]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
gdb.dwarf2: Testsuite 64-bit pointer truncation fixes
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
ecd75fc8 3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
14f9c5c9 56
ccefe4c4 57#include "psymtab.h"
40bc484c 58#include "value.h"
956a9fb9 59#include "mi/mi-common.h"
9ac4176b 60#include "arch-utils.h"
0fcd72ba 61#include "cli/cli-utils.h"
ccefe4c4 62
4c4b4cd2 63/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 64 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
65 Copied from valarith.c. */
66
67#ifndef TRUNCATION_TOWARDS_ZERO
68#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69#endif
70
d2e4a39e 71static struct type *desc_base_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct type *desc_bounds_type (struct type *);
14f9c5c9 74
d2e4a39e 75static struct value *desc_bounds (struct value *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 78
d2e4a39e 79static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 80
556bdfd4 81static struct type *desc_data_target_type (struct type *);
14f9c5c9 82
d2e4a39e 83static struct value *desc_data (struct value *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 86
d2e4a39e 87static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 94
d2e4a39e 95static struct type *desc_index_type (struct type *, int);
14f9c5c9 96
d2e4a39e 97static int desc_arity (struct type *);
14f9c5c9 98
d2e4a39e 99static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 100
d2e4a39e 101static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 102
40658b94
PH
103static int full_match (const char *, const char *);
104
40bc484c 105static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 106
4c4b4cd2 107static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 108 const struct block *, const char *,
2570f2b7 109 domain_enum, struct objfile *, int);
14f9c5c9 110
4c4b4cd2 111static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 112
76a01679 113static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 114 const struct block *);
14f9c5c9 115
4c4b4cd2
PH
116static int num_defns_collected (struct obstack *);
117
118static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 119
4c4b4cd2 120static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 121 struct type *);
14f9c5c9 122
d2e4a39e 123static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 124 struct symbol *, const struct block *);
14f9c5c9 125
d2e4a39e 126static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 127
4c4b4cd2
PH
128static char *ada_op_name (enum exp_opcode);
129
130static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 131
d2e4a39e 132static int numeric_type_p (struct type *);
14f9c5c9 133
d2e4a39e 134static int integer_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int scalar_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int discrete_type_p (struct type *);
14f9c5c9 139
aeb5907d
JB
140static enum ada_renaming_category parse_old_style_renaming (struct type *,
141 const char **,
142 int *,
143 const char **);
144
145static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 146 const struct block *);
aeb5907d 147
4c4b4cd2 148static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 149 int, int, int *);
4c4b4cd2 150
d2e4a39e 151static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 152
b4ba55a1
JB
153static struct type *ada_find_parallel_type_with_name (struct type *,
154 const char *);
155
d2e4a39e 156static int is_dynamic_field (struct type *, int);
14f9c5c9 157
10a2c479 158static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 159 const gdb_byte *,
4c4b4cd2
PH
160 CORE_ADDR, struct value *);
161
162static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 163
28c85d6c 164static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 165
d2e4a39e 166static struct type *to_static_fixed_type (struct type *);
f192137b 167static struct type *static_unwrap_type (struct type *type);
14f9c5c9 168
d2e4a39e 169static struct value *unwrap_value (struct value *);
14f9c5c9 170
ad82864c 171static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 172
ad82864c 173static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 174
ad82864c
JB
175static long decode_packed_array_bitsize (struct type *);
176
177static struct value *decode_constrained_packed_array (struct value *);
178
179static int ada_is_packed_array_type (struct type *);
180
181static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 182
d2e4a39e 183static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 184 struct value **);
14f9c5c9 185
50810684 186static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 187
4c4b4cd2
PH
188static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
14f9c5c9 190
d2e4a39e 191static struct value *get_var_value (char *, char *);
14f9c5c9 192
d2e4a39e 193static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 194
d2e4a39e 195static int equiv_types (struct type *, struct type *);
14f9c5c9 196
d2e4a39e 197static int is_name_suffix (const char *);
14f9c5c9 198
73589123
PH
199static int advance_wild_match (const char **, const char *, int);
200
201static int wild_match (const char *, const char *);
14f9c5c9 202
d2e4a39e 203static struct value *ada_coerce_ref (struct value *);
14f9c5c9 204
4c4b4cd2
PH
205static LONGEST pos_atr (struct value *);
206
3cb382c9 207static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 208
d2e4a39e 209static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static struct symbol *standard_lookup (const char *, const struct block *,
212 domain_enum);
14f9c5c9 213
4c4b4cd2
PH
214static struct value *ada_search_struct_field (char *, struct value *, int,
215 struct type *);
216
217static struct value *ada_value_primitive_field (struct value *, int, int,
218 struct type *);
219
0d5cff50 220static int find_struct_field (const char *, struct type *, int,
52ce6436 221 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
222
223static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
224 struct value *);
225
4c4b4cd2
PH
226static int ada_resolve_function (struct ada_symbol_info *, int,
227 struct value **, int, const char *,
228 struct type *);
229
4c4b4cd2
PH
230static int ada_is_direct_array_type (struct type *);
231
72d5681a
PH
232static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
714e53ab
PH
234
235static void check_size (const struct type *);
52ce6436
PH
236
237static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
241 struct expression *,
242 int *, enum noside);
52ce6436
PH
243
244static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
852dff6c
JB
268
269static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
270\f
271
ee01b665
JB
272/* The result of a symbol lookup to be stored in our symbol cache. */
273
274struct cache_entry
275{
276 /* The name used to perform the lookup. */
277 const char *name;
278 /* The namespace used during the lookup. */
279 domain_enum namespace;
280 /* The symbol returned by the lookup, or NULL if no matching symbol
281 was found. */
282 struct symbol *sym;
283 /* The block where the symbol was found, or NULL if no matching
284 symbol was found. */
285 const struct block *block;
286 /* A pointer to the next entry with the same hash. */
287 struct cache_entry *next;
288};
289
290/* The Ada symbol cache, used to store the result of Ada-mode symbol
291 lookups in the course of executing the user's commands.
292
293 The cache is implemented using a simple, fixed-sized hash.
294 The size is fixed on the grounds that there are not likely to be
295 all that many symbols looked up during any given session, regardless
296 of the size of the symbol table. If we decide to go to a resizable
297 table, let's just use the stuff from libiberty instead. */
298
299#define HASH_SIZE 1009
300
301struct ada_symbol_cache
302{
303 /* An obstack used to store the entries in our cache. */
304 struct obstack cache_space;
305
306 /* The root of the hash table used to implement our symbol cache. */
307 struct cache_entry *root[HASH_SIZE];
308};
309
310static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 311
4c4b4cd2 312/* Maximum-sized dynamic type. */
14f9c5c9
AS
313static unsigned int varsize_limit;
314
4c4b4cd2
PH
315/* FIXME: brobecker/2003-09-17: No longer a const because it is
316 returned by a function that does not return a const char *. */
317static char *ada_completer_word_break_characters =
318#ifdef VMS
319 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
320#else
14f9c5c9 321 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 322#endif
14f9c5c9 323
4c4b4cd2 324/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 325static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 326 = "__gnat_ada_main_program_name";
14f9c5c9 327
4c4b4cd2
PH
328/* Limit on the number of warnings to raise per expression evaluation. */
329static int warning_limit = 2;
330
331/* Number of warning messages issued; reset to 0 by cleanups after
332 expression evaluation. */
333static int warnings_issued = 0;
334
335static const char *known_runtime_file_name_patterns[] = {
336 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
337};
338
339static const char *known_auxiliary_function_name_patterns[] = {
340 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
341};
342
343/* Space for allocating results of ada_lookup_symbol_list. */
344static struct obstack symbol_list_obstack;
345
c6044dd1
JB
346/* Maintenance-related settings for this module. */
347
348static struct cmd_list_element *maint_set_ada_cmdlist;
349static struct cmd_list_element *maint_show_ada_cmdlist;
350
351/* Implement the "maintenance set ada" (prefix) command. */
352
353static void
354maint_set_ada_cmd (char *args, int from_tty)
355{
635c7e8a
TT
356 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
357 gdb_stdout);
c6044dd1
JB
358}
359
360/* Implement the "maintenance show ada" (prefix) command. */
361
362static void
363maint_show_ada_cmd (char *args, int from_tty)
364{
365 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
366}
367
368/* The "maintenance ada set/show ignore-descriptive-type" value. */
369
370static int ada_ignore_descriptive_types_p = 0;
371
e802dbe0
JB
372 /* Inferior-specific data. */
373
374/* Per-inferior data for this module. */
375
376struct ada_inferior_data
377{
378 /* The ada__tags__type_specific_data type, which is used when decoding
379 tagged types. With older versions of GNAT, this type was directly
380 accessible through a component ("tsd") in the object tag. But this
381 is no longer the case, so we cache it for each inferior. */
382 struct type *tsd_type;
3eecfa55
JB
383
384 /* The exception_support_info data. This data is used to determine
385 how to implement support for Ada exception catchpoints in a given
386 inferior. */
387 const struct exception_support_info *exception_info;
e802dbe0
JB
388};
389
390/* Our key to this module's inferior data. */
391static const struct inferior_data *ada_inferior_data;
392
393/* A cleanup routine for our inferior data. */
394static void
395ada_inferior_data_cleanup (struct inferior *inf, void *arg)
396{
397 struct ada_inferior_data *data;
398
399 data = inferior_data (inf, ada_inferior_data);
400 if (data != NULL)
401 xfree (data);
402}
403
404/* Return our inferior data for the given inferior (INF).
405
406 This function always returns a valid pointer to an allocated
407 ada_inferior_data structure. If INF's inferior data has not
408 been previously set, this functions creates a new one with all
409 fields set to zero, sets INF's inferior to it, and then returns
410 a pointer to that newly allocated ada_inferior_data. */
411
412static struct ada_inferior_data *
413get_ada_inferior_data (struct inferior *inf)
414{
415 struct ada_inferior_data *data;
416
417 data = inferior_data (inf, ada_inferior_data);
418 if (data == NULL)
419 {
41bf6aca 420 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
421 set_inferior_data (inf, ada_inferior_data, data);
422 }
423
424 return data;
425}
426
427/* Perform all necessary cleanups regarding our module's inferior data
428 that is required after the inferior INF just exited. */
429
430static void
431ada_inferior_exit (struct inferior *inf)
432{
433 ada_inferior_data_cleanup (inf, NULL);
434 set_inferior_data (inf, ada_inferior_data, NULL);
435}
436
ee01b665
JB
437
438 /* program-space-specific data. */
439
440/* This module's per-program-space data. */
441struct ada_pspace_data
442{
443 /* The Ada symbol cache. */
444 struct ada_symbol_cache *sym_cache;
445};
446
447/* Key to our per-program-space data. */
448static const struct program_space_data *ada_pspace_data_handle;
449
450/* Return this module's data for the given program space (PSPACE).
451 If not is found, add a zero'ed one now.
452
453 This function always returns a valid object. */
454
455static struct ada_pspace_data *
456get_ada_pspace_data (struct program_space *pspace)
457{
458 struct ada_pspace_data *data;
459
460 data = program_space_data (pspace, ada_pspace_data_handle);
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468}
469
470/* The cleanup callback for this module's per-program-space data. */
471
472static void
473ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474{
475 struct ada_pspace_data *pspace_data = data;
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480}
481
4c4b4cd2
PH
482 /* Utilities */
483
720d1a40 484/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 485 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511static struct type *
512ada_typedef_target_type (struct type *type)
513{
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517}
518
41d27058
JB
519/* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523static const char *
524ada_unqualified_name (const char *decoded_name)
525{
526 const char *result = strrchr (decoded_name, '.');
527
528 if (result != NULL)
529 result++; /* Skip the dot... */
530 else
531 result = decoded_name;
532
533 return result;
534}
535
536/* Return a string starting with '<', followed by STR, and '>'.
537 The result is good until the next call. */
538
539static char *
540add_angle_brackets (const char *str)
541{
542 static char *result = NULL;
543
544 xfree (result);
88c15c34 545 result = xstrprintf ("<%s>", str);
41d27058
JB
546 return result;
547}
96d887e8 548
4c4b4cd2
PH
549static char *
550ada_get_gdb_completer_word_break_characters (void)
551{
552 return ada_completer_word_break_characters;
553}
554
e79af960
JB
555/* Print an array element index using the Ada syntax. */
556
557static void
558ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 559 const struct value_print_options *options)
e79af960 560{
79a45b7d 561 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
562 fprintf_filtered (stream, " => ");
563}
564
f27cf670 565/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 566 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 567 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 568
f27cf670
AS
569void *
570grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 571{
d2e4a39e
AS
572 if (*size < min_size)
573 {
574 *size *= 2;
575 if (*size < min_size)
4c4b4cd2 576 *size = min_size;
f27cf670 577 vect = xrealloc (vect, *size * element_size);
d2e4a39e 578 }
f27cf670 579 return vect;
14f9c5c9
AS
580}
581
582/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 583 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
584
585static int
ebf56fd3 586field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
587{
588 int len = strlen (target);
5b4ee69b 589
d2e4a39e 590 return
4c4b4cd2
PH
591 (strncmp (field_name, target, len) == 0
592 && (field_name[len] == '\0'
593 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
594 && strcmp (field_name + strlen (field_name) - 6,
595 "___XVN") != 0)));
14f9c5c9
AS
596}
597
598
872c8b51
JB
599/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
600 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
601 and return its index. This function also handles fields whose name
602 have ___ suffixes because the compiler sometimes alters their name
603 by adding such a suffix to represent fields with certain constraints.
604 If the field could not be found, return a negative number if
605 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
606
607int
608ada_get_field_index (const struct type *type, const char *field_name,
609 int maybe_missing)
610{
611 int fieldno;
872c8b51
JB
612 struct type *struct_type = check_typedef ((struct type *) type);
613
614 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
615 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
616 return fieldno;
617
618 if (!maybe_missing)
323e0a4a 619 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 620 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
621
622 return -1;
623}
624
625/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
626
627int
d2e4a39e 628ada_name_prefix_len (const char *name)
14f9c5c9
AS
629{
630 if (name == NULL)
631 return 0;
d2e4a39e 632 else
14f9c5c9 633 {
d2e4a39e 634 const char *p = strstr (name, "___");
5b4ee69b 635
14f9c5c9 636 if (p == NULL)
4c4b4cd2 637 return strlen (name);
14f9c5c9 638 else
4c4b4cd2 639 return p - name;
14f9c5c9
AS
640 }
641}
642
4c4b4cd2
PH
643/* Return non-zero if SUFFIX is a suffix of STR.
644 Return zero if STR is null. */
645
14f9c5c9 646static int
d2e4a39e 647is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
648{
649 int len1, len2;
5b4ee69b 650
14f9c5c9
AS
651 if (str == NULL)
652 return 0;
653 len1 = strlen (str);
654 len2 = strlen (suffix);
4c4b4cd2 655 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
656}
657
4c4b4cd2
PH
658/* The contents of value VAL, treated as a value of type TYPE. The
659 result is an lval in memory if VAL is. */
14f9c5c9 660
d2e4a39e 661static struct value *
4c4b4cd2 662coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 663{
61ee279c 664 type = ada_check_typedef (type);
df407dfe 665 if (value_type (val) == type)
4c4b4cd2 666 return val;
d2e4a39e 667 else
14f9c5c9 668 {
4c4b4cd2
PH
669 struct value *result;
670
671 /* Make sure that the object size is not unreasonable before
672 trying to allocate some memory for it. */
714e53ab 673 check_size (type);
4c4b4cd2 674
41e8491f
JK
675 if (value_lazy (val)
676 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
677 result = allocate_value_lazy (type);
678 else
679 {
680 result = allocate_value (type);
9a0dc9e3 681 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 682 }
74bcbdf3 683 set_value_component_location (result, val);
9bbda503
AC
684 set_value_bitsize (result, value_bitsize (val));
685 set_value_bitpos (result, value_bitpos (val));
42ae5230 686 set_value_address (result, value_address (val));
14f9c5c9
AS
687 return result;
688 }
689}
690
fc1a4b47
AC
691static const gdb_byte *
692cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
693{
694 if (valaddr == NULL)
695 return NULL;
696 else
697 return valaddr + offset;
698}
699
700static CORE_ADDR
ebf56fd3 701cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
702{
703 if (address == 0)
704 return 0;
d2e4a39e 705 else
14f9c5c9
AS
706 return address + offset;
707}
708
4c4b4cd2
PH
709/* Issue a warning (as for the definition of warning in utils.c, but
710 with exactly one argument rather than ...), unless the limit on the
711 number of warnings has passed during the evaluation of the current
712 expression. */
a2249542 713
77109804
AC
714/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
715 provided by "complaint". */
a0b31db1 716static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 717
14f9c5c9 718static void
a2249542 719lim_warning (const char *format, ...)
14f9c5c9 720{
a2249542 721 va_list args;
a2249542 722
5b4ee69b 723 va_start (args, format);
4c4b4cd2
PH
724 warnings_issued += 1;
725 if (warnings_issued <= warning_limit)
a2249542
MK
726 vwarning (format, args);
727
728 va_end (args);
4c4b4cd2
PH
729}
730
714e53ab
PH
731/* Issue an error if the size of an object of type T is unreasonable,
732 i.e. if it would be a bad idea to allocate a value of this type in
733 GDB. */
734
735static void
736check_size (const struct type *type)
737{
738 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 739 error (_("object size is larger than varsize-limit"));
714e53ab
PH
740}
741
0963b4bd 742/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 743static LONGEST
c3e5cd34 744max_of_size (int size)
4c4b4cd2 745{
76a01679 746 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 747
76a01679 748 return top_bit | (top_bit - 1);
4c4b4cd2
PH
749}
750
0963b4bd 751/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 752static LONGEST
c3e5cd34 753min_of_size (int size)
4c4b4cd2 754{
c3e5cd34 755 return -max_of_size (size) - 1;
4c4b4cd2
PH
756}
757
0963b4bd 758/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 759static ULONGEST
c3e5cd34 760umax_of_size (int size)
4c4b4cd2 761{
76a01679 762 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 763
76a01679 764 return top_bit | (top_bit - 1);
4c4b4cd2
PH
765}
766
0963b4bd 767/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
768static LONGEST
769max_of_type (struct type *t)
4c4b4cd2 770{
c3e5cd34
PH
771 if (TYPE_UNSIGNED (t))
772 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
773 else
774 return max_of_size (TYPE_LENGTH (t));
775}
776
0963b4bd 777/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
778static LONGEST
779min_of_type (struct type *t)
780{
781 if (TYPE_UNSIGNED (t))
782 return 0;
783 else
784 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
785}
786
787/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
788LONGEST
789ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 790{
8739bc53 791 type = resolve_dynamic_type (type, 0);
76a01679 792 switch (TYPE_CODE (type))
4c4b4cd2
PH
793 {
794 case TYPE_CODE_RANGE:
690cc4eb 795 return TYPE_HIGH_BOUND (type);
4c4b4cd2 796 case TYPE_CODE_ENUM:
14e75d8e 797 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
798 case TYPE_CODE_BOOL:
799 return 1;
800 case TYPE_CODE_CHAR:
76a01679 801 case TYPE_CODE_INT:
690cc4eb 802 return max_of_type (type);
4c4b4cd2 803 default:
43bbcdc2 804 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
805 }
806}
807
14e75d8e 808/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
809LONGEST
810ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 811{
8739bc53 812 type = resolve_dynamic_type (type, 0);
76a01679 813 switch (TYPE_CODE (type))
4c4b4cd2
PH
814 {
815 case TYPE_CODE_RANGE:
690cc4eb 816 return TYPE_LOW_BOUND (type);
4c4b4cd2 817 case TYPE_CODE_ENUM:
14e75d8e 818 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
819 case TYPE_CODE_BOOL:
820 return 0;
821 case TYPE_CODE_CHAR:
76a01679 822 case TYPE_CODE_INT:
690cc4eb 823 return min_of_type (type);
4c4b4cd2 824 default:
43bbcdc2 825 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
826 }
827}
828
829/* The identity on non-range types. For range types, the underlying
76a01679 830 non-range scalar type. */
4c4b4cd2
PH
831
832static struct type *
18af8284 833get_base_type (struct type *type)
4c4b4cd2
PH
834{
835 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
836 {
76a01679
JB
837 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
838 return type;
4c4b4cd2
PH
839 type = TYPE_TARGET_TYPE (type);
840 }
841 return type;
14f9c5c9 842}
41246937
JB
843
844/* Return a decoded version of the given VALUE. This means returning
845 a value whose type is obtained by applying all the GNAT-specific
846 encondings, making the resulting type a static but standard description
847 of the initial type. */
848
849struct value *
850ada_get_decoded_value (struct value *value)
851{
852 struct type *type = ada_check_typedef (value_type (value));
853
854 if (ada_is_array_descriptor_type (type)
855 || (ada_is_constrained_packed_array_type (type)
856 && TYPE_CODE (type) != TYPE_CODE_PTR))
857 {
858 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
859 value = ada_coerce_to_simple_array_ptr (value);
860 else
861 value = ada_coerce_to_simple_array (value);
862 }
863 else
864 value = ada_to_fixed_value (value);
865
866 return value;
867}
868
869/* Same as ada_get_decoded_value, but with the given TYPE.
870 Because there is no associated actual value for this type,
871 the resulting type might be a best-effort approximation in
872 the case of dynamic types. */
873
874struct type *
875ada_get_decoded_type (struct type *type)
876{
877 type = to_static_fixed_type (type);
878 if (ada_is_constrained_packed_array_type (type))
879 type = ada_coerce_to_simple_array_type (type);
880 return type;
881}
882
4c4b4cd2 883\f
76a01679 884
4c4b4cd2 885 /* Language Selection */
14f9c5c9
AS
886
887/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 888 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 889
14f9c5c9 890enum language
ccefe4c4 891ada_update_initial_language (enum language lang)
14f9c5c9 892{
d2e4a39e 893 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 894 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 895 return language_ada;
14f9c5c9
AS
896
897 return lang;
898}
96d887e8
PH
899
900/* If the main procedure is written in Ada, then return its name.
901 The result is good until the next call. Return NULL if the main
902 procedure doesn't appear to be in Ada. */
903
904char *
905ada_main_name (void)
906{
3b7344d5 907 struct bound_minimal_symbol msym;
f9bc20b9 908 static char *main_program_name = NULL;
6c038f32 909
96d887e8
PH
910 /* For Ada, the name of the main procedure is stored in a specific
911 string constant, generated by the binder. Look for that symbol,
912 extract its address, and then read that string. If we didn't find
913 that string, then most probably the main procedure is not written
914 in Ada. */
915 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
916
3b7344d5 917 if (msym.minsym != NULL)
96d887e8 918 {
f9bc20b9
JB
919 CORE_ADDR main_program_name_addr;
920 int err_code;
921
77e371c0 922 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 923 if (main_program_name_addr == 0)
323e0a4a 924 error (_("Invalid address for Ada main program name."));
96d887e8 925
f9bc20b9
JB
926 xfree (main_program_name);
927 target_read_string (main_program_name_addr, &main_program_name,
928 1024, &err_code);
929
930 if (err_code != 0)
931 return NULL;
96d887e8
PH
932 return main_program_name;
933 }
934
935 /* The main procedure doesn't seem to be in Ada. */
936 return NULL;
937}
14f9c5c9 938\f
4c4b4cd2 939 /* Symbols */
d2e4a39e 940
4c4b4cd2
PH
941/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
942 of NULLs. */
14f9c5c9 943
d2e4a39e
AS
944const struct ada_opname_map ada_opname_table[] = {
945 {"Oadd", "\"+\"", BINOP_ADD},
946 {"Osubtract", "\"-\"", BINOP_SUB},
947 {"Omultiply", "\"*\"", BINOP_MUL},
948 {"Odivide", "\"/\"", BINOP_DIV},
949 {"Omod", "\"mod\"", BINOP_MOD},
950 {"Orem", "\"rem\"", BINOP_REM},
951 {"Oexpon", "\"**\"", BINOP_EXP},
952 {"Olt", "\"<\"", BINOP_LESS},
953 {"Ole", "\"<=\"", BINOP_LEQ},
954 {"Ogt", "\">\"", BINOP_GTR},
955 {"Oge", "\">=\"", BINOP_GEQ},
956 {"Oeq", "\"=\"", BINOP_EQUAL},
957 {"One", "\"/=\"", BINOP_NOTEQUAL},
958 {"Oand", "\"and\"", BINOP_BITWISE_AND},
959 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
960 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
961 {"Oconcat", "\"&\"", BINOP_CONCAT},
962 {"Oabs", "\"abs\"", UNOP_ABS},
963 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
964 {"Oadd", "\"+\"", UNOP_PLUS},
965 {"Osubtract", "\"-\"", UNOP_NEG},
966 {NULL, NULL}
14f9c5c9
AS
967};
968
4c4b4cd2
PH
969/* The "encoded" form of DECODED, according to GNAT conventions.
970 The result is valid until the next call to ada_encode. */
971
14f9c5c9 972char *
4c4b4cd2 973ada_encode (const char *decoded)
14f9c5c9 974{
4c4b4cd2
PH
975 static char *encoding_buffer = NULL;
976 static size_t encoding_buffer_size = 0;
d2e4a39e 977 const char *p;
14f9c5c9 978 int k;
d2e4a39e 979
4c4b4cd2 980 if (decoded == NULL)
14f9c5c9
AS
981 return NULL;
982
4c4b4cd2
PH
983 GROW_VECT (encoding_buffer, encoding_buffer_size,
984 2 * strlen (decoded) + 10);
14f9c5c9
AS
985
986 k = 0;
4c4b4cd2 987 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 988 {
cdc7bb92 989 if (*p == '.')
4c4b4cd2
PH
990 {
991 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
992 k += 2;
993 }
14f9c5c9 994 else if (*p == '"')
4c4b4cd2
PH
995 {
996 const struct ada_opname_map *mapping;
997
998 for (mapping = ada_opname_table;
1265e4aa
JB
999 mapping->encoded != NULL
1000 && strncmp (mapping->decoded, p,
1001 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
1002 ;
1003 if (mapping->encoded == NULL)
323e0a4a 1004 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1005 strcpy (encoding_buffer + k, mapping->encoded);
1006 k += strlen (mapping->encoded);
1007 break;
1008 }
d2e4a39e 1009 else
4c4b4cd2
PH
1010 {
1011 encoding_buffer[k] = *p;
1012 k += 1;
1013 }
14f9c5c9
AS
1014 }
1015
4c4b4cd2
PH
1016 encoding_buffer[k] = '\0';
1017 return encoding_buffer;
14f9c5c9
AS
1018}
1019
1020/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1021 quotes, unfolded, but with the quotes stripped away. Result good
1022 to next call. */
1023
d2e4a39e
AS
1024char *
1025ada_fold_name (const char *name)
14f9c5c9 1026{
d2e4a39e 1027 static char *fold_buffer = NULL;
14f9c5c9
AS
1028 static size_t fold_buffer_size = 0;
1029
1030 int len = strlen (name);
d2e4a39e 1031 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1032
1033 if (name[0] == '\'')
1034 {
d2e4a39e
AS
1035 strncpy (fold_buffer, name + 1, len - 2);
1036 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1037 }
1038 else
1039 {
1040 int i;
5b4ee69b 1041
14f9c5c9 1042 for (i = 0; i <= len; i += 1)
4c4b4cd2 1043 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1044 }
1045
1046 return fold_buffer;
1047}
1048
529cad9c
PH
1049/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1050
1051static int
1052is_lower_alphanum (const char c)
1053{
1054 return (isdigit (c) || (isalpha (c) && islower (c)));
1055}
1056
c90092fe
JB
1057/* ENCODED is the linkage name of a symbol and LEN contains its length.
1058 This function saves in LEN the length of that same symbol name but
1059 without either of these suffixes:
29480c32
JB
1060 . .{DIGIT}+
1061 . ${DIGIT}+
1062 . ___{DIGIT}+
1063 . __{DIGIT}+.
c90092fe 1064
29480c32
JB
1065 These are suffixes introduced by the compiler for entities such as
1066 nested subprogram for instance, in order to avoid name clashes.
1067 They do not serve any purpose for the debugger. */
1068
1069static void
1070ada_remove_trailing_digits (const char *encoded, int *len)
1071{
1072 if (*len > 1 && isdigit (encoded[*len - 1]))
1073 {
1074 int i = *len - 2;
5b4ee69b 1075
29480c32
JB
1076 while (i > 0 && isdigit (encoded[i]))
1077 i--;
1078 if (i >= 0 && encoded[i] == '.')
1079 *len = i;
1080 else if (i >= 0 && encoded[i] == '$')
1081 *len = i;
1082 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1083 *len = i - 2;
1084 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1085 *len = i - 1;
1086 }
1087}
1088
1089/* Remove the suffix introduced by the compiler for protected object
1090 subprograms. */
1091
1092static void
1093ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1094{
1095 /* Remove trailing N. */
1096
1097 /* Protected entry subprograms are broken into two
1098 separate subprograms: The first one is unprotected, and has
1099 a 'N' suffix; the second is the protected version, and has
0963b4bd 1100 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1101 the protection. Since the P subprograms are internally generated,
1102 we leave these names undecoded, giving the user a clue that this
1103 entity is internal. */
1104
1105 if (*len > 1
1106 && encoded[*len - 1] == 'N'
1107 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1108 *len = *len - 1;
1109}
1110
69fadcdf
JB
1111/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1112
1113static void
1114ada_remove_Xbn_suffix (const char *encoded, int *len)
1115{
1116 int i = *len - 1;
1117
1118 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1119 i--;
1120
1121 if (encoded[i] != 'X')
1122 return;
1123
1124 if (i == 0)
1125 return;
1126
1127 if (isalnum (encoded[i-1]))
1128 *len = i;
1129}
1130
29480c32
JB
1131/* If ENCODED follows the GNAT entity encoding conventions, then return
1132 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1133 replaced by ENCODED.
14f9c5c9 1134
4c4b4cd2 1135 The resulting string is valid until the next call of ada_decode.
29480c32 1136 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1137 is returned. */
1138
1139const char *
1140ada_decode (const char *encoded)
14f9c5c9
AS
1141{
1142 int i, j;
1143 int len0;
d2e4a39e 1144 const char *p;
4c4b4cd2 1145 char *decoded;
14f9c5c9 1146 int at_start_name;
4c4b4cd2
PH
1147 static char *decoding_buffer = NULL;
1148 static size_t decoding_buffer_size = 0;
d2e4a39e 1149
29480c32
JB
1150 /* The name of the Ada main procedure starts with "_ada_".
1151 This prefix is not part of the decoded name, so skip this part
1152 if we see this prefix. */
4c4b4cd2
PH
1153 if (strncmp (encoded, "_ada_", 5) == 0)
1154 encoded += 5;
14f9c5c9 1155
29480c32
JB
1156 /* If the name starts with '_', then it is not a properly encoded
1157 name, so do not attempt to decode it. Similarly, if the name
1158 starts with '<', the name should not be decoded. */
4c4b4cd2 1159 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1160 goto Suppress;
1161
4c4b4cd2 1162 len0 = strlen (encoded);
4c4b4cd2 1163
29480c32
JB
1164 ada_remove_trailing_digits (encoded, &len0);
1165 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1166
4c4b4cd2
PH
1167 /* Remove the ___X.* suffix if present. Do not forget to verify that
1168 the suffix is located before the current "end" of ENCODED. We want
1169 to avoid re-matching parts of ENCODED that have previously been
1170 marked as discarded (by decrementing LEN0). */
1171 p = strstr (encoded, "___");
1172 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1173 {
1174 if (p[3] == 'X')
4c4b4cd2 1175 len0 = p - encoded;
14f9c5c9 1176 else
4c4b4cd2 1177 goto Suppress;
14f9c5c9 1178 }
4c4b4cd2 1179
29480c32
JB
1180 /* Remove any trailing TKB suffix. It tells us that this symbol
1181 is for the body of a task, but that information does not actually
1182 appear in the decoded name. */
1183
4c4b4cd2 1184 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1185 len0 -= 3;
76a01679 1186
a10967fa
JB
1187 /* Remove any trailing TB suffix. The TB suffix is slightly different
1188 from the TKB suffix because it is used for non-anonymous task
1189 bodies. */
1190
1191 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1192 len0 -= 2;
1193
29480c32
JB
1194 /* Remove trailing "B" suffixes. */
1195 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1196
4c4b4cd2 1197 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1198 len0 -= 1;
1199
4c4b4cd2 1200 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1201
4c4b4cd2
PH
1202 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1203 decoded = decoding_buffer;
14f9c5c9 1204
29480c32
JB
1205 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1206
4c4b4cd2 1207 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1208 {
4c4b4cd2
PH
1209 i = len0 - 2;
1210 while ((i >= 0 && isdigit (encoded[i]))
1211 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1212 i -= 1;
1213 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1214 len0 = i - 1;
1215 else if (encoded[i] == '$')
1216 len0 = i;
d2e4a39e 1217 }
14f9c5c9 1218
29480c32
JB
1219 /* The first few characters that are not alphabetic are not part
1220 of any encoding we use, so we can copy them over verbatim. */
1221
4c4b4cd2
PH
1222 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1223 decoded[j] = encoded[i];
14f9c5c9
AS
1224
1225 at_start_name = 1;
1226 while (i < len0)
1227 {
29480c32 1228 /* Is this a symbol function? */
4c4b4cd2
PH
1229 if (at_start_name && encoded[i] == 'O')
1230 {
1231 int k;
5b4ee69b 1232
4c4b4cd2
PH
1233 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1234 {
1235 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1236 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1237 op_len - 1) == 0)
1238 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1239 {
1240 strcpy (decoded + j, ada_opname_table[k].decoded);
1241 at_start_name = 0;
1242 i += op_len;
1243 j += strlen (ada_opname_table[k].decoded);
1244 break;
1245 }
1246 }
1247 if (ada_opname_table[k].encoded != NULL)
1248 continue;
1249 }
14f9c5c9
AS
1250 at_start_name = 0;
1251
529cad9c
PH
1252 /* Replace "TK__" with "__", which will eventually be translated
1253 into "." (just below). */
1254
4c4b4cd2
PH
1255 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1256 i += 2;
529cad9c 1257
29480c32
JB
1258 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1259 be translated into "." (just below). These are internal names
1260 generated for anonymous blocks inside which our symbol is nested. */
1261
1262 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1263 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1264 && isdigit (encoded [i+4]))
1265 {
1266 int k = i + 5;
1267
1268 while (k < len0 && isdigit (encoded[k]))
1269 k++; /* Skip any extra digit. */
1270
1271 /* Double-check that the "__B_{DIGITS}+" sequence we found
1272 is indeed followed by "__". */
1273 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1274 i = k;
1275 }
1276
529cad9c
PH
1277 /* Remove _E{DIGITS}+[sb] */
1278
1279 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1280 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1281 one implements the actual entry code, and has a suffix following
1282 the convention above; the second one implements the barrier and
1283 uses the same convention as above, except that the 'E' is replaced
1284 by a 'B'.
1285
1286 Just as above, we do not decode the name of barrier functions
1287 to give the user a clue that the code he is debugging has been
1288 internally generated. */
1289
1290 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1291 && isdigit (encoded[i+2]))
1292 {
1293 int k = i + 3;
1294
1295 while (k < len0 && isdigit (encoded[k]))
1296 k++;
1297
1298 if (k < len0
1299 && (encoded[k] == 'b' || encoded[k] == 's'))
1300 {
1301 k++;
1302 /* Just as an extra precaution, make sure that if this
1303 suffix is followed by anything else, it is a '_'.
1304 Otherwise, we matched this sequence by accident. */
1305 if (k == len0
1306 || (k < len0 && encoded[k] == '_'))
1307 i = k;
1308 }
1309 }
1310
1311 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1312 the GNAT front-end in protected object subprograms. */
1313
1314 if (i < len0 + 3
1315 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1316 {
1317 /* Backtrack a bit up until we reach either the begining of
1318 the encoded name, or "__". Make sure that we only find
1319 digits or lowercase characters. */
1320 const char *ptr = encoded + i - 1;
1321
1322 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1323 ptr--;
1324 if (ptr < encoded
1325 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1326 i++;
1327 }
1328
4c4b4cd2
PH
1329 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1330 {
29480c32
JB
1331 /* This is a X[bn]* sequence not separated from the previous
1332 part of the name with a non-alpha-numeric character (in other
1333 words, immediately following an alpha-numeric character), then
1334 verify that it is placed at the end of the encoded name. If
1335 not, then the encoding is not valid and we should abort the
1336 decoding. Otherwise, just skip it, it is used in body-nested
1337 package names. */
4c4b4cd2
PH
1338 do
1339 i += 1;
1340 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1341 if (i < len0)
1342 goto Suppress;
1343 }
cdc7bb92 1344 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1345 {
29480c32 1346 /* Replace '__' by '.'. */
4c4b4cd2
PH
1347 decoded[j] = '.';
1348 at_start_name = 1;
1349 i += 2;
1350 j += 1;
1351 }
14f9c5c9 1352 else
4c4b4cd2 1353 {
29480c32
JB
1354 /* It's a character part of the decoded name, so just copy it
1355 over. */
4c4b4cd2
PH
1356 decoded[j] = encoded[i];
1357 i += 1;
1358 j += 1;
1359 }
14f9c5c9 1360 }
4c4b4cd2 1361 decoded[j] = '\000';
14f9c5c9 1362
29480c32
JB
1363 /* Decoded names should never contain any uppercase character.
1364 Double-check this, and abort the decoding if we find one. */
1365
4c4b4cd2
PH
1366 for (i = 0; decoded[i] != '\0'; i += 1)
1367 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1368 goto Suppress;
1369
4c4b4cd2
PH
1370 if (strcmp (decoded, encoded) == 0)
1371 return encoded;
1372 else
1373 return decoded;
14f9c5c9
AS
1374
1375Suppress:
4c4b4cd2
PH
1376 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1377 decoded = decoding_buffer;
1378 if (encoded[0] == '<')
1379 strcpy (decoded, encoded);
14f9c5c9 1380 else
88c15c34 1381 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1382 return decoded;
1383
1384}
1385
1386/* Table for keeping permanent unique copies of decoded names. Once
1387 allocated, names in this table are never released. While this is a
1388 storage leak, it should not be significant unless there are massive
1389 changes in the set of decoded names in successive versions of a
1390 symbol table loaded during a single session. */
1391static struct htab *decoded_names_store;
1392
1393/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1394 in the language-specific part of GSYMBOL, if it has not been
1395 previously computed. Tries to save the decoded name in the same
1396 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1397 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1398 GSYMBOL).
4c4b4cd2
PH
1399 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1400 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1401 when a decoded name is cached in it. */
4c4b4cd2 1402
45e6c716 1403const char *
f85f34ed 1404ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1405{
f85f34ed
TT
1406 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1407 const char **resultp =
1408 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1409
f85f34ed 1410 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1411 {
1412 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1413 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1414
f85f34ed 1415 gsymbol->ada_mangled = 1;
5b4ee69b 1416
f85f34ed
TT
1417 if (obstack != NULL)
1418 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1419 else
76a01679 1420 {
f85f34ed
TT
1421 /* Sometimes, we can't find a corresponding objfile, in
1422 which case, we put the result on the heap. Since we only
1423 decode when needed, we hope this usually does not cause a
1424 significant memory leak (FIXME). */
1425
76a01679
JB
1426 char **slot = (char **) htab_find_slot (decoded_names_store,
1427 decoded, INSERT);
5b4ee69b 1428
76a01679
JB
1429 if (*slot == NULL)
1430 *slot = xstrdup (decoded);
1431 *resultp = *slot;
1432 }
4c4b4cd2 1433 }
14f9c5c9 1434
4c4b4cd2
PH
1435 return *resultp;
1436}
76a01679 1437
2c0b251b 1438static char *
76a01679 1439ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1440{
1441 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1442}
1443
1444/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1445 suffixes that encode debugging information or leading _ada_ on
1446 SYM_NAME (see is_name_suffix commentary for the debugging
1447 information that is ignored). If WILD, then NAME need only match a
1448 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1449 either argument is NULL. */
14f9c5c9 1450
2c0b251b 1451static int
40658b94 1452match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1453{
1454 if (sym_name == NULL || name == NULL)
1455 return 0;
1456 else if (wild)
73589123 1457 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1458 else
1459 {
1460 int len_name = strlen (name);
5b4ee69b 1461
4c4b4cd2
PH
1462 return (strncmp (sym_name, name, len_name) == 0
1463 && is_name_suffix (sym_name + len_name))
1464 || (strncmp (sym_name, "_ada_", 5) == 0
1465 && strncmp (sym_name + 5, name, len_name) == 0
1466 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1467 }
14f9c5c9 1468}
14f9c5c9 1469\f
d2e4a39e 1470
4c4b4cd2 1471 /* Arrays */
14f9c5c9 1472
28c85d6c
JB
1473/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1474 generated by the GNAT compiler to describe the index type used
1475 for each dimension of an array, check whether it follows the latest
1476 known encoding. If not, fix it up to conform to the latest encoding.
1477 Otherwise, do nothing. This function also does nothing if
1478 INDEX_DESC_TYPE is NULL.
1479
1480 The GNAT encoding used to describle the array index type evolved a bit.
1481 Initially, the information would be provided through the name of each
1482 field of the structure type only, while the type of these fields was
1483 described as unspecified and irrelevant. The debugger was then expected
1484 to perform a global type lookup using the name of that field in order
1485 to get access to the full index type description. Because these global
1486 lookups can be very expensive, the encoding was later enhanced to make
1487 the global lookup unnecessary by defining the field type as being
1488 the full index type description.
1489
1490 The purpose of this routine is to allow us to support older versions
1491 of the compiler by detecting the use of the older encoding, and by
1492 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1493 we essentially replace each field's meaningless type by the associated
1494 index subtype). */
1495
1496void
1497ada_fixup_array_indexes_type (struct type *index_desc_type)
1498{
1499 int i;
1500
1501 if (index_desc_type == NULL)
1502 return;
1503 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1504
1505 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1506 to check one field only, no need to check them all). If not, return
1507 now.
1508
1509 If our INDEX_DESC_TYPE was generated using the older encoding,
1510 the field type should be a meaningless integer type whose name
1511 is not equal to the field name. */
1512 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1513 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1514 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1515 return;
1516
1517 /* Fixup each field of INDEX_DESC_TYPE. */
1518 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1519 {
0d5cff50 1520 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1521 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1522
1523 if (raw_type)
1524 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1525 }
1526}
1527
4c4b4cd2 1528/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1529
d2e4a39e
AS
1530static char *bound_name[] = {
1531 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1532 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1533};
1534
1535/* Maximum number of array dimensions we are prepared to handle. */
1536
4c4b4cd2 1537#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1538
14f9c5c9 1539
4c4b4cd2
PH
1540/* The desc_* routines return primitive portions of array descriptors
1541 (fat pointers). */
14f9c5c9
AS
1542
1543/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1544 level of indirection, if needed. */
1545
d2e4a39e
AS
1546static struct type *
1547desc_base_type (struct type *type)
14f9c5c9
AS
1548{
1549 if (type == NULL)
1550 return NULL;
61ee279c 1551 type = ada_check_typedef (type);
720d1a40
JB
1552 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1553 type = ada_typedef_target_type (type);
1554
1265e4aa
JB
1555 if (type != NULL
1556 && (TYPE_CODE (type) == TYPE_CODE_PTR
1557 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1558 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1559 else
1560 return type;
1561}
1562
4c4b4cd2
PH
1563/* True iff TYPE indicates a "thin" array pointer type. */
1564
14f9c5c9 1565static int
d2e4a39e 1566is_thin_pntr (struct type *type)
14f9c5c9 1567{
d2e4a39e 1568 return
14f9c5c9
AS
1569 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1570 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1571}
1572
4c4b4cd2
PH
1573/* The descriptor type for thin pointer type TYPE. */
1574
d2e4a39e
AS
1575static struct type *
1576thin_descriptor_type (struct type *type)
14f9c5c9 1577{
d2e4a39e 1578 struct type *base_type = desc_base_type (type);
5b4ee69b 1579
14f9c5c9
AS
1580 if (base_type == NULL)
1581 return NULL;
1582 if (is_suffix (ada_type_name (base_type), "___XVE"))
1583 return base_type;
d2e4a39e 1584 else
14f9c5c9 1585 {
d2e4a39e 1586 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1587
14f9c5c9 1588 if (alt_type == NULL)
4c4b4cd2 1589 return base_type;
14f9c5c9 1590 else
4c4b4cd2 1591 return alt_type;
14f9c5c9
AS
1592 }
1593}
1594
4c4b4cd2
PH
1595/* A pointer to the array data for thin-pointer value VAL. */
1596
d2e4a39e
AS
1597static struct value *
1598thin_data_pntr (struct value *val)
14f9c5c9 1599{
828292f2 1600 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1601 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1602
556bdfd4
UW
1603 data_type = lookup_pointer_type (data_type);
1604
14f9c5c9 1605 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1606 return value_cast (data_type, value_copy (val));
d2e4a39e 1607 else
42ae5230 1608 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1609}
1610
4c4b4cd2
PH
1611/* True iff TYPE indicates a "thick" array pointer type. */
1612
14f9c5c9 1613static int
d2e4a39e 1614is_thick_pntr (struct type *type)
14f9c5c9
AS
1615{
1616 type = desc_base_type (type);
1617 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1618 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1619}
1620
4c4b4cd2
PH
1621/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1622 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1623
d2e4a39e
AS
1624static struct type *
1625desc_bounds_type (struct type *type)
14f9c5c9 1626{
d2e4a39e 1627 struct type *r;
14f9c5c9
AS
1628
1629 type = desc_base_type (type);
1630
1631 if (type == NULL)
1632 return NULL;
1633 else if (is_thin_pntr (type))
1634 {
1635 type = thin_descriptor_type (type);
1636 if (type == NULL)
4c4b4cd2 1637 return NULL;
14f9c5c9
AS
1638 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1639 if (r != NULL)
61ee279c 1640 return ada_check_typedef (r);
14f9c5c9
AS
1641 }
1642 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1643 {
1644 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1645 if (r != NULL)
61ee279c 1646 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1647 }
1648 return NULL;
1649}
1650
1651/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1652 one, a pointer to its bounds data. Otherwise NULL. */
1653
d2e4a39e
AS
1654static struct value *
1655desc_bounds (struct value *arr)
14f9c5c9 1656{
df407dfe 1657 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1658
d2e4a39e 1659 if (is_thin_pntr (type))
14f9c5c9 1660 {
d2e4a39e 1661 struct type *bounds_type =
4c4b4cd2 1662 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1663 LONGEST addr;
1664
4cdfadb1 1665 if (bounds_type == NULL)
323e0a4a 1666 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1667
1668 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1669 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1670 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1671 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1672 addr = value_as_long (arr);
d2e4a39e 1673 else
42ae5230 1674 addr = value_address (arr);
14f9c5c9 1675
d2e4a39e 1676 return
4c4b4cd2
PH
1677 value_from_longest (lookup_pointer_type (bounds_type),
1678 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1679 }
1680
1681 else if (is_thick_pntr (type))
05e522ef
JB
1682 {
1683 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1684 _("Bad GNAT array descriptor"));
1685 struct type *p_bounds_type = value_type (p_bounds);
1686
1687 if (p_bounds_type
1688 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1689 {
1690 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1691
1692 if (TYPE_STUB (target_type))
1693 p_bounds = value_cast (lookup_pointer_type
1694 (ada_check_typedef (target_type)),
1695 p_bounds);
1696 }
1697 else
1698 error (_("Bad GNAT array descriptor"));
1699
1700 return p_bounds;
1701 }
14f9c5c9
AS
1702 else
1703 return NULL;
1704}
1705
4c4b4cd2
PH
1706/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1707 position of the field containing the address of the bounds data. */
1708
14f9c5c9 1709static int
d2e4a39e 1710fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1711{
1712 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1713}
1714
1715/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1716 size of the field containing the address of the bounds data. */
1717
14f9c5c9 1718static int
d2e4a39e 1719fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1720{
1721 type = desc_base_type (type);
1722
d2e4a39e 1723 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1724 return TYPE_FIELD_BITSIZE (type, 1);
1725 else
61ee279c 1726 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1727}
1728
4c4b4cd2 1729/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1730 pointer to one, the type of its array data (a array-with-no-bounds type);
1731 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1732 data. */
4c4b4cd2 1733
d2e4a39e 1734static struct type *
556bdfd4 1735desc_data_target_type (struct type *type)
14f9c5c9
AS
1736{
1737 type = desc_base_type (type);
1738
4c4b4cd2 1739 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1740 if (is_thin_pntr (type))
556bdfd4 1741 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1742 else if (is_thick_pntr (type))
556bdfd4
UW
1743 {
1744 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1745
1746 if (data_type
1747 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1748 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1749 }
1750
1751 return NULL;
14f9c5c9
AS
1752}
1753
1754/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1755 its array data. */
4c4b4cd2 1756
d2e4a39e
AS
1757static struct value *
1758desc_data (struct value *arr)
14f9c5c9 1759{
df407dfe 1760 struct type *type = value_type (arr);
5b4ee69b 1761
14f9c5c9
AS
1762 if (is_thin_pntr (type))
1763 return thin_data_pntr (arr);
1764 else if (is_thick_pntr (type))
d2e4a39e 1765 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1766 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1767 else
1768 return NULL;
1769}
1770
1771
1772/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1773 position of the field containing the address of the data. */
1774
14f9c5c9 1775static int
d2e4a39e 1776fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1777{
1778 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1779}
1780
1781/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1782 size of the field containing the address of the data. */
1783
14f9c5c9 1784static int
d2e4a39e 1785fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1786{
1787 type = desc_base_type (type);
1788
1789 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1790 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1791 else
14f9c5c9
AS
1792 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1793}
1794
4c4b4cd2 1795/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1796 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1797 bound, if WHICH is 1. The first bound is I=1. */
1798
d2e4a39e
AS
1799static struct value *
1800desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1801{
d2e4a39e 1802 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1803 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1804}
1805
1806/* If BOUNDS is an array-bounds structure type, return the bit position
1807 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1808 bound, if WHICH is 1. The first bound is I=1. */
1809
14f9c5c9 1810static int
d2e4a39e 1811desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1812{
d2e4a39e 1813 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1814}
1815
1816/* If BOUNDS is an array-bounds structure type, return the bit field size
1817 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1818 bound, if WHICH is 1. The first bound is I=1. */
1819
76a01679 1820static int
d2e4a39e 1821desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1822{
1823 type = desc_base_type (type);
1824
d2e4a39e
AS
1825 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1826 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1827 else
1828 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1829}
1830
1831/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1832 Ith bound (numbering from 1). Otherwise, NULL. */
1833
d2e4a39e
AS
1834static struct type *
1835desc_index_type (struct type *type, int i)
14f9c5c9
AS
1836{
1837 type = desc_base_type (type);
1838
1839 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1840 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1841 else
14f9c5c9
AS
1842 return NULL;
1843}
1844
4c4b4cd2
PH
1845/* The number of index positions in the array-bounds type TYPE.
