]>
Commit | Line | Data |
---|---|---|
6e681866 | 1 | /* Ada language support routines for GDB, the GNU debugger. |
10a2c479 | 2 | |
ecd75fc8 | 3 | Copyright (C) 1992-2014 Free Software Foundation, Inc. |
14f9c5c9 | 4 | |
a9762ec7 | 5 | This file is part of GDB. |
14f9c5c9 | 6 | |
a9762ec7 JB |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
14f9c5c9 | 11 | |
a9762ec7 JB |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
14f9c5c9 | 16 | |
a9762ec7 JB |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 19 | |
96d887e8 | 20 | |
4c4b4cd2 | 21 | #include "defs.h" |
14f9c5c9 | 22 | #include <stdio.h> |
0e9f083f | 23 | #include <string.h> |
14f9c5c9 AS |
24 | #include <ctype.h> |
25 | #include <stdarg.h> | |
26 | #include "demangle.h" | |
4c4b4cd2 PH |
27 | #include "gdb_regex.h" |
28 | #include "frame.h" | |
14f9c5c9 AS |
29 | #include "symtab.h" |
30 | #include "gdbtypes.h" | |
31 | #include "gdbcmd.h" | |
32 | #include "expression.h" | |
33 | #include "parser-defs.h" | |
34 | #include "language.h" | |
a53b64ea | 35 | #include "varobj.h" |
14f9c5c9 AS |
36 | #include "c-lang.h" |
37 | #include "inferior.h" | |
38 | #include "symfile.h" | |
39 | #include "objfiles.h" | |
40 | #include "breakpoint.h" | |
41 | #include "gdbcore.h" | |
4c4b4cd2 PH |
42 | #include "hashtab.h" |
43 | #include "gdb_obstack.h" | |
14f9c5c9 | 44 | #include "ada-lang.h" |
4c4b4cd2 | 45 | #include "completer.h" |
53ce3c39 | 46 | #include <sys/stat.h> |
14f9c5c9 | 47 | #include "ui-out.h" |
fe898f56 | 48 | #include "block.h" |
04714b91 | 49 | #include "infcall.h" |
de4f826b | 50 | #include "dictionary.h" |
60250e8b | 51 | #include "exceptions.h" |
f7f9143b JB |
52 | #include "annotate.h" |
53 | #include "valprint.h" | |
9bbc9174 | 54 | #include "source.h" |
0259addd | 55 | #include "observer.h" |
2ba95b9b | 56 | #include "vec.h" |
692465f1 | 57 | #include "stack.h" |
fa864999 | 58 | #include "gdb_vecs.h" |
79d43c61 | 59 | #include "typeprint.h" |
14f9c5c9 | 60 | |
ccefe4c4 | 61 | #include "psymtab.h" |
40bc484c | 62 | #include "value.h" |
956a9fb9 | 63 | #include "mi/mi-common.h" |
9ac4176b | 64 | #include "arch-utils.h" |
0fcd72ba | 65 | #include "cli/cli-utils.h" |
ccefe4c4 | 66 | |
4c4b4cd2 | 67 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 68 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
69 | Copied from valarith.c. */ |
70 | ||
71 | #ifndef TRUNCATION_TOWARDS_ZERO | |
72 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
73 | #endif | |
74 | ||
d2e4a39e | 75 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 76 | |
d2e4a39e | 77 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 78 | |
d2e4a39e | 79 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 80 | |
d2e4a39e | 81 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 82 | |
d2e4a39e | 83 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 84 | |
556bdfd4 | 85 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 86 | |
d2e4a39e | 87 | static struct value *desc_data (struct value *); |
14f9c5c9 | 88 | |
d2e4a39e | 89 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 90 | |
d2e4a39e | 91 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 92 | |
d2e4a39e | 93 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 94 | |
d2e4a39e | 95 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 96 | |
d2e4a39e | 97 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 98 | |
d2e4a39e | 99 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 100 | |
d2e4a39e | 101 | static int desc_arity (struct type *); |
14f9c5c9 | 102 | |
d2e4a39e | 103 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 104 | |
d2e4a39e | 105 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 106 | |
40658b94 PH |
107 | static int full_match (const char *, const char *); |
108 | ||
40bc484c | 109 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 110 | |
4c4b4cd2 | 111 | static void ada_add_block_symbols (struct obstack *, |
f0c5f9b2 | 112 | const struct block *, const char *, |
2570f2b7 | 113 | domain_enum, struct objfile *, int); |
14f9c5c9 | 114 | |
4c4b4cd2 | 115 | static int is_nonfunction (struct ada_symbol_info *, int); |
14f9c5c9 | 116 | |
76a01679 | 117 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
f0c5f9b2 | 118 | const struct block *); |
14f9c5c9 | 119 | |
4c4b4cd2 PH |
120 | static int num_defns_collected (struct obstack *); |
121 | ||
122 | static struct ada_symbol_info *defns_collected (struct obstack *, int); | |
14f9c5c9 | 123 | |
4c4b4cd2 | 124 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 125 | struct type *); |
14f9c5c9 | 126 | |
d2e4a39e | 127 | static void replace_operator_with_call (struct expression **, int, int, int, |
270140bd | 128 | struct symbol *, const struct block *); |
14f9c5c9 | 129 | |
d2e4a39e | 130 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 131 | |
4c4b4cd2 PH |
132 | static char *ada_op_name (enum exp_opcode); |
133 | ||
134 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 135 | |
d2e4a39e | 136 | static int numeric_type_p (struct type *); |
14f9c5c9 | 137 | |
d2e4a39e | 138 | static int integer_type_p (struct type *); |
14f9c5c9 | 139 | |
d2e4a39e | 140 | static int scalar_type_p (struct type *); |
14f9c5c9 | 141 | |
d2e4a39e | 142 | static int discrete_type_p (struct type *); |
14f9c5c9 | 143 | |
aeb5907d JB |
144 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
145 | const char **, | |
146 | int *, | |
147 | const char **); | |
148 | ||
149 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
270140bd | 150 | const struct block *); |
aeb5907d | 151 | |
4c4b4cd2 | 152 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 153 | int, int, int *); |
4c4b4cd2 | 154 | |
d2e4a39e | 155 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 156 | |
b4ba55a1 JB |
157 | static struct type *ada_find_parallel_type_with_name (struct type *, |
158 | const char *); | |
159 | ||
d2e4a39e | 160 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 161 | |
10a2c479 | 162 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 163 | const gdb_byte *, |
4c4b4cd2 PH |
164 | CORE_ADDR, struct value *); |
165 | ||
166 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 167 | |
28c85d6c | 168 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 169 | |
d2e4a39e | 170 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 171 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 172 | |
d2e4a39e | 173 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 174 | |
ad82864c | 175 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 176 | |
ad82864c | 177 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 178 | |
ad82864c JB |
179 | static long decode_packed_array_bitsize (struct type *); |
180 | ||
181 | static struct value *decode_constrained_packed_array (struct value *); | |
182 | ||
183 | static int ada_is_packed_array_type (struct type *); | |
184 | ||
185 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 186 | |
d2e4a39e | 187 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 188 | struct value **); |
14f9c5c9 | 189 | |
50810684 | 190 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); |
52ce6436 | 191 | |
4c4b4cd2 PH |
192 | static struct value *coerce_unspec_val_to_type (struct value *, |
193 | struct type *); | |
14f9c5c9 | 194 | |
d2e4a39e | 195 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 196 | |
d2e4a39e | 197 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 198 | |
d2e4a39e | 199 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 200 | |
d2e4a39e | 201 | static int is_name_suffix (const char *); |
14f9c5c9 | 202 | |
73589123 PH |
203 | static int advance_wild_match (const char **, const char *, int); |
204 | ||
205 | static int wild_match (const char *, const char *); | |
14f9c5c9 | 206 | |
d2e4a39e | 207 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 208 | |
4c4b4cd2 PH |
209 | static LONGEST pos_atr (struct value *); |
210 | ||
3cb382c9 | 211 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 212 | |
d2e4a39e | 213 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 214 | |
4c4b4cd2 PH |
215 | static struct symbol *standard_lookup (const char *, const struct block *, |
216 | domain_enum); | |
14f9c5c9 | 217 | |
4c4b4cd2 PH |
218 | static struct value *ada_search_struct_field (char *, struct value *, int, |
219 | struct type *); | |
220 | ||
221 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
222 | struct type *); | |
223 | ||
0d5cff50 | 224 | static int find_struct_field (const char *, struct type *, int, |
52ce6436 | 225 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
226 | |
227 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
228 | struct value *); | |
229 | ||
4c4b4cd2 PH |
230 | static int ada_resolve_function (struct ada_symbol_info *, int, |
231 | struct value **, int, const char *, | |
232 | struct type *); | |
233 | ||
4c4b4cd2 PH |
234 | static int ada_is_direct_array_type (struct type *); |
235 | ||
72d5681a PH |
236 | static void ada_language_arch_info (struct gdbarch *, |
237 | struct language_arch_info *); | |
714e53ab PH |
238 | |
239 | static void check_size (const struct type *); | |
52ce6436 PH |
240 | |
241 | static struct value *ada_index_struct_field (int, struct value *, int, | |
242 | struct type *); | |
243 | ||
244 | static struct value *assign_aggregate (struct value *, struct value *, | |
0963b4bd MS |
245 | struct expression *, |
246 | int *, enum noside); | |
52ce6436 PH |
247 | |
248 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
249 | struct expression *, | |
250 | int *, LONGEST *, int *, | |
251 | int, LONGEST, LONGEST); | |
252 | ||
253 | static void aggregate_assign_positional (struct value *, struct value *, | |
254 | struct expression *, | |
255 | int *, LONGEST *, int *, int, | |
256 | LONGEST, LONGEST); | |
257 | ||
258 | ||
259 | static void aggregate_assign_others (struct value *, struct value *, | |
260 | struct expression *, | |
261 | int *, LONGEST *, int, LONGEST, LONGEST); | |
262 | ||
263 | ||
264 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
265 | ||
266 | ||
267 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
268 | int *, enum noside); | |
269 | ||
270 | static void ada_forward_operator_length (struct expression *, int, int *, | |
271 | int *); | |
852dff6c JB |
272 | |
273 | static struct type *ada_find_any_type (const char *name); | |
4c4b4cd2 PH |
274 | \f |
275 | ||
ee01b665 JB |
276 | /* The result of a symbol lookup to be stored in our symbol cache. */ |
277 | ||
278 | struct cache_entry | |
279 | { | |
280 | /* The name used to perform the lookup. */ | |
281 | const char *name; | |
282 | /* The namespace used during the lookup. */ | |
283 | domain_enum namespace; | |
284 | /* The symbol returned by the lookup, or NULL if no matching symbol | |
285 | was found. */ | |
286 | struct symbol *sym; | |
287 | /* The block where the symbol was found, or NULL if no matching | |
288 | symbol was found. */ | |
289 | const struct block *block; | |
290 | /* A pointer to the next entry with the same hash. */ | |
291 | struct cache_entry *next; | |
292 | }; | |
293 | ||
294 | /* The Ada symbol cache, used to store the result of Ada-mode symbol | |
295 | lookups in the course of executing the user's commands. | |
296 | ||
297 | The cache is implemented using a simple, fixed-sized hash. | |
298 | The size is fixed on the grounds that there are not likely to be | |
299 | all that many symbols looked up during any given session, regardless | |
300 | of the size of the symbol table. If we decide to go to a resizable | |
301 | table, let's just use the stuff from libiberty instead. */ | |
302 | ||
303 | #define HASH_SIZE 1009 | |
304 | ||
305 | struct ada_symbol_cache | |
306 | { | |
307 | /* An obstack used to store the entries in our cache. */ | |
308 | struct obstack cache_space; | |
309 | ||
310 | /* The root of the hash table used to implement our symbol cache. */ | |
311 | struct cache_entry *root[HASH_SIZE]; | |
312 | }; | |
313 | ||
314 | static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache); | |
76a01679 | 315 | |
4c4b4cd2 | 316 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
317 | static unsigned int varsize_limit; |
318 | ||
4c4b4cd2 PH |
319 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
320 | returned by a function that does not return a const char *. */ | |
321 | static char *ada_completer_word_break_characters = | |
322 | #ifdef VMS | |
323 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
324 | #else | |
14f9c5c9 | 325 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 326 | #endif |
14f9c5c9 | 327 | |
4c4b4cd2 | 328 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 329 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 330 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 331 | |
4c4b4cd2 PH |
332 | /* Limit on the number of warnings to raise per expression evaluation. */ |
333 | static int warning_limit = 2; | |
334 | ||
335 | /* Number of warning messages issued; reset to 0 by cleanups after | |
336 | expression evaluation. */ | |
337 | static int warnings_issued = 0; | |
338 | ||
339 | static const char *known_runtime_file_name_patterns[] = { | |
340 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
341 | }; | |
342 | ||
343 | static const char *known_auxiliary_function_name_patterns[] = { | |
344 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
345 | }; | |
346 | ||
347 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
348 | static struct obstack symbol_list_obstack; | |
349 | ||
c6044dd1 JB |
350 | /* Maintenance-related settings for this module. */ |
351 | ||
352 | static struct cmd_list_element *maint_set_ada_cmdlist; | |
353 | static struct cmd_list_element *maint_show_ada_cmdlist; | |
354 | ||
355 | /* Implement the "maintenance set ada" (prefix) command. */ | |
356 | ||
357 | static void | |
358 | maint_set_ada_cmd (char *args, int from_tty) | |
359 | { | |
360 | help_list (maint_set_ada_cmdlist, "maintenance set ada ", -1, gdb_stdout); | |
361 | } | |
362 | ||
363 | /* Implement the "maintenance show ada" (prefix) command. */ | |
364 | ||
365 | static void | |
366 | maint_show_ada_cmd (char *args, int from_tty) | |
367 | { | |
368 | cmd_show_list (maint_show_ada_cmdlist, from_tty, ""); | |
369 | } | |
370 | ||
371 | /* The "maintenance ada set/show ignore-descriptive-type" value. */ | |
372 | ||
373 | static int ada_ignore_descriptive_types_p = 0; | |
374 | ||
e802dbe0 JB |
375 | /* Inferior-specific data. */ |
376 | ||
377 | /* Per-inferior data for this module. */ | |
378 | ||
379 | struct ada_inferior_data | |
380 | { | |
381 | /* The ada__tags__type_specific_data type, which is used when decoding | |
382 | tagged types. With older versions of GNAT, this type was directly | |
383 | accessible through a component ("tsd") in the object tag. But this | |
384 | is no longer the case, so we cache it for each inferior. */ | |
385 | struct type *tsd_type; | |
3eecfa55 JB |
386 | |
387 | /* The exception_support_info data. This data is used to determine | |
388 | how to implement support for Ada exception catchpoints in a given | |
389 | inferior. */ | |
390 | const struct exception_support_info *exception_info; | |
e802dbe0 JB |
391 | }; |
392 | ||
393 | /* Our key to this module's inferior data. */ | |
394 | static const struct inferior_data *ada_inferior_data; | |
395 | ||
396 | /* A cleanup routine for our inferior data. */ | |
397 | static void | |
398 | ada_inferior_data_cleanup (struct inferior *inf, void *arg) | |
399 | { | |
400 | struct ada_inferior_data *data; | |
401 | ||
402 | data = inferior_data (inf, ada_inferior_data); | |
403 | if (data != NULL) | |
404 | xfree (data); | |
405 | } | |
406 | ||
407 | /* Return our inferior data for the given inferior (INF). | |
408 | ||
409 | This function always returns a valid pointer to an allocated | |
410 | ada_inferior_data structure. If INF's inferior data has not | |
411 | been previously set, this functions creates a new one with all | |
412 | fields set to zero, sets INF's inferior to it, and then returns | |
413 | a pointer to that newly allocated ada_inferior_data. */ | |
414 | ||
415 | static struct ada_inferior_data * | |
416 | get_ada_inferior_data (struct inferior *inf) | |
417 | { | |
418 | struct ada_inferior_data *data; | |
419 | ||
420 | data = inferior_data (inf, ada_inferior_data); | |
421 | if (data == NULL) | |
422 | { | |
41bf6aca | 423 | data = XCNEW (struct ada_inferior_data); |
e802dbe0 JB |
424 | set_inferior_data (inf, ada_inferior_data, data); |
425 | } | |
426 | ||
427 | return data; | |
428 | } | |
429 | ||
430 | /* Perform all necessary cleanups regarding our module's inferior data | |
431 | that is required after the inferior INF just exited. */ | |
432 | ||
433 | static void | |
434 | ada_inferior_exit (struct inferior *inf) | |
435 | { | |
436 | ada_inferior_data_cleanup (inf, NULL); | |
437 | set_inferior_data (inf, ada_inferior_data, NULL); | |
438 | } | |
439 | ||
ee01b665 JB |
440 | |
441 | /* program-space-specific data. */ | |
442 | ||
443 | /* This module's per-program-space data. */ | |
444 | struct ada_pspace_data | |
445 | { | |
446 | /* The Ada symbol cache. */ | |
447 | struct ada_symbol_cache *sym_cache; | |
448 | }; | |
449 | ||
450 | /* Key to our per-program-space data. */ | |
451 | static const struct program_space_data *ada_pspace_data_handle; | |
452 | ||
453 | /* Return this module's data for the given program space (PSPACE). | |
454 | If not is found, add a zero'ed one now. | |
455 | ||
456 | This function always returns a valid object. */ | |
457 | ||
458 | static struct ada_pspace_data * | |
459 | get_ada_pspace_data (struct program_space *pspace) | |
460 | { | |
461 | struct ada_pspace_data *data; | |
462 | ||
463 | data = program_space_data (pspace, ada_pspace_data_handle); | |
464 | if (data == NULL) | |
465 | { | |
466 | data = XCNEW (struct ada_pspace_data); | |
467 | set_program_space_data (pspace, ada_pspace_data_handle, data); | |
468 | } | |
469 | ||
470 | return data; | |
471 | } | |
472 | ||
473 | /* The cleanup callback for this module's per-program-space data. */ | |
474 | ||
475 | static void | |
476 | ada_pspace_data_cleanup (struct program_space *pspace, void *data) | |
477 | { | |
478 | struct ada_pspace_data *pspace_data = data; | |
479 | ||
480 | if (pspace_data->sym_cache != NULL) | |
481 | ada_free_symbol_cache (pspace_data->sym_cache); | |
482 | xfree (pspace_data); | |
483 | } | |
484 | ||
4c4b4cd2 PH |
485 | /* Utilities */ |
486 | ||
720d1a40 | 487 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 488 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
489 | |
490 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
491 | In other words, we really expect the target type of a typedef type to be | |
492 | a non-typedef type. This is particularly true for Ada units, because | |
493 | the language does not have a typedef vs not-typedef distinction. | |
494 | In that respect, the Ada compiler has been trying to eliminate as many | |
495 | typedef definitions in the debugging information, since they generally | |
496 | do not bring any extra information (we still use typedef under certain | |
497 | circumstances related mostly to the GNAT encoding). | |
498 | ||
499 | Unfortunately, we have seen situations where the debugging information | |
500 | generated by the compiler leads to such multiple typedef layers. For | |
501 | instance, consider the following example with stabs: | |
502 | ||
503 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
504 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
505 | ||
506 | This is an error in the debugging information which causes type | |
507 | pck__float_array___XUP to be defined twice, and the second time, | |
508 | it is defined as a typedef of a typedef. | |
509 | ||
510 | This is on the fringe of legality as far as debugging information is | |
511 | concerned, and certainly unexpected. But it is easy to handle these | |
512 | situations correctly, so we can afford to be lenient in this case. */ | |
513 | ||
514 | static struct type * | |
515 | ada_typedef_target_type (struct type *type) | |
516 | { | |
517 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
518 | type = TYPE_TARGET_TYPE (type); | |
519 | return type; | |
520 | } | |
521 | ||
41d27058 JB |
522 | /* Given DECODED_NAME a string holding a symbol name in its |
523 | decoded form (ie using the Ada dotted notation), returns | |
524 | its unqualified name. */ | |
525 | ||
526 | static const char * | |
527 | ada_unqualified_name (const char *decoded_name) | |
528 | { | |
529 | const char *result = strrchr (decoded_name, '.'); | |
530 | ||
531 | if (result != NULL) | |
532 | result++; /* Skip the dot... */ | |
533 | else | |
534 | result = decoded_name; | |
535 | ||
536 | return result; | |
537 | } | |
538 | ||
539 | /* Return a string starting with '<', followed by STR, and '>'. | |
540 | The result is good until the next call. */ | |
541 | ||
542 | static char * | |
543 | add_angle_brackets (const char *str) | |
544 | { | |
545 | static char *result = NULL; | |
546 | ||
547 | xfree (result); | |
88c15c34 | 548 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
549 | return result; |
550 | } | |
96d887e8 | 551 | |
4c4b4cd2 PH |
552 | static char * |
553 | ada_get_gdb_completer_word_break_characters (void) | |
554 | { | |
555 | return ada_completer_word_break_characters; | |
556 | } | |
557 | ||
e79af960 JB |
558 | /* Print an array element index using the Ada syntax. */ |
559 | ||
560 | static void | |
561 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 562 | const struct value_print_options *options) |
e79af960 | 563 | { |
79a45b7d | 564 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
565 | fprintf_filtered (stream, " => "); |
566 | } | |
567 | ||
f27cf670 | 568 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 569 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 570 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 571 | |
f27cf670 AS |
572 | void * |
573 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 574 | { |
d2e4a39e AS |
575 | if (*size < min_size) |
576 | { | |
577 | *size *= 2; | |
578 | if (*size < min_size) | |
4c4b4cd2 | 579 | *size = min_size; |
f27cf670 | 580 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 581 | } |
f27cf670 | 582 | return vect; |
14f9c5c9 AS |
583 | } |
584 | ||
585 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 586 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
587 | |
588 | static int | |
ebf56fd3 | 589 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
590 | { |
591 | int len = strlen (target); | |
5b4ee69b | 592 | |
d2e4a39e | 593 | return |
4c4b4cd2 PH |
594 | (strncmp (field_name, target, len) == 0 |
595 | && (field_name[len] == '\0' | |
596 | || (strncmp (field_name + len, "___", 3) == 0 | |
76a01679 JB |
597 | && strcmp (field_name + strlen (field_name) - 6, |
598 | "___XVN") != 0))); | |
14f9c5c9 AS |
599 | } |
600 | ||
601 | ||
872c8b51 JB |
602 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
603 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
604 | and return its index. This function also handles fields whose name | |
605 | have ___ suffixes because the compiler sometimes alters their name | |
606 | by adding such a suffix to represent fields with certain constraints. | |
607 | If the field could not be found, return a negative number if | |
608 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
609 | |
610 | int | |
611 | ada_get_field_index (const struct type *type, const char *field_name, | |
612 | int maybe_missing) | |
613 | { | |
614 | int fieldno; | |
872c8b51 JB |
615 | struct type *struct_type = check_typedef ((struct type *) type); |
616 | ||
617 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
618 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
619 | return fieldno; |
620 | ||
621 | if (!maybe_missing) | |
323e0a4a | 622 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 623 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
624 | |
625 | return -1; | |
626 | } | |
627 | ||
628 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
629 | |
630 | int | |
d2e4a39e | 631 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
632 | { |
633 | if (name == NULL) | |
634 | return 0; | |
d2e4a39e | 635 | else |
14f9c5c9 | 636 | { |
d2e4a39e | 637 | const char *p = strstr (name, "___"); |
5b4ee69b | 638 | |
14f9c5c9 | 639 | if (p == NULL) |
4c4b4cd2 | 640 | return strlen (name); |
14f9c5c9 | 641 | else |
4c4b4cd2 | 642 | return p - name; |
14f9c5c9 AS |
643 | } |
644 | } | |
645 | ||
4c4b4cd2 PH |
646 | /* Return non-zero if SUFFIX is a suffix of STR. |
647 | Return zero if STR is null. */ | |
648 | ||
14f9c5c9 | 649 | static int |
d2e4a39e | 650 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
651 | { |
652 | int len1, len2; | |
5b4ee69b | 653 | |
14f9c5c9 AS |
654 | if (str == NULL) |
655 | return 0; | |
656 | len1 = strlen (str); | |
657 | len2 = strlen (suffix); | |
4c4b4cd2 | 658 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
659 | } |
660 | ||
4c4b4cd2 PH |
661 | /* The contents of value VAL, treated as a value of type TYPE. The |
662 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 663 | |
d2e4a39e | 664 | static struct value * |
4c4b4cd2 | 665 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 666 | { |
61ee279c | 667 | type = ada_check_typedef (type); |
df407dfe | 668 | if (value_type (val) == type) |
4c4b4cd2 | 669 | return val; |
d2e4a39e | 670 | else |
14f9c5c9 | 671 | { |
4c4b4cd2 PH |
672 | struct value *result; |
673 | ||
674 | /* Make sure that the object size is not unreasonable before | |
675 | trying to allocate some memory for it. */ | |
714e53ab | 676 | check_size (type); |
4c4b4cd2 | 677 | |
41e8491f JK |
678 | if (value_lazy (val) |
679 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) | |
680 | result = allocate_value_lazy (type); | |
681 | else | |
682 | { | |
683 | result = allocate_value (type); | |
684 | memcpy (value_contents_raw (result), value_contents (val), | |
685 | TYPE_LENGTH (type)); | |
686 | } | |
74bcbdf3 | 687 | set_value_component_location (result, val); |
9bbda503 AC |
688 | set_value_bitsize (result, value_bitsize (val)); |
689 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 690 | set_value_address (result, value_address (val)); |
eca07816 | 691 | set_value_optimized_out (result, value_optimized_out_const (val)); |
14f9c5c9 AS |
692 | return result; |
693 | } | |
694 | } | |
695 | ||
fc1a4b47 AC |
696 | static const gdb_byte * |
697 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
698 | { |
699 | if (valaddr == NULL) | |
700 | return NULL; | |
701 | else | |
702 | return valaddr + offset; | |
703 | } | |
704 | ||
705 | static CORE_ADDR | |
ebf56fd3 | 706 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
707 | { |
708 | if (address == 0) | |
709 | return 0; | |
d2e4a39e | 710 | else |
14f9c5c9 AS |
711 | return address + offset; |
712 | } | |
713 | ||
4c4b4cd2 PH |
714 | /* Issue a warning (as for the definition of warning in utils.c, but |
715 | with exactly one argument rather than ...), unless the limit on the | |
716 | number of warnings has passed during the evaluation of the current | |
717 | expression. */ | |
a2249542 | 718 | |
77109804 AC |
719 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
720 | provided by "complaint". */ | |
a0b31db1 | 721 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 722 | |
14f9c5c9 | 723 | static void |
a2249542 | 724 | lim_warning (const char *format, ...) |
14f9c5c9 | 725 | { |
a2249542 | 726 | va_list args; |
a2249542 | 727 | |
5b4ee69b | 728 | va_start (args, format); |
4c4b4cd2 PH |
729 | warnings_issued += 1; |
730 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
731 | vwarning (format, args); |
732 | ||
733 | va_end (args); | |
4c4b4cd2 PH |
734 | } |
735 | ||
714e53ab PH |
736 | /* Issue an error if the size of an object of type T is unreasonable, |
737 | i.e. if it would be a bad idea to allocate a value of this type in | |
738 | GDB. */ | |
739 | ||
740 | static void | |
741 | check_size (const struct type *type) | |
742 | { | |
743 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 744 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
745 | } |
746 | ||
0963b4bd | 747 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 748 | static LONGEST |
c3e5cd34 | 749 | max_of_size (int size) |
4c4b4cd2 | 750 | { |
76a01679 | 751 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 752 | |
76a01679 | 753 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
754 | } |
755 | ||
0963b4bd | 756 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 757 | static LONGEST |
c3e5cd34 | 758 | min_of_size (int size) |
4c4b4cd2 | 759 | { |
c3e5cd34 | 760 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
761 | } |
762 | ||
0963b4bd | 763 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 764 | static ULONGEST |
c3e5cd34 | 765 | umax_of_size (int size) |
4c4b4cd2 | 766 | { |
76a01679 | 767 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 768 | |
76a01679 | 769 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
770 | } |
771 | ||
0963b4bd | 772 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
773 | static LONGEST |
774 | max_of_type (struct type *t) | |
4c4b4cd2 | 775 | { |
c3e5cd34 PH |
776 | if (TYPE_UNSIGNED (t)) |
777 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
778 | else | |
779 | return max_of_size (TYPE_LENGTH (t)); | |
780 | } | |
781 | ||
0963b4bd | 782 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
783 | static LONGEST |
784 | min_of_type (struct type *t) | |
785 | { | |
786 | if (TYPE_UNSIGNED (t)) | |
787 | return 0; | |
788 | else | |
789 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
790 | } |
791 | ||
792 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
793 | LONGEST |
794 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 795 | { |
76a01679 | 796 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
797 | { |
798 | case TYPE_CODE_RANGE: | |
690cc4eb | 799 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 800 | case TYPE_CODE_ENUM: |
14e75d8e | 801 | return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1); |
690cc4eb PH |
802 | case TYPE_CODE_BOOL: |
803 | return 1; | |
804 | case TYPE_CODE_CHAR: | |
76a01679 | 805 | case TYPE_CODE_INT: |
690cc4eb | 806 | return max_of_type (type); |
4c4b4cd2 | 807 | default: |
43bbcdc2 | 808 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
809 | } |
810 | } | |
811 | ||
14e75d8e | 812 | /* The smallest value in the domain of TYPE, a discrete type, as an integer. */ |
43bbcdc2 PH |
813 | LONGEST |
814 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 815 | { |
76a01679 | 816 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
817 | { |
818 | case TYPE_CODE_RANGE: | |
690cc4eb | 819 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 820 | case TYPE_CODE_ENUM: |
14e75d8e | 821 | return TYPE_FIELD_ENUMVAL (type, 0); |
690cc4eb PH |
822 | case TYPE_CODE_BOOL: |
823 | return 0; | |
824 | case TYPE_CODE_CHAR: | |
76a01679 | 825 | case TYPE_CODE_INT: |
690cc4eb | 826 | return min_of_type (type); |
4c4b4cd2 | 827 | default: |
43bbcdc2 | 828 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
829 | } |
830 | } | |
831 | ||
832 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 833 | non-range scalar type. */ |
4c4b4cd2 PH |
834 | |
835 | static struct type * | |
18af8284 | 836 | get_base_type (struct type *type) |
4c4b4cd2 PH |
837 | { |
838 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
839 | { | |
76a01679 JB |
840 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
841 | return type; | |
4c4b4cd2 PH |
842 | type = TYPE_TARGET_TYPE (type); |
843 | } | |
844 | return type; | |
14f9c5c9 | 845 | } |
41246937 JB |
846 | |
847 | /* Return a decoded version of the given VALUE. This means returning | |
848 | a value whose type is obtained by applying all the GNAT-specific | |
849 | encondings, making the resulting type a static but standard description | |
850 | of the initial type. */ | |
851 | ||
852 | struct value * | |
853 | ada_get_decoded_value (struct value *value) | |
854 | { | |
855 | struct type *type = ada_check_typedef (value_type (value)); | |
856 | ||
857 | if (ada_is_array_descriptor_type (type) | |
858 | || (ada_is_constrained_packed_array_type (type) | |
859 | && TYPE_CODE (type) != TYPE_CODE_PTR)) | |
860 | { | |
861 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */ | |
862 | value = ada_coerce_to_simple_array_ptr (value); | |
863 | else | |
864 | value = ada_coerce_to_simple_array (value); | |
865 | } | |
866 | else | |
867 | value = ada_to_fixed_value (value); | |
868 | ||
869 | return value; | |
870 | } | |
871 | ||
872 | /* Same as ada_get_decoded_value, but with the given TYPE. | |
873 | Because there is no associated actual value for this type, | |
874 | the resulting type might be a best-effort approximation in | |
875 | the case of dynamic types. */ | |
876 | ||
877 | struct type * | |
878 | ada_get_decoded_type (struct type *type) | |
879 | { | |
880 | type = to_static_fixed_type (type); | |
881 | if (ada_is_constrained_packed_array_type (type)) | |
882 | type = ada_coerce_to_simple_array_type (type); | |
883 | return type; | |
884 | } | |
885 | ||
4c4b4cd2 | 886 | \f |
76a01679 | 887 | |
4c4b4cd2 | 888 | /* Language Selection */ |
14f9c5c9 AS |
889 | |
890 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 891 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 892 | |
14f9c5c9 | 893 | enum language |
ccefe4c4 | 894 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 895 | { |
d2e4a39e | 896 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
3b7344d5 | 897 | (struct objfile *) NULL).minsym != NULL) |
4c4b4cd2 | 898 | return language_ada; |
14f9c5c9 AS |
899 | |
900 | return lang; | |
901 | } | |
96d887e8 PH |
902 | |
903 | /* If the main procedure is written in Ada, then return its name. | |
904 | The result is good until the next call. Return NULL if the main | |
905 | procedure doesn't appear to be in Ada. */ | |
906 | ||
907 | char * | |
908 | ada_main_name (void) | |
909 | { | |
3b7344d5 | 910 | struct bound_minimal_symbol msym; |
f9bc20b9 | 911 | static char *main_program_name = NULL; |
6c038f32 | 912 | |
96d887e8 PH |
913 | /* For Ada, the name of the main procedure is stored in a specific |
914 | string constant, generated by the binder. Look for that symbol, | |
915 | extract its address, and then read that string. If we didn't find | |
916 | that string, then most probably the main procedure is not written | |
917 | in Ada. */ | |
918 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
919 | ||
3b7344d5 | 920 | if (msym.minsym != NULL) |
96d887e8 | 921 | { |
f9bc20b9 JB |
922 | CORE_ADDR main_program_name_addr; |
923 | int err_code; | |
924 | ||
77e371c0 | 925 | main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym); |
96d887e8 | 926 | if (main_program_name_addr == 0) |
323e0a4a | 927 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 928 | |
f9bc20b9 JB |
929 | xfree (main_program_name); |
930 | target_read_string (main_program_name_addr, &main_program_name, | |
931 | 1024, &err_code); | |
932 | ||
933 | if (err_code != 0) | |
934 | return NULL; | |
96d887e8 PH |
935 | return main_program_name; |
936 | } | |
937 | ||
938 | /* The main procedure doesn't seem to be in Ada. */ | |
939 | return NULL; | |
940 | } | |
14f9c5c9 | 941 | \f |
4c4b4cd2 | 942 | /* Symbols */ |
d2e4a39e | 943 | |
4c4b4cd2 PH |
944 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
945 | of NULLs. */ | |
14f9c5c9 | 946 | |
d2e4a39e AS |
947 | const struct ada_opname_map ada_opname_table[] = { |
948 | {"Oadd", "\"+\"", BINOP_ADD}, | |
949 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
950 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
951 | {"Odivide", "\"/\"", BINOP_DIV}, | |
952 | {"Omod", "\"mod\"", BINOP_MOD}, | |
953 | {"Orem", "\"rem\"", BINOP_REM}, | |
954 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
955 | {"Olt", "\"<\"", BINOP_LESS}, | |
956 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
957 | {"Ogt", "\">\"", BINOP_GTR}, | |
958 | {"Oge", "\">=\"", BINOP_GEQ}, | |
959 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
960 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
961 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
962 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
963 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
964 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
965 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
966 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
967 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
968 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
969 | {NULL, NULL} | |
14f9c5c9 AS |
970 | }; |
971 | ||
4c4b4cd2 PH |
972 | /* The "encoded" form of DECODED, according to GNAT conventions. |
973 | The result is valid until the next call to ada_encode. */ | |
974 | ||
14f9c5c9 | 975 | char * |
4c4b4cd2 | 976 | ada_encode (const char *decoded) |
14f9c5c9 | 977 | { |
4c4b4cd2 PH |
978 | static char *encoding_buffer = NULL; |
979 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 980 | const char *p; |
14f9c5c9 | 981 | int k; |
d2e4a39e | 982 | |
4c4b4cd2 | 983 | if (decoded == NULL) |
14f9c5c9 AS |
984 | return NULL; |
985 | ||
4c4b4cd2 PH |
986 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
987 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
988 | |
989 | k = 0; | |
4c4b4cd2 | 990 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 991 | { |
cdc7bb92 | 992 | if (*p == '.') |
4c4b4cd2 PH |
993 | { |
994 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
995 | k += 2; | |
996 | } | |
14f9c5c9 | 997 | else if (*p == '"') |
4c4b4cd2 PH |
998 | { |
999 | const struct ada_opname_map *mapping; | |
1000 | ||
1001 | for (mapping = ada_opname_table; | |
1265e4aa JB |
1002 | mapping->encoded != NULL |
1003 | && strncmp (mapping->decoded, p, | |
1004 | strlen (mapping->decoded)) != 0; mapping += 1) | |
4c4b4cd2 PH |
1005 | ; |
1006 | if (mapping->encoded == NULL) | |
323e0a4a | 1007 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
1008 | strcpy (encoding_buffer + k, mapping->encoded); |
1009 | k += strlen (mapping->encoded); | |
1010 | break; | |
1011 | } | |
d2e4a39e | 1012 | else |
4c4b4cd2 PH |
1013 | { |
1014 | encoding_buffer[k] = *p; | |
1015 | k += 1; | |
1016 | } | |
14f9c5c9 AS |
1017 | } |
1018 | ||
4c4b4cd2 PH |
1019 | encoding_buffer[k] = '\0'; |
1020 | return encoding_buffer; | |
14f9c5c9 AS |
1021 | } |
1022 | ||
1023 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
1024 | quotes, unfolded, but with the quotes stripped away. Result good |
1025 | to next call. */ | |
1026 | ||
d2e4a39e AS |
1027 | char * |
1028 | ada_fold_name (const char *name) | |
14f9c5c9 | 1029 | { |
d2e4a39e | 1030 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
1031 | static size_t fold_buffer_size = 0; |
1032 | ||
1033 | int len = strlen (name); | |
d2e4a39e | 1034 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
1035 | |
1036 | if (name[0] == '\'') | |
1037 | { | |
d2e4a39e AS |
1038 | strncpy (fold_buffer, name + 1, len - 2); |
1039 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
1040 | } |
1041 | else | |
1042 | { | |
1043 | int i; | |
5b4ee69b | 1044 | |
14f9c5c9 | 1045 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 1046 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
1047 | } |
1048 | ||
1049 | return fold_buffer; | |
1050 | } | |
1051 | ||
529cad9c PH |
1052 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
1053 | ||
1054 | static int | |
1055 | is_lower_alphanum (const char c) | |
1056 | { | |
1057 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
1058 | } | |
1059 | ||
c90092fe JB |
1060 | /* ENCODED is the linkage name of a symbol and LEN contains its length. |
1061 | This function saves in LEN the length of that same symbol name but | |
1062 | without either of these suffixes: | |
29480c32 JB |
1063 | . .{DIGIT}+ |
1064 | . ${DIGIT}+ | |
1065 | . ___{DIGIT}+ | |
1066 | . __{DIGIT}+. | |
c90092fe | 1067 | |
29480c32 JB |
1068 | These are suffixes introduced by the compiler for entities such as |
1069 | nested subprogram for instance, in order to avoid name clashes. | |
1070 | They do not serve any purpose for the debugger. */ | |
1071 | ||
1072 | static void | |
1073 | ada_remove_trailing_digits (const char *encoded, int *len) | |
1074 | { | |
1075 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
1076 | { | |
1077 | int i = *len - 2; | |
5b4ee69b | 1078 | |
29480c32 JB |
1079 | while (i > 0 && isdigit (encoded[i])) |
1080 | i--; | |
1081 | if (i >= 0 && encoded[i] == '.') | |
1082 | *len = i; | |
1083 | else if (i >= 0 && encoded[i] == '$') | |
1084 | *len = i; | |
1085 | else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) | |
1086 | *len = i - 2; | |
1087 | else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) | |
1088 | *len = i - 1; | |
1089 | } | |
1090 | } | |
1091 | ||
1092 | /* Remove the suffix introduced by the compiler for protected object | |
1093 | subprograms. */ | |
1094 | ||
1095 | static void | |
1096 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
1097 | { | |
1098 | /* Remove trailing N. */ | |
1099 | ||
1100 | /* Protected entry subprograms are broken into two | |
1101 | separate subprograms: The first one is unprotected, and has | |
1102 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 1103 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
1104 | the protection. Since the P subprograms are internally generated, |
1105 | we leave these names undecoded, giving the user a clue that this | |
1106 | entity is internal. */ | |
1107 | ||
1108 | if (*len > 1 | |
1109 | && encoded[*len - 1] == 'N' | |
1110 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
1111 | *len = *len - 1; | |
1112 | } | |
1113 | ||
69fadcdf JB |
1114 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
1115 | ||
1116 | static void | |
1117 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
1118 | { | |
1119 | int i = *len - 1; | |
1120 | ||
1121 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
1122 | i--; | |
1123 | ||
1124 | if (encoded[i] != 'X') | |
1125 | return; | |
1126 | ||
1127 | if (i == 0) | |
1128 | return; | |
1129 | ||
1130 | if (isalnum (encoded[i-1])) | |
1131 | *len = i; | |
1132 | } | |
1133 | ||
29480c32 JB |
1134 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
1135 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
1136 | replaced by ENCODED. | |
14f9c5c9 | 1137 | |
4c4b4cd2 | 1138 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 1139 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
1140 | is returned. */ |
1141 | ||
1142 | const char * | |
1143 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
1144 | { |
1145 | int i, j; | |
1146 | int len0; | |
d2e4a39e | 1147 | const char *p; |
4c4b4cd2 | 1148 | char *decoded; |
14f9c5c9 | 1149 | int at_start_name; |
4c4b4cd2 PH |
1150 | static char *decoding_buffer = NULL; |
1151 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 1152 | |
29480c32 JB |
1153 | /* The name of the Ada main procedure starts with "_ada_". |
1154 | This prefix is not part of the decoded name, so skip this part | |
1155 | if we see this prefix. */ | |
4c4b4cd2 PH |
1156 | if (strncmp (encoded, "_ada_", 5) == 0) |
1157 | encoded += 5; | |
14f9c5c9 | 1158 | |
29480c32 JB |
1159 | /* If the name starts with '_', then it is not a properly encoded |
1160 | name, so do not attempt to decode it. Similarly, if the name | |
1161 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 1162 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1163 | goto Suppress; |
1164 | ||
4c4b4cd2 | 1165 | len0 = strlen (encoded); |
4c4b4cd2 | 1166 | |
29480c32 JB |
1167 | ada_remove_trailing_digits (encoded, &len0); |
1168 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1169 | |
4c4b4cd2 PH |
1170 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1171 | the suffix is located before the current "end" of ENCODED. We want | |
1172 | to avoid re-matching parts of ENCODED that have previously been | |
1173 | marked as discarded (by decrementing LEN0). */ | |
1174 | p = strstr (encoded, "___"); | |
1175 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1176 | { |
1177 | if (p[3] == 'X') | |
4c4b4cd2 | 1178 | len0 = p - encoded; |
14f9c5c9 | 1179 | else |
4c4b4cd2 | 1180 | goto Suppress; |
14f9c5c9 | 1181 | } |
4c4b4cd2 | 1182 | |
29480c32 JB |
1183 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1184 | is for the body of a task, but that information does not actually | |
1185 | appear in the decoded name. */ | |
1186 | ||
4c4b4cd2 | 1187 | if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) |
14f9c5c9 | 1188 | len0 -= 3; |
76a01679 | 1189 | |
a10967fa JB |
1190 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1191 | from the TKB suffix because it is used for non-anonymous task | |
1192 | bodies. */ | |
1193 | ||
1194 | if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0) | |
1195 | len0 -= 2; | |
1196 | ||
29480c32 JB |
1197 | /* Remove trailing "B" suffixes. */ |
1198 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1199 | ||
4c4b4cd2 | 1200 | if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) |
14f9c5c9 AS |
1201 | len0 -= 1; |
1202 | ||
4c4b4cd2 | 1203 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1204 | |
4c4b4cd2 PH |
1205 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
1206 | decoded = decoding_buffer; | |
14f9c5c9 | 1207 | |
29480c32 JB |
1208 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1209 | ||
4c4b4cd2 | 1210 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1211 | { |
4c4b4cd2 PH |
1212 | i = len0 - 2; |
1213 | while ((i >= 0 && isdigit (encoded[i])) | |
1214 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1215 | i -= 1; | |
1216 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1217 | len0 = i - 1; | |
1218 | else if (encoded[i] == '$') | |
1219 | len0 = i; | |
d2e4a39e | 1220 | } |
14f9c5c9 | 1221 | |
29480c32 JB |
1222 | /* The first few characters that are not alphabetic are not part |
1223 | of any encoding we use, so we can copy them over verbatim. */ | |
1224 | ||
4c4b4cd2 PH |
1225 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1226 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1227 | |
1228 | at_start_name = 1; | |
1229 | while (i < len0) | |
1230 | { | |
29480c32 | 1231 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1232 | if (at_start_name && encoded[i] == 'O') |
1233 | { | |
1234 | int k; | |
5b4ee69b | 1235 | |
4c4b4cd2 PH |
1236 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1237 | { | |
1238 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1239 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1240 | op_len - 1) == 0) | |
1241 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1242 | { |
1243 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1244 | at_start_name = 0; | |
1245 | i += op_len; | |
1246 | j += strlen (ada_opname_table[k].decoded); | |
1247 | break; | |
1248 | } | |
1249 | } | |
1250 | if (ada_opname_table[k].encoded != NULL) | |
1251 | continue; | |
1252 | } | |
14f9c5c9 AS |
1253 | at_start_name = 0; |
1254 | ||
529cad9c PH |
1255 | /* Replace "TK__" with "__", which will eventually be translated |
1256 | into "." (just below). */ | |
1257 | ||
4c4b4cd2 PH |
1258 | if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) |
1259 | i += 2; | |
529cad9c | 1260 | |
29480c32 JB |
1261 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1262 | be translated into "." (just below). These are internal names | |
1263 | generated for anonymous blocks inside which our symbol is nested. */ | |
1264 | ||
1265 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1266 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1267 | && isdigit (encoded [i+4])) | |
1268 | { | |
1269 | int k = i + 5; | |
1270 | ||
1271 | while (k < len0 && isdigit (encoded[k])) | |
1272 | k++; /* Skip any extra digit. */ | |
1273 | ||
1274 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1275 | is indeed followed by "__". */ | |
1276 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1277 | i = k; | |
1278 | } | |
1279 | ||
529cad9c PH |
1280 | /* Remove _E{DIGITS}+[sb] */ |
1281 | ||
1282 | /* Just as for protected object subprograms, there are 2 categories | |
0963b4bd | 1283 | of subprograms created by the compiler for each entry. The first |
529cad9c PH |
1284 | one implements the actual entry code, and has a suffix following |
1285 | the convention above; the second one implements the barrier and | |
1286 | uses the same convention as above, except that the 'E' is replaced | |
1287 | by a 'B'. | |
1288 | ||
1289 | Just as above, we do not decode the name of barrier functions | |
1290 | to give the user a clue that the code he is debugging has been | |
1291 | internally generated. */ | |
1292 | ||
1293 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1294 | && isdigit (encoded[i+2])) | |
1295 | { | |
1296 | int k = i + 3; | |
1297 | ||
1298 | while (k < len0 && isdigit (encoded[k])) | |
1299 | k++; | |
1300 | ||
1301 | if (k < len0 | |
1302 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1303 | { | |
1304 | k++; | |
1305 | /* Just as an extra precaution, make sure that if this | |
1306 | suffix is followed by anything else, it is a '_'. | |
1307 | Otherwise, we matched this sequence by accident. */ | |
1308 | if (k == len0 | |
1309 | || (k < len0 && encoded[k] == '_')) | |
1310 | i = k; | |
1311 | } | |
1312 | } | |
1313 | ||
1314 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1315 | the GNAT front-end in protected object subprograms. */ | |
1316 | ||
1317 | if (i < len0 + 3 | |
1318 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1319 | { | |
1320 | /* Backtrack a bit up until we reach either the begining of | |
1321 | the encoded name, or "__". Make sure that we only find | |
1322 | digits or lowercase characters. */ | |
1323 | const char *ptr = encoded + i - 1; | |
1324 | ||
1325 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1326 | ptr--; | |
1327 | if (ptr < encoded | |
1328 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1329 | i++; | |
1330 | } | |
1331 | ||
4c4b4cd2 PH |
1332 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1333 | { | |
29480c32 JB |
1334 | /* This is a X[bn]* sequence not separated from the previous |
1335 | part of the name with a non-alpha-numeric character (in other | |
1336 | words, immediately following an alpha-numeric character), then | |
1337 | verify that it is placed at the end of the encoded name. If | |
1338 | not, then the encoding is not valid and we should abort the | |
1339 | decoding. Otherwise, just skip it, it is used in body-nested | |
1340 | package names. */ | |
4c4b4cd2 PH |
1341 | do |
1342 | i += 1; | |
1343 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1344 | if (i < len0) | |
1345 | goto Suppress; | |
1346 | } | |
cdc7bb92 | 1347 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1348 | { |
29480c32 | 1349 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1350 | decoded[j] = '.'; |
1351 | at_start_name = 1; | |
1352 | i += 2; | |
1353 | j += 1; | |
1354 | } | |
14f9c5c9 | 1355 | else |
4c4b4cd2 | 1356 | { |
29480c32 JB |
1357 | /* It's a character part of the decoded name, so just copy it |
1358 | over. */ | |
4c4b4cd2 PH |
1359 | decoded[j] = encoded[i]; |
1360 | i += 1; | |
1361 | j += 1; | |
1362 | } | |
14f9c5c9 | 1363 | } |
4c4b4cd2 | 1364 | decoded[j] = '\000'; |
14f9c5c9 | 1365 | |
29480c32 JB |
1366 | /* Decoded names should never contain any uppercase character. |
1367 | Double-check this, and abort the decoding if we find one. */ | |
1368 | ||
4c4b4cd2 PH |
1369 | for (i = 0; decoded[i] != '\0'; i += 1) |
1370 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1371 | goto Suppress; |
1372 | ||
4c4b4cd2 PH |
1373 | if (strcmp (decoded, encoded) == 0) |
1374 | return encoded; | |
1375 | else | |
1376 | return decoded; | |
14f9c5c9 AS |
1377 | |
1378 | Suppress: | |
4c4b4cd2 PH |
1379 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1380 | decoded = decoding_buffer; | |
1381 | if (encoded[0] == '<') | |
1382 | strcpy (decoded, encoded); | |
14f9c5c9 | 1383 | else |
88c15c34 | 1384 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1385 | return decoded; |
1386 | ||
1387 | } | |
1388 | ||
1389 | /* Table for keeping permanent unique copies of decoded names. Once | |
1390 | allocated, names in this table are never released. While this is a | |
1391 | storage leak, it should not be significant unless there are massive | |
1392 | changes in the set of decoded names in successive versions of a | |
1393 | symbol table loaded during a single session. */ | |
1394 | static struct htab *decoded_names_store; | |
1395 | ||
1396 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1397 | in the language-specific part of GSYMBOL, if it has not been | |
1398 | previously computed. Tries to save the decoded name in the same | |
1399 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1400 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1401 | GSYMBOL). |
4c4b4cd2 PH |
1402 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1403 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1404 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1405 | |
45e6c716 | 1406 | const char * |
f85f34ed | 1407 | ada_decode_symbol (const struct general_symbol_info *arg) |
4c4b4cd2 | 1408 | { |
f85f34ed TT |
1409 | struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg; |
1410 | const char **resultp = | |
1411 | &gsymbol->language_specific.mangled_lang.demangled_name; | |
5b4ee69b | 1412 | |
f85f34ed | 1413 | if (!gsymbol->ada_mangled) |
4c4b4cd2 PH |
1414 | { |
1415 | const char *decoded = ada_decode (gsymbol->name); | |
f85f34ed | 1416 | struct obstack *obstack = gsymbol->language_specific.obstack; |
5b4ee69b | 1417 | |
f85f34ed | 1418 | gsymbol->ada_mangled = 1; |
5b4ee69b | 1419 | |
f85f34ed TT |
1420 | if (obstack != NULL) |
1421 | *resultp = obstack_copy0 (obstack, decoded, strlen (decoded)); | |
1422 | else | |
76a01679 | 1423 | { |
f85f34ed TT |
1424 | /* Sometimes, we can't find a corresponding objfile, in |
1425 | which case, we put the result on the heap. Since we only | |
1426 | decode when needed, we hope this usually does not cause a | |
1427 | significant memory leak (FIXME). */ | |
1428 | ||
76a01679 JB |
1429 | char **slot = (char **) htab_find_slot (decoded_names_store, |
1430 | decoded, INSERT); | |
5b4ee69b | 1431 | |
76a01679 JB |
1432 | if (*slot == NULL) |
1433 | *slot = xstrdup (decoded); | |
1434 | *resultp = *slot; | |
1435 | } | |
4c4b4cd2 | 1436 | } |
14f9c5c9 | 1437 | |
4c4b4cd2 PH |
1438 | return *resultp; |
1439 | } | |
76a01679 | 1440 | |
2c0b251b | 1441 | static char * |
76a01679 | 1442 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1443 | { |
1444 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1445 | } |
1446 | ||
1447 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1448 | suffixes that encode debugging information or leading _ada_ on |
1449 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1450 | information that is ignored). If WILD, then NAME need only match a | |
1451 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1452 | either argument is NULL. */ | |
14f9c5c9 | 1453 | |
2c0b251b | 1454 | static int |
40658b94 | 1455 | match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1456 | { |
1457 | if (sym_name == NULL || name == NULL) | |
1458 | return 0; | |
1459 | else if (wild) | |
73589123 | 1460 | return wild_match (sym_name, name) == 0; |
d2e4a39e AS |
1461 | else |
1462 | { | |
1463 | int len_name = strlen (name); | |
5b4ee69b | 1464 | |
4c4b4cd2 PH |
1465 | return (strncmp (sym_name, name, len_name) == 0 |
1466 | && is_name_suffix (sym_name + len_name)) | |
1467 | || (strncmp (sym_name, "_ada_", 5) == 0 | |
1468 | && strncmp (sym_name + 5, name, len_name) == 0 | |
1469 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1470 | } |
14f9c5c9 | 1471 | } |
14f9c5c9 | 1472 | \f |
d2e4a39e | 1473 | |
4c4b4cd2 | 1474 | /* Arrays */ |
14f9c5c9 | 1475 | |
28c85d6c JB |
1476 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1477 | generated by the GNAT compiler to describe the index type used | |
1478 | for each dimension of an array, check whether it follows the latest | |
1479 | known encoding. If not, fix it up to conform to the latest encoding. | |
1480 | Otherwise, do nothing. This function also does nothing if | |
1481 | INDEX_DESC_TYPE is NULL. | |
1482 | ||
1483 | The GNAT encoding used to describle the array index type evolved a bit. | |
1484 | Initially, the information would be provided through the name of each | |
1485 | field of the structure type only, while the type of these fields was | |
1486 | described as unspecified and irrelevant. The debugger was then expected | |
1487 | to perform a global type lookup using the name of that field in order | |
1488 | to get access to the full index type description. Because these global | |
1489 | lookups can be very expensive, the encoding was later enhanced to make | |
1490 | the global lookup unnecessary by defining the field type as being | |
1491 | the full index type description. | |
1492 | ||
1493 | The purpose of this routine is to allow us to support older versions | |
1494 | of the compiler by detecting the use of the older encoding, and by | |
1495 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1496 | we essentially replace each field's meaningless type by the associated | |
1497 | index subtype). */ | |
1498 | ||
1499 | void | |
1500 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1501 | { | |
1502 | int i; | |
1503 | ||
1504 | if (index_desc_type == NULL) | |
1505 | return; | |
1506 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1507 | ||
1508 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1509 | to check one field only, no need to check them all). If not, return | |
1510 | now. | |
1511 | ||
1512 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1513 | the field type should be a meaningless integer type whose name | |
1514 | is not equal to the field name. */ | |
1515 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1516 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1517 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1518 | return; | |
1519 | ||
1520 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1521 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1522 | { | |
0d5cff50 | 1523 | const char *name = TYPE_FIELD_NAME (index_desc_type, i); |
28c85d6c JB |
1524 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); |
1525 | ||
1526 | if (raw_type) | |
1527 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1528 | } | |
1529 | } | |
1530 | ||
4c4b4cd2 | 1531 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1532 | |
d2e4a39e AS |
1533 | static char *bound_name[] = { |
1534 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1535 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1536 | }; | |
1537 | ||
1538 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1539 | ||
4c4b4cd2 | 1540 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1541 | |
14f9c5c9 | 1542 | |
4c4b4cd2 PH |
1543 | /* The desc_* routines return primitive portions of array descriptors |
1544 | (fat pointers). */ | |
14f9c5c9 AS |
1545 | |
1546 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1547 | level of indirection, if needed. */ |
1548 | ||
d2e4a39e AS |
1549 | static struct type * |
1550 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1551 | { |
1552 | if (type == NULL) | |
1553 | return NULL; | |
61ee279c | 1554 | type = ada_check_typedef (type); |
720d1a40 JB |
1555 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1556 | type = ada_typedef_target_type (type); | |
1557 | ||
1265e4aa JB |
1558 | if (type != NULL |
1559 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1560 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1561 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1562 | else |
1563 | return type; | |
1564 | } | |
1565 | ||
4c4b4cd2 PH |
1566 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1567 | ||
14f9c5c9 | 1568 | static int |
d2e4a39e | 1569 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1570 | { |
d2e4a39e | 1571 | return |
14f9c5c9 AS |
1572 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1573 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1574 | } | |
1575 | ||
4c4b4cd2 PH |
1576 | /* The descriptor type for thin pointer type TYPE. */ |
1577 | ||
d2e4a39e AS |
1578 | static struct type * |
1579 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1580 | { |
d2e4a39e | 1581 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1582 | |
14f9c5c9 AS |
1583 | if (base_type == NULL) |
1584 | return NULL; | |
1585 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1586 | return base_type; | |
d2e4a39e | 1587 | else |
14f9c5c9 | 1588 | { |
d2e4a39e | 1589 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1590 | |
14f9c5c9 | 1591 | if (alt_type == NULL) |
4c4b4cd2 | 1592 | return base_type; |
14f9c5c9 | 1593 | else |
4c4b4cd2 | 1594 | return alt_type; |
14f9c5c9 AS |
1595 | } |
1596 | } | |
1597 | ||
4c4b4cd2 PH |
1598 | /* A pointer to the array data for thin-pointer value VAL. */ |
1599 | ||
d2e4a39e AS |
1600 | static struct value * |
1601 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1602 | { |
828292f2 | 1603 | struct type *type = ada_check_typedef (value_type (val)); |
556bdfd4 | 1604 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1605 | |
556bdfd4 UW |
1606 | data_type = lookup_pointer_type (data_type); |
1607 | ||
14f9c5c9 | 1608 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1609 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1610 | else |
42ae5230 | 1611 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1612 | } |
1613 | ||
4c4b4cd2 PH |
1614 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1615 | ||
14f9c5c9 | 1616 | static int |
d2e4a39e | 1617 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1618 | { |
1619 | type = desc_base_type (type); | |
1620 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1621 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1622 | } |
1623 | ||
4c4b4cd2 PH |
1624 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1625 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1626 | |
d2e4a39e AS |
1627 | static struct type * |
1628 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1629 | { |
d2e4a39e | 1630 | struct type *r; |
14f9c5c9 AS |
1631 | |
1632 | type = desc_base_type (type); | |
1633 | ||
1634 | if (type == NULL) | |
1635 | return NULL; | |
1636 | else if (is_thin_pntr (type)) | |
1637 | { | |
1638 | type = thin_descriptor_type (type); | |
1639 | if (type == NULL) | |
4c4b4cd2 | 1640 | return NULL; |
14f9c5c9 AS |
1641 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1642 | if (r != NULL) | |
61ee279c | 1643 | return ada_check_typedef (r); |
14f9c5c9 AS |
1644 | } |
1645 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1646 | { | |
1647 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1648 | if (r != NULL) | |
61ee279c | 1649 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1650 | } |
1651 | return NULL; | |
1652 | } | |
1653 | ||
1654 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1655 | one, a pointer to its bounds data. Otherwise NULL. */ |
1656 | ||
d2e4a39e AS |
1657 | static struct value * |
1658 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1659 | { |
df407dfe | 1660 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1661 | |
d2e4a39e | 1662 | if (is_thin_pntr (type)) |
14f9c5c9 | 1663 | { |
d2e4a39e | 1664 | struct type *bounds_type = |
4c4b4cd2 | 1665 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1666 | LONGEST addr; |
1667 | ||
4cdfadb1 | 1668 | if (bounds_type == NULL) |
323e0a4a | 1669 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1670 | |
1671 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1672 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1673 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1674 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1675 | addr = value_as_long (arr); |
d2e4a39e | 1676 | else |
42ae5230 | 1677 | addr = value_address (arr); |
14f9c5c9 | 1678 | |
d2e4a39e | 1679 | return |
4c4b4cd2 PH |
1680 | value_from_longest (lookup_pointer_type (bounds_type), |
1681 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1682 | } |
1683 | ||
1684 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1685 | { |
1686 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1687 | _("Bad GNAT array descriptor")); | |
1688 | struct type *p_bounds_type = value_type (p_bounds); | |
1689 | ||
1690 | if (p_bounds_type | |
1691 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1692 | { | |
1693 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1694 | ||
1695 | if (TYPE_STUB (target_type)) | |
1696 | p_bounds = value_cast (lookup_pointer_type | |
1697 | (ada_check_typedef (target_type)), | |
1698 | p_bounds); | |
1699 | } | |
1700 | else | |
1701 | error (_("Bad GNAT array descriptor")); | |
1702 | ||
1703 | return p_bounds; | |
1704 | } | |
14f9c5c9 AS |
1705 | else |
1706 | return NULL; | |
1707 | } | |
1708 | ||
4c4b4cd2 PH |
1709 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1710 | position of the field containing the address of the bounds data. */ | |
1711 | ||
14f9c5c9 | 1712 | static int |
d2e4a39e | 1713 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1714 | { |
1715 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1716 | } | |
1717 | ||
1718 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1719 | size of the field containing the address of the bounds data. */ |
1720 | ||
14f9c5c9 | 1721 | static int |
d2e4a39e | 1722 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1723 | { |
1724 | type = desc_base_type (type); | |
1725 | ||
d2e4a39e | 1726 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1727 | return TYPE_FIELD_BITSIZE (type, 1); |
1728 | else | |
61ee279c | 1729 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1730 | } |
1731 | ||
4c4b4cd2 | 1732 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1733 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1734 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1735 | data. */ | |
4c4b4cd2 | 1736 | |
d2e4a39e | 1737 | static struct type * |
556bdfd4 | 1738 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1739 | { |
1740 | type = desc_base_type (type); | |
1741 | ||
4c4b4cd2 | 1742 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1743 | if (is_thin_pntr (type)) |
556bdfd4 | 1744 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1745 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1746 | { |
1747 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1748 | ||
1749 | if (data_type | |
1750 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1751 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1752 | } |
1753 | ||
1754 | return NULL; | |
14f9c5c9 AS |
1755 | } |
1756 | ||
1757 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1758 | its array data. */ | |
4c4b4cd2 | 1759 | |
d2e4a39e AS |
1760 | static struct value * |
1761 | desc_data (struct value *arr) | |
14f9c5c9 | 1762 | { |
df407dfe | 1763 | struct type *type = value_type (arr); |
5b4ee69b | 1764 | |
14f9c5c9 AS |
1765 | if (is_thin_pntr (type)) |
1766 | return thin_data_pntr (arr); | |
1767 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1768 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1769 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1770 | else |
1771 | return NULL; | |
1772 | } | |
1773 | ||
1774 | ||
1775 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1776 | position of the field containing the address of the data. */ |
1777 | ||
14f9c5c9 | 1778 | static int |
d2e4a39e | 1779 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1780 | { |
1781 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1782 | } | |
