf_filtered (stream, " (");
10931 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10932 fprintf_filtered (stream, ")");
10933 break;
10934 case BINOP_IN_BOUNDS:
52ce6436
PH
10935 fprintf_filtered (stream, " (%d)",
10936 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
10937 break;
10938 case TERNOP_IN_RANGE:
10939 break;
10940
52ce6436
PH
10941 case OP_AGGREGATE:
10942 case OP_OTHERS:
10943 case OP_DISCRETE_RANGE:
10944 case OP_POSITIONAL:
10945 case OP_CHOICES:
10946 break;
10947
10948 case OP_NAME:
10949 case OP_STRING:
10950 {
10951 char *name = &exp->elts[elt + 2].string;
10952 int len = longest_to_int (exp->elts[elt + 1].longconst);
10953 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10954 break;
10955 }
10956
4c4b4cd2
PH
10957 default:
10958 return dump_subexp_body_standard (exp, stream, elt);
10959 }
10960
10961 elt += oplen;
10962 for (i = 0; i < nargs; i += 1)
10963 elt = dump_subexp (exp, stream, elt);
10964
10965 return elt;
10966}
10967
10968/* The Ada extension of print_subexp (q.v.). */
10969
76a01679
JB
10970static void
10971ada_print_subexp (struct expression *exp, int *pos,
10972 struct ui_file *stream, enum precedence prec)
4c4b4cd2 10973{
52ce6436 10974 int oplen, nargs, i;
4c4b4cd2
PH
10975 int pc = *pos;
10976 enum exp_opcode op = exp->elts[pc].opcode;
10977
10978 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10979
52ce6436 10980 *pos += oplen;
4c4b4cd2
PH
10981 switch (op)
10982 {
10983 default:
52ce6436 10984 *pos -= oplen;
4c4b4cd2
PH
10985 print_subexp_standard (exp, pos, stream, prec);
10986 return;
10987
10988 case OP_VAR_VALUE:
4c4b4cd2
PH
10989 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10990 return;
10991
10992 case BINOP_IN_BOUNDS:
323e0a4a 10993 /* XXX: sprint_subexp */
4c4b4cd2 10994 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10995 fputs_filtered (" in ", stream);
4c4b4cd2 10996 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10997 fputs_filtered ("'range", stream);
4c4b4cd2 10998 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
10999 fprintf_filtered (stream, "(%ld)",
11000 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
11001 return;
11002
11003 case TERNOP_IN_RANGE:
4c4b4cd2 11004 if (prec >= PREC_EQUAL)
76a01679 11005 fputs_filtered ("(", stream);
323e0a4a 11006 /* XXX: sprint_subexp */
4c4b4cd2 11007 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11008 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11009 print_subexp (exp, pos, stream, PREC_EQUAL);
11010 fputs_filtered (" .. ", stream);
11011 print_subexp (exp, pos, stream, PREC_EQUAL);
11012 if (prec >= PREC_EQUAL)
76a01679
JB
11013 fputs_filtered (")", stream);
11014 return;
4c4b4cd2
PH
11015
11016 case OP_ATR_FIRST:
11017 case OP_ATR_LAST:
11018 case OP_ATR_LENGTH:
11019 case OP_ATR_IMAGE:
11020 case OP_ATR_MAX:
11021 case OP_ATR_MIN:
11022 case OP_ATR_MODULUS:
11023 case OP_ATR_POS:
11024 case OP_ATR_SIZE:
11025 case OP_ATR_TAG:
11026 case OP_ATR_VAL:
4c4b4cd2 11027 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
11028 {
11029 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11030 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11031 *pos += 3;
11032 }
4c4b4cd2 11033 else
76a01679 11034 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
11035 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11036 if (nargs > 1)
76a01679
JB
11037 {
11038 int tem;
11039 for (tem = 1; tem < nargs; tem += 1)
11040 {
11041 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11042 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11043 }
11044 fputs_filtered (")", stream);
11045 }
4c4b4cd2 11046 return;
14f9c5c9 11047
4c4b4cd2 11048 case UNOP_QUAL:
4c4b4cd2
PH
11049 type_print (exp->elts[pc + 1].type, "", stream, 0);
11050 fputs_filtered ("'(", stream);
11051 print_subexp (exp, pos, stream, PREC_PREFIX);
11052 fputs_filtered (")", stream);
11053 return;
14f9c5c9 11054
4c4b4cd2 11055 case UNOP_IN_RANGE:
323e0a4a 11056 /* XXX: sprint_subexp */
4c4b4cd2 11057 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11058 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11059 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11060 return;
52ce6436
PH
11061
11062 case OP_DISCRETE_RANGE:
11063 print_subexp (exp, pos, stream, PREC_SUFFIX);
11064 fputs_filtered ("..", stream);
11065 print_subexp (exp, pos, stream, PREC_SUFFIX);
11066 return;
11067
11068 case OP_OTHERS:
11069 fputs_filtered ("others => ", stream);