1846 Return 0 if TYPE is NULL. */
1847
14f9c5c9 1848static int
d2e4a39e 1849desc_arity (struct type *type)
14f9c5c9
AS
1850{
1851 type = desc_base_type (type);
1852
1853 if (type != NULL)
1854 return TYPE_NFIELDS (type) / 2;
1855 return 0;
1856}
1857
4c4b4cd2
PH
1858/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1859 an array descriptor type (representing an unconstrained array
1860 type). */
1861
76a01679
JB
1862static int
1863ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1864{
1865 if (type == NULL)
1866 return 0;
61ee279c 1867 type = ada_check_typedef (type);
4c4b4cd2 1868 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1869 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1870}
1871
52ce6436 1872/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1873 * to one. */
52ce6436 1874
2c0b251b 1875static int
52ce6436
PH
1876ada_is_array_type (struct type *type)
1877{
1878 while (type != NULL
1879 && (TYPE_CODE (type) == TYPE_CODE_PTR
1880 || TYPE_CODE (type) == TYPE_CODE_REF))
1881 type = TYPE_TARGET_TYPE (type);
1882 return ada_is_direct_array_type (type);
1883}
1884
4c4b4cd2 1885/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1886
14f9c5c9 1887int
4c4b4cd2 1888ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1889{
1890 if (type == NULL)
1891 return 0;
61ee279c 1892 type = ada_check_typedef (type);
14f9c5c9 1893 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1894 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1895 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1896 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1897}
1898
4c4b4cd2
PH
1899/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1900
14f9c5c9 1901int
4c4b4cd2 1902ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1903{
556bdfd4 1904 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1905
1906 if (type == NULL)
1907 return 0;
61ee279c 1908 type = ada_check_typedef (type);
556bdfd4
UW
1909 return (data_type != NULL
1910 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1911 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1912}
1913
1914/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1915 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1916 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1917 is still needed. */
1918
14f9c5c9 1919int
ebf56fd3 1920ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1921{
d2e4a39e 1922 return
14f9c5c9
AS
1923 type != NULL
1924 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1925 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1926 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1927 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1928}
1929
1930
4c4b4cd2 1931/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1932 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1933 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1934 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1935 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1936 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1937 a descriptor. */
d2e4a39e
AS
1938struct type *
1939ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1940{
ad82864c
JB
1941 if (ada_is_constrained_packed_array_type (value_type (arr)))
1942 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1943
df407dfe
AC
1944 if (!ada_is_array_descriptor_type (value_type (arr)))
1945 return value_type (arr);
d2e4a39e
AS
1946
1947 if (!bounds)
ad82864c
JB
1948 {
1949 struct type *array_type =
1950 ada_check_typedef (desc_data_target_type (value_type (arr)));
1951
1952 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1953 TYPE_FIELD_BITSIZE (array_type, 0) =
1954 decode_packed_array_bitsize (value_type (arr));
1955
1956 return array_type;
1957 }
14f9c5c9
AS
1958 else
1959 {
d2e4a39e 1960 struct type *elt_type;
14f9c5c9 1961 int arity;
d2e4a39e 1962 struct value *descriptor;
14f9c5c9 1963
df407dfe
AC
1964 elt_type = ada_array_element_type (value_type (arr), -1);
1965 arity = ada_array_arity (value_type (arr));
14f9c5c9 1966
d2e4a39e 1967 if (elt_type == NULL || arity == 0)
df407dfe 1968 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1969
1970 descriptor = desc_bounds (arr);
d2e4a39e 1971 if (value_as_long (descriptor) == 0)
4c4b4cd2 1972 return NULL;
d2e4a39e 1973 while (arity > 0)
4c4b4cd2 1974 {
e9bb382b
UW
1975 struct type *range_type = alloc_type_copy (value_type (arr));
1976 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1977 struct value *low = desc_one_bound (descriptor, arity, 0);
1978 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1979
5b4ee69b 1980 arity -= 1;
0c9c3474
SA
1981 create_static_range_type (range_type, value_type (low),
1982 longest_to_int (value_as_long (low)),
1983 longest_to_int (value_as_long (high)));
4c4b4cd2 1984 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1985
1986 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1987 {
1988 /* We need to store the element packed bitsize, as well as
1989 recompute the array size, because it was previously
1990 computed based on the unpacked element size. */
1991 LONGEST lo = value_as_long (low);
1992 LONGEST hi = value_as_long (high);
1993
1994 TYPE_FIELD_BITSIZE (elt_type, 0) =
1995 decode_packed_array_bitsize (value_type (arr));
1996 /* If the array has no element, then the size is already
1997 zero, and does not need to be recomputed. */
1998 if (lo < hi)
1999 {
2000 int array_bitsize =
2001 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2002
2003 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2004 }
2005 }
4c4b4cd2 2006 }
14f9c5c9
AS
2007
2008 return lookup_pointer_type (elt_type);
2009 }
2010}
2011
2012/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2013 Otherwise, returns either a standard GDB array with bounds set
2014 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2015 GDB array. Returns NULL if ARR is a null fat pointer. */
2016
d2e4a39e
AS
2017struct value *
2018ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2019{
df407dfe 2020 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2021 {
d2e4a39e 2022 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2023
14f9c5c9 2024 if (arrType == NULL)
4c4b4cd2 2025 return NULL;
14f9c5c9
AS
2026 return value_cast (arrType, value_copy (desc_data (arr)));
2027 }
ad82864c
JB
2028 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2029 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2030 else
2031 return arr;
2032}
2033
2034/* If ARR does not represent an array, returns ARR unchanged.
2035 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2036 be ARR itself if it already is in the proper form). */
2037
720d1a40 2038struct value *
d2e4a39e 2039ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2040{
df407dfe 2041 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2042 {
d2e4a39e 2043 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2044
14f9c5c9 2045 if (arrVal == NULL)
323e0a4a 2046 error (_("Bounds unavailable for null array pointer."));
529cad9c 2047 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2048 return value_ind (arrVal);
2049 }
ad82864c
JB
2050 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2051 return decode_constrained_packed_array (arr);
d2e4a39e 2052 else
14f9c5c9
AS
2053 return arr;
2054}
2055
2056/* If TYPE represents a GNAT array type, return it translated to an
2057 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2058 packing). For other types, is the identity. */
2059
d2e4a39e
AS
2060struct type *
2061ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2062{
ad82864c
JB
2063 if (ada_is_constrained_packed_array_type (type))
2064 return decode_constrained_packed_array_type (type);
17280b9f
UW
2065
2066 if (ada_is_array_descriptor_type (type))
556bdfd4 2067 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2068
2069 return type;
14f9c5c9
AS
2070}
2071
4c4b4cd2
PH
2072/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2073
ad82864c
JB
2074static int
2075ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2076{
2077 if (type == NULL)
2078 return 0;
4c4b4cd2 2079 type = desc_base_type (type);
61ee279c 2080 type = ada_check_typedef (type);
d2e4a39e 2081 return
14f9c5c9
AS
2082 ada_type_name (type) != NULL
2083 && strstr (ada_type_name (type), "___XP") != NULL;
2084}
2085
ad82864c
JB
2086/* Non-zero iff TYPE represents a standard GNAT constrained
2087 packed-array type. */
2088
2089int
2090ada_is_constrained_packed_array_type (struct type *type)
2091{
2092 return ada_is_packed_array_type (type)
2093 && !ada_is_array_descriptor_type (type);
2094}
2095
2096/* Non-zero iff TYPE represents an array descriptor for a
2097 unconstrained packed-array type. */
2098
2099static int
2100ada_is_unconstrained_packed_array_type (struct type *type)
2101{
2102 return ada_is_packed_array_type (type)
2103 && ada_is_array_descriptor_type (type);
2104}
2105
2106/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2107 return the size of its elements in bits. */
2108
2109static long
2110decode_packed_array_bitsize (struct type *type)
2111{
0d5cff50
DE
2112 const char *raw_name;
2113 const char *tail;
ad82864c
JB
2114 long bits;
2115
720d1a40
JB
2116 /* Access to arrays implemented as fat pointers are encoded as a typedef
2117 of the fat pointer type. We need the name of the fat pointer type
2118 to do the decoding, so strip the typedef layer. */
2119 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2120 type = ada_typedef_target_type (type);
2121
2122 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2123 if (!raw_name)
2124 raw_name = ada_type_name (desc_base_type (type));
2125
2126 if (!raw_name)
2127 return 0;
2128
2129 tail = strstr (raw_name, "___XP");
720d1a40 2130 gdb_assert (tail != NULL);
ad82864c
JB
2131
2132 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2133 {
2134 lim_warning
2135 (_("could not understand bit size information on packed array"));
2136 return 0;
2137 }
2138
2139 return bits;
2140}
2141
14f9c5c9
AS
2142/* Given that TYPE is a standard GDB array type with all bounds filled
2143 in, and that the element size of its ultimate scalar constituents
2144 (that is, either its elements, or, if it is an array of arrays, its
2145 elements' elements, etc.) is *ELT_BITS, return an identical type,
2146 but with the bit sizes of its elements (and those of any
2147 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2148 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2149 in bits. */
2150
d2e4a39e 2151static struct type *
ad82864c 2152constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2153{
d2e4a39e
AS
2154 struct type *new_elt_type;
2155 struct type *new_type;
99b1c762
JB
2156 struct type *index_type_desc;
2157 struct type *index_type;
14f9c5c9
AS
2158 LONGEST low_bound, high_bound;
2159
61ee279c 2160 type = ada_check_typedef (type);
14f9c5c9
AS
2161 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2162 return type;
2163
99b1c762
JB
2164 index_type_desc = ada_find_parallel_type (type, "___XA");
2165 if (index_type_desc)
2166 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2167 NULL);
2168 else
2169 index_type = TYPE_INDEX_TYPE (type);
2170
e9bb382b 2171 new_type = alloc_type_copy (type);
ad82864c
JB
2172 new_elt_type =
2173 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2174 elt_bits);
99b1c762 2175 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2176 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2177 TYPE_NAME (new_type) = ada_type_name (type);
2178
99b1c762 2179 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2180 low_bound = high_bound = 0;
2181 if (high_bound < low_bound)
2182 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2183 else
14f9c5c9
AS
2184 {
2185 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2186 TYPE_LENGTH (new_type) =
4c4b4cd2 2187 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2188 }
2189
876cecd0 2190 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2191 return new_type;
2192}
2193
ad82864c
JB
2194/* The array type encoded by TYPE, where
2195 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2196
d2e4a39e 2197static struct type *
ad82864c 2198decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2199{
0d5cff50 2200 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2201 char *name;
0d5cff50 2202 const char *tail;
d2e4a39e 2203 struct type *shadow_type;
14f9c5c9 2204 long bits;
14f9c5c9 2205
727e3d2e
JB
2206 if (!raw_name)
2207 raw_name = ada_type_name (desc_base_type (type));
2208
2209 if (!raw_name)
2210 return NULL;
2211
2212 name = (char *) alloca (strlen (raw_name) + 1);
2213 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2214 type = desc_base_type (type);
2215
14f9c5c9
AS
2216 memcpy (name, raw_name, tail - raw_name);
2217 name[tail - raw_name] = '\000';
2218
b4ba55a1
JB
2219 shadow_type = ada_find_parallel_type_with_name (type, name);
2220
2221 if (shadow_type == NULL)
14f9c5c9 2222 {
323e0a4a 2223 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2224 return NULL;
2225 }
cb249c71 2226 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2227
2228 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2229 {
0963b4bd
MS
2230 lim_warning (_("could not understand bounds "
2231 "information on packed array"));
14f9c5c9
AS
2232 return NULL;
2233 }
d2e4a39e 2234
ad82864c
JB
2235 bits = decode_packed_array_bitsize (type);
2236 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2237}
2238
ad82864c
JB
2239/* Given that ARR is a struct value *indicating a GNAT constrained packed
2240 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2241 standard GDB array type except that the BITSIZEs of the array
2242 target types are set to the number of bits in each element, and the
4c4b4cd2 2243 type length is set appropriately. */
14f9c5c9 2244
d2e4a39e 2245static struct value *
ad82864c 2246decode_constrained_packed_array (struct value *arr)
14f9c5c9 2247{
4c4b4cd2 2248 struct type *type;
14f9c5c9 2249
11aa919a
PMR
2250 /* If our value is a pointer, then dereference it. Likewise if
2251 the value is a reference. Make sure that this operation does not
2252 cause the target type to be fixed, as this would indirectly cause
2253 this array to be decoded. The rest of the routine assumes that
2254 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2255 and "value_ind" routines to perform the dereferencing, as opposed
2256 to using "ada_coerce_ref" or "ada_value_ind". */
2257 arr = coerce_ref (arr);
828292f2 2258 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2259 arr = value_ind (arr);
4c4b4cd2 2260
ad82864c 2261 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2262 if (type == NULL)
2263 {
323e0a4a 2264 error (_("can't unpack array"));
14f9c5c9
AS
2265 return NULL;
2266 }
61ee279c 2267
50810684 2268 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2269 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2270 {
2271 /* This is a (right-justified) modular type representing a packed
2272 array with no wrapper. In order to interpret the value through
2273 the (left-justified) packed array type we just built, we must
2274 first left-justify it. */
2275 int bit_size, bit_pos;
2276 ULONGEST mod;
2277
df407dfe 2278 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2279 bit_size = 0;
2280 while (mod > 0)
2281 {
2282 bit_size += 1;
2283 mod >>= 1;
2284 }
df407dfe 2285 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2286 arr = ada_value_primitive_packed_val (arr, NULL,
2287 bit_pos / HOST_CHAR_BIT,
2288 bit_pos % HOST_CHAR_BIT,
2289 bit_size,
2290 type);
2291 }
2292
4c4b4cd2 2293 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2294}
2295
2296
2297/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2298 given in IND. ARR must be a simple array. */
14f9c5c9 2299
d2e4a39e
AS
2300static struct value *
2301value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2302{
2303 int i;
2304 int bits, elt_off, bit_off;
2305 long elt_total_bit_offset;
d2e4a39e
AS
2306 struct type *elt_type;
2307 struct value *v;
14f9c5c9
AS
2308
2309 bits = 0;
2310 elt_total_bit_offset = 0;
df407dfe 2311 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2312 for (i = 0; i < arity; i += 1)
14f9c5c9 2313 {
d2e4a39e 2314 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2315 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2316 error
0963b4bd
MS
2317 (_("attempt to do packed indexing of "
2318 "something other than a packed array"));
14f9c5c9 2319 else
4c4b4cd2
PH
2320 {
2321 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2322 LONGEST lowerbound, upperbound;
2323 LONGEST idx;
2324
2325 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2326 {
323e0a4a 2327 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2328 lowerbound = upperbound = 0;
2329 }
2330
3cb382c9 2331 idx = pos_atr (ind[i]);
4c4b4cd2 2332 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2333 lim_warning (_("packed array index %ld out of bounds"),
2334 (long) idx);
4c4b4cd2
PH
2335 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2336 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2337 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2338 }
14f9c5c9
AS
2339 }
2340 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2341 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2342
2343 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2344 bits, elt_type);
14f9c5c9
AS
2345 return v;
2346}
2347
4c4b4cd2 2348/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2349
2350static int
d2e4a39e 2351has_negatives (struct type *type)
14f9c5c9 2352{
d2e4a39e
AS
2353 switch (TYPE_CODE (type))
2354 {
2355 default:
2356 return 0;
2357 case TYPE_CODE_INT:
2358 return !TYPE_UNSIGNED (type);
2359 case TYPE_CODE_RANGE:
2360 return TYPE_LOW_BOUND (type) < 0;
2361 }
14f9c5c9 2362}
d2e4a39e 2363
14f9c5c9
AS
2364
2365/* Create a new value of type TYPE from the contents of OBJ starting
2366 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2367 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2368 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2369 VALADDR is ignored unless OBJ is NULL, in which case,
2370 VALADDR+OFFSET must address the start of storage containing the
2371 packed value. The value returned in this case is never an lval.
2372 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2373
d2e4a39e 2374struct value *
fc1a4b47 2375ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2376 long offset, int bit_offset, int bit_size,
4c4b4cd2 2377 struct type *type)
14f9c5c9 2378{
d2e4a39e 2379 struct value *v;
4c4b4cd2
PH
2380 int src, /* Index into the source area */
2381 targ, /* Index into the target area */
2382 srcBitsLeft, /* Number of source bits left to move */
2383 nsrc, ntarg, /* Number of source and target bytes */
2384 unusedLS, /* Number of bits in next significant
2385 byte of source that are unused */
2386 accumSize; /* Number of meaningful bits in accum */
2387 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2388 unsigned char *unpacked;
4c4b4cd2 2389 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2390 unsigned char sign;
2391 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2392 /* Transmit bytes from least to most significant; delta is the direction
2393 the indices move. */
50810684 2394 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2395
61ee279c 2396 type = ada_check_typedef (type);
14f9c5c9
AS
2397
2398 if (obj == NULL)
2399 {
2400 v = allocate_value (type);
d2e4a39e 2401 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2402 }
9214ee5f 2403 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2404 {
53ba8333 2405 v = value_at (type, value_address (obj));
9f1f738a 2406 type = value_type (v);
d2e4a39e 2407 bytes = (unsigned char *) alloca (len);
53ba8333 2408 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2409 }
d2e4a39e 2410 else
14f9c5c9
AS
2411 {
2412 v = allocate_value (type);
0fd88904 2413 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2414 }
d2e4a39e
AS
2415
2416 if (obj != NULL)
14f9c5c9 2417 {
53ba8333 2418 long new_offset = offset;
5b4ee69b 2419
74bcbdf3 2420 set_value_component_location (v, obj);
9bbda503
AC
2421 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2422 set_value_bitsize (v, bit_size);
df407dfe 2423 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2424 {
53ba8333 2425 ++new_offset;
9bbda503 2426 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2427 }
53ba8333
JB
2428 set_value_offset (v, new_offset);
2429
2430 /* Also set the parent value. This is needed when trying to
2431 assign a new value (in inferior memory). */
2432 set_value_parent (v, obj);
14f9c5c9
AS
2433 }
2434 else
9bbda503 2435 set_value_bitsize (v, bit_size);
0fd88904 2436 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2437
2438 srcBitsLeft = bit_size;
2439 nsrc = len;
2440 ntarg = TYPE_LENGTH (type);
2441 sign = 0;
2442 if (bit_size == 0)
2443 {
2444 memset (unpacked, 0, TYPE_LENGTH (type));
2445 return v;
2446 }
50810684 2447 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2448 {
d2e4a39e 2449 src = len - 1;
1265e4aa
JB
2450 if (has_negatives (type)
2451 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2452 sign = ~0;
d2e4a39e
AS
2453
2454 unusedLS =
4c4b4cd2
PH
2455 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2456 % HOST_CHAR_BIT;
14f9c5c9
AS
2457
2458 switch (TYPE_CODE (type))
4c4b4cd2
PH
2459 {
2460 case TYPE_CODE_ARRAY:
2461 case TYPE_CODE_UNION:
2462 case TYPE_CODE_STRUCT:
2463 /* Non-scalar values must be aligned at a byte boundary... */
2464 accumSize =
2465 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2466 /* ... And are placed at the beginning (most-significant) bytes
2467 of the target. */
529cad9c 2468 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2469 ntarg = targ + 1;
4c4b4cd2
PH
2470 break;
2471 default:
2472 accumSize = 0;
2473 targ = TYPE_LENGTH (type) - 1;
2474 break;
2475 }
14f9c5c9 2476 }
d2e4a39e 2477 else
14f9c5c9
AS
2478 {
2479 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2480
2481 src = targ = 0;
2482 unusedLS = bit_offset;
2483 accumSize = 0;
2484
d2e4a39e 2485 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2486 sign = ~0;
14f9c5c9 2487 }
d2e4a39e 2488
14f9c5c9
AS
2489 accum = 0;
2490 while (nsrc > 0)
2491 {
2492 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2493 part of the value. */
d2e4a39e 2494 unsigned int unusedMSMask =
4c4b4cd2
PH
2495 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2496 1;
2497 /* Sign-extend bits for this byte. */
14f9c5c9 2498 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2499
d2e4a39e 2500 accum |=
4c4b4cd2 2501 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2502 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2503 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2504 {
2505 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2506 accumSize -= HOST_CHAR_BIT;
2507 accum >>= HOST_CHAR_BIT;
2508 ntarg -= 1;
2509 targ += delta;
2510 }
14f9c5c9
AS
2511 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2512 unusedLS = 0;
2513 nsrc -= 1;
2514 src += delta;
2515 }
2516 while (ntarg > 0)
2517 {
2518 accum |= sign << accumSize;
2519 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2520 accumSize -= HOST_CHAR_BIT;
2521 accum >>= HOST_CHAR_BIT;
2522 ntarg -= 1;
2523 targ += delta;
2524 }
2525
2526 return v;
2527}
d2e4a39e 2528
14f9c5c9
AS
2529/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2530 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2531 not overlap. */
14f9c5c9 2532static void
fc1a4b47 2533move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2534 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2535{
2536 unsigned int accum, mask;
2537 int accum_bits, chunk_size;
2538
2539 target += targ_offset / HOST_CHAR_BIT;
2540 targ_offset %= HOST_CHAR_BIT;
2541 source += src_offset / HOST_CHAR_BIT;
2542 src_offset %= HOST_CHAR_BIT;
50810684 2543 if (bits_big_endian_p)
14f9c5c9
AS
2544 {
2545 accum = (unsigned char) *source;
2546 source += 1;
2547 accum_bits = HOST_CHAR_BIT - src_offset;
2548
d2e4a39e 2549 while (n > 0)
4c4b4cd2
PH
2550 {
2551 int unused_right;
5b4ee69b 2552
4c4b4cd2
PH
2553 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2554 accum_bits += HOST_CHAR_BIT;
2555 source += 1;
2556 chunk_size = HOST_CHAR_BIT - targ_offset;
2557 if (chunk_size > n)
2558 chunk_size = n;
2559 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2560 mask = ((1 << chunk_size) - 1) << unused_right;
2561 *target =
2562 (*target & ~mask)
2563 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2564 n -= chunk_size;
2565 accum_bits -= chunk_size;
2566 target += 1;
2567 targ_offset = 0;
2568 }
14f9c5c9
AS
2569 }
2570 else
2571 {
2572 accum = (unsigned char) *source >> src_offset;
2573 source += 1;
2574 accum_bits = HOST_CHAR_BIT - src_offset;
2575
d2e4a39e 2576 while (n > 0)
4c4b4cd2
PH
2577 {
2578 accum = accum + ((unsigned char) *source << accum_bits);
2579 accum_bits += HOST_CHAR_BIT;
2580 source += 1;
2581 chunk_size = HOST_CHAR_BIT - targ_offset;
2582 if (chunk_size > n)
2583 chunk_size = n;
2584 mask = ((1 << chunk_size) - 1) << targ_offset;
2585 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2586 n -= chunk_size;
2587 accum_bits -= chunk_size;
2588 accum >>= chunk_size;
2589 target += 1;
2590 targ_offset = 0;
2591 }
14f9c5c9
AS
2592 }
2593}
2594
14f9c5c9
AS
2595/* Store the contents of FROMVAL into the location of TOVAL.
2596 Return a new value with the location of TOVAL and contents of
2597 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2598 floating-point or non-scalar types. */
14f9c5c9 2599
d2e4a39e
AS
2600static struct value *
2601ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2602{
df407dfe
AC
2603 struct type *type = value_type (toval);
2604 int bits = value_bitsize (toval);
14f9c5c9 2605
52ce6436
PH
2606 toval = ada_coerce_ref (toval);
2607 fromval = ada_coerce_ref (fromval);
2608
2609 if (ada_is_direct_array_type (value_type (toval)))
2610 toval = ada_coerce_to_simple_array (toval);
2611 if (ada_is_direct_array_type (value_type (fromval)))
2612 fromval = ada_coerce_to_simple_array (fromval);
2613
88e3b34b 2614 if (!deprecated_value_modifiable (toval))
323e0a4a 2615 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2616
d2e4a39e 2617 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2618 && bits > 0
d2e4a39e 2619 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2620 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2621 {
df407dfe
AC
2622 int len = (value_bitpos (toval)
2623 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2624 int from_size;
948f8e3d 2625 gdb_byte *buffer = alloca (len);
d2e4a39e 2626 struct value *val;
42ae5230 2627 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2628
2629 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2630 fromval = value_cast (type, fromval);
14f9c5c9 2631
52ce6436 2632 read_memory (to_addr, buffer, len);
aced2898
PH
2633 from_size = value_bitsize (fromval);
2634 if (from_size == 0)
2635 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2636 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2637 move_bits (buffer, value_bitpos (toval),
50810684 2638 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2639 else
50810684
UW
2640 move_bits (buffer, value_bitpos (toval),
2641 value_contents (fromval), 0, bits, 0);
972daa01 2642 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2643
14f9c5c9 2644 val = value_copy (toval);
0fd88904 2645 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2646 TYPE_LENGTH (type));
04624583 2647 deprecated_set_value_type (val, type);
d2e4a39e 2648
14f9c5c9
AS
2649 return val;
2650 }
2651
2652 return value_assign (toval, fromval);
2653}
2654
2655
52ce6436
PH
2656/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2657 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2658 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2659 * COMPONENT, and not the inferior's memory. The current contents
2660 * of COMPONENT are ignored. */
2661static void
2662value_assign_to_component (struct value *container, struct value *component,
2663 struct value *val)
2664{
2665 LONGEST offset_in_container =
42ae5230 2666 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2667 int bit_offset_in_container =
2668 value_bitpos (component) - value_bitpos (container);
2669 int bits;
2670
2671 val = value_cast (value_type (component), val);
2672
2673 if (value_bitsize (component) == 0)
2674 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2675 else
2676 bits = value_bitsize (component);
2677
50810684 2678 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2679 move_bits (value_contents_writeable (container) + offset_in_container,
2680 value_bitpos (container) + bit_offset_in_container,
2681 value_contents (val),
2682 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2683 bits, 1);
52ce6436
PH
2684 else
2685 move_bits (value_contents_writeable (container) + offset_in_container,
2686 value_bitpos (container) + bit_offset_in_container,
50810684 2687 value_contents (val), 0, bits, 0);
52ce6436
PH
2688}
2689
4c4b4cd2
PH
2690/* The value of the element of array ARR at the ARITY indices given in IND.
2691 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2692 thereto. */
2693
d2e4a39e
AS
2694struct value *
2695ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2696{
2697 int k;
d2e4a39e
AS
2698 struct value *elt;
2699 struct type *elt_type;
14f9c5c9
AS
2700
2701 elt = ada_coerce_to_simple_array (arr);
2702
df407dfe 2703 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2704 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2705 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2706 return value_subscript_packed (elt, arity, ind);
2707
2708 for (k = 0; k < arity; k += 1)
2709 {
2710 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2711 error (_("too many subscripts (%d expected)"), k);
2497b498 2712 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2713 }
2714 return elt;
2715}
2716
deede10c
JB
2717/* Assuming ARR is a pointer to a GDB array, the value of the element
2718 of *ARR at the ARITY indices given in IND.
2719 Does not read the entire array into memory. */
14f9c5c9 2720
2c0b251b 2721static struct value *
deede10c 2722ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2723{
2724 int k;
deede10c
JB
2725 struct type *type
2726 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
14f9c5c9
AS
2727
2728 for (k = 0; k < arity; k += 1)
2729 {
2730 LONGEST lwb, upb;
14f9c5c9
AS
2731
2732 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2733 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2734 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2735 value_copy (arr));
14f9c5c9 2736 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2737 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2738 type = TYPE_TARGET_TYPE (type);
2739 }
2740
2741 return value_ind (arr);
2742}
2743
0b5d8877 2744/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2745 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2746 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2747 per Ada rules. */
0b5d8877 2748static struct value *
f5938064
JG
2749ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2750 int low, int high)
0b5d8877 2751{
b0dd7688 2752 struct type *type0 = ada_check_typedef (type);
6c038f32 2753 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2754 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2755 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
0c9c3474
SA
2756 struct type *index_type
2757 = create_static_range_type (NULL,
2758 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2759 low, high);
6c038f32 2760 struct type *slice_type =
b0dd7688 2761 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2762
f5938064 2763 return value_at_lazy (slice_type, base);
0b5d8877
PH
2764}
2765
2766
2767static struct value *
2768ada_value_slice (struct value *array, int low, int high)
2769{
b0dd7688 2770 struct type *type = ada_check_typedef (value_type (array));
0c9c3474
SA
2771 struct type *index_type
2772 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2773 struct type *slice_type =
0b5d8877 2774 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2775
6c038f32 2776 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2777}
2778
14f9c5c9
AS
2779/* If type is a record type in the form of a standard GNAT array
2780 descriptor, returns the number of dimensions for type. If arr is a
2781 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2782 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2783
2784int
d2e4a39e 2785ada_array_arity (struct type *type)
14f9c5c9
AS
2786{
2787 int arity;
2788
2789 if (type == NULL)
2790 return 0;
2791
2792 type = desc_base_type (type);
2793
2794 arity = 0;
d2e4a39e 2795 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2796 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2797 else
2798 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2799 {
4c4b4cd2 2800 arity += 1;
61ee279c 2801 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2802 }
d2e4a39e 2803
14f9c5c9
AS
2804 return arity;
2805}
2806
2807/* If TYPE is a record type in the form of a standard GNAT array
2808 descriptor or a simple array type, returns the element type for
2809 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2810 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2811
d2e4a39e
AS
2812struct type *
2813ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2814{
2815 type = desc_base_type (type);
2816
d2e4a39e 2817 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2818 {
2819 int k;
d2e4a39e 2820 struct type *p_array_type;
14f9c5c9 2821
556bdfd4 2822 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2823
2824 k = ada_array_arity (type);
2825 if (k == 0)
4c4b4cd2 2826 return NULL;
d2e4a39e 2827
4c4b4cd2 2828 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2829 if (nindices >= 0 && k > nindices)
4c4b4cd2 2830 k = nindices;
d2e4a39e 2831 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2832 {
61ee279c 2833 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2834 k -= 1;
2835 }
14f9c5c9
AS
2836 return p_array_type;
2837 }
2838 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2839 {
2840 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2841 {
2842 type = TYPE_TARGET_TYPE (type);
2843 nindices -= 1;
2844 }
14f9c5c9
AS
2845 return type;
2846 }
2847
2848 return NULL;
2849}
2850
4c4b4cd2 2851/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2852 Does not examine memory. Throws an error if N is invalid or TYPE
2853 is not an array type. NAME is the name of the Ada attribute being
2854 evaluated ('range, 'first, 'last, or 'length); it is used in building
2855 the error message. */
14f9c5c9 2856
1eea4ebd
UW
2857static struct type *
2858ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2859{
4c4b4cd2
PH
2860 struct type *result_type;
2861
14f9c5c9
AS
2862 type = desc_base_type (type);
2863
1eea4ebd
UW
2864 if (n < 0 || n > ada_array_arity (type))
2865 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2866
4c4b4cd2 2867 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2868 {
2869 int i;
2870
2871 for (i = 1; i < n; i += 1)
4c4b4cd2 2872 type = TYPE_TARGET_TYPE (type);
262452ec 2873 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2874 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2875 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2876 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2877 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2878 result_type = NULL;
14f9c5c9 2879 }
d2e4a39e 2880 else
1eea4ebd
UW
2881 {
2882 result_type = desc_index_type (desc_bounds_type (type), n);
2883 if (result_type == NULL)
2884 error (_("attempt to take bound of something that is not an array"));
2885 }
2886
2887 return result_type;
14f9c5c9
AS
2888}
2889
2890/* Given that arr is an array type, returns the lower bound of the
2891 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2892 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2893 array-descriptor type. It works for other arrays with bounds supplied
2894 by run-time quantities other than discriminants. */
14f9c5c9 2895
abb68b3e 2896static LONGEST
fb5e3d5c 2897ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2898{
8a48ac95 2899 struct type *type, *index_type_desc, *index_type;
1ce677a4 2900 int i;
262452ec
JK
2901
2902 gdb_assert (which == 0 || which == 1);
14f9c5c9 2903
ad82864c
JB
2904 if (ada_is_constrained_packed_array_type (arr_type))
2905 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2906
4c4b4cd2 2907 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2908 return (LONGEST) - which;
14f9c5c9
AS
2909
2910 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2911 type = TYPE_TARGET_TYPE (arr_type);
2912 else
2913 type = arr_type;
2914
2915 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2916 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2917 if (index_type_desc != NULL)
28c85d6c
JB
2918 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2919 NULL);
262452ec 2920 else
8a48ac95
JB
2921 {
2922 struct type *elt_type = check_typedef (type);
2923
2924 for (i = 1; i < n; i++)
2925 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2926
2927 index_type = TYPE_INDEX_TYPE (elt_type);
2928 }
262452ec 2929
43bbcdc2
PH
2930 return
2931 (LONGEST) (which == 0
2932 ? ada_discrete_type_low_bound (index_type)
2933 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2934}
2935
2936/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2937 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2938 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2939 supplied by run-time quantities other than discriminants. */
14f9c5c9 2940
1eea4ebd 2941static LONGEST
4dc81987 2942ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2943{
eb479039
JB
2944 struct type *arr_type;
2945
2946 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2947 arr = value_ind (arr);
2948 arr_type = value_enclosing_type (arr);
14f9c5c9 2949
ad82864c
JB
2950 if (ada_is_constrained_packed_array_type (arr_type))
2951 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2952 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2953 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2954 else
1eea4ebd 2955 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2956}
2957
2958/* Given that arr is an array value, returns the length of the
2959 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2960 supplied by run-time quantities other than discriminants.
2961 Does not work for arrays indexed by enumeration types with representation
2962 clauses at the moment. */
14f9c5c9 2963
1eea4ebd 2964static LONGEST
d2e4a39e 2965ada_array_length (struct value *arr, int n)
14f9c5c9 2966{
eb479039
JB
2967 struct type *arr_type;
2968
2969 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2970 arr = value_ind (arr);
2971 arr_type = value_enclosing_type (arr);
14f9c5c9 2972
ad82864c
JB
2973 if (ada_is_constrained_packed_array_type (arr_type))
2974 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2975
4c4b4cd2 2976 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2977 return (ada_array_bound_from_type (arr_type, n, 1)
2978 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2979 else
1eea4ebd
UW
2980 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2981 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2982}
2983
2984/* An empty array whose type is that of ARR_TYPE (an array type),
2985 with bounds LOW to LOW-1. */
2986
2987static struct value *
2988empty_array (struct type *arr_type, int low)
2989{
b0dd7688 2990 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
2991 struct type *index_type
2992 = create_static_range_type
2993 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 2994 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2995
0b5d8877 2996 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2997}
14f9c5c9 2998\f
d2e4a39e 2999
4c4b4cd2 3000 /* Name resolution */
14f9c5c9 3001
4c4b4cd2
PH
3002/* The "decoded" name for the user-definable Ada operator corresponding
3003 to OP. */
14f9c5c9 3004
d2e4a39e 3005static const char *
4c4b4cd2 3006ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3007{
3008 int i;
3009
4c4b4cd2 3010 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3011 {
3012 if (ada_opname_table[i].op == op)
4c4b4cd2 3013 return ada_opname_table[i].decoded;
14f9c5c9 3014 }
323e0a4a 3015 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3016}
3017
3018
4c4b4cd2
PH
3019/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3020 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3021 undefined namespace) and converts operators that are
3022 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3023 non-null, it provides a preferred result type [at the moment, only
3024 type void has any effect---causing procedures to be preferred over
3025 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3026 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3027
4c4b4cd2
PH
3028static void
3029resolve (struct expression **expp, int void_context_p)
14f9c5c9 3030{
30b15541
UW
3031 struct type *context_type = NULL;
3032 int pc = 0;
3033
3034 if (void_context_p)
3035 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3036
3037 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3038}
3039
4c4b4cd2
PH
3040/* Resolve the operator of the subexpression beginning at
3041 position *POS of *EXPP. "Resolving" consists of replacing
3042 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3043 with their resolutions, replacing built-in operators with
3044 function calls to user-defined operators, where appropriate, and,
3045 when DEPROCEDURE_P is non-zero, converting function-valued variables
3046 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3047 are as in ada_resolve, above. */
14f9c5c9 3048
d2e4a39e 3049static struct value *
4c4b4cd2 3050resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3051 struct type *context_type)
14f9c5c9
AS
3052{
3053 int pc = *pos;
3054 int i;
4c4b4cd2 3055 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3056 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3057 struct value **argvec; /* Vector of operand types (alloca'ed). */
3058 int nargs; /* Number of operands. */
52ce6436 3059 int oplen;
14f9c5c9
AS
3060
3061 argvec = NULL;
3062 nargs = 0;
3063 exp = *expp;
3064
52ce6436
PH
3065 /* Pass one: resolve operands, saving their types and updating *pos,
3066 if needed. */
14f9c5c9
AS
3067 switch (op)
3068 {
4c4b4cd2
PH
3069 case OP_FUNCALL:
3070 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3071 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3072 *pos += 7;
4c4b4cd2
PH
3073 else
3074 {
3075 *pos += 3;
3076 resolve_subexp (expp, pos, 0, NULL);
3077 }
3078 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3079 break;
3080
14f9c5c9 3081 case UNOP_ADDR:
4c4b4cd2
PH
3082 *pos += 1;
3083 resolve_subexp (expp, pos, 0, NULL);
3084 break;
3085
52ce6436
PH
3086 case UNOP_QUAL:
3087 *pos += 3;
17466c1a 3088 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3089 break;
3090
52ce6436 3091 case OP_ATR_MODULUS:
4c4b4cd2
PH
3092 case OP_ATR_SIZE:
3093 case OP_ATR_TAG:
4c4b4cd2
PH
3094 case OP_ATR_FIRST:
3095 case OP_ATR_LAST:
3096 case OP_ATR_LENGTH:
3097 case OP_ATR_POS:
3098 case OP_ATR_VAL:
4c4b4cd2
PH
3099 case OP_ATR_MIN:
3100 case OP_ATR_MAX:
52ce6436
PH
3101 case TERNOP_IN_RANGE:
3102 case BINOP_IN_BOUNDS:
3103 case UNOP_IN_RANGE:
3104 case OP_AGGREGATE:
3105 case OP_OTHERS:
3106 case OP_CHOICES:
3107 case OP_POSITIONAL:
3108 case OP_DISCRETE_RANGE:
3109 case OP_NAME:
3110 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3111 *pos += oplen;
14f9c5c9
AS
3112 break;
3113
3114 case BINOP_ASSIGN:
3115 {
4c4b4cd2
PH
3116 struct value *arg1;
3117
3118 *pos += 1;
3119 arg1 = resolve_subexp (expp, pos, 0, NULL);
3120 if (arg1 == NULL)
3121 resolve_subexp (expp, pos, 1, NULL);
3122 else
df407dfe 3123 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3124 break;
14f9c5c9
AS
3125 }
3126
4c4b4cd2 3127 case UNOP_CAST:
4c4b4cd2
PH
3128 *pos += 3;
3129 nargs = 1;
3130 break;
14f9c5c9 3131
4c4b4cd2
PH
3132 case BINOP_ADD:
3133 case BINOP_SUB:
3134 case BINOP_MUL:
3135 case BINOP_DIV:
3136 case BINOP_REM:
3137 case BINOP_MOD:
3138 case BINOP_EXP:
3139 case BINOP_CONCAT:
3140 case BINOP_LOGICAL_AND:
3141 case BINOP_LOGICAL_OR:
3142 case BINOP_BITWISE_AND:
3143 case BINOP_BITWISE_IOR:
3144 case BINOP_BITWISE_XOR:
14f9c5c9 3145
4c4b4cd2
PH
3146 case BINOP_EQUAL:
3147 case BINOP_NOTEQUAL:
3148 case BINOP_LESS:
3149 case BINOP_GTR:
3150 case BINOP_LEQ:
3151 case BINOP_GEQ:
14f9c5c9 3152
4c4b4cd2
PH
3153 case BINOP_REPEAT:
3154 case BINOP_SUBSCRIPT:
3155 case BINOP_COMMA:
40c8aaa9
JB
3156 *pos += 1;
3157 nargs = 2;
3158 break;
14f9c5c9 3159
4c4b4cd2
PH
3160 case UNOP_NEG:
3161 case UNOP_PLUS:
3162 case UNOP_LOGICAL_NOT:
3163 case UNOP_ABS:
3164 case UNOP_IND:
3165 *pos += 1;
3166 nargs = 1;
3167 break;
14f9c5c9 3168
4c4b4cd2
PH
3169 case OP_LONG:
3170 case OP_DOUBLE:
3171 case OP_VAR_VALUE:
3172 *pos += 4;
3173 break;
14f9c5c9 3174
4c4b4cd2
PH
3175 case OP_TYPE:
3176 case OP_BOOL:
3177 case OP_LAST:
4c4b4cd2
PH
3178 case OP_INTERNALVAR:
3179 *pos += 3;
3180 break;
14f9c5c9 3181
4c4b4cd2
PH
3182 case UNOP_MEMVAL:
3183 *pos += 3;
3184 nargs = 1;
3185 break;
3186
67f3407f
DJ
3187 case OP_REGISTER:
3188 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3189 break;
3190
4c4b4cd2
PH
3191 case STRUCTOP_STRUCT:
3192 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3193 nargs = 1;
3194 break;
3195
4c4b4cd2 3196 case TERNOP_SLICE:
4c4b4cd2
PH
3197 *pos += 1;
3198 nargs = 3;
3199 break;
3200
52ce6436 3201 case OP_STRING:
14f9c5c9 3202 break;
4c4b4cd2
PH
3203
3204 default:
323e0a4a 3205 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3206 }
3207
76a01679 3208 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3209 for (i = 0; i < nargs; i += 1)
3210 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3211 argvec[i] = NULL;
3212 exp = *expp;
3213
3214 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3215 switch (op)
3216 {
3217 default:
3218 break;
3219
14f9c5c9 3220 case OP_VAR_VALUE:
4c4b4cd2 3221 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3222 {
3223 struct ada_symbol_info *candidates;
3224 int n_candidates;
3225
3226 n_candidates =
3227 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3228 (exp->elts[pc + 2].symbol),
3229 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3230 &candidates);
76a01679
JB
3231
3232 if (n_candidates > 1)
3233 {
3234 /* Types tend to get re-introduced locally, so if there
3235 are any local symbols that are not types, first filter
3236 out all types. */
3237 int j;
3238 for (j = 0; j < n_candidates; j += 1)
3239 switch (SYMBOL_CLASS (candidates[j].sym))
3240 {
3241 case LOC_REGISTER:
3242 case LOC_ARG:
3243 case LOC_REF_ARG:
76a01679
JB
3244 case LOC_REGPARM_ADDR:
3245 case LOC_LOCAL:
76a01679 3246 case LOC_COMPUTED:
76a01679
JB
3247 goto FoundNonType;
3248 default:
3249 break;
3250 }
3251 FoundNonType:
3252 if (j < n_candidates)
3253 {
3254 j = 0;
3255 while (j < n_candidates)
3256 {
3257 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3258 {
3259 candidates[j] = candidates[n_candidates - 1];
3260 n_candidates -= 1;
3261 }
3262 else
3263 j += 1;
3264 }
3265 }
3266 }
3267
3268 if (n_candidates == 0)
323e0a4a 3269 error (_("No definition found for %s"),
76a01679
JB
3270 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3271 else if (n_candidates == 1)
3272 i = 0;
3273 else if (deprocedure_p
3274 && !is_nonfunction (candidates, n_candidates))
3275 {
06d5cf63
JB
3276 i = ada_resolve_function
3277 (candidates, n_candidates, NULL, 0,
3278 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3279 context_type);
76a01679 3280 if (i < 0)
323e0a4a 3281 error (_("Could not find a match for %s"),
76a01679
JB
3282 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3283 }
3284 else
3285 {
323e0a4a 3286 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3287 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3288 user_select_syms (candidates, n_candidates, 1);
3289 i = 0;
3290 }
3291
3292 exp->elts[pc + 1].block = candidates[i].block;
3293 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3294 if (innermost_block == NULL
3295 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3296 innermost_block = candidates[i].block;
3297 }
3298
3299 if (deprocedure_p
3300 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3301 == TYPE_CODE_FUNC))
3302 {
3303 replace_operator_with_call (expp, pc, 0, 0,
3304 exp->elts[pc + 2].symbol,
3305 exp->elts[pc + 1].block);
3306 exp = *expp;
3307 }
14f9c5c9
AS
3308 break;
3309
3310 case OP_FUNCALL:
3311 {
4c4b4cd2 3312 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3313 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3314 {
3315 struct ada_symbol_info *candidates;
3316 int n_candidates;
3317
3318 n_candidates =
76a01679
JB
3319 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3320 (exp->elts[pc + 5].symbol),
3321 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3322 &candidates);
4c4b4cd2
PH
3323 if (n_candidates == 1)
3324 i = 0;
3325 else
3326 {
06d5cf63
JB
3327 i = ada_resolve_function
3328 (candidates, n_candidates,
3329 argvec, nargs,
3330 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3331 context_type);
4c4b4cd2 3332 if (i < 0)
323e0a4a 3333 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3334 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3335 }
3336
3337 exp->elts[pc + 4].block = candidates[i].block;
3338 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3339 if (innermost_block == NULL
3340 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3341 innermost_block = candidates[i].block;
3342 }
14f9c5c9
AS
3343 }
3344 break;
3345 case BINOP_ADD:
3346 case BINOP_SUB:
3347 case BINOP_MUL:
3348 case BINOP_DIV:
3349 case BINOP_REM:
3350 case BINOP_MOD:
3351 case BINOP_CONCAT:
3352 case BINOP_BITWISE_AND:
3353 case BINOP_BITWISE_IOR:
3354 case BINOP_BITWISE_XOR:
3355 case BINOP_EQUAL:
3356 case BINOP_NOTEQUAL:
3357 case BINOP_LESS:
3358 case BINOP_GTR:
3359 case BINOP_LEQ:
3360 case BINOP_GEQ:
3361 case BINOP_EXP:
3362 case UNOP_NEG:
3363 case UNOP_PLUS:
3364 case UNOP_LOGICAL_NOT:
3365 case UNOP_ABS:
3366 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3367 {
3368 struct ada_symbol_info *candidates;
3369 int n_candidates;
3370
3371 n_candidates =
3372 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3373 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3374 &candidates);
4c4b4cd2 3375 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3376 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3377 if (i < 0)
3378 break;
3379
76a01679
JB
3380 replace_operator_with_call (expp, pc, nargs, 1,
3381 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3382 exp = *expp;
3383 }
14f9c5c9 3384 break;
4c4b4cd2
PH
3385
3386 case OP_TYPE:
b3dbf008 3387 case OP_REGISTER:
4c4b4cd2 3388 return NULL;
14f9c5c9
AS
3389 }
3390
3391 *pos = pc;
3392 return evaluate_subexp_type (exp, pos);
3393}
3394
3395/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3396 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3397 a non-pointer. */
14f9c5c9 3398/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3399 liberal. */
14f9c5c9
AS
3400
3401static int
4dc81987 3402ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3403{
61ee279c
PH
3404 ftype = ada_check_typedef (ftype);
3405 atype = ada_check_typedef (atype);
14f9c5c9
AS
3406
3407 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3408 ftype = TYPE_TARGET_TYPE (ftype);
3409 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3410 atype = TYPE_TARGET_TYPE (atype);
3411
d2e4a39e 3412 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3413 {
3414 default:
5b3d5b7d 3415 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3416 case TYPE_CODE_PTR:
3417 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3418 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3419 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3420 else
1265e4aa
JB
3421 return (may_deref
3422 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3423 case TYPE_CODE_INT:
3424 case TYPE_CODE_ENUM:
3425 case TYPE_CODE_RANGE:
3426 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3427 {
3428 case TYPE_CODE_INT:
3429 case TYPE_CODE_ENUM:
3430 case TYPE_CODE_RANGE:
3431 return 1;
3432 default:
3433 return 0;
3434 }
14f9c5c9
AS
3435
3436 case TYPE_CODE_ARRAY:
d2e4a39e 3437 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3438 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3439
3440 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3441 if (ada_is_array_descriptor_type (ftype))
3442 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3443 || ada_is_array_descriptor_type (atype));
14f9c5c9 3444 else
4c4b4cd2
PH
3445 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3446 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3447
3448 case TYPE_CODE_UNION:
3449 case TYPE_CODE_FLT:
3450 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3451 }
3452}
3453
3454/* Return non-zero if the formals of FUNC "sufficiently match" the
3455 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3456 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3457 argument function. */
14f9c5c9
AS
3458
3459static int
d2e4a39e 3460ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3461{
3462 int i;
d2e4a39e 3463 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3464
1265e4aa
JB
3465 if (SYMBOL_CLASS (func) == LOC_CONST
3466 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3467 return (n_actuals == 0);
3468 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3469 return 0;
3470
3471 if (TYPE_NFIELDS (func_type) != n_actuals)
3472 return 0;
3473
3474 for (i = 0; i < n_actuals; i += 1)
3475 {
4c4b4cd2 3476 if (actuals[i] == NULL)
76a01679
JB
3477 return 0;
3478 else
3479 {
5b4ee69b
MS
3480 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3481 i));
df407dfe 3482 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3483
76a01679
JB
3484 if (!ada_type_match (ftype, atype, 1))
3485 return 0;
3486 }
14f9c5c9
AS
3487 }
3488 return 1;
3489}
3490
3491/* False iff function type FUNC_TYPE definitely does not produce a value
3492 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3493 FUNC_TYPE is not a valid function type with a non-null return type
3494 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3495
3496static int
d2e4a39e 3497return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3498{
d2e4a39e 3499 struct type *return_type;
14f9c5c9
AS
3500
3501 if (func_type == NULL)
3502 return 1;
3503
4c4b4cd2 3504 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3505 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3506 else
18af8284 3507 return_type = get_base_type (func_type);
14f9c5c9
AS
3508 if (return_type == NULL)
3509 return 1;
3510
18af8284 3511 context_type = get_base_type (context_type);
14f9c5c9
AS
3512
3513 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3514 return context_type == NULL || return_type == context_type;
3515 else if (context_type == NULL)
3516 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3517 else
3518 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3519}
3520
3521
4c4b4cd2 3522/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3523 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3524 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3525 that returns that type, then eliminate matches that don't. If
3526 CONTEXT_TYPE is void and there is at least one match that does not
3527 return void, eliminate all matches that do.