1783 | ||
1784 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1785 | size of the field containing the address of the data. */ |
1786 | ||
14f9c5c9 | 1787 | static int |
d2e4a39e | 1788 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1789 | { |
1790 | type = desc_base_type (type); | |
1791 | ||
1792 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1793 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1794 | else |
14f9c5c9 AS |
1795 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1796 | } | |
1797 | ||
4c4b4cd2 | 1798 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1799 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1800 | bound, if WHICH is 1. The first bound is I=1. */ |
1801 | ||
d2e4a39e AS |
1802 | static struct value * |
1803 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1804 | { |
d2e4a39e | 1805 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1806 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1807 | } |
1808 | ||
1809 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1810 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1811 | bound, if WHICH is 1. The first bound is I=1. */ |
1812 | ||
14f9c5c9 | 1813 | static int |
d2e4a39e | 1814 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1815 | { |
d2e4a39e | 1816 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1817 | } |
1818 | ||
1819 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1820 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1821 | bound, if WHICH is 1. The first bound is I=1. */ |
1822 | ||
76a01679 | 1823 | static int |
d2e4a39e | 1824 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1825 | { |
1826 | type = desc_base_type (type); | |
1827 | ||
d2e4a39e AS |
1828 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1829 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1830 | else | |
1831 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1832 | } |
1833 | ||
1834 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1835 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1836 | ||
d2e4a39e AS |
1837 | static struct type * |
1838 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1839 | { |
1840 | type = desc_base_type (type); | |
1841 | ||
1842 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1843 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1844 | else | |
14f9c5c9 AS |
1845 | return NULL; |
1846 | } | |
1847 | ||
4c4b4cd2 PH |
1848 | /* The number of index positions in the array-bounds type TYPE. |
1849 | Return 0 if TYPE is NULL. */ | |
1850 | ||
14f9c5c9 | 1851 | static int |
d2e4a39e | 1852 | desc_arity (struct type *type) |
14f9c5c9 AS |
1853 | { |
1854 | type = desc_base_type (type); | |
1855 | ||
1856 | if (type != NULL) | |
1857 | return TYPE_NFIELDS (type) / 2; | |
1858 | return 0; | |
1859 | } | |
1860 | ||
4c4b4cd2 PH |
1861 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1862 | an array descriptor type (representing an unconstrained array | |
1863 | type). */ | |
1864 | ||
76a01679 JB |
1865 | static int |
1866 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1867 | { |
1868 | if (type == NULL) | |
1869 | return 0; | |
61ee279c | 1870 | type = ada_check_typedef (type); |
4c4b4cd2 | 1871 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1872 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1873 | } |
1874 | ||
52ce6436 | 1875 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1876 | * to one. */ |
52ce6436 | 1877 | |
2c0b251b | 1878 | static int |
52ce6436 PH |
1879 | ada_is_array_type (struct type *type) |
1880 | { | |
1881 | while (type != NULL | |
1882 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1883 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1884 | type = TYPE_TARGET_TYPE (type); | |
1885 | return ada_is_direct_array_type (type); | |
1886 | } | |
1887 | ||
4c4b4cd2 | 1888 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1889 | |
14f9c5c9 | 1890 | int |
4c4b4cd2 | 1891 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1892 | { |
1893 | if (type == NULL) | |
1894 | return 0; | |
61ee279c | 1895 | type = ada_check_typedef (type); |
14f9c5c9 | 1896 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 | 1897 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
b0dd7688 JB |
1898 | && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))) |
1899 | == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1900 | } |
1901 | ||
4c4b4cd2 PH |
1902 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1903 | ||
14f9c5c9 | 1904 | int |
4c4b4cd2 | 1905 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1906 | { |
556bdfd4 | 1907 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1908 | |
1909 | if (type == NULL) | |
1910 | return 0; | |
61ee279c | 1911 | type = ada_check_typedef (type); |
556bdfd4 UW |
1912 | return (data_type != NULL |
1913 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1914 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1915 | } |
1916 | ||
1917 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1918 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1919 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1920 | is still needed. */ |
1921 | ||
14f9c5c9 | 1922 | int |
ebf56fd3 | 1923 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1924 | { |
d2e4a39e | 1925 | return |
14f9c5c9 AS |
1926 | type != NULL |
1927 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1928 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1929 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1930 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1931 | } |
1932 | ||
1933 | ||
4c4b4cd2 | 1934 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1935 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1936 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1937 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1938 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1939 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1940 | a descriptor. */ |
d2e4a39e AS |
1941 | struct type * |
1942 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1943 | { |
ad82864c JB |
1944 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1945 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1946 | |
df407dfe AC |
1947 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1948 | return value_type (arr); | |
d2e4a39e AS |
1949 | |
1950 | if (!bounds) | |
ad82864c JB |
1951 | { |
1952 | struct type *array_type = | |
1953 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1954 | ||
1955 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1956 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
1957 | decode_packed_array_bitsize (value_type (arr)); | |
1958 | ||
1959 | return array_type; | |
1960 | } | |
14f9c5c9 AS |
1961 | else |
1962 | { | |
d2e4a39e | 1963 | struct type *elt_type; |
14f9c5c9 | 1964 | int arity; |
d2e4a39e | 1965 | struct value *descriptor; |
14f9c5c9 | 1966 | |
df407dfe AC |
1967 | elt_type = ada_array_element_type (value_type (arr), -1); |
1968 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1969 | |
d2e4a39e | 1970 | if (elt_type == NULL || arity == 0) |
df407dfe | 1971 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1972 | |
1973 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1974 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1975 | return NULL; |
d2e4a39e | 1976 | while (arity > 0) |
4c4b4cd2 | 1977 | { |
e9bb382b UW |
1978 | struct type *range_type = alloc_type_copy (value_type (arr)); |
1979 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
1980 | struct value *low = desc_one_bound (descriptor, arity, 0); |
1981 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 1982 | |
5b4ee69b | 1983 | arity -= 1; |
0c9c3474 SA |
1984 | create_static_range_type (range_type, value_type (low), |
1985 | longest_to_int (value_as_long (low)), | |
1986 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 1987 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
1988 | |
1989 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
1990 | { |
1991 | /* We need to store the element packed bitsize, as well as | |
1992 | recompute the array size, because it was previously | |
1993 | computed based on the unpacked element size. */ | |
1994 | LONGEST lo = value_as_long (low); | |
1995 | LONGEST hi = value_as_long (high); | |
1996 | ||
1997 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
1998 | decode_packed_array_bitsize (value_type (arr)); | |
1999 | /* If the array has no element, then the size is already | |
2000 | zero, and does not need to be recomputed. */ | |
2001 | if (lo < hi) | |
2002 | { | |
2003 | int array_bitsize = | |
2004 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); | |
2005 | ||
2006 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
2007 | } | |
2008 | } | |
4c4b4cd2 | 2009 | } |
14f9c5c9 AS |
2010 | |
2011 | return lookup_pointer_type (elt_type); | |
2012 | } | |
2013 | } | |
2014 | ||
2015 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
2016 | Otherwise, returns either a standard GDB array with bounds set |
2017 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
2018 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
2019 | ||
d2e4a39e AS |
2020 | struct value * |
2021 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 2022 | { |
df407dfe | 2023 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2024 | { |
d2e4a39e | 2025 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 2026 | |
14f9c5c9 | 2027 | if (arrType == NULL) |
4c4b4cd2 | 2028 | return NULL; |
14f9c5c9 AS |
2029 | return value_cast (arrType, value_copy (desc_data (arr))); |
2030 | } | |
ad82864c JB |
2031 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2032 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
2033 | else |
2034 | return arr; | |
2035 | } | |
2036 | ||
2037 | /* If ARR does not represent an array, returns ARR unchanged. | |
2038 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
2039 | be ARR itself if it already is in the proper form). */ |
2040 | ||
720d1a40 | 2041 | struct value * |
d2e4a39e | 2042 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 2043 | { |
df407dfe | 2044 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2045 | { |
d2e4a39e | 2046 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 2047 | |
14f9c5c9 | 2048 | if (arrVal == NULL) |
323e0a4a | 2049 | error (_("Bounds unavailable for null array pointer.")); |
529cad9c | 2050 | check_size (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
2051 | return value_ind (arrVal); |
2052 | } | |
ad82864c JB |
2053 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2054 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 2055 | else |
14f9c5c9 AS |
2056 | return arr; |
2057 | } | |
2058 | ||
2059 | /* If TYPE represents a GNAT array type, return it translated to an | |
2060 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
2061 | packing). For other types, is the identity. */ |
2062 | ||
d2e4a39e AS |
2063 | struct type * |
2064 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 2065 | { |
ad82864c JB |
2066 | if (ada_is_constrained_packed_array_type (type)) |
2067 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
2068 | |
2069 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 2070 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
2071 | |
2072 | return type; | |
14f9c5c9 AS |
2073 | } |
2074 | ||
4c4b4cd2 PH |
2075 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
2076 | ||
ad82864c JB |
2077 | static int |
2078 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
2079 | { |
2080 | if (type == NULL) | |
2081 | return 0; | |
4c4b4cd2 | 2082 | type = desc_base_type (type); |
61ee279c | 2083 | type = ada_check_typedef (type); |
d2e4a39e | 2084 | return |
14f9c5c9 AS |
2085 | ada_type_name (type) != NULL |
2086 | && strstr (ada_type_name (type), "___XP") != NULL; | |
2087 | } | |
2088 | ||
ad82864c JB |
2089 | /* Non-zero iff TYPE represents a standard GNAT constrained |
2090 | packed-array type. */ | |
2091 | ||
2092 | int | |
2093 | ada_is_constrained_packed_array_type (struct type *type) | |
2094 | { | |
2095 | return ada_is_packed_array_type (type) | |
2096 | && !ada_is_array_descriptor_type (type); | |
2097 | } | |
2098 | ||
2099 | /* Non-zero iff TYPE represents an array descriptor for a | |
2100 | unconstrained packed-array type. */ | |
2101 | ||
2102 | static int | |
2103 | ada_is_unconstrained_packed_array_type (struct type *type) | |
2104 | { | |
2105 | return ada_is_packed_array_type (type) | |
2106 | && ada_is_array_descriptor_type (type); | |
2107 | } | |
2108 | ||
2109 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
2110 | return the size of its elements in bits. */ | |
2111 | ||
2112 | static long | |
2113 | decode_packed_array_bitsize (struct type *type) | |
2114 | { | |
0d5cff50 DE |
2115 | const char *raw_name; |
2116 | const char *tail; | |
ad82864c JB |
2117 | long bits; |
2118 | ||
720d1a40 JB |
2119 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
2120 | of the fat pointer type. We need the name of the fat pointer type | |
2121 | to do the decoding, so strip the typedef layer. */ | |
2122 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
2123 | type = ada_typedef_target_type (type); | |
2124 | ||
2125 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
2126 | if (!raw_name) |
2127 | raw_name = ada_type_name (desc_base_type (type)); | |
2128 | ||
2129 | if (!raw_name) | |
2130 | return 0; | |
2131 | ||
2132 | tail = strstr (raw_name, "___XP"); | |
720d1a40 | 2133 | gdb_assert (tail != NULL); |
ad82864c JB |
2134 | |
2135 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
2136 | { | |
2137 | lim_warning | |
2138 | (_("could not understand bit size information on packed array")); | |
2139 | return 0; | |
2140 | } | |
2141 | ||
2142 | return bits; | |
2143 | } | |
2144 | ||
14f9c5c9 AS |
2145 | /* Given that TYPE is a standard GDB array type with all bounds filled |
2146 | in, and that the element size of its ultimate scalar constituents | |
2147 | (that is, either its elements, or, if it is an array of arrays, its | |
2148 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
2149 | but with the bit sizes of its elements (and those of any | |
2150 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 PH |
2151 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
2152 | in bits. */ | |
2153 | ||
d2e4a39e | 2154 | static struct type * |
ad82864c | 2155 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 2156 | { |
d2e4a39e AS |
2157 | struct type *new_elt_type; |
2158 | struct type *new_type; | |
99b1c762 JB |
2159 | struct type *index_type_desc; |
2160 | struct type *index_type; | |
14f9c5c9 AS |
2161 | LONGEST low_bound, high_bound; |
2162 | ||
61ee279c | 2163 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2164 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
2165 | return type; | |
2166 | ||
99b1c762 JB |
2167 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
2168 | if (index_type_desc) | |
2169 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0), | |
2170 | NULL); | |
2171 | else | |
2172 | index_type = TYPE_INDEX_TYPE (type); | |
2173 | ||
e9bb382b | 2174 | new_type = alloc_type_copy (type); |
ad82864c JB |
2175 | new_elt_type = |
2176 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2177 | elt_bits); | |
99b1c762 | 2178 | create_array_type (new_type, new_elt_type, index_type); |
14f9c5c9 AS |
2179 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
2180 | TYPE_NAME (new_type) = ada_type_name (type); | |
2181 | ||
99b1c762 | 2182 | if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0) |
14f9c5c9 AS |
2183 | low_bound = high_bound = 0; |
2184 | if (high_bound < low_bound) | |
2185 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2186 | else |
14f9c5c9 AS |
2187 | { |
2188 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2189 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 2190 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2191 | } |
2192 | ||
876cecd0 | 2193 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
2194 | return new_type; |
2195 | } | |
2196 | ||
ad82864c JB |
2197 | /* The array type encoded by TYPE, where |
2198 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2199 | |
d2e4a39e | 2200 | static struct type * |
ad82864c | 2201 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2202 | { |
0d5cff50 | 2203 | const char *raw_name = ada_type_name (ada_check_typedef (type)); |
727e3d2e | 2204 | char *name; |
0d5cff50 | 2205 | const char *tail; |
d2e4a39e | 2206 | struct type *shadow_type; |
14f9c5c9 | 2207 | long bits; |
14f9c5c9 | 2208 | |
727e3d2e JB |
2209 | if (!raw_name) |
2210 | raw_name = ada_type_name (desc_base_type (type)); | |
2211 | ||
2212 | if (!raw_name) | |
2213 | return NULL; | |
2214 | ||
2215 | name = (char *) alloca (strlen (raw_name) + 1); | |
2216 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2217 | type = desc_base_type (type); |
2218 | ||
14f9c5c9 AS |
2219 | memcpy (name, raw_name, tail - raw_name); |
2220 | name[tail - raw_name] = '\000'; | |
2221 | ||
b4ba55a1 JB |
2222 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2223 | ||
2224 | if (shadow_type == NULL) | |
14f9c5c9 | 2225 | { |
323e0a4a | 2226 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2227 | return NULL; |
2228 | } | |
cb249c71 | 2229 | CHECK_TYPEDEF (shadow_type); |
14f9c5c9 AS |
2230 | |
2231 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2232 | { | |
0963b4bd MS |
2233 | lim_warning (_("could not understand bounds " |
2234 | "information on packed array")); | |
14f9c5c9 AS |
2235 | return NULL; |
2236 | } | |
d2e4a39e | 2237 | |
ad82864c JB |
2238 | bits = decode_packed_array_bitsize (type); |
2239 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2240 | } |
2241 | ||
ad82864c JB |
2242 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2243 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2244 | standard GDB array type except that the BITSIZEs of the array |
2245 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2246 | type length is set appropriately. */ |
14f9c5c9 | 2247 | |
d2e4a39e | 2248 | static struct value * |
ad82864c | 2249 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2250 | { |
4c4b4cd2 | 2251 | struct type *type; |
14f9c5c9 | 2252 | |
11aa919a PMR |
2253 | /* If our value is a pointer, then dereference it. Likewise if |
2254 | the value is a reference. Make sure that this operation does not | |
2255 | cause the target type to be fixed, as this would indirectly cause | |
2256 | this array to be decoded. The rest of the routine assumes that | |
2257 | the array hasn't been decoded yet, so we use the basic "coerce_ref" | |
2258 | and "value_ind" routines to perform the dereferencing, as opposed | |
2259 | to using "ada_coerce_ref" or "ada_value_ind". */ | |
2260 | arr = coerce_ref (arr); | |
828292f2 | 2261 | if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR) |
284614f0 | 2262 | arr = value_ind (arr); |
4c4b4cd2 | 2263 | |
ad82864c | 2264 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2265 | if (type == NULL) |
2266 | { | |
323e0a4a | 2267 | error (_("can't unpack array")); |
14f9c5c9 AS |
2268 | return NULL; |
2269 | } | |
61ee279c | 2270 | |
50810684 | 2271 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 2272 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2273 | { |
2274 | /* This is a (right-justified) modular type representing a packed | |
2275 | array with no wrapper. In order to interpret the value through | |
2276 | the (left-justified) packed array type we just built, we must | |
2277 | first left-justify it. */ | |
2278 | int bit_size, bit_pos; | |
2279 | ULONGEST mod; | |
2280 | ||
df407dfe | 2281 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2282 | bit_size = 0; |
2283 | while (mod > 0) | |
2284 | { | |
2285 | bit_size += 1; | |
2286 | mod >>= 1; | |
2287 | } | |
df407dfe | 2288 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2289 | arr = ada_value_primitive_packed_val (arr, NULL, |
2290 | bit_pos / HOST_CHAR_BIT, | |
2291 | bit_pos % HOST_CHAR_BIT, | |
2292 | bit_size, | |
2293 | type); | |
2294 | } | |
2295 | ||
4c4b4cd2 | 2296 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2297 | } |
2298 | ||
2299 | ||
2300 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2301 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2302 | |
d2e4a39e AS |
2303 | static struct value * |
2304 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2305 | { |
2306 | int i; | |
2307 | int bits, elt_off, bit_off; | |
2308 | long elt_total_bit_offset; | |
d2e4a39e AS |
2309 | struct type *elt_type; |
2310 | struct value *v; | |
14f9c5c9 AS |
2311 | |
2312 | bits = 0; | |
2313 | elt_total_bit_offset = 0; | |
df407dfe | 2314 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2315 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2316 | { |
d2e4a39e | 2317 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2318 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2319 | error | |
0963b4bd MS |
2320 | (_("attempt to do packed indexing of " |
2321 | "something other than a packed array")); | |
14f9c5c9 | 2322 | else |
4c4b4cd2 PH |
2323 | { |
2324 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2325 | LONGEST lowerbound, upperbound; | |
2326 | LONGEST idx; | |
2327 | ||
2328 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2329 | { | |
323e0a4a | 2330 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2331 | lowerbound = upperbound = 0; |
2332 | } | |
2333 | ||
3cb382c9 | 2334 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2335 | if (idx < lowerbound || idx > upperbound) |
0963b4bd MS |
2336 | lim_warning (_("packed array index %ld out of bounds"), |
2337 | (long) idx); | |
4c4b4cd2 PH |
2338 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2339 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2340 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2341 | } |
14f9c5c9 AS |
2342 | } |
2343 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2344 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2345 | |
2346 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2347 | bits, elt_type); |
14f9c5c9 AS |
2348 | return v; |
2349 | } | |
2350 | ||
4c4b4cd2 | 2351 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2352 | |
2353 | static int | |
d2e4a39e | 2354 | has_negatives (struct type *type) |
14f9c5c9 | 2355 | { |
d2e4a39e AS |
2356 | switch (TYPE_CODE (type)) |
2357 | { | |
2358 | default: | |
2359 | return 0; | |
2360 | case TYPE_CODE_INT: | |
2361 | return !TYPE_UNSIGNED (type); | |
2362 | case TYPE_CODE_RANGE: | |
2363 | return TYPE_LOW_BOUND (type) < 0; | |
2364 | } | |
14f9c5c9 | 2365 | } |
d2e4a39e | 2366 | |
14f9c5c9 AS |
2367 | |
2368 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2369 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2370 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
0963b4bd | 2371 | assigning through the result will set the field fetched from. |
4c4b4cd2 PH |
2372 | VALADDR is ignored unless OBJ is NULL, in which case, |
2373 | VALADDR+OFFSET must address the start of storage containing the | |
2374 | packed value. The value returned in this case is never an lval. | |
2375 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 2376 | |
d2e4a39e | 2377 | struct value * |
fc1a4b47 | 2378 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 2379 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 2380 | struct type *type) |
14f9c5c9 | 2381 | { |
d2e4a39e | 2382 | struct value *v; |
4c4b4cd2 PH |
2383 | int src, /* Index into the source area */ |
2384 | targ, /* Index into the target area */ | |
2385 | srcBitsLeft, /* Number of source bits left to move */ | |
2386 | nsrc, ntarg, /* Number of source and target bytes */ | |
2387 | unusedLS, /* Number of bits in next significant | |
2388 | byte of source that are unused */ | |
2389 | accumSize; /* Number of meaningful bits in accum */ | |
2390 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 2391 | unsigned char *unpacked; |
4c4b4cd2 | 2392 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
2393 | unsigned char sign; |
2394 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
2395 | /* Transmit bytes from least to most significant; delta is the direction |
2396 | the indices move. */ | |
50810684 | 2397 | int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1; |
14f9c5c9 | 2398 | |
61ee279c | 2399 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2400 | |
2401 | if (obj == NULL) | |
2402 | { | |
2403 | v = allocate_value (type); | |
d2e4a39e | 2404 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 2405 | } |
9214ee5f | 2406 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 | 2407 | { |
53ba8333 | 2408 | v = value_at (type, value_address (obj)); |
9f1f738a | 2409 | type = value_type (v); |
d2e4a39e | 2410 | bytes = (unsigned char *) alloca (len); |
53ba8333 | 2411 | read_memory (value_address (v) + offset, bytes, len); |
14f9c5c9 | 2412 | } |
d2e4a39e | 2413 | else |
14f9c5c9 AS |
2414 | { |
2415 | v = allocate_value (type); | |
0fd88904 | 2416 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 2417 | } |
d2e4a39e AS |
2418 | |
2419 | if (obj != NULL) | |
14f9c5c9 | 2420 | { |
53ba8333 | 2421 | long new_offset = offset; |
5b4ee69b | 2422 | |
74bcbdf3 | 2423 | set_value_component_location (v, obj); |
9bbda503 AC |
2424 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
2425 | set_value_bitsize (v, bit_size); | |
df407dfe | 2426 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 | 2427 | { |
53ba8333 | 2428 | ++new_offset; |
9bbda503 | 2429 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 2430 | } |
53ba8333 JB |
2431 | set_value_offset (v, new_offset); |
2432 | ||
2433 | /* Also set the parent value. This is needed when trying to | |
2434 | assign a new value (in inferior memory). */ | |
2435 | set_value_parent (v, obj); | |
14f9c5c9 AS |
2436 | } |
2437 | else | |
9bbda503 | 2438 | set_value_bitsize (v, bit_size); |
0fd88904 | 2439 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2440 | |
2441 | srcBitsLeft = bit_size; | |
2442 | nsrc = len; | |
2443 | ntarg = TYPE_LENGTH (type); | |
2444 | sign = 0; | |
2445 | if (bit_size == 0) | |
2446 | { | |
2447 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2448 | return v; | |
2449 | } | |
50810684 | 2450 | else if (gdbarch_bits_big_endian (get_type_arch (type))) |
14f9c5c9 | 2451 | { |
d2e4a39e | 2452 | src = len - 1; |
1265e4aa JB |
2453 | if (has_negatives (type) |
2454 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2455 | sign = ~0; |
d2e4a39e AS |
2456 | |
2457 | unusedLS = | |
4c4b4cd2 PH |
2458 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2459 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2460 | |
2461 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2462 | { |
2463 | case TYPE_CODE_ARRAY: | |
2464 | case TYPE_CODE_UNION: | |
2465 | case TYPE_CODE_STRUCT: | |
2466 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2467 | accumSize = | |
2468 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2469 | /* ... And are placed at the beginning (most-significant) bytes | |
2470 | of the target. */ | |
529cad9c | 2471 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
0056e4d5 | 2472 | ntarg = targ + 1; |
4c4b4cd2 PH |
2473 | break; |
2474 | default: | |
2475 | accumSize = 0; | |
2476 | targ = TYPE_LENGTH (type) - 1; | |
2477 | break; | |
2478 | } | |
14f9c5c9 | 2479 | } |
d2e4a39e | 2480 | else |
14f9c5c9 AS |
2481 | { |
2482 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2483 | ||
2484 | src = targ = 0; | |
2485 | unusedLS = bit_offset; | |
2486 | accumSize = 0; | |
2487 | ||
d2e4a39e | 2488 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2489 | sign = ~0; |
14f9c5c9 | 2490 | } |
d2e4a39e | 2491 | |
14f9c5c9 AS |
2492 | accum = 0; |
2493 | while (nsrc > 0) | |
2494 | { | |
2495 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2496 | part of the value. */ |
d2e4a39e | 2497 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2498 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2499 | 1; | |
2500 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2501 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2502 | |
d2e4a39e | 2503 | accum |= |
4c4b4cd2 | 2504 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2505 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2506 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2507 | { |
2508 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2509 | accumSize -= HOST_CHAR_BIT; | |
2510 | accum >>= HOST_CHAR_BIT; | |
2511 | ntarg -= 1; | |
2512 | targ += delta; | |
2513 | } | |
14f9c5c9 AS |
2514 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2515 | unusedLS = 0; | |
2516 | nsrc -= 1; | |
2517 | src += delta; | |
2518 | } | |
2519 | while (ntarg > 0) | |
2520 | { | |
2521 | accum |= sign << accumSize; | |
2522 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2523 | accumSize -= HOST_CHAR_BIT; | |
2524 | accum >>= HOST_CHAR_BIT; | |
2525 | ntarg -= 1; | |
2526 | targ += delta; | |
2527 | } | |
2528 | ||
2529 | return v; | |
2530 | } | |
d2e4a39e | 2531 | |
14f9c5c9 AS |
2532 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2533 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2534 | not overlap. */ |
14f9c5c9 | 2535 | static void |
fc1a4b47 | 2536 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
50810684 | 2537 | int src_offset, int n, int bits_big_endian_p) |
14f9c5c9 AS |
2538 | { |
2539 | unsigned int accum, mask; | |
2540 | int accum_bits, chunk_size; | |
2541 | ||
2542 | target += targ_offset / HOST_CHAR_BIT; | |
2543 | targ_offset %= HOST_CHAR_BIT; | |
2544 | source += src_offset / HOST_CHAR_BIT; | |
2545 | src_offset %= HOST_CHAR_BIT; | |
50810684 | 2546 | if (bits_big_endian_p) |
14f9c5c9 AS |
2547 | { |
2548 | accum = (unsigned char) *source; | |
2549 | source += 1; | |
2550 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2551 | ||
d2e4a39e | 2552 | while (n > 0) |
4c4b4cd2 PH |
2553 | { |
2554 | int unused_right; | |
5b4ee69b | 2555 | |
4c4b4cd2 PH |
2556 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; |
2557 | accum_bits += HOST_CHAR_BIT; | |
2558 | source += 1; | |
2559 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2560 | if (chunk_size > n) | |
2561 | chunk_size = n; | |
2562 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2563 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2564 | *target = | |
2565 | (*target & ~mask) | |
2566 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2567 | n -= chunk_size; | |
2568 | accum_bits -= chunk_size; | |
2569 | target += 1; | |
2570 | targ_offset = 0; | |
2571 | } | |
14f9c5c9 AS |
2572 | } |
2573 | else | |
2574 | { | |
2575 | accum = (unsigned char) *source >> src_offset; | |
2576 | source += 1; | |
2577 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2578 | ||
d2e4a39e | 2579 | while (n > 0) |
4c4b4cd2 PH |
2580 | { |
2581 | accum = accum + ((unsigned char) *source << accum_bits); | |
2582 | accum_bits += HOST_CHAR_BIT; | |
2583 | source += 1; | |
2584 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2585 | if (chunk_size > n) | |
2586 | chunk_size = n; | |
2587 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2588 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2589 | n -= chunk_size; | |
2590 | accum_bits -= chunk_size; | |
2591 | accum >>= chunk_size; | |
2592 | target += 1; | |
2593 | targ_offset = 0; | |
2594 | } | |
14f9c5c9 AS |
2595 | } |
2596 | } | |
2597 | ||
14f9c5c9 AS |
2598 | /* Store the contents of FROMVAL into the location of TOVAL. |
2599 | Return a new value with the location of TOVAL and contents of | |
2600 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2601 | floating-point or non-scalar types. */ |
14f9c5c9 | 2602 | |
d2e4a39e AS |
2603 | static struct value * |
2604 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2605 | { |
df407dfe AC |
2606 | struct type *type = value_type (toval); |
2607 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2608 | |
52ce6436 PH |
2609 | toval = ada_coerce_ref (toval); |
2610 | fromval = ada_coerce_ref (fromval); | |
2611 | ||
2612 | if (ada_is_direct_array_type (value_type (toval))) | |
2613 | toval = ada_coerce_to_simple_array (toval); | |
2614 | if (ada_is_direct_array_type (value_type (fromval))) | |
2615 | fromval = ada_coerce_to_simple_array (fromval); | |
2616 | ||
88e3b34b | 2617 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2618 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2619 | |
d2e4a39e | 2620 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2621 | && bits > 0 |
d2e4a39e | 2622 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2623 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2624 | { |
df407dfe AC |
2625 | int len = (value_bitpos (toval) |
2626 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2627 | int from_size; |
948f8e3d | 2628 | gdb_byte *buffer = alloca (len); |
d2e4a39e | 2629 | struct value *val; |
42ae5230 | 2630 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2631 | |
2632 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2633 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2634 | |
52ce6436 | 2635 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2636 | from_size = value_bitsize (fromval); |
2637 | if (from_size == 0) | |
2638 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2639 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
df407dfe | 2640 | move_bits (buffer, value_bitpos (toval), |
50810684 | 2641 | value_contents (fromval), from_size - bits, bits, 1); |
14f9c5c9 | 2642 | else |
50810684 UW |
2643 | move_bits (buffer, value_bitpos (toval), |
2644 | value_contents (fromval), 0, bits, 0); | |
972daa01 | 2645 | write_memory_with_notification (to_addr, buffer, len); |
8cebebb9 | 2646 | |
14f9c5c9 | 2647 | val = value_copy (toval); |
0fd88904 | 2648 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2649 | TYPE_LENGTH (type)); |
04624583 | 2650 | deprecated_set_value_type (val, type); |
d2e4a39e | 2651 | |
14f9c5c9 AS |
2652 | return val; |
2653 | } | |
2654 | ||
2655 | return value_assign (toval, fromval); | |
2656 | } | |
2657 | ||
2658 | ||
52ce6436 PH |
2659 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2660 | * CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2661 | * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2662 | * COMPONENT, and not the inferior's memory. The current contents | |
2663 | * of COMPONENT are ignored. */ | |
2664 | static void | |
2665 | value_assign_to_component (struct value *container, struct value *component, | |
2666 | struct value *val) | |
2667 | { | |
2668 | LONGEST offset_in_container = | |
42ae5230 | 2669 | (LONGEST) (value_address (component) - value_address (container)); |
52ce6436 PH |
2670 | int bit_offset_in_container = |
2671 | value_bitpos (component) - value_bitpos (container); | |
2672 | int bits; | |
2673 | ||
2674 | val = value_cast (value_type (component), val); | |
2675 | ||
2676 | if (value_bitsize (component) == 0) | |
2677 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2678 | else | |
2679 | bits = value_bitsize (component); | |
2680 | ||
50810684 | 2681 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
52ce6436 PH |
2682 | move_bits (value_contents_writeable (container) + offset_in_container, |
2683 | value_bitpos (container) + bit_offset_in_container, | |
2684 | value_contents (val), | |
2685 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
50810684 | 2686 | bits, 1); |
52ce6436 PH |
2687 | else |
2688 | move_bits (value_contents_writeable (container) + offset_in_container, | |
2689 | value_bitpos (container) + bit_offset_in_container, | |
50810684 | 2690 | value_contents (val), 0, bits, 0); |
52ce6436 PH |
2691 | } |
2692 | ||
4c4b4cd2 PH |
2693 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2694 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2695 | thereto. */ |
2696 | ||
d2e4a39e AS |
2697 | struct value * |
2698 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2699 | { |
2700 | int k; | |
d2e4a39e AS |
2701 | struct value *elt; |
2702 | struct type *elt_type; | |
14f9c5c9 AS |
2703 | |
2704 | elt = ada_coerce_to_simple_array (arr); | |
2705 | ||
df407dfe | 2706 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2707 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2708 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2709 | return value_subscript_packed (elt, arity, ind); | |
2710 | ||
2711 | for (k = 0; k < arity; k += 1) | |
2712 | { | |
2713 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2714 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2715 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2716 | } |
2717 | return elt; | |
2718 | } | |
2719 | ||
2720 | /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the | |
2721 | value of the element of *ARR at the ARITY indices given in | |
4c4b4cd2 | 2722 | IND. Does not read the entire array into memory. */ |
14f9c5c9 | 2723 | |
2c0b251b | 2724 | static struct value * |
d2e4a39e | 2725 | ada_value_ptr_subscript (struct value *arr, struct type *type, int arity, |
4c4b4cd2 | 2726 | struct value **ind) |
14f9c5c9 AS |
2727 | { |
2728 | int k; | |
2729 | ||
2730 | for (k = 0; k < arity; k += 1) | |
2731 | { | |
2732 | LONGEST lwb, upb; | |
14f9c5c9 AS |
2733 | |
2734 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2735 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2736 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2737 | value_copy (arr)); |
14f9c5c9 | 2738 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
2497b498 | 2739 | arr = value_ptradd (arr, pos_atr (ind[k]) - lwb); |
14f9c5c9 AS |
2740 | type = TYPE_TARGET_TYPE (type); |
2741 | } | |
2742 | ||
2743 | return value_ind (arr); | |
2744 | } | |
2745 | ||
0b5d8877 | 2746 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
f5938064 JG |
2747 | actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1 |
2748 | elements starting at index LOW. The lower bound of this array is LOW, as | |
0963b4bd | 2749 | per Ada rules. */ |
0b5d8877 | 2750 | static struct value * |
f5938064 JG |
2751 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2752 | int low, int high) | |
0b5d8877 | 2753 | { |
b0dd7688 | 2754 | struct type *type0 = ada_check_typedef (type); |
6c038f32 | 2755 | CORE_ADDR base = value_as_address (array_ptr) |
b0dd7688 JB |
2756 | + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0))) |
2757 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type0))); | |
0c9c3474 SA |
2758 | struct type *index_type |
2759 | = create_static_range_type (NULL, | |
2760 | TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)), | |
2761 | low, high); | |
6c038f32 | 2762 | struct type *slice_type = |
b0dd7688 | 2763 | create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type); |
5b4ee69b | 2764 | |
f5938064 | 2765 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2766 | } |
2767 | ||
2768 | ||
2769 | static struct value * | |
2770 | ada_value_slice (struct value *array, int low, int high) | |
2771 | { | |
b0dd7688 | 2772 | struct type *type = ada_check_typedef (value_type (array)); |
0c9c3474 SA |
2773 | struct type *index_type |
2774 | = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); | |
6c038f32 | 2775 | struct type *slice_type = |
0b5d8877 | 2776 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
5b4ee69b | 2777 | |
6c038f32 | 2778 | return value_cast (slice_type, value_slice (array, low, high - low + 1)); |
0b5d8877 PH |
2779 | } |
2780 | ||
14f9c5c9 AS |
2781 | /* If type is a record type in the form of a standard GNAT array |
2782 | descriptor, returns the number of dimensions for type. If arr is a | |
2783 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2784 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2785 | |
2786 | int | |
d2e4a39e | 2787 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2788 | { |
2789 | int arity; | |
2790 | ||
2791 | if (type == NULL) | |
2792 | return 0; | |
2793 | ||
2794 | type = desc_base_type (type); | |
2795 | ||
2796 | arity = 0; | |
d2e4a39e | 2797 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2798 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2799 | else |
2800 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2801 | { |
4c4b4cd2 | 2802 | arity += 1; |
61ee279c | 2803 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2804 | } |
d2e4a39e | 2805 | |
14f9c5c9 AS |
2806 | return arity; |
2807 | } | |
2808 | ||
2809 | /* If TYPE is a record type in the form of a standard GNAT array | |
2810 | descriptor or a simple array type, returns the element type for | |
2811 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2812 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2813 | |
d2e4a39e AS |
2814 | struct type * |
2815 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2816 | { |
2817 | type = desc_base_type (type); | |
2818 | ||
d2e4a39e | 2819 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2820 | { |
2821 | int k; | |
d2e4a39e | 2822 | struct type *p_array_type; |
14f9c5c9 | 2823 | |
556bdfd4 | 2824 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2825 | |
2826 | k = ada_array_arity (type); | |
2827 | if (k == 0) | |
4c4b4cd2 | 2828 | return NULL; |
d2e4a39e | 2829 | |
4c4b4cd2 | 2830 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2831 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2832 | k = nindices; |
d2e4a39e | 2833 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2834 | { |
61ee279c | 2835 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2836 | k -= 1; |
2837 | } | |
14f9c5c9 AS |
2838 | return p_array_type; |
2839 | } | |
2840 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2841 | { | |
2842 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2843 | { |
2844 | type = TYPE_TARGET_TYPE (type); | |
2845 | nindices -= 1; | |
2846 | } | |
14f9c5c9 AS |
2847 | return type; |
2848 | } | |
2849 | ||
2850 | return NULL; | |
2851 | } | |
2852 | ||
4c4b4cd2 | 2853 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
2854 | Does not examine memory. Throws an error if N is invalid or TYPE |
2855 | is not an array type. NAME is the name of the Ada attribute being | |
2856 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
2857 | the error message. */ | |
14f9c5c9 | 2858 | |
1eea4ebd UW |
2859 | static struct type * |
2860 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 2861 | { |
4c4b4cd2 PH |
2862 | struct type *result_type; |
2863 | ||
14f9c5c9 AS |
2864 | type = desc_base_type (type); |
2865 | ||
1eea4ebd UW |
2866 | if (n < 0 || n > ada_array_arity (type)) |
2867 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 2868 | |
4c4b4cd2 | 2869 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2870 | { |
2871 | int i; | |
2872 | ||
2873 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 2874 | type = TYPE_TARGET_TYPE (type); |
262452ec | 2875 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
2876 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
2877 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 2878 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
2879 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
2880 | result_type = NULL; | |
14f9c5c9 | 2881 | } |
d2e4a39e | 2882 | else |
1eea4ebd UW |
2883 | { |
2884 | result_type = desc_index_type (desc_bounds_type (type), n); | |
2885 | if (result_type == NULL) | |
2886 | error (_("attempt to take bound of something that is not an array")); | |
2887 | } | |
2888 | ||
2889 | return result_type; | |
14f9c5c9 AS |
2890 | } |
2891 | ||
2892 | /* Given that arr is an array type, returns the lower bound of the | |
2893 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 2894 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
2895 | array-descriptor type. It works for other arrays with bounds supplied |
2896 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 2897 | |
abb68b3e | 2898 | static LONGEST |
fb5e3d5c | 2899 | ada_array_bound_from_type (struct type *arr_type, int n, int which) |
14f9c5c9 | 2900 | { |
8a48ac95 | 2901 | struct type *type, *index_type_desc, *index_type; |
1ce677a4 | 2902 | int i; |
262452ec JK |
2903 | |
2904 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 2905 | |
ad82864c JB |
2906 | if (ada_is_constrained_packed_array_type (arr_type)) |
2907 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 2908 | |
4c4b4cd2 | 2909 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2910 | return (LONGEST) - which; |
14f9c5c9 AS |
2911 | |
2912 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2913 | type = TYPE_TARGET_TYPE (arr_type); | |
2914 | else | |
2915 | type = arr_type; | |
2916 | ||
2917 | index_type_desc = ada_find_parallel_type (type, "___XA"); | |
28c85d6c | 2918 | ada_fixup_array_indexes_type (index_type_desc); |
262452ec | 2919 | if (index_type_desc != NULL) |
28c85d6c JB |
2920 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
2921 | NULL); | |
262452ec | 2922 | else |
8a48ac95 JB |
2923 | { |
2924 | struct type *elt_type = check_typedef (type); | |
2925 | ||
2926 | for (i = 1; i < n; i++) | |
2927 | elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type)); | |
2928 | ||
2929 | index_type = TYPE_INDEX_TYPE (elt_type); | |
2930 | } | |
262452ec | 2931 | |
43bbcdc2 PH |
2932 | return |
2933 | (LONGEST) (which == 0 | |
2934 | ? ada_discrete_type_low_bound (index_type) | |
2935 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
2936 | } |
2937 | ||
2938 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
2939 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
2940 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 2941 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 2942 | |
1eea4ebd | 2943 | static LONGEST |
4dc81987 | 2944 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 2945 | { |
df407dfe | 2946 | struct type *arr_type = value_type (arr); |
14f9c5c9 | 2947 | |
ad82864c JB |
2948 | if (ada_is_constrained_packed_array_type (arr_type)) |
2949 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 2950 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2951 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 2952 | else |
1eea4ebd | 2953 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
2954 | } |
2955 | ||
2956 | /* Given that arr is an array value, returns the length of the | |
2957 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
2958 | supplied by run-time quantities other than discriminants. |
2959 | Does not work for arrays indexed by enumeration types with representation | |
2960 | clauses at the moment. */ | |
14f9c5c9 | 2961 | |
1eea4ebd | 2962 | static LONGEST |
d2e4a39e | 2963 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 2964 | { |
df407dfe | 2965 | struct type *arr_type = ada_check_typedef (value_type (arr)); |
14f9c5c9 | 2966 | |
ad82864c JB |
2967 | if (ada_is_constrained_packed_array_type (arr_type)) |
2968 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 2969 | |
4c4b4cd2 | 2970 | if (ada_is_simple_array_type (arr_type)) |
1eea4ebd UW |
2971 | return (ada_array_bound_from_type (arr_type, n, 1) |
2972 | - ada_array_bound_from_type (arr_type, n, 0) + 1); | |
14f9c5c9 | 2973 | else |
1eea4ebd UW |
2974 | return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1)) |
2975 | - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1); | |
4c4b4cd2 PH |
2976 | } |
2977 | ||
2978 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
2979 | with bounds LOW to LOW-1. */ | |
2980 | ||
2981 | static struct value * | |
2982 | empty_array (struct type *arr_type, int low) | |
2983 | { | |
b0dd7688 | 2984 | struct type *arr_type0 = ada_check_typedef (arr_type); |
0c9c3474 SA |
2985 | struct type *index_type |
2986 | = create_static_range_type | |
2987 | (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1); | |
b0dd7688 | 2988 | struct type *elt_type = ada_array_element_type (arr_type0, 1); |
5b4ee69b | 2989 | |
0b5d8877 | 2990 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 2991 | } |
14f9c5c9 | 2992 | \f |
d2e4a39e | 2993 | |
4c4b4cd2 | 2994 | /* Name resolution */ |
14f9c5c9 | 2995 | |
4c4b4cd2 PH |
2996 | /* The "decoded" name for the user-definable Ada operator corresponding |
2997 | to OP. */ | |
14f9c5c9 | 2998 | |
d2e4a39e | 2999 | static const char * |
4c4b4cd2 | 3000 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
3001 | { |
3002 | int i; | |
3003 | ||
4c4b4cd2 | 3004 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
3005 | { |
3006 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 3007 | return ada_opname_table[i].decoded; |
14f9c5c9 | 3008 | } |
323e0a4a | 3009 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
3010 | } |
3011 | ||
3012 | ||
4c4b4cd2 PH |
3013 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
3014 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
3015 | undefined namespace) and converts operators that are | |
3016 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
3017 | non-null, it provides a preferred result type [at the moment, only |
3018 | type void has any effect---causing procedures to be preferred over | |
3019 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 3020 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 3021 | |
4c4b4cd2 PH |
3022 | static void |
3023 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 | 3024 | { |
30b15541 UW |
3025 | struct type *context_type = NULL; |
3026 | int pc = 0; | |
3027 | ||
3028 | if (void_context_p) | |
3029 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
3030 | ||
3031 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
3032 | } |
3033 | ||
4c4b4cd2 PH |
3034 | /* Resolve the operator of the subexpression beginning at |
3035 | position *POS of *EXPP. "Resolving" consists of replacing | |
3036 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
3037 | with their resolutions, replacing built-in operators with | |
3038 | function calls to user-defined operators, where appropriate, and, | |
3039 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
3040 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
3041 | are as in ada_resolve, above. */ | |
14f9c5c9 | 3042 | |
d2e4a39e | 3043 | static struct value * |
4c4b4cd2 | 3044 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 3045 | struct type *context_type) |
14f9c5c9 AS |
3046 | { |
3047 | int pc = *pos; | |
3048 | int i; | |
4c4b4cd2 | 3049 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 3050 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
3051 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
3052 | int nargs; /* Number of operands. */ | |
52ce6436 | 3053 | int oplen; |
14f9c5c9 AS |
3054 | |
3055 | argvec = NULL; | |
3056 | nargs = 0; | |
3057 | exp = *expp; | |
3058 | ||
52ce6436 PH |
3059 | /* Pass one: resolve operands, saving their types and updating *pos, |
3060 | if needed. */ | |
14f9c5c9 AS |
3061 | switch (op) |
3062 | { | |
4c4b4cd2 PH |
3063 | case OP_FUNCALL: |
3064 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
3065 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
3066 | *pos += 7; | |
4c4b4cd2 PH |
3067 | else |
3068 | { | |
3069 | *pos += 3; | |
3070 | resolve_subexp (expp, pos, 0, NULL); | |
3071 | } | |
3072 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
3073 | break; |
3074 | ||
14f9c5c9 | 3075 | case UNOP_ADDR: |
4c4b4cd2 PH |
3076 | *pos += 1; |
3077 | resolve_subexp (expp, pos, 0, NULL); | |
3078 | break; | |
3079 | ||
52ce6436 PH |
3080 | case UNOP_QUAL: |
3081 | *pos += 3; | |
17466c1a | 3082 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
3083 | break; |
3084 | ||
52ce6436 | 3085 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
3086 | case OP_ATR_SIZE: |
3087 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
3088 | case OP_ATR_FIRST: |
3089 | case OP_ATR_LAST: | |
3090 | case OP_ATR_LENGTH: | |
3091 | case OP_ATR_POS: | |
3092 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
3093 | case OP_ATR_MIN: |
3094 | case OP_ATR_MAX: | |
52ce6436 PH |
3095 | case TERNOP_IN_RANGE: |
3096 | case BINOP_IN_BOUNDS: | |
3097 | case UNOP_IN_RANGE: | |
3098 | case OP_AGGREGATE: | |
3099 | case OP_OTHERS: | |
3100 | case OP_CHOICES: | |
3101 | case OP_POSITIONAL: | |
3102 | case OP_DISCRETE_RANGE: | |
3103 | case OP_NAME: | |
3104 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
3105 | *pos += oplen; | |
14f9c5c9 AS |
3106 | break; |
3107 | ||
3108 | case BINOP_ASSIGN: | |
3109 | { | |
4c4b4cd2 PH |
3110 | struct value *arg1; |
3111 | ||
3112 | *pos += 1; | |
3113 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
3114 | if (arg1 == NULL) | |
3115 | resolve_subexp (expp, pos, 1, NULL); | |
3116 | else | |
df407dfe | 3117 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 3118 | break; |
14f9c5c9 AS |
3119 | } |
3120 | ||
4c4b4cd2 | 3121 | case UNOP_CAST: |
4c4b4cd2 PH |
3122 | *pos += 3; |
3123 | nargs = 1; | |
3124 | break; | |
14f9c5c9 | 3125 | |
4c4b4cd2 PH |
3126 | case BINOP_ADD: |
3127 | case BINOP_SUB: | |
3128 | case BINOP_MUL: | |
3129 | case BINOP_DIV: | |
3130 | case BINOP_REM: | |
3131 | case BINOP_MOD: | |
3132 | case BINOP_EXP: | |
3133 | case BINOP_CONCAT: | |
3134 | case BINOP_LOGICAL_AND: | |
3135 | case BINOP_LOGICAL_OR: | |
3136 | case BINOP_BITWISE_AND: | |
3137 | case BINOP_BITWISE_IOR: | |
3138 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 3139 | |
4c4b4cd2 PH |
3140 | case BINOP_EQUAL: |
3141 | case BINOP_NOTEQUAL: | |
3142 | case BINOP_LESS: | |
3143 | case BINOP_GTR: | |
3144 | case BINOP_LEQ: | |
3145 | case BINOP_GEQ: | |
14f9c5c9 | 3146 | |
4c4b4cd2 PH |
3147 | case BINOP_REPEAT: |
3148 | case BINOP_SUBSCRIPT: | |
3149 | case BINOP_COMMA: | |
40c8aaa9 JB |
3150 | *pos += 1; |
3151 | nargs = 2; | |
3152 | break; | |
14f9c5c9 | 3153 | |
4c4b4cd2 PH |
3154 | case UNOP_NEG: |
3155 | case UNOP_PLUS: | |
3156 | case UNOP_LOGICAL_NOT: | |
3157 | case UNOP_ABS: | |
3158 | case UNOP_IND: | |
3159 | *pos += 1; | |
3160 | nargs = 1; | |
3161 | break; | |
14f9c5c9 | 3162 | |
4c4b4cd2 PH |
3163 | case OP_LONG: |
3164 | case OP_DOUBLE: | |
3165 | case OP_VAR_VALUE: | |
3166 | *pos += 4; | |
3167 | break; | |
14f9c5c9 | 3168 | |
4c4b4cd2 PH |
3169 | case OP_TYPE: |
3170 | case OP_BOOL: | |
3171 | case OP_LAST: | |
4c4b4cd2 PH |
3172 | case OP_INTERNALVAR: |
3173 | *pos += 3; | |
3174 | break; | |
14f9c5c9 | 3175 | |
4c4b4cd2 PH |
3176 | case UNOP_MEMVAL: |
3177 | *pos += 3; | |
3178 | nargs = 1; | |
3179 | break; | |
3180 | ||
67f3407f DJ |
3181 | case OP_REGISTER: |
3182 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3183 | break; | |
3184 | ||
4c4b4cd2 PH |
3185 | case STRUCTOP_STRUCT: |
3186 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3187 | nargs = 1; | |
3188 | break; | |
3189 | ||
4c4b4cd2 | 3190 | case TERNOP_SLICE: |
4c4b4cd2 PH |
3191 | *pos += 1; |
3192 | nargs = 3; | |
3193 | break; | |
3194 | ||
52ce6436 | 3195 | case OP_STRING: |
14f9c5c9 | 3196 | break; |
4c4b4cd2 PH |
3197 | |
3198 | default: | |
323e0a4a | 3199 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
3200 | } |
3201 | ||
76a01679 | 3202 | argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); |
4c4b4cd2 PH |
3203 | for (i = 0; i < nargs; i += 1) |
3204 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
3205 | argvec[i] = NULL; | |
3206 | exp = *expp; | |
3207 | ||
3208 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
3209 | switch (op) |
3210 | { | |
3211 | default: | |
3212 | break; | |
3213 | ||
14f9c5c9 | 3214 | case OP_VAR_VALUE: |
4c4b4cd2 | 3215 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 JB |
3216 | { |
3217 | struct ada_symbol_info *candidates; | |
3218 | int n_candidates; | |
3219 | ||
3220 | n_candidates = | |
3221 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
3222 | (exp->elts[pc + 2].symbol), | |
3223 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
4eeaa230 | 3224 | &candidates); |
76a01679 JB |
3225 | |
3226 | if (n_candidates > 1) | |
3227 | { | |
3228 | /* Types tend to get re-introduced locally, so if there | |
3229 | are any local symbols that are not types, first filter | |
3230 | out all types. */ | |
3231 | int j; | |
3232 | for (j = 0; j < n_candidates; j += 1) | |
3233 | switch (SYMBOL_CLASS (candidates[j].sym)) | |
3234 | { | |
3235 | case LOC_REGISTER: | |
3236 | case LOC_ARG: | |
3237 | case LOC_REF_ARG: | |
76a01679 JB |
3238 | case LOC_REGPARM_ADDR: |
3239 | case LOC_LOCAL: | |
76a01679 | 3240 | case LOC_COMPUTED: |
76a01679 JB |
3241 | goto FoundNonType; |
3242 | default: | |
3243 | break; | |
3244 | } | |
3245 | FoundNonType: | |
3246 | if (j < n_candidates) | |
3247 | { | |
3248 | j = 0; | |
3249 | while (j < n_candidates) | |
3250 | { | |
3251 | if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) | |
3252 | { | |
3253 | candidates[j] = candidates[n_candidates - 1]; | |
3254 | n_candidates -= 1; | |
3255 | } | |
3256 | else | |
3257 | j += 1; | |
3258 | } | |
3259 | } | |
3260 | } | |
3261 | ||
3262 | if (n_candidates == 0) | |
323e0a4a | 3263 | error (_("No definition found for %s"), |
76a01679 JB |
3264 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3265 | else if (n_candidates == 1) | |
3266 | i = 0; | |
3267 | else if (deprocedure_p | |
3268 | && !is_nonfunction (candidates, n_candidates)) | |
3269 | { | |
06d5cf63 JB |
3270 | i = ada_resolve_function |
3271 | (candidates, n_candidates, NULL, 0, | |
3272 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
3273 | context_type); | |
76a01679 | 3274 | if (i < 0) |
323e0a4a | 3275 | error (_("Could not find a match for %s"), |
76a01679 JB |
3276 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3277 | } | |
3278 | else | |
3279 | { | |
323e0a4a | 3280 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
3281 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3282 | user_select_syms (candidates, n_candidates, 1); | |
3283 | i = 0; | |
3284 | } | |
3285 | ||
3286 | exp->elts[pc + 1].block = candidates[i].block; | |
3287 | exp->elts[pc + 2].symbol = candidates[i].sym; | |
1265e4aa JB |
3288 | if (innermost_block == NULL |
3289 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
3290 | innermost_block = candidates[i].block; |
3291 | } | |
3292 | ||
3293 | if (deprocedure_p | |
3294 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3295 | == TYPE_CODE_FUNC)) | |
3296 | { | |
3297 | replace_operator_with_call (expp, pc, 0, 0, | |
3298 | exp->elts[pc + 2].symbol, | |
3299 | exp->elts[pc + 1].block); | |
3300 | exp = *expp; | |
3301 | } | |
14f9c5c9 AS |
3302 | break; |
3303 | ||
3304 | case OP_FUNCALL: | |
3305 | { | |
4c4b4cd2 | 3306 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 3307 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 PH |
3308 | { |
3309 | struct ada_symbol_info *candidates; | |
3310 | int n_candidates; | |
3311 | ||
3312 | n_candidates = | |
76a01679 JB |
3313 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
3314 | (exp->elts[pc + 5].symbol), | |
3315 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
4eeaa230 | 3316 | &candidates); |
4c4b4cd2 PH |
3317 | if (n_candidates == 1) |
3318 | i = 0; | |
3319 | else | |
3320 | { | |
06d5cf63 JB |
3321 | i = ada_resolve_function |
3322 | (candidates, n_candidates, | |
3323 | argvec, nargs, | |
3324 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
3325 | context_type); | |
4c4b4cd2 | 3326 | if (i < 0) |
323e0a4a | 3327 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
3328 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
3329 | } | |
3330 | ||
3331 | exp->elts[pc + 4].block = candidates[i].block; | |
3332 | exp->elts[pc + 5].symbol = candidates[i].sym; | |
1265e4aa JB |
3333 | if (innermost_block == NULL |
3334 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
3335 | innermost_block = candidates[i].block; |
3336 | } | |
14f9c5c9 AS |
3337 | } |
3338 | break; | |
3339 | case BINOP_ADD: | |
3340 | case BINOP_SUB: | |
3341 | case BINOP_MUL: | |
3342 | case BINOP_DIV: | |
3343 | case BINOP_REM: | |
3344 | case BINOP_MOD: | |
3345 | case BINOP_CONCAT: | |
3346 | case BINOP_BITWISE_AND: | |
3347 | case BINOP_BITWISE_IOR: | |
3348 | case BINOP_BITWISE_XOR: | |
3349 | case BINOP_EQUAL: | |
3350 | case BINOP_NOTEQUAL: | |
3351 | case BINOP_LESS: | |
3352 | case BINOP_GTR: | |
3353 | case BINOP_LEQ: | |
3354 | case BINOP_GEQ: | |
3355 | case BINOP_EXP: | |
3356 | case UNOP_NEG: | |
3357 | case UNOP_PLUS: | |
3358 | case UNOP_LOGICAL_NOT: | |
3359 | case UNOP_ABS: | |
3360 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 PH |
3361 | { |
3362 | struct ada_symbol_info *candidates; | |
3363 | int n_candidates; | |
3364 | ||
3365 | n_candidates = | |
3366 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
3367 | (struct block *) NULL, VAR_DOMAIN, | |
4eeaa230 | 3368 | &candidates); |
4c4b4cd2 | 3369 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, |
76a01679 | 3370 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3371 | if (i < 0) |
3372 | break; | |
3373 | ||
76a01679 JB |
3374 | replace_operator_with_call (expp, pc, nargs, 1, |
3375 | candidates[i].sym, candidates[i].block); | |
4c4b4cd2 PH |
3376 | exp = *expp; |
3377 | } | |
14f9c5c9 | 3378 | break; |
4c4b4cd2 PH |
3379 | |
3380 | case OP_TYPE: | |
b3dbf008 | 3381 | case OP_REGISTER: |
4c4b4cd2 | 3382 | return NULL; |
14f9c5c9 AS |
3383 | } |
3384 | ||
3385 | *pos = pc; | |
3386 | return evaluate_subexp_type (exp, pos); | |
3387 | } | |
3388 | ||
3389 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3390 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3391 | a non-pointer. */ |
14f9c5c9 | 3392 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3393 | liberal. */ |
14f9c5c9 AS |
3394 | |
3395 | static int | |
4dc81987 | 3396 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3397 | { |
61ee279c PH |
3398 | ftype = ada_check_typedef (ftype); |
3399 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3400 | |
3401 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3402 | ftype = TYPE_TARGET_TYPE (ftype); | |
3403 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3404 | atype = TYPE_TARGET_TYPE (atype); | |
3405 | ||
d2e4a39e | 3406 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3407 | { |
3408 | default: | |
5b3d5b7d | 3409 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3410 | case TYPE_CODE_PTR: |
3411 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3412 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3413 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3414 | else |
1265e4aa JB |
3415 | return (may_deref |
3416 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3417 | case TYPE_CODE_INT: |
3418 | case TYPE_CODE_ENUM: | |
3419 | case TYPE_CODE_RANGE: | |
3420 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3421 | { |
3422 | case TYPE_CODE_INT: | |
3423 | case TYPE_CODE_ENUM: | |
3424 | case TYPE_CODE_RANGE: | |
3425 | return 1; | |
3426 | default: | |
3427 | return 0; | |
3428 | } | |
14f9c5c9 AS |
3429 | |
3430 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3431 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3432 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3433 | |
3434 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3435 | if (ada_is_array_descriptor_type (ftype)) |
3436 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3437 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3438 | else |
4c4b4cd2 PH |
3439 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3440 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3441 | |
3442 | case TYPE_CODE_UNION: | |
3443 | case TYPE_CODE_FLT: | |
3444 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3445 | } | |
3446 | } | |
3447 | ||
3448 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3449 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3450 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3451 | argument function. */ |
14f9c5c9 AS |
3452 | |
3453 | static int | |
d2e4a39e | 3454 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3455 | { |
3456 | int i; | |
d2e4a39e | 3457 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3458 | |
1265e4aa JB |
3459 | if (SYMBOL_CLASS (func) == LOC_CONST |
3460 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3461 | return (n_actuals == 0); |
3462 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3463 | return 0; | |
3464 | ||
3465 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3466 | return 0; | |
3467 | ||
3468 | for (i = 0; i < n_actuals; i += 1) | |
3469 | { | |
4c4b4cd2 | 3470 | if (actuals[i] == NULL) |
76a01679 JB |
3471 | return 0; |
3472 | else | |
3473 | { | |
5b4ee69b MS |
3474 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, |
3475 | i)); | |
df407dfe | 3476 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3477 | |
76a01679 JB |
3478 | if (!ada_type_match (ftype, atype, 1)) |
3479 | return 0; | |
3480 | } | |
14f9c5c9 AS |
3481 | } |
3482 | return 1; | |
3483 | } | |
3484 | ||
3485 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3486 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3487 | FUNC_TYPE is not a valid function type with a non-null return type | |
3488 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3489 | ||
3490 | static int | |
d2e4a39e | 3491 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3492 | { |
d2e4a39e | 3493 | struct type *return_type; |
14f9c5c9 AS |
3494 | |
3495 | if (func_type == NULL) | |
3496 | return 1; | |
3497 | ||
4c4b4cd2 | 3498 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
18af8284 | 3499 | return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); |
4c4b4cd2 | 3500 | else |
18af8284 | 3501 | return_type = get_base_type (func_type); |
14f9c5c9 AS |
3502 | if (return_type == NULL) |
3503 | return 1; | |
3504 | ||
18af8284 | 3505 | context_type = get_base_type (context_type); |
14f9c5c9 AS |
3506 | |
3507 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3508 | return context_type == NULL || return_type == context_type; | |
3509 | else if (context_type == NULL) | |
3510 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3511 | else | |
3512 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3513 | } | |
3514 | ||
3515 | ||
4c4b4cd2 | 3516 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3517 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3518 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3519 | that returns that type, then eliminate matches that don't. If | |
3520 | CONTEXT_TYPE is void and there is at least one match that does not | |
3521 | return void, eliminate all matches that do. | |
3522 | ||
14f9c5c9 AS |
3523 | Asks the user if there is more than one match remaining. Returns -1 |
3524 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3525 | solely for messages. May re-arrange and modify SYMS in |
3526 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3527 | |
4c4b4cd2 PH |
3528 | static int |
3529 | ada_resolve_function (struct ada_symbol_info syms[], | |
3530 | int nsyms, struct value **args, int nargs, | |
3531 | const char *name, struct type *context_type) | |
14f9c5c9 | 3532 | { |
30b15541 | 3533 | int fallback; |
14f9c5c9 | 3534 | int k; |
4c4b4cd2 | 3535 | int m; /* Number of hits */ |
14f9c5c9 | 3536 | |
d2e4a39e | 3537 | m = 0; |
30b15541 UW |
3538 | /* In the first pass of the loop, we only accept functions matching |
3539 | context_type. If none are found, we add a second pass of the loop | |
3540 | where every function is accepted. */ | |
3541 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3542 | { |
3543 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3544 | { |
61ee279c | 3545 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); |
4c4b4cd2 PH |
3546 | |
3547 | if (ada_args_match (syms[k].sym, args, nargs) | |
30b15541 | 3548 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3549 | { |
3550 | syms[m] = syms[k]; | |
3551 | m += 1; | |
3552 | } | |
3553 | } | |
14f9c5c9 AS |
3554 | } |
3555 | ||
3556 | if (m == 0) | |
3557 | return -1; | |
3558 | else if (m > 1) | |
3559 | { | |
323e0a4a | 3560 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3561 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3562 | return 0; |