11070 print_subexp (exp, pos, stream, PREC_SUFFIX);
11071 return;
11072
11073 case OP_CHOICES:
11074 for (i = 0; i < nargs-1; i += 1)
11075 {
11076 if (i > 0)
11077 fputs_filtered ("|", stream);
11078 print_subexp (exp, pos, stream, PREC_SUFFIX);
11079 }
11080 fputs_filtered (" => ", stream);
11081 print_subexp (exp, pos, stream, PREC_SUFFIX);
11082 return;
11083
11084 case OP_POSITIONAL:
11085 print_subexp (exp, pos, stream, PREC_SUFFIX);
11086 return;
11087
11088 case OP_AGGREGATE:
11089 fputs_filtered ("(", stream);
11090 for (i = 0; i < nargs; i += 1)
11091 {
11092 if (i > 0)
11093 fputs_filtered (", ", stream);
11094 print_subexp (exp, pos, stream, PREC_SUFFIX);
11095 }
11096 fputs_filtered (")", stream);
11097 return;
4c4b4cd2
PH
11098 }
11099}
14f9c5c9
AS
11100
11101/* Table mapping opcodes into strings for printing operators
11102 and precedences of the operators. */
11103
d2e4a39e
AS
11104static const struct op_print ada_op_print_tab[] = {
11105 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11106 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11107 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11108 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11109 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11110 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11111 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11112 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11113 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11114 {">=", BINOP_GEQ, PREC_ORDER, 0},
11115 {">", BINOP_GTR, PREC_ORDER, 0},
11116 {"<", BINOP_LESS, PREC_ORDER, 0},
11117 {">>", BINOP_RSH, PREC_SHIFT, 0},
11118 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11119 {"+", BINOP_ADD, PREC_ADD, 0},
11120 {"-", BINOP_SUB, PREC_ADD, 0},
11121 {"&", BINOP_CONCAT, PREC_ADD, 0},
11122 {"*", BINOP_MUL, PREC_MUL, 0},
11123 {"/", BINOP_DIV, PREC_MUL, 0},
11124 {"rem", BINOP_REM, PREC_MUL, 0},
11125 {"mod", BINOP_MOD, PREC_MUL, 0},
11126 {"**", BINOP_EXP, PREC_REPEAT, 0},
11127 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11128 {"-", UNOP_NEG, PREC_PREFIX, 0},
11129 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11130 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11131 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11132 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
11133 {".all", UNOP_IND, PREC_SUFFIX, 1},
11134 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11135 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 11136 {NULL, 0, 0, 0}
14f9c5c9
AS
11137};
11138\f
72d5681a
PH
11139enum ada_primitive_types {
11140 ada_primitive_type_int,
11141 ada_primitive_type_long,
11142 ada_primitive_type_short,
11143 ada_primitive_type_char,
11144 ada_primitive_type_float,
11145 ada_primitive_type_double,
11146 ada_primitive_type_void,
11147 ada_primitive_type_long_long,
11148 ada_primitive_type_long_double,
11149 ada_primitive_type_natural,
11150 ada_primitive_type_positive,
11151 ada_primitive_type_system_address,
11152 nr_ada_primitive_types
11153};
6c038f32
PH
11154
11155static void
d4a9a881 11156ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
11157 struct language_arch_info *lai)
11158{
d4a9a881 11159 const struct builtin_type *builtin = builtin_type (gdbarch);
72d5681a 11160 lai->primitive_type_vector
d4a9a881 11161 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a
PH
11162 struct type *);
11163 lai->primitive_type_vector [ada_primitive_type_int] =
9a76efb6 11164 init_type (TYPE_CODE_INT,
d4a9a881 11165 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 11166 0, "integer", (struct objfile *) NULL);
72d5681a 11167 lai->primitive_type_vector [ada_primitive_type_long] =
9a76efb6 11168 init_type (TYPE_CODE_INT,
d4a9a881 11169 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 11170 0, "long_integer", (struct objfile *) NULL);
72d5681a 11171 lai->primitive_type_vector [ada_primitive_type_short] =
9a76efb6 11172 init_type (TYPE_CODE_INT,
d4a9a881 11173 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 11174 0, "short_integer", (struct objfile *) NULL);
61ee279c
PH
11175 lai->string_char_type =
11176 lai->primitive_type_vector [ada_primitive_type_char] =
6c038f32
PH
11177 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
11178 0, "character", (struct objfile *) NULL);
72d5681a 11179 lai->primitive_type_vector [ada_primitive_type_float] =
27067745
UW
11180 init_float_type (gdbarch_float_bit (gdbarch),