3528
14f9c5c9
AS
3529 Asks the user if there is more than one match remaining. Returns -1
3530 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3531 solely for messages. May re-arrange and modify SYMS in
3532 the process; the index returned is for the modified vector. */
14f9c5c9 3533
4c4b4cd2
PH
3534static int
3535ada_resolve_function (struct ada_symbol_info syms[],
3536 int nsyms, struct value **args, int nargs,
3537 const char *name, struct type *context_type)
14f9c5c9 3538{
30b15541 3539 int fallback;
14f9c5c9 3540 int k;
4c4b4cd2 3541 int m; /* Number of hits */
14f9c5c9 3542
d2e4a39e 3543 m = 0;
30b15541
UW
3544 /* In the first pass of the loop, we only accept functions matching
3545 context_type. If none are found, we add a second pass of the loop
3546 where every function is accepted. */
3547 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3548 {
3549 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3550 {
61ee279c 3551 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3552
3553 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3554 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3555 {
3556 syms[m] = syms[k];
3557 m += 1;
3558 }
3559 }
14f9c5c9
AS
3560 }
3561
3562 if (m == 0)
3563 return -1;
3564 else if (m > 1)
3565 {
323e0a4a 3566 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3567 user_select_syms (syms, m, 1);
14f9c5c9
AS
3568 return 0;
3569 }
3570 return 0;
3571}
3572
4c4b4cd2
PH
3573/* Returns true (non-zero) iff decoded name N0 should appear before N1
3574 in a listing of choices during disambiguation (see sort_choices, below).
3575 The idea is that overloadings of a subprogram name from the
3576 same package should sort in their source order. We settle for ordering
3577 such symbols by their trailing number (__N or $N). */
3578
14f9c5c9 3579static int
0d5cff50 3580encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3581{
3582 if (N1 == NULL)
3583 return 0;
3584 else if (N0 == NULL)
3585 return 1;
3586 else
3587 {
3588 int k0, k1;
5b4ee69b 3589
d2e4a39e 3590 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3591 ;
d2e4a39e 3592 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3593 ;
d2e4a39e 3594 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3595 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3596 {
3597 int n0, n1;
5b4ee69b 3598
4c4b4cd2
PH
3599 n0 = k0;
3600 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3601 n0 -= 1;
3602 n1 = k1;
3603 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3604 n1 -= 1;
3605 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3606 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3607 }
14f9c5c9
AS
3608 return (strcmp (N0, N1) < 0);
3609 }
3610}
d2e4a39e 3611
4c4b4cd2
PH
3612/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3613 encoded names. */
3614
d2e4a39e 3615static void
4c4b4cd2 3616sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3617{
4c4b4cd2 3618 int i;
5b4ee69b 3619
d2e4a39e 3620 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3621 {
4c4b4cd2 3622 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3623 int j;
3624
d2e4a39e 3625 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3626 {
3627 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3628 SYMBOL_LINKAGE_NAME (sym.sym)))
3629 break;
3630 syms[j + 1] = syms[j];
3631 }
d2e4a39e 3632 syms[j + 1] = sym;
14f9c5c9
AS
3633 }
3634}
3635
4c4b4cd2
PH
3636/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3637 by asking the user (if necessary), returning the number selected,
3638 and setting the first elements of SYMS items. Error if no symbols
3639 selected. */
14f9c5c9
AS
3640
3641/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3642 to be re-integrated one of these days. */
14f9c5c9
AS
3643
3644int
4c4b4cd2 3645user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3646{
3647 int i;
d2e4a39e 3648 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3649 int n_chosen;
3650 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3651 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3652
3653 if (max_results < 1)
323e0a4a 3654 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3655 if (nsyms <= 1)
3656 return nsyms;
3657
717d2f5a
JB
3658 if (select_mode == multiple_symbols_cancel)
3659 error (_("\
3660canceled because the command is ambiguous\n\
3661See set/show multiple-symbol."));
3662
3663 /* If select_mode is "all", then return all possible symbols.
3664 Only do that if more than one symbol can be selected, of course.
3665 Otherwise, display the menu as usual. */
3666 if (select_mode == multiple_symbols_all && max_results > 1)
3667 return nsyms;
3668
323e0a4a 3669 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3670 if (max_results > 1)
323e0a4a 3671 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3672
4c4b4cd2 3673 sort_choices (syms, nsyms);
14f9c5c9
AS
3674
3675 for (i = 0; i < nsyms; i += 1)
3676 {
4c4b4cd2
PH
3677 if (syms[i].sym == NULL)
3678 continue;
3679
3680 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3681 {
76a01679
JB
3682 struct symtab_and_line sal =
3683 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3684
323e0a4a
AC
3685 if (sal.symtab == NULL)
3686 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3687 i + first_choice,
3688 SYMBOL_PRINT_NAME (syms[i].sym),
3689 sal.line);
3690 else
3691 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3692 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3693 symtab_to_filename_for_display (sal.symtab),
3694 sal.line);
4c4b4cd2
PH
3695 continue;
3696 }
d2e4a39e 3697 else
4c4b4cd2
PH
3698 {
3699 int is_enumeral =
3700 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3701 && SYMBOL_TYPE (syms[i].sym) != NULL
3702 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3703 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3704
3705 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3706 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3707 i + first_choice,
3708 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3709 symtab_to_filename_for_display (symtab),
3710 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3711 else if (is_enumeral
3712 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3713 {
a3f17187 3714 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3715 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3716 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3717 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3718 SYMBOL_PRINT_NAME (syms[i].sym));
3719 }
3720 else if (symtab != NULL)
3721 printf_unfiltered (is_enumeral
323e0a4a
AC
3722 ? _("[%d] %s in %s (enumeral)\n")
3723 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3724 i + first_choice,
3725 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3726 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3727 else
3728 printf_unfiltered (is_enumeral
323e0a4a
AC
3729 ? _("[%d] %s (enumeral)\n")
3730 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3731 i + first_choice,
3732 SYMBOL_PRINT_NAME (syms[i].sym));
3733 }
14f9c5c9 3734 }
d2e4a39e 3735
14f9c5c9 3736 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3737 "overload-choice");
14f9c5c9
AS
3738
3739 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3740 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3741
3742 return n_chosen;
3743}
3744
3745/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3746 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3747 order in CHOICES[0 .. N-1], and return N.
3748
3749 The user types choices as a sequence of numbers on one line
3750 separated by blanks, encoding them as follows:
3751
4c4b4cd2 3752 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3753 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3754 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3755
4c4b4cd2 3756 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3757
3758 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3759 prompts (for use with the -f switch). */
14f9c5c9
AS
3760
3761int
d2e4a39e 3762get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3763 int is_all_choice, char *annotation_suffix)
14f9c5c9 3764{
d2e4a39e 3765 char *args;
0bcd0149 3766 char *prompt;
14f9c5c9
AS
3767 int n_chosen;
3768 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3769
14f9c5c9
AS
3770 prompt = getenv ("PS2");
3771 if (prompt == NULL)
0bcd0149 3772 prompt = "> ";
14f9c5c9 3773
0bcd0149 3774 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3775
14f9c5c9 3776 if (args == NULL)
323e0a4a 3777 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3778
3779 n_chosen = 0;
76a01679 3780
4c4b4cd2
PH
3781 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3782 order, as given in args. Choices are validated. */
14f9c5c9
AS
3783 while (1)
3784 {
d2e4a39e 3785 char *args2;
14f9c5c9
AS
3786 int choice, j;
3787
0fcd72ba 3788 args = skip_spaces (args);
14f9c5c9 3789 if (*args == '\0' && n_chosen == 0)
323e0a4a 3790 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3791 else if (*args == '\0')
4c4b4cd2 3792 break;
14f9c5c9
AS
3793
3794 choice = strtol (args, &args2, 10);
d2e4a39e 3795 if (args == args2 || choice < 0
4c4b4cd2 3796 || choice > n_choices + first_choice - 1)
323e0a4a 3797 error (_("Argument must be choice number"));
14f9c5c9
AS
3798 args = args2;
3799
d2e4a39e 3800 if (choice == 0)
323e0a4a 3801 error (_("cancelled"));
14f9c5c9
AS
3802
3803 if (choice < first_choice)
4c4b4cd2
PH
3804 {
3805 n_chosen = n_choices;
3806 for (j = 0; j < n_choices; j += 1)
3807 choices[j] = j;
3808 break;
3809 }
14f9c5c9
AS
3810 choice -= first_choice;
3811
d2e4a39e 3812 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3813 {
3814 }
14f9c5c9
AS
3815
3816 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3817 {
3818 int k;
5b4ee69b 3819
4c4b4cd2
PH
3820 for (k = n_chosen - 1; k > j; k -= 1)
3821 choices[k + 1] = choices[k];
3822 choices[j + 1] = choice;
3823 n_chosen += 1;
3824 }
14f9c5c9
AS
3825 }
3826
3827 if (n_chosen > max_results)
323e0a4a 3828 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3829
14f9c5c9
AS
3830 return n_chosen;
3831}
3832
4c4b4cd2
PH
3833/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3834 on the function identified by SYM and BLOCK, and taking NARGS
3835 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3836
3837static void
d2e4a39e 3838replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3839 int oplen, struct symbol *sym,
270140bd 3840 const struct block *block)
14f9c5c9
AS
3841{
3842 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3843 symbol, -oplen for operator being replaced). */
d2e4a39e 3844 struct expression *newexp = (struct expression *)
8c1a34e7 3845 xzalloc (sizeof (struct expression)
4c4b4cd2 3846 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3847 struct expression *exp = *expp;
14f9c5c9
AS
3848
3849 newexp->nelts = exp->nelts + 7 - oplen;
3850 newexp->language_defn = exp->language_defn;
3489610d 3851 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3852 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3853 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3854 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3855
3856 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3857 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3858
3859 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3860 newexp->elts[pc + 4].block = block;
3861 newexp->elts[pc + 5].symbol = sym;
3862
3863 *expp = newexp;
aacb1f0a 3864 xfree (exp);
d2e4a39e 3865}
14f9c5c9
AS
3866
3867/* Type-class predicates */
3868
4c4b4cd2
PH
3869/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3870 or FLOAT). */
14f9c5c9
AS
3871
3872static int
d2e4a39e 3873numeric_type_p (struct type *type)
14f9c5c9
AS
3874{
3875 if (type == NULL)
3876 return 0;
d2e4a39e
AS
3877 else
3878 {
3879 switch (TYPE_CODE (type))
4c4b4cd2
PH
3880 {
3881 case TYPE_CODE_INT:
3882 case TYPE_CODE_FLT:
3883 return 1;
3884 case TYPE_CODE_RANGE:
3885 return (type == TYPE_TARGET_TYPE (type)
3886 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3887 default:
3888 return 0;
3889 }
d2e4a39e 3890 }
14f9c5c9
AS
3891}
3892
4c4b4cd2 3893/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3894
3895static int
d2e4a39e 3896integer_type_p (struct type *type)
14f9c5c9
AS
3897{
3898 if (type == NULL)
3899 return 0;
d2e4a39e
AS
3900 else
3901 {
3902 switch (TYPE_CODE (type))
4c4b4cd2
PH
3903 {
3904 case TYPE_CODE_INT:
3905 return 1;
3906 case TYPE_CODE_RANGE:
3907 return (type == TYPE_TARGET_TYPE (type)
3908 || integer_type_p (TYPE_TARGET_TYPE (type)));
3909 default:
3910 return 0;
3911 }
d2e4a39e 3912 }
14f9c5c9
AS
3913}
3914
4c4b4cd2 3915/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3916
3917static int
d2e4a39e 3918scalar_type_p (struct type *type)
14f9c5c9
AS
3919{
3920 if (type == NULL)
3921 return 0;
d2e4a39e
AS
3922 else
3923 {
3924 switch (TYPE_CODE (type))
4c4b4cd2
PH
3925 {
3926 case TYPE_CODE_INT:
3927 case TYPE_CODE_RANGE:
3928 case TYPE_CODE_ENUM:
3929 case TYPE_CODE_FLT:
3930 return 1;
3931 default:
3932 return 0;
3933 }
d2e4a39e 3934 }
14f9c5c9
AS
3935}
3936
4c4b4cd2 3937/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3938
3939static int
d2e4a39e 3940discrete_type_p (struct type *type)
14f9c5c9
AS
3941{
3942 if (type == NULL)
3943 return 0;
d2e4a39e
AS
3944 else
3945 {
3946 switch (TYPE_CODE (type))
4c4b4cd2
PH
3947 {
3948 case TYPE_CODE_INT:
3949 case TYPE_CODE_RANGE:
3950 case TYPE_CODE_ENUM:
872f0337 3951 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3952 return 1;
3953 default:
3954 return 0;
3955 }
d2e4a39e 3956 }
14f9c5c9
AS
3957}
3958
4c4b4cd2
PH
3959/* Returns non-zero if OP with operands in the vector ARGS could be
3960 a user-defined function. Errs on the side of pre-defined operators
3961 (i.e., result 0). */
14f9c5c9
AS
3962
3963static int
d2e4a39e 3964possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3965{
76a01679 3966 struct type *type0 =
df407dfe 3967 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3968 struct type *type1 =
df407dfe 3969 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3970
4c4b4cd2
PH
3971 if (type0 == NULL)
3972 return 0;
3973
14f9c5c9
AS
3974 switch (op)
3975 {
3976 default:
3977 return 0;
3978
3979 case BINOP_ADD:
3980 case BINOP_SUB:
3981 case BINOP_MUL:
3982 case BINOP_DIV:
d2e4a39e 3983 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3984
3985 case BINOP_REM:
3986 case BINOP_MOD:
3987 case BINOP_BITWISE_AND:
3988 case BINOP_BITWISE_IOR:
3989 case BINOP_BITWISE_XOR:
d2e4a39e 3990 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3991
3992 case BINOP_EQUAL:
3993 case BINOP_NOTEQUAL:
3994 case BINOP_LESS:
3995 case BINOP_GTR:
3996 case BINOP_LEQ:
3997 case BINOP_GEQ:
d2e4a39e 3998 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3999
4000 case BINOP_CONCAT:
ee90b9ab 4001 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4002
4003 case BINOP_EXP:
d2e4a39e 4004 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4005
4006 case UNOP_NEG:
4007 case UNOP_PLUS:
4008 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4009 case UNOP_ABS:
4010 return (!numeric_type_p (type0));
14f9c5c9
AS
4011
4012 }
4013}
4014\f
4c4b4cd2 4015 /* Renaming */
14f9c5c9 4016
aeb5907d
JB
4017/* NOTES:
4018
4019 1. In the following, we assume that a renaming type's name may
4020 have an ___XD suffix. It would be nice if this went away at some
4021 point.
4022 2. We handle both the (old) purely type-based representation of
4023 renamings and the (new) variable-based encoding. At some point,
4024 it is devoutly to be hoped that the former goes away
4025 (FIXME: hilfinger-2007-07-09).
4026 3. Subprogram renamings are not implemented, although the XRS
4027 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4028
4029/* If SYM encodes a renaming,
4030
4031 <renaming> renames <renamed entity>,
4032
4033 sets *LEN to the length of the renamed entity's name,
4034 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4035 the string describing the subcomponent selected from the renamed
0963b4bd 4036 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4037 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4038 are undefined). Otherwise, returns a value indicating the category
4039 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4040 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4041 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4042 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4043 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4044 may be NULL, in which case they are not assigned.
4045
4046 [Currently, however, GCC does not generate subprogram renamings.] */
4047
4048enum ada_renaming_category
4049ada_parse_renaming (struct symbol *sym,
4050 const char **renamed_entity, int *len,
4051 const char **renaming_expr)
4052{
4053 enum ada_renaming_category kind;
4054 const char *info;
4055 const char *suffix;
4056
4057 if (sym == NULL)
4058 return ADA_NOT_RENAMING;
4059 switch (SYMBOL_CLASS (sym))
14f9c5c9 4060 {
aeb5907d
JB
4061 default:
4062 return ADA_NOT_RENAMING;
4063 case LOC_TYPEDEF:
4064 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4065 renamed_entity, len, renaming_expr);
4066 case LOC_LOCAL:
4067 case LOC_STATIC:
4068 case LOC_COMPUTED:
4069 case LOC_OPTIMIZED_OUT:
4070 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4071 if (info == NULL)
4072 return ADA_NOT_RENAMING;
4073 switch (info[5])
4074 {
4075 case '_':
4076 kind = ADA_OBJECT_RENAMING;
4077 info += 6;
4078 break;
4079 case 'E':
4080 kind = ADA_EXCEPTION_RENAMING;
4081 info += 7;
4082 break;
4083 case 'P':
4084 kind = ADA_PACKAGE_RENAMING;
4085 info += 7;
4086 break;
4087 case 'S':
4088 kind = ADA_SUBPROGRAM_RENAMING;
4089 info += 7;
4090 break;
4091 default:
4092 return ADA_NOT_RENAMING;
4093 }
14f9c5c9 4094 }
4c4b4cd2 4095
aeb5907d
JB
4096 if (renamed_entity != NULL)
4097 *renamed_entity = info;
4098 suffix = strstr (info, "___XE");
4099 if (suffix == NULL || suffix == info)
4100 return ADA_NOT_RENAMING;
4101 if (len != NULL)
4102 *len = strlen (info) - strlen (suffix);
4103 suffix += 5;
4104 if (renaming_expr != NULL)
4105 *renaming_expr = suffix;
4106 return kind;
4107}
4108
4109/* Assuming TYPE encodes a renaming according to the old encoding in
4110 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4111 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4112 ADA_NOT_RENAMING otherwise. */
4113static enum ada_renaming_category
4114parse_old_style_renaming (struct type *type,
4115 const char **renamed_entity, int *len,
4116 const char **renaming_expr)
4117{
4118 enum ada_renaming_category kind;
4119 const char *name;
4120 const char *info;
4121 const char *suffix;
14f9c5c9 4122
aeb5907d
JB
4123 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4124 || TYPE_NFIELDS (type) != 1)
4125 return ADA_NOT_RENAMING;
14f9c5c9 4126
aeb5907d
JB
4127 name = type_name_no_tag (type);
4128 if (name == NULL)
4129 return ADA_NOT_RENAMING;
4130
4131 name = strstr (name, "___XR");
4132 if (name == NULL)
4133 return ADA_NOT_RENAMING;
4134 switch (name[5])
4135 {
4136 case '\0':
4137 case '_':
4138 kind = ADA_OBJECT_RENAMING;
4139 break;
4140 case 'E':
4141 kind = ADA_EXCEPTION_RENAMING;
4142 break;
4143 case 'P':
4144 kind = ADA_PACKAGE_RENAMING;
4145 break;
4146 case 'S':
4147 kind = ADA_SUBPROGRAM_RENAMING;
4148 break;
4149 default:
4150 return ADA_NOT_RENAMING;
4151 }
14f9c5c9 4152
aeb5907d
JB
4153 info = TYPE_FIELD_NAME (type, 0);
4154 if (info == NULL)
4155 return ADA_NOT_RENAMING;
4156 if (renamed_entity != NULL)
4157 *renamed_entity = info;
4158 suffix = strstr (info, "___XE");
4159 if (renaming_expr != NULL)
4160 *renaming_expr = suffix + 5;
4161 if (suffix == NULL || suffix == info)
4162 return ADA_NOT_RENAMING;
4163 if (len != NULL)
4164 *len = suffix - info;
4165 return kind;
a5ee536b
JB
4166}
4167
4168/* Compute the value of the given RENAMING_SYM, which is expected to
4169 be a symbol encoding a renaming expression. BLOCK is the block
4170 used to evaluate the renaming. */
52ce6436 4171
a5ee536b
JB
4172static struct value *
4173ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4174 const struct block *block)
a5ee536b 4175{
bbc13ae3 4176 const char *sym_name;
a5ee536b
JB
4177 struct expression *expr;
4178 struct value *value;
4179 struct cleanup *old_chain = NULL;
4180
bbc13ae3 4181 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4182 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4183 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4184 value = evaluate_expression (expr);
4185
4186 do_cleanups (old_chain);
4187 return value;
4188}
14f9c5c9 4189\f
d2e4a39e 4190
4c4b4cd2 4191 /* Evaluation: Function Calls */
14f9c5c9 4192
4c4b4cd2 4193/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4194 lvalues, and otherwise has the side-effect of allocating memory
4195 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4196
d2e4a39e 4197static struct value *
40bc484c 4198ensure_lval (struct value *val)
14f9c5c9 4199{
40bc484c
JB
4200 if (VALUE_LVAL (val) == not_lval
4201 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4202 {
df407dfe 4203 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4204 const CORE_ADDR addr =
4205 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4206
40bc484c 4207 set_value_address (val, addr);
a84a8a0d 4208 VALUE_LVAL (val) = lval_memory;
40bc484c 4209 write_memory (addr, value_contents (val), len);
c3e5cd34 4210 }
14f9c5c9
AS
4211
4212 return val;
4213}
4214
4215/* Return the value ACTUAL, converted to be an appropriate value for a
4216 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4217 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4218 values not residing in memory, updating it as needed. */
14f9c5c9 4219
a93c0eb6 4220struct value *
40bc484c 4221ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4222{
df407dfe 4223 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4224 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4225 struct type *formal_target =
4226 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4227 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4228 struct type *actual_target =
4229 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4230 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4231
4c4b4cd2 4232 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4233 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4234 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4235 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4236 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4237 {
a84a8a0d 4238 struct value *result;
5b4ee69b 4239
14f9c5c9 4240 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4241 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4242 result = desc_data (actual);
14f9c5c9 4243 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4244 {
4245 if (VALUE_LVAL (actual) != lval_memory)
4246 {
4247 struct value *val;
5b4ee69b 4248
df407dfe 4249 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4250 val = allocate_value (actual_type);
990a07ab 4251 memcpy ((char *) value_contents_raw (val),
0fd88904 4252 (char *) value_contents (actual),
4c4b4cd2 4253 TYPE_LENGTH (actual_type));
40bc484c 4254 actual = ensure_lval (val);
4c4b4cd2 4255 }
a84a8a0d 4256 result = value_addr (actual);
4c4b4cd2 4257 }
a84a8a0d
JB
4258 else
4259 return actual;
b1af9e97 4260 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4261 }
4262 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4263 return ada_value_ind (actual);
4264
4265 return actual;
4266}
4267
438c98a1
JB
4268/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4269 type TYPE. This is usually an inefficient no-op except on some targets
4270 (such as AVR) where the representation of a pointer and an address
4271 differs. */
4272
4273static CORE_ADDR
4274value_pointer (struct value *value, struct type *type)
4275{
4276 struct gdbarch *gdbarch = get_type_arch (type);
4277 unsigned len = TYPE_LENGTH (type);
4278 gdb_byte *buf = alloca (len);
4279 CORE_ADDR addr;
4280
4281 addr = value_address (value);
4282 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4283 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4284 return addr;
4285}
4286
14f9c5c9 4287
4c4b4cd2
PH
4288/* Push a descriptor of type TYPE for array value ARR on the stack at
4289 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4290 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4291 to-descriptor type rather than a descriptor type), a struct value *
4292 representing a pointer to this descriptor. */
14f9c5c9 4293
d2e4a39e 4294static struct value *
40bc484c 4295make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4296{
d2e4a39e
AS
4297 struct type *bounds_type = desc_bounds_type (type);
4298 struct type *desc_type = desc_base_type (type);
4299 struct value *descriptor = allocate_value (desc_type);
4300 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4301 int i;
d2e4a39e 4302
0963b4bd
MS
4303 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4304 i > 0; i -= 1)
14f9c5c9 4305 {
19f220c3
JK
4306 modify_field (value_type (bounds), value_contents_writeable (bounds),
4307 ada_array_bound (arr, i, 0),
4308 desc_bound_bitpos (bounds_type, i, 0),
4309 desc_bound_bitsize (bounds_type, i, 0));
4310 modify_field (value_type (bounds), value_contents_writeable (bounds),
4311 ada_array_bound (arr, i, 1),
4312 desc_bound_bitpos (bounds_type, i, 1),
4313 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4314 }
d2e4a39e 4315
40bc484c 4316 bounds = ensure_lval (bounds);
d2e4a39e 4317
19f220c3
JK
4318 modify_field (value_type (descriptor),
4319 value_contents_writeable (descriptor),
4320 value_pointer (ensure_lval (arr),
4321 TYPE_FIELD_TYPE (desc_type, 0)),
4322 fat_pntr_data_bitpos (desc_type),
4323 fat_pntr_data_bitsize (desc_type));
4324
4325 modify_field (value_type (descriptor),
4326 value_contents_writeable (descriptor),
4327 value_pointer (bounds,
4328 TYPE_FIELD_TYPE (desc_type, 1)),
4329 fat_pntr_bounds_bitpos (desc_type),
4330 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4331
40bc484c 4332 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4333
4334 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4335 return value_addr (descriptor);
4336 else
4337 return descriptor;
4338}
14f9c5c9 4339\f
3d9434b5
JB
4340 /* Symbol Cache Module */
4341
3d9434b5 4342/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4343 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4344 on the type of entity being printed, the cache can make it as much
4345 as an order of magnitude faster than without it.
4346
4347 The descriptive type DWARF extension has significantly reduced
4348 the need for this cache, at least when DWARF is being used. However,
4349 even in this case, some expensive name-based symbol searches are still
4350 sometimes necessary - to find an XVZ variable, mostly. */
4351
ee01b665 4352/* Initialize the contents of SYM_CACHE. */
3d9434b5 4353
ee01b665
JB
4354static void
4355ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4356{
4357 obstack_init (&sym_cache->cache_space);
4358 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4359}
3d9434b5 4360
ee01b665
JB
4361/* Free the memory used by SYM_CACHE. */
4362
4363static void
4364ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4365{
ee01b665
JB
4366 obstack_free (&sym_cache->cache_space, NULL);
4367 xfree (sym_cache);
4368}
3d9434b5 4369
ee01b665
JB
4370/* Return the symbol cache associated to the given program space PSPACE.
4371 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4372
ee01b665
JB
4373static struct ada_symbol_cache *
4374ada_get_symbol_cache (struct program_space *pspace)
4375{
4376 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4377 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4378
4379 if (sym_cache == NULL)
4380 {
4381 sym_cache = XCNEW (struct ada_symbol_cache);
4382 ada_init_symbol_cache (sym_cache);
4383 }
4384
4385 return sym_cache;
4386}
3d9434b5
JB
4387
4388/* Clear all entries from the symbol cache. */
4389
4390static void
4391ada_clear_symbol_cache (void)
4392{
ee01b665
JB
4393 struct ada_symbol_cache *sym_cache
4394 = ada_get_symbol_cache (current_program_space);
4395
4396 obstack_free (&sym_cache->cache_space, NULL);
4397 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4398}
4399
4400/* Search our cache for an entry matching NAME and NAMESPACE.
4401 Return it if found, or NULL otherwise. */
4402
4403static struct cache_entry **
4404find_entry (const char *name, domain_enum namespace)
4405{
ee01b665
JB
4406 struct ada_symbol_cache *sym_cache
4407 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4408 int h = msymbol_hash (name) % HASH_SIZE;
4409 struct cache_entry **e;
4410
ee01b665 4411 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5
JB
4412 {
4413 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4414 return e;
4415 }
4416 return NULL;
4417}
4418
4419/* Search the symbol cache for an entry matching NAME and NAMESPACE.
4420 Return 1 if found, 0 otherwise.
4421
4422 If an entry was found and SYM is not NULL, set *SYM to the entry's
4423 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4424
96d887e8
PH
4425static int
4426lookup_cached_symbol (const char *name, domain_enum namespace,
f0c5f9b2 4427 struct symbol **sym, const struct block **block)
96d887e8 4428{
3d9434b5
JB
4429 struct cache_entry **e = find_entry (name, namespace);
4430
4431 if (e == NULL)
4432 return 0;
4433 if (sym != NULL)
4434 *sym = (*e)->sym;
4435 if (block != NULL)
4436 *block = (*e)->block;
4437 return 1;
96d887e8
PH
4438}
4439
3d9434b5
JB
4440/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4441 in domain NAMESPACE, save this result in our symbol cache. */
4442
96d887e8
PH
4443static void
4444cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4445 const struct block *block)
96d887e8 4446{
ee01b665
JB
4447 struct ada_symbol_cache *sym_cache
4448 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4449 int h;
4450 char *copy;
4451 struct cache_entry *e;
4452
4453 /* If the symbol is a local symbol, then do not cache it, as a search
4454 for that symbol depends on the context. To determine whether
4455 the symbol is local or not, we check the block where we found it
4456 against the global and static blocks of its associated symtab. */
4457 if (sym
4458 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), GLOBAL_BLOCK) != block
4459 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), STATIC_BLOCK) != block)
4460 return;
4461
4462 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4463 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4464 sizeof (*e));
4465 e->next = sym_cache->root[h];
4466 sym_cache->root[h] = e;
4467 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4468 strcpy (copy, name);
4469 e->sym = sym;
4470 e->namespace = namespace;
4471 e->block = block;
96d887e8 4472}
4c4b4cd2
PH
4473\f
4474 /* Symbol Lookup */
4475
c0431670
JB
4476/* Return nonzero if wild matching should be used when searching for
4477 all symbols matching LOOKUP_NAME.
4478
4479 LOOKUP_NAME is expected to be a symbol name after transformation
4480 for Ada lookups (see ada_name_for_lookup). */
4481
4482static int
4483should_use_wild_match (const char *lookup_name)
4484{
4485 return (strstr (lookup_name, "__") == NULL);
4486}
4487
4c4b4cd2
PH
4488/* Return the result of a standard (literal, C-like) lookup of NAME in
4489 given DOMAIN, visible from lexical block BLOCK. */
4490
4491static struct symbol *
4492standard_lookup (const char *name, const struct block *block,
4493 domain_enum domain)
4494{
acbd605d
MGD
4495 /* Initialize it just to avoid a GCC false warning. */
4496 struct symbol *sym = NULL;
4c4b4cd2 4497
2570f2b7 4498 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4499 return sym;
2570f2b7
UW
4500 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4501 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4502 return sym;
4503}
4504
4505
4506/* Non-zero iff there is at least one non-function/non-enumeral symbol
4507 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4508 since they contend in overloading in the same way. */
4509static int
4510is_nonfunction (struct ada_symbol_info syms[], int n)
4511{
4512 int i;
4513
4514 for (i = 0; i < n; i += 1)
4515 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4516 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4517 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4518 return 1;
4519
4520 return 0;
4521}
4522
4523/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4524 struct types. Otherwise, they may not. */
14f9c5c9
AS
4525
4526static int
d2e4a39e 4527equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4528{
d2e4a39e 4529 if (type0 == type1)
14f9c5c9 4530 return 1;
d2e4a39e 4531 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4532 || TYPE_CODE (type0) != TYPE_CODE (type1))
4533 return 0;
d2e4a39e 4534 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4535 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4536 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4537 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4538 return 1;
d2e4a39e 4539
14f9c5c9
AS
4540 return 0;
4541}
4542
4543/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4544 no more defined than that of SYM1. */
14f9c5c9
AS
4545
4546static int
d2e4a39e 4547lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4548{
4549 if (sym0 == sym1)
4550 return 1;
176620f1 4551 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4552 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4553 return 0;
4554
d2e4a39e 4555 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4556 {
4557 case LOC_UNDEF:
4558 return 1;
4559 case LOC_TYPEDEF:
4560 {
4c4b4cd2
PH
4561 struct type *type0 = SYMBOL_TYPE (sym0);
4562 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4563 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4564 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4565 int len0 = strlen (name0);
5b4ee69b 4566
4c4b4cd2
PH
4567 return
4568 TYPE_CODE (type0) == TYPE_CODE (type1)
4569 && (equiv_types (type0, type1)
4570 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4571 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4572 }
4573 case LOC_CONST:
4574 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4575 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4576 default:
4577 return 0;
14f9c5c9
AS
4578 }
4579}
4580
4c4b4cd2
PH
4581/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4582 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4583
4584static void
76a01679
JB
4585add_defn_to_vec (struct obstack *obstackp,
4586 struct symbol *sym,
f0c5f9b2 4587 const struct block *block)
14f9c5c9
AS
4588{
4589 int i;
4c4b4cd2 4590 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4591
529cad9c
PH
4592 /* Do not try to complete stub types, as the debugger is probably
4593 already scanning all symbols matching a certain name at the
4594 time when this function is called. Trying to replace the stub
4595 type by its associated full type will cause us to restart a scan
4596 which may lead to an infinite recursion. Instead, the client
4597 collecting the matching symbols will end up collecting several
4598 matches, with at least one of them complete. It can then filter
4599 out the stub ones if needed. */
4600
4c4b4cd2
PH
4601 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4602 {
4603 if (lesseq_defined_than (sym, prevDefns[i].sym))
4604 return;
4605 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4606 {
4607 prevDefns[i].sym = sym;
4608 prevDefns[i].block = block;
4c4b4cd2 4609 return;
76a01679 4610 }
4c4b4cd2
PH
4611 }
4612
4613 {
4614 struct ada_symbol_info info;
4615
4616 info.sym = sym;
4617 info.block = block;
4c4b4cd2
PH
4618 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4619 }
4620}
4621
4622/* Number of ada_symbol_info structures currently collected in
4623 current vector in *OBSTACKP. */
4624
76a01679
JB
4625static int
4626num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4627{
4628 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4629}
4630
4631/* Vector of ada_symbol_info structures currently collected in current
4632 vector in *OBSTACKP. If FINISH, close off the vector and return
4633 its final address. */
4634
76a01679 4635static struct ada_symbol_info *
4c4b4cd2
PH
4636defns_collected (struct obstack *obstackp, int finish)
4637{
4638 if (finish)
4639 return obstack_finish (obstackp);
4640 else
4641 return (struct ada_symbol_info *) obstack_base (obstackp);
4642}
4643
7c7b6655
TT
4644/* Return a bound minimal symbol matching NAME according to Ada
4645 decoding rules. Returns an invalid symbol if there is no such
4646 minimal symbol. Names prefixed with "standard__" are handled
4647 specially: "standard__" is first stripped off, and only static and
4648 global symbols are searched. */
4c4b4cd2 4649
7c7b6655 4650struct bound_minimal_symbol
96d887e8 4651ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4652{
7c7b6655 4653 struct bound_minimal_symbol result;
4c4b4cd2 4654 struct objfile *objfile;
96d887e8 4655 struct minimal_symbol *msymbol;
dc4024cd 4656 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4657
7c7b6655
TT
4658 memset (&result, 0, sizeof (result));
4659
c0431670
JB
4660 /* Special case: If the user specifies a symbol name inside package
4661 Standard, do a non-wild matching of the symbol name without
4662 the "standard__" prefix. This was primarily introduced in order
4663 to allow the user to specifically access the standard exceptions
4664 using, for instance, Standard.Constraint_Error when Constraint_Error
4665 is ambiguous (due to the user defining its own Constraint_Error
4666 entity inside its program). */
96d887e8 4667 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4668 name += sizeof ("standard__") - 1;
4c4b4cd2 4669
96d887e8
PH
4670 ALL_MSYMBOLS (objfile, msymbol)
4671 {
efd66ac6 4672 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4673 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4674 {
4675 result.minsym = msymbol;
4676 result.objfile = objfile;
4677 break;
4678 }
96d887e8 4679 }
4c4b4cd2 4680
7c7b6655 4681 return result;
96d887e8 4682}
4c4b4cd2 4683
96d887e8
PH
4684/* For all subprograms that statically enclose the subprogram of the
4685 selected frame, add symbols matching identifier NAME in DOMAIN
4686 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4687 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4688 with a wildcard prefix. */
4c4b4cd2 4689
96d887e8
PH
4690static void
4691add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4692 const char *name, domain_enum namespace,
48b78332 4693 int wild_match_p)
96d887e8 4694{
96d887e8 4695}
14f9c5c9 4696
96d887e8
PH
4697/* True if TYPE is definitely an artificial type supplied to a symbol
4698 for which no debugging information was given in the symbol file. */
14f9c5c9 4699
96d887e8
PH
4700static int
4701is_nondebugging_type (struct type *type)
4702{
0d5cff50 4703 const char *name = ada_type_name (type);
5b4ee69b 4704
96d887e8
PH
4705 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4706}
4c4b4cd2 4707
8f17729f
JB
4708/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4709 that are deemed "identical" for practical purposes.
4710
4711 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4712 types and that their number of enumerals is identical (in other
4713 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4714
4715static int
4716ada_identical_enum_types_p (struct type *type1, struct type *type2)
4717{
4718 int i;
4719
4720 /* The heuristic we use here is fairly conservative. We consider
4721 that 2 enumerate types are identical if they have the same
4722 number of enumerals and that all enumerals have the same
4723 underlying value and name. */
4724
4725 /* All enums in the type should have an identical underlying value. */
4726 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4727 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4728 return 0;
4729
4730 /* All enumerals should also have the same name (modulo any numerical
4731 suffix). */
4732 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4733 {
0d5cff50
DE
4734 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4735 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4736 int len_1 = strlen (name_1);
4737 int len_2 = strlen (name_2);
4738
4739 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4740 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4741 if (len_1 != len_2
4742 || strncmp (TYPE_FIELD_NAME (type1, i),
4743 TYPE_FIELD_NAME (type2, i),
4744 len_1) != 0)
4745 return 0;
4746 }
4747
4748 return 1;
4749}
4750
4751/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4752 that are deemed "identical" for practical purposes. Sometimes,
4753 enumerals are not strictly identical, but their types are so similar
4754 that they can be considered identical.
4755
4756 For instance, consider the following code:
4757
4758 type Color is (Black, Red, Green, Blue, White);
4759 type RGB_Color is new Color range Red .. Blue;
4760
4761 Type RGB_Color is a subrange of an implicit type which is a copy
4762 of type Color. If we call that implicit type RGB_ColorB ("B" is
4763 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4764 As a result, when an expression references any of the enumeral
4765 by name (Eg. "print green"), the expression is technically
4766 ambiguous and the user should be asked to disambiguate. But
4767 doing so would only hinder the user, since it wouldn't matter
4768 what choice he makes, the outcome would always be the same.
4769 So, for practical purposes, we consider them as the same. */
4770
4771static int
4772symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4773{
4774 int i;
4775
4776 /* Before performing a thorough comparison check of each type,
4777 we perform a series of inexpensive checks. We expect that these
4778 checks will quickly fail in the vast majority of cases, and thus
4779 help prevent the unnecessary use of a more expensive comparison.
4780 Said comparison also expects us to make some of these checks
4781 (see ada_identical_enum_types_p). */
4782
4783 /* Quick check: All symbols should have an enum type. */
4784 for (i = 0; i < nsyms; i++)
4785 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4786 return 0;
4787
4788 /* Quick check: They should all have the same value. */
4789 for (i = 1; i < nsyms; i++)
4790 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4791 return 0;
4792
4793 /* Quick check: They should all have the same number of enumerals. */
4794 for (i = 1; i < nsyms; i++)
4795 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4796 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4797 return 0;
4798
4799 /* All the sanity checks passed, so we might have a set of
4800 identical enumeration types. Perform a more complete
4801 comparison of the type of each symbol. */
4802 for (i = 1; i < nsyms; i++)
4803 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4804 SYMBOL_TYPE (syms[0].sym)))
4805 return 0;
4806
4807 return 1;
4808}
4809
96d887e8
PH
4810/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4811 duplicate other symbols in the list (The only case I know of where
4812 this happens is when object files containing stabs-in-ecoff are
4813 linked with files containing ordinary ecoff debugging symbols (or no
4814 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4815 Returns the number of items in the modified list. */
4c4b4cd2 4816
96d887e8
PH
4817static int
4818remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4819{
4820 int i, j;
4c4b4cd2 4821
8f17729f
JB
4822 /* We should never be called with less than 2 symbols, as there
4823 cannot be any extra symbol in that case. But it's easy to
4824 handle, since we have nothing to do in that case. */
4825 if (nsyms < 2)
4826 return nsyms;
4827
96d887e8
PH
4828 i = 0;
4829 while (i < nsyms)
4830 {
a35ddb44 4831 int remove_p = 0;
339c13b6
JB
4832
4833 /* If two symbols have the same name and one of them is a stub type,
4834 the get rid of the stub. */
4835
4836 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4837 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4838 {
4839 for (j = 0; j < nsyms; j++)
4840 {
4841 if (j != i
4842 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4843 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4844 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4845 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4846 remove_p = 1;
339c13b6
JB
4847 }
4848 }
4849
4850 /* Two symbols with the same name, same class and same address
4851 should be identical. */
4852
4853 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4854 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4855 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4856 {
4857 for (j = 0; j < nsyms; j += 1)
4858 {
4859 if (i != j
4860 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4861 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4862 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4863 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4864 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4865 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4866 remove_p = 1;
4c4b4cd2 4867 }
4c4b4cd2 4868 }
339c13b6 4869
a35ddb44 4870 if (remove_p)
339c13b6
JB
4871 {
4872 for (j = i + 1; j < nsyms; j += 1)
4873 syms[j - 1] = syms[j];
4874 nsyms -= 1;
4875 }
4876
96d887e8 4877 i += 1;
14f9c5c9 4878 }
8f17729f
JB
4879
4880 /* If all the remaining symbols are identical enumerals, then
4881 just keep the first one and discard the rest.
4882
4883 Unlike what we did previously, we do not discard any entry
4884 unless they are ALL identical. This is because the symbol
4885 comparison is not a strict comparison, but rather a practical
4886 comparison. If all symbols are considered identical, then
4887 we can just go ahead and use the first one and discard the rest.
4888 But if we cannot reduce the list to a single element, we have
4889 to ask the user to disambiguate anyways. And if we have to
4890 present a multiple-choice menu, it's less confusing if the list
4891 isn't missing some choices that were identical and yet distinct. */
4892 if (symbols_are_identical_enums (syms, nsyms))
4893 nsyms = 1;
4894
96d887e8 4895 return nsyms;
14f9c5c9
AS
4896}
4897
96d887e8
PH
4898/* Given a type that corresponds to a renaming entity, use the type name
4899 to extract the scope (package name or function name, fully qualified,
4900 and following the GNAT encoding convention) where this renaming has been
4901 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4902
96d887e8
PH
4903static char *
4904xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4905{
96d887e8 4906 /* The renaming types adhere to the following convention:
0963b4bd 4907 <scope>__<rename>___<XR extension>.
96d887e8
PH
4908 So, to extract the scope, we search for the "___XR" extension,
4909 and then backtrack until we find the first "__". */
76a01679 4910
96d887e8
PH
4911 const char *name = type_name_no_tag (renaming_type);
4912 char *suffix = strstr (name, "___XR");
4913 char *last;
4914 int scope_len;
4915 char *scope;
14f9c5c9 4916
96d887e8
PH
4917 /* Now, backtrack a bit until we find the first "__". Start looking
4918 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4919
96d887e8
PH
4920 for (last = suffix - 3; last > name; last--)
4921 if (last[0] == '_' && last[1] == '_')
4922 break;
76a01679 4923
96d887e8 4924 /* Make a copy of scope and return it. */
14f9c5c9 4925
96d887e8
PH
4926 scope_len = last - name;
4927 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4928
96d887e8
PH
4929 strncpy (scope, name, scope_len);
4930 scope[scope_len] = '\0';
4c4b4cd2 4931
96d887e8 4932 return scope;
4c4b4cd2
PH
4933}
4934
96d887e8 4935/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4936
96d887e8
PH
4937static int
4938is_package_name (const char *name)
4c4b4cd2 4939{
96d887e8
PH
4940 /* Here, We take advantage of the fact that no symbols are generated
4941 for packages, while symbols are generated for each function.
