]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
* elf32-cris.c (elf_cris_copy_indirect_symbol): New function.
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
f7f9143b
JB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
14f9c5c9 59
4c4b4cd2
PH
60/* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64#ifndef TRUNCATION_TOWARDS_ZERO
65#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66#endif
67
4c4b4cd2 68static void extract_string (CORE_ADDR addr, char *buf);
14f9c5c9 69
14f9c5c9
AS
70static void modify_general_field (char *, LONGEST, int, int);
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
d2e4a39e 82static struct type *desc_data_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
4c4b4cd2 104static struct value *ensure_lval (struct value *, CORE_ADDR *);
14f9c5c9 105
d2e4a39e 106static struct value *convert_actual (struct value *, struct type *,
4c4b4cd2 107 CORE_ADDR *);
14f9c5c9 108
d2e4a39e 109static struct value *make_array_descriptor (struct type *, struct value *,
4c4b4cd2 110 CORE_ADDR *);
14f9c5c9 111
4c4b4cd2 112static void ada_add_block_symbols (struct obstack *,
76a01679 113 struct block *, const char *,
2570f2b7 114 domain_enum, struct objfile *, int);
14f9c5c9 115
4c4b4cd2 116static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 117
76a01679 118static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 119 struct block *);
14f9c5c9 120
4c4b4cd2
PH
121static int num_defns_collected (struct obstack *);
122
123static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 124
d2e4a39e 125static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
76a01679
JB
126 *, const char *, int,
127 domain_enum, int);
14f9c5c9 128
d2e4a39e 129static struct symtab *symtab_for_sym (struct symbol *);
14f9c5c9 130
4c4b4cd2 131static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 132 struct type *);
14f9c5c9 133
d2e4a39e 134static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 135 struct symbol *, struct block *);
14f9c5c9 136
d2e4a39e 137static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 138
4c4b4cd2
PH
139static char *ada_op_name (enum exp_opcode);
140
141static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 142
d2e4a39e 143static int numeric_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int integer_type_p (struct type *);
14f9c5c9 146
d2e4a39e 147static int scalar_type_p (struct type *);
14f9c5c9 148
d2e4a39e 149static int discrete_type_p (struct type *);
14f9c5c9 150
aeb5907d
JB
151static enum ada_renaming_category parse_old_style_renaming (struct type *,
152 const char **,
153 int *,
154 const char **);
155
156static struct symbol *find_old_style_renaming_symbol (const char *,
157 struct block *);
158
4c4b4cd2 159static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 160 int, int, int *);
4c4b4cd2 161
d2e4a39e 162static struct value *evaluate_subexp (struct type *, struct expression *,
4c4b4cd2 163 int *, enum noside);
14f9c5c9 164
d2e4a39e 165static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 166
d2e4a39e 167static int is_dynamic_field (struct type *, int);
14f9c5c9 168
10a2c479 169static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 170 const gdb_byte *,
4c4b4cd2
PH
171 CORE_ADDR, struct value *);
172
173static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 174
d2e4a39e 175static struct type *to_fixed_range_type (char *, struct value *,
4c4b4cd2 176 struct objfile *);
14f9c5c9 177
d2e4a39e 178static struct type *to_static_fixed_type (struct type *);
f192137b 179static struct type *static_unwrap_type (struct type *type);
14f9c5c9 180
d2e4a39e 181static struct value *unwrap_value (struct value *);
14f9c5c9 182
d2e4a39e 183static struct type *packed_array_type (struct type *, long *);
14f9c5c9 184
d2e4a39e 185static struct type *decode_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *decode_packed_array (struct value *);
14f9c5c9 188
d2e4a39e 189static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 190 struct value **);
14f9c5c9 191
52ce6436
PH
192static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
193
4c4b4cd2
PH
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
14f9c5c9 196
d2e4a39e 197static struct value *get_var_value (char *, char *);
14f9c5c9 198
d2e4a39e 199static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 200
d2e4a39e 201static int equiv_types (struct type *, struct type *);
14f9c5c9 202
d2e4a39e 203static int is_name_suffix (const char *);
14f9c5c9 204
d2e4a39e 205static int wild_match (const char *, int, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
4c4b4cd2
PH
218static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
76a01679 224static int find_struct_field (char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230static struct value *ada_to_fixed_value (struct value *);
14f9c5c9 231
4c4b4cd2
PH
232static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236static struct value *ada_coerce_to_simple_array (struct value *);
237
238static int ada_is_direct_array_type (struct type *);
239
72d5681a
PH
240static void ada_language_arch_info (struct gdbarch *,
241 struct language_arch_info *);
714e53ab
PH
242
243static void check_size (const struct type *);
52ce6436
PH
244
245static struct value *ada_index_struct_field (int, struct value *, int,
246 struct type *);
247
248static struct value *assign_aggregate (struct value *, struct value *,
249 struct expression *, int *, enum noside);
250
251static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
4c4b4cd2
PH
275\f
276
76a01679 277
4c4b4cd2 278/* Maximum-sized dynamic type. */
14f9c5c9
AS
279static unsigned int varsize_limit;
280
4c4b4cd2
PH
281/* FIXME: brobecker/2003-09-17: No longer a const because it is
282 returned by a function that does not return a const char *. */
283static char *ada_completer_word_break_characters =
284#ifdef VMS
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286#else
14f9c5c9 287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 288#endif
14f9c5c9 289
4c4b4cd2 290/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 291static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 292 = "__gnat_ada_main_program_name";
14f9c5c9 293
4c4b4cd2
PH
294/* Limit on the number of warnings to raise per expression evaluation. */
295static int warning_limit = 2;
296
297/* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299static int warnings_issued = 0;
300
301static const char *known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
303};
304
305static const char *known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
307};
308
309/* Space for allocating results of ada_lookup_symbol_list. */
310static struct obstack symbol_list_obstack;
311
312 /* Utilities */
313
41d27058
JB
314/* Given DECODED_NAME a string holding a symbol name in its
315 decoded form (ie using the Ada dotted notation), returns
316 its unqualified name. */
317
318static const char *
319ada_unqualified_name (const char *decoded_name)
320{
321 const char *result = strrchr (decoded_name, '.');
322
323 if (result != NULL)
324 result++; /* Skip the dot... */
325 else
326 result = decoded_name;
327
328 return result;
329}
330
331/* Return a string starting with '<', followed by STR, and '>'.
332 The result is good until the next call. */
333
334static char *
335add_angle_brackets (const char *str)
336{
337 static char *result = NULL;
338
339 xfree (result);
340 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
341
342 sprintf (result, "<%s>", str);
343 return result;
344}
96d887e8 345
4c4b4cd2
PH
346static char *
347ada_get_gdb_completer_word_break_characters (void)
348{
349 return ada_completer_word_break_characters;
350}
351
e79af960
JB
352/* Print an array element index using the Ada syntax. */
353
354static void
355ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 356 const struct value_print_options *options)
e79af960 357{
79a45b7d 358 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
359 fprintf_filtered (stream, " => ");
360}
361
4c4b4cd2
PH
362/* Read the string located at ADDR from the inferior and store the
363 result into BUF. */
364
365static void
14f9c5c9
AS
366extract_string (CORE_ADDR addr, char *buf)
367{
d2e4a39e 368 int char_index = 0;
14f9c5c9 369
4c4b4cd2
PH
370 /* Loop, reading one byte at a time, until we reach the '\000'
371 end-of-string marker. */
d2e4a39e
AS
372 do
373 {
374 target_read_memory (addr + char_index * sizeof (char),
4c4b4cd2 375 buf + char_index * sizeof (char), sizeof (char));
d2e4a39e
AS
376 char_index++;
377 }
378 while (buf[char_index - 1] != '\000');
14f9c5c9
AS
379}
380
f27cf670 381/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 382 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 383 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 384
f27cf670
AS
385void *
386grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 387{
d2e4a39e
AS
388 if (*size < min_size)
389 {
390 *size *= 2;
391 if (*size < min_size)
4c4b4cd2 392 *size = min_size;
f27cf670 393 vect = xrealloc (vect, *size * element_size);
d2e4a39e 394 }
f27cf670 395 return vect;
14f9c5c9
AS
396}
397
398/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 399 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
400
401static int
ebf56fd3 402field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
403{
404 int len = strlen (target);
d2e4a39e 405 return
4c4b4cd2
PH
406 (strncmp (field_name, target, len) == 0
407 && (field_name[len] == '\0'
408 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
409 && strcmp (field_name + strlen (field_name) - 6,
410 "___XVN") != 0)));
14f9c5c9
AS
411}
412
413
4c4b4cd2
PH
414/* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
415 FIELD_NAME, and return its index. This function also handles fields
416 whose name have ___ suffixes because the compiler sometimes alters
417 their name by adding such a suffix to represent fields with certain
418 constraints. If the field could not be found, return a negative
419 number if MAYBE_MISSING is set. Otherwise raise an error. */
420
421int
422ada_get_field_index (const struct type *type, const char *field_name,
423 int maybe_missing)
424{
425 int fieldno;
426 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
427 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
428 return fieldno;
429
430 if (!maybe_missing)
323e0a4a 431 error (_("Unable to find field %s in struct %s. Aborting"),
4c4b4cd2
PH
432 field_name, TYPE_NAME (type));
433
434 return -1;
435}
436
437/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
438
439int
d2e4a39e 440ada_name_prefix_len (const char *name)
14f9c5c9
AS
441{
442 if (name == NULL)
443 return 0;
d2e4a39e 444 else
14f9c5c9 445 {
d2e4a39e 446 const char *p = strstr (name, "___");
14f9c5c9 447 if (p == NULL)
4c4b4cd2 448 return strlen (name);
14f9c5c9 449 else
4c4b4cd2 450 return p - name;
14f9c5c9
AS
451 }
452}
453
4c4b4cd2
PH
454/* Return non-zero if SUFFIX is a suffix of STR.
455 Return zero if STR is null. */
456
14f9c5c9 457static int
d2e4a39e 458is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
459{
460 int len1, len2;
461 if (str == NULL)
462 return 0;
463 len1 = strlen (str);
464 len2 = strlen (suffix);
4c4b4cd2 465 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
466}
467
4c4b4cd2
PH
468/* The contents of value VAL, treated as a value of type TYPE. The
469 result is an lval in memory if VAL is. */
14f9c5c9 470
d2e4a39e 471static struct value *
4c4b4cd2 472coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 473{
61ee279c 474 type = ada_check_typedef (type);
df407dfe 475 if (value_type (val) == type)
4c4b4cd2 476 return val;
d2e4a39e 477 else
14f9c5c9 478 {
4c4b4cd2
PH
479 struct value *result;
480
481 /* Make sure that the object size is not unreasonable before
482 trying to allocate some memory for it. */
714e53ab 483 check_size (type);
4c4b4cd2
PH
484
485 result = allocate_value (type);
486 VALUE_LVAL (result) = VALUE_LVAL (val);
9bbda503
AC
487 set_value_bitsize (result, value_bitsize (val));
488 set_value_bitpos (result, value_bitpos (val));
df407dfe 489 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
d69fe07e 490 if (value_lazy (val)
df407dfe 491 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 492 set_value_lazy (result, 1);
d2e4a39e 493 else
0fd88904 494 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 495 TYPE_LENGTH (type));
14f9c5c9
AS
496 return result;
497 }
498}
499
fc1a4b47
AC
500static const gdb_byte *
501cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
502{
503 if (valaddr == NULL)
504 return NULL;
505 else
506 return valaddr + offset;
507}
508
509static CORE_ADDR
ebf56fd3 510cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
511{
512 if (address == 0)
513 return 0;
d2e4a39e 514 else
14f9c5c9
AS
515 return address + offset;
516}
517
4c4b4cd2
PH
518/* Issue a warning (as for the definition of warning in utils.c, but
519 with exactly one argument rather than ...), unless the limit on the
520 number of warnings has passed during the evaluation of the current
521 expression. */
a2249542 522
77109804
AC
523/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
524 provided by "complaint". */
525static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
526
14f9c5c9 527static void
a2249542 528lim_warning (const char *format, ...)
14f9c5c9 529{
a2249542
MK
530 va_list args;
531 va_start (args, format);
532
4c4b4cd2
PH
533 warnings_issued += 1;
534 if (warnings_issued <= warning_limit)
a2249542
MK
535 vwarning (format, args);
536
537 va_end (args);
4c4b4cd2
PH
538}
539
714e53ab
PH
540/* Issue an error if the size of an object of type T is unreasonable,
541 i.e. if it would be a bad idea to allocate a value of this type in
542 GDB. */
543
544static void
545check_size (const struct type *type)
546{
547 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 548 error (_("object size is larger than varsize-limit"));
714e53ab
PH
549}
550
551
c3e5cd34
PH
552/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
553 gdbtypes.h, but some of the necessary definitions in that file
554 seem to have gone missing. */
555
556/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 557static LONGEST
c3e5cd34 558max_of_size (int size)
4c4b4cd2 559{
76a01679
JB
560 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
561 return top_bit | (top_bit - 1);
4c4b4cd2
PH
562}
563
c3e5cd34 564/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 565static LONGEST
c3e5cd34 566min_of_size (int size)
4c4b4cd2 567{
c3e5cd34 568 return -max_of_size (size) - 1;
4c4b4cd2
PH
569}
570
c3e5cd34 571/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 572static ULONGEST
c3e5cd34 573umax_of_size (int size)
4c4b4cd2 574{
76a01679
JB
575 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
576 return top_bit | (top_bit - 1);
4c4b4cd2
PH
577}
578
c3e5cd34
PH
579/* Maximum value of integral type T, as a signed quantity. */
580static LONGEST
581max_of_type (struct type *t)
4c4b4cd2 582{
c3e5cd34
PH
583 if (TYPE_UNSIGNED (t))
584 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
585 else
586 return max_of_size (TYPE_LENGTH (t));
587}
588
589/* Minimum value of integral type T, as a signed quantity. */
590static LONGEST
591min_of_type (struct type *t)
592{
593 if (TYPE_UNSIGNED (t))
594 return 0;
595 else
596 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
597}
598
599/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 600static LONGEST
4c4b4cd2
PH
601discrete_type_high_bound (struct type *type)
602{
76a01679 603 switch (TYPE_CODE (type))
4c4b4cd2
PH
604 {
605 case TYPE_CODE_RANGE:
690cc4eb 606 return TYPE_HIGH_BOUND (type);
4c4b4cd2 607 case TYPE_CODE_ENUM:
690cc4eb
PH
608 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
609 case TYPE_CODE_BOOL:
610 return 1;
611 case TYPE_CODE_CHAR:
76a01679 612 case TYPE_CODE_INT:
690cc4eb 613 return max_of_type (type);
4c4b4cd2 614 default:
323e0a4a 615 error (_("Unexpected type in discrete_type_high_bound."));
4c4b4cd2
PH
616 }
617}
618
619/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 620static LONGEST
4c4b4cd2
PH
621discrete_type_low_bound (struct type *type)
622{
76a01679 623 switch (TYPE_CODE (type))
4c4b4cd2
PH
624 {
625 case TYPE_CODE_RANGE:
690cc4eb 626 return TYPE_LOW_BOUND (type);
4c4b4cd2 627 case TYPE_CODE_ENUM:
690cc4eb
PH
628 return TYPE_FIELD_BITPOS (type, 0);
629 case TYPE_CODE_BOOL:
630 return 0;
631 case TYPE_CODE_CHAR:
76a01679 632 case TYPE_CODE_INT:
690cc4eb 633 return min_of_type (type);
4c4b4cd2 634 default:
323e0a4a 635 error (_("Unexpected type in discrete_type_low_bound."));
4c4b4cd2
PH
636 }
637}
638
639/* The identity on non-range types. For range types, the underlying
76a01679 640 non-range scalar type. */
4c4b4cd2
PH
641
642static struct type *
643base_type (struct type *type)
644{
645 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
646 {
76a01679
JB
647 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
648 return type;
4c4b4cd2
PH
649 type = TYPE_TARGET_TYPE (type);
650 }
651 return type;
14f9c5c9 652}
4c4b4cd2 653\f
76a01679 654
4c4b4cd2 655 /* Language Selection */
14f9c5c9
AS
656
657/* If the main program is in Ada, return language_ada, otherwise return LANG
658 (the main program is in Ada iif the adainit symbol is found).
659
4c4b4cd2 660 MAIN_PST is not used. */
d2e4a39e 661
14f9c5c9 662enum language
d2e4a39e 663ada_update_initial_language (enum language lang,
4c4b4cd2 664 struct partial_symtab *main_pst)
14f9c5c9 665{
d2e4a39e 666 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
667 (struct objfile *) NULL) != NULL)
668 return language_ada;
14f9c5c9
AS
669
670 return lang;
671}
96d887e8
PH
672
673/* If the main procedure is written in Ada, then return its name.
674 The result is good until the next call. Return NULL if the main
675 procedure doesn't appear to be in Ada. */
676
677char *
678ada_main_name (void)
679{
680 struct minimal_symbol *msym;
681 CORE_ADDR main_program_name_addr;
682 static char main_program_name[1024];
6c038f32 683
96d887e8
PH
684 /* For Ada, the name of the main procedure is stored in a specific
685 string constant, generated by the binder. Look for that symbol,
686 extract its address, and then read that string. If we didn't find
687 that string, then most probably the main procedure is not written
688 in Ada. */
689 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
690
691 if (msym != NULL)
692 {
693 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
694 if (main_program_name_addr == 0)
323e0a4a 695 error (_("Invalid address for Ada main program name."));
96d887e8
PH
696
697 extract_string (main_program_name_addr, main_program_name);
698 return main_program_name;
699 }
700
701 /* The main procedure doesn't seem to be in Ada. */
702 return NULL;
703}
14f9c5c9 704\f
4c4b4cd2 705 /* Symbols */
d2e4a39e 706
4c4b4cd2
PH
707/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
708 of NULLs. */
14f9c5c9 709
d2e4a39e
AS
710const struct ada_opname_map ada_opname_table[] = {
711 {"Oadd", "\"+\"", BINOP_ADD},
712 {"Osubtract", "\"-\"", BINOP_SUB},
713 {"Omultiply", "\"*\"", BINOP_MUL},
714 {"Odivide", "\"/\"", BINOP_DIV},
715 {"Omod", "\"mod\"", BINOP_MOD},
716 {"Orem", "\"rem\"", BINOP_REM},
717 {"Oexpon", "\"**\"", BINOP_EXP},
718 {"Olt", "\"<\"", BINOP_LESS},
719 {"Ole", "\"<=\"", BINOP_LEQ},
720 {"Ogt", "\">\"", BINOP_GTR},
721 {"Oge", "\">=\"", BINOP_GEQ},
722 {"Oeq", "\"=\"", BINOP_EQUAL},
723 {"One", "\"/=\"", BINOP_NOTEQUAL},
724 {"Oand", "\"and\"", BINOP_BITWISE_AND},
725 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
726 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
727 {"Oconcat", "\"&\"", BINOP_CONCAT},
728 {"Oabs", "\"abs\"", UNOP_ABS},
729 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
730 {"Oadd", "\"+\"", UNOP_PLUS},
731 {"Osubtract", "\"-\"", UNOP_NEG},
732 {NULL, NULL}
14f9c5c9
AS
733};
734
4c4b4cd2
PH
735/* Return non-zero if STR should be suppressed in info listings. */
736
14f9c5c9 737static int
d2e4a39e 738is_suppressed_name (const char *str)
14f9c5c9 739{
4c4b4cd2 740 if (strncmp (str, "_ada_", 5) == 0)
14f9c5c9
AS
741 str += 5;
742 if (str[0] == '_' || str[0] == '\000')
743 return 1;
744 else
745 {
d2e4a39e
AS
746 const char *p;
747 const char *suffix = strstr (str, "___");
14f9c5c9 748 if (suffix != NULL && suffix[3] != 'X')
4c4b4cd2 749 return 1;
14f9c5c9 750 if (suffix == NULL)
4c4b4cd2 751 suffix = str + strlen (str);
d2e4a39e 752 for (p = suffix - 1; p != str; p -= 1)
4c4b4cd2
PH
753 if (isupper (*p))
754 {
755 int i;
756 if (p[0] == 'X' && p[-1] != '_')
757 goto OK;
758 if (*p != 'O')
759 return 1;
760 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
761 if (strncmp (ada_opname_table[i].encoded, p,
762 strlen (ada_opname_table[i].encoded)) == 0)
763 goto OK;
764 return 1;
765 OK:;
766 }
14f9c5c9
AS
767 return 0;
768 }
769}
770
4c4b4cd2
PH
771/* The "encoded" form of DECODED, according to GNAT conventions.
772 The result is valid until the next call to ada_encode. */
773
14f9c5c9 774char *
4c4b4cd2 775ada_encode (const char *decoded)
14f9c5c9 776{
4c4b4cd2
PH
777 static char *encoding_buffer = NULL;
778 static size_t encoding_buffer_size = 0;
d2e4a39e 779 const char *p;
14f9c5c9 780 int k;
d2e4a39e 781
4c4b4cd2 782 if (decoded == NULL)
14f9c5c9
AS
783 return NULL;
784
4c4b4cd2
PH
785 GROW_VECT (encoding_buffer, encoding_buffer_size,
786 2 * strlen (decoded) + 10);
14f9c5c9
AS
787
788 k = 0;
4c4b4cd2 789 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 790 {
cdc7bb92 791 if (*p == '.')
4c4b4cd2
PH
792 {
793 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
794 k += 2;
795 }
14f9c5c9 796 else if (*p == '"')
4c4b4cd2
PH
797 {
798 const struct ada_opname_map *mapping;
799
800 for (mapping = ada_opname_table;
1265e4aa
JB
801 mapping->encoded != NULL
802 && strncmp (mapping->decoded, p,
803 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
804 ;
805 if (mapping->encoded == NULL)
323e0a4a 806 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
807 strcpy (encoding_buffer + k, mapping->encoded);
808 k += strlen (mapping->encoded);
809 break;
810 }
d2e4a39e 811 else
4c4b4cd2
PH
812 {
813 encoding_buffer[k] = *p;
814 k += 1;
815 }
14f9c5c9
AS
816 }
817
4c4b4cd2
PH
818 encoding_buffer[k] = '\0';
819 return encoding_buffer;
14f9c5c9
AS
820}
821
822/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
823 quotes, unfolded, but with the quotes stripped away. Result good
824 to next call. */
825
d2e4a39e
AS
826char *
827ada_fold_name (const char *name)
14f9c5c9 828{
d2e4a39e 829 static char *fold_buffer = NULL;
14f9c5c9
AS
830 static size_t fold_buffer_size = 0;
831
832 int len = strlen (name);
d2e4a39e 833 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
834
835 if (name[0] == '\'')
836 {
d2e4a39e
AS
837 strncpy (fold_buffer, name + 1, len - 2);
838 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
839 }
840 else
841 {
842 int i;
843 for (i = 0; i <= len; i += 1)
4c4b4cd2 844 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
845 }
846
847 return fold_buffer;
848}
849
529cad9c
PH
850/* Return nonzero if C is either a digit or a lowercase alphabet character. */
851
852static int
853is_lower_alphanum (const char c)
854{
855 return (isdigit (c) || (isalpha (c) && islower (c)));
856}
857
29480c32
JB
858/* Remove either of these suffixes:
859 . .{DIGIT}+
860 . ${DIGIT}+
861 . ___{DIGIT}+
862 . __{DIGIT}+.
863 These are suffixes introduced by the compiler for entities such as
864 nested subprogram for instance, in order to avoid name clashes.
865 They do not serve any purpose for the debugger. */
866
867static void
868ada_remove_trailing_digits (const char *encoded, int *len)
869{
870 if (*len > 1 && isdigit (encoded[*len - 1]))
871 {
872 int i = *len - 2;
873 while (i > 0 && isdigit (encoded[i]))
874 i--;
875 if (i >= 0 && encoded[i] == '.')
876 *len = i;
877 else if (i >= 0 && encoded[i] == '$')
878 *len = i;
879 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
880 *len = i - 2;
881 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
882 *len = i - 1;
883 }
884}
885
886/* Remove the suffix introduced by the compiler for protected object
887 subprograms. */
888
889static void
890ada_remove_po_subprogram_suffix (const char *encoded, int *len)
891{
892 /* Remove trailing N. */
893
894 /* Protected entry subprograms are broken into two
895 separate subprograms: The first one is unprotected, and has
896 a 'N' suffix; the second is the protected version, and has
897 the 'P' suffix. The second calls the first one after handling
898 the protection. Since the P subprograms are internally generated,
899 we leave these names undecoded, giving the user a clue that this
900 entity is internal. */
901
902 if (*len > 1
903 && encoded[*len - 1] == 'N'
904 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
905 *len = *len - 1;
906}
907
908/* If ENCODED follows the GNAT entity encoding conventions, then return
909 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
910 replaced by ENCODED.
14f9c5c9 911
4c4b4cd2 912 The resulting string is valid until the next call of ada_decode.
29480c32 913 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
914 is returned. */
915
916const char *
917ada_decode (const char *encoded)
14f9c5c9
AS
918{
919 int i, j;
920 int len0;
d2e4a39e 921 const char *p;
4c4b4cd2 922 char *decoded;
14f9c5c9 923 int at_start_name;
4c4b4cd2
PH
924 static char *decoding_buffer = NULL;
925 static size_t decoding_buffer_size = 0;
d2e4a39e 926
29480c32
JB
927 /* The name of the Ada main procedure starts with "_ada_".
928 This prefix is not part of the decoded name, so skip this part
929 if we see this prefix. */
4c4b4cd2
PH
930 if (strncmp (encoded, "_ada_", 5) == 0)
931 encoded += 5;
14f9c5c9 932
29480c32
JB
933 /* If the name starts with '_', then it is not a properly encoded
934 name, so do not attempt to decode it. Similarly, if the name
935 starts with '<', the name should not be decoded. */
4c4b4cd2 936 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
937 goto Suppress;
938
4c4b4cd2 939 len0 = strlen (encoded);
4c4b4cd2 940
29480c32
JB
941 ada_remove_trailing_digits (encoded, &len0);
942 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 943
4c4b4cd2
PH
944 /* Remove the ___X.* suffix if present. Do not forget to verify that
945 the suffix is located before the current "end" of ENCODED. We want
946 to avoid re-matching parts of ENCODED that have previously been
947 marked as discarded (by decrementing LEN0). */
948 p = strstr (encoded, "___");
949 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
950 {
951 if (p[3] == 'X')
4c4b4cd2 952 len0 = p - encoded;
14f9c5c9 953 else
4c4b4cd2 954 goto Suppress;
14f9c5c9 955 }
4c4b4cd2 956
29480c32
JB
957 /* Remove any trailing TKB suffix. It tells us that this symbol
958 is for the body of a task, but that information does not actually
959 appear in the decoded name. */
960
4c4b4cd2 961 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 962 len0 -= 3;
76a01679 963
29480c32
JB
964 /* Remove trailing "B" suffixes. */
965 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
966
4c4b4cd2 967 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
968 len0 -= 1;
969
4c4b4cd2 970 /* Make decoded big enough for possible expansion by operator name. */
29480c32 971
4c4b4cd2
PH
972 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
973 decoded = decoding_buffer;
14f9c5c9 974
29480c32
JB
975 /* Remove trailing __{digit}+ or trailing ${digit}+. */
976
4c4b4cd2 977 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 978 {
4c4b4cd2
PH
979 i = len0 - 2;
980 while ((i >= 0 && isdigit (encoded[i]))
981 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
982 i -= 1;
983 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
984 len0 = i - 1;
985 else if (encoded[i] == '$')
986 len0 = i;
d2e4a39e 987 }
14f9c5c9 988
29480c32
JB
989 /* The first few characters that are not alphabetic are not part
990 of any encoding we use, so we can copy them over verbatim. */
991
4c4b4cd2
PH
992 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
993 decoded[j] = encoded[i];
14f9c5c9
AS
994
995 at_start_name = 1;
996 while (i < len0)
997 {
29480c32 998 /* Is this a symbol function? */
4c4b4cd2
PH
999 if (at_start_name && encoded[i] == 'O')
1000 {
1001 int k;
1002 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1003 {
1004 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1005 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1006 op_len - 1) == 0)
1007 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1008 {
1009 strcpy (decoded + j, ada_opname_table[k].decoded);
1010 at_start_name = 0;
1011 i += op_len;
1012 j += strlen (ada_opname_table[k].decoded);
1013 break;
1014 }
1015 }
1016 if (ada_opname_table[k].encoded != NULL)
1017 continue;
1018 }
14f9c5c9
AS
1019 at_start_name = 0;
1020
529cad9c
PH
1021 /* Replace "TK__" with "__", which will eventually be translated
1022 into "." (just below). */
1023
4c4b4cd2
PH
1024 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1025 i += 2;
529cad9c 1026
29480c32
JB
1027 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1028 be translated into "." (just below). These are internal names
1029 generated for anonymous blocks inside which our symbol is nested. */
1030
1031 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1032 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1033 && isdigit (encoded [i+4]))
1034 {
1035 int k = i + 5;
1036
1037 while (k < len0 && isdigit (encoded[k]))
1038 k++; /* Skip any extra digit. */
1039
1040 /* Double-check that the "__B_{DIGITS}+" sequence we found
1041 is indeed followed by "__". */
1042 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1043 i = k;
1044 }
1045
529cad9c
PH
1046 /* Remove _E{DIGITS}+[sb] */
1047
1048 /* Just as for protected object subprograms, there are 2 categories
1049 of subprograms created by the compiler for each entry. The first
1050 one implements the actual entry code, and has a suffix following
1051 the convention above; the second one implements the barrier and
1052 uses the same convention as above, except that the 'E' is replaced
1053 by a 'B'.
1054
1055 Just as above, we do not decode the name of barrier functions
1056 to give the user a clue that the code he is debugging has been
1057 internally generated. */
1058
1059 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1060 && isdigit (encoded[i+2]))
1061 {
1062 int k = i + 3;
1063
1064 while (k < len0 && isdigit (encoded[k]))
1065 k++;
1066
1067 if (k < len0
1068 && (encoded[k] == 'b' || encoded[k] == 's'))
1069 {
1070 k++;
1071 /* Just as an extra precaution, make sure that if this
1072 suffix is followed by anything else, it is a '_'.
1073 Otherwise, we matched this sequence by accident. */
1074 if (k == len0
1075 || (k < len0 && encoded[k] == '_'))
1076 i = k;
1077 }
1078 }
1079
1080 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1081 the GNAT front-end in protected object subprograms. */
1082
1083 if (i < len0 + 3
1084 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1085 {
1086 /* Backtrack a bit up until we reach either the begining of
1087 the encoded name, or "__". Make sure that we only find
1088 digits or lowercase characters. */
1089 const char *ptr = encoded + i - 1;
1090
1091 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1092 ptr--;
1093 if (ptr < encoded
1094 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1095 i++;
1096 }
1097
4c4b4cd2
PH
1098 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1099 {
29480c32
JB
1100 /* This is a X[bn]* sequence not separated from the previous
1101 part of the name with a non-alpha-numeric character (in other
1102 words, immediately following an alpha-numeric character), then
1103 verify that it is placed at the end of the encoded name. If
1104 not, then the encoding is not valid and we should abort the
1105 decoding. Otherwise, just skip it, it is used in body-nested
1106 package names. */
4c4b4cd2
PH
1107 do
1108 i += 1;
1109 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1110 if (i < len0)
1111 goto Suppress;
1112 }
cdc7bb92 1113 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1114 {
29480c32 1115 /* Replace '__' by '.'. */
4c4b4cd2
PH
1116 decoded[j] = '.';
1117 at_start_name = 1;
1118 i += 2;
1119 j += 1;
1120 }
14f9c5c9 1121 else
4c4b4cd2 1122 {
29480c32
JB
1123 /* It's a character part of the decoded name, so just copy it
1124 over. */
4c4b4cd2
PH
1125 decoded[j] = encoded[i];
1126 i += 1;
1127 j += 1;
1128 }
14f9c5c9 1129 }
4c4b4cd2 1130 decoded[j] = '\000';
14f9c5c9 1131
29480c32
JB
1132 /* Decoded names should never contain any uppercase character.
1133 Double-check this, and abort the decoding if we find one. */
1134
4c4b4cd2
PH
1135 for (i = 0; decoded[i] != '\0'; i += 1)
1136 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1137 goto Suppress;
1138
4c4b4cd2
PH
1139 if (strcmp (decoded, encoded) == 0)
1140 return encoded;
1141 else
1142 return decoded;
14f9c5c9
AS
1143
1144Suppress:
4c4b4cd2
PH
1145 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1146 decoded = decoding_buffer;
1147 if (encoded[0] == '<')
1148 strcpy (decoded, encoded);
14f9c5c9 1149 else
4c4b4cd2
PH
1150 sprintf (decoded, "<%s>", encoded);
1151 return decoded;
1152
1153}
1154
1155/* Table for keeping permanent unique copies of decoded names. Once
1156 allocated, names in this table are never released. While this is a
1157 storage leak, it should not be significant unless there are massive
1158 changes in the set of decoded names in successive versions of a
1159 symbol table loaded during a single session. */
1160static struct htab *decoded_names_store;
1161
1162/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1163 in the language-specific part of GSYMBOL, if it has not been
1164 previously computed. Tries to save the decoded name in the same
1165 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1166 in any case, the decoded symbol has a lifetime at least that of
1167 GSYMBOL).
1168 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1169 const, but nevertheless modified to a semantically equivalent form
1170 when a decoded name is cached in it.
76a01679 1171*/
4c4b4cd2 1172
76a01679
JB
1173char *
1174ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1175{
76a01679 1176 char **resultp =
4c4b4cd2
PH
1177 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1178 if (*resultp == NULL)
1179 {
1180 const char *decoded = ada_decode (gsymbol->name);
714835d5 1181 if (gsymbol->obj_section != NULL)
76a01679 1182 {
714835d5
UW
1183 struct objfile *objf = gsymbol->obj_section->objfile;
1184 *resultp = obsavestring (decoded, strlen (decoded),
1185 &objf->objfile_obstack);
76a01679 1186 }
4c4b4cd2 1187 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1188 case, we put the result on the heap. Since we only decode
1189 when needed, we hope this usually does not cause a
1190 significant memory leak (FIXME). */
4c4b4cd2 1191 if (*resultp == NULL)
76a01679
JB
1192 {
1193 char **slot = (char **) htab_find_slot (decoded_names_store,
1194 decoded, INSERT);
1195 if (*slot == NULL)
1196 *slot = xstrdup (decoded);
1197 *resultp = *slot;
1198 }
4c4b4cd2 1199 }
14f9c5c9 1200
4c4b4cd2
PH
1201 return *resultp;
1202}
76a01679
JB
1203
1204char *
1205ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1206{
1207 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1208}
1209
1210/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1211 suffixes that encode debugging information or leading _ada_ on
1212 SYM_NAME (see is_name_suffix commentary for the debugging
1213 information that is ignored). If WILD, then NAME need only match a
1214 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1215 either argument is NULL. */
14f9c5c9
AS
1216
1217int
d2e4a39e 1218ada_match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1219{
1220 if (sym_name == NULL || name == NULL)
1221 return 0;
1222 else if (wild)
1223 return wild_match (name, strlen (name), sym_name);
d2e4a39e
AS
1224 else
1225 {
1226 int len_name = strlen (name);
4c4b4cd2
PH
1227 return (strncmp (sym_name, name, len_name) == 0
1228 && is_name_suffix (sym_name + len_name))
1229 || (strncmp (sym_name, "_ada_", 5) == 0
1230 && strncmp (sym_name + 5, name, len_name) == 0
1231 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1232 }
14f9c5c9
AS
1233}
1234
4c4b4cd2
PH
1235/* True (non-zero) iff, in Ada mode, the symbol SYM should be
1236 suppressed in info listings. */
14f9c5c9
AS
1237
1238int
ebf56fd3 1239ada_suppress_symbol_printing (struct symbol *sym)
14f9c5c9 1240{
176620f1 1241 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
14f9c5c9 1242 return 1;
d2e4a39e 1243 else
4c4b4cd2 1244 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
14f9c5c9 1245}
14f9c5c9 1246\f
d2e4a39e 1247
4c4b4cd2 1248 /* Arrays */
14f9c5c9 1249
4c4b4cd2 1250/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1251
d2e4a39e
AS
1252static char *bound_name[] = {
1253 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1254 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1255};
1256
1257/* Maximum number of array dimensions we are prepared to handle. */
1258
4c4b4cd2 1259#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1260
4c4b4cd2 1261/* Like modify_field, but allows bitpos > wordlength. */
14f9c5c9
AS
1262
1263static void
ebf56fd3 1264modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
14f9c5c9 1265{
4c4b4cd2 1266 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
14f9c5c9
AS
1267}
1268
1269
4c4b4cd2
PH
1270/* The desc_* routines return primitive portions of array descriptors
1271 (fat pointers). */
14f9c5c9
AS
1272
1273/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1274 level of indirection, if needed. */
1275
d2e4a39e
AS
1276static struct type *
1277desc_base_type (struct type *type)
14f9c5c9
AS
1278{
1279 if (type == NULL)
1280 return NULL;
61ee279c 1281 type = ada_check_typedef (type);
1265e4aa
JB
1282 if (type != NULL
1283 && (TYPE_CODE (type) == TYPE_CODE_PTR
1284 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1285 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1286 else
1287 return type;
1288}
1289
4c4b4cd2
PH
1290/* True iff TYPE indicates a "thin" array pointer type. */
1291
14f9c5c9 1292static int
d2e4a39e 1293is_thin_pntr (struct type *type)
14f9c5c9 1294{
d2e4a39e 1295 return
14f9c5c9
AS
1296 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1297 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1298}
1299
4c4b4cd2
PH
1300/* The descriptor type for thin pointer type TYPE. */
1301
d2e4a39e
AS
1302static struct type *
1303thin_descriptor_type (struct type *type)
14f9c5c9 1304{
d2e4a39e 1305 struct type *base_type = desc_base_type (type);
14f9c5c9
AS
1306 if (base_type == NULL)
1307 return NULL;
1308 if (is_suffix (ada_type_name (base_type), "___XVE"))
1309 return base_type;
d2e4a39e 1310 else
14f9c5c9 1311 {
d2e4a39e 1312 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
14f9c5c9 1313 if (alt_type == NULL)
4c4b4cd2 1314 return base_type;
14f9c5c9 1315 else
4c4b4cd2 1316 return alt_type;
14f9c5c9
AS
1317 }
1318}
1319
4c4b4cd2
PH
1320/* A pointer to the array data for thin-pointer value VAL. */
1321
d2e4a39e
AS
1322static struct value *
1323thin_data_pntr (struct value *val)
14f9c5c9 1324{
df407dfe 1325 struct type *type = value_type (val);
14f9c5c9 1326 if (TYPE_CODE (type) == TYPE_CODE_PTR)
d2e4a39e 1327 return value_cast (desc_data_type (thin_descriptor_type (type)),
4c4b4cd2 1328 value_copy (val));
d2e4a39e 1329 else
14f9c5c9 1330 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
df407dfe 1331 VALUE_ADDRESS (val) + value_offset (val));
14f9c5c9
AS
1332}
1333
4c4b4cd2
PH
1334/* True iff TYPE indicates a "thick" array pointer type. */
1335
14f9c5c9 1336static int
d2e4a39e 1337is_thick_pntr (struct type *type)
14f9c5c9
AS
1338{
1339 type = desc_base_type (type);
1340 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1341 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1342}
1343
4c4b4cd2
PH
1344/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1345 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1346
d2e4a39e
AS
1347static struct type *
1348desc_bounds_type (struct type *type)
14f9c5c9 1349{
d2e4a39e 1350 struct type *r;
14f9c5c9
AS
1351
1352 type = desc_base_type (type);
1353
1354 if (type == NULL)
1355 return NULL;
1356 else if (is_thin_pntr (type))
1357 {
1358 type = thin_descriptor_type (type);
1359 if (type == NULL)
4c4b4cd2 1360 return NULL;
14f9c5c9
AS
1361 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1362 if (r != NULL)
61ee279c 1363 return ada_check_typedef (r);
14f9c5c9
AS
1364 }
1365 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1366 {
1367 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1368 if (r != NULL)
61ee279c 1369 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1370 }
1371 return NULL;
1372}
1373
1374/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1375 one, a pointer to its bounds data. Otherwise NULL. */
1376
d2e4a39e
AS
1377static struct value *
1378desc_bounds (struct value *arr)
14f9c5c9 1379{
df407dfe 1380 struct type *type = ada_check_typedef (value_type (arr));
d2e4a39e 1381 if (is_thin_pntr (type))
14f9c5c9 1382 {
d2e4a39e 1383 struct type *bounds_type =
4c4b4cd2 1384 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1385 LONGEST addr;
1386
4cdfadb1 1387 if (bounds_type == NULL)
323e0a4a 1388 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1389
1390 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1391 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1392 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1393 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1394 addr = value_as_long (arr);
d2e4a39e 1395 else
df407dfe 1396 addr = VALUE_ADDRESS (arr) + value_offset (arr);
14f9c5c9 1397
d2e4a39e 1398 return
4c4b4cd2
PH
1399 value_from_longest (lookup_pointer_type (bounds_type),
1400 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1401 }
1402
1403 else if (is_thick_pntr (type))
d2e4a39e 1404 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
323e0a4a 1405 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1406 else
1407 return NULL;
1408}
1409
4c4b4cd2
PH
1410/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1411 position of the field containing the address of the bounds data. */
1412
14f9c5c9 1413static int
d2e4a39e 1414fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1415{
1416 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1417}
1418
1419/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1420 size of the field containing the address of the bounds data. */
1421
14f9c5c9 1422static int
d2e4a39e 1423fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1424{
1425 type = desc_base_type (type);
1426
d2e4a39e 1427 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1428 return TYPE_FIELD_BITSIZE (type, 1);
1429 else
61ee279c 1430 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1431}
1432
4c4b4cd2 1433/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
14f9c5c9 1434 pointer to one, the type of its array data (a
4c4b4cd2
PH
1435 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1436 ada_type_of_array to get an array type with bounds data. */
1437
d2e4a39e
AS
1438static struct type *
1439desc_data_type (struct type *type)
14f9c5c9
AS
1440{
1441 type = desc_base_type (type);
1442
4c4b4cd2 1443 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1444 if (is_thin_pntr (type))
d2e4a39e
AS
1445 return lookup_pointer_type
1446 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
14f9c5c9
AS
1447 else if (is_thick_pntr (type))
1448 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1449 else
1450 return NULL;
1451}
1452
1453/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1454 its array data. */
4c4b4cd2 1455
d2e4a39e
AS
1456static struct value *
1457desc_data (struct value *arr)
14f9c5c9 1458{
df407dfe 1459 struct type *type = value_type (arr);
14f9c5c9
AS
1460 if (is_thin_pntr (type))
1461 return thin_data_pntr (arr);
1462 else if (is_thick_pntr (type))
d2e4a39e 1463 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1464 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1465 else
1466 return NULL;
1467}
1468
1469
1470/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1471 position of the field containing the address of the data. */
1472
14f9c5c9 1473static int
d2e4a39e 1474fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1475{
1476 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1477}
1478
1479/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1480 size of the field containing the address of the data. */
1481
14f9c5c9 1482static int
d2e4a39e 1483fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1484{
1485 type = desc_base_type (type);
1486
1487 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1488 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1489 else
14f9c5c9
AS
1490 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1491}
1492
4c4b4cd2 1493/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1494 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1495 bound, if WHICH is 1. The first bound is I=1. */
1496
d2e4a39e
AS
1497static struct value *
1498desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1499{
d2e4a39e 1500 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1501 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1502}
1503
1504/* If BOUNDS is an array-bounds structure type, return the bit position
1505 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1506 bound, if WHICH is 1. The first bound is I=1. */
1507
14f9c5c9 1508static int
d2e4a39e 1509desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1510{
d2e4a39e 1511 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1512}
1513
1514/* If BOUNDS is an array-bounds structure type, return the bit field size
1515 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1516 bound, if WHICH is 1. The first bound is I=1. */
1517
76a01679 1518static int
d2e4a39e 1519desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1520{
1521 type = desc_base_type (type);
1522
d2e4a39e
AS
1523 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1524 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1525 else
1526 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1527}
1528
1529/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1530 Ith bound (numbering from 1). Otherwise, NULL. */
1531
d2e4a39e
AS
1532static struct type *
1533desc_index_type (struct type *type, int i)
14f9c5c9
AS
1534{
1535 type = desc_base_type (type);
1536
1537 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1538 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1539 else
14f9c5c9
AS
1540 return NULL;
1541}
1542
4c4b4cd2
PH
1543/* The number of index positions in the array-bounds type TYPE.