3563 | } | |
3564 | return 0; | |
3565 | } | |
3566 | ||
4c4b4cd2 PH |
3567 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3568 | in a listing of choices during disambiguation (see sort_choices, below). | |
3569 | The idea is that overloadings of a subprogram name from the | |
3570 | same package should sort in their source order. We settle for ordering | |
3571 | such symbols by their trailing number (__N or $N). */ | |
3572 | ||
14f9c5c9 | 3573 | static int |
0d5cff50 | 3574 | encoded_ordered_before (const char *N0, const char *N1) |
14f9c5c9 AS |
3575 | { |
3576 | if (N1 == NULL) | |
3577 | return 0; | |
3578 | else if (N0 == NULL) | |
3579 | return 1; | |
3580 | else | |
3581 | { | |
3582 | int k0, k1; | |
5b4ee69b | 3583 | |
d2e4a39e | 3584 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3585 | ; |
d2e4a39e | 3586 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3587 | ; |
d2e4a39e | 3588 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3589 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3590 | { | |
3591 | int n0, n1; | |
5b4ee69b | 3592 | |
4c4b4cd2 PH |
3593 | n0 = k0; |
3594 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3595 | n0 -= 1; | |
3596 | n1 = k1; | |
3597 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3598 | n1 -= 1; | |
3599 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3600 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3601 | } | |
14f9c5c9 AS |
3602 | return (strcmp (N0, N1) < 0); |
3603 | } | |
3604 | } | |
d2e4a39e | 3605 | |
4c4b4cd2 PH |
3606 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3607 | encoded names. */ | |
3608 | ||
d2e4a39e | 3609 | static void |
4c4b4cd2 | 3610 | sort_choices (struct ada_symbol_info syms[], int nsyms) |
14f9c5c9 | 3611 | { |
4c4b4cd2 | 3612 | int i; |
5b4ee69b | 3613 | |
d2e4a39e | 3614 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3615 | { |
4c4b4cd2 | 3616 | struct ada_symbol_info sym = syms[i]; |
14f9c5c9 AS |
3617 | int j; |
3618 | ||
d2e4a39e | 3619 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 PH |
3620 | { |
3621 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), | |
3622 | SYMBOL_LINKAGE_NAME (sym.sym))) | |
3623 | break; | |
3624 | syms[j + 1] = syms[j]; | |
3625 | } | |
d2e4a39e | 3626 | syms[j + 1] = sym; |
14f9c5c9 AS |
3627 | } |
3628 | } | |
3629 | ||
4c4b4cd2 PH |
3630 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3631 | by asking the user (if necessary), returning the number selected, | |
3632 | and setting the first elements of SYMS items. Error if no symbols | |
3633 | selected. */ | |
14f9c5c9 AS |
3634 | |
3635 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3636 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3637 | |
3638 | int | |
4c4b4cd2 | 3639 | user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3640 | { |
3641 | int i; | |
d2e4a39e | 3642 | int *chosen = (int *) alloca (sizeof (int) * nsyms); |
14f9c5c9 AS |
3643 | int n_chosen; |
3644 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3645 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3646 | |
3647 | if (max_results < 1) | |
323e0a4a | 3648 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3649 | if (nsyms <= 1) |
3650 | return nsyms; | |
3651 | ||
717d2f5a JB |
3652 | if (select_mode == multiple_symbols_cancel) |
3653 | error (_("\ | |
3654 | canceled because the command is ambiguous\n\ | |
3655 | See set/show multiple-symbol.")); | |
3656 | ||
3657 | /* If select_mode is "all", then return all possible symbols. | |
3658 | Only do that if more than one symbol can be selected, of course. | |
3659 | Otherwise, display the menu as usual. */ | |
3660 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3661 | return nsyms; | |
3662 | ||
323e0a4a | 3663 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3664 | if (max_results > 1) |
323e0a4a | 3665 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3666 | |
4c4b4cd2 | 3667 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3668 | |
3669 | for (i = 0; i < nsyms; i += 1) | |
3670 | { | |
4c4b4cd2 PH |
3671 | if (syms[i].sym == NULL) |
3672 | continue; | |
3673 | ||
3674 | if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) | |
3675 | { | |
76a01679 JB |
3676 | struct symtab_and_line sal = |
3677 | find_function_start_sal (syms[i].sym, 1); | |
5b4ee69b | 3678 | |
323e0a4a AC |
3679 | if (sal.symtab == NULL) |
3680 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3681 | i + first_choice, | |
3682 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3683 | sal.line); | |
3684 | else | |
3685 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
3686 | SYMBOL_PRINT_NAME (syms[i].sym), | |
05cba821 JK |
3687 | symtab_to_filename_for_display (sal.symtab), |
3688 | sal.line); | |
4c4b4cd2 PH |
3689 | continue; |
3690 | } | |
d2e4a39e | 3691 | else |
4c4b4cd2 PH |
3692 | { |
3693 | int is_enumeral = | |
3694 | (SYMBOL_CLASS (syms[i].sym) == LOC_CONST | |
3695 | && SYMBOL_TYPE (syms[i].sym) != NULL | |
3696 | && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); | |
210bbc17 | 3697 | struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym); |
4c4b4cd2 PH |
3698 | |
3699 | if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) | |
323e0a4a | 3700 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 PH |
3701 | i + first_choice, |
3702 | SYMBOL_PRINT_NAME (syms[i].sym), | |
05cba821 JK |
3703 | symtab_to_filename_for_display (symtab), |
3704 | SYMBOL_LINE (syms[i].sym)); | |
76a01679 JB |
3705 | else if (is_enumeral |
3706 | && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) | |
4c4b4cd2 | 3707 | { |
a3f17187 | 3708 | printf_unfiltered (("[%d] "), i + first_choice); |
76a01679 | 3709 | ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, |
79d43c61 | 3710 | gdb_stdout, -1, 0, &type_print_raw_options); |
323e0a4a | 3711 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
4c4b4cd2 PH |
3712 | SYMBOL_PRINT_NAME (syms[i].sym)); |
3713 | } | |
3714 | else if (symtab != NULL) | |
3715 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3716 | ? _("[%d] %s in %s (enumeral)\n") |
3717 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 PH |
3718 | i + first_choice, |
3719 | SYMBOL_PRINT_NAME (syms[i].sym), | |
05cba821 | 3720 | symtab_to_filename_for_display (symtab)); |
4c4b4cd2 PH |
3721 | else |
3722 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3723 | ? _("[%d] %s (enumeral)\n") |
3724 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 PH |
3725 | i + first_choice, |
3726 | SYMBOL_PRINT_NAME (syms[i].sym)); | |
3727 | } | |
14f9c5c9 | 3728 | } |
d2e4a39e | 3729 | |
14f9c5c9 | 3730 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3731 | "overload-choice"); |
14f9c5c9 AS |
3732 | |
3733 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3734 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3735 | |
3736 | return n_chosen; | |
3737 | } | |
3738 | ||
3739 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3740 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3741 | order in CHOICES[0 .. N-1], and return N. |
3742 | ||
3743 | The user types choices as a sequence of numbers on one line | |
3744 | separated by blanks, encoding them as follows: | |
3745 | ||
4c4b4cd2 | 3746 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3747 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3748 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3749 | ||
4c4b4cd2 | 3750 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3751 | |
3752 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3753 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3754 | |
3755 | int | |
d2e4a39e | 3756 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3757 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3758 | { |
d2e4a39e | 3759 | char *args; |
0bcd0149 | 3760 | char *prompt; |
14f9c5c9 AS |
3761 | int n_chosen; |
3762 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3763 | |
14f9c5c9 AS |
3764 | prompt = getenv ("PS2"); |
3765 | if (prompt == NULL) | |
0bcd0149 | 3766 | prompt = "> "; |
14f9c5c9 | 3767 | |
0bcd0149 | 3768 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3769 | |
14f9c5c9 | 3770 | if (args == NULL) |
323e0a4a | 3771 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3772 | |
3773 | n_chosen = 0; | |
76a01679 | 3774 | |
4c4b4cd2 PH |
3775 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3776 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3777 | while (1) |
3778 | { | |
d2e4a39e | 3779 | char *args2; |
14f9c5c9 AS |
3780 | int choice, j; |
3781 | ||
0fcd72ba | 3782 | args = skip_spaces (args); |
14f9c5c9 | 3783 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3784 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3785 | else if (*args == '\0') |
4c4b4cd2 | 3786 | break; |
14f9c5c9 AS |
3787 | |
3788 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3789 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3790 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3791 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3792 | args = args2; |
3793 | ||
d2e4a39e | 3794 | if (choice == 0) |
323e0a4a | 3795 | error (_("cancelled")); |
14f9c5c9 AS |
3796 | |
3797 | if (choice < first_choice) | |
4c4b4cd2 PH |
3798 | { |
3799 | n_chosen = n_choices; | |
3800 | for (j = 0; j < n_choices; j += 1) | |
3801 | choices[j] = j; | |
3802 | break; | |
3803 | } | |
14f9c5c9 AS |
3804 | choice -= first_choice; |
3805 | ||
d2e4a39e | 3806 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3807 | { |
3808 | } | |
14f9c5c9 AS |
3809 | |
3810 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3811 | { |
3812 | int k; | |
5b4ee69b | 3813 | |
4c4b4cd2 PH |
3814 | for (k = n_chosen - 1; k > j; k -= 1) |
3815 | choices[k + 1] = choices[k]; | |
3816 | choices[j + 1] = choice; | |
3817 | n_chosen += 1; | |
3818 | } | |
14f9c5c9 AS |
3819 | } |
3820 | ||
3821 | if (n_chosen > max_results) | |
323e0a4a | 3822 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3823 | |
14f9c5c9 AS |
3824 | return n_chosen; |
3825 | } | |
3826 | ||
4c4b4cd2 PH |
3827 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3828 | on the function identified by SYM and BLOCK, and taking NARGS | |
3829 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3830 | |
3831 | static void | |
d2e4a39e | 3832 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 | 3833 | int oplen, struct symbol *sym, |
270140bd | 3834 | const struct block *block) |
14f9c5c9 AS |
3835 | { |
3836 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3837 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3838 | struct expression *newexp = (struct expression *) |
8c1a34e7 | 3839 | xzalloc (sizeof (struct expression) |
4c4b4cd2 | 3840 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3841 | struct expression *exp = *expp; |
14f9c5c9 AS |
3842 | |
3843 | newexp->nelts = exp->nelts + 7 - oplen; | |
3844 | newexp->language_defn = exp->language_defn; | |
3489610d | 3845 | newexp->gdbarch = exp->gdbarch; |
14f9c5c9 | 3846 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); |
d2e4a39e | 3847 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3848 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3849 | |
3850 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3851 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3852 | ||
3853 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3854 | newexp->elts[pc + 4].block = block; | |
3855 | newexp->elts[pc + 5].symbol = sym; | |
3856 | ||
3857 | *expp = newexp; | |
aacb1f0a | 3858 | xfree (exp); |
d2e4a39e | 3859 | } |
14f9c5c9 AS |
3860 | |
3861 | /* Type-class predicates */ | |
3862 | ||
4c4b4cd2 PH |
3863 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3864 | or FLOAT). */ | |
14f9c5c9 AS |
3865 | |
3866 | static int | |
d2e4a39e | 3867 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3868 | { |
3869 | if (type == NULL) | |
3870 | return 0; | |
d2e4a39e AS |
3871 | else |
3872 | { | |
3873 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3874 | { |
3875 | case TYPE_CODE_INT: | |
3876 | case TYPE_CODE_FLT: | |
3877 | return 1; | |
3878 | case TYPE_CODE_RANGE: | |
3879 | return (type == TYPE_TARGET_TYPE (type) | |
3880 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3881 | default: | |
3882 | return 0; | |
3883 | } | |
d2e4a39e | 3884 | } |
14f9c5c9 AS |
3885 | } |
3886 | ||
4c4b4cd2 | 3887 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3888 | |
3889 | static int | |
d2e4a39e | 3890 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3891 | { |
3892 | if (type == NULL) | |
3893 | return 0; | |
d2e4a39e AS |
3894 | else |
3895 | { | |
3896 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3897 | { |
3898 | case TYPE_CODE_INT: | |
3899 | return 1; | |
3900 | case TYPE_CODE_RANGE: | |
3901 | return (type == TYPE_TARGET_TYPE (type) | |
3902 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
3903 | default: | |
3904 | return 0; | |
3905 | } | |
d2e4a39e | 3906 | } |
14f9c5c9 AS |
3907 | } |
3908 | ||
4c4b4cd2 | 3909 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
3910 | |
3911 | static int | |
d2e4a39e | 3912 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
3913 | { |
3914 | if (type == NULL) | |
3915 | return 0; | |
d2e4a39e AS |
3916 | else |
3917 | { | |
3918 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3919 | { |
3920 | case TYPE_CODE_INT: | |
3921 | case TYPE_CODE_RANGE: | |
3922 | case TYPE_CODE_ENUM: | |
3923 | case TYPE_CODE_FLT: | |
3924 | return 1; | |
3925 | default: | |
3926 | return 0; | |
3927 | } | |
d2e4a39e | 3928 | } |
14f9c5c9 AS |
3929 | } |
3930 | ||
4c4b4cd2 | 3931 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
3932 | |
3933 | static int | |
d2e4a39e | 3934 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
3935 | { |
3936 | if (type == NULL) | |
3937 | return 0; | |
d2e4a39e AS |
3938 | else |
3939 | { | |
3940 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3941 | { |
3942 | case TYPE_CODE_INT: | |
3943 | case TYPE_CODE_RANGE: | |
3944 | case TYPE_CODE_ENUM: | |
872f0337 | 3945 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
3946 | return 1; |
3947 | default: | |
3948 | return 0; | |
3949 | } | |
d2e4a39e | 3950 | } |
14f9c5c9 AS |
3951 | } |
3952 | ||
4c4b4cd2 PH |
3953 | /* Returns non-zero if OP with operands in the vector ARGS could be |
3954 | a user-defined function. Errs on the side of pre-defined operators | |
3955 | (i.e., result 0). */ | |
14f9c5c9 AS |
3956 | |
3957 | static int | |
d2e4a39e | 3958 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 3959 | { |
76a01679 | 3960 | struct type *type0 = |
df407dfe | 3961 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 3962 | struct type *type1 = |
df407dfe | 3963 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 3964 | |
4c4b4cd2 PH |
3965 | if (type0 == NULL) |
3966 | return 0; | |
3967 | ||
14f9c5c9 AS |
3968 | switch (op) |
3969 | { | |
3970 | default: | |
3971 | return 0; | |
3972 | ||
3973 | case BINOP_ADD: | |
3974 | case BINOP_SUB: | |
3975 | case BINOP_MUL: | |
3976 | case BINOP_DIV: | |
d2e4a39e | 3977 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
3978 | |
3979 | case BINOP_REM: | |
3980 | case BINOP_MOD: | |
3981 | case BINOP_BITWISE_AND: | |
3982 | case BINOP_BITWISE_IOR: | |
3983 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 3984 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3985 | |
3986 | case BINOP_EQUAL: | |
3987 | case BINOP_NOTEQUAL: | |
3988 | case BINOP_LESS: | |
3989 | case BINOP_GTR: | |
3990 | case BINOP_LEQ: | |
3991 | case BINOP_GEQ: | |
d2e4a39e | 3992 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
3993 | |
3994 | case BINOP_CONCAT: | |
ee90b9ab | 3995 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
3996 | |
3997 | case BINOP_EXP: | |
d2e4a39e | 3998 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3999 | |
4000 | case UNOP_NEG: | |
4001 | case UNOP_PLUS: | |
4002 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
4003 | case UNOP_ABS: |
4004 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
4005 | |
4006 | } | |
4007 | } | |
4008 | \f | |
4c4b4cd2 | 4009 | /* Renaming */ |
14f9c5c9 | 4010 | |
aeb5907d JB |
4011 | /* NOTES: |
4012 | ||
4013 | 1. In the following, we assume that a renaming type's name may | |
4014 | have an ___XD suffix. It would be nice if this went away at some | |
4015 | point. | |
4016 | 2. We handle both the (old) purely type-based representation of | |
4017 | renamings and the (new) variable-based encoding. At some point, | |
4018 | it is devoutly to be hoped that the former goes away | |
4019 | (FIXME: hilfinger-2007-07-09). | |
4020 | 3. Subprogram renamings are not implemented, although the XRS | |
4021 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
4022 | ||
4023 | /* If SYM encodes a renaming, | |
4024 | ||
4025 | <renaming> renames <renamed entity>, | |
4026 | ||
4027 | sets *LEN to the length of the renamed entity's name, | |
4028 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
4029 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 4030 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
4031 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
4032 | are undefined). Otherwise, returns a value indicating the category | |
4033 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
4034 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
4035 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
4036 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
4037 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
4038 | may be NULL, in which case they are not assigned. | |
4039 | ||
4040 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
4041 | ||
4042 | enum ada_renaming_category | |
4043 | ada_parse_renaming (struct symbol *sym, | |
4044 | const char **renamed_entity, int *len, | |
4045 | const char **renaming_expr) | |
4046 | { | |
4047 | enum ada_renaming_category kind; | |
4048 | const char *info; | |
4049 | const char *suffix; | |
4050 | ||
4051 | if (sym == NULL) | |
4052 | return ADA_NOT_RENAMING; | |
4053 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 4054 | { |
aeb5907d JB |
4055 | default: |
4056 | return ADA_NOT_RENAMING; | |
4057 | case LOC_TYPEDEF: | |
4058 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
4059 | renamed_entity, len, renaming_expr); | |
4060 | case LOC_LOCAL: | |
4061 | case LOC_STATIC: | |
4062 | case LOC_COMPUTED: | |
4063 | case LOC_OPTIMIZED_OUT: | |
4064 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
4065 | if (info == NULL) | |
4066 | return ADA_NOT_RENAMING; | |
4067 | switch (info[5]) | |
4068 | { | |
4069 | case '_': | |
4070 | kind = ADA_OBJECT_RENAMING; | |
4071 | info += 6; | |
4072 | break; | |
4073 | case 'E': | |
4074 | kind = ADA_EXCEPTION_RENAMING; | |
4075 | info += 7; | |
4076 | break; | |
4077 | case 'P': | |
4078 | kind = ADA_PACKAGE_RENAMING; | |
4079 | info += 7; | |
4080 | break; | |
4081 | case 'S': | |
4082 | kind = ADA_SUBPROGRAM_RENAMING; | |
4083 | info += 7; | |
4084 | break; | |
4085 | default: | |
4086 | return ADA_NOT_RENAMING; | |
4087 | } | |
14f9c5c9 | 4088 | } |
4c4b4cd2 | 4089 | |
aeb5907d JB |
4090 | if (renamed_entity != NULL) |
4091 | *renamed_entity = info; | |
4092 | suffix = strstr (info, "___XE"); | |
4093 | if (suffix == NULL || suffix == info) | |
4094 | return ADA_NOT_RENAMING; | |
4095 | if (len != NULL) | |
4096 | *len = strlen (info) - strlen (suffix); | |
4097 | suffix += 5; | |
4098 | if (renaming_expr != NULL) | |
4099 | *renaming_expr = suffix; | |
4100 | return kind; | |
4101 | } | |
4102 | ||
4103 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
4104 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
4105 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
4106 | ADA_NOT_RENAMING otherwise. */ | |
4107 | static enum ada_renaming_category | |
4108 | parse_old_style_renaming (struct type *type, | |
4109 | const char **renamed_entity, int *len, | |
4110 | const char **renaming_expr) | |
4111 | { | |
4112 | enum ada_renaming_category kind; | |
4113 | const char *name; | |
4114 | const char *info; | |
4115 | const char *suffix; | |
14f9c5c9 | 4116 | |
aeb5907d JB |
4117 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
4118 | || TYPE_NFIELDS (type) != 1) | |
4119 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 4120 | |
aeb5907d JB |
4121 | name = type_name_no_tag (type); |
4122 | if (name == NULL) | |
4123 | return ADA_NOT_RENAMING; | |
4124 | ||
4125 | name = strstr (name, "___XR"); | |
4126 | if (name == NULL) | |
4127 | return ADA_NOT_RENAMING; | |
4128 | switch (name[5]) | |
4129 | { | |
4130 | case '\0': | |
4131 | case '_': | |
4132 | kind = ADA_OBJECT_RENAMING; | |
4133 | break; | |
4134 | case 'E': | |
4135 | kind = ADA_EXCEPTION_RENAMING; | |
4136 | break; | |
4137 | case 'P': | |
4138 | kind = ADA_PACKAGE_RENAMING; | |
4139 | break; | |
4140 | case 'S': | |
4141 | kind = ADA_SUBPROGRAM_RENAMING; | |
4142 | break; | |
4143 | default: | |
4144 | return ADA_NOT_RENAMING; | |
4145 | } | |
14f9c5c9 | 4146 | |
aeb5907d JB |
4147 | info = TYPE_FIELD_NAME (type, 0); |
4148 | if (info == NULL) | |
4149 | return ADA_NOT_RENAMING; | |
4150 | if (renamed_entity != NULL) | |
4151 | *renamed_entity = info; | |
4152 | suffix = strstr (info, "___XE"); | |
4153 | if (renaming_expr != NULL) | |
4154 | *renaming_expr = suffix + 5; | |
4155 | if (suffix == NULL || suffix == info) | |
4156 | return ADA_NOT_RENAMING; | |
4157 | if (len != NULL) | |
4158 | *len = suffix - info; | |
4159 | return kind; | |
a5ee536b JB |
4160 | } |
4161 | ||
4162 | /* Compute the value of the given RENAMING_SYM, which is expected to | |
4163 | be a symbol encoding a renaming expression. BLOCK is the block | |
4164 | used to evaluate the renaming. */ | |
52ce6436 | 4165 | |
a5ee536b JB |
4166 | static struct value * |
4167 | ada_read_renaming_var_value (struct symbol *renaming_sym, | |
4168 | struct block *block) | |
4169 | { | |
bbc13ae3 | 4170 | const char *sym_name; |
a5ee536b JB |
4171 | struct expression *expr; |
4172 | struct value *value; | |
4173 | struct cleanup *old_chain = NULL; | |
4174 | ||
bbc13ae3 | 4175 | sym_name = SYMBOL_LINKAGE_NAME (renaming_sym); |
1bb9788d | 4176 | expr = parse_exp_1 (&sym_name, 0, block, 0); |
bbc13ae3 | 4177 | old_chain = make_cleanup (free_current_contents, &expr); |
a5ee536b JB |
4178 | value = evaluate_expression (expr); |
4179 | ||
4180 | do_cleanups (old_chain); | |
4181 | return value; | |
4182 | } | |
14f9c5c9 | 4183 | \f |
d2e4a39e | 4184 | |
4c4b4cd2 | 4185 | /* Evaluation: Function Calls */ |
14f9c5c9 | 4186 | |
4c4b4cd2 | 4187 | /* Return an lvalue containing the value VAL. This is the identity on |
40bc484c JB |
4188 | lvalues, and otherwise has the side-effect of allocating memory |
4189 | in the inferior where a copy of the value contents is copied. */ | |
14f9c5c9 | 4190 | |
d2e4a39e | 4191 | static struct value * |
40bc484c | 4192 | ensure_lval (struct value *val) |
14f9c5c9 | 4193 | { |
40bc484c JB |
4194 | if (VALUE_LVAL (val) == not_lval |
4195 | || VALUE_LVAL (val) == lval_internalvar) | |
c3e5cd34 | 4196 | { |
df407dfe | 4197 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
40bc484c JB |
4198 | const CORE_ADDR addr = |
4199 | value_as_long (value_allocate_space_in_inferior (len)); | |
c3e5cd34 | 4200 | |
40bc484c | 4201 | set_value_address (val, addr); |
a84a8a0d | 4202 | VALUE_LVAL (val) = lval_memory; |
40bc484c | 4203 | write_memory (addr, value_contents (val), len); |
c3e5cd34 | 4204 | } |
14f9c5c9 AS |
4205 | |
4206 | return val; | |
4207 | } | |
4208 | ||
4209 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4210 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4211 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4212 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4213 | |
a93c0eb6 | 4214 | struct value * |
40bc484c | 4215 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4216 | { |
df407dfe | 4217 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4218 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
4219 | struct type *formal_target = |
4220 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 4221 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
4222 | struct type *actual_target = |
4223 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 4224 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4225 | |
4c4b4cd2 | 4226 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 4227 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 4228 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
4229 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
4230 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 4231 | { |
a84a8a0d | 4232 | struct value *result; |
5b4ee69b | 4233 | |
14f9c5c9 | 4234 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 4235 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4236 | result = desc_data (actual); |
14f9c5c9 | 4237 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
4238 | { |
4239 | if (VALUE_LVAL (actual) != lval_memory) | |
4240 | { | |
4241 | struct value *val; | |
5b4ee69b | 4242 | |
df407dfe | 4243 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 4244 | val = allocate_value (actual_type); |
990a07ab | 4245 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 4246 | (char *) value_contents (actual), |
4c4b4cd2 | 4247 | TYPE_LENGTH (actual_type)); |
40bc484c | 4248 | actual = ensure_lval (val); |
4c4b4cd2 | 4249 | } |
a84a8a0d | 4250 | result = value_addr (actual); |
4c4b4cd2 | 4251 | } |
a84a8a0d JB |
4252 | else |
4253 | return actual; | |
b1af9e97 | 4254 | return value_cast_pointers (formal_type, result, 0); |
14f9c5c9 AS |
4255 | } |
4256 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
4257 | return ada_value_ind (actual); | |
4258 | ||
4259 | return actual; | |
4260 | } | |
4261 | ||
438c98a1 JB |
4262 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4263 | type TYPE. This is usually an inefficient no-op except on some targets | |
4264 | (such as AVR) where the representation of a pointer and an address | |
4265 | differs. */ | |
4266 | ||
4267 | static CORE_ADDR | |
4268 | value_pointer (struct value *value, struct type *type) | |
4269 | { | |
4270 | struct gdbarch *gdbarch = get_type_arch (type); | |
4271 | unsigned len = TYPE_LENGTH (type); | |
4272 | gdb_byte *buf = alloca (len); | |
4273 | CORE_ADDR addr; | |
4274 | ||
4275 | addr = value_address (value); | |
4276 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
4277 | addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); | |
4278 | return addr; | |
4279 | } | |
4280 | ||
14f9c5c9 | 4281 | |
4c4b4cd2 PH |
4282 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4283 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4284 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4285 | to-descriptor type rather than a descriptor type), a struct value * |
4286 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4287 | |
d2e4a39e | 4288 | static struct value * |
40bc484c | 4289 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4290 | { |
d2e4a39e AS |
4291 | struct type *bounds_type = desc_bounds_type (type); |
4292 | struct type *desc_type = desc_base_type (type); | |
4293 | struct value *descriptor = allocate_value (desc_type); | |
4294 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4295 | int i; |
d2e4a39e | 4296 | |
0963b4bd MS |
4297 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4298 | i > 0; i -= 1) | |
14f9c5c9 | 4299 | { |
19f220c3 JK |
4300 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4301 | ada_array_bound (arr, i, 0), | |
4302 | desc_bound_bitpos (bounds_type, i, 0), | |
4303 | desc_bound_bitsize (bounds_type, i, 0)); | |
4304 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4305 | ada_array_bound (arr, i, 1), | |
4306 | desc_bound_bitpos (bounds_type, i, 1), | |
4307 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4308 | } |
d2e4a39e | 4309 | |
40bc484c | 4310 | bounds = ensure_lval (bounds); |
d2e4a39e | 4311 | |
19f220c3 JK |
4312 | modify_field (value_type (descriptor), |
4313 | value_contents_writeable (descriptor), | |
4314 | value_pointer (ensure_lval (arr), | |
4315 | TYPE_FIELD_TYPE (desc_type, 0)), | |
4316 | fat_pntr_data_bitpos (desc_type), | |
4317 | fat_pntr_data_bitsize (desc_type)); | |
4318 | ||
4319 | modify_field (value_type (descriptor), | |
4320 | value_contents_writeable (descriptor), | |
4321 | value_pointer (bounds, | |
4322 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4323 | fat_pntr_bounds_bitpos (desc_type), | |
4324 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4325 | |
40bc484c | 4326 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4327 | |
4328 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4329 | return value_addr (descriptor); | |
4330 | else | |
4331 | return descriptor; | |
4332 | } | |
14f9c5c9 | 4333 | \f |
3d9434b5 JB |
4334 | /* Symbol Cache Module */ |
4335 | ||
3d9434b5 | 4336 | /* Performance measurements made as of 2010-01-15 indicate that |
ee01b665 | 4337 | this cache does bring some noticeable improvements. Depending |
3d9434b5 JB |
4338 | on the type of entity being printed, the cache can make it as much |
4339 | as an order of magnitude faster than without it. | |
4340 | ||
4341 | The descriptive type DWARF extension has significantly reduced | |
4342 | the need for this cache, at least when DWARF is being used. However, | |
4343 | even in this case, some expensive name-based symbol searches are still | |
4344 | sometimes necessary - to find an XVZ variable, mostly. */ | |
4345 | ||
ee01b665 | 4346 | /* Initialize the contents of SYM_CACHE. */ |
3d9434b5 | 4347 | |
ee01b665 JB |
4348 | static void |
4349 | ada_init_symbol_cache (struct ada_symbol_cache *sym_cache) | |
4350 | { | |
4351 | obstack_init (&sym_cache->cache_space); | |
4352 | memset (sym_cache->root, '\000', sizeof (sym_cache->root)); | |
4353 | } | |
3d9434b5 | 4354 | |
ee01b665 JB |
4355 | /* Free the memory used by SYM_CACHE. */ |
4356 | ||
4357 | static void | |
4358 | ada_free_symbol_cache (struct ada_symbol_cache *sym_cache) | |
3d9434b5 | 4359 | { |
ee01b665 JB |
4360 | obstack_free (&sym_cache->cache_space, NULL); |
4361 | xfree (sym_cache); | |
4362 | } | |
3d9434b5 | 4363 | |
ee01b665 JB |
4364 | /* Return the symbol cache associated to the given program space PSPACE. |
4365 | If not allocated for this PSPACE yet, allocate and initialize one. */ | |
3d9434b5 | 4366 | |
ee01b665 JB |
4367 | static struct ada_symbol_cache * |
4368 | ada_get_symbol_cache (struct program_space *pspace) | |
4369 | { | |
4370 | struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace); | |
4371 | struct ada_symbol_cache *sym_cache = pspace_data->sym_cache; | |
4372 | ||
4373 | if (sym_cache == NULL) | |
4374 | { | |
4375 | sym_cache = XCNEW (struct ada_symbol_cache); | |
4376 | ada_init_symbol_cache (sym_cache); | |
4377 | } | |
4378 | ||
4379 | return sym_cache; | |
4380 | } | |
3d9434b5 JB |
4381 | |
4382 | /* Clear all entries from the symbol cache. */ | |
4383 | ||
4384 | static void | |
4385 | ada_clear_symbol_cache (void) | |
4386 | { | |
ee01b665 JB |
4387 | struct ada_symbol_cache *sym_cache |
4388 | = ada_get_symbol_cache (current_program_space); | |
4389 | ||
4390 | obstack_free (&sym_cache->cache_space, NULL); | |
4391 | ada_init_symbol_cache (sym_cache); | |
3d9434b5 JB |
4392 | } |
4393 | ||
b50c8614 KS |
4394 | /* STRUCT_DOMAIN symbols are also typedefs for the type. This function tests |
4395 | the equivalency of two Ada symbol domain types. */ | |
4396 | ||
4397 | static int | |
4398 | ada_symbol_matches_domain (domain_enum symbol_domain, domain_enum domain) | |
4399 | { | |
4400 | if (symbol_domain == domain | |
4401 | || ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN) | |
4402 | && symbol_domain == STRUCT_DOMAIN)) | |
4403 | return 1; | |
4404 | ||
4405 | return 0; | |
4406 | } | |
4407 | ||
3d9434b5 JB |
4408 | /* Search our cache for an entry matching NAME and NAMESPACE. |
4409 | Return it if found, or NULL otherwise. */ | |
4410 | ||
4411 | static struct cache_entry ** | |
4412 | find_entry (const char *name, domain_enum namespace) | |
4413 | { | |
ee01b665 JB |
4414 | struct ada_symbol_cache *sym_cache |
4415 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4416 | int h = msymbol_hash (name) % HASH_SIZE; |
4417 | struct cache_entry **e; | |
4418 | ||
ee01b665 | 4419 | for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next) |
3d9434b5 JB |
4420 | { |
4421 | if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0) | |
4422 | return e; | |
4423 | } | |
4424 | return NULL; | |
4425 | } | |
4426 | ||
4427 | /* Search the symbol cache for an entry matching NAME and NAMESPACE. | |
4428 | Return 1 if found, 0 otherwise. | |
4429 | ||
4430 | If an entry was found and SYM is not NULL, set *SYM to the entry's | |
4431 | SYM. Same principle for BLOCK if not NULL. */ | |
96d887e8 | 4432 | |
96d887e8 PH |
4433 | static int |
4434 | lookup_cached_symbol (const char *name, domain_enum namespace, | |
f0c5f9b2 | 4435 | struct symbol **sym, const struct block **block) |
96d887e8 | 4436 | { |
3d9434b5 JB |
4437 | struct cache_entry **e = find_entry (name, namespace); |
4438 | ||
4439 | if (e == NULL) | |
4440 | return 0; | |
4441 | if (sym != NULL) | |
4442 | *sym = (*e)->sym; | |
4443 | if (block != NULL) | |
4444 | *block = (*e)->block; | |
4445 | return 1; | |
96d887e8 PH |
4446 | } |
4447 | ||
3d9434b5 JB |
4448 | /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME |
4449 | in domain NAMESPACE, save this result in our symbol cache. */ | |
4450 | ||
96d887e8 PH |
4451 | static void |
4452 | cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, | |
270140bd | 4453 | const struct block *block) |
96d887e8 | 4454 | { |
ee01b665 JB |
4455 | struct ada_symbol_cache *sym_cache |
4456 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4457 | int h; |
4458 | char *copy; | |
4459 | struct cache_entry *e; | |
4460 | ||
4461 | /* If the symbol is a local symbol, then do not cache it, as a search | |
4462 | for that symbol depends on the context. To determine whether | |
4463 | the symbol is local or not, we check the block where we found it | |
4464 | against the global and static blocks of its associated symtab. */ | |
4465 | if (sym | |
4466 | && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), GLOBAL_BLOCK) != block | |
4467 | && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), STATIC_BLOCK) != block) | |
4468 | return; | |
4469 | ||
4470 | h = msymbol_hash (name) % HASH_SIZE; | |
ee01b665 JB |
4471 | e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space, |
4472 | sizeof (*e)); | |
4473 | e->next = sym_cache->root[h]; | |
4474 | sym_cache->root[h] = e; | |
4475 | e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1); | |
3d9434b5 JB |
4476 | strcpy (copy, name); |
4477 | e->sym = sym; | |
4478 | e->namespace = namespace; | |
4479 | e->block = block; | |
96d887e8 | 4480 | } |
4c4b4cd2 PH |
4481 | \f |
4482 | /* Symbol Lookup */ | |
4483 | ||
c0431670 JB |
4484 | /* Return nonzero if wild matching should be used when searching for |
4485 | all symbols matching LOOKUP_NAME. | |
4486 | ||
4487 | LOOKUP_NAME is expected to be a symbol name after transformation | |
4488 | for Ada lookups (see ada_name_for_lookup). */ | |
4489 | ||
4490 | static int | |
4491 | should_use_wild_match (const char *lookup_name) | |
4492 | { | |
4493 | return (strstr (lookup_name, "__") == NULL); | |
4494 | } | |
4495 | ||
4c4b4cd2 PH |
4496 | /* Return the result of a standard (literal, C-like) lookup of NAME in |
4497 | given DOMAIN, visible from lexical block BLOCK. */ | |
4498 | ||
4499 | static struct symbol * | |
4500 | standard_lookup (const char *name, const struct block *block, | |
4501 | domain_enum domain) | |
4502 | { | |
acbd605d MGD |
4503 | /* Initialize it just to avoid a GCC false warning. */ |
4504 | struct symbol *sym = NULL; | |
4c4b4cd2 | 4505 | |
2570f2b7 | 4506 | if (lookup_cached_symbol (name, domain, &sym, NULL)) |
4c4b4cd2 | 4507 | return sym; |
2570f2b7 | 4508 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
b50c8614 KS |
4509 | |
4510 | /* STRUCT_DOMAIN symbols also define a typedef for the type. Lookup | |
4511 | a STRUCT_DOMAIN symbol if one is requested for VAR_DOMAIN and not | |
4512 | found. */ | |
4513 | if (sym == NULL && domain == VAR_DOMAIN) | |
4514 | sym = lookup_symbol_in_language (name, block, STRUCT_DOMAIN, language_c, 0); | |
4515 | ||
2570f2b7 | 4516 | cache_symbol (name, domain, sym, block_found); |
4c4b4cd2 PH |
4517 | return sym; |
4518 | } | |
4519 | ||
4520 | ||
4521 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4522 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4523 | since they contend in overloading in the same way. */ | |
4524 | static int | |
4525 | is_nonfunction (struct ada_symbol_info syms[], int n) | |
4526 | { | |
4527 | int i; | |
4528 | ||
4529 | for (i = 0; i < n; i += 1) | |
4530 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC | |
4531 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM | |
4532 | || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) | |
14f9c5c9 AS |
4533 | return 1; |
4534 | ||
4535 | return 0; | |
4536 | } | |
4537 | ||
4538 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4539 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4540 | |
4541 | static int | |
d2e4a39e | 4542 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4543 | { |
d2e4a39e | 4544 | if (type0 == type1) |
14f9c5c9 | 4545 | return 1; |
d2e4a39e | 4546 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4547 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4548 | return 0; | |
d2e4a39e | 4549 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4550 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4551 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4552 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4553 | return 1; |
d2e4a39e | 4554 | |
14f9c5c9 AS |
4555 | return 0; |
4556 | } | |
4557 | ||
4558 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4559 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4560 | |
4561 | static int | |
d2e4a39e | 4562 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4563 | { |
4564 | if (sym0 == sym1) | |
4565 | return 1; | |
176620f1 | 4566 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4567 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4568 | return 0; | |
4569 | ||
d2e4a39e | 4570 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4571 | { |
4572 | case LOC_UNDEF: | |
4573 | return 1; | |
4574 | case LOC_TYPEDEF: | |
4575 | { | |
4c4b4cd2 PH |
4576 | struct type *type0 = SYMBOL_TYPE (sym0); |
4577 | struct type *type1 = SYMBOL_TYPE (sym1); | |
0d5cff50 DE |
4578 | const char *name0 = SYMBOL_LINKAGE_NAME (sym0); |
4579 | const char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4c4b4cd2 | 4580 | int len0 = strlen (name0); |
5b4ee69b | 4581 | |
4c4b4cd2 PH |
4582 | return |
4583 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4584 | && (equiv_types (type0, type1) | |
4585 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
4586 | && strncmp (name1 + len0, "___XV", 5) == 0)); | |
14f9c5c9 AS |
4587 | } |
4588 | case LOC_CONST: | |
4589 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4590 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4591 | default: |
4592 | return 0; | |
14f9c5c9 AS |
4593 | } |
4594 | } | |
4595 | ||
4c4b4cd2 PH |
4596 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info |
4597 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ | |
14f9c5c9 AS |
4598 | |
4599 | static void | |
76a01679 JB |
4600 | add_defn_to_vec (struct obstack *obstackp, |
4601 | struct symbol *sym, | |
f0c5f9b2 | 4602 | const struct block *block) |
14f9c5c9 AS |
4603 | { |
4604 | int i; | |
4c4b4cd2 | 4605 | struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4606 | |
529cad9c PH |
4607 | /* Do not try to complete stub types, as the debugger is probably |
4608 | already scanning all symbols matching a certain name at the | |
4609 | time when this function is called. Trying to replace the stub | |
4610 | type by its associated full type will cause us to restart a scan | |
4611 | which may lead to an infinite recursion. Instead, the client | |
4612 | collecting the matching symbols will end up collecting several | |
4613 | matches, with at least one of them complete. It can then filter | |
4614 | out the stub ones if needed. */ | |
4615 | ||
4c4b4cd2 PH |
4616 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4617 | { | |
4618 | if (lesseq_defined_than (sym, prevDefns[i].sym)) | |
4619 | return; | |
4620 | else if (lesseq_defined_than (prevDefns[i].sym, sym)) | |
4621 | { | |
4622 | prevDefns[i].sym = sym; | |
4623 | prevDefns[i].block = block; | |
4c4b4cd2 | 4624 | return; |
76a01679 | 4625 | } |
4c4b4cd2 PH |
4626 | } |
4627 | ||
4628 | { | |
4629 | struct ada_symbol_info info; | |
4630 | ||
4631 | info.sym = sym; | |
4632 | info.block = block; | |
4c4b4cd2 PH |
4633 | obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); |
4634 | } | |
4635 | } | |
4636 | ||
4637 | /* Number of ada_symbol_info structures currently collected in | |
4638 | current vector in *OBSTACKP. */ | |
4639 | ||
76a01679 JB |
4640 | static int |
4641 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 PH |
4642 | { |
4643 | return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); | |
4644 | } | |
4645 | ||
4646 | /* Vector of ada_symbol_info structures currently collected in current | |
4647 | vector in *OBSTACKP. If FINISH, close off the vector and return | |
4648 | its final address. */ | |
4649 | ||
76a01679 | 4650 | static struct ada_symbol_info * |
4c4b4cd2 PH |
4651 | defns_collected (struct obstack *obstackp, int finish) |
4652 | { | |
4653 | if (finish) | |
4654 | return obstack_finish (obstackp); | |
4655 | else | |
4656 | return (struct ada_symbol_info *) obstack_base (obstackp); | |
4657 | } | |
4658 | ||
7c7b6655 TT |
4659 | /* Return a bound minimal symbol matching NAME according to Ada |
4660 | decoding rules. Returns an invalid symbol if there is no such | |
4661 | minimal symbol. Names prefixed with "standard__" are handled | |
4662 | specially: "standard__" is first stripped off, and only static and | |
4663 | global symbols are searched. */ | |
4c4b4cd2 | 4664 | |
7c7b6655 | 4665 | struct bound_minimal_symbol |
96d887e8 | 4666 | ada_lookup_simple_minsym (const char *name) |
4c4b4cd2 | 4667 | { |
7c7b6655 | 4668 | struct bound_minimal_symbol result; |
4c4b4cd2 | 4669 | struct objfile *objfile; |
96d887e8 | 4670 | struct minimal_symbol *msymbol; |
dc4024cd | 4671 | const int wild_match_p = should_use_wild_match (name); |
4c4b4cd2 | 4672 | |
7c7b6655 TT |
4673 | memset (&result, 0, sizeof (result)); |
4674 | ||
c0431670 JB |
4675 | /* Special case: If the user specifies a symbol name inside package |
4676 | Standard, do a non-wild matching of the symbol name without | |
4677 | the "standard__" prefix. This was primarily introduced in order | |
4678 | to allow the user to specifically access the standard exceptions | |
4679 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4680 | is ambiguous (due to the user defining its own Constraint_Error | |
4681 | entity inside its program). */ | |
96d887e8 | 4682 | if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) |
c0431670 | 4683 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4684 | |
96d887e8 PH |
4685 | ALL_MSYMBOLS (objfile, msymbol) |
4686 | { | |
efd66ac6 | 4687 | if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p) |
96d887e8 | 4688 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
7c7b6655 TT |
4689 | { |
4690 | result.minsym = msymbol; | |
4691 | result.objfile = objfile; | |
4692 | break; | |
4693 | } | |
96d887e8 | 4694 | } |
4c4b4cd2 | 4695 | |
7c7b6655 | 4696 | return result; |
96d887e8 | 4697 | } |
4c4b4cd2 | 4698 | |
96d887e8 PH |
4699 | /* For all subprograms that statically enclose the subprogram of the |
4700 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4701 | and their blocks to the list of data in OBSTACKP, as for | |
48b78332 JB |
4702 | ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME |
4703 | with a wildcard prefix. */ | |
4c4b4cd2 | 4704 | |
96d887e8 PH |
4705 | static void |
4706 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
76a01679 | 4707 | const char *name, domain_enum namespace, |
48b78332 | 4708 | int wild_match_p) |
96d887e8 | 4709 | { |
96d887e8 | 4710 | } |
14f9c5c9 | 4711 | |
96d887e8 PH |
4712 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4713 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4714 | |
96d887e8 PH |
4715 | static int |
4716 | is_nondebugging_type (struct type *type) | |
4717 | { | |
0d5cff50 | 4718 | const char *name = ada_type_name (type); |
5b4ee69b | 4719 | |
96d887e8 PH |
4720 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4721 | } | |
4c4b4cd2 | 4722 | |
8f17729f JB |
4723 | /* Return nonzero if TYPE1 and TYPE2 are two enumeration types |
4724 | that are deemed "identical" for practical purposes. | |
4725 | ||
4726 | This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM | |
4727 | types and that their number of enumerals is identical (in other | |
4728 | words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */ | |
4729 | ||
4730 | static int | |
4731 | ada_identical_enum_types_p (struct type *type1, struct type *type2) | |
4732 | { | |
4733 | int i; | |
4734 | ||
4735 | /* The heuristic we use here is fairly conservative. We consider | |
4736 | that 2 enumerate types are identical if they have the same | |
4737 | number of enumerals and that all enumerals have the same | |
4738 | underlying value and name. */ | |
4739 | ||
4740 | /* All enums in the type should have an identical underlying value. */ | |
4741 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
14e75d8e | 4742 | if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i)) |
8f17729f JB |
4743 | return 0; |
4744 | ||
4745 | /* All enumerals should also have the same name (modulo any numerical | |
4746 | suffix). */ | |
4747 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
4748 | { | |
0d5cff50 DE |
4749 | const char *name_1 = TYPE_FIELD_NAME (type1, i); |
4750 | const char *name_2 = TYPE_FIELD_NAME (type2, i); | |
8f17729f JB |
4751 | int len_1 = strlen (name_1); |
4752 | int len_2 = strlen (name_2); | |
4753 | ||
4754 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1); | |
4755 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2); | |
4756 | if (len_1 != len_2 | |
4757 | || strncmp (TYPE_FIELD_NAME (type1, i), | |
4758 | TYPE_FIELD_NAME (type2, i), | |
4759 | len_1) != 0) | |
4760 | return 0; | |
4761 | } | |
4762 | ||
4763 | return 1; | |
4764 | } | |
4765 | ||
4766 | /* Return nonzero if all the symbols in SYMS are all enumeral symbols | |
4767 | that are deemed "identical" for practical purposes. Sometimes, | |
4768 | enumerals are not strictly identical, but their types are so similar | |
4769 | that they can be considered identical. | |
4770 | ||
4771 | For instance, consider the following code: | |
4772 | ||
4773 | type Color is (Black, Red, Green, Blue, White); | |
4774 | type RGB_Color is new Color range Red .. Blue; | |
4775 | ||
4776 | Type RGB_Color is a subrange of an implicit type which is a copy | |
4777 | of type Color. If we call that implicit type RGB_ColorB ("B" is | |
4778 | for "Base Type"), then type RGB_ColorB is a copy of type Color. | |
4779 | As a result, when an expression references any of the enumeral | |
4780 | by name (Eg. "print green"), the expression is technically | |
4781 | ambiguous and the user should be asked to disambiguate. But | |
4782 | doing so would only hinder the user, since it wouldn't matter | |
4783 | what choice he makes, the outcome would always be the same. | |
4784 | So, for practical purposes, we consider them as the same. */ | |
4785 | ||
4786 | static int | |
4787 | symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms) | |
4788 | { | |
4789 | int i; | |
4790 | ||
4791 | /* Before performing a thorough comparison check of each type, | |
4792 | we perform a series of inexpensive checks. We expect that these | |
4793 | checks will quickly fail in the vast majority of cases, and thus | |
4794 | help prevent the unnecessary use of a more expensive comparison. | |
4795 | Said comparison also expects us to make some of these checks | |
4796 | (see ada_identical_enum_types_p). */ | |
4797 | ||
4798 | /* Quick check: All symbols should have an enum type. */ | |
4799 | for (i = 0; i < nsyms; i++) | |
4800 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM) | |
4801 | return 0; | |
4802 | ||
4803 | /* Quick check: They should all have the same value. */ | |
4804 | for (i = 1; i < nsyms; i++) | |
4805 | if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym)) | |
4806 | return 0; | |
4807 | ||
4808 | /* Quick check: They should all have the same number of enumerals. */ | |
4809 | for (i = 1; i < nsyms; i++) | |
4810 | if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym)) | |
4811 | != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym))) | |
4812 | return 0; | |
4813 | ||
4814 | /* All the sanity checks passed, so we might have a set of | |
4815 | identical enumeration types. Perform a more complete | |
4816 | comparison of the type of each symbol. */ | |
4817 | for (i = 1; i < nsyms; i++) | |
4818 | if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym), | |
4819 | SYMBOL_TYPE (syms[0].sym))) | |
4820 | return 0; | |
4821 | ||
4822 | return 1; | |
4823 | } | |
4824 | ||
96d887e8 PH |
4825 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4826 | duplicate other symbols in the list (The only case I know of where | |
4827 | this happens is when object files containing stabs-in-ecoff are | |
4828 | linked with files containing ordinary ecoff debugging symbols (or no | |
4829 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4830 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4831 | |
96d887e8 PH |
4832 | static int |
4833 | remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) | |
4834 | { | |
4835 | int i, j; | |
4c4b4cd2 | 4836 | |
8f17729f JB |
4837 | /* We should never be called with less than 2 symbols, as there |
4838 | cannot be any extra symbol in that case. But it's easy to | |
4839 | handle, since we have nothing to do in that case. */ | |
4840 | if (nsyms < 2) | |
4841 | return nsyms; | |
4842 | ||
96d887e8 PH |
4843 | i = 0; |
4844 | while (i < nsyms) | |
4845 | { | |
a35ddb44 | 4846 | int remove_p = 0; |
339c13b6 JB |
4847 | |
4848 | /* If two symbols have the same name and one of them is a stub type, | |
4849 | the get rid of the stub. */ | |
4850 | ||
4851 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym)) | |
4852 | && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL) | |
4853 | { | |
4854 | for (j = 0; j < nsyms; j++) | |
4855 | { | |
4856 | if (j != i | |
4857 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym)) | |
4858 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4859 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
4860 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0) | |
a35ddb44 | 4861 | remove_p = 1; |
339c13b6 JB |
4862 | } |
4863 | } | |
4864 | ||
4865 | /* Two symbols with the same name, same class and same address | |
4866 | should be identical. */ | |
4867 | ||
4868 | else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL | |
96d887e8 PH |
4869 | && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC |
4870 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) | |
4871 | { | |
4872 | for (j = 0; j < nsyms; j += 1) | |
4873 | { | |
4874 | if (i != j | |
4875 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4876 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
76a01679 | 4877 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 |
96d887e8 PH |
4878 | && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) |
4879 | && SYMBOL_VALUE_ADDRESS (syms[i].sym) | |
4880 | == SYMBOL_VALUE_ADDRESS (syms[j].sym)) | |
a35ddb44 | 4881 | remove_p = 1; |
4c4b4cd2 | 4882 | } |
4c4b4cd2 | 4883 | } |
339c13b6 | 4884 | |
a35ddb44 | 4885 | if (remove_p) |
339c13b6 JB |
4886 | { |
4887 | for (j = i + 1; j < nsyms; j += 1) | |
4888 | syms[j - 1] = syms[j]; | |
4889 | nsyms -= 1; | |
4890 | } | |
4891 | ||
96d887e8 | 4892 | i += 1; |
14f9c5c9 | 4893 | } |
8f17729f JB |
4894 | |
4895 | /* If all the remaining symbols are identical enumerals, then | |
4896 | just keep the first one and discard the rest. | |
4897 | ||
4898 | Unlike what we did previously, we do not discard any entry | |
4899 | unless they are ALL identical. This is because the symbol | |
4900 | comparison is not a strict comparison, but rather a practical | |
4901 | comparison. If all symbols are considered identical, then | |
4902 | we can just go ahead and use the first one and discard the rest. | |
4903 | But if we cannot reduce the list to a single element, we have | |
4904 | to ask the user to disambiguate anyways. And if we have to | |
4905 | present a multiple-choice menu, it's less confusing if the list | |
4906 | isn't missing some choices that were identical and yet distinct. */ | |
4907 | if (symbols_are_identical_enums (syms, nsyms)) | |
4908 | nsyms = 1; | |
4909 | ||
96d887e8 | 4910 | return nsyms; |
14f9c5c9 AS |
4911 | } |
4912 | ||
96d887e8 PH |
4913 | /* Given a type that corresponds to a renaming entity, use the type name |
4914 | to extract the scope (package name or function name, fully qualified, | |
4915 | and following the GNAT encoding convention) where this renaming has been | |
4916 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 4917 | |
96d887e8 PH |
4918 | static char * |
4919 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 4920 | { |
96d887e8 | 4921 | /* The renaming types adhere to the following convention: |
0963b4bd | 4922 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
4923 | So, to extract the scope, we search for the "___XR" extension, |
4924 | and then backtrack until we find the first "__". */ | |
76a01679 | 4925 | |
96d887e8 PH |
4926 | const char *name = type_name_no_tag (renaming_type); |
4927 | char *suffix = strstr (name, "___XR"); | |
4928 | char *last; | |
4929 | int scope_len; | |
4930 | char *scope; | |
14f9c5c9 | 4931 | |
96d887e8 PH |
4932 | /* Now, backtrack a bit until we find the first "__". Start looking |
4933 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 4934 | |
96d887e8 PH |
4935 | for (last = suffix - 3; last > name; last--) |
4936 | if (last[0] == '_' && last[1] == '_') | |
4937 | break; | |
76a01679 | 4938 | |
96d887e8 | 4939 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 4940 | |
96d887e8 PH |
4941 | scope_len = last - name; |
4942 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 4943 | |
96d887e8 PH |
4944 | strncpy (scope, name, scope_len); |
4945 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 4946 | |
96d887e8 | 4947 | return scope; |
4c4b4cd2 PH |
4948 | } |
4949 | ||
96d887e8 | 4950 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 4951 | |
96d887e8 PH |
4952 | static int |
4953 | is_package_name (const char *name) | |
4c4b4cd2 | 4954 | { |
96d887e8 PH |
4955 | /* Here, We take advantage of the fact that no symbols are generated |
4956 | for packages, while symbols are generated for each function. | |
4957 | So the condition for NAME represent a package becomes equivalent | |
4958 | to NAME not existing in our list of symbols. There is only one | |
4959 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 4960 | |
96d887e8 | 4961 | char *fun_name; |
76a01679 | 4962 | |
96d887e8 PH |
4963 | /* If it is a function that has not been defined at library level, |
4964 | then we should be able to look it up in the symbols. */ | |
4965 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
4966 | return 0; | |
14f9c5c9 | 4967 | |
96d887e8 PH |
4968 | /* Library-level function names start with "_ada_". See if function |
4969 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 4970 | |
96d887e8 | 4971 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 4972 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
4973 | if (strstr (name, "__") != NULL) |
4974 | return 0; | |
4c4b4cd2 | 4975 | |
b435e160 | 4976 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 4977 | |
96d887e8 PH |
4978 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
4979 | } | |
14f9c5c9 | 4980 | |
96d887e8 | 4981 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 4982 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 4983 | |
96d887e8 | 4984 | static int |
0d5cff50 | 4985 | old_renaming_is_invisible (const struct symbol *sym, const char *function_name) |
96d887e8 | 4986 | { |
aeb5907d | 4987 | char *scope; |
1509e573 | 4988 | struct cleanup *old_chain; |
aeb5907d JB |
4989 | |
4990 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
4991 | return 0; | |
4992 | ||
4993 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
1509e573 | 4994 | old_chain = make_cleanup (xfree, scope); |
14f9c5c9 | 4995 | |
96d887e8 PH |
4996 | /* If the rename has been defined in a package, then it is visible. */ |
4997 | if (is_package_name (scope)) | |
1509e573 JB |
4998 | { |
4999 | do_cleanups (old_chain); | |
5000 | return 0; | |
5001 | } | |
14f9c5c9 | 5002 | |
96d887e8 PH |
5003 | /* Check that the rename is in the current function scope by checking |
5004 | that its name starts with SCOPE. */ | |
76a01679 | 5005 | |
96d887e8 PH |
5006 | /* If the function name starts with "_ada_", it means that it is |
5007 | a library-level function. Strip this prefix before doing the | |
5008 | comparison, as the encoding for the renaming does not contain | |
5009 | this prefix. */ | |
5010 | if (strncmp (function_name, "_ada_", 5) == 0) | |
5011 | function_name += 5; | |
f26caa11 | 5012 | |
1509e573 JB |
5013 | { |
5014 | int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0; | |
5015 | ||
5016 | do_cleanups (old_chain); | |
5017 | return is_invisible; | |
5018 | } | |
f26caa11 PH |
5019 | } |
5020 | ||
aeb5907d JB |
5021 | /* Remove entries from SYMS that corresponds to a renaming entity that |
5022 | is not visible from the function associated with CURRENT_BLOCK or | |
5023 | that is superfluous due to the presence of more specific renaming | |
5024 | information. Places surviving symbols in the initial entries of | |
5025 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
5026 | |
5027 | Rationale: | |
aeb5907d JB |
5028 | First, in cases where an object renaming is implemented as a |
5029 | reference variable, GNAT may produce both the actual reference | |
5030 | variable and the renaming encoding. In this case, we discard the | |
5031 | latter. | |
5032 | ||
5033 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
5034 | entity. Unfortunately, STABS currently does not support the definition |
5035 | of types that are local to a given lexical block, so all renamings types | |
5036 | are emitted at library level. As a consequence, if an application | |
5037 | contains two renaming entities using the same name, and a user tries to | |
5038 | print the value of one of these entities, the result of the ada symbol | |
5039 | lookup will also contain the wrong renaming type. | |
f26caa11 | 5040 | |
96d887e8 PH |
5041 | This function partially covers for this limitation by attempting to |
5042 | remove from the SYMS list renaming symbols that should be visible | |
5043 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
5044 | method with the current information available. The implementation | |
5045 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
5046 | ||
5047 | - When the user tries to print a rename in a function while there | |
5048 | is another rename entity defined in a package: Normally, the | |
5049 | rename in the function has precedence over the rename in the | |
5050 | package, so the latter should be removed from the list. This is | |
5051 | currently not the case. | |
5052 | ||
5053 | - This function will incorrectly remove valid renames if | |
5054 | the CURRENT_BLOCK corresponds to a function which symbol name | |
5055 | has been changed by an "Export" pragma. As a consequence, | |
5056 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 5057 | |
14f9c5c9 | 5058 | static int |
aeb5907d JB |
5059 | remove_irrelevant_renamings (struct ada_symbol_info *syms, |
5060 | int nsyms, const struct block *current_block) | |
4c4b4cd2 PH |
5061 | { |
5062 | struct symbol *current_function; | |
0d5cff50 | 5063 | const char *current_function_name; |
4c4b4cd2 | 5064 | int i; |
aeb5907d JB |
5065 | int is_new_style_renaming; |
5066 | ||
5067 | /* If there is both a renaming foo___XR... encoded as a variable and | |
5068 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 5069 | First, zero out such symbols, then compress. */ |
aeb5907d JB |
5070 | is_new_style_renaming = 0; |
5071 | for (i = 0; i < nsyms; i += 1) | |
5072 | { | |
5073 | struct symbol *sym = syms[i].sym; | |
270140bd | 5074 | const struct block *block = syms[i].block; |
aeb5907d JB |
5075 | const char *name; |
5076 | const char *suffix; | |
5077 | ||
5078 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
5079 | continue; | |
5080 | name = SYMBOL_LINKAGE_NAME (sym); | |
5081 | suffix = strstr (name, "___XR"); | |
5082 | ||
5083 | if (suffix != NULL) | |
5084 | { | |
5085 | int name_len = suffix - name; | |
5086 | int j; | |
5b4ee69b | 5087 | |
aeb5907d JB |
5088 | is_new_style_renaming = 1; |
5089 | for (j = 0; j < nsyms; j += 1) | |
5090 | if (i != j && syms[j].sym != NULL | |
5091 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), | |
5092 | name_len) == 0 | |
5093 | && block == syms[j].block) | |
5094 | syms[j].sym = NULL; | |
5095 | } | |
5096 | } | |
5097 | if (is_new_style_renaming) | |
5098 | { | |
5099 | int j, k; | |
5100 | ||
5101 | for (j = k = 0; j < nsyms; j += 1) | |
5102 | if (syms[j].sym != NULL) | |
5103 | { | |
5104 | syms[k] = syms[j]; | |
5105 | k += 1; | |
5106 | } | |
5107 | return k; | |
5108 | } | |
4c4b4cd2 PH |
5109 | |
5110 | /* Extract the function name associated to CURRENT_BLOCK. | |
5111 | Abort if unable to do so. */ | |
76a01679 | 5112 | |
4c4b4cd2 PH |
5113 | if (current_block == NULL) |
5114 | return nsyms; | |
76a01679 | 5115 | |
7f0df278 | 5116 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
5117 | if (current_function == NULL) |
5118 | return nsyms; | |
5119 | ||
5120 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
5121 | if (current_function_name == NULL) | |
5122 | return nsyms; | |
5123 | ||
5124 | /* Check each of the symbols, and remove it from the list if it is | |
5125 | a type corresponding to a renaming that is out of the scope of | |
5126 | the current block. */ | |
5127 | ||
5128 | i = 0; | |
5129 | while (i < nsyms) | |
5130 | { | |
aeb5907d JB |
5131 | if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) |
5132 | == ADA_OBJECT_RENAMING | |
5133 | && old_renaming_is_invisible (syms[i].sym, current_function_name)) | |
4c4b4cd2 PH |
5134 | { |
5135 | int j; | |
5b4ee69b | 5136 | |
aeb5907d | 5137 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 5138 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
5139 | nsyms -= 1; |
5140 | } | |
5141 | else | |
5142 | i += 1; | |
5143 | } | |
5144 | ||
5145 | return nsyms; | |
5146 | } | |
5147 | ||
339c13b6 JB |
5148 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
5149 | whose name and domain match NAME and DOMAIN respectively. | |
5150 | If no match was found, then extend the search to "enclosing" | |
5151 | routines (in other words, if we're inside a nested function, | |
5152 | search the symbols defined inside the enclosing functions). | |
d0a8ab18 JB |
5153 | If WILD_MATCH_P is nonzero, perform the naming matching in |
5154 | "wild" mode (see function "wild_match" for more info). | |
339c13b6 JB |
5155 | |
5156 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
5157 | ||
5158 | static void | |
5159 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
f0c5f9b2 | 5160 | const struct block *block, domain_enum domain, |
d0a8ab18 | 5161 | int wild_match_p) |
339c13b6 JB |
5162 | { |
5163 | int block_depth = 0; | |
5164 | ||
5165 | while (block != NULL) | |
5166 | { | |
5167 | block_depth += 1; | |
d0a8ab18 JB |
5168 | ada_add_block_symbols (obstackp, block, name, domain, NULL, |
5169 | wild_match_p); | |
339c13b6 JB |
5170 | |
5171 | /* If we found a non-function match, assume that's the one. */ | |
5172 | if (is_nonfunction (defns_collected (obstackp, 0), | |
5173 | num_defns_collected (obstackp))) | |
5174 | return; | |
5175 | ||
5176 | block = BLOCK_SUPERBLOCK (block); | |
5177 | } | |
5178 | ||
5179 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
5180 | enclosing subprogram. */ | |
5181 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
d0a8ab18 | 5182 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p); |
339c13b6 JB |
5183 | } |
5184 | ||
ccefe4c4 | 5185 | /* An object of this type is used as the user_data argument when |
40658b94 | 5186 | calling the map_matching_symbols method. */ |
ccefe4c4 | 5187 | |
40658b94 | 5188 | struct match_data |
ccefe4c4 | 5189 | { |
40658b94 | 5190 | struct objfile *objfile; |
ccefe4c4 | 5191 | struct obstack *obstackp; |
40658b94 PH |
5192 | struct symbol *arg_sym; |
5193 | int found_sym; | |
ccefe4c4 TT |
5194 | }; |
5195 | ||
40658b94 PH |
5196 | /* A callback for add_matching_symbols that adds SYM, found in BLOCK, |
5197 | to a list of symbols. DATA0 is a pointer to a struct match_data * | |
5198 | containing the obstack that collects the symbol list, the file that SYM | |
5199 | must come from, a flag indicating whether a non-argument symbol has | |
5200 | been found in the current block, and the last argument symbol | |
5201 | passed in SYM within the current block (if any). When SYM is null, | |
5202 | marking the end of a block, the argument symbol is added if no | |
5203 | other has been found. */ | |
ccefe4c4 | 5204 | |
40658b94 PH |
5205 | static int |
5206 | aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0) | |
ccefe4c4 | 5207 | { |
40658b94 PH |
5208 | struct match_data *data = (struct match_data *) data0; |
5209 | ||
5210 | if (sym == NULL) | |
5211 | { | |
5212 | if (!data->found_sym && data->arg_sym != NULL) | |
5213 | add_defn_to_vec (data->obstackp, | |
5214 | fixup_symbol_section (data->arg_sym, data->objfile), | |
5215 | block); | |
5216 | data->found_sym = 0; | |
5217 | data->arg_sym = NULL; | |
5218 | } | |
5219 | else | |
5220 | { | |
5221 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
5222 | return 0; | |
5223 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5224 | data->arg_sym = sym; | |
5225 | else | |
5226 | { | |
5227 | data->found_sym = 1; | |
5228 | add_defn_to_vec (data->obstackp, | |
5229 | fixup_symbol_section (sym, data->objfile), | |
5230 | block); | |
5231 | } | |
5232 | } | |
5233 | return 0; | |
5234 | } | |
5235 | ||
db230ce3 JB |
5236 | /* Implements compare_names, but only applying the comparision using |
5237 | the given CASING. */ | |
5b4ee69b | 5238 | |
40658b94 | 5239 | static int |
db230ce3 JB |
5240 | compare_names_with_case (const char *string1, const char *string2, |
5241 | enum case_sensitivity casing) | |
40658b94 PH |
5242 | { |
5243 | while (*string1 != '\0' && *string2 != '\0') | |
5244 | { | |
db230ce3 JB |
5245 | char c1, c2; |
5246 | ||
40658b94 PH |
5247 | if (isspace (*string1) || isspace (*string2)) |
5248 | return strcmp_iw_ordered (string1, string2); | |
db230ce3 JB |
5249 | |
5250 | if (casing == case_sensitive_off) | |
5251 | { | |
5252 | c1 = tolower (*string1); | |
5253 | c2 = tolower (*string2); | |
5254 | } | |
5255 | else | |
5256 | { | |
5257 | c1 = *string1; | |
5258 | c2 = *string2; | |
5259 | } | |
5260 | if (c1 != c2) | |
40658b94 | 5261 | break; |
db230ce3 | 5262 | |
40658b94 PH |
5263 | string1 += 1; |
5264 | string2 += 1; | |
5265 | } | |
db230ce3 | 5266 | |
40658b94 PH |
5267 | switch (*string1) |
5268 | { | |
5269 | case '(': | |
5270 | return strcmp_iw_ordered (string1, string2); | |