4942 So the condition for NAME represent a package becomes equivalent
4943 to NAME not existing in our list of symbols. There is only one
4944 small complication with library-level functions (see below). */
4c4b4cd2 4945
96d887e8 4946 char *fun_name;
76a01679 4947
96d887e8
PH
4948 /* If it is a function that has not been defined at library level,
4949 then we should be able to look it up in the symbols. */
4950 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4951 return 0;
14f9c5c9 4952
96d887e8
PH
4953 /* Library-level function names start with "_ada_". See if function
4954 "_ada_" followed by NAME can be found. */
14f9c5c9 4955
96d887e8 4956 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4957 functions names cannot contain "__" in them. */
96d887e8
PH
4958 if (strstr (name, "__") != NULL)
4959 return 0;
4c4b4cd2 4960
b435e160 4961 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4962
96d887e8
PH
4963 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4964}
14f9c5c9 4965
96d887e8 4966/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4967 not visible from FUNCTION_NAME. */
14f9c5c9 4968
96d887e8 4969static int
0d5cff50 4970old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4971{
aeb5907d 4972 char *scope;
1509e573 4973 struct cleanup *old_chain;
aeb5907d
JB
4974
4975 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4976 return 0;
4977
4978 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 4979 old_chain = make_cleanup (xfree, scope);
14f9c5c9 4980
96d887e8
PH
4981 /* If the rename has been defined in a package, then it is visible. */
4982 if (is_package_name (scope))
1509e573
JB
4983 {
4984 do_cleanups (old_chain);
4985 return 0;
4986 }
14f9c5c9 4987
96d887e8
PH
4988 /* Check that the rename is in the current function scope by checking
4989 that its name starts with SCOPE. */
76a01679 4990
96d887e8
PH
4991 /* If the function name starts with "_ada_", it means that it is
4992 a library-level function. Strip this prefix before doing the
4993 comparison, as the encoding for the renaming does not contain
4994 this prefix. */
4995 if (strncmp (function_name, "_ada_", 5) == 0)
4996 function_name += 5;
f26caa11 4997
1509e573
JB
4998 {
4999 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
5000
5001 do_cleanups (old_chain);
5002 return is_invisible;
5003 }
f26caa11
PH
5004}
5005
aeb5907d
JB
5006/* Remove entries from SYMS that corresponds to a renaming entity that
5007 is not visible from the function associated with CURRENT_BLOCK or
5008 that is superfluous due to the presence of more specific renaming
5009 information. Places surviving symbols in the initial entries of
5010 SYMS and returns the number of surviving symbols.
96d887e8
PH
5011
5012 Rationale:
aeb5907d
JB
5013 First, in cases where an object renaming is implemented as a
5014 reference variable, GNAT may produce both the actual reference
5015 variable and the renaming encoding. In this case, we discard the
5016 latter.
5017
5018 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5019 entity. Unfortunately, STABS currently does not support the definition
5020 of types that are local to a given lexical block, so all renamings types
5021 are emitted at library level. As a consequence, if an application
5022 contains two renaming entities using the same name, and a user tries to
5023 print the value of one of these entities, the result of the ada symbol
5024 lookup will also contain the wrong renaming type.
f26caa11 5025
96d887e8
PH
5026 This function partially covers for this limitation by attempting to
5027 remove from the SYMS list renaming symbols that should be visible
5028 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5029 method with the current information available. The implementation
5030 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5031
5032 - When the user tries to print a rename in a function while there
5033 is another rename entity defined in a package: Normally, the
5034 rename in the function has precedence over the rename in the
5035 package, so the latter should be removed from the list. This is
5036 currently not the case.
5037
5038 - This function will incorrectly remove valid renames if
5039 the CURRENT_BLOCK corresponds to a function which symbol name
5040 has been changed by an "Export" pragma. As a consequence,
5041 the user will be unable to print such rename entities. */
4c4b4cd2 5042
14f9c5c9 5043static int
aeb5907d
JB
5044remove_irrelevant_renamings (struct ada_symbol_info *syms,
5045 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5046{
5047 struct symbol *current_function;
0d5cff50 5048 const char *current_function_name;
4c4b4cd2 5049 int i;
aeb5907d
JB
5050 int is_new_style_renaming;
5051
5052 /* If there is both a renaming foo___XR... encoded as a variable and
5053 a simple variable foo in the same block, discard the latter.
0963b4bd 5054 First, zero out such symbols, then compress. */
aeb5907d
JB
5055 is_new_style_renaming = 0;
5056 for (i = 0; i < nsyms; i += 1)
5057 {
5058 struct symbol *sym = syms[i].sym;
270140bd 5059 const struct block *block = syms[i].block;
aeb5907d
JB
5060 const char *name;
5061 const char *suffix;
5062
5063 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5064 continue;
5065 name = SYMBOL_LINKAGE_NAME (sym);
5066 suffix = strstr (name, "___XR");
5067
5068 if (suffix != NULL)
5069 {
5070 int name_len = suffix - name;
5071 int j;
5b4ee69b 5072
aeb5907d
JB
5073 is_new_style_renaming = 1;
5074 for (j = 0; j < nsyms; j += 1)
5075 if (i != j && syms[j].sym != NULL
5076 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5077 name_len) == 0
5078 && block == syms[j].block)
5079 syms[j].sym = NULL;
5080 }
5081 }
5082 if (is_new_style_renaming)
5083 {
5084 int j, k;
5085
5086 for (j = k = 0; j < nsyms; j += 1)
5087 if (syms[j].sym != NULL)
5088 {
5089 syms[k] = syms[j];
5090 k += 1;
5091 }
5092 return k;
5093 }
4c4b4cd2
PH
5094
5095 /* Extract the function name associated to CURRENT_BLOCK.
5096 Abort if unable to do so. */
76a01679 5097
4c4b4cd2
PH
5098 if (current_block == NULL)
5099 return nsyms;
76a01679 5100
7f0df278 5101 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5102 if (current_function == NULL)
5103 return nsyms;
5104
5105 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5106 if (current_function_name == NULL)
5107 return nsyms;
5108
5109 /* Check each of the symbols, and remove it from the list if it is
5110 a type corresponding to a renaming that is out of the scope of
5111 the current block. */
5112
5113 i = 0;
5114 while (i < nsyms)
5115 {
aeb5907d
JB
5116 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5117 == ADA_OBJECT_RENAMING
5118 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
5119 {
5120 int j;
5b4ee69b 5121
aeb5907d 5122 for (j = i + 1; j < nsyms; j += 1)
76a01679 5123 syms[j - 1] = syms[j];
4c4b4cd2
PH
5124 nsyms -= 1;
5125 }
5126 else
5127 i += 1;
5128 }
5129
5130 return nsyms;
5131}
5132
339c13b6
JB
5133/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5134 whose name and domain match NAME and DOMAIN respectively.
5135 If no match was found, then extend the search to "enclosing"
5136 routines (in other words, if we're inside a nested function,
5137 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5138 If WILD_MATCH_P is nonzero, perform the naming matching in
5139 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5140
5141 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5142
5143static void
5144ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5145 const struct block *block, domain_enum domain,
d0a8ab18 5146 int wild_match_p)
339c13b6
JB
5147{
5148 int block_depth = 0;
5149
5150 while (block != NULL)
5151 {
5152 block_depth += 1;
d0a8ab18
JB
5153 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5154 wild_match_p);
339c13b6
JB
5155
5156 /* If we found a non-function match, assume that's the one. */
5157 if (is_nonfunction (defns_collected (obstackp, 0),
5158 num_defns_collected (obstackp)))
5159 return;
5160
5161 block = BLOCK_SUPERBLOCK (block);
5162 }
5163
5164 /* If no luck so far, try to find NAME as a local symbol in some lexically
5165 enclosing subprogram. */
5166 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5167 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5168}
5169
ccefe4c4 5170/* An object of this type is used as the user_data argument when
40658b94 5171 calling the map_matching_symbols method. */
ccefe4c4 5172
40658b94 5173struct match_data
ccefe4c4 5174{
40658b94 5175 struct objfile *objfile;
ccefe4c4 5176 struct obstack *obstackp;
40658b94
PH
5177 struct symbol *arg_sym;
5178 int found_sym;
ccefe4c4
TT
5179};
5180
40658b94
PH
5181/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5182 to a list of symbols. DATA0 is a pointer to a struct match_data *
5183 containing the obstack that collects the symbol list, the file that SYM
5184 must come from, a flag indicating whether a non-argument symbol has
5185 been found in the current block, and the last argument symbol
5186 passed in SYM within the current block (if any). When SYM is null,
5187 marking the end of a block, the argument symbol is added if no
5188 other has been found. */
ccefe4c4 5189
40658b94
PH
5190static int
5191aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5192{
40658b94
PH
5193 struct match_data *data = (struct match_data *) data0;
5194
5195 if (sym == NULL)
5196 {
5197 if (!data->found_sym && data->arg_sym != NULL)
5198 add_defn_to_vec (data->obstackp,
5199 fixup_symbol_section (data->arg_sym, data->objfile),
5200 block);
5201 data->found_sym = 0;
5202 data->arg_sym = NULL;
5203 }
5204 else
5205 {
5206 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5207 return 0;
5208 else if (SYMBOL_IS_ARGUMENT (sym))
5209 data->arg_sym = sym;
5210 else
5211 {
5212 data->found_sym = 1;
5213 add_defn_to_vec (data->obstackp,
5214 fixup_symbol_section (sym, data->objfile),
5215 block);
5216 }
5217 }
5218 return 0;
5219}
5220
db230ce3
JB
5221/* Implements compare_names, but only applying the comparision using
5222 the given CASING. */
5b4ee69b 5223
40658b94 5224static int
db230ce3
JB
5225compare_names_with_case (const char *string1, const char *string2,
5226 enum case_sensitivity casing)
40658b94
PH
5227{
5228 while (*string1 != '\0' && *string2 != '\0')
5229 {
db230ce3
JB
5230 char c1, c2;
5231
40658b94
PH
5232 if (isspace (*string1) || isspace (*string2))
5233 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5234
5235 if (casing == case_sensitive_off)
5236 {
5237 c1 = tolower (*string1);
5238 c2 = tolower (*string2);
5239 }
5240 else
5241 {
5242 c1 = *string1;
5243 c2 = *string2;
5244 }
5245 if (c1 != c2)
40658b94 5246 break;
db230ce3 5247
40658b94
PH
5248 string1 += 1;
5249 string2 += 1;
5250 }
db230ce3 5251
40658b94
PH
5252 switch (*string1)
5253 {
5254 case '(':
5255 return strcmp_iw_ordered (string1, string2);
5256 case '_':
5257 if (*string2 == '\0')
5258 {
052874e8 5259 if (is_name_suffix (string1))
40658b94
PH
5260 return 0;
5261 else
1a1d5513 5262 return 1;
40658b94 5263 }
dbb8534f 5264 /* FALLTHROUGH */
40658b94
PH
5265 default:
5266 if (*string2 == '(')
5267 return strcmp_iw_ordered (string1, string2);
5268 else
db230ce3
JB
5269 {
5270 if (casing == case_sensitive_off)
5271 return tolower (*string1) - tolower (*string2);
5272 else
5273 return *string1 - *string2;
5274 }
40658b94 5275 }
ccefe4c4
TT
5276}
5277
db230ce3
JB
5278/* Compare STRING1 to STRING2, with results as for strcmp.
5279 Compatible with strcmp_iw_ordered in that...
5280
5281 strcmp_iw_ordered (STRING1, STRING2) <= 0
5282
5283 ... implies...
5284
5285 compare_names (STRING1, STRING2) <= 0
5286
5287 (they may differ as to what symbols compare equal). */
5288
5289static int
5290compare_names (const char *string1, const char *string2)
5291{
5292 int result;
5293
5294 /* Similar to what strcmp_iw_ordered does, we need to perform
5295 a case-insensitive comparison first, and only resort to
5296 a second, case-sensitive, comparison if the first one was
5297 not sufficient to differentiate the two strings. */
5298
5299 result = compare_names_with_case (string1, string2, case_sensitive_off);
5300 if (result == 0)
5301 result = compare_names_with_case (string1, string2, case_sensitive_on);
5302
5303 return result;
5304}
5305
339c13b6
JB
5306/* Add to OBSTACKP all non-local symbols whose name and domain match
5307 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5308 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5309
5310static void
40658b94
PH
5311add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5312 domain_enum domain, int global,
5313 int is_wild_match)
339c13b6
JB
5314{
5315 struct objfile *objfile;
40658b94 5316 struct match_data data;
339c13b6 5317
6475f2fe 5318 memset (&data, 0, sizeof data);
ccefe4c4 5319 data.obstackp = obstackp;
339c13b6 5320
ccefe4c4 5321 ALL_OBJFILES (objfile)
40658b94
PH
5322 {
5323 data.objfile = objfile;
5324
5325 if (is_wild_match)
4186eb54
KS
5326 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5327 aux_add_nonlocal_symbols, &data,
5328 wild_match, NULL);
40658b94 5329 else
4186eb54
KS
5330 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5331 aux_add_nonlocal_symbols, &data,
5332 full_match, compare_names);
40658b94
PH
5333 }
5334
5335 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5336 {
5337 ALL_OBJFILES (objfile)
5338 {
5339 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5340 strcpy (name1, "_ada_");
5341 strcpy (name1 + sizeof ("_ada_") - 1, name);
5342 data.objfile = objfile;
ade7ed9e
DE
5343 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5344 global,
0963b4bd
MS
5345 aux_add_nonlocal_symbols,
5346 &data,
40658b94
PH
5347 full_match, compare_names);
5348 }
5349 }
339c13b6
JB
5350}
5351
4eeaa230
DE
5352/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5353 non-zero, enclosing scope and in global scopes, returning the number of
5354 matches.
9f88c959 5355 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5356 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5357 any) in which they were found. This vector is transient---good only to
5358 the next call of ada_lookup_symbol_list.
5359
5360 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5361 symbol match within the nest of blocks whose innermost member is BLOCK0,
5362 is the one match returned (no other matches in that or
d9680e73 5363 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5364 surrounding BLOCK0, then these alone are returned.
5365
9f88c959 5366 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5367 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5368
4eeaa230
DE
5369static int
5370ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5371 domain_enum namespace,
5372 struct ada_symbol_info **results,
5373 int full_search)
14f9c5c9
AS
5374{
5375 struct symbol *sym;
f0c5f9b2 5376 const struct block *block;
4c4b4cd2 5377 const char *name;
82ccd55e 5378 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5379 int cacheIfUnique;
4c4b4cd2 5380 int ndefns;
14f9c5c9 5381
4c4b4cd2
PH
5382 obstack_free (&symbol_list_obstack, NULL);
5383 obstack_init (&symbol_list_obstack);
14f9c5c9 5384
14f9c5c9
AS
5385 cacheIfUnique = 0;
5386
5387 /* Search specified block and its superiors. */
5388
4c4b4cd2 5389 name = name0;
f0c5f9b2 5390 block = block0;
339c13b6
JB
5391
5392 /* Special case: If the user specifies a symbol name inside package
5393 Standard, do a non-wild matching of the symbol name without
5394 the "standard__" prefix. This was primarily introduced in order
5395 to allow the user to specifically access the standard exceptions
5396 using, for instance, Standard.Constraint_Error when Constraint_Error
5397 is ambiguous (due to the user defining its own Constraint_Error
5398 entity inside its program). */
4c4b4cd2
PH
5399 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5400 {
4c4b4cd2
PH
5401 block = NULL;
5402 name = name0 + sizeof ("standard__") - 1;
5403 }
5404
339c13b6 5405 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5406
4eeaa230
DE
5407 if (block != NULL)
5408 {
5409 if (full_search)
5410 {
5411 ada_add_local_symbols (&symbol_list_obstack, name, block,
5412 namespace, wild_match_p);
5413 }
5414 else
5415 {
5416 /* In the !full_search case we're are being called by
5417 ada_iterate_over_symbols, and we don't want to search
5418 superblocks. */
5419 ada_add_block_symbols (&symbol_list_obstack, block, name,
5420 namespace, NULL, wild_match_p);
5421 }
5422 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5423 goto done;
5424 }
d2e4a39e 5425
339c13b6
JB
5426 /* No non-global symbols found. Check our cache to see if we have
5427 already performed this search before. If we have, then return
5428 the same result. */
5429
14f9c5c9 5430 cacheIfUnique = 1;
2570f2b7 5431 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5432 {
5433 if (sym != NULL)
2570f2b7 5434 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5435 goto done;
5436 }
14f9c5c9 5437
339c13b6
JB
5438 /* Search symbols from all global blocks. */
5439
40658b94 5440 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5441 wild_match_p);
d2e4a39e 5442
4c4b4cd2 5443 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5444 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5445
4c4b4cd2 5446 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5447 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5448 wild_match_p);
14f9c5c9 5449
4c4b4cd2
PH
5450done:
5451 ndefns = num_defns_collected (&symbol_list_obstack);
5452 *results = defns_collected (&symbol_list_obstack, 1);
5453
5454 ndefns = remove_extra_symbols (*results, ndefns);
5455
2ad01556 5456 if (ndefns == 0 && full_search)
2570f2b7 5457 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5458
2ad01556 5459 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5460 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5461
aeb5907d 5462 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5463
14f9c5c9
AS
5464 return ndefns;
5465}
5466
4eeaa230
DE
5467/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5468 in global scopes, returning the number of matches, and setting *RESULTS
5469 to a vector of (SYM,BLOCK) tuples.
5470 See ada_lookup_symbol_list_worker for further details. */
5471
5472int
5473ada_lookup_symbol_list (const char *name0, const struct block *block0,
5474 domain_enum domain, struct ada_symbol_info **results)
5475{
5476 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5477}
5478
5479/* Implementation of the la_iterate_over_symbols method. */
5480
5481static void
5482ada_iterate_over_symbols (const struct block *block,
5483 const char *name, domain_enum domain,
5484 symbol_found_callback_ftype *callback,
5485 void *data)
5486{
5487 int ndefs, i;
5488 struct ada_symbol_info *results;
5489
5490 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5491 for (i = 0; i < ndefs; ++i)
5492 {
5493 if (! (*callback) (results[i].sym, data))
5494 break;
5495 }
5496}
5497
f8eba3c6
TT
5498/* If NAME is the name of an entity, return a string that should
5499 be used to look that entity up in Ada units. This string should
5500 be deallocated after use using xfree.
5501
5502 NAME can have any form that the "break" or "print" commands might
5503 recognize. In other words, it does not have to be the "natural"
5504 name, or the "encoded" name. */
5505
5506char *
5507ada_name_for_lookup (const char *name)
5508{
5509 char *canon;
5510 int nlen = strlen (name);
5511
5512 if (name[0] == '<' && name[nlen - 1] == '>')
5513 {
5514 canon = xmalloc (nlen - 1);
5515 memcpy (canon, name + 1, nlen - 2);
5516 canon[nlen - 2] = '\0';
5517 }
5518 else
5519 canon = xstrdup (ada_encode (ada_fold_name (name)));
5520 return canon;
5521}
5522
4e5c77fe
JB
5523/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5524 to 1, but choosing the first symbol found if there are multiple
5525 choices.
5526
5e2336be
JB
5527 The result is stored in *INFO, which must be non-NULL.
5528 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5529
5530void
5531ada_lookup_encoded_symbol (const char *name, const struct block *block,
5532 domain_enum namespace,
5e2336be 5533 struct ada_symbol_info *info)
14f9c5c9 5534{
4c4b4cd2 5535 struct ada_symbol_info *candidates;
14f9c5c9
AS
5536 int n_candidates;
5537
5e2336be
JB
5538 gdb_assert (info != NULL);
5539 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5540
4eeaa230 5541 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
14f9c5c9 5542 if (n_candidates == 0)
4e5c77fe 5543 return;
4c4b4cd2 5544
5e2336be
JB
5545 *info = candidates[0];
5546 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5547}
aeb5907d
JB
5548
5549/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5550 scope and in global scopes, or NULL if none. NAME is folded and
5551 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5552 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5553 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5554
aeb5907d
JB
5555struct symbol *
5556ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5557 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5558{
5e2336be 5559 struct ada_symbol_info info;
4e5c77fe 5560
aeb5907d
JB
5561 if (is_a_field_of_this != NULL)
5562 *is_a_field_of_this = 0;
5563
4e5c77fe 5564 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5565 block0, namespace, &info);
5566 return info.sym;
4c4b4cd2 5567}
14f9c5c9 5568
4c4b4cd2
PH
5569static struct symbol *
5570ada_lookup_symbol_nonlocal (const char *name,
76a01679 5571 const struct block *block,
21b556f4 5572 const domain_enum domain)
4c4b4cd2 5573{
94af9270 5574 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5575}
5576
5577
4c4b4cd2
PH
5578/* True iff STR is a possible encoded suffix of a normal Ada name
5579 that is to be ignored for matching purposes. Suffixes of parallel
5580 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5581 are given by any of the regular expressions:
4c4b4cd2 5582
babe1480
JB
5583 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5584 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5585 TKB [subprogram suffix for task bodies]
babe1480 5586 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5587 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5588
5589 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5590 match is performed. This sequence is used to differentiate homonyms,
5591 is an optional part of a valid name suffix. */
4c4b4cd2 5592
14f9c5c9 5593static int
d2e4a39e 5594is_name_suffix (const char *str)
14f9c5c9
AS
5595{
5596 int k;
4c4b4cd2
PH
5597 const char *matching;
5598 const int len = strlen (str);
5599
babe1480
JB
5600 /* Skip optional leading __[0-9]+. */
5601
4c4b4cd2
PH
5602 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5603 {
babe1480
JB
5604 str += 3;
5605 while (isdigit (str[0]))
5606 str += 1;
4c4b4cd2 5607 }
babe1480
JB
5608
5609 /* [.$][0-9]+ */
4c4b4cd2 5610
babe1480 5611 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5612 {
babe1480 5613 matching = str + 1;
4c4b4cd2
PH
5614 while (isdigit (matching[0]))
5615 matching += 1;
5616 if (matching[0] == '\0')
5617 return 1;
5618 }
5619
5620 /* ___[0-9]+ */
babe1480 5621
4c4b4cd2
PH
5622 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5623 {
5624 matching = str + 3;
5625 while (isdigit (matching[0]))
5626 matching += 1;
5627 if (matching[0] == '\0')
5628 return 1;
5629 }
5630
9ac7f98e
JB
5631 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5632
5633 if (strcmp (str, "TKB") == 0)
5634 return 1;
5635
529cad9c
PH
5636#if 0
5637 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5638 with a N at the end. Unfortunately, the compiler uses the same
5639 convention for other internal types it creates. So treating
529cad9c 5640 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5641 some regressions. For instance, consider the case of an enumerated
5642 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5643 name ends with N.
5644 Having a single character like this as a suffix carrying some
0963b4bd 5645 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5646 to be something like "_N" instead. In the meantime, do not do
5647 the following check. */
5648 /* Protected Object Subprograms */
5649 if (len == 1 && str [0] == 'N')
5650 return 1;
5651#endif
5652
5653 /* _E[0-9]+[bs]$ */
5654 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5655 {
5656 matching = str + 3;
5657 while (isdigit (matching[0]))
5658 matching += 1;
5659 if ((matching[0] == 'b' || matching[0] == 's')
5660 && matching [1] == '\0')
5661 return 1;
5662 }
5663
4c4b4cd2
PH
5664 /* ??? We should not modify STR directly, as we are doing below. This
5665 is fine in this case, but may become problematic later if we find
5666 that this alternative did not work, and want to try matching
5667 another one from the begining of STR. Since we modified it, we
5668 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5669 if (str[0] == 'X')
5670 {
5671 str += 1;
d2e4a39e 5672 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5673 {
5674 if (str[0] != 'n' && str[0] != 'b')
5675 return 0;
5676 str += 1;
5677 }
14f9c5c9 5678 }
babe1480 5679
14f9c5c9
AS
5680 if (str[0] == '\000')
5681 return 1;
babe1480 5682
d2e4a39e 5683 if (str[0] == '_')
14f9c5c9
AS
5684 {
5685 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5686 return 0;
d2e4a39e 5687 if (str[2] == '_')
4c4b4cd2 5688 {
61ee279c
PH
5689 if (strcmp (str + 3, "JM") == 0)
5690 return 1;
5691 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5692 the LJM suffix in favor of the JM one. But we will
5693 still accept LJM as a valid suffix for a reasonable
5694 amount of time, just to allow ourselves to debug programs
5695 compiled using an older version of GNAT. */
4c4b4cd2
PH
5696 if (strcmp (str + 3, "LJM") == 0)
5697 return 1;
5698 if (str[3] != 'X')
5699 return 0;
1265e4aa
JB
5700 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5701 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5702 return 1;
5703 if (str[4] == 'R' && str[5] != 'T')
5704 return 1;
5705 return 0;
5706 }
5707 if (!isdigit (str[2]))
5708 return 0;
5709 for (k = 3; str[k] != '\0'; k += 1)
5710 if (!isdigit (str[k]) && str[k] != '_')
5711 return 0;
14f9c5c9
AS
5712 return 1;
5713 }
4c4b4cd2 5714 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5715 {
4c4b4cd2
PH
5716 for (k = 2; str[k] != '\0'; k += 1)
5717 if (!isdigit (str[k]) && str[k] != '_')
5718 return 0;
14f9c5c9
AS
5719 return 1;
5720 }
5721 return 0;
5722}
d2e4a39e 5723
aeb5907d
JB
5724/* Return non-zero if the string starting at NAME and ending before
5725 NAME_END contains no capital letters. */
529cad9c
PH
5726
5727static int
5728is_valid_name_for_wild_match (const char *name0)
5729{
5730 const char *decoded_name = ada_decode (name0);
5731 int i;
5732
5823c3ef
JB
5733 /* If the decoded name starts with an angle bracket, it means that
5734 NAME0 does not follow the GNAT encoding format. It should then
5735 not be allowed as a possible wild match. */
5736 if (decoded_name[0] == '<')
5737 return 0;
5738
529cad9c
PH
5739 for (i=0; decoded_name[i] != '\0'; i++)
5740 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5741 return 0;
5742
5743 return 1;
5744}
5745
73589123
PH
5746/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5747 that could start a simple name. Assumes that *NAMEP points into
5748 the string beginning at NAME0. */
4c4b4cd2 5749
14f9c5c9 5750static int
73589123 5751advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5752{
73589123 5753 const char *name = *namep;
5b4ee69b 5754
5823c3ef 5755 while (1)
14f9c5c9 5756 {
aa27d0b3 5757 int t0, t1;
73589123
PH
5758
5759 t0 = *name;
5760 if (t0 == '_')
5761 {
5762 t1 = name[1];
5763 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5764 {
5765 name += 1;
5766 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5767 break;
5768 else
5769 name += 1;
5770 }
aa27d0b3
JB
5771 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5772 || name[2] == target0))
73589123
PH
5773 {
5774 name += 2;
5775 break;
5776 }
5777 else
5778 return 0;
5779 }
5780 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5781 name += 1;
5782 else
5823c3ef 5783 return 0;
73589123
PH
5784 }
5785
5786 *namep = name;
5787 return 1;
5788}
5789
5790/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5791 informational suffixes of NAME (i.e., for which is_name_suffix is
5792 true). Assumes that PATN is a lower-cased Ada simple name. */
5793
5794static int
5795wild_match (const char *name, const char *patn)
5796{
22e048c9 5797 const char *p;
73589123
PH
5798 const char *name0 = name;
5799
5800 while (1)
5801 {
5802 const char *match = name;
5803
5804 if (*name == *patn)
5805 {
5806 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5807 if (*p != *name)
5808 break;
5809 if (*p == '\0' && is_name_suffix (name))
5810 return match != name0 && !is_valid_name_for_wild_match (name0);
5811
5812 if (name[-1] == '_')
5813 name -= 1;
5814 }
5815 if (!advance_wild_match (&name, name0, *patn))
5816 return 1;
96d887e8 5817 }
96d887e8
PH
5818}
5819
40658b94
PH
5820/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5821 informational suffix. */
5822
c4d840bd
PH
5823static int
5824full_match (const char *sym_name, const char *search_name)
5825{
40658b94 5826 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5827}
5828
5829
96d887e8
PH
5830/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5831 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5832 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5833 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5834
5835static void
5836ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 5837 const struct block *block, const char *name,
96d887e8 5838 domain_enum domain, struct objfile *objfile,
2570f2b7 5839 int wild)
96d887e8 5840{
8157b174 5841 struct block_iterator iter;
96d887e8
PH
5842 int name_len = strlen (name);
5843 /* A matching argument symbol, if any. */
5844 struct symbol *arg_sym;
5845 /* Set true when we find a matching non-argument symbol. */
5846 int found_sym;
5847 struct symbol *sym;
5848
5849 arg_sym = NULL;
5850 found_sym = 0;
5851 if (wild)
5852 {
8157b174
TT
5853 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5854 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5855 {
4186eb54
KS
5856 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5857 SYMBOL_DOMAIN (sym), domain)
73589123 5858 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5859 {
2a2d4dc3
AS
5860 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5861 continue;
5862 else if (SYMBOL_IS_ARGUMENT (sym))
5863 arg_sym = sym;
5864 else
5865 {
76a01679
JB
5866 found_sym = 1;
5867 add_defn_to_vec (obstackp,
5868 fixup_symbol_section (sym, objfile),
2570f2b7 5869 block);
76a01679
JB
5870 }
5871 }
5872 }
96d887e8
PH
5873 }
5874 else
5875 {
8157b174
TT
5876 for (sym = block_iter_match_first (block, name, full_match, &iter);
5877 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5878 {
4186eb54
KS
5879 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5880 SYMBOL_DOMAIN (sym), domain))
76a01679 5881 {
c4d840bd
PH
5882 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5883 {
5884 if (SYMBOL_IS_ARGUMENT (sym))
5885 arg_sym = sym;
5886 else
2a2d4dc3 5887 {
c4d840bd
PH
5888 found_sym = 1;
5889 add_defn_to_vec (obstackp,
5890 fixup_symbol_section (sym, objfile),
5891 block);
2a2d4dc3 5892 }
c4d840bd 5893 }
76a01679
JB
5894 }
5895 }
96d887e8
PH
5896 }
5897
5898 if (!found_sym && arg_sym != NULL)
5899 {
76a01679
JB
5900 add_defn_to_vec (obstackp,
5901 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5902 block);
96d887e8
PH
5903 }
5904
5905 if (!wild)
5906 {
5907 arg_sym = NULL;
5908 found_sym = 0;
5909
5910 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5911 {
4186eb54
KS
5912 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5913 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5914 {
5915 int cmp;
5916
5917 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5918 if (cmp == 0)
5919 {
5920 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5921 if (cmp == 0)
5922 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5923 name_len);
5924 }
5925
5926 if (cmp == 0
5927 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5928 {
2a2d4dc3
AS
5929 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5930 {
5931 if (SYMBOL_IS_ARGUMENT (sym))
5932 arg_sym = sym;
5933 else
5934 {
5935 found_sym = 1;
5936 add_defn_to_vec (obstackp,
5937 fixup_symbol_section (sym, objfile),
5938 block);
5939 }
5940 }
76a01679
JB
5941 }
5942 }
76a01679 5943 }
96d887e8
PH
5944
5945 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5946 They aren't parameters, right? */
5947 if (!found_sym && arg_sym != NULL)
5948 {
5949 add_defn_to_vec (obstackp,
76a01679 5950 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5951 block);
96d887e8
PH
5952 }
5953 }
5954}
5955\f
41d27058
JB
5956
5957 /* Symbol Completion */
5958
5959/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5960 name in a form that's appropriate for the completion. The result
5961 does not need to be deallocated, but is only good until the next call.
5962
5963 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5964 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5965 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5966 in its encoded form. */
5967
5968static const char *
5969symbol_completion_match (const char *sym_name,
5970 const char *text, int text_len,
6ea35997 5971 int wild_match_p, int encoded_p)
41d27058 5972{
41d27058
JB
5973 const int verbatim_match = (text[0] == '<');
5974 int match = 0;
5975
5976 if (verbatim_match)
5977 {
5978 /* Strip the leading angle bracket. */
5979 text = text + 1;
5980 text_len--;
5981 }
5982
5983 /* First, test against the fully qualified name of the symbol. */
5984
5985 if (strncmp (sym_name, text, text_len) == 0)
5986 match = 1;
5987
6ea35997 5988 if (match && !encoded_p)
41d27058
JB
5989 {
5990 /* One needed check before declaring a positive match is to verify
5991 that iff we are doing a verbatim match, the decoded version
5992 of the symbol name starts with '<'. Otherwise, this symbol name
5993 is not a suitable completion. */
5994 const char *sym_name_copy = sym_name;
5995 int has_angle_bracket;
5996
5997 sym_name = ada_decode (sym_name);
5998 has_angle_bracket = (sym_name[0] == '<');
5999 match = (has_angle_bracket == verbatim_match);
6000 sym_name = sym_name_copy;
6001 }
6002
6003 if (match && !verbatim_match)
6004 {
6005 /* When doing non-verbatim match, another check that needs to
6006 be done is to verify that the potentially matching symbol name
6007 does not include capital letters, because the ada-mode would
6008 not be able to understand these symbol names without the
6009 angle bracket notation. */
6010 const char *tmp;
6011
6012 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6013 if (*tmp != '\0')
6014 match = 0;
6015 }
6016
6017 /* Second: Try wild matching... */
6018
e701b3c0 6019 if (!match && wild_match_p)
41d27058
JB
6020 {
6021 /* Since we are doing wild matching, this means that TEXT
6022 may represent an unqualified symbol name. We therefore must
6023 also compare TEXT against the unqualified name of the symbol. */
6024 sym_name = ada_unqualified_name (ada_decode (sym_name));
6025
6026 if (strncmp (sym_name, text, text_len) == 0)
6027 match = 1;
6028 }
6029
6030 /* Finally: If we found a mach, prepare the result to return. */
6031
6032 if (!match)
6033 return NULL;
6034
6035 if (verbatim_match)
6036 sym_name = add_angle_brackets (sym_name);
6037
6ea35997 6038 if (!encoded_p)
41d27058
JB
6039 sym_name = ada_decode (sym_name);
6040
6041 return sym_name;
6042}
6043
6044/* A companion function to ada_make_symbol_completion_list().
6045 Check if SYM_NAME represents a symbol which name would be suitable
6046 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6047 it is appended at the end of the given string vector SV.
6048
6049 ORIG_TEXT is the string original string from the user command
6050 that needs to be completed. WORD is the entire command on which
6051 completion should be performed. These two parameters are used to
6052 determine which part of the symbol name should be added to the
6053 completion vector.
c0af1706 6054 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6055 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6056 encoded formed (in which case the completion should also be
6057 encoded). */
6058
6059static void
d6565258 6060symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6061 const char *sym_name,
6062 const char *text, int text_len,
6063 const char *orig_text, const char *word,
cb8e9b97 6064 int wild_match_p, int encoded_p)
41d27058
JB
6065{
6066 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6067 wild_match_p, encoded_p);
41d27058
JB
6068 char *completion;
6069
6070 if (match == NULL)
6071 return;
6072
6073 /* We found a match, so add the appropriate completion to the given
6074 string vector. */
6075
6076 if (word == orig_text)
6077 {
6078 completion = xmalloc (strlen (match) + 5);
6079 strcpy (completion, match);
6080 }
6081 else if (word > orig_text)
6082 {
6083 /* Return some portion of sym_name. */
6084 completion = xmalloc (strlen (match) + 5);
6085 strcpy (completion, match + (word - orig_text));
6086 }
6087 else
6088 {
6089 /* Return some of ORIG_TEXT plus sym_name. */
6090 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6091 strncpy (completion, word, orig_text - word);
6092 completion[orig_text - word] = '\0';
6093 strcat (completion, match);
6094 }
6095
d6565258 6096 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6097}
6098
ccefe4c4 6099/* An object of this type is passed as the user_data argument to the
bb4142cf 6100 expand_symtabs_matching method. */
ccefe4c4
TT
6101struct add_partial_datum
6102{
6103 VEC(char_ptr) **completions;
6f937416 6104 const char *text;
ccefe4c4 6105 int text_len;
6f937416
PA
6106 const char *text0;
6107 const char *word;
ccefe4c4
TT
6108 int wild_match;
6109 int encoded;
6110};
6111
bb4142cf
DE
6112/* A callback for expand_symtabs_matching. */
6113
7b08b9eb 6114static int
bb4142cf 6115ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4
TT
6116{
6117 struct add_partial_datum *data = user_data;
7b08b9eb
JK
6118
6119 return symbol_completion_match (name, data->text, data->text_len,
6120 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6121}
6122
49c4e619
TT
6123/* Return a list of possible symbol names completing TEXT0. WORD is
6124 the entire command on which completion is made. */
41d27058 6125
49c4e619 6126static VEC (char_ptr) *
6f937416
PA
6127ada_make_symbol_completion_list (const char *text0, const char *word,
6128 enum type_code code)
41d27058
JB
6129{
6130 char *text;
6131 int text_len;
b1ed564a
JB
6132 int wild_match_p;
6133 int encoded_p;
2ba95b9b 6134 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
6135 struct symbol *sym;
6136 struct symtab *s;
41d27058
JB
6137 struct minimal_symbol *msymbol;
6138 struct objfile *objfile;
3977b71f 6139 const struct block *b, *surrounding_static_block = 0;
41d27058 6140 int i;
8157b174 6141 struct block_iterator iter;
b8fea896 6142 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6143
2f68a895
TT
6144 gdb_assert (code == TYPE_CODE_UNDEF);
6145
41d27058
JB
6146 if (text0[0] == '<')
6147 {
6148 text = xstrdup (text0);
6149 make_cleanup (xfree, text);
6150 text_len = strlen (text);
b1ed564a
JB
6151 wild_match_p = 0;
6152 encoded_p = 1;
41d27058
JB
6153 }
6154 else
6155 {
6156 text = xstrdup (ada_encode (text0));
6157 make_cleanup (xfree, text);
6158 text_len = strlen (text);
6159 for (i = 0; i < text_len; i++)
6160 text[i] = tolower (text[i]);
6161
b1ed564a 6162 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6163 /* If the name contains a ".", then the user is entering a fully
6164 qualified entity name, and the match must not be done in wild
6165 mode. Similarly, if the user wants to complete what looks like
6166 an encoded name, the match must not be done in wild mode. */
b1ed564a 6167 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6168 }
6169
6170 /* First, look at the partial symtab symbols. */
41d27058 6171 {
ccefe4c4
TT
6172 struct add_partial_datum data;
6173
6174 data.completions = &completions;
6175 data.text = text;
6176 data.text_len = text_len;
6177 data.text0 = text0;
6178 data.word = word;
b1ed564a
JB
6179 data.wild_match = wild_match_p;
6180 data.encoded = encoded_p;
bb4142cf
DE
6181 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6182 &data);
41d27058
JB
6183 }
6184
6185 /* At this point scan through the misc symbol vectors and add each
6186 symbol you find to the list. Eventually we want to ignore
6187 anything that isn't a text symbol (everything else will be
6188 handled by the psymtab code above). */
6189
6190 ALL_MSYMBOLS (objfile, msymbol)
6191 {
6192 QUIT;
efd66ac6 6193 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6194 text, text_len, text0, word, wild_match_p,
6195 encoded_p);
41d27058
JB
6196 }
6197
6198 /* Search upwards from currently selected frame (so that we can
6199 complete on local vars. */
6200
6201 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6202 {
6203 if (!BLOCK_SUPERBLOCK (b))
6204 surrounding_static_block = b; /* For elmin of dups */
6205
6206 ALL_BLOCK_SYMBOLS (b, iter, sym)
6207 {
d6565258 6208 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6209 text, text_len, text0, word,
b1ed564a 6210 wild_match_p, encoded_p);
41d27058
JB
6211 }
6212 }
6213
6214 /* Go through the symtabs and check the externs and statics for
6215 symbols which match. */
6216
6217 ALL_SYMTABS (objfile, s)
6218 {
6219 QUIT;
6220 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
6221 ALL_BLOCK_SYMBOLS (b, iter, sym)
6222 {
d6565258 6223 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6224 text, text_len, text0, word,
b1ed564a 6225 wild_match_p, encoded_p);
41d27058
JB
6226 }
6227 }
6228
6229 ALL_SYMTABS (objfile, s)
6230 {
6231 QUIT;
6232 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6233 /* Don't do this block twice. */
6234 if (b == surrounding_static_block)
6235 continue;
6236 ALL_BLOCK_SYMBOLS (b, iter, sym)
6237 {
d6565258 6238 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6239 text, text_len, text0, word,
b1ed564a 6240 wild_match_p, encoded_p);
41d27058
JB
6241 }
6242 }
6243
b8fea896 6244 do_cleanups (old_chain);
49c4e619 6245 return completions;
41d27058
JB
6246}
6247
963a6417 6248 /* Field Access */
96d887e8 6249
73fb9985
JB
6250/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6251 for tagged types. */
6252
6253static int
6254ada_is_dispatch_table_ptr_type (struct type *type)
6255{
0d5cff50 6256 const char *name;
73fb9985
JB
6257
6258 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6259 return 0;
6260
6261 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6262 if (name == NULL)
6263 return 0;
6264
6265 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6266}
6267
ac4a2da4
JG
6268/* Return non-zero if TYPE is an interface tag. */
6269
6270static int
6271ada_is_interface_tag (struct type *type)
6272{
6273 const char *name = TYPE_NAME (type);
6274
6275 if (name == NULL)
6276 return 0;
6277
6278 return (strcmp (name, "ada__tags__interface_tag") == 0);
6279}
6280
963a6417
PH
6281/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6282 to be invisible to users. */
96d887e8 6283
963a6417
PH
6284int
6285ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6286{
963a6417
PH
6287 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6288 return 1;
ffde82bf 6289
73fb9985
JB
6290 /* Check the name of that field. */
6291 {
6292 const char *name = TYPE_FIELD_NAME (type, field_num);
6293
6294 /* Anonymous field names should not be printed.
6295 brobecker/2007-02-20: I don't think this can actually happen
6296 but we don't want to print the value of annonymous fields anyway. */
6297 if (name == NULL)
6298 return 1;
6299
ffde82bf
JB
6300 /* Normally, fields whose name start with an underscore ("_")
6301 are fields that have been internally generated by the compiler,
6302 and thus should not be printed. The "_parent" field is special,
6303 however: This is a field internally generated by the compiler
6304 for tagged types, and it contains the components inherited from
6305 the parent type. This field should not be printed as is, but
6306 should not be ignored either. */
73fb9985
JB
6307 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6308 return 1;
6309 }
6310
ac4a2da4
JG
6311 /* If this is the dispatch table of a tagged type or an interface tag,
6312 then ignore. */
73fb9985 6313 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6314 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6315 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6316 return 1;
6317
6318 /* Not a special field, so it should not be ignored. */
6319 return 0;
963a6417 6320}
96d887e8 6321
963a6417 6322/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6323 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6324
963a6417
PH
6325int
6326ada_is_tagged_type (struct type *type, int refok)
6327{
6328 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6329}
96d887e8 6330
963a6417 6331/* True iff TYPE represents the type of X'Tag */
96d887e8 6332
963a6417
PH
6333int
6334ada_is_tag_type (struct type *type)
6335{
6336 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6337 return 0;
6338 else
96d887e8 6339 {
963a6417 6340 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6341
963a6417
PH
6342 return (name != NULL
6343 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6344 }
96d887e8
PH
6345}
6346
963a6417 6347/* The type of the tag on VAL. */
76a01679 6348
963a6417
PH
6349struct type *
6350ada_tag_type (struct value *val)
96d887e8 6351{
df407dfe 6352 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6353}
96d887e8 6354
b50d69b5
JG
6355/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6356 retired at Ada 05). */
6357
6358static int
6359is_ada95_tag (struct value *tag)
6360{
6361 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6362}
6363
963a6417 6364/* The value of the tag on VAL. */
96d887e8 6365
963a6417
PH
6366struct value *
6367ada_value_tag (struct value *val)
6368{
03ee6b2e 6369 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6370}
6371
963a6417
PH
6372/* The value of the tag on the object of type TYPE whose contents are
6373 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6374 ADDRESS. */
96d887e8 6375
963a6417 6376static struct value *
10a2c479 6377value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6378 const gdb_byte *valaddr,
963a6417 6379 CORE_ADDR address)
96d887e8 6380{
b5385fc0 6381 int tag_byte_offset;
963a6417 6382 struct type *tag_type;
5b4ee69b 6383
963a6417 6384 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6385 NULL, NULL, NULL))
96d887e8 6386 {
fc1a4b47 6387 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6388 ? NULL
6389 : valaddr + tag_byte_offset);
963a6417 6390 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6391
963a6417 6392 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6393 }
963a6417
PH
6394 return NULL;
6395}
96d887e8 6396
963a6417
PH
6397static struct type *
6398type_from_tag (struct value *tag)
6399{
6400 const char *type_name = ada_tag_name (tag);
5b4ee69b 6401
963a6417
PH
6402 if (type_name != NULL)
6403 return ada_find_any_type (ada_encode (type_name));
6404 return NULL;
6405}
96d887e8 6406
b50d69b5
JG
6407/* Given a value OBJ of a tagged type, return a value of this
6408 type at the base address of the object. The base address, as
6409 defined in Ada.Tags, it is the address of the primary tag of
6410 the object, and therefore where the field values of its full
6411 view can be fetched. */
6412
6413struct value *
6414ada_tag_value_at_base_address (struct value *obj)
6415{
6416 volatile struct gdb_exception e;
6417 struct value *val;
6418 LONGEST offset_to_top = 0;
6419 struct type *ptr_type, *obj_type;
6420 struct value *tag;
6421 CORE_ADDR base_address;
6422
6423 obj_type = value_type (obj);
6424
6425 /* It is the responsability of the caller to deref pointers. */
6426
6427 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6428 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6429 return obj;
6430
6431 tag = ada_value_tag (obj);
6432 if (!tag)
6433 return obj;
6434
6435 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6436
6437 if (is_ada95_tag (tag))
6438 return obj;
6439
6440 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6441 ptr_type = lookup_pointer_type (ptr_type);
6442 val = value_cast (ptr_type, tag);
6443 if (!val)
6444 return obj;
6445
6446 /* It is perfectly possible that an exception be raised while
6447 trying to determine the base address, just like for the tag;
6448 see ada_tag_name for more details. We do not print the error
6449 message for the same reason. */
6450
6451 TRY_CATCH (e, RETURN_MASK_ERROR)
6452 {
6453 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6454 }
6455
6456 if (e.reason < 0)
6457 return obj;
6458
6459 /* If offset is null, nothing to do. */
6460
6461 if (offset_to_top == 0)
6462 return obj;
6463
6464 /* -1 is a special case in Ada.Tags; however, what should be done
6465 is not quite clear from the documentation. So do nothing for
6466 now. */
6467
6468 if (offset_to_top == -1)
6469 return obj;
6470
6471 base_address = value_address (obj) - offset_to_top;
6472 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6473
6474 /* Make sure that we have a proper tag at the new address.
6475 Otherwise, offset_to_top is bogus (which can happen when
6476 the object is not initialized yet). */
6477
6478 if (!tag)
6479 return obj;
6480
6481 obj_type = type_from_tag (tag);
6482
6483 if (!obj_type)
6484 return obj;
6485
6486 return value_from_contents_and_address (obj_type, NULL, base_address);
6487}
6488
1b611343
JB
6489/* Return the "ada__tags__type_specific_data" type. */
6490
6491static struct type *
6492ada_get_tsd_type (struct inferior *inf)
963a6417 6493{
1b611343 6494 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6495
1b611343
JB
6496 if (data->tsd_type == 0)
6497 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6498 return data->tsd_type;
6499}
529cad9c 6500
1b611343
JB
6501/* Return the TSD (type-specific data) associated to the given TAG.
6502 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6503
1b611343 6504 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6505
1b611343
JB
6506static struct value *
6507ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6508{
4c4b4cd2 6509 struct value *val;
1b611343 6510 struct type *type;
5b4ee69b 6511
1b611343
JB
6512 /* First option: The TSD is simply stored as a field of our TAG.
6513 Only older versions of GNAT would use this format, but we have
6514 to test it first, because there are no visible markers for
6515 the current approach except the absence of that field. */
529cad9c 6516
1b611343
JB
6517 val = ada_value_struct_elt (tag, "tsd", 1);
6518 if (val)
6519 return val;
e802dbe0 6520
1b611343
JB
6521 /* Try the second representation for the dispatch table (in which
6522 there is no explicit 'tsd' field in the referent of the tag pointer,
6523 and instead the tsd pointer is stored just before the dispatch
6524 table. */
e802dbe0 6525
1b611343
JB
6526 type = ada_get_tsd_type (current_inferior());
6527 if (type == NULL)
6528 return NULL;
6529 type = lookup_pointer_type (lookup_pointer_type (type));
6530 val = value_cast (type, tag);
6531 if (val == NULL)
6532 return NULL;
6533 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6534}
6535
1b611343
JB
6536/* Given the TSD of a tag (type-specific data), return a string
6537 containing the name of the associated type.