1544 Return 0 if TYPE is NULL. */
1545
14f9c5c9 1546static int
d2e4a39e 1547desc_arity (struct type *type)
14f9c5c9
AS
1548{
1549 type = desc_base_type (type);
1550
1551 if (type != NULL)
1552 return TYPE_NFIELDS (type) / 2;
1553 return 0;
1554}
1555
4c4b4cd2
PH
1556/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1557 an array descriptor type (representing an unconstrained array
1558 type). */
1559
76a01679
JB
1560static int
1561ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1562{
1563 if (type == NULL)
1564 return 0;
61ee279c 1565 type = ada_check_typedef (type);
4c4b4cd2 1566 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1567 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1568}
1569
52ce6436
PH
1570/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1571 * to one. */
1572
1573int
1574ada_is_array_type (struct type *type)
1575{
1576 while (type != NULL
1577 && (TYPE_CODE (type) == TYPE_CODE_PTR
1578 || TYPE_CODE (type) == TYPE_CODE_REF))
1579 type = TYPE_TARGET_TYPE (type);
1580 return ada_is_direct_array_type (type);
1581}
1582
4c4b4cd2 1583/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1584
14f9c5c9 1585int
4c4b4cd2 1586ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1587{
1588 if (type == NULL)
1589 return 0;
61ee279c 1590 type = ada_check_typedef (type);
14f9c5c9 1591 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1592 || (TYPE_CODE (type) == TYPE_CODE_PTR
1593 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1594}
1595
4c4b4cd2
PH
1596/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1597
14f9c5c9 1598int
4c4b4cd2 1599ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1600{
d2e4a39e 1601 struct type *data_type = desc_data_type (type);
14f9c5c9
AS
1602
1603 if (type == NULL)
1604 return 0;
61ee279c 1605 type = ada_check_typedef (type);
d2e4a39e 1606 return
14f9c5c9
AS
1607 data_type != NULL
1608 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
4c4b4cd2
PH
1609 && TYPE_TARGET_TYPE (data_type) != NULL
1610 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1265e4aa 1611 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
1612 && desc_arity (desc_bounds_type (type)) > 0;
1613}
1614
1615/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1616 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1617 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1618 is still needed. */
1619
14f9c5c9 1620int
ebf56fd3 1621ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1622{
d2e4a39e 1623 return
14f9c5c9
AS
1624 type != NULL
1625 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1626 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1627 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1628 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1629}
1630
1631
4c4b4cd2 1632/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1633 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1634 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1635 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1636 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1637 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1638 a descriptor. */
d2e4a39e
AS
1639struct type *
1640ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1641{
df407dfe
AC
1642 if (ada_is_packed_array_type (value_type (arr)))
1643 return decode_packed_array_type (value_type (arr));
14f9c5c9 1644
df407dfe
AC
1645 if (!ada_is_array_descriptor_type (value_type (arr)))
1646 return value_type (arr);
d2e4a39e
AS
1647
1648 if (!bounds)
1649 return
df407dfe 1650 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
14f9c5c9
AS
1651 else
1652 {
d2e4a39e 1653 struct type *elt_type;
14f9c5c9 1654 int arity;
d2e4a39e 1655 struct value *descriptor;
df407dfe 1656 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
14f9c5c9 1657
df407dfe
AC
1658 elt_type = ada_array_element_type (value_type (arr), -1);
1659 arity = ada_array_arity (value_type (arr));
14f9c5c9 1660
d2e4a39e 1661 if (elt_type == NULL || arity == 0)
df407dfe 1662 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1663
1664 descriptor = desc_bounds (arr);
d2e4a39e 1665 if (value_as_long (descriptor) == 0)
4c4b4cd2 1666 return NULL;
d2e4a39e 1667 while (arity > 0)
4c4b4cd2
PH
1668 {
1669 struct type *range_type = alloc_type (objf);
1670 struct type *array_type = alloc_type (objf);
1671 struct value *low = desc_one_bound (descriptor, arity, 0);
1672 struct value *high = desc_one_bound (descriptor, arity, 1);
1673 arity -= 1;
1674
df407dfe 1675 create_range_type (range_type, value_type (low),
529cad9c
PH
1676 longest_to_int (value_as_long (low)),
1677 longest_to_int (value_as_long (high)));
4c4b4cd2
PH
1678 elt_type = create_array_type (array_type, elt_type, range_type);
1679 }
14f9c5c9
AS
1680
1681 return lookup_pointer_type (elt_type);
1682 }
1683}
1684
1685/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1686 Otherwise, returns either a standard GDB array with bounds set
1687 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1688 GDB array. Returns NULL if ARR is a null fat pointer. */
1689
d2e4a39e
AS
1690struct value *
1691ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1692{
df407dfe 1693 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1694 {
d2e4a39e 1695 struct type *arrType = ada_type_of_array (arr, 1);
14f9c5c9 1696 if (arrType == NULL)
4c4b4cd2 1697 return NULL;
14f9c5c9
AS
1698 return value_cast (arrType, value_copy (desc_data (arr)));
1699 }
df407dfe 1700 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9
AS
1701 return decode_packed_array (arr);
1702 else
1703 return arr;
1704}
1705
1706/* If ARR does not represent an array, returns ARR unchanged.
1707 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1708 be ARR itself if it already is in the proper form). */
1709
1710static struct value *
d2e4a39e 1711ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1712{
df407dfe 1713 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1714 {
d2e4a39e 1715 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
14f9c5c9 1716 if (arrVal == NULL)
323e0a4a 1717 error (_("Bounds unavailable for null array pointer."));
529cad9c 1718 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1719 return value_ind (arrVal);
1720 }
df407dfe 1721 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9 1722 return decode_packed_array (arr);
d2e4a39e 1723 else
14f9c5c9
AS
1724 return arr;
1725}
1726
1727/* If TYPE represents a GNAT array type, return it translated to an
1728 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1729 packing). For other types, is the identity. */
1730
d2e4a39e
AS
1731struct type *
1732ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1733{
d2e4a39e 1734 struct value *mark = value_mark ();
6d84d3d8 1735 struct value *dummy = value_from_longest (builtin_type_int32, 0);
d2e4a39e 1736 struct type *result;
04624583 1737 deprecated_set_value_type (dummy, type);
14f9c5c9 1738 result = ada_type_of_array (dummy, 0);
4c4b4cd2 1739 value_free_to_mark (mark);
14f9c5c9
AS
1740 return result;
1741}
1742
4c4b4cd2
PH
1743/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1744
14f9c5c9 1745int
d2e4a39e 1746ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1747{
1748 if (type == NULL)
1749 return 0;
4c4b4cd2 1750 type = desc_base_type (type);
61ee279c 1751 type = ada_check_typedef (type);
d2e4a39e 1752 return
14f9c5c9
AS
1753 ada_type_name (type) != NULL
1754 && strstr (ada_type_name (type), "___XP") != NULL;
1755}
1756
1757/* Given that TYPE is a standard GDB array type with all bounds filled
1758 in, and that the element size of its ultimate scalar constituents
1759 (that is, either its elements, or, if it is an array of arrays, its
1760 elements' elements, etc.) is *ELT_BITS, return an identical type,
1761 but with the bit sizes of its elements (and those of any
1762 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1763 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1764 in bits. */
1765
d2e4a39e
AS
1766static struct type *
1767packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1768{
d2e4a39e
AS
1769 struct type *new_elt_type;
1770 struct type *new_type;
14f9c5c9
AS
1771 LONGEST low_bound, high_bound;
1772
61ee279c 1773 type = ada_check_typedef (type);
14f9c5c9
AS
1774 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1775 return type;
1776
1777 new_type = alloc_type (TYPE_OBJFILE (type));
61ee279c 1778 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
4c4b4cd2 1779 elt_bits);
14f9c5c9
AS
1780 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1781 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1782 TYPE_NAME (new_type) = ada_type_name (type);
1783
d2e4a39e 1784 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2 1785 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1786 low_bound = high_bound = 0;
1787 if (high_bound < low_bound)
1788 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1789 else
14f9c5c9
AS
1790 {
1791 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1792 TYPE_LENGTH (new_type) =
4c4b4cd2 1793 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
1794 }
1795
876cecd0 1796 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
1797 return new_type;
1798}
1799
4c4b4cd2
PH
1800/* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1801
d2e4a39e
AS
1802static struct type *
1803decode_packed_array_type (struct type *type)
1804{
4c4b4cd2 1805 struct symbol *sym;
d2e4a39e 1806 struct block **blocks;
727e3d2e
JB
1807 char *raw_name = ada_type_name (ada_check_typedef (type));
1808 char *name;
1809 char *tail;
d2e4a39e 1810 struct type *shadow_type;
14f9c5c9
AS
1811 long bits;
1812 int i, n;
1813
727e3d2e
JB
1814 if (!raw_name)
1815 raw_name = ada_type_name (desc_base_type (type));
1816
1817 if (!raw_name)
1818 return NULL;
1819
1820 name = (char *) alloca (strlen (raw_name) + 1);
1821 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
1822 type = desc_base_type (type);
1823
14f9c5c9
AS
1824 memcpy (name, raw_name, tail - raw_name);
1825 name[tail - raw_name] = '\000';
1826
4c4b4cd2
PH
1827 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1828 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
14f9c5c9 1829 {
323e0a4a 1830 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
1831 return NULL;
1832 }
4c4b4cd2 1833 shadow_type = SYMBOL_TYPE (sym);
14f9c5c9
AS
1834
1835 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1836 {
323e0a4a 1837 lim_warning (_("could not understand bounds information on packed array"));
14f9c5c9
AS
1838 return NULL;
1839 }
d2e4a39e 1840
14f9c5c9
AS
1841 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1842 {
4c4b4cd2 1843 lim_warning
323e0a4a 1844 (_("could not understand bit size information on packed array"));
14f9c5c9
AS
1845 return NULL;
1846 }
d2e4a39e 1847
14f9c5c9
AS
1848 return packed_array_type (shadow_type, &bits);
1849}
1850
4c4b4cd2 1851/* Given that ARR is a struct value *indicating a GNAT packed array,
14f9c5c9
AS
1852 returns a simple array that denotes that array. Its type is a
1853 standard GDB array type except that the BITSIZEs of the array
1854 target types are set to the number of bits in each element, and the
4c4b4cd2 1855 type length is set appropriately. */
14f9c5c9 1856
d2e4a39e
AS
1857static struct value *
1858decode_packed_array (struct value *arr)
14f9c5c9 1859{
4c4b4cd2 1860 struct type *type;
14f9c5c9 1861
4c4b4cd2 1862 arr = ada_coerce_ref (arr);
df407dfe 1863 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
4c4b4cd2
PH
1864 arr = ada_value_ind (arr);
1865
df407dfe 1866 type = decode_packed_array_type (value_type (arr));
14f9c5c9
AS
1867 if (type == NULL)
1868 {
323e0a4a 1869 error (_("can't unpack array"));
14f9c5c9
AS
1870 return NULL;
1871 }
61ee279c 1872
32c9a795
MD
1873 if (gdbarch_bits_big_endian (current_gdbarch)
1874 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
1875 {
1876 /* This is a (right-justified) modular type representing a packed
1877 array with no wrapper. In order to interpret the value through
1878 the (left-justified) packed array type we just built, we must
1879 first left-justify it. */
1880 int bit_size, bit_pos;
1881 ULONGEST mod;
1882
df407dfe 1883 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
1884 bit_size = 0;
1885 while (mod > 0)
1886 {
1887 bit_size += 1;
1888 mod >>= 1;
1889 }
df407dfe 1890 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
1891 arr = ada_value_primitive_packed_val (arr, NULL,
1892 bit_pos / HOST_CHAR_BIT,
1893 bit_pos % HOST_CHAR_BIT,
1894 bit_size,
1895 type);
1896 }
1897
4c4b4cd2 1898 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
1899}
1900
1901
1902/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 1903 given in IND. ARR must be a simple array. */
14f9c5c9 1904
d2e4a39e
AS
1905static struct value *
1906value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
1907{
1908 int i;
1909 int bits, elt_off, bit_off;
1910 long elt_total_bit_offset;
d2e4a39e
AS
1911 struct type *elt_type;
1912 struct value *v;
14f9c5c9
AS
1913
1914 bits = 0;
1915 elt_total_bit_offset = 0;
df407dfe 1916 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 1917 for (i = 0; i < arity; i += 1)
14f9c5c9 1918 {
d2e4a39e 1919 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
1920 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1921 error
323e0a4a 1922 (_("attempt to do packed indexing of something other than a packed array"));
14f9c5c9 1923 else
4c4b4cd2
PH
1924 {
1925 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1926 LONGEST lowerbound, upperbound;
1927 LONGEST idx;
1928
1929 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1930 {
323e0a4a 1931 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
1932 lowerbound = upperbound = 0;
1933 }
1934
3cb382c9 1935 idx = pos_atr (ind[i]);
4c4b4cd2 1936 if (idx < lowerbound || idx > upperbound)
323e0a4a 1937 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
4c4b4cd2
PH
1938 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1939 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 1940 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 1941 }
14f9c5c9
AS
1942 }
1943 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1944 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
1945
1946 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 1947 bits, elt_type);
14f9c5c9
AS
1948 return v;
1949}
1950
4c4b4cd2 1951/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
1952
1953static int
d2e4a39e 1954has_negatives (struct type *type)
14f9c5c9 1955{
d2e4a39e
AS
1956 switch (TYPE_CODE (type))
1957 {
1958 default:
1959 return 0;
1960 case TYPE_CODE_INT:
1961 return !TYPE_UNSIGNED (type);
1962 case TYPE_CODE_RANGE:
1963 return TYPE_LOW_BOUND (type) < 0;
1964 }
14f9c5c9 1965}
d2e4a39e 1966
14f9c5c9
AS
1967
1968/* Create a new value of type TYPE from the contents of OBJ starting
1969 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1970 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
4c4b4cd2
PH
1971 assigning through the result will set the field fetched from.
1972 VALADDR is ignored unless OBJ is NULL, in which case,
1973 VALADDR+OFFSET must address the start of storage containing the
1974 packed value. The value returned in this case is never an lval.
1975 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 1976
d2e4a39e 1977struct value *
fc1a4b47 1978ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 1979 long offset, int bit_offset, int bit_size,
4c4b4cd2 1980 struct type *type)
14f9c5c9 1981{
d2e4a39e 1982 struct value *v;
4c4b4cd2
PH
1983 int src, /* Index into the source area */
1984 targ, /* Index into the target area */
1985 srcBitsLeft, /* Number of source bits left to move */
1986 nsrc, ntarg, /* Number of source and target bytes */
1987 unusedLS, /* Number of bits in next significant
1988 byte of source that are unused */
1989 accumSize; /* Number of meaningful bits in accum */
1990 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 1991 unsigned char *unpacked;
4c4b4cd2 1992 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
1993 unsigned char sign;
1994 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
1995 /* Transmit bytes from least to most significant; delta is the direction
1996 the indices move. */
32c9a795 1997 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
14f9c5c9 1998
61ee279c 1999 type = ada_check_typedef (type);
14f9c5c9
AS
2000
2001 if (obj == NULL)
2002 {
2003 v = allocate_value (type);
d2e4a39e 2004 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2005 }
9214ee5f 2006 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2007 {
2008 v = value_at (type,
df407dfe 2009 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
d2e4a39e 2010 bytes = (unsigned char *) alloca (len);
14f9c5c9
AS
2011 read_memory (VALUE_ADDRESS (v), bytes, len);
2012 }
d2e4a39e 2013 else
14f9c5c9
AS
2014 {
2015 v = allocate_value (type);
0fd88904 2016 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2017 }
d2e4a39e
AS
2018
2019 if (obj != NULL)
14f9c5c9
AS
2020 {
2021 VALUE_LVAL (v) = VALUE_LVAL (obj);
2022 if (VALUE_LVAL (obj) == lval_internalvar)
4c4b4cd2 2023 VALUE_LVAL (v) = lval_internalvar_component;
df407dfe 2024 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
9bbda503
AC
2025 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2026 set_value_bitsize (v, bit_size);
df407dfe 2027 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2
PH
2028 {
2029 VALUE_ADDRESS (v) += 1;
9bbda503 2030 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2031 }
14f9c5c9
AS
2032 }
2033 else
9bbda503 2034 set_value_bitsize (v, bit_size);
0fd88904 2035 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2036
2037 srcBitsLeft = bit_size;
2038 nsrc = len;
2039 ntarg = TYPE_LENGTH (type);
2040 sign = 0;
2041 if (bit_size == 0)
2042 {
2043 memset (unpacked, 0, TYPE_LENGTH (type));
2044 return v;
2045 }
32c9a795 2046 else if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9 2047 {
d2e4a39e 2048 src = len - 1;
1265e4aa
JB
2049 if (has_negatives (type)
2050 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2051 sign = ~0;
d2e4a39e
AS
2052
2053 unusedLS =
4c4b4cd2
PH
2054 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2055 % HOST_CHAR_BIT;
14f9c5c9
AS
2056
2057 switch (TYPE_CODE (type))
4c4b4cd2
PH
2058 {
2059 case TYPE_CODE_ARRAY:
2060 case TYPE_CODE_UNION:
2061 case TYPE_CODE_STRUCT:
2062 /* Non-scalar values must be aligned at a byte boundary... */
2063 accumSize =
2064 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2065 /* ... And are placed at the beginning (most-significant) bytes
2066 of the target. */
529cad9c 2067 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
4c4b4cd2
PH
2068 break;
2069 default:
2070 accumSize = 0;
2071 targ = TYPE_LENGTH (type) - 1;
2072 break;
2073 }
14f9c5c9 2074 }
d2e4a39e 2075 else
14f9c5c9
AS
2076 {
2077 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2078
2079 src = targ = 0;
2080 unusedLS = bit_offset;
2081 accumSize = 0;
2082
d2e4a39e 2083 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2084 sign = ~0;
14f9c5c9 2085 }
d2e4a39e 2086
14f9c5c9
AS
2087 accum = 0;
2088 while (nsrc > 0)
2089 {
2090 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2091 part of the value. */
d2e4a39e 2092 unsigned int unusedMSMask =
4c4b4cd2
PH
2093 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2094 1;
2095 /* Sign-extend bits for this byte. */
14f9c5c9 2096 unsigned int signMask = sign & ~unusedMSMask;
d2e4a39e 2097 accum |=
4c4b4cd2 2098 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2099 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2100 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2101 {
2102 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2103 accumSize -= HOST_CHAR_BIT;
2104 accum >>= HOST_CHAR_BIT;
2105 ntarg -= 1;
2106 targ += delta;
2107 }
14f9c5c9
AS
2108 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2109 unusedLS = 0;
2110 nsrc -= 1;
2111 src += delta;
2112 }
2113 while (ntarg > 0)
2114 {
2115 accum |= sign << accumSize;
2116 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2117 accumSize -= HOST_CHAR_BIT;
2118 accum >>= HOST_CHAR_BIT;
2119 ntarg -= 1;
2120 targ += delta;
2121 }
2122
2123 return v;
2124}
d2e4a39e 2125
14f9c5c9
AS
2126/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2127 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2128 not overlap. */
14f9c5c9 2129static void
fc1a4b47 2130move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
0fd88904 2131 int src_offset, int n)
14f9c5c9
AS
2132{
2133 unsigned int accum, mask;
2134 int accum_bits, chunk_size;
2135
2136 target += targ_offset / HOST_CHAR_BIT;
2137 targ_offset %= HOST_CHAR_BIT;
2138 source += src_offset / HOST_CHAR_BIT;
2139 src_offset %= HOST_CHAR_BIT;
32c9a795 2140 if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9
AS
2141 {
2142 accum = (unsigned char) *source;
2143 source += 1;
2144 accum_bits = HOST_CHAR_BIT - src_offset;
2145
d2e4a39e 2146 while (n > 0)
4c4b4cd2
PH
2147 {
2148 int unused_right;
2149 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2150 accum_bits += HOST_CHAR_BIT;
2151 source += 1;
2152 chunk_size = HOST_CHAR_BIT - targ_offset;
2153 if (chunk_size > n)
2154 chunk_size = n;
2155 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2156 mask = ((1 << chunk_size) - 1) << unused_right;
2157 *target =
2158 (*target & ~mask)
2159 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2160 n -= chunk_size;
2161 accum_bits -= chunk_size;
2162 target += 1;
2163 targ_offset = 0;
2164 }
14f9c5c9
AS
2165 }
2166 else
2167 {
2168 accum = (unsigned char) *source >> src_offset;
2169 source += 1;
2170 accum_bits = HOST_CHAR_BIT - src_offset;
2171
d2e4a39e 2172 while (n > 0)
4c4b4cd2
PH
2173 {
2174 accum = accum + ((unsigned char) *source << accum_bits);
2175 accum_bits += HOST_CHAR_BIT;
2176 source += 1;
2177 chunk_size = HOST_CHAR_BIT - targ_offset;
2178 if (chunk_size > n)
2179 chunk_size = n;
2180 mask = ((1 << chunk_size) - 1) << targ_offset;
2181 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2182 n -= chunk_size;
2183 accum_bits -= chunk_size;
2184 accum >>= chunk_size;
2185 target += 1;
2186 targ_offset = 0;
2187 }
14f9c5c9
AS
2188 }
2189}
2190
14f9c5c9
AS
2191/* Store the contents of FROMVAL into the location of TOVAL.
2192 Return a new value with the location of TOVAL and contents of
2193 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2194 floating-point or non-scalar types. */
14f9c5c9 2195
d2e4a39e
AS
2196static struct value *
2197ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2198{
df407dfe
AC
2199 struct type *type = value_type (toval);
2200 int bits = value_bitsize (toval);
14f9c5c9 2201
52ce6436
PH
2202 toval = ada_coerce_ref (toval);
2203 fromval = ada_coerce_ref (fromval);
2204
2205 if (ada_is_direct_array_type (value_type (toval)))
2206 toval = ada_coerce_to_simple_array (toval);
2207 if (ada_is_direct_array_type (value_type (fromval)))
2208 fromval = ada_coerce_to_simple_array (fromval);
2209
88e3b34b 2210 if (!deprecated_value_modifiable (toval))
323e0a4a 2211 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2212
d2e4a39e 2213 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2214 && bits > 0
d2e4a39e 2215 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2216 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2217 {
df407dfe
AC
2218 int len = (value_bitpos (toval)
2219 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2220 int from_size;
d2e4a39e
AS
2221 char *buffer = (char *) alloca (len);
2222 struct value *val;
52ce6436 2223 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
14f9c5c9
AS
2224
2225 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2226 fromval = value_cast (type, fromval);
14f9c5c9 2227
52ce6436 2228 read_memory (to_addr, buffer, len);
aced2898
PH
2229 from_size = value_bitsize (fromval);
2230 if (from_size == 0)
2231 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
32c9a795 2232 if (gdbarch_bits_big_endian (current_gdbarch))
df407dfe 2233 move_bits (buffer, value_bitpos (toval),
aced2898 2234 value_contents (fromval), from_size - bits, bits);
14f9c5c9 2235 else
0fd88904 2236 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
4c4b4cd2 2237 0, bits);
52ce6436
PH
2238 write_memory (to_addr, buffer, len);
2239 if (deprecated_memory_changed_hook)
2240 deprecated_memory_changed_hook (to_addr, len);
2241
14f9c5c9 2242 val = value_copy (toval);
0fd88904 2243 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2244 TYPE_LENGTH (type));
04624583 2245 deprecated_set_value_type (val, type);
d2e4a39e 2246
14f9c5c9
AS
2247 return val;
2248 }
2249
2250 return value_assign (toval, fromval);
2251}
2252
2253
52ce6436
PH
2254/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2255 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2256 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2257 * COMPONENT, and not the inferior's memory. The current contents
2258 * of COMPONENT are ignored. */
2259static void
2260value_assign_to_component (struct value *container, struct value *component,
2261 struct value *val)
2262{
2263 LONGEST offset_in_container =
2264 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2265 - VALUE_ADDRESS (container) - value_offset (container));
2266 int bit_offset_in_container =
2267 value_bitpos (component) - value_bitpos (container);
2268 int bits;
2269
2270 val = value_cast (value_type (component), val);
2271
2272 if (value_bitsize (component) == 0)
2273 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2274 else
2275 bits = value_bitsize (component);
2276
32c9a795 2277 if (gdbarch_bits_big_endian (current_gdbarch))
52ce6436
PH
2278 move_bits (value_contents_writeable (container) + offset_in_container,
2279 value_bitpos (container) + bit_offset_in_container,
2280 value_contents (val),
2281 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2282 bits);
2283 else
2284 move_bits (value_contents_writeable (container) + offset_in_container,
2285 value_bitpos (container) + bit_offset_in_container,
2286 value_contents (val), 0, bits);
2287}
2288
4c4b4cd2
PH
2289/* The value of the element of array ARR at the ARITY indices given in IND.
2290 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2291 thereto. */
2292
d2e4a39e
AS
2293struct value *
2294ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2295{
2296 int k;
d2e4a39e
AS
2297 struct value *elt;
2298 struct type *elt_type;
14f9c5c9
AS
2299
2300 elt = ada_coerce_to_simple_array (arr);
2301
df407dfe 2302 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2303 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2304 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2305 return value_subscript_packed (elt, arity, ind);
2306
2307 for (k = 0; k < arity; k += 1)
2308 {
2309 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2310 error (_("too many subscripts (%d expected)"), k);
3cb382c9 2311 elt = value_subscript (elt, value_pos_atr (builtin_type_int32, ind[k]));
14f9c5c9
AS
2312 }
2313 return elt;
2314}
2315
2316/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2317 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2318 IND. Does not read the entire array into memory. */
14f9c5c9 2319
d2e4a39e
AS
2320struct value *
2321ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2322 struct value **ind)
14f9c5c9
AS
2323{
2324 int k;
2325
2326 for (k = 0; k < arity; k += 1)
2327 {
2328 LONGEST lwb, upb;
d2e4a39e 2329 struct value *idx;
14f9c5c9
AS
2330
2331 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2332 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2333 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2334 value_copy (arr));
14f9c5c9 2335 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
3cb382c9 2336 idx = value_pos_atr (builtin_type_int32, ind[k]);
4c4b4cd2 2337 if (lwb != 0)
89eef114
UW
2338 idx = value_binop (idx, value_from_longest (value_type (idx), lwb),
2339 BINOP_SUB);
2340
2341 arr = value_ptradd (arr, idx);
14f9c5c9
AS
2342 type = TYPE_TARGET_TYPE (type);
2343 }
2344
2345 return value_ind (arr);
2346}
2347
0b5d8877
PH
2348/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2349 actual type of ARRAY_PTR is ignored), returns a reference to
2350 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2351 bound of this array is LOW, as per Ada rules. */
2352static struct value *
6c038f32 2353ada_value_slice_ptr (struct value *array_ptr, struct type *type,
0b5d8877
PH
2354 int low, int high)
2355{
6c038f32 2356 CORE_ADDR base = value_as_address (array_ptr)
0b5d8877
PH
2357 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2358 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2359 struct type *index_type =
2360 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2361 low, high);
6c038f32 2362 struct type *slice_type =
0b5d8877
PH
2363 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2364 return value_from_pointer (lookup_reference_type (slice_type), base);
2365}
2366
2367
2368static struct value *
2369ada_value_slice (struct value *array, int low, int high)
2370{
df407dfe 2371 struct type *type = value_type (array);
6c038f32 2372 struct type *index_type =
0b5d8877 2373 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2374 struct type *slice_type =
0b5d8877 2375 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
6c038f32 2376 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2377}
2378
14f9c5c9
AS
2379/* If type is a record type in the form of a standard GNAT array
2380 descriptor, returns the number of dimensions for type. If arr is a
2381 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2382 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2383
2384int
d2e4a39e 2385ada_array_arity (struct type *type)
14f9c5c9
AS
2386{
2387 int arity;
2388
2389 if (type == NULL)
2390 return 0;
2391
2392 type = desc_base_type (type);
2393
2394 arity = 0;
d2e4a39e 2395 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2396 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2397 else
2398 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2399 {
4c4b4cd2 2400 arity += 1;
61ee279c 2401 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2402 }
d2e4a39e 2403
14f9c5c9
AS
2404 return arity;
2405}
2406
2407/* If TYPE is a record type in the form of a standard GNAT array
2408 descriptor or a simple array type, returns the element type for
2409 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2410 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2411
d2e4a39e
AS
2412struct type *
2413ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2414{
2415 type = desc_base_type (type);
2416
d2e4a39e 2417 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2418 {
2419 int k;
d2e4a39e 2420 struct type *p_array_type;
14f9c5c9
AS
2421
2422 p_array_type = desc_data_type (type);
2423
2424 k = ada_array_arity (type);
2425 if (k == 0)
4c4b4cd2 2426 return NULL;
d2e4a39e 2427
4c4b4cd2 2428 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2429 if (nindices >= 0 && k > nindices)
4c4b4cd2 2430 k = nindices;
14f9c5c9 2431 p_array_type = TYPE_TARGET_TYPE (p_array_type);
d2e4a39e 2432 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2433 {
61ee279c 2434 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2435 k -= 1;
2436 }
14f9c5c9
AS
2437 return p_array_type;
2438 }
2439 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2440 {
2441 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2442 {
2443 type = TYPE_TARGET_TYPE (type);
2444 nindices -= 1;
2445 }
14f9c5c9
AS
2446 return type;
2447 }
2448
2449 return NULL;
2450}
2451
4c4b4cd2
PH
2452/* The type of nth index in arrays of given type (n numbering from 1).
2453 Does not examine memory. */
14f9c5c9 2454
d2e4a39e
AS
2455struct type *
2456ada_index_type (struct type *type, int n)
14f9c5c9 2457{
4c4b4cd2
PH
2458 struct type *result_type;
2459
14f9c5c9
AS
2460 type = desc_base_type (type);
2461
2462 if (n > ada_array_arity (type))
2463 return NULL;
2464
4c4b4cd2 2465 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2466 {
2467 int i;
2468
2469 for (i = 1; i < n; i += 1)
4c4b4cd2
PH
2470 type = TYPE_TARGET_TYPE (type);
2471 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2472 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2473 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679
JB
2474 perhaps stabsread.c would make more sense. */
2475 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
6d84d3d8 2476 result_type = builtin_type_int32;
14f9c5c9 2477
4c4b4cd2 2478 return result_type;
14f9c5c9 2479 }
d2e4a39e 2480 else
14f9c5c9
AS
2481 return desc_index_type (desc_bounds_type (type), n);
2482}
2483
2484/* Given that arr is an array type, returns the lower bound of the
2485 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2
PH
2486 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2487 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2488 bounds type. It works for other arrays with bounds supplied by
2489 run-time quantities other than discriminants. */
14f9c5c9 2490
abb68b3e 2491static LONGEST
d2e4a39e 2492ada_array_bound_from_type (struct type * arr_type, int n, int which,
4c4b4cd2 2493 struct type ** typep)
14f9c5c9 2494{
d2e4a39e
AS
2495 struct type *type;
2496 struct type *index_type_desc;
14f9c5c9
AS
2497
2498 if (ada_is_packed_array_type (arr_type))
2499 arr_type = decode_packed_array_type (arr_type);
2500
4c4b4cd2 2501 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
14f9c5c9
AS
2502 {
2503 if (typep != NULL)
6d84d3d8 2504 *typep = builtin_type_int32;
d2e4a39e 2505 return (LONGEST) - which;
14f9c5c9
AS
2506 }
2507
2508 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2509 type = TYPE_TARGET_TYPE (arr_type);
2510 else
2511 type = arr_type;
2512
2513 index_type_desc = ada_find_parallel_type (type, "___XA");
d2e4a39e 2514 if (index_type_desc == NULL)
14f9c5c9 2515 {
d2e4a39e 2516 struct type *index_type;
14f9c5c9 2517
d2e4a39e 2518 while (n > 1)
4c4b4cd2
PH
2519 {
2520 type = TYPE_TARGET_TYPE (type);
2521 n -= 1;
2522 }
14f9c5c9 2523
abb68b3e 2524 index_type = TYPE_INDEX_TYPE (type);
14f9c5c9 2525 if (typep != NULL)
4c4b4cd2 2526 *typep = index_type;
abb68b3e
JB
2527
2528 /* The index type is either a range type or an enumerated type.
2529 For the range type, we have some macros that allow us to
2530 extract the value of the low and high bounds. But they
2531 do now work for enumerated types. The expressions used
2532 below work for both range and enum types. */
d2e4a39e 2533 return
4c4b4cd2 2534 (LONGEST) (which == 0
abb68b3e
JB
2535 ? TYPE_FIELD_BITPOS (index_type, 0)
2536 : TYPE_FIELD_BITPOS (index_type,
2537 TYPE_NFIELDS (index_type) - 1));
14f9c5c9 2538 }
d2e4a39e 2539 else
14f9c5c9 2540 {
d2e4a39e 2541 struct type *index_type =
4c4b4cd2
PH
2542 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2543 NULL, TYPE_OBJFILE (arr_type));
abb68b3e 2544
14f9c5c9 2545 if (typep != NULL)
abb68b3e
JB
2546 *typep = index_type;
2547
d2e4a39e 2548 return
4c4b4cd2
PH
2549 (LONGEST) (which == 0
2550 ? TYPE_LOW_BOUND (index_type)
2551 : TYPE_HIGH_BOUND (index_type));
14f9c5c9
AS
2552 }
2553}
2554
2555/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2556 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2557 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2558 supplied by run-time quantities other than discriminants. */
14f9c5c9 2559
d2e4a39e 2560struct value *
4dc81987 2561ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2562{
df407dfe 2563 struct type *arr_type = value_type (arr);
14f9c5c9
AS
2564
2565 if (ada_is_packed_array_type (arr_type))
2566 return ada_array_bound (decode_packed_array (arr), n, which);
4c4b4cd2 2567 else if (ada_is_simple_array_type (arr_type))
14f9c5c9 2568 {
d2e4a39e 2569 struct type *type;
14f9c5c9
AS
2570 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2571 return value_from_longest (type, v);
2572 }
2573 else
2574 return desc_one_bound (desc_bounds (arr), n, which);
2575}
2576
2577/* Given that arr is an array value, returns the length of the
2578 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2579 supplied by run-time quantities other than discriminants.