5271 | case '_': | |
5272 | if (*string2 == '\0') | |
5273 | { | |
052874e8 | 5274 | if (is_name_suffix (string1)) |
40658b94 PH |
5275 | return 0; |
5276 | else | |
1a1d5513 | 5277 | return 1; |
40658b94 | 5278 | } |
dbb8534f | 5279 | /* FALLTHROUGH */ |
40658b94 PH |
5280 | default: |
5281 | if (*string2 == '(') | |
5282 | return strcmp_iw_ordered (string1, string2); | |
5283 | else | |
db230ce3 JB |
5284 | { |
5285 | if (casing == case_sensitive_off) | |
5286 | return tolower (*string1) - tolower (*string2); | |
5287 | else | |
5288 | return *string1 - *string2; | |
5289 | } | |
40658b94 | 5290 | } |
ccefe4c4 TT |
5291 | } |
5292 | ||
db230ce3 JB |
5293 | /* Compare STRING1 to STRING2, with results as for strcmp. |
5294 | Compatible with strcmp_iw_ordered in that... | |
5295 | ||
5296 | strcmp_iw_ordered (STRING1, STRING2) <= 0 | |
5297 | ||
5298 | ... implies... | |
5299 | ||
5300 | compare_names (STRING1, STRING2) <= 0 | |
5301 | ||
5302 | (they may differ as to what symbols compare equal). */ | |
5303 | ||
5304 | static int | |
5305 | compare_names (const char *string1, const char *string2) | |
5306 | { | |
5307 | int result; | |
5308 | ||
5309 | /* Similar to what strcmp_iw_ordered does, we need to perform | |
5310 | a case-insensitive comparison first, and only resort to | |
5311 | a second, case-sensitive, comparison if the first one was | |
5312 | not sufficient to differentiate the two strings. */ | |
5313 | ||
5314 | result = compare_names_with_case (string1, string2, case_sensitive_off); | |
5315 | if (result == 0) | |
5316 | result = compare_names_with_case (string1, string2, case_sensitive_on); | |
5317 | ||
5318 | return result; | |
5319 | } | |
5320 | ||
339c13b6 JB |
5321 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
5322 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
5323 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
5324 | ||
5325 | static void | |
40658b94 PH |
5326 | add_nonlocal_symbols (struct obstack *obstackp, const char *name, |
5327 | domain_enum domain, int global, | |
5328 | int is_wild_match) | |
339c13b6 JB |
5329 | { |
5330 | struct objfile *objfile; | |
40658b94 | 5331 | struct match_data data; |
339c13b6 | 5332 | |
6475f2fe | 5333 | memset (&data, 0, sizeof data); |
ccefe4c4 | 5334 | data.obstackp = obstackp; |
339c13b6 | 5335 | |
ccefe4c4 | 5336 | ALL_OBJFILES (objfile) |
40658b94 PH |
5337 | { |
5338 | data.objfile = objfile; | |
5339 | ||
5340 | if (is_wild_match) | |
b50c8614 KS |
5341 | { |
5342 | objfile->sf->qf->map_matching_symbols (objfile, name, domain, global, | |
5343 | aux_add_nonlocal_symbols, | |
5344 | &data, wild_match, NULL); | |
5345 | if (domain == VAR_DOMAIN) | |
5346 | objfile->sf->qf->map_matching_symbols (objfile, name, | |
5347 | STRUCT_DOMAIN, global, | |
5348 | aux_add_nonlocal_symbols, | |
5349 | &data, wild_match, NULL); | |
5350 | } | |
40658b94 | 5351 | else |
b50c8614 KS |
5352 | { |
5353 | objfile->sf->qf->map_matching_symbols (objfile, name, domain, global, | |
5354 | aux_add_nonlocal_symbols, | |
5355 | &data, full_match, | |
5356 | compare_names); | |
5357 | if (domain == VAR_DOMAIN) | |
5358 | objfile->sf->qf->map_matching_symbols (objfile, name, | |
5359 | STRUCT_DOMAIN, global, | |
5360 | aux_add_nonlocal_symbols, | |
5361 | &data, full_match, | |
5362 | compare_names); | |
5363 | } | |
40658b94 PH |
5364 | } |
5365 | ||
5366 | if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) | |
5367 | { | |
5368 | ALL_OBJFILES (objfile) | |
5369 | { | |
5370 | char *name1 = alloca (strlen (name) + sizeof ("_ada_")); | |
5371 | strcpy (name1, "_ada_"); | |
5372 | strcpy (name1 + sizeof ("_ada_") - 1, name); | |
5373 | data.objfile = objfile; | |
ade7ed9e DE |
5374 | objfile->sf->qf->map_matching_symbols (objfile, name1, domain, |
5375 | global, | |
0963b4bd MS |
5376 | aux_add_nonlocal_symbols, |
5377 | &data, | |
40658b94 PH |
5378 | full_match, compare_names); |
5379 | } | |
5380 | } | |
339c13b6 JB |
5381 | } |
5382 | ||
4eeaa230 DE |
5383 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is |
5384 | non-zero, enclosing scope and in global scopes, returning the number of | |
5385 | matches. | |
9f88c959 | 5386 | Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples, |
4c4b4cd2 | 5387 | indicating the symbols found and the blocks and symbol tables (if |
4eeaa230 DE |
5388 | any) in which they were found. This vector is transient---good only to |
5389 | the next call of ada_lookup_symbol_list. | |
5390 | ||
5391 | When full_search is non-zero, any non-function/non-enumeral | |
4c4b4cd2 PH |
5392 | symbol match within the nest of blocks whose innermost member is BLOCK0, |
5393 | is the one match returned (no other matches in that or | |
d9680e73 | 5394 | enclosing blocks is returned). If there are any matches in or |
4eeaa230 DE |
5395 | surrounding BLOCK0, then these alone are returned. |
5396 | ||
9f88c959 | 5397 | Names prefixed with "standard__" are handled specially: "standard__" |
4c4b4cd2 | 5398 | is first stripped off, and only static and global symbols are searched. */ |
14f9c5c9 | 5399 | |
4eeaa230 DE |
5400 | static int |
5401 | ada_lookup_symbol_list_worker (const char *name0, const struct block *block0, | |
5402 | domain_enum namespace, | |
5403 | struct ada_symbol_info **results, | |
5404 | int full_search) | |
14f9c5c9 AS |
5405 | { |
5406 | struct symbol *sym; | |
f0c5f9b2 | 5407 | const struct block *block; |
4c4b4cd2 | 5408 | const char *name; |
82ccd55e | 5409 | const int wild_match_p = should_use_wild_match (name0); |
14f9c5c9 | 5410 | int cacheIfUnique; |
4c4b4cd2 | 5411 | int ndefns; |
14f9c5c9 | 5412 | |
4c4b4cd2 PH |
5413 | obstack_free (&symbol_list_obstack, NULL); |
5414 | obstack_init (&symbol_list_obstack); | |
14f9c5c9 | 5415 | |
14f9c5c9 AS |
5416 | cacheIfUnique = 0; |
5417 | ||
5418 | /* Search specified block and its superiors. */ | |
5419 | ||
4c4b4cd2 | 5420 | name = name0; |
f0c5f9b2 | 5421 | block = block0; |
339c13b6 JB |
5422 | |
5423 | /* Special case: If the user specifies a symbol name inside package | |
5424 | Standard, do a non-wild matching of the symbol name without | |
5425 | the "standard__" prefix. This was primarily introduced in order | |
5426 | to allow the user to specifically access the standard exceptions | |
5427 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
5428 | is ambiguous (due to the user defining its own Constraint_Error | |
5429 | entity inside its program). */ | |
4c4b4cd2 PH |
5430 | if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) |
5431 | { | |
4c4b4cd2 PH |
5432 | block = NULL; |
5433 | name = name0 + sizeof ("standard__") - 1; | |
5434 | } | |
5435 | ||
339c13b6 | 5436 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 5437 | |
4eeaa230 DE |
5438 | if (block != NULL) |
5439 | { | |
5440 | if (full_search) | |
5441 | { | |
5442 | ada_add_local_symbols (&symbol_list_obstack, name, block, | |
5443 | namespace, wild_match_p); | |
5444 | } | |
5445 | else | |
5446 | { | |
5447 | /* In the !full_search case we're are being called by | |
5448 | ada_iterate_over_symbols, and we don't want to search | |
5449 | superblocks. */ | |
5450 | ada_add_block_symbols (&symbol_list_obstack, block, name, | |
5451 | namespace, NULL, wild_match_p); | |
5452 | } | |
5453 | if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search) | |
5454 | goto done; | |
5455 | } | |
d2e4a39e | 5456 | |
339c13b6 JB |
5457 | /* No non-global symbols found. Check our cache to see if we have |
5458 | already performed this search before. If we have, then return | |
5459 | the same result. */ | |
5460 | ||
14f9c5c9 | 5461 | cacheIfUnique = 1; |
2570f2b7 | 5462 | if (lookup_cached_symbol (name0, namespace, &sym, &block)) |
4c4b4cd2 PH |
5463 | { |
5464 | if (sym != NULL) | |
2570f2b7 | 5465 | add_defn_to_vec (&symbol_list_obstack, sym, block); |
4c4b4cd2 PH |
5466 | goto done; |
5467 | } | |
14f9c5c9 | 5468 | |
339c13b6 JB |
5469 | /* Search symbols from all global blocks. */ |
5470 | ||
40658b94 | 5471 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1, |
82ccd55e | 5472 | wild_match_p); |
d2e4a39e | 5473 | |
4c4b4cd2 | 5474 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 5475 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 5476 | |
4c4b4cd2 | 5477 | if (num_defns_collected (&symbol_list_obstack) == 0) |
40658b94 | 5478 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0, |
82ccd55e | 5479 | wild_match_p); |
14f9c5c9 | 5480 | |
4c4b4cd2 PH |
5481 | done: |
5482 | ndefns = num_defns_collected (&symbol_list_obstack); | |
5483 | *results = defns_collected (&symbol_list_obstack, 1); | |
5484 | ||
5485 | ndefns = remove_extra_symbols (*results, ndefns); | |
5486 | ||
2ad01556 | 5487 | if (ndefns == 0 && full_search) |
2570f2b7 | 5488 | cache_symbol (name0, namespace, NULL, NULL); |
14f9c5c9 | 5489 | |
2ad01556 | 5490 | if (ndefns == 1 && full_search && cacheIfUnique) |
2570f2b7 | 5491 | cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); |
14f9c5c9 | 5492 | |
aeb5907d | 5493 | ndefns = remove_irrelevant_renamings (*results, ndefns, block0); |
14f9c5c9 | 5494 | |
14f9c5c9 AS |
5495 | return ndefns; |
5496 | } | |
5497 | ||
4eeaa230 DE |
5498 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and |
5499 | in global scopes, returning the number of matches, and setting *RESULTS | |
5500 | to a vector of (SYM,BLOCK) tuples. | |
5501 | See ada_lookup_symbol_list_worker for further details. */ | |
5502 | ||
5503 | int | |
5504 | ada_lookup_symbol_list (const char *name0, const struct block *block0, | |
5505 | domain_enum domain, struct ada_symbol_info **results) | |
5506 | { | |
5507 | return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1); | |
5508 | } | |
5509 | ||
5510 | /* Implementation of the la_iterate_over_symbols method. */ | |
5511 | ||
5512 | static void | |
5513 | ada_iterate_over_symbols (const struct block *block, | |
5514 | const char *name, domain_enum domain, | |
5515 | symbol_found_callback_ftype *callback, | |
5516 | void *data) | |
5517 | { | |
5518 | int ndefs, i; | |
5519 | struct ada_symbol_info *results; | |
5520 | ||
5521 | ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0); | |
5522 | for (i = 0; i < ndefs; ++i) | |
5523 | { | |
5524 | if (! (*callback) (results[i].sym, data)) | |
5525 | break; | |
5526 | } | |
5527 | } | |
5528 | ||
f8eba3c6 TT |
5529 | /* If NAME is the name of an entity, return a string that should |
5530 | be used to look that entity up in Ada units. This string should | |
5531 | be deallocated after use using xfree. | |
5532 | ||
5533 | NAME can have any form that the "break" or "print" commands might | |
5534 | recognize. In other words, it does not have to be the "natural" | |
5535 | name, or the "encoded" name. */ | |
5536 | ||
5537 | char * | |
5538 | ada_name_for_lookup (const char *name) | |
5539 | { | |
5540 | char *canon; | |
5541 | int nlen = strlen (name); | |
5542 | ||
5543 | if (name[0] == '<' && name[nlen - 1] == '>') | |
5544 | { | |
5545 | canon = xmalloc (nlen - 1); | |
5546 | memcpy (canon, name + 1, nlen - 2); | |
5547 | canon[nlen - 2] = '\0'; | |
5548 | } | |
5549 | else | |
5550 | canon = xstrdup (ada_encode (ada_fold_name (name))); | |
5551 | return canon; | |
5552 | } | |
5553 | ||
4e5c77fe JB |
5554 | /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set |
5555 | to 1, but choosing the first symbol found if there are multiple | |
5556 | choices. | |
5557 | ||
5e2336be JB |
5558 | The result is stored in *INFO, which must be non-NULL. |
5559 | If no match is found, INFO->SYM is set to NULL. */ | |
4e5c77fe JB |
5560 | |
5561 | void | |
5562 | ada_lookup_encoded_symbol (const char *name, const struct block *block, | |
5563 | domain_enum namespace, | |
5e2336be | 5564 | struct ada_symbol_info *info) |
14f9c5c9 | 5565 | { |
4c4b4cd2 | 5566 | struct ada_symbol_info *candidates; |
14f9c5c9 AS |
5567 | int n_candidates; |
5568 | ||
5e2336be JB |
5569 | gdb_assert (info != NULL); |
5570 | memset (info, 0, sizeof (struct ada_symbol_info)); | |
4e5c77fe | 5571 | |
4eeaa230 | 5572 | n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates); |
14f9c5c9 | 5573 | if (n_candidates == 0) |
4e5c77fe | 5574 | return; |
4c4b4cd2 | 5575 | |
5e2336be JB |
5576 | *info = candidates[0]; |
5577 | info->sym = fixup_symbol_section (info->sym, NULL); | |
4e5c77fe | 5578 | } |
aeb5907d JB |
5579 | |
5580 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
5581 | scope and in global scopes, or NULL if none. NAME is folded and | |
5582 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
0963b4bd | 5583 | choosing the first symbol if there are multiple choices. |
4e5c77fe JB |
5584 | If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */ |
5585 | ||
aeb5907d JB |
5586 | struct symbol * |
5587 | ada_lookup_symbol (const char *name, const struct block *block0, | |
21b556f4 | 5588 | domain_enum namespace, int *is_a_field_of_this) |
aeb5907d | 5589 | { |
5e2336be | 5590 | struct ada_symbol_info info; |
4e5c77fe | 5591 | |
aeb5907d JB |
5592 | if (is_a_field_of_this != NULL) |
5593 | *is_a_field_of_this = 0; | |
5594 | ||
4e5c77fe | 5595 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), |
5e2336be JB |
5596 | block0, namespace, &info); |
5597 | return info.sym; | |
4c4b4cd2 | 5598 | } |
14f9c5c9 | 5599 | |
4c4b4cd2 PH |
5600 | static struct symbol * |
5601 | ada_lookup_symbol_nonlocal (const char *name, | |
76a01679 | 5602 | const struct block *block, |
21b556f4 | 5603 | const domain_enum domain) |
4c4b4cd2 | 5604 | { |
94af9270 | 5605 | return ada_lookup_symbol (name, block_static_block (block), domain, NULL); |
14f9c5c9 AS |
5606 | } |
5607 | ||
5608 | ||
4c4b4cd2 PH |
5609 | /* True iff STR is a possible encoded suffix of a normal Ada name |
5610 | that is to be ignored for matching purposes. Suffixes of parallel | |
5611 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 5612 | are given by any of the regular expressions: |
4c4b4cd2 | 5613 | |
babe1480 JB |
5614 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
5615 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
9ac7f98e | 5616 | TKB [subprogram suffix for task bodies] |
babe1480 | 5617 | _E[0-9]+[bs]$ [protected object entry suffixes] |
61ee279c | 5618 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
5619 | |
5620 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
5621 | match is performed. This sequence is used to differentiate homonyms, | |
5622 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 5623 | |
14f9c5c9 | 5624 | static int |
d2e4a39e | 5625 | is_name_suffix (const char *str) |
14f9c5c9 AS |
5626 | { |
5627 | int k; | |
4c4b4cd2 PH |
5628 | const char *matching; |
5629 | const int len = strlen (str); | |
5630 | ||
babe1480 JB |
5631 | /* Skip optional leading __[0-9]+. */ |
5632 | ||
4c4b4cd2 PH |
5633 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
5634 | { | |
babe1480 JB |
5635 | str += 3; |
5636 | while (isdigit (str[0])) | |
5637 | str += 1; | |
4c4b4cd2 | 5638 | } |
babe1480 JB |
5639 | |
5640 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 5641 | |
babe1480 | 5642 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 5643 | { |
babe1480 | 5644 | matching = str + 1; |
4c4b4cd2 PH |
5645 | while (isdigit (matching[0])) |
5646 | matching += 1; | |
5647 | if (matching[0] == '\0') | |
5648 | return 1; | |
5649 | } | |
5650 | ||
5651 | /* ___[0-9]+ */ | |
babe1480 | 5652 | |
4c4b4cd2 PH |
5653 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
5654 | { | |
5655 | matching = str + 3; | |
5656 | while (isdigit (matching[0])) | |
5657 | matching += 1; | |
5658 | if (matching[0] == '\0') | |
5659 | return 1; | |
5660 | } | |
5661 | ||
9ac7f98e JB |
5662 | /* "TKB" suffixes are used for subprograms implementing task bodies. */ |
5663 | ||
5664 | if (strcmp (str, "TKB") == 0) | |
5665 | return 1; | |
5666 | ||
529cad9c PH |
5667 | #if 0 |
5668 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
5669 | with a N at the end. Unfortunately, the compiler uses the same |
5670 | convention for other internal types it creates. So treating | |
529cad9c | 5671 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
5672 | some regressions. For instance, consider the case of an enumerated |
5673 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
5674 | name ends with N. |
5675 | Having a single character like this as a suffix carrying some | |
0963b4bd | 5676 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
5677 | to be something like "_N" instead. In the meantime, do not do |
5678 | the following check. */ | |
5679 | /* Protected Object Subprograms */ | |
5680 | if (len == 1 && str [0] == 'N') | |
5681 | return 1; | |
5682 | #endif | |
5683 | ||
5684 | /* _E[0-9]+[bs]$ */ | |
5685 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
5686 | { | |
5687 | matching = str + 3; | |
5688 | while (isdigit (matching[0])) | |
5689 | matching += 1; | |
5690 | if ((matching[0] == 'b' || matching[0] == 's') | |
5691 | && matching [1] == '\0') | |
5692 | return 1; | |
5693 | } | |
5694 | ||
4c4b4cd2 PH |
5695 | /* ??? We should not modify STR directly, as we are doing below. This |
5696 | is fine in this case, but may become problematic later if we find | |
5697 | that this alternative did not work, and want to try matching | |
5698 | another one from the begining of STR. Since we modified it, we | |
5699 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
5700 | if (str[0] == 'X') |
5701 | { | |
5702 | str += 1; | |
d2e4a39e | 5703 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
5704 | { |
5705 | if (str[0] != 'n' && str[0] != 'b') | |
5706 | return 0; | |
5707 | str += 1; | |
5708 | } | |
14f9c5c9 | 5709 | } |
babe1480 | 5710 | |
14f9c5c9 AS |
5711 | if (str[0] == '\000') |
5712 | return 1; | |
babe1480 | 5713 | |
d2e4a39e | 5714 | if (str[0] == '_') |
14f9c5c9 AS |
5715 | { |
5716 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 5717 | return 0; |
d2e4a39e | 5718 | if (str[2] == '_') |
4c4b4cd2 | 5719 | { |
61ee279c PH |
5720 | if (strcmp (str + 3, "JM") == 0) |
5721 | return 1; | |
5722 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
5723 | the LJM suffix in favor of the JM one. But we will | |
5724 | still accept LJM as a valid suffix for a reasonable | |
5725 | amount of time, just to allow ourselves to debug programs | |
5726 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
5727 | if (strcmp (str + 3, "LJM") == 0) |
5728 | return 1; | |
5729 | if (str[3] != 'X') | |
5730 | return 0; | |
1265e4aa JB |
5731 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
5732 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
5733 | return 1; |
5734 | if (str[4] == 'R' && str[5] != 'T') | |
5735 | return 1; | |
5736 | return 0; | |
5737 | } | |
5738 | if (!isdigit (str[2])) | |
5739 | return 0; | |
5740 | for (k = 3; str[k] != '\0'; k += 1) | |
5741 | if (!isdigit (str[k]) && str[k] != '_') | |
5742 | return 0; | |
14f9c5c9 AS |
5743 | return 1; |
5744 | } | |
4c4b4cd2 | 5745 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 5746 | { |
4c4b4cd2 PH |
5747 | for (k = 2; str[k] != '\0'; k += 1) |
5748 | if (!isdigit (str[k]) && str[k] != '_') | |
5749 | return 0; | |
14f9c5c9 AS |
5750 | return 1; |
5751 | } | |
5752 | return 0; | |
5753 | } | |
d2e4a39e | 5754 | |
aeb5907d JB |
5755 | /* Return non-zero if the string starting at NAME and ending before |
5756 | NAME_END contains no capital letters. */ | |
529cad9c PH |
5757 | |
5758 | static int | |
5759 | is_valid_name_for_wild_match (const char *name0) | |
5760 | { | |
5761 | const char *decoded_name = ada_decode (name0); | |
5762 | int i; | |
5763 | ||
5823c3ef JB |
5764 | /* If the decoded name starts with an angle bracket, it means that |
5765 | NAME0 does not follow the GNAT encoding format. It should then | |
5766 | not be allowed as a possible wild match. */ | |
5767 | if (decoded_name[0] == '<') | |
5768 | return 0; | |
5769 | ||
529cad9c PH |
5770 | for (i=0; decoded_name[i] != '\0'; i++) |
5771 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
5772 | return 0; | |
5773 | ||
5774 | return 1; | |
5775 | } | |
5776 | ||
73589123 PH |
5777 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
5778 | that could start a simple name. Assumes that *NAMEP points into | |
5779 | the string beginning at NAME0. */ | |
4c4b4cd2 | 5780 | |
14f9c5c9 | 5781 | static int |
73589123 | 5782 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 5783 | { |
73589123 | 5784 | const char *name = *namep; |
5b4ee69b | 5785 | |
5823c3ef | 5786 | while (1) |
14f9c5c9 | 5787 | { |
aa27d0b3 | 5788 | int t0, t1; |
73589123 PH |
5789 | |
5790 | t0 = *name; | |
5791 | if (t0 == '_') | |
5792 | { | |
5793 | t1 = name[1]; | |
5794 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
5795 | { | |
5796 | name += 1; | |
5797 | if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0) | |
5798 | break; | |
5799 | else | |
5800 | name += 1; | |
5801 | } | |
aa27d0b3 JB |
5802 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
5803 | || name[2] == target0)) | |
73589123 PH |
5804 | { |
5805 | name += 2; | |
5806 | break; | |
5807 | } | |
5808 | else | |
5809 | return 0; | |
5810 | } | |
5811 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
5812 | name += 1; | |
5813 | else | |
5823c3ef | 5814 | return 0; |
73589123 PH |
5815 | } |
5816 | ||
5817 | *namep = name; | |
5818 | return 1; | |
5819 | } | |
5820 | ||
5821 | /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any | |
5822 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
5823 | true). Assumes that PATN is a lower-cased Ada simple name. */ | |
5824 | ||
5825 | static int | |
5826 | wild_match (const char *name, const char *patn) | |
5827 | { | |
22e048c9 | 5828 | const char *p; |
73589123 PH |
5829 | const char *name0 = name; |
5830 | ||
5831 | while (1) | |
5832 | { | |
5833 | const char *match = name; | |
5834 | ||
5835 | if (*name == *patn) | |
5836 | { | |
5837 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
5838 | if (*p != *name) | |
5839 | break; | |
5840 | if (*p == '\0' && is_name_suffix (name)) | |
5841 | return match != name0 && !is_valid_name_for_wild_match (name0); | |
5842 | ||
5843 | if (name[-1] == '_') | |
5844 | name -= 1; | |
5845 | } | |
5846 | if (!advance_wild_match (&name, name0, *patn)) | |
5847 | return 1; | |
96d887e8 | 5848 | } |
96d887e8 PH |
5849 | } |
5850 | ||
40658b94 PH |
5851 | /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from |
5852 | informational suffix. */ | |
5853 | ||
c4d840bd PH |
5854 | static int |
5855 | full_match (const char *sym_name, const char *search_name) | |
5856 | { | |
40658b94 | 5857 | return !match_name (sym_name, search_name, 0); |
c4d840bd PH |
5858 | } |
5859 | ||
5860 | ||
96d887e8 PH |
5861 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
5862 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
0963b4bd | 5863 | (if necessary). If WILD, treat as NAME with a wildcard prefix. |
4eeaa230 | 5864 | OBJFILE is the section containing BLOCK. */ |
96d887e8 PH |
5865 | |
5866 | static void | |
5867 | ada_add_block_symbols (struct obstack *obstackp, | |
f0c5f9b2 | 5868 | const struct block *block, const char *name, |
96d887e8 | 5869 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 5870 | int wild) |
96d887e8 | 5871 | { |
8157b174 | 5872 | struct block_iterator iter; |
96d887e8 PH |
5873 | int name_len = strlen (name); |
5874 | /* A matching argument symbol, if any. */ | |
5875 | struct symbol *arg_sym; | |
5876 | /* Set true when we find a matching non-argument symbol. */ | |
5877 | int found_sym; | |
5878 | struct symbol *sym; | |
5879 | ||
5880 | arg_sym = NULL; | |
5881 | found_sym = 0; | |
5882 | if (wild) | |
5883 | { | |
8157b174 TT |
5884 | for (sym = block_iter_match_first (block, name, wild_match, &iter); |
5885 | sym != NULL; sym = block_iter_match_next (name, wild_match, &iter)) | |
76a01679 | 5886 | { |
b50c8614 | 5887 | if (ada_symbol_matches_domain (SYMBOL_DOMAIN (sym), domain) |
73589123 | 5888 | && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0) |
76a01679 | 5889 | { |
2a2d4dc3 AS |
5890 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
5891 | continue; | |
5892 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5893 | arg_sym = sym; | |
5894 | else | |
5895 | { | |
76a01679 JB |
5896 | found_sym = 1; |
5897 | add_defn_to_vec (obstackp, | |
5898 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 5899 | block); |
76a01679 JB |
5900 | } |
5901 | } | |
5902 | } | |
96d887e8 PH |
5903 | } |
5904 | else | |
5905 | { | |
8157b174 TT |
5906 | for (sym = block_iter_match_first (block, name, full_match, &iter); |
5907 | sym != NULL; sym = block_iter_match_next (name, full_match, &iter)) | |
76a01679 | 5908 | { |
b50c8614 | 5909 | if (ada_symbol_matches_domain (SYMBOL_DOMAIN (sym), domain)) |
76a01679 | 5910 | { |
c4d840bd PH |
5911 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5912 | { | |
5913 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5914 | arg_sym = sym; | |
5915 | else | |
2a2d4dc3 | 5916 | { |
c4d840bd PH |
5917 | found_sym = 1; |
5918 | add_defn_to_vec (obstackp, | |
5919 | fixup_symbol_section (sym, objfile), | |
5920 | block); | |
2a2d4dc3 | 5921 | } |
c4d840bd | 5922 | } |
76a01679 JB |
5923 | } |
5924 | } | |
96d887e8 PH |
5925 | } |
5926 | ||
5927 | if (!found_sym && arg_sym != NULL) | |
5928 | { | |
76a01679 JB |
5929 | add_defn_to_vec (obstackp, |
5930 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 5931 | block); |
96d887e8 PH |
5932 | } |
5933 | ||
5934 | if (!wild) | |
5935 | { | |
5936 | arg_sym = NULL; | |
5937 | found_sym = 0; | |
5938 | ||
5939 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5940 | { |
b50c8614 | 5941 | if (ada_symbol_matches_domain (SYMBOL_DOMAIN (sym), domain)) |
76a01679 JB |
5942 | { |
5943 | int cmp; | |
5944 | ||
5945 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
5946 | if (cmp == 0) | |
5947 | { | |
5948 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); | |
5949 | if (cmp == 0) | |
5950 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
5951 | name_len); | |
5952 | } | |
5953 | ||
5954 | if (cmp == 0 | |
5955 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
5956 | { | |
2a2d4dc3 AS |
5957 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5958 | { | |
5959 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5960 | arg_sym = sym; | |
5961 | else | |
5962 | { | |
5963 | found_sym = 1; | |
5964 | add_defn_to_vec (obstackp, | |
5965 | fixup_symbol_section (sym, objfile), | |
5966 | block); | |
5967 | } | |
5968 | } | |
76a01679 JB |
5969 | } |
5970 | } | |
76a01679 | 5971 | } |
96d887e8 PH |
5972 | |
5973 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
5974 | They aren't parameters, right? */ | |
5975 | if (!found_sym && arg_sym != NULL) | |
5976 | { | |
5977 | add_defn_to_vec (obstackp, | |
76a01679 | 5978 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 5979 | block); |
96d887e8 PH |
5980 | } |
5981 | } | |
5982 | } | |
5983 | \f | |
41d27058 JB |
5984 | |
5985 | /* Symbol Completion */ | |
5986 | ||
5987 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
5988 | name in a form that's appropriate for the completion. The result | |
5989 | does not need to be deallocated, but is only good until the next call. | |
5990 | ||
5991 | TEXT_LEN is equal to the length of TEXT. | |
e701b3c0 | 5992 | Perform a wild match if WILD_MATCH_P is set. |
6ea35997 | 5993 | ENCODED_P should be set if TEXT represents the start of a symbol name |
41d27058 JB |
5994 | in its encoded form. */ |
5995 | ||
5996 | static const char * | |
5997 | symbol_completion_match (const char *sym_name, | |
5998 | const char *text, int text_len, | |
6ea35997 | 5999 | int wild_match_p, int encoded_p) |
41d27058 | 6000 | { |
41d27058 JB |
6001 | const int verbatim_match = (text[0] == '<'); |
6002 | int match = 0; | |
6003 | ||
6004 | if (verbatim_match) | |
6005 | { | |
6006 | /* Strip the leading angle bracket. */ | |
6007 | text = text + 1; | |
6008 | text_len--; | |
6009 | } | |
6010 | ||
6011 | /* First, test against the fully qualified name of the symbol. */ | |
6012 | ||
6013 | if (strncmp (sym_name, text, text_len) == 0) | |
6014 | match = 1; | |
6015 | ||
6ea35997 | 6016 | if (match && !encoded_p) |
41d27058 JB |
6017 | { |
6018 | /* One needed check before declaring a positive match is to verify | |
6019 | that iff we are doing a verbatim match, the decoded version | |
6020 | of the symbol name starts with '<'. Otherwise, this symbol name | |
6021 | is not a suitable completion. */ | |
6022 | const char *sym_name_copy = sym_name; | |
6023 | int has_angle_bracket; | |
6024 | ||
6025 | sym_name = ada_decode (sym_name); | |
6026 | has_angle_bracket = (sym_name[0] == '<'); | |
6027 | match = (has_angle_bracket == verbatim_match); | |
6028 | sym_name = sym_name_copy; | |
6029 | } | |
6030 | ||
6031 | if (match && !verbatim_match) | |
6032 | { | |
6033 | /* When doing non-verbatim match, another check that needs to | |
6034 | be done is to verify that the potentially matching symbol name | |
6035 | does not include capital letters, because the ada-mode would | |
6036 | not be able to understand these symbol names without the | |
6037 | angle bracket notation. */ | |
6038 | const char *tmp; | |
6039 | ||
6040 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
6041 | if (*tmp != '\0') | |
6042 | match = 0; | |
6043 | } | |
6044 | ||
6045 | /* Second: Try wild matching... */ | |
6046 | ||
e701b3c0 | 6047 | if (!match && wild_match_p) |
41d27058 JB |
6048 | { |
6049 | /* Since we are doing wild matching, this means that TEXT | |
6050 | may represent an unqualified symbol name. We therefore must | |
6051 | also compare TEXT against the unqualified name of the symbol. */ | |
6052 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
6053 | ||
6054 | if (strncmp (sym_name, text, text_len) == 0) | |
6055 | match = 1; | |
6056 | } | |
6057 | ||
6058 | /* Finally: If we found a mach, prepare the result to return. */ | |
6059 | ||
6060 | if (!match) | |
6061 | return NULL; | |
6062 | ||
6063 | if (verbatim_match) | |
6064 | sym_name = add_angle_brackets (sym_name); | |
6065 | ||
6ea35997 | 6066 | if (!encoded_p) |
41d27058 JB |
6067 | sym_name = ada_decode (sym_name); |
6068 | ||
6069 | return sym_name; | |
6070 | } | |
6071 | ||
6072 | /* A companion function to ada_make_symbol_completion_list(). | |
6073 | Check if SYM_NAME represents a symbol which name would be suitable | |
6074 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
6075 | it is appended at the end of the given string vector SV. | |
6076 | ||
6077 | ORIG_TEXT is the string original string from the user command | |
6078 | that needs to be completed. WORD is the entire command on which | |
6079 | completion should be performed. These two parameters are used to | |
6080 | determine which part of the symbol name should be added to the | |
6081 | completion vector. | |
c0af1706 | 6082 | if WILD_MATCH_P is set, then wild matching is performed. |
cb8e9b97 | 6083 | ENCODED_P should be set if TEXT represents a symbol name in its |
41d27058 JB |
6084 | encoded formed (in which case the completion should also be |
6085 | encoded). */ | |
6086 | ||
6087 | static void | |
d6565258 | 6088 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
6089 | const char *sym_name, |
6090 | const char *text, int text_len, | |
6091 | const char *orig_text, const char *word, | |
cb8e9b97 | 6092 | int wild_match_p, int encoded_p) |
41d27058 JB |
6093 | { |
6094 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
cb8e9b97 | 6095 | wild_match_p, encoded_p); |
41d27058 JB |
6096 | char *completion; |
6097 | ||
6098 | if (match == NULL) | |
6099 | return; | |
6100 | ||
6101 | /* We found a match, so add the appropriate completion to the given | |
6102 | string vector. */ | |
6103 | ||
6104 | if (word == orig_text) | |
6105 | { | |
6106 | completion = xmalloc (strlen (match) + 5); | |
6107 | strcpy (completion, match); | |
6108 | } | |
6109 | else if (word > orig_text) | |
6110 | { | |
6111 | /* Return some portion of sym_name. */ | |
6112 | completion = xmalloc (strlen (match) + 5); | |
6113 | strcpy (completion, match + (word - orig_text)); | |
6114 | } | |
6115 | else | |
6116 | { | |
6117 | /* Return some of ORIG_TEXT plus sym_name. */ | |
6118 | completion = xmalloc (strlen (match) + (orig_text - word) + 5); | |
6119 | strncpy (completion, word, orig_text - word); | |
6120 | completion[orig_text - word] = '\0'; | |
6121 | strcat (completion, match); | |
6122 | } | |
6123 | ||
d6565258 | 6124 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
6125 | } |
6126 | ||
ccefe4c4 | 6127 | /* An object of this type is passed as the user_data argument to the |
bb4142cf | 6128 | expand_symtabs_matching method. */ |
ccefe4c4 TT |
6129 | struct add_partial_datum |
6130 | { | |
6131 | VEC(char_ptr) **completions; | |
6f937416 | 6132 | const char *text; |
ccefe4c4 | 6133 | int text_len; |
6f937416 PA |
6134 | const char *text0; |
6135 | const char *word; | |
ccefe4c4 TT |
6136 | int wild_match; |
6137 | int encoded; | |
6138 | }; | |
6139 | ||
bb4142cf DE |
6140 | /* A callback for expand_symtabs_matching. */ |
6141 | ||
7b08b9eb | 6142 | static int |
bb4142cf | 6143 | ada_complete_symbol_matcher (const char *name, void *user_data) |
ccefe4c4 TT |
6144 | { |
6145 | struct add_partial_datum *data = user_data; | |
7b08b9eb JK |
6146 | |
6147 | return symbol_completion_match (name, data->text, data->text_len, | |
6148 | data->wild_match, data->encoded) != NULL; | |
ccefe4c4 TT |
6149 | } |
6150 | ||
49c4e619 TT |
6151 | /* Return a list of possible symbol names completing TEXT0. WORD is |
6152 | the entire command on which completion is made. */ | |
41d27058 | 6153 | |
49c4e619 | 6154 | static VEC (char_ptr) * |
6f937416 PA |
6155 | ada_make_symbol_completion_list (const char *text0, const char *word, |
6156 | enum type_code code) | |
41d27058 JB |
6157 | { |
6158 | char *text; | |
6159 | int text_len; | |
b1ed564a JB |
6160 | int wild_match_p; |
6161 | int encoded_p; | |
2ba95b9b | 6162 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 JB |
6163 | struct symbol *sym; |
6164 | struct symtab *s; | |
41d27058 JB |
6165 | struct minimal_symbol *msymbol; |
6166 | struct objfile *objfile; | |
6167 | struct block *b, *surrounding_static_block = 0; | |
6168 | int i; | |
8157b174 | 6169 | struct block_iterator iter; |
b8fea896 | 6170 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
41d27058 | 6171 | |
2f68a895 TT |
6172 | gdb_assert (code == TYPE_CODE_UNDEF); |
6173 | ||
41d27058 JB |
6174 | if (text0[0] == '<') |
6175 | { | |
6176 | text = xstrdup (text0); | |
6177 | make_cleanup (xfree, text); | |
6178 | text_len = strlen (text); | |
b1ed564a JB |
6179 | wild_match_p = 0; |
6180 | encoded_p = 1; | |
41d27058 JB |
6181 | } |
6182 | else | |
6183 | { | |
6184 | text = xstrdup (ada_encode (text0)); | |
6185 | make_cleanup (xfree, text); | |
6186 | text_len = strlen (text); | |
6187 | for (i = 0; i < text_len; i++) | |
6188 | text[i] = tolower (text[i]); | |
6189 | ||
b1ed564a | 6190 | encoded_p = (strstr (text0, "__") != NULL); |
41d27058 JB |
6191 | /* If the name contains a ".", then the user is entering a fully |
6192 | qualified entity name, and the match must not be done in wild | |
6193 | mode. Similarly, if the user wants to complete what looks like | |
6194 | an encoded name, the match must not be done in wild mode. */ | |
b1ed564a | 6195 | wild_match_p = (strchr (text0, '.') == NULL && !encoded_p); |
41d27058 JB |
6196 | } |
6197 | ||
6198 | /* First, look at the partial symtab symbols. */ | |
41d27058 | 6199 | { |
ccefe4c4 TT |
6200 | struct add_partial_datum data; |
6201 | ||
6202 | data.completions = &completions; | |
6203 | data.text = text; | |
6204 | data.text_len = text_len; | |
6205 | data.text0 = text0; | |
6206 | data.word = word; | |
b1ed564a JB |
6207 | data.wild_match = wild_match_p; |
6208 | data.encoded = encoded_p; | |
bb4142cf DE |
6209 | expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN, |
6210 | &data); | |
41d27058 JB |
6211 | } |
6212 | ||
6213 | /* At this point scan through the misc symbol vectors and add each | |
6214 | symbol you find to the list. Eventually we want to ignore | |
6215 | anything that isn't a text symbol (everything else will be | |
6216 | handled by the psymtab code above). */ | |
6217 | ||
6218 | ALL_MSYMBOLS (objfile, msymbol) | |
6219 | { | |
6220 | QUIT; | |
efd66ac6 | 6221 | symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol), |
b1ed564a JB |
6222 | text, text_len, text0, word, wild_match_p, |
6223 | encoded_p); | |
41d27058 JB |
6224 | } |
6225 | ||
6226 | /* Search upwards from currently selected frame (so that we can | |
6227 | complete on local vars. */ | |
6228 | ||
6229 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
6230 | { | |
6231 | if (!BLOCK_SUPERBLOCK (b)) | |
6232 | surrounding_static_block = b; /* For elmin of dups */ | |
6233 | ||
6234 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6235 | { | |
d6565258 | 6236 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6237 | text, text_len, text0, word, |
b1ed564a | 6238 | wild_match_p, encoded_p); |
41d27058 JB |
6239 | } |
6240 | } | |
6241 | ||
6242 | /* Go through the symtabs and check the externs and statics for | |
6243 | symbols which match. */ | |
6244 | ||
6245 | ALL_SYMTABS (objfile, s) | |
6246 | { | |
6247 | QUIT; | |
6248 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
6249 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6250 | { | |
d6565258 | 6251 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6252 | text, text_len, text0, word, |
b1ed564a | 6253 | wild_match_p, encoded_p); |
41d27058 JB |
6254 | } |
6255 | } | |
6256 | ||
6257 | ALL_SYMTABS (objfile, s) | |
6258 | { | |
6259 | QUIT; | |
6260 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
6261 | /* Don't do this block twice. */ | |
6262 | if (b == surrounding_static_block) | |
6263 | continue; | |
6264 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6265 | { | |
d6565258 | 6266 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6267 | text, text_len, text0, word, |
b1ed564a | 6268 | wild_match_p, encoded_p); |
41d27058 JB |
6269 | } |
6270 | } | |
6271 | ||
b8fea896 | 6272 | do_cleanups (old_chain); |
49c4e619 | 6273 | return completions; |
41d27058 JB |
6274 | } |
6275 | ||
963a6417 | 6276 | /* Field Access */ |
96d887e8 | 6277 | |
73fb9985 JB |
6278 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
6279 | for tagged types. */ | |
6280 | ||
6281 | static int | |
6282 | ada_is_dispatch_table_ptr_type (struct type *type) | |
6283 | { | |
0d5cff50 | 6284 | const char *name; |
73fb9985 JB |
6285 | |
6286 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
6287 | return 0; | |
6288 | ||
6289 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
6290 | if (name == NULL) | |
6291 | return 0; | |
6292 | ||
6293 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
6294 | } | |
6295 | ||
ac4a2da4 JG |
6296 | /* Return non-zero if TYPE is an interface tag. */ |
6297 | ||
6298 | static int | |
6299 | ada_is_interface_tag (struct type *type) | |
6300 | { | |
6301 | const char *name = TYPE_NAME (type); | |
6302 | ||
6303 | if (name == NULL) | |
6304 | return 0; | |
6305 | ||
6306 | return (strcmp (name, "ada__tags__interface_tag") == 0); | |
6307 | } | |
6308 | ||
963a6417 PH |
6309 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
6310 | to be invisible to users. */ | |
96d887e8 | 6311 | |
963a6417 PH |
6312 | int |
6313 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 6314 | { |
963a6417 PH |
6315 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
6316 | return 1; | |
ffde82bf | 6317 | |
73fb9985 JB |
6318 | /* Check the name of that field. */ |
6319 | { | |
6320 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
6321 | ||
6322 | /* Anonymous field names should not be printed. | |
6323 | brobecker/2007-02-20: I don't think this can actually happen | |
6324 | but we don't want to print the value of annonymous fields anyway. */ | |
6325 | if (name == NULL) | |
6326 | return 1; | |
6327 | ||
ffde82bf JB |
6328 | /* Normally, fields whose name start with an underscore ("_") |
6329 | are fields that have been internally generated by the compiler, | |
6330 | and thus should not be printed. The "_parent" field is special, | |
6331 | however: This is a field internally generated by the compiler | |
6332 | for tagged types, and it contains the components inherited from | |
6333 | the parent type. This field should not be printed as is, but | |
6334 | should not be ignored either. */ | |
73fb9985 JB |
6335 | if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) |
6336 | return 1; | |
6337 | } | |
6338 | ||
ac4a2da4 JG |
6339 | /* If this is the dispatch table of a tagged type or an interface tag, |
6340 | then ignore. */ | |
73fb9985 | 6341 | if (ada_is_tagged_type (type, 1) |
ac4a2da4 JG |
6342 | && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)) |
6343 | || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num)))) | |
73fb9985 JB |
6344 | return 1; |
6345 | ||
6346 | /* Not a special field, so it should not be ignored. */ | |
6347 | return 0; | |
963a6417 | 6348 | } |
96d887e8 | 6349 | |
963a6417 | 6350 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 6351 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 6352 | |
963a6417 PH |
6353 | int |
6354 | ada_is_tagged_type (struct type *type, int refok) | |
6355 | { | |
6356 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
6357 | } | |
96d887e8 | 6358 | |
963a6417 | 6359 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 6360 | |
963a6417 PH |
6361 | int |
6362 | ada_is_tag_type (struct type *type) | |
6363 | { | |
6364 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) | |
6365 | return 0; | |
6366 | else | |
96d887e8 | 6367 | { |
963a6417 | 6368 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 6369 | |
963a6417 PH |
6370 | return (name != NULL |
6371 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 6372 | } |
96d887e8 PH |
6373 | } |
6374 | ||
963a6417 | 6375 | /* The type of the tag on VAL. */ |
76a01679 | 6376 | |
963a6417 PH |
6377 | struct type * |
6378 | ada_tag_type (struct value *val) | |
96d887e8 | 6379 | { |
df407dfe | 6380 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 6381 | } |
96d887e8 | 6382 | |
b50d69b5 JG |
6383 | /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95, |
6384 | retired at Ada 05). */ | |
6385 | ||
6386 | static int | |
6387 | is_ada95_tag (struct value *tag) | |
6388 | { | |
6389 | return ada_value_struct_elt (tag, "tsd", 1) != NULL; | |
6390 | } | |
6391 | ||
963a6417 | 6392 | /* The value of the tag on VAL. */ |
96d887e8 | 6393 | |
963a6417 PH |
6394 | struct value * |
6395 | ada_value_tag (struct value *val) | |
6396 | { | |
03ee6b2e | 6397 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
6398 | } |
6399 | ||
963a6417 PH |
6400 | /* The value of the tag on the object of type TYPE whose contents are |
6401 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 6402 | ADDRESS. */ |
96d887e8 | 6403 | |
963a6417 | 6404 | static struct value * |
10a2c479 | 6405 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 6406 | const gdb_byte *valaddr, |
963a6417 | 6407 | CORE_ADDR address) |
96d887e8 | 6408 | { |
b5385fc0 | 6409 | int tag_byte_offset; |
963a6417 | 6410 | struct type *tag_type; |
5b4ee69b | 6411 | |
963a6417 | 6412 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 6413 | NULL, NULL, NULL)) |
96d887e8 | 6414 | { |
fc1a4b47 | 6415 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
6416 | ? NULL |
6417 | : valaddr + tag_byte_offset); | |
963a6417 | 6418 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 6419 | |
963a6417 | 6420 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 6421 | } |
963a6417 PH |
6422 | return NULL; |
6423 | } | |
96d887e8 | 6424 | |
963a6417 PH |
6425 | static struct type * |
6426 | type_from_tag (struct value *tag) | |
6427 | { | |
6428 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 6429 | |
963a6417 PH |
6430 | if (type_name != NULL) |
6431 | return ada_find_any_type (ada_encode (type_name)); | |
6432 | return NULL; | |
6433 | } | |
96d887e8 | 6434 | |
b50d69b5 JG |
6435 | /* Given a value OBJ of a tagged type, return a value of this |
6436 | type at the base address of the object. The base address, as | |
6437 | defined in Ada.Tags, it is the address of the primary tag of | |
6438 | the object, and therefore where the field values of its full | |
6439 | view can be fetched. */ | |
6440 | ||
6441 | struct value * | |
6442 | ada_tag_value_at_base_address (struct value *obj) | |
6443 | { | |
6444 | volatile struct gdb_exception e; | |
6445 | struct value *val; | |
6446 | LONGEST offset_to_top = 0; | |
6447 | struct type *ptr_type, *obj_type; | |
6448 | struct value *tag; | |
6449 | CORE_ADDR base_address; | |
6450 | ||
6451 | obj_type = value_type (obj); | |
6452 | ||
6453 | /* It is the responsability of the caller to deref pointers. */ | |
6454 | ||
6455 | if (TYPE_CODE (obj_type) == TYPE_CODE_PTR | |
6456 | || TYPE_CODE (obj_type) == TYPE_CODE_REF) | |
6457 | return obj; | |
6458 | ||
6459 | tag = ada_value_tag (obj); | |
6460 | if (!tag) | |
6461 | return obj; | |
6462 | ||
6463 | /* Base addresses only appeared with Ada 05 and multiple inheritance. */ | |
6464 | ||
6465 | if (is_ada95_tag (tag)) | |
6466 | return obj; | |
6467 | ||
6468 | ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; | |
6469 | ptr_type = lookup_pointer_type (ptr_type); | |
6470 | val = value_cast (ptr_type, tag); | |
6471 | if (!val) | |
6472 | return obj; | |
6473 | ||
6474 | /* It is perfectly possible that an exception be raised while | |
6475 | trying to determine the base address, just like for the tag; | |
6476 | see ada_tag_name for more details. We do not print the error | |
6477 | message for the same reason. */ | |
6478 | ||
6479 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
6480 | { | |
6481 | offset_to_top = value_as_long (value_ind (value_ptradd (val, -2))); | |
6482 | } | |
6483 | ||
6484 | if (e.reason < 0) | |
6485 | return obj; | |
6486 | ||
6487 | /* If offset is null, nothing to do. */ | |
6488 | ||
6489 | if (offset_to_top == 0) | |
6490 | return obj; | |
6491 | ||
6492 | /* -1 is a special case in Ada.Tags; however, what should be done | |
6493 | is not quite clear from the documentation. So do nothing for | |
6494 | now. */ | |
6495 | ||
6496 | if (offset_to_top == -1) | |
6497 | return obj; | |
6498 | ||
6499 | base_address = value_address (obj) - offset_to_top; | |
6500 | tag = value_tag_from_contents_and_address (obj_type, NULL, base_address); | |
6501 | ||
6502 | /* Make sure that we have a proper tag at the new address. | |
6503 | Otherwise, offset_to_top is bogus (which can happen when | |
6504 | the object is not initialized yet). */ | |
6505 | ||
6506 | if (!tag) | |
6507 | return obj; | |
6508 | ||
6509 | obj_type = type_from_tag (tag); | |
6510 | ||
6511 | if (!obj_type) | |
6512 | return obj; | |
6513 | ||
6514 | return value_from_contents_and_address (obj_type, NULL, base_address); | |
6515 | } | |
6516 | ||
1b611343 JB |
6517 | /* Return the "ada__tags__type_specific_data" type. */ |
6518 | ||
6519 | static struct type * | |
6520 | ada_get_tsd_type (struct inferior *inf) | |
963a6417 | 6521 | { |
1b611343 | 6522 | struct ada_inferior_data *data = get_ada_inferior_data (inf); |
4c4b4cd2 | 6523 | |
1b611343 JB |
6524 | if (data->tsd_type == 0) |
6525 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
6526 | return data->tsd_type; | |
6527 | } | |
529cad9c | 6528 | |
1b611343 JB |
6529 | /* Return the TSD (type-specific data) associated to the given TAG. |
6530 | TAG is assumed to be the tag of a tagged-type entity. | |
529cad9c | 6531 | |
1b611343 | 6532 | May return NULL if we are unable to get the TSD. */ |
4c4b4cd2 | 6533 | |
1b611343 JB |
6534 | static struct value * |
6535 | ada_get_tsd_from_tag (struct value *tag) | |
4c4b4cd2 | 6536 | { |
4c4b4cd2 | 6537 | struct value *val; |
1b611343 | 6538 | struct type *type; |
5b4ee69b | 6539 | |
1b611343 JB |
6540 | /* First option: The TSD is simply stored as a field of our TAG. |
6541 | Only older versions of GNAT would use this format, but we have | |
6542 | to test it first, because there are no visible markers for | |
6543 | the current approach except the absence of that field. */ | |
529cad9c | 6544 | |
1b611343 JB |
6545 | val = ada_value_struct_elt (tag, "tsd", 1); |
6546 | if (val) | |
6547 | return val; | |
e802dbe0 | 6548 | |
1b611343 JB |
6549 | /* Try the second representation for the dispatch table (in which |
6550 | there is no explicit 'tsd' field in the referent of the tag pointer, | |
6551 | and instead the tsd pointer is stored just before the dispatch | |
6552 | table. */ | |
e802dbe0 | 6553 | |
1b611343 JB |
6554 | type = ada_get_tsd_type (current_inferior()); |
6555 | if (type == NULL) | |
6556 | return NULL; | |
6557 | type = lookup_pointer_type (lookup_pointer_type (type)); | |
6558 | val = value_cast (type, tag); | |
6559 | if (val == NULL) | |
6560 | return NULL; | |
6561 | return value_ind (value_ptradd (val, -1)); | |
e802dbe0 JB |
6562 | } |
6563 | ||
1b611343 JB |
6564 | /* Given the TSD of a tag (type-specific data), return a string |
6565 | containing the name of the associated type. | |
6566 | ||
6567 | The returned value is good until the next call. May return NULL | |
6568 | if we are unable to determine the tag name. */ | |
6569 | ||
6570 | static char * | |
6571 | ada_tag_name_from_tsd (struct value *tsd) | |
529cad9c | 6572 | { |
529cad9c PH |
6573 | static char name[1024]; |
6574 | char *p; | |
1b611343 | 6575 | struct value *val; |
529cad9c | 6576 | |
1b611343 | 6577 | val = ada_value_struct_elt (tsd, "expanded_name", 1); |
4c4b4cd2 | 6578 | if (val == NULL) |
1b611343 | 6579 | return NULL; |
4c4b4cd2 PH |
6580 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); |
6581 | for (p = name; *p != '\0'; p += 1) | |
6582 | if (isalpha (*p)) | |
6583 | *p = tolower (*p); | |
1b611343 | 6584 | return name; |
4c4b4cd2 PH |
6585 | } |
6586 | ||
6587 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
1b611343 JB |
6588 | a C string. |
6589 | ||
6590 | Return NULL if the TAG is not an Ada tag, or if we were unable to | |
6591 | determine the name of that tag. The result is good until the next | |
6592 | call. */ | |
4c4b4cd2 PH |
6593 | |
6594 | const char * | |
6595 | ada_tag_name (struct value *tag) | |
6596 | { | |
1b611343 JB |
6597 | volatile struct gdb_exception e; |
6598 | char *name = NULL; | |
5b4ee69b | 6599 | |
df407dfe | 6600 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 6601 | return NULL; |
1b611343 JB |
6602 | |
6603 | /* It is perfectly possible that an exception be raised while trying | |
6604 | to determine the TAG's name, even under normal circumstances: | |
6605 | The associated variable may be uninitialized or corrupted, for | |
6606 | instance. We do not let any exception propagate past this point. | |
6607 | instead we return NULL. | |
6608 | ||
6609 | We also do not print the error message either (which often is very | |
6610 | low-level (Eg: "Cannot read memory at 0x[...]"), but instead let | |
6611 | the caller print a more meaningful message if necessary. */ | |
6612 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
6613 | { | |
6614 | struct value *tsd = ada_get_tsd_from_tag (tag); | |
6615 | ||
6616 | if (tsd != NULL) | |
6617 | name = ada_tag_name_from_tsd (tsd); | |
6618 | } | |
6619 | ||
6620 | return name; | |
4c4b4cd2 PH |
6621 | } |
6622 | ||
6623 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 6624 | |
d2e4a39e | 6625 | struct type * |
ebf56fd3 | 6626 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
6627 | { |
6628 | int i; | |
6629 | ||
61ee279c | 6630 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6631 | |
6632 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
6633 | return NULL; | |
6634 | ||
6635 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6636 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
6637 | { |
6638 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
6639 | ||
6640 | /* If the _parent field is a pointer, then dereference it. */ | |
6641 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
6642 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
6643 | /* If there is a parallel XVS type, get the actual base type. */ | |
6644 | parent_type = ada_get_base_type (parent_type); | |
6645 | ||
6646 | return ada_check_typedef (parent_type); | |
6647 | } | |
14f9c5c9 AS |
6648 | |
6649 | return NULL; | |
6650 | } | |
6651 | ||
4c4b4cd2 PH |
6652 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
6653 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
6654 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6655 | |
6656 | int | |
ebf56fd3 | 6657 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 6658 | { |
61ee279c | 6659 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 6660 | |
4c4b4cd2 PH |
6661 | return (name != NULL |
6662 | && (strncmp (name, "PARENT", 6) == 0 | |
6663 | || strncmp (name, "_parent", 7) == 0)); | |
14f9c5c9 AS |
6664 | } |
6665 | ||
4c4b4cd2 | 6666 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 6667 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 6668 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 6669 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 6670 | structures. */ |
14f9c5c9 AS |
6671 | |
6672 | int | |
ebf56fd3 | 6673 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 6674 | { |
d2e4a39e | 6675 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6676 | |
d2e4a39e | 6677 | return (name != NULL |
4c4b4cd2 PH |
6678 | && (strncmp (name, "PARENT", 6) == 0 |
6679 | || strcmp (name, "REP") == 0 | |
6680 | || strncmp (name, "_parent", 7) == 0 | |
6681 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
14f9c5c9 AS |
6682 | } |
6683 | ||
4c4b4cd2 PH |
6684 | /* True iff field number FIELD_NUM of structure or union type TYPE |
6685 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
6686 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6687 | |
6688 | int | |
ebf56fd3 | 6689 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 6690 | { |
d2e4a39e | 6691 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 6692 | |
14f9c5c9 | 6693 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 6694 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
6695 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
6696 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
6697 | } |
6698 | ||
6699 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 6700 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
6701 | returns the type of the controlling discriminant for the variant. |
6702 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 6703 | |
d2e4a39e | 6704 | struct type * |
ebf56fd3 | 6705 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 6706 | { |
d2e4a39e | 6707 | char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 6708 | |
7c964f07 | 6709 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 AS |
6710 | } |
6711 | ||
4c4b4cd2 | 6712 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 6713 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 6714 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
6715 | |
6716 | int | |
ebf56fd3 | 6717 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 6718 | { |
d2e4a39e | 6719 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6720 | |
14f9c5c9 AS |
6721 | return (name != NULL && name[0] == 'O'); |
6722 | } | |
6723 | ||
6724 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
6725 | returns the name of the discriminant controlling the variant. |
6726 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 6727 | |
d2e4a39e | 6728 | char * |
ebf56fd3 | 6729 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 6730 | { |
d2e4a39e | 6731 | static char *result = NULL; |
14f9c5c9 | 6732 | static size_t result_len = 0; |
d2e4a39e AS |
6733 | struct type *type; |
6734 | const char *name; | |
6735 | const char *discrim_end; | |
6736 | const char *discrim_start; | |
14f9c5c9 AS |
6737 | |
6738 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
6739 | type = TYPE_TARGET_TYPE (type0); | |
6740 | else | |
6741 | type = type0; | |
6742 | ||
6743 | name = ada_type_name (type); | |
6744 | ||
6745 | if (name == NULL || name[0] == '\000') | |
6746 | return ""; | |
6747 | ||
6748 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
6749 | discrim_end -= 1) | |
6750 | { | |
4c4b4cd2 PH |
6751 | if (strncmp (discrim_end, "___XVN", 6) == 0) |
6752 | break; | |
14f9c5c9 AS |
6753 | } |
6754 | if (discrim_end == name) | |
6755 | return ""; | |
6756 | ||
d2e4a39e | 6757 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
6758 | discrim_start -= 1) |
6759 | { | |
d2e4a39e | 6760 | if (discrim_start == name + 1) |
4c4b4cd2 | 6761 | return ""; |
76a01679 | 6762 | if ((discrim_start > name + 3 |
4c4b4cd2 PH |
6763 | && strncmp (discrim_start - 3, "___", 3) == 0) |
6764 | || discrim_start[-1] == '.') | |
6765 | break; | |
14f9c5c9 AS |
6766 | } |
6767 | ||
6768 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
6769 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 6770 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
6771 | return result; |
6772 | } | |
6773 | ||
4c4b4cd2 PH |
6774 | /* Scan STR for a subtype-encoded number, beginning at position K. |
6775 | Put the position of the character just past the number scanned in | |
6776 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
6777 | Return 1 if there was a valid number at the given position, and 0 | |
6778 | otherwise. A "subtype-encoded" number consists of the absolute value | |
6779 | in decimal, followed by the letter 'm' to indicate a negative number. | |
6780 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
6781 | |
6782 | int | |
d2e4a39e | 6783 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
6784 | { |
6785 | ULONGEST RU; | |
6786 | ||
d2e4a39e | 6787 | if (!isdigit (str[k])) |
14f9c5c9 AS |
6788 | return 0; |
6789 | ||
4c4b4cd2 | 6790 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 6791 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 6792 | LONGEST. */ |
14f9c5c9 AS |
6793 | RU = 0; |
6794 | while (isdigit (str[k])) | |
6795 | { | |
d2e4a39e | 6796 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
6797 | k += 1; |
6798 | } | |
6799 | ||
d2e4a39e | 6800 | if (str[k] == 'm') |
14f9c5c9 AS |
6801 | { |
6802 | if (R != NULL) | |
4c4b4cd2 | 6803 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
6804 | k += 1; |
6805 | } | |
6806 | else if (R != NULL) | |
6807 | *R = (LONGEST) RU; | |
6808 | ||
4c4b4cd2 | 6809 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
6810 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
6811 | number representable as a LONGEST (although either would probably work | |
6812 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 6813 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
6814 | |
6815 | if (new_k != NULL) | |
6816 | *new_k = k; | |
6817 | return 1; | |
6818 | } | |
6819 | ||
4c4b4cd2 PH |
6820 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
6821 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
6822 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 6823 | |
d2e4a39e | 6824 | int |
ebf56fd3 | 6825 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 6826 | { |
d2e4a39e | 6827 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
6828 | int p; |
6829 | ||
6830 | p = 0; | |
6831 | while (1) | |
6832 | { | |
d2e4a39e | 6833 | switch (name[p]) |
4c4b4cd2 PH |
6834 | { |
6835 | case '\0': | |
6836 | return 0; | |
6837 | case 'S': | |
6838 | { | |
6839 | LONGEST W; | |
5b4ee69b | 6840 | |
4c4b4cd2 PH |
6841 | if (!ada_scan_number (name, p + 1, &W, &p)) |
6842 | return 0; | |
6843 | if (val == W) | |
6844 | return 1; | |
6845 | break; | |
6846 | } | |
6847 | case 'R': | |
6848 | { | |
6849 | LONGEST L, U; | |
5b4ee69b | 6850 | |
4c4b4cd2 PH |
6851 | if (!ada_scan_number (name, p + 1, &L, &p) |
6852 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
6853 | return 0; | |
6854 | if (val >= L && val <= U) | |
6855 | return 1; | |
6856 | break; | |
6857 | } | |
6858 | case 'O': | |
6859 | return 1; | |
6860 | default: | |
6861 | return 0; | |
6862 | } | |
6863 | } | |
6864 | } | |
6865 | ||
0963b4bd | 6866 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
6867 | |
6868 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
6869 | ARG_TYPE, extract and return the value of one of its (non-static) | |
6870 | fields. FIELDNO says which field. Differs from value_primitive_field | |
6871 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 6872 | |
4c4b4cd2 | 6873 | static struct value * |
d2e4a39e | 6874 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 6875 | struct type *arg_type) |
14f9c5c9 | 6876 | { |
14f9c5c9 AS |
6877 | struct type *type; |
6878 | ||
61ee279c | 6879 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
6880 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
6881 | ||
4c4b4cd2 | 6882 | /* Handle packed fields. */ |
14f9c5c9 AS |
6883 | |
6884 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
6885 | { | |
6886 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
6887 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 6888 | |
0fd88904 | 6889 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
6890 | offset + bit_pos / 8, |
6891 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
6892 | } |
6893 | else | |
6894 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
6895 | } | |
6896 | ||
52ce6436 PH |
6897 | /* Find field with name NAME in object of type TYPE. If found, |
6898 | set the following for each argument that is non-null: | |
6899 | - *FIELD_TYPE_P to the field's type; | |
6900 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
6901 | an object of that type; | |
6902 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
6903 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
6904 | 0 otherwise; | |
6905 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
6906 | fields up to but not including the desired field, or by the total | |
6907 | number of fields if not found. A NULL value of NAME never | |
6908 | matches; the function just counts visible fields in this case. | |
6909 | ||
0963b4bd | 6910 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 6911 | |
4c4b4cd2 | 6912 | static int |
0d5cff50 | 6913 | find_struct_field (const char *name, struct type *type, int offset, |
76a01679 | 6914 | struct type **field_type_p, |
52ce6436 PH |
6915 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
6916 | int *index_p) | |
4c4b4cd2 PH |
6917 | { |
6918 | int i; | |
6919 | ||
61ee279c | 6920 | type = ada_check_typedef (type); |
76a01679 | 6921 | |
52ce6436 PH |
6922 | if (field_type_p != NULL) |
6923 | *field_type_p = NULL; | |
6924 | if (byte_offset_p != NULL) | |
d5d6fca5 | 6925 | *byte_offset_p = 0; |
52ce6436 PH |
6926 | if (bit_offset_p != NULL) |
6927 | *bit_offset_p = 0; | |
6928 | if (bit_size_p != NULL) | |
6929 | *bit_size_p = 0; | |
6930 | ||
6931 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
6932 | { |
6933 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
6934 | int fld_offset = offset + bit_pos / 8; | |
0d5cff50 | 6935 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
76a01679 | 6936 | |
4c4b4cd2 PH |
6937 | if (t_field_name == NULL) |
6938 | continue; | |
6939 | ||
52ce6436 | 6940 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
6941 | { |
6942 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 6943 | |
52ce6436 PH |
6944 | if (field_type_p != NULL) |
6945 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
6946 | if (byte_offset_p != NULL) | |
6947 | *byte_offset_p = fld_offset; | |
6948 | if (bit_offset_p != NULL) | |
6949 | *bit_offset_p = bit_pos % 8; | |
6950 | if (bit_size_p != NULL) | |
6951 | *bit_size_p = bit_size; | |
76a01679 JB |
6952 | return 1; |
6953 | } | |
4c4b4cd2 PH |
6954 | else if (ada_is_wrapper_field (type, i)) |
6955 | { | |
52ce6436 PH |
6956 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
6957 | field_type_p, byte_offset_p, bit_offset_p, | |
6958 | bit_size_p, index_p)) | |
76a01679 JB |
6959 | return 1; |
6960 | } | |
4c4b4cd2 PH |
6961 | else if (ada_is_variant_part (type, i)) |
6962 | { | |
52ce6436 PH |
6963 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
6964 | fixed type?? */ | |
4c4b4cd2 | 6965 | int j; |
52ce6436 PH |
6966 | struct type *field_type |
6967 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 6968 | |
52ce6436 | 6969 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6970 | { |
76a01679 JB |
6971 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
6972 | fld_offset | |
6973 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6974 | field_type_p, byte_offset_p, | |
52ce6436 | 6975 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 6976 | return 1; |
4c4b4cd2 PH |
6977 | } |
6978 | } | |
52ce6436 PH |
6979 | else if (index_p != NULL) |
6980 | *index_p += 1; | |
4c4b4cd2 PH |
6981 | } |
6982 | return 0; | |
6983 | } | |
6984 | ||
0963b4bd | 6985 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 6986 | |
52ce6436 PH |
6987 | static int |
6988 | num_visible_fields (struct type *type) | |
6989 | { | |
6990 | int n; | |
5b4ee69b | 6991 | |
52ce6436 PH |
6992 | n = 0; |
6993 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
6994 | return n; | |
6995 | } | |
14f9c5c9 | 6996 | |
4c4b4cd2 | 6997 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
6998 | and search in it assuming it has (class) type TYPE. |
6999 | If found, return value, else return NULL. | |
7000 | ||
4c4b4cd2 | 7001 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 7002 | |
4c4b4cd2 | 7003 | static struct value * |
d2e4a39e | 7004 | ada_search_struct_field (char *name, struct value *arg, int offset, |
4c4b4cd2 | 7005 | struct type *type) |
14f9c5c9 AS |
7006 | { |
7007 | int i; | |
14f9c5c9 | 7008 | |
5b4ee69b | 7009 | type = ada_check_typedef (type); |
52ce6436 | 7010 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 | 7011 | { |
0d5cff50 | 7012 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
7013 | |
7014 | if (t_field_name == NULL) | |
4c4b4cd2 | 7015 | continue; |
14f9c5c9 AS |
7016 | |
7017 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 7018 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
7019 | |
7020 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 7021 | { |
0963b4bd | 7022 | struct value *v = /* Do not let indent join lines here. */ |
06d5cf63 JB |
7023 | ada_search_struct_field (name, arg, |
7024 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7025 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7026 | |
4c4b4cd2 PH |
7027 | if (v != NULL) |
7028 | return v; | |
7029 | } | |
14f9c5c9 AS |
7030 | |
7031 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 7032 | { |
0963b4bd | 7033 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 7034 | int j; |
5b4ee69b MS |
7035 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7036 | i)); | |
4c4b4cd2 PH |
7037 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
7038 | ||
52ce6436 | 7039 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 7040 | { |
0963b4bd MS |
7041 | struct value *v = ada_search_struct_field /* Force line |
7042 | break. */ | |
06d5cf63 JB |
7043 | (name, arg, |
7044 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
7045 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 7046 | |
4c4b4cd2 PH |
7047 | if (v != NULL) |
7048 | return v; | |
7049 | } | |
7050 | } | |
14f9c5c9 AS |
7051 | } |
7052 | return NULL; | |
7053 | } | |
d2e4a39e | 7054 | |
52ce6436 PH |
7055 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
7056 | int, struct type *); | |
7057 | ||
7058 | ||
7059 | /* Return field #INDEX in ARG, where the index is that returned by | |
7060 | * find_struct_field through its INDEX_P argument. Adjust the address | |
7061 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 7062 | * If found, return value, else return NULL. */ |
52ce6436 PH |