6538
6539 The returned value is good until the next call. May return NULL
6540 if we are unable to determine the tag name. */
6541
6542static char *
6543ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6544{
529cad9c
PH
6545 static char name[1024];
6546 char *p;
1b611343 6547 struct value *val;
529cad9c 6548
1b611343 6549 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6550 if (val == NULL)
1b611343 6551 return NULL;
4c4b4cd2
PH
6552 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6553 for (p = name; *p != '\0'; p += 1)
6554 if (isalpha (*p))
6555 *p = tolower (*p);
1b611343 6556 return name;
4c4b4cd2
PH
6557}
6558
6559/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6560 a C string.
6561
6562 Return NULL if the TAG is not an Ada tag, or if we were unable to
6563 determine the name of that tag. The result is good until the next
6564 call. */
4c4b4cd2
PH
6565
6566const char *
6567ada_tag_name (struct value *tag)
6568{
1b611343
JB
6569 volatile struct gdb_exception e;
6570 char *name = NULL;
5b4ee69b 6571
df407dfe 6572 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6573 return NULL;
1b611343
JB
6574
6575 /* It is perfectly possible that an exception be raised while trying
6576 to determine the TAG's name, even under normal circumstances:
6577 The associated variable may be uninitialized or corrupted, for
6578 instance. We do not let any exception propagate past this point.
6579 instead we return NULL.
6580
6581 We also do not print the error message either (which often is very
6582 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6583 the caller print a more meaningful message if necessary. */
6584 TRY_CATCH (e, RETURN_MASK_ERROR)
6585 {
6586 struct value *tsd = ada_get_tsd_from_tag (tag);
6587
6588 if (tsd != NULL)
6589 name = ada_tag_name_from_tsd (tsd);
6590 }
6591
6592 return name;
4c4b4cd2
PH
6593}
6594
6595/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6596
d2e4a39e 6597struct type *
ebf56fd3 6598ada_parent_type (struct type *type)
14f9c5c9
AS
6599{
6600 int i;
6601
61ee279c 6602 type = ada_check_typedef (type);
14f9c5c9
AS
6603
6604 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6605 return NULL;
6606
6607 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6608 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6609 {
6610 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6611
6612 /* If the _parent field is a pointer, then dereference it. */
6613 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6614 parent_type = TYPE_TARGET_TYPE (parent_type);
6615 /* If there is a parallel XVS type, get the actual base type. */
6616 parent_type = ada_get_base_type (parent_type);
6617
6618 return ada_check_typedef (parent_type);
6619 }
14f9c5c9
AS
6620
6621 return NULL;
6622}
6623
4c4b4cd2
PH
6624/* True iff field number FIELD_NUM of structure type TYPE contains the
6625 parent-type (inherited) fields of a derived type. Assumes TYPE is
6626 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6627
6628int
ebf56fd3 6629ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6630{
61ee279c 6631 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6632
4c4b4cd2
PH
6633 return (name != NULL
6634 && (strncmp (name, "PARENT", 6) == 0
6635 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6636}
6637
4c4b4cd2 6638/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6639 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6640 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6641 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6642 structures. */
14f9c5c9
AS
6643
6644int
ebf56fd3 6645ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6646{
d2e4a39e 6647 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6648
d2e4a39e 6649 return (name != NULL
4c4b4cd2
PH
6650 && (strncmp (name, "PARENT", 6) == 0
6651 || strcmp (name, "REP") == 0
6652 || strncmp (name, "_parent", 7) == 0
6653 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6654}
6655
4c4b4cd2
PH
6656/* True iff field number FIELD_NUM of structure or union type TYPE
6657 is a variant wrapper. Assumes TYPE is a structure type with at least
6658 FIELD_NUM+1 fields. */
14f9c5c9
AS
6659
6660int
ebf56fd3 6661ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6662{
d2e4a39e 6663 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6664
14f9c5c9 6665 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6666 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6667 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6668 == TYPE_CODE_UNION)));
14f9c5c9
AS
6669}
6670
6671/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6672 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6673 returns the type of the controlling discriminant for the variant.
6674 May return NULL if the type could not be found. */
14f9c5c9 6675
d2e4a39e 6676struct type *
ebf56fd3 6677ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6678{
d2e4a39e 6679 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6680
7c964f07 6681 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6682}
6683
4c4b4cd2 6684/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6685 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6686 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6687
6688int
ebf56fd3 6689ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6690{
d2e4a39e 6691 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6692
14f9c5c9
AS
6693 return (name != NULL && name[0] == 'O');
6694}
6695
6696/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6697 returns the name of the discriminant controlling the variant.
6698 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6699
d2e4a39e 6700char *
ebf56fd3 6701ada_variant_discrim_name (struct type *type0)
14f9c5c9 6702{
d2e4a39e 6703 static char *result = NULL;
14f9c5c9 6704 static size_t result_len = 0;
d2e4a39e
AS
6705 struct type *type;
6706 const char *name;
6707 const char *discrim_end;
6708 const char *discrim_start;
14f9c5c9
AS
6709
6710 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6711 type = TYPE_TARGET_TYPE (type0);
6712 else
6713 type = type0;
6714
6715 name = ada_type_name (type);
6716
6717 if (name == NULL || name[0] == '\000')
6718 return "";
6719
6720 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6721 discrim_end -= 1)
6722 {
4c4b4cd2
PH
6723 if (strncmp (discrim_end, "___XVN", 6) == 0)
6724 break;
14f9c5c9
AS
6725 }
6726 if (discrim_end == name)
6727 return "";
6728
d2e4a39e 6729 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6730 discrim_start -= 1)
6731 {
d2e4a39e 6732 if (discrim_start == name + 1)
4c4b4cd2 6733 return "";
76a01679 6734 if ((discrim_start > name + 3
4c4b4cd2
PH
6735 && strncmp (discrim_start - 3, "___", 3) == 0)
6736 || discrim_start[-1] == '.')
6737 break;
14f9c5c9
AS
6738 }
6739
6740 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6741 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6742 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6743 return result;
6744}
6745
4c4b4cd2
PH
6746/* Scan STR for a subtype-encoded number, beginning at position K.
6747 Put the position of the character just past the number scanned in
6748 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6749 Return 1 if there was a valid number at the given position, and 0
6750 otherwise. A "subtype-encoded" number consists of the absolute value
6751 in decimal, followed by the letter 'm' to indicate a negative number.
6752 Assumes 0m does not occur. */
14f9c5c9
AS
6753
6754int
d2e4a39e 6755ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6756{
6757 ULONGEST RU;
6758
d2e4a39e 6759 if (!isdigit (str[k]))
14f9c5c9
AS
6760 return 0;
6761
4c4b4cd2 6762 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6763 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6764 LONGEST. */
14f9c5c9
AS
6765 RU = 0;
6766 while (isdigit (str[k]))
6767 {
d2e4a39e 6768 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6769 k += 1;
6770 }
6771
d2e4a39e 6772 if (str[k] == 'm')
14f9c5c9
AS
6773 {
6774 if (R != NULL)
4c4b4cd2 6775 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6776 k += 1;
6777 }
6778 else if (R != NULL)
6779 *R = (LONGEST) RU;
6780
4c4b4cd2 6781 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6782 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6783 number representable as a LONGEST (although either would probably work
6784 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6785 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6786
6787 if (new_k != NULL)
6788 *new_k = k;
6789 return 1;
6790}
6791
4c4b4cd2
PH
6792/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6793 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6794 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6795
d2e4a39e 6796int
ebf56fd3 6797ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6798{
d2e4a39e 6799 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6800 int p;
6801
6802 p = 0;
6803 while (1)
6804 {
d2e4a39e 6805 switch (name[p])
4c4b4cd2
PH
6806 {
6807 case '\0':
6808 return 0;
6809 case 'S':
6810 {
6811 LONGEST W;
5b4ee69b 6812
4c4b4cd2
PH
6813 if (!ada_scan_number (name, p + 1, &W, &p))
6814 return 0;
6815 if (val == W)
6816 return 1;
6817 break;
6818 }
6819 case 'R':
6820 {
6821 LONGEST L, U;
5b4ee69b 6822
4c4b4cd2
PH
6823 if (!ada_scan_number (name, p + 1, &L, &p)
6824 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6825 return 0;
6826 if (val >= L && val <= U)
6827 return 1;
6828 break;
6829 }
6830 case 'O':
6831 return 1;
6832 default:
6833 return 0;
6834 }
6835 }
6836}
6837
0963b4bd 6838/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6839
6840/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6841 ARG_TYPE, extract and return the value of one of its (non-static)
6842 fields. FIELDNO says which field. Differs from value_primitive_field
6843 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6844
4c4b4cd2 6845static struct value *
d2e4a39e 6846ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6847 struct type *arg_type)
14f9c5c9 6848{
14f9c5c9
AS
6849 struct type *type;
6850
61ee279c 6851 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6852 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6853
4c4b4cd2 6854 /* Handle packed fields. */
14f9c5c9
AS
6855
6856 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6857 {
6858 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6859 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6860
0fd88904 6861 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6862 offset + bit_pos / 8,
6863 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6864 }
6865 else
6866 return value_primitive_field (arg1, offset, fieldno, arg_type);
6867}
6868
52ce6436
PH
6869/* Find field with name NAME in object of type TYPE. If found,
6870 set the following for each argument that is non-null:
6871 - *FIELD_TYPE_P to the field's type;
6872 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6873 an object of that type;
6874 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6875 - *BIT_SIZE_P to its size in bits if the field is packed, and
6876 0 otherwise;
6877 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6878 fields up to but not including the desired field, or by the total
6879 number of fields if not found. A NULL value of NAME never
6880 matches; the function just counts visible fields in this case.
6881
0963b4bd 6882 Returns 1 if found, 0 otherwise. */
52ce6436 6883
4c4b4cd2 6884static int
0d5cff50 6885find_struct_field (const char *name, struct type *type, int offset,
76a01679 6886 struct type **field_type_p,
52ce6436
PH
6887 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6888 int *index_p)
4c4b4cd2
PH
6889{
6890 int i;
6891
61ee279c 6892 type = ada_check_typedef (type);
76a01679 6893
52ce6436
PH
6894 if (field_type_p != NULL)
6895 *field_type_p = NULL;
6896 if (byte_offset_p != NULL)
d5d6fca5 6897 *byte_offset_p = 0;
52ce6436
PH
6898 if (bit_offset_p != NULL)
6899 *bit_offset_p = 0;
6900 if (bit_size_p != NULL)
6901 *bit_size_p = 0;
6902
6903 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6904 {
6905 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6906 int fld_offset = offset + bit_pos / 8;
0d5cff50 6907 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6908
4c4b4cd2
PH
6909 if (t_field_name == NULL)
6910 continue;
6911
52ce6436 6912 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6913 {
6914 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6915
52ce6436
PH
6916 if (field_type_p != NULL)
6917 *field_type_p = TYPE_FIELD_TYPE (type, i);
6918 if (byte_offset_p != NULL)
6919 *byte_offset_p = fld_offset;
6920 if (bit_offset_p != NULL)
6921 *bit_offset_p = bit_pos % 8;
6922 if (bit_size_p != NULL)
6923 *bit_size_p = bit_size;
76a01679
JB
6924 return 1;
6925 }
4c4b4cd2
PH
6926 else if (ada_is_wrapper_field (type, i))
6927 {
52ce6436
PH
6928 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6929 field_type_p, byte_offset_p, bit_offset_p,
6930 bit_size_p, index_p))
76a01679
JB
6931 return 1;
6932 }
4c4b4cd2
PH
6933 else if (ada_is_variant_part (type, i))
6934 {
52ce6436
PH
6935 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6936 fixed type?? */
4c4b4cd2 6937 int j;
52ce6436
PH
6938 struct type *field_type
6939 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6940
52ce6436 6941 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6942 {
76a01679
JB
6943 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6944 fld_offset
6945 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6946 field_type_p, byte_offset_p,
52ce6436 6947 bit_offset_p, bit_size_p, index_p))
76a01679 6948 return 1;
4c4b4cd2
PH
6949 }
6950 }
52ce6436
PH
6951 else if (index_p != NULL)
6952 *index_p += 1;
4c4b4cd2
PH
6953 }
6954 return 0;
6955}
6956
0963b4bd 6957/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6958
52ce6436
PH
6959static int
6960num_visible_fields (struct type *type)
6961{
6962 int n;
5b4ee69b 6963
52ce6436
PH
6964 n = 0;
6965 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6966 return n;
6967}
14f9c5c9 6968
4c4b4cd2 6969/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6970 and search in it assuming it has (class) type TYPE.
6971 If found, return value, else return NULL.
6972
4c4b4cd2 6973 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6974
4c4b4cd2 6975static struct value *
d2e4a39e 6976ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6977 struct type *type)
14f9c5c9
AS
6978{
6979 int i;
14f9c5c9 6980
5b4ee69b 6981 type = ada_check_typedef (type);
52ce6436 6982 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6983 {
0d5cff50 6984 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6985
6986 if (t_field_name == NULL)
4c4b4cd2 6987 continue;
14f9c5c9
AS
6988
6989 else if (field_name_match (t_field_name, name))
4c4b4cd2 6990 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6991
6992 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6993 {
0963b4bd 6994 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6995 ada_search_struct_field (name, arg,
6996 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6997 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6998
4c4b4cd2
PH
6999 if (v != NULL)
7000 return v;
7001 }
14f9c5c9
AS
7002
7003 else if (ada_is_variant_part (type, i))
4c4b4cd2 7004 {
0963b4bd 7005 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7006 int j;
5b4ee69b
MS
7007 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7008 i));
4c4b4cd2
PH
7009 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7010
52ce6436 7011 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7012 {
0963b4bd
MS
7013 struct value *v = ada_search_struct_field /* Force line
7014 break. */
06d5cf63
JB
7015 (name, arg,
7016 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7017 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7018
4c4b4cd2
PH
7019 if (v != NULL)
7020 return v;
7021 }
7022 }
14f9c5c9
AS
7023 }
7024 return NULL;
7025}
d2e4a39e 7026
52ce6436
PH
7027static struct value *ada_index_struct_field_1 (int *, struct value *,
7028 int, struct type *);
7029
7030
7031/* Return field #INDEX in ARG, where the index is that returned by
7032 * find_struct_field through its INDEX_P argument. Adjust the address
7033 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7034 * If found, return value, else return NULL. */
52ce6436
PH
7035
7036static struct value *
7037ada_index_struct_field (int index, struct value *arg, int offset,
7038 struct type *type)
7039{
7040 return ada_index_struct_field_1 (&index, arg, offset, type);
7041}
7042
7043
7044/* Auxiliary function for ada_index_struct_field. Like
7045 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7046 * *INDEX_P. */
52ce6436
PH
7047
7048static struct value *
7049ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7050 struct type *type)
7051{
7052 int i;
7053 type = ada_check_typedef (type);
7054
7055 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7056 {
7057 if (TYPE_FIELD_NAME (type, i) == NULL)
7058 continue;
7059 else if (ada_is_wrapper_field (type, i))
7060 {
0963b4bd 7061 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7062 ada_index_struct_field_1 (index_p, arg,
7063 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7064 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7065
52ce6436
PH
7066 if (v != NULL)
7067 return v;
7068 }
7069
7070 else if (ada_is_variant_part (type, i))
7071 {
7072 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7073 find_struct_field. */
52ce6436
PH
7074 error (_("Cannot assign this kind of variant record"));
7075 }
7076 else if (*index_p == 0)
7077 return ada_value_primitive_field (arg, offset, i, type);
7078 else
7079 *index_p -= 1;
7080 }
7081 return NULL;
7082}
7083
4c4b4cd2
PH
7084/* Given ARG, a value of type (pointer or reference to a)*
7085 structure/union, extract the component named NAME from the ultimate
7086 target structure/union and return it as a value with its
f5938064 7087 appropriate type.
14f9c5c9 7088
4c4b4cd2
PH
7089 The routine searches for NAME among all members of the structure itself
7090 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7091 (e.g., '_parent').
7092
03ee6b2e
PH
7093 If NO_ERR, then simply return NULL in case of error, rather than
7094 calling error. */
14f9c5c9 7095
d2e4a39e 7096struct value *
03ee6b2e 7097ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7098{
4c4b4cd2 7099 struct type *t, *t1;
d2e4a39e 7100 struct value *v;
14f9c5c9 7101
4c4b4cd2 7102 v = NULL;
df407dfe 7103 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7104 if (TYPE_CODE (t) == TYPE_CODE_REF)
7105 {
7106 t1 = TYPE_TARGET_TYPE (t);
7107 if (t1 == NULL)
03ee6b2e 7108 goto BadValue;
61ee279c 7109 t1 = ada_check_typedef (t1);
4c4b4cd2 7110 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7111 {
994b9211 7112 arg = coerce_ref (arg);
76a01679
JB
7113 t = t1;
7114 }
4c4b4cd2 7115 }
14f9c5c9 7116
4c4b4cd2
PH
7117 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7118 {
7119 t1 = TYPE_TARGET_TYPE (t);
7120 if (t1 == NULL)
03ee6b2e 7121 goto BadValue;
61ee279c 7122 t1 = ada_check_typedef (t1);
4c4b4cd2 7123 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7124 {
7125 arg = value_ind (arg);
7126 t = t1;
7127 }
4c4b4cd2 7128 else
76a01679 7129 break;
4c4b4cd2 7130 }
14f9c5c9 7131
4c4b4cd2 7132 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7133 goto BadValue;
14f9c5c9 7134
4c4b4cd2
PH
7135 if (t1 == t)
7136 v = ada_search_struct_field (name, arg, 0, t);
7137 else
7138 {
7139 int bit_offset, bit_size, byte_offset;
7140 struct type *field_type;
7141 CORE_ADDR address;
7142
76a01679 7143 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7144 address = value_address (ada_value_ind (arg));
4c4b4cd2 7145 else
b50d69b5 7146 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7147
1ed6ede0 7148 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7149 if (find_struct_field (name, t1, 0,
7150 &field_type, &byte_offset, &bit_offset,
52ce6436 7151 &bit_size, NULL))
76a01679
JB
7152 {
7153 if (bit_size != 0)
7154 {
714e53ab
PH
7155 if (TYPE_CODE (t) == TYPE_CODE_REF)
7156 arg = ada_coerce_ref (arg);
7157 else
7158 arg = ada_value_ind (arg);
76a01679
JB
7159 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7160 bit_offset, bit_size,
7161 field_type);
7162 }
7163 else
f5938064 7164 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7165 }
7166 }
7167
03ee6b2e
PH
7168 if (v != NULL || no_err)
7169 return v;
7170 else
323e0a4a 7171 error (_("There is no member named %s."), name);
14f9c5c9 7172
03ee6b2e
PH
7173 BadValue:
7174 if (no_err)
7175 return NULL;
7176 else
0963b4bd
MS
7177 error (_("Attempt to extract a component of "
7178 "a value that is not a record."));
14f9c5c9
AS
7179}
7180
7181/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7182 If DISPP is non-null, add its byte displacement from the beginning of a
7183 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7184 work for packed fields).
7185
7186 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7187 followed by "___".
14f9c5c9 7188
0963b4bd 7189 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7190 be a (pointer or reference)+ to a struct or union, and the
7191 ultimate target type will be searched.
14f9c5c9
AS
7192
7193 Looks recursively into variant clauses and parent types.
7194
4c4b4cd2
PH
7195 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7196 TYPE is not a type of the right kind. */
14f9c5c9 7197
4c4b4cd2 7198static struct type *
76a01679
JB
7199ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7200 int noerr, int *dispp)
14f9c5c9
AS
7201{
7202 int i;
7203
7204 if (name == NULL)
7205 goto BadName;
7206
76a01679 7207 if (refok && type != NULL)
4c4b4cd2
PH
7208 while (1)
7209 {
61ee279c 7210 type = ada_check_typedef (type);
76a01679
JB
7211 if (TYPE_CODE (type) != TYPE_CODE_PTR
7212 && TYPE_CODE (type) != TYPE_CODE_REF)
7213 break;
7214 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7215 }
14f9c5c9 7216
76a01679 7217 if (type == NULL
1265e4aa
JB
7218 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7219 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7220 {
4c4b4cd2 7221 if (noerr)
76a01679 7222 return NULL;
4c4b4cd2 7223 else
76a01679
JB
7224 {
7225 target_terminal_ours ();
7226 gdb_flush (gdb_stdout);
323e0a4a
AC
7227 if (type == NULL)
7228 error (_("Type (null) is not a structure or union type"));
7229 else
7230 {
7231 /* XXX: type_sprint */
7232 fprintf_unfiltered (gdb_stderr, _("Type "));
7233 type_print (type, "", gdb_stderr, -1);
7234 error (_(" is not a structure or union type"));
7235 }
76a01679 7236 }
14f9c5c9
AS
7237 }
7238
7239 type = to_static_fixed_type (type);
7240
7241 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7242 {
0d5cff50 7243 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7244 struct type *t;
7245 int disp;
d2e4a39e 7246
14f9c5c9 7247 if (t_field_name == NULL)
4c4b4cd2 7248 continue;
14f9c5c9
AS
7249
7250 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7251 {
7252 if (dispp != NULL)
7253 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 7254 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7255 }
14f9c5c9
AS
7256
7257 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7258 {
7259 disp = 0;
7260 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7261 0, 1, &disp);
7262 if (t != NULL)
7263 {
7264 if (dispp != NULL)
7265 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7266 return t;
7267 }
7268 }
14f9c5c9
AS
7269
7270 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7271 {
7272 int j;
5b4ee69b
MS
7273 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7274 i));
4c4b4cd2
PH
7275
7276 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7277 {
b1f33ddd
JB
7278 /* FIXME pnh 2008/01/26: We check for a field that is
7279 NOT wrapped in a struct, since the compiler sometimes
7280 generates these for unchecked variant types. Revisit
0963b4bd 7281 if the compiler changes this practice. */
0d5cff50 7282 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7283 disp = 0;
b1f33ddd
JB
7284 if (v_field_name != NULL
7285 && field_name_match (v_field_name, name))
7286 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7287 else
0963b4bd
MS
7288 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7289 j),
b1f33ddd
JB
7290 name, 0, 1, &disp);
7291
4c4b4cd2
PH
7292 if (t != NULL)
7293 {
7294 if (dispp != NULL)
7295 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7296 return t;
7297 }
7298 }
7299 }
14f9c5c9
AS
7300
7301 }
7302
7303BadName:
d2e4a39e 7304 if (!noerr)
14f9c5c9
AS
7305 {
7306 target_terminal_ours ();
7307 gdb_flush (gdb_stdout);
323e0a4a
AC
7308 if (name == NULL)
7309 {
7310 /* XXX: type_sprint */
7311 fprintf_unfiltered (gdb_stderr, _("Type "));
7312 type_print (type, "", gdb_stderr, -1);
7313 error (_(" has no component named <null>"));
7314 }
7315 else
7316 {
7317 /* XXX: type_sprint */
7318 fprintf_unfiltered (gdb_stderr, _("Type "));
7319 type_print (type, "", gdb_stderr, -1);
7320 error (_(" has no component named %s"), name);
7321 }
14f9c5c9
AS
7322 }
7323
7324 return NULL;
7325}
7326
b1f33ddd
JB
7327/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7328 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7329 represents an unchecked union (that is, the variant part of a
0963b4bd 7330 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7331
7332static int
7333is_unchecked_variant (struct type *var_type, struct type *outer_type)
7334{
7335 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7336
b1f33ddd
JB
7337 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7338 == NULL);
7339}
7340
7341
14f9c5c9
AS
7342/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7343 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7344 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7345 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7346
d2e4a39e 7347int
ebf56fd3 7348ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7349 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7350{
7351 int others_clause;
7352 int i;
d2e4a39e 7353 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7354 struct value *outer;
7355 struct value *discrim;
14f9c5c9
AS
7356 LONGEST discrim_val;
7357
012370f6
TT
7358 /* Using plain value_from_contents_and_address here causes problems
7359 because we will end up trying to resolve a type that is currently
7360 being constructed. */
7361 outer = value_from_contents_and_address_unresolved (outer_type,
7362 outer_valaddr, 0);
0c281816
JB
7363 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7364 if (discrim == NULL)
14f9c5c9 7365 return -1;
0c281816 7366 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7367
7368 others_clause = -1;
7369 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7370 {
7371 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7372 others_clause = i;
14f9c5c9 7373 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7374 return i;
14f9c5c9
AS
7375 }
7376
7377 return others_clause;
7378}
d2e4a39e 7379\f
14f9c5c9
AS
7380
7381
4c4b4cd2 7382 /* Dynamic-Sized Records */
14f9c5c9
AS
7383
7384/* Strategy: The type ostensibly attached to a value with dynamic size
7385 (i.e., a size that is not statically recorded in the debugging
7386 data) does not accurately reflect the size or layout of the value.
7387 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7388 conventional types that are constructed on the fly. */
14f9c5c9
AS
7389
7390/* There is a subtle and tricky problem here. In general, we cannot
7391 determine the size of dynamic records without its data. However,
7392 the 'struct value' data structure, which GDB uses to represent
7393 quantities in the inferior process (the target), requires the size
7394 of the type at the time of its allocation in order to reserve space
7395 for GDB's internal copy of the data. That's why the
7396 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7397 rather than struct value*s.
14f9c5c9
AS
7398
7399 However, GDB's internal history variables ($1, $2, etc.) are
7400 struct value*s containing internal copies of the data that are not, in
7401 general, the same as the data at their corresponding addresses in
7402 the target. Fortunately, the types we give to these values are all
7403 conventional, fixed-size types (as per the strategy described
7404 above), so that we don't usually have to perform the
7405 'to_fixed_xxx_type' conversions to look at their values.
7406 Unfortunately, there is one exception: if one of the internal
7407 history variables is an array whose elements are unconstrained
7408 records, then we will need to create distinct fixed types for each
7409 element selected. */
7410
7411/* The upshot of all of this is that many routines take a (type, host
7412 address, target address) triple as arguments to represent a value.
7413 The host address, if non-null, is supposed to contain an internal
7414 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7415 target at the target address. */
14f9c5c9
AS
7416
7417/* Assuming that VAL0 represents a pointer value, the result of
7418 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7419 dynamic-sized types. */
14f9c5c9 7420
d2e4a39e
AS
7421struct value *
7422ada_value_ind (struct value *val0)
14f9c5c9 7423{
c48db5ca 7424 struct value *val = value_ind (val0);
5b4ee69b 7425
b50d69b5
JG
7426 if (ada_is_tagged_type (value_type (val), 0))
7427 val = ada_tag_value_at_base_address (val);
7428
4c4b4cd2 7429 return ada_to_fixed_value (val);
14f9c5c9
AS
7430}
7431
7432/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7433 qualifiers on VAL0. */
7434
d2e4a39e
AS
7435static struct value *
7436ada_coerce_ref (struct value *val0)
7437{
df407dfe 7438 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7439 {
7440 struct value *val = val0;
5b4ee69b 7441
994b9211 7442 val = coerce_ref (val);
b50d69b5
JG
7443
7444 if (ada_is_tagged_type (value_type (val), 0))
7445 val = ada_tag_value_at_base_address (val);
7446
4c4b4cd2 7447 return ada_to_fixed_value (val);
d2e4a39e
AS
7448 }
7449 else
14f9c5c9
AS
7450 return val0;
7451}
7452
7453/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7454 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7455
7456static unsigned int
ebf56fd3 7457align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7458{
7459 return (off + alignment - 1) & ~(alignment - 1);
7460}
7461
4c4b4cd2 7462/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7463
7464static unsigned int
ebf56fd3 7465field_alignment (struct type *type, int f)
14f9c5c9 7466{
d2e4a39e 7467 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7468 int len;
14f9c5c9
AS
7469 int align_offset;
7470
64a1bf19
JB
7471 /* The field name should never be null, unless the debugging information
7472 is somehow malformed. In this case, we assume the field does not
7473 require any alignment. */
7474 if (name == NULL)
7475 return 1;
7476
7477 len = strlen (name);
7478
4c4b4cd2
PH
7479 if (!isdigit (name[len - 1]))
7480 return 1;
14f9c5c9 7481
d2e4a39e 7482 if (isdigit (name[len - 2]))
14f9c5c9
AS
7483 align_offset = len - 2;
7484 else
7485 align_offset = len - 1;
7486
4c4b4cd2 7487 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7488 return TARGET_CHAR_BIT;
7489
4c4b4cd2
PH
7490 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7491}
7492
852dff6c 7493/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7494
852dff6c
JB
7495static struct symbol *
7496ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7497{
7498 struct symbol *sym;
7499
7500 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7501 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7502 return sym;
7503
4186eb54
KS
7504 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7505 return sym;
14f9c5c9
AS
7506}
7507
dddfab26
UW
7508/* Find a type named NAME. Ignores ambiguity. This routine will look
7509 solely for types defined by debug info, it will not search the GDB
7510 primitive types. */
4c4b4cd2 7511
852dff6c 7512static struct type *
ebf56fd3 7513ada_find_any_type (const char *name)
14f9c5c9 7514{
852dff6c 7515 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7516
14f9c5c9 7517 if (sym != NULL)
dddfab26 7518 return SYMBOL_TYPE (sym);
14f9c5c9 7519
dddfab26 7520 return NULL;
14f9c5c9
AS
7521}
7522
739593e0
JB
7523/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7524 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7525 symbol, in which case it is returned. Otherwise, this looks for
7526 symbols whose name is that of NAME_SYM suffixed with "___XR".
7527 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7528
7529struct symbol *
270140bd 7530ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7531{
739593e0 7532 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7533 struct symbol *sym;
7534
739593e0
JB
7535 if (strstr (name, "___XR") != NULL)
7536 return name_sym;
7537
aeb5907d
JB
7538 sym = find_old_style_renaming_symbol (name, block);
7539
7540 if (sym != NULL)
7541 return sym;
7542
0963b4bd 7543 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7544 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7545 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7546 return sym;
7547 else
7548 return NULL;
7549}
7550
7551static struct symbol *
270140bd 7552find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7553{
7f0df278 7554 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7555 char *rename;
7556
7557 if (function_sym != NULL)
7558 {
7559 /* If the symbol is defined inside a function, NAME is not fully
7560 qualified. This means we need to prepend the function name
7561 as well as adding the ``___XR'' suffix to build the name of
7562 the associated renaming symbol. */
0d5cff50 7563 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7564 /* Function names sometimes contain suffixes used
7565 for instance to qualify nested subprograms. When building
7566 the XR type name, we need to make sure that this suffix is
7567 not included. So do not include any suffix in the function
7568 name length below. */
69fadcdf 7569 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7570 const int rename_len = function_name_len + 2 /* "__" */
7571 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7572
529cad9c 7573 /* Strip the suffix if necessary. */
69fadcdf
JB
7574 ada_remove_trailing_digits (function_name, &function_name_len);
7575 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7576 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7577
4c4b4cd2
PH
7578 /* Library-level functions are a special case, as GNAT adds
7579 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7580 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7581 have this prefix, so we need to skip this prefix if present. */
7582 if (function_name_len > 5 /* "_ada_" */
7583 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7584 {
7585 function_name += 5;
7586 function_name_len -= 5;
7587 }
4c4b4cd2
PH
7588
7589 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7590 strncpy (rename, function_name, function_name_len);
7591 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7592 "__%s___XR", name);
4c4b4cd2
PH
7593 }
7594 else
7595 {
7596 const int rename_len = strlen (name) + 6;
5b4ee69b 7597
4c4b4cd2 7598 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7599 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7600 }
7601
852dff6c 7602 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7603}
7604
14f9c5c9 7605/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7606 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7607 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7608 otherwise return 0. */
7609
14f9c5c9 7610int
d2e4a39e 7611ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7612{
7613 if (type1 == NULL)
7614 return 1;
7615 else if (type0 == NULL)
7616 return 0;
7617 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7618 return 1;
7619 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7620 return 0;
4c4b4cd2
PH
7621 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7622 return 1;
ad82864c 7623 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7624 return 1;
4c4b4cd2
PH
7625 else if (ada_is_array_descriptor_type (type0)
7626 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7627 return 1;
aeb5907d
JB
7628 else
7629 {
7630 const char *type0_name = type_name_no_tag (type0);
7631 const char *type1_name = type_name_no_tag (type1);
7632
7633 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7634 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7635 return 1;
7636 }
14f9c5c9
AS
7637 return 0;
7638}
7639
7640/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7641 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7642
0d5cff50 7643const char *
d2e4a39e 7644ada_type_name (struct type *type)
14f9c5c9 7645{
d2e4a39e 7646 if (type == NULL)
14f9c5c9
AS
7647 return NULL;
7648 else if (TYPE_NAME (type) != NULL)
7649 return TYPE_NAME (type);
7650 else
7651 return TYPE_TAG_NAME (type);
7652}
7653
b4ba55a1
JB
7654/* Search the list of "descriptive" types associated to TYPE for a type
7655 whose name is NAME. */
7656
7657static struct type *
7658find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7659{
7660 struct type *result;
7661
c6044dd1
JB
7662 if (ada_ignore_descriptive_types_p)
7663 return NULL;
7664
b4ba55a1
JB
7665 /* If there no descriptive-type info, then there is no parallel type
7666 to be found. */
7667 if (!HAVE_GNAT_AUX_INFO (type))
7668 return NULL;
7669
7670 result = TYPE_DESCRIPTIVE_TYPE (type);
7671 while (result != NULL)
7672 {
0d5cff50 7673 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7674
7675 if (result_name == NULL)
7676 {
7677 warning (_("unexpected null name on descriptive type"));
7678 return NULL;
7679 }
7680
7681 /* If the names match, stop. */
7682 if (strcmp (result_name, name) == 0)
7683 break;
7684
7685 /* Otherwise, look at the next item on the list, if any. */
7686 if (HAVE_GNAT_AUX_INFO (result))
7687 result = TYPE_DESCRIPTIVE_TYPE (result);
7688 else
7689 result = NULL;
7690 }
7691
7692 /* If we didn't find a match, see whether this is a packed array. With
7693 older compilers, the descriptive type information is either absent or
7694 irrelevant when it comes to packed arrays so the above lookup fails.
7695 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7696 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7697 return ada_find_any_type (name);
7698
7699 return result;
7700}
7701
7702/* Find a parallel type to TYPE with the specified NAME, using the
7703 descriptive type taken from the debugging information, if available,
7704 and otherwise using the (slower) name-based method. */
7705
7706static struct type *
7707ada_find_parallel_type_with_name (struct type *type, const char *name)
7708{
7709 struct type *result = NULL;
7710
7711 if (HAVE_GNAT_AUX_INFO (type))
7712 result = find_parallel_type_by_descriptive_type (type, name);
7713 else
7714 result = ada_find_any_type (name);
7715
7716 return result;
7717}
7718
7719/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7720 SUFFIX to the name of TYPE. */
14f9c5c9 7721
d2e4a39e 7722struct type *
ebf56fd3 7723ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7724{
0d5cff50
DE
7725 char *name;
7726 const char *typename = ada_type_name (type);
14f9c5c9 7727 int len;
d2e4a39e 7728
14f9c5c9
AS
7729 if (typename == NULL)
7730 return NULL;
7731
7732 len = strlen (typename);
7733
b4ba55a1 7734 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7735
7736 strcpy (name, typename);
7737 strcpy (name + len, suffix);
7738
b4ba55a1 7739 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7740}
7741
14f9c5c9 7742/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7743 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7744
d2e4a39e
AS
7745static struct type *
7746dynamic_template_type (struct type *type)
14f9c5c9 7747{
61ee279c 7748 type = ada_check_typedef (type);
14f9c5c9
AS
7749
7750 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7751 || ada_type_name (type) == NULL)
14f9c5c9 7752 return NULL;
d2e4a39e 7753 else
14f9c5c9
AS
7754 {
7755 int len = strlen (ada_type_name (type));
5b4ee69b 7756
4c4b4cd2
PH
7757 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7758 return type;
14f9c5c9 7759 else
4c4b4cd2 7760 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7761 }
7762}
7763
7764/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7765 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7766
d2e4a39e
AS
7767static int
7768is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7769{
7770 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7771
d2e4a39e 7772 return name != NULL
14f9c5c9
AS
7773 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7774 && strstr (name, "___XVL") != NULL;
7775}
7776
4c4b4cd2
PH
7777/* The index of the variant field of TYPE, or -1 if TYPE does not
7778 represent a variant record type. */
14f9c5c9 7779
d2e4a39e 7780static int
4c4b4cd2 7781variant_field_index (struct type *type)
14f9c5c9
AS
7782{
7783 int f;
7784
4c4b4cd2
PH
7785 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7786 return -1;
7787
7788 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7789 {
7790 if (ada_is_variant_part (type, f))
7791 return f;
7792 }
7793 return -1;
14f9c5c9
AS
7794}
7795
4c4b4cd2
PH
7796/* A record type with no fields. */
7797
d2e4a39e 7798static struct type *
e9bb382b 7799empty_record (struct type *template)
14f9c5c9 7800{
e9bb382b 7801 struct type *type = alloc_type_copy (template);
5b4ee69b 7802
14f9c5c9
AS
7803 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7804 TYPE_NFIELDS (type) = 0;
7805 TYPE_FIELDS (type) = NULL;
b1f33ddd 7806 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7807 TYPE_NAME (type) = "<empty>";
7808 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7809 TYPE_LENGTH (type) = 0;
7810 return type;
7811}
7812
7813/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7814 the value of type TYPE at VALADDR or ADDRESS (see comments at
7815 the beginning of this section) VAL according to GNAT conventions.
7816 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7817 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7818 an outer-level type (i.e., as opposed to a branch of a variant.) A
7819 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7820 of the variant.
14f9c5c9 7821
4c4b4cd2
PH
7822 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7823 length are not statically known are discarded. As a consequence,
7824 VALADDR, ADDRESS and DVAL0 are ignored.
7825
7826 NOTE: Limitations: For now, we assume that dynamic fields and
7827 variants occupy whole numbers of bytes. However, they need not be
7828 byte-aligned. */
7829
7830struct type *
10a2c479 7831ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7832 const gdb_byte *valaddr,
4c4b4cd2
PH
7833 CORE_ADDR address, struct value *dval0,
7834 int keep_dynamic_fields)
14f9c5c9 7835{
d2e4a39e
AS
7836 struct value *mark = value_mark ();
7837 struct value *dval;
7838 struct type *rtype;
14f9c5c9 7839 int nfields, bit_len;
4c4b4cd2 7840 int variant_field;
14f9c5c9 7841 long off;
d94e4f4f 7842 int fld_bit_len;
14f9c5c9
AS
7843 int f;
7844
4c4b4cd2
PH
7845 /* Compute the number of fields in this record type that are going
7846 to be processed: unless keep_dynamic_fields, this includes only
7847 fields whose position and length are static will be processed. */
7848 if (keep_dynamic_fields)
7849 nfields = TYPE_NFIELDS (type);
7850 else
7851 {
7852 nfields = 0;
76a01679 7853 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7854 && !ada_is_variant_part (type, nfields)
7855 && !is_dynamic_field (type, nfields))
7856 nfields++;
7857 }
7858
e9bb382b 7859 rtype = alloc_type_copy (type);
14f9c5c9
AS
7860 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7861 INIT_CPLUS_SPECIFIC (rtype);
7862 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7863 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7864 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7865 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7866 TYPE_NAME (rtype) = ada_type_name (type);
7867 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7868 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7869
d2e4a39e
AS
7870 off = 0;
7871 bit_len = 0;
4c4b4cd2
PH
7872 variant_field = -1;
7873
14f9c5c9
AS
7874 for (f = 0; f < nfields; f += 1)
7875 {
6c038f32
PH
7876 off = align_value (off, field_alignment (type, f))
7877 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7878 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7879 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7880
d2e4a39e 7881 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7882 {
7883 variant_field = f;
d94e4f4f 7884 fld_bit_len = 0;
4c4b4cd2 7885 }
14f9c5c9 7886 else if (is_dynamic_field (type, f))
4c4b4cd2 7887 {
284614f0
JB
7888 const gdb_byte *field_valaddr = valaddr;
7889 CORE_ADDR field_address = address;
7890 struct type *field_type =
7891 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7892
4c4b4cd2 7893 if (dval0 == NULL)
b5304971
JG
7894 {
7895 /* rtype's length is computed based on the run-time
7896 value of discriminants. If the discriminants are not
7897 initialized, the type size may be completely bogus and
0963b4bd 7898 GDB may fail to allocate a value for it. So check the
b5304971
JG
7899 size first before creating the value. */
7900 check_size (rtype);
012370f6
TT
7901 /* Using plain value_from_contents_and_address here
7902 causes problems because we will end up trying to
7903 resolve a type that is currently being
7904 constructed. */
7905 dval = value_from_contents_and_address_unresolved (rtype,
7906 valaddr,
7907 address);
9f1f738a 7908 rtype = value_type (dval);
b5304971 7909 }
4c4b4cd2
PH
7910 else
7911 dval = dval0;
7912
284614f0
JB
7913 /* If the type referenced by this field is an aligner type, we need
7914 to unwrap that aligner type, because its size might not be set.
7915 Keeping the aligner type would cause us to compute the wrong
7916 size for this field, impacting the offset of the all the fields
7917 that follow this one. */
7918 if (ada_is_aligner_type (field_type))
7919 {
7920 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7921
7922 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7923 field_address = cond_offset_target (field_address, field_offset);
7924 field_type = ada_aligned_type (field_type);
7925 }
7926
7927 field_valaddr = cond_offset_host (field_valaddr,
7928 off / TARGET_CHAR_BIT);
7929 field_address = cond_offset_target (field_address,
7930 off / TARGET_CHAR_BIT);
7931
7932 /* Get the fixed type of the field. Note that, in this case,
7933 we do not want to get the real type out of the tag: if
7934 the current field is the parent part of a tagged record,
7935 we will get the tag of the object. Clearly wrong: the real
7936 type of the parent is not the real type of the child. We
7937 would end up in an infinite loop. */
7938 field_type = ada_get_base_type (field_type);
7939 field_type = ada_to_fixed_type (field_type, field_valaddr,
7940 field_address, dval, 0);
27f2a97b
JB
7941 /* If the field size is already larger than the maximum
7942 object size, then the record itself will necessarily
7943 be larger than the maximum object size. We need to make
7944 this check now, because the size might be so ridiculously
7945 large (due to an uninitialized variable in the inferior)
7946 that it would cause an overflow when adding it to the
7947 record size. */
7948 check_size (field_type);
284614f0
JB
7949
7950 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7951 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7952 /* The multiplication can potentially overflow. But because
7953 the field length has been size-checked just above, and
7954 assuming that the maximum size is a reasonable value,
7955 an overflow should not happen in practice. So rather than
7956 adding overflow recovery code to this already complex code,
7957 we just assume that it's not going to happen. */
d94e4f4f 7958 fld_bit_len =
4c4b4cd2
PH
7959 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7960 }
14f9c5c9 7961 else
4c4b4cd2 7962 {
5ded5331
JB
7963 /* Note: If this field's type is a typedef, it is important
7964 to preserve the typedef layer.
7965
7966 Otherwise, we might be transforming a typedef to a fat
7967 pointer (encoding a pointer to an unconstrained array),
7968 into a basic fat pointer (encoding an unconstrained
7969 array). As both types are implemented using the same
7970 structure, the typedef is the only clue which allows us
7971 to distinguish between the two options. Stripping it
7972 would prevent us from printing this field appropriately. */
7973 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
7974 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7975 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7976 fld_bit_len =
4c4b4cd2
PH
7977 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7978 else
5ded5331
JB
7979 {
7980 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7981
7982 /* We need to be careful of typedefs when computing
7983 the length of our field. If this is a typedef,
7984 get the length of the target type, not the length
7985 of the typedef. */
7986 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7987 field_type = ada_typedef_target_type (field_type);
7988
7989 fld_bit_len =
7990 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7991 }
4c4b4cd2 7992 }
14f9c5c9 7993 if (off + fld_bit_len > bit_len)
4c4b4cd2 7994 bit_len = off + fld_bit_len;
d94e4f4f 7995 off += fld_bit_len;
4c4b4cd2
PH
7996 TYPE_LENGTH (rtype) =
7997 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7998 }
4c4b4cd2
PH
7999
8000 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8001 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8002 the record. This can happen in the presence of representation
8003 clauses. */
8004 if (variant_field >= 0)
8005 {
8006 struct type *branch_type;
8007
8008 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8009
8010 if (dval0 == NULL)
9f1f738a 8011 {
012370f6
TT
8012 /* Using plain value_from_contents_and_address here causes
8013 problems because we will end up trying to resolve a type
8014 that is currently being constructed. */
8015 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8016 address);
9f1f738a
SA
8017 rtype = value_type (dval);
8018 }
4c4b4cd2
PH
8019 else
8020 dval = dval0;
8021
8022 branch_type =
8023 to_fixed_variant_branch_type
8024 (TYPE_FIELD_TYPE (type, variant_field),
8025 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8026 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8027 if (branch_type == NULL)
8028 {
8029 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8030 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8031 TYPE_NFIELDS (rtype) -= 1;
8032 }
8033 else
8034 {
8035 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8036 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8037 fld_bit_len =
8038 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8039 TARGET_CHAR_BIT;
8040 if (off + fld_bit_len > bit_len)
8041 bit_len = off + fld_bit_len;
8042 TYPE_LENGTH (rtype) =
8043 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8044 }
8045 }
8046
714e53ab
PH
8047 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8048 should contain the alignment of that record, which should be a strictly
8049 positive value. If null or negative, then something is wrong, most
8050 probably in the debug info. In that case, we don't round up the size
0963b4bd 8051 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8052 the current RTYPE length might be good enough for our purposes. */
8053 if (TYPE_LENGTH (type) <= 0)
8054 {
323e0a4a
AC
8055 if (TYPE_NAME (rtype))
8056 warning (_("Invalid type size for `%s' detected: %d."),
8057 TYPE_NAME (rtype), TYPE_LENGTH (type));
8058 else
8059 warning (_("Invalid type size for <unnamed> detected: %d."),
8060 TYPE_LENGTH (type));
714e53ab
PH
8061 }
8062 else
8063 {
8064 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8065 TYPE_LENGTH (type));
8066 }
14f9c5c9
AS
8067
8068 value_free_to_mark (mark);
d2e4a39e 8069 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8070 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8071 return rtype;
8072}
8073
4c4b4cd2
PH
8074/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8075 of 1. */
14f9c5c9 8076
d2e4a39e 8077static struct type *
fc1a4b47 8078template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8079 CORE_ADDR address, struct value *dval0)
8080{
8081 return ada_template_to_fixed_record_type_1 (type, valaddr,
8082 address, dval0, 1);
8083}
8084
8085/* An ordinary record type in which ___XVL-convention fields and
8086 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8087 static approximations, containing all possible fields. Uses
8088 no runtime values. Useless for use in values, but that's OK,
8089 since the results are used only for type determinations. Works on both
8090 structs and unions. Representation note: to save space, we memorize
8091 the result of this function in the TYPE_TARGET_TYPE of the
8092 template type. */
8093
8094static struct type *
8095template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8096{
8097 struct type *type;
8098 int nfields;
8099 int f;
8100
4c4b4cd2
PH
8101 if (TYPE_TARGET_TYPE (type0) != NULL)
8102 return TYPE_TARGET_TYPE (type0);
8103
8104 nfields = TYPE_NFIELDS (type0);
8105 type = type0;
14f9c5c9
AS
8106
8107 for (f = 0; f < nfields; f += 1)
8108 {
61ee279c 8109 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 8110 struct type *new_type;
14f9c5c9 8111
4c4b4cd2
PH
8112 if (is_dynamic_field (type0, f))
8113 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 8114 else
f192137b 8115 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
8116 if (type == type0 && new_type != field_type)
8117 {
e9bb382b 8118 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
8119 TYPE_CODE (type) = TYPE_CODE (type0);
8120 INIT_CPLUS_SPECIFIC (type);
8121 TYPE_NFIELDS (type) = nfields;
8122 TYPE_FIELDS (type) = (struct field *)
8123 TYPE_ALLOC (type, nfields * sizeof (struct field));
8124 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8125 sizeof (struct field) * nfields);
8126 TYPE_NAME (type) = ada_type_name (type0);
8127 TYPE_TAG_NAME (type) = NULL;
876cecd0 8128 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
8129 TYPE_LENGTH (type) = 0;
8130 }
8131 TYPE_FIELD_TYPE (type, f) = new_type;
8132 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 8133 }
14f9c5c9
AS
8134 return type;
8135}
8136
4c4b4cd2 8137/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8138 whose address in memory is ADDRESS, returns a revision of TYPE,
8139 which should be a non-dynamic-sized record, in which the variant
8140 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8141 for discriminant values in DVAL0, which can be NULL if the record
8142 contains the necessary discriminant values. */
8143
d2e4a39e 8144static struct type *
fc1a4b47 8145to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8146 CORE_ADDR address, struct value *dval0)
14f9c5c9 8147{
d2e4a39e 8148 struct value *mark = value_mark ();
4c4b4cd2 8149 struct value *dval;
d2e4a39e 8150 struct type *rtype;
14f9c5c9
AS
8151 struct type *branch_type;
8152 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8153 int variant_field = variant_field_index (type);
14f9c5c9 8154
4c4b4cd2 8155 if (variant_field == -1)
14f9c5c9
AS
8156 return type;
8157
4c4b4cd2 8158 if (dval0 == NULL)
9f1f738a
SA
8159 {
8160 dval = value_from_contents_and_address (type, valaddr, address);
8161 type = value_type (dval);
8162 }
4c4b4cd2
PH
8163 else
8164 dval = dval0;
8165
e9bb382b 8166 rtype = alloc_type_copy (type);
14f9c5c9 8167 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8168 INIT_CPLUS_SPECIFIC (rtype);
8169 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8170 TYPE_FIELDS (rtype) =
8171 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8172 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8173 sizeof (struct field) * nfields);
14f9c5c9
AS
8174 TYPE_NAME (rtype) = ada_type_name (type);
8175 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8176 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8177 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8178
4c4b4cd2
PH
8179 branch_type = to_fixed_variant_branch_type
8180 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8181 cond_offset_host (valaddr,
4c4b4cd2
PH
8182 TYPE_FIELD_BITPOS (type, variant_field)
8183 / TARGET_CHAR_BIT),
d2e4a39e 8184 cond_offset_target (address,
4c4b4cd2
PH
8185 TYPE_FIELD_BITPOS (type, variant_field)
8186 / TARGET_CHAR_BIT), dval);
d2e4a39e 8187 if (branch_type == NULL)
14f9c5c9 8188 {
4c4b4cd2 8189 int f;
5b4ee69b 8190
4c4b4cd2
PH
8191 for (f = variant_field + 1; f < nfields; f += 1)
8192 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8193 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8194 }
8195 else
8196 {
4c4b4cd2
PH
8197 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8198 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8199 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8200 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8201 }
4c4b4cd2 8202 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8203
4c4b4cd2 8204 value_free_to_mark (mark);
14f9c5c9
AS
8205 return rtype;
8206}
8207
8208/* An ordinary record type (with fixed-length fields) that describes
8209 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8210 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8211 should be in DVAL, a record value; it may be NULL if the object
8212 at ADDR itself contains any necessary discriminant values.