2580 Does not work for arrays indexed by enumeration types with representation
2581 clauses at the moment. */
14f9c5c9 2582
d2e4a39e
AS
2583struct value *
2584ada_array_length (struct value *arr, int n)
14f9c5c9 2585{
df407dfe 2586 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9
AS
2587
2588 if (ada_is_packed_array_type (arr_type))
2589 return ada_array_length (decode_packed_array (arr), n);
2590
4c4b4cd2 2591 if (ada_is_simple_array_type (arr_type))
14f9c5c9 2592 {
d2e4a39e 2593 struct type *type;
14f9c5c9 2594 LONGEST v =
4c4b4cd2
PH
2595 ada_array_bound_from_type (arr_type, n, 1, &type) -
2596 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
14f9c5c9
AS
2597 return value_from_longest (type, v);
2598 }
2599 else
d2e4a39e 2600 return
030b4912 2601 value_from_longest (builtin_type_int32,
4c4b4cd2
PH
2602 value_as_long (desc_one_bound (desc_bounds (arr),
2603 n, 1))
2604 - value_as_long (desc_one_bound (desc_bounds (arr),
2605 n, 0)) + 1);
2606}
2607
2608/* An empty array whose type is that of ARR_TYPE (an array type),
2609 with bounds LOW to LOW-1. */
2610
2611static struct value *
2612empty_array (struct type *arr_type, int low)
2613{
6c038f32 2614 struct type *index_type =
0b5d8877
PH
2615 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2616 low, low - 1);
2617 struct type *elt_type = ada_array_element_type (arr_type, 1);
2618 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2619}
14f9c5c9 2620\f
d2e4a39e 2621
4c4b4cd2 2622 /* Name resolution */
14f9c5c9 2623
4c4b4cd2
PH
2624/* The "decoded" name for the user-definable Ada operator corresponding
2625 to OP. */
14f9c5c9 2626
d2e4a39e 2627static const char *
4c4b4cd2 2628ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2629{
2630 int i;
2631
4c4b4cd2 2632 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2633 {
2634 if (ada_opname_table[i].op == op)
4c4b4cd2 2635 return ada_opname_table[i].decoded;
14f9c5c9 2636 }
323e0a4a 2637 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2638}
2639
2640
4c4b4cd2
PH
2641/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2642 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2643 undefined namespace) and converts operators that are
2644 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2645 non-null, it provides a preferred result type [at the moment, only
2646 type void has any effect---causing procedures to be preferred over
2647 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2648 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2649
4c4b4cd2
PH
2650static void
2651resolve (struct expression **expp, int void_context_p)
14f9c5c9
AS
2652{
2653 int pc;
2654 pc = 0;
4c4b4cd2 2655 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
14f9c5c9
AS
2656}
2657
4c4b4cd2
PH
2658/* Resolve the operator of the subexpression beginning at
2659 position *POS of *EXPP. "Resolving" consists of replacing
2660 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2661 with their resolutions, replacing built-in operators with
2662 function calls to user-defined operators, where appropriate, and,
2663 when DEPROCEDURE_P is non-zero, converting function-valued variables
2664 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2665 are as in ada_resolve, above. */
14f9c5c9 2666
d2e4a39e 2667static struct value *
4c4b4cd2 2668resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2669 struct type *context_type)
14f9c5c9
AS
2670{
2671 int pc = *pos;
2672 int i;
4c4b4cd2 2673 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2674 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2675 struct value **argvec; /* Vector of operand types (alloca'ed). */
2676 int nargs; /* Number of operands. */
52ce6436 2677 int oplen;
14f9c5c9
AS
2678
2679 argvec = NULL;
2680 nargs = 0;
2681 exp = *expp;
2682
52ce6436
PH
2683 /* Pass one: resolve operands, saving their types and updating *pos,
2684 if needed. */
14f9c5c9
AS
2685 switch (op)
2686 {
4c4b4cd2
PH
2687 case OP_FUNCALL:
2688 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2689 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2690 *pos += 7;
4c4b4cd2
PH
2691 else
2692 {
2693 *pos += 3;
2694 resolve_subexp (expp, pos, 0, NULL);
2695 }
2696 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2697 break;
2698
14f9c5c9 2699 case UNOP_ADDR:
4c4b4cd2
PH
2700 *pos += 1;
2701 resolve_subexp (expp, pos, 0, NULL);
2702 break;
2703
52ce6436
PH
2704 case UNOP_QUAL:
2705 *pos += 3;
2706 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
4c4b4cd2
PH
2707 break;
2708
52ce6436 2709 case OP_ATR_MODULUS:
4c4b4cd2
PH
2710 case OP_ATR_SIZE:
2711 case OP_ATR_TAG:
4c4b4cd2
PH
2712 case OP_ATR_FIRST:
2713 case OP_ATR_LAST:
2714 case OP_ATR_LENGTH:
2715 case OP_ATR_POS:
2716 case OP_ATR_VAL:
4c4b4cd2
PH
2717 case OP_ATR_MIN:
2718 case OP_ATR_MAX:
52ce6436
PH
2719 case TERNOP_IN_RANGE:
2720 case BINOP_IN_BOUNDS:
2721 case UNOP_IN_RANGE:
2722 case OP_AGGREGATE:
2723 case OP_OTHERS:
2724 case OP_CHOICES:
2725 case OP_POSITIONAL:
2726 case OP_DISCRETE_RANGE:
2727 case OP_NAME:
2728 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2729 *pos += oplen;
14f9c5c9
AS
2730 break;
2731
2732 case BINOP_ASSIGN:
2733 {
4c4b4cd2
PH
2734 struct value *arg1;
2735
2736 *pos += 1;
2737 arg1 = resolve_subexp (expp, pos, 0, NULL);
2738 if (arg1 == NULL)
2739 resolve_subexp (expp, pos, 1, NULL);
2740 else
df407dfe 2741 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2742 break;
14f9c5c9
AS
2743 }
2744
4c4b4cd2 2745 case UNOP_CAST:
4c4b4cd2
PH
2746 *pos += 3;
2747 nargs = 1;
2748 break;
14f9c5c9 2749
4c4b4cd2
PH
2750 case BINOP_ADD:
2751 case BINOP_SUB:
2752 case BINOP_MUL:
2753 case BINOP_DIV:
2754 case BINOP_REM:
2755 case BINOP_MOD:
2756 case BINOP_EXP:
2757 case BINOP_CONCAT:
2758 case BINOP_LOGICAL_AND:
2759 case BINOP_LOGICAL_OR:
2760 case BINOP_BITWISE_AND:
2761 case BINOP_BITWISE_IOR:
2762 case BINOP_BITWISE_XOR:
14f9c5c9 2763
4c4b4cd2
PH
2764 case BINOP_EQUAL:
2765 case BINOP_NOTEQUAL:
2766 case BINOP_LESS:
2767 case BINOP_GTR:
2768 case BINOP_LEQ:
2769 case BINOP_GEQ:
14f9c5c9 2770
4c4b4cd2
PH
2771 case BINOP_REPEAT:
2772 case BINOP_SUBSCRIPT:
2773 case BINOP_COMMA:
40c8aaa9
JB
2774 *pos += 1;
2775 nargs = 2;
2776 break;
14f9c5c9 2777
4c4b4cd2
PH
2778 case UNOP_NEG:
2779 case UNOP_PLUS:
2780 case UNOP_LOGICAL_NOT:
2781 case UNOP_ABS:
2782 case UNOP_IND:
2783 *pos += 1;
2784 nargs = 1;
2785 break;
14f9c5c9 2786
4c4b4cd2
PH
2787 case OP_LONG:
2788 case OP_DOUBLE:
2789 case OP_VAR_VALUE:
2790 *pos += 4;
2791 break;
14f9c5c9 2792
4c4b4cd2
PH
2793 case OP_TYPE:
2794 case OP_BOOL:
2795 case OP_LAST:
4c4b4cd2
PH
2796 case OP_INTERNALVAR:
2797 *pos += 3;
2798 break;
14f9c5c9 2799
4c4b4cd2
PH
2800 case UNOP_MEMVAL:
2801 *pos += 3;
2802 nargs = 1;
2803 break;
2804
67f3407f
DJ
2805 case OP_REGISTER:
2806 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2807 break;
2808
4c4b4cd2
PH
2809 case STRUCTOP_STRUCT:
2810 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2811 nargs = 1;
2812 break;
2813
4c4b4cd2 2814 case TERNOP_SLICE:
4c4b4cd2
PH
2815 *pos += 1;
2816 nargs = 3;
2817 break;
2818
52ce6436 2819 case OP_STRING:
14f9c5c9 2820 break;
4c4b4cd2
PH
2821
2822 default:
323e0a4a 2823 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
2824 }
2825
76a01679 2826 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
2827 for (i = 0; i < nargs; i += 1)
2828 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2829 argvec[i] = NULL;
2830 exp = *expp;
2831
2832 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
2833 switch (op)
2834 {
2835 default:
2836 break;
2837
14f9c5c9 2838 case OP_VAR_VALUE:
4c4b4cd2 2839 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
2840 {
2841 struct ada_symbol_info *candidates;
2842 int n_candidates;
2843
2844 n_candidates =
2845 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2846 (exp->elts[pc + 2].symbol),
2847 exp->elts[pc + 1].block, VAR_DOMAIN,
2848 &candidates);
2849
2850 if (n_candidates > 1)
2851 {
2852 /* Types tend to get re-introduced locally, so if there
2853 are any local symbols that are not types, first filter
2854 out all types. */
2855 int j;
2856 for (j = 0; j < n_candidates; j += 1)
2857 switch (SYMBOL_CLASS (candidates[j].sym))
2858 {
2859 case LOC_REGISTER:
2860 case LOC_ARG:
2861 case LOC_REF_ARG:
76a01679
JB
2862 case LOC_REGPARM_ADDR:
2863 case LOC_LOCAL:
76a01679 2864 case LOC_COMPUTED:
76a01679
JB
2865 goto FoundNonType;
2866 default:
2867 break;
2868 }
2869 FoundNonType:
2870 if (j < n_candidates)
2871 {
2872 j = 0;
2873 while (j < n_candidates)
2874 {
2875 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2876 {
2877 candidates[j] = candidates[n_candidates - 1];
2878 n_candidates -= 1;
2879 }
2880 else
2881 j += 1;
2882 }
2883 }
2884 }
2885
2886 if (n_candidates == 0)
323e0a4a 2887 error (_("No definition found for %s"),
76a01679
JB
2888 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2889 else if (n_candidates == 1)
2890 i = 0;
2891 else if (deprocedure_p
2892 && !is_nonfunction (candidates, n_candidates))
2893 {
06d5cf63
JB
2894 i = ada_resolve_function
2895 (candidates, n_candidates, NULL, 0,
2896 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2897 context_type);
76a01679 2898 if (i < 0)
323e0a4a 2899 error (_("Could not find a match for %s"),
76a01679
JB
2900 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2901 }
2902 else
2903 {
323e0a4a 2904 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
2905 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2906 user_select_syms (candidates, n_candidates, 1);
2907 i = 0;
2908 }
2909
2910 exp->elts[pc + 1].block = candidates[i].block;
2911 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
2912 if (innermost_block == NULL
2913 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
2914 innermost_block = candidates[i].block;
2915 }
2916
2917 if (deprocedure_p
2918 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2919 == TYPE_CODE_FUNC))
2920 {
2921 replace_operator_with_call (expp, pc, 0, 0,
2922 exp->elts[pc + 2].symbol,
2923 exp->elts[pc + 1].block);
2924 exp = *expp;
2925 }
14f9c5c9
AS
2926 break;
2927
2928 case OP_FUNCALL:
2929 {
4c4b4cd2 2930 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 2931 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
2932 {
2933 struct ada_symbol_info *candidates;
2934 int n_candidates;
2935
2936 n_candidates =
76a01679
JB
2937 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2938 (exp->elts[pc + 5].symbol),
2939 exp->elts[pc + 4].block, VAR_DOMAIN,
2940 &candidates);
4c4b4cd2
PH
2941 if (n_candidates == 1)
2942 i = 0;
2943 else
2944 {
06d5cf63
JB
2945 i = ada_resolve_function
2946 (candidates, n_candidates,
2947 argvec, nargs,
2948 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2949 context_type);
4c4b4cd2 2950 if (i < 0)
323e0a4a 2951 error (_("Could not find a match for %s"),
4c4b4cd2
PH
2952 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2953 }
2954
2955 exp->elts[pc + 4].block = candidates[i].block;
2956 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
2957 if (innermost_block == NULL
2958 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
2959 innermost_block = candidates[i].block;
2960 }
14f9c5c9
AS
2961 }
2962 break;
2963 case BINOP_ADD:
2964 case BINOP_SUB:
2965 case BINOP_MUL:
2966 case BINOP_DIV:
2967 case BINOP_REM:
2968 case BINOP_MOD:
2969 case BINOP_CONCAT:
2970 case BINOP_BITWISE_AND:
2971 case BINOP_BITWISE_IOR:
2972 case BINOP_BITWISE_XOR:
2973 case BINOP_EQUAL:
2974 case BINOP_NOTEQUAL:
2975 case BINOP_LESS:
2976 case BINOP_GTR:
2977 case BINOP_LEQ:
2978 case BINOP_GEQ:
2979 case BINOP_EXP:
2980 case UNOP_NEG:
2981 case UNOP_PLUS:
2982 case UNOP_LOGICAL_NOT:
2983 case UNOP_ABS:
2984 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
2985 {
2986 struct ada_symbol_info *candidates;
2987 int n_candidates;
2988
2989 n_candidates =
2990 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2991 (struct block *) NULL, VAR_DOMAIN,
2992 &candidates);
2993 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 2994 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
2995 if (i < 0)
2996 break;
2997
76a01679
JB
2998 replace_operator_with_call (expp, pc, nargs, 1,
2999 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3000 exp = *expp;
3001 }
14f9c5c9 3002 break;
4c4b4cd2
PH
3003
3004 case OP_TYPE:
b3dbf008 3005 case OP_REGISTER:
4c4b4cd2 3006 return NULL;
14f9c5c9
AS
3007 }
3008
3009 *pos = pc;
3010 return evaluate_subexp_type (exp, pos);
3011}
3012
3013/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2
PH
3014 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3015 a non-pointer. A type of 'void' (which is never a valid expression type)
3016 by convention matches anything. */
14f9c5c9 3017/* The term "match" here is rather loose. The match is heuristic and
4c4b4cd2 3018 liberal. FIXME: TOO liberal, in fact. */
14f9c5c9
AS
3019
3020static int
4dc81987 3021ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3022{
61ee279c
PH
3023 ftype = ada_check_typedef (ftype);
3024 atype = ada_check_typedef (atype);
14f9c5c9
AS
3025
3026 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3027 ftype = TYPE_TARGET_TYPE (ftype);
3028 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3029 atype = TYPE_TARGET_TYPE (atype);
3030
d2e4a39e 3031 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
14f9c5c9
AS
3032 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3033 return 1;
3034
d2e4a39e 3035 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3036 {
3037 default:
3038 return 1;
3039 case TYPE_CODE_PTR:
3040 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3041 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3042 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3043 else
1265e4aa
JB
3044 return (may_deref
3045 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3046 case TYPE_CODE_INT:
3047 case TYPE_CODE_ENUM:
3048 case TYPE_CODE_RANGE:
3049 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3050 {
3051 case TYPE_CODE_INT:
3052 case TYPE_CODE_ENUM:
3053 case TYPE_CODE_RANGE:
3054 return 1;
3055 default:
3056 return 0;
3057 }
14f9c5c9
AS
3058
3059 case TYPE_CODE_ARRAY:
d2e4a39e 3060 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3061 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3062
3063 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3064 if (ada_is_array_descriptor_type (ftype))
3065 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3066 || ada_is_array_descriptor_type (atype));
14f9c5c9 3067 else
4c4b4cd2
PH
3068 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3069 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3070
3071 case TYPE_CODE_UNION:
3072 case TYPE_CODE_FLT:
3073 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3074 }
3075}
3076
3077/* Return non-zero if the formals of FUNC "sufficiently match" the
3078 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3079 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3080 argument function. */
14f9c5c9
AS
3081
3082static int
d2e4a39e 3083ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3084{
3085 int i;
d2e4a39e 3086 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3087
1265e4aa
JB
3088 if (SYMBOL_CLASS (func) == LOC_CONST
3089 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3090 return (n_actuals == 0);
3091 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3092 return 0;
3093
3094 if (TYPE_NFIELDS (func_type) != n_actuals)
3095 return 0;
3096
3097 for (i = 0; i < n_actuals; i += 1)
3098 {
4c4b4cd2 3099 if (actuals[i] == NULL)
76a01679
JB
3100 return 0;
3101 else
3102 {
61ee279c 3103 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
df407dfe 3104 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3105
76a01679
JB
3106 if (!ada_type_match (ftype, atype, 1))
3107 return 0;
3108 }
14f9c5c9
AS
3109 }
3110 return 1;
3111}
3112
3113/* False iff function type FUNC_TYPE definitely does not produce a value
3114 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3115 FUNC_TYPE is not a valid function type with a non-null return type
3116 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3117
3118static int
d2e4a39e 3119return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3120{
d2e4a39e 3121 struct type *return_type;
14f9c5c9
AS
3122
3123 if (func_type == NULL)
3124 return 1;
3125
4c4b4cd2
PH
3126 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3127 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3128 else
3129 return_type = base_type (func_type);
14f9c5c9
AS
3130 if (return_type == NULL)
3131 return 1;
3132
4c4b4cd2 3133 context_type = base_type (context_type);
14f9c5c9
AS
3134
3135 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3136 return context_type == NULL || return_type == context_type;
3137 else if (context_type == NULL)
3138 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3139 else
3140 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3141}
3142
3143
4c4b4cd2 3144/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3145 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3146 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3147 that returns that type, then eliminate matches that don't. If
3148 CONTEXT_TYPE is void and there is at least one match that does not
3149 return void, eliminate all matches that do.
3150
14f9c5c9
AS
3151 Asks the user if there is more than one match remaining. Returns -1
3152 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3153 solely for messages. May re-arrange and modify SYMS in
3154 the process; the index returned is for the modified vector. */
14f9c5c9 3155
4c4b4cd2
PH
3156static int
3157ada_resolve_function (struct ada_symbol_info syms[],
3158 int nsyms, struct value **args, int nargs,
3159 const char *name, struct type *context_type)
14f9c5c9
AS
3160{
3161 int k;
4c4b4cd2 3162 int m; /* Number of hits */
d2e4a39e
AS
3163 struct type *fallback;
3164 struct type *return_type;
14f9c5c9
AS
3165
3166 return_type = context_type;
3167 if (context_type == NULL)
3168 fallback = builtin_type_void;
3169 else
3170 fallback = NULL;
3171
d2e4a39e 3172 m = 0;
14f9c5c9
AS
3173 while (1)
3174 {
3175 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3176 {
61ee279c 3177 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3178
3179 if (ada_args_match (syms[k].sym, args, nargs)
3180 && return_match (type, return_type))
3181 {
3182 syms[m] = syms[k];
3183 m += 1;
3184 }
3185 }
14f9c5c9 3186 if (m > 0 || return_type == fallback)
4c4b4cd2 3187 break;
14f9c5c9 3188 else
4c4b4cd2 3189 return_type = fallback;
14f9c5c9
AS
3190 }
3191
3192 if (m == 0)
3193 return -1;
3194 else if (m > 1)
3195 {
323e0a4a 3196 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3197 user_select_syms (syms, m, 1);
14f9c5c9
AS
3198 return 0;
3199 }
3200 return 0;
3201}
3202
4c4b4cd2
PH
3203/* Returns true (non-zero) iff decoded name N0 should appear before N1
3204 in a listing of choices during disambiguation (see sort_choices, below).
3205 The idea is that overloadings of a subprogram name from the
3206 same package should sort in their source order. We settle for ordering
3207 such symbols by their trailing number (__N or $N). */
3208
14f9c5c9 3209static int
4c4b4cd2 3210encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3211{
3212 if (N1 == NULL)
3213 return 0;
3214 else if (N0 == NULL)
3215 return 1;
3216 else
3217 {
3218 int k0, k1;
d2e4a39e 3219 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3220 ;
d2e4a39e 3221 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3222 ;
d2e4a39e 3223 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3224 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3225 {
3226 int n0, n1;
3227 n0 = k0;
3228 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3229 n0 -= 1;
3230 n1 = k1;
3231 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3232 n1 -= 1;
3233 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3234 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3235 }
14f9c5c9
AS
3236 return (strcmp (N0, N1) < 0);
3237 }
3238}
d2e4a39e 3239
4c4b4cd2
PH
3240/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3241 encoded names. */
3242
d2e4a39e 3243static void
4c4b4cd2 3244sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3245{
4c4b4cd2 3246 int i;
d2e4a39e 3247 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3248 {
4c4b4cd2 3249 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3250 int j;
3251
d2e4a39e 3252 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3253 {
3254 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3255 SYMBOL_LINKAGE_NAME (sym.sym)))
3256 break;
3257 syms[j + 1] = syms[j];
3258 }
d2e4a39e 3259 syms[j + 1] = sym;
14f9c5c9
AS
3260 }
3261}
3262
4c4b4cd2
PH
3263/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3264 by asking the user (if necessary), returning the number selected,
3265 and setting the first elements of SYMS items. Error if no symbols
3266 selected. */
14f9c5c9
AS
3267
3268/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3269 to be re-integrated one of these days. */
14f9c5c9
AS
3270
3271int
4c4b4cd2 3272user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3273{
3274 int i;
d2e4a39e 3275 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3276 int n_chosen;
3277 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3278 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3279
3280 if (max_results < 1)
323e0a4a 3281 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3282 if (nsyms <= 1)
3283 return nsyms;
3284
717d2f5a
JB
3285 if (select_mode == multiple_symbols_cancel)
3286 error (_("\
3287canceled because the command is ambiguous\n\
3288See set/show multiple-symbol."));
3289
3290 /* If select_mode is "all", then return all possible symbols.
3291 Only do that if more than one symbol can be selected, of course.
3292 Otherwise, display the menu as usual. */
3293 if (select_mode == multiple_symbols_all && max_results > 1)
3294 return nsyms;
3295
323e0a4a 3296 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3297 if (max_results > 1)
323e0a4a 3298 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3299
4c4b4cd2 3300 sort_choices (syms, nsyms);
14f9c5c9
AS
3301
3302 for (i = 0; i < nsyms; i += 1)
3303 {
4c4b4cd2
PH
3304 if (syms[i].sym == NULL)
3305 continue;
3306
3307 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3308 {
76a01679
JB
3309 struct symtab_and_line sal =
3310 find_function_start_sal (syms[i].sym, 1);
323e0a4a
AC
3311 if (sal.symtab == NULL)
3312 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3313 i + first_choice,
3314 SYMBOL_PRINT_NAME (syms[i].sym),
3315 sal.line);
3316 else
3317 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3318 SYMBOL_PRINT_NAME (syms[i].sym),
3319 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3320 continue;
3321 }
d2e4a39e 3322 else
4c4b4cd2
PH
3323 {
3324 int is_enumeral =
3325 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3326 && SYMBOL_TYPE (syms[i].sym) != NULL
3327 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3328 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3329
3330 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3331 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3332 i + first_choice,
3333 SYMBOL_PRINT_NAME (syms[i].sym),
3334 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3335 else if (is_enumeral
3336 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3337 {
a3f17187 3338 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3339 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3340 gdb_stdout, -1, 0);
323e0a4a 3341 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3342 SYMBOL_PRINT_NAME (syms[i].sym));
3343 }
3344 else if (symtab != NULL)
3345 printf_unfiltered (is_enumeral
323e0a4a
AC
3346 ? _("[%d] %s in %s (enumeral)\n")
3347 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3348 i + first_choice,
3349 SYMBOL_PRINT_NAME (syms[i].sym),
3350 symtab->filename);
3351 else
3352 printf_unfiltered (is_enumeral
323e0a4a
AC
3353 ? _("[%d] %s (enumeral)\n")
3354 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3355 i + first_choice,
3356 SYMBOL_PRINT_NAME (syms[i].sym));
3357 }
14f9c5c9 3358 }
d2e4a39e 3359
14f9c5c9 3360 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3361 "overload-choice");
14f9c5c9
AS
3362
3363 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3364 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3365
3366 return n_chosen;
3367}
3368
3369/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3370 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3371 order in CHOICES[0 .. N-1], and return N.
3372
3373 The user types choices as a sequence of numbers on one line
3374 separated by blanks, encoding them as follows:
3375
4c4b4cd2 3376 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3377 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3378 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3379
4c4b4cd2 3380 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3381
3382 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3383 prompts (for use with the -f switch). */
14f9c5c9
AS
3384
3385int
d2e4a39e 3386get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3387 int is_all_choice, char *annotation_suffix)
14f9c5c9 3388{
d2e4a39e 3389 char *args;
0bcd0149 3390 char *prompt;
14f9c5c9
AS
3391 int n_chosen;
3392 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3393
14f9c5c9
AS
3394 prompt = getenv ("PS2");
3395 if (prompt == NULL)
0bcd0149 3396 prompt = "> ";
14f9c5c9 3397
0bcd0149 3398 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3399
14f9c5c9 3400 if (args == NULL)
323e0a4a 3401 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3402
3403 n_chosen = 0;
76a01679 3404
4c4b4cd2
PH
3405 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3406 order, as given in args. Choices are validated. */
14f9c5c9
AS
3407 while (1)
3408 {
d2e4a39e 3409 char *args2;
14f9c5c9
AS
3410 int choice, j;
3411
3412 while (isspace (*args))
4c4b4cd2 3413 args += 1;
14f9c5c9 3414 if (*args == '\0' && n_chosen == 0)
323e0a4a 3415 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3416 else if (*args == '\0')
4c4b4cd2 3417 break;
14f9c5c9
AS
3418
3419 choice = strtol (args, &args2, 10);
d2e4a39e 3420 if (args == args2 || choice < 0
4c4b4cd2 3421 || choice > n_choices + first_choice - 1)
323e0a4a 3422 error (_("Argument must be choice number"));
14f9c5c9
AS
3423 args = args2;
3424
d2e4a39e 3425 if (choice == 0)
323e0a4a 3426 error (_("cancelled"));
14f9c5c9
AS
3427
3428 if (choice < first_choice)
4c4b4cd2
PH
3429 {
3430 n_chosen = n_choices;
3431 for (j = 0; j < n_choices; j += 1)
3432 choices[j] = j;
3433 break;
3434 }
14f9c5c9
AS
3435 choice -= first_choice;
3436
d2e4a39e 3437 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3438 {
3439 }
14f9c5c9
AS
3440
3441 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3442 {
3443 int k;
3444 for (k = n_chosen - 1; k > j; k -= 1)
3445 choices[k + 1] = choices[k];
3446 choices[j + 1] = choice;
3447 n_chosen += 1;
3448 }
14f9c5c9
AS
3449 }
3450
3451 if (n_chosen > max_results)
323e0a4a 3452 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3453
14f9c5c9
AS
3454 return n_chosen;
3455}
3456
4c4b4cd2
PH
3457/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3458 on the function identified by SYM and BLOCK, and taking NARGS
3459 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3460
3461static void
d2e4a39e 3462replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3463 int oplen, struct symbol *sym,
3464 struct block *block)
14f9c5c9
AS
3465{
3466 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3467 symbol, -oplen for operator being replaced). */
d2e4a39e 3468 struct expression *newexp = (struct expression *)
14f9c5c9 3469 xmalloc (sizeof (struct expression)
4c4b4cd2 3470 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3471 struct expression *exp = *expp;
14f9c5c9
AS
3472
3473 newexp->nelts = exp->nelts + 7 - oplen;
3474 newexp->language_defn = exp->language_defn;
3475 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3476 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3477 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3478
3479 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3480 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3481
3482 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3483 newexp->elts[pc + 4].block = block;
3484 newexp->elts[pc + 5].symbol = sym;
3485
3486 *expp = newexp;
aacb1f0a 3487 xfree (exp);
d2e4a39e 3488}
14f9c5c9
AS
3489
3490/* Type-class predicates */
3491
4c4b4cd2
PH
3492/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3493 or FLOAT). */
14f9c5c9
AS
3494
3495static int
d2e4a39e 3496numeric_type_p (struct type *type)
14f9c5c9
AS
3497{
3498 if (type == NULL)
3499 return 0;
d2e4a39e
AS
3500 else
3501 {
3502 switch (TYPE_CODE (type))
4c4b4cd2
PH
3503 {
3504 case TYPE_CODE_INT:
3505 case TYPE_CODE_FLT:
3506 return 1;
3507 case TYPE_CODE_RANGE:
3508 return (type == TYPE_TARGET_TYPE (type)
3509 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3510 default:
3511 return 0;
3512 }
d2e4a39e 3513 }
14f9c5c9
AS
3514}
3515
4c4b4cd2 3516/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3517
3518static int
d2e4a39e 3519integer_type_p (struct type *type)
14f9c5c9
AS
3520{
3521 if (type == NULL)
3522 return 0;
d2e4a39e
AS
3523 else
3524 {
3525 switch (TYPE_CODE (type))
4c4b4cd2
PH
3526 {
3527 case TYPE_CODE_INT:
3528 return 1;
3529 case TYPE_CODE_RANGE:
3530 return (type == TYPE_TARGET_TYPE (type)
3531 || integer_type_p (TYPE_TARGET_TYPE (type)));
3532 default:
3533 return 0;
3534 }
d2e4a39e 3535 }
14f9c5c9
AS
3536}
3537
4c4b4cd2 3538/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3539
3540static int
d2e4a39e 3541scalar_type_p (struct type *type)
14f9c5c9
AS
3542{
3543 if (type == NULL)
3544 return 0;
d2e4a39e
AS
3545 else
3546 {
3547 switch (TYPE_CODE (type))
4c4b4cd2
PH
3548 {
3549 case TYPE_CODE_INT:
3550 case TYPE_CODE_RANGE:
3551 case TYPE_CODE_ENUM:
3552 case TYPE_CODE_FLT:
3553 return 1;
3554 default:
3555 return 0;
3556 }
d2e4a39e 3557 }
14f9c5c9
AS
3558}
3559
4c4b4cd2 3560/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3561
3562static int
d2e4a39e 3563discrete_type_p (struct type *type)
14f9c5c9
AS
3564{
3565 if (type == NULL)
3566 return 0;
d2e4a39e
AS
3567 else
3568 {
3569 switch (TYPE_CODE (type))
4c4b4cd2
PH
3570 {
3571 case TYPE_CODE_INT:
3572 case TYPE_CODE_RANGE:
3573 case TYPE_CODE_ENUM:
3574 return 1;
3575 default:
3576 return 0;
3577 }
d2e4a39e 3578 }
14f9c5c9
AS
3579}
3580
4c4b4cd2
PH
3581/* Returns non-zero if OP with operands in the vector ARGS could be
3582 a user-defined function. Errs on the side of pre-defined operators
3583 (i.e., result 0). */
14f9c5c9
AS
3584
3585static int
d2e4a39e 3586possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3587{
76a01679 3588 struct type *type0 =
df407dfe 3589 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3590 struct type *type1 =
df407dfe 3591 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3592
4c4b4cd2
PH
3593 if (type0 == NULL)
3594 return 0;
3595
14f9c5c9
AS
3596 switch (op)
3597 {
3598 default:
3599 return 0;
3600
3601 case BINOP_ADD:
3602 case BINOP_SUB:
3603 case BINOP_MUL:
3604 case BINOP_DIV:
d2e4a39e 3605 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3606
3607 case BINOP_REM:
3608 case BINOP_MOD:
3609 case BINOP_BITWISE_AND:
3610 case BINOP_BITWISE_IOR:
3611 case BINOP_BITWISE_XOR:
d2e4a39e 3612 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3613
3614 case BINOP_EQUAL:
3615 case BINOP_NOTEQUAL:
3616 case BINOP_LESS:
3617 case BINOP_GTR:
3618 case BINOP_LEQ:
3619 case BINOP_GEQ:
d2e4a39e 3620 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3621
3622 case BINOP_CONCAT:
ee90b9ab 3623 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3624
3625 case BINOP_EXP:
d2e4a39e 3626 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3627
3628 case UNOP_NEG:
3629 case UNOP_PLUS:
3630 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3631 case UNOP_ABS:
3632 return (!numeric_type_p (type0));
14f9c5c9
AS
3633
3634 }
3635}
3636\f
4c4b4cd2 3637 /* Renaming */
14f9c5c9 3638
aeb5907d
JB
3639/* NOTES:
3640
3641 1. In the following, we assume that a renaming type's name may
3642 have an ___XD suffix. It would be nice if this went away at some
3643 point.
3644 2. We handle both the (old) purely type-based representation of
3645 renamings and the (new) variable-based encoding. At some point,
3646 it is devoutly to be hoped that the former goes away
3647 (FIXME: hilfinger-2007-07-09).
3648 3. Subprogram renamings are not implemented, although the XRS
3649 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3650
3651/* If SYM encodes a renaming,
3652
3653 <renaming> renames <renamed entity>,
3654
3655 sets *LEN to the length of the renamed entity's name,
3656 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3657 the string describing the subcomponent selected from the renamed
3658 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3659 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3660 are undefined). Otherwise, returns a value indicating the category
3661 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3662 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3663 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3664 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3665 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3666 may be NULL, in which case they are not assigned.
3667
3668 [Currently, however, GCC does not generate subprogram renamings.] */
3669
3670enum ada_renaming_category
3671ada_parse_renaming (struct symbol *sym,
3672 const char **renamed_entity, int *len,
3673 const char **renaming_expr)
3674{
3675 enum ada_renaming_category kind;
3676 const char *info;
3677 const char *suffix;
3678
3679 if (sym == NULL)
3680 return ADA_NOT_RENAMING;
3681 switch (SYMBOL_CLASS (sym))
14f9c5c9 3682 {
aeb5907d
JB
3683 default:
3684 return ADA_NOT_RENAMING;
3685 case LOC_TYPEDEF:
3686 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3687 renamed_entity, len, renaming_expr);
3688 case LOC_LOCAL:
3689 case LOC_STATIC:
3690 case LOC_COMPUTED:
3691 case LOC_OPTIMIZED_OUT:
3692 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3693 if (info == NULL)
3694 return ADA_NOT_RENAMING;
3695 switch (info[5])
3696 {
3697 case '_':
3698 kind = ADA_OBJECT_RENAMING;
3699 info += 6;
3700 break;
3701 case 'E':
3702 kind = ADA_EXCEPTION_RENAMING;
3703 info += 7;
3704 break;
3705 case 'P':
3706 kind = ADA_PACKAGE_RENAMING;
3707 info += 7;
3708 break;
3709 case 'S':
3710 kind = ADA_SUBPROGRAM_RENAMING;
3711 info += 7;
3712 break;
3713 default:
3714 return ADA_NOT_RENAMING;
3715 }
14f9c5c9 3716 }
4c4b4cd2 3717
aeb5907d
JB
3718 if (renamed_entity != NULL)
3719 *renamed_entity = info;
3720 suffix = strstr (info, "___XE");
3721 if (suffix == NULL || suffix == info)
3722 return ADA_NOT_RENAMING;
3723 if (len != NULL)
3724 *len = strlen (info) - strlen (suffix);
3725 suffix += 5;
3726 if (renaming_expr != NULL)
3727 *renaming_expr = suffix;
3728 return kind;
3729}
3730
3731/* Assuming TYPE encodes a renaming according to the old encoding in
3732 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3733 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3734 ADA_NOT_RENAMING otherwise. */
3735static enum ada_renaming_category
3736parse_old_style_renaming (struct type *type,
3737 const char **renamed_entity, int *len,
3738 const char **renaming_expr)
3739{
3740 enum ada_renaming_category kind;
3741 const char *name;
3742 const char *info;
3743 const char *suffix;
14f9c5c9 3744
aeb5907d
JB
3745 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3746 || TYPE_NFIELDS (type) != 1)
3747 return ADA_NOT_RENAMING;
14f9c5c9 3748
aeb5907d
JB
3749 name = type_name_no_tag (type);
3750 if (name == NULL)
3751 return ADA_NOT_RENAMING;
3752
3753 name = strstr (name, "___XR");
3754 if (name == NULL)
3755 return ADA_NOT_RENAMING;
3756 switch (name[5])
3757 {
3758 case '\0':
3759 case '_':
3760 kind = ADA_OBJECT_RENAMING;
3761 break;
3762 case 'E':
3763 kind = ADA_EXCEPTION_RENAMING;
3764 break;
3765 case 'P':
3766 kind = ADA_PACKAGE_RENAMING;
3767 break;
3768 case 'S':
3769 kind = ADA_SUBPROGRAM_RENAMING;
3770 break;
3771 default:
3772 return ADA_NOT_RENAMING;
3773 }
14f9c5c9 3774
aeb5907d
JB
3775 info = TYPE_FIELD_NAME (type, 0);
3776 if (info == NULL)
3777 return ADA_NOT_RENAMING;
3778 if (renamed_entity != NULL)
3779 *renamed_entity = info;
3780 suffix = strstr (info, "___XE");
3781 if (renaming_expr != NULL)
3782 *renaming_expr = suffix + 5;
3783 if (suffix == NULL || suffix == info)
3784 return ADA_NOT_RENAMING;
3785 if (len != NULL)
3786 *len = suffix - info;
3787 return kind;
3788}
52ce6436 3789
14f9c5c9 3790\f
d2e4a39e 3791
4c4b4cd2 3792 /* Evaluation: Function Calls */
14f9c5c9 3793
4c4b4cd2
PH
3794/* Return an lvalue containing the value VAL. This is the identity on
3795 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3796 on the stack, using and updating *SP as the stack pointer, and
3797 returning an lvalue whose VALUE_ADDRESS points to the copy. */
14f9c5c9 3798
d2e4a39e 3799static struct value *
4c4b4cd2 3800ensure_lval (struct value *val, CORE_ADDR *sp)
14f9c5c9 3801{
c3e5cd34
PH
3802 if (! VALUE_LVAL (val))
3803 {
df407dfe 3804 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
c3e5cd34
PH
3805
3806 /* The following is taken from the structure-return code in
3807 call_function_by_hand. FIXME: Therefore, some refactoring seems
3808 indicated. */
4d1e7dd1 3809 if (gdbarch_inner_than (current_gdbarch, 1, 2))
c3e5cd34
PH
3810 {
3811 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3812 reserving sufficient space. */
3813 *sp -= len;
3814 if (gdbarch_frame_align_p (current_gdbarch))
3815 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3816 VALUE_ADDRESS (val) = *sp;
3817 }
3818 else
3819 {
3820 /* Stack grows upward. Align the frame, allocate space, and
3821 then again, re-align the frame. */
3822 if (gdbarch_frame_align_p (current_gdbarch))
3823 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3824 VALUE_ADDRESS (val) = *sp;
3825 *sp += len;
3826 if (gdbarch_frame_align_p (current_gdbarch))
3827 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3828 }
a84a8a0d 3829 VALUE_LVAL (val) = lval_memory;
14f9c5c9 3830
990a07ab 3831 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
c3e5cd34 3832 }
14f9c5c9
AS
3833
3834 return val;
3835}
3836
3837/* Return the value ACTUAL, converted to be an appropriate value for a
3838 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3839 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3840 values not residing in memory, updating it as needed. */
14f9c5c9 3841
a93c0eb6
JB
3842struct value *
3843ada_convert_actual (struct value *actual, struct type *formal_type0,
3844 CORE_ADDR *sp)
14f9c5c9 3845{
df407dfe 3846 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3847 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3848 struct type *formal_target =
3849 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3850 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
3851 struct type *actual_target =
3852 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 3853 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 3854
4c4b4cd2 3855 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9
AS
3856 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3857 return make_array_descriptor (formal_type, actual, sp);
a84a8a0d
JB
3858 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3859 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 3860 {
a84a8a0d 3861 struct value *result;
14f9c5c9 3862 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 3863 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 3864 result = desc_data (actual);
14f9c5c9 3865 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
3866 {
3867 if (VALUE_LVAL (actual) != lval_memory)
3868 {
3869 struct value *val;
df407dfe 3870 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 3871 val = allocate_value (actual_type);
990a07ab 3872 memcpy ((char *) value_contents_raw (val),
0fd88904 3873 (char *) value_contents (actual),
4c4b4cd2
PH
3874 TYPE_LENGTH (actual_type));
3875 actual = ensure_lval (val, sp);
3876 }
a84a8a0d 3877 result = value_addr (actual);
4c4b4cd2 3878 }
a84a8a0d
JB
3879 else
3880 return actual;
3881 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
3882 }
3883 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3884 return ada_value_ind (actual);
3885
3886 return actual;
3887}
3888
3889
4c4b4cd2
PH
3890/* Push a descriptor of type TYPE for array value ARR on the stack at
3891 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 3892 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
3893 to-descriptor type rather than a descriptor type), a struct value *
3894 representing a pointer to this descriptor. */
14f9c5c9 3895
d2e4a39e
AS
3896static struct value *
3897make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
14f9c5c9 3898{
d2e4a39e
AS
3899 struct type *bounds_type = desc_bounds_type (type);
3900 struct type *desc_type = desc_base_type (type);
3901 struct value *descriptor = allocate_value (desc_type);
3902 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 3903 int i;
d2e4a39e 3904
df407dfe 3905 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
14f9c5c9 3906 {
0fd88904 3907 modify_general_field (value_contents_writeable (bounds),
4c4b4cd2
PH
3908 value_as_long (ada_array_bound (arr, i, 0)),
3909 desc_bound_bitpos (bounds_type, i, 0),
3910 desc_bound_bitsize (bounds_type, i, 0));
0fd88904 3911 modify_general_field (value_contents_writeable (bounds),
4c4b4cd2
PH
3912 value_as_long (ada_array_bound (arr, i, 1)),
3913 desc_bound_bitpos (bounds_type, i, 1),
3914 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 3915 }
d2e4a39e 3916
4c4b4cd2 3917 bounds = ensure_lval (bounds, sp);
d2e4a39e 3918
0fd88904 3919 modify_general_field (value_contents_writeable (descriptor),
76a01679
JB
3920 VALUE_ADDRESS (ensure_lval (arr, sp)),
3921 fat_pntr_data_bitpos (desc_type),
3922 fat_pntr_data_bitsize (desc_type));
4c4b4cd2 3923
0fd88904 3924 modify_general_field (value_contents_writeable (descriptor),
4c4b4cd2
PH
3925 VALUE_ADDRESS (bounds),
3926 fat_pntr_bounds_bitpos (desc_type),
3927 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 3928
4c4b4cd2 3929 descriptor = ensure_lval (descriptor, sp);
14f9c5c9
AS
3930
3931 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3932 return value_addr (descriptor);
3933 else
3934 return descriptor;
3935}
14f9c5c9 3936\f
963a6417
PH
3937/* Dummy definitions for an experimental caching module that is not
3938 * used in the public sources. */
96d887e8 3939
96d887e8
PH
3940static int
3941lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 3942 struct symbol **sym, struct block **block)
96d887e8
PH
3943{
3944 return 0;
3945}
3946
3947static void
3948cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 3949 struct block *block)
96d887e8
PH
3950{
3951}
4c4b4cd2
PH
3952\f
3953 /* Symbol Lookup */
3954
3955/* Return the result of a standard (literal, C-like) lookup of NAME in
3956 given DOMAIN, visible from lexical block BLOCK. */
3957
3958static struct symbol *
3959standard_lookup (const char *name, const struct block *block,
3960 domain_enum domain)
3961{
3962 struct symbol *sym;
4c4b4cd2 3963
2570f2b7 3964 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 3965 return sym;
2570f2b7
UW
3966 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3967 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
3968 return sym;
3969}
3970
3971
3972/* Non-zero iff there is at least one non-function/non-enumeral symbol
3973 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3974 since they contend in overloading in the same way. */
3975static int
3976is_nonfunction (struct ada_symbol_info syms[], int n)
3977{
3978 int i;
3979
3980 for (i = 0; i < n; i += 1)
3981 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3982 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3983 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
3984 return 1;
3985
3986 return 0;
3987}
3988
3989/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 3990 struct types. Otherwise, they may not. */
14f9c5c9
AS
3991
3992static int
d2e4a39e 3993equiv_types (struct type *type0, struct type *type1)
14f9c5c9 3994{
d2e4a39e 3995 if (type0 == type1)
14f9c5c9 3996 return 1;
d2e4a39e 3997 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
3998 || TYPE_CODE (type0) != TYPE_CODE (type1))
3999 return 0;
d2e4a39e 4000 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4001 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4002 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4003 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4004 return 1;
d2e4a39e 4005
14f9c5c9
AS
4006 return 0;
4007}
4008
4009/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4010 no more defined than that of SYM1. */
14f9c5c9
AS
4011
4012static int
d2e4a39e 4013lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4014{
4015 if (sym0 == sym1)
4016 return 1;
176620f1 4017 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4018 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4019 return 0;
4020
d2e4a39e 4021 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4022 {
4023 case LOC_UNDEF:
4024 return 1;
4025 case LOC_TYPEDEF:
4026 {
4c4b4cd2
PH
4027 struct type *type0 = SYMBOL_TYPE (sym0);
4028 struct type *type1 = SYMBOL_TYPE (sym1);
4029 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4030 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4031 int len0 = strlen (name0);
4032 return
4033 TYPE_CODE (type0) == TYPE_CODE (type1)
4034 && (equiv_types (type0, type1)
4035 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4036 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4037 }
4038 case LOC_CONST:
4039 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4040 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4041 default:
4042 return 0;
14f9c5c9
AS
4043 }
4044}
4045
4c4b4cd2
PH
4046/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4047 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4048
4049static void
76a01679
JB
4050add_defn_to_vec (struct obstack *obstackp,
4051 struct symbol *sym,
2570f2b7 4052 struct block *block)
14f9c5c9
AS
4053{
4054 int i;
4055 size_t tmp;
4c4b4cd2 4056 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4057
529cad9c
PH
4058 /* Do not try to complete stub types, as the debugger is probably
4059 already scanning all symbols matching a certain name at the
4060 time when this function is called. Trying to replace the stub
4061 type by its associated full type will cause us to restart a scan
4062 which may lead to an infinite recursion. Instead, the client
4063 collecting the matching symbols will end up collecting several
4064 matches, with at least one of them complete. It can then filter
4065 out the stub ones if needed. */
4066
4c4b4cd2
PH
4067 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4068 {
4069 if (lesseq_defined_than (sym, prevDefns[i].sym))
4070 return;
4071 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4072 {
4073 prevDefns[i].sym = sym;
4074 prevDefns[i].block = block;
4c4b4cd2 4075 return;
76a01679 4076 }
4c4b4cd2
PH
4077 }
4078
4079 {
4080 struct ada_symbol_info info;
4081
4082 info.sym = sym;
4083 info.block = block;
4c4b4cd2
PH
4084 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4085 }
4086}
4087
4088/* Number of ada_symbol_info structures currently collected in
4089 current vector in *OBSTACKP. */
4090
76a01679
JB
4091static int
4092num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4093{
4094 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4095}
4096
4097/* Vector of ada_symbol_info structures currently collected in current
4098 vector in *OBSTACKP. If FINISH, close off the vector and return
4099 its final address. */
4100
76a01679 4101static struct ada_symbol_info *
4c4b4cd2
PH
4102defns_collected (struct obstack *obstackp, int finish)
4103{
4104 if (finish)
4105 return obstack_finish (obstackp);
4106 else
4107 return (struct ada_symbol_info *) obstack_base (obstackp);
4108}
4109
96d887e8
PH
4110/* Look, in partial_symtab PST, for symbol NAME in given namespace.
4111 Check the global symbols if GLOBAL, the static symbols if not.
4112 Do wild-card match if WILD. */
4c4b4cd2 4113
96d887e8
PH
4114static struct partial_symbol *
4115ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4116 int global, domain_enum namespace, int wild)
4c4b4cd2 4117{
96d887e8
PH
4118 struct partial_symbol **start;
4119 int name_len = strlen (name);
4120 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4121 int i;
4c4b4cd2 4122
96d887e8 4123 if (length == 0)
4c4b4cd2 4124 {
96d887e8 4125 return (NULL);
4c4b4cd2
PH
4126 }
4127
96d887e8
PH
4128 start = (global ?