7063 | |
7064 | static struct value * | |
7065 | ada_index_struct_field (int index, struct value *arg, int offset, | |
7066 | struct type *type) | |
7067 | { | |
7068 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
7069 | } | |
7070 | ||
7071 | ||
7072 | /* Auxiliary function for ada_index_struct_field. Like | |
7073 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 7074 | * *INDEX_P. */ |
52ce6436 PH |
7075 | |
7076 | static struct value * | |
7077 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
7078 | struct type *type) | |
7079 | { | |
7080 | int i; | |
7081 | type = ada_check_typedef (type); | |
7082 | ||
7083 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7084 | { | |
7085 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
7086 | continue; | |
7087 | else if (ada_is_wrapper_field (type, i)) | |
7088 | { | |
0963b4bd | 7089 | struct value *v = /* Do not let indent join lines here. */ |
52ce6436 PH |
7090 | ada_index_struct_field_1 (index_p, arg, |
7091 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7092 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7093 | |
52ce6436 PH |
7094 | if (v != NULL) |
7095 | return v; | |
7096 | } | |
7097 | ||
7098 | else if (ada_is_variant_part (type, i)) | |
7099 | { | |
7100 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
0963b4bd | 7101 | find_struct_field. */ |
52ce6436 PH |
7102 | error (_("Cannot assign this kind of variant record")); |
7103 | } | |
7104 | else if (*index_p == 0) | |
7105 | return ada_value_primitive_field (arg, offset, i, type); | |
7106 | else | |
7107 | *index_p -= 1; | |
7108 | } | |
7109 | return NULL; | |
7110 | } | |
7111 | ||
4c4b4cd2 PH |
7112 | /* Given ARG, a value of type (pointer or reference to a)* |
7113 | structure/union, extract the component named NAME from the ultimate | |
7114 | target structure/union and return it as a value with its | |
f5938064 | 7115 | appropriate type. |
14f9c5c9 | 7116 | |
4c4b4cd2 PH |
7117 | The routine searches for NAME among all members of the structure itself |
7118 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
7119 | (e.g., '_parent'). |
7120 | ||
03ee6b2e PH |
7121 | If NO_ERR, then simply return NULL in case of error, rather than |
7122 | calling error. */ | |
14f9c5c9 | 7123 | |
d2e4a39e | 7124 | struct value * |
03ee6b2e | 7125 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 7126 | { |
4c4b4cd2 | 7127 | struct type *t, *t1; |
d2e4a39e | 7128 | struct value *v; |
14f9c5c9 | 7129 | |
4c4b4cd2 | 7130 | v = NULL; |
df407dfe | 7131 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
7132 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
7133 | { | |
7134 | t1 = TYPE_TARGET_TYPE (t); | |
7135 | if (t1 == NULL) | |
03ee6b2e | 7136 | goto BadValue; |
61ee279c | 7137 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 7138 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 7139 | { |
994b9211 | 7140 | arg = coerce_ref (arg); |
76a01679 JB |
7141 | t = t1; |
7142 | } | |
4c4b4cd2 | 7143 | } |
14f9c5c9 | 7144 | |
4c4b4cd2 PH |
7145 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
7146 | { | |
7147 | t1 = TYPE_TARGET_TYPE (t); | |
7148 | if (t1 == NULL) | |
03ee6b2e | 7149 | goto BadValue; |
61ee279c | 7150 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 7151 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
7152 | { |
7153 | arg = value_ind (arg); | |
7154 | t = t1; | |
7155 | } | |
4c4b4cd2 | 7156 | else |
76a01679 | 7157 | break; |
4c4b4cd2 | 7158 | } |
14f9c5c9 | 7159 | |
4c4b4cd2 | 7160 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 7161 | goto BadValue; |
14f9c5c9 | 7162 | |
4c4b4cd2 PH |
7163 | if (t1 == t) |
7164 | v = ada_search_struct_field (name, arg, 0, t); | |
7165 | else | |
7166 | { | |
7167 | int bit_offset, bit_size, byte_offset; | |
7168 | struct type *field_type; | |
7169 | CORE_ADDR address; | |
7170 | ||
76a01679 | 7171 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
b50d69b5 | 7172 | address = value_address (ada_value_ind (arg)); |
4c4b4cd2 | 7173 | else |
b50d69b5 | 7174 | address = value_address (ada_coerce_ref (arg)); |
14f9c5c9 | 7175 | |
1ed6ede0 | 7176 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
7177 | if (find_struct_field (name, t1, 0, |
7178 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 7179 | &bit_size, NULL)) |
76a01679 JB |
7180 | { |
7181 | if (bit_size != 0) | |
7182 | { | |
714e53ab PH |
7183 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
7184 | arg = ada_coerce_ref (arg); | |
7185 | else | |
7186 | arg = ada_value_ind (arg); | |
76a01679 JB |
7187 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
7188 | bit_offset, bit_size, | |
7189 | field_type); | |
7190 | } | |
7191 | else | |
f5938064 | 7192 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
7193 | } |
7194 | } | |
7195 | ||
03ee6b2e PH |
7196 | if (v != NULL || no_err) |
7197 | return v; | |
7198 | else | |
323e0a4a | 7199 | error (_("There is no member named %s."), name); |
14f9c5c9 | 7200 | |
03ee6b2e PH |
7201 | BadValue: |
7202 | if (no_err) | |
7203 | return NULL; | |
7204 | else | |
0963b4bd MS |
7205 | error (_("Attempt to extract a component of " |
7206 | "a value that is not a record.")); | |
14f9c5c9 AS |
7207 | } |
7208 | ||
7209 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
7210 | If DISPP is non-null, add its byte displacement from the beginning of a |
7211 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
7212 | work for packed fields). |
7213 | ||
7214 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 7215 | followed by "___". |
14f9c5c9 | 7216 | |
0963b4bd | 7217 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
7218 | be a (pointer or reference)+ to a struct or union, and the |
7219 | ultimate target type will be searched. | |
14f9c5c9 AS |
7220 | |
7221 | Looks recursively into variant clauses and parent types. | |
7222 | ||
4c4b4cd2 PH |
7223 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
7224 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 7225 | |
4c4b4cd2 | 7226 | static struct type * |
76a01679 JB |
7227 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
7228 | int noerr, int *dispp) | |
14f9c5c9 AS |
7229 | { |
7230 | int i; | |
7231 | ||
7232 | if (name == NULL) | |
7233 | goto BadName; | |
7234 | ||
76a01679 | 7235 | if (refok && type != NULL) |
4c4b4cd2 PH |
7236 | while (1) |
7237 | { | |
61ee279c | 7238 | type = ada_check_typedef (type); |
76a01679 JB |
7239 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
7240 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
7241 | break; | |
7242 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 7243 | } |
14f9c5c9 | 7244 | |
76a01679 | 7245 | if (type == NULL |
1265e4aa JB |
7246 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
7247 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 7248 | { |
4c4b4cd2 | 7249 | if (noerr) |
76a01679 | 7250 | return NULL; |
4c4b4cd2 | 7251 | else |
76a01679 JB |
7252 | { |
7253 | target_terminal_ours (); | |
7254 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
7255 | if (type == NULL) |
7256 | error (_("Type (null) is not a structure or union type")); | |
7257 | else | |
7258 | { | |
7259 | /* XXX: type_sprint */ | |
7260 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
7261 | type_print (type, "", gdb_stderr, -1); | |
7262 | error (_(" is not a structure or union type")); | |
7263 | } | |
76a01679 | 7264 | } |
14f9c5c9 AS |
7265 | } |
7266 | ||
7267 | type = to_static_fixed_type (type); | |
7268 | ||
7269 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7270 | { | |
0d5cff50 | 7271 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
7272 | struct type *t; |
7273 | int disp; | |
d2e4a39e | 7274 | |
14f9c5c9 | 7275 | if (t_field_name == NULL) |
4c4b4cd2 | 7276 | continue; |
14f9c5c9 AS |
7277 | |
7278 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
7279 | { |
7280 | if (dispp != NULL) | |
7281 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
61ee279c | 7282 | return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 | 7283 | } |
14f9c5c9 AS |
7284 | |
7285 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
7286 | { |
7287 | disp = 0; | |
7288 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
7289 | 0, 1, &disp); | |
7290 | if (t != NULL) | |
7291 | { | |
7292 | if (dispp != NULL) | |
7293 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
7294 | return t; | |
7295 | } | |
7296 | } | |
14f9c5c9 AS |
7297 | |
7298 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
7299 | { |
7300 | int j; | |
5b4ee69b MS |
7301 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7302 | i)); | |
4c4b4cd2 PH |
7303 | |
7304 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
7305 | { | |
b1f33ddd JB |
7306 | /* FIXME pnh 2008/01/26: We check for a field that is |
7307 | NOT wrapped in a struct, since the compiler sometimes | |
7308 | generates these for unchecked variant types. Revisit | |
0963b4bd | 7309 | if the compiler changes this practice. */ |
0d5cff50 | 7310 | const char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
4c4b4cd2 | 7311 | disp = 0; |
b1f33ddd JB |
7312 | if (v_field_name != NULL |
7313 | && field_name_match (v_field_name, name)) | |
7314 | t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j)); | |
7315 | else | |
0963b4bd MS |
7316 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, |
7317 | j), | |
b1f33ddd JB |
7318 | name, 0, 1, &disp); |
7319 | ||
4c4b4cd2 PH |
7320 | if (t != NULL) |
7321 | { | |
7322 | if (dispp != NULL) | |
7323 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
7324 | return t; | |
7325 | } | |
7326 | } | |
7327 | } | |
14f9c5c9 AS |
7328 | |
7329 | } | |
7330 | ||
7331 | BadName: | |
d2e4a39e | 7332 | if (!noerr) |
14f9c5c9 AS |
7333 | { |
7334 | target_terminal_ours (); | |
7335 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
7336 | if (name == NULL) |
7337 | { | |
7338 | /* XXX: type_sprint */ | |
7339 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
7340 | type_print (type, "", gdb_stderr, -1); | |
7341 | error (_(" has no component named <null>")); | |
7342 | } | |
7343 | else | |
7344 | { | |
7345 | /* XXX: type_sprint */ | |
7346 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
7347 | type_print (type, "", gdb_stderr, -1); | |
7348 | error (_(" has no component named %s"), name); | |
7349 | } | |
14f9c5c9 AS |
7350 | } |
7351 | ||
7352 | return NULL; | |
7353 | } | |
7354 | ||
b1f33ddd JB |
7355 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7356 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
7357 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 7358 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
7359 | |
7360 | static int | |
7361 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
7362 | { | |
7363 | char *discrim_name = ada_variant_discrim_name (var_type); | |
5b4ee69b | 7364 | |
b1f33ddd JB |
7365 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) |
7366 | == NULL); | |
7367 | } | |
7368 | ||
7369 | ||
14f9c5c9 AS |
7370 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7371 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
7372 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
7373 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 7374 | |
d2e4a39e | 7375 | int |
ebf56fd3 | 7376 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 7377 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
7378 | { |
7379 | int others_clause; | |
7380 | int i; | |
d2e4a39e | 7381 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
7382 | struct value *outer; |
7383 | struct value *discrim; | |
14f9c5c9 AS |
7384 | LONGEST discrim_val; |
7385 | ||
0c281816 JB |
7386 | outer = value_from_contents_and_address (outer_type, outer_valaddr, 0); |
7387 | discrim = ada_value_struct_elt (outer, discrim_name, 1); | |
7388 | if (discrim == NULL) | |
14f9c5c9 | 7389 | return -1; |
0c281816 | 7390 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
7391 | |
7392 | others_clause = -1; | |
7393 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
7394 | { | |
7395 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 7396 | others_clause = i; |
14f9c5c9 | 7397 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 7398 | return i; |
14f9c5c9 AS |
7399 | } |
7400 | ||
7401 | return others_clause; | |
7402 | } | |
d2e4a39e | 7403 | \f |
14f9c5c9 AS |
7404 | |
7405 | ||
4c4b4cd2 | 7406 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
7407 | |
7408 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
7409 | (i.e., a size that is not statically recorded in the debugging | |
7410 | data) does not accurately reflect the size or layout of the value. | |
7411 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 7412 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
7413 | |
7414 | /* There is a subtle and tricky problem here. In general, we cannot | |
7415 | determine the size of dynamic records without its data. However, | |
7416 | the 'struct value' data structure, which GDB uses to represent | |
7417 | quantities in the inferior process (the target), requires the size | |
7418 | of the type at the time of its allocation in order to reserve space | |
7419 | for GDB's internal copy of the data. That's why the | |
7420 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 7421 | rather than struct value*s. |
14f9c5c9 AS |
7422 | |
7423 | However, GDB's internal history variables ($1, $2, etc.) are | |
7424 | struct value*s containing internal copies of the data that are not, in | |
7425 | general, the same as the data at their corresponding addresses in | |
7426 | the target. Fortunately, the types we give to these values are all | |
7427 | conventional, fixed-size types (as per the strategy described | |
7428 | above), so that we don't usually have to perform the | |
7429 | 'to_fixed_xxx_type' conversions to look at their values. | |
7430 | Unfortunately, there is one exception: if one of the internal | |
7431 | history variables is an array whose elements are unconstrained | |
7432 | records, then we will need to create distinct fixed types for each | |
7433 | element selected. */ | |
7434 | ||
7435 | /* The upshot of all of this is that many routines take a (type, host | |
7436 | address, target address) triple as arguments to represent a value. | |
7437 | The host address, if non-null, is supposed to contain an internal | |
7438 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 7439 | target at the target address. */ |
14f9c5c9 AS |
7440 | |
7441 | /* Assuming that VAL0 represents a pointer value, the result of | |
7442 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 7443 | dynamic-sized types. */ |
14f9c5c9 | 7444 | |
d2e4a39e AS |
7445 | struct value * |
7446 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 7447 | { |
c48db5ca | 7448 | struct value *val = value_ind (val0); |
5b4ee69b | 7449 | |
b50d69b5 JG |
7450 | if (ada_is_tagged_type (value_type (val), 0)) |
7451 | val = ada_tag_value_at_base_address (val); | |
7452 | ||
4c4b4cd2 | 7453 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
7454 | } |
7455 | ||
7456 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
7457 | qualifiers on VAL0. */ |
7458 | ||
d2e4a39e AS |
7459 | static struct value * |
7460 | ada_coerce_ref (struct value *val0) | |
7461 | { | |
df407dfe | 7462 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
7463 | { |
7464 | struct value *val = val0; | |
5b4ee69b | 7465 | |
994b9211 | 7466 | val = coerce_ref (val); |
b50d69b5 JG |
7467 | |
7468 | if (ada_is_tagged_type (value_type (val), 0)) | |
7469 | val = ada_tag_value_at_base_address (val); | |
7470 | ||
4c4b4cd2 | 7471 | return ada_to_fixed_value (val); |
d2e4a39e AS |
7472 | } |
7473 | else | |
14f9c5c9 AS |
7474 | return val0; |
7475 | } | |
7476 | ||
7477 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 7478 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
7479 | |
7480 | static unsigned int | |
ebf56fd3 | 7481 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
7482 | { |
7483 | return (off + alignment - 1) & ~(alignment - 1); | |
7484 | } | |
7485 | ||
4c4b4cd2 | 7486 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
7487 | |
7488 | static unsigned int | |
ebf56fd3 | 7489 | field_alignment (struct type *type, int f) |
14f9c5c9 | 7490 | { |
d2e4a39e | 7491 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 7492 | int len; |
14f9c5c9 AS |
7493 | int align_offset; |
7494 | ||
64a1bf19 JB |
7495 | /* The field name should never be null, unless the debugging information |
7496 | is somehow malformed. In this case, we assume the field does not | |
7497 | require any alignment. */ | |
7498 | if (name == NULL) | |
7499 | return 1; | |
7500 | ||
7501 | len = strlen (name); | |
7502 | ||
4c4b4cd2 PH |
7503 | if (!isdigit (name[len - 1])) |
7504 | return 1; | |
14f9c5c9 | 7505 | |
d2e4a39e | 7506 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
7507 | align_offset = len - 2; |
7508 | else | |
7509 | align_offset = len - 1; | |
7510 | ||
4c4b4cd2 | 7511 | if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) |
14f9c5c9 AS |
7512 | return TARGET_CHAR_BIT; |
7513 | ||
4c4b4cd2 PH |
7514 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
7515 | } | |
7516 | ||
852dff6c | 7517 | /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */ |
4c4b4cd2 | 7518 | |
852dff6c JB |
7519 | static struct symbol * |
7520 | ada_find_any_type_symbol (const char *name) | |
4c4b4cd2 PH |
7521 | { |
7522 | struct symbol *sym; | |
7523 | ||
7524 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
b50c8614 KS |
7525 | if (sym != NULL |
7526 | && (SYMBOL_DOMAIN (sym) != VAR_DOMAIN | |
7527 | || SYMBOL_CLASS (sym) == LOC_TYPEDEF)) | |
4c4b4cd2 PH |
7528 | return sym; |
7529 | ||
b50c8614 | 7530 | return NULL; |
14f9c5c9 AS |
7531 | } |
7532 | ||
dddfab26 UW |
7533 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
7534 | solely for types defined by debug info, it will not search the GDB | |
7535 | primitive types. */ | |
4c4b4cd2 | 7536 | |
852dff6c | 7537 | static struct type * |
ebf56fd3 | 7538 | ada_find_any_type (const char *name) |
14f9c5c9 | 7539 | { |
852dff6c | 7540 | struct symbol *sym = ada_find_any_type_symbol (name); |
14f9c5c9 | 7541 | |
14f9c5c9 | 7542 | if (sym != NULL) |
dddfab26 | 7543 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 7544 | |
dddfab26 | 7545 | return NULL; |
14f9c5c9 AS |
7546 | } |
7547 | ||
739593e0 JB |
7548 | /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol |
7549 | associated with NAME_SYM's name. NAME_SYM may itself be a renaming | |
7550 | symbol, in which case it is returned. Otherwise, this looks for | |
7551 | symbols whose name is that of NAME_SYM suffixed with "___XR". | |
7552 | Return symbol if found, and NULL otherwise. */ | |
4c4b4cd2 PH |
7553 | |
7554 | struct symbol * | |
270140bd | 7555 | ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block) |
aeb5907d | 7556 | { |
739593e0 | 7557 | const char *name = SYMBOL_LINKAGE_NAME (name_sym); |
aeb5907d JB |
7558 | struct symbol *sym; |
7559 | ||
739593e0 JB |
7560 | if (strstr (name, "___XR") != NULL) |
7561 | return name_sym; | |
7562 | ||
aeb5907d JB |
7563 | sym = find_old_style_renaming_symbol (name, block); |
7564 | ||
7565 | if (sym != NULL) | |
7566 | return sym; | |
7567 | ||
0963b4bd | 7568 | /* Not right yet. FIXME pnh 7/20/2007. */ |
852dff6c | 7569 | sym = ada_find_any_type_symbol (name); |
aeb5907d JB |
7570 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) |
7571 | return sym; | |
7572 | else | |
7573 | return NULL; | |
7574 | } | |
7575 | ||
7576 | static struct symbol * | |
270140bd | 7577 | find_old_style_renaming_symbol (const char *name, const struct block *block) |
4c4b4cd2 | 7578 | { |
7f0df278 | 7579 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
7580 | char *rename; |
7581 | ||
7582 | if (function_sym != NULL) | |
7583 | { | |
7584 | /* If the symbol is defined inside a function, NAME is not fully | |
7585 | qualified. This means we need to prepend the function name | |
7586 | as well as adding the ``___XR'' suffix to build the name of | |
7587 | the associated renaming symbol. */ | |
0d5cff50 | 7588 | const char *function_name = SYMBOL_LINKAGE_NAME (function_sym); |
529cad9c PH |
7589 | /* Function names sometimes contain suffixes used |
7590 | for instance to qualify nested subprograms. When building | |
7591 | the XR type name, we need to make sure that this suffix is | |
7592 | not included. So do not include any suffix in the function | |
7593 | name length below. */ | |
69fadcdf | 7594 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
7595 | const int rename_len = function_name_len + 2 /* "__" */ |
7596 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 7597 | |
529cad9c | 7598 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
7599 | ada_remove_trailing_digits (function_name, &function_name_len); |
7600 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
7601 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 7602 | |
4c4b4cd2 PH |
7603 | /* Library-level functions are a special case, as GNAT adds |
7604 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 7605 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
7606 | have this prefix, so we need to skip this prefix if present. */ |
7607 | if (function_name_len > 5 /* "_ada_" */ | |
7608 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
7609 | { |
7610 | function_name += 5; | |
7611 | function_name_len -= 5; | |
7612 | } | |
4c4b4cd2 PH |
7613 | |
7614 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
7615 | strncpy (rename, function_name, function_name_len); |
7616 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
7617 | "__%s___XR", name); | |
4c4b4cd2 PH |
7618 | } |
7619 | else | |
7620 | { | |
7621 | const int rename_len = strlen (name) + 6; | |
5b4ee69b | 7622 | |
4c4b4cd2 | 7623 | rename = (char *) alloca (rename_len * sizeof (char)); |
88c15c34 | 7624 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
7625 | } |
7626 | ||
852dff6c | 7627 | return ada_find_any_type_symbol (rename); |
4c4b4cd2 PH |
7628 | } |
7629 | ||
14f9c5c9 | 7630 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 7631 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 7632 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
7633 | otherwise return 0. */ |
7634 | ||
14f9c5c9 | 7635 | int |
d2e4a39e | 7636 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
7637 | { |
7638 | if (type1 == NULL) | |
7639 | return 1; | |
7640 | else if (type0 == NULL) | |
7641 | return 0; | |
7642 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
7643 | return 1; | |
7644 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
7645 | return 0; | |
4c4b4cd2 PH |
7646 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
7647 | return 1; | |
ad82864c | 7648 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 7649 | return 1; |
4c4b4cd2 PH |
7650 | else if (ada_is_array_descriptor_type (type0) |
7651 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 7652 | return 1; |
aeb5907d JB |
7653 | else |
7654 | { | |
7655 | const char *type0_name = type_name_no_tag (type0); | |
7656 | const char *type1_name = type_name_no_tag (type1); | |
7657 | ||
7658 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
7659 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
7660 | return 1; | |
7661 | } | |
14f9c5c9 AS |
7662 | return 0; |
7663 | } | |
7664 | ||
7665 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
7666 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
7667 | ||
0d5cff50 | 7668 | const char * |
d2e4a39e | 7669 | ada_type_name (struct type *type) |
14f9c5c9 | 7670 | { |
d2e4a39e | 7671 | if (type == NULL) |
14f9c5c9 AS |
7672 | return NULL; |
7673 | else if (TYPE_NAME (type) != NULL) | |
7674 | return TYPE_NAME (type); | |
7675 | else | |
7676 | return TYPE_TAG_NAME (type); | |
7677 | } | |
7678 | ||
b4ba55a1 JB |
7679 | /* Search the list of "descriptive" types associated to TYPE for a type |
7680 | whose name is NAME. */ | |
7681 | ||
7682 | static struct type * | |
7683 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
7684 | { | |
7685 | struct type *result; | |
7686 | ||
c6044dd1 JB |
7687 | if (ada_ignore_descriptive_types_p) |
7688 | return NULL; | |
7689 | ||
b4ba55a1 JB |
7690 | /* If there no descriptive-type info, then there is no parallel type |
7691 | to be found. */ | |
7692 | if (!HAVE_GNAT_AUX_INFO (type)) | |
7693 | return NULL; | |
7694 | ||
7695 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
7696 | while (result != NULL) | |
7697 | { | |
0d5cff50 | 7698 | const char *result_name = ada_type_name (result); |
b4ba55a1 JB |
7699 | |
7700 | if (result_name == NULL) | |
7701 | { | |
7702 | warning (_("unexpected null name on descriptive type")); | |
7703 | return NULL; | |
7704 | } | |
7705 | ||
7706 | /* If the names match, stop. */ | |
7707 | if (strcmp (result_name, name) == 0) | |
7708 | break; | |
7709 | ||
7710 | /* Otherwise, look at the next item on the list, if any. */ | |
7711 | if (HAVE_GNAT_AUX_INFO (result)) | |
7712 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
7713 | else | |
7714 | result = NULL; | |
7715 | } | |
7716 | ||
7717 | /* If we didn't find a match, see whether this is a packed array. With | |
7718 | older compilers, the descriptive type information is either absent or | |
7719 | irrelevant when it comes to packed arrays so the above lookup fails. | |
7720 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 7721 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
7722 | return ada_find_any_type (name); |
7723 | ||
7724 | return result; | |
7725 | } | |
7726 | ||
7727 | /* Find a parallel type to TYPE with the specified NAME, using the | |
7728 | descriptive type taken from the debugging information, if available, | |
7729 | and otherwise using the (slower) name-based method. */ | |
7730 | ||
7731 | static struct type * | |
7732 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
7733 | { | |
7734 | struct type *result = NULL; | |
7735 | ||
7736 | if (HAVE_GNAT_AUX_INFO (type)) | |
7737 | result = find_parallel_type_by_descriptive_type (type, name); | |
7738 | else | |
7739 | result = ada_find_any_type (name); | |
7740 | ||
7741 | return result; | |
7742 | } | |
7743 | ||
7744 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 7745 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 7746 | |
d2e4a39e | 7747 | struct type * |
ebf56fd3 | 7748 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 7749 | { |
0d5cff50 DE |
7750 | char *name; |
7751 | const char *typename = ada_type_name (type); | |
14f9c5c9 | 7752 | int len; |
d2e4a39e | 7753 | |
14f9c5c9 AS |
7754 | if (typename == NULL) |
7755 | return NULL; | |
7756 | ||
7757 | len = strlen (typename); | |
7758 | ||
b4ba55a1 | 7759 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 AS |
7760 | |
7761 | strcpy (name, typename); | |
7762 | strcpy (name + len, suffix); | |
7763 | ||
b4ba55a1 | 7764 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
7765 | } |
7766 | ||
14f9c5c9 | 7767 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 7768 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 7769 | |
d2e4a39e AS |
7770 | static struct type * |
7771 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 7772 | { |
61ee279c | 7773 | type = ada_check_typedef (type); |
14f9c5c9 AS |
7774 | |
7775 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 7776 | || ada_type_name (type) == NULL) |
14f9c5c9 | 7777 | return NULL; |
d2e4a39e | 7778 | else |
14f9c5c9 AS |
7779 | { |
7780 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 7781 | |
4c4b4cd2 PH |
7782 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
7783 | return type; | |
14f9c5c9 | 7784 | else |
4c4b4cd2 | 7785 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
7786 | } |
7787 | } | |
7788 | ||
7789 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 7790 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 7791 | |
d2e4a39e AS |
7792 | static int |
7793 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
7794 | { |
7795 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 7796 | |
d2e4a39e | 7797 | return name != NULL |
14f9c5c9 AS |
7798 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
7799 | && strstr (name, "___XVL") != NULL; | |
7800 | } | |
7801 | ||
4c4b4cd2 PH |
7802 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
7803 | represent a variant record type. */ | |
14f9c5c9 | 7804 | |
d2e4a39e | 7805 | static int |
4c4b4cd2 | 7806 | variant_field_index (struct type *type) |
14f9c5c9 AS |
7807 | { |
7808 | int f; | |
7809 | ||
4c4b4cd2 PH |
7810 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
7811 | return -1; | |
7812 | ||
7813 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
7814 | { | |
7815 | if (ada_is_variant_part (type, f)) | |
7816 | return f; | |
7817 | } | |
7818 | return -1; | |
14f9c5c9 AS |
7819 | } |
7820 | ||
4c4b4cd2 PH |
7821 | /* A record type with no fields. */ |
7822 | ||
d2e4a39e | 7823 | static struct type * |
e9bb382b | 7824 | empty_record (struct type *template) |
14f9c5c9 | 7825 | { |
e9bb382b | 7826 | struct type *type = alloc_type_copy (template); |
5b4ee69b | 7827 | |
14f9c5c9 AS |
7828 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
7829 | TYPE_NFIELDS (type) = 0; | |
7830 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 7831 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
7832 | TYPE_NAME (type) = "<empty>"; |
7833 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
7834 | TYPE_LENGTH (type) = 0; |
7835 | return type; | |
7836 | } | |
7837 | ||
7838 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
7839 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
7840 | the beginning of this section) VAL according to GNAT conventions. | |
7841 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 7842 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
7843 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
7844 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 7845 | of the variant. |
14f9c5c9 | 7846 | |
4c4b4cd2 PH |
7847 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
7848 | length are not statically known are discarded. As a consequence, | |
7849 | VALADDR, ADDRESS and DVAL0 are ignored. | |
7850 | ||
7851 | NOTE: Limitations: For now, we assume that dynamic fields and | |
7852 | variants occupy whole numbers of bytes. However, they need not be | |
7853 | byte-aligned. */ | |
7854 | ||
7855 | struct type * | |
10a2c479 | 7856 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 7857 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
7858 | CORE_ADDR address, struct value *dval0, |
7859 | int keep_dynamic_fields) | |
14f9c5c9 | 7860 | { |
d2e4a39e AS |
7861 | struct value *mark = value_mark (); |
7862 | struct value *dval; | |
7863 | struct type *rtype; | |
14f9c5c9 | 7864 | int nfields, bit_len; |
4c4b4cd2 | 7865 | int variant_field; |
14f9c5c9 | 7866 | long off; |
d94e4f4f | 7867 | int fld_bit_len; |
14f9c5c9 AS |
7868 | int f; |
7869 | ||
4c4b4cd2 PH |
7870 | /* Compute the number of fields in this record type that are going |
7871 | to be processed: unless keep_dynamic_fields, this includes only | |
7872 | fields whose position and length are static will be processed. */ | |
7873 | if (keep_dynamic_fields) | |
7874 | nfields = TYPE_NFIELDS (type); | |
7875 | else | |
7876 | { | |
7877 | nfields = 0; | |
76a01679 | 7878 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
7879 | && !ada_is_variant_part (type, nfields) |
7880 | && !is_dynamic_field (type, nfields)) | |
7881 | nfields++; | |
7882 | } | |
7883 | ||
e9bb382b | 7884 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
7885 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
7886 | INIT_CPLUS_SPECIFIC (rtype); | |
7887 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 7888 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
7889 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
7890 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
7891 | TYPE_NAME (rtype) = ada_type_name (type); | |
7892 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7893 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 7894 | |
d2e4a39e AS |
7895 | off = 0; |
7896 | bit_len = 0; | |
4c4b4cd2 PH |
7897 | variant_field = -1; |
7898 | ||
14f9c5c9 AS |
7899 | for (f = 0; f < nfields; f += 1) |
7900 | { | |
6c038f32 PH |
7901 | off = align_value (off, field_alignment (type, f)) |
7902 | + TYPE_FIELD_BITPOS (type, f); | |
945b3a32 | 7903 | SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off); |
d2e4a39e | 7904 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 7905 | |
d2e4a39e | 7906 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
7907 | { |
7908 | variant_field = f; | |
d94e4f4f | 7909 | fld_bit_len = 0; |
4c4b4cd2 | 7910 | } |
14f9c5c9 | 7911 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 7912 | { |
284614f0 JB |
7913 | const gdb_byte *field_valaddr = valaddr; |
7914 | CORE_ADDR field_address = address; | |
7915 | struct type *field_type = | |
7916 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
7917 | ||
4c4b4cd2 | 7918 | if (dval0 == NULL) |
b5304971 JG |
7919 | { |
7920 | /* rtype's length is computed based on the run-time | |
7921 | value of discriminants. If the discriminants are not | |
7922 | initialized, the type size may be completely bogus and | |
0963b4bd | 7923 | GDB may fail to allocate a value for it. So check the |
b5304971 JG |
7924 | size first before creating the value. */ |
7925 | check_size (rtype); | |
7926 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
9f1f738a | 7927 | rtype = value_type (dval); |
b5304971 | 7928 | } |
4c4b4cd2 PH |
7929 | else |
7930 | dval = dval0; | |
7931 | ||
284614f0 JB |
7932 | /* If the type referenced by this field is an aligner type, we need |
7933 | to unwrap that aligner type, because its size might not be set. | |
7934 | Keeping the aligner type would cause us to compute the wrong | |
7935 | size for this field, impacting the offset of the all the fields | |
7936 | that follow this one. */ | |
7937 | if (ada_is_aligner_type (field_type)) | |
7938 | { | |
7939 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
7940 | ||
7941 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
7942 | field_address = cond_offset_target (field_address, field_offset); | |
7943 | field_type = ada_aligned_type (field_type); | |
7944 | } | |
7945 | ||
7946 | field_valaddr = cond_offset_host (field_valaddr, | |
7947 | off / TARGET_CHAR_BIT); | |
7948 | field_address = cond_offset_target (field_address, | |
7949 | off / TARGET_CHAR_BIT); | |
7950 | ||
7951 | /* Get the fixed type of the field. Note that, in this case, | |
7952 | we do not want to get the real type out of the tag: if | |
7953 | the current field is the parent part of a tagged record, | |
7954 | we will get the tag of the object. Clearly wrong: the real | |
7955 | type of the parent is not the real type of the child. We | |
7956 | would end up in an infinite loop. */ | |
7957 | field_type = ada_get_base_type (field_type); | |
7958 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
7959 | field_address, dval, 0); | |
27f2a97b JB |
7960 | /* If the field size is already larger than the maximum |
7961 | object size, then the record itself will necessarily | |
7962 | be larger than the maximum object size. We need to make | |
7963 | this check now, because the size might be so ridiculously | |
7964 | large (due to an uninitialized variable in the inferior) | |
7965 | that it would cause an overflow when adding it to the | |
7966 | record size. */ | |
7967 | check_size (field_type); | |
284614f0 JB |
7968 | |
7969 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 | 7970 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
7971 | /* The multiplication can potentially overflow. But because |
7972 | the field length has been size-checked just above, and | |
7973 | assuming that the maximum size is a reasonable value, | |
7974 | an overflow should not happen in practice. So rather than | |
7975 | adding overflow recovery code to this already complex code, | |
7976 | we just assume that it's not going to happen. */ | |
d94e4f4f | 7977 | fld_bit_len = |
4c4b4cd2 PH |
7978 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; |
7979 | } | |
14f9c5c9 | 7980 | else |
4c4b4cd2 | 7981 | { |
5ded5331 JB |
7982 | /* Note: If this field's type is a typedef, it is important |
7983 | to preserve the typedef layer. | |
7984 | ||
7985 | Otherwise, we might be transforming a typedef to a fat | |
7986 | pointer (encoding a pointer to an unconstrained array), | |
7987 | into a basic fat pointer (encoding an unconstrained | |
7988 | array). As both types are implemented using the same | |
7989 | structure, the typedef is the only clue which allows us | |
7990 | to distinguish between the two options. Stripping it | |
7991 | would prevent us from printing this field appropriately. */ | |
7992 | TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); | |
4c4b4cd2 PH |
7993 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
7994 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
d94e4f4f | 7995 | fld_bit_len = |
4c4b4cd2 PH |
7996 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
7997 | else | |
5ded5331 JB |
7998 | { |
7999 | struct type *field_type = TYPE_FIELD_TYPE (type, f); | |
8000 | ||
8001 | /* We need to be careful of typedefs when computing | |
8002 | the length of our field. If this is a typedef, | |
8003 | get the length of the target type, not the length | |
8004 | of the typedef. */ | |
8005 | if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) | |
8006 | field_type = ada_typedef_target_type (field_type); | |
8007 | ||
8008 | fld_bit_len = | |
8009 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; | |
8010 | } | |
4c4b4cd2 | 8011 | } |
14f9c5c9 | 8012 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 8013 | bit_len = off + fld_bit_len; |
d94e4f4f | 8014 | off += fld_bit_len; |
4c4b4cd2 PH |
8015 | TYPE_LENGTH (rtype) = |
8016 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 8017 | } |
4c4b4cd2 PH |
8018 | |
8019 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 8020 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
8021 | the record. This can happen in the presence of representation |
8022 | clauses. */ | |
8023 | if (variant_field >= 0) | |
8024 | { | |
8025 | struct type *branch_type; | |
8026 | ||
8027 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
8028 | ||
8029 | if (dval0 == NULL) | |
9f1f738a SA |
8030 | { |
8031 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
8032 | rtype = value_type (dval); | |
8033 | } | |
4c4b4cd2 PH |
8034 | else |
8035 | dval = dval0; | |
8036 | ||
8037 | branch_type = | |
8038 | to_fixed_variant_branch_type | |
8039 | (TYPE_FIELD_TYPE (type, variant_field), | |
8040 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
8041 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
8042 | if (branch_type == NULL) | |
8043 | { | |
8044 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
8045 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
8046 | TYPE_NFIELDS (rtype) -= 1; | |
8047 | } | |
8048 | else | |
8049 | { | |
8050 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
8051 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8052 | fld_bit_len = | |
8053 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
8054 | TARGET_CHAR_BIT; | |
8055 | if (off + fld_bit_len > bit_len) | |
8056 | bit_len = off + fld_bit_len; | |
8057 | TYPE_LENGTH (rtype) = | |
8058 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
8059 | } | |
8060 | } | |
8061 | ||
714e53ab PH |
8062 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
8063 | should contain the alignment of that record, which should be a strictly | |
8064 | positive value. If null or negative, then something is wrong, most | |
8065 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 8066 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
8067 | the current RTYPE length might be good enough for our purposes. */ |
8068 | if (TYPE_LENGTH (type) <= 0) | |
8069 | { | |
323e0a4a AC |
8070 | if (TYPE_NAME (rtype)) |
8071 | warning (_("Invalid type size for `%s' detected: %d."), | |
8072 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
8073 | else | |
8074 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
8075 | TYPE_LENGTH (type)); | |
714e53ab PH |
8076 | } |
8077 | else | |
8078 | { | |
8079 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
8080 | TYPE_LENGTH (type)); | |
8081 | } | |
14f9c5c9 AS |
8082 | |
8083 | value_free_to_mark (mark); | |
d2e4a39e | 8084 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 8085 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8086 | return rtype; |
8087 | } | |
8088 | ||
4c4b4cd2 PH |
8089 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
8090 | of 1. */ | |
14f9c5c9 | 8091 | |
d2e4a39e | 8092 | static struct type * |
fc1a4b47 | 8093 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
8094 | CORE_ADDR address, struct value *dval0) |
8095 | { | |
8096 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
8097 | address, dval0, 1); | |
8098 | } | |
8099 | ||
8100 | /* An ordinary record type in which ___XVL-convention fields and | |
8101 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
8102 | static approximations, containing all possible fields. Uses | |
8103 | no runtime values. Useless for use in values, but that's OK, | |
8104 | since the results are used only for type determinations. Works on both | |
8105 | structs and unions. Representation note: to save space, we memorize | |
8106 | the result of this function in the TYPE_TARGET_TYPE of the | |
8107 | template type. */ | |
8108 | ||
8109 | static struct type * | |
8110 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
8111 | { |
8112 | struct type *type; | |
8113 | int nfields; | |
8114 | int f; | |
8115 | ||
4c4b4cd2 PH |
8116 | if (TYPE_TARGET_TYPE (type0) != NULL) |
8117 | return TYPE_TARGET_TYPE (type0); | |
8118 | ||
8119 | nfields = TYPE_NFIELDS (type0); | |
8120 | type = type0; | |
14f9c5c9 AS |
8121 | |
8122 | for (f = 0; f < nfields; f += 1) | |
8123 | { | |
61ee279c | 8124 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); |
4c4b4cd2 | 8125 | struct type *new_type; |
14f9c5c9 | 8126 | |
4c4b4cd2 PH |
8127 | if (is_dynamic_field (type0, f)) |
8128 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
14f9c5c9 | 8129 | else |
f192137b | 8130 | new_type = static_unwrap_type (field_type); |
4c4b4cd2 PH |
8131 | if (type == type0 && new_type != field_type) |
8132 | { | |
e9bb382b | 8133 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); |
4c4b4cd2 PH |
8134 | TYPE_CODE (type) = TYPE_CODE (type0); |
8135 | INIT_CPLUS_SPECIFIC (type); | |
8136 | TYPE_NFIELDS (type) = nfields; | |
8137 | TYPE_FIELDS (type) = (struct field *) | |
8138 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
8139 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
8140 | sizeof (struct field) * nfields); | |
8141 | TYPE_NAME (type) = ada_type_name (type0); | |
8142 | TYPE_TAG_NAME (type) = NULL; | |
876cecd0 | 8143 | TYPE_FIXED_INSTANCE (type) = 1; |
4c4b4cd2 PH |
8144 | TYPE_LENGTH (type) = 0; |
8145 | } | |
8146 | TYPE_FIELD_TYPE (type, f) = new_type; | |
8147 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
14f9c5c9 | 8148 | } |
14f9c5c9 AS |
8149 | return type; |
8150 | } | |
8151 | ||
4c4b4cd2 | 8152 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
8153 | whose address in memory is ADDRESS, returns a revision of TYPE, |
8154 | which should be a non-dynamic-sized record, in which the variant | |
8155 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
8156 | for discriminant values in DVAL0, which can be NULL if the record |
8157 | contains the necessary discriminant values. */ | |
8158 | ||
d2e4a39e | 8159 | static struct type * |
fc1a4b47 | 8160 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 8161 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 8162 | { |
d2e4a39e | 8163 | struct value *mark = value_mark (); |
4c4b4cd2 | 8164 | struct value *dval; |
d2e4a39e | 8165 | struct type *rtype; |
14f9c5c9 AS |
8166 | struct type *branch_type; |
8167 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 8168 | int variant_field = variant_field_index (type); |
14f9c5c9 | 8169 | |
4c4b4cd2 | 8170 | if (variant_field == -1) |
14f9c5c9 AS |
8171 | return type; |
8172 | ||
4c4b4cd2 | 8173 | if (dval0 == NULL) |
9f1f738a SA |
8174 | { |
8175 | dval = value_from_contents_and_address (type, valaddr, address); | |
8176 | type = value_type (dval); | |
8177 | } | |
4c4b4cd2 PH |
8178 | else |
8179 | dval = dval0; | |
8180 | ||
e9bb382b | 8181 | rtype = alloc_type_copy (type); |
14f9c5c9 | 8182 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
8183 | INIT_CPLUS_SPECIFIC (rtype); |
8184 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
8185 | TYPE_FIELDS (rtype) = |
8186 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
8187 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 8188 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
8189 | TYPE_NAME (rtype) = ada_type_name (type); |
8190 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 8191 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
8192 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
8193 | ||
4c4b4cd2 PH |
8194 | branch_type = to_fixed_variant_branch_type |
8195 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 8196 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
8197 | TYPE_FIELD_BITPOS (type, variant_field) |
8198 | / TARGET_CHAR_BIT), | |
d2e4a39e | 8199 | cond_offset_target (address, |
4c4b4cd2 PH |
8200 | TYPE_FIELD_BITPOS (type, variant_field) |
8201 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 8202 | if (branch_type == NULL) |
14f9c5c9 | 8203 | { |
4c4b4cd2 | 8204 | int f; |
5b4ee69b | 8205 | |
4c4b4cd2 PH |
8206 | for (f = variant_field + 1; f < nfields; f += 1) |
8207 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 8208 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
8209 | } |
8210 | else | |
8211 | { | |
4c4b4cd2 PH |
8212 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
8213 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8214 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 8215 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 8216 | } |
4c4b4cd2 | 8217 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 8218 | |
4c4b4cd2 | 8219 | value_free_to_mark (mark); |
14f9c5c9 AS |
8220 | return rtype; |
8221 | } | |
8222 | ||
8223 | /* An ordinary record type (with fixed-length fields) that describes | |
8224 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
8225 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
8226 | should be in DVAL, a record value; it may be NULL if the object |
8227 | at ADDR itself contains any necessary discriminant values. | |
8228 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
8229 | values from the record are needed. Except in the case that DVAL, | |
8230 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
8231 | unchecked) is replaced by a particular branch of the variant. | |
8232 | ||
8233 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
8234 | is questionable and may be removed. It can arise during the | |
8235 | processing of an unconstrained-array-of-record type where all the | |
8236 | variant branches have exactly the same size. This is because in | |
8237 | such cases, the compiler does not bother to use the XVS convention | |
8238 | when encoding the record. I am currently dubious of this | |
8239 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 8240 | |
d2e4a39e | 8241 | static struct type * |
fc1a4b47 | 8242 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8243 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 8244 | { |
d2e4a39e | 8245 | struct type *templ_type; |
14f9c5c9 | 8246 | |
876cecd0 | 8247 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8248 | return type0; |
8249 | ||
d2e4a39e | 8250 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
8251 | |
8252 | if (templ_type != NULL) | |
8253 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
8254 | else if (variant_field_index (type0) >= 0) |
8255 | { | |
8256 | if (dval == NULL && valaddr == NULL && address == 0) | |
8257 | return type0; | |
8258 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
8259 | dval); | |
8260 | } | |
14f9c5c9 AS |
8261 | else |
8262 | { | |
876cecd0 | 8263 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
8264 | return type0; |
8265 | } | |
8266 | ||
8267 | } | |
8268 | ||
8269 | /* An ordinary record type (with fixed-length fields) that describes | |
8270 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
8271 | union type. Any necessary discriminants' values should be in DVAL, | |
8272 | a record value. That is, this routine selects the appropriate | |
8273 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 8274 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 8275 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 8276 | |
d2e4a39e | 8277 | static struct type * |
fc1a4b47 | 8278 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8279 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
8280 | { |
8281 | int which; | |
d2e4a39e AS |
8282 | struct type *templ_type; |
8283 | struct type *var_type; | |
14f9c5c9 AS |
8284 | |
8285 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
8286 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 8287 | else |
14f9c5c9 AS |
8288 | var_type = var_type0; |
8289 | ||
8290 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
8291 | ||
8292 | if (templ_type != NULL) | |
8293 | var_type = templ_type; | |
8294 | ||
b1f33ddd JB |
8295 | if (is_unchecked_variant (var_type, value_type (dval))) |
8296 | return var_type0; | |
d2e4a39e AS |
8297 | which = |
8298 | ada_which_variant_applies (var_type, | |
0fd88904 | 8299 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
8300 | |
8301 | if (which < 0) | |
e9bb382b | 8302 | return empty_record (var_type); |
14f9c5c9 | 8303 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 8304 | return to_fixed_record_type |
d2e4a39e AS |
8305 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
8306 | valaddr, address, dval); | |
4c4b4cd2 | 8307 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
8308 | return |
8309 | to_fixed_record_type | |
8310 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
8311 | else |
8312 | return TYPE_FIELD_TYPE (var_type, which); | |
8313 | } | |
8314 | ||
8315 | /* Assuming that TYPE0 is an array type describing the type of a value | |
8316 | at ADDR, and that DVAL describes a record containing any | |
8317 | discriminants used in TYPE0, returns a type for the value that | |
8318 | contains no dynamic components (that is, no components whose sizes | |
8319 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
8320 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 8321 | varsize_limit. */ |
14f9c5c9 | 8322 | |
d2e4a39e AS |
8323 | static struct type * |
8324 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 8325 | int ignore_too_big) |
14f9c5c9 | 8326 | { |
d2e4a39e AS |
8327 | struct type *index_type_desc; |
8328 | struct type *result; | |
ad82864c | 8329 | int constrained_packed_array_p; |
14f9c5c9 | 8330 | |
b0dd7688 | 8331 | type0 = ada_check_typedef (type0); |
284614f0 | 8332 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 8333 | return type0; |
14f9c5c9 | 8334 | |
ad82864c JB |
8335 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
8336 | if (constrained_packed_array_p) | |
8337 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 8338 | |
14f9c5c9 | 8339 | index_type_desc = ada_find_parallel_type (type0, "___XA"); |
28c85d6c | 8340 | ada_fixup_array_indexes_type (index_type_desc); |
14f9c5c9 AS |
8341 | if (index_type_desc == NULL) |
8342 | { | |
61ee279c | 8343 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 8344 | |
14f9c5c9 | 8345 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
8346 | depend on the contents of the array in properly constructed |
8347 | debugging data. */ | |
529cad9c PH |
8348 | /* Create a fixed version of the array element type. |
8349 | We're not providing the address of an element here, | |
e1d5a0d2 | 8350 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8351 | the conversion. This should not be a problem, since arrays of |
8352 | unconstrained objects are not allowed. In particular, all | |
8353 | the elements of an array of a tagged type should all be of | |
8354 | the same type specified in the debugging info. No need to | |
8355 | consult the object tag. */ | |
1ed6ede0 | 8356 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 8357 | |
284614f0 JB |
8358 | /* Make sure we always create a new array type when dealing with |
8359 | packed array types, since we're going to fix-up the array | |
8360 | type length and element bitsize a little further down. */ | |
ad82864c | 8361 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 8362 | result = type0; |
14f9c5c9 | 8363 | else |
e9bb382b | 8364 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 8365 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
8366 | } |
8367 | else | |
8368 | { | |
8369 | int i; | |
8370 | struct type *elt_type0; | |
8371 | ||
8372 | elt_type0 = type0; | |
8373 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 8374 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
8375 | |
8376 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
8377 | depend on the contents of the array in properly constructed |
8378 | debugging data. */ | |
529cad9c PH |
8379 | /* Create a fixed version of the array element type. |
8380 | We're not providing the address of an element here, | |
e1d5a0d2 | 8381 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8382 | the conversion. This should not be a problem, since arrays of |
8383 | unconstrained objects are not allowed. In particular, all | |
8384 | the elements of an array of a tagged type should all be of | |
8385 | the same type specified in the debugging info. No need to | |
8386 | consult the object tag. */ | |
1ed6ede0 JB |
8387 | result = |
8388 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
8389 | |
8390 | elt_type0 = type0; | |
14f9c5c9 | 8391 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
8392 | { |
8393 | struct type *range_type = | |
28c85d6c | 8394 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 8395 | |
e9bb382b | 8396 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 8397 | result, range_type); |
1ce677a4 | 8398 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 8399 | } |
d2e4a39e | 8400 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 8401 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8402 | } |
8403 | ||
2e6fda7d JB |
8404 | /* We want to preserve the type name. This can be useful when |
8405 | trying to get the type name of a value that has already been | |
8406 | printed (for instance, if the user did "print VAR; whatis $". */ | |
8407 | TYPE_NAME (result) = TYPE_NAME (type0); | |
8408 | ||
ad82864c | 8409 | if (constrained_packed_array_p) |
284614f0 JB |
8410 | { |
8411 | /* So far, the resulting type has been created as if the original | |
8412 | type was a regular (non-packed) array type. As a result, the | |
8413 | bitsize of the array elements needs to be set again, and the array | |
8414 | length needs to be recomputed based on that bitsize. */ | |
8415 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
8416 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
8417 | ||
8418 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
8419 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
8420 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
8421 | TYPE_LENGTH (result)++; | |
8422 | } | |
8423 | ||
876cecd0 | 8424 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 8425 | return result; |
d2e4a39e | 8426 | } |
14f9c5c9 AS |
8427 | |
8428 | ||
8429 | /* A standard type (containing no dynamically sized components) | |
8430 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
8431 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 8432 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
8433 | ADDRESS or in VALADDR contains these discriminants. |
8434 | ||
1ed6ede0 JB |
8435 | If CHECK_TAG is not null, in the case of tagged types, this function |
8436 | attempts to locate the object's tag and use it to compute the actual | |
8437 | type. However, when ADDRESS is null, we cannot use it to determine the | |
8438 | location of the tag, and therefore compute the tagged type's actual type. | |
8439 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 8440 | |
f192137b JB |
8441 | static struct type * |
8442 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 8443 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 8444 | { |
61ee279c | 8445 | type = ada_check_typedef (type); |
d2e4a39e AS |
8446 | switch (TYPE_CODE (type)) |
8447 | { | |
8448 | default: | |
14f9c5c9 | 8449 | return type; |
d2e4a39e | 8450 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 8451 | { |
76a01679 | 8452 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
8453 | struct type *fixed_record_type = |
8454 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 8455 | |
529cad9c PH |
8456 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
8457 | then we can determine its tag, and compute the object's actual | |
0963b4bd | 8458 | type from there. Note that we have to use the fixed record |
1ed6ede0 JB |
8459 | type (the parent part of the record may have dynamic fields |
8460 | and the way the location of _tag is expressed may depend on | |
8461 | them). */ | |
529cad9c | 8462 | |
1ed6ede0 | 8463 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 | 8464 | { |
b50d69b5 JG |
8465 | struct value *tag = |
8466 | value_tag_from_contents_and_address | |
8467 | (fixed_record_type, | |
8468 | valaddr, | |
8469 | address); | |
8470 | struct type *real_type = type_from_tag (tag); | |
8471 | struct value *obj = | |
8472 | value_from_contents_and_address (fixed_record_type, | |
8473 | valaddr, | |
8474 | address); | |
9f1f738a | 8475 | fixed_record_type = value_type (obj); |
76a01679 | 8476 | if (real_type != NULL) |
b50d69b5 JG |
8477 | return to_fixed_record_type |
8478 | (real_type, NULL, | |
8479 | value_address (ada_tag_value_at_base_address (obj)), NULL); | |
76a01679 | 8480 | } |
4af88198 JB |
8481 | |
8482 | /* Check to see if there is a parallel ___XVZ variable. | |
8483 | If there is, then it provides the actual size of our type. */ | |
8484 | else if (ada_type_name (fixed_record_type) != NULL) | |
8485 | { | |
0d5cff50 | 8486 | const char *name = ada_type_name (fixed_record_type); |
4af88198 JB |
8487 | char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */); |
8488 | int xvz_found = 0; | |
8489 | LONGEST size; | |
8490 | ||
88c15c34 | 8491 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
4af88198 JB |
8492 | size = get_int_var_value (xvz_name, &xvz_found); |
8493 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
8494 | { | |
8495 | fixed_record_type = copy_type (fixed_record_type); | |
8496 | TYPE_LENGTH (fixed_record_type) = size; | |
8497 | ||
8498 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
8499 | observed this when the debugging info is STABS, and | |
8500 | apparently it is something that is hard to fix. | |
8501 | ||
8502 | In practice, we don't need the actual type definition | |
8503 | at all, because the presence of the XVZ variable allows us | |
8504 | to assume that there must be a XVS type as well, which we | |
8505 | should be able to use later, when we need the actual type | |
8506 | definition. | |
8507 | ||
8508 | In the meantime, pretend that the "fixed" type we are | |
8509 | returning is NOT a stub, because this can cause trouble | |
8510 | when using this type to create new types targeting it. | |
8511 | Indeed, the associated creation routines often check | |
8512 | whether the target type is a stub and will try to replace | |
0963b4bd | 8513 | it, thus using a type with the wrong size. This, in turn, |
4af88198 JB |
8514 | might cause the new type to have the wrong size too. |
8515 | Consider the case of an array, for instance, where the size | |
8516 | of the array is computed from the number of elements in | |
8517 | our array multiplied by the size of its element. */ | |
8518 | TYPE_STUB (fixed_record_type) = 0; | |
8519 | } | |
8520 | } | |
1ed6ede0 | 8521 | return fixed_record_type; |
4c4b4cd2 | 8522 | } |
d2e4a39e | 8523 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 8524 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
8525 | case TYPE_CODE_UNION: |
8526 | if (dval == NULL) | |
4c4b4cd2 | 8527 | return type; |
d2e4a39e | 8528 | else |
4c4b4cd2 | 8529 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 8530 | } |
14f9c5c9 AS |
8531 | } |
8532 | ||
f192137b JB |
8533 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
8534 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
8535 | |
8536 | The typedef layer needs be preserved in order to differentiate between | |
8537 | arrays and array pointers when both types are implemented using the same | |
8538 | fat pointer. In the array pointer case, the pointer is encoded as | |
8539 | a typedef of the pointer type. For instance, considering: | |
8540 | ||
8541 | type String_Access is access String; | |
8542 | S1 : String_Access := null; | |
8543 | ||
8544 | To the debugger, S1 is defined as a typedef of type String. But | |
8545 | to the user, it is a pointer. So if the user tries to print S1, | |
8546 | we should not dereference the array, but print the array address | |
8547 | instead. | |
8548 | ||
8549 | If we didn't preserve the typedef layer, we would lose the fact that | |
8550 | the type is to be presented as a pointer (needs de-reference before | |
8551 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
8552 | |
8553 | struct type * | |
8554 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
8555 | CORE_ADDR address, struct value *dval, int check_tag) | |
8556 | ||
8557 | { | |
8558 | struct type *fixed_type = | |
8559 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
8560 | ||
96dbd2c1 JB |
8561 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
8562 | then preserve the typedef layer. | |
8563 | ||
8564 | Implementation note: We can only check the main-type portion of | |
8565 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
8566 | from TYPE now returns a type that has the same instance flags | |
8567 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
8568 | target type is a "struct", then the typedef elimination will return | |
8569 | a "const" version of the target type. See check_typedef for more | |
8570 | details about how the typedef layer elimination is done. | |
8571 | ||
8572 | brobecker/2010-11-19: It seems to me that the only case where it is | |
8573 | useful to preserve the typedef layer is when dealing with fat pointers. | |
8574 | Perhaps, we could add a check for that and preserve the typedef layer | |
8575 | only in that situation. But this seems unecessary so far, probably | |
8576 | because we call check_typedef/ada_check_typedef pretty much everywhere. | |
8577 | */ | |
f192137b | 8578 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF |
720d1a40 | 8579 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 8580 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
8581 | return type; |
8582 | ||
8583 | return fixed_type; | |
8584 | } | |
8585 | ||
14f9c5c9 | 8586 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 8587 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 8588 | |
d2e4a39e AS |
8589 | static struct type * |
8590 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 8591 | { |
d2e4a39e | 8592 | struct type *type; |
14f9c5c9 AS |
8593 | |
8594 | if (type0 == NULL) | |
8595 | return NULL; | |
8596 | ||
876cecd0 | 8597 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8598 | return type0; |
8599 | ||
61ee279c | 8600 | type0 = ada_check_typedef (type0); |
d2e4a39e | 8601 | |
14f9c5c9 AS |
8602 | switch (TYPE_CODE (type0)) |
8603 | { | |
8604 | default: | |
8605 | return type0; | |
8606 | case TYPE_CODE_STRUCT: | |
8607 | type = dynamic_template_type (type0); | |
d2e4a39e | 8608 | if (type != NULL) |
4c4b4cd2 PH |
8609 | return template_to_static_fixed_type (type); |
8610 | else | |
8611 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
8612 | case TYPE_CODE_UNION: |
8613 | type = ada_find_parallel_type (type0, "___XVU"); | |
8614 | if (type != NULL) | |
4c4b4cd2 PH |
8615 | return template_to_static_fixed_type (type); |
8616 | else | |
8617 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
8618 | } |
8619 | } | |
8620 | ||
4c4b4cd2 PH |
8621 | /* A static approximation of TYPE with all type wrappers removed. */ |
8622 | ||
d2e4a39e AS |
8623 | static struct type * |
8624 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
8625 | { |
8626 | if (ada_is_aligner_type (type)) | |
8627 | { | |
61ee279c | 8628 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 8629 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 8630 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
8631 | |
8632 | return static_unwrap_type (type1); | |
8633 | } | |
d2e4a39e | 8634 | else |
14f9c5c9 | 8635 | { |
d2e4a39e | 8636 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 8637 | |
d2e4a39e | 8638 | if (raw_real_type == type) |
4c4b4cd2 | 8639 | return type; |
14f9c5c9 | 8640 | else |
4c4b4cd2 | 8641 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
8642 | } |
8643 | } | |
8644 | ||
8645 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 8646 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
8647 | type Foo; |
8648 | type FooP is access Foo; | |
8649 | V: FooP; | |
8650 | type Foo is array ...; | |
4c4b4cd2 | 8651 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
8652 | cross-references to such types, we instead substitute for FooP a |
8653 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 8654 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
8655 | |
8656 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
8657 | exists, otherwise TYPE. */ |
8658 | ||
d2e4a39e | 8659 | struct type * |
61ee279c | 8660 | ada_check_typedef (struct type *type) |
14f9c5c9 | 8661 | { |
727e3d2e JB |
8662 | if (type == NULL) |
8663 | return NULL; | |
8664 | ||
720d1a40 JB |
8665 | /* If our type is a typedef type of a fat pointer, then we're done. |
8666 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is | |
8667 | what allows us to distinguish between fat pointers that represent | |
8668 | array types, and fat pointers that represent array access types | |
8669 | (in both cases, the compiler implements them as fat pointers). */ | |
8670 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
8671 | && is_thick_pntr (ada_typedef_target_type (type))) | |
8672 | return type; | |
8673 | ||
14f9c5c9 AS |
8674 | CHECK_TYPEDEF (type); |
8675 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM | |
529cad9c | 8676 | || !TYPE_STUB (type) |
14f9c5c9 AS |
8677 | || TYPE_TAG_NAME (type) == NULL) |
8678 | return type; | |
d2e4a39e | 8679 | else |
14f9c5c9 | 8680 | { |
0d5cff50 | 8681 | const char *name = TYPE_TAG_NAME (type); |
d2e4a39e | 8682 | struct type *type1 = ada_find_any_type (name); |
5b4ee69b | 8683 | |
05e522ef JB |
8684 | if (type1 == NULL) |
8685 | return type; | |
8686 | ||
8687 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
8688 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
8689 | types, only for the typedef-to-array types). If that's the case, |
8690 | strip the typedef layer. */ | |
8691 | if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) | |
8692 | type1 = ada_check_typedef (type1); | |
8693 | ||
8694 | return type1; | |
14f9c5c9 AS |
8695 | } |
8696 | } | |
8697 | ||
8698 | /* A value representing the data at VALADDR/ADDRESS as described by | |
8699 | type TYPE0, but with a standard (static-sized) type that correctly | |