8213 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8214 values from the record are needed. Except in the case that DVAL,
8215 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8216 unchecked) is replaced by a particular branch of the variant.
8217
8218 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8219 is questionable and may be removed. It can arise during the
8220 processing of an unconstrained-array-of-record type where all the
8221 variant branches have exactly the same size. This is because in
8222 such cases, the compiler does not bother to use the XVS convention
8223 when encoding the record. I am currently dubious of this
8224 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8225
d2e4a39e 8226static struct type *
fc1a4b47 8227to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8228 CORE_ADDR address, struct value *dval)
14f9c5c9 8229{
d2e4a39e 8230 struct type *templ_type;
14f9c5c9 8231
876cecd0 8232 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8233 return type0;
8234
d2e4a39e 8235 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8236
8237 if (templ_type != NULL)
8238 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8239 else if (variant_field_index (type0) >= 0)
8240 {
8241 if (dval == NULL && valaddr == NULL && address == 0)
8242 return type0;
8243 return to_record_with_fixed_variant_part (type0, valaddr, address,
8244 dval);
8245 }
14f9c5c9
AS
8246 else
8247 {
876cecd0 8248 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8249 return type0;
8250 }
8251
8252}
8253
8254/* An ordinary record type (with fixed-length fields) that describes
8255 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8256 union type. Any necessary discriminants' values should be in DVAL,
8257 a record value. That is, this routine selects the appropriate
8258 branch of the union at ADDR according to the discriminant value
b1f33ddd 8259 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8260 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8261
d2e4a39e 8262static struct type *
fc1a4b47 8263to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8264 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8265{
8266 int which;
d2e4a39e
AS
8267 struct type *templ_type;
8268 struct type *var_type;
14f9c5c9
AS
8269
8270 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8271 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8272 else
14f9c5c9
AS
8273 var_type = var_type0;
8274
8275 templ_type = ada_find_parallel_type (var_type, "___XVU");
8276
8277 if (templ_type != NULL)
8278 var_type = templ_type;
8279
b1f33ddd
JB
8280 if (is_unchecked_variant (var_type, value_type (dval)))
8281 return var_type0;
d2e4a39e
AS
8282 which =
8283 ada_which_variant_applies (var_type,
0fd88904 8284 value_type (dval), value_contents (dval));
14f9c5c9
AS
8285
8286 if (which < 0)
e9bb382b 8287 return empty_record (var_type);
14f9c5c9 8288 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8289 return to_fixed_record_type
d2e4a39e
AS
8290 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8291 valaddr, address, dval);
4c4b4cd2 8292 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8293 return
8294 to_fixed_record_type
8295 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8296 else
8297 return TYPE_FIELD_TYPE (var_type, which);
8298}
8299
8300/* Assuming that TYPE0 is an array type describing the type of a value
8301 at ADDR, and that DVAL describes a record containing any
8302 discriminants used in TYPE0, returns a type for the value that
8303 contains no dynamic components (that is, no components whose sizes
8304 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8305 true, gives an error message if the resulting type's size is over
4c4b4cd2 8306 varsize_limit. */
14f9c5c9 8307
d2e4a39e
AS
8308static struct type *
8309to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8310 int ignore_too_big)
14f9c5c9 8311{
d2e4a39e
AS
8312 struct type *index_type_desc;
8313 struct type *result;
ad82864c 8314 int constrained_packed_array_p;
14f9c5c9 8315
b0dd7688 8316 type0 = ada_check_typedef (type0);
284614f0 8317 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8318 return type0;
14f9c5c9 8319
ad82864c
JB
8320 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8321 if (constrained_packed_array_p)
8322 type0 = decode_constrained_packed_array_type (type0);
284614f0 8323
14f9c5c9 8324 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8325 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
8326 if (index_type_desc == NULL)
8327 {
61ee279c 8328 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8329
14f9c5c9 8330 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8331 depend on the contents of the array in properly constructed
8332 debugging data. */
529cad9c
PH
8333 /* Create a fixed version of the array element type.
8334 We're not providing the address of an element here,
e1d5a0d2 8335 and thus the actual object value cannot be inspected to do
529cad9c
PH
8336 the conversion. This should not be a problem, since arrays of
8337 unconstrained objects are not allowed. In particular, all
8338 the elements of an array of a tagged type should all be of
8339 the same type specified in the debugging info. No need to
8340 consult the object tag. */
1ed6ede0 8341 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8342
284614f0
JB
8343 /* Make sure we always create a new array type when dealing with
8344 packed array types, since we're going to fix-up the array
8345 type length and element bitsize a little further down. */
ad82864c 8346 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8347 result = type0;
14f9c5c9 8348 else
e9bb382b 8349 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8350 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8351 }
8352 else
8353 {
8354 int i;
8355 struct type *elt_type0;
8356
8357 elt_type0 = type0;
8358 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8359 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8360
8361 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8362 depend on the contents of the array in properly constructed
8363 debugging data. */
529cad9c
PH
8364 /* Create a fixed version of the array element type.
8365 We're not providing the address of an element here,
e1d5a0d2 8366 and thus the actual object value cannot be inspected to do
529cad9c
PH
8367 the conversion. This should not be a problem, since arrays of
8368 unconstrained objects are not allowed. In particular, all
8369 the elements of an array of a tagged type should all be of
8370 the same type specified in the debugging info. No need to
8371 consult the object tag. */
1ed6ede0
JB
8372 result =
8373 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8374
8375 elt_type0 = type0;
14f9c5c9 8376 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8377 {
8378 struct type *range_type =
28c85d6c 8379 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8380
e9bb382b 8381 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8382 result, range_type);
1ce677a4 8383 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8384 }
d2e4a39e 8385 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8386 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8387 }
8388
2e6fda7d
JB
8389 /* We want to preserve the type name. This can be useful when
8390 trying to get the type name of a value that has already been
8391 printed (for instance, if the user did "print VAR; whatis $". */
8392 TYPE_NAME (result) = TYPE_NAME (type0);
8393
ad82864c 8394 if (constrained_packed_array_p)
284614f0
JB
8395 {
8396 /* So far, the resulting type has been created as if the original
8397 type was a regular (non-packed) array type. As a result, the
8398 bitsize of the array elements needs to be set again, and the array
8399 length needs to be recomputed based on that bitsize. */
8400 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8401 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8402
8403 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8404 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8405 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8406 TYPE_LENGTH (result)++;
8407 }
8408
876cecd0 8409 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8410 return result;
d2e4a39e 8411}
14f9c5c9
AS
8412
8413
8414/* A standard type (containing no dynamically sized components)
8415 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8416 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8417 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8418 ADDRESS or in VALADDR contains these discriminants.
8419
1ed6ede0
JB
8420 If CHECK_TAG is not null, in the case of tagged types, this function
8421 attempts to locate the object's tag and use it to compute the actual
8422 type. However, when ADDRESS is null, we cannot use it to determine the
8423 location of the tag, and therefore compute the tagged type's actual type.
8424 So we return the tagged type without consulting the tag. */
529cad9c 8425
f192137b
JB
8426static struct type *
8427ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8428 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8429{
61ee279c 8430 type = ada_check_typedef (type);
d2e4a39e
AS
8431 switch (TYPE_CODE (type))
8432 {
8433 default:
14f9c5c9 8434 return type;
d2e4a39e 8435 case TYPE_CODE_STRUCT:
4c4b4cd2 8436 {
76a01679 8437 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8438 struct type *fixed_record_type =
8439 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8440
529cad9c
PH
8441 /* If STATIC_TYPE is a tagged type and we know the object's address,
8442 then we can determine its tag, and compute the object's actual
0963b4bd 8443 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8444 type (the parent part of the record may have dynamic fields
8445 and the way the location of _tag is expressed may depend on
8446 them). */
529cad9c 8447
1ed6ede0 8448 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8449 {
b50d69b5
JG
8450 struct value *tag =
8451 value_tag_from_contents_and_address
8452 (fixed_record_type,
8453 valaddr,
8454 address);
8455 struct type *real_type = type_from_tag (tag);
8456 struct value *obj =
8457 value_from_contents_and_address (fixed_record_type,
8458 valaddr,
8459 address);
9f1f738a 8460 fixed_record_type = value_type (obj);
76a01679 8461 if (real_type != NULL)
b50d69b5
JG
8462 return to_fixed_record_type
8463 (real_type, NULL,
8464 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8465 }
4af88198
JB
8466
8467 /* Check to see if there is a parallel ___XVZ variable.
8468 If there is, then it provides the actual size of our type. */
8469 else if (ada_type_name (fixed_record_type) != NULL)
8470 {
0d5cff50 8471 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8472 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8473 int xvz_found = 0;
8474 LONGEST size;
8475
88c15c34 8476 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8477 size = get_int_var_value (xvz_name, &xvz_found);
8478 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8479 {
8480 fixed_record_type = copy_type (fixed_record_type);
8481 TYPE_LENGTH (fixed_record_type) = size;
8482
8483 /* The FIXED_RECORD_TYPE may have be a stub. We have
8484 observed this when the debugging info is STABS, and
8485 apparently it is something that is hard to fix.
8486
8487 In practice, we don't need the actual type definition
8488 at all, because the presence of the XVZ variable allows us
8489 to assume that there must be a XVS type as well, which we
8490 should be able to use later, when we need the actual type
8491 definition.
8492
8493 In the meantime, pretend that the "fixed" type we are
8494 returning is NOT a stub, because this can cause trouble
8495 when using this type to create new types targeting it.
8496 Indeed, the associated creation routines often check
8497 whether the target type is a stub and will try to replace
0963b4bd 8498 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8499 might cause the new type to have the wrong size too.
8500 Consider the case of an array, for instance, where the size
8501 of the array is computed from the number of elements in
8502 our array multiplied by the size of its element. */
8503 TYPE_STUB (fixed_record_type) = 0;
8504 }
8505 }
1ed6ede0 8506 return fixed_record_type;
4c4b4cd2 8507 }
d2e4a39e 8508 case TYPE_CODE_ARRAY:
4c4b4cd2 8509 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8510 case TYPE_CODE_UNION:
8511 if (dval == NULL)
4c4b4cd2 8512 return type;
d2e4a39e 8513 else
4c4b4cd2 8514 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8515 }
14f9c5c9
AS
8516}
8517
f192137b
JB
8518/* The same as ada_to_fixed_type_1, except that it preserves the type
8519 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8520
8521 The typedef layer needs be preserved in order to differentiate between
8522 arrays and array pointers when both types are implemented using the same
8523 fat pointer. In the array pointer case, the pointer is encoded as
8524 a typedef of the pointer type. For instance, considering:
8525
8526 type String_Access is access String;
8527 S1 : String_Access := null;
8528
8529 To the debugger, S1 is defined as a typedef of type String. But
8530 to the user, it is a pointer. So if the user tries to print S1,
8531 we should not dereference the array, but print the array address
8532 instead.
8533
8534 If we didn't preserve the typedef layer, we would lose the fact that
8535 the type is to be presented as a pointer (needs de-reference before
8536 being printed). And we would also use the source-level type name. */
f192137b
JB
8537
8538struct type *
8539ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8540 CORE_ADDR address, struct value *dval, int check_tag)
8541
8542{
8543 struct type *fixed_type =
8544 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8545
96dbd2c1
JB
8546 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8547 then preserve the typedef layer.
8548
8549 Implementation note: We can only check the main-type portion of
8550 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8551 from TYPE now returns a type that has the same instance flags
8552 as TYPE. For instance, if TYPE is a "typedef const", and its
8553 target type is a "struct", then the typedef elimination will return
8554 a "const" version of the target type. See check_typedef for more
8555 details about how the typedef layer elimination is done.
8556
8557 brobecker/2010-11-19: It seems to me that the only case where it is
8558 useful to preserve the typedef layer is when dealing with fat pointers.
8559 Perhaps, we could add a check for that and preserve the typedef layer
8560 only in that situation. But this seems unecessary so far, probably
8561 because we call check_typedef/ada_check_typedef pretty much everywhere.
8562 */
f192137b 8563 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8564 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8565 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8566 return type;
8567
8568 return fixed_type;
8569}
8570
14f9c5c9 8571/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8572 TYPE0, but based on no runtime data. */
14f9c5c9 8573
d2e4a39e
AS
8574static struct type *
8575to_static_fixed_type (struct type *type0)
14f9c5c9 8576{
d2e4a39e 8577 struct type *type;
14f9c5c9
AS
8578
8579 if (type0 == NULL)
8580 return NULL;
8581
876cecd0 8582 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8583 return type0;
8584
61ee279c 8585 type0 = ada_check_typedef (type0);
d2e4a39e 8586
14f9c5c9
AS
8587 switch (TYPE_CODE (type0))
8588 {
8589 default:
8590 return type0;
8591 case TYPE_CODE_STRUCT:
8592 type = dynamic_template_type (type0);
d2e4a39e 8593 if (type != NULL)
4c4b4cd2
PH
8594 return template_to_static_fixed_type (type);
8595 else
8596 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8597 case TYPE_CODE_UNION:
8598 type = ada_find_parallel_type (type0, "___XVU");
8599 if (type != NULL)
4c4b4cd2
PH
8600 return template_to_static_fixed_type (type);
8601 else
8602 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8603 }
8604}
8605
4c4b4cd2
PH
8606/* A static approximation of TYPE with all type wrappers removed. */
8607
d2e4a39e
AS
8608static struct type *
8609static_unwrap_type (struct type *type)
14f9c5c9
AS
8610{
8611 if (ada_is_aligner_type (type))
8612 {
61ee279c 8613 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8614 if (ada_type_name (type1) == NULL)
4c4b4cd2 8615 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8616
8617 return static_unwrap_type (type1);
8618 }
d2e4a39e 8619 else
14f9c5c9 8620 {
d2e4a39e 8621 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8622
d2e4a39e 8623 if (raw_real_type == type)
4c4b4cd2 8624 return type;
14f9c5c9 8625 else
4c4b4cd2 8626 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8627 }
8628}
8629
8630/* In some cases, incomplete and private types require
4c4b4cd2 8631 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8632 type Foo;
8633 type FooP is access Foo;
8634 V: FooP;
8635 type Foo is array ...;
4c4b4cd2 8636 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8637 cross-references to such types, we instead substitute for FooP a
8638 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8639 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8640
8641/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8642 exists, otherwise TYPE. */
8643
d2e4a39e 8644struct type *
61ee279c 8645ada_check_typedef (struct type *type)
14f9c5c9 8646{
727e3d2e
JB
8647 if (type == NULL)
8648 return NULL;
8649
720d1a40
JB
8650 /* If our type is a typedef type of a fat pointer, then we're done.
8651 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8652 what allows us to distinguish between fat pointers that represent
8653 array types, and fat pointers that represent array access types
8654 (in both cases, the compiler implements them as fat pointers). */
8655 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8656 && is_thick_pntr (ada_typedef_target_type (type)))
8657 return type;
8658
14f9c5c9
AS
8659 CHECK_TYPEDEF (type);
8660 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8661 || !TYPE_STUB (type)
14f9c5c9
AS
8662 || TYPE_TAG_NAME (type) == NULL)
8663 return type;
d2e4a39e 8664 else
14f9c5c9 8665 {
0d5cff50 8666 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8667 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8668
05e522ef
JB
8669 if (type1 == NULL)
8670 return type;
8671
8672 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8673 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8674 types, only for the typedef-to-array types). If that's the case,
8675 strip the typedef layer. */
8676 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8677 type1 = ada_check_typedef (type1);
8678
8679 return type1;
14f9c5c9
AS
8680 }
8681}
8682
8683/* A value representing the data at VALADDR/ADDRESS as described by
8684 type TYPE0, but with a standard (static-sized) type that correctly
8685 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8686 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8687 creation of struct values]. */
14f9c5c9 8688
4c4b4cd2
PH
8689static struct value *
8690ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8691 struct value *val0)
14f9c5c9 8692{
1ed6ede0 8693 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8694
14f9c5c9
AS
8695 if (type == type0 && val0 != NULL)
8696 return val0;
d2e4a39e 8697 else
4c4b4cd2
PH
8698 return value_from_contents_and_address (type, 0, address);
8699}
8700
8701/* A value representing VAL, but with a standard (static-sized) type
8702 that correctly describes it. Does not necessarily create a new
8703 value. */
8704
0c3acc09 8705struct value *
4c4b4cd2
PH
8706ada_to_fixed_value (struct value *val)
8707{
c48db5ca
JB
8708 val = unwrap_value (val);
8709 val = ada_to_fixed_value_create (value_type (val),
8710 value_address (val),
8711 val);
8712 return val;
14f9c5c9 8713}
d2e4a39e 8714\f
14f9c5c9 8715
14f9c5c9
AS
8716/* Attributes */
8717
4c4b4cd2
PH
8718/* Table mapping attribute numbers to names.
8719 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8720
d2e4a39e 8721static const char *attribute_names[] = {
14f9c5c9
AS
8722 "<?>",
8723
d2e4a39e 8724 "first",
14f9c5c9
AS
8725 "last",
8726 "length",
8727 "image",
14f9c5c9
AS
8728 "max",
8729 "min",
4c4b4cd2
PH
8730 "modulus",
8731 "pos",
8732 "size",
8733 "tag",
14f9c5c9 8734 "val",
14f9c5c9
AS
8735 0
8736};
8737
d2e4a39e 8738const char *
4c4b4cd2 8739ada_attribute_name (enum exp_opcode n)
14f9c5c9 8740{
4c4b4cd2
PH
8741 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8742 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8743 else
8744 return attribute_names[0];
8745}
8746
4c4b4cd2 8747/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8748
4c4b4cd2
PH
8749static LONGEST
8750pos_atr (struct value *arg)
14f9c5c9 8751{
24209737
PH
8752 struct value *val = coerce_ref (arg);
8753 struct type *type = value_type (val);
14f9c5c9 8754
d2e4a39e 8755 if (!discrete_type_p (type))
323e0a4a 8756 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8757
8758 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8759 {
8760 int i;
24209737 8761 LONGEST v = value_as_long (val);
14f9c5c9 8762
d2e4a39e 8763 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8764 {
14e75d8e 8765 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8766 return i;
8767 }
323e0a4a 8768 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8769 }
8770 else
24209737 8771 return value_as_long (val);
4c4b4cd2
PH
8772}
8773
8774static struct value *
3cb382c9 8775value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8776{
3cb382c9 8777 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8778}
8779
4c4b4cd2 8780/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8781
d2e4a39e
AS
8782static struct value *
8783value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8784{
d2e4a39e 8785 if (!discrete_type_p (type))
323e0a4a 8786 error (_("'VAL only defined on discrete types"));
df407dfe 8787 if (!integer_type_p (value_type (arg)))
323e0a4a 8788 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8789
8790 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8791 {
8792 long pos = value_as_long (arg);
5b4ee69b 8793
14f9c5c9 8794 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8795 error (_("argument to 'VAL out of range"));
14e75d8e 8796 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8797 }
8798 else
8799 return value_from_longest (type, value_as_long (arg));
8800}
14f9c5c9 8801\f
d2e4a39e 8802
4c4b4cd2 8803 /* Evaluation */
14f9c5c9 8804
4c4b4cd2
PH
8805/* True if TYPE appears to be an Ada character type.
8806 [At the moment, this is true only for Character and Wide_Character;
8807 It is a heuristic test that could stand improvement]. */
14f9c5c9 8808
d2e4a39e
AS
8809int
8810ada_is_character_type (struct type *type)
14f9c5c9 8811{
7b9f71f2
JB
8812 const char *name;
8813
8814 /* If the type code says it's a character, then assume it really is,
8815 and don't check any further. */
8816 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8817 return 1;
8818
8819 /* Otherwise, assume it's a character type iff it is a discrete type
8820 with a known character type name. */
8821 name = ada_type_name (type);
8822 return (name != NULL
8823 && (TYPE_CODE (type) == TYPE_CODE_INT
8824 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8825 && (strcmp (name, "character") == 0
8826 || strcmp (name, "wide_character") == 0
5a517ebd 8827 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8828 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8829}
8830
4c4b4cd2 8831/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8832
8833int
ebf56fd3 8834ada_is_string_type (struct type *type)
14f9c5c9 8835{
61ee279c 8836 type = ada_check_typedef (type);
d2e4a39e 8837 if (type != NULL
14f9c5c9 8838 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8839 && (ada_is_simple_array_type (type)
8840 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8841 && ada_array_arity (type) == 1)
8842 {
8843 struct type *elttype = ada_array_element_type (type, 1);
8844
8845 return ada_is_character_type (elttype);
8846 }
d2e4a39e 8847 else
14f9c5c9
AS
8848 return 0;
8849}
8850
5bf03f13
JB
8851/* The compiler sometimes provides a parallel XVS type for a given
8852 PAD type. Normally, it is safe to follow the PAD type directly,
8853 but older versions of the compiler have a bug that causes the offset
8854 of its "F" field to be wrong. Following that field in that case
8855 would lead to incorrect results, but this can be worked around
8856 by ignoring the PAD type and using the associated XVS type instead.
8857
8858 Set to True if the debugger should trust the contents of PAD types.
8859 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8860static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8861
8862/* True if TYPE is a struct type introduced by the compiler to force the
8863 alignment of a value. Such types have a single field with a
4c4b4cd2 8864 distinctive name. */
14f9c5c9
AS
8865
8866int
ebf56fd3 8867ada_is_aligner_type (struct type *type)
14f9c5c9 8868{
61ee279c 8869 type = ada_check_typedef (type);
714e53ab 8870
5bf03f13 8871 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8872 return 0;
8873
14f9c5c9 8874 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8875 && TYPE_NFIELDS (type) == 1
8876 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8877}
8878
8879/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8880 the parallel type. */
14f9c5c9 8881
d2e4a39e
AS
8882struct type *
8883ada_get_base_type (struct type *raw_type)
14f9c5c9 8884{
d2e4a39e
AS
8885 struct type *real_type_namer;
8886 struct type *raw_real_type;
14f9c5c9
AS
8887
8888 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8889 return raw_type;
8890
284614f0
JB
8891 if (ada_is_aligner_type (raw_type))
8892 /* The encoding specifies that we should always use the aligner type.
8893 So, even if this aligner type has an associated XVS type, we should
8894 simply ignore it.
8895
8896 According to the compiler gurus, an XVS type parallel to an aligner
8897 type may exist because of a stabs limitation. In stabs, aligner
8898 types are empty because the field has a variable-sized type, and
8899 thus cannot actually be used as an aligner type. As a result,
8900 we need the associated parallel XVS type to decode the type.
8901 Since the policy in the compiler is to not change the internal
8902 representation based on the debugging info format, we sometimes
8903 end up having a redundant XVS type parallel to the aligner type. */
8904 return raw_type;
8905
14f9c5c9 8906 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8907 if (real_type_namer == NULL
14f9c5c9
AS
8908 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8909 || TYPE_NFIELDS (real_type_namer) != 1)
8910 return raw_type;
8911
f80d3ff2
JB
8912 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8913 {
8914 /* This is an older encoding form where the base type needs to be
8915 looked up by name. We prefer the newer enconding because it is
8916 more efficient. */
8917 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8918 if (raw_real_type == NULL)
8919 return raw_type;
8920 else
8921 return raw_real_type;
8922 }
8923
8924 /* The field in our XVS type is a reference to the base type. */
8925 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8926}
14f9c5c9 8927
4c4b4cd2 8928/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8929
d2e4a39e
AS
8930struct type *
8931ada_aligned_type (struct type *type)
14f9c5c9
AS
8932{
8933 if (ada_is_aligner_type (type))
8934 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8935 else
8936 return ada_get_base_type (type);
8937}
8938
8939
8940/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8941 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8942
fc1a4b47
AC
8943const gdb_byte *
8944ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8945{
d2e4a39e 8946 if (ada_is_aligner_type (type))
14f9c5c9 8947 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8948 valaddr +
8949 TYPE_FIELD_BITPOS (type,
8950 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8951 else
8952 return valaddr;
8953}
8954
4c4b4cd2
PH
8955
8956
14f9c5c9 8957/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8958 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8959const char *
8960ada_enum_name (const char *name)
14f9c5c9 8961{
4c4b4cd2
PH
8962 static char *result;
8963 static size_t result_len = 0;
d2e4a39e 8964 char *tmp;
14f9c5c9 8965
4c4b4cd2
PH
8966 /* First, unqualify the enumeration name:
8967 1. Search for the last '.' character. If we find one, then skip
177b42fe 8968 all the preceding characters, the unqualified name starts
76a01679 8969 right after that dot.
4c4b4cd2 8970 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8971 translates dots into "__". Search forward for double underscores,
8972 but stop searching when we hit an overloading suffix, which is
8973 of the form "__" followed by digits. */
4c4b4cd2 8974
c3e5cd34
PH
8975 tmp = strrchr (name, '.');
8976 if (tmp != NULL)
4c4b4cd2
PH
8977 name = tmp + 1;
8978 else
14f9c5c9 8979 {
4c4b4cd2
PH
8980 while ((tmp = strstr (name, "__")) != NULL)
8981 {
8982 if (isdigit (tmp[2]))
8983 break;
8984 else
8985 name = tmp + 2;
8986 }
14f9c5c9
AS
8987 }
8988
8989 if (name[0] == 'Q')
8990 {
14f9c5c9 8991 int v;
5b4ee69b 8992
14f9c5c9 8993 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8994 {
8995 if (sscanf (name + 2, "%x", &v) != 1)
8996 return name;
8997 }
14f9c5c9 8998 else
4c4b4cd2 8999 return name;
14f9c5c9 9000
4c4b4cd2 9001 GROW_VECT (result, result_len, 16);
14f9c5c9 9002 if (isascii (v) && isprint (v))
88c15c34 9003 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9004 else if (name[1] == 'U')
88c15c34 9005 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9006 else
88c15c34 9007 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9008
9009 return result;
9010 }
d2e4a39e 9011 else
4c4b4cd2 9012 {
c3e5cd34
PH
9013 tmp = strstr (name, "__");
9014 if (tmp == NULL)
9015 tmp = strstr (name, "$");
9016 if (tmp != NULL)
4c4b4cd2
PH
9017 {
9018 GROW_VECT (result, result_len, tmp - name + 1);
9019 strncpy (result, name, tmp - name);
9020 result[tmp - name] = '\0';
9021 return result;
9022 }
9023
9024 return name;
9025 }
14f9c5c9
AS
9026}
9027
14f9c5c9
AS
9028/* Evaluate the subexpression of EXP starting at *POS as for
9029 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9030 expression. */
14f9c5c9 9031
d2e4a39e
AS
9032static struct value *
9033evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9034{
4b27a620 9035 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9036}
9037
9038/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9039 value it wraps. */
14f9c5c9 9040
d2e4a39e
AS
9041static struct value *
9042unwrap_value (struct value *val)
14f9c5c9 9043{
df407dfe 9044 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9045
14f9c5c9
AS
9046 if (ada_is_aligner_type (type))
9047 {
de4d072f 9048 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9049 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9050
14f9c5c9 9051 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9052 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9053
9054 return unwrap_value (v);
9055 }
d2e4a39e 9056 else
14f9c5c9 9057 {
d2e4a39e 9058 struct type *raw_real_type =
61ee279c 9059 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9060
5bf03f13
JB
9061 /* If there is no parallel XVS or XVE type, then the value is
9062 already unwrapped. Return it without further modification. */
9063 if ((type == raw_real_type)
9064 && ada_find_parallel_type (type, "___XVE") == NULL)
9065 return val;
14f9c5c9 9066
d2e4a39e 9067 return
4c4b4cd2
PH
9068 coerce_unspec_val_to_type
9069 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9070 value_address (val),
1ed6ede0 9071 NULL, 1));
14f9c5c9
AS
9072 }
9073}
d2e4a39e
AS
9074
9075static struct value *
9076cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9077{
9078 LONGEST val;
9079
df407dfe 9080 if (type == value_type (arg))
14f9c5c9 9081 return arg;
df407dfe 9082 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9083 val = ada_float_to_fixed (type,
df407dfe 9084 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9085 value_as_long (arg)));
d2e4a39e 9086 else
14f9c5c9 9087 {
a53b7a21 9088 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9089
14f9c5c9
AS
9090 val = ada_float_to_fixed (type, argd);
9091 }
9092
9093 return value_from_longest (type, val);
9094}
9095
d2e4a39e 9096static struct value *
a53b7a21 9097cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9098{
df407dfe 9099 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9100 value_as_long (arg));
5b4ee69b 9101
a53b7a21 9102 return value_from_double (type, val);
14f9c5c9
AS
9103}
9104
d99dcf51
JB
9105/* Given two array types T1 and T2, return nonzero iff both arrays
9106 contain the same number of elements. */
9107
9108static int
9109ada_same_array_size_p (struct type *t1, struct type *t2)
9110{
9111 LONGEST lo1, hi1, lo2, hi2;
9112
9113 /* Get the array bounds in order to verify that the size of
9114 the two arrays match. */
9115 if (!get_array_bounds (t1, &lo1, &hi1)
9116 || !get_array_bounds (t2, &lo2, &hi2))
9117 error (_("unable to determine array bounds"));
9118
9119 /* To make things easier for size comparison, normalize a bit
9120 the case of empty arrays by making sure that the difference
9121 between upper bound and lower bound is always -1. */
9122 if (lo1 > hi1)
9123 hi1 = lo1 - 1;
9124 if (lo2 > hi2)
9125 hi2 = lo2 - 1;
9126
9127 return (hi1 - lo1 == hi2 - lo2);
9128}
9129
9130/* Assuming that VAL is an array of integrals, and TYPE represents
9131 an array with the same number of elements, but with wider integral
9132 elements, return an array "casted" to TYPE. In practice, this
9133 means that the returned array is built by casting each element
9134 of the original array into TYPE's (wider) element type. */
9135
9136static struct value *
9137ada_promote_array_of_integrals (struct type *type, struct value *val)
9138{
9139 struct type *elt_type = TYPE_TARGET_TYPE (type);
9140 LONGEST lo, hi;
9141 struct value *res;
9142 LONGEST i;
9143
9144 /* Verify that both val and type are arrays of scalars, and
9145 that the size of val's elements is smaller than the size
9146 of type's element. */
9147 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9148 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9149 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9150 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9151 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9152 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9153
9154 if (!get_array_bounds (type, &lo, &hi))
9155 error (_("unable to determine array bounds"));
9156
9157 res = allocate_value (type);
9158
9159 /* Promote each array element. */
9160 for (i = 0; i < hi - lo + 1; i++)
9161 {
9162 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9163
9164 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9165 value_contents_all (elt), TYPE_LENGTH (elt_type));
9166 }
9167
9168 return res;
9169}
9170
4c4b4cd2
PH
9171/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9172 return the converted value. */
9173
d2e4a39e
AS
9174static struct value *
9175coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9176{
df407dfe 9177 struct type *type2 = value_type (val);
5b4ee69b 9178
14f9c5c9
AS
9179 if (type == type2)
9180 return val;
9181
61ee279c
PH
9182 type2 = ada_check_typedef (type2);
9183 type = ada_check_typedef (type);
14f9c5c9 9184
d2e4a39e
AS
9185 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9186 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9187 {
9188 val = ada_value_ind (val);
df407dfe 9189 type2 = value_type (val);
14f9c5c9
AS
9190 }
9191
d2e4a39e 9192 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9193 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9194 {
d99dcf51
JB
9195 if (!ada_same_array_size_p (type, type2))
9196 error (_("cannot assign arrays of different length"));
9197
9198 if (is_integral_type (TYPE_TARGET_TYPE (type))
9199 && is_integral_type (TYPE_TARGET_TYPE (type2))
9200 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9201 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9202 {
9203 /* Allow implicit promotion of the array elements to
9204 a wider type. */
9205 return ada_promote_array_of_integrals (type, val);
9206 }
9207
9208 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9209 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9210 error (_("Incompatible types in assignment"));
04624583 9211 deprecated_set_value_type (val, type);
14f9c5c9 9212 }
d2e4a39e 9213 return val;
14f9c5c9
AS
9214}
9215
4c4b4cd2
PH
9216static struct value *
9217ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9218{
9219 struct value *val;
9220 struct type *type1, *type2;
9221 LONGEST v, v1, v2;
9222
994b9211
AC
9223 arg1 = coerce_ref (arg1);
9224 arg2 = coerce_ref (arg2);
18af8284
JB
9225 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9226 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9227
76a01679
JB
9228 if (TYPE_CODE (type1) != TYPE_CODE_INT
9229 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9230 return value_binop (arg1, arg2, op);
9231
76a01679 9232 switch (op)
4c4b4cd2
PH
9233 {
9234 case BINOP_MOD:
9235 case BINOP_DIV:
9236 case BINOP_REM:
9237 break;
9238 default:
9239 return value_binop (arg1, arg2, op);
9240 }
9241
9242 v2 = value_as_long (arg2);
9243 if (v2 == 0)
323e0a4a 9244 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9245
9246 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9247 return value_binop (arg1, arg2, op);
9248
9249 v1 = value_as_long (arg1);
9250 switch (op)
9251 {
9252 case BINOP_DIV:
9253 v = v1 / v2;
76a01679
JB
9254 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9255 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9256 break;
9257 case BINOP_REM:
9258 v = v1 % v2;
76a01679
JB
9259 if (v * v1 < 0)
9260 v -= v2;
4c4b4cd2
PH
9261 break;
9262 default:
9263 /* Should not reach this point. */
9264 v = 0;
9265 }
9266
9267 val = allocate_value (type1);
990a07ab 9268 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9269 TYPE_LENGTH (value_type (val)),
9270 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9271 return val;
9272}
9273
9274static int
9275ada_value_equal (struct value *arg1, struct value *arg2)
9276{
df407dfe
AC
9277 if (ada_is_direct_array_type (value_type (arg1))
9278 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9279 {
f58b38bf
JB
9280 /* Automatically dereference any array reference before
9281 we attempt to perform the comparison. */
9282 arg1 = ada_coerce_ref (arg1);
9283 arg2 = ada_coerce_ref (arg2);
9284
4c4b4cd2
PH
9285 arg1 = ada_coerce_to_simple_array (arg1);
9286 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9287 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9288 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9289 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9290 /* FIXME: The following works only for types whose
76a01679
JB
9291 representations use all bits (no padding or undefined bits)
9292 and do not have user-defined equality. */
9293 return
df407dfe 9294 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9295 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9296 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9297 }
9298 return value_equal (arg1, arg2);
9299}
9300
52ce6436
PH
9301/* Total number of component associations in the aggregate starting at
9302 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9303 OP_AGGREGATE. */
52ce6436
PH
9304
9305static int
9306num_component_specs (struct expression *exp, int pc)
9307{
9308 int n, m, i;
5b4ee69b 9309
52ce6436
PH
9310 m = exp->elts[pc + 1].longconst;
9311 pc += 3;
9312 n = 0;
9313 for (i = 0; i < m; i += 1)
9314 {
9315 switch (exp->elts[pc].opcode)
9316 {
9317 default:
9318 n += 1;
9319 break;
9320 case OP_CHOICES:
9321 n += exp->elts[pc + 1].longconst;
9322 break;
9323 }
9324 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9325 }
9326 return n;
9327}
9328
9329/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9330 component of LHS (a simple array or a record), updating *POS past
9331 the expression, assuming that LHS is contained in CONTAINER. Does
9332 not modify the inferior's memory, nor does it modify LHS (unless
9333 LHS == CONTAINER). */
9334
9335static void
9336assign_component (struct value *container, struct value *lhs, LONGEST index,
9337 struct expression *exp, int *pos)
9338{
9339 struct value *mark = value_mark ();
9340 struct value *elt;
5b4ee69b 9341
52ce6436
PH
9342 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9343 {
22601c15
UW
9344 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9345 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9346
52ce6436
PH
9347 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9348 }
9349 else
9350 {
9351 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9352 elt = ada_to_fixed_value (elt);
52ce6436
PH
9353 }
9354
9355 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9356 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9357 else
9358 value_assign_to_component (container, elt,
9359 ada_evaluate_subexp (NULL, exp, pos,
9360 EVAL_NORMAL));
9361
9362 value_free_to_mark (mark);
9363}
9364
9365/* Assuming that LHS represents an lvalue having a record or array
9366 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9367 of that aggregate's value to LHS, advancing *POS past the
9368 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9369 lvalue containing LHS (possibly LHS itself). Does not modify
9370 the inferior's memory, nor does it modify the contents of
0963b4bd 9371 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9372
9373static struct value *
9374assign_aggregate (struct value *container,
9375 struct value *lhs, struct expression *exp,
9376 int *pos, enum noside noside)
9377{
9378 struct type *lhs_type;
9379 int n = exp->elts[*pos+1].longconst;
9380 LONGEST low_index, high_index;
9381 int num_specs;
9382 LONGEST *indices;
9383 int max_indices, num_indices;
52ce6436 9384 int i;
52ce6436
PH
9385
9386 *pos += 3;
9387 if (noside != EVAL_NORMAL)
9388 {
52ce6436
PH
9389 for (i = 0; i < n; i += 1)
9390 ada_evaluate_subexp (NULL, exp, pos, noside);
9391 return container;
9392 }
9393
9394 container = ada_coerce_ref (container);
9395 if (ada_is_direct_array_type (value_type (container)))
9396 container = ada_coerce_to_simple_array (container);
9397 lhs = ada_coerce_ref (lhs);
9398 if (!deprecated_value_modifiable (lhs))
9399 error (_("Left operand of assignment is not a modifiable lvalue."));
9400
9401 lhs_type = value_type (lhs);
9402 if (ada_is_direct_array_type (lhs_type))
9403 {
9404 lhs = ada_coerce_to_simple_array (lhs);
9405 lhs_type = value_type (lhs);
9406 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9407 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9408 }
9409 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9410 {
9411 low_index = 0;
9412 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9413 }
9414 else
9415 error (_("Left-hand side must be array or record."));
9416
9417 num_specs = num_component_specs (exp, *pos - 3);
9418 max_indices = 4 * num_specs + 4;
9419 indices = alloca (max_indices * sizeof (indices[0]));
9420 indices[0] = indices[1] = low_index - 1;
9421 indices[2] = indices[3] = high_index + 1;
9422 num_indices = 4;
9423
9424 for (i = 0; i < n; i += 1)
9425 {
9426 switch (exp->elts[*pos].opcode)
9427 {
1fbf5ada
JB
9428 case OP_CHOICES:
9429 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9430 &num_indices, max_indices,
9431 low_index, high_index);
9432 break;
9433 case OP_POSITIONAL:
9434 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9435 &num_indices, max_indices,
9436 low_index, high_index);
1fbf5ada
JB
9437 break;
9438 case OP_OTHERS:
9439 if (i != n-1)
9440 error (_("Misplaced 'others' clause"));
9441 aggregate_assign_others (container, lhs, exp, pos, indices,
9442 num_indices, low_index, high_index);
9443 break;
9444 default:
9445 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9446 }
9447 }
9448
9449 return container;
9450}
9451
9452/* Assign into the component of LHS indexed by the OP_POSITIONAL
9453 construct at *POS, updating *POS past the construct, given that
9454 the positions are relative to lower bound LOW, where HIGH is the
9455 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9456 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9457 assign_aggregate. */
52ce6436
PH
9458static void
9459aggregate_assign_positional (struct value *container,
9460 struct value *lhs, struct expression *exp,
9461 int *pos, LONGEST *indices, int *num_indices,
9462 int max_indices, LONGEST low, LONGEST high)
9463{
9464 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9465
9466 if (ind - 1 == high)
e1d5a0d2 9467 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9468 if (ind <= high)
9469 {
9470 add_component_interval (ind, ind, indices, num_indices, max_indices);
9471 *pos += 3;
9472 assign_component (container, lhs, ind, exp, pos);
9473 }
9474 else
9475 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9476}
9477
9478/* Assign into the components of LHS indexed by the OP_CHOICES
9479 construct at *POS, updating *POS past the construct, given that
9480 the allowable indices are LOW..HIGH. Record the indices assigned
9481 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9482 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9483static void
9484aggregate_assign_from_choices (struct value *container,
9485 struct value *lhs, struct expression *exp,
9486 int *pos, LONGEST *indices, int *num_indices,
9487 int max_indices, LONGEST low, LONGEST high)
9488{
9489 int j;
9490 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9491 int choice_pos, expr_pc;
9492 int is_array = ada_is_direct_array_type (value_type (lhs));
9493
9494 choice_pos = *pos += 3;
9495
9496 for (j = 0; j < n_choices; j += 1)
9497 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9498 expr_pc = *pos;
9499 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9500
9501 for (j = 0; j < n_choices; j += 1)
9502 {
9503 LONGEST lower, upper;
9504 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9505
52ce6436
PH
9506 if (op == OP_DISCRETE_RANGE)
9507 {
9508 choice_pos += 1;
9509 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9510 EVAL_NORMAL));
9511 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9512 EVAL_NORMAL));
9513 }
9514 else if (is_array)
9515 {
9516 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9517 EVAL_NORMAL));
9518 upper = lower;
9519 }
9520 else
9521 {
9522 int ind;
0d5cff50 9523 const char *name;
5b4ee69b 9524
52ce6436
PH
9525 switch (op)
9526 {
9527 case OP_NAME:
9528 name = &exp->elts[choice_pos + 2].string;
9529 break;
9530 case OP_VAR_VALUE:
9531 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9532 break;
9533 default:
9534 error (_("Invalid record component association."));
9535 }
9536 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9537 ind = 0;
9538 if (! find_struct_field (name, value_type (lhs), 0,
9539 NULL, NULL, NULL, NULL, &ind))
9540 error (_("Unknown component name: %s."), name);
9541 lower = upper = ind;
9542 }
9543
9544 if (lower <= upper && (lower < low || upper > high))
9545 error (_("Index in component association out of bounds."));
9546
9547 add_component_interval (lower, upper, indices, num_indices,
9548 max_indices);
9549 while (lower <= upper)
9550 {
9551 int pos1;
5b4ee69b 9552
52ce6436
PH
9553 pos1 = expr_pc;
9554 assign_component (container, lhs, lower, exp, &pos1);
9555 lower += 1;
9556 }
9557 }
9558}
9559
9560/* Assign the value of the expression in the OP_OTHERS construct in
9561 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9562 have not been previously assigned. The index intervals already assigned
9563 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9564 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9565static void
9566aggregate_assign_others (struct value *container,
9567 struct value *lhs, struct expression *exp,
9568 int *pos, LONGEST *indices, int num_indices,
9569 LONGEST low, LONGEST high)
9570{
9571 int i;
5ce64950 9572 int expr_pc = *pos + 1;
52ce6436
PH
9573
9574 for (i = 0; i < num_indices - 2; i += 2)
9575 {
9576 LONGEST ind;
5b4ee69b 9577
52ce6436
PH
9578 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9579 {
5ce64950 9580 int localpos;
5b4ee69b 9581
5ce64950
MS
9582 localpos = expr_pc;
9583 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9584 }
9585 }
9586 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9587}
9588
9589/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9590 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9591 modifying *SIZE as needed. It is an error if *SIZE exceeds
9592 MAX_SIZE. The resulting intervals do not overlap. */
9593static void
9594add_component_interval (LONGEST low, LONGEST high,
9595 LONGEST* indices, int *size, int max_size)
9596{
9597 int i, j;
5b4ee69b 9598
52ce6436
PH
9599 for (i = 0; i < *size; i += 2) {
9600 if (high >= indices[i] && low <= indices[i + 1])
9601 {
9602 int kh;
5b4ee69b 9603
52ce6436
PH
9604 for (kh = i + 2; kh < *size; kh += 2)
9605 if (high < indices[kh])
9606 break;
9607 if (low < indices[i])
9608 indices[i] = low;
9609 indices[i + 1] = indices[kh - 1];
9610 if (high > indices[i + 1])
9611 indices[i + 1] = high;
9612 memcpy (indices + i + 2, indices + kh, *size - kh);
9613 *size -= kh - i - 2;
9614 return;
9615 }
9616 else if (high < indices[i])
9617 break;
9618 }
9619
9620 if (*size == max_size)
9621 error (_("Internal error: miscounted aggregate components."));
9622 *size += 2;
9623 for (j = *size-1; j >= i+2; j -= 1)
9624 indices[j] = indices[j - 2];
9625 indices[i] = low;
9626 indices[i + 1] = high;
9627}
9628
6e48bd2c
JB
9629/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9630 is different. */
9631
9632static struct value *
9633ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9634{
9635 if (type == ada_check_typedef (value_type (arg2)))
9636 return arg2;
9637
9638 if (ada_is_fixed_point_type (type))
9639 return (cast_to_fixed (type, arg2));
9640
9641 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9642 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9643
9644 return value_cast (type, arg2);
9645}
9646
284614f0
JB
9647/* Evaluating Ada expressions, and printing their result.
9648 ------------------------------------------------------
9649
21649b50
JB
9650 1. Introduction:
9651 ----------------
9652
284614f0
JB
9653 We usually evaluate an Ada expression in order to print its value.
9654 We also evaluate an expression in order to print its type, which
9655 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9656 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9657 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9658 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9659 similar.
9660
9661 Evaluating expressions is a little more complicated for Ada entities
9662 than it is for entities in languages such as C. The main reason for
9663 this is that Ada provides types whose definition might be dynamic.
9664 One example of such types is variant records. Or another example
9665 would be an array whose bounds can only be known at run time.
9666
9667 The following description is a general guide as to what should be
9668 done (and what should NOT be done) in order to evaluate an expression
9669 involving such types, and when. This does not cover how the semantic
9670 information is encoded by GNAT as this is covered separatly. For the
9671 document used as the reference for the GNAT encoding, see exp_dbug.ads
9672 in the GNAT sources.