4129 pst->objfile->global_psymbols.list + pst->globals_offset :
4130 pst->objfile->static_psymbols.list + pst->statics_offset);
4c4b4cd2 4131
96d887e8 4132 if (wild)
4c4b4cd2 4133 {
96d887e8
PH
4134 for (i = 0; i < length; i += 1)
4135 {
4136 struct partial_symbol *psym = start[i];
4c4b4cd2 4137
5eeb2539
AR
4138 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4139 SYMBOL_DOMAIN (psym), namespace)
1265e4aa 4140 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
96d887e8
PH
4141 return psym;
4142 }
4143 return NULL;
4c4b4cd2 4144 }
96d887e8
PH
4145 else
4146 {
4147 if (global)
4148 {
4149 int U;
4150 i = 0;
4151 U = length - 1;
4152 while (U - i > 4)
4153 {
4154 int M = (U + i) >> 1;
4155 struct partial_symbol *psym = start[M];
4156 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4157 i = M + 1;
4158 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4159 U = M - 1;
4160 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4161 i = M + 1;
4162 else
4163 U = M;
4164 }
4165 }
4166 else
4167 i = 0;
4c4b4cd2 4168
96d887e8
PH
4169 while (i < length)
4170 {
4171 struct partial_symbol *psym = start[i];
4c4b4cd2 4172
5eeb2539
AR
4173 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4174 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4175 {
4176 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4c4b4cd2 4177
96d887e8
PH
4178 if (cmp < 0)
4179 {
4180 if (global)
4181 break;
4182 }
4183 else if (cmp == 0
4184 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4185 + name_len))
96d887e8
PH
4186 return psym;
4187 }
4188 i += 1;
4189 }
4c4b4cd2 4190
96d887e8
PH
4191 if (global)
4192 {
4193 int U;
4194 i = 0;
4195 U = length - 1;
4196 while (U - i > 4)
4197 {
4198 int M = (U + i) >> 1;
4199 struct partial_symbol *psym = start[M];
4200 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4201 i = M + 1;
4202 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4203 U = M - 1;
4204 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4205 i = M + 1;
4206 else
4207 U = M;
4208 }
4209 }
4210 else
4211 i = 0;
4c4b4cd2 4212
96d887e8
PH
4213 while (i < length)
4214 {
4215 struct partial_symbol *psym = start[i];
4c4b4cd2 4216
5eeb2539
AR
4217 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4218 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4219 {
4220 int cmp;
4c4b4cd2 4221
96d887e8
PH
4222 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4223 if (cmp == 0)
4224 {
4225 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4226 if (cmp == 0)
4227 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
76a01679 4228 name_len);
96d887e8 4229 }
4c4b4cd2 4230
96d887e8
PH
4231 if (cmp < 0)
4232 {
4233 if (global)
4234 break;
4235 }
4236 else if (cmp == 0
4237 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4238 + name_len + 5))
96d887e8
PH
4239 return psym;
4240 }
4241 i += 1;
4242 }
4243 }
4244 return NULL;
4c4b4cd2
PH
4245}
4246
96d887e8 4247/* Find a symbol table containing symbol SYM or NULL if none. */
4c4b4cd2 4248
96d887e8
PH
4249static struct symtab *
4250symtab_for_sym (struct symbol *sym)
4c4b4cd2 4251{
96d887e8
PH
4252 struct symtab *s;
4253 struct objfile *objfile;
4254 struct block *b;
4255 struct symbol *tmp_sym;
4256 struct dict_iterator iter;
4257 int j;
4c4b4cd2 4258
11309657 4259 ALL_PRIMARY_SYMTABS (objfile, s)
96d887e8
PH
4260 {
4261 switch (SYMBOL_CLASS (sym))
4262 {
4263 case LOC_CONST:
4264 case LOC_STATIC:
4265 case LOC_TYPEDEF:
4266 case LOC_REGISTER:
4267 case LOC_LABEL:
4268 case LOC_BLOCK:
4269 case LOC_CONST_BYTES:
76a01679
JB
4270 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4271 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4272 return s;
4273 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4274 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4275 return s;
96d887e8
PH
4276 break;
4277 default:
4278 break;
4279 }
4280 switch (SYMBOL_CLASS (sym))
4281 {
4282 case LOC_REGISTER:
4283 case LOC_ARG:
4284 case LOC_REF_ARG:
96d887e8
PH
4285 case LOC_REGPARM_ADDR:
4286 case LOC_LOCAL:
4287 case LOC_TYPEDEF:
96d887e8 4288 case LOC_COMPUTED:
76a01679
JB
4289 for (j = FIRST_LOCAL_BLOCK;
4290 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4291 {
4292 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4293 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4294 return s;
4295 }
4296 break;
96d887e8
PH
4297 default:
4298 break;
4299 }
4300 }
4301 return NULL;
4c4b4cd2
PH
4302}
4303
96d887e8
PH
4304/* Return a minimal symbol matching NAME according to Ada decoding
4305 rules. Returns NULL if there is no such minimal symbol. Names
4306 prefixed with "standard__" are handled specially: "standard__" is
4307 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4308
96d887e8
PH
4309struct minimal_symbol *
4310ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4311{
4c4b4cd2 4312 struct objfile *objfile;
96d887e8
PH
4313 struct minimal_symbol *msymbol;
4314 int wild_match;
4c4b4cd2 4315
96d887e8 4316 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4317 {
96d887e8 4318 name += sizeof ("standard__") - 1;
4c4b4cd2 4319 wild_match = 0;
4c4b4cd2
PH
4320 }
4321 else
96d887e8 4322 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4323
96d887e8
PH
4324 ALL_MSYMBOLS (objfile, msymbol)
4325 {
4326 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4327 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4328 return msymbol;
4329 }
4c4b4cd2 4330
96d887e8
PH
4331 return NULL;
4332}
4c4b4cd2 4333
96d887e8
PH
4334/* For all subprograms that statically enclose the subprogram of the
4335 selected frame, add symbols matching identifier NAME in DOMAIN
4336 and their blocks to the list of data in OBSTACKP, as for
4337 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4338 wildcard prefix. */
4c4b4cd2 4339
96d887e8
PH
4340static void
4341add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4342 const char *name, domain_enum namespace,
96d887e8
PH
4343 int wild_match)
4344{
96d887e8 4345}
14f9c5c9 4346
96d887e8
PH
4347/* True if TYPE is definitely an artificial type supplied to a symbol
4348 for which no debugging information was given in the symbol file. */
14f9c5c9 4349
96d887e8
PH
4350static int
4351is_nondebugging_type (struct type *type)
4352{
4353 char *name = ada_type_name (type);
4354 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4355}
4c4b4cd2 4356
96d887e8
PH
4357/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4358 duplicate other symbols in the list (The only case I know of where
4359 this happens is when object files containing stabs-in-ecoff are
4360 linked with files containing ordinary ecoff debugging symbols (or no
4361 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4362 Returns the number of items in the modified list. */
4c4b4cd2 4363
96d887e8
PH
4364static int
4365remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4366{
4367 int i, j;
4c4b4cd2 4368
96d887e8
PH
4369 i = 0;
4370 while (i < nsyms)
4371 {
339c13b6
JB
4372 int remove = 0;
4373
4374 /* If two symbols have the same name and one of them is a stub type,
4375 the get rid of the stub. */
4376
4377 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4378 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4379 {
4380 for (j = 0; j < nsyms; j++)
4381 {
4382 if (j != i
4383 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4384 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4385 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4386 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4387 remove = 1;
4388 }
4389 }
4390
4391 /* Two symbols with the same name, same class and same address
4392 should be identical. */
4393
4394 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4395 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4396 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4397 {
4398 for (j = 0; j < nsyms; j += 1)
4399 {
4400 if (i != j
4401 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4402 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4403 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4404 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4405 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4406 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4407 remove = 1;
4c4b4cd2 4408 }
4c4b4cd2 4409 }
339c13b6
JB
4410
4411 if (remove)
4412 {
4413 for (j = i + 1; j < nsyms; j += 1)
4414 syms[j - 1] = syms[j];
4415 nsyms -= 1;
4416 }
4417
96d887e8 4418 i += 1;
14f9c5c9 4419 }
96d887e8 4420 return nsyms;
14f9c5c9
AS
4421}
4422
96d887e8
PH
4423/* Given a type that corresponds to a renaming entity, use the type name
4424 to extract the scope (package name or function name, fully qualified,
4425 and following the GNAT encoding convention) where this renaming has been
4426 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4427
96d887e8
PH
4428static char *
4429xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4430{
96d887e8
PH
4431 /* The renaming types adhere to the following convention:
4432 <scope>__<rename>___<XR extension>.
4433 So, to extract the scope, we search for the "___XR" extension,
4434 and then backtrack until we find the first "__". */
76a01679 4435
96d887e8
PH
4436 const char *name = type_name_no_tag (renaming_type);
4437 char *suffix = strstr (name, "___XR");
4438 char *last;
4439 int scope_len;
4440 char *scope;
14f9c5c9 4441
96d887e8
PH
4442 /* Now, backtrack a bit until we find the first "__". Start looking
4443 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4444
96d887e8
PH
4445 for (last = suffix - 3; last > name; last--)
4446 if (last[0] == '_' && last[1] == '_')
4447 break;
76a01679 4448
96d887e8 4449 /* Make a copy of scope and return it. */
14f9c5c9 4450
96d887e8
PH
4451 scope_len = last - name;
4452 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4453
96d887e8
PH
4454 strncpy (scope, name, scope_len);
4455 scope[scope_len] = '\0';
4c4b4cd2 4456
96d887e8 4457 return scope;
4c4b4cd2
PH
4458}
4459
96d887e8 4460/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4461
96d887e8
PH
4462static int
4463is_package_name (const char *name)
4c4b4cd2 4464{
96d887e8
PH
4465 /* Here, We take advantage of the fact that no symbols are generated
4466 for packages, while symbols are generated for each function.
4467 So the condition for NAME represent a package becomes equivalent
4468 to NAME not existing in our list of symbols. There is only one
4469 small complication with library-level functions (see below). */
4c4b4cd2 4470
96d887e8 4471 char *fun_name;
76a01679 4472
96d887e8
PH
4473 /* If it is a function that has not been defined at library level,
4474 then we should be able to look it up in the symbols. */
4475 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4476 return 0;
14f9c5c9 4477
96d887e8
PH
4478 /* Library-level function names start with "_ada_". See if function
4479 "_ada_" followed by NAME can be found. */
14f9c5c9 4480
96d887e8 4481 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4482 functions names cannot contain "__" in them. */
96d887e8
PH
4483 if (strstr (name, "__") != NULL)
4484 return 0;
4c4b4cd2 4485
b435e160 4486 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4487
96d887e8
PH
4488 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4489}
14f9c5c9 4490
96d887e8 4491/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4492 not visible from FUNCTION_NAME. */
14f9c5c9 4493
96d887e8 4494static int
aeb5907d 4495old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4496{
aeb5907d
JB
4497 char *scope;
4498
4499 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4500 return 0;
4501
4502 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4503
96d887e8 4504 make_cleanup (xfree, scope);
14f9c5c9 4505
96d887e8
PH
4506 /* If the rename has been defined in a package, then it is visible. */
4507 if (is_package_name (scope))
aeb5907d 4508 return 0;
14f9c5c9 4509
96d887e8
PH
4510 /* Check that the rename is in the current function scope by checking
4511 that its name starts with SCOPE. */
76a01679 4512
96d887e8
PH
4513 /* If the function name starts with "_ada_", it means that it is
4514 a library-level function. Strip this prefix before doing the
4515 comparison, as the encoding for the renaming does not contain
4516 this prefix. */
4517 if (strncmp (function_name, "_ada_", 5) == 0)
4518 function_name += 5;
f26caa11 4519
aeb5907d 4520 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4521}
4522
aeb5907d
JB
4523/* Remove entries from SYMS that corresponds to a renaming entity that
4524 is not visible from the function associated with CURRENT_BLOCK or
4525 that is superfluous due to the presence of more specific renaming
4526 information. Places surviving symbols in the initial entries of
4527 SYMS and returns the number of surviving symbols.
96d887e8
PH
4528
4529 Rationale:
aeb5907d
JB
4530 First, in cases where an object renaming is implemented as a
4531 reference variable, GNAT may produce both the actual reference
4532 variable and the renaming encoding. In this case, we discard the
4533 latter.
4534
4535 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4536 entity. Unfortunately, STABS currently does not support the definition
4537 of types that are local to a given lexical block, so all renamings types
4538 are emitted at library level. As a consequence, if an application
4539 contains two renaming entities using the same name, and a user tries to
4540 print the value of one of these entities, the result of the ada symbol
4541 lookup will also contain the wrong renaming type.
f26caa11 4542
96d887e8
PH
4543 This function partially covers for this limitation by attempting to
4544 remove from the SYMS list renaming symbols that should be visible
4545 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4546 method with the current information available. The implementation
4547 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4548
4549 - When the user tries to print a rename in a function while there
4550 is another rename entity defined in a package: Normally, the
4551 rename in the function has precedence over the rename in the
4552 package, so the latter should be removed from the list. This is
4553 currently not the case.
4554
4555 - This function will incorrectly remove valid renames if
4556 the CURRENT_BLOCK corresponds to a function which symbol name
4557 has been changed by an "Export" pragma. As a consequence,
4558 the user will be unable to print such rename entities. */
4c4b4cd2 4559
14f9c5c9 4560static int
aeb5907d
JB
4561remove_irrelevant_renamings (struct ada_symbol_info *syms,
4562 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4563{
4564 struct symbol *current_function;
4565 char *current_function_name;
4566 int i;
aeb5907d
JB
4567 int is_new_style_renaming;
4568
4569 /* If there is both a renaming foo___XR... encoded as a variable and
4570 a simple variable foo in the same block, discard the latter.
4571 First, zero out such symbols, then compress. */
4572 is_new_style_renaming = 0;
4573 for (i = 0; i < nsyms; i += 1)
4574 {
4575 struct symbol *sym = syms[i].sym;
4576 struct block *block = syms[i].block;
4577 const char *name;
4578 const char *suffix;
4579
4580 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4581 continue;
4582 name = SYMBOL_LINKAGE_NAME (sym);
4583 suffix = strstr (name, "___XR");
4584
4585 if (suffix != NULL)
4586 {
4587 int name_len = suffix - name;
4588 int j;
4589 is_new_style_renaming = 1;
4590 for (j = 0; j < nsyms; j += 1)
4591 if (i != j && syms[j].sym != NULL
4592 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4593 name_len) == 0
4594 && block == syms[j].block)
4595 syms[j].sym = NULL;
4596 }
4597 }
4598 if (is_new_style_renaming)
4599 {
4600 int j, k;
4601
4602 for (j = k = 0; j < nsyms; j += 1)
4603 if (syms[j].sym != NULL)
4604 {
4605 syms[k] = syms[j];
4606 k += 1;
4607 }
4608 return k;
4609 }
4c4b4cd2
PH
4610
4611 /* Extract the function name associated to CURRENT_BLOCK.
4612 Abort if unable to do so. */
76a01679 4613
4c4b4cd2
PH
4614 if (current_block == NULL)
4615 return nsyms;
76a01679 4616
7f0df278 4617 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4618 if (current_function == NULL)
4619 return nsyms;
4620
4621 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4622 if (current_function_name == NULL)
4623 return nsyms;
4624
4625 /* Check each of the symbols, and remove it from the list if it is
4626 a type corresponding to a renaming that is out of the scope of
4627 the current block. */
4628
4629 i = 0;
4630 while (i < nsyms)
4631 {
aeb5907d
JB
4632 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4633 == ADA_OBJECT_RENAMING
4634 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4635 {
4636 int j;
aeb5907d 4637 for (j = i + 1; j < nsyms; j += 1)
76a01679 4638 syms[j - 1] = syms[j];
4c4b4cd2
PH
4639 nsyms -= 1;
4640 }
4641 else
4642 i += 1;
4643 }
4644
4645 return nsyms;
4646}
4647
339c13b6
JB
4648/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4649 whose name and domain match NAME and DOMAIN respectively.
4650 If no match was found, then extend the search to "enclosing"
4651 routines (in other words, if we're inside a nested function,
4652 search the symbols defined inside the enclosing functions).
4653
4654 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4655
4656static void
4657ada_add_local_symbols (struct obstack *obstackp, const char *name,
4658 struct block *block, domain_enum domain,
4659 int wild_match)
4660{
4661 int block_depth = 0;
4662
4663 while (block != NULL)
4664 {
4665 block_depth += 1;
4666 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4667
4668 /* If we found a non-function match, assume that's the one. */
4669 if (is_nonfunction (defns_collected (obstackp, 0),
4670 num_defns_collected (obstackp)))
4671 return;
4672
4673 block = BLOCK_SUPERBLOCK (block);
4674 }
4675
4676 /* If no luck so far, try to find NAME as a local symbol in some lexically
4677 enclosing subprogram. */
4678 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4679 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4680}
4681
4682/* Add to OBSTACKP all non-local symbols whose name and domain match
4683 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4684 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4685
4686static void
4687ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4688 domain_enum domain, int global,
4689 int wild_match)
4690{
4691 struct objfile *objfile;
4692 struct partial_symtab *ps;
4693
4694 ALL_PSYMTABS (objfile, ps)
4695 {
4696 QUIT;
4697 if (ps->readin
4698 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4699 {
4700 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4701 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4702
4703 if (s == NULL || !s->primary)
4704 continue;
4705 ada_add_block_symbols (obstackp,
4706 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4707 name, domain, objfile, wild_match);
4708 }
4709 }
4710}
4711
4c4b4cd2
PH
4712/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4713 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4714 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4715 indicating the symbols found and the blocks and symbol tables (if
4716 any) in which they were found. This vector are transient---good only to
4717 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4718 symbol match within the nest of blocks whose innermost member is BLOCK0,
4719 is the one match returned (no other matches in that or
4720 enclosing blocks is returned). If there are any matches in or
4721 surrounding BLOCK0, then these alone are returned. Otherwise, the
4722 search extends to global and file-scope (static) symbol tables.
4723 Names prefixed with "standard__" are handled specially: "standard__"
4724 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4725
4726int
4c4b4cd2 4727ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4728 domain_enum namespace,
4729 struct ada_symbol_info **results)
14f9c5c9
AS
4730{
4731 struct symbol *sym;
14f9c5c9 4732 struct block *block;
4c4b4cd2 4733 const char *name;
4c4b4cd2 4734 int wild_match;
14f9c5c9 4735 int cacheIfUnique;
4c4b4cd2 4736 int ndefns;
14f9c5c9 4737
4c4b4cd2
PH
4738 obstack_free (&symbol_list_obstack, NULL);
4739 obstack_init (&symbol_list_obstack);
14f9c5c9 4740
14f9c5c9
AS
4741 cacheIfUnique = 0;
4742
4743 /* Search specified block and its superiors. */
4744
4c4b4cd2
PH
4745 wild_match = (strstr (name0, "__") == NULL);
4746 name = name0;
76a01679
JB
4747 block = (struct block *) block0; /* FIXME: No cast ought to be
4748 needed, but adding const will
4749 have a cascade effect. */
339c13b6
JB
4750
4751 /* Special case: If the user specifies a symbol name inside package
4752 Standard, do a non-wild matching of the symbol name without
4753 the "standard__" prefix. This was primarily introduced in order
4754 to allow the user to specifically access the standard exceptions
4755 using, for instance, Standard.Constraint_Error when Constraint_Error
4756 is ambiguous (due to the user defining its own Constraint_Error
4757 entity inside its program). */
4c4b4cd2
PH
4758 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4759 {
4760 wild_match = 0;
4761 block = NULL;
4762 name = name0 + sizeof ("standard__") - 1;
4763 }
4764
339c13b6 4765 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4766
339c13b6
JB
4767 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4768 wild_match);
4c4b4cd2 4769 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4770 goto done;
d2e4a39e 4771
339c13b6
JB
4772 /* No non-global symbols found. Check our cache to see if we have
4773 already performed this search before. If we have, then return
4774 the same result. */
4775
14f9c5c9 4776 cacheIfUnique = 1;
2570f2b7 4777 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4778 {
4779 if (sym != NULL)
2570f2b7 4780 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4781 goto done;
4782 }
14f9c5c9 4783
339c13b6
JB
4784 /* Search symbols from all global blocks. */
4785
4786 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4787 wild_match);
d2e4a39e 4788
4c4b4cd2 4789 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4790 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4791
4c4b4cd2 4792 if (num_defns_collected (&symbol_list_obstack) == 0)
339c13b6
JB
4793 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4794 wild_match);
14f9c5c9 4795
4c4b4cd2
PH
4796done:
4797 ndefns = num_defns_collected (&symbol_list_obstack);
4798 *results = defns_collected (&symbol_list_obstack, 1);
4799
4800 ndefns = remove_extra_symbols (*results, ndefns);
4801
d2e4a39e 4802 if (ndefns == 0)
2570f2b7 4803 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4804
4c4b4cd2 4805 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4806 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4807
aeb5907d 4808 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4809
14f9c5c9
AS
4810 return ndefns;
4811}
4812
d2e4a39e 4813struct symbol *
aeb5907d 4814ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4815 domain_enum namespace, struct block **block_found)
14f9c5c9 4816{
4c4b4cd2 4817 struct ada_symbol_info *candidates;
14f9c5c9
AS
4818 int n_candidates;
4819
aeb5907d 4820 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4821
4822 if (n_candidates == 0)
4823 return NULL;
4c4b4cd2 4824
aeb5907d
JB
4825 if (block_found != NULL)
4826 *block_found = candidates[0].block;
4c4b4cd2 4827
21b556f4 4828 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4829}
4830
4831/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4832 scope and in global scopes, or NULL if none. NAME is folded and
4833 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4834 choosing the first symbol if there are multiple choices.
4835 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4836 table in which the symbol was found (in both cases, these
4837 assignments occur only if the pointers are non-null). */
4838struct symbol *
4839ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4840 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4841{
4842 if (is_a_field_of_this != NULL)
4843 *is_a_field_of_this = 0;
4844
4845 return
4846 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4847 block0, namespace, NULL);
4c4b4cd2 4848}
14f9c5c9 4849
4c4b4cd2
PH
4850static struct symbol *
4851ada_lookup_symbol_nonlocal (const char *name,
76a01679
JB
4852 const char *linkage_name,
4853 const struct block *block,
21b556f4 4854 const domain_enum domain)
4c4b4cd2
PH
4855{
4856 if (linkage_name == NULL)
4857 linkage_name = name;
76a01679 4858 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
21b556f4 4859 NULL);
14f9c5c9
AS
4860}
4861
4862
4c4b4cd2
PH
4863/* True iff STR is a possible encoded suffix of a normal Ada name
4864 that is to be ignored for matching purposes. Suffixes of parallel
4865 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4866 are given by any of the regular expressions:
4c4b4cd2 4867
babe1480
JB
4868 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4869 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4870 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4871 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4872
4873 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4874 match is performed. This sequence is used to differentiate homonyms,
4875 is an optional part of a valid name suffix. */
4c4b4cd2 4876
14f9c5c9 4877static int
d2e4a39e 4878is_name_suffix (const char *str)
14f9c5c9
AS
4879{
4880 int k;
4c4b4cd2
PH
4881 const char *matching;
4882 const int len = strlen (str);
4883
babe1480
JB
4884 /* Skip optional leading __[0-9]+. */
4885
4c4b4cd2
PH
4886 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4887 {
babe1480
JB
4888 str += 3;
4889 while (isdigit (str[0]))
4890 str += 1;
4c4b4cd2 4891 }
babe1480
JB
4892
4893 /* [.$][0-9]+ */
4c4b4cd2 4894
babe1480 4895 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 4896 {
babe1480 4897 matching = str + 1;
4c4b4cd2
PH
4898 while (isdigit (matching[0]))
4899 matching += 1;
4900 if (matching[0] == '\0')
4901 return 1;
4902 }
4903
4904 /* ___[0-9]+ */
babe1480 4905
4c4b4cd2
PH
4906 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4907 {
4908 matching = str + 3;
4909 while (isdigit (matching[0]))
4910 matching += 1;
4911 if (matching[0] == '\0')
4912 return 1;
4913 }
4914
529cad9c
PH
4915#if 0
4916 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4917 with a N at the end. Unfortunately, the compiler uses the same
4918 convention for other internal types it creates. So treating
4919 all entity names that end with an "N" as a name suffix causes
4920 some regressions. For instance, consider the case of an enumerated
4921 type. To support the 'Image attribute, it creates an array whose
4922 name ends with N.
4923 Having a single character like this as a suffix carrying some
4924 information is a bit risky. Perhaps we should change the encoding
4925 to be something like "_N" instead. In the meantime, do not do
4926 the following check. */
4927 /* Protected Object Subprograms */
4928 if (len == 1 && str [0] == 'N')
4929 return 1;
4930#endif
4931
4932 /* _E[0-9]+[bs]$ */
4933 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4934 {
4935 matching = str + 3;
4936 while (isdigit (matching[0]))
4937 matching += 1;
4938 if ((matching[0] == 'b' || matching[0] == 's')
4939 && matching [1] == '\0')
4940 return 1;
4941 }
4942
4c4b4cd2
PH
4943 /* ??? We should not modify STR directly, as we are doing below. This
4944 is fine in this case, but may become problematic later if we find
4945 that this alternative did not work, and want to try matching
4946 another one from the begining of STR. Since we modified it, we
4947 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
4948 if (str[0] == 'X')
4949 {
4950 str += 1;
d2e4a39e 4951 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
4952 {
4953 if (str[0] != 'n' && str[0] != 'b')
4954 return 0;
4955 str += 1;
4956 }
14f9c5c9 4957 }
babe1480 4958
14f9c5c9
AS
4959 if (str[0] == '\000')
4960 return 1;
babe1480 4961
d2e4a39e 4962 if (str[0] == '_')
14f9c5c9
AS
4963 {
4964 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 4965 return 0;
d2e4a39e 4966 if (str[2] == '_')
4c4b4cd2 4967 {
61ee279c
PH
4968 if (strcmp (str + 3, "JM") == 0)
4969 return 1;
4970 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4971 the LJM suffix in favor of the JM one. But we will
4972 still accept LJM as a valid suffix for a reasonable
4973 amount of time, just to allow ourselves to debug programs
4974 compiled using an older version of GNAT. */
4c4b4cd2
PH
4975 if (strcmp (str + 3, "LJM") == 0)
4976 return 1;
4977 if (str[3] != 'X')
4978 return 0;
1265e4aa
JB
4979 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4980 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
4981 return 1;
4982 if (str[4] == 'R' && str[5] != 'T')
4983 return 1;
4984 return 0;
4985 }
4986 if (!isdigit (str[2]))
4987 return 0;
4988 for (k = 3; str[k] != '\0'; k += 1)
4989 if (!isdigit (str[k]) && str[k] != '_')
4990 return 0;
14f9c5c9
AS
4991 return 1;
4992 }
4c4b4cd2 4993 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 4994 {
4c4b4cd2
PH
4995 for (k = 2; str[k] != '\0'; k += 1)
4996 if (!isdigit (str[k]) && str[k] != '_')
4997 return 0;
14f9c5c9
AS
4998 return 1;
4999 }
5000 return 0;
5001}
d2e4a39e 5002
aeb5907d
JB
5003/* Return non-zero if the string starting at NAME and ending before
5004 NAME_END contains no capital letters. */
529cad9c
PH
5005
5006static int
5007is_valid_name_for_wild_match (const char *name0)
5008{
5009 const char *decoded_name = ada_decode (name0);
5010 int i;
5011
5823c3ef
JB
5012 /* If the decoded name starts with an angle bracket, it means that
5013 NAME0 does not follow the GNAT encoding format. It should then
5014 not be allowed as a possible wild match. */
5015 if (decoded_name[0] == '<')
5016 return 0;
5017
529cad9c
PH
5018 for (i=0; decoded_name[i] != '\0'; i++)
5019 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5020 return 0;
5021
5022 return 1;
5023}
5024
4c4b4cd2
PH
5025/* True if NAME represents a name of the form A1.A2....An, n>=1 and
5026 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5027 informational suffixes of NAME (i.e., for which is_name_suffix is
5028 true). */
5029
14f9c5c9 5030static int
4c4b4cd2 5031wild_match (const char *patn0, int patn_len, const char *name0)
14f9c5c9 5032{
5823c3ef
JB
5033 char* match;
5034 const char* start;
5035 start = name0;
5036 while (1)
14f9c5c9 5037 {
5823c3ef
JB
5038 match = strstr (start, patn0);
5039 if (match == NULL)
5040 return 0;
5041 if ((match == name0
5042 || match[-1] == '.'
5043 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
5044 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
5045 && is_name_suffix (match + patn_len))
5046 return (match == name0 || is_valid_name_for_wild_match (name0));
5047 start = match + 1;
96d887e8 5048 }
96d887e8
PH
5049}
5050
5051
5052/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5053 vector *defn_symbols, updating the list of symbols in OBSTACKP
5054 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5055 OBJFILE is the section containing BLOCK.
5056 SYMTAB is recorded with each symbol added. */
5057
5058static void
5059ada_add_block_symbols (struct obstack *obstackp,
76a01679 5060 struct block *block, const char *name,
96d887e8 5061 domain_enum domain, struct objfile *objfile,
2570f2b7 5062 int wild)
96d887e8
PH
5063{
5064 struct dict_iterator iter;
5065 int name_len = strlen (name);
5066 /* A matching argument symbol, if any. */
5067 struct symbol *arg_sym;
5068 /* Set true when we find a matching non-argument symbol. */
5069 int found_sym;
5070 struct symbol *sym;
5071
5072 arg_sym = NULL;
5073 found_sym = 0;
5074 if (wild)
5075 {
5076 struct symbol *sym;
5077 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5078 {
5eeb2539
AR
5079 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5080 SYMBOL_DOMAIN (sym), domain)
1265e4aa 5081 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
76a01679 5082 {
2a2d4dc3
AS
5083 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5084 continue;
5085 else if (SYMBOL_IS_ARGUMENT (sym))
5086 arg_sym = sym;
5087 else
5088 {
76a01679
JB
5089 found_sym = 1;
5090 add_defn_to_vec (obstackp,
5091 fixup_symbol_section (sym, objfile),
2570f2b7 5092 block);
76a01679
JB
5093 }
5094 }
5095 }
96d887e8
PH
5096 }
5097 else
5098 {
5099 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5100 {
5eeb2539
AR
5101 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5102 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5103 {
5104 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5105 if (cmp == 0
5106 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5107 {
2a2d4dc3
AS
5108 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5109 {
5110 if (SYMBOL_IS_ARGUMENT (sym))
5111 arg_sym = sym;
5112 else
5113 {
5114 found_sym = 1;
5115 add_defn_to_vec (obstackp,
5116 fixup_symbol_section (sym, objfile),
5117 block);
5118 }
5119 }
76a01679
JB
5120 }
5121 }
5122 }
96d887e8
PH
5123 }
5124
5125 if (!found_sym && arg_sym != NULL)
5126 {
76a01679
JB
5127 add_defn_to_vec (obstackp,
5128 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5129 block);
96d887e8
PH
5130 }
5131
5132 if (!wild)
5133 {
5134 arg_sym = NULL;
5135 found_sym = 0;
5136
5137 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5138 {
5eeb2539
AR
5139 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5140 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5141 {
5142 int cmp;
5143
5144 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5145 if (cmp == 0)
5146 {
5147 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5148 if (cmp == 0)
5149 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5150 name_len);
5151 }
5152
5153 if (cmp == 0
5154 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5155 {
2a2d4dc3
AS
5156 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5157 {
5158 if (SYMBOL_IS_ARGUMENT (sym))
5159 arg_sym = sym;
5160 else
5161 {
5162 found_sym = 1;
5163 add_defn_to_vec (obstackp,
5164 fixup_symbol_section (sym, objfile),
5165 block);
5166 }
5167 }
76a01679
JB
5168 }
5169 }
76a01679 5170 }
96d887e8
PH
5171
5172 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5173 They aren't parameters, right? */
5174 if (!found_sym && arg_sym != NULL)
5175 {
5176 add_defn_to_vec (obstackp,
76a01679 5177 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5178 block);
96d887e8
PH
5179 }
5180 }
5181}
5182\f
41d27058
JB
5183
5184 /* Symbol Completion */
5185
5186/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5187 name in a form that's appropriate for the completion. The result
5188 does not need to be deallocated, but is only good until the next call.
5189
5190 TEXT_LEN is equal to the length of TEXT.
5191 Perform a wild match if WILD_MATCH is set.
5192 ENCODED should be set if TEXT represents the start of a symbol name
5193 in its encoded form. */
5194
5195static const char *
5196symbol_completion_match (const char *sym_name,
5197 const char *text, int text_len,
5198 int wild_match, int encoded)
5199{
5200 char *result;
5201 const int verbatim_match = (text[0] == '<');
5202 int match = 0;
5203
5204 if (verbatim_match)
5205 {
5206 /* Strip the leading angle bracket. */
5207 text = text + 1;
5208 text_len--;
5209 }
5210
5211 /* First, test against the fully qualified name of the symbol. */
5212
5213 if (strncmp (sym_name, text, text_len) == 0)
5214 match = 1;
5215
5216 if (match && !encoded)
5217 {
5218 /* One needed check before declaring a positive match is to verify
5219 that iff we are doing a verbatim match, the decoded version
5220 of the symbol name starts with '<'. Otherwise, this symbol name
5221 is not a suitable completion. */
5222 const char *sym_name_copy = sym_name;
5223 int has_angle_bracket;
5224
5225 sym_name = ada_decode (sym_name);
5226 has_angle_bracket = (sym_name[0] == '<');
5227 match = (has_angle_bracket == verbatim_match);
5228 sym_name = sym_name_copy;
5229 }
5230
5231 if (match && !verbatim_match)
5232 {
5233 /* When doing non-verbatim match, another check that needs to
5234 be done is to verify that the potentially matching symbol name
5235 does not include capital letters, because the ada-mode would
5236 not be able to understand these symbol names without the
5237 angle bracket notation. */
5238 const char *tmp;
5239
5240 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5241 if (*tmp != '\0')
5242 match = 0;
5243 }
5244
5245 /* Second: Try wild matching... */
5246
5247 if (!match && wild_match)
5248 {
5249 /* Since we are doing wild matching, this means that TEXT
5250 may represent an unqualified symbol name. We therefore must
5251 also compare TEXT against the unqualified name of the symbol. */
5252 sym_name = ada_unqualified_name (ada_decode (sym_name));
5253
5254 if (strncmp (sym_name, text, text_len) == 0)
5255 match = 1;
5256 }
5257
5258 /* Finally: If we found a mach, prepare the result to return. */
5259
5260 if (!match)
5261 return NULL;
5262
5263 if (verbatim_match)
5264 sym_name = add_angle_brackets (sym_name);
5265
5266 if (!encoded)
5267 sym_name = ada_decode (sym_name);
5268
5269 return sym_name;
5270}
5271
2ba95b9b
JB
5272typedef char *char_ptr;
5273DEF_VEC_P (char_ptr);
5274
41d27058
JB
5275/* A companion function to ada_make_symbol_completion_list().
5276 Check if SYM_NAME represents a symbol which name would be suitable
5277 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5278 it is appended at the end of the given string vector SV.
5279
5280 ORIG_TEXT is the string original string from the user command
5281 that needs to be completed. WORD is the entire command on which
5282 completion should be performed. These two parameters are used to
5283 determine which part of the symbol name should be added to the
5284 completion vector.
5285 if WILD_MATCH is set, then wild matching is performed.
5286 ENCODED should be set if TEXT represents a symbol name in its
5287 encoded formed (in which case the completion should also be
5288 encoded). */
5289
5290static void
d6565258 5291symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5292 const char *sym_name,
5293 const char *text, int text_len,
5294 const char *orig_text, const char *word,
5295 int wild_match, int encoded)
5296{
5297 const char *match = symbol_completion_match (sym_name, text, text_len,
5298 wild_match, encoded);
5299 char *completion;
5300
5301 if (match == NULL)
5302 return;
5303
5304 /* We found a match, so add the appropriate completion to the given
5305 string vector. */
5306
5307 if (word == orig_text)
5308 {
5309 completion = xmalloc (strlen (match) + 5);
5310 strcpy (completion, match);
5311 }
5312 else if (word > orig_text)
5313 {
5314 /* Return some portion of sym_name. */
5315 completion = xmalloc (strlen (match) + 5);
5316 strcpy (completion, match + (word - orig_text));
5317 }
5318 else
5319 {
5320 /* Return some of ORIG_TEXT plus sym_name. */
5321 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5322 strncpy (completion, word, orig_text - word);
5323 completion[orig_text - word] = '\0';
5324 strcat (completion, match);
5325 }
5326
d6565258 5327 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5328}
5329
5330/* Return a list of possible symbol names completing TEXT0. The list
5331 is NULL terminated. WORD is the entire command on which completion
5332 is made. */
5333
5334static char **
5335ada_make_symbol_completion_list (char *text0, char *word)
5336{
5337 char *text;
5338 int text_len;
5339 int wild_match;
5340 int encoded;
2ba95b9b 5341 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5342 struct symbol *sym;
5343 struct symtab *s;
5344 struct partial_symtab *ps;
5345 struct minimal_symbol *msymbol;
5346 struct objfile *objfile;
5347 struct block *b, *surrounding_static_block = 0;
5348 int i;
5349 struct dict_iterator iter;
5350
5351 if (text0[0] == '<')
5352 {
5353 text = xstrdup (text0);
5354 make_cleanup (xfree, text);
5355 text_len = strlen (text);
5356 wild_match = 0;
5357 encoded = 1;
5358 }
5359 else
5360 {
5361 text = xstrdup (ada_encode (text0));
5362 make_cleanup (xfree, text);
5363 text_len = strlen (text);
5364 for (i = 0; i < text_len; i++)
5365 text[i] = tolower (text[i]);
5366
5367 encoded = (strstr (text0, "__") != NULL);
5368 /* If the name contains a ".", then the user is entering a fully
5369 qualified entity name, and the match must not be done in wild
5370 mode. Similarly, if the user wants to complete what looks like
5371 an encoded name, the match must not be done in wild mode. */
5372 wild_match = (strchr (text0, '.') == NULL && !encoded);
5373 }
5374
5375 /* First, look at the partial symtab symbols. */
5376 ALL_PSYMTABS (objfile, ps)
5377 {
5378 struct partial_symbol **psym;
5379
5380 /* If the psymtab's been read in we'll get it when we search
5381 through the blockvector. */
5382 if (ps->readin)
5383 continue;
5384
5385 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5386 psym < (objfile->global_psymbols.list + ps->globals_offset
5387 + ps->n_global_syms); psym++)
5388 {
5389 QUIT;
d6565258 5390 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5391 text, text_len, text0, word,
5392 wild_match, encoded);
5393 }
5394
5395 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5396 psym < (objfile->static_psymbols.list + ps->statics_offset
5397 + ps->n_static_syms); psym++)
5398 {
5399 QUIT;
d6565258 5400 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5401 text, text_len, text0, word,
5402 wild_match, encoded);
5403 }
5404 }
5405
5406 /* At this point scan through the misc symbol vectors and add each
5407 symbol you find to the list. Eventually we want to ignore
5408 anything that isn't a text symbol (everything else will be
5409 handled by the psymtab code above). */
5410
5411 ALL_MSYMBOLS (objfile, msymbol)
5412 {
5413 QUIT;
d6565258 5414 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5415 text, text_len, text0, word, wild_match, encoded);
5416 }
5417
5418 /* Search upwards from currently selected frame (so that we can
5419 complete on local vars. */
5420
5421 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5422 {
5423 if (!BLOCK_SUPERBLOCK (b))
5424 surrounding_static_block = b; /* For elmin of dups */
5425
5426 ALL_BLOCK_SYMBOLS (b, iter, sym)
5427 {
d6565258 5428 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5429 text, text_len, text0, word,
5430 wild_match, encoded);
5431 }
5432 }
5433
5434 /* Go through the symtabs and check the externs and statics for
5435 symbols which match. */
5436
5437 ALL_SYMTABS (objfile, s)
5438 {
5439 QUIT;
5440 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5441 ALL_BLOCK_SYMBOLS (b, iter, sym)
5442 {
d6565258 5443 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5444 text, text_len, text0, word,
5445 wild_match, encoded);
5446 }
5447 }
5448
5449 ALL_SYMTABS (objfile, s)
5450 {
5451 QUIT;
5452 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5453 /* Don't do this block twice. */
5454 if (b == surrounding_static_block)
5455 continue;
5456 ALL_BLOCK_SYMBOLS (b, iter, sym)
5457 {
d6565258 5458 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5459 text, text_len, text0, word,
5460 wild_match, encoded);
5461 }
5462 }
5463
5464 /* Append the closing NULL entry. */
2ba95b9b 5465 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5466
2ba95b9b
JB
5467 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5468 return the copy. It's unfortunate that we have to make a copy
5469 of an array that we're about to destroy, but there is nothing much
5470 we can do about it. Fortunately, it's typically not a very large
5471 array. */
5472 {
5473 const size_t completions_size =
5474 VEC_length (char_ptr, completions) * sizeof (char *);
5475 char **result = malloc (completions_size);
5476
5477 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5478
5479 VEC_free (char_ptr, completions);
5480 return result;
5481 }
41d27058
JB
5482}
5483
963a6417 5484 /* Field Access */
96d887e8 5485
73fb9985
JB
5486/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5487 for tagged types. */
5488
5489static int
5490ada_is_dispatch_table_ptr_type (struct type *type)
5491{
5492 char *name;
5493
5494 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5495 return 0;
5496
5497 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5498 if (name == NULL)
5499 return 0;
5500
5501 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5502}
5503
963a6417
PH
5504/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5505 to be invisible to users. */
96d887e8 5506
963a6417
PH
5507int
5508ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5509{
963a6417
PH
5510 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5511 return 1;
73fb9985
JB
5512
5513 /* Check the name of that field. */
5514 {
5515 const char *name = TYPE_FIELD_NAME (type, field_num);
5516
5517 /* Anonymous field names should not be printed.
5518 brobecker/2007-02-20: I don't think this can actually happen
5519 but we don't want to print the value of annonymous fields anyway. */
5520 if (name == NULL)
5521 return 1;
5522
5523 /* A field named "_parent" is internally generated by GNAT for
5524 tagged types, and should not be printed either. */
5525 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5526 return 1;
5527 }
5528
5529 /* If this is the dispatch table of a tagged type, then ignore. */
5530 if (ada_is_tagged_type (type, 1)
5531 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5532 return 1;
5533
5534 /* Not a special field, so it should not be ignored. */
5535 return 0;
963a6417 5536}
96d887e8 5537
963a6417
PH
5538/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5539 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5540
963a6417
PH
5541int
5542ada_is_tagged_type (struct type *type, int refok)
5543{
5544 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5545}
96d887e8 5546
963a6417 5547/* True iff TYPE represents the type of X'Tag */
96d887e8 5548
963a6417
PH
5549int
5550ada_is_tag_type (struct type *type)
5551{
5552 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5553 return 0;
5554 else
96d887e8 5555 {
963a6417
PH
5556 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5557 return (name != NULL
5558 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5559 }
96d887e8
PH
5560}
5561
963a6417 5562/* The type of the tag on VAL. */
76a01679 5563
963a6417
PH
5564struct type *
5565ada_tag_type (struct value *val)
96d887e8 5566{
df407dfe 5567 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5568}
96d887e8 5569
963a6417 5570/* The value of the tag on VAL. */
96d887e8 5571
963a6417
PH
5572struct value *
5573ada_value_tag (struct value *val)
5574{
03ee6b2e 5575 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5576}
5577
963a6417
PH
5578/* The value of the tag on the object of type TYPE whose contents are
5579 saved at VALADDR, if it is non-null, or is at memory address
5580 ADDRESS. */
96d887e8 5581
963a6417 5582static struct value *
10a2c479 5583value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5584 const gdb_byte *valaddr,
963a6417 5585 CORE_ADDR address)
96d887e8 5586{
963a6417
PH
5587 int tag_byte_offset, dummy1, dummy2;
5588 struct type *tag_type;
5589 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5590 NULL, NULL, NULL))
96d887e8 5591 {
fc1a4b47 5592 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5593 ? NULL
5594 : valaddr + tag_byte_offset);
963a6417 5595 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5596
963a6417 5597 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5598 }
963a6417
PH
5599 return NULL;
5600}
96d887e8 5601
963a6417
PH
5602static struct type *
5603type_from_tag (struct value *tag)
5604{
5605 const char *type_name = ada_tag_name (tag);
5606 if (type_name != NULL)
5607 return ada_find_any_type (ada_encode (type_name));
5608 return NULL;
5609}
96d887e8 5610
963a6417
PH
5611struct tag_args
5612{
5613 struct value *tag;
5614 char *name;
5615};
4c4b4cd2 5616
529cad9c
PH
5617
5618static int ada_tag_name_1 (void *);
5619static int ada_tag_name_2 (struct tag_args *);
5620
4c4b4cd2
PH
5621/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5622 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5623 The value stored in ARGS->name is valid until the next call to
5624 ada_tag_name_1. */
5625
5626static int
5627ada_tag_name_1 (void *args0)
5628{
5629 struct tag_args *args = (struct tag_args *) args0;
5630 static char name[1024];
76a01679 5631 char *p;
4c4b4cd2
PH
5632 struct value *val;
5633 args->name = NULL;
03ee6b2e 5634 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5635 if (val == NULL)
5636 return ada_tag_name_2 (args);
03ee6b2e 5637 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5638 if (val == NULL)
5639 return 0;
5640 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5641 for (p = name; *p != '\0'; p += 1)
5642 if (isalpha (*p))
5643 *p = tolower (*p);
5644 args->name = name;
5645 return 0;
5646}
5647
5648/* Utility function for ada_tag_name_1 that tries the second
5649 representation for the dispatch table (in which there is no
5650 explicit 'tsd' field in the referent of the tag pointer, and instead
5651 the tsd pointer is stored just before the dispatch table. */
5652
5653static int
5654ada_tag_name_2 (struct tag_args *args)
5655{
5656 struct type *info_type;
5657 static char name[1024];
5658 char *p;
5659 struct value *val, *valp;
5660
5661 args->name = NULL;
5662 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5663 if (info_type == NULL)
5664 return 0;
5665 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5666 valp = value_cast (info_type, args->tag);
5667 if (valp == NULL)
5668 return 0;
89eef114
UW
5669 val = value_ind (value_ptradd (valp,
5670 value_from_longest (builtin_type_int8, -1)));
4c4b4cd2
PH
5671 if (val == NULL)
5672 return 0;
03ee6b2e 5673 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5674 if (val == NULL)
5675 return 0;
5676 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5677 for (p = name; *p != '\0'; p += 1)
5678 if (isalpha (*p))
5679 *p = tolower (*p);
5680 args->name = name;
5681 return 0;
5682}
5683
5684/* The type name of the dynamic type denoted by the 'tag value TAG, as
5685 * a C string. */
5686
5687const char *
5688ada_tag_name (struct value *tag)
5689{
5690 struct tag_args args;
df407dfe 5691 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5692 return NULL;
76a01679 5693 args.tag = tag;
4c4b4cd2
PH
5694 args.name = NULL;
5695 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5696 return args.name;
5697}
5698
5699/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5700
d2e4a39e 5701struct type *
ebf56fd3 5702ada_parent_type (struct type *type)
14f9c5c9
AS
5703{
5704 int i;
5705
61ee279c 5706 type = ada_check_typedef (type);
14f9c5c9
AS
5707
5708 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5709 return NULL;
5710
5711 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5712 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5713 {
5714 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5715
5716 /* If the _parent field is a pointer, then dereference it. */
5717 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5718 parent_type = TYPE_TARGET_TYPE (parent_type);
5719 /* If there is a parallel XVS type, get the actual base type. */
5720 parent_type = ada_get_base_type (parent_type);
5721
5722 return ada_check_typedef (parent_type);
5723 }
14f9c5c9
AS
5724
5725 return NULL;
5726}
5727
4c4b4cd2
PH
5728/* True iff field number FIELD_NUM of structure type TYPE contains the
5729 parent-type (inherited) fields of a derived type. Assumes TYPE is
5730 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5731
5732int
ebf56fd3 5733ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5734{
61ee279c 5735 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
4c4b4cd2
PH
5736 return (name != NULL
5737 && (strncmp (name, "PARENT", 6) == 0
5738 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5739}
5740
4c4b4cd2 5741/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5742 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5743 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5744 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5745 structures. */
14f9c5c9
AS
5746
5747int
ebf56fd3 5748ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5749{
d2e4a39e
AS
5750 const char *name = TYPE_FIELD_NAME (type, field_num);
5751 return (name != NULL
4c4b4cd2
PH
5752 && (strncmp (name, "PARENT", 6) == 0
5753 || strcmp (name, "REP") == 0
5754 || strncmp (name, "_parent", 7) == 0
5755 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5756}
5757
4c4b4cd2
PH
5758/* True iff field number FIELD_NUM of structure or union type TYPE
5759 is a variant wrapper. Assumes TYPE is a structure type with at least
5760 FIELD_NUM+1 fields. */
14f9c5c9
AS
5761
5762int
ebf56fd3 5763ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5764{
d2e4a39e 5765 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
14f9c5c9 5766 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5767 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5768 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5769 == TYPE_CODE_UNION)));
14f9c5c9
AS
5770}
5771
5772/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5773 whose discriminants are contained in the record type OUTER_TYPE,
14f9c5c9
AS
5774 returns the type of the controlling discriminant for the variant. */
5775
d2e4a39e 5776struct type *
ebf56fd3 5777ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5778{
d2e4a39e 5779 char *name = ada_variant_discrim_name (var_type);
76a01679 5780 struct type *type =
4c4b4cd2 5781 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9 5782 if (type == NULL)
6d84d3d8 5783 return builtin_type_int32;
14f9c5c9
AS
5784 else
5785 return type;
5786}
5787
4c4b4cd2 5788/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5789 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5790 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5791
5792int
ebf56fd3 5793ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5794{
d2e4a39e 5795 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5796 return (name != NULL && name[0] == 'O');
5797}
5798
5799/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5800 returns the name of the discriminant controlling the variant.