8700 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
8701 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 8702 | creation of struct values]. */ |
14f9c5c9 | 8703 | |
4c4b4cd2 PH |
8704 | static struct value * |
8705 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
8706 | struct value *val0) | |
14f9c5c9 | 8707 | { |
1ed6ede0 | 8708 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 8709 | |
14f9c5c9 AS |
8710 | if (type == type0 && val0 != NULL) |
8711 | return val0; | |
d2e4a39e | 8712 | else |
4c4b4cd2 PH |
8713 | return value_from_contents_and_address (type, 0, address); |
8714 | } | |
8715 | ||
8716 | /* A value representing VAL, but with a standard (static-sized) type | |
8717 | that correctly describes it. Does not necessarily create a new | |
8718 | value. */ | |
8719 | ||
0c3acc09 | 8720 | struct value * |
4c4b4cd2 PH |
8721 | ada_to_fixed_value (struct value *val) |
8722 | { | |
c48db5ca JB |
8723 | val = unwrap_value (val); |
8724 | val = ada_to_fixed_value_create (value_type (val), | |
8725 | value_address (val), | |
8726 | val); | |
8727 | return val; | |
14f9c5c9 | 8728 | } |
d2e4a39e | 8729 | \f |
14f9c5c9 | 8730 | |
14f9c5c9 AS |
8731 | /* Attributes */ |
8732 | ||
4c4b4cd2 PH |
8733 | /* Table mapping attribute numbers to names. |
8734 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 8735 | |
d2e4a39e | 8736 | static const char *attribute_names[] = { |
14f9c5c9 AS |
8737 | "<?>", |
8738 | ||
d2e4a39e | 8739 | "first", |
14f9c5c9 AS |
8740 | "last", |
8741 | "length", | |
8742 | "image", | |
14f9c5c9 AS |
8743 | "max", |
8744 | "min", | |
4c4b4cd2 PH |
8745 | "modulus", |
8746 | "pos", | |
8747 | "size", | |
8748 | "tag", | |
14f9c5c9 | 8749 | "val", |
14f9c5c9 AS |
8750 | 0 |
8751 | }; | |
8752 | ||
d2e4a39e | 8753 | const char * |
4c4b4cd2 | 8754 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 8755 | { |
4c4b4cd2 PH |
8756 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
8757 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
8758 | else |
8759 | return attribute_names[0]; | |
8760 | } | |
8761 | ||
4c4b4cd2 | 8762 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 8763 | |
4c4b4cd2 PH |
8764 | static LONGEST |
8765 | pos_atr (struct value *arg) | |
14f9c5c9 | 8766 | { |
24209737 PH |
8767 | struct value *val = coerce_ref (arg); |
8768 | struct type *type = value_type (val); | |
14f9c5c9 | 8769 | |
d2e4a39e | 8770 | if (!discrete_type_p (type)) |
323e0a4a | 8771 | error (_("'POS only defined on discrete types")); |
14f9c5c9 AS |
8772 | |
8773 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8774 | { | |
8775 | int i; | |
24209737 | 8776 | LONGEST v = value_as_long (val); |
14f9c5c9 | 8777 | |
d2e4a39e | 8778 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
4c4b4cd2 | 8779 | { |
14e75d8e | 8780 | if (v == TYPE_FIELD_ENUMVAL (type, i)) |
4c4b4cd2 PH |
8781 | return i; |
8782 | } | |
323e0a4a | 8783 | error (_("enumeration value is invalid: can't find 'POS")); |
14f9c5c9 AS |
8784 | } |
8785 | else | |
24209737 | 8786 | return value_as_long (val); |
4c4b4cd2 PH |
8787 | } |
8788 | ||
8789 | static struct value * | |
3cb382c9 | 8790 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 8791 | { |
3cb382c9 | 8792 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
8793 | } |
8794 | ||
4c4b4cd2 | 8795 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 8796 | |
d2e4a39e AS |
8797 | static struct value * |
8798 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 8799 | { |
d2e4a39e | 8800 | if (!discrete_type_p (type)) |
323e0a4a | 8801 | error (_("'VAL only defined on discrete types")); |
df407dfe | 8802 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 8803 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
8804 | |
8805 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8806 | { | |
8807 | long pos = value_as_long (arg); | |
5b4ee69b | 8808 | |
14f9c5c9 | 8809 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 8810 | error (_("argument to 'VAL out of range")); |
14e75d8e | 8811 | return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos)); |
14f9c5c9 AS |
8812 | } |
8813 | else | |
8814 | return value_from_longest (type, value_as_long (arg)); | |
8815 | } | |
14f9c5c9 | 8816 | \f |
d2e4a39e | 8817 | |
4c4b4cd2 | 8818 | /* Evaluation */ |
14f9c5c9 | 8819 | |
4c4b4cd2 PH |
8820 | /* True if TYPE appears to be an Ada character type. |
8821 | [At the moment, this is true only for Character and Wide_Character; | |
8822 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 8823 | |
d2e4a39e AS |
8824 | int |
8825 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 8826 | { |
7b9f71f2 JB |
8827 | const char *name; |
8828 | ||
8829 | /* If the type code says it's a character, then assume it really is, | |
8830 | and don't check any further. */ | |
8831 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
8832 | return 1; | |
8833 | ||
8834 | /* Otherwise, assume it's a character type iff it is a discrete type | |
8835 | with a known character type name. */ | |
8836 | name = ada_type_name (type); | |
8837 | return (name != NULL | |
8838 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
8839 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
8840 | && (strcmp (name, "character") == 0 | |
8841 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 8842 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 8843 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
8844 | } |
8845 | ||
4c4b4cd2 | 8846 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
8847 | |
8848 | int | |
ebf56fd3 | 8849 | ada_is_string_type (struct type *type) |
14f9c5c9 | 8850 | { |
61ee279c | 8851 | type = ada_check_typedef (type); |
d2e4a39e | 8852 | if (type != NULL |
14f9c5c9 | 8853 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
8854 | && (ada_is_simple_array_type (type) |
8855 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
8856 | && ada_array_arity (type) == 1) |
8857 | { | |
8858 | struct type *elttype = ada_array_element_type (type, 1); | |
8859 | ||
8860 | return ada_is_character_type (elttype); | |
8861 | } | |
d2e4a39e | 8862 | else |
14f9c5c9 AS |
8863 | return 0; |
8864 | } | |
8865 | ||
5bf03f13 JB |
8866 | /* The compiler sometimes provides a parallel XVS type for a given |
8867 | PAD type. Normally, it is safe to follow the PAD type directly, | |
8868 | but older versions of the compiler have a bug that causes the offset | |
8869 | of its "F" field to be wrong. Following that field in that case | |
8870 | would lead to incorrect results, but this can be worked around | |
8871 | by ignoring the PAD type and using the associated XVS type instead. | |
8872 | ||
8873 | Set to True if the debugger should trust the contents of PAD types. | |
8874 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
8875 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
8876 | |
8877 | /* True if TYPE is a struct type introduced by the compiler to force the | |
8878 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 8879 | distinctive name. */ |
14f9c5c9 AS |
8880 | |
8881 | int | |
ebf56fd3 | 8882 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 8883 | { |
61ee279c | 8884 | type = ada_check_typedef (type); |
714e53ab | 8885 | |
5bf03f13 | 8886 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
8887 | return 0; |
8888 | ||
14f9c5c9 | 8889 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
8890 | && TYPE_NFIELDS (type) == 1 |
8891 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
8892 | } |
8893 | ||
8894 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 8895 | the parallel type. */ |
14f9c5c9 | 8896 | |
d2e4a39e AS |
8897 | struct type * |
8898 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 8899 | { |
d2e4a39e AS |
8900 | struct type *real_type_namer; |
8901 | struct type *raw_real_type; | |
14f9c5c9 AS |
8902 | |
8903 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
8904 | return raw_type; | |
8905 | ||
284614f0 JB |
8906 | if (ada_is_aligner_type (raw_type)) |
8907 | /* The encoding specifies that we should always use the aligner type. | |
8908 | So, even if this aligner type has an associated XVS type, we should | |
8909 | simply ignore it. | |
8910 | ||
8911 | According to the compiler gurus, an XVS type parallel to an aligner | |
8912 | type may exist because of a stabs limitation. In stabs, aligner | |
8913 | types are empty because the field has a variable-sized type, and | |
8914 | thus cannot actually be used as an aligner type. As a result, | |
8915 | we need the associated parallel XVS type to decode the type. | |
8916 | Since the policy in the compiler is to not change the internal | |
8917 | representation based on the debugging info format, we sometimes | |
8918 | end up having a redundant XVS type parallel to the aligner type. */ | |
8919 | return raw_type; | |
8920 | ||
14f9c5c9 | 8921 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 8922 | if (real_type_namer == NULL |
14f9c5c9 AS |
8923 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
8924 | || TYPE_NFIELDS (real_type_namer) != 1) | |
8925 | return raw_type; | |
8926 | ||
f80d3ff2 JB |
8927 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
8928 | { | |
8929 | /* This is an older encoding form where the base type needs to be | |
8930 | looked up by name. We prefer the newer enconding because it is | |
8931 | more efficient. */ | |
8932 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
8933 | if (raw_real_type == NULL) | |
8934 | return raw_type; | |
8935 | else | |
8936 | return raw_real_type; | |
8937 | } | |
8938 | ||
8939 | /* The field in our XVS type is a reference to the base type. */ | |
8940 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 8941 | } |
14f9c5c9 | 8942 | |
4c4b4cd2 | 8943 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 8944 | |
d2e4a39e AS |
8945 | struct type * |
8946 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
8947 | { |
8948 | if (ada_is_aligner_type (type)) | |
8949 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
8950 | else | |
8951 | return ada_get_base_type (type); | |
8952 | } | |
8953 | ||
8954 | ||
8955 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 8956 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 8957 | |
fc1a4b47 AC |
8958 | const gdb_byte * |
8959 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 8960 | { |
d2e4a39e | 8961 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 8962 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
8963 | valaddr + |
8964 | TYPE_FIELD_BITPOS (type, | |
8965 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
8966 | else |
8967 | return valaddr; | |
8968 | } | |
8969 | ||
4c4b4cd2 PH |
8970 | |
8971 | ||
14f9c5c9 | 8972 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 8973 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
8974 | const char * |
8975 | ada_enum_name (const char *name) | |
14f9c5c9 | 8976 | { |
4c4b4cd2 PH |
8977 | static char *result; |
8978 | static size_t result_len = 0; | |
d2e4a39e | 8979 | char *tmp; |
14f9c5c9 | 8980 | |
4c4b4cd2 PH |
8981 | /* First, unqualify the enumeration name: |
8982 | 1. Search for the last '.' character. If we find one, then skip | |
177b42fe | 8983 | all the preceding characters, the unqualified name starts |
76a01679 | 8984 | right after that dot. |
4c4b4cd2 | 8985 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
8986 | translates dots into "__". Search forward for double underscores, |
8987 | but stop searching when we hit an overloading suffix, which is | |
8988 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 8989 | |
c3e5cd34 PH |
8990 | tmp = strrchr (name, '.'); |
8991 | if (tmp != NULL) | |
4c4b4cd2 PH |
8992 | name = tmp + 1; |
8993 | else | |
14f9c5c9 | 8994 | { |
4c4b4cd2 PH |
8995 | while ((tmp = strstr (name, "__")) != NULL) |
8996 | { | |
8997 | if (isdigit (tmp[2])) | |
8998 | break; | |
8999 | else | |
9000 | name = tmp + 2; | |
9001 | } | |
14f9c5c9 AS |
9002 | } |
9003 | ||
9004 | if (name[0] == 'Q') | |
9005 | { | |
14f9c5c9 | 9006 | int v; |
5b4ee69b | 9007 | |
14f9c5c9 | 9008 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
9009 | { |
9010 | if (sscanf (name + 2, "%x", &v) != 1) | |
9011 | return name; | |
9012 | } | |
14f9c5c9 | 9013 | else |
4c4b4cd2 | 9014 | return name; |
14f9c5c9 | 9015 | |
4c4b4cd2 | 9016 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 9017 | if (isascii (v) && isprint (v)) |
88c15c34 | 9018 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 9019 | else if (name[1] == 'U') |
88c15c34 | 9020 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 9021 | else |
88c15c34 | 9022 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
9023 | |
9024 | return result; | |
9025 | } | |
d2e4a39e | 9026 | else |
4c4b4cd2 | 9027 | { |
c3e5cd34 PH |
9028 | tmp = strstr (name, "__"); |
9029 | if (tmp == NULL) | |
9030 | tmp = strstr (name, "$"); | |
9031 | if (tmp != NULL) | |
4c4b4cd2 PH |
9032 | { |
9033 | GROW_VECT (result, result_len, tmp - name + 1); | |
9034 | strncpy (result, name, tmp - name); | |
9035 | result[tmp - name] = '\0'; | |
9036 | return result; | |
9037 | } | |
9038 | ||
9039 | return name; | |
9040 | } | |
14f9c5c9 AS |
9041 | } |
9042 | ||
14f9c5c9 AS |
9043 | /* Evaluate the subexpression of EXP starting at *POS as for |
9044 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 9045 | expression. */ |
14f9c5c9 | 9046 | |
d2e4a39e AS |
9047 | static struct value * |
9048 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 9049 | { |
4b27a620 | 9050 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
9051 | } |
9052 | ||
9053 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 9054 | value it wraps. */ |
14f9c5c9 | 9055 | |
d2e4a39e AS |
9056 | static struct value * |
9057 | unwrap_value (struct value *val) | |
14f9c5c9 | 9058 | { |
df407dfe | 9059 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 9060 | |
14f9c5c9 AS |
9061 | if (ada_is_aligner_type (type)) |
9062 | { | |
de4d072f | 9063 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 9064 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 9065 | |
14f9c5c9 | 9066 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 9067 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
9068 | |
9069 | return unwrap_value (v); | |
9070 | } | |
d2e4a39e | 9071 | else |
14f9c5c9 | 9072 | { |
d2e4a39e | 9073 | struct type *raw_real_type = |
61ee279c | 9074 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 9075 | |
5bf03f13 JB |
9076 | /* If there is no parallel XVS or XVE type, then the value is |
9077 | already unwrapped. Return it without further modification. */ | |
9078 | if ((type == raw_real_type) | |
9079 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
9080 | return val; | |
14f9c5c9 | 9081 | |
d2e4a39e | 9082 | return |
4c4b4cd2 PH |
9083 | coerce_unspec_val_to_type |
9084 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 9085 | value_address (val), |
1ed6ede0 | 9086 | NULL, 1)); |
14f9c5c9 AS |
9087 | } |
9088 | } | |
d2e4a39e AS |
9089 | |
9090 | static struct value * | |
9091 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
9092 | { |
9093 | LONGEST val; | |
9094 | ||
df407dfe | 9095 | if (type == value_type (arg)) |
14f9c5c9 | 9096 | return arg; |
df407dfe | 9097 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 9098 | val = ada_float_to_fixed (type, |
df407dfe | 9099 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 9100 | value_as_long (arg))); |
d2e4a39e | 9101 | else |
14f9c5c9 | 9102 | { |
a53b7a21 | 9103 | DOUBLEST argd = value_as_double (arg); |
5b4ee69b | 9104 | |
14f9c5c9 AS |
9105 | val = ada_float_to_fixed (type, argd); |
9106 | } | |
9107 | ||
9108 | return value_from_longest (type, val); | |
9109 | } | |
9110 | ||
d2e4a39e | 9111 | static struct value * |
a53b7a21 | 9112 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 9113 | { |
df407dfe | 9114 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 9115 | value_as_long (arg)); |
5b4ee69b | 9116 | |
a53b7a21 | 9117 | return value_from_double (type, val); |
14f9c5c9 AS |
9118 | } |
9119 | ||
d99dcf51 JB |
9120 | /* Given two array types T1 and T2, return nonzero iff both arrays |
9121 | contain the same number of elements. */ | |
9122 | ||
9123 | static int | |
9124 | ada_same_array_size_p (struct type *t1, struct type *t2) | |
9125 | { | |
9126 | LONGEST lo1, hi1, lo2, hi2; | |
9127 | ||
9128 | /* Get the array bounds in order to verify that the size of | |
9129 | the two arrays match. */ | |
9130 | if (!get_array_bounds (t1, &lo1, &hi1) | |
9131 | || !get_array_bounds (t2, &lo2, &hi2)) | |
9132 | error (_("unable to determine array bounds")); | |
9133 | ||
9134 | /* To make things easier for size comparison, normalize a bit | |
9135 | the case of empty arrays by making sure that the difference | |
9136 | between upper bound and lower bound is always -1. */ | |
9137 | if (lo1 > hi1) | |
9138 | hi1 = lo1 - 1; | |
9139 | if (lo2 > hi2) | |
9140 | hi2 = lo2 - 1; | |
9141 | ||
9142 | return (hi1 - lo1 == hi2 - lo2); | |
9143 | } | |
9144 | ||
9145 | /* Assuming that VAL is an array of integrals, and TYPE represents | |
9146 | an array with the same number of elements, but with wider integral | |
9147 | elements, return an array "casted" to TYPE. In practice, this | |
9148 | means that the returned array is built by casting each element | |
9149 | of the original array into TYPE's (wider) element type. */ | |
9150 | ||
9151 | static struct value * | |
9152 | ada_promote_array_of_integrals (struct type *type, struct value *val) | |
9153 | { | |
9154 | struct type *elt_type = TYPE_TARGET_TYPE (type); | |
9155 | LONGEST lo, hi; | |
9156 | struct value *res; | |
9157 | LONGEST i; | |
9158 | ||
9159 | /* Verify that both val and type are arrays of scalars, and | |
9160 | that the size of val's elements is smaller than the size | |
9161 | of type's element. */ | |
9162 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY); | |
9163 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type))); | |
9164 | gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY); | |
9165 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val)))); | |
9166 | gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type)) | |
9167 | > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val)))); | |
9168 | ||
9169 | if (!get_array_bounds (type, &lo, &hi)) | |
9170 | error (_("unable to determine array bounds")); | |
9171 | ||
9172 | res = allocate_value (type); | |
9173 | ||
9174 | /* Promote each array element. */ | |
9175 | for (i = 0; i < hi - lo + 1; i++) | |
9176 | { | |
9177 | struct value *elt = value_cast (elt_type, value_subscript (val, lo + i)); | |
9178 | ||
9179 | memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)), | |
9180 | value_contents_all (elt), TYPE_LENGTH (elt_type)); | |
9181 | } | |
9182 | ||
9183 | return res; | |
9184 | } | |
9185 | ||
4c4b4cd2 PH |
9186 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
9187 | return the converted value. */ | |
9188 | ||
d2e4a39e AS |
9189 | static struct value * |
9190 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 9191 | { |
df407dfe | 9192 | struct type *type2 = value_type (val); |
5b4ee69b | 9193 | |
14f9c5c9 AS |
9194 | if (type == type2) |
9195 | return val; | |
9196 | ||
61ee279c PH |
9197 | type2 = ada_check_typedef (type2); |
9198 | type = ada_check_typedef (type); | |
14f9c5c9 | 9199 | |
d2e4a39e AS |
9200 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
9201 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
9202 | { |
9203 | val = ada_value_ind (val); | |
df407dfe | 9204 | type2 = value_type (val); |
14f9c5c9 AS |
9205 | } |
9206 | ||
d2e4a39e | 9207 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
9208 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
9209 | { | |
d99dcf51 JB |
9210 | if (!ada_same_array_size_p (type, type2)) |
9211 | error (_("cannot assign arrays of different length")); | |
9212 | ||
9213 | if (is_integral_type (TYPE_TARGET_TYPE (type)) | |
9214 | && is_integral_type (TYPE_TARGET_TYPE (type2)) | |
9215 | && TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9216 | < TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
9217 | { | |
9218 | /* Allow implicit promotion of the array elements to | |
9219 | a wider type. */ | |
9220 | return ada_promote_array_of_integrals (type, val); | |
9221 | } | |
9222 | ||
9223 | if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9224 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
323e0a4a | 9225 | error (_("Incompatible types in assignment")); |
04624583 | 9226 | deprecated_set_value_type (val, type); |
14f9c5c9 | 9227 | } |
d2e4a39e | 9228 | return val; |
14f9c5c9 AS |
9229 | } |
9230 | ||
4c4b4cd2 PH |
9231 | static struct value * |
9232 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
9233 | { | |
9234 | struct value *val; | |
9235 | struct type *type1, *type2; | |
9236 | LONGEST v, v1, v2; | |
9237 | ||
994b9211 AC |
9238 | arg1 = coerce_ref (arg1); |
9239 | arg2 = coerce_ref (arg2); | |
18af8284 JB |
9240 | type1 = get_base_type (ada_check_typedef (value_type (arg1))); |
9241 | type2 = get_base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 9242 | |
76a01679 JB |
9243 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
9244 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
9245 | return value_binop (arg1, arg2, op); |
9246 | ||
76a01679 | 9247 | switch (op) |
4c4b4cd2 PH |
9248 | { |
9249 | case BINOP_MOD: | |
9250 | case BINOP_DIV: | |
9251 | case BINOP_REM: | |
9252 | break; | |
9253 | default: | |
9254 | return value_binop (arg1, arg2, op); | |
9255 | } | |
9256 | ||
9257 | v2 = value_as_long (arg2); | |
9258 | if (v2 == 0) | |
323e0a4a | 9259 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
9260 | |
9261 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
9262 | return value_binop (arg1, arg2, op); | |
9263 | ||
9264 | v1 = value_as_long (arg1); | |
9265 | switch (op) | |
9266 | { | |
9267 | case BINOP_DIV: | |
9268 | v = v1 / v2; | |
76a01679 JB |
9269 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
9270 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
9271 | break; |
9272 | case BINOP_REM: | |
9273 | v = v1 % v2; | |
76a01679 JB |
9274 | if (v * v1 < 0) |
9275 | v -= v2; | |
4c4b4cd2 PH |
9276 | break; |
9277 | default: | |
9278 | /* Should not reach this point. */ | |
9279 | v = 0; | |
9280 | } | |
9281 | ||
9282 | val = allocate_value (type1); | |
990a07ab | 9283 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
9284 | TYPE_LENGTH (value_type (val)), |
9285 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
9286 | return val; |
9287 | } | |
9288 | ||
9289 | static int | |
9290 | ada_value_equal (struct value *arg1, struct value *arg2) | |
9291 | { | |
df407dfe AC |
9292 | if (ada_is_direct_array_type (value_type (arg1)) |
9293 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 9294 | { |
f58b38bf JB |
9295 | /* Automatically dereference any array reference before |
9296 | we attempt to perform the comparison. */ | |
9297 | arg1 = ada_coerce_ref (arg1); | |
9298 | arg2 = ada_coerce_ref (arg2); | |
9299 | ||
4c4b4cd2 PH |
9300 | arg1 = ada_coerce_to_simple_array (arg1); |
9301 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
9302 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
9303 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 9304 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 9305 | /* FIXME: The following works only for types whose |
76a01679 JB |
9306 | representations use all bits (no padding or undefined bits) |
9307 | and do not have user-defined equality. */ | |
9308 | return | |
df407dfe | 9309 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 9310 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 9311 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
9312 | } |
9313 | return value_equal (arg1, arg2); | |
9314 | } | |
9315 | ||
52ce6436 PH |
9316 | /* Total number of component associations in the aggregate starting at |
9317 | index PC in EXP. Assumes that index PC is the start of an | |
0963b4bd | 9318 | OP_AGGREGATE. */ |
52ce6436 PH |
9319 | |
9320 | static int | |
9321 | num_component_specs (struct expression *exp, int pc) | |
9322 | { | |
9323 | int n, m, i; | |
5b4ee69b | 9324 | |
52ce6436 PH |
9325 | m = exp->elts[pc + 1].longconst; |
9326 | pc += 3; | |
9327 | n = 0; | |
9328 | for (i = 0; i < m; i += 1) | |
9329 | { | |
9330 | switch (exp->elts[pc].opcode) | |
9331 | { | |
9332 | default: | |
9333 | n += 1; | |
9334 | break; | |
9335 | case OP_CHOICES: | |
9336 | n += exp->elts[pc + 1].longconst; | |
9337 | break; | |
9338 | } | |
9339 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
9340 | } | |
9341 | return n; | |
9342 | } | |
9343 | ||
9344 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
9345 | component of LHS (a simple array or a record), updating *POS past | |
9346 | the expression, assuming that LHS is contained in CONTAINER. Does | |
9347 | not modify the inferior's memory, nor does it modify LHS (unless | |
9348 | LHS == CONTAINER). */ | |
9349 | ||
9350 | static void | |
9351 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
9352 | struct expression *exp, int *pos) | |
9353 | { | |
9354 | struct value *mark = value_mark (); | |
9355 | struct value *elt; | |
5b4ee69b | 9356 | |
52ce6436 PH |
9357 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) |
9358 | { | |
22601c15 UW |
9359 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
9360 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 9361 | |
52ce6436 PH |
9362 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
9363 | } | |
9364 | else | |
9365 | { | |
9366 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
c48db5ca | 9367 | elt = ada_to_fixed_value (elt); |
52ce6436 PH |
9368 | } |
9369 | ||
9370 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
9371 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
9372 | else | |
9373 | value_assign_to_component (container, elt, | |
9374 | ada_evaluate_subexp (NULL, exp, pos, | |
9375 | EVAL_NORMAL)); | |
9376 | ||
9377 | value_free_to_mark (mark); | |
9378 | } | |
9379 | ||
9380 | /* Assuming that LHS represents an lvalue having a record or array | |
9381 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
9382 | of that aggregate's value to LHS, advancing *POS past the | |
9383 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
9384 | lvalue containing LHS (possibly LHS itself). Does not modify | |
9385 | the inferior's memory, nor does it modify the contents of | |
0963b4bd | 9386 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ |
52ce6436 PH |
9387 | |
9388 | static struct value * | |
9389 | assign_aggregate (struct value *container, | |
9390 | struct value *lhs, struct expression *exp, | |
9391 | int *pos, enum noside noside) | |
9392 | { | |
9393 | struct type *lhs_type; | |
9394 | int n = exp->elts[*pos+1].longconst; | |
9395 | LONGEST low_index, high_index; | |
9396 | int num_specs; | |
9397 | LONGEST *indices; | |
9398 | int max_indices, num_indices; | |
52ce6436 | 9399 | int i; |
52ce6436 PH |
9400 | |
9401 | *pos += 3; | |
9402 | if (noside != EVAL_NORMAL) | |
9403 | { | |
52ce6436 PH |
9404 | for (i = 0; i < n; i += 1) |
9405 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9406 | return container; | |
9407 | } | |
9408 | ||
9409 | container = ada_coerce_ref (container); | |
9410 | if (ada_is_direct_array_type (value_type (container))) | |
9411 | container = ada_coerce_to_simple_array (container); | |
9412 | lhs = ada_coerce_ref (lhs); | |
9413 | if (!deprecated_value_modifiable (lhs)) | |
9414 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
9415 | ||
9416 | lhs_type = value_type (lhs); | |
9417 | if (ada_is_direct_array_type (lhs_type)) | |
9418 | { | |
9419 | lhs = ada_coerce_to_simple_array (lhs); | |
9420 | lhs_type = value_type (lhs); | |
9421 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
9422 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
52ce6436 PH |
9423 | } |
9424 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
9425 | { | |
9426 | low_index = 0; | |
9427 | high_index = num_visible_fields (lhs_type) - 1; | |
52ce6436 PH |
9428 | } |
9429 | else | |
9430 | error (_("Left-hand side must be array or record.")); | |
9431 | ||
9432 | num_specs = num_component_specs (exp, *pos - 3); | |
9433 | max_indices = 4 * num_specs + 4; | |
9434 | indices = alloca (max_indices * sizeof (indices[0])); | |
9435 | indices[0] = indices[1] = low_index - 1; | |
9436 | indices[2] = indices[3] = high_index + 1; | |
9437 | num_indices = 4; | |
9438 | ||
9439 | for (i = 0; i < n; i += 1) | |
9440 | { | |
9441 | switch (exp->elts[*pos].opcode) | |
9442 | { | |
1fbf5ada JB |
9443 | case OP_CHOICES: |
9444 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
9445 | &num_indices, max_indices, | |
9446 | low_index, high_index); | |
9447 | break; | |
9448 | case OP_POSITIONAL: | |
9449 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
52ce6436 PH |
9450 | &num_indices, max_indices, |
9451 | low_index, high_index); | |
1fbf5ada JB |
9452 | break; |
9453 | case OP_OTHERS: | |
9454 | if (i != n-1) | |
9455 | error (_("Misplaced 'others' clause")); | |
9456 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
9457 | num_indices, low_index, high_index); | |
9458 | break; | |
9459 | default: | |
9460 | error (_("Internal error: bad aggregate clause")); | |
52ce6436 PH |
9461 | } |
9462 | } | |
9463 | ||
9464 | return container; | |
9465 | } | |
9466 | ||
9467 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
9468 | construct at *POS, updating *POS past the construct, given that | |
9469 | the positions are relative to lower bound LOW, where HIGH is the | |
9470 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
9471 | updating *NUM_INDICES as needed. CONTAINER is as for | |
0963b4bd | 9472 | assign_aggregate. */ |
52ce6436 PH |
9473 | static void |
9474 | aggregate_assign_positional (struct value *container, | |
9475 | struct value *lhs, struct expression *exp, | |
9476 | int *pos, LONGEST *indices, int *num_indices, | |
9477 | int max_indices, LONGEST low, LONGEST high) | |
9478 | { | |
9479 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
9480 | ||
9481 | if (ind - 1 == high) | |
e1d5a0d2 | 9482 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
9483 | if (ind <= high) |
9484 | { | |
9485 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
9486 | *pos += 3; | |
9487 | assign_component (container, lhs, ind, exp, pos); | |
9488 | } | |
9489 | else | |
9490 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9491 | } | |
9492 | ||
9493 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
9494 | construct at *POS, updating *POS past the construct, given that | |
9495 | the allowable indices are LOW..HIGH. Record the indices assigned | |
9496 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
0963b4bd | 9497 | needed. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
9498 | static void |
9499 | aggregate_assign_from_choices (struct value *container, | |
9500 | struct value *lhs, struct expression *exp, | |
9501 | int *pos, LONGEST *indices, int *num_indices, | |
9502 | int max_indices, LONGEST low, LONGEST high) | |
9503 | { | |
9504 | int j; | |
9505 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
9506 | int choice_pos, expr_pc; | |
9507 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
9508 | ||
9509 | choice_pos = *pos += 3; | |
9510 | ||
9511 | for (j = 0; j < n_choices; j += 1) | |
9512 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9513 | expr_pc = *pos; | |
9514 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9515 | ||
9516 | for (j = 0; j < n_choices; j += 1) | |
9517 | { | |
9518 | LONGEST lower, upper; | |
9519 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 9520 | |
52ce6436 PH |
9521 | if (op == OP_DISCRETE_RANGE) |
9522 | { | |
9523 | choice_pos += 1; | |
9524 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
9525 | EVAL_NORMAL)); | |
9526 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
9527 | EVAL_NORMAL)); | |
9528 | } | |
9529 | else if (is_array) | |
9530 | { | |
9531 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
9532 | EVAL_NORMAL)); | |
9533 | upper = lower; | |
9534 | } | |
9535 | else | |
9536 | { | |
9537 | int ind; | |
0d5cff50 | 9538 | const char *name; |
5b4ee69b | 9539 | |
52ce6436 PH |
9540 | switch (op) |
9541 | { | |
9542 | case OP_NAME: | |
9543 | name = &exp->elts[choice_pos + 2].string; | |
9544 | break; | |
9545 | case OP_VAR_VALUE: | |
9546 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
9547 | break; | |
9548 | default: | |
9549 | error (_("Invalid record component association.")); | |
9550 | } | |
9551 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
9552 | ind = 0; | |
9553 | if (! find_struct_field (name, value_type (lhs), 0, | |
9554 | NULL, NULL, NULL, NULL, &ind)) | |
9555 | error (_("Unknown component name: %s."), name); | |
9556 | lower = upper = ind; | |
9557 | } | |
9558 | ||
9559 | if (lower <= upper && (lower < low || upper > high)) | |
9560 | error (_("Index in component association out of bounds.")); | |
9561 | ||
9562 | add_component_interval (lower, upper, indices, num_indices, | |
9563 | max_indices); | |
9564 | while (lower <= upper) | |
9565 | { | |
9566 | int pos1; | |
5b4ee69b | 9567 | |
52ce6436 PH |
9568 | pos1 = expr_pc; |
9569 | assign_component (container, lhs, lower, exp, &pos1); | |
9570 | lower += 1; | |
9571 | } | |
9572 | } | |
9573 | } | |
9574 | ||
9575 | /* Assign the value of the expression in the OP_OTHERS construct in | |
9576 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
9577 | have not been previously assigned. The index intervals already assigned | |
9578 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
0963b4bd | 9579 | OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
9580 | static void |
9581 | aggregate_assign_others (struct value *container, | |
9582 | struct value *lhs, struct expression *exp, | |
9583 | int *pos, LONGEST *indices, int num_indices, | |
9584 | LONGEST low, LONGEST high) | |
9585 | { | |
9586 | int i; | |
5ce64950 | 9587 | int expr_pc = *pos + 1; |
52ce6436 PH |
9588 | |
9589 | for (i = 0; i < num_indices - 2; i += 2) | |
9590 | { | |
9591 | LONGEST ind; | |
5b4ee69b | 9592 | |
52ce6436 PH |
9593 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
9594 | { | |
5ce64950 | 9595 | int localpos; |
5b4ee69b | 9596 | |
5ce64950 MS |
9597 | localpos = expr_pc; |
9598 | assign_component (container, lhs, ind, exp, &localpos); | |
52ce6436 PH |
9599 | } |
9600 | } | |
9601 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9602 | } | |
9603 | ||
9604 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
9605 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
9606 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
9607 | MAX_SIZE. The resulting intervals do not overlap. */ | |
9608 | static void | |
9609 | add_component_interval (LONGEST low, LONGEST high, | |
9610 | LONGEST* indices, int *size, int max_size) | |
9611 | { | |
9612 | int i, j; | |
5b4ee69b | 9613 | |
52ce6436 PH |
9614 | for (i = 0; i < *size; i += 2) { |
9615 | if (high >= indices[i] && low <= indices[i + 1]) | |
9616 | { | |
9617 | int kh; | |
5b4ee69b | 9618 | |
52ce6436 PH |
9619 | for (kh = i + 2; kh < *size; kh += 2) |
9620 | if (high < indices[kh]) | |
9621 | break; | |
9622 | if (low < indices[i]) | |
9623 | indices[i] = low; | |
9624 | indices[i + 1] = indices[kh - 1]; | |
9625 | if (high > indices[i + 1]) | |
9626 | indices[i + 1] = high; | |
9627 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
9628 | *size -= kh - i - 2; | |
9629 | return; | |
9630 | } | |
9631 | else if (high < indices[i]) | |
9632 | break; | |
9633 | } | |
9634 | ||
9635 | if (*size == max_size) | |
9636 | error (_("Internal error: miscounted aggregate components.")); | |
9637 | *size += 2; | |
9638 | for (j = *size-1; j >= i+2; j -= 1) | |
9639 | indices[j] = indices[j - 2]; | |
9640 | indices[i] = low; | |
9641 | indices[i + 1] = high; | |
9642 | } | |
9643 | ||
6e48bd2c JB |
9644 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
9645 | is different. */ | |
9646 | ||
9647 | static struct value * | |
9648 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
9649 | { | |
9650 | if (type == ada_check_typedef (value_type (arg2))) | |
9651 | return arg2; | |
9652 | ||
9653 | if (ada_is_fixed_point_type (type)) | |
9654 | return (cast_to_fixed (type, arg2)); | |
9655 | ||
9656 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 9657 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
9658 | |
9659 | return value_cast (type, arg2); | |
9660 | } | |
9661 | ||
284614f0 JB |
9662 | /* Evaluating Ada expressions, and printing their result. |
9663 | ------------------------------------------------------ | |
9664 | ||
21649b50 JB |
9665 | 1. Introduction: |
9666 | ---------------- | |
9667 | ||
284614f0 JB |
9668 | We usually evaluate an Ada expression in order to print its value. |
9669 | We also evaluate an expression in order to print its type, which | |
9670 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
9671 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
9672 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
9673 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
9674 | similar. | |
9675 | ||
9676 | Evaluating expressions is a little more complicated for Ada entities | |
9677 | than it is for entities in languages such as C. The main reason for | |
9678 | this is that Ada provides types whose definition might be dynamic. | |
9679 | One example of such types is variant records. Or another example | |
9680 | would be an array whose bounds can only be known at run time. | |
9681 | ||
9682 | The following description is a general guide as to what should be | |
9683 | done (and what should NOT be done) in order to evaluate an expression | |
9684 | involving such types, and when. This does not cover how the semantic | |
9685 | information is encoded by GNAT as this is covered separatly. For the | |
9686 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
9687 | in the GNAT sources. | |
9688 | ||
9689 | Ideally, we should embed each part of this description next to its | |
9690 | associated code. Unfortunately, the amount of code is so vast right | |
9691 | now that it's hard to see whether the code handling a particular | |
9692 | situation might be duplicated or not. One day, when the code is | |
9693 | cleaned up, this guide might become redundant with the comments | |
9694 | inserted in the code, and we might want to remove it. | |
9695 | ||
21649b50 JB |
9696 | 2. ``Fixing'' an Entity, the Simple Case: |
9697 | ----------------------------------------- | |
9698 | ||
284614f0 JB |
9699 | When evaluating Ada expressions, the tricky issue is that they may |
9700 | reference entities whose type contents and size are not statically | |
9701 | known. Consider for instance a variant record: | |
9702 | ||
9703 | type Rec (Empty : Boolean := True) is record | |
9704 | case Empty is | |
9705 | when True => null; | |
9706 | when False => Value : Integer; | |
9707 | end case; | |
9708 | end record; | |
9709 | Yes : Rec := (Empty => False, Value => 1); | |
9710 | No : Rec := (empty => True); | |
9711 | ||
9712 | The size and contents of that record depends on the value of the | |
9713 | descriminant (Rec.Empty). At this point, neither the debugging | |
9714 | information nor the associated type structure in GDB are able to | |
9715 | express such dynamic types. So what the debugger does is to create | |
9716 | "fixed" versions of the type that applies to the specific object. | |
9717 | We also informally refer to this opperation as "fixing" an object, | |
9718 | which means creating its associated fixed type. | |
9719 | ||
9720 | Example: when printing the value of variable "Yes" above, its fixed | |
9721 | type would look like this: | |
9722 | ||
9723 | type Rec is record | |
9724 | Empty : Boolean; | |
9725 | Value : Integer; | |
9726 | end record; | |
9727 | ||
9728 | On the other hand, if we printed the value of "No", its fixed type | |
9729 | would become: | |
9730 | ||
9731 | type Rec is record | |
9732 | Empty : Boolean; | |
9733 | end record; | |
9734 | ||
9735 | Things become a little more complicated when trying to fix an entity | |
9736 | with a dynamic type that directly contains another dynamic type, | |
9737 | such as an array of variant records, for instance. There are | |
9738 | two possible cases: Arrays, and records. | |
9739 | ||
21649b50 JB |
9740 | 3. ``Fixing'' Arrays: |
9741 | --------------------- | |
9742 | ||
9743 | The type structure in GDB describes an array in terms of its bounds, | |
9744 | and the type of its elements. By design, all elements in the array | |
9745 | have the same type and we cannot represent an array of variant elements | |
9746 | using the current type structure in GDB. When fixing an array, | |
9747 | we cannot fix the array element, as we would potentially need one | |
9748 | fixed type per element of the array. As a result, the best we can do | |
9749 | when fixing an array is to produce an array whose bounds and size | |
9750 | are correct (allowing us to read it from memory), but without having | |
9751 | touched its element type. Fixing each element will be done later, | |
9752 | when (if) necessary. | |
9753 | ||
9754 | Arrays are a little simpler to handle than records, because the same | |
9755 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 9756 | the amount of space actually used by each element differs from element |
21649b50 | 9757 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
9758 | |
9759 | type Rec_Array is array (1 .. 2) of Rec; | |
9760 | ||
1b536f04 JB |
9761 | The actual amount of memory occupied by each element might be different |
9762 | from element to element, depending on the value of their discriminant. | |
21649b50 | 9763 | But the amount of space reserved for each element in the array remains |
1b536f04 | 9764 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
9765 | the debugging information available, from which we can then determine |
9766 | the array size (we multiply the number of elements of the array by | |
9767 | the size of each element). | |
9768 | ||
9769 | The simplest case is when we have an array of a constrained element | |
9770 | type. For instance, consider the following type declarations: | |
9771 | ||
9772 | type Bounded_String (Max_Size : Integer) is | |
9773 | Length : Integer; | |
9774 | Buffer : String (1 .. Max_Size); | |
9775 | end record; | |
9776 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
9777 | ||
9778 | In this case, the compiler describes the array as an array of | |
9779 | variable-size elements (identified by its XVS suffix) for which | |
9780 | the size can be read in the parallel XVZ variable. | |
9781 | ||
9782 | In the case of an array of an unconstrained element type, the compiler | |
9783 | wraps the array element inside a private PAD type. This type should not | |
9784 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
9785 | that we also use the adjective "aligner" in our code to designate |
9786 | these wrapper types. | |
9787 | ||
1b536f04 | 9788 | In some cases, the size allocated for each element is statically |
21649b50 JB |
9789 | known. In that case, the PAD type already has the correct size, |
9790 | and the array element should remain unfixed. | |
9791 | ||
9792 | But there are cases when this size is not statically known. | |
9793 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
9794 | |
9795 | type Dynamic is array (1 .. Five) of Integer; | |
9796 | type Wrapper (Has_Length : Boolean := False) is record | |
9797 | Data : Dynamic; | |
9798 | case Has_Length is | |
9799 | when True => Length : Integer; | |
9800 | when False => null; | |
9801 | end case; | |
9802 | end record; | |
9803 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
9804 | ||
9805 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
9806 | Data => (others => 17), | |
9807 | Length => 1)); | |
9808 | ||
9809 | ||
9810 | The debugging info would describe variable Hello as being an | |
9811 | array of a PAD type. The size of that PAD type is not statically | |
9812 | known, but can be determined using a parallel XVZ variable. | |
9813 | In that case, a copy of the PAD type with the correct size should | |
9814 | be used for the fixed array. | |
9815 | ||
21649b50 JB |
9816 | 3. ``Fixing'' record type objects: |
9817 | ---------------------------------- | |
9818 | ||
9819 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
9820 | record types. In this case, in order to compute the associated |
9821 | fixed type, we need to determine the size and offset of each of | |
9822 | its components. This, in turn, requires us to compute the fixed | |
9823 | type of each of these components. | |
9824 | ||
9825 | Consider for instance the example: | |
9826 | ||
9827 | type Bounded_String (Max_Size : Natural) is record | |
9828 | Str : String (1 .. Max_Size); | |
9829 | Length : Natural; | |
9830 | end record; | |
9831 | My_String : Bounded_String (Max_Size => 10); | |
9832 | ||
9833 | In that case, the position of field "Length" depends on the size | |
9834 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 9835 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
9836 | we need to fix the type of field Str. Therefore, fixing a variant |
9837 | record requires us to fix each of its components. | |
9838 | ||
9839 | However, if a component does not have a dynamic size, the component | |
9840 | should not be fixed. In particular, fields that use a PAD type | |
9841 | should not fixed. Here is an example where this might happen | |
9842 | (assuming type Rec above): | |
9843 | ||
9844 | type Container (Big : Boolean) is record | |
9845 | First : Rec; | |
9846 | After : Integer; | |
9847 | case Big is | |
9848 | when True => Another : Integer; | |
9849 | when False => null; | |
9850 | end case; | |
9851 | end record; | |
9852 | My_Container : Container := (Big => False, | |
9853 | First => (Empty => True), | |
9854 | After => 42); | |
9855 | ||
9856 | In that example, the compiler creates a PAD type for component First, | |
9857 | whose size is constant, and then positions the component After just | |
9858 | right after it. The offset of component After is therefore constant | |
9859 | in this case. | |
9860 | ||
9861 | The debugger computes the position of each field based on an algorithm | |
9862 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
9863 | preceding it. Let's now imagine that the user is trying to print |
9864 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
9865 | end up computing the offset of field After based on the size of the |
9866 | fixed version of field First. And since in our example First has | |
9867 | only one actual field, the size of the fixed type is actually smaller | |
9868 | than the amount of space allocated to that field, and thus we would | |
9869 | compute the wrong offset of field After. | |
9870 | ||
21649b50 JB |
9871 | To make things more complicated, we need to watch out for dynamic |
9872 | components of variant records (identified by the ___XVL suffix in | |
9873 | the component name). Even if the target type is a PAD type, the size | |
9874 | of that type might not be statically known. So the PAD type needs | |
9875 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
9876 | we might end up with the wrong size for our component. This can be | |
9877 | observed with the following type declarations: | |
284614f0 JB |
9878 | |
9879 | type Octal is new Integer range 0 .. 7; | |
9880 | type Octal_Array is array (Positive range <>) of Octal; | |
9881 | pragma Pack (Octal_Array); | |
9882 | ||
9883 | type Octal_Buffer (Size : Positive) is record | |
9884 | Buffer : Octal_Array (1 .. Size); | |
9885 | Length : Integer; | |
9886 | end record; | |
9887 | ||
9888 | In that case, Buffer is a PAD type whose size is unset and needs | |
9889 | to be computed by fixing the unwrapped type. | |
9890 | ||
21649b50 JB |
9891 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
9892 | ---------------------------------------------------------- | |
9893 | ||
9894 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
9895 | thus far, be actually fixed? |
9896 | ||
9897 | The answer is: Only when referencing that element. For instance | |
9898 | when selecting one component of a record, this specific component | |
9899 | should be fixed at that point in time. Or when printing the value | |
9900 | of a record, each component should be fixed before its value gets | |
9901 | printed. Similarly for arrays, the element of the array should be | |
9902 | fixed when printing each element of the array, or when extracting | |
9903 | one element out of that array. On the other hand, fixing should | |
9904 | not be performed on the elements when taking a slice of an array! | |
9905 | ||
9906 | Note that one of the side-effects of miscomputing the offset and | |
9907 | size of each field is that we end up also miscomputing the size | |
9908 | of the containing type. This can have adverse results when computing | |
9909 | the value of an entity. GDB fetches the value of an entity based | |
9910 | on the size of its type, and thus a wrong size causes GDB to fetch | |
9911 | the wrong amount of memory. In the case where the computed size is | |
9912 | too small, GDB fetches too little data to print the value of our | |
9913 | entiry. Results in this case as unpredicatble, as we usually read | |
9914 | past the buffer containing the data =:-o. */ | |
9915 | ||
9916 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
9917 | for the Ada language. */ | |
9918 | ||
52ce6436 | 9919 | static struct value * |
ebf56fd3 | 9920 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 9921 | int *pos, enum noside noside) |
14f9c5c9 AS |
9922 | { |
9923 | enum exp_opcode op; | |
b5385fc0 | 9924 | int tem; |
14f9c5c9 | 9925 | int pc; |
5ec18f2b | 9926 | int preeval_pos; |
14f9c5c9 AS |
9927 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; |
9928 | struct type *type; | |
52ce6436 | 9929 | int nargs, oplen; |
d2e4a39e | 9930 | struct value **argvec; |
14f9c5c9 | 9931 | |
d2e4a39e AS |
9932 | pc = *pos; |
9933 | *pos += 1; | |
14f9c5c9 AS |
9934 | op = exp->elts[pc].opcode; |
9935 | ||
d2e4a39e | 9936 | switch (op) |
14f9c5c9 AS |
9937 | { |
9938 | default: | |
9939 | *pos -= 1; | |
6e48bd2c | 9940 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
ca1f964d JG |
9941 | |
9942 | if (noside == EVAL_NORMAL) | |
9943 | arg1 = unwrap_value (arg1); | |
6e48bd2c JB |
9944 | |
9945 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
9946 | then we need to perform the conversion manually, because | |
9947 | evaluate_subexp_standard doesn't do it. This conversion is | |
9948 | necessary in Ada because the different kinds of float/fixed | |
9949 | types in Ada have different representations. | |
9950 | ||
9951 | Similarly, we need to perform the conversion from OP_LONG | |
9952 | ourselves. */ | |
9953 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
9954 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
9955 | ||
9956 | return arg1; | |
4c4b4cd2 PH |
9957 | |
9958 | case OP_STRING: | |
9959 | { | |
76a01679 | 9960 | struct value *result; |
5b4ee69b | 9961 | |
76a01679 JB |
9962 | *pos -= 1; |
9963 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
9964 | /* The result type will have code OP_STRING, bashed there from | |
9965 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
9966 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
9967 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 9968 | return result; |
4c4b4cd2 | 9969 | } |
14f9c5c9 AS |
9970 | |
9971 | case UNOP_CAST: | |
9972 | (*pos) += 2; | |
9973 | type = exp->elts[pc + 1].type; | |
9974 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
9975 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9976 | goto nosideret; |
6e48bd2c | 9977 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
9978 | return arg1; |
9979 | ||
4c4b4cd2 PH |
9980 | case UNOP_QUAL: |
9981 | (*pos) += 2; | |
9982 | type = exp->elts[pc + 1].type; | |
9983 | return ada_evaluate_subexp (type, exp, pos, noside); | |
9984 | ||
14f9c5c9 AS |
9985 | case BINOP_ASSIGN: |
9986 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
9987 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
9988 | { | |
9989 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
9990 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
9991 | return arg1; | |
9992 | return ada_value_assign (arg1, arg1); | |
9993 | } | |
003f3813 JB |
9994 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
9995 | except if the lhs of our assignment is a convenience variable. | |
9996 | In the case of assigning to a convenience variable, the lhs | |
9997 | should be exactly the result of the evaluation of the rhs. */ | |
9998 | type = value_type (arg1); | |
9999 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
10000 | type = NULL; | |
10001 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 10002 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 10003 | return arg1; |
df407dfe AC |
10004 | if (ada_is_fixed_point_type (value_type (arg1))) |
10005 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
10006 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 10007 | error |
323e0a4a | 10008 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 10009 | else |
df407dfe | 10010 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 10011 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
10012 | |
10013 | case BINOP_ADD: | |
10014 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10015 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10016 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10017 | goto nosideret; |
2ac8a782 JB |
10018 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10019 | return (value_from_longest | |
10020 | (value_type (arg1), | |
10021 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
10022 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10023 | || ada_is_fixed_point_type (value_type (arg2))) | |
10024 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 10025 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
10026 | /* Do the addition, and cast the result to the type of the first |
10027 | argument. We cannot cast the result to a reference type, so if | |
10028 | ARG1 is a reference type, find its underlying type. */ | |
10029 | type = value_type (arg1); | |
10030 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10031 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10032 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10033 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
10034 | |
10035 | case BINOP_SUB: | |
10036 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10037 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10038 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10039 | goto nosideret; |
2ac8a782 JB |
10040 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10041 | return (value_from_longest | |
10042 | (value_type (arg1), | |
10043 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
10044 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10045 | || ada_is_fixed_point_type (value_type (arg2))) | |
10046 | && value_type (arg1) != value_type (arg2)) | |
0963b4bd MS |
10047 | error (_("Operands of fixed-point subtraction " |
10048 | "must have the same type")); | |
b7789565 JB |
10049 | /* Do the substraction, and cast the result to the type of the first |
10050 | argument. We cannot cast the result to a reference type, so if | |
10051 | ARG1 is a reference type, find its underlying type. */ | |
10052 | type = value_type (arg1); | |
10053 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10054 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10055 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10056 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
10057 | |
10058 | case BINOP_MUL: | |
10059 | case BINOP_DIV: | |
e1578042 JB |
10060 | case BINOP_REM: |
10061 | case BINOP_MOD: | |
14f9c5c9 AS |
10062 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10063 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10064 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10065 | goto nosideret; |
e1578042 | 10066 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
10067 | { |
10068 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10069 | return value_zero (value_type (arg1), not_lval); | |
10070 | } | |
14f9c5c9 | 10071 | else |
4c4b4cd2 | 10072 | { |
a53b7a21 | 10073 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 10074 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 10075 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 10076 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 10077 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 10078 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
10079 | return ada_value_binop (arg1, arg2, op); |
10080 | } | |
10081 | ||
4c4b4cd2 PH |
10082 | case BINOP_EQUAL: |
10083 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 10084 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 10085 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 10086 | if (noside == EVAL_SKIP) |
76a01679 | 10087 | goto nosideret; |
4c4b4cd2 | 10088 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10089 | tem = 0; |
4c4b4cd2 | 10090 | else |
f44316fa UW |
10091 | { |
10092 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10093 | tem = ada_value_equal (arg1, arg2); | |
10094 | } | |
4c4b4cd2 | 10095 | if (op == BINOP_NOTEQUAL) |
76a01679 | 10096 | tem = !tem; |
fbb06eb1 UW |
10097 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10098 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
10099 | |
10100 | case UNOP_NEG: | |
10101 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10102 | if (noside == EVAL_SKIP) | |
10103 | goto nosideret; | |
df407dfe AC |
10104 | else if (ada_is_fixed_point_type (value_type (arg1))) |
10105 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 10106 | else |
f44316fa UW |
10107 | { |
10108 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10109 | return value_neg (arg1); | |
10110 | } | |
4c4b4cd2 | 10111 | |
2330c6c6 JB |
10112 | case BINOP_LOGICAL_AND: |
10113 | case BINOP_LOGICAL_OR: | |
10114 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
10115 | { |
10116 | struct value *val; | |
10117 | ||
10118 | *pos -= 1; | |
10119 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
10120 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10121 | return value_cast (type, val); | |
000d5124 | 10122 | } |
2330c6c6 JB |
10123 | |
10124 | case BINOP_BITWISE_AND: | |
10125 | case BINOP_BITWISE_IOR: | |
10126 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
10127 | { |
10128 | struct value *val; | |
10129 | ||
10130 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
10131 | *pos = pc; | |
10132 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10133 | ||
10134 | return value_cast (value_type (arg1), val); | |
10135 | } | |
2330c6c6 | 10136 | |
14f9c5c9 AS |
10137 | case OP_VAR_VALUE: |
10138 | *pos -= 1; | |
6799def4 | 10139 | |
14f9c5c9 | 10140 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
10141 | { |
10142 | *pos += 4; | |
10143 | goto nosideret; | |
10144 | } | |
10145 | else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
10146 | /* Only encountered when an unresolved symbol occurs in a |
10147 | context other than a function call, in which case, it is | |
52ce6436 | 10148 | invalid. */ |
323e0a4a | 10149 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 10150 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
14f9c5c9 | 10151 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 10152 | { |
0c1f74cf | 10153 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
10154 | /* Check to see if this is a tagged type. We also need to handle |
10155 | the case where the type is a reference to a tagged type, but | |
10156 | we have to be careful to exclude pointers to tagged types. | |
10157 | The latter should be shown as usual (as a pointer), whereas | |
10158 | a reference should mostly be transparent to the user. */ | |
10159 | if (ada_is_tagged_type (type, 0) | |
023db19c | 10160 | || (TYPE_CODE (type) == TYPE_CODE_REF |
31dbc1c5 | 10161 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) |
0c1f74cf JB |
10162 | { |
10163 | /* Tagged types are a little special in the fact that the real | |
10164 | type is dynamic and can only be determined by inspecting the | |
10165 | object's tag. This means that we need to get the object's | |
10166 | value first (EVAL_NORMAL) and then extract the actual object | |
10167 | type from its tag. | |
10168 | ||
10169 | Note that we cannot skip the final step where we extract | |
10170 | the object type from its tag, because the EVAL_NORMAL phase | |
10171 | results in dynamic components being resolved into fixed ones. | |
10172 | This can cause problems when trying to print the type | |
10173 | description of tagged types whose parent has a dynamic size: | |
10174 | We use the type name of the "_parent" component in order | |
10175 | to print the name of the ancestor type in the type description. | |
10176 | If that component had a dynamic size, the resolution into | |
10177 | a fixed type would result in the loss of that type name, | |
10178 | thus preventing us from printing the name of the ancestor | |
10179 | type in the type description. */ | |
10180 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); | |
b50d69b5 JG |
10181 | |
10182 | if (TYPE_CODE (type) != TYPE_CODE_REF) | |
10183 | { | |
10184 | struct type *actual_type; | |
10185 | ||
10186 | actual_type = type_from_tag (ada_value_tag (arg1)); | |
10187 | if (actual_type == NULL) | |
10188 | /* If, for some reason, we were unable to determine | |
10189 | the actual type from the tag, then use the static | |
10190 | approximation that we just computed as a fallback. | |
10191 | This can happen if the debugging information is | |
10192 | incomplete, for instance. */ | |
10193 | actual_type = type; | |
10194 | return value_zero (actual_type, not_lval); | |
10195 | } | |
10196 | else | |
10197 | { | |
10198 | /* In the case of a ref, ada_coerce_ref takes care | |
10199 | of determining the actual type. But the evaluation | |
10200 | should return a ref as it should be valid to ask | |
10201 | for its address; so rebuild a ref after coerce. */ | |
10202 | arg1 = ada_coerce_ref (arg1); | |
10203 | return value_ref (arg1); | |
10204 | } | |
0c1f74cf JB |
10205 | } |
10206 | ||
4c4b4cd2 PH |
10207 | *pos += 4; |
10208 | return value_zero | |
10209 | (to_static_fixed_type | |
10210 | (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))), | |
10211 | not_lval); | |
10212 | } | |
d2e4a39e | 10213 | else |
4c4b4cd2 | 10214 | { |
284614f0 | 10215 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
4c4b4cd2 PH |
10216 | return ada_to_fixed_value (arg1); |
10217 | } | |
10218 | ||
10219 | case OP_FUNCALL: | |
10220 | (*pos) += 2; | |
10221 | ||
10222 | /* Allocate arg vector, including space for the function to be | |
10223 | called in argvec[0] and a terminating NULL. */ | |
10224 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
10225 | argvec = | |
10226 | (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); | |
10227 | ||
10228 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 10229 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 10230 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
10231 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
10232 | else | |
10233 | { | |
10234 | for (tem = 0; tem <= nargs; tem += 1) | |
10235 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10236 | argvec[tem] = 0; | |
10237 | ||
10238 | if (noside == EVAL_SKIP) | |
10239 | goto nosideret; | |
10240 | } | |
10241 | ||
ad82864c JB |
10242 | if (ada_is_constrained_packed_array_type |
10243 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 10244 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
10245 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
10246 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
10247 | /* This is a packed array that has already been fixed, and | |
10248 | therefore already coerced to a simple array. Nothing further | |
10249 | to do. */ | |
10250 | ; | |
df407dfe AC |
10251 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF |
10252 | || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
76a01679 | 10253 | && VALUE_LVAL (argvec[0]) == lval_memory)) |
4c4b4cd2 PH |
10254 | argvec[0] = value_addr (argvec[0]); |
10255 | ||
df407dfe | 10256 | type = ada_check_typedef (value_type (argvec[0])); |
720d1a40 JB |
10257 | |
10258 | /* Ada allows us to implicitly dereference arrays when subscripting | |
8f465ea7 JB |
10259 | them. So, if this is an array typedef (encoding use for array |
10260 | access types encoded as fat pointers), strip it now. */ | |
720d1a40 JB |
10261 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
10262 | type = ada_typedef_target_type (type); | |
10263 | ||
4c4b4cd2 PH |
10264 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
10265 | { | |
61ee279c | 10266 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
10267 | { |
10268 | case TYPE_CODE_FUNC: | |
61ee279c | 10269 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10270 | break; |
10271 | case TYPE_CODE_ARRAY: | |
10272 | break; | |
10273 | case TYPE_CODE_STRUCT: | |
10274 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
10275 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 10276 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10277 | break; |
10278 | default: | |
323e0a4a | 10279 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 10280 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
10281 | break; |
10282 | } | |
10283 | } | |
10284 | ||
10285 | switch (TYPE_CODE (type)) | |
10286 | { | |
10287 | case TYPE_CODE_FUNC: | |
10288 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
c8ea1972 PH |
10289 | { |
10290 | struct type *rtype = TYPE_TARGET_TYPE (type); | |
10291 | ||
10292 | if (TYPE_GNU_IFUNC (type)) | |
10293 | return allocate_value (TYPE_TARGET_TYPE (rtype)); | |
10294 | return allocate_value (rtype); | |
10295 | } | |
4c4b4cd2 | 10296 | return call_function_by_hand (argvec[0], nargs, argvec + 1); |
c8ea1972 PH |
10297 | case TYPE_CODE_INTERNAL_FUNCTION: |
10298 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10299 | /* We don't know anything about what the internal | |
10300 | function might return, but we have to return | |
10301 | something. */ | |
10302 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10303 | not_lval); | |
10304 | else | |
10305 | return call_internal_function (exp->gdbarch, exp->language_defn, | |
10306 | argvec[0], nargs, argvec + 1); | |
10307 | ||
4c4b4cd2 PH |
10308 | case TYPE_CODE_STRUCT: |
10309 | { | |
10310 | int arity; | |
10311 | ||
4c4b4cd2 PH |
10312 | arity = ada_array_arity (type); |
10313 | type = ada_array_element_type (type, nargs); | |
10314 | if (type == NULL) | |
323e0a4a | 10315 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 10316 | if (arity != nargs) |
323e0a4a | 10317 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 10318 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 10319 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10320 | return |
10321 | unwrap_value (ada_value_subscript | |
10322 | (argvec[0], nargs, argvec + 1)); | |
10323 | } | |
10324 | case TYPE_CODE_ARRAY: | |
10325 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10326 | { | |
10327 | type = ada_array_element_type (type, nargs); | |
10328 | if (type == NULL) | |
323e0a4a | 10329 | error (_("element type of array unknown")); |
4c4b4cd2 | 10330 | else |
0a07e705 | 10331 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10332 | } |
10333 | return | |
10334 | unwrap_value (ada_value_subscript | |
10335 | (ada_coerce_to_simple_array (argvec[0]), | |