9673
9674 Ideally, we should embed each part of this description next to its
9675 associated code. Unfortunately, the amount of code is so vast right
9676 now that it's hard to see whether the code handling a particular
9677 situation might be duplicated or not. One day, when the code is
9678 cleaned up, this guide might become redundant with the comments
9679 inserted in the code, and we might want to remove it.
9680
21649b50
JB
9681 2. ``Fixing'' an Entity, the Simple Case:
9682 -----------------------------------------
9683
284614f0
JB
9684 When evaluating Ada expressions, the tricky issue is that they may
9685 reference entities whose type contents and size are not statically
9686 known. Consider for instance a variant record:
9687
9688 type Rec (Empty : Boolean := True) is record
9689 case Empty is
9690 when True => null;
9691 when False => Value : Integer;
9692 end case;
9693 end record;
9694 Yes : Rec := (Empty => False, Value => 1);
9695 No : Rec := (empty => True);
9696
9697 The size and contents of that record depends on the value of the
9698 descriminant (Rec.Empty). At this point, neither the debugging
9699 information nor the associated type structure in GDB are able to
9700 express such dynamic types. So what the debugger does is to create
9701 "fixed" versions of the type that applies to the specific object.
9702 We also informally refer to this opperation as "fixing" an object,
9703 which means creating its associated fixed type.
9704
9705 Example: when printing the value of variable "Yes" above, its fixed
9706 type would look like this:
9707
9708 type Rec is record
9709 Empty : Boolean;
9710 Value : Integer;
9711 end record;
9712
9713 On the other hand, if we printed the value of "No", its fixed type
9714 would become:
9715
9716 type Rec is record
9717 Empty : Boolean;
9718 end record;
9719
9720 Things become a little more complicated when trying to fix an entity
9721 with a dynamic type that directly contains another dynamic type,
9722 such as an array of variant records, for instance. There are
9723 two possible cases: Arrays, and records.
9724
21649b50
JB
9725 3. ``Fixing'' Arrays:
9726 ---------------------
9727
9728 The type structure in GDB describes an array in terms of its bounds,
9729 and the type of its elements. By design, all elements in the array
9730 have the same type and we cannot represent an array of variant elements
9731 using the current type structure in GDB. When fixing an array,
9732 we cannot fix the array element, as we would potentially need one
9733 fixed type per element of the array. As a result, the best we can do
9734 when fixing an array is to produce an array whose bounds and size
9735 are correct (allowing us to read it from memory), but without having
9736 touched its element type. Fixing each element will be done later,
9737 when (if) necessary.
9738
9739 Arrays are a little simpler to handle than records, because the same
9740 amount of memory is allocated for each element of the array, even if
1b536f04 9741 the amount of space actually used by each element differs from element
21649b50 9742 to element. Consider for instance the following array of type Rec:
284614f0
JB
9743
9744 type Rec_Array is array (1 .. 2) of Rec;
9745
1b536f04
JB
9746 The actual amount of memory occupied by each element might be different
9747 from element to element, depending on the value of their discriminant.
21649b50 9748 But the amount of space reserved for each element in the array remains
1b536f04 9749 fixed regardless. So we simply need to compute that size using
21649b50
JB
9750 the debugging information available, from which we can then determine
9751 the array size (we multiply the number of elements of the array by
9752 the size of each element).
9753
9754 The simplest case is when we have an array of a constrained element
9755 type. For instance, consider the following type declarations:
9756
9757 type Bounded_String (Max_Size : Integer) is
9758 Length : Integer;
9759 Buffer : String (1 .. Max_Size);
9760 end record;
9761 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9762
9763 In this case, the compiler describes the array as an array of
9764 variable-size elements (identified by its XVS suffix) for which
9765 the size can be read in the parallel XVZ variable.
9766
9767 In the case of an array of an unconstrained element type, the compiler
9768 wraps the array element inside a private PAD type. This type should not
9769 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9770 that we also use the adjective "aligner" in our code to designate
9771 these wrapper types.
9772
1b536f04 9773 In some cases, the size allocated for each element is statically
21649b50
JB
9774 known. In that case, the PAD type already has the correct size,
9775 and the array element should remain unfixed.
9776
9777 But there are cases when this size is not statically known.
9778 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9779
9780 type Dynamic is array (1 .. Five) of Integer;
9781 type Wrapper (Has_Length : Boolean := False) is record
9782 Data : Dynamic;
9783 case Has_Length is
9784 when True => Length : Integer;
9785 when False => null;
9786 end case;
9787 end record;
9788 type Wrapper_Array is array (1 .. 2) of Wrapper;
9789
9790 Hello : Wrapper_Array := (others => (Has_Length => True,
9791 Data => (others => 17),
9792 Length => 1));
9793
9794
9795 The debugging info would describe variable Hello as being an
9796 array of a PAD type. The size of that PAD type is not statically
9797 known, but can be determined using a parallel XVZ variable.
9798 In that case, a copy of the PAD type with the correct size should
9799 be used for the fixed array.
9800
21649b50
JB
9801 3. ``Fixing'' record type objects:
9802 ----------------------------------
9803
9804 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9805 record types. In this case, in order to compute the associated
9806 fixed type, we need to determine the size and offset of each of
9807 its components. This, in turn, requires us to compute the fixed
9808 type of each of these components.
9809
9810 Consider for instance the example:
9811
9812 type Bounded_String (Max_Size : Natural) is record
9813 Str : String (1 .. Max_Size);
9814 Length : Natural;
9815 end record;
9816 My_String : Bounded_String (Max_Size => 10);
9817
9818 In that case, the position of field "Length" depends on the size
9819 of field Str, which itself depends on the value of the Max_Size
21649b50 9820 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9821 we need to fix the type of field Str. Therefore, fixing a variant
9822 record requires us to fix each of its components.
9823
9824 However, if a component does not have a dynamic size, the component
9825 should not be fixed. In particular, fields that use a PAD type
9826 should not fixed. Here is an example where this might happen
9827 (assuming type Rec above):
9828
9829 type Container (Big : Boolean) is record
9830 First : Rec;
9831 After : Integer;
9832 case Big is
9833 when True => Another : Integer;
9834 when False => null;
9835 end case;
9836 end record;
9837 My_Container : Container := (Big => False,
9838 First => (Empty => True),
9839 After => 42);
9840
9841 In that example, the compiler creates a PAD type for component First,
9842 whose size is constant, and then positions the component After just
9843 right after it. The offset of component After is therefore constant
9844 in this case.
9845
9846 The debugger computes the position of each field based on an algorithm
9847 that uses, among other things, the actual position and size of the field
21649b50
JB
9848 preceding it. Let's now imagine that the user is trying to print
9849 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9850 end up computing the offset of field After based on the size of the
9851 fixed version of field First. And since in our example First has
9852 only one actual field, the size of the fixed type is actually smaller
9853 than the amount of space allocated to that field, and thus we would
9854 compute the wrong offset of field After.
9855
21649b50
JB
9856 To make things more complicated, we need to watch out for dynamic
9857 components of variant records (identified by the ___XVL suffix in
9858 the component name). Even if the target type is a PAD type, the size
9859 of that type might not be statically known. So the PAD type needs
9860 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9861 we might end up with the wrong size for our component. This can be
9862 observed with the following type declarations:
284614f0
JB
9863
9864 type Octal is new Integer range 0 .. 7;
9865 type Octal_Array is array (Positive range <>) of Octal;
9866 pragma Pack (Octal_Array);
9867
9868 type Octal_Buffer (Size : Positive) is record
9869 Buffer : Octal_Array (1 .. Size);
9870 Length : Integer;
9871 end record;
9872
9873 In that case, Buffer is a PAD type whose size is unset and needs
9874 to be computed by fixing the unwrapped type.
9875
21649b50
JB
9876 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9877 ----------------------------------------------------------
9878
9879 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9880 thus far, be actually fixed?
9881
9882 The answer is: Only when referencing that element. For instance
9883 when selecting one component of a record, this specific component
9884 should be fixed at that point in time. Or when printing the value
9885 of a record, each component should be fixed before its value gets
9886 printed. Similarly for arrays, the element of the array should be
9887 fixed when printing each element of the array, or when extracting
9888 one element out of that array. On the other hand, fixing should
9889 not be performed on the elements when taking a slice of an array!
9890
9891 Note that one of the side-effects of miscomputing the offset and
9892 size of each field is that we end up also miscomputing the size
9893 of the containing type. This can have adverse results when computing
9894 the value of an entity. GDB fetches the value of an entity based
9895 on the size of its type, and thus a wrong size causes GDB to fetch
9896 the wrong amount of memory. In the case where the computed size is
9897 too small, GDB fetches too little data to print the value of our
9898 entiry. Results in this case as unpredicatble, as we usually read
9899 past the buffer containing the data =:-o. */
9900
9901/* Implement the evaluate_exp routine in the exp_descriptor structure
9902 for the Ada language. */
9903
52ce6436 9904static struct value *
ebf56fd3 9905ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9906 int *pos, enum noside noside)
14f9c5c9
AS
9907{
9908 enum exp_opcode op;
b5385fc0 9909 int tem;
14f9c5c9 9910 int pc;
5ec18f2b 9911 int preeval_pos;
14f9c5c9
AS
9912 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9913 struct type *type;
52ce6436 9914 int nargs, oplen;
d2e4a39e 9915 struct value **argvec;
14f9c5c9 9916
d2e4a39e
AS
9917 pc = *pos;
9918 *pos += 1;
14f9c5c9
AS
9919 op = exp->elts[pc].opcode;
9920
d2e4a39e 9921 switch (op)
14f9c5c9
AS
9922 {
9923 default:
9924 *pos -= 1;
6e48bd2c 9925 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
9926
9927 if (noside == EVAL_NORMAL)
9928 arg1 = unwrap_value (arg1);
6e48bd2c
JB
9929
9930 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9931 then we need to perform the conversion manually, because
9932 evaluate_subexp_standard doesn't do it. This conversion is
9933 necessary in Ada because the different kinds of float/fixed
9934 types in Ada have different representations.
9935
9936 Similarly, we need to perform the conversion from OP_LONG
9937 ourselves. */
9938 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9939 arg1 = ada_value_cast (expect_type, arg1, noside);
9940
9941 return arg1;
4c4b4cd2
PH
9942
9943 case OP_STRING:
9944 {
76a01679 9945 struct value *result;
5b4ee69b 9946
76a01679
JB
9947 *pos -= 1;
9948 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9949 /* The result type will have code OP_STRING, bashed there from
9950 OP_ARRAY. Bash it back. */
df407dfe
AC
9951 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9952 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9953 return result;
4c4b4cd2 9954 }
14f9c5c9
AS
9955
9956 case UNOP_CAST:
9957 (*pos) += 2;
9958 type = exp->elts[pc + 1].type;
9959 arg1 = evaluate_subexp (type, exp, pos, noside);
9960 if (noside == EVAL_SKIP)
4c4b4cd2 9961 goto nosideret;
6e48bd2c 9962 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9963 return arg1;
9964
4c4b4cd2
PH
9965 case UNOP_QUAL:
9966 (*pos) += 2;
9967 type = exp->elts[pc + 1].type;
9968 return ada_evaluate_subexp (type, exp, pos, noside);
9969
14f9c5c9
AS
9970 case BINOP_ASSIGN:
9971 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9972 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9973 {
9974 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9975 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9976 return arg1;
9977 return ada_value_assign (arg1, arg1);
9978 }
003f3813
JB
9979 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9980 except if the lhs of our assignment is a convenience variable.
9981 In the case of assigning to a convenience variable, the lhs
9982 should be exactly the result of the evaluation of the rhs. */
9983 type = value_type (arg1);
9984 if (VALUE_LVAL (arg1) == lval_internalvar)
9985 type = NULL;
9986 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9987 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9988 return arg1;
df407dfe
AC
9989 if (ada_is_fixed_point_type (value_type (arg1)))
9990 arg2 = cast_to_fixed (value_type (arg1), arg2);
9991 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9992 error
323e0a4a 9993 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9994 else
df407dfe 9995 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9996 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9997
9998 case BINOP_ADD:
9999 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10000 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10001 if (noside == EVAL_SKIP)
4c4b4cd2 10002 goto nosideret;
2ac8a782
JB
10003 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10004 return (value_from_longest
10005 (value_type (arg1),
10006 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10007 if ((ada_is_fixed_point_type (value_type (arg1))
10008 || ada_is_fixed_point_type (value_type (arg2)))
10009 && value_type (arg1) != value_type (arg2))
323e0a4a 10010 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10011 /* Do the addition, and cast the result to the type of the first
10012 argument. We cannot cast the result to a reference type, so if
10013 ARG1 is a reference type, find its underlying type. */
10014 type = value_type (arg1);
10015 while (TYPE_CODE (type) == TYPE_CODE_REF)
10016 type = TYPE_TARGET_TYPE (type);
f44316fa 10017 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10018 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10019
10020 case BINOP_SUB:
10021 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10022 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10023 if (noside == EVAL_SKIP)
4c4b4cd2 10024 goto nosideret;
2ac8a782
JB
10025 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10026 return (value_from_longest
10027 (value_type (arg1),
10028 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10029 if ((ada_is_fixed_point_type (value_type (arg1))
10030 || ada_is_fixed_point_type (value_type (arg2)))
10031 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10032 error (_("Operands of fixed-point subtraction "
10033 "must have the same type"));
b7789565
JB
10034 /* Do the substraction, and cast the result to the type of the first
10035 argument. We cannot cast the result to a reference type, so if
10036 ARG1 is a reference type, find its underlying type. */
10037 type = value_type (arg1);
10038 while (TYPE_CODE (type) == TYPE_CODE_REF)
10039 type = TYPE_TARGET_TYPE (type);
f44316fa 10040 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10041 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10042
10043 case BINOP_MUL:
10044 case BINOP_DIV:
e1578042
JB
10045 case BINOP_REM:
10046 case BINOP_MOD:
14f9c5c9
AS
10047 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10048 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10049 if (noside == EVAL_SKIP)
4c4b4cd2 10050 goto nosideret;
e1578042 10051 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10052 {
10053 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10054 return value_zero (value_type (arg1), not_lval);
10055 }
14f9c5c9 10056 else
4c4b4cd2 10057 {
a53b7a21 10058 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10059 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10060 arg1 = cast_from_fixed (type, arg1);
df407dfe 10061 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10062 arg2 = cast_from_fixed (type, arg2);
f44316fa 10063 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10064 return ada_value_binop (arg1, arg2, op);
10065 }
10066
4c4b4cd2
PH
10067 case BINOP_EQUAL:
10068 case BINOP_NOTEQUAL:
14f9c5c9 10069 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10070 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10071 if (noside == EVAL_SKIP)
76a01679 10072 goto nosideret;
4c4b4cd2 10073 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10074 tem = 0;
4c4b4cd2 10075 else
f44316fa
UW
10076 {
10077 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10078 tem = ada_value_equal (arg1, arg2);
10079 }
4c4b4cd2 10080 if (op == BINOP_NOTEQUAL)
76a01679 10081 tem = !tem;
fbb06eb1
UW
10082 type = language_bool_type (exp->language_defn, exp->gdbarch);
10083 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10084
10085 case UNOP_NEG:
10086 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10087 if (noside == EVAL_SKIP)
10088 goto nosideret;
df407dfe
AC
10089 else if (ada_is_fixed_point_type (value_type (arg1)))
10090 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10091 else
f44316fa
UW
10092 {
10093 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10094 return value_neg (arg1);
10095 }
4c4b4cd2 10096
2330c6c6
JB
10097 case BINOP_LOGICAL_AND:
10098 case BINOP_LOGICAL_OR:
10099 case UNOP_LOGICAL_NOT:
000d5124
JB
10100 {
10101 struct value *val;
10102
10103 *pos -= 1;
10104 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10105 type = language_bool_type (exp->language_defn, exp->gdbarch);
10106 return value_cast (type, val);
000d5124 10107 }
2330c6c6
JB
10108
10109 case BINOP_BITWISE_AND:
10110 case BINOP_BITWISE_IOR:
10111 case BINOP_BITWISE_XOR:
000d5124
JB
10112 {
10113 struct value *val;
10114
10115 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10116 *pos = pc;
10117 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10118
10119 return value_cast (value_type (arg1), val);
10120 }
2330c6c6 10121
14f9c5c9
AS
10122 case OP_VAR_VALUE:
10123 *pos -= 1;
6799def4 10124
14f9c5c9 10125 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10126 {
10127 *pos += 4;
10128 goto nosideret;
10129 }
da5c522f
JB
10130
10131 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10132 /* Only encountered when an unresolved symbol occurs in a
10133 context other than a function call, in which case, it is
52ce6436 10134 invalid. */
323e0a4a 10135 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10136 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10137
10138 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10139 {
0c1f74cf 10140 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10141 /* Check to see if this is a tagged type. We also need to handle
10142 the case where the type is a reference to a tagged type, but
10143 we have to be careful to exclude pointers to tagged types.
10144 The latter should be shown as usual (as a pointer), whereas
10145 a reference should mostly be transparent to the user. */
10146 if (ada_is_tagged_type (type, 0)
023db19c 10147 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10148 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10149 {
10150 /* Tagged types are a little special in the fact that the real
10151 type is dynamic and can only be determined by inspecting the
10152 object's tag. This means that we need to get the object's
10153 value first (EVAL_NORMAL) and then extract the actual object
10154 type from its tag.
10155
10156 Note that we cannot skip the final step where we extract
10157 the object type from its tag, because the EVAL_NORMAL phase
10158 results in dynamic components being resolved into fixed ones.
10159 This can cause problems when trying to print the type
10160 description of tagged types whose parent has a dynamic size:
10161 We use the type name of the "_parent" component in order
10162 to print the name of the ancestor type in the type description.
10163 If that component had a dynamic size, the resolution into
10164 a fixed type would result in the loss of that type name,
10165 thus preventing us from printing the name of the ancestor
10166 type in the type description. */
10167 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10168
10169 if (TYPE_CODE (type) != TYPE_CODE_REF)
10170 {
10171 struct type *actual_type;
10172
10173 actual_type = type_from_tag (ada_value_tag (arg1));
10174 if (actual_type == NULL)
10175 /* If, for some reason, we were unable to determine
10176 the actual type from the tag, then use the static
10177 approximation that we just computed as a fallback.
10178 This can happen if the debugging information is
10179 incomplete, for instance. */
10180 actual_type = type;
10181 return value_zero (actual_type, not_lval);
10182 }
10183 else
10184 {
10185 /* In the case of a ref, ada_coerce_ref takes care
10186 of determining the actual type. But the evaluation
10187 should return a ref as it should be valid to ask
10188 for its address; so rebuild a ref after coerce. */
10189 arg1 = ada_coerce_ref (arg1);
10190 return value_ref (arg1);
10191 }
10192 }
0c1f74cf 10193
84754697
JB
10194 /* Records and unions for which GNAT encodings have been
10195 generated need to be statically fixed as well.
10196 Otherwise, non-static fixing produces a type where
10197 all dynamic properties are removed, which prevents "ptype"
10198 from being able to completely describe the type.
10199 For instance, a case statement in a variant record would be
10200 replaced by the relevant components based on the actual
10201 value of the discriminants. */
10202 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10203 && dynamic_template_type (type) != NULL)
10204 || (TYPE_CODE (type) == TYPE_CODE_UNION
10205 && ada_find_parallel_type (type, "___XVU") != NULL))
10206 {
10207 *pos += 4;
10208 return value_zero (to_static_fixed_type (type), not_lval);
10209 }
4c4b4cd2 10210 }
da5c522f
JB
10211
10212 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10213 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10214
10215 case OP_FUNCALL:
10216 (*pos) += 2;
10217
10218 /* Allocate arg vector, including space for the function to be
10219 called in argvec[0] and a terminating NULL. */
10220 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10221 argvec =
10222 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10223
10224 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10225 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10226 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10227 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10228 else
10229 {
10230 for (tem = 0; tem <= nargs; tem += 1)
10231 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10232 argvec[tem] = 0;
10233
10234 if (noside == EVAL_SKIP)
10235 goto nosideret;
10236 }
10237
ad82864c
JB
10238 if (ada_is_constrained_packed_array_type
10239 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10240 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10241 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10242 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10243 /* This is a packed array that has already been fixed, and
10244 therefore already coerced to a simple array. Nothing further
10245 to do. */
10246 ;
df407dfe
AC
10247 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10248 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 10249 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
10250 argvec[0] = value_addr (argvec[0]);
10251
df407dfe 10252 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10253
10254 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10255 them. So, if this is an array typedef (encoding use for array
10256 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10257 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10258 type = ada_typedef_target_type (type);
10259
4c4b4cd2
PH
10260 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10261 {
61ee279c 10262 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10263 {
10264 case TYPE_CODE_FUNC:
61ee279c 10265 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10266 break;
10267 case TYPE_CODE_ARRAY:
10268 break;
10269 case TYPE_CODE_STRUCT:
10270 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10271 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10272 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10273 break;
10274 default:
323e0a4a 10275 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10276 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10277 break;
10278 }
10279 }
10280
10281 switch (TYPE_CODE (type))
10282 {
10283 case TYPE_CODE_FUNC:
10284 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10285 {
10286 struct type *rtype = TYPE_TARGET_TYPE (type);
10287
10288 if (TYPE_GNU_IFUNC (type))
10289 return allocate_value (TYPE_TARGET_TYPE (rtype));
10290 return allocate_value (rtype);
10291 }
4c4b4cd2 10292 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10293 case TYPE_CODE_INTERNAL_FUNCTION:
10294 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10295 /* We don't know anything about what the internal
10296 function might return, but we have to return
10297 something. */
10298 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10299 not_lval);
10300 else
10301 return call_internal_function (exp->gdbarch, exp->language_defn,
10302 argvec[0], nargs, argvec + 1);
10303
4c4b4cd2
PH
10304 case TYPE_CODE_STRUCT:
10305 {
10306 int arity;
10307
4c4b4cd2
PH
10308 arity = ada_array_arity (type);
10309 type = ada_array_element_type (type, nargs);
10310 if (type == NULL)
323e0a4a 10311 error (_("cannot subscript or call a record"));
4c4b4cd2 10312 if (arity != nargs)
323e0a4a 10313 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10314 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10315 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10316 return
10317 unwrap_value (ada_value_subscript
10318 (argvec[0], nargs, argvec + 1));
10319 }
10320 case TYPE_CODE_ARRAY:
10321 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10322 {
10323 type = ada_array_element_type (type, nargs);
10324 if (type == NULL)
323e0a4a 10325 error (_("element type of array unknown"));
4c4b4cd2 10326 else
0a07e705 10327 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10328 }
10329 return
10330 unwrap_value (ada_value_subscript
10331 (ada_coerce_to_simple_array (argvec[0]),
10332 nargs, argvec + 1));
10333 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10334 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10335 {
deede10c 10336 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10337 type = ada_array_element_type (type, nargs);
10338 if (type == NULL)
323e0a4a 10339 error (_("element type of array unknown"));
4c4b4cd2 10340 else
0a07e705 10341 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10342 }
10343 return
deede10c
JB
10344 unwrap_value (ada_value_ptr_subscript (argvec[0],
10345 nargs, argvec + 1));
4c4b4cd2
PH
10346
10347 default:
e1d5a0d2
PH
10348 error (_("Attempt to index or call something other than an "
10349 "array or function"));
4c4b4cd2
PH
10350 }
10351
10352 case TERNOP_SLICE:
10353 {
10354 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10355 struct value *low_bound_val =
10356 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10357 struct value *high_bound_val =
10358 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10359 LONGEST low_bound;
10360 LONGEST high_bound;
5b4ee69b 10361
994b9211
AC
10362 low_bound_val = coerce_ref (low_bound_val);
10363 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10364 low_bound = pos_atr (low_bound_val);
10365 high_bound = pos_atr (high_bound_val);
963a6417 10366
4c4b4cd2
PH
10367 if (noside == EVAL_SKIP)
10368 goto nosideret;
10369
4c4b4cd2
PH
10370 /* If this is a reference to an aligner type, then remove all
10371 the aligners. */
df407dfe
AC
10372 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10373 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10374 TYPE_TARGET_TYPE (value_type (array)) =
10375 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10376
ad82864c 10377 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10378 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10379
10380 /* If this is a reference to an array or an array lvalue,
10381 convert to a pointer. */
df407dfe
AC
10382 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10383 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10384 && VALUE_LVAL (array) == lval_memory))
10385 array = value_addr (array);
10386
1265e4aa 10387 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10388 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10389 (value_type (array))))
0b5d8877 10390 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10391
10392 array = ada_coerce_to_simple_array_ptr (array);
10393
714e53ab
PH
10394 /* If we have more than one level of pointer indirection,
10395 dereference the value until we get only one level. */
df407dfe
AC
10396 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10397 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10398 == TYPE_CODE_PTR))
10399 array = value_ind (array);
10400
10401 /* Make sure we really do have an array type before going further,
10402 to avoid a SEGV when trying to get the index type or the target
10403 type later down the road if the debug info generated by
10404 the compiler is incorrect or incomplete. */
df407dfe 10405 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10406 error (_("cannot take slice of non-array"));
714e53ab 10407
828292f2
JB
10408 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10409 == TYPE_CODE_PTR)
4c4b4cd2 10410 {
828292f2
JB
10411 struct type *type0 = ada_check_typedef (value_type (array));
10412
0b5d8877 10413 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10414 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10415 else
10416 {
10417 struct type *arr_type0 =
828292f2 10418 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10419
f5938064
JG
10420 return ada_value_slice_from_ptr (array, arr_type0,
10421 longest_to_int (low_bound),
10422 longest_to_int (high_bound));
4c4b4cd2
PH
10423 }
10424 }
10425 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10426 return array;
10427 else if (high_bound < low_bound)
df407dfe 10428 return empty_array (value_type (array), low_bound);
4c4b4cd2 10429 else
529cad9c
PH
10430 return ada_value_slice (array, longest_to_int (low_bound),
10431 longest_to_int (high_bound));
4c4b4cd2 10432 }
14f9c5c9 10433
4c4b4cd2
PH
10434 case UNOP_IN_RANGE:
10435 (*pos) += 2;
10436 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10437 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10438
14f9c5c9 10439 if (noside == EVAL_SKIP)
4c4b4cd2 10440 goto nosideret;
14f9c5c9 10441
4c4b4cd2
PH
10442 switch (TYPE_CODE (type))
10443 {
10444 default:
e1d5a0d2
PH
10445 lim_warning (_("Membership test incompletely implemented; "
10446 "always returns true"));
fbb06eb1
UW
10447 type = language_bool_type (exp->language_defn, exp->gdbarch);
10448 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10449
10450 case TYPE_CODE_RANGE:
030b4912
UW
10451 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10452 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10453 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10454 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10455 type = language_bool_type (exp->language_defn, exp->gdbarch);
10456 return
10457 value_from_longest (type,
4c4b4cd2
PH
10458 (value_less (arg1, arg3)
10459 || value_equal (arg1, arg3))
10460 && (value_less (arg2, arg1)
10461 || value_equal (arg2, arg1)));
10462 }
10463
10464 case BINOP_IN_BOUNDS:
14f9c5c9 10465 (*pos) += 2;
4c4b4cd2
PH
10466 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10467 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10468
4c4b4cd2
PH
10469 if (noside == EVAL_SKIP)
10470 goto nosideret;
14f9c5c9 10471
4c4b4cd2 10472 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10473 {
10474 type = language_bool_type (exp->language_defn, exp->gdbarch);
10475 return value_zero (type, not_lval);
10476 }
14f9c5c9 10477
4c4b4cd2 10478 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10479
1eea4ebd
UW
10480 type = ada_index_type (value_type (arg2), tem, "range");
10481 if (!type)
10482 type = value_type (arg1);
14f9c5c9 10483
1eea4ebd
UW
10484 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10485 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10486
f44316fa
UW
10487 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10488 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10489 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10490 return
fbb06eb1 10491 value_from_longest (type,
4c4b4cd2
PH
10492 (value_less (arg1, arg3)
10493 || value_equal (arg1, arg3))
10494 && (value_less (arg2, arg1)
10495 || value_equal (arg2, arg1)));
10496
10497 case TERNOP_IN_RANGE:
10498 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10499 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10500 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10501
10502 if (noside == EVAL_SKIP)
10503 goto nosideret;
10504
f44316fa
UW
10505 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10506 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10507 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10508 return
fbb06eb1 10509 value_from_longest (type,
4c4b4cd2
PH
10510 (value_less (arg1, arg3)
10511 || value_equal (arg1, arg3))
10512 && (value_less (arg2, arg1)
10513 || value_equal (arg2, arg1)));
10514
10515 case OP_ATR_FIRST:
10516 case OP_ATR_LAST:
10517 case OP_ATR_LENGTH:
10518 {
76a01679 10519 struct type *type_arg;
5b4ee69b 10520
76a01679
JB
10521 if (exp->elts[*pos].opcode == OP_TYPE)
10522 {
10523 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10524 arg1 = NULL;
5bc23cb3 10525 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10526 }
10527 else
10528 {
10529 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10530 type_arg = NULL;
10531 }
10532
10533 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10534 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10535 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10536 *pos += 4;
10537
10538 if (noside == EVAL_SKIP)
10539 goto nosideret;
10540
10541 if (type_arg == NULL)
10542 {
10543 arg1 = ada_coerce_ref (arg1);
10544
ad82864c 10545 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10546 arg1 = ada_coerce_to_simple_array (arg1);
10547
aa4fb036 10548 if (op == OP_ATR_LENGTH)
1eea4ebd 10549 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10550 else
10551 {
10552 type = ada_index_type (value_type (arg1), tem,
10553 ada_attribute_name (op));
10554 if (type == NULL)
10555 type = builtin_type (exp->gdbarch)->builtin_int;
10556 }
76a01679
JB
10557
10558 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10559 return allocate_value (type);
76a01679
JB
10560
10561 switch (op)
10562 {
10563 default: /* Should never happen. */
323e0a4a 10564 error (_("unexpected attribute encountered"));
76a01679 10565 case OP_ATR_FIRST:
1eea4ebd
UW
10566 return value_from_longest
10567 (type, ada_array_bound (arg1, tem, 0));
76a01679 10568 case OP_ATR_LAST:
1eea4ebd
UW
10569 return value_from_longest
10570 (type, ada_array_bound (arg1, tem, 1));
76a01679 10571 case OP_ATR_LENGTH:
1eea4ebd
UW
10572 return value_from_longest
10573 (type, ada_array_length (arg1, tem));
76a01679
JB
10574 }
10575 }
10576 else if (discrete_type_p (type_arg))
10577 {
10578 struct type *range_type;
0d5cff50 10579 const char *name = ada_type_name (type_arg);
5b4ee69b 10580
76a01679
JB
10581 range_type = NULL;
10582 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10583 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10584 if (range_type == NULL)
10585 range_type = type_arg;
10586 switch (op)
10587 {
10588 default:
323e0a4a 10589 error (_("unexpected attribute encountered"));
76a01679 10590 case OP_ATR_FIRST:
690cc4eb 10591 return value_from_longest
43bbcdc2 10592 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10593 case OP_ATR_LAST:
690cc4eb 10594 return value_from_longest
43bbcdc2 10595 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10596 case OP_ATR_LENGTH:
323e0a4a 10597 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10598 }
10599 }
10600 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10601 error (_("unimplemented type attribute"));
76a01679
JB
10602 else
10603 {
10604 LONGEST low, high;
10605
ad82864c
JB
10606 if (ada_is_constrained_packed_array_type (type_arg))
10607 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10608
aa4fb036 10609 if (op == OP_ATR_LENGTH)
1eea4ebd 10610 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10611 else
10612 {
10613 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10614 if (type == NULL)
10615 type = builtin_type (exp->gdbarch)->builtin_int;
10616 }
1eea4ebd 10617
76a01679
JB
10618 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10619 return allocate_value (type);
10620
10621 switch (op)
10622 {
10623 default:
323e0a4a 10624 error (_("unexpected attribute encountered"));
76a01679 10625 case OP_ATR_FIRST:
1eea4ebd 10626 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10627 return value_from_longest (type, low);
10628 case OP_ATR_LAST:
1eea4ebd 10629 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10630 return value_from_longest (type, high);
10631 case OP_ATR_LENGTH:
1eea4ebd
UW
10632 low = ada_array_bound_from_type (type_arg, tem, 0);
10633 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10634 return value_from_longest (type, high - low + 1);
10635 }
10636 }
14f9c5c9
AS
10637 }
10638
4c4b4cd2
PH
10639 case OP_ATR_TAG:
10640 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10641 if (noside == EVAL_SKIP)
76a01679 10642 goto nosideret;
4c4b4cd2
PH
10643
10644 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10645 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10646
10647 return ada_value_tag (arg1);
10648
10649 case OP_ATR_MIN:
10650 case OP_ATR_MAX:
10651 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10652 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10653 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10654 if (noside == EVAL_SKIP)
76a01679 10655 goto nosideret;
d2e4a39e 10656 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10657 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10658 else
f44316fa
UW
10659 {
10660 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10661 return value_binop (arg1, arg2,
10662 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10663 }
14f9c5c9 10664
4c4b4cd2
PH
10665 case OP_ATR_MODULUS:
10666 {
31dedfee 10667 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10668
5b4ee69b 10669 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10670 if (noside == EVAL_SKIP)
10671 goto nosideret;
4c4b4cd2 10672
76a01679 10673 if (!ada_is_modular_type (type_arg))
323e0a4a 10674 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10675
76a01679
JB
10676 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10677 ada_modulus (type_arg));
4c4b4cd2
PH
10678 }
10679
10680
10681 case OP_ATR_POS:
10682 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10683 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10684 if (noside == EVAL_SKIP)
76a01679 10685 goto nosideret;
3cb382c9
UW
10686 type = builtin_type (exp->gdbarch)->builtin_int;
10687 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10688 return value_zero (type, not_lval);
14f9c5c9 10689 else
3cb382c9 10690 return value_pos_atr (type, arg1);
14f9c5c9 10691
4c4b4cd2
PH
10692 case OP_ATR_SIZE:
10693 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10694 type = value_type (arg1);
10695
10696 /* If the argument is a reference, then dereference its type, since
10697 the user is really asking for the size of the actual object,
10698 not the size of the pointer. */
10699 if (TYPE_CODE (type) == TYPE_CODE_REF)
10700 type = TYPE_TARGET_TYPE (type);
10701
4c4b4cd2 10702 if (noside == EVAL_SKIP)
76a01679 10703 goto nosideret;
4c4b4cd2 10704 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10705 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10706 else
22601c15 10707 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10708 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10709
10710 case OP_ATR_VAL:
10711 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10712 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10713 type = exp->elts[pc + 2].type;
14f9c5c9 10714 if (noside == EVAL_SKIP)
76a01679 10715 goto nosideret;
4c4b4cd2 10716 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10717 return value_zero (type, not_lval);
4c4b4cd2 10718 else
76a01679 10719 return value_val_atr (type, arg1);
4c4b4cd2
PH
10720
10721 case BINOP_EXP:
10722 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10723 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10724 if (noside == EVAL_SKIP)
10725 goto nosideret;
10726 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10727 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10728 else
f44316fa
UW
10729 {
10730 /* For integer exponentiation operations,
10731 only promote the first argument. */
10732 if (is_integral_type (value_type (arg2)))
10733 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10734 else
10735 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10736
10737 return value_binop (arg1, arg2, op);
10738 }
4c4b4cd2
PH
10739
10740 case UNOP_PLUS:
10741 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10742 if (noside == EVAL_SKIP)
10743 goto nosideret;
10744 else
10745 return arg1;
10746
10747 case UNOP_ABS:
10748 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10749 if (noside == EVAL_SKIP)
10750 goto nosideret;
f44316fa 10751 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10752 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10753 return value_neg (arg1);
14f9c5c9 10754 else
4c4b4cd2 10755 return arg1;
14f9c5c9
AS
10756
10757 case UNOP_IND:
5ec18f2b 10758 preeval_pos = *pos;
6b0d7253 10759 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10760 if (noside == EVAL_SKIP)
4c4b4cd2 10761 goto nosideret;
df407dfe 10762 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10763 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10764 {
10765 if (ada_is_array_descriptor_type (type))
10766 /* GDB allows dereferencing GNAT array descriptors. */
10767 {
10768 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10769
4c4b4cd2 10770 if (arrType == NULL)
323e0a4a 10771 error (_("Attempt to dereference null array pointer."));
00a4c844 10772 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10773 }
10774 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10775 || TYPE_CODE (type) == TYPE_CODE_REF
10776 /* In C you can dereference an array to get the 1st elt. */
10777 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 10778 {
5ec18f2b
JG
10779 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10780 only be determined by inspecting the object's tag.
10781 This means that we need to evaluate completely the
10782 expression in order to get its type. */
10783
023db19c
JB
10784 if ((TYPE_CODE (type) == TYPE_CODE_REF
10785 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
10786 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10787 {
10788 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10789 EVAL_NORMAL);
10790 type = value_type (ada_value_ind (arg1));
10791 }
10792 else
10793 {
10794 type = to_static_fixed_type
10795 (ada_aligned_type
10796 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10797 }
10798 check_size (type);
714e53ab
PH
10799 return value_zero (type, lval_memory);
10800 }
4c4b4cd2 10801 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10802 {
10803 /* GDB allows dereferencing an int. */
10804 if (expect_type == NULL)
10805 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10806 lval_memory);
10807 else
10808 {
10809 expect_type =
10810 to_static_fixed_type (ada_aligned_type (expect_type));
10811 return value_zero (expect_type, lval_memory);
10812 }
10813 }
4c4b4cd2 10814 else
323e0a4a 10815 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10816 }
0963b4bd 10817 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10818 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10819
96967637
JB
10820 if (TYPE_CODE (type) == TYPE_CODE_INT)
10821 /* GDB allows dereferencing an int. If we were given
10822 the expect_type, then use that as the target type.
10823 Otherwise, assume that the target type is an int. */
10824 {
10825 if (expect_type != NULL)
10826 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10827 arg1));
10828 else
10829 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10830 (CORE_ADDR) value_as_address (arg1));
10831 }
6b0d7253 10832
4c4b4cd2
PH
10833 if (ada_is_array_descriptor_type (type))
10834 /* GDB allows dereferencing GNAT array descriptors. */
10835 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10836 else
4c4b4cd2 10837 return ada_value_ind (arg1);
14f9c5c9
AS
10838
10839 case STRUCTOP_STRUCT:
10840 tem = longest_to_int (exp->elts[pc + 1].longconst);
10841 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 10842 preeval_pos = *pos;
14f9c5c9
AS
10843 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10844 if (noside == EVAL_SKIP)
4c4b4cd2 10845 goto nosideret;
14f9c5c9 10846 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10847 {
df407dfe 10848 struct type *type1 = value_type (arg1);
5b4ee69b 10849
76a01679
JB
10850 if (ada_is_tagged_type (type1, 1))
10851 {
10852 type = ada_lookup_struct_elt_type (type1,
10853 &exp->elts[pc + 2].string,
10854 1, 1, NULL);
5ec18f2b
JG
10855
10856 /* If the field is not found, check if it exists in the
10857 extension of this object's type. This means that we
10858 need to evaluate completely the expression. */
10859
76a01679 10860 if (type == NULL)
5ec18f2b
JG
10861 {
10862 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10863 EVAL_NORMAL);
10864 arg1 = ada_value_struct_elt (arg1,
10865 &exp->elts[pc + 2].string,
10866 0);
10867 arg1 = unwrap_value (arg1);
10868 type = value_type (ada_to_fixed_value (arg1));
10869 }
76a01679
JB
10870 }
10871 else
10872 type =
10873 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10874 0, NULL);
10875
10876 return value_zero (ada_aligned_type (type), lval_memory);
10877 }
14f9c5c9 10878 else
284614f0
JB
10879 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10880 arg1 = unwrap_value (arg1);
10881 return ada_to_fixed_value (arg1);
10882
14f9c5c9 10883 case OP_TYPE:
4c4b4cd2
PH
10884 /* The value is not supposed to be used. This is here to make it
10885 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10886 (*pos) += 2;
10887 if (noside == EVAL_SKIP)
4c4b4cd2 10888 goto nosideret;
14f9c5c9 10889 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10890 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10891 else
323e0a4a 10892 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10893
10894 case OP_AGGREGATE:
10895 case OP_CHOICES:
10896 case OP_OTHERS:
10897 case OP_DISCRETE_RANGE:
10898 case OP_POSITIONAL:
10899 case OP_NAME:
10900 if (noside == EVAL_NORMAL)
10901 switch (op)
10902 {
10903 case OP_NAME:
10904 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10905 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10906 case OP_AGGREGATE:
10907 error (_("Aggregates only allowed on the right of an assignment"));
10908 default:
0963b4bd
MS
10909 internal_error (__FILE__, __LINE__,
10910 _("aggregate apparently mangled"));
52ce6436
PH
10911 }
10912
10913 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10914 *pos += oplen - 1;
10915 for (tem = 0; tem < nargs; tem += 1)
10916 ada_evaluate_subexp (NULL, exp, pos, noside);
10917 goto nosideret;
14f9c5c9
AS
10918 }
10919
10920nosideret:
22601c15 10921 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10922}
14f9c5c9 10923\f
d2e4a39e 10924
4c4b4cd2 10925 /* Fixed point */
14f9c5c9
AS
10926
10927/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10928 type name that encodes the 'small and 'delta information.
4c4b4cd2 10929 Otherwise, return NULL. */
14f9c5c9 10930
d2e4a39e 10931static const char *
ebf56fd3 10932fixed_type_info (struct type *type)
14f9c5c9 10933{
d2e4a39e 10934 const char *name = ada_type_name (type);
14f9c5c9
AS
10935 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10936
d2e4a39e
AS
10937 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10938 {
14f9c5c9 10939 const char *tail = strstr (name, "___XF_");
5b4ee69b 10940
14f9c5c9 10941 if (tail == NULL)
4c4b4cd2 10942 return NULL;
d2e4a39e 10943 else
4c4b4cd2 10944 return tail + 5;
14f9c5c9
AS
10945 }
10946 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10947 return fixed_type_info (TYPE_TARGET_TYPE (type));
10948 else
10949 return NULL;
10950}
10951
4c4b4cd2 10952/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10953
10954int
ebf56fd3 10955ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10956{
10957 return fixed_type_info (type) != NULL;
10958}
10959
4c4b4cd2
PH
10960/* Return non-zero iff TYPE represents a System.Address type. */
10961
10962int
10963ada_is_system_address_type (struct type *type)
10964{
10965 return (TYPE_NAME (type)
10966 && strcmp (TYPE_NAME (type), "system__address") == 0);
10967}
10968
14f9c5c9
AS
10969/* Assuming that TYPE is the representation of an Ada fixed-point
10970 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10971 delta cannot be determined. */
14f9c5c9
AS
10972
10973DOUBLEST
ebf56fd3 10974ada_delta (struct type *type)
14f9c5c9
AS
10975{
10976 const char *encoding = fixed_type_info (type);
facc390f 10977 DOUBLEST num, den;
14f9c5c9 10978
facc390f
JB
10979 /* Strictly speaking, num and den are encoded as integer. However,
10980 they may not fit into a long, and they will have to be converted
10981 to DOUBLEST anyway. So scan them as DOUBLEST. */
10982 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10983 &num, &den) < 2)
14f9c5c9 10984 return -1.0;
d2e4a39e 10985 else
facc390f 10986 return num / den;
14f9c5c9
AS
10987}
10988
10989/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10990 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10991
10992static DOUBLEST
ebf56fd3 10993scaling_factor (struct type *type)
14f9c5c9
AS
10994{
10995 const char *encoding = fixed_type_info (type);
facc390f 10996 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10997 int n;
d2e4a39e 10998
facc390f
JB
10999 /* Strictly speaking, num's and den's are encoded as integer. However,
11000 they may not fit into a long, and they will have to be converted
11001 to DOUBLEST anyway. So scan them as DOUBLEST. */
11002 n = sscanf (encoding,
11003 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11004 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11005 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11006
11007 if (n < 2)
11008 return 1.0;
11009 else if (n == 4)
facc390f 11010 return num1 / den1;
d2e4a39e 11011 else
facc390f 11012 return num0 / den0;
14f9c5c9
AS
11013}
11014
11015
11016/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11017 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11018
11019DOUBLEST
ebf56fd3 11020ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11021{
d2e4a39e 11022 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11023}
11024
4c4b4cd2
PH
11025/* The representation of a fixed-point value of type TYPE
11026 corresponding to the value X. */
14f9c5c9
AS
11027
11028LONGEST
ebf56fd3 11029ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11030{
11031 return (LONGEST) (x / scaling_factor (type) + 0.5);
11032}
11033
14f9c5c9 11034\f
d2e4a39e 11035
4c4b4cd2 11036 /* Range types */
14f9c5c9
AS
11037
11038/* Scan STR beginning at position K for a discriminant name, and
11039 return the value of that discriminant field of DVAL in *PX. If
11040 PNEW_K is not null, put the position of the character beyond the
11041 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11042 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11043
11044static int
07d8f827 11045scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 11046 int *pnew_k)
14f9c5c9
AS
11047{
11048 static char *bound_buffer = NULL;
11049 static size_t bound_buffer_len = 0;
11050 char *bound;
11051 char *pend;
d2e4a39e 11052 struct value *bound_val;
14f9c5c9
AS
11053
11054 if (dval == NULL || str == NULL || str[k] == '\0')
11055 return 0;
11056
d2e4a39e 11057 pend = strstr (str + k, "__");
14f9c5c9
AS
11058 if (pend == NULL)
11059 {
d2e4a39e 11060 bound = str + k;
14f9c5c9
AS
11061 k += strlen (bound);
11062 }
d2e4a39e 11063 else
14f9c5c9 11064 {
d2e4a39e 11065 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 11066 bound = bound_buffer;
d2e4a39e
AS
11067 strncpy (bound_buffer, str + k, pend - (str + k));
11068 bound[pend - (str + k)] = '\0';
11069 k = pend - str;
14f9c5c9 11070 }
d2e4a39e 11071
df407dfe 11072 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11073 if (bound_val == NULL)
11074 return 0;
11075
11076 *px = value_as_long (bound_val);
11077 if (pnew_k != NULL)
11078 *pnew_k = k;
11079 return 1;
11080}
11081
11082/* Value of variable named NAME in the current environment. If
11083 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11084 otherwise causes an error with message ERR_MSG. */
11085
d2e4a39e
AS
11086static struct value *
11087get_var_value (char *name, char *err_msg)
14f9c5c9 11088{
4c4b4cd2 11089 struct ada_symbol_info *syms;
14f9c5c9
AS
11090 int nsyms;
11091
4c4b4cd2 11092 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11093 &syms);
14f9c5c9
AS
11094
11095 if (nsyms != 1)
11096 {
11097 if (err_msg == NULL)
4c4b4cd2 11098 return 0;
14f9c5c9 11099 else
8a3fe4f8 11100 error (("%s"), err_msg);
14f9c5c9
AS
11101 }
11102
4c4b4cd2 11103 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 11104}
d2e4a39e 11105
14f9c5c9 11106/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11107 no such variable found, returns 0, and sets *FLAG to 0. If
11108 successful, sets *FLAG to 1. */
11109
14f9c5c9 11110LONGEST
4c4b4cd2 11111get_int_var_value (char *name, int *flag)
14f9c5c9 11112{
4c4b4cd2 11113 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11114
14f9c5c9
AS
11115 if (var_val == 0)
11116 {
11117 if (flag != NULL)
4c4b4cd2 11118 *flag = 0;
14f9c5c9
AS
11119 return 0;
11120 }
11121 else
11122 {
11123 if (flag != NULL)
4c4b4cd2 11124 *flag = 1;
14f9c5c9
AS
11125 return value_as_long (var_val);
11126 }
11127}
d2e4a39e 11128
14f9c5c9
AS
11129
11130/* Return a range type whose base type is that of the range type named
11131 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11132 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11133 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11134 corresponding range type from debug information; fall back to using it
11135 if symbol lookup fails. If a new type must be created, allocate it
11136 like ORIG_TYPE was. The bounds information, in general, is encoded
11137 in NAME, the base type given in the named range type. */
14f9c5c9 11138
d2e4a39e 11139static struct type *
28c85d6c 11140to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11141{
0d5cff50 11142 const char *name;
14f9c5c9 11143 struct type *base_type;
d2e4a39e 11144 char *subtype_info;
14f9c5c9 11145
28c85d6c
JB
11146 gdb_assert (raw_type != NULL);
11147 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11148
1ce677a4 11149 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11150 base_type = TYPE_TARGET_TYPE (raw_type);
11151 else
11152 base_type = raw_type;
11153
28c85d6c 11154 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11155 subtype_info = strstr (name, "___XD");
11156 if (subtype_info == NULL)
690cc4eb 11157 {
43bbcdc2
PH
11158 LONGEST L = ada_discrete_type_low_bound (raw_type);
11159 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11160
690cc4eb
PH
11161 if (L < INT_MIN || U > INT_MAX)
11162 return raw_type;
11163 else
0c9c3474
SA
11164 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11165 L, U);
690cc4eb 11166 }
14f9c5c9
AS
11167 else
11168 {
11169 static char *name_buf = NULL;
11170 static size_t name_len = 0;
11171 int prefix_len = subtype_info - name;
11172 LONGEST L, U;
11173 struct type *type;
11174 char *bounds_str;
11175 int n;
11176
11177 GROW_VECT (name_buf, name_len, prefix_len + 5);
11178 strncpy (name_buf, name, prefix_len);
11179 name_buf[prefix_len] = '\0';
11180
11181 subtype_info += 5;
11182 bounds_str = strchr (subtype_info, '_');
11183 n = 1;
11184
d2e4a39e 11185 if (*subtype_info == 'L')
4c4b4cd2
PH
11186 {
11187 if (!ada_scan_number (bounds_str, n, &L, &n)
11188 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11189 return raw_type;
11190 if (bounds_str[n] == '_')
11191 n += 2;
0963b4bd 11192 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11193 n += 1;
11194 subtype_info += 1;
11195 }
d2e4a39e 11196 else
4c4b4cd2
PH
11197 {
11198 int ok;
5b4ee69b 11199
4c4b4cd2
PH
11200 strcpy (name_buf + prefix_len, "___L");
11201 L = get_int_var_value (name_buf, &ok);
11202 if (!ok)
11203 {
323e0a4a 11204 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11205 L = 1;
11206 }
11207 }
14f9c5c9 11208
d2e4a39e 11209 if (*subtype_info == 'U')
4c4b4cd2
PH
11210 {
11211 if (!ada_scan_number (bounds_str, n, &U, &n)
11212 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11213 return raw_type;
11214 }
d2e4a39e 11215 else
4c4b4cd2
PH
11216 {
11217 int ok;
5b4ee69b 11218
4c4b4cd2
PH
11219 strcpy (name_buf + prefix_len, "___U");
11220 U = get_int_var_value (name_buf, &ok);
11221 if (!ok)
11222 {
323e0a4a 11223 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11224 U = L;
11225 }
11226 }
14f9c5c9 11227
0c9c3474
SA
11228 type = create_static_range_type (alloc_type_copy (raw_type),
11229 base_type, L, U);
d2e4a39e 11230 TYPE_NAME (type) = name;
14f9c5c9
AS
11231 return type;
11232 }
11233}
11234
4c4b4cd2
PH
11235/* True iff NAME is the name of a range type. */
11236
14f9c5c9 11237int
d2e4a39e 11238ada_is_range_type_name (const char *name)
14f9c5c9
AS
11239{
11240 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11241}
14f9c5c9 11242\f
d2e4a39e 11243
4c4b4cd2
PH
11244 /* Modular types */
11245
11246/* True iff TYPE is an Ada modular type. */
14f9c5c9 11247
14f9c5c9 11248int
d2e4a39e 11249ada_is_modular_type (struct type *type)
14f9c5c9 11250{
18af8284 11251 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11252
11253 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11254 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11255 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11256}
11257
4c4b4cd2
PH
11258/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11259
61ee279c 11260ULONGEST
0056e4d5 11261ada_modulus (struct type *type)
14f9c5c9 11262{
43bbcdc2 11263 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11264}
d2e4a39e 11265\f
f7f9143b
JB
11266
11267/* Ada exception catchpoint support:
11268 ---------------------------------
11269
11270 We support 3 kinds of exception catchpoints:
11271 . catchpoints on Ada exceptions
11272 . catchpoints on unhandled Ada exceptions
11273 . catchpoints on failed assertions
11274
11275 Exceptions raised during failed assertions, or unhandled exceptions
11276 could perfectly be caught with the general catchpoint on Ada exceptions.