5801 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5802
d2e4a39e 5803char *
ebf56fd3 5804ada_variant_discrim_name (struct type *type0)
14f9c5c9 5805{
d2e4a39e 5806 static char *result = NULL;
14f9c5c9 5807 static size_t result_len = 0;
d2e4a39e
AS
5808 struct type *type;
5809 const char *name;
5810 const char *discrim_end;
5811 const char *discrim_start;
14f9c5c9
AS
5812
5813 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5814 type = TYPE_TARGET_TYPE (type0);
5815 else
5816 type = type0;
5817
5818 name = ada_type_name (type);
5819
5820 if (name == NULL || name[0] == '\000')
5821 return "";
5822
5823 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5824 discrim_end -= 1)
5825 {
4c4b4cd2
PH
5826 if (strncmp (discrim_end, "___XVN", 6) == 0)
5827 break;
14f9c5c9
AS
5828 }
5829 if (discrim_end == name)
5830 return "";
5831
d2e4a39e 5832 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
5833 discrim_start -= 1)
5834 {
d2e4a39e 5835 if (discrim_start == name + 1)
4c4b4cd2 5836 return "";
76a01679 5837 if ((discrim_start > name + 3
4c4b4cd2
PH
5838 && strncmp (discrim_start - 3, "___", 3) == 0)
5839 || discrim_start[-1] == '.')
5840 break;
14f9c5c9
AS
5841 }
5842
5843 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5844 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 5845 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
5846 return result;
5847}
5848
4c4b4cd2
PH
5849/* Scan STR for a subtype-encoded number, beginning at position K.
5850 Put the position of the character just past the number scanned in
5851 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5852 Return 1 if there was a valid number at the given position, and 0
5853 otherwise. A "subtype-encoded" number consists of the absolute value
5854 in decimal, followed by the letter 'm' to indicate a negative number.
5855 Assumes 0m does not occur. */
14f9c5c9
AS
5856
5857int
d2e4a39e 5858ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
5859{
5860 ULONGEST RU;
5861
d2e4a39e 5862 if (!isdigit (str[k]))
14f9c5c9
AS
5863 return 0;
5864
4c4b4cd2 5865 /* Do it the hard way so as not to make any assumption about
14f9c5c9 5866 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 5867 LONGEST. */
14f9c5c9
AS
5868 RU = 0;
5869 while (isdigit (str[k]))
5870 {
d2e4a39e 5871 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
5872 k += 1;
5873 }
5874
d2e4a39e 5875 if (str[k] == 'm')
14f9c5c9
AS
5876 {
5877 if (R != NULL)
4c4b4cd2 5878 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
5879 k += 1;
5880 }
5881 else if (R != NULL)
5882 *R = (LONGEST) RU;
5883
4c4b4cd2 5884 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
5885 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5886 number representable as a LONGEST (although either would probably work
5887 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 5888 above is always equivalent to the negative of RU. */
14f9c5c9
AS
5889
5890 if (new_k != NULL)
5891 *new_k = k;
5892 return 1;
5893}
5894
4c4b4cd2
PH
5895/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5896 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5897 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 5898
d2e4a39e 5899int
ebf56fd3 5900ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 5901{
d2e4a39e 5902 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5903 int p;
5904
5905 p = 0;
5906 while (1)
5907 {
d2e4a39e 5908 switch (name[p])
4c4b4cd2
PH
5909 {
5910 case '\0':
5911 return 0;
5912 case 'S':
5913 {
5914 LONGEST W;
5915 if (!ada_scan_number (name, p + 1, &W, &p))
5916 return 0;
5917 if (val == W)
5918 return 1;
5919 break;
5920 }
5921 case 'R':
5922 {
5923 LONGEST L, U;
5924 if (!ada_scan_number (name, p + 1, &L, &p)
5925 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5926 return 0;
5927 if (val >= L && val <= U)
5928 return 1;
5929 break;
5930 }
5931 case 'O':
5932 return 1;
5933 default:
5934 return 0;
5935 }
5936 }
5937}
5938
5939/* FIXME: Lots of redundancy below. Try to consolidate. */
5940
5941/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5942 ARG_TYPE, extract and return the value of one of its (non-static)
5943 fields. FIELDNO says which field. Differs from value_primitive_field
5944 only in that it can handle packed values of arbitrary type. */
14f9c5c9 5945
4c4b4cd2 5946static struct value *
d2e4a39e 5947ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 5948 struct type *arg_type)
14f9c5c9 5949{
14f9c5c9
AS
5950 struct type *type;
5951
61ee279c 5952 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
5953 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5954
4c4b4cd2 5955 /* Handle packed fields. */
14f9c5c9
AS
5956
5957 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5958 {
5959 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5960 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 5961
0fd88904 5962 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
5963 offset + bit_pos / 8,
5964 bit_pos % 8, bit_size, type);
14f9c5c9
AS
5965 }
5966 else
5967 return value_primitive_field (arg1, offset, fieldno, arg_type);
5968}
5969
52ce6436
PH
5970/* Find field with name NAME in object of type TYPE. If found,
5971 set the following for each argument that is non-null:
5972 - *FIELD_TYPE_P to the field's type;
5973 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5974 an object of that type;
5975 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5976 - *BIT_SIZE_P to its size in bits if the field is packed, and
5977 0 otherwise;
5978 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5979 fields up to but not including the desired field, or by the total
5980 number of fields if not found. A NULL value of NAME never
5981 matches; the function just counts visible fields in this case.
5982
5983 Returns 1 if found, 0 otherwise. */
5984
4c4b4cd2 5985static int
76a01679
JB
5986find_struct_field (char *name, struct type *type, int offset,
5987 struct type **field_type_p,
52ce6436
PH
5988 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5989 int *index_p)
4c4b4cd2
PH
5990{
5991 int i;
5992
61ee279c 5993 type = ada_check_typedef (type);
76a01679 5994
52ce6436
PH
5995 if (field_type_p != NULL)
5996 *field_type_p = NULL;
5997 if (byte_offset_p != NULL)
d5d6fca5 5998 *byte_offset_p = 0;
52ce6436
PH
5999 if (bit_offset_p != NULL)
6000 *bit_offset_p = 0;
6001 if (bit_size_p != NULL)
6002 *bit_size_p = 0;
6003
6004 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6005 {
6006 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6007 int fld_offset = offset + bit_pos / 8;
6008 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6009
4c4b4cd2
PH
6010 if (t_field_name == NULL)
6011 continue;
6012
52ce6436 6013 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6014 {
6015 int bit_size = TYPE_FIELD_BITSIZE (type, i);
52ce6436
PH
6016 if (field_type_p != NULL)
6017 *field_type_p = TYPE_FIELD_TYPE (type, i);
6018 if (byte_offset_p != NULL)
6019 *byte_offset_p = fld_offset;
6020 if (bit_offset_p != NULL)
6021 *bit_offset_p = bit_pos % 8;
6022 if (bit_size_p != NULL)
6023 *bit_size_p = bit_size;
76a01679
JB
6024 return 1;
6025 }
4c4b4cd2
PH
6026 else if (ada_is_wrapper_field (type, i))
6027 {
52ce6436
PH
6028 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6029 field_type_p, byte_offset_p, bit_offset_p,
6030 bit_size_p, index_p))
76a01679
JB
6031 return 1;
6032 }
4c4b4cd2
PH
6033 else if (ada_is_variant_part (type, i))
6034 {
52ce6436
PH
6035 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6036 fixed type?? */
4c4b4cd2 6037 int j;
52ce6436
PH
6038 struct type *field_type
6039 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6040
52ce6436 6041 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6042 {
76a01679
JB
6043 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6044 fld_offset
6045 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6046 field_type_p, byte_offset_p,
52ce6436 6047 bit_offset_p, bit_size_p, index_p))
76a01679 6048 return 1;
4c4b4cd2
PH
6049 }
6050 }
52ce6436
PH
6051 else if (index_p != NULL)
6052 *index_p += 1;
4c4b4cd2
PH
6053 }
6054 return 0;
6055}
6056
52ce6436 6057/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6058
52ce6436
PH
6059static int
6060num_visible_fields (struct type *type)
6061{
6062 int n;
6063 n = 0;
6064 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6065 return n;
6066}
14f9c5c9 6067
4c4b4cd2 6068/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6069 and search in it assuming it has (class) type TYPE.
6070 If found, return value, else return NULL.
6071
4c4b4cd2 6072 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6073
4c4b4cd2 6074static struct value *
d2e4a39e 6075ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6076 struct type *type)
14f9c5c9
AS
6077{
6078 int i;
61ee279c 6079 type = ada_check_typedef (type);
14f9c5c9 6080
52ce6436 6081 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
6082 {
6083 char *t_field_name = TYPE_FIELD_NAME (type, i);
6084
6085 if (t_field_name == NULL)
4c4b4cd2 6086 continue;
14f9c5c9
AS
6087
6088 else if (field_name_match (t_field_name, name))
4c4b4cd2 6089 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6090
6091 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6092 {
06d5cf63
JB
6093 struct value *v = /* Do not let indent join lines here. */
6094 ada_search_struct_field (name, arg,
6095 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6096 TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6097 if (v != NULL)
6098 return v;
6099 }
14f9c5c9
AS
6100
6101 else if (ada_is_variant_part (type, i))
4c4b4cd2 6102 {
52ce6436 6103 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6104 int j;
61ee279c 6105 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6106 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6107
52ce6436 6108 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6109 {
06d5cf63
JB
6110 struct value *v = ada_search_struct_field /* Force line break. */
6111 (name, arg,
6112 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6113 TYPE_FIELD_TYPE (field_type, j));
4c4b4cd2
PH
6114 if (v != NULL)
6115 return v;
6116 }
6117 }
14f9c5c9
AS
6118 }
6119 return NULL;
6120}
d2e4a39e 6121
52ce6436
PH
6122static struct value *ada_index_struct_field_1 (int *, struct value *,
6123 int, struct type *);
6124
6125
6126/* Return field #INDEX in ARG, where the index is that returned by
6127 * find_struct_field through its INDEX_P argument. Adjust the address
6128 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6129 * If found, return value, else return NULL. */
6130
6131static struct value *
6132ada_index_struct_field (int index, struct value *arg, int offset,
6133 struct type *type)
6134{
6135 return ada_index_struct_field_1 (&index, arg, offset, type);
6136}
6137
6138
6139/* Auxiliary function for ada_index_struct_field. Like
6140 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6141 * *INDEX_P. */
6142
6143static struct value *
6144ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6145 struct type *type)
6146{
6147 int i;
6148 type = ada_check_typedef (type);
6149
6150 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6151 {
6152 if (TYPE_FIELD_NAME (type, i) == NULL)
6153 continue;
6154 else if (ada_is_wrapper_field (type, i))
6155 {
6156 struct value *v = /* Do not let indent join lines here. */
6157 ada_index_struct_field_1 (index_p, arg,
6158 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6159 TYPE_FIELD_TYPE (type, i));
6160 if (v != NULL)
6161 return v;
6162 }
6163
6164 else if (ada_is_variant_part (type, i))
6165 {
6166 /* PNH: Do we ever get here? See ada_search_struct_field,
6167 find_struct_field. */
6168 error (_("Cannot assign this kind of variant record"));
6169 }
6170 else if (*index_p == 0)
6171 return ada_value_primitive_field (arg, offset, i, type);
6172 else
6173 *index_p -= 1;
6174 }
6175 return NULL;
6176}
6177
4c4b4cd2
PH
6178/* Given ARG, a value of type (pointer or reference to a)*
6179 structure/union, extract the component named NAME from the ultimate
6180 target structure/union and return it as a value with its
6181 appropriate type. If ARG is a pointer or reference and the field
6182 is not packed, returns a reference to the field, otherwise the
6183 value of the field (an lvalue if ARG is an lvalue).
14f9c5c9 6184
4c4b4cd2
PH
6185 The routine searches for NAME among all members of the structure itself
6186 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6187 (e.g., '_parent').
6188
03ee6b2e
PH
6189 If NO_ERR, then simply return NULL in case of error, rather than
6190 calling error. */
14f9c5c9 6191
d2e4a39e 6192struct value *
03ee6b2e 6193ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6194{
4c4b4cd2 6195 struct type *t, *t1;
d2e4a39e 6196 struct value *v;
14f9c5c9 6197
4c4b4cd2 6198 v = NULL;
df407dfe 6199 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6200 if (TYPE_CODE (t) == TYPE_CODE_REF)
6201 {
6202 t1 = TYPE_TARGET_TYPE (t);
6203 if (t1 == NULL)
03ee6b2e 6204 goto BadValue;
61ee279c 6205 t1 = ada_check_typedef (t1);
4c4b4cd2 6206 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6207 {
994b9211 6208 arg = coerce_ref (arg);
76a01679
JB
6209 t = t1;
6210 }
4c4b4cd2 6211 }
14f9c5c9 6212
4c4b4cd2
PH
6213 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6214 {
6215 t1 = TYPE_TARGET_TYPE (t);
6216 if (t1 == NULL)
03ee6b2e 6217 goto BadValue;
61ee279c 6218 t1 = ada_check_typedef (t1);
4c4b4cd2 6219 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6220 {
6221 arg = value_ind (arg);
6222 t = t1;
6223 }
4c4b4cd2 6224 else
76a01679 6225 break;
4c4b4cd2 6226 }
14f9c5c9 6227
4c4b4cd2 6228 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6229 goto BadValue;
14f9c5c9 6230
4c4b4cd2
PH
6231 if (t1 == t)
6232 v = ada_search_struct_field (name, arg, 0, t);
6233 else
6234 {
6235 int bit_offset, bit_size, byte_offset;
6236 struct type *field_type;
6237 CORE_ADDR address;
6238
76a01679
JB
6239 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6240 address = value_as_address (arg);
4c4b4cd2 6241 else
0fd88904 6242 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6243
1ed6ede0 6244 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6245 if (find_struct_field (name, t1, 0,
6246 &field_type, &byte_offset, &bit_offset,
52ce6436 6247 &bit_size, NULL))
76a01679
JB
6248 {
6249 if (bit_size != 0)
6250 {
714e53ab
PH
6251 if (TYPE_CODE (t) == TYPE_CODE_REF)
6252 arg = ada_coerce_ref (arg);
6253 else
6254 arg = ada_value_ind (arg);
76a01679
JB
6255 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6256 bit_offset, bit_size,
6257 field_type);
6258 }
6259 else
6260 v = value_from_pointer (lookup_reference_type (field_type),
6261 address + byte_offset);
6262 }
6263 }
6264
03ee6b2e
PH
6265 if (v != NULL || no_err)
6266 return v;
6267 else
323e0a4a 6268 error (_("There is no member named %s."), name);
14f9c5c9 6269
03ee6b2e
PH
6270 BadValue:
6271 if (no_err)
6272 return NULL;
6273 else
6274 error (_("Attempt to extract a component of a value that is not a record."));
14f9c5c9
AS
6275}
6276
6277/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6278 If DISPP is non-null, add its byte displacement from the beginning of a
6279 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6280 work for packed fields).
6281
6282 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6283 followed by "___".
14f9c5c9 6284
4c4b4cd2
PH
6285 TYPE can be either a struct or union. If REFOK, TYPE may also
6286 be a (pointer or reference)+ to a struct or union, and the
6287 ultimate target type will be searched.
14f9c5c9
AS
6288
6289 Looks recursively into variant clauses and parent types.
6290
4c4b4cd2
PH
6291 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6292 TYPE is not a type of the right kind. */
14f9c5c9 6293
4c4b4cd2 6294static struct type *
76a01679
JB
6295ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6296 int noerr, int *dispp)
14f9c5c9
AS
6297{
6298 int i;
6299
6300 if (name == NULL)
6301 goto BadName;
6302
76a01679 6303 if (refok && type != NULL)
4c4b4cd2
PH
6304 while (1)
6305 {
61ee279c 6306 type = ada_check_typedef (type);
76a01679
JB
6307 if (TYPE_CODE (type) != TYPE_CODE_PTR
6308 && TYPE_CODE (type) != TYPE_CODE_REF)
6309 break;
6310 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6311 }
14f9c5c9 6312
76a01679 6313 if (type == NULL
1265e4aa
JB
6314 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6315 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6316 {
4c4b4cd2 6317 if (noerr)
76a01679 6318 return NULL;
4c4b4cd2 6319 else
76a01679
JB
6320 {
6321 target_terminal_ours ();
6322 gdb_flush (gdb_stdout);
323e0a4a
AC
6323 if (type == NULL)
6324 error (_("Type (null) is not a structure or union type"));
6325 else
6326 {
6327 /* XXX: type_sprint */
6328 fprintf_unfiltered (gdb_stderr, _("Type "));
6329 type_print (type, "", gdb_stderr, -1);
6330 error (_(" is not a structure or union type"));
6331 }
76a01679 6332 }
14f9c5c9
AS
6333 }
6334
6335 type = to_static_fixed_type (type);
6336
6337 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6338 {
6339 char *t_field_name = TYPE_FIELD_NAME (type, i);
6340 struct type *t;
6341 int disp;
d2e4a39e 6342
14f9c5c9 6343 if (t_field_name == NULL)
4c4b4cd2 6344 continue;
14f9c5c9
AS
6345
6346 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6347 {
6348 if (dispp != NULL)
6349 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6350 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6351 }
14f9c5c9
AS
6352
6353 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6354 {
6355 disp = 0;
6356 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6357 0, 1, &disp);
6358 if (t != NULL)
6359 {
6360 if (dispp != NULL)
6361 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6362 return t;
6363 }
6364 }
14f9c5c9
AS
6365
6366 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6367 {
6368 int j;
61ee279c 6369 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6370
6371 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6372 {
b1f33ddd
JB
6373 /* FIXME pnh 2008/01/26: We check for a field that is
6374 NOT wrapped in a struct, since the compiler sometimes
6375 generates these for unchecked variant types. Revisit
6376 if the compiler changes this practice. */
6377 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6378 disp = 0;
b1f33ddd
JB
6379 if (v_field_name != NULL
6380 && field_name_match (v_field_name, name))
6381 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6382 else
6383 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6384 name, 0, 1, &disp);
6385
4c4b4cd2
PH
6386 if (t != NULL)
6387 {
6388 if (dispp != NULL)
6389 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6390 return t;
6391 }
6392 }
6393 }
14f9c5c9
AS
6394
6395 }
6396
6397BadName:
d2e4a39e 6398 if (!noerr)
14f9c5c9
AS
6399 {
6400 target_terminal_ours ();
6401 gdb_flush (gdb_stdout);
323e0a4a
AC
6402 if (name == NULL)
6403 {
6404 /* XXX: type_sprint */
6405 fprintf_unfiltered (gdb_stderr, _("Type "));
6406 type_print (type, "", gdb_stderr, -1);
6407 error (_(" has no component named <null>"));
6408 }
6409 else
6410 {
6411 /* XXX: type_sprint */
6412 fprintf_unfiltered (gdb_stderr, _("Type "));
6413 type_print (type, "", gdb_stderr, -1);
6414 error (_(" has no component named %s"), name);
6415 }
14f9c5c9
AS
6416 }
6417
6418 return NULL;
6419}
6420
b1f33ddd
JB
6421/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6422 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6423 represents an unchecked union (that is, the variant part of a
6424 record that is named in an Unchecked_Union pragma). */
6425
6426static int
6427is_unchecked_variant (struct type *var_type, struct type *outer_type)
6428{
6429 char *discrim_name = ada_variant_discrim_name (var_type);
6430 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6431 == NULL);
6432}
6433
6434
14f9c5c9
AS
6435/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6436 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6437 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6438 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6439
d2e4a39e 6440int
ebf56fd3 6441ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6442 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6443{
6444 int others_clause;
6445 int i;
d2e4a39e 6446 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6447 struct value *outer;
6448 struct value *discrim;
14f9c5c9
AS
6449 LONGEST discrim_val;
6450
0c281816
JB
6451 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6452 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6453 if (discrim == NULL)
14f9c5c9 6454 return -1;
0c281816 6455 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6456
6457 others_clause = -1;
6458 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6459 {
6460 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6461 others_clause = i;
14f9c5c9 6462 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6463 return i;
14f9c5c9
AS
6464 }
6465
6466 return others_clause;
6467}
d2e4a39e 6468\f
14f9c5c9
AS
6469
6470
4c4b4cd2 6471 /* Dynamic-Sized Records */
14f9c5c9
AS
6472
6473/* Strategy: The type ostensibly attached to a value with dynamic size
6474 (i.e., a size that is not statically recorded in the debugging
6475 data) does not accurately reflect the size or layout of the value.
6476 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6477 conventional types that are constructed on the fly. */
14f9c5c9
AS
6478
6479/* There is a subtle and tricky problem here. In general, we cannot
6480 determine the size of dynamic records without its data. However,
6481 the 'struct value' data structure, which GDB uses to represent
6482 quantities in the inferior process (the target), requires the size
6483 of the type at the time of its allocation in order to reserve space
6484 for GDB's internal copy of the data. That's why the
6485 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6486 rather than struct value*s.
14f9c5c9
AS
6487
6488 However, GDB's internal history variables ($1, $2, etc.) are
6489 struct value*s containing internal copies of the data that are not, in
6490 general, the same as the data at their corresponding addresses in
6491 the target. Fortunately, the types we give to these values are all
6492 conventional, fixed-size types (as per the strategy described
6493 above), so that we don't usually have to perform the
6494 'to_fixed_xxx_type' conversions to look at their values.
6495 Unfortunately, there is one exception: if one of the internal
6496 history variables is an array whose elements are unconstrained
6497 records, then we will need to create distinct fixed types for each
6498 element selected. */
6499
6500/* The upshot of all of this is that many routines take a (type, host
6501 address, target address) triple as arguments to represent a value.
6502 The host address, if non-null, is supposed to contain an internal
6503 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6504 target at the target address. */
14f9c5c9
AS
6505
6506/* Assuming that VAL0 represents a pointer value, the result of
6507 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6508 dynamic-sized types. */
14f9c5c9 6509
d2e4a39e
AS
6510struct value *
6511ada_value_ind (struct value *val0)
14f9c5c9 6512{
d2e4a39e 6513 struct value *val = unwrap_value (value_ind (val0));
4c4b4cd2 6514 return ada_to_fixed_value (val);
14f9c5c9
AS
6515}
6516
6517/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6518 qualifiers on VAL0. */
6519
d2e4a39e
AS
6520static struct value *
6521ada_coerce_ref (struct value *val0)
6522{
df407dfe 6523 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6524 {
6525 struct value *val = val0;
994b9211 6526 val = coerce_ref (val);
d2e4a39e 6527 val = unwrap_value (val);
4c4b4cd2 6528 return ada_to_fixed_value (val);
d2e4a39e
AS
6529 }
6530 else
14f9c5c9
AS
6531 return val0;
6532}
6533
6534/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6535 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6536
6537static unsigned int
ebf56fd3 6538align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6539{
6540 return (off + alignment - 1) & ~(alignment - 1);
6541}
6542
4c4b4cd2 6543/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6544
6545static unsigned int
ebf56fd3 6546field_alignment (struct type *type, int f)
14f9c5c9 6547{
d2e4a39e 6548 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6549 int len;
14f9c5c9
AS
6550 int align_offset;
6551
64a1bf19
JB
6552 /* The field name should never be null, unless the debugging information
6553 is somehow malformed. In this case, we assume the field does not
6554 require any alignment. */
6555 if (name == NULL)
6556 return 1;
6557
6558 len = strlen (name);
6559
4c4b4cd2
PH
6560 if (!isdigit (name[len - 1]))
6561 return 1;
14f9c5c9 6562
d2e4a39e 6563 if (isdigit (name[len - 2]))
14f9c5c9
AS
6564 align_offset = len - 2;
6565 else
6566 align_offset = len - 1;
6567
4c4b4cd2 6568 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6569 return TARGET_CHAR_BIT;
6570
4c4b4cd2
PH
6571 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6572}
6573
6574/* Find a symbol named NAME. Ignores ambiguity. */
6575
6576struct symbol *
6577ada_find_any_symbol (const char *name)
6578{
6579 struct symbol *sym;
6580
6581 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6582 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6583 return sym;
6584
6585 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6586 return sym;
14f9c5c9
AS
6587}
6588
6589/* Find a type named NAME. Ignores ambiguity. */
4c4b4cd2 6590
d2e4a39e 6591struct type *
ebf56fd3 6592ada_find_any_type (const char *name)
14f9c5c9 6593{
4c4b4cd2 6594 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6595
14f9c5c9
AS
6596 if (sym != NULL)
6597 return SYMBOL_TYPE (sym);
6598
6599 return NULL;
6600}
6601
aeb5907d
JB
6602/* Given NAME and an associated BLOCK, search all symbols for
6603 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6604 associated to NAME. Return this symbol if found, return
6605 NULL otherwise. */
6606
6607struct symbol *
6608ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6609{
6610 struct symbol *sym;
6611
6612 sym = find_old_style_renaming_symbol (name, block);
6613
6614 if (sym != NULL)
6615 return sym;
6616
6617 /* Not right yet. FIXME pnh 7/20/2007. */
6618 sym = ada_find_any_symbol (name);
6619 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6620 return sym;
6621 else
6622 return NULL;
6623}
6624
6625static struct symbol *
6626find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6627{
7f0df278 6628 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6629 char *rename;
6630
6631 if (function_sym != NULL)
6632 {
6633 /* If the symbol is defined inside a function, NAME is not fully
6634 qualified. This means we need to prepend the function name
6635 as well as adding the ``___XR'' suffix to build the name of
6636 the associated renaming symbol. */
6637 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6638 /* Function names sometimes contain suffixes used
6639 for instance to qualify nested subprograms. When building
6640 the XR type name, we need to make sure that this suffix is
6641 not included. So do not include any suffix in the function
6642 name length below. */
6643 const int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6644 const int rename_len = function_name_len + 2 /* "__" */
6645 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6646
529cad9c
PH
6647 /* Strip the suffix if necessary. */
6648 function_name[function_name_len] = '\0';
6649
4c4b4cd2
PH
6650 /* Library-level functions are a special case, as GNAT adds
6651 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6652 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6653 have this prefix, so we need to skip this prefix if present. */
6654 if (function_name_len > 5 /* "_ada_" */
6655 && strstr (function_name, "_ada_") == function_name)
6656 function_name = function_name + 5;
6657
6658 rename = (char *) alloca (rename_len * sizeof (char));
6659 sprintf (rename, "%s__%s___XR", function_name, name);
6660 }
6661 else
6662 {
6663 const int rename_len = strlen (name) + 6;
6664 rename = (char *) alloca (rename_len * sizeof (char));
6665 sprintf (rename, "%s___XR", name);
6666 }
6667
6668 return ada_find_any_symbol (rename);
6669}
6670
14f9c5c9 6671/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6672 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6673 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6674 otherwise return 0. */
6675
14f9c5c9 6676int
d2e4a39e 6677ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6678{
6679 if (type1 == NULL)
6680 return 1;
6681 else if (type0 == NULL)
6682 return 0;
6683 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6684 return 1;
6685 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6686 return 0;
4c4b4cd2
PH
6687 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6688 return 1;
14f9c5c9
AS
6689 else if (ada_is_packed_array_type (type0))
6690 return 1;
4c4b4cd2
PH
6691 else if (ada_is_array_descriptor_type (type0)
6692 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6693 return 1;
aeb5907d
JB
6694 else
6695 {
6696 const char *type0_name = type_name_no_tag (type0);
6697 const char *type1_name = type_name_no_tag (type1);
6698
6699 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6700 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6701 return 1;
6702 }
14f9c5c9
AS
6703 return 0;
6704}
6705
6706/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6707 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6708
d2e4a39e
AS
6709char *
6710ada_type_name (struct type *type)
14f9c5c9 6711{
d2e4a39e 6712 if (type == NULL)
14f9c5c9
AS
6713 return NULL;
6714 else if (TYPE_NAME (type) != NULL)
6715 return TYPE_NAME (type);
6716 else
6717 return TYPE_TAG_NAME (type);
6718}
6719
6720/* Find a parallel type to TYPE whose name is formed by appending
4c4b4cd2 6721 SUFFIX to the name of TYPE. */
14f9c5c9 6722
d2e4a39e 6723struct type *
ebf56fd3 6724ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6725{
d2e4a39e 6726 static char *name;
14f9c5c9 6727 static size_t name_len = 0;
14f9c5c9 6728 int len;
d2e4a39e
AS
6729 char *typename = ada_type_name (type);
6730
14f9c5c9
AS
6731 if (typename == NULL)
6732 return NULL;
6733
6734 len = strlen (typename);
6735
d2e4a39e 6736 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
14f9c5c9
AS
6737
6738 strcpy (name, typename);
6739 strcpy (name + len, suffix);
6740
6741 return ada_find_any_type (name);
6742}
6743
6744
6745/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6746 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6747
d2e4a39e
AS
6748static struct type *
6749dynamic_template_type (struct type *type)
14f9c5c9 6750{
61ee279c 6751 type = ada_check_typedef (type);
14f9c5c9
AS
6752
6753 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6754 || ada_type_name (type) == NULL)
14f9c5c9 6755 return NULL;
d2e4a39e 6756 else
14f9c5c9
AS
6757 {
6758 int len = strlen (ada_type_name (type));
4c4b4cd2
PH
6759 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6760 return type;
14f9c5c9 6761 else
4c4b4cd2 6762 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
6763 }
6764}
6765
6766/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 6767 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 6768
d2e4a39e
AS
6769static int
6770is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
6771{
6772 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
d2e4a39e 6773 return name != NULL
14f9c5c9
AS
6774 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6775 && strstr (name, "___XVL") != NULL;
6776}
6777
4c4b4cd2
PH
6778/* The index of the variant field of TYPE, or -1 if TYPE does not
6779 represent a variant record type. */
14f9c5c9 6780
d2e4a39e 6781static int
4c4b4cd2 6782variant_field_index (struct type *type)
14f9c5c9
AS
6783{
6784 int f;
6785
4c4b4cd2
PH
6786 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6787 return -1;
6788
6789 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6790 {
6791 if (ada_is_variant_part (type, f))
6792 return f;
6793 }
6794 return -1;
14f9c5c9
AS
6795}
6796
4c4b4cd2
PH
6797/* A record type with no fields. */
6798
d2e4a39e
AS
6799static struct type *
6800empty_record (struct objfile *objfile)
14f9c5c9 6801{
d2e4a39e 6802 struct type *type = alloc_type (objfile);
14f9c5c9
AS
6803 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6804 TYPE_NFIELDS (type) = 0;
6805 TYPE_FIELDS (type) = NULL;
b1f33ddd 6806 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
6807 TYPE_NAME (type) = "<empty>";
6808 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
6809 TYPE_LENGTH (type) = 0;
6810 return type;
6811}
6812
6813/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
6814 the value of type TYPE at VALADDR or ADDRESS (see comments at
6815 the beginning of this section) VAL according to GNAT conventions.
6816 DVAL0 should describe the (portion of a) record that contains any
df407dfe 6817 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
6818 an outer-level type (i.e., as opposed to a branch of a variant.) A
6819 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 6820 of the variant.
14f9c5c9 6821
4c4b4cd2
PH
6822 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6823 length are not statically known are discarded. As a consequence,
6824 VALADDR, ADDRESS and DVAL0 are ignored.
6825
6826 NOTE: Limitations: For now, we assume that dynamic fields and
6827 variants occupy whole numbers of bytes. However, they need not be
6828 byte-aligned. */
6829
6830struct type *
10a2c479 6831ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 6832 const gdb_byte *valaddr,
4c4b4cd2
PH
6833 CORE_ADDR address, struct value *dval0,
6834 int keep_dynamic_fields)
14f9c5c9 6835{
d2e4a39e
AS
6836 struct value *mark = value_mark ();
6837 struct value *dval;
6838 struct type *rtype;
14f9c5c9 6839 int nfields, bit_len;
4c4b4cd2 6840 int variant_field;
14f9c5c9 6841 long off;
4c4b4cd2 6842 int fld_bit_len, bit_incr;
14f9c5c9
AS
6843 int f;
6844
4c4b4cd2
PH
6845 /* Compute the number of fields in this record type that are going
6846 to be processed: unless keep_dynamic_fields, this includes only
6847 fields whose position and length are static will be processed. */
6848 if (keep_dynamic_fields)
6849 nfields = TYPE_NFIELDS (type);
6850 else
6851 {
6852 nfields = 0;
76a01679 6853 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
6854 && !ada_is_variant_part (type, nfields)
6855 && !is_dynamic_field (type, nfields))
6856 nfields++;
6857 }
6858
14f9c5c9
AS
6859 rtype = alloc_type (TYPE_OBJFILE (type));
6860 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6861 INIT_CPLUS_SPECIFIC (rtype);
6862 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 6863 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
6864 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6865 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6866 TYPE_NAME (rtype) = ada_type_name (type);
6867 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6868 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 6869
d2e4a39e
AS
6870 off = 0;
6871 bit_len = 0;
4c4b4cd2
PH
6872 variant_field = -1;
6873
14f9c5c9
AS
6874 for (f = 0; f < nfields; f += 1)
6875 {
6c038f32
PH
6876 off = align_value (off, field_alignment (type, f))
6877 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 6878 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 6879 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 6880
d2e4a39e 6881 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
6882 {
6883 variant_field = f;
6884 fld_bit_len = bit_incr = 0;
6885 }
14f9c5c9 6886 else if (is_dynamic_field (type, f))
4c4b4cd2
PH
6887 {
6888 if (dval0 == NULL)
6889 dval = value_from_contents_and_address (rtype, valaddr, address);
6890 else
6891 dval = dval0;
6892
1ed6ede0
JB
6893 /* Get the fixed type of the field. Note that, in this case, we
6894 do not want to get the real type out of the tag: if the current
6895 field is the parent part of a tagged record, we will get the
6896 tag of the object. Clearly wrong: the real type of the parent
6897 is not the real type of the child. We would end up in an infinite
6898 loop. */
4c4b4cd2
PH
6899 TYPE_FIELD_TYPE (rtype, f) =
6900 ada_to_fixed_type
6901 (ada_get_base_type
6902 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6903 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
1ed6ede0 6904 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
4c4b4cd2
PH
6905 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6906 bit_incr = fld_bit_len =
6907 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6908 }
14f9c5c9 6909 else
4c4b4cd2
PH
6910 {
6911 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6912 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6913 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6914 bit_incr = fld_bit_len =
6915 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6916 else
6917 bit_incr = fld_bit_len =
6918 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6919 }
14f9c5c9 6920 if (off + fld_bit_len > bit_len)
4c4b4cd2 6921 bit_len = off + fld_bit_len;
14f9c5c9 6922 off += bit_incr;
4c4b4cd2
PH
6923 TYPE_LENGTH (rtype) =
6924 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 6925 }
4c4b4cd2
PH
6926
6927 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 6928 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
6929 the record. This can happen in the presence of representation
6930 clauses. */
6931 if (variant_field >= 0)
6932 {
6933 struct type *branch_type;
6934
6935 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6936
6937 if (dval0 == NULL)
6938 dval = value_from_contents_and_address (rtype, valaddr, address);
6939 else
6940 dval = dval0;
6941
6942 branch_type =
6943 to_fixed_variant_branch_type
6944 (TYPE_FIELD_TYPE (type, variant_field),
6945 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6946 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6947 if (branch_type == NULL)
6948 {
6949 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6950 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6951 TYPE_NFIELDS (rtype) -= 1;
6952 }
6953 else
6954 {
6955 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6956 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6957 fld_bit_len =
6958 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6959 TARGET_CHAR_BIT;
6960 if (off + fld_bit_len > bit_len)
6961 bit_len = off + fld_bit_len;
6962 TYPE_LENGTH (rtype) =
6963 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6964 }
6965 }
6966
714e53ab
PH
6967 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6968 should contain the alignment of that record, which should be a strictly
6969 positive value. If null or negative, then something is wrong, most
6970 probably in the debug info. In that case, we don't round up the size
6971 of the resulting type. If this record is not part of another structure,
6972 the current RTYPE length might be good enough for our purposes. */
6973 if (TYPE_LENGTH (type) <= 0)
6974 {
323e0a4a
AC
6975 if (TYPE_NAME (rtype))
6976 warning (_("Invalid type size for `%s' detected: %d."),
6977 TYPE_NAME (rtype), TYPE_LENGTH (type));
6978 else
6979 warning (_("Invalid type size for <unnamed> detected: %d."),
6980 TYPE_LENGTH (type));
714e53ab
PH
6981 }
6982 else
6983 {
6984 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6985 TYPE_LENGTH (type));
6986 }
14f9c5c9
AS
6987
6988 value_free_to_mark (mark);
d2e4a39e 6989 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 6990 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
6991 return rtype;
6992}
6993
4c4b4cd2
PH
6994/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6995 of 1. */
14f9c5c9 6996
d2e4a39e 6997static struct type *
fc1a4b47 6998template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
6999 CORE_ADDR address, struct value *dval0)
7000{
7001 return ada_template_to_fixed_record_type_1 (type, valaddr,
7002 address, dval0, 1);
7003}
7004
7005/* An ordinary record type in which ___XVL-convention fields and
7006 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7007 static approximations, containing all possible fields. Uses
7008 no runtime values. Useless for use in values, but that's OK,
7009 since the results are used only for type determinations. Works on both
7010 structs and unions. Representation note: to save space, we memorize
7011 the result of this function in the TYPE_TARGET_TYPE of the
7012 template type. */
7013
7014static struct type *
7015template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7016{
7017 struct type *type;
7018 int nfields;
7019 int f;
7020
4c4b4cd2
PH
7021 if (TYPE_TARGET_TYPE (type0) != NULL)
7022 return TYPE_TARGET_TYPE (type0);
7023
7024 nfields = TYPE_NFIELDS (type0);
7025 type = type0;
14f9c5c9
AS
7026
7027 for (f = 0; f < nfields; f += 1)
7028 {
61ee279c 7029 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7030 struct type *new_type;
14f9c5c9 7031
4c4b4cd2
PH
7032 if (is_dynamic_field (type0, f))
7033 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7034 else
f192137b 7035 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7036 if (type == type0 && new_type != field_type)
7037 {
7038 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7039 TYPE_CODE (type) = TYPE_CODE (type0);
7040 INIT_CPLUS_SPECIFIC (type);
7041 TYPE_NFIELDS (type) = nfields;
7042 TYPE_FIELDS (type) = (struct field *)
7043 TYPE_ALLOC (type, nfields * sizeof (struct field));
7044 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7045 sizeof (struct field) * nfields);
7046 TYPE_NAME (type) = ada_type_name (type0);
7047 TYPE_TAG_NAME (type) = NULL;
876cecd0 7048 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7049 TYPE_LENGTH (type) = 0;
7050 }
7051 TYPE_FIELD_TYPE (type, f) = new_type;
7052 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7053 }
14f9c5c9
AS
7054 return type;
7055}
7056
4c4b4cd2 7057/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7058 whose address in memory is ADDRESS, returns a revision of TYPE,
7059 which should be a non-dynamic-sized record, in which the variant
7060 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7061 for discriminant values in DVAL0, which can be NULL if the record
7062 contains the necessary discriminant values. */
7063
d2e4a39e 7064static struct type *
fc1a4b47 7065to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7066 CORE_ADDR address, struct value *dval0)
14f9c5c9 7067{
d2e4a39e 7068 struct value *mark = value_mark ();
4c4b4cd2 7069 struct value *dval;
d2e4a39e 7070 struct type *rtype;
14f9c5c9
AS
7071 struct type *branch_type;
7072 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7073 int variant_field = variant_field_index (type);
14f9c5c9 7074
4c4b4cd2 7075 if (variant_field == -1)
14f9c5c9
AS
7076 return type;
7077
4c4b4cd2
PH
7078 if (dval0 == NULL)
7079 dval = value_from_contents_and_address (type, valaddr, address);
7080 else
7081 dval = dval0;
7082
14f9c5c9
AS
7083 rtype = alloc_type (TYPE_OBJFILE (type));
7084 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7085 INIT_CPLUS_SPECIFIC (rtype);
7086 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7087 TYPE_FIELDS (rtype) =
7088 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7089 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7090 sizeof (struct field) * nfields);
14f9c5c9
AS
7091 TYPE_NAME (rtype) = ada_type_name (type);
7092 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7093 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7094 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7095
4c4b4cd2
PH
7096 branch_type = to_fixed_variant_branch_type
7097 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7098 cond_offset_host (valaddr,
4c4b4cd2
PH
7099 TYPE_FIELD_BITPOS (type, variant_field)
7100 / TARGET_CHAR_BIT),
d2e4a39e 7101 cond_offset_target (address,
4c4b4cd2
PH
7102 TYPE_FIELD_BITPOS (type, variant_field)
7103 / TARGET_CHAR_BIT), dval);
d2e4a39e 7104 if (branch_type == NULL)
14f9c5c9 7105 {
4c4b4cd2
PH
7106 int f;
7107 for (f = variant_field + 1; f < nfields; f += 1)
7108 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7109 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7110 }
7111 else
7112 {
4c4b4cd2
PH
7113 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7114 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7115 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7116 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7117 }
4c4b4cd2 7118 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7119
4c4b4cd2 7120 value_free_to_mark (mark);
14f9c5c9
AS
7121 return rtype;
7122}
7123
7124/* An ordinary record type (with fixed-length fields) that describes
7125 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7126 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7127 should be in DVAL, a record value; it may be NULL if the object
7128 at ADDR itself contains any necessary discriminant values.