10336 | nargs, argvec + 1)); | |
10337 | case TYPE_CODE_PTR: /* Pointer to array */ | |
10338 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); | |
10339 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10340 | { | |
10341 | type = ada_array_element_type (type, nargs); | |
10342 | if (type == NULL) | |
323e0a4a | 10343 | error (_("element type of array unknown")); |
4c4b4cd2 | 10344 | else |
0a07e705 | 10345 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10346 | } |
10347 | return | |
10348 | unwrap_value (ada_value_ptr_subscript (argvec[0], type, | |
10349 | nargs, argvec + 1)); | |
10350 | ||
10351 | default: | |
e1d5a0d2 PH |
10352 | error (_("Attempt to index or call something other than an " |
10353 | "array or function")); | |
4c4b4cd2 PH |
10354 | } |
10355 | ||
10356 | case TERNOP_SLICE: | |
10357 | { | |
10358 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10359 | struct value *low_bound_val = | |
10360 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
10361 | struct value *high_bound_val = |
10362 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10363 | LONGEST low_bound; | |
10364 | LONGEST high_bound; | |
5b4ee69b | 10365 | |
994b9211 AC |
10366 | low_bound_val = coerce_ref (low_bound_val); |
10367 | high_bound_val = coerce_ref (high_bound_val); | |
714e53ab PH |
10368 | low_bound = pos_atr (low_bound_val); |
10369 | high_bound = pos_atr (high_bound_val); | |
963a6417 | 10370 | |
4c4b4cd2 PH |
10371 | if (noside == EVAL_SKIP) |
10372 | goto nosideret; | |
10373 | ||
4c4b4cd2 PH |
10374 | /* If this is a reference to an aligner type, then remove all |
10375 | the aligners. */ | |
df407dfe AC |
10376 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10377 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
10378 | TYPE_TARGET_TYPE (value_type (array)) = | |
10379 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 10380 | |
ad82864c | 10381 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 10382 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
10383 | |
10384 | /* If this is a reference to an array or an array lvalue, | |
10385 | convert to a pointer. */ | |
df407dfe AC |
10386 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10387 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
10388 | && VALUE_LVAL (array) == lval_memory)) |
10389 | array = value_addr (array); | |
10390 | ||
1265e4aa | 10391 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 10392 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 10393 | (value_type (array)))) |
0b5d8877 | 10394 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
10395 | |
10396 | array = ada_coerce_to_simple_array_ptr (array); | |
10397 | ||
714e53ab PH |
10398 | /* If we have more than one level of pointer indirection, |
10399 | dereference the value until we get only one level. */ | |
df407dfe AC |
10400 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
10401 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
10402 | == TYPE_CODE_PTR)) |
10403 | array = value_ind (array); | |
10404 | ||
10405 | /* Make sure we really do have an array type before going further, | |
10406 | to avoid a SEGV when trying to get the index type or the target | |
10407 | type later down the road if the debug info generated by | |
10408 | the compiler is incorrect or incomplete. */ | |
df407dfe | 10409 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 10410 | error (_("cannot take slice of non-array")); |
714e53ab | 10411 | |
828292f2 JB |
10412 | if (TYPE_CODE (ada_check_typedef (value_type (array))) |
10413 | == TYPE_CODE_PTR) | |
4c4b4cd2 | 10414 | { |
828292f2 JB |
10415 | struct type *type0 = ada_check_typedef (value_type (array)); |
10416 | ||
0b5d8877 | 10417 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
828292f2 | 10418 | return empty_array (TYPE_TARGET_TYPE (type0), low_bound); |
4c4b4cd2 PH |
10419 | else |
10420 | { | |
10421 | struct type *arr_type0 = | |
828292f2 | 10422 | to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); |
5b4ee69b | 10423 | |
f5938064 JG |
10424 | return ada_value_slice_from_ptr (array, arr_type0, |
10425 | longest_to_int (low_bound), | |
10426 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
10427 | } |
10428 | } | |
10429 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10430 | return array; | |
10431 | else if (high_bound < low_bound) | |
df407dfe | 10432 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 10433 | else |
529cad9c PH |
10434 | return ada_value_slice (array, longest_to_int (low_bound), |
10435 | longest_to_int (high_bound)); | |
4c4b4cd2 | 10436 | } |
14f9c5c9 | 10437 | |
4c4b4cd2 PH |
10438 | case UNOP_IN_RANGE: |
10439 | (*pos) += 2; | |
10440 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 10441 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 10442 | |
14f9c5c9 | 10443 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 10444 | goto nosideret; |
14f9c5c9 | 10445 | |
4c4b4cd2 PH |
10446 | switch (TYPE_CODE (type)) |
10447 | { | |
10448 | default: | |
e1d5a0d2 PH |
10449 | lim_warning (_("Membership test incompletely implemented; " |
10450 | "always returns true")); | |
fbb06eb1 UW |
10451 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10452 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
10453 | |
10454 | case TYPE_CODE_RANGE: | |
030b4912 UW |
10455 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
10456 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
10457 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10458 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
10459 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10460 | return | |
10461 | value_from_longest (type, | |
4c4b4cd2 PH |
10462 | (value_less (arg1, arg3) |
10463 | || value_equal (arg1, arg3)) | |
10464 | && (value_less (arg2, arg1) | |
10465 | || value_equal (arg2, arg1))); | |
10466 | } | |
10467 | ||
10468 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 10469 | (*pos) += 2; |
4c4b4cd2 PH |
10470 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10471 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 10472 | |
4c4b4cd2 PH |
10473 | if (noside == EVAL_SKIP) |
10474 | goto nosideret; | |
14f9c5c9 | 10475 | |
4c4b4cd2 | 10476 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
10477 | { |
10478 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
10479 | return value_zero (type, not_lval); | |
10480 | } | |
14f9c5c9 | 10481 | |
4c4b4cd2 | 10482 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 10483 | |
1eea4ebd UW |
10484 | type = ada_index_type (value_type (arg2), tem, "range"); |
10485 | if (!type) | |
10486 | type = value_type (arg1); | |
14f9c5c9 | 10487 | |
1eea4ebd UW |
10488 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
10489 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 10490 | |
f44316fa UW |
10491 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10492 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 10493 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 10494 | return |
fbb06eb1 | 10495 | value_from_longest (type, |
4c4b4cd2 PH |
10496 | (value_less (arg1, arg3) |
10497 | || value_equal (arg1, arg3)) | |
10498 | && (value_less (arg2, arg1) | |
10499 | || value_equal (arg2, arg1))); | |
10500 | ||
10501 | case TERNOP_IN_RANGE: | |
10502 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10503 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10504 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10505 | ||
10506 | if (noside == EVAL_SKIP) | |
10507 | goto nosideret; | |
10508 | ||
f44316fa UW |
10509 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10510 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 10511 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 10512 | return |
fbb06eb1 | 10513 | value_from_longest (type, |
4c4b4cd2 PH |
10514 | (value_less (arg1, arg3) |
10515 | || value_equal (arg1, arg3)) | |
10516 | && (value_less (arg2, arg1) | |
10517 | || value_equal (arg2, arg1))); | |
10518 | ||
10519 | case OP_ATR_FIRST: | |
10520 | case OP_ATR_LAST: | |
10521 | case OP_ATR_LENGTH: | |
10522 | { | |
76a01679 | 10523 | struct type *type_arg; |
5b4ee69b | 10524 | |
76a01679 JB |
10525 | if (exp->elts[*pos].opcode == OP_TYPE) |
10526 | { | |
10527 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
10528 | arg1 = NULL; | |
5bc23cb3 | 10529 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
10530 | } |
10531 | else | |
10532 | { | |
10533 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10534 | type_arg = NULL; | |
10535 | } | |
10536 | ||
10537 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 10538 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
10539 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
10540 | *pos += 4; | |
10541 | ||
10542 | if (noside == EVAL_SKIP) | |
10543 | goto nosideret; | |
10544 | ||
10545 | if (type_arg == NULL) | |
10546 | { | |
10547 | arg1 = ada_coerce_ref (arg1); | |
10548 | ||
ad82864c | 10549 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
10550 | arg1 = ada_coerce_to_simple_array (arg1); |
10551 | ||
aa4fb036 | 10552 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 10553 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
10554 | else |
10555 | { | |
10556 | type = ada_index_type (value_type (arg1), tem, | |
10557 | ada_attribute_name (op)); | |
10558 | if (type == NULL) | |
10559 | type = builtin_type (exp->gdbarch)->builtin_int; | |
10560 | } | |
76a01679 JB |
10561 | |
10562 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 10563 | return allocate_value (type); |
76a01679 JB |
10564 | |
10565 | switch (op) | |
10566 | { | |
10567 | default: /* Should never happen. */ | |
323e0a4a | 10568 | error (_("unexpected attribute encountered")); |
76a01679 | 10569 | case OP_ATR_FIRST: |
1eea4ebd UW |
10570 | return value_from_longest |
10571 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 10572 | case OP_ATR_LAST: |
1eea4ebd UW |
10573 | return value_from_longest |
10574 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 10575 | case OP_ATR_LENGTH: |
1eea4ebd UW |
10576 | return value_from_longest |
10577 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
10578 | } |
10579 | } | |
10580 | else if (discrete_type_p (type_arg)) | |
10581 | { | |
10582 | struct type *range_type; | |
0d5cff50 | 10583 | const char *name = ada_type_name (type_arg); |
5b4ee69b | 10584 | |
76a01679 JB |
10585 | range_type = NULL; |
10586 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 10587 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
10588 | if (range_type == NULL) |
10589 | range_type = type_arg; | |
10590 | switch (op) | |
10591 | { | |
10592 | default: | |
323e0a4a | 10593 | error (_("unexpected attribute encountered")); |
76a01679 | 10594 | case OP_ATR_FIRST: |
690cc4eb | 10595 | return value_from_longest |
43bbcdc2 | 10596 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 10597 | case OP_ATR_LAST: |
690cc4eb | 10598 | return value_from_longest |
43bbcdc2 | 10599 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 10600 | case OP_ATR_LENGTH: |
323e0a4a | 10601 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
10602 | } |
10603 | } | |
10604 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 10605 | error (_("unimplemented type attribute")); |
76a01679 JB |
10606 | else |
10607 | { | |
10608 | LONGEST low, high; | |
10609 | ||
ad82864c JB |
10610 | if (ada_is_constrained_packed_array_type (type_arg)) |
10611 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 10612 | |
aa4fb036 | 10613 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 10614 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
10615 | else |
10616 | { | |
10617 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); | |
10618 | if (type == NULL) | |
10619 | type = builtin_type (exp->gdbarch)->builtin_int; | |
10620 | } | |
1eea4ebd | 10621 | |
76a01679 JB |
10622 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
10623 | return allocate_value (type); | |
10624 | ||
10625 | switch (op) | |
10626 | { | |
10627 | default: | |
323e0a4a | 10628 | error (_("unexpected attribute encountered")); |
76a01679 | 10629 | case OP_ATR_FIRST: |
1eea4ebd | 10630 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
10631 | return value_from_longest (type, low); |
10632 | case OP_ATR_LAST: | |
1eea4ebd | 10633 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
10634 | return value_from_longest (type, high); |
10635 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
10636 | low = ada_array_bound_from_type (type_arg, tem, 0); |
10637 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
10638 | return value_from_longest (type, high - low + 1); |
10639 | } | |
10640 | } | |
14f9c5c9 AS |
10641 | } |
10642 | ||
4c4b4cd2 PH |
10643 | case OP_ATR_TAG: |
10644 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10645 | if (noside == EVAL_SKIP) | |
76a01679 | 10646 | goto nosideret; |
4c4b4cd2 PH |
10647 | |
10648 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 10649 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
10650 | |
10651 | return ada_value_tag (arg1); | |
10652 | ||
10653 | case OP_ATR_MIN: | |
10654 | case OP_ATR_MAX: | |
10655 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
10656 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10657 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10658 | if (noside == EVAL_SKIP) | |
76a01679 | 10659 | goto nosideret; |
d2e4a39e | 10660 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 10661 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 10662 | else |
f44316fa UW |
10663 | { |
10664 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10665 | return value_binop (arg1, arg2, | |
10666 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
10667 | } | |
14f9c5c9 | 10668 | |
4c4b4cd2 PH |
10669 | case OP_ATR_MODULUS: |
10670 | { | |
31dedfee | 10671 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 10672 | |
5b4ee69b | 10673 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
10674 | if (noside == EVAL_SKIP) |
10675 | goto nosideret; | |
4c4b4cd2 | 10676 | |
76a01679 | 10677 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 10678 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 10679 | |
76a01679 JB |
10680 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
10681 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
10682 | } |
10683 | ||
10684 | ||
10685 | case OP_ATR_POS: | |
10686 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
10687 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10688 | if (noside == EVAL_SKIP) | |
76a01679 | 10689 | goto nosideret; |
3cb382c9 UW |
10690 | type = builtin_type (exp->gdbarch)->builtin_int; |
10691 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10692 | return value_zero (type, not_lval); | |
14f9c5c9 | 10693 | else |
3cb382c9 | 10694 | return value_pos_atr (type, arg1); |
14f9c5c9 | 10695 | |
4c4b4cd2 PH |
10696 | case OP_ATR_SIZE: |
10697 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
10698 | type = value_type (arg1); |
10699 | ||
10700 | /* If the argument is a reference, then dereference its type, since | |
10701 | the user is really asking for the size of the actual object, | |
10702 | not the size of the pointer. */ | |
10703 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
10704 | type = TYPE_TARGET_TYPE (type); | |
10705 | ||
4c4b4cd2 | 10706 | if (noside == EVAL_SKIP) |
76a01679 | 10707 | goto nosideret; |
4c4b4cd2 | 10708 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 10709 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 10710 | else |
22601c15 | 10711 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 10712 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
10713 | |
10714 | case OP_ATR_VAL: | |
10715 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 10716 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 10717 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 10718 | if (noside == EVAL_SKIP) |
76a01679 | 10719 | goto nosideret; |
4c4b4cd2 | 10720 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10721 | return value_zero (type, not_lval); |
4c4b4cd2 | 10722 | else |
76a01679 | 10723 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
10724 | |
10725 | case BINOP_EXP: | |
10726 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10727 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10728 | if (noside == EVAL_SKIP) | |
10729 | goto nosideret; | |
10730 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 10731 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 10732 | else |
f44316fa UW |
10733 | { |
10734 | /* For integer exponentiation operations, | |
10735 | only promote the first argument. */ | |
10736 | if (is_integral_type (value_type (arg2))) | |
10737 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10738 | else | |
10739 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10740 | ||
10741 | return value_binop (arg1, arg2, op); | |
10742 | } | |
4c4b4cd2 PH |
10743 | |
10744 | case UNOP_PLUS: | |
10745 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10746 | if (noside == EVAL_SKIP) | |
10747 | goto nosideret; | |
10748 | else | |
10749 | return arg1; | |
10750 | ||
10751 | case UNOP_ABS: | |
10752 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10753 | if (noside == EVAL_SKIP) | |
10754 | goto nosideret; | |
f44316fa | 10755 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 10756 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 10757 | return value_neg (arg1); |
14f9c5c9 | 10758 | else |
4c4b4cd2 | 10759 | return arg1; |
14f9c5c9 AS |
10760 | |
10761 | case UNOP_IND: | |
5ec18f2b | 10762 | preeval_pos = *pos; |
6b0d7253 | 10763 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 10764 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 10765 | goto nosideret; |
df407dfe | 10766 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 10767 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
10768 | { |
10769 | if (ada_is_array_descriptor_type (type)) | |
10770 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10771 | { | |
10772 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 10773 | |
4c4b4cd2 | 10774 | if (arrType == NULL) |
323e0a4a | 10775 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 10776 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
10777 | } |
10778 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
10779 | || TYPE_CODE (type) == TYPE_CODE_REF | |
10780 | /* In C you can dereference an array to get the 1st elt. */ | |
10781 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab | 10782 | { |
5ec18f2b JG |
10783 | /* As mentioned in the OP_VAR_VALUE case, tagged types can |
10784 | only be determined by inspecting the object's tag. | |
10785 | This means that we need to evaluate completely the | |
10786 | expression in order to get its type. */ | |
10787 | ||
023db19c JB |
10788 | if ((TYPE_CODE (type) == TYPE_CODE_REF |
10789 | || TYPE_CODE (type) == TYPE_CODE_PTR) | |
5ec18f2b JG |
10790 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)) |
10791 | { | |
10792 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
10793 | EVAL_NORMAL); | |
10794 | type = value_type (ada_value_ind (arg1)); | |
10795 | } | |
10796 | else | |
10797 | { | |
10798 | type = to_static_fixed_type | |
10799 | (ada_aligned_type | |
10800 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
10801 | } | |
10802 | check_size (type); | |
714e53ab PH |
10803 | return value_zero (type, lval_memory); |
10804 | } | |
4c4b4cd2 | 10805 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
10806 | { |
10807 | /* GDB allows dereferencing an int. */ | |
10808 | if (expect_type == NULL) | |
10809 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10810 | lval_memory); | |
10811 | else | |
10812 | { | |
10813 | expect_type = | |
10814 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
10815 | return value_zero (expect_type, lval_memory); | |
10816 | } | |
10817 | } | |
4c4b4cd2 | 10818 | else |
323e0a4a | 10819 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 10820 | } |
0963b4bd | 10821 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 10822 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 10823 | |
96967637 JB |
10824 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
10825 | /* GDB allows dereferencing an int. If we were given | |
10826 | the expect_type, then use that as the target type. | |
10827 | Otherwise, assume that the target type is an int. */ | |
10828 | { | |
10829 | if (expect_type != NULL) | |
10830 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
10831 | arg1)); | |
10832 | else | |
10833 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
10834 | (CORE_ADDR) value_as_address (arg1)); | |
10835 | } | |
6b0d7253 | 10836 | |
4c4b4cd2 PH |
10837 | if (ada_is_array_descriptor_type (type)) |
10838 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10839 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 10840 | else |
4c4b4cd2 | 10841 | return ada_value_ind (arg1); |
14f9c5c9 AS |
10842 | |
10843 | case STRUCTOP_STRUCT: | |
10844 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
10845 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
5ec18f2b | 10846 | preeval_pos = *pos; |
14f9c5c9 AS |
10847 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10848 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10849 | goto nosideret; |
14f9c5c9 | 10850 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10851 | { |
df407dfe | 10852 | struct type *type1 = value_type (arg1); |
5b4ee69b | 10853 | |
76a01679 JB |
10854 | if (ada_is_tagged_type (type1, 1)) |
10855 | { | |
10856 | type = ada_lookup_struct_elt_type (type1, | |
10857 | &exp->elts[pc + 2].string, | |
10858 | 1, 1, NULL); | |
5ec18f2b JG |
10859 | |
10860 | /* If the field is not found, check if it exists in the | |
10861 | extension of this object's type. This means that we | |
10862 | need to evaluate completely the expression. */ | |
10863 | ||
76a01679 | 10864 | if (type == NULL) |
5ec18f2b JG |
10865 | { |
10866 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
10867 | EVAL_NORMAL); | |
10868 | arg1 = ada_value_struct_elt (arg1, | |
10869 | &exp->elts[pc + 2].string, | |
10870 | 0); | |
10871 | arg1 = unwrap_value (arg1); | |
10872 | type = value_type (ada_to_fixed_value (arg1)); | |
10873 | } | |
76a01679 JB |
10874 | } |
10875 | else | |
10876 | type = | |
10877 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
10878 | 0, NULL); | |
10879 | ||
10880 | return value_zero (ada_aligned_type (type), lval_memory); | |
10881 | } | |
14f9c5c9 | 10882 | else |
284614f0 JB |
10883 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); |
10884 | arg1 = unwrap_value (arg1); | |
10885 | return ada_to_fixed_value (arg1); | |
10886 | ||
14f9c5c9 | 10887 | case OP_TYPE: |
4c4b4cd2 PH |
10888 | /* The value is not supposed to be used. This is here to make it |
10889 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
10890 | (*pos) += 2; |
10891 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10892 | goto nosideret; |
14f9c5c9 | 10893 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 10894 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 10895 | else |
323e0a4a | 10896 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
10897 | |
10898 | case OP_AGGREGATE: | |
10899 | case OP_CHOICES: | |
10900 | case OP_OTHERS: | |
10901 | case OP_DISCRETE_RANGE: | |
10902 | case OP_POSITIONAL: | |
10903 | case OP_NAME: | |
10904 | if (noside == EVAL_NORMAL) | |
10905 | switch (op) | |
10906 | { | |
10907 | case OP_NAME: | |
10908 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 10909 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
10910 | case OP_AGGREGATE: |
10911 | error (_("Aggregates only allowed on the right of an assignment")); | |
10912 | default: | |
0963b4bd MS |
10913 | internal_error (__FILE__, __LINE__, |
10914 | _("aggregate apparently mangled")); | |
52ce6436 PH |
10915 | } |
10916 | ||
10917 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
10918 | *pos += oplen - 1; | |
10919 | for (tem = 0; tem < nargs; tem += 1) | |
10920 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
10921 | goto nosideret; | |
14f9c5c9 AS |
10922 | } |
10923 | ||
10924 | nosideret: | |
22601c15 | 10925 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); |
14f9c5c9 | 10926 | } |
14f9c5c9 | 10927 | \f |
d2e4a39e | 10928 | |
4c4b4cd2 | 10929 | /* Fixed point */ |
14f9c5c9 AS |
10930 | |
10931 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
10932 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 10933 | Otherwise, return NULL. */ |
14f9c5c9 | 10934 | |
d2e4a39e | 10935 | static const char * |
ebf56fd3 | 10936 | fixed_type_info (struct type *type) |
14f9c5c9 | 10937 | { |
d2e4a39e | 10938 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
10939 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
10940 | ||
d2e4a39e AS |
10941 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
10942 | { | |
14f9c5c9 | 10943 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 10944 | |
14f9c5c9 | 10945 | if (tail == NULL) |
4c4b4cd2 | 10946 | return NULL; |
d2e4a39e | 10947 | else |
4c4b4cd2 | 10948 | return tail + 5; |
14f9c5c9 AS |
10949 | } |
10950 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
10951 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
10952 | else | |
10953 | return NULL; | |
10954 | } | |
10955 | ||
4c4b4cd2 | 10956 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
10957 | |
10958 | int | |
ebf56fd3 | 10959 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
10960 | { |
10961 | return fixed_type_info (type) != NULL; | |
10962 | } | |
10963 | ||
4c4b4cd2 PH |
10964 | /* Return non-zero iff TYPE represents a System.Address type. */ |
10965 | ||
10966 | int | |
10967 | ada_is_system_address_type (struct type *type) | |
10968 | { | |
10969 | return (TYPE_NAME (type) | |
10970 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
10971 | } | |
10972 | ||
14f9c5c9 AS |
10973 | /* Assuming that TYPE is the representation of an Ada fixed-point |
10974 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 10975 | delta cannot be determined. */ |
14f9c5c9 AS |
10976 | |
10977 | DOUBLEST | |
ebf56fd3 | 10978 | ada_delta (struct type *type) |
14f9c5c9 AS |
10979 | { |
10980 | const char *encoding = fixed_type_info (type); | |
facc390f | 10981 | DOUBLEST num, den; |
14f9c5c9 | 10982 | |
facc390f JB |
10983 | /* Strictly speaking, num and den are encoded as integer. However, |
10984 | they may not fit into a long, and they will have to be converted | |
10985 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
10986 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
10987 | &num, &den) < 2) | |
14f9c5c9 | 10988 | return -1.0; |
d2e4a39e | 10989 | else |
facc390f | 10990 | return num / den; |
14f9c5c9 AS |
10991 | } |
10992 | ||
10993 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 10994 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
10995 | |
10996 | static DOUBLEST | |
ebf56fd3 | 10997 | scaling_factor (struct type *type) |
14f9c5c9 AS |
10998 | { |
10999 | const char *encoding = fixed_type_info (type); | |
facc390f | 11000 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 11001 | int n; |
d2e4a39e | 11002 | |
facc390f JB |
11003 | /* Strictly speaking, num's and den's are encoded as integer. However, |
11004 | they may not fit into a long, and they will have to be converted | |
11005 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
11006 | n = sscanf (encoding, | |
11007 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
11008 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
11009 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
11010 | |
11011 | if (n < 2) | |
11012 | return 1.0; | |
11013 | else if (n == 4) | |
facc390f | 11014 | return num1 / den1; |
d2e4a39e | 11015 | else |
facc390f | 11016 | return num0 / den0; |
14f9c5c9 AS |
11017 | } |
11018 | ||
11019 | ||
11020 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 11021 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
11022 | |
11023 | DOUBLEST | |
ebf56fd3 | 11024 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 11025 | { |
d2e4a39e | 11026 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
11027 | } |
11028 | ||
4c4b4cd2 PH |
11029 | /* The representation of a fixed-point value of type TYPE |
11030 | corresponding to the value X. */ | |
14f9c5c9 AS |
11031 | |
11032 | LONGEST | |
ebf56fd3 | 11033 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
11034 | { |
11035 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
11036 | } | |
11037 | ||
14f9c5c9 | 11038 | \f |
d2e4a39e | 11039 | |
4c4b4cd2 | 11040 | /* Range types */ |
14f9c5c9 AS |
11041 | |
11042 | /* Scan STR beginning at position K for a discriminant name, and | |
11043 | return the value of that discriminant field of DVAL in *PX. If | |
11044 | PNEW_K is not null, put the position of the character beyond the | |
11045 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 11046 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
11047 | |
11048 | static int | |
07d8f827 | 11049 | scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 11050 | int *pnew_k) |
14f9c5c9 AS |
11051 | { |
11052 | static char *bound_buffer = NULL; | |
11053 | static size_t bound_buffer_len = 0; | |
11054 | char *bound; | |
11055 | char *pend; | |
d2e4a39e | 11056 | struct value *bound_val; |
14f9c5c9 AS |
11057 | |
11058 | if (dval == NULL || str == NULL || str[k] == '\0') | |
11059 | return 0; | |
11060 | ||
d2e4a39e | 11061 | pend = strstr (str + k, "__"); |
14f9c5c9 AS |
11062 | if (pend == NULL) |
11063 | { | |
d2e4a39e | 11064 | bound = str + k; |
14f9c5c9 AS |
11065 | k += strlen (bound); |
11066 | } | |
d2e4a39e | 11067 | else |
14f9c5c9 | 11068 | { |
d2e4a39e | 11069 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); |
14f9c5c9 | 11070 | bound = bound_buffer; |
d2e4a39e AS |
11071 | strncpy (bound_buffer, str + k, pend - (str + k)); |
11072 | bound[pend - (str + k)] = '\0'; | |
11073 | k = pend - str; | |
14f9c5c9 | 11074 | } |
d2e4a39e | 11075 | |
df407dfe | 11076 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
11077 | if (bound_val == NULL) |
11078 | return 0; | |
11079 | ||
11080 | *px = value_as_long (bound_val); | |
11081 | if (pnew_k != NULL) | |
11082 | *pnew_k = k; | |
11083 | return 1; | |
11084 | } | |
11085 | ||
11086 | /* Value of variable named NAME in the current environment. If | |
11087 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
11088 | otherwise causes an error with message ERR_MSG. */ |
11089 | ||
d2e4a39e AS |
11090 | static struct value * |
11091 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 11092 | { |
4c4b4cd2 | 11093 | struct ada_symbol_info *syms; |
14f9c5c9 AS |
11094 | int nsyms; |
11095 | ||
4c4b4cd2 | 11096 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
4eeaa230 | 11097 | &syms); |
14f9c5c9 AS |
11098 | |
11099 | if (nsyms != 1) | |
11100 | { | |
11101 | if (err_msg == NULL) | |
4c4b4cd2 | 11102 | return 0; |
14f9c5c9 | 11103 | else |
8a3fe4f8 | 11104 | error (("%s"), err_msg); |
14f9c5c9 AS |
11105 | } |
11106 | ||
4c4b4cd2 | 11107 | return value_of_variable (syms[0].sym, syms[0].block); |
14f9c5c9 | 11108 | } |
d2e4a39e | 11109 | |
14f9c5c9 | 11110 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
11111 | no such variable found, returns 0, and sets *FLAG to 0. If |
11112 | successful, sets *FLAG to 1. */ | |
11113 | ||
14f9c5c9 | 11114 | LONGEST |
4c4b4cd2 | 11115 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 11116 | { |
4c4b4cd2 | 11117 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 11118 | |
14f9c5c9 AS |
11119 | if (var_val == 0) |
11120 | { | |
11121 | if (flag != NULL) | |
4c4b4cd2 | 11122 | *flag = 0; |
14f9c5c9 AS |
11123 | return 0; |
11124 | } | |
11125 | else | |
11126 | { | |
11127 | if (flag != NULL) | |
4c4b4cd2 | 11128 | *flag = 1; |
14f9c5c9 AS |
11129 | return value_as_long (var_val); |
11130 | } | |
11131 | } | |
d2e4a39e | 11132 | |
14f9c5c9 AS |
11133 | |
11134 | /* Return a range type whose base type is that of the range type named | |
11135 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 11136 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
11137 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
11138 | corresponding range type from debug information; fall back to using it | |
11139 | if symbol lookup fails. If a new type must be created, allocate it | |
11140 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
11141 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 11142 | |
d2e4a39e | 11143 | static struct type * |
28c85d6c | 11144 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 11145 | { |
0d5cff50 | 11146 | const char *name; |
14f9c5c9 | 11147 | struct type *base_type; |
d2e4a39e | 11148 | char *subtype_info; |
14f9c5c9 | 11149 | |
28c85d6c JB |
11150 | gdb_assert (raw_type != NULL); |
11151 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 11152 | |
1ce677a4 | 11153 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
11154 | base_type = TYPE_TARGET_TYPE (raw_type); |
11155 | else | |
11156 | base_type = raw_type; | |
11157 | ||
28c85d6c | 11158 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
11159 | subtype_info = strstr (name, "___XD"); |
11160 | if (subtype_info == NULL) | |
690cc4eb | 11161 | { |
43bbcdc2 PH |
11162 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
11163 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 11164 | |
690cc4eb PH |
11165 | if (L < INT_MIN || U > INT_MAX) |
11166 | return raw_type; | |
11167 | else | |
0c9c3474 SA |
11168 | return create_static_range_type (alloc_type_copy (raw_type), raw_type, |
11169 | L, U); | |
690cc4eb | 11170 | } |
14f9c5c9 AS |
11171 | else |
11172 | { | |
11173 | static char *name_buf = NULL; | |
11174 | static size_t name_len = 0; | |
11175 | int prefix_len = subtype_info - name; | |
11176 | LONGEST L, U; | |
11177 | struct type *type; | |
11178 | char *bounds_str; | |
11179 | int n; | |
11180 | ||
11181 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
11182 | strncpy (name_buf, name, prefix_len); | |
11183 | name_buf[prefix_len] = '\0'; | |
11184 | ||
11185 | subtype_info += 5; | |
11186 | bounds_str = strchr (subtype_info, '_'); | |
11187 | n = 1; | |
11188 | ||
d2e4a39e | 11189 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
11190 | { |
11191 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
11192 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
11193 | return raw_type; | |
11194 | if (bounds_str[n] == '_') | |
11195 | n += 2; | |
0963b4bd | 11196 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
4c4b4cd2 PH |
11197 | n += 1; |
11198 | subtype_info += 1; | |
11199 | } | |
d2e4a39e | 11200 | else |
4c4b4cd2 PH |
11201 | { |
11202 | int ok; | |
5b4ee69b | 11203 | |
4c4b4cd2 PH |
11204 | strcpy (name_buf + prefix_len, "___L"); |
11205 | L = get_int_var_value (name_buf, &ok); | |
11206 | if (!ok) | |
11207 | { | |
323e0a4a | 11208 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
11209 | L = 1; |
11210 | } | |
11211 | } | |
14f9c5c9 | 11212 | |
d2e4a39e | 11213 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
11214 | { |
11215 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
11216 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
11217 | return raw_type; | |
11218 | } | |
d2e4a39e | 11219 | else |
4c4b4cd2 PH |
11220 | { |
11221 | int ok; | |
5b4ee69b | 11222 | |
4c4b4cd2 PH |
11223 | strcpy (name_buf + prefix_len, "___U"); |
11224 | U = get_int_var_value (name_buf, &ok); | |
11225 | if (!ok) | |
11226 | { | |
323e0a4a | 11227 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
11228 | U = L; |
11229 | } | |
11230 | } | |
14f9c5c9 | 11231 | |
0c9c3474 SA |
11232 | type = create_static_range_type (alloc_type_copy (raw_type), |
11233 | base_type, L, U); | |
d2e4a39e | 11234 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
11235 | return type; |
11236 | } | |
11237 | } | |
11238 | ||
4c4b4cd2 PH |
11239 | /* True iff NAME is the name of a range type. */ |
11240 | ||
14f9c5c9 | 11241 | int |
d2e4a39e | 11242 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
11243 | { |
11244 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 11245 | } |
14f9c5c9 | 11246 | \f |
d2e4a39e | 11247 | |
4c4b4cd2 PH |
11248 | /* Modular types */ |
11249 | ||
11250 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 11251 | |
14f9c5c9 | 11252 | int |
d2e4a39e | 11253 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 11254 | { |
18af8284 | 11255 | struct type *subranged_type = get_base_type (type); |
14f9c5c9 AS |
11256 | |
11257 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 11258 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 11259 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
11260 | } |
11261 | ||
4c4b4cd2 PH |
11262 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
11263 | ||
61ee279c | 11264 | ULONGEST |
0056e4d5 | 11265 | ada_modulus (struct type *type) |
14f9c5c9 | 11266 | { |
43bbcdc2 | 11267 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 11268 | } |
d2e4a39e | 11269 | \f |
f7f9143b JB |
11270 | |
11271 | /* Ada exception catchpoint support: | |
11272 | --------------------------------- | |
11273 | ||
11274 | We support 3 kinds of exception catchpoints: | |
11275 | . catchpoints on Ada exceptions | |
11276 | . catchpoints on unhandled Ada exceptions | |
11277 | . catchpoints on failed assertions | |
11278 | ||
11279 | Exceptions raised during failed assertions, or unhandled exceptions | |
11280 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
11281 | However, we can easily differentiate these two special cases, and having | |
11282 | the option to distinguish these two cases from the rest can be useful | |
11283 | to zero-in on certain situations. | |
11284 | ||
11285 | Exception catchpoints are a specialized form of breakpoint, | |
11286 | since they rely on inserting breakpoints inside known routines | |
11287 | of the GNAT runtime. The implementation therefore uses a standard | |
11288 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
11289 | of breakpoint_ops. | |
11290 | ||
0259addd JB |
11291 | Support in the runtime for exception catchpoints have been changed |
11292 | a few times already, and these changes affect the implementation | |
11293 | of these catchpoints. In order to be able to support several | |
11294 | variants of the runtime, we use a sniffer that will determine | |
28010a5d | 11295 | the runtime variant used by the program being debugged. */ |
f7f9143b | 11296 | |
3d0b0fa3 JB |
11297 | /* Ada's standard exceptions. */ |
11298 | ||
11299 | static char *standard_exc[] = { | |
11300 | "constraint_error", | |
11301 | "program_error", | |
11302 | "storage_error", | |
11303 | "tasking_error" | |
11304 | }; | |
11305 | ||
0259addd JB |
11306 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
11307 | ||
11308 | /* A structure that describes how to support exception catchpoints | |
11309 | for a given executable. */ | |
11310 | ||
11311 | struct exception_support_info | |
11312 | { | |
11313 | /* The name of the symbol to break on in order to insert | |
11314 | a catchpoint on exceptions. */ | |
11315 | const char *catch_exception_sym; | |
11316 | ||
11317 | /* The name of the symbol to break on in order to insert | |
11318 | a catchpoint on unhandled exceptions. */ | |
11319 | const char *catch_exception_unhandled_sym; | |
11320 | ||
11321 | /* The name of the symbol to break on in order to insert | |
11322 | a catchpoint on failed assertions. */ | |
11323 | const char *catch_assert_sym; | |
11324 | ||
11325 | /* Assuming that the inferior just triggered an unhandled exception | |
11326 | catchpoint, this function is responsible for returning the address | |
11327 | in inferior memory where the name of that exception is stored. | |
11328 | Return zero if the address could not be computed. */ | |
11329 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
11330 | }; | |
11331 | ||
11332 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
11333 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
11334 | ||
11335 | /* The following exception support info structure describes how to | |
11336 | implement exception catchpoints with the latest version of the | |
11337 | Ada runtime (as of 2007-03-06). */ | |
11338 | ||
11339 | static const struct exception_support_info default_exception_support_info = | |
11340 | { | |
11341 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
11342 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11343 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
11344 | ada_unhandled_exception_name_addr | |
11345 | }; | |
11346 | ||
11347 | /* The following exception support info structure describes how to | |
11348 | implement exception catchpoints with a slightly older version | |
11349 | of the Ada runtime. */ | |
11350 | ||
11351 | static const struct exception_support_info exception_support_info_fallback = | |
11352 | { | |
11353 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
11354 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11355 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
11356 | ada_unhandled_exception_name_addr_from_raise | |
11357 | }; | |
11358 | ||
f17011e0 JB |
11359 | /* Return nonzero if we can detect the exception support routines |
11360 | described in EINFO. | |
11361 | ||
11362 | This function errors out if an abnormal situation is detected | |
11363 | (for instance, if we find the exception support routines, but | |
11364 | that support is found to be incomplete). */ | |
11365 | ||
11366 | static int | |
11367 | ada_has_this_exception_support (const struct exception_support_info *einfo) | |
11368 | { | |
11369 | struct symbol *sym; | |
11370 | ||
11371 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
11372 | that should be compiled with debugging information. As a result, we | |
11373 | expect to find that symbol in the symtabs. */ | |
11374 | ||
11375 | sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN); | |
11376 | if (sym == NULL) | |
a6af7abe JB |
11377 | { |
11378 | /* Perhaps we did not find our symbol because the Ada runtime was | |
11379 | compiled without debugging info, or simply stripped of it. | |
11380 | It happens on some GNU/Linux distributions for instance, where | |
11381 | users have to install a separate debug package in order to get | |
11382 | the runtime's debugging info. In that situation, let the user | |
11383 | know why we cannot insert an Ada exception catchpoint. | |
11384 | ||
11385 | Note: Just for the purpose of inserting our Ada exception | |
11386 | catchpoint, we could rely purely on the associated minimal symbol. | |
11387 | But we would be operating in degraded mode anyway, since we are | |
11388 | still lacking the debugging info needed later on to extract | |
11389 | the name of the exception being raised (this name is printed in | |
11390 | the catchpoint message, and is also used when trying to catch | |
11391 | a specific exception). We do not handle this case for now. */ | |
3b7344d5 | 11392 | struct bound_minimal_symbol msym |
1c8e84b0 JB |
11393 | = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL); |
11394 | ||
3b7344d5 | 11395 | if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline) |
a6af7abe JB |
11396 | error (_("Your Ada runtime appears to be missing some debugging " |
11397 | "information.\nCannot insert Ada exception catchpoint " | |
11398 | "in this configuration.")); | |
11399 | ||
11400 | return 0; | |
11401 | } | |
f17011e0 JB |
11402 | |
11403 | /* Make sure that the symbol we found corresponds to a function. */ | |
11404 | ||
11405 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
11406 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
11407 | SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym)); | |
11408 | ||
11409 | return 1; | |
11410 | } | |
11411 | ||
0259addd JB |
11412 | /* Inspect the Ada runtime and determine which exception info structure |
11413 | should be used to provide support for exception catchpoints. | |
11414 | ||
3eecfa55 JB |
11415 | This function will always set the per-inferior exception_info, |
11416 | or raise an error. */ | |
0259addd JB |
11417 | |
11418 | static void | |
11419 | ada_exception_support_info_sniffer (void) | |
11420 | { | |
3eecfa55 | 11421 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
0259addd JB |
11422 | |
11423 | /* If the exception info is already known, then no need to recompute it. */ | |
3eecfa55 | 11424 | if (data->exception_info != NULL) |
0259addd JB |
11425 | return; |
11426 | ||
11427 | /* Check the latest (default) exception support info. */ | |
f17011e0 | 11428 | if (ada_has_this_exception_support (&default_exception_support_info)) |
0259addd | 11429 | { |
3eecfa55 | 11430 | data->exception_info = &default_exception_support_info; |
0259addd JB |
11431 | return; |
11432 | } | |
11433 | ||
11434 | /* Try our fallback exception suport info. */ | |
f17011e0 | 11435 | if (ada_has_this_exception_support (&exception_support_info_fallback)) |
0259addd | 11436 | { |
3eecfa55 | 11437 | data->exception_info = &exception_support_info_fallback; |
0259addd JB |
11438 | return; |
11439 | } | |
11440 | ||
11441 | /* Sometimes, it is normal for us to not be able to find the routine | |
11442 | we are looking for. This happens when the program is linked with | |
11443 | the shared version of the GNAT runtime, and the program has not been | |
11444 | started yet. Inform the user of these two possible causes if | |
11445 | applicable. */ | |
11446 | ||
ccefe4c4 | 11447 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
11448 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
11449 | ||
11450 | /* If the symbol does not exist, then check that the program is | |
11451 | already started, to make sure that shared libraries have been | |
11452 | loaded. If it is not started, this may mean that the symbol is | |
11453 | in a shared library. */ | |
11454 | ||
11455 | if (ptid_get_pid (inferior_ptid) == 0) | |
11456 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
11457 | ||
11458 | /* At this point, we know that we are debugging an Ada program and | |
11459 | that the inferior has been started, but we still are not able to | |
0963b4bd | 11460 | find the run-time symbols. That can mean that we are in |
0259addd JB |
11461 | configurable run time mode, or that a-except as been optimized |
11462 | out by the linker... In any case, at this point it is not worth | |
11463 | supporting this feature. */ | |
11464 | ||
7dda8cff | 11465 | error (_("Cannot insert Ada exception catchpoints in this configuration.")); |
0259addd JB |
11466 | } |
11467 | ||
f7f9143b JB |
11468 | /* True iff FRAME is very likely to be that of a function that is |
11469 | part of the runtime system. This is all very heuristic, but is | |
11470 | intended to be used as advice as to what frames are uninteresting | |
11471 | to most users. */ | |
11472 | ||
11473 | static int | |
11474 | is_known_support_routine (struct frame_info *frame) | |
11475 | { | |
4ed6b5be | 11476 | struct symtab_and_line sal; |
55b87a52 | 11477 | char *func_name; |
692465f1 | 11478 | enum language func_lang; |
f7f9143b | 11479 | int i; |
f35a17b5 | 11480 | const char *fullname; |
f7f9143b | 11481 | |
4ed6b5be JB |
11482 | /* If this code does not have any debugging information (no symtab), |
11483 | This cannot be any user code. */ | |
f7f9143b | 11484 | |
4ed6b5be | 11485 | find_frame_sal (frame, &sal); |
f7f9143b JB |
11486 | if (sal.symtab == NULL) |
11487 | return 1; | |
11488 | ||
4ed6b5be JB |
11489 | /* If there is a symtab, but the associated source file cannot be |
11490 | located, then assume this is not user code: Selecting a frame | |
11491 | for which we cannot display the code would not be very helpful | |
11492 | for the user. This should also take care of case such as VxWorks | |
11493 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 11494 | |
f35a17b5 JK |
11495 | fullname = symtab_to_fullname (sal.symtab); |
11496 | if (access (fullname, R_OK) != 0) | |
f7f9143b JB |
11497 | return 1; |
11498 | ||
4ed6b5be JB |
11499 | /* Check the unit filename againt the Ada runtime file naming. |
11500 | We also check the name of the objfile against the name of some | |
11501 | known system libraries that sometimes come with debugging info | |
11502 | too. */ | |
11503 | ||
f7f9143b JB |
11504 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
11505 | { | |
11506 | re_comp (known_runtime_file_name_patterns[i]); | |
f69c91ad | 11507 | if (re_exec (lbasename (sal.symtab->filename))) |
f7f9143b | 11508 | return 1; |
4ed6b5be | 11509 | if (sal.symtab->objfile != NULL |
4262abfb | 11510 | && re_exec (objfile_name (sal.symtab->objfile))) |
4ed6b5be | 11511 | return 1; |
f7f9143b JB |
11512 | } |
11513 | ||
4ed6b5be | 11514 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 11515 | |
e9e07ba6 | 11516 | find_frame_funname (frame, &func_name, &func_lang, NULL); |
f7f9143b JB |
11517 | if (func_name == NULL) |
11518 | return 1; | |
11519 | ||
11520 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
11521 | { | |
11522 | re_comp (known_auxiliary_function_name_patterns[i]); | |
11523 | if (re_exec (func_name)) | |
55b87a52 KS |
11524 | { |
11525 | xfree (func_name); | |
11526 | return 1; | |
11527 | } | |
f7f9143b JB |
11528 | } |
11529 | ||
55b87a52 | 11530 | xfree (func_name); |
f7f9143b JB |
11531 | return 0; |
11532 | } | |
11533 | ||
11534 | /* Find the first frame that contains debugging information and that is not | |
11535 | part of the Ada run-time, starting from FI and moving upward. */ | |
11536 | ||
0ef643c8 | 11537 | void |
f7f9143b JB |
11538 | ada_find_printable_frame (struct frame_info *fi) |
11539 | { | |
11540 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
11541 | { | |
11542 | if (!is_known_support_routine (fi)) | |
11543 | { | |
11544 | select_frame (fi); | |
11545 | break; | |
11546 | } | |
11547 | } | |
11548 | ||
11549 | } | |
11550 | ||
11551 | /* Assuming that the inferior just triggered an unhandled exception | |
11552 | catchpoint, return the address in inferior memory where the name | |
11553 | of the exception is stored. | |
11554 | ||
11555 | Return zero if the address could not be computed. */ | |
11556 | ||
11557 | static CORE_ADDR | |
11558 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
11559 | { |
11560 | return parse_and_eval_address ("e.full_name"); | |
11561 | } | |
11562 | ||
11563 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
11564 | should be used when the inferior uses an older version of the runtime, | |
11565 | where the exception name needs to be extracted from a specific frame | |
11566 | several frames up in the callstack. */ | |
11567 | ||
11568 | static CORE_ADDR | |
11569 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
11570 | { |
11571 | int frame_level; | |
11572 | struct frame_info *fi; | |
3eecfa55 | 11573 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
55b87a52 | 11574 | struct cleanup *old_chain; |
f7f9143b JB |
11575 | |
11576 | /* To determine the name of this exception, we need to select | |
11577 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
11578 | at least 3 levels up, so we simply skip the first 3 frames | |
11579 | without checking the name of their associated function. */ | |
11580 | fi = get_current_frame (); | |
11581 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
11582 | if (fi != NULL) | |
11583 | fi = get_prev_frame (fi); | |
11584 | ||
55b87a52 | 11585 | old_chain = make_cleanup (null_cleanup, NULL); |
f7f9143b JB |
11586 | while (fi != NULL) |
11587 | { | |
55b87a52 | 11588 | char *func_name; |
692465f1 JB |
11589 | enum language func_lang; |
11590 | ||
e9e07ba6 | 11591 | find_frame_funname (fi, &func_name, &func_lang, NULL); |
55b87a52 KS |
11592 | if (func_name != NULL) |
11593 | { | |
11594 | make_cleanup (xfree, func_name); | |
11595 | ||
11596 | if (strcmp (func_name, | |
11597 | data->exception_info->catch_exception_sym) == 0) | |
11598 | break; /* We found the frame we were looking for... */ | |
11599 | fi = get_prev_frame (fi); | |
11600 | } | |
f7f9143b | 11601 | } |
55b87a52 | 11602 | do_cleanups (old_chain); |
f7f9143b JB |
11603 | |
11604 | if (fi == NULL) | |
11605 | return 0; | |
11606 | ||
11607 | select_frame (fi); | |
11608 | return parse_and_eval_address ("id.full_name"); | |
11609 | } | |
11610 | ||
11611 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
11612 | (of any type), return the address in inferior memory where the name | |
11613 | of the exception is stored, if applicable. | |
11614 | ||
11615 | Return zero if the address could not be computed, or if not relevant. */ | |
11616 | ||
11617 | static CORE_ADDR | |
761269c8 | 11618 | ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
11619 | struct breakpoint *b) |
11620 | { | |
3eecfa55 JB |
11621 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
11622 | ||
f7f9143b JB |
11623 | switch (ex) |
11624 | { | |
761269c8 | 11625 | case ada_catch_exception: |
f7f9143b JB |
11626 | return (parse_and_eval_address ("e.full_name")); |
11627 | break; | |
11628 | ||
761269c8 | 11629 | case ada_catch_exception_unhandled: |
3eecfa55 | 11630 | return data->exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
11631 | break; |
11632 | ||
761269c8 | 11633 | case ada_catch_assert: |
f7f9143b JB |
11634 | return 0; /* Exception name is not relevant in this case. */ |
11635 | break; | |
11636 | ||
11637 | default: | |
11638 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11639 | break; | |
11640 | } | |
11641 | ||
11642 | return 0; /* Should never be reached. */ | |
11643 | } | |
11644 | ||
11645 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
11646 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
11647 | When an error is intercepted, a warning with the error message is printed, | |
11648 | and zero is returned. */ | |
11649 | ||
11650 | static CORE_ADDR | |
761269c8 | 11651 | ada_exception_name_addr (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
11652 | struct breakpoint *b) |
11653 | { | |
bfd189b1 | 11654 | volatile struct gdb_exception e; |
f7f9143b JB |
11655 | CORE_ADDR result = 0; |
11656 | ||
11657 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
11658 | { | |
11659 | result = ada_exception_name_addr_1 (ex, b); | |
11660 | } | |
11661 | ||
11662 | if (e.reason < 0) | |
11663 | { | |
11664 | warning (_("failed to get exception name: %s"), e.message); | |
11665 | return 0; | |
11666 | } | |
11667 | ||
11668 | return result; | |
11669 | } | |
11670 | ||
28010a5d PA |
11671 | static char *ada_exception_catchpoint_cond_string (const char *excep_string); |
11672 | ||
11673 | /* Ada catchpoints. | |
11674 | ||
11675 | In the case of catchpoints on Ada exceptions, the catchpoint will | |
11676 | stop the target on every exception the program throws. When a user | |
11677 | specifies the name of a specific exception, we translate this | |
11678 | request into a condition expression (in text form), and then parse | |
11679 | it into an expression stored in each of the catchpoint's locations. | |
11680 | We then use this condition to check whether the exception that was | |
11681 | raised is the one the user is interested in. If not, then the | |
11682 | target is resumed again. We store the name of the requested | |
11683 | exception, in order to be able to re-set the condition expression | |
11684 | when symbols change. */ | |
11685 | ||
11686 | /* An instance of this type is used to represent an Ada catchpoint | |
11687 | breakpoint location. It includes a "struct bp_location" as a kind | |
11688 | of base class; users downcast to "struct bp_location *" when | |
11689 | needed. */ | |
11690 | ||
11691 | struct ada_catchpoint_location | |
11692 | { | |
11693 | /* The base class. */ | |
11694 | struct bp_location base; | |
11695 | ||
11696 | /* The condition that checks whether the exception that was raised | |
11697 | is the specific exception the user specified on catchpoint | |
11698 | creation. */ | |
11699 | struct expression *excep_cond_expr; | |
11700 | }; | |
11701 | ||
11702 | /* Implement the DTOR method in the bp_location_ops structure for all | |
11703 | Ada exception catchpoint kinds. */ | |
11704 | ||
11705 | static void | |
11706 | ada_catchpoint_location_dtor (struct bp_location *bl) | |
11707 | { | |
11708 | struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl; | |
11709 | ||
11710 | xfree (al->excep_cond_expr); | |
11711 | } | |
11712 | ||
11713 | /* The vtable to be used in Ada catchpoint locations. */ | |
11714 | ||
11715 | static const struct bp_location_ops ada_catchpoint_location_ops = | |
11716 | { | |
11717 | ada_catchpoint_location_dtor | |
11718 | }; | |
11719 | ||
11720 | /* An instance of this type is used to represent an Ada catchpoint. | |
11721 | It includes a "struct breakpoint" as a kind of base class; users | |
11722 | downcast to "struct breakpoint *" when needed. */ | |
11723 | ||
11724 | struct ada_catchpoint | |
11725 | { | |
11726 | /* The base class. */ | |
11727 | struct breakpoint base; | |
11728 | ||
11729 | /* The name of the specific exception the user specified. */ | |
11730 | char *excep_string; | |
11731 | }; | |
11732 | ||
11733 | /* Parse the exception condition string in the context of each of the | |
11734 | catchpoint's locations, and store them for later evaluation. */ | |
11735 | ||
11736 | static void | |
11737 | create_excep_cond_exprs (struct ada_catchpoint *c) | |
11738 | { | |
11739 | struct cleanup *old_chain; | |
11740 | struct bp_location *bl; | |
11741 | char *cond_string; | |
11742 | ||
11743 | /* Nothing to do if there's no specific exception to catch. */ | |
11744 | if (c->excep_string == NULL) | |
11745 | return; | |
11746 | ||
11747 | /* Same if there are no locations... */ | |
11748 | if (c->base.loc == NULL) | |
11749 | return; | |
11750 | ||
11751 | /* Compute the condition expression in text form, from the specific | |
11752 | expection we want to catch. */ | |
11753 | cond_string = ada_exception_catchpoint_cond_string (c->excep_string); | |
11754 | old_chain = make_cleanup (xfree, cond_string); | |
11755 | ||
11756 | /* Iterate over all the catchpoint's locations, and parse an | |
11757 | expression for each. */ | |
11758 | for (bl = c->base.loc; bl != NULL; bl = bl->next) | |
11759 | { | |
11760 | struct ada_catchpoint_location *ada_loc | |
11761 | = (struct ada_catchpoint_location *) bl; | |
11762 | struct expression *exp = NULL; | |
11763 | ||
11764 | if (!bl->shlib_disabled) | |
11765 | { | |
11766 | volatile struct gdb_exception e; | |
bbc13ae3 | 11767 | const char *s; |
28010a5d PA |
11768 | |
11769 | s = cond_string; | |
11770 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
11771 | { | |
1bb9788d TT |
11772 | exp = parse_exp_1 (&s, bl->address, |
11773 | block_for_pc (bl->address), 0); | |
28010a5d PA |
11774 | } |
11775 | if (e.reason < 0) | |
849f2b52 JB |
11776 | { |
11777 | warning (_("failed to reevaluate internal exception condition " | |
11778 | "for catchpoint %d: %s"), | |
11779 | c->base.number, e.message); | |
11780 | /* There is a bug in GCC on sparc-solaris when building with | |
11781 | optimization which causes EXP to change unexpectedly | |
11782 | (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982). | |
11783 | The problem should be fixed starting with GCC 4.9. | |
11784 | In the meantime, work around it by forcing EXP back | |
11785 | to NULL. */ | |
11786 | exp = NULL; | |
11787 | } | |
28010a5d PA |
11788 | } |
11789 | ||
11790 | ada_loc->excep_cond_expr = exp; | |
11791 | } | |
11792 | ||
11793 | do_cleanups (old_chain); | |
11794 | } | |
11795 | ||
11796 | /* Implement the DTOR method in the breakpoint_ops structure for all | |
11797 | exception catchpoint kinds. */ | |
11798 | ||
11799 | static void | |
761269c8 | 11800 | dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b) |
28010a5d PA |
11801 | { |
11802 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
11803 | ||
11804 | xfree (c->excep_string); | |
348d480f | 11805 | |
2060206e | 11806 | bkpt_breakpoint_ops.dtor (b); |
28010a5d PA |
11807 | } |
11808 | ||
11809 | /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops | |
11810 | structure for all exception catchpoint kinds. */ | |
11811 | ||
11812 | static struct bp_location * | |
761269c8 | 11813 | allocate_location_exception (enum ada_exception_catchpoint_kind ex, |
28010a5d PA |
11814 | struct breakpoint *self) |
11815 | { | |
11816 | struct ada_catchpoint_location *loc; | |
11817 | ||
11818 | loc = XNEW (struct ada_catchpoint_location); | |
11819 | init_bp_location (&loc->base, &ada_catchpoint_location_ops, self); | |
11820 | loc->excep_cond_expr = NULL; | |
11821 | return &loc->base; | |
11822 | } | |
11823 | ||
11824 | /* Implement the RE_SET method in the breakpoint_ops structure for all | |
11825 | exception catchpoint kinds. */ | |
11826 | ||
11827 | static void | |
761269c8 | 11828 | re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b) |
28010a5d PA |
11829 | { |
11830 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
11831 | ||
11832 | /* Call the base class's method. This updates the catchpoint's | |
11833 | locations. */ | |
2060206e | 11834 | bkpt_breakpoint_ops.re_set (b); |
28010a5d PA |
11835 | |
11836 | /* Reparse the exception conditional expressions. One for each | |
11837 | location. */ | |
11838 | create_excep_cond_exprs (c); | |
11839 | } | |
11840 | ||
11841 | /* Returns true if we should stop for this breakpoint hit. If the | |
11842 | user specified a specific exception, we only want to cause a stop | |
11843 | if the program thrown that exception. */ | |
11844 | ||
11845 | static int | |
11846 | should_stop_exception (const struct bp_location *bl) | |
11847 | { | |
11848 | struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; | |
11849 | const struct ada_catchpoint_location *ada_loc | |
11850 | = (const struct ada_catchpoint_location *) bl; | |
11851 | volatile struct gdb_exception ex; | |
11852 | int stop; | |
11853 | ||
11854 | /* With no specific exception, should always stop. */ | |
11855 | if (c->excep_string == NULL) | |
11856 | return 1; | |
11857 | ||
11858 | if (ada_loc->excep_cond_expr == NULL) | |
11859 | { | |
11860 | /* We will have a NULL expression if back when we were creating | |
11861 | the expressions, this location's had failed to parse. */ | |
11862 | return 1; | |
11863 | } | |
11864 | ||
11865 | stop = 1; | |
11866 | TRY_CATCH (ex, RETURN_MASK_ALL) | |
11867 | { | |
11868 | struct value *mark; | |
11869 | ||
11870 | mark = value_mark (); | |
11871 | stop = value_true (evaluate_expression (ada_loc->excep_cond_expr)); | |
11872 | value_free_to_mark (mark); | |
11873 | } | |
11874 | if (ex.reason < 0) | |
11875 | exception_fprintf (gdb_stderr, ex, | |
11876 | _("Error in testing exception condition:\n")); | |
11877 | return stop; | |
11878 | } | |
11879 | ||
11880 | /* Implement the CHECK_STATUS method in the breakpoint_ops structure | |
11881 | for all exception catchpoint kinds. */ | |
11882 | ||
11883 | static void | |
761269c8 | 11884 | check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
28010a5d PA |
11885 | { |
11886 | bs->stop = should_stop_exception (bs->bp_location_at); | |
11887 | } | |
11888 | ||
f7f9143b JB |
11889 | /* Implement the PRINT_IT method in the breakpoint_ops structure |
11890 | for all exception catchpoint kinds. */ | |
11891 | ||
11892 | static enum print_stop_action | |
761269c8 | 11893 | print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
f7f9143b | 11894 | { |
79a45e25 | 11895 | struct ui_out *uiout = current_uiout; |
348d480f PA |
11896 | struct breakpoint *b = bs->breakpoint_at; |
11897 | ||
956a9fb9 | 11898 | annotate_catchpoint (b->number); |
f7f9143b | 11899 | |
956a9fb9 | 11900 | if (ui_out_is_mi_like_p (uiout)) |
f7f9143b | 11901 | { |
956a9fb9 JB |
11902 | ui_out_field_string (uiout, "reason", |
11903 | async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); | |
11904 | ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition)); | |
f7f9143b JB |
11905 | } |
11906 | ||
00eb2c4a JB |
11907 | ui_out_text (uiout, |
11908 | b->disposition == disp_del ? "\nTemporary catchpoint " | |
11909 | : "\nCatchpoint "); | |
956a9fb9 JB |
11910 | ui_out_field_int (uiout, "bkptno", b->number); |
11911 | ui_out_text (uiout, ", "); | |
f7f9143b | 11912 | |
f7f9143b JB |
11913 | switch (ex) |
11914 | { | |
761269c8 JB |
11915 | case ada_catch_exception: |
11916 | case ada_catch_exception_unhandled: | |
956a9fb9 JB |
11917 | { |
11918 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
11919 | char exception_name[256]; | |
11920 | ||
11921 | if (addr != 0) | |
11922 | { | |
c714b426 PA |
11923 | read_memory (addr, (gdb_byte *) exception_name, |
11924 | sizeof (exception_name) - 1); | |
956a9fb9 JB |
11925 | exception_name [sizeof (exception_name) - 1] = '\0'; |
11926 | } | |
11927 | else | |
11928 | { | |
11929 | /* For some reason, we were unable to read the exception | |
11930 | name. This could happen if the Runtime was compiled | |
11931 | without debugging info, for instance. In that case, | |
11932 | just replace the exception name by the generic string | |
11933 | "exception" - it will read as "an exception" in the | |
11934 | notification we are about to print. */ | |
967cff16 | 11935 | memcpy (exception_name, "exception", sizeof ("exception")); |
956a9fb9 JB |
11936 | } |
11937 | /* In the case of unhandled exception breakpoints, we print | |
11938 | the exception name as "unhandled EXCEPTION_NAME", to make | |
11939 | it clearer to the user which kind of catchpoint just got | |
11940 | hit. We used ui_out_text to make sure that this extra | |
11941 | info does not pollute the exception name in the MI case. */ | |
761269c8 | 11942 | if (ex == ada_catch_exception_unhandled) |
956a9fb9 JB |
11943 | ui_out_text (uiout, "unhandled "); |
11944 | ui_out_field_string (uiout, "exception-name", exception_name); | |
11945 | } | |
11946 | break; | |
761269c8 | 11947 | case ada_catch_assert: |
956a9fb9 JB |
11948 | /* In this case, the name of the exception is not really |
11949 | important. Just print "failed assertion" to make it clearer | |
11950 | that his program just hit an assertion-failure catchpoint. | |
11951 | We used ui_out_text because this info does not belong in | |
11952 | the MI output. */ | |
11953 | ui_out_text (uiout, "failed assertion"); | |
11954 | break; | |
f7f9143b | 11955 | } |
956a9fb9 JB |
11956 | ui_out_text (uiout, " at "); |
11957 | ada_find_printable_frame (get_current_frame ()); | |
f7f9143b JB |
11958 | |
11959 | return PRINT_SRC_AND_LOC; | |
11960 | } | |
11961 | ||
11962 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
11963 | for all exception catchpoint kinds. */ | |
11964 | ||
11965 | static void | |
761269c8 | 11966 | print_one_exception (enum ada_exception_catchpoint_kind ex, |
a6d9a66e | 11967 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11968 | { |
79a45e25 | 11969 | struct ui_out *uiout = current_uiout; |
28010a5d | 11970 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45b7d TT |
11971 | struct value_print_options opts; |
11972 | ||
11973 | get_user_print_options (&opts); | |
11974 | if (opts.addressprint) | |
f7f9143b JB |
11975 | { |
11976 | annotate_field (4); | |
5af949e3 | 11977 | ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
11978 | } |
11979 | ||
11980 | annotate_field (5); | |
a6d9a66e | 11981 | *last_loc = b->loc; |
f7f9143b JB |
11982 | switch (ex) |
11983 | { | |
761269c8 | 11984 | case ada_catch_exception: |
28010a5d | 11985 | if (c->excep_string != NULL) |
f7f9143b | 11986 | { |
28010a5d PA |
11987 | char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string); |
11988 | ||
f7f9143b JB |
11989 | ui_out_field_string (uiout, "what", msg); |
11990 | xfree (msg); | |
11991 | } | |
11992 | else | |
11993 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
11994 | ||
11995 | break; | |
11996 | ||
761269c8 | 11997 | case ada_catch_exception_unhandled: |