11277 However, we can easily differentiate these two special cases, and having
11278 the option to distinguish these two cases from the rest can be useful
11279 to zero-in on certain situations.
11280
11281 Exception catchpoints are a specialized form of breakpoint,
11282 since they rely on inserting breakpoints inside known routines
11283 of the GNAT runtime. The implementation therefore uses a standard
11284 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11285 of breakpoint_ops.
11286
0259addd
JB
11287 Support in the runtime for exception catchpoints have been changed
11288 a few times already, and these changes affect the implementation
11289 of these catchpoints. In order to be able to support several
11290 variants of the runtime, we use a sniffer that will determine
28010a5d 11291 the runtime variant used by the program being debugged. */
f7f9143b 11292
82eacd52
JB
11293/* Ada's standard exceptions.
11294
11295 The Ada 83 standard also defined Numeric_Error. But there so many
11296 situations where it was unclear from the Ada 83 Reference Manual
11297 (RM) whether Constraint_Error or Numeric_Error should be raised,
11298 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11299 Interpretation saying that anytime the RM says that Numeric_Error
11300 should be raised, the implementation may raise Constraint_Error.
11301 Ada 95 went one step further and pretty much removed Numeric_Error
11302 from the list of standard exceptions (it made it a renaming of
11303 Constraint_Error, to help preserve compatibility when compiling
11304 an Ada83 compiler). As such, we do not include Numeric_Error from
11305 this list of standard exceptions. */
3d0b0fa3
JB
11306
11307static char *standard_exc[] = {
11308 "constraint_error",
11309 "program_error",
11310 "storage_error",
11311 "tasking_error"
11312};
11313
0259addd
JB
11314typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11315
11316/* A structure that describes how to support exception catchpoints
11317 for a given executable. */
11318
11319struct exception_support_info
11320{
11321 /* The name of the symbol to break on in order to insert
11322 a catchpoint on exceptions. */
11323 const char *catch_exception_sym;
11324
11325 /* The name of the symbol to break on in order to insert
11326 a catchpoint on unhandled exceptions. */
11327 const char *catch_exception_unhandled_sym;
11328
11329 /* The name of the symbol to break on in order to insert
11330 a catchpoint on failed assertions. */
11331 const char *catch_assert_sym;
11332
11333 /* Assuming that the inferior just triggered an unhandled exception
11334 catchpoint, this function is responsible for returning the address
11335 in inferior memory where the name of that exception is stored.
11336 Return zero if the address could not be computed. */
11337 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11338};
11339
11340static CORE_ADDR ada_unhandled_exception_name_addr (void);
11341static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11342
11343/* The following exception support info structure describes how to
11344 implement exception catchpoints with the latest version of the
11345 Ada runtime (as of 2007-03-06). */
11346
11347static const struct exception_support_info default_exception_support_info =
11348{
11349 "__gnat_debug_raise_exception", /* catch_exception_sym */
11350 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11351 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11352 ada_unhandled_exception_name_addr
11353};
11354
11355/* The following exception support info structure describes how to
11356 implement exception catchpoints with a slightly older version
11357 of the Ada runtime. */
11358
11359static const struct exception_support_info exception_support_info_fallback =
11360{
11361 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11362 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11363 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11364 ada_unhandled_exception_name_addr_from_raise
11365};
11366
f17011e0
JB
11367/* Return nonzero if we can detect the exception support routines
11368 described in EINFO.
11369
11370 This function errors out if an abnormal situation is detected
11371 (for instance, if we find the exception support routines, but
11372 that support is found to be incomplete). */
11373
11374static int
11375ada_has_this_exception_support (const struct exception_support_info *einfo)
11376{
11377 struct symbol *sym;
11378
11379 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11380 that should be compiled with debugging information. As a result, we
11381 expect to find that symbol in the symtabs. */
11382
11383 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11384 if (sym == NULL)
a6af7abe
JB
11385 {
11386 /* Perhaps we did not find our symbol because the Ada runtime was
11387 compiled without debugging info, or simply stripped of it.
11388 It happens on some GNU/Linux distributions for instance, where
11389 users have to install a separate debug package in order to get
11390 the runtime's debugging info. In that situation, let the user
11391 know why we cannot insert an Ada exception catchpoint.
11392
11393 Note: Just for the purpose of inserting our Ada exception
11394 catchpoint, we could rely purely on the associated minimal symbol.
11395 But we would be operating in degraded mode anyway, since we are
11396 still lacking the debugging info needed later on to extract
11397 the name of the exception being raised (this name is printed in
11398 the catchpoint message, and is also used when trying to catch
11399 a specific exception). We do not handle this case for now. */
3b7344d5 11400 struct bound_minimal_symbol msym
1c8e84b0
JB
11401 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11402
3b7344d5 11403 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11404 error (_("Your Ada runtime appears to be missing some debugging "
11405 "information.\nCannot insert Ada exception catchpoint "
11406 "in this configuration."));
11407
11408 return 0;
11409 }
f17011e0
JB
11410
11411 /* Make sure that the symbol we found corresponds to a function. */
11412
11413 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11414 error (_("Symbol \"%s\" is not a function (class = %d)"),
11415 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11416
11417 return 1;
11418}
11419
0259addd
JB
11420/* Inspect the Ada runtime and determine which exception info structure
11421 should be used to provide support for exception catchpoints.
11422
3eecfa55
JB
11423 This function will always set the per-inferior exception_info,
11424 or raise an error. */
0259addd
JB
11425
11426static void
11427ada_exception_support_info_sniffer (void)
11428{
3eecfa55 11429 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11430
11431 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11432 if (data->exception_info != NULL)
0259addd
JB
11433 return;
11434
11435 /* Check the latest (default) exception support info. */
f17011e0 11436 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11437 {
3eecfa55 11438 data->exception_info = &default_exception_support_info;
0259addd
JB
11439 return;
11440 }
11441
11442 /* Try our fallback exception suport info. */
f17011e0 11443 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11444 {
3eecfa55 11445 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11446 return;
11447 }
11448
11449 /* Sometimes, it is normal for us to not be able to find the routine
11450 we are looking for. This happens when the program is linked with
11451 the shared version of the GNAT runtime, and the program has not been
11452 started yet. Inform the user of these two possible causes if
11453 applicable. */
11454
ccefe4c4 11455 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11456 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11457
11458 /* If the symbol does not exist, then check that the program is
11459 already started, to make sure that shared libraries have been
11460 loaded. If it is not started, this may mean that the symbol is
11461 in a shared library. */
11462
11463 if (ptid_get_pid (inferior_ptid) == 0)
11464 error (_("Unable to insert catchpoint. Try to start the program first."));
11465
11466 /* At this point, we know that we are debugging an Ada program and
11467 that the inferior has been started, but we still are not able to
0963b4bd 11468 find the run-time symbols. That can mean that we are in
0259addd
JB
11469 configurable run time mode, or that a-except as been optimized
11470 out by the linker... In any case, at this point it is not worth
11471 supporting this feature. */
11472
7dda8cff 11473 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11474}
11475
f7f9143b
JB
11476/* True iff FRAME is very likely to be that of a function that is
11477 part of the runtime system. This is all very heuristic, but is
11478 intended to be used as advice as to what frames are uninteresting
11479 to most users. */
11480
11481static int
11482is_known_support_routine (struct frame_info *frame)
11483{
4ed6b5be 11484 struct symtab_and_line sal;
55b87a52 11485 char *func_name;
692465f1 11486 enum language func_lang;
f7f9143b 11487 int i;
f35a17b5 11488 const char *fullname;
f7f9143b 11489
4ed6b5be
JB
11490 /* If this code does not have any debugging information (no symtab),
11491 This cannot be any user code. */
f7f9143b 11492
4ed6b5be 11493 find_frame_sal (frame, &sal);
f7f9143b
JB
11494 if (sal.symtab == NULL)
11495 return 1;
11496
4ed6b5be
JB
11497 /* If there is a symtab, but the associated source file cannot be
11498 located, then assume this is not user code: Selecting a frame
11499 for which we cannot display the code would not be very helpful
11500 for the user. This should also take care of case such as VxWorks
11501 where the kernel has some debugging info provided for a few units. */
f7f9143b 11502
f35a17b5
JK
11503 fullname = symtab_to_fullname (sal.symtab);
11504 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11505 return 1;
11506
4ed6b5be
JB
11507 /* Check the unit filename againt the Ada runtime file naming.
11508 We also check the name of the objfile against the name of some
11509 known system libraries that sometimes come with debugging info
11510 too. */
11511
f7f9143b
JB
11512 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11513 {
11514 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11515 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11516 return 1;
4ed6b5be 11517 if (sal.symtab->objfile != NULL
4262abfb 11518 && re_exec (objfile_name (sal.symtab->objfile)))
4ed6b5be 11519 return 1;
f7f9143b
JB
11520 }
11521
4ed6b5be 11522 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11523
e9e07ba6 11524 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11525 if (func_name == NULL)
11526 return 1;
11527
11528 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11529 {
11530 re_comp (known_auxiliary_function_name_patterns[i]);
11531 if (re_exec (func_name))
55b87a52
KS
11532 {
11533 xfree (func_name);
11534 return 1;
11535 }
f7f9143b
JB
11536 }
11537
55b87a52 11538 xfree (func_name);
f7f9143b
JB
11539 return 0;
11540}
11541
11542/* Find the first frame that contains debugging information and that is not
11543 part of the Ada run-time, starting from FI and moving upward. */
11544
0ef643c8 11545void
f7f9143b
JB
11546ada_find_printable_frame (struct frame_info *fi)
11547{
11548 for (; fi != NULL; fi = get_prev_frame (fi))
11549 {
11550 if (!is_known_support_routine (fi))
11551 {
11552 select_frame (fi);
11553 break;
11554 }
11555 }
11556
11557}
11558
11559/* Assuming that the inferior just triggered an unhandled exception
11560 catchpoint, return the address in inferior memory where the name
11561 of the exception is stored.
11562
11563 Return zero if the address could not be computed. */
11564
11565static CORE_ADDR
11566ada_unhandled_exception_name_addr (void)
0259addd
JB
11567{
11568 return parse_and_eval_address ("e.full_name");
11569}
11570
11571/* Same as ada_unhandled_exception_name_addr, except that this function
11572 should be used when the inferior uses an older version of the runtime,
11573 where the exception name needs to be extracted from a specific frame
11574 several frames up in the callstack. */
11575
11576static CORE_ADDR
11577ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11578{
11579 int frame_level;
11580 struct frame_info *fi;
3eecfa55 11581 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 11582 struct cleanup *old_chain;
f7f9143b
JB
11583
11584 /* To determine the name of this exception, we need to select
11585 the frame corresponding to RAISE_SYM_NAME. This frame is
11586 at least 3 levels up, so we simply skip the first 3 frames
11587 without checking the name of their associated function. */
11588 fi = get_current_frame ();
11589 for (frame_level = 0; frame_level < 3; frame_level += 1)
11590 if (fi != NULL)
11591 fi = get_prev_frame (fi);
11592
55b87a52 11593 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
11594 while (fi != NULL)
11595 {
55b87a52 11596 char *func_name;
692465f1
JB
11597 enum language func_lang;
11598
e9e07ba6 11599 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
11600 if (func_name != NULL)
11601 {
11602 make_cleanup (xfree, func_name);
11603
11604 if (strcmp (func_name,
11605 data->exception_info->catch_exception_sym) == 0)
11606 break; /* We found the frame we were looking for... */
11607 fi = get_prev_frame (fi);
11608 }
f7f9143b 11609 }
55b87a52 11610 do_cleanups (old_chain);
f7f9143b
JB
11611
11612 if (fi == NULL)
11613 return 0;
11614
11615 select_frame (fi);
11616 return parse_and_eval_address ("id.full_name");
11617}
11618
11619/* Assuming the inferior just triggered an Ada exception catchpoint
11620 (of any type), return the address in inferior memory where the name
11621 of the exception is stored, if applicable.
11622
11623 Return zero if the address could not be computed, or if not relevant. */
11624
11625static CORE_ADDR
761269c8 11626ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11627 struct breakpoint *b)
11628{
3eecfa55
JB
11629 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11630
f7f9143b
JB
11631 switch (ex)
11632 {
761269c8 11633 case ada_catch_exception:
f7f9143b
JB
11634 return (parse_and_eval_address ("e.full_name"));
11635 break;
11636
761269c8 11637 case ada_catch_exception_unhandled:
3eecfa55 11638 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11639 break;
11640
761269c8 11641 case ada_catch_assert:
f7f9143b
JB
11642 return 0; /* Exception name is not relevant in this case. */
11643 break;
11644
11645 default:
11646 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11647 break;
11648 }
11649
11650 return 0; /* Should never be reached. */
11651}
11652
11653/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11654 any error that ada_exception_name_addr_1 might cause to be thrown.
11655 When an error is intercepted, a warning with the error message is printed,
11656 and zero is returned. */
11657
11658static CORE_ADDR
761269c8 11659ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11660 struct breakpoint *b)
11661{
bfd189b1 11662 volatile struct gdb_exception e;
f7f9143b
JB
11663 CORE_ADDR result = 0;
11664
11665 TRY_CATCH (e, RETURN_MASK_ERROR)
11666 {
11667 result = ada_exception_name_addr_1 (ex, b);
11668 }
11669
11670 if (e.reason < 0)
11671 {
11672 warning (_("failed to get exception name: %s"), e.message);
11673 return 0;
11674 }
11675
11676 return result;
11677}
11678
28010a5d
PA
11679static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11680
11681/* Ada catchpoints.
11682
11683 In the case of catchpoints on Ada exceptions, the catchpoint will
11684 stop the target on every exception the program throws. When a user
11685 specifies the name of a specific exception, we translate this
11686 request into a condition expression (in text form), and then parse
11687 it into an expression stored in each of the catchpoint's locations.
11688 We then use this condition to check whether the exception that was
11689 raised is the one the user is interested in. If not, then the
11690 target is resumed again. We store the name of the requested
11691 exception, in order to be able to re-set the condition expression
11692 when symbols change. */
11693
11694/* An instance of this type is used to represent an Ada catchpoint
11695 breakpoint location. It includes a "struct bp_location" as a kind
11696 of base class; users downcast to "struct bp_location *" when
11697 needed. */
11698
11699struct ada_catchpoint_location
11700{
11701 /* The base class. */
11702 struct bp_location base;
11703
11704 /* The condition that checks whether the exception that was raised
11705 is the specific exception the user specified on catchpoint
11706 creation. */
11707 struct expression *excep_cond_expr;
11708};
11709
11710/* Implement the DTOR method in the bp_location_ops structure for all
11711 Ada exception catchpoint kinds. */
11712
11713static void
11714ada_catchpoint_location_dtor (struct bp_location *bl)
11715{
11716 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11717
11718 xfree (al->excep_cond_expr);
11719}
11720
11721/* The vtable to be used in Ada catchpoint locations. */
11722
11723static const struct bp_location_ops ada_catchpoint_location_ops =
11724{
11725 ada_catchpoint_location_dtor
11726};
11727
11728/* An instance of this type is used to represent an Ada catchpoint.
11729 It includes a "struct breakpoint" as a kind of base class; users
11730 downcast to "struct breakpoint *" when needed. */
11731
11732struct ada_catchpoint
11733{
11734 /* The base class. */
11735 struct breakpoint base;
11736
11737 /* The name of the specific exception the user specified. */
11738 char *excep_string;
11739};
11740
11741/* Parse the exception condition string in the context of each of the
11742 catchpoint's locations, and store them for later evaluation. */
11743
11744static void
11745create_excep_cond_exprs (struct ada_catchpoint *c)
11746{
11747 struct cleanup *old_chain;
11748 struct bp_location *bl;
11749 char *cond_string;
11750
11751 /* Nothing to do if there's no specific exception to catch. */
11752 if (c->excep_string == NULL)
11753 return;
11754
11755 /* Same if there are no locations... */
11756 if (c->base.loc == NULL)
11757 return;
11758
11759 /* Compute the condition expression in text form, from the specific
11760 expection we want to catch. */
11761 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11762 old_chain = make_cleanup (xfree, cond_string);
11763
11764 /* Iterate over all the catchpoint's locations, and parse an
11765 expression for each. */
11766 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11767 {
11768 struct ada_catchpoint_location *ada_loc
11769 = (struct ada_catchpoint_location *) bl;
11770 struct expression *exp = NULL;
11771
11772 if (!bl->shlib_disabled)
11773 {
11774 volatile struct gdb_exception e;
bbc13ae3 11775 const char *s;
28010a5d
PA
11776
11777 s = cond_string;
11778 TRY_CATCH (e, RETURN_MASK_ERROR)
11779 {
1bb9788d
TT
11780 exp = parse_exp_1 (&s, bl->address,
11781 block_for_pc (bl->address), 0);
28010a5d
PA
11782 }
11783 if (e.reason < 0)
849f2b52
JB
11784 {
11785 warning (_("failed to reevaluate internal exception condition "
11786 "for catchpoint %d: %s"),
11787 c->base.number, e.message);
11788 /* There is a bug in GCC on sparc-solaris when building with
11789 optimization which causes EXP to change unexpectedly
11790 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11791 The problem should be fixed starting with GCC 4.9.
11792 In the meantime, work around it by forcing EXP back
11793 to NULL. */
11794 exp = NULL;
11795 }
28010a5d
PA
11796 }
11797
11798 ada_loc->excep_cond_expr = exp;
11799 }
11800
11801 do_cleanups (old_chain);
11802}
11803
11804/* Implement the DTOR method in the breakpoint_ops structure for all
11805 exception catchpoint kinds. */
11806
11807static void
761269c8 11808dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11809{
11810 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11811
11812 xfree (c->excep_string);
348d480f 11813
2060206e 11814 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11815}
11816
11817/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11818 structure for all exception catchpoint kinds. */
11819
11820static struct bp_location *
761269c8 11821allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
11822 struct breakpoint *self)
11823{
11824 struct ada_catchpoint_location *loc;
11825
11826 loc = XNEW (struct ada_catchpoint_location);
11827 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11828 loc->excep_cond_expr = NULL;
11829 return &loc->base;
11830}
11831
11832/* Implement the RE_SET method in the breakpoint_ops structure for all
11833 exception catchpoint kinds. */
11834
11835static void
761269c8 11836re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11837{
11838 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11839
11840 /* Call the base class's method. This updates the catchpoint's
11841 locations. */
2060206e 11842 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11843
11844 /* Reparse the exception conditional expressions. One for each
11845 location. */
11846 create_excep_cond_exprs (c);
11847}
11848
11849/* Returns true if we should stop for this breakpoint hit. If the
11850 user specified a specific exception, we only want to cause a stop
11851 if the program thrown that exception. */
11852
11853static int
11854should_stop_exception (const struct bp_location *bl)
11855{
11856 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11857 const struct ada_catchpoint_location *ada_loc
11858 = (const struct ada_catchpoint_location *) bl;
11859 volatile struct gdb_exception ex;
11860 int stop;
11861
11862 /* With no specific exception, should always stop. */
11863 if (c->excep_string == NULL)
11864 return 1;
11865
11866 if (ada_loc->excep_cond_expr == NULL)
11867 {
11868 /* We will have a NULL expression if back when we were creating
11869 the expressions, this location's had failed to parse. */
11870 return 1;
11871 }
11872
11873 stop = 1;
11874 TRY_CATCH (ex, RETURN_MASK_ALL)
11875 {
11876 struct value *mark;
11877
11878 mark = value_mark ();
11879 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11880 value_free_to_mark (mark);
11881 }
11882 if (ex.reason < 0)
11883 exception_fprintf (gdb_stderr, ex,
11884 _("Error in testing exception condition:\n"));
11885 return stop;
11886}
11887
11888/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11889 for all exception catchpoint kinds. */
11890
11891static void
761269c8 11892check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
11893{
11894 bs->stop = should_stop_exception (bs->bp_location_at);
11895}
11896
f7f9143b
JB
11897/* Implement the PRINT_IT method in the breakpoint_ops structure
11898 for all exception catchpoint kinds. */
11899
11900static enum print_stop_action
761269c8 11901print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11902{
79a45e25 11903 struct ui_out *uiout = current_uiout;
348d480f
PA
11904 struct breakpoint *b = bs->breakpoint_at;
11905
956a9fb9 11906 annotate_catchpoint (b->number);
f7f9143b 11907
956a9fb9 11908 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11909 {
956a9fb9
JB
11910 ui_out_field_string (uiout, "reason",
11911 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11912 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11913 }
11914
00eb2c4a
JB
11915 ui_out_text (uiout,
11916 b->disposition == disp_del ? "\nTemporary catchpoint "
11917 : "\nCatchpoint ");
956a9fb9
JB
11918 ui_out_field_int (uiout, "bkptno", b->number);
11919 ui_out_text (uiout, ", ");
f7f9143b 11920
f7f9143b
JB
11921 switch (ex)
11922 {
761269c8
JB
11923 case ada_catch_exception:
11924 case ada_catch_exception_unhandled:
956a9fb9
JB
11925 {
11926 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11927 char exception_name[256];
11928
11929 if (addr != 0)
11930 {
c714b426
PA
11931 read_memory (addr, (gdb_byte *) exception_name,
11932 sizeof (exception_name) - 1);
956a9fb9
JB
11933 exception_name [sizeof (exception_name) - 1] = '\0';
11934 }
11935 else
11936 {
11937 /* For some reason, we were unable to read the exception
11938 name. This could happen if the Runtime was compiled
11939 without debugging info, for instance. In that case,
11940 just replace the exception name by the generic string
11941 "exception" - it will read as "an exception" in the
11942 notification we are about to print. */
967cff16 11943 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11944 }
11945 /* In the case of unhandled exception breakpoints, we print
11946 the exception name as "unhandled EXCEPTION_NAME", to make
11947 it clearer to the user which kind of catchpoint just got
11948 hit. We used ui_out_text to make sure that this extra
11949 info does not pollute the exception name in the MI case. */
761269c8 11950 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
11951 ui_out_text (uiout, "unhandled ");
11952 ui_out_field_string (uiout, "exception-name", exception_name);
11953 }
11954 break;
761269c8 11955 case ada_catch_assert:
956a9fb9
JB
11956 /* In this case, the name of the exception is not really
11957 important. Just print "failed assertion" to make it clearer
11958 that his program just hit an assertion-failure catchpoint.
11959 We used ui_out_text because this info does not belong in
11960 the MI output. */
11961 ui_out_text (uiout, "failed assertion");
11962 break;
f7f9143b 11963 }
956a9fb9
JB
11964 ui_out_text (uiout, " at ");
11965 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11966
11967 return PRINT_SRC_AND_LOC;
11968}
11969
11970/* Implement the PRINT_ONE method in the breakpoint_ops structure
11971 for all exception catchpoint kinds. */
11972
11973static void
761269c8 11974print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 11975 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11976{
79a45e25 11977 struct ui_out *uiout = current_uiout;
28010a5d 11978 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11979 struct value_print_options opts;
11980
11981 get_user_print_options (&opts);
11982 if (opts.addressprint)
f7f9143b
JB
11983 {
11984 annotate_field (4);
5af949e3 11985 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11986 }
11987
11988 annotate_field (5);
a6d9a66e 11989 *last_loc = b->loc;
f7f9143b
JB
11990 switch (ex)
11991 {
761269c8 11992 case ada_catch_exception:
28010a5d 11993 if (c->excep_string != NULL)
f7f9143b 11994 {
28010a5d
PA
11995 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11996
f7f9143b
JB
11997 ui_out_field_string (uiout, "what", msg);
11998 xfree (msg);
11999 }
12000 else
12001 ui_out_field_string (uiout, "what", "all Ada exceptions");
12002
12003 break;
12004
761269c8 12005 case ada_catch_exception_unhandled:
f7f9143b
JB
12006 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12007 break;
12008
761269c8 12009 case ada_catch_assert:
f7f9143b
JB
12010 ui_out_field_string (uiout, "what", "failed Ada assertions");
12011 break;
12012
12013 default:
12014 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12015 break;
12016 }
12017}
12018
12019/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12020 for all exception catchpoint kinds. */
12021
12022static void
761269c8 12023print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12024 struct breakpoint *b)
12025{
28010a5d 12026 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12027 struct ui_out *uiout = current_uiout;
28010a5d 12028
00eb2c4a
JB
12029 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12030 : _("Catchpoint "));
12031 ui_out_field_int (uiout, "bkptno", b->number);
12032 ui_out_text (uiout, ": ");
12033
f7f9143b
JB
12034 switch (ex)
12035 {
761269c8 12036 case ada_catch_exception:
28010a5d 12037 if (c->excep_string != NULL)
00eb2c4a
JB
12038 {
12039 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12040 struct cleanup *old_chain = make_cleanup (xfree, info);
12041
12042 ui_out_text (uiout, info);
12043 do_cleanups (old_chain);
12044 }
f7f9143b 12045 else
00eb2c4a 12046 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12047 break;
12048
761269c8 12049 case ada_catch_exception_unhandled:
00eb2c4a 12050 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12051 break;
12052
761269c8 12053 case ada_catch_assert:
00eb2c4a 12054 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12055 break;
12056
12057 default:
12058 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12059 break;
12060 }
12061}
12062
6149aea9
PA
12063/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12064 for all exception catchpoint kinds. */
12065
12066static void
761269c8 12067print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12068 struct breakpoint *b, struct ui_file *fp)
12069{
28010a5d
PA
12070 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12071
6149aea9
PA
12072 switch (ex)
12073 {
761269c8 12074 case ada_catch_exception:
6149aea9 12075 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12076 if (c->excep_string != NULL)
12077 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12078 break;
12079
761269c8 12080 case ada_catch_exception_unhandled:
78076abc 12081 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12082 break;
12083
761269c8 12084 case ada_catch_assert:
6149aea9
PA
12085 fprintf_filtered (fp, "catch assert");
12086 break;
12087
12088 default:
12089 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12090 }
d9b3f62e 12091 print_recreate_thread (b, fp);
6149aea9
PA
12092}
12093
f7f9143b
JB
12094/* Virtual table for "catch exception" breakpoints. */
12095
28010a5d
PA
12096static void
12097dtor_catch_exception (struct breakpoint *b)
12098{
761269c8 12099 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12100}
12101
12102static struct bp_location *
12103allocate_location_catch_exception (struct breakpoint *self)
12104{
761269c8 12105 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12106}
12107
12108static void
12109re_set_catch_exception (struct breakpoint *b)
12110{
761269c8 12111 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12112}
12113
12114static void
12115check_status_catch_exception (bpstat bs)
12116{
761269c8 12117 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12118}
12119
f7f9143b 12120static enum print_stop_action
348d480f 12121print_it_catch_exception (bpstat bs)
f7f9143b 12122{
761269c8 12123 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12124}
12125
12126static void
a6d9a66e 12127print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12128{
761269c8 12129 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12130}
12131
12132static void
12133print_mention_catch_exception (struct breakpoint *b)
12134{
761269c8 12135 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12136}
12137
6149aea9
PA
12138static void
12139print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12140{
761269c8 12141 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12142}
12143
2060206e 12144static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12145
12146/* Virtual table for "catch exception unhandled" breakpoints. */
12147
28010a5d
PA
12148static void
12149dtor_catch_exception_unhandled (struct breakpoint *b)
12150{
761269c8 12151 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12152}
12153
12154static struct bp_location *
12155allocate_location_catch_exception_unhandled (struct breakpoint *self)
12156{
761269c8 12157 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12158}
12159
12160static void
12161re_set_catch_exception_unhandled (struct breakpoint *b)
12162{
761269c8 12163 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12164}
12165
12166static void
12167check_status_catch_exception_unhandled (bpstat bs)
12168{
761269c8 12169 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12170}
12171
f7f9143b 12172static enum print_stop_action
348d480f 12173print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12174{
761269c8 12175 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12176}
12177
12178static void
a6d9a66e
UW
12179print_one_catch_exception_unhandled (struct breakpoint *b,
12180 struct bp_location **last_loc)
f7f9143b 12181{
761269c8 12182 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12183}
12184
12185static void
12186print_mention_catch_exception_unhandled (struct breakpoint *b)
12187{
761269c8 12188 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12189}
12190
6149aea9
PA
12191static void
12192print_recreate_catch_exception_unhandled (struct breakpoint *b,
12193 struct ui_file *fp)
12194{
761269c8 12195 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12196}
12197
2060206e 12198static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12199
12200/* Virtual table for "catch assert" breakpoints. */
12201
28010a5d
PA
12202static void
12203dtor_catch_assert (struct breakpoint *b)
12204{
761269c8 12205 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12206}
12207
12208static struct bp_location *
12209allocate_location_catch_assert (struct breakpoint *self)
12210{
761269c8 12211 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12212}
12213
12214static void
12215re_set_catch_assert (struct breakpoint *b)
12216{
761269c8 12217 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12218}
12219
12220static void
12221check_status_catch_assert (bpstat bs)
12222{
761269c8 12223 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12224}
12225
f7f9143b 12226static enum print_stop_action
348d480f 12227print_it_catch_assert (bpstat bs)
f7f9143b 12228{
761269c8 12229 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12230}
12231
12232static void
a6d9a66e 12233print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12234{
761269c8 12235 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12236}
12237
12238static void
12239print_mention_catch_assert (struct breakpoint *b)
12240{
761269c8 12241 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12242}
12243
6149aea9
PA
12244static void
12245print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12246{
761269c8 12247 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12248}
12249
2060206e 12250static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12251
f7f9143b
JB
12252/* Return a newly allocated copy of the first space-separated token
12253 in ARGSP, and then adjust ARGSP to point immediately after that
12254 token.
12255
12256 Return NULL if ARGPS does not contain any more tokens. */
12257
12258static char *
12259ada_get_next_arg (char **argsp)
12260{
12261 char *args = *argsp;
12262 char *end;
12263 char *result;
12264
0fcd72ba 12265 args = skip_spaces (args);
f7f9143b
JB
12266 if (args[0] == '\0')
12267 return NULL; /* No more arguments. */
12268
12269 /* Find the end of the current argument. */
12270
0fcd72ba 12271 end = skip_to_space (args);
f7f9143b
JB
12272
12273 /* Adjust ARGSP to point to the start of the next argument. */
12274
12275 *argsp = end;
12276
12277 /* Make a copy of the current argument and return it. */
12278
12279 result = xmalloc (end - args + 1);
12280 strncpy (result, args, end - args);
12281 result[end - args] = '\0';
12282
12283 return result;
12284}
12285
12286/* Split the arguments specified in a "catch exception" command.
12287 Set EX to the appropriate catchpoint type.
28010a5d 12288 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12289 specified by the user.
12290 If a condition is found at the end of the arguments, the condition
12291 expression is stored in COND_STRING (memory must be deallocated
12292 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12293
12294static void
12295catch_ada_exception_command_split (char *args,
761269c8 12296 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12297 char **excep_string,
12298 char **cond_string)
f7f9143b
JB
12299{
12300 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12301 char *exception_name;
5845583d 12302 char *cond = NULL;
f7f9143b
JB
12303
12304 exception_name = ada_get_next_arg (&args);
5845583d
JB
12305 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12306 {
12307 /* This is not an exception name; this is the start of a condition
12308 expression for a catchpoint on all exceptions. So, "un-get"
12309 this token, and set exception_name to NULL. */
12310 xfree (exception_name);
12311 exception_name = NULL;
12312 args -= 2;
12313 }
f7f9143b
JB
12314 make_cleanup (xfree, exception_name);
12315
5845583d 12316 /* Check to see if we have a condition. */
f7f9143b 12317
0fcd72ba 12318 args = skip_spaces (args);
5845583d
JB
12319 if (strncmp (args, "if", 2) == 0
12320 && (isspace (args[2]) || args[2] == '\0'))
12321 {
12322 args += 2;
12323 args = skip_spaces (args);
12324
12325 if (args[0] == '\0')
12326 error (_("Condition missing after `if' keyword"));
12327 cond = xstrdup (args);
12328 make_cleanup (xfree, cond);
12329
12330 args += strlen (args);
12331 }
12332
12333 /* Check that we do not have any more arguments. Anything else
12334 is unexpected. */
f7f9143b
JB
12335
12336 if (args[0] != '\0')
12337 error (_("Junk at end of expression"));
12338
12339 discard_cleanups (old_chain);
12340
12341 if (exception_name == NULL)
12342 {
12343 /* Catch all exceptions. */
761269c8 12344 *ex = ada_catch_exception;
28010a5d 12345 *excep_string = NULL;
f7f9143b
JB
12346 }
12347 else if (strcmp (exception_name, "unhandled") == 0)
12348 {
12349 /* Catch unhandled exceptions. */
761269c8 12350 *ex = ada_catch_exception_unhandled;
28010a5d 12351 *excep_string = NULL;
f7f9143b
JB
12352 }
12353 else
12354 {
12355 /* Catch a specific exception. */
761269c8 12356 *ex = ada_catch_exception;
28010a5d 12357 *excep_string = exception_name;
f7f9143b 12358 }
5845583d 12359 *cond_string = cond;
f7f9143b
JB
12360}
12361
12362/* Return the name of the symbol on which we should break in order to
12363 implement a catchpoint of the EX kind. */
12364
12365static const char *
761269c8 12366ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12367{
3eecfa55
JB
12368 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12369
12370 gdb_assert (data->exception_info != NULL);
0259addd 12371
f7f9143b
JB
12372 switch (ex)
12373 {
761269c8 12374 case ada_catch_exception:
3eecfa55 12375 return (data->exception_info->catch_exception_sym);
f7f9143b 12376 break;
761269c8 12377 case ada_catch_exception_unhandled:
3eecfa55 12378 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12379 break;
761269c8 12380 case ada_catch_assert:
3eecfa55 12381 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12382 break;
12383 default:
12384 internal_error (__FILE__, __LINE__,
12385 _("unexpected catchpoint kind (%d)"), ex);
12386 }
12387}
12388
12389/* Return the breakpoint ops "virtual table" used for catchpoints
12390 of the EX kind. */
12391
c0a91b2b 12392static const struct breakpoint_ops *
761269c8 12393ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12394{
12395 switch (ex)
12396 {
761269c8 12397 case ada_catch_exception:
f7f9143b
JB
12398 return (&catch_exception_breakpoint_ops);
12399 break;
761269c8 12400 case ada_catch_exception_unhandled:
f7f9143b
JB
12401 return (&catch_exception_unhandled_breakpoint_ops);
12402 break;
761269c8 12403 case ada_catch_assert:
f7f9143b
JB
12404 return (&catch_assert_breakpoint_ops);
12405 break;
12406 default:
12407 internal_error (__FILE__, __LINE__,
12408 _("unexpected catchpoint kind (%d)"), ex);
12409 }
12410}
12411
12412/* Return the condition that will be used to match the current exception
12413 being raised with the exception that the user wants to catch. This
12414 assumes that this condition is used when the inferior just triggered
12415 an exception catchpoint.
12416
12417 The string returned is a newly allocated string that needs to be
12418 deallocated later. */
12419
12420static char *
28010a5d 12421ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12422{
3d0b0fa3
JB
12423 int i;
12424
0963b4bd 12425 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12426 runtime units that have been compiled without debugging info; if
28010a5d 12427 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12428 exception (e.g. "constraint_error") then, during the evaluation
12429 of the condition expression, the symbol lookup on this name would
0963b4bd 12430 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12431 may then be set only on user-defined exceptions which have the
12432 same not-fully-qualified name (e.g. my_package.constraint_error).
12433
12434 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12435 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12436 exception constraint_error" is rewritten into "catch exception
12437 standard.constraint_error".
12438
12439 If an exception named contraint_error is defined in another package of
12440 the inferior program, then the only way to specify this exception as a
12441 breakpoint condition is to use its fully-qualified named:
12442 e.g. my_package.constraint_error. */
12443
12444 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12445 {
28010a5d 12446 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12447 {
12448 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12449 excep_string);
3d0b0fa3
JB
12450 }
12451 }
28010a5d 12452 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12453}
12454
12455/* Return the symtab_and_line that should be used to insert an exception
12456 catchpoint of the TYPE kind.
12457
28010a5d
PA
12458 EXCEP_STRING should contain the name of a specific exception that
12459 the catchpoint should catch, or NULL otherwise.
f7f9143b 12460
28010a5d
PA
12461 ADDR_STRING returns the name of the function where the real
12462 breakpoint that implements the catchpoints is set, depending on the
12463 type of catchpoint we need to create. */
f7f9143b
JB
12464
12465static struct symtab_and_line
761269c8 12466ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12467 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12468{
12469 const char *sym_name;
12470 struct symbol *sym;
f7f9143b 12471
0259addd
JB
12472 /* First, find out which exception support info to use. */
12473 ada_exception_support_info_sniffer ();
12474
12475 /* Then lookup the function on which we will break in order to catch
f7f9143b 12476 the Ada exceptions requested by the user. */
f7f9143b
JB
12477 sym_name = ada_exception_sym_name (ex);
12478 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12479
f17011e0
JB
12480 /* We can assume that SYM is not NULL at this stage. If the symbol
12481 did not exist, ada_exception_support_info_sniffer would have
12482 raised an exception.
f7f9143b 12483
f17011e0
JB
12484 Also, ada_exception_support_info_sniffer should have already
12485 verified that SYM is a function symbol. */
12486 gdb_assert (sym != NULL);
12487 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12488
12489 /* Set ADDR_STRING. */
f7f9143b
JB
12490 *addr_string = xstrdup (sym_name);
12491
f7f9143b 12492 /* Set OPS. */
4b9eee8c 12493 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12494
f17011e0 12495 return find_function_start_sal (sym, 1);
f7f9143b
JB
12496}
12497
b4a5b78b 12498/* Create an Ada exception catchpoint.
f7f9143b 12499
b4a5b78b 12500 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12501
2df4d1d5
JB
12502 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12503 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12504 of the exception to which this catchpoint applies. When not NULL,
12505 the string must be allocated on the heap, and its deallocation
12506 is no longer the responsibility of the caller.
12507
12508 COND_STRING, if not NULL, is the catchpoint condition. This string
12509 must be allocated on the heap, and its deallocation is no longer
12510 the responsibility of the caller.
f7f9143b 12511
b4a5b78b
JB
12512 TEMPFLAG, if nonzero, means that the underlying breakpoint
12513 should be temporary.
28010a5d 12514
b4a5b78b 12515 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12516
349774ef 12517void
28010a5d 12518create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12519 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12520 char *excep_string,
5845583d 12521 char *cond_string,
28010a5d 12522 int tempflag,
349774ef 12523 int disabled,
28010a5d
PA
12524 int from_tty)
12525{
12526 struct ada_catchpoint *c;
b4a5b78b
JB
12527 char *addr_string = NULL;
12528 const struct breakpoint_ops *ops = NULL;
12529 struct symtab_and_line sal
12530 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
12531
12532 c = XNEW (struct ada_catchpoint);
12533 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 12534 ops, tempflag, disabled, from_tty);
28010a5d
PA
12535 c->excep_string = excep_string;
12536 create_excep_cond_exprs (c);
5845583d
JB
12537 if (cond_string != NULL)
12538 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12539 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12540}
12541
9ac4176b
PA
12542/* Implement the "catch exception" command. */
12543
12544static void
12545catch_ada_exception_command (char *arg, int from_tty,
12546 struct cmd_list_element *command)
12547{
12548 struct gdbarch *gdbarch = get_current_arch ();
12549 int tempflag;
761269c8 12550 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12551 char *excep_string = NULL;
5845583d 12552 char *cond_string = NULL;
9ac4176b
PA
12553
12554 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12555
12556 if (!arg)
12557 arg = "";
b4a5b78b
JB
12558 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12559 &cond_string);
12560 create_ada_exception_catchpoint (gdbarch, ex_kind,
12561 excep_string, cond_string,
349774ef
JB
12562 tempflag, 1 /* enabled */,
12563 from_tty);
9ac4176b
PA
12564}
12565
b4a5b78b 12566/* Split the arguments specified in a "catch assert" command.
5845583d 12567
b4a5b78b
JB
12568 ARGS contains the command's arguments (or the empty string if
12569 no arguments were passed).
5845583d
JB
12570
12571 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12572 (the memory needs to be deallocated after use). */
5845583d 12573
b4a5b78b
JB
12574static void
12575catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 12576{
5845583d 12577 args = skip_spaces (args);
f7f9143b 12578
5845583d
JB
12579 /* Check whether a condition was provided. */
12580 if (strncmp (args, "if", 2) == 0
12581 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12582 {
5845583d 12583 args += 2;
0fcd72ba 12584 args = skip_spaces (args);
5845583d
JB
12585 if (args[0] == '\0')
12586 error (_("condition missing after `if' keyword"));
12587 *cond_string = xstrdup (args);
f7f9143b
JB
12588 }
12589
5845583d
JB
12590 /* Otherwise, there should be no other argument at the end of
12591 the command. */
12592 else if (args[0] != '\0')
12593 error (_("Junk at end of arguments."));
f7f9143b
JB
12594}
12595
9ac4176b
PA
12596/* Implement the "catch assert" command. */
12597
12598static void
12599catch_assert_command (char *arg, int from_tty,
12600 struct cmd_list_element *command)
12601{
12602 struct gdbarch *gdbarch = get_current_arch ();
12603 int tempflag;
5845583d 12604 char *cond_string = NULL;
9ac4176b
PA
12605
12606 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12607
12608 if (!arg)
12609 arg = "";
b4a5b78b 12610 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12611 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12612 NULL, cond_string,
349774ef
JB
12613 tempflag, 1 /* enabled */,
12614 from_tty);
9ac4176b 12615}
778865d3
JB
12616
12617/* Return non-zero if the symbol SYM is an Ada exception object. */
12618
12619static int
12620ada_is_exception_sym (struct symbol *sym)
12621{
12622 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12623
12624 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12625 && SYMBOL_CLASS (sym) != LOC_BLOCK
12626 && SYMBOL_CLASS (sym) != LOC_CONST
12627 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12628 && type_name != NULL && strcmp (type_name, "exception") == 0);
12629}
12630
12631/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12632 Ada exception object. This matches all exceptions except the ones
12633 defined by the Ada language. */
12634
12635static int
12636ada_is_non_standard_exception_sym (struct symbol *sym)
12637{
12638 int i;
12639
12640 if (!ada_is_exception_sym (sym))
12641 return 0;
12642
12643 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12644 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12645 return 0; /* A standard exception. */
12646
12647 /* Numeric_Error is also a standard exception, so exclude it.
12648 See the STANDARD_EXC description for more details as to why
12649 this exception is not listed in that array. */
12650 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12651 return 0;
12652
12653 return 1;
12654}
12655
12656/* A helper function for qsort, comparing two struct ada_exc_info
12657 objects.
12658
12659 The comparison is determined first by exception name, and then
12660 by exception address. */
12661
12662static int
12663compare_ada_exception_info (const void *a, const void *b)
12664{
12665 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12666 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12667 int result;
12668
12669 result = strcmp (exc_a->name, exc_b->name);
12670 if (result != 0)
12671 return result;
12672
12673 if (exc_a->addr < exc_b->addr)
12674 return -1;
12675 if (exc_a->addr > exc_b->addr)
12676 return 1;
12677
12678 return 0;
12679}
12680
12681/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12682 routine, but keeping the first SKIP elements untouched.
12683
12684 All duplicates are also removed. */
12685
12686static void
12687sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12688 int skip)
12689{
12690 struct ada_exc_info *to_sort
12691 = VEC_address (ada_exc_info, *exceptions) + skip;
12692 int to_sort_len
12693 = VEC_length (ada_exc_info, *exceptions) - skip;
12694 int i, j;
12695
12696 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12697 compare_ada_exception_info);
12698
12699 for (i = 1, j = 1; i < to_sort_len; i++)
12700 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12701 to_sort[j++] = to_sort[i];
12702 to_sort_len = j;
12703 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12704}
12705
12706/* A function intended as the "name_matcher" callback in the struct
12707 quick_symbol_functions' expand_symtabs_matching method.
12708
12709 SEARCH_NAME is the symbol's search name.
12710
12711 If USER_DATA is not NULL, it is a pointer to a regext_t object
12712 used to match the symbol (by natural name). Otherwise, when USER_DATA
12713 is null, no filtering is performed, and all symbols are a positive
12714 match. */
12715
12716static int
12717ada_exc_search_name_matches (const char *search_name, void *user_data)
12718{
12719 regex_t *preg = user_data;
12720
12721 if (preg == NULL)
12722 return 1;
12723
12724 /* In Ada, the