7129 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7130 values from the record are needed. Except in the case that DVAL,
7131 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7132 unchecked) is replaced by a particular branch of the variant.
7133
7134 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7135 is questionable and may be removed. It can arise during the
7136 processing of an unconstrained-array-of-record type where all the
7137 variant branches have exactly the same size. This is because in
7138 such cases, the compiler does not bother to use the XVS convention
7139 when encoding the record. I am currently dubious of this
7140 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7141
d2e4a39e 7142static struct type *
fc1a4b47 7143to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7144 CORE_ADDR address, struct value *dval)
14f9c5c9 7145{
d2e4a39e 7146 struct type *templ_type;
14f9c5c9 7147
876cecd0 7148 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7149 return type0;
7150
d2e4a39e 7151 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7152
7153 if (templ_type != NULL)
7154 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7155 else if (variant_field_index (type0) >= 0)
7156 {
7157 if (dval == NULL && valaddr == NULL && address == 0)
7158 return type0;
7159 return to_record_with_fixed_variant_part (type0, valaddr, address,
7160 dval);
7161 }
14f9c5c9
AS
7162 else
7163 {
876cecd0 7164 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7165 return type0;
7166 }
7167
7168}
7169
7170/* An ordinary record type (with fixed-length fields) that describes
7171 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7172 union type. Any necessary discriminants' values should be in DVAL,
7173 a record value. That is, this routine selects the appropriate
7174 branch of the union at ADDR according to the discriminant value
b1f33ddd
JB
7175 indicated in the union's type name. Returns VAR_TYPE0 itself if
7176 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7177
d2e4a39e 7178static struct type *
fc1a4b47 7179to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7180 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7181{
7182 int which;
d2e4a39e
AS
7183 struct type *templ_type;
7184 struct type *var_type;
14f9c5c9
AS
7185
7186 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7187 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7188 else
14f9c5c9
AS
7189 var_type = var_type0;
7190
7191 templ_type = ada_find_parallel_type (var_type, "___XVU");
7192
7193 if (templ_type != NULL)
7194 var_type = templ_type;
7195
b1f33ddd
JB
7196 if (is_unchecked_variant (var_type, value_type (dval)))
7197 return var_type0;
d2e4a39e
AS
7198 which =
7199 ada_which_variant_applies (var_type,
0fd88904 7200 value_type (dval), value_contents (dval));
14f9c5c9
AS
7201
7202 if (which < 0)
7203 return empty_record (TYPE_OBJFILE (var_type));
7204 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7205 return to_fixed_record_type
d2e4a39e
AS
7206 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7207 valaddr, address, dval);
4c4b4cd2 7208 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7209 return
7210 to_fixed_record_type
7211 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7212 else
7213 return TYPE_FIELD_TYPE (var_type, which);
7214}
7215
7216/* Assuming that TYPE0 is an array type describing the type of a value
7217 at ADDR, and that DVAL describes a record containing any
7218 discriminants used in TYPE0, returns a type for the value that
7219 contains no dynamic components (that is, no components whose sizes
7220 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7221 true, gives an error message if the resulting type's size is over
4c4b4cd2 7222 varsize_limit. */
14f9c5c9 7223
d2e4a39e
AS
7224static struct type *
7225to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7226 int ignore_too_big)
14f9c5c9 7227{
d2e4a39e
AS
7228 struct type *index_type_desc;
7229 struct type *result;
14f9c5c9 7230
4c4b4cd2 7231 if (ada_is_packed_array_type (type0) /* revisit? */
876cecd0 7232 || TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7233 return type0;
14f9c5c9
AS
7234
7235 index_type_desc = ada_find_parallel_type (type0, "___XA");
7236 if (index_type_desc == NULL)
7237 {
61ee279c 7238 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
14f9c5c9 7239 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7240 depend on the contents of the array in properly constructed
7241 debugging data. */
529cad9c
PH
7242 /* Create a fixed version of the array element type.
7243 We're not providing the address of an element here,
e1d5a0d2 7244 and thus the actual object value cannot be inspected to do
529cad9c
PH
7245 the conversion. This should not be a problem, since arrays of
7246 unconstrained objects are not allowed. In particular, all
7247 the elements of an array of a tagged type should all be of
7248 the same type specified in the debugging info. No need to
7249 consult the object tag. */
1ed6ede0 7250 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9
AS
7251
7252 if (elt_type0 == elt_type)
4c4b4cd2 7253 result = type0;
14f9c5c9 7254 else
4c4b4cd2
PH
7255 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7256 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7257 }
7258 else
7259 {
7260 int i;
7261 struct type *elt_type0;
7262
7263 elt_type0 = type0;
7264 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7265 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7266
7267 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7268 depend on the contents of the array in properly constructed
7269 debugging data. */
529cad9c
PH
7270 /* Create a fixed version of the array element type.
7271 We're not providing the address of an element here,
e1d5a0d2 7272 and thus the actual object value cannot be inspected to do
529cad9c
PH
7273 the conversion. This should not be a problem, since arrays of
7274 unconstrained objects are not allowed. In particular, all
7275 the elements of an array of a tagged type should all be of
7276 the same type specified in the debugging info. No need to
7277 consult the object tag. */
1ed6ede0
JB
7278 result =
7279 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
14f9c5c9 7280 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7281 {
7282 struct type *range_type =
7283 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7284 dval, TYPE_OBJFILE (type0));
7285 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7286 result, range_type);
7287 }
d2e4a39e 7288 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7289 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7290 }
7291
876cecd0 7292 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7293 return result;
d2e4a39e 7294}
14f9c5c9
AS
7295
7296
7297/* A standard type (containing no dynamically sized components)
7298 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7299 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7300 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7301 ADDRESS or in VALADDR contains these discriminants.
7302
1ed6ede0
JB
7303 If CHECK_TAG is not null, in the case of tagged types, this function
7304 attempts to locate the object's tag and use it to compute the actual
7305 type. However, when ADDRESS is null, we cannot use it to determine the
7306 location of the tag, and therefore compute the tagged type's actual type.
7307 So we return the tagged type without consulting the tag. */
529cad9c 7308
f192137b
JB
7309static struct type *
7310ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7311 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7312{
61ee279c 7313 type = ada_check_typedef (type);
d2e4a39e
AS
7314 switch (TYPE_CODE (type))
7315 {
7316 default:
14f9c5c9 7317 return type;
d2e4a39e 7318 case TYPE_CODE_STRUCT:
4c4b4cd2 7319 {
76a01679 7320 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7321 struct type *fixed_record_type =
7322 to_fixed_record_type (type, valaddr, address, NULL);
529cad9c
PH
7323 /* If STATIC_TYPE is a tagged type and we know the object's address,
7324 then we can determine its tag, and compute the object's actual
1ed6ede0
JB
7325 type from there. Note that we have to use the fixed record
7326 type (the parent part of the record may have dynamic fields
7327 and the way the location of _tag is expressed may depend on
7328 them). */
529cad9c 7329
1ed6ede0 7330 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7331 {
7332 struct type *real_type =
1ed6ede0
JB
7333 type_from_tag (value_tag_from_contents_and_address
7334 (fixed_record_type,
7335 valaddr,
7336 address));
76a01679 7337 if (real_type != NULL)
1ed6ede0 7338 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7339 }
4af88198
JB
7340
7341 /* Check to see if there is a parallel ___XVZ variable.
7342 If there is, then it provides the actual size of our type. */
7343 else if (ada_type_name (fixed_record_type) != NULL)
7344 {
7345 char *name = ada_type_name (fixed_record_type);
7346 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7347 int xvz_found = 0;
7348 LONGEST size;
7349
7350 sprintf (xvz_name, "%s___XVZ", name);
7351 size = get_int_var_value (xvz_name, &xvz_found);
7352 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7353 {
7354 fixed_record_type = copy_type (fixed_record_type);
7355 TYPE_LENGTH (fixed_record_type) = size;
7356
7357 /* The FIXED_RECORD_TYPE may have be a stub. We have
7358 observed this when the debugging info is STABS, and
7359 apparently it is something that is hard to fix.
7360
7361 In practice, we don't need the actual type definition
7362 at all, because the presence of the XVZ variable allows us
7363 to assume that there must be a XVS type as well, which we
7364 should be able to use later, when we need the actual type
7365 definition.
7366
7367 In the meantime, pretend that the "fixed" type we are
7368 returning is NOT a stub, because this can cause trouble
7369 when using this type to create new types targeting it.
7370 Indeed, the associated creation routines often check
7371 whether the target type is a stub and will try to replace
7372 it, thus using a type with the wrong size. This, in turn,
7373 might cause the new type to have the wrong size too.
7374 Consider the case of an array, for instance, where the size
7375 of the array is computed from the number of elements in
7376 our array multiplied by the size of its element. */
7377 TYPE_STUB (fixed_record_type) = 0;
7378 }
7379 }
1ed6ede0 7380 return fixed_record_type;
4c4b4cd2 7381 }
d2e4a39e 7382 case TYPE_CODE_ARRAY:
4c4b4cd2 7383 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7384 case TYPE_CODE_UNION:
7385 if (dval == NULL)
4c4b4cd2 7386 return type;
d2e4a39e 7387 else
4c4b4cd2 7388 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7389 }
14f9c5c9
AS
7390}
7391
f192137b
JB
7392/* The same as ada_to_fixed_type_1, except that it preserves the type
7393 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7394 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7395
7396struct type *
7397ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7398 CORE_ADDR address, struct value *dval, int check_tag)
7399
7400{
7401 struct type *fixed_type =
7402 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7403
7404 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7405 && TYPE_TARGET_TYPE (type) == fixed_type)
7406 return type;
7407
7408 return fixed_type;
7409}
7410
14f9c5c9 7411/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7412 TYPE0, but based on no runtime data. */
14f9c5c9 7413
d2e4a39e
AS
7414static struct type *
7415to_static_fixed_type (struct type *type0)
14f9c5c9 7416{
d2e4a39e 7417 struct type *type;
14f9c5c9
AS
7418
7419 if (type0 == NULL)
7420 return NULL;
7421
876cecd0 7422 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7423 return type0;
7424
61ee279c 7425 type0 = ada_check_typedef (type0);
d2e4a39e 7426
14f9c5c9
AS
7427 switch (TYPE_CODE (type0))
7428 {
7429 default:
7430 return type0;
7431 case TYPE_CODE_STRUCT:
7432 type = dynamic_template_type (type0);
d2e4a39e 7433 if (type != NULL)
4c4b4cd2
PH
7434 return template_to_static_fixed_type (type);
7435 else
7436 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7437 case TYPE_CODE_UNION:
7438 type = ada_find_parallel_type (type0, "___XVU");
7439 if (type != NULL)
4c4b4cd2
PH
7440 return template_to_static_fixed_type (type);
7441 else
7442 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7443 }
7444}
7445
4c4b4cd2
PH
7446/* A static approximation of TYPE with all type wrappers removed. */
7447
d2e4a39e
AS
7448static struct type *
7449static_unwrap_type (struct type *type)
14f9c5c9
AS
7450{
7451 if (ada_is_aligner_type (type))
7452 {
61ee279c 7453 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7454 if (ada_type_name (type1) == NULL)
4c4b4cd2 7455 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7456
7457 return static_unwrap_type (type1);
7458 }
d2e4a39e 7459 else
14f9c5c9 7460 {
d2e4a39e
AS
7461 struct type *raw_real_type = ada_get_base_type (type);
7462 if (raw_real_type == type)
4c4b4cd2 7463 return type;
14f9c5c9 7464 else
4c4b4cd2 7465 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7466 }
7467}
7468
7469/* In some cases, incomplete and private types require
4c4b4cd2 7470 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7471 type Foo;
7472 type FooP is access Foo;
7473 V: FooP;
7474 type Foo is array ...;
4c4b4cd2 7475 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7476 cross-references to such types, we instead substitute for FooP a
7477 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7478 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7479
7480/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7481 exists, otherwise TYPE. */
7482
d2e4a39e 7483struct type *
61ee279c 7484ada_check_typedef (struct type *type)
14f9c5c9 7485{
727e3d2e
JB
7486 if (type == NULL)
7487 return NULL;
7488
14f9c5c9
AS
7489 CHECK_TYPEDEF (type);
7490 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7491 || !TYPE_STUB (type)
14f9c5c9
AS
7492 || TYPE_TAG_NAME (type) == NULL)
7493 return type;
d2e4a39e 7494 else
14f9c5c9 7495 {
d2e4a39e
AS
7496 char *name = TYPE_TAG_NAME (type);
7497 struct type *type1 = ada_find_any_type (name);
14f9c5c9
AS
7498 return (type1 == NULL) ? type : type1;
7499 }
7500}
7501
7502/* A value representing the data at VALADDR/ADDRESS as described by
7503 type TYPE0, but with a standard (static-sized) type that correctly
7504 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7505 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7506 creation of struct values]. */
14f9c5c9 7507
4c4b4cd2
PH
7508static struct value *
7509ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7510 struct value *val0)
14f9c5c9 7511{
1ed6ede0 7512 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
14f9c5c9
AS
7513 if (type == type0 && val0 != NULL)
7514 return val0;
d2e4a39e 7515 else
4c4b4cd2
PH
7516 return value_from_contents_and_address (type, 0, address);
7517}
7518
7519/* A value representing VAL, but with a standard (static-sized) type
7520 that correctly describes it. Does not necessarily create a new
7521 value. */
7522
7523static struct value *
7524ada_to_fixed_value (struct value *val)
7525{
df407dfe
AC
7526 return ada_to_fixed_value_create (value_type (val),
7527 VALUE_ADDRESS (val) + value_offset (val),
4c4b4cd2 7528 val);
14f9c5c9
AS
7529}
7530
4c4b4cd2 7531/* A value representing VAL, but with a standard (static-sized) type
14f9c5c9
AS
7532 chosen to approximate the real type of VAL as well as possible, but
7533 without consulting any runtime values. For Ada dynamic-sized
4c4b4cd2 7534 types, therefore, the type of the result is likely to be inaccurate. */
14f9c5c9 7535
d2e4a39e
AS
7536struct value *
7537ada_to_static_fixed_value (struct value *val)
14f9c5c9 7538{
d2e4a39e 7539 struct type *type =
df407dfe
AC
7540 to_static_fixed_type (static_unwrap_type (value_type (val)));
7541 if (type == value_type (val))
14f9c5c9
AS
7542 return val;
7543 else
4c4b4cd2 7544 return coerce_unspec_val_to_type (val, type);
14f9c5c9 7545}
d2e4a39e 7546\f
14f9c5c9 7547
14f9c5c9
AS
7548/* Attributes */
7549
4c4b4cd2
PH
7550/* Table mapping attribute numbers to names.
7551 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7552
d2e4a39e 7553static const char *attribute_names[] = {
14f9c5c9
AS
7554 "<?>",
7555
d2e4a39e 7556 "first",
14f9c5c9
AS
7557 "last",
7558 "length",
7559 "image",
14f9c5c9
AS
7560 "max",
7561 "min",
4c4b4cd2
PH
7562 "modulus",
7563 "pos",
7564 "size",
7565 "tag",
14f9c5c9 7566 "val",
14f9c5c9
AS
7567 0
7568};
7569
d2e4a39e 7570const char *
4c4b4cd2 7571ada_attribute_name (enum exp_opcode n)
14f9c5c9 7572{
4c4b4cd2
PH
7573 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7574 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7575 else
7576 return attribute_names[0];
7577}
7578
4c4b4cd2 7579/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7580
4c4b4cd2
PH
7581static LONGEST
7582pos_atr (struct value *arg)
14f9c5c9 7583{
24209737
PH
7584 struct value *val = coerce_ref (arg);
7585 struct type *type = value_type (val);
14f9c5c9 7586
d2e4a39e 7587 if (!discrete_type_p (type))
323e0a4a 7588 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7589
7590 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7591 {
7592 int i;
24209737 7593 LONGEST v = value_as_long (val);
14f9c5c9 7594
d2e4a39e 7595 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7596 {
7597 if (v == TYPE_FIELD_BITPOS (type, i))
7598 return i;
7599 }
323e0a4a 7600 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7601 }
7602 else
24209737 7603 return value_as_long (val);
4c4b4cd2
PH
7604}
7605
7606static struct value *
3cb382c9 7607value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 7608{
3cb382c9 7609 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
7610}
7611
4c4b4cd2 7612/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7613
d2e4a39e
AS
7614static struct value *
7615value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7616{
d2e4a39e 7617 if (!discrete_type_p (type))
323e0a4a 7618 error (_("'VAL only defined on discrete types"));
df407dfe 7619 if (!integer_type_p (value_type (arg)))
323e0a4a 7620 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7621
7622 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7623 {
7624 long pos = value_as_long (arg);
7625 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7626 error (_("argument to 'VAL out of range"));
d2e4a39e 7627 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7628 }
7629 else
7630 return value_from_longest (type, value_as_long (arg));
7631}
14f9c5c9 7632\f
d2e4a39e 7633
4c4b4cd2 7634 /* Evaluation */
14f9c5c9 7635
4c4b4cd2
PH
7636/* True if TYPE appears to be an Ada character type.
7637 [At the moment, this is true only for Character and Wide_Character;
7638 It is a heuristic test that could stand improvement]. */
14f9c5c9 7639
d2e4a39e
AS
7640int
7641ada_is_character_type (struct type *type)
14f9c5c9 7642{
7b9f71f2
JB
7643 const char *name;
7644
7645 /* If the type code says it's a character, then assume it really is,
7646 and don't check any further. */
7647 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7648 return 1;
7649
7650 /* Otherwise, assume it's a character type iff it is a discrete type
7651 with a known character type name. */
7652 name = ada_type_name (type);
7653 return (name != NULL
7654 && (TYPE_CODE (type) == TYPE_CODE_INT
7655 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7656 && (strcmp (name, "character") == 0
7657 || strcmp (name, "wide_character") == 0
5a517ebd 7658 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 7659 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
7660}
7661
4c4b4cd2 7662/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
7663
7664int
ebf56fd3 7665ada_is_string_type (struct type *type)
14f9c5c9 7666{
61ee279c 7667 type = ada_check_typedef (type);
d2e4a39e 7668 if (type != NULL
14f9c5c9 7669 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
7670 && (ada_is_simple_array_type (type)
7671 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
7672 && ada_array_arity (type) == 1)
7673 {
7674 struct type *elttype = ada_array_element_type (type, 1);
7675
7676 return ada_is_character_type (elttype);
7677 }
d2e4a39e 7678 else
14f9c5c9
AS
7679 return 0;
7680}
7681
7682
7683/* True if TYPE is a struct type introduced by the compiler to force the
7684 alignment of a value. Such types have a single field with a
4c4b4cd2 7685 distinctive name. */
14f9c5c9
AS
7686
7687int
ebf56fd3 7688ada_is_aligner_type (struct type *type)
14f9c5c9 7689{
61ee279c 7690 type = ada_check_typedef (type);
714e53ab
PH
7691
7692 /* If we can find a parallel XVS type, then the XVS type should
7693 be used instead of this type. And hence, this is not an aligner
7694 type. */
7695 if (ada_find_parallel_type (type, "___XVS") != NULL)
7696 return 0;
7697
14f9c5c9 7698 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
7699 && TYPE_NFIELDS (type) == 1
7700 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
7701}
7702
7703/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 7704 the parallel type. */
14f9c5c9 7705
d2e4a39e
AS
7706struct type *
7707ada_get_base_type (struct type *raw_type)
14f9c5c9 7708{
d2e4a39e
AS
7709 struct type *real_type_namer;
7710 struct type *raw_real_type;
14f9c5c9
AS
7711
7712 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7713 return raw_type;
7714
7715 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 7716 if (real_type_namer == NULL
14f9c5c9
AS
7717 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7718 || TYPE_NFIELDS (real_type_namer) != 1)
7719 return raw_type;
7720
7721 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
d2e4a39e 7722 if (raw_real_type == NULL)
14f9c5c9
AS
7723 return raw_type;
7724 else
7725 return raw_real_type;
d2e4a39e 7726}
14f9c5c9 7727
4c4b4cd2 7728/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 7729
d2e4a39e
AS
7730struct type *
7731ada_aligned_type (struct type *type)
14f9c5c9
AS
7732{
7733 if (ada_is_aligner_type (type))
7734 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7735 else
7736 return ada_get_base_type (type);
7737}
7738
7739
7740/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 7741 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 7742
fc1a4b47
AC
7743const gdb_byte *
7744ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 7745{
d2e4a39e 7746 if (ada_is_aligner_type (type))
14f9c5c9 7747 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
7748 valaddr +
7749 TYPE_FIELD_BITPOS (type,
7750 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
7751 else
7752 return valaddr;
7753}
7754
4c4b4cd2
PH
7755
7756
14f9c5c9 7757/* The printed representation of an enumeration literal with encoded
4c4b4cd2 7758 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
7759const char *
7760ada_enum_name (const char *name)
14f9c5c9 7761{
4c4b4cd2
PH
7762 static char *result;
7763 static size_t result_len = 0;
d2e4a39e 7764 char *tmp;
14f9c5c9 7765
4c4b4cd2
PH
7766 /* First, unqualify the enumeration name:
7767 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
7768 all the preceeding characters, the unqualified name starts
7769 right after that dot.
4c4b4cd2 7770 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
7771 translates dots into "__". Search forward for double underscores,
7772 but stop searching when we hit an overloading suffix, which is
7773 of the form "__" followed by digits. */
4c4b4cd2 7774
c3e5cd34
PH
7775 tmp = strrchr (name, '.');
7776 if (tmp != NULL)
4c4b4cd2
PH
7777 name = tmp + 1;
7778 else
14f9c5c9 7779 {
4c4b4cd2
PH
7780 while ((tmp = strstr (name, "__")) != NULL)
7781 {
7782 if (isdigit (tmp[2]))
7783 break;
7784 else
7785 name = tmp + 2;
7786 }
14f9c5c9
AS
7787 }
7788
7789 if (name[0] == 'Q')
7790 {
14f9c5c9
AS
7791 int v;
7792 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
7793 {
7794 if (sscanf (name + 2, "%x", &v) != 1)
7795 return name;
7796 }
14f9c5c9 7797 else
4c4b4cd2 7798 return name;
14f9c5c9 7799
4c4b4cd2 7800 GROW_VECT (result, result_len, 16);
14f9c5c9 7801 if (isascii (v) && isprint (v))
4c4b4cd2 7802 sprintf (result, "'%c'", v);
14f9c5c9 7803 else if (name[1] == 'U')
4c4b4cd2 7804 sprintf (result, "[\"%02x\"]", v);
14f9c5c9 7805 else
4c4b4cd2 7806 sprintf (result, "[\"%04x\"]", v);
14f9c5c9
AS
7807
7808 return result;
7809 }
d2e4a39e 7810 else
4c4b4cd2 7811 {
c3e5cd34
PH
7812 tmp = strstr (name, "__");
7813 if (tmp == NULL)
7814 tmp = strstr (name, "$");
7815 if (tmp != NULL)
4c4b4cd2
PH
7816 {
7817 GROW_VECT (result, result_len, tmp - name + 1);
7818 strncpy (result, name, tmp - name);
7819 result[tmp - name] = '\0';
7820 return result;
7821 }
7822
7823 return name;
7824 }
14f9c5c9
AS
7825}
7826
d2e4a39e 7827static struct value *
ebf56fd3 7828evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
4c4b4cd2 7829 enum noside noside)
14f9c5c9 7830{
76a01679 7831 return (*exp->language_defn->la_exp_desc->evaluate_exp)
4c4b4cd2 7832 (expect_type, exp, pos, noside);
14f9c5c9
AS
7833}
7834
7835/* Evaluate the subexpression of EXP starting at *POS as for
7836 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 7837 expression. */
14f9c5c9 7838
d2e4a39e
AS
7839static struct value *
7840evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 7841{
4c4b4cd2 7842 return (*exp->language_defn->la_exp_desc->evaluate_exp)
14f9c5c9
AS
7843 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7844}
7845
7846/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 7847 value it wraps. */
14f9c5c9 7848
d2e4a39e
AS
7849static struct value *
7850unwrap_value (struct value *val)
14f9c5c9 7851{
df407dfe 7852 struct type *type = ada_check_typedef (value_type (val));
14f9c5c9
AS
7853 if (ada_is_aligner_type (type))
7854 {
de4d072f 7855 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 7856 struct type *val_type = ada_check_typedef (value_type (v));
14f9c5c9 7857 if (ada_type_name (val_type) == NULL)
4c4b4cd2 7858 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
7859
7860 return unwrap_value (v);
7861 }
d2e4a39e 7862 else
14f9c5c9 7863 {
d2e4a39e 7864 struct type *raw_real_type =
61ee279c 7865 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 7866
14f9c5c9 7867 if (type == raw_real_type)
4c4b4cd2 7868 return val;
14f9c5c9 7869
d2e4a39e 7870 return
4c4b4cd2
PH
7871 coerce_unspec_val_to_type
7872 (val, ada_to_fixed_type (raw_real_type, 0,
df407dfe 7873 VALUE_ADDRESS (val) + value_offset (val),
1ed6ede0 7874 NULL, 1));
14f9c5c9
AS
7875 }
7876}
d2e4a39e
AS
7877
7878static struct value *
7879cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
7880{
7881 LONGEST val;
7882
df407dfe 7883 if (type == value_type (arg))
14f9c5c9 7884 return arg;
df407dfe 7885 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 7886 val = ada_float_to_fixed (type,
df407dfe 7887 ada_fixed_to_float (value_type (arg),
4c4b4cd2 7888 value_as_long (arg)));
d2e4a39e 7889 else
14f9c5c9 7890 {
a53b7a21 7891 DOUBLEST argd = value_as_double (arg);
14f9c5c9
AS
7892 val = ada_float_to_fixed (type, argd);
7893 }
7894
7895 return value_from_longest (type, val);
7896}
7897
d2e4a39e 7898static struct value *
a53b7a21 7899cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 7900{
df407dfe 7901 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 7902 value_as_long (arg));
a53b7a21 7903 return value_from_double (type, val);
14f9c5c9
AS
7904}
7905
4c4b4cd2
PH
7906/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7907 return the converted value. */
7908
d2e4a39e
AS
7909static struct value *
7910coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 7911{
df407dfe 7912 struct type *type2 = value_type (val);
14f9c5c9
AS
7913 if (type == type2)
7914 return val;
7915
61ee279c
PH
7916 type2 = ada_check_typedef (type2);
7917 type = ada_check_typedef (type);
14f9c5c9 7918
d2e4a39e
AS
7919 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7920 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
7921 {
7922 val = ada_value_ind (val);
df407dfe 7923 type2 = value_type (val);
14f9c5c9
AS
7924 }
7925
d2e4a39e 7926 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
7927 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7928 {
7929 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
7930 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7931 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 7932 error (_("Incompatible types in assignment"));
04624583 7933 deprecated_set_value_type (val, type);
14f9c5c9 7934 }
d2e4a39e 7935 return val;
14f9c5c9
AS
7936}
7937
4c4b4cd2
PH
7938static struct value *
7939ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7940{
7941 struct value *val;
7942 struct type *type1, *type2;
7943 LONGEST v, v1, v2;
7944
994b9211
AC
7945 arg1 = coerce_ref (arg1);
7946 arg2 = coerce_ref (arg2);
df407dfe
AC
7947 type1 = base_type (ada_check_typedef (value_type (arg1)));
7948 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 7949
76a01679
JB
7950 if (TYPE_CODE (type1) != TYPE_CODE_INT
7951 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
7952 return value_binop (arg1, arg2, op);
7953
76a01679 7954 switch (op)
4c4b4cd2
PH
7955 {
7956 case BINOP_MOD:
7957 case BINOP_DIV:
7958 case BINOP_REM:
7959 break;
7960 default:
7961 return value_binop (arg1, arg2, op);
7962 }
7963
7964 v2 = value_as_long (arg2);
7965 if (v2 == 0)
323e0a4a 7966 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
7967
7968 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7969 return value_binop (arg1, arg2, op);
7970
7971 v1 = value_as_long (arg1);
7972 switch (op)
7973 {
7974 case BINOP_DIV:
7975 v = v1 / v2;
76a01679
JB
7976 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7977 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
7978 break;
7979 case BINOP_REM:
7980 v = v1 % v2;
76a01679
JB
7981 if (v * v1 < 0)
7982 v -= v2;
4c4b4cd2
PH
7983 break;
7984 default:
7985 /* Should not reach this point. */
7986 v = 0;
7987 }
7988
7989 val = allocate_value (type1);
990a07ab 7990 store_unsigned_integer (value_contents_raw (val),
df407dfe 7991 TYPE_LENGTH (value_type (val)), v);
4c4b4cd2
PH
7992 return val;
7993}
7994
7995static int
7996ada_value_equal (struct value *arg1, struct value *arg2)
7997{
df407dfe
AC
7998 if (ada_is_direct_array_type (value_type (arg1))
7999 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8000 {
f58b38bf
JB
8001 /* Automatically dereference any array reference before
8002 we attempt to perform the comparison. */
8003 arg1 = ada_coerce_ref (arg1);
8004 arg2 = ada_coerce_ref (arg2);
8005
4c4b4cd2
PH
8006 arg1 = ada_coerce_to_simple_array (arg1);
8007 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8008 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8009 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8010 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8011 /* FIXME: The following works only for types whose
76a01679
JB
8012 representations use all bits (no padding or undefined bits)
8013 and do not have user-defined equality. */
8014 return
df407dfe 8015 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8016 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8017 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8018 }
8019 return value_equal (arg1, arg2);
8020}
8021
52ce6436
PH
8022/* Total number of component associations in the aggregate starting at
8023 index PC in EXP. Assumes that index PC is the start of an
8024 OP_AGGREGATE. */
8025
8026static int
8027num_component_specs (struct expression *exp, int pc)
8028{
8029 int n, m, i;
8030 m = exp->elts[pc + 1].longconst;
8031 pc += 3;
8032 n = 0;
8033 for (i = 0; i < m; i += 1)
8034 {
8035 switch (exp->elts[pc].opcode)
8036 {
8037 default:
8038 n += 1;
8039 break;
8040 case OP_CHOICES:
8041 n += exp->elts[pc + 1].longconst;
8042 break;
8043 }
8044 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8045 }
8046 return n;
8047}
8048
8049/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8050 component of LHS (a simple array or a record), updating *POS past
8051 the expression, assuming that LHS is contained in CONTAINER. Does
8052 not modify the inferior's memory, nor does it modify LHS (unless
8053 LHS == CONTAINER). */
8054
8055static void
8056assign_component (struct value *container, struct value *lhs, LONGEST index,
8057 struct expression *exp, int *pos)
8058{
8059 struct value *mark = value_mark ();
8060 struct value *elt;
8061 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8062 {
6d84d3d8 8063 struct value *index_val = value_from_longest (builtin_type_int32, index);
52ce6436
PH
8064 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8065 }
8066 else
8067 {
8068 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8069 elt = ada_to_fixed_value (unwrap_value (elt));
8070 }
8071
8072 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8073 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8074 else
8075 value_assign_to_component (container, elt,
8076 ada_evaluate_subexp (NULL, exp, pos,
8077 EVAL_NORMAL));
8078
8079 value_free_to_mark (mark);
8080}
8081
8082/* Assuming that LHS represents an lvalue having a record or array
8083 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8084 of that aggregate's value to LHS, advancing *POS past the
8085 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8086 lvalue containing LHS (possibly LHS itself). Does not modify
8087 the inferior's memory, nor does it modify the contents of
8088 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8089
8090static struct value *
8091assign_aggregate (struct value *container,
8092 struct value *lhs, struct expression *exp,
8093 int *pos, enum noside noside)
8094{
8095 struct type *lhs_type;
8096 int n = exp->elts[*pos+1].longconst;
8097 LONGEST low_index, high_index;
8098 int num_specs;
8099 LONGEST *indices;
8100 int max_indices, num_indices;
8101 int is_array_aggregate;
8102 int i;
8103 struct value *mark = value_mark ();
8104
8105 *pos += 3;
8106 if (noside != EVAL_NORMAL)
8107 {
8108 int i;
8109 for (i = 0; i < n; i += 1)
8110 ada_evaluate_subexp (NULL, exp, pos, noside);
8111 return container;
8112 }
8113
8114 container = ada_coerce_ref (container);
8115 if (ada_is_direct_array_type (value_type (container)))
8116 container = ada_coerce_to_simple_array (container);
8117 lhs = ada_coerce_ref (lhs);
8118 if (!deprecated_value_modifiable (lhs))
8119 error (_("Left operand of assignment is not a modifiable lvalue."));
8120
8121 lhs_type = value_type (lhs);
8122 if (ada_is_direct_array_type (lhs_type))
8123 {
8124 lhs = ada_coerce_to_simple_array (lhs);
8125 lhs_type = value_type (lhs);
8126 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8127 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8128 is_array_aggregate = 1;
8129 }
8130 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8131 {
8132 low_index = 0;
8133 high_index = num_visible_fields (lhs_type) - 1;
8134 is_array_aggregate = 0;
8135 }
8136 else
8137 error (_("Left-hand side must be array or record."));
8138
8139 num_specs = num_component_specs (exp, *pos - 3);
8140 max_indices = 4 * num_specs + 4;
8141 indices = alloca (max_indices * sizeof (indices[0]));
8142 indices[0] = indices[1] = low_index - 1;
8143 indices[2] = indices[3] = high_index + 1;
8144 num_indices = 4;
8145
8146 for (i = 0; i < n; i += 1)
8147 {
8148 switch (exp->elts[*pos].opcode)
8149 {
8150 case OP_CHOICES:
8151 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8152 &num_indices, max_indices,
8153 low_index, high_index);
8154 break;
8155 case OP_POSITIONAL:
8156 aggregate_assign_positional (container, lhs, exp, pos, indices,
8157 &num_indices, max_indices,
8158 low_index, high_index);
8159 break;
8160 case OP_OTHERS:
8161 if (i != n-1)
8162 error (_("Misplaced 'others' clause"));
8163 aggregate_assign_others (container, lhs, exp, pos, indices,
8164 num_indices, low_index, high_index);
8165 break;
8166 default:
8167 error (_("Internal error: bad aggregate clause"));
8168 }
8169 }
8170
8171 return container;
8172}
8173
8174/* Assign into the component of LHS indexed by the OP_POSITIONAL
8175 construct at *POS, updating *POS past the construct, given that
8176 the positions are relative to lower bound LOW, where HIGH is the
8177 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8178 updating *NUM_INDICES as needed. CONTAINER is as for
8179 assign_aggregate. */
8180static void
8181aggregate_assign_positional (struct value *container,
8182 struct value *lhs, struct expression *exp,
8183 int *pos, LONGEST *indices, int *num_indices,
8184 int max_indices, LONGEST low, LONGEST high)
8185{
8186 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8187
8188 if (ind - 1 == high)
e1d5a0d2 8189 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8190 if (ind <= high)
8191 {
8192 add_component_interval (ind, ind, indices, num_indices, max_indices);
8193 *pos += 3;
8194 assign_component (container, lhs, ind, exp, pos);
8195 }
8196 else
8197 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8198}
8199
8200/* Assign into the components of LHS indexed by the OP_CHOICES
8201 construct at *POS, updating *POS past the construct, given that
8202 the allowable indices are LOW..HIGH. Record the indices assigned
8203 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8204 needed. CONTAINER is as for assign_aggregate. */
8205static void
8206aggregate_assign_from_choices (struct value *container,
8207 struct value *lhs, struct expression *exp,
8208 int *pos, LONGEST *indices, int *num_indices,
8209 int max_indices, LONGEST low, LONGEST high)
8210{
8211 int j;
8212 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8213 int choice_pos, expr_pc;
8214 int is_array = ada_is_direct_array_type (value_type (lhs));
8215
8216 choice_pos = *pos += 3;
8217
8218 for (j = 0; j < n_choices; j += 1)
8219 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8220 expr_pc = *pos;
8221 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8222
8223 for (j = 0; j < n_choices; j += 1)
8224 {
8225 LONGEST lower, upper;
8226 enum exp_opcode op = exp->elts[choice_pos].opcode;
8227 if (op == OP_DISCRETE_RANGE)
8228 {
8229 choice_pos += 1;
8230 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8231 EVAL_NORMAL));
8232 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8233 EVAL_NORMAL));
8234 }
8235 else if (is_array)
8236 {
8237 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8238 EVAL_NORMAL));
8239 upper = lower;
8240 }
8241 else
8242 {
8243 int ind;
8244 char *name;
8245 switch (op)
8246 {
8247 case OP_NAME:
8248 name = &exp->elts[choice_pos + 2].string;
8249 break;
8250 case OP_VAR_VALUE:
8251 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8252 break;
8253 default:
8254 error (_("Invalid record component association."));
8255 }
8256 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8257 ind = 0;
8258 if (! find_struct_field (name, value_type (lhs), 0,
8259 NULL, NULL, NULL, NULL, &ind))
8260 error (_("Unknown component name: %s."), name);
8261 lower = upper = ind;
8262 }
8263
8264 if (lower <= upper && (lower < low || upper > high))
8265 error (_("Index in component association out of bounds."));
8266
8267 add_component_interval (lower, upper, indices, num_indices,
8268 max_indices);
8269 while (lower <= upper)
8270 {
8271 int pos1;
8272 pos1 = expr_pc;
8273 assign_component (container, lhs, lower, exp, &pos1);
8274 lower += 1;
8275 }
8276 }
8277}
8278
8279/* Assign the value of the expression in the OP_OTHERS construct in
8280 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8281 have not been previously assigned. The index intervals already assigned
8282 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8283 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8284static void
8285aggregate_assign_others (struct value *container,
8286 struct value *lhs, struct expression *exp,
8287 int *pos, LONGEST *indices, int num_indices,
8288 LONGEST low, LONGEST high)
8289{
8290 int i;
8291 int expr_pc = *pos+1;
8292
8293 for (i = 0; i < num_indices - 2; i += 2)
8294 {
8295 LONGEST ind;
8296 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8297 {
8298 int pos;
8299 pos = expr_pc;
8300 assign_component (container, lhs, ind, exp, &pos);
8301 }
8302 }
8303 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8304}
8305
8306/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8307 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8308 modifying *SIZE as needed. It is an error if *SIZE exceeds
8309 MAX_SIZE. The resulting intervals do not overlap. */
8310static void
8311add_component_interval (LONGEST low, LONGEST high,
8312 LONGEST* indices, int *size, int max_size)
8313{
8314 int i, j;
8315 for (i = 0; i < *size; i += 2) {
8316 if (high >= indices[i] && low <= indices[i + 1])
8317 {
8318 int kh;
8319 for (kh = i + 2; kh < *size; kh += 2)
8320 if (high < indices[kh])
8321 break;
8322 if (low < indices[i])
8323 indices[i] = low;
8324 indices[i + 1] = indices[kh - 1];
8325 if (high > indices[i + 1])
8326 indices[i + 1] = high;
8327 memcpy (indices + i + 2, indices + kh, *size - kh);
8328 *size -= kh - i - 2;
8329 return;
8330 }
8331 else if (high < indices[i])
8332 break;
8333 }
8334
8335 if (*size == max_size)
8336 error (_("Internal error: miscounted aggregate components."));
8337 *size += 2;
8338 for (j = *size-1; j >= i+2; j -= 1)
8339 indices[j] = indices[j - 2];
8340 indices[i] = low;
8341 indices[i + 1] = high;
8342}
8343
6e48bd2c
JB
8344/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8345 is different. */
8346
8347static struct value *
8348ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8349{
8350 if (type == ada_check_typedef (value_type (arg2)))
8351 return arg2;
8352
8353 if (ada_is_fixed_point_type (type))
8354 return (cast_to_fixed (type, arg2));
8355
8356 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8357 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8358
8359 return value_cast (type, arg2);
8360}
8361
52ce6436 8362static struct value *
ebf56fd3 8363ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 8364 int *pos, enum noside noside)
14f9c5c9
AS
8365{
8366 enum exp_opcode op;
14f9c5c9
AS
8367 int tem, tem2, tem3;
8368 int pc;
8369 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8370 struct type *type;
52ce6436 8371 int nargs, oplen;
d2e4a39e 8372 struct value **argvec;
14f9c5c9 8373
d2e4a39e
AS
8374 pc = *pos;
8375 *pos += 1;
14f9c5c9
AS
8376 op = exp->elts[pc].opcode;
8377
d2e4a39e 8378 switch (op)
14f9c5c9
AS
8379 {
8380 default:
8381 *pos -= 1;
6e48bd2c
JB
8382 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8383 arg1 = unwrap_value (arg1);
8384
8385 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8386 then we need to perform the conversion manually, because
8387 evaluate_subexp_standard doesn't do it. This conversion is
8388 necessary in Ada because the different kinds of float/fixed
8389 types in Ada have different representations.