11181 "float", NULL);
72d5681a 11182 lai->primitive_type_vector [ada_primitive_type_double] =
27067745
UW
11183 init_float_type (gdbarch_double_bit (gdbarch),
11184 "long_float", NULL);
72d5681a 11185 lai->primitive_type_vector [ada_primitive_type_long_long] =
9a76efb6 11186 init_type (TYPE_CODE_INT,
d4a9a881 11187 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 11188 0, "long_long_integer", (struct objfile *) NULL);
72d5681a 11189 lai->primitive_type_vector [ada_primitive_type_long_double] =
27067745
UW
11190 init_float_type (gdbarch_double_bit (gdbarch),
11191 "long_long_float", NULL);
72d5681a 11192 lai->primitive_type_vector [ada_primitive_type_natural] =
9a76efb6 11193 init_type (TYPE_CODE_INT,
d4a9a881 11194 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 11195 0, "natural", (struct objfile *) NULL);
72d5681a 11196 lai->primitive_type_vector [ada_primitive_type_positive] =
9a76efb6 11197 init_type (TYPE_CODE_INT,
d4a9a881 11198 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 11199 0, "positive", (struct objfile *) NULL);
72d5681a 11200 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
6c038f32 11201
72d5681a 11202 lai->primitive_type_vector [ada_primitive_type_system_address] =
6c038f32
PH
11203 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
11204 (struct objfile *) NULL));
72d5681a
PH
11205 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11206 = "system__address";
fbb06eb1 11207
47e729a8 11208 lai->bool_type_symbol = NULL;
fbb06eb1 11209 lai->bool_type_default = builtin->builtin_bool;
6c038f32 11210}
6c038f32
PH
11211\f
11212 /* Language vector */
11213
11214/* Not really used, but needed in the ada_language_defn. */
11215
11216static void
6c7a06a3 11217emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 11218{
6c7a06a3 11219 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
11220}
11221
11222static int
11223parse (void)
11224{
11225 warnings_issued = 0;
11226 return ada_parse ();
11227}
11228
11229static const struct exp_descriptor ada_exp_descriptor = {
11230 ada_print_subexp,
11231 ada_operator_length,
11232 ada_op_name,
11233 ada_dump_subexp_body,
11234 ada_evaluate_subexp
11235};
11236
11237const struct language_defn ada_language_defn = {
11238 "ada", /* Language name */
11239 language_ada,
6c038f32
PH
11240 range_check_off,
11241 type_check_off,
11242 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11243 that's not quite what this means. */
6c038f32 11244 array_row_major,
9a044a89 11245 macro_expansion_no,
6c038f32
PH
11246 &ada_exp_descriptor,
11247 parse,
11248 ada_error,
11249 resolve,
11250 ada_printchar, /* Print a character constant */
11251 ada_printstr, /* Function to print string constant */
11252 emit_char, /* Function to print single char (not used) */
6c038f32 11253 ada_print_type, /* Print a type using appropriate syntax */
5c6ce71d 11254 default_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
11255 ada_val_print, /* Print a value using appropriate syntax */
11256 ada_value_print, /* Print a top-level value */
11257 NULL, /* Language specific skip_trampoline */
2b2d9e11 11258 NULL, /* name_of_this */
6c038f32
PH
11259 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11260 basic_lookup_transparent_type, /* lookup_transparent_type */
11261 ada_la_decode, /* Language specific symbol demangler */
11262 NULL, /* Language specific class_name_from_physname */
11263 ada_op_print_tab, /* expression operators for printing */
11264 0, /* c-style arrays */
11265 1, /* String lower bound */
6c038f32 11266 ada_get_gdb_completer_word_break_characters,
41d27058 11267 ada_make_symbol_completion_list,
72d5681a 11268 ada_language_arch_info,
e79af960 11269 ada_print_array_index,
41f1b697 11270 default_pass_by_reference,
ae6a3a4c 11271 c_get_string,
6c038f32
PH
11272 LANG_MAGIC
11273};
11274
2c0b251b
PA
11275/* Provide a prototype to silence -Wmissing-prototypes. */
11276extern initialize_file_ftype _initialize_ada_language;
11277
d2e4a39e 11278void
6c038f32 11279_initialize_ada_language (void)
14f9c5c9 11280{
6c038f32
PH
11281 add_language (&ada_language_defn);
11282
11283 varsize_limit = 65536;
6c038f32
PH
11284
11285 obstack_init (&symbol_list_obstack);
11286
11287 decoded_names_store = htab_create_alloc
11288 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11289 NULL, xcalloc, xfree);
6b69afc4
JB
11290
11291 observer_attach_executable_changed (ada_executable_changed_observer);
14f9c5c9 11292}