f7f9143b JB |
11998 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); |
11999 | break; | |
12000 | ||
761269c8 | 12001 | case ada_catch_assert: |
f7f9143b JB |
12002 | ui_out_field_string (uiout, "what", "failed Ada assertions"); |
12003 | break; | |
12004 | ||
12005 | default: | |
12006 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12007 | break; | |
12008 | } | |
12009 | } | |
12010 | ||
12011 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
12012 | for all exception catchpoint kinds. */ | |
12013 | ||
12014 | static void | |
761269c8 | 12015 | print_mention_exception (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12016 | struct breakpoint *b) |
12017 | { | |
28010a5d | 12018 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45e25 | 12019 | struct ui_out *uiout = current_uiout; |
28010a5d | 12020 | |
00eb2c4a JB |
12021 | ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ") |
12022 | : _("Catchpoint ")); | |
12023 | ui_out_field_int (uiout, "bkptno", b->number); | |
12024 | ui_out_text (uiout, ": "); | |
12025 | ||
f7f9143b JB |
12026 | switch (ex) |
12027 | { | |
761269c8 | 12028 | case ada_catch_exception: |
28010a5d | 12029 | if (c->excep_string != NULL) |
00eb2c4a JB |
12030 | { |
12031 | char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string); | |
12032 | struct cleanup *old_chain = make_cleanup (xfree, info); | |
12033 | ||
12034 | ui_out_text (uiout, info); | |
12035 | do_cleanups (old_chain); | |
12036 | } | |
f7f9143b | 12037 | else |
00eb2c4a | 12038 | ui_out_text (uiout, _("all Ada exceptions")); |
f7f9143b JB |
12039 | break; |
12040 | ||
761269c8 | 12041 | case ada_catch_exception_unhandled: |
00eb2c4a | 12042 | ui_out_text (uiout, _("unhandled Ada exceptions")); |
f7f9143b JB |
12043 | break; |
12044 | ||
761269c8 | 12045 | case ada_catch_assert: |
00eb2c4a | 12046 | ui_out_text (uiout, _("failed Ada assertions")); |
f7f9143b JB |
12047 | break; |
12048 | ||
12049 | default: | |
12050 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12051 | break; | |
12052 | } | |
12053 | } | |
12054 | ||
6149aea9 PA |
12055 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
12056 | for all exception catchpoint kinds. */ | |
12057 | ||
12058 | static void | |
761269c8 | 12059 | print_recreate_exception (enum ada_exception_catchpoint_kind ex, |
6149aea9 PA |
12060 | struct breakpoint *b, struct ui_file *fp) |
12061 | { | |
28010a5d PA |
12062 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
12063 | ||
6149aea9 PA |
12064 | switch (ex) |
12065 | { | |
761269c8 | 12066 | case ada_catch_exception: |
6149aea9 | 12067 | fprintf_filtered (fp, "catch exception"); |
28010a5d PA |
12068 | if (c->excep_string != NULL) |
12069 | fprintf_filtered (fp, " %s", c->excep_string); | |
6149aea9 PA |
12070 | break; |
12071 | ||
761269c8 | 12072 | case ada_catch_exception_unhandled: |
78076abc | 12073 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
12074 | break; |
12075 | ||
761269c8 | 12076 | case ada_catch_assert: |
6149aea9 PA |
12077 | fprintf_filtered (fp, "catch assert"); |
12078 | break; | |
12079 | ||
12080 | default: | |
12081 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12082 | } | |
d9b3f62e | 12083 | print_recreate_thread (b, fp); |
6149aea9 PA |
12084 | } |
12085 | ||
f7f9143b JB |
12086 | /* Virtual table for "catch exception" breakpoints. */ |
12087 | ||
28010a5d PA |
12088 | static void |
12089 | dtor_catch_exception (struct breakpoint *b) | |
12090 | { | |
761269c8 | 12091 | dtor_exception (ada_catch_exception, b); |
28010a5d PA |
12092 | } |
12093 | ||
12094 | static struct bp_location * | |
12095 | allocate_location_catch_exception (struct breakpoint *self) | |
12096 | { | |
761269c8 | 12097 | return allocate_location_exception (ada_catch_exception, self); |
28010a5d PA |
12098 | } |
12099 | ||
12100 | static void | |
12101 | re_set_catch_exception (struct breakpoint *b) | |
12102 | { | |
761269c8 | 12103 | re_set_exception (ada_catch_exception, b); |
28010a5d PA |
12104 | } |
12105 | ||
12106 | static void | |
12107 | check_status_catch_exception (bpstat bs) | |
12108 | { | |
761269c8 | 12109 | check_status_exception (ada_catch_exception, bs); |
28010a5d PA |
12110 | } |
12111 | ||
f7f9143b | 12112 | static enum print_stop_action |
348d480f | 12113 | print_it_catch_exception (bpstat bs) |
f7f9143b | 12114 | { |
761269c8 | 12115 | return print_it_exception (ada_catch_exception, bs); |
f7f9143b JB |
12116 | } |
12117 | ||
12118 | static void | |
a6d9a66e | 12119 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12120 | { |
761269c8 | 12121 | print_one_exception (ada_catch_exception, b, last_loc); |
f7f9143b JB |
12122 | } |
12123 | ||
12124 | static void | |
12125 | print_mention_catch_exception (struct breakpoint *b) | |
12126 | { | |
761269c8 | 12127 | print_mention_exception (ada_catch_exception, b); |
f7f9143b JB |
12128 | } |
12129 | ||
6149aea9 PA |
12130 | static void |
12131 | print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) | |
12132 | { | |
761269c8 | 12133 | print_recreate_exception (ada_catch_exception, b, fp); |
6149aea9 PA |
12134 | } |
12135 | ||
2060206e | 12136 | static struct breakpoint_ops catch_exception_breakpoint_ops; |
f7f9143b JB |
12137 | |
12138 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
12139 | ||
28010a5d PA |
12140 | static void |
12141 | dtor_catch_exception_unhandled (struct breakpoint *b) | |
12142 | { | |
761269c8 | 12143 | dtor_exception (ada_catch_exception_unhandled, b); |
28010a5d PA |
12144 | } |
12145 | ||
12146 | static struct bp_location * | |
12147 | allocate_location_catch_exception_unhandled (struct breakpoint *self) | |
12148 | { | |
761269c8 | 12149 | return allocate_location_exception (ada_catch_exception_unhandled, self); |
28010a5d PA |
12150 | } |
12151 | ||
12152 | static void | |
12153 | re_set_catch_exception_unhandled (struct breakpoint *b) | |
12154 | { | |
761269c8 | 12155 | re_set_exception (ada_catch_exception_unhandled, b); |
28010a5d PA |
12156 | } |
12157 | ||
12158 | static void | |
12159 | check_status_catch_exception_unhandled (bpstat bs) | |
12160 | { | |
761269c8 | 12161 | check_status_exception (ada_catch_exception_unhandled, bs); |
28010a5d PA |
12162 | } |
12163 | ||
f7f9143b | 12164 | static enum print_stop_action |
348d480f | 12165 | print_it_catch_exception_unhandled (bpstat bs) |
f7f9143b | 12166 | { |
761269c8 | 12167 | return print_it_exception (ada_catch_exception_unhandled, bs); |
f7f9143b JB |
12168 | } |
12169 | ||
12170 | static void | |
a6d9a66e UW |
12171 | print_one_catch_exception_unhandled (struct breakpoint *b, |
12172 | struct bp_location **last_loc) | |
f7f9143b | 12173 | { |
761269c8 | 12174 | print_one_exception (ada_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
12175 | } |
12176 | ||
12177 | static void | |
12178 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
12179 | { | |
761269c8 | 12180 | print_mention_exception (ada_catch_exception_unhandled, b); |
f7f9143b JB |
12181 | } |
12182 | ||
6149aea9 PA |
12183 | static void |
12184 | print_recreate_catch_exception_unhandled (struct breakpoint *b, | |
12185 | struct ui_file *fp) | |
12186 | { | |
761269c8 | 12187 | print_recreate_exception (ada_catch_exception_unhandled, b, fp); |
6149aea9 PA |
12188 | } |
12189 | ||
2060206e | 12190 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops; |
f7f9143b JB |
12191 | |
12192 | /* Virtual table for "catch assert" breakpoints. */ | |
12193 | ||
28010a5d PA |
12194 | static void |
12195 | dtor_catch_assert (struct breakpoint *b) | |
12196 | { | |
761269c8 | 12197 | dtor_exception (ada_catch_assert, b); |
28010a5d PA |
12198 | } |
12199 | ||
12200 | static struct bp_location * | |
12201 | allocate_location_catch_assert (struct breakpoint *self) | |
12202 | { | |
761269c8 | 12203 | return allocate_location_exception (ada_catch_assert, self); |
28010a5d PA |
12204 | } |
12205 | ||
12206 | static void | |
12207 | re_set_catch_assert (struct breakpoint *b) | |
12208 | { | |
761269c8 | 12209 | re_set_exception (ada_catch_assert, b); |
28010a5d PA |
12210 | } |
12211 | ||
12212 | static void | |
12213 | check_status_catch_assert (bpstat bs) | |
12214 | { | |
761269c8 | 12215 | check_status_exception (ada_catch_assert, bs); |
28010a5d PA |
12216 | } |
12217 | ||
f7f9143b | 12218 | static enum print_stop_action |
348d480f | 12219 | print_it_catch_assert (bpstat bs) |
f7f9143b | 12220 | { |
761269c8 | 12221 | return print_it_exception (ada_catch_assert, bs); |
f7f9143b JB |
12222 | } |
12223 | ||
12224 | static void | |
a6d9a66e | 12225 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12226 | { |
761269c8 | 12227 | print_one_exception (ada_catch_assert, b, last_loc); |
f7f9143b JB |
12228 | } |
12229 | ||
12230 | static void | |
12231 | print_mention_catch_assert (struct breakpoint *b) | |
12232 | { | |
761269c8 | 12233 | print_mention_exception (ada_catch_assert, b); |
f7f9143b JB |
12234 | } |
12235 | ||
6149aea9 PA |
12236 | static void |
12237 | print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) | |
12238 | { | |
761269c8 | 12239 | print_recreate_exception (ada_catch_assert, b, fp); |
6149aea9 PA |
12240 | } |
12241 | ||
2060206e | 12242 | static struct breakpoint_ops catch_assert_breakpoint_ops; |
f7f9143b | 12243 | |
f7f9143b JB |
12244 | /* Return a newly allocated copy of the first space-separated token |
12245 | in ARGSP, and then adjust ARGSP to point immediately after that | |
12246 | token. | |
12247 | ||
12248 | Return NULL if ARGPS does not contain any more tokens. */ | |
12249 | ||
12250 | static char * | |
12251 | ada_get_next_arg (char **argsp) | |
12252 | { | |
12253 | char *args = *argsp; | |
12254 | char *end; | |
12255 | char *result; | |
12256 | ||
0fcd72ba | 12257 | args = skip_spaces (args); |
f7f9143b JB |
12258 | if (args[0] == '\0') |
12259 | return NULL; /* No more arguments. */ | |
12260 | ||
12261 | /* Find the end of the current argument. */ | |
12262 | ||
0fcd72ba | 12263 | end = skip_to_space (args); |
f7f9143b JB |
12264 | |
12265 | /* Adjust ARGSP to point to the start of the next argument. */ | |
12266 | ||
12267 | *argsp = end; | |
12268 | ||
12269 | /* Make a copy of the current argument and return it. */ | |
12270 | ||
12271 | result = xmalloc (end - args + 1); | |
12272 | strncpy (result, args, end - args); | |
12273 | result[end - args] = '\0'; | |
12274 | ||
12275 | return result; | |
12276 | } | |
12277 | ||
12278 | /* Split the arguments specified in a "catch exception" command. | |
12279 | Set EX to the appropriate catchpoint type. | |
28010a5d | 12280 | Set EXCEP_STRING to the name of the specific exception if |
5845583d JB |
12281 | specified by the user. |
12282 | If a condition is found at the end of the arguments, the condition | |
12283 | expression is stored in COND_STRING (memory must be deallocated | |
12284 | after use). Otherwise COND_STRING is set to NULL. */ | |
f7f9143b JB |
12285 | |
12286 | static void | |
12287 | catch_ada_exception_command_split (char *args, | |
761269c8 | 12288 | enum ada_exception_catchpoint_kind *ex, |
5845583d JB |
12289 | char **excep_string, |
12290 | char **cond_string) | |
f7f9143b JB |
12291 | { |
12292 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
12293 | char *exception_name; | |
5845583d | 12294 | char *cond = NULL; |
f7f9143b JB |
12295 | |
12296 | exception_name = ada_get_next_arg (&args); | |
5845583d JB |
12297 | if (exception_name != NULL && strcmp (exception_name, "if") == 0) |
12298 | { | |
12299 | /* This is not an exception name; this is the start of a condition | |
12300 | expression for a catchpoint on all exceptions. So, "un-get" | |
12301 | this token, and set exception_name to NULL. */ | |
12302 | xfree (exception_name); | |
12303 | exception_name = NULL; | |
12304 | args -= 2; | |
12305 | } | |
f7f9143b JB |
12306 | make_cleanup (xfree, exception_name); |
12307 | ||
5845583d | 12308 | /* Check to see if we have a condition. */ |
f7f9143b | 12309 | |
0fcd72ba | 12310 | args = skip_spaces (args); |
5845583d JB |
12311 | if (strncmp (args, "if", 2) == 0 |
12312 | && (isspace (args[2]) || args[2] == '\0')) | |
12313 | { | |
12314 | args += 2; | |
12315 | args = skip_spaces (args); | |
12316 | ||
12317 | if (args[0] == '\0') | |
12318 | error (_("Condition missing after `if' keyword")); | |
12319 | cond = xstrdup (args); | |
12320 | make_cleanup (xfree, cond); | |
12321 | ||
12322 | args += strlen (args); | |
12323 | } | |
12324 | ||
12325 | /* Check that we do not have any more arguments. Anything else | |
12326 | is unexpected. */ | |
f7f9143b JB |
12327 | |
12328 | if (args[0] != '\0') | |
12329 | error (_("Junk at end of expression")); | |
12330 | ||
12331 | discard_cleanups (old_chain); | |
12332 | ||
12333 | if (exception_name == NULL) | |
12334 | { | |
12335 | /* Catch all exceptions. */ | |
761269c8 | 12336 | *ex = ada_catch_exception; |
28010a5d | 12337 | *excep_string = NULL; |
f7f9143b JB |
12338 | } |
12339 | else if (strcmp (exception_name, "unhandled") == 0) | |
12340 | { | |
12341 | /* Catch unhandled exceptions. */ | |
761269c8 | 12342 | *ex = ada_catch_exception_unhandled; |
28010a5d | 12343 | *excep_string = NULL; |
f7f9143b JB |
12344 | } |
12345 | else | |
12346 | { | |
12347 | /* Catch a specific exception. */ | |
761269c8 | 12348 | *ex = ada_catch_exception; |
28010a5d | 12349 | *excep_string = exception_name; |
f7f9143b | 12350 | } |
5845583d | 12351 | *cond_string = cond; |
f7f9143b JB |
12352 | } |
12353 | ||
12354 | /* Return the name of the symbol on which we should break in order to | |
12355 | implement a catchpoint of the EX kind. */ | |
12356 | ||
12357 | static const char * | |
761269c8 | 12358 | ada_exception_sym_name (enum ada_exception_catchpoint_kind ex) |
f7f9143b | 12359 | { |
3eecfa55 JB |
12360 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
12361 | ||
12362 | gdb_assert (data->exception_info != NULL); | |
0259addd | 12363 | |
f7f9143b JB |
12364 | switch (ex) |
12365 | { | |
761269c8 | 12366 | case ada_catch_exception: |
3eecfa55 | 12367 | return (data->exception_info->catch_exception_sym); |
f7f9143b | 12368 | break; |
761269c8 | 12369 | case ada_catch_exception_unhandled: |
3eecfa55 | 12370 | return (data->exception_info->catch_exception_unhandled_sym); |
f7f9143b | 12371 | break; |
761269c8 | 12372 | case ada_catch_assert: |
3eecfa55 | 12373 | return (data->exception_info->catch_assert_sym); |
f7f9143b JB |
12374 | break; |
12375 | default: | |
12376 | internal_error (__FILE__, __LINE__, | |
12377 | _("unexpected catchpoint kind (%d)"), ex); | |
12378 | } | |
12379 | } | |
12380 | ||
12381 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
12382 | of the EX kind. */ | |
12383 | ||
c0a91b2b | 12384 | static const struct breakpoint_ops * |
761269c8 | 12385 | ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex) |
f7f9143b JB |
12386 | { |
12387 | switch (ex) | |
12388 | { | |
761269c8 | 12389 | case ada_catch_exception: |
f7f9143b JB |
12390 | return (&catch_exception_breakpoint_ops); |
12391 | break; | |
761269c8 | 12392 | case ada_catch_exception_unhandled: |
f7f9143b JB |
12393 | return (&catch_exception_unhandled_breakpoint_ops); |
12394 | break; | |
761269c8 | 12395 | case ada_catch_assert: |
f7f9143b JB |
12396 | return (&catch_assert_breakpoint_ops); |
12397 | break; | |
12398 | default: | |
12399 | internal_error (__FILE__, __LINE__, | |
12400 | _("unexpected catchpoint kind (%d)"), ex); | |
12401 | } | |
12402 | } | |
12403 | ||
12404 | /* Return the condition that will be used to match the current exception | |
12405 | being raised with the exception that the user wants to catch. This | |
12406 | assumes that this condition is used when the inferior just triggered | |
12407 | an exception catchpoint. | |
12408 | ||
12409 | The string returned is a newly allocated string that needs to be | |
12410 | deallocated later. */ | |
12411 | ||
12412 | static char * | |
28010a5d | 12413 | ada_exception_catchpoint_cond_string (const char *excep_string) |
f7f9143b | 12414 | { |
3d0b0fa3 JB |
12415 | int i; |
12416 | ||
0963b4bd | 12417 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 | 12418 | runtime units that have been compiled without debugging info; if |
28010a5d | 12419 | EXCEP_STRING is the not-fully-qualified name of a standard |
3d0b0fa3 JB |
12420 | exception (e.g. "constraint_error") then, during the evaluation |
12421 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 12422 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
12423 | may then be set only on user-defined exceptions which have the |
12424 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
12425 | ||
12426 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 12427 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
12428 | exception constraint_error" is rewritten into "catch exception |
12429 | standard.constraint_error". | |
12430 | ||
12431 | If an exception named contraint_error is defined in another package of | |
12432 | the inferior program, then the only way to specify this exception as a | |
12433 | breakpoint condition is to use its fully-qualified named: | |
12434 | e.g. my_package.constraint_error. */ | |
12435 | ||
12436 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
12437 | { | |
28010a5d | 12438 | if (strcmp (standard_exc [i], excep_string) == 0) |
3d0b0fa3 JB |
12439 | { |
12440 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
28010a5d | 12441 | excep_string); |
3d0b0fa3 JB |
12442 | } |
12443 | } | |
28010a5d | 12444 | return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string); |
f7f9143b JB |
12445 | } |
12446 | ||
12447 | /* Return the symtab_and_line that should be used to insert an exception | |
12448 | catchpoint of the TYPE kind. | |
12449 | ||
28010a5d PA |
12450 | EXCEP_STRING should contain the name of a specific exception that |
12451 | the catchpoint should catch, or NULL otherwise. | |
f7f9143b | 12452 | |
28010a5d PA |
12453 | ADDR_STRING returns the name of the function where the real |
12454 | breakpoint that implements the catchpoints is set, depending on the | |
12455 | type of catchpoint we need to create. */ | |
f7f9143b JB |
12456 | |
12457 | static struct symtab_and_line | |
761269c8 | 12458 | ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string, |
c0a91b2b | 12459 | char **addr_string, const struct breakpoint_ops **ops) |
f7f9143b JB |
12460 | { |
12461 | const char *sym_name; | |
12462 | struct symbol *sym; | |
f7f9143b | 12463 | |
0259addd JB |
12464 | /* First, find out which exception support info to use. */ |
12465 | ada_exception_support_info_sniffer (); | |
12466 | ||
12467 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b | 12468 | the Ada exceptions requested by the user. */ |
f7f9143b JB |
12469 | sym_name = ada_exception_sym_name (ex); |
12470 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
12471 | ||
f17011e0 JB |
12472 | /* We can assume that SYM is not NULL at this stage. If the symbol |
12473 | did not exist, ada_exception_support_info_sniffer would have | |
12474 | raised an exception. | |
f7f9143b | 12475 | |
f17011e0 JB |
12476 | Also, ada_exception_support_info_sniffer should have already |
12477 | verified that SYM is a function symbol. */ | |
12478 | gdb_assert (sym != NULL); | |
12479 | gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK); | |
f7f9143b JB |
12480 | |
12481 | /* Set ADDR_STRING. */ | |
f7f9143b JB |
12482 | *addr_string = xstrdup (sym_name); |
12483 | ||
f7f9143b | 12484 | /* Set OPS. */ |
4b9eee8c | 12485 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b | 12486 | |
f17011e0 | 12487 | return find_function_start_sal (sym, 1); |
f7f9143b JB |
12488 | } |
12489 | ||
b4a5b78b | 12490 | /* Create an Ada exception catchpoint. |
f7f9143b | 12491 | |
b4a5b78b | 12492 | EX_KIND is the kind of exception catchpoint to be created. |
5845583d | 12493 | |
2df4d1d5 JB |
12494 | If EXCEPT_STRING is NULL, this catchpoint is expected to trigger |
12495 | for all exceptions. Otherwise, EXCEPT_STRING indicates the name | |
12496 | of the exception to which this catchpoint applies. When not NULL, | |
12497 | the string must be allocated on the heap, and its deallocation | |
12498 | is no longer the responsibility of the caller. | |
12499 | ||
12500 | COND_STRING, if not NULL, is the catchpoint condition. This string | |
12501 | must be allocated on the heap, and its deallocation is no longer | |
12502 | the responsibility of the caller. | |
f7f9143b | 12503 | |
b4a5b78b JB |
12504 | TEMPFLAG, if nonzero, means that the underlying breakpoint |
12505 | should be temporary. | |
28010a5d | 12506 | |
b4a5b78b | 12507 | FROM_TTY is the usual argument passed to all commands implementations. */ |
28010a5d | 12508 | |
349774ef | 12509 | void |
28010a5d | 12510 | create_ada_exception_catchpoint (struct gdbarch *gdbarch, |
761269c8 | 12511 | enum ada_exception_catchpoint_kind ex_kind, |
28010a5d | 12512 | char *excep_string, |
5845583d | 12513 | char *cond_string, |
28010a5d | 12514 | int tempflag, |
349774ef | 12515 | int disabled, |
28010a5d PA |
12516 | int from_tty) |
12517 | { | |
12518 | struct ada_catchpoint *c; | |
b4a5b78b JB |
12519 | char *addr_string = NULL; |
12520 | const struct breakpoint_ops *ops = NULL; | |
12521 | struct symtab_and_line sal | |
12522 | = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops); | |
28010a5d PA |
12523 | |
12524 | c = XNEW (struct ada_catchpoint); | |
12525 | init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string, | |
349774ef | 12526 | ops, tempflag, disabled, from_tty); |
28010a5d PA |
12527 | c->excep_string = excep_string; |
12528 | create_excep_cond_exprs (c); | |
5845583d JB |
12529 | if (cond_string != NULL) |
12530 | set_breakpoint_condition (&c->base, cond_string, from_tty); | |
3ea46bff | 12531 | install_breakpoint (0, &c->base, 1); |
f7f9143b JB |
12532 | } |
12533 | ||
9ac4176b PA |
12534 | /* Implement the "catch exception" command. */ |
12535 | ||
12536 | static void | |
12537 | catch_ada_exception_command (char *arg, int from_tty, | |
12538 | struct cmd_list_element *command) | |
12539 | { | |
12540 | struct gdbarch *gdbarch = get_current_arch (); | |
12541 | int tempflag; | |
761269c8 | 12542 | enum ada_exception_catchpoint_kind ex_kind; |
28010a5d | 12543 | char *excep_string = NULL; |
5845583d | 12544 | char *cond_string = NULL; |
9ac4176b PA |
12545 | |
12546 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
12547 | ||
12548 | if (!arg) | |
12549 | arg = ""; | |
b4a5b78b JB |
12550 | catch_ada_exception_command_split (arg, &ex_kind, &excep_string, |
12551 | &cond_string); | |
12552 | create_ada_exception_catchpoint (gdbarch, ex_kind, | |
12553 | excep_string, cond_string, | |
349774ef JB |
12554 | tempflag, 1 /* enabled */, |
12555 | from_tty); | |
9ac4176b PA |
12556 | } |
12557 | ||
b4a5b78b | 12558 | /* Split the arguments specified in a "catch assert" command. |
5845583d | 12559 | |
b4a5b78b JB |
12560 | ARGS contains the command's arguments (or the empty string if |
12561 | no arguments were passed). | |
5845583d JB |
12562 | |
12563 | If ARGS contains a condition, set COND_STRING to that condition | |
b4a5b78b | 12564 | (the memory needs to be deallocated after use). */ |
5845583d | 12565 | |
b4a5b78b JB |
12566 | static void |
12567 | catch_ada_assert_command_split (char *args, char **cond_string) | |
f7f9143b | 12568 | { |
5845583d | 12569 | args = skip_spaces (args); |
f7f9143b | 12570 | |
5845583d JB |
12571 | /* Check whether a condition was provided. */ |
12572 | if (strncmp (args, "if", 2) == 0 | |
12573 | && (isspace (args[2]) || args[2] == '\0')) | |
f7f9143b | 12574 | { |
5845583d | 12575 | args += 2; |
0fcd72ba | 12576 | args = skip_spaces (args); |
5845583d JB |
12577 | if (args[0] == '\0') |
12578 | error (_("condition missing after `if' keyword")); | |
12579 | *cond_string = xstrdup (args); | |
f7f9143b JB |
12580 | } |
12581 | ||
5845583d JB |
12582 | /* Otherwise, there should be no other argument at the end of |
12583 | the command. */ | |
12584 | else if (args[0] != '\0') | |
12585 | error (_("Junk at end of arguments.")); | |
f7f9143b JB |
12586 | } |
12587 | ||
9ac4176b PA |
12588 | /* Implement the "catch assert" command. */ |
12589 | ||
12590 | static void | |
12591 | catch_assert_command (char *arg, int from_tty, | |
12592 | struct cmd_list_element *command) | |
12593 | { | |
12594 | struct gdbarch *gdbarch = get_current_arch (); | |
12595 | int tempflag; | |
5845583d | 12596 | char *cond_string = NULL; |
9ac4176b PA |
12597 | |
12598 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
12599 | ||
12600 | if (!arg) | |
12601 | arg = ""; | |
b4a5b78b | 12602 | catch_ada_assert_command_split (arg, &cond_string); |
761269c8 | 12603 | create_ada_exception_catchpoint (gdbarch, ada_catch_assert, |
b4a5b78b | 12604 | NULL, cond_string, |
349774ef JB |
12605 | tempflag, 1 /* enabled */, |
12606 | from_tty); | |
9ac4176b | 12607 | } |
778865d3 JB |
12608 | |
12609 | /* Return non-zero if the symbol SYM is an Ada exception object. */ | |
12610 | ||
12611 | static int | |
12612 | ada_is_exception_sym (struct symbol *sym) | |
12613 | { | |
12614 | const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym)); | |
12615 | ||
12616 | return (SYMBOL_CLASS (sym) != LOC_TYPEDEF | |
12617 | && SYMBOL_CLASS (sym) != LOC_BLOCK | |
12618 | && SYMBOL_CLASS (sym) != LOC_CONST | |
12619 | && SYMBOL_CLASS (sym) != LOC_UNRESOLVED | |
12620 | && type_name != NULL && strcmp (type_name, "exception") == 0); | |
12621 | } | |
12622 | ||
12623 | /* Given a global symbol SYM, return non-zero iff SYM is a non-standard | |
12624 | Ada exception object. This matches all exceptions except the ones | |
12625 | defined by the Ada language. */ | |
12626 | ||
12627 | static int | |
12628 | ada_is_non_standard_exception_sym (struct symbol *sym) | |
12629 | { | |
12630 | int i; | |
12631 | ||
12632 | if (!ada_is_exception_sym (sym)) | |
12633 | return 0; | |
12634 | ||
12635 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
12636 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0) | |
12637 | return 0; /* A standard exception. */ | |
12638 | ||
12639 | /* Numeric_Error is also a standard exception, so exclude it. | |
12640 | See the STANDARD_EXC description for more details as to why | |
12641 | this exception is not listed in that array. */ | |
12642 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0) | |
12643 | return 0; | |
12644 | ||
12645 | return 1; | |
12646 | } | |
12647 | ||
12648 | /* A helper function for qsort, comparing two struct ada_exc_info | |
12649 | objects. | |
12650 | ||
12651 | The comparison is determined first by exception name, and then | |
12652 | by exception address. */ | |
12653 | ||
12654 | static int | |
12655 | compare_ada_exception_info (const void *a, const void *b) | |
12656 | { | |
12657 | const struct ada_exc_info *exc_a = (struct ada_exc_info *) a; | |
12658 | const struct ada_exc_info *exc_b = (struct ada_exc_info *) b; | |
12659 | int result; | |
12660 | ||
12661 | result = strcmp (exc_a->name, exc_b->name); | |
12662 | if (result != 0) | |
12663 | return result; | |
12664 | ||
12665 | if (exc_a->addr < exc_b->addr) | |
12666 | return -1; | |
12667 | if (exc_a->addr > exc_b->addr) | |
12668 | return 1; | |
12669 | ||
12670 | return 0; | |
12671 | } | |
12672 | ||
12673 | /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison | |
12674 | routine, but keeping the first SKIP elements untouched. | |
12675 | ||
12676 | All duplicates are also removed. */ | |
12677 | ||
12678 | static void | |
12679 | sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions, | |
12680 | int skip) | |
12681 | { | |
12682 | struct ada_exc_info *to_sort | |
12683 | = VEC_address (ada_exc_info, *exceptions) + skip; | |
12684 | int to_sort_len | |
12685 | = VEC_length (ada_exc_info, *exceptions) - skip; | |
12686 | int i, j; | |
12687 | ||
12688 | qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info), | |
12689 | compare_ada_exception_info); | |
12690 | ||
12691 | for (i = 1, j = 1; i < to_sort_len; i++) | |
12692 | if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0) | |
12693 | to_sort[j++] = to_sort[i]; | |
12694 | to_sort_len = j; | |
12695 | VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len); | |
12696 | } | |
12697 | ||
12698 | /* A function intended as the "name_matcher" callback in the struct | |
12699 | quick_symbol_functions' expand_symtabs_matching method. | |
12700 | ||
12701 | SEARCH_NAME is the symbol's search name. | |
12702 | ||
12703 | If USER_DATA is not NULL, it is a pointer to a regext_t object | |
12704 | used to match the symbol (by natural name). Otherwise, when USER_DATA | |
12705 | is null, no filtering is performed, and all symbols are a positive | |
12706 | match. */ | |
12707 | ||
12708 | static int | |
12709 | ada_exc_search_name_matches (const char *search_name, void *user_data) | |
12710 | { | |
12711 | regex_t *preg = user_data; | |
12712 | ||
12713 | if (preg == NULL) | |
12714 | return 1; | |
12715 | ||
12716 | /* In Ada, the symbol "search name" is a linkage name, whereas | |
12717 | the regular expression used to do the matching refers to | |
12718 | the natural name. So match against the decoded name. */ | |
12719 | return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0); | |
12720 | } | |
12721 | ||
12722 | /* Add all exceptions defined by the Ada standard whose name match | |
12723 | a regular expression. | |
12724 | ||
12725 | If PREG is not NULL, then this regexp_t object is used to | |
12726 | perform the symbol name matching. Otherwise, no name-based | |
12727 | filtering is performed. | |
12728 | ||
12729 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
12730 | gets pushed. */ | |
12731 | ||
12732 | static void | |
12733 | ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions) | |
12734 | { | |
12735 | int i; | |
12736 | ||
12737 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
12738 | { | |
12739 | if (preg == NULL | |
12740 | || regexec (preg, standard_exc[i], 0, NULL, 0) == 0) | |
12741 | { | |
12742 | struct bound_minimal_symbol msymbol | |
12743 | = ada_lookup_simple_minsym (standard_exc[i]); | |
12744 | ||
12745 | if (msymbol.minsym != NULL) | |
12746 | { | |
12747 | struct ada_exc_info info | |
77e371c0 | 12748 | = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)}; |
778865d3 JB |
12749 | |
12750 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
12751 | } | |
12752 | } | |
12753 | } | |
12754 | } | |
12755 | ||
12756 | /* Add all Ada exceptions defined locally and accessible from the given | |
12757 | FRAME. | |
12758 | ||
12759 | If PREG is not NULL, then this regexp_t object is used to | |
12760 | perform the symbol name matching. Otherwise, no name-based | |
12761 | filtering is performed. | |
12762 | ||
12763 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
12764 | gets pushed. */ | |
12765 | ||
12766 | static void | |
12767 | ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame, | |
12768 | VEC(ada_exc_info) **exceptions) | |
12769 | { | |
12770 | struct block *block = get_frame_block (frame, 0); | |
12771 | ||
12772 | while (block != 0) | |
12773 | { | |
12774 | struct block_iterator iter; | |
12775 | struct symbol *sym; | |
12776 | ||
12777 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
12778 | { | |
12779 | switch (SYMBOL_CLASS (sym)) | |
12780 | { | |
12781 | case LOC_TYPEDEF: | |
12782 | case LOC_BLOCK: | |
12783 | case LOC_CONST: | |
12784 | break; | |
12785 | default: | |
12786 | if (ada_is_exception_sym (sym)) | |
12787 | { | |
12788 | struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym), | |
12789 | SYMBOL_VALUE_ADDRESS (sym)}; | |
12790 | ||
12791 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
12792 | } | |
12793 | } | |
12794 | } | |
12795 | if (BLOCK_FUNCTION (block) != NULL) | |
12796 | break; | |
12797 | block = BLOCK_SUPERBLOCK (block); | |
12798 | } | |
12799 | } | |
12800 | ||
12801 | /* Add all exceptions defined globally whose name name match | |
12802 | a regular expression, excluding standard exceptions. | |
12803 | ||
12804 | The reason we exclude standard exceptions is that they need | |
12805 | to be handled separately: Standard exceptions are defined inside | |
12806 | a runtime unit which is normally not compiled with debugging info, | |
12807 | and thus usually do not show up in our symbol search. However, | |
12808 | if the unit was in fact built with debugging info, we need to | |
12809 | exclude them because they would duplicate the entry we found | |
12810 | during the special loop that specifically searches for those | |
12811 | standard exceptions. | |
12812 | ||
12813 | If PREG is not NULL, then this regexp_t object is used to | |
12814 | perform the symbol name matching. Otherwise, no name-based | |
12815 | filtering is performed. | |
12816 | ||
12817 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
12818 | gets pushed. */ | |
12819 | ||
12820 | static void | |
12821 | ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions) | |
12822 | { | |
12823 | struct objfile *objfile; | |
12824 | struct symtab *s; | |
12825 | ||
bb4142cf DE |
12826 | expand_symtabs_matching (NULL, ada_exc_search_name_matches, |
12827 | VARIABLES_DOMAIN, preg); | |
778865d3 JB |
12828 | |
12829 | ALL_PRIMARY_SYMTABS (objfile, s) | |
12830 | { | |
12831 | struct blockvector *bv = BLOCKVECTOR (s); | |
12832 | int i; | |
12833 | ||
12834 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) | |
12835 | { | |
12836 | struct block *b = BLOCKVECTOR_BLOCK (bv, i); | |
12837 | struct block_iterator iter; | |
12838 | struct symbol *sym; | |
12839 | ||
12840 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
12841 | if (ada_is_non_standard_exception_sym (sym) | |
12842 | && (preg == NULL | |
12843 | || regexec (preg, SYMBOL_NATURAL_NAME (sym), | |
12844 | 0, NULL, 0) == 0)) | |
12845 | { | |
12846 | struct ada_exc_info info | |
12847 | = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)}; | |
12848 | ||
12849 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
12850 | } | |
12851 | } | |
12852 | } | |
12853 | } | |
12854 | ||
12855 | /* Implements ada_exceptions_list with the regular expression passed | |
12856 | as a regex_t, rather than a string. | |
12857 | ||
12858 | If not NULL, PREG is used to filter out exceptions whose names | |
12859 | do not match. Otherwise, all exceptions are listed. */ | |
12860 | ||
12861 | static VEC(ada_exc_info) * | |
12862 | ada_exceptions_list_1 (regex_t *preg) | |
12863 | { | |
12864 | VEC(ada_exc_info) *result = NULL; | |
12865 | struct cleanup *old_chain | |
12866 | = make_cleanup (VEC_cleanup (ada_exc_info), &result); | |
12867 | int prev_len; | |
12868 | ||
12869 | /* First, list the known standard exceptions. These exceptions | |
12870 | need to be handled separately, as they are usually defined in | |
12871 | runtime units that have been compiled without debugging info. */ | |
12872 | ||
12873 | ada_add_standard_exceptions (preg, &result); | |
12874 | ||
12875 | /* Next, find all exceptions whose scope is local and accessible | |
12876 | from the currently selected frame. */ | |
12877 | ||
12878 | if (has_stack_frames ()) | |
12879 | { | |
12880 | prev_len = VEC_length (ada_exc_info, result); | |
12881 | ada_add_exceptions_from_frame (preg, get_selected_frame (NULL), | |
12882 | &result); | |
12883 | if (VEC_length (ada_exc_info, result) > prev_len) | |
12884 | sort_remove_dups_ada_exceptions_list (&result, prev_len); | |
12885 | } | |
12886 | ||
12887 | /* Add all exceptions whose scope is global. */ | |
12888 | ||
12889 | prev_len = VEC_length (ada_exc_info, result); | |
12890 | ada_add_global_exceptions (preg, &result); | |
12891 | if (VEC_length (ada_exc_info, result) > prev_len) | |
12892 | sort_remove_dups_ada_exceptions_list (&result, prev_len); | |
12893 | ||
12894 | discard_cleanups (old_chain); | |
12895 | return result; | |
12896 | } | |
12897 | ||
12898 | /* Return a vector of ada_exc_info. | |
12899 | ||
12900 | If REGEXP is NULL, all exceptions are included in the result. | |
12901 | Otherwise, it should contain a valid regular expression, | |
12902 | and only the exceptions whose names match that regular expression | |
12903 | are included in the result. | |
12904 | ||
12905 | The exceptions are sorted in the following order: | |
12906 | - Standard exceptions (defined by the Ada language), in | |
12907 | alphabetical order; | |
12908 | - Exceptions only visible from the current frame, in | |
12909 | alphabetical order; | |
12910 | - Exceptions whose scope is global, in alphabetical order. */ | |
12911 | ||
12912 | VEC(ada_exc_info) * | |
12913 | ada_exceptions_list (const char *regexp) | |
12914 | { | |
12915 | VEC(ada_exc_info) *result = NULL; | |
12916 | struct cleanup *old_chain = NULL; | |
12917 | regex_t reg; | |
12918 | ||
12919 | if (regexp != NULL) | |
12920 | old_chain = compile_rx_or_error (®, regexp, | |
12921 | _("invalid regular expression")); | |
12922 | ||
12923 | result = ada_exceptions_list_1 (regexp != NULL ? ® : NULL); | |
12924 | ||
12925 | if (old_chain != NULL) | |
12926 | do_cleanups (old_chain); | |
12927 | return result; | |
12928 | } | |
12929 | ||
12930 | /* Implement the "info exceptions" command. */ | |
12931 | ||
12932 | static void | |
12933 | info_exceptions_command (char *regexp, int from_tty) | |
12934 | { | |
12935 | VEC(ada_exc_info) *exceptions; | |
12936 | struct cleanup *cleanup; | |
12937 | struct gdbarch *gdbarch = get_current_arch (); | |
12938 | int ix; | |
12939 | struct ada_exc_info *info; | |
12940 | ||
12941 | exceptions = ada_exceptions_list (regexp); | |
12942 | cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions); | |
12943 | ||
12944 | if (regexp != NULL) | |
12945 | printf_filtered | |
12946 | (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp); | |
12947 | else | |
12948 | printf_filtered (_("All defined Ada exceptions:\n")); | |
12949 | ||
12950 | for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++) | |
12951 | printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr)); | |
12952 | ||
12953 | do_cleanups (cleanup); | |
12954 | } | |
12955 | ||
4c4b4cd2 PH |
12956 | /* Operators */ |
12957 | /* Information about operators given special treatment in functions | |
12958 | below. */ | |
12959 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
12960 | ||
12961 | #define ADA_OPERATORS \ | |
12962 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
12963 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
12964 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
12965 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
12966 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
12967 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
12968 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
12969 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
12970 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
12971 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
12972 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
12973 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
12974 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
12975 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
12976 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
12977 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
12978 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
12979 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
12980 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
12981 | |
12982 | static void | |
554794dc SDJ |
12983 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
12984 | int *argsp) | |
4c4b4cd2 PH |
12985 | { |
12986 | switch (exp->elts[pc - 1].opcode) | |
12987 | { | |
76a01679 | 12988 | default: |
4c4b4cd2 PH |
12989 | operator_length_standard (exp, pc, oplenp, argsp); |
12990 | break; | |
12991 | ||
12992 | #define OP_DEFN(op, len, args, binop) \ | |
12993 | case op: *oplenp = len; *argsp = args; break; | |
12994 | ADA_OPERATORS; | |
12995 | #undef OP_DEFN | |
52ce6436 PH |
12996 | |
12997 | case OP_AGGREGATE: | |
12998 | *oplenp = 3; | |
12999 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
13000 | break; | |
13001 | ||
13002 | case OP_CHOICES: | |
13003 | *oplenp = 3; | |
13004 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
13005 | break; | |
4c4b4cd2 PH |
13006 | } |
13007 | } | |
13008 | ||
c0201579 JK |
13009 | /* Implementation of the exp_descriptor method operator_check. */ |
13010 | ||
13011 | static int | |
13012 | ada_operator_check (struct expression *exp, int pos, | |
13013 | int (*objfile_func) (struct objfile *objfile, void *data), | |
13014 | void *data) | |
13015 | { | |
13016 | const union exp_element *const elts = exp->elts; | |
13017 | struct type *type = NULL; | |
13018 | ||
13019 | switch (elts[pos].opcode) | |
13020 | { | |
13021 | case UNOP_IN_RANGE: | |
13022 | case UNOP_QUAL: | |
13023 | type = elts[pos + 1].type; | |
13024 | break; | |
13025 | ||
13026 | default: | |
13027 | return operator_check_standard (exp, pos, objfile_func, data); | |
13028 | } | |
13029 | ||
13030 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
13031 | ||
13032 | if (type && TYPE_OBJFILE (type) | |
13033 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
13034 | return 1; | |
13035 | ||
13036 | return 0; | |
13037 | } | |
13038 | ||
4c4b4cd2 PH |
13039 | static char * |
13040 | ada_op_name (enum exp_opcode opcode) | |
13041 | { | |
13042 | switch (opcode) | |
13043 | { | |
76a01679 | 13044 | default: |
4c4b4cd2 | 13045 | return op_name_standard (opcode); |
52ce6436 | 13046 | |
4c4b4cd2 PH |
13047 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
13048 | ADA_OPERATORS; | |
13049 | #undef OP_DEFN | |
52ce6436 PH |
13050 | |
13051 | case OP_AGGREGATE: | |
13052 | return "OP_AGGREGATE"; | |
13053 | case OP_CHOICES: | |
13054 | return "OP_CHOICES"; | |
13055 | case OP_NAME: | |
13056 | return "OP_NAME"; | |
4c4b4cd2 PH |
13057 | } |
13058 | } | |
13059 | ||
13060 | /* As for operator_length, but assumes PC is pointing at the first | |
13061 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 13062 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
13063 | |
13064 | static void | |
76a01679 JB |
13065 | ada_forward_operator_length (struct expression *exp, int pc, |
13066 | int *oplenp, int *argsp) | |
4c4b4cd2 | 13067 | { |
76a01679 | 13068 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
13069 | { |
13070 | default: | |
13071 | *oplenp = *argsp = 0; | |
13072 | break; | |
52ce6436 | 13073 | |
4c4b4cd2 PH |
13074 | #define OP_DEFN(op, len, args, binop) \ |
13075 | case op: *oplenp = len; *argsp = args; break; | |
13076 | ADA_OPERATORS; | |
13077 | #undef OP_DEFN | |
52ce6436 PH |
13078 | |
13079 | case OP_AGGREGATE: | |
13080 | *oplenp = 3; | |
13081 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
13082 | break; | |
13083 | ||
13084 | case OP_CHOICES: | |
13085 | *oplenp = 3; | |
13086 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
13087 | break; | |
13088 | ||
13089 | case OP_STRING: | |
13090 | case OP_NAME: | |
13091 | { | |
13092 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 13093 | |
52ce6436 PH |
13094 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
13095 | *argsp = 0; | |
13096 | break; | |
13097 | } | |
4c4b4cd2 PH |
13098 | } |
13099 | } | |
13100 | ||
13101 | static int | |
13102 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
13103 | { | |
13104 | enum exp_opcode op = exp->elts[elt].opcode; | |
13105 | int oplen, nargs; | |
13106 | int pc = elt; | |
13107 | int i; | |
76a01679 | 13108 | |
4c4b4cd2 PH |
13109 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
13110 | ||
76a01679 | 13111 | switch (op) |
4c4b4cd2 | 13112 | { |
76a01679 | 13113 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
13114 | case OP_ATR_FIRST: |
13115 | case OP_ATR_LAST: | |
13116 | case OP_ATR_LENGTH: | |
13117 | case OP_ATR_IMAGE: | |
13118 | case OP_ATR_MAX: | |
13119 | case OP_ATR_MIN: | |
13120 | case OP_ATR_MODULUS: | |
13121 | case OP_ATR_POS: | |
13122 | case OP_ATR_SIZE: | |
13123 | case OP_ATR_TAG: | |
13124 | case OP_ATR_VAL: | |
13125 | break; | |
13126 | ||
13127 | case UNOP_IN_RANGE: | |
13128 | case UNOP_QUAL: | |
323e0a4a AC |
13129 | /* XXX: gdb_sprint_host_address, type_sprint */ |
13130 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
13131 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
13132 | fprintf_filtered (stream, " ("); | |
13133 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
13134 | fprintf_filtered (stream, ")"); | |
13135 | break; | |
13136 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
13137 | fprintf_filtered (stream, " (%d)", |
13138 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
13139 | break; |
13140 | case TERNOP_IN_RANGE: | |
13141 | break; | |
13142 | ||
52ce6436 PH |
13143 | case OP_AGGREGATE: |
13144 | case OP_OTHERS: | |
13145 | case OP_DISCRETE_RANGE: | |
13146 | case OP_POSITIONAL: | |
13147 | case OP_CHOICES: | |
13148 | break; | |
13149 | ||
13150 | case OP_NAME: | |
13151 | case OP_STRING: | |
13152 | { | |
13153 | char *name = &exp->elts[elt + 2].string; | |
13154 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 13155 | |
52ce6436 PH |
13156 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
13157 | break; | |
13158 | } | |
13159 | ||
4c4b4cd2 PH |
13160 | default: |
13161 | return dump_subexp_body_standard (exp, stream, elt); | |
13162 | } | |
13163 | ||
13164 | elt += oplen; | |
13165 | for (i = 0; i < nargs; i += 1) | |
13166 | elt = dump_subexp (exp, stream, elt); | |
13167 | ||
13168 | return elt; | |
13169 | } | |
13170 | ||
13171 | /* The Ada extension of print_subexp (q.v.). */ | |
13172 | ||
76a01679 JB |
13173 | static void |
13174 | ada_print_subexp (struct expression *exp, int *pos, | |
13175 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 13176 | { |
52ce6436 | 13177 | int oplen, nargs, i; |
4c4b4cd2 PH |
13178 | int pc = *pos; |
13179 | enum exp_opcode op = exp->elts[pc].opcode; | |
13180 | ||
13181 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
13182 | ||
52ce6436 | 13183 | *pos += oplen; |
4c4b4cd2 PH |
13184 | switch (op) |
13185 | { | |
13186 | default: | |
52ce6436 | 13187 | *pos -= oplen; |
4c4b4cd2 PH |
13188 | print_subexp_standard (exp, pos, stream, prec); |
13189 | return; | |
13190 | ||
13191 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
13192 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
13193 | return; | |
13194 | ||
13195 | case BINOP_IN_BOUNDS: | |
323e0a4a | 13196 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13197 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13198 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 13199 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13200 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 13201 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
13202 | fprintf_filtered (stream, "(%ld)", |
13203 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
13204 | return; |
13205 | ||
13206 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 13207 | if (prec >= PREC_EQUAL) |
76a01679 | 13208 | fputs_filtered ("(", stream); |
323e0a4a | 13209 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13210 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13211 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
13212 | print_subexp (exp, pos, stream, PREC_EQUAL); |
13213 | fputs_filtered (" .. ", stream); | |
13214 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
13215 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
13216 | fputs_filtered (")", stream); |
13217 | return; | |
4c4b4cd2 PH |
13218 | |
13219 | case OP_ATR_FIRST: | |
13220 | case OP_ATR_LAST: | |
13221 | case OP_ATR_LENGTH: | |
13222 | case OP_ATR_IMAGE: | |
13223 | case OP_ATR_MAX: | |
13224 | case OP_ATR_MIN: | |
13225 | case OP_ATR_MODULUS: | |
13226 | case OP_ATR_POS: | |
13227 | case OP_ATR_SIZE: | |
13228 | case OP_ATR_TAG: | |
13229 | case OP_ATR_VAL: | |
4c4b4cd2 | 13230 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
13231 | { |
13232 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
79d43c61 TT |
13233 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0, |
13234 | &type_print_raw_options); | |
76a01679 JB |
13235 | *pos += 3; |
13236 | } | |
4c4b4cd2 | 13237 | else |
76a01679 | 13238 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
13239 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
13240 | if (nargs > 1) | |
76a01679 JB |
13241 | { |
13242 | int tem; | |
5b4ee69b | 13243 | |
76a01679 JB |
13244 | for (tem = 1; tem < nargs; tem += 1) |
13245 | { | |
13246 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
13247 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
13248 | } | |
13249 | fputs_filtered (")", stream); | |
13250 | } | |
4c4b4cd2 | 13251 | return; |
14f9c5c9 | 13252 | |
4c4b4cd2 | 13253 | case UNOP_QUAL: |
4c4b4cd2 PH |
13254 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
13255 | fputs_filtered ("'(", stream); | |
13256 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
13257 | fputs_filtered (")", stream); | |
13258 | return; | |
14f9c5c9 | 13259 | |
4c4b4cd2 | 13260 | case UNOP_IN_RANGE: |
323e0a4a | 13261 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13262 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13263 | fputs_filtered (" in ", stream); |
79d43c61 TT |
13264 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0, |
13265 | &type_print_raw_options); | |
4c4b4cd2 | 13266 | return; |
52ce6436 PH |
13267 | |
13268 | case OP_DISCRETE_RANGE: | |
13269 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13270 | fputs_filtered ("..", stream); | |
13271 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13272 | return; | |
13273 | ||
13274 | case OP_OTHERS: | |
13275 | fputs_filtered ("others => ", stream); | |
13276 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13277 | return; | |
13278 | ||
13279 | case OP_CHOICES: | |
13280 | for (i = 0; i < nargs-1; i += 1) | |
13281 | { | |
13282 | if (i > 0) | |
13283 | fputs_filtered ("|", stream); | |
13284 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13285 | } | |
13286 | fputs_filtered (" => ", stream); | |
13287 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13288 | return; | |
13289 | ||
13290 | case OP_POSITIONAL: | |
13291 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13292 | return; | |
13293 | ||
13294 | case OP_AGGREGATE: | |
13295 | fputs_filtered ("(", stream); | |
13296 | for (i = 0; i < nargs; i += 1) | |
13297 | { | |
13298 | if (i > 0) | |
13299 | fputs_filtered (", ", stream); | |
13300 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13301 | } | |
13302 | fputs_filtered (")", stream); | |
13303 | return; | |
4c4b4cd2 PH |
13304 | } |
13305 | } | |
14f9c5c9 AS |
13306 | |
13307 | /* Table mapping opcodes into strings for printing operators | |
13308 | and precedences of the operators. */ | |
13309 | ||
d2e4a39e AS |
13310 | static const struct op_print ada_op_print_tab[] = { |
13311 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
13312 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
13313 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
13314 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
13315 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
13316 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
13317 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
13318 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
13319 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
13320 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
13321 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
13322 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
13323 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
13324 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
13325 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
13326 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
13327 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
13328 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
13329 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
13330 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
13331 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
13332 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
13333 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
13334 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
13335 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
13336 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
13337 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
13338 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
13339 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
13340 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
13341 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
d2e4a39e | 13342 | {NULL, 0, 0, 0} |
14f9c5c9 AS |
13343 | }; |
13344 | \f | |
72d5681a PH |
13345 | enum ada_primitive_types { |
13346 | ada_primitive_type_int, | |
13347 | ada_primitive_type_long, | |
13348 | ada_primitive_type_short, | |
13349 | ada_primitive_type_char, | |
13350 | ada_primitive_type_float, | |
13351 | ada_primitive_type_double, | |
13352 | ada_primitive_type_void, | |
13353 | ada_primitive_type_long_long, | |
13354 | ada_primitive_type_long_double, | |
13355 | ada_primitive_type_natural, | |
13356 | ada_primitive_type_positive, | |
13357 | ada_primitive_type_system_address, | |
13358 | nr_ada_primitive_types | |
13359 | }; | |
6c038f32 PH |
13360 | |
13361 | static void | |
d4a9a881 | 13362 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
13363 | struct language_arch_info *lai) |
13364 | { | |
d4a9a881 | 13365 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 13366 | |
72d5681a | 13367 | lai->primitive_type_vector |
d4a9a881 | 13368 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 13369 | struct type *); |
e9bb382b UW |
13370 | |
13371 | lai->primitive_type_vector [ada_primitive_type_int] | |
13372 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13373 | 0, "integer"); | |
13374 | lai->primitive_type_vector [ada_primitive_type_long] | |
13375 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
13376 | 0, "long_integer"); | |
13377 | lai->primitive_type_vector [ada_primitive_type_short] | |
13378 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
13379 | 0, "short_integer"); | |
13380 | lai->string_char_type | |
13381 | = lai->primitive_type_vector [ada_primitive_type_char] | |
13382 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); | |
13383 | lai->primitive_type_vector [ada_primitive_type_float] | |
13384 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
13385 | "float", NULL); | |
13386 | lai->primitive_type_vector [ada_primitive_type_double] | |
13387 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
13388 | "long_float", NULL); | |
13389 | lai->primitive_type_vector [ada_primitive_type_long_long] | |
13390 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
13391 | 0, "long_long_integer"); | |
13392 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
13393 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
13394 | "long_long_float", NULL); | |
13395 | lai->primitive_type_vector [ada_primitive_type_natural] | |
13396 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13397 | 0, "natural"); | |
13398 | lai->primitive_type_vector [ada_primitive_type_positive] | |
13399 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13400 | 0, "positive"); | |
13401 | lai->primitive_type_vector [ada_primitive_type_void] | |
13402 | = builtin->builtin_void; | |
13403 | ||
13404 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
13405 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void")); | |
72d5681a PH |
13406 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
13407 | = "system__address"; | |
fbb06eb1 | 13408 | |
47e729a8 | 13409 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 13410 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 13411 | } |
6c038f32 PH |
13412 | \f |
13413 | /* Language vector */ | |
13414 | ||
13415 | /* Not really used, but needed in the ada_language_defn. */ | |
13416 | ||
13417 | static void | |
6c7a06a3 | 13418 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 13419 | { |
6c7a06a3 | 13420 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
13421 | } |
13422 | ||
13423 | static int | |
410a0ff2 | 13424 | parse (struct parser_state *ps) |
6c038f32 PH |
13425 | { |
13426 | warnings_issued = 0; | |
410a0ff2 | 13427 | return ada_parse (ps); |
6c038f32 PH |
13428 | } |
13429 | ||
13430 | static const struct exp_descriptor ada_exp_descriptor = { | |
13431 | ada_print_subexp, | |
13432 | ada_operator_length, | |
c0201579 | 13433 | ada_operator_check, |
6c038f32 PH |
13434 | ada_op_name, |
13435 | ada_dump_subexp_body, | |
13436 | ada_evaluate_subexp | |
13437 | }; | |
13438 | ||
1a119f36 | 13439 | /* Implement the "la_get_symbol_name_cmp" language_defn method |
74ccd7f5 JB |
13440 | for Ada. */ |
13441 | ||
1a119f36 JB |
13442 | static symbol_name_cmp_ftype |
13443 | ada_get_symbol_name_cmp (const char *lookup_name) | |
74ccd7f5 JB |
13444 | { |
13445 | if (should_use_wild_match (lookup_name)) | |
13446 | return wild_match; | |
13447 | else | |
13448 | return compare_names; | |
13449 | } | |
13450 | ||
a5ee536b JB |
13451 | /* Implement the "la_read_var_value" language_defn method for Ada. */ |
13452 | ||
13453 | static struct value * | |
13454 | ada_read_var_value (struct symbol *var, struct frame_info *frame) | |
13455 | { | |
13456 | struct block *frame_block = NULL; | |
13457 | struct symbol *renaming_sym = NULL; | |
13458 | ||
13459 | /* The only case where default_read_var_value is not sufficient | |
13460 | is when VAR is a renaming... */ | |
13461 | if (frame) | |
13462 | frame_block = get_frame_block (frame, NULL); | |
13463 | if (frame_block) | |
13464 | renaming_sym = ada_find_renaming_symbol (var, frame_block); | |
13465 | if (renaming_sym != NULL) | |
13466 | return ada_read_renaming_var_value (renaming_sym, frame_block); | |
13467 | ||
13468 | /* This is a typical case where we expect the default_read_var_value | |
13469 | function to work. */ | |
13470 | return default_read_var_value (var, frame); | |
13471 | } | |
13472 | ||
6c038f32 PH |
13473 | const struct language_defn ada_language_defn = { |
13474 | "ada", /* Language name */ | |
6abde28f | 13475 | "Ada", |
6c038f32 | 13476 | language_ada, |
6c038f32 | 13477 | range_check_off, |
6c038f32 PH |
13478 | case_sensitive_on, /* Yes, Ada is case-insensitive, but |
13479 | that's not quite what this means. */ | |
6c038f32 | 13480 | array_row_major, |
9a044a89 | 13481 | macro_expansion_no, |
6c038f32 PH |
13482 | &ada_exp_descriptor, |
13483 | parse, | |
13484 | ada_error, | |
13485 | resolve, | |
13486 | ada_printchar, /* Print a character constant */ | |
13487 | ada_printstr, /* Function to print string constant */ | |
13488 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 13489 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 13490 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
13491 | ada_val_print, /* Print a value using appropriate syntax */ |
13492 | ada_value_print, /* Print a top-level value */ | |
a5ee536b | 13493 | ada_read_var_value, /* la_read_var_value */ |
6c038f32 | 13494 | NULL, /* Language specific skip_trampoline */ |
2b2d9e11 | 13495 | NULL, /* name_of_this */ |
6c038f32 PH |
13496 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
13497 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
13498 | ada_la_decode, /* Language specific symbol demangler */ | |
0963b4bd MS |
13499 | NULL, /* Language specific |
13500 | class_name_from_physname */ | |
6c038f32 PH |
13501 | ada_op_print_tab, /* expression operators for printing */ |
13502 | 0, /* c-style arrays */ | |
13503 | 1, /* String lower bound */ | |
6c038f32 | 13504 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 13505 | ada_make_symbol_completion_list, |
72d5681a | 13506 | ada_language_arch_info, |
e79af960 | 13507 | ada_print_array_index, |
41f1b697 | 13508 | default_pass_by_reference, |
ae6a3a4c | 13509 | c_get_string, |
1a119f36 | 13510 | ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */ |
f8eba3c6 | 13511 | ada_iterate_over_symbols, |
a53b64ea | 13512 | &ada_varobj_ops, |
6c038f32 PH |
13513 | LANG_MAGIC |
13514 | }; | |
13515 | ||
2c0b251b PA |
13516 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
13517 | extern initialize_file_ftype _initialize_ada_language; | |
13518 | ||
5bf03f13 JB |
13519 | /* Command-list for the "set/show ada" prefix command. */ |
13520 | static struct cmd_list_element *set_ada_list; | |
13521 | static struct cmd_list_element *show_ada_list; | |
13522 | ||
13523 | /* Implement the "set ada" prefix command. */ | |
13524 | ||
13525 | static void | |
13526 | set_ada_command (char *arg, int from_tty) | |
13527 | { | |
13528 | printf_unfiltered (_(\ | |
13529 | "\"set ada\" must be followed by the name of a setting.\n")); | |
13530 | help_list (set_ada_list, "set ada ", -1, gdb_stdout); | |
13531 | } | |
13532 | ||
13533 | /* Implement the "show ada" prefix command. */ | |
13534 | ||
13535 | static void | |
13536 | show_ada_command (char *args, int from_tty) | |
13537 | { | |
13538 | cmd_show_list (show_ada_list, from_tty, ""); | |
13539 | } | |
13540 | ||
2060206e PA |
13541 | static void |
13542 | initialize_ada_catchpoint_ops (void) | |
13543 | { | |
13544 | struct breakpoint_ops *ops; | |
13545 | ||
13546 | initialize_breakpoint_ops (); | |
13547 | ||
13548 | ops = &catch_exception_breakpoint_ops; | |
13549 | *ops = bkpt_breakpoint_ops; | |
13550 | ops->dtor = dtor_catch_exception; | |
13551 | ops->allocate_location = allocate_location_catch_exception; | |
13552 | ops->re_set = re_set_catch_exception; | |
13553 | ops->check_status = check_status_catch_exception; | |
13554 | ops->print_it = print_it_catch_exception; | |
13555 | ops->print_one = print_one_catch_exception; | |
13556 | ops->print_mention = print_mention_catch_exception; | |
13557 | ops->print_recreate = print_recreate_catch_exception; | |
13558 | ||
13559 | ops = &catch_exception_unhandled_breakpoint_ops; | |
13560 | *ops = bkpt_breakpoint_ops; | |
13561 | ops->dtor = dtor_catch_exception_unhandled; | |
13562 | ops->allocate_location = allocate_location_catch_exception_unhandled; | |
13563 | ops->re_set = re_set_catch_exception_unhandled; | |
13564 | ops->check_status = check_status_catch_exception_unhandled; | |
13565 | ops->print_it = print_it_catch_exception_unhandled; | |
13566 | ops->print_one = print_one_catch_exception_unhandled; | |
13567 | ops->print_mention = print_mention_catch_exception_unhandled; | |
13568 | ops->print_recreate = print_recreate_catch_exception_unhandled; | |
13569 | ||
13570 | ops = &catch_assert_breakpoint_ops; | |
13571 | *ops = bkpt_breakpoint_ops; | |
13572 | ops->dtor = dtor_catch_assert; | |
13573 | ops->allocate_location = allocate_location_catch_assert; | |
13574 | ops->re_set = re_set_catch_assert; | |
13575 | ops->check_status = check_status_catch_assert; | |
13576 | ops->print_it = print_it_catch_assert; | |
13577 | ops->print_one = print_one_catch_assert; | |
13578 | ops->print_mention = print_mention_catch_assert; | |
13579 | ops->print_recreate = print_recreate_catch_assert; | |
13580 | } | |
13581 | ||
3d9434b5 JB |
13582 | /* This module's 'new_objfile' observer. */ |
13583 | ||
13584 | static void | |
13585 | ada_new_objfile_observer (struct objfile *objfile) | |
13586 | { | |
13587 | ada_clear_symbol_cache (); | |
13588 | } | |
13589 | ||
13590 | /* This module's 'free_objfile' observer. */ | |
13591 | ||
13592 | static void | |
13593 | ada_free_objfile_observer (struct objfile *objfile) | |
13594 | { | |
13595 | ada_clear_symbol_cache (); | |
13596 | } | |
13597 | ||
d2e4a39e | 13598 | void |
6c038f32 | 13599 | _initialize_ada_language (void) |
14f9c5c9 | 13600 | { |
6c038f32 PH |
13601 | add_language (&ada_language_defn); |
13602 | ||
2060206e PA |
13603 | initialize_ada_catchpoint_ops (); |
13604 | ||
5bf03f13 JB |
13605 | add_prefix_cmd ("ada", no_class, set_ada_command, |
13606 | _("Prefix command for changing Ada-specfic settings"), | |
13607 | &set_ada_list, "set ada ", 0, &setlist); | |
13608 | ||
13609 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
13610 | _("Generic command for showing Ada-specific settings."), | |
13611 | &show_ada_list, "show ada ", 0, &showlist); | |
13612 | ||
13613 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
13614 | &trust_pad_over_xvs, _("\ | |
13615 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
13616 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
13617 | _("\ | |
13618 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
13619 | should normally trust the contents of PAD types, but certain older versions\n\ | |
13620 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
13621 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
13622 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
13623 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
13624 | this option to \"off\" unless necessary."), | |
13625 | NULL, NULL, &set_ada_list, &show_ada_list); | |
13626 | ||
9ac4176b PA |
13627 | add_catch_command ("exception", _("\ |
13628 | Catch Ada exceptions, when raised.\n\ | |
13629 | With an argument, catch only exceptions with the given name."), | |
13630 | catch_ada_exception_command, | |
13631 | NULL, | |
13632 | CATCH_PERMANENT, | |
13633 | CATCH_TEMPORARY); | |
13634 | add_catch_command ("assert", _("\ | |
13635 | Catch failed Ada assertions, when raised.\n\ | |
13636 | With an argument, catch only exceptions with the given name."), | |
13637 | catch_assert_command, | |
13638 | NULL, | |
13639 | CATCH_PERMANENT, | |
13640 | CATCH_TEMPORARY); | |
13641 | ||
6c038f32 | 13642 | varsize_limit = 65536; |
6c038f32 | 13643 | |
778865d3 JB |
13644 | add_info ("exceptions", info_exceptions_command, |
13645 | _("\ | |
13646 | List all Ada exception names.\n\ | |
13647 | If a regular expression is passed as an argument, only those matching\n\ | |
13648 | the regular expression are listed.")); | |
13649 | ||
c6044dd1 JB |
13650 | add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd, |
13651 | _("Set Ada maintenance-related variables."), | |
13652 | &maint_set_ada_cmdlist, "maintenance set ada ", | |
13653 | 0/*allow-unknown*/, &maintenance_set_cmdlist); | |
13654 | ||
13655 | add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd, | |
13656 | _("Show Ada maintenance-related variables"), | |
13657 | &maint_show_ada_cmdlist, "maintenance show ada ", | |
13658 | 0/*allow-unknown*/, &maintenance_show_cmdlist); | |
13659 | ||
13660 | add_setshow_boolean_cmd | |
13661 | ("ignore-descriptive-types", class_maintenance, | |
13662 | &ada_ignore_descriptive_types_p, | |
13663 | _("Set whether descriptive types generated by GNAT should be ignored."), | |
13664 | _("Show whether descriptive types generated by GNAT should be ignored."), | |
13665 | _("\ | |
13666 | When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\ | |
13667 | DWARF attribute."), | |
13668 | NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist); | |
13669 | ||
6c038f32 PH |
13670 | obstack_init (&symbol_list_obstack); |
13671 | ||
13672 | decoded_names_store = htab_create_alloc | |
13673 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
13674 | NULL, xcalloc, xfree); | |
6b69afc4 | 13675 | |
3d9434b5 JB |
13676 | /* The ada-lang observers. */ |
13677 | observer_attach_new_objfile (ada_new_objfile_observer); | |
13678 | observer_attach_free_objfile (ada_free_objfile_observer); | |
e802dbe0 | 13679 | observer_attach_inferior_exit (ada_inferior_exit); |
ee01b665 JB |
13680 | |
13681 | /* Setup various context-specific data. */ | |
e802dbe0 | 13682 | ada_inferior_data |
8e260fc0 | 13683 | = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup); |
ee01b665 JB |
13684 | ada_pspace_data_handle |
13685 | = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup); | |
14f9c5c9 | 13686 | } |