8390
8391 Similarly, we need to perform the conversion from OP_LONG
8392 ourselves. */
8393 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8394 arg1 = ada_value_cast (expect_type, arg1, noside);
8395
8396 return arg1;
4c4b4cd2
PH
8397
8398 case OP_STRING:
8399 {
76a01679
JB
8400 struct value *result;
8401 *pos -= 1;
8402 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8403 /* The result type will have code OP_STRING, bashed there from
8404 OP_ARRAY. Bash it back. */
df407dfe
AC
8405 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8406 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 8407 return result;
4c4b4cd2 8408 }
14f9c5c9
AS
8409
8410 case UNOP_CAST:
8411 (*pos) += 2;
8412 type = exp->elts[pc + 1].type;
8413 arg1 = evaluate_subexp (type, exp, pos, noside);
8414 if (noside == EVAL_SKIP)
4c4b4cd2 8415 goto nosideret;
6e48bd2c 8416 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
8417 return arg1;
8418
4c4b4cd2
PH
8419 case UNOP_QUAL:
8420 (*pos) += 2;
8421 type = exp->elts[pc + 1].type;
8422 return ada_evaluate_subexp (type, exp, pos, noside);
8423
14f9c5c9
AS
8424 case BINOP_ASSIGN:
8425 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
8426 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8427 {
8428 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8429 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8430 return arg1;
8431 return ada_value_assign (arg1, arg1);
8432 }
003f3813
JB
8433 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8434 except if the lhs of our assignment is a convenience variable.
8435 In the case of assigning to a convenience variable, the lhs
8436 should be exactly the result of the evaluation of the rhs. */
8437 type = value_type (arg1);
8438 if (VALUE_LVAL (arg1) == lval_internalvar)
8439 type = NULL;
8440 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 8441 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8442 return arg1;
df407dfe
AC
8443 if (ada_is_fixed_point_type (value_type (arg1)))
8444 arg2 = cast_to_fixed (value_type (arg1), arg2);
8445 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 8446 error
323e0a4a 8447 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 8448 else
df407dfe 8449 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 8450 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
8451
8452 case BINOP_ADD:
8453 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8454 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8455 if (noside == EVAL_SKIP)
4c4b4cd2 8456 goto nosideret;
2ac8a782
JB
8457 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8458 return (value_from_longest
8459 (value_type (arg1),
8460 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
8461 if ((ada_is_fixed_point_type (value_type (arg1))
8462 || ada_is_fixed_point_type (value_type (arg2)))
8463 && value_type (arg1) != value_type (arg2))
323e0a4a 8464 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
8465 /* Do the addition, and cast the result to the type of the first
8466 argument. We cannot cast the result to a reference type, so if
8467 ARG1 is a reference type, find its underlying type. */
8468 type = value_type (arg1);
8469 while (TYPE_CODE (type) == TYPE_CODE_REF)
8470 type = TYPE_TARGET_TYPE (type);
f44316fa 8471 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8472 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
8473
8474 case BINOP_SUB:
8475 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8476 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8477 if (noside == EVAL_SKIP)
4c4b4cd2 8478 goto nosideret;
2ac8a782
JB
8479 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8480 return (value_from_longest
8481 (value_type (arg1),
8482 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
8483 if ((ada_is_fixed_point_type (value_type (arg1))
8484 || ada_is_fixed_point_type (value_type (arg2)))
8485 && value_type (arg1) != value_type (arg2))
323e0a4a 8486 error (_("Operands of fixed-point subtraction must have the same type"));
b7789565
JB
8487 /* Do the substraction, and cast the result to the type of the first
8488 argument. We cannot cast the result to a reference type, so if
8489 ARG1 is a reference type, find its underlying type. */
8490 type = value_type (arg1);
8491 while (TYPE_CODE (type) == TYPE_CODE_REF)
8492 type = TYPE_TARGET_TYPE (type);
f44316fa 8493 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8494 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
8495
8496 case BINOP_MUL:
8497 case BINOP_DIV:
8498 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8499 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8500 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8501 goto nosideret;
8502 else if (noside == EVAL_AVOID_SIDE_EFFECTS
76a01679 8503 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
df407dfe 8504 return value_zero (value_type (arg1), not_lval);
14f9c5c9 8505 else
4c4b4cd2 8506 {
a53b7a21 8507 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 8508 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 8509 arg1 = cast_from_fixed (type, arg1);
df407dfe 8510 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8511 arg2 = cast_from_fixed (type, arg2);
f44316fa 8512 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
8513 return ada_value_binop (arg1, arg2, op);
8514 }
8515
8516 case BINOP_REM:
8517 case BINOP_MOD:
8518 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8519 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8520 if (noside == EVAL_SKIP)
76a01679 8521 goto nosideret;
4c4b4cd2 8522 else if (noside == EVAL_AVOID_SIDE_EFFECTS
76a01679 8523 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
df407dfe 8524 return value_zero (value_type (arg1), not_lval);
14f9c5c9 8525 else
f44316fa
UW
8526 {
8527 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8528 return ada_value_binop (arg1, arg2, op);
8529 }
14f9c5c9 8530
4c4b4cd2
PH
8531 case BINOP_EQUAL:
8532 case BINOP_NOTEQUAL:
14f9c5c9 8533 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 8534 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 8535 if (noside == EVAL_SKIP)
76a01679 8536 goto nosideret;
4c4b4cd2 8537 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8538 tem = 0;
4c4b4cd2 8539 else
f44316fa
UW
8540 {
8541 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8542 tem = ada_value_equal (arg1, arg2);
8543 }
4c4b4cd2 8544 if (op == BINOP_NOTEQUAL)
76a01679 8545 tem = !tem;
fbb06eb1
UW
8546 type = language_bool_type (exp->language_defn, exp->gdbarch);
8547 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
8548
8549 case UNOP_NEG:
8550 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8551 if (noside == EVAL_SKIP)
8552 goto nosideret;
df407dfe
AC
8553 else if (ada_is_fixed_point_type (value_type (arg1)))
8554 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 8555 else
f44316fa
UW
8556 {
8557 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8558 return value_neg (arg1);
8559 }
4c4b4cd2 8560
2330c6c6
JB
8561 case BINOP_LOGICAL_AND:
8562 case BINOP_LOGICAL_OR:
8563 case UNOP_LOGICAL_NOT:
000d5124
JB
8564 {
8565 struct value *val;
8566
8567 *pos -= 1;
8568 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
8569 type = language_bool_type (exp->language_defn, exp->gdbarch);
8570 return value_cast (type, val);
000d5124 8571 }
2330c6c6
JB
8572
8573 case BINOP_BITWISE_AND:
8574 case BINOP_BITWISE_IOR:
8575 case BINOP_BITWISE_XOR:
000d5124
JB
8576 {
8577 struct value *val;
8578
8579 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8580 *pos = pc;
8581 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8582
8583 return value_cast (value_type (arg1), val);
8584 }
2330c6c6 8585
14f9c5c9
AS
8586 case OP_VAR_VALUE:
8587 *pos -= 1;
6799def4 8588
14f9c5c9 8589 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8590 {
8591 *pos += 4;
8592 goto nosideret;
8593 }
8594 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
8595 /* Only encountered when an unresolved symbol occurs in a
8596 context other than a function call, in which case, it is
52ce6436 8597 invalid. */
323e0a4a 8598 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 8599 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 8600 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8601 {
0c1f74cf
JB
8602 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8603 if (ada_is_tagged_type (type, 0))
8604 {
8605 /* Tagged types are a little special in the fact that the real
8606 type is dynamic and can only be determined by inspecting the
8607 object's tag. This means that we need to get the object's
8608 value first (EVAL_NORMAL) and then extract the actual object
8609 type from its tag.
8610
8611 Note that we cannot skip the final step where we extract
8612 the object type from its tag, because the EVAL_NORMAL phase
8613 results in dynamic components being resolved into fixed ones.
8614 This can cause problems when trying to print the type
8615 description of tagged types whose parent has a dynamic size:
8616 We use the type name of the "_parent" component in order
8617 to print the name of the ancestor type in the type description.
8618 If that component had a dynamic size, the resolution into
8619 a fixed type would result in the loss of that type name,
8620 thus preventing us from printing the name of the ancestor
8621 type in the type description. */
8622 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8623 return value_zero (type_from_tag (ada_value_tag (arg1)), not_lval);
8624 }
8625
4c4b4cd2
PH
8626 *pos += 4;
8627 return value_zero
8628 (to_static_fixed_type
8629 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8630 not_lval);
8631 }
d2e4a39e 8632 else
4c4b4cd2
PH
8633 {
8634 arg1 =
8635 unwrap_value (evaluate_subexp_standard
8636 (expect_type, exp, pos, noside));
8637 return ada_to_fixed_value (arg1);
8638 }
8639
8640 case OP_FUNCALL:
8641 (*pos) += 2;
8642
8643 /* Allocate arg vector, including space for the function to be
8644 called in argvec[0] and a terminating NULL. */
8645 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8646 argvec =
8647 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8648
8649 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 8650 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 8651 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
8652 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8653 else
8654 {
8655 for (tem = 0; tem <= nargs; tem += 1)
8656 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8657 argvec[tem] = 0;
8658
8659 if (noside == EVAL_SKIP)
8660 goto nosideret;
8661 }
8662
df407dfe 8663 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 8664 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
df407dfe
AC
8665 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8666 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 8667 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
8668 argvec[0] = value_addr (argvec[0]);
8669
df407dfe 8670 type = ada_check_typedef (value_type (argvec[0]));
4c4b4cd2
PH
8671 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8672 {
61ee279c 8673 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
8674 {
8675 case TYPE_CODE_FUNC:
61ee279c 8676 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8677 break;
8678 case TYPE_CODE_ARRAY:
8679 break;
8680 case TYPE_CODE_STRUCT:
8681 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8682 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 8683 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8684 break;
8685 default:
323e0a4a 8686 error (_("cannot subscript or call something of type `%s'"),
df407dfe 8687 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
8688 break;
8689 }
8690 }
8691
8692 switch (TYPE_CODE (type))
8693 {
8694 case TYPE_CODE_FUNC:
8695 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8696 return allocate_value (TYPE_TARGET_TYPE (type));
8697 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8698 case TYPE_CODE_STRUCT:
8699 {
8700 int arity;
8701
4c4b4cd2
PH
8702 arity = ada_array_arity (type);
8703 type = ada_array_element_type (type, nargs);
8704 if (type == NULL)
323e0a4a 8705 error (_("cannot subscript or call a record"));
4c4b4cd2 8706 if (arity != nargs)
323e0a4a 8707 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 8708 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 8709 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8710 return
8711 unwrap_value (ada_value_subscript
8712 (argvec[0], nargs, argvec + 1));
8713 }
8714 case TYPE_CODE_ARRAY:
8715 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8716 {
8717 type = ada_array_element_type (type, nargs);
8718 if (type == NULL)
323e0a4a 8719 error (_("element type of array unknown"));
4c4b4cd2 8720 else
0a07e705 8721 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8722 }
8723 return
8724 unwrap_value (ada_value_subscript
8725 (ada_coerce_to_simple_array (argvec[0]),
8726 nargs, argvec + 1));
8727 case TYPE_CODE_PTR: /* Pointer to array */
8728 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8729 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8730 {
8731 type = ada_array_element_type (type, nargs);
8732 if (type == NULL)
323e0a4a 8733 error (_("element type of array unknown"));
4c4b4cd2 8734 else
0a07e705 8735 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8736 }
8737 return
8738 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8739 nargs, argvec + 1));
8740
8741 default:
e1d5a0d2
PH
8742 error (_("Attempt to index or call something other than an "
8743 "array or function"));
4c4b4cd2
PH
8744 }
8745
8746 case TERNOP_SLICE:
8747 {
8748 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8749 struct value *low_bound_val =
8750 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
8751 struct value *high_bound_val =
8752 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8753 LONGEST low_bound;
8754 LONGEST high_bound;
994b9211
AC
8755 low_bound_val = coerce_ref (low_bound_val);
8756 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
8757 low_bound = pos_atr (low_bound_val);
8758 high_bound = pos_atr (high_bound_val);
963a6417 8759
4c4b4cd2
PH
8760 if (noside == EVAL_SKIP)
8761 goto nosideret;
8762
4c4b4cd2
PH
8763 /* If this is a reference to an aligner type, then remove all
8764 the aligners. */
df407dfe
AC
8765 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8766 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8767 TYPE_TARGET_TYPE (value_type (array)) =
8768 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 8769
df407dfe 8770 if (ada_is_packed_array_type (value_type (array)))
323e0a4a 8771 error (_("cannot slice a packed array"));
4c4b4cd2
PH
8772
8773 /* If this is a reference to an array or an array lvalue,
8774 convert to a pointer. */
df407dfe
AC
8775 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8776 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
8777 && VALUE_LVAL (array) == lval_memory))
8778 array = value_addr (array);
8779
1265e4aa 8780 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 8781 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 8782 (value_type (array))))
0b5d8877 8783 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
8784
8785 array = ada_coerce_to_simple_array_ptr (array);
8786
714e53ab
PH
8787 /* If we have more than one level of pointer indirection,
8788 dereference the value until we get only one level. */
df407dfe
AC
8789 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8790 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
8791 == TYPE_CODE_PTR))
8792 array = value_ind (array);
8793
8794 /* Make sure we really do have an array type before going further,
8795 to avoid a SEGV when trying to get the index type or the target
8796 type later down the road if the debug info generated by
8797 the compiler is incorrect or incomplete. */
df407dfe 8798 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 8799 error (_("cannot take slice of non-array"));
714e53ab 8800
df407dfe 8801 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 8802 {
0b5d8877 8803 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 8804 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
8805 low_bound);
8806 else
8807 {
8808 struct type *arr_type0 =
df407dfe 8809 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 8810 NULL, 1);
0b5d8877 8811 return ada_value_slice_ptr (array, arr_type0,
529cad9c
PH
8812 longest_to_int (low_bound),
8813 longest_to_int (high_bound));
4c4b4cd2
PH
8814 }
8815 }
8816 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8817 return array;
8818 else if (high_bound < low_bound)
df407dfe 8819 return empty_array (value_type (array), low_bound);
4c4b4cd2 8820 else
529cad9c
PH
8821 return ada_value_slice (array, longest_to_int (low_bound),
8822 longest_to_int (high_bound));
4c4b4cd2 8823 }
14f9c5c9 8824
4c4b4cd2
PH
8825 case UNOP_IN_RANGE:
8826 (*pos) += 2;
8827 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8828 type = exp->elts[pc + 1].type;
14f9c5c9 8829
14f9c5c9 8830 if (noside == EVAL_SKIP)
4c4b4cd2 8831 goto nosideret;
14f9c5c9 8832
4c4b4cd2
PH
8833 switch (TYPE_CODE (type))
8834 {
8835 default:
e1d5a0d2
PH
8836 lim_warning (_("Membership test incompletely implemented; "
8837 "always returns true"));
fbb06eb1
UW
8838 type = language_bool_type (exp->language_defn, exp->gdbarch);
8839 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
8840
8841 case TYPE_CODE_RANGE:
030b4912
UW
8842 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
8843 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
8844 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8845 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
8846 type = language_bool_type (exp->language_defn, exp->gdbarch);
8847 return
8848 value_from_longest (type,
4c4b4cd2
PH
8849 (value_less (arg1, arg3)
8850 || value_equal (arg1, arg3))
8851 && (value_less (arg2, arg1)
8852 || value_equal (arg2, arg1)));
8853 }
8854
8855 case BINOP_IN_BOUNDS:
14f9c5c9 8856 (*pos) += 2;
4c4b4cd2
PH
8857 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8858 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 8859
4c4b4cd2
PH
8860 if (noside == EVAL_SKIP)
8861 goto nosideret;
14f9c5c9 8862
4c4b4cd2 8863 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
8864 {
8865 type = language_bool_type (exp->language_defn, exp->gdbarch);
8866 return value_zero (type, not_lval);
8867 }
14f9c5c9 8868
4c4b4cd2 8869 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 8870
df407dfe 8871 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
323e0a4a 8872 error (_("invalid dimension number to 'range"));
14f9c5c9 8873
4c4b4cd2
PH
8874 arg3 = ada_array_bound (arg2, tem, 1);
8875 arg2 = ada_array_bound (arg2, tem, 0);
d2e4a39e 8876
f44316fa
UW
8877 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8878 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 8879 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 8880 return
fbb06eb1 8881 value_from_longest (type,
4c4b4cd2
PH
8882 (value_less (arg1, arg3)
8883 || value_equal (arg1, arg3))
8884 && (value_less (arg2, arg1)
8885 || value_equal (arg2, arg1)));
8886
8887 case TERNOP_IN_RANGE:
8888 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8889 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8890 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8891
8892 if (noside == EVAL_SKIP)
8893 goto nosideret;
8894
f44316fa
UW
8895 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8896 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 8897 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 8898 return
fbb06eb1 8899 value_from_longest (type,
4c4b4cd2
PH
8900 (value_less (arg1, arg3)
8901 || value_equal (arg1, arg3))
8902 && (value_less (arg2, arg1)
8903 || value_equal (arg2, arg1)));
8904
8905 case OP_ATR_FIRST:
8906 case OP_ATR_LAST:
8907 case OP_ATR_LENGTH:
8908 {
76a01679
JB
8909 struct type *type_arg;
8910 if (exp->elts[*pos].opcode == OP_TYPE)
8911 {
8912 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8913 arg1 = NULL;
8914 type_arg = exp->elts[pc + 2].type;
8915 }
8916 else
8917 {
8918 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8919 type_arg = NULL;
8920 }
8921
8922 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 8923 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
8924 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8925 *pos += 4;
8926
8927 if (noside == EVAL_SKIP)
8928 goto nosideret;
8929
8930 if (type_arg == NULL)
8931 {
8932 arg1 = ada_coerce_ref (arg1);
8933
df407dfe 8934 if (ada_is_packed_array_type (value_type (arg1)))
76a01679
JB
8935 arg1 = ada_coerce_to_simple_array (arg1);
8936
df407dfe 8937 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
323e0a4a 8938 error (_("invalid dimension number to '%s"),
76a01679
JB
8939 ada_attribute_name (op));
8940
8941 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8942 {
df407dfe 8943 type = ada_index_type (value_type (arg1), tem);
76a01679
JB
8944 if (type == NULL)
8945 error
323e0a4a 8946 (_("attempt to take bound of something that is not an array"));
76a01679
JB
8947 return allocate_value (type);
8948 }
8949
8950 switch (op)
8951 {
8952 default: /* Should never happen. */
323e0a4a 8953 error (_("unexpected attribute encountered"));
76a01679
JB
8954 case OP_ATR_FIRST:
8955 return ada_array_bound (arg1, tem, 0);
8956 case OP_ATR_LAST:
8957 return ada_array_bound (arg1, tem, 1);
8958 case OP_ATR_LENGTH:
8959 return ada_array_length (arg1, tem);
8960 }
8961 }
8962 else if (discrete_type_p (type_arg))
8963 {
8964 struct type *range_type;
8965 char *name = ada_type_name (type_arg);
8966 range_type = NULL;
8967 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8968 range_type =
8969 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8970 if (range_type == NULL)
8971 range_type = type_arg;
8972 switch (op)
8973 {
8974 default:
323e0a4a 8975 error (_("unexpected attribute encountered"));
76a01679 8976 case OP_ATR_FIRST:
690cc4eb
PH
8977 return value_from_longest
8978 (range_type, discrete_type_low_bound (range_type));
76a01679 8979 case OP_ATR_LAST:
690cc4eb
PH
8980 return value_from_longest
8981 (range_type, discrete_type_high_bound (range_type));
76a01679 8982 case OP_ATR_LENGTH:
323e0a4a 8983 error (_("the 'length attribute applies only to array types"));
76a01679
JB
8984 }
8985 }
8986 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 8987 error (_("unimplemented type attribute"));
76a01679
JB
8988 else
8989 {
8990 LONGEST low, high;
8991
8992 if (ada_is_packed_array_type (type_arg))
8993 type_arg = decode_packed_array_type (type_arg);
8994
8995 if (tem < 1 || tem > ada_array_arity (type_arg))
323e0a4a 8996 error (_("invalid dimension number to '%s"),
76a01679
JB
8997 ada_attribute_name (op));
8998
8999 type = ada_index_type (type_arg, tem);
9000 if (type == NULL)
9001 error
323e0a4a 9002 (_("attempt to take bound of something that is not an array"));
76a01679
JB
9003 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9004 return allocate_value (type);
9005
9006 switch (op)
9007 {
9008 default:
323e0a4a 9009 error (_("unexpected attribute encountered"));
76a01679
JB
9010 case OP_ATR_FIRST:
9011 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9012 return value_from_longest (type, low);
9013 case OP_ATR_LAST:
9014 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
9015 return value_from_longest (type, high);
9016 case OP_ATR_LENGTH:
9017 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9018 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
9019 return value_from_longest (type, high - low + 1);
9020 }
9021 }
14f9c5c9
AS
9022 }
9023
4c4b4cd2
PH
9024 case OP_ATR_TAG:
9025 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9026 if (noside == EVAL_SKIP)
76a01679 9027 goto nosideret;
4c4b4cd2
PH
9028
9029 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9030 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9031
9032 return ada_value_tag (arg1);
9033
9034 case OP_ATR_MIN:
9035 case OP_ATR_MAX:
9036 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9037 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9038 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9039 if (noside == EVAL_SKIP)
76a01679 9040 goto nosideret;
d2e4a39e 9041 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9042 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9043 else
f44316fa
UW
9044 {
9045 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9046 return value_binop (arg1, arg2,
9047 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9048 }
14f9c5c9 9049
4c4b4cd2
PH
9050 case OP_ATR_MODULUS:
9051 {
76a01679
JB
9052 struct type *type_arg = exp->elts[pc + 2].type;
9053 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
4c4b4cd2 9054
76a01679
JB
9055 if (noside == EVAL_SKIP)
9056 goto nosideret;
4c4b4cd2 9057
76a01679 9058 if (!ada_is_modular_type (type_arg))
323e0a4a 9059 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9060
76a01679
JB
9061 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9062 ada_modulus (type_arg));
4c4b4cd2
PH
9063 }
9064
9065
9066 case OP_ATR_POS:
9067 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9068 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9069 if (noside == EVAL_SKIP)
76a01679 9070 goto nosideret;
3cb382c9
UW
9071 type = builtin_type (exp->gdbarch)->builtin_int;
9072 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9073 return value_zero (type, not_lval);
14f9c5c9 9074 else
3cb382c9 9075 return value_pos_atr (type, arg1);
14f9c5c9 9076
4c4b4cd2
PH
9077 case OP_ATR_SIZE:
9078 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9079 type = value_type (arg1);
9080
9081 /* If the argument is a reference, then dereference its type, since
9082 the user is really asking for the size of the actual object,
9083 not the size of the pointer. */
9084 if (TYPE_CODE (type) == TYPE_CODE_REF)
9085 type = TYPE_TARGET_TYPE (type);
9086
4c4b4cd2 9087 if (noside == EVAL_SKIP)
76a01679 9088 goto nosideret;
4c4b4cd2 9089 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
6d2e05aa 9090 return value_zero (builtin_type_int32, not_lval);
4c4b4cd2 9091 else
6d2e05aa 9092 return value_from_longest (builtin_type_int32,
8c1c099f 9093 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9094
9095 case OP_ATR_VAL:
9096 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9097 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9098 type = exp->elts[pc + 2].type;
14f9c5c9 9099 if (noside == EVAL_SKIP)
76a01679 9100 goto nosideret;
4c4b4cd2 9101 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9102 return value_zero (type, not_lval);
4c4b4cd2 9103 else
76a01679 9104 return value_val_atr (type, arg1);
4c4b4cd2
PH
9105
9106 case BINOP_EXP:
9107 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9108 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9109 if (noside == EVAL_SKIP)
9110 goto nosideret;
9111 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9112 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9113 else
f44316fa
UW
9114 {
9115 /* For integer exponentiation operations,
9116 only promote the first argument. */
9117 if (is_integral_type (value_type (arg2)))
9118 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9119 else
9120 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9121
9122 return value_binop (arg1, arg2, op);
9123 }
4c4b4cd2
PH
9124
9125 case UNOP_PLUS:
9126 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9127 if (noside == EVAL_SKIP)
9128 goto nosideret;
9129 else
9130 return arg1;
9131
9132 case UNOP_ABS:
9133 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9134 if (noside == EVAL_SKIP)
9135 goto nosideret;
f44316fa 9136 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9137 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9138 return value_neg (arg1);
14f9c5c9 9139 else
4c4b4cd2 9140 return arg1;
14f9c5c9
AS
9141
9142 case UNOP_IND:
6b0d7253 9143 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9144 if (noside == EVAL_SKIP)
4c4b4cd2 9145 goto nosideret;
df407dfe 9146 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9147 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9148 {
9149 if (ada_is_array_descriptor_type (type))
9150 /* GDB allows dereferencing GNAT array descriptors. */
9151 {
9152 struct type *arrType = ada_type_of_array (arg1, 0);
9153 if (arrType == NULL)
323e0a4a 9154 error (_("Attempt to dereference null array pointer."));
00a4c844 9155 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9156 }
9157 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9158 || TYPE_CODE (type) == TYPE_CODE_REF
9159 /* In C you can dereference an array to get the 1st elt. */
9160 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9161 {
9162 type = to_static_fixed_type
9163 (ada_aligned_type
9164 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9165 check_size (type);
9166 return value_zero (type, lval_memory);
9167 }
4c4b4cd2 9168 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9169 {
9170 /* GDB allows dereferencing an int. */
9171 if (expect_type == NULL)
9172 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9173 lval_memory);
9174 else
9175 {
9176 expect_type =
9177 to_static_fixed_type (ada_aligned_type (expect_type));
9178 return value_zero (expect_type, lval_memory);
9179 }
9180 }
4c4b4cd2 9181 else
323e0a4a 9182 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9183 }
76a01679 9184 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9185 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9186
96967637
JB
9187 if (TYPE_CODE (type) == TYPE_CODE_INT)
9188 /* GDB allows dereferencing an int. If we were given
9189 the expect_type, then use that as the target type.
9190 Otherwise, assume that the target type is an int. */
9191 {
9192 if (expect_type != NULL)
9193 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9194 arg1));
9195 else
9196 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9197 (CORE_ADDR) value_as_address (arg1));
9198 }
6b0d7253 9199
4c4b4cd2
PH
9200 if (ada_is_array_descriptor_type (type))
9201 /* GDB allows dereferencing GNAT array descriptors. */
9202 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9203 else
4c4b4cd2 9204 return ada_value_ind (arg1);
14f9c5c9
AS
9205
9206 case STRUCTOP_STRUCT:
9207 tem = longest_to_int (exp->elts[pc + 1].longconst);
9208 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9209 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9210 if (noside == EVAL_SKIP)
4c4b4cd2 9211 goto nosideret;
14f9c5c9 9212 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9213 {
df407dfe 9214 struct type *type1 = value_type (arg1);
76a01679
JB
9215 if (ada_is_tagged_type (type1, 1))
9216 {
9217 type = ada_lookup_struct_elt_type (type1,
9218 &exp->elts[pc + 2].string,
9219 1, 1, NULL);
9220 if (type == NULL)
9221 /* In this case, we assume that the field COULD exist
9222 in some extension of the type. Return an object of
9223 "type" void, which will match any formal
9224 (see ada_type_match). */
9225 return value_zero (builtin_type_void, lval_memory);
9226 }
9227 else
9228 type =
9229 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9230 0, NULL);
9231
9232 return value_zero (ada_aligned_type (type), lval_memory);
9233 }
14f9c5c9 9234 else
76a01679
JB
9235 return
9236 ada_to_fixed_value (unwrap_value
9237 (ada_value_struct_elt
03ee6b2e 9238 (arg1, &exp->elts[pc + 2].string, 0)));
14f9c5c9 9239 case OP_TYPE:
4c4b4cd2
PH
9240 /* The value is not supposed to be used. This is here to make it
9241 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9242 (*pos) += 2;
9243 if (noside == EVAL_SKIP)
4c4b4cd2 9244 goto nosideret;
14f9c5c9 9245 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9246 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9247 else
323e0a4a 9248 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9249
9250 case OP_AGGREGATE:
9251 case OP_CHOICES:
9252 case OP_OTHERS:
9253 case OP_DISCRETE_RANGE:
9254 case OP_POSITIONAL:
9255 case OP_NAME:
9256 if (noside == EVAL_NORMAL)
9257 switch (op)
9258 {
9259 case OP_NAME:
9260 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9261 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9262 case OP_AGGREGATE:
9263 error (_("Aggregates only allowed on the right of an assignment"));
9264 default:
e1d5a0d2 9265 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
52ce6436
PH
9266 }
9267
9268 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9269 *pos += oplen - 1;
9270 for (tem = 0; tem < nargs; tem += 1)
9271 ada_evaluate_subexp (NULL, exp, pos, noside);
9272 goto nosideret;
14f9c5c9
AS
9273 }
9274
9275nosideret:
cb18ec49 9276 return value_from_longest (builtin_type_int8, (LONGEST) 1);
14f9c5c9 9277}
14f9c5c9 9278\f
d2e4a39e 9279
4c4b4cd2 9280 /* Fixed point */
14f9c5c9
AS
9281
9282/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9283 type name that encodes the 'small and 'delta information.
4c4b4cd2 9284 Otherwise, return NULL. */
14f9c5c9 9285
d2e4a39e 9286static const char *
ebf56fd3 9287fixed_type_info (struct type *type)
14f9c5c9 9288{
d2e4a39e 9289 const char *name = ada_type_name (type);
14f9c5c9
AS
9290 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9291
d2e4a39e
AS
9292 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9293 {
14f9c5c9
AS
9294 const char *tail = strstr (name, "___XF_");
9295 if (tail == NULL)
4c4b4cd2 9296 return NULL;
d2e4a39e 9297 else
4c4b4cd2 9298 return tail + 5;
14f9c5c9
AS
9299 }
9300 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9301 return fixed_type_info (TYPE_TARGET_TYPE (type));
9302 else
9303 return NULL;
9304}
9305
4c4b4cd2 9306/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
9307
9308int
ebf56fd3 9309ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
9310{
9311 return fixed_type_info (type) != NULL;
9312}
9313
4c4b4cd2
PH
9314/* Return non-zero iff TYPE represents a System.Address type. */
9315
9316int
9317ada_is_system_address_type (struct type *type)
9318{
9319 return (TYPE_NAME (type)
9320 && strcmp (TYPE_NAME (type), "system__address") == 0);
9321}
9322
14f9c5c9
AS
9323/* Assuming that TYPE is the representation of an Ada fixed-point
9324 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 9325 delta cannot be determined. */
14f9c5c9
AS
9326
9327DOUBLEST
ebf56fd3 9328ada_delta (struct type *type)
14f9c5c9
AS
9329{
9330 const char *encoding = fixed_type_info (type);
9331 long num, den;
9332
9333 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9334 return -1.0;
d2e4a39e 9335 else
14f9c5c9
AS
9336 return (DOUBLEST) num / (DOUBLEST) den;
9337}
9338
9339/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 9340 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
9341
9342static DOUBLEST
ebf56fd3 9343scaling_factor (struct type *type)
14f9c5c9
AS
9344{
9345 const char *encoding = fixed_type_info (type);
9346 unsigned long num0, den0, num1, den1;
9347 int n;
d2e4a39e 9348
14f9c5c9
AS
9349 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9350
9351 if (n < 2)
9352 return 1.0;
9353 else if (n == 4)
9354 return (DOUBLEST) num1 / (DOUBLEST) den1;
d2e4a39e 9355 else
14f9c5c9
AS
9356 return (DOUBLEST) num0 / (DOUBLEST) den0;
9357}
9358
9359
9360/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 9361 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
9362
9363DOUBLEST
ebf56fd3 9364ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 9365{
d2e4a39e 9366 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
9367}
9368
4c4b4cd2
PH
9369/* The representation of a fixed-point value of type TYPE
9370 corresponding to the value X. */
14f9c5c9
AS
9371
9372LONGEST
ebf56fd3 9373ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
9374{
9375 return (LONGEST) (x / scaling_factor (type) + 0.5);
9376}
9377
9378
4c4b4cd2 9379 /* VAX floating formats */
14f9c5c9
AS
9380
9381/* Non-zero iff TYPE represents one of the special VAX floating-point
4c4b4cd2
PH
9382 types. */
9383
14f9c5c9 9384int
d2e4a39e 9385ada_is_vax_floating_type (struct type *type)
14f9c5c9 9386{
d2e4a39e 9387 int name_len =
14f9c5c9 9388 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
d2e4a39e 9389 return
14f9c5c9 9390 name_len > 6
d2e4a39e 9391 && (TYPE_CODE (type) == TYPE_CODE_INT
4c4b4cd2
PH
9392 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9393 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
14f9c5c9
AS
9394}
9395
9396/* The type of special VAX floating-point type this is, assuming
4c4b4cd2
PH
9397 ada_is_vax_floating_point. */
9398
14f9c5c9 9399int
d2e4a39e 9400ada_vax_float_type_suffix (struct type *type)
14f9c5c9 9401{
d2e4a39e 9402 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
14f9c5c9
AS
9403}
9404
4c4b4cd2 9405/* A value representing the special debugging function that outputs
14f9c5c9 9406 VAX floating-point values of the type represented by TYPE. Assumes
4c4b4cd2
PH
9407 ada_is_vax_floating_type (TYPE). */
9408
d2e4a39e
AS
9409struct value *
9410ada_vax_float_print_function (struct type *type)
9411{
9412 switch (ada_vax_float_type_suffix (type))
9413 {
9414 case 'F':
9415 return get_var_value ("DEBUG_STRING_F", 0);
9416 case 'D':
9417 return get_var_value ("DEBUG_STRING_D", 0);
9418 case 'G':
9419 return get_var_value ("DEBUG_STRING_G", 0);
9420 default:
323e0a4a 9421 error (_("invalid VAX floating-point type"));
d2e4a39e 9422 }
14f9c5c9 9423}
14f9c5c9 9424\f
d2e4a39e 9425
4c4b4cd2 9426 /* Range types */
14f9c5c9
AS
9427
9428/* Scan STR beginning at position K for a discriminant name, and
9429 return the value of that discriminant field of DVAL in *PX. If
9430 PNEW_K is not null, put the position of the character beyond the
9431 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 9432 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
9433
9434static int
07d8f827 9435scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 9436 int *pnew_k)
14f9c5c9
AS
9437{
9438 static char *bound_buffer = NULL;
9439 static size_t bound_buffer_len = 0;
9440 char *bound;
9441 char *pend;
d2e4a39e 9442 struct value *bound_val;
14f9c5c9
AS
9443
9444 if (dval == NULL || str == NULL || str[k] == '\0')
9445 return 0;
9446
d2e4a39e 9447 pend = strstr (str + k, "__");
14f9c5c9
AS
9448 if (pend == NULL)
9449 {
d2e4a39e 9450 bound = str + k;
14f9c5c9
AS
9451 k += strlen (bound);
9452 }
d2e4a39e 9453 else
14f9c5c9 9454 {
d2e4a39e 9455 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 9456 bound = bound_buffer;
d2e4a39e
AS
9457 strncpy (bound_buffer, str + k, pend - (str + k));
9458 bound[pend - (str + k)] = '\0';
9459 k = pend - str;
14f9c5c9 9460 }
d2e4a39e 9461
df407dfe 9462 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
9463 if (bound_val == NULL)
9464 return 0;
9465
9466 *px = value_as_long (bound_val);
9467 if (pnew_k != NULL)
9468 *pnew_k = k;
9469 return 1;
9470}
9471
9472/* Value of variable named NAME in the current environment. If
9473 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
9474 otherwise causes an error with message ERR_MSG. */
9475
d2e4a39e
AS
9476static struct value *
9477get_var_value (char *name, char *err_msg)
14f9c5c9 9478{
4c4b4cd2 9479 struct ada_symbol_info *syms;
14f9c5c9
AS
9480 int nsyms;
9481
4c4b4cd2
PH
9482 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9483 &syms);
14f9c5c9
AS
9484
9485 if (nsyms != 1)
9486 {
9487 if (err_msg == NULL)
4c4b4cd2 9488 return 0;
14f9c5c9 9489 else
8a3fe4f8 9490 error (("%s"), err_msg);
14f9c5c9
AS
9491 }
9492
4c4b4cd2 9493 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 9494}
d2e4a39e 9495
14f9c5c9 9496/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
9497 no such variable found, returns 0, and sets *FLAG to 0. If
9498 successful, sets *FLAG to 1. */
9499
14f9c5c9 9500LONGEST
4c4b4cd2 9501get_int_var_value (char *name, int *flag)
14f9c5c9 9502{
4c4b4cd2 9503 struct value *var_val = get_var_value (name, 0);
d2e4a39e 9504
14f9c5c9
AS
9505 if (var_val == 0)
9506 {
9507 if (flag != NULL)
4c4b4cd2 9508 *flag = 0;
14f9c5c9
AS
9509 return 0;
9510 }
9511 else
9512 {
9513 if (flag != NULL)
4c4b4cd2 9514 *flag = 1;
14f9c5c9
AS
9515 return value_as_long (var_val);
9516 }
9517}
d2e4a39e 9518
14f9c5c9
AS
9519
9520/* Return a range type whose base type is that of the range type named
9521 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 9522 from NAME according to the GNAT range encoding conventions.
14f9c5c9
AS
9523 Extract discriminant values, if needed, from DVAL. If a new type
9524 must be created, allocate in OBJFILE's space. The bounds
9525 information, in general, is encoded in NAME, the base type given in
4c4b4cd2 9526 the named range type. */
14f9c5c9 9527
d2e4a39e 9528static struct type *
ebf56fd3 9529to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
14f9c5c9
AS
9530{
9531 struct type *raw_type = ada_find_any_type (name);
9532 struct type *base_type;
d2e4a39e 9533 char *subtype_info;
14f9c5c9
AS
9534
9535 if (raw_type == NULL)
6d84d3d8 9536 base_type = builtin_type_int32;
14f9c5c9
AS
9537 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9538 base_type = TYPE_TARGET_TYPE (raw_type);
9539 else
9540 base_type = raw_type;
9541
9542 subtype_info = strstr (name, "___XD");
9543 if (subtype_info == NULL)
690cc4eb
PH
9544 {
9545 LONGEST L = discrete_type_low_bound (raw_type);
9546 LONGEST U = discrete_type_high_bound (raw_type);
9547 if (L < INT_MIN || U > INT_MAX)
9548 return raw_type;
9549 else
9550 return create_range_type (alloc_type (objfile), raw_type,
9551 discrete_type_low_bound (raw_type),
9552 discrete_type_high_bound (raw_type));
9553 }
14f9c5c9
AS
9554 else
9555 {
9556 static char *name_buf = NULL;
9557 static size_t name_len = 0;
9558 int prefix_len = subtype_info - name;
9559 LONGEST L, U;
9560 struct type *type;
9561 char *bounds_str;
9562 int n;
9563
9564 GROW_VECT (name_buf, name_len, prefix_len + 5);
9565 strncpy (name_buf, name, prefix_len);
9566 name_buf[prefix_len] = '\0';
9567
9568 subtype_info += 5;
9569 bounds_str = strchr (subtype_info, '_');
9570 n = 1;
9571
d2e4a39e 9572 if (*subtype_info == 'L')
4c4b4cd2
PH
9573 {
9574 if (!ada_scan_number (bounds_str, n, &L, &n)
9575 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9576 return raw_type;
9577 if (bounds_str[n] == '_')
9578 n += 2;
9579 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9580 n += 1;
9581 subtype_info += 1;
9582 }
d2e4a39e 9583 else
4c4b4cd2
PH
9584 {
9585 int ok;
9586 strcpy (name_buf + prefix_len, "___L");
9587 L = get_int_var_value (name_buf, &ok);
9588 if (!ok)
9589 {
323e0a4a 9590 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
9591 L = 1;
9592 }
9593 }
14f9c5c9 9594
d2e4a39e 9595 if (*subtype_info == 'U')
4c4b4cd2
PH
9596 {
9597 if (!ada_scan_number (bounds_str, n, &U, &n)
9598 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9599 return raw_type;
9600 }
d2e4a39e 9601 else
4c4b4cd2
PH
9602 {
9603 int ok;
9604 strcpy (name_buf + prefix_len, "___U");
9605 U = get_int_var_value (name_buf, &ok);
9606 if (!ok)
9607 {
323e0a4a 9608 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
9609 U = L;
9610 }
9611 }
14f9c5c9 9612
d2e4a39e 9613 if (objfile == NULL)
4c4b4cd2 9614 objfile = TYPE_OBJFILE (base_type);
14f9c5c9 9615 type = create_range_type (alloc_type (objfile), base_type, L, U);
d2e4a39e 9616 TYPE_NAME (type) = name;
14f9c5c9
AS
9617 return type;
9618 }
9619}
9620
4c4b4cd2
PH
9621/* True iff NAME is the name of a range type. */
9622
14f9c5c9 9623int
d2e4a39e 9624ada_is_range_type_name (const char *name)
14f9c5c9
AS
9625{
9626 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 9627}
14f9c5c9 9628\f
d2e4a39e 9629
4c4b4cd2
PH
9630 /* Modular types */
9631
9632/* True iff TYPE is an Ada modular type. */
14f9c5c9 9633
14f9c5c9 9634int
d2e4a39e 9635ada_is_modular_type (struct type *type)
14f9c5c9 9636{
4c4b4cd2 9637 struct type *subranged_type = base_type (type);
14f9c5c9
AS
9638
9639 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 9640 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 9641 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
9642}
9643
4c4b4cd2
PH
9644/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9645
61ee279c 9646ULONGEST
d2e4a39e 9647ada_modulus (struct type * type)
14f9c5c9 9648{
d37209fd 9649 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 9650}
d2e4a39e 9651\f
f7f9143b
JB
9652
9653/* Ada exception catchpoint support:
9654 ---------------------------------
9655
9656 We support 3 kinds of exception catchpoints:
9657 . catchpoints on Ada exceptions
9658 . catchpoints on unhandled Ada exceptions
9659 . catchpoints on failed assertions
9660
9661 Exceptions raised during failed assertions, or unhandled exceptions
9662 could perfectly be caught with the general catchpoint on Ada exceptions.
9663 However, we can easily differentiate these two special cases, and having
9664 the option to distinguish these two cases from the rest can be useful
9665 to zero-in on certain situations.
9666
9667 Exception catchpoints are a specialized form of breakpoint,
9668 since they rely on inserting breakpoints inside known routines
9669 of the GNAT runtime. The implementation therefore uses a standard
9670 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9671 of breakpoint_ops.
9672
0259addd
JB
9673 Support in the runtime for exception catchpoints have been changed
9674 a few times already, and these changes affect the implementation
9675 of these catchpoints. In order to be able to support several
9676 variants of the runtime, we use a sniffer that will determine
9677 the runtime variant used by the program being debugged.
9678
f7f9143b
JB
9679 At this time, we do not support the use of conditions on Ada exception
9680 catchpoints. The COND and COND_STRING fields are therefore set
9681 to NULL (most of the time, see below).
9682
9683 Conditions where EXP_STRING, COND, and COND_STRING are used:
9684
9685 When a user specifies the name of a specific exception in the case
9686 of catchpoints on Ada exceptions, we store the name of that exception
9687 in the EXP_STRING. We then translate this request into an actual
9688 condition stored in COND_STRING, and then parse it into an expression
9689 stored in COND. */
9690
9691/* The different types of catchpoints that we introduced for catching
9692 Ada exceptions. */
9693
9694enum exception_catchpoint_kind
9695{
9696 ex_catch_exception,
9697 ex_catch_exception_unhandled,
9698 ex_catch_assert
9699};
9700
3d0b0fa3
JB
9701/* Ada's standard exceptions. */
9702
9703static char *standard_exc[] = {
9704 "constraint_error",
9705 "program_error",
9706 "storage_error",
9707 "tasking_error"
9708};
9709
0259addd
JB
9710typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9711
9712/* A structure that describes how to support exception catchpoints
9713 for a given executable. */
9714
9715struct exception_support_info
9716{
9717 /* The name of the symbol to break on in order to insert
9718 a catchpoint on exceptions. */
9719 const char *catch_exception_sym;
9720
9721 /* The name of the symbol to break on in order to insert
9722 a catchpoint on unhandled exceptions. */
9723 const char *catch_exception_unhandled_sym;
9724
9725 /* The name of the symbol to break on in order to insert
9726 a catchpoint on failed assertions. */
9727 const char *catch_assert_sym;
9728
9729 /* Assuming that the inferior just triggered an unhandled exception
9730 catchpoint, this function is responsible for returning the address
9731 in inferior memory where the name of that exception is stored.
9732 Return zero if the address could not be computed. */
9733 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9734};
9735
9736static CORE_ADDR ada_unhandled_exception_name_addr (void);
9737static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9738
9739/* The following exception support info structure describes how to
9740 implement exception catchpoints with the latest version of the
9741 Ada runtime (as of 2007-03-06). */
9742
9743static const struct exception_support_info default_exception_support_info =
9744{
9745 "__gnat_debug_raise_exception", /* catch_exception_sym */
9746 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9747 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9748 ada_unhandled_exception_name_addr
9749};
9750
9751/* The following exception support info structure describes how to
9752 implement exception catchpoints with a slightly older version
9753 of the Ada runtime. */
9754
9755static const struct exception_support_info exception_support_info_fallback =
9756{
9757 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9758 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9759 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9760 ada_unhandled_exception_name_addr_from_raise
9761};
9762
9763/* For each executable, we sniff which exception info structure to use
9764 and cache it in the following global variable. */
9765
9766static const struct exception_support_info *exception_info = NULL;
9767
9768/* Inspect the Ada runtime and determine which exception info structure
9769 should be used to provide support for exception catchpoints.
9770
9771 This function will always set exception_info, or raise an error. */
9772
9773static void
9774ada_exception_support_info_sniffer (void)
9775{
9776 struct symbol *sym;
9777
9778 /* If the exception info is already known, then no need to recompute it. */
9779 if (exception_info != NULL)
9780 return;
9781
9782 /* Check the latest (default) exception support info. */
9783 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9784 NULL, VAR_DOMAIN);
9785 if (sym != NULL)
9786 {
9787 exception_info = &default_exception_support_info;
9788 return;
9789 }
9790
9791 /* Try our fallback exception suport info. */
9792 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9793 NULL, VAR_DOMAIN);
9794 if (sym != NULL)
9795 {
9796 exception_info = &exception_support_info_fallback;
9797 return;
9798 }
9799
9800 /* Sometimes, it is normal for us to not be able to find the routine
9801 we are looking for. This happens when the program is linked with
9802 the shared version of the GNAT runtime, and the program has not been
9803 started yet. Inform the user of these two possible causes if
9804 applicable. */
9805
9806 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9807 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9808
9809 /* If the symbol does not exist, then check that the program is
9810 already started, to make sure that shared libraries have been
9811 loaded. If it is not started, this may mean that the symbol is
9812 in a shared library. */
9813
9814 if (ptid_get_pid (inferior_ptid) == 0)
9815 error (_("Unable to insert catchpoint. Try to start the program first."));
9816
9817 /* At this point, we know that we are debugging an Ada program and
9818 that the inferior has been started, but we still are not able to
9819 find the run-time symbols. That can mean that we are in
9820 configurable run time mode, or that a-except as been optimized
9821 out by the linker... In any case, at this point it is not worth
9822 supporting this feature. */
9823
9824 error (_("Cannot insert catchpoints in this configuration."));
9825}
9826
9827/* An observer of "executable_changed" events.
9828 Its role is to clear certain cached values that need to be recomputed
9829 each time a new executable is loaded by GDB. */
9830
9831static void
781b42b0 9832ada_executable_changed_observer (void)
0259addd
JB
9833{
9834 /* If the executable changed, then it is possible that the Ada runtime
9835 is different. So we need to invalidate the exception support info
9836 cache. */
9837 exception_info = NULL;
9838}
9839
f7f9143b
JB
9840/* Return the name of the function at PC, NULL if could not find it.
9841 This function only checks the debugging information, not the symbol
9842 table. */
9843
9844static char *
9845function_name_from_pc (CORE_ADDR pc)
9846{
9847 char *func_name;
9848
9849 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9850 return NULL;
9851
9852 return func_name;
9853}
9854
9855/* True iff FRAME is very likely to be that of a function that is
9856 part of the runtime system. This is all very heuristic, but is
9857 intended to be used as advice as to what frames are uninteresting
9858 to most users. */
9859
9860static int
9861is_known_support_routine (struct frame_info *frame)
9862{
4ed6b5be 9863 struct symtab_and_line sal;
f7f9143b
JB
9864 char *func_name;
9865 int i;
f7f9143b 9866
4ed6b5be
JB
9867 /* If this code does not have any debugging information (no symtab),
9868 This cannot be any user code. */
f7f9143b 9869
4ed6b5be 9870 find_frame_sal (frame, &sal);
f7f9143b
JB
9871 if (sal.symtab == NULL)
9872 return 1;
9873
4ed6b5be
JB
9874 /* If there is a symtab, but the associated source file cannot be
9875 located, then assume this is not user code: Selecting a frame
9876 for which we cannot display the code would not be very helpful
9877 for the user. This should also take care of case such as VxWorks
9878 where the kernel has some debugging info provided for a few units. */
f7f9143b 9879
9bbc9174 9880 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
9881 return 1;
9882
4ed6b5be
JB
9883 /* Check the unit filename againt the Ada runtime file naming.
9884 We also check the name of the objfile against the name of some
9885 known system libraries that sometimes come with debugging info
9886 too. */
9887
f7f9143b
JB
9888 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9889 {
9890 re_comp (known_runtime_file_name_patterns[i]);
9891 if (re_exec (sal.symtab->filename))
9892 return 1;
4ed6b5be
JB
9893 if (sal.symtab->objfile != NULL
9894 && re_exec (sal.symtab->objfile->name))
9895 return 1;
f7f9143b
JB
9896 }
9897
4ed6b5be 9898 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 9899
4ed6b5be 9900 func_name = function_name_from_pc (get_frame_address_in_block (frame));
f7f9143b
JB
9901 if (func_name == NULL)
9902 return 1;
9903
9904 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9905 {
9906 re_comp (known_auxiliary_function_name_patterns[i]);
9907 if (re_exec (func_name))
9908 return 1;
9909 }
9910
9911 return 0;
9912}
9913
9914/* Find the first frame that contains debugging information and that is not
9915 part of the Ada run-time, starting from FI and moving upward. */
9916
0ef643c8 9917void
f7f9143b
JB
9918ada_find_printable_frame (struct frame_info *fi)
9919{
9920 for (; fi != NULL; fi = get_prev_frame (fi))
9921 {
9922 if (!is_known_support_routine (fi))
9923 {
9924 select_frame (fi);
9925 break;
9926 }
9927 }
9928
9929}
9930
9931/* Assuming that the inferior just triggered an unhandled exception
9932 catchpoint, return the address in inferior memory where the name
9933 of the exception is stored.
9934
9935 Return zero if the address could not be computed. */
9936
9937static CORE_ADDR
9938ada_unhandled_exception_name_addr (void)
0259addd
JB
9939{
9940 return parse_and_eval_address ("e.full_name");
9941}
9942
9943/* Same as ada_unhandled_exception_name_addr, except that this function
9944 should be used when the inferior uses an older version of the runtime,
9945 where the exception name needs to be extracted from a specific frame
9946 several frames up in the callstack. */
9947
9948static CORE_ADDR
9949ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
9950{
9951 int frame_level;
9952 struct frame_info *fi;
9953
9954 /* To determine the name of this exception, we need to select
9955 the frame corresponding to RAISE_SYM_NAME. This frame is
9956 at least 3 levels up, so we simply skip the first 3 frames
9957 without checking the name of their associated function. */
9958 fi = get_current_frame ();
9959 for (frame_level = 0; frame_level < 3; frame_level += 1)
9960 if (fi != NULL)
9961 fi = get_prev_frame (fi);
9962
9963 while (fi != NULL)
9964 {
9965 const char *func_name =
9966 function_name_from_pc (get_frame_address_in_block (fi));
9967 if (func_name != NULL
0259addd 9968 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
9969 break; /* We found the frame we were looking for... */
9970 fi = get_prev_frame (fi);
9971 }
9972
9973 if (fi == NULL)
9974 return 0;
9975
9976 select_frame (fi);
9977 return parse_and_eval_address ("id.full_name");
9978}
9979
9980/* Assuming the inferior just triggered an Ada exception catchpoint
9981 (of any type), return the address in inferior memory where the name
9982 of the exception is stored, if applicable.
9983
9984 Return zero if the address could not be computed, or if not relevant. */
9985
9986static CORE_ADDR
9987ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9988 struct breakpoint *b)
9989{
9990 switch (ex)
9991 {
9992 case ex_catch_exception:
9993 return (parse_and_eval_address ("e.full_name"));
9994 break;
9995
9996 case ex_catch_exception_unhandled:
0259addd 9997 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
9998 break;
9999
10000 case ex_catch_assert:
10001 return 0; /* Exception name is not relevant in this case. */
10002 break;
10003
10004 default:
10005 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10006 break;
10007 }
10008
10009 return 0; /* Should never be reached. */
10010}
10011
10012/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10013 any error that ada_exception_name_addr_1 might cause to be thrown.
10014 When an error is intercepted, a warning with the error message is printed,
10015 and zero is returned. */
10016
10017static CORE_ADDR
10018ada_exception_name_addr (enum exception_catchpoint_kind ex,
10019 struct breakpoint *b)
10020{
10021 struct gdb_exception e;
10022 CORE_ADDR result = 0;
10023
10024 TRY_CATCH (e, RETURN_MASK_ERROR)
10025 {
10026 result = ada_exception_name_addr_1 (ex, b);
10027 }
10028
10029 if (e.reason < 0)
10030 {
10031 warning (_("failed to get exception name: %s"), e.message);
10032 return 0;
10033 }
10034
10035 return result;
10036}
10037
10038/* Implement the PRINT_IT method in the breakpoint_ops structure
10039 for all exception catchpoint kinds. */
10040
10041static enum print_stop_action
10042print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10043{
10044 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10045 char exception_name[256];
10046
10047 if (addr != 0)
10048 {
10049 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10050 exception_name [sizeof (exception_name) - 1] = '\0';
10051 }
10052
10053 ada_find_printable_frame (get_current_frame ());
10054
10055 annotate_catchpoint (b->number);
10056 switch (ex)
10057 {
10058 case ex_catch_exception:
10059 if (addr != 0)
10060 printf_filtered (_("\nCatchpoint %d, %s at "),
10061 b->number, exception_name);
10062 else
10063 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10064 break;
10065 case ex_catch_exception_unhandled:
10066 if (addr != 0)
10067 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10068 b->number, exception_name);
10069 else
10070 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10071 b->number);
10072 break;
10073 case ex_catch_assert:
10074 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10075 b->number);
10076 break;
10077 }
10078
10079 return PRINT_SRC_AND_LOC;
10080}
10081
10082/* Implement the PRINT_ONE method in the breakpoint_ops structure
10083 for all exception catchpoint kinds. */
10084
10085static void
10086print_one_exception (enum exception_catchpoint_kind ex,
10087 struct breakpoint *b, CORE_ADDR *last_addr)
10088{
79a45b7d
TT
10089 struct value_print_options opts;
10090
10091 get_user_print_options (&opts);
10092 if (opts.addressprint)
f7f9143b
JB
10093 {
10094 annotate_field (4);
10095 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10096 }
10097
10098 annotate_field (5);
10099 *last_addr = b->loc->address;
10100 switch (ex)
10101 {
10102 case ex_catch_exception:
10103 if (b->exp_string != NULL)
10104 {
10105 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10106
10107 ui_out_field_string (uiout, "what", msg);
10108 xfree (msg);
10109 }
10110 else
10111 ui_out_field_string (uiout, "what", "all Ada exceptions");
10112
10113 break;
10114
10115 case ex_catch_exception_unhandled:
10116 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10117 break;
10118
10119 case ex_catch_assert:
10120 ui_out_field_string (uiout, "what", "failed Ada assertions");
10121 break;
10122
10123 default:
10124 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10125 break;
10126 }
10127}
10128
10129/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10130 for all exception catchpoint kinds. */
10131
10132static void
10133print_mention_exception (enum exception_catchpoint_kind ex,
10134 struct breakpoint *b)
10135{
10136 switch (ex)
10137 {
10138 case ex_catch_exception:
10139 if (b->exp_string != NULL)
10140 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10141 b->number, b->exp_string);
10142 else
10143 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10144
10145 break;
10146
10147 case ex_catch_exception_unhandled:
10148 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10149 b->number);
10150 break;
10151
10152 case ex_catch_assert:
10153 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10154 break;
10155
10156 default:
10157 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10158 break;
10159 }
10160}
10161
10162/* Virtual table for "catch exception" breakpoints. */
10163
10164static enum print_stop_action
10165print_it_catch_exception (struct breakpoint *b)
10166{
10167 return print_it_exception (ex_catch_exception, b);
10168}
10169
10170static void
10171print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10172{
10173 print_one_exception (ex_catch_exception, b, last_addr);
10174}
10175
10176static void
10177print_mention_catch_exception (struct breakpoint *b)
10178{
10179 print_mention_exception (ex_catch_exception, b);
10180}
10181
10182static struct breakpoint_ops catch_exception_breakpoint_ops =
10183{
ce78b96d
JB
10184 NULL, /* insert */
10185 NULL, /* remove */
10186 NULL, /* breakpoint_hit */
f7f9143b
JB
10187 print_it_catch_exception,
10188 print_one_catch_exception,
10189 print_mention_catch_exception
10190};
10191
10192/* Virtual table for "catch exception unhandled" breakpoints. */
10193
10194static enum print_stop_action
10195print_it_catch_exception_unhandled (struct breakpoint *b)
10196{
10197 return print_it_exception (ex_catch_exception_unhandled, b);
10198}
10199
10200static void
10201print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10202{
10203 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10204}
10205
10206static void
10207print_mention_catch_exception_unhandled (struct breakpoint *b)
10208{
10209 print_mention_exception (ex_catch_exception_unhandled, b);
10210}
10211
10212static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
ce78b96d
JB
10213 NULL, /* insert */
10214 NULL, /* remove */
10215 NULL, /* breakpoint_hit */
f7f9143b
JB
10216 print_it_catch_exception_unhandled,
10217 print_one_catch_exception_unhandled,
10218 print_mention_catch_exception_unhandled
10219};
10220
10221/* Virtual table for "catch assert" breakpoints. */
10222
10223static enum print_stop_action
10224print_it_catch_assert (struct breakpoint *b)
10225{
10226 return print_it_exception (ex_catch_assert, b);
10227}
10228
10229static void
10230print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10231{
10232 print_one_exception (ex_catch_assert, b, last_addr);
10233}
10234
10235static void
10236print_mention_catch_assert (struct breakpoint *b)
10237{
10238 print_mention_exception (ex_catch_assert, b);
10239}
10240
10241static struct breakpoint_ops catch_assert_breakpoint_ops = {
ce78b96d
JB
10242 NULL, /* insert */
10243 NULL, /* remove */
10244 NULL, /* breakpoint_hit */
f7f9143b
JB
10245 print_it_catch_assert,
10246 print_one_catch_assert,
10247 print_mention_catch_assert
10248};
10249
10250/* Return non-zero if B is an Ada exception catchpoint. */
10251
10252int
10253ada_exception_catchpoint_p (struct breakpoint *b)
10254{
10255 return (b->ops == &catch_exception_breakpoint_ops
10256 || b->ops == &catch_exception_unhandled_breakpoint_ops
10257 || b->ops == &catch_assert_breakpoint_ops);
10258}
10259
f7f9143b
JB
10260/* Return a newly allocated copy of the first space-separated token
10261 in ARGSP, and then adjust ARGSP to point immediately after that
10262 token.
10263
10264 Return NULL if ARGPS does not contain any more tokens. */
10265
10266static char *
10267ada_get_next_arg (char **argsp)
10268{
10269 char *args = *argsp;
10270 char *end;
10271 char *result;
10272
10273 /* Skip any leading white space. */
10274
10275 while (isspace (*args))
10276 args++;
10277
10278 if (args[0] == '\0')
10279 return NULL; /* No more arguments. */
10280
10281 /* Find the end of the current argument. */
10282
10283 end = args;
10284 while (*end != '\0' && !isspace (*end))
10285 end++;
10286
10287 /* Adjust ARGSP to point to the start of the next argument. */
10288
10289 *argsp = end;
10290
10291 /* Make a copy of the current argument and return it. */
10292
10293 result = xmalloc (end - args + 1);
10294 strncpy (result, args, end - args);
10295 result[end - args] = '\0';
10296
10297 return result;
10298}
10299
10300/* Split the arguments specified in a "catch exception" command.
10301 Set EX to the appropriate catchpoint type.
10302 Set EXP_STRING to the name of the specific exception if
10303 specified by the user. */
10304
10305static void
10306catch_ada_exception_command_split (char *args,
10307 enum exception_catchpoint_kind *ex,
10308 char **exp_string)
10309{
10310 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10311 char *exception_name;
10312
10313 exception_name = ada_get_next_arg (&args);
10314 make_cleanup (xfree, exception_name);
10315
10316 /* Check that we do not have any more arguments. Anything else
10317 is unexpected. */
10318
10319 while (isspace (*args))
10320 args++;
10321
10322 if (args[0] != '\0')
10323 error (_("Junk at end of expression"));
10324
10325 discard_cleanups (old_chain);
10326
10327 if (exception_name == NULL)
10328 {
10329 /* Catch all exceptions. */
10330 *ex = ex_catch_exception;
10331 *exp_string = NULL;
10332 }
10333 else if (strcmp (exception_name, "unhandled") == 0)
10334 {
10335 /* Catch unhandled exceptions. */
10336 *ex = ex_catch_exception_unhandled;
10337 *exp_string = NULL;
10338 }
10339 else
10340 {
10341 /* Catch a specific exception. */
10342 *ex = ex_catch_exception;
10343 *exp_string = exception_name;
10344 }
10345}
10346
10347/* Return the name of the symbol on which we should break in order to
10348 implement a catchpoint of the EX kind. */
10349
10350static const char *
10351ada_exception_sym_name (enum exception_catchpoint_kind ex)
10352{
0259addd
JB
10353 gdb_assert (exception_info != NULL);
10354
f7f9143b
JB
10355 switch (ex)
10356 {
10357 case ex_catch_exception:
0259addd 10358 return (exception_info->catch_exception_sym);
f7f9143b
JB
10359 break;
10360 case ex_catch_exception_unhandled:
0259addd 10361 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
10362 break;
10363 case ex_catch_assert:
0259addd 10364 return (exception_info->catch_assert_sym);
f7f9143b
JB
10365 break;
10366 default:
10367 internal_error (__FILE__, __LINE__,
10368 _("unexpected catchpoint kind (%d)"), ex);
10369 }
10370}
10371
10372/* Return the breakpoint ops "virtual table" used for catchpoints
10373 of the EX kind. */
10374
10375static struct breakpoint_ops *
4b9eee8c 10376ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
10377{
10378 switch (ex)
10379 {
10380 case ex_catch_exception:
10381 return (&catch_exception_breakpoint_ops);
10382 break;
10383 case ex_catch_exception_unhandled:
10384 return (&catch_exception_unhandled_breakpoint_ops);
10385 break;
10386 case ex_catch_assert:
10387 return (&catch_assert_breakpoint_ops);
10388 break;
10389 default:
10390 internal_error (__FILE__, __LINE__,
10391 _("unexpected catchpoint kind (%d)"), ex);
10392 }
10393}
10394
10395/* Return the condition that will be used to match the current exception
10396 being raised with the exception that the user wants to catch. This
10397 assumes that this condition is used when the inferior just triggered
10398 an exception catchpoint.
10399
10400 The string returned is a newly allocated string that needs to be
10401 deallocated later. */
10402
10403static char *
10404ada_exception_catchpoint_cond_string (const char *exp_string)
10405{
3d0b0fa3
JB
10406 int i;
10407
10408 /* The standard exceptions are a special case. They are defined in
10409 runtime units that have been compiled without debugging info; if
10410 EXP_STRING is the not-fully-qualified name of a standard
10411 exception (e.g. "constraint_error") then, during the evaluation
10412 of the condition expression, the symbol lookup on this name would
10413 *not* return this standard exception. The catchpoint condition
10414 may then be set only on user-defined exceptions which have the
10415 same not-fully-qualified name (e.g. my_package.constraint_error).
10416
10417 To avoid this unexcepted behavior, these standard exceptions are
10418 systematically prefixed by "standard". This means that "catch
10419 exception constraint_error" is rewritten into "catch exception
10420 standard.constraint_error".
10421
10422 If an exception named contraint_error is defined in another package of
10423 the inferior program, then the only way to specify this exception as a
10424 breakpoint condition is to use its fully-qualified named:
10425 e.g. my_package.constraint_error. */
10426
10427 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10428 {
10429 if (strcmp (standard_exc [i], exp_string) == 0)
10430 {
10431 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10432 exp_string);
10433 }
10434 }
f7f9143b
JB
10435 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10436}
10437
10438/* Return the expression corresponding to COND_STRING evaluated at SAL. */
10439
10440static struct expression *
10441ada_parse_catchpoint_condition (char *cond_string,
10442 struct symtab_and_line sal)
10443{
10444 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10445}
10446
10447/* Return the symtab_and_line that should be used to insert an exception
10448 catchpoint of the TYPE kind.
10449
10450 EX_STRING should contain the name of a specific exception
10451 that the catchpoint should catch, or NULL otherwise.
10452
10453 The idea behind all the remaining parameters is that their names match
10454 the name of certain fields in the breakpoint structure that are used to
10455 handle exception catchpoints. This function returns the value to which
10456 these fields should be set, depending on the type of catchpoint we need
10457 to create.
10458
10459 If COND and COND_STRING are both non-NULL, any value they might
10460 hold will be free'ed, and then replaced by newly allocated ones.
10461 These parameters are left untouched otherwise. */
10462
10463static struct symtab_and_line
10464ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10465 char **addr_string, char **cond_string,
10466 struct expression **cond, struct breakpoint_ops **ops)
10467{
10468 const char *sym_name;
10469 struct symbol *sym;
10470 struct symtab_and_line sal;
10471
0259addd
JB
10472 /* First, find out which exception support info to use. */
10473 ada_exception_support_info_sniffer ();
10474
10475 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
10476 the Ada exceptions requested by the user. */
10477
10478 sym_name = ada_exception_sym_name (ex);
10479 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10480
10481 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10482 that should be compiled with debugging information. As a result, we
10483 expect to find that symbol in the symtabs. If we don't find it, then
10484 the target most likely does not support Ada exceptions, or we cannot
10485 insert exception breakpoints yet, because the GNAT runtime hasn't been
10486 loaded yet. */
10487
10488 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10489 in such a way that no debugging information is produced for the symbol
10490 we are looking for. In this case, we could search the minimal symbols
10491 as a fall-back mechanism. This would still be operating in degraded
10492 mode, however, as we would still be missing the debugging information
10493 that is needed in order to extract the name of the exception being
10494 raised (this name is printed in the catchpoint message, and is also
10495 used when trying to catch a specific exception). We do not handle
10496 this case for now. */
10497
10498 if (sym == NULL)
0259addd 10499 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
10500
10501 /* Make sure that the symbol we found corresponds to a function. */
10502 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10503 error (_("Symbol \"%s\" is not a function (class = %d)"),
10504 sym_name, SYMBOL_CLASS (sym));
10505
10506 sal = find_function_start_sal (sym, 1);
10507
10508 /* Set ADDR_STRING. */
10509
10510 *addr_string = xstrdup (sym_name);
10511
10512 /* Set the COND and COND_STRING (if not NULL). */
10513
10514 if (cond_string != NULL && cond != NULL)
10515 {
10516 if (*cond_string != NULL)
10517 {
10518 xfree (*cond_string);
10519 *cond_string = NULL;
10520 }
10521 if (*cond != NULL)
10522 {
10523 xfree (*cond);
10524 *cond = NULL;
10525 }
10526 if (exp_string != NULL)
10527 {
10528 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10529 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10530 }
10531 }
10532
10533 /* Set OPS. */
4b9eee8c 10534 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
10535
10536 return sal;
10537}
10538
10539/* Parse the arguments (ARGS) of the "catch exception" command.
10540
10541 Set TYPE to the appropriate exception catchpoint type.
10542 If the user asked the catchpoint to catch only a specific
10543 exception, then save the exception name in ADDR_STRING.
10544
10545 See ada_exception_sal for a description of all the remaining
10546 function arguments of this function. */
10547
10548struct symtab_and_line
10549ada_decode_exception_location (char *args, char **addr_string,
10550 char **exp_string, char **cond_string,
10551 struct expression **cond,
10552 struct breakpoint_ops **ops)
10553{
10554 enum exception_catchpoint_kind ex;
10555
10556 catch_ada_exception_command_split (args, &ex, exp_string);
10557 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10558 cond, ops);
10559}
10560
10561struct symtab_and_line
10562ada_decode_assert_location (char *args, char **addr_string,
10563 struct breakpoint_ops **ops)
10564{
10565 /* Check that no argument where provided at the end of the command. */
10566
10567 if (args != NULL)
10568 {
10569 while (isspace (*args))
10570 args++;
10571 if (*args != '\0')
10572 error (_("Junk at end of arguments."));
10573 }
10574
10575 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10576 ops);
10577}
10578
4c4b4cd2
PH
10579 /* Operators */
10580/* Information about operators given special treatment in functions
10581 below. */
10582/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10583
10584#define ADA_OPERATORS \
10585 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10586 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10587 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10588 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10589 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10590 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10591 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10592 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10593 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10594 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10595 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10596 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10597 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10598 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10599 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
10600 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10601 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10602 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10603 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
10604
10605static void
10606ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10607{
10608 switch (exp->elts[pc - 1].opcode)
10609 {
76a01679 10610 default:
4c4b4cd2
PH
10611 operator_length_standard (exp, pc, oplenp, argsp);
10612 break;
10613
10614#define OP_DEFN(op, len, args, binop) \
10615 case op: *oplenp = len; *argsp = args; break;
10616 ADA_OPERATORS;
10617#undef OP_DEFN
52ce6436
PH
10618
10619 case OP_AGGREGATE:
10620 *oplenp = 3;
10621 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10622 break;
10623
10624 case OP_CHOICES:
10625 *oplenp = 3;
10626 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10627 break;
4c4b4cd2
PH
10628 }
10629}
10630
10631static char *
10632ada_op_name (enum exp_opcode opcode)
10633{
10634 switch (opcode)
10635 {
76a01679 10636 default:
4c4b4cd2 10637 return op_name_standard (opcode);
52ce6436 10638
4c4b4cd2
PH
10639#define OP_DEFN(op, len, args, binop) case op: return #op;
10640 ADA_OPERATORS;
10641#undef OP_DEFN
52ce6436
PH
10642
10643 case OP_AGGREGATE:
10644 return "OP_AGGREGATE";
10645 case OP_CHOICES:
10646 return "OP_CHOICES";
10647 case OP_NAME:
10648 return "OP_NAME";
4c4b4cd2
PH
10649 }
10650}
10651
10652/* As for operator_length, but assumes PC is pointing at the first
10653 element of the operator, and gives meaningful results only for the
52ce6436 10654 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
10655
10656static void
76a01679
JB
10657ada_forward_operator_length (struct expression *exp, int pc,
10658 int *oplenp, int *argsp)
4c4b4cd2 10659{
76a01679 10660 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
10661 {
10662 default:
10663 *oplenp = *argsp = 0;
10664 break;
52ce6436 10665
4c4b4cd2
PH
10666#define OP_DEFN(op, len, args, binop) \
10667 case op: *oplenp = len; *argsp = args; break;
10668 ADA_OPERATORS;
10669#undef OP_DEFN
52ce6436
PH
10670
10671 case OP_AGGREGATE:
10672 *oplenp = 3;
10673 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10674 break;
10675
10676 case OP_CHOICES:
10677 *oplenp = 3;
10678 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10679 break;
10680
10681 case OP_STRING:
10682 case OP_NAME:
10683 {
10684 int len = longest_to_int (exp->elts[pc + 1].longconst);
10685 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10686 *argsp = 0;
10687 break;
10688 }
4c4b4cd2
PH
10689 }
10690}
10691
10692static int
10693ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10694{
10695 enum exp_opcode op = exp->elts[elt].opcode;
10696 int oplen, nargs;
10697 int pc = elt;
10698 int i;
76a01679 10699
4c4b4cd2
PH
10700 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10701
76a01679 10702 switch (op)
4c4b4cd2 10703 {
76a01679 10704 /* Ada attributes ('Foo). */
4c4b4cd2
PH
10705 case OP_ATR_FIRST:
10706 case OP_ATR_LAST:
10707 case OP_ATR_LENGTH:
10708 case OP_ATR_IMAGE:
10709 case OP_ATR_MAX:
10710 case OP_ATR_MIN:
10711 case OP_ATR_MODULUS:
10712 case OP_ATR_POS:
10713 case OP_ATR_SIZE:
10714 case OP_ATR_TAG:
10715 case OP_ATR_VAL:
10716 break;
10717
10718 case UNOP_IN_RANGE:
10719 case UNOP_QUAL:
323e0a4a
AC
10720 /* XXX: gdb_sprint_host_address, type_sprint */
10721 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
10722 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10723 fprintf_filtered (stream, " (");
10724 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10725 fprintf_filtered (stream, ")");
10726 break;
10727 case BINOP_IN_BOUNDS:
52ce6436
PH
10728 fprintf_filtered (stream, " (%d)",
10729 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
10730 break;
10731 case TERNOP_IN_RANGE:
10732 break;
10733
52ce6436
PH
10734 case OP_AGGREGATE:
10735 case OP_OTHERS:
10736 case OP_DISCRETE_RANGE:
10737 case OP_POSITIONAL:
10738 case OP_CHOICES:
10739 break;
10740
10741 case OP_NAME:
10742 case OP_STRING:
10743 {
10744 char *name = &exp->elts[elt + 2].string;
10745 int len = longest_to_int (exp->elts[elt + 1].longconst);
10746 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10747 break;
10748 }
10749
4c4b4cd2
PH
10750 default:
10751 return dump_subexp_body_standard (exp, stream, elt);
10752 }
10753
10754 elt += oplen;
10755 for (i = 0; i < nargs; i += 1)
10756 elt = dump_subexp (exp, stream, elt);
10757
10758 return elt;
10759}
10760
10761/* The Ada extension of print_subexp (q.v.). */
10762
76a01679
JB
10763static void
10764ada_print_subexp (struct expression *exp, int *pos,
10765 struct ui_file *stream, enum precedence prec)
4c4b4cd2 10766{
52ce6436 10767 int oplen, nargs, i;
4c4b4cd2
PH
10768 int pc = *pos;
10769 enum exp_opcode op = exp->elts[pc].opcode;
10770
10771 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10772
52ce6436 10773 *pos += oplen;
4c4b4cd2
PH
10774 switch (op)
10775 {
10776 default:
52ce6436 10777 *pos -= oplen;
4c4b4cd2
PH
10778 print_subexp_standard (exp, pos, stream, prec);
10779 return;
10780
10781 case OP_VAR_VALUE:
4c4b4cd2
PH
10782 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10783 return;
10784
10785 case BINOP_IN_BOUNDS:
323e0a4a 10786 /* XXX: sprint_subexp */
4c4b4cd2 10787 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10788 fputs_filtered (" in ", stream);
4c4b4cd2 10789 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10790 fputs_filtered ("'range", stream);
4c4b4cd2 10791 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
10792 fprintf_filtered (stream, "(%ld)",
10793 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
10794 return;
10795
10796 case TERNOP_IN_RANGE:
4c4b4cd2 10797 if (prec >= PREC_EQUAL)
76a01679 10798 fputs_filtered ("(", stream);
323e0a4a 10799 /* XXX: sprint_subexp */
4c4b4cd2 10800 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10801 fputs_filtered (" in ", stream);
4c4b4cd2
PH
10802 print_subexp (exp, pos, stream, PREC_EQUAL);
10803 fputs_filtered (" .. ", stream);
10804 print_subexp (exp, pos, stream, PREC_EQUAL);
10805 if (prec >= PREC_EQUAL)
76a01679
JB
10806 fputs_filtered (")", stream);
10807 return;
4c4b4cd2
PH
10808
10809 case OP_ATR_FIRST:
10810 case OP_ATR_LAST:
10811 case OP_ATR_LENGTH:
10812 case OP_ATR_IMAGE:
10813 case OP_ATR_MAX:
10814 case OP_ATR_MIN:
10815 case OP_ATR_MODULUS:
10816 case OP_ATR_POS:
10817 case OP_ATR_SIZE:
10818 case OP_ATR_TAG:
10819 case OP_ATR_VAL:
4c4b4cd2 10820 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
10821 {
10822 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10823 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10824 *pos += 3;
10825 }
4c4b4cd2 10826 else
76a01679 10827 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
10828 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10829 if (nargs > 1)
76a01679
JB
10830 {
10831 int tem;
10832 for (tem = 1; tem < nargs; tem += 1)
10833 {
10834 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10835 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10836 }
10837 fputs_filtered (")", stream);
10838 }
4c4b4cd2 10839 return;
14f9c5c9 10840
4c4b4cd2 10841 case UNOP_QUAL:
4c4b4cd2
PH
10842 type_print (exp->elts[pc + 1].type, "", stream, 0);
10843 fputs_filtered ("'(", stream);
10844 print_subexp (exp, pos, stream, PREC_PREFIX);
10845 fputs_filtered (")", stream);
10846 return;
14f9c5c9 10847
4c4b4cd2 10848 case UNOP_IN_RANGE:
323e0a4a 10849 /* XXX: sprint_subexp */
4c4b4cd2 10850 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10851 fputs_filtered (" in ", stream);
4c4b4cd2
PH
10852 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10853 return;
52ce6436
PH
10854
10855 case OP_DISCRETE_RANGE:
10856 print_subexp (exp, pos, stream, PREC_SUFFIX);
10857 fputs_filtered ("..", stream);
10858 print_subexp (exp, pos, stream, PREC_SUFFIX);
10859 return;
10860
10861 case OP_OTHERS:
10862 fputs_filtered ("others => ", stream);
10863 print_subexp (exp, pos, stream, PREC_SUFFIX);
10864 return;
10865
10866 case OP_CHOICES:
10867 for (i = 0; i < nargs-1; i += 1)
10868 {
10869 if (i > 0)
10870 fputs_filtered ("|", stream);
10871 print_subexp (exp, pos, stream, PREC_SUFFIX);
10872 }
10873 fputs_filtered (" => ", stream);
10874 print_subexp (exp, pos, stream, PREC_SUFFIX);
10875 return;
10876
10877 case OP_POSITIONAL:
10878 print_subexp (exp, pos, stream, PREC_SUFFIX);
10879 return;
10880
10881 case OP_AGGREGATE:
10882 fputs_filtered ("(", stream);
10883 for (i = 0; i < nargs; i += 1)
10884 {
10885 if (i > 0)
10886 fputs_filtered (", ", stream);
10887 print_subexp (exp, pos, stream, PREC_SUFFIX);
10888 }
10889 fputs_filtered (")", stream);
10890 return;
4c4b4cd2
PH
10891 }
10892}
14f9c5c9
AS
10893
10894/* Table mapping opcodes into strings for printing operators
10895 and precedences of the operators. */
10896
d2e4a39e
AS
10897static const struct op_print ada_op_print_tab[] = {
10898 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10899 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10900 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10901 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10902 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10903 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10904 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10905 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10906 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10907 {">=", BINOP_GEQ, PREC_ORDER, 0},
10908 {">", BINOP_GTR, PREC_ORDER, 0},
10909 {"<", BINOP_LESS, PREC_ORDER, 0},
10910 {">>", BINOP_RSH, PREC_SHIFT, 0},
10911 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10912 {"+", BINOP_ADD, PREC_ADD, 0},
10913 {"-", BINOP_SUB, PREC_ADD, 0},
10914 {"&", BINOP_CONCAT, PREC_ADD, 0},
10915 {"*", BINOP_MUL, PREC_MUL, 0},
10916 {"/", BINOP_DIV, PREC_MUL, 0},
10917 {"rem", BINOP_REM, PREC_MUL, 0},
10918 {"mod", BINOP_MOD, PREC_MUL, 0},
10919 {"**", BINOP_EXP, PREC_REPEAT, 0},
10920 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10921 {"-", UNOP_NEG, PREC_PREFIX, 0},
10922 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10923 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10924 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10925 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
10926 {".all", UNOP_IND, PREC_SUFFIX, 1},
10927 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10928 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 10929 {NULL, 0, 0, 0}
14f9c5c9
AS
10930};
10931\f
72d5681a
PH
10932enum ada_primitive_types {
10933 ada_primitive_type_int,
10934 ada_primitive_type_long,
10935 ada_primitive_type_short,
10936 ada_primitive_type_char,
10937 ada_primitive_type_float,
10938 ada_primitive_type_double,
10939 ada_primitive_type_void,
10940 ada_primitive_type_long_long,
10941 ada_primitive_type_long_double,
10942 ada_primitive_type_natural,
10943 ada_primitive_type_positive,
10944 ada_primitive_type_system_address,
10945 nr_ada_primitive_types
10946};
6c038f32
PH
10947
10948static void
d4a9a881 10949ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
10950 struct language_arch_info *lai)
10951{
d4a9a881 10952 const struct builtin_type *builtin = builtin_type (gdbarch);
72d5681a 10953 lai->primitive_type_vector
d4a9a881 10954 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a
PH
10955 struct type *);
10956 lai->primitive_type_vector [ada_primitive_type_int] =
9a76efb6 10957 init_type (TYPE_CODE_INT,
d4a9a881 10958 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10959 0, "integer", (struct objfile *) NULL);
72d5681a 10960 lai->primitive_type_vector [ada_primitive_type_long] =
9a76efb6 10961 init_type (TYPE_CODE_INT,
d4a9a881 10962 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10963 0, "long_integer", (struct objfile *) NULL);
72d5681a 10964 lai->primitive_type_vector [ada_primitive_type_short] =
9a76efb6 10965 init_type (TYPE_CODE_INT,
d4a9a881 10966 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10967 0, "short_integer", (struct objfile *) NULL);
61ee279c
PH
10968 lai->string_char_type =
10969 lai->primitive_type_vector [ada_primitive_type_char] =
6c038f32
PH
10970 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10971 0, "character", (struct objfile *) NULL);
72d5681a 10972 lai->primitive_type_vector [ada_primitive_type_float] =
ea06eb3d 10973 init_type (TYPE_CODE_FLT,
d4a9a881 10974 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
6c038f32 10975 0, "float", (struct objfile *) NULL);
72d5681a 10976 lai->primitive_type_vector [ada_primitive_type_double] =
ea06eb3d 10977 init_type (TYPE_CODE_FLT,
d4a9a881 10978 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 10979 0, "long_float", (struct objfile *) NULL);
72d5681a 10980 lai->primitive_type_vector [ada_primitive_type_long_long] =
9a76efb6 10981 init_type (TYPE_CODE_INT,
d4a9a881 10982 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 10983 0, "long_long_integer", (struct objfile *) NULL);
72d5681a 10984 lai->primitive_type_vector [ada_primitive_type_long_double] =
ea06eb3d 10985 init_type (TYPE_CODE_FLT,
d4a9a881 10986 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 10987 0, "long_long_float", (struct objfile *) NULL);
72d5681a 10988 lai->primitive_type_vector [ada_primitive_type_natural] =
9a76efb6 10989 init_type (TYPE_CODE_INT,
d4a9a881 10990 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10991 0, "natural", (struct objfile *) NULL);
72d5681a 10992 lai->primitive_type_vector [ada_primitive_type_positive] =
9a76efb6 10993 init_type (TYPE_CODE_INT,
d4a9a881 10994 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10995 0, "positive", (struct objfile *) NULL);
72d5681a 10996 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
6c038f32 10997
72d5681a 10998 lai->primitive_type_vector [ada_primitive_type_system_address] =
6c038f32
PH
10999 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
11000 (struct objfile *) NULL));
72d5681a
PH
11001 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11002 = "system__address";
fbb06eb1
UW
11003
11004 lai->bool_type_symbol = "boolean";
11005 lai->bool_type_default = builtin->builtin_bool;
6c038f32 11006}
6c038f32
PH
11007\f
11008 /* Language vector */
11009
11010/* Not really used, but needed in the ada_language_defn. */
11011
11012static void
11013emit_char (int c, struct ui_file *stream, int quoter)
11014{
11015 ada_emit_char (c, stream, quoter, 1);
11016}
11017
11018static int
11019parse (void)
11020{
11021 warnings_issued = 0;
11022 return ada_parse ();
11023}
11024
11025static const struct exp_descriptor ada_exp_descriptor = {
11026 ada_print_subexp,
11027 ada_operator_length,
11028 ada_op_name,
11029 ada_dump_subexp_body,
11030 ada_evaluate_subexp
11031};
11032
11033const struct language_defn ada_language_defn = {
11034 "ada", /* Language name */
11035 language_ada,
6c038f32
PH
11036 range_check_off,
11037 type_check_off,
11038 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11039 that's not quite what this means. */
6c038f32 11040 array_row_major,
9a044a89 11041 macro_expansion_no,
6c038f32
PH
11042 &ada_exp_descriptor,
11043 parse,
11044 ada_error,
11045 resolve,
11046 ada_printchar, /* Print a character constant */
11047 ada_printstr, /* Function to print string constant */
11048 emit_char, /* Function to print single char (not used) */
6c038f32 11049 ada_print_type, /* Print a type using appropriate syntax */
5c6ce71d 11050 default_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
11051 ada_val_print, /* Print a value using appropriate syntax */
11052 ada_value_print, /* Print a top-level value */
11053 NULL, /* Language specific skip_trampoline */
2b2d9e11 11054 NULL, /* name_of_this */
6c038f32
PH
11055 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11056 basic_lookup_transparent_type, /* lookup_transparent_type */
11057 ada_la_decode, /* Language specific symbol demangler */
11058 NULL, /* Language specific class_name_from_physname */
11059 ada_op_print_tab, /* expression operators for printing */
11060 0, /* c-style arrays */
11061 1, /* String lower bound */
6c038f32 11062 ada_get_gdb_completer_word_break_characters,
41d27058 11063 ada_make_symbol_completion_list,
72d5681a 11064 ada_language_arch_info,
e79af960 11065 ada_print_array_index,
41f1b697 11066 default_pass_by_reference,
6c038f32
PH
11067 LANG_MAGIC
11068};
11069
d2e4a39e 11070void
6c038f32 11071_initialize_ada_language (void)
14f9c5c9 11072{
6c038f32
PH
11073 add_language (&ada_language_defn);
11074
11075 varsize_limit = 65536;
6c038f32
PH
11076
11077 obstack_init (&symbol_list_obstack);
11078
11079 decoded_names_store = htab_create_alloc
11080 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11081 NULL, xcalloc, xfree);
6b69afc4
JB
11082
11083 observer_attach_executable_changed (ada_executable_changed_observer);
14f9c5c9 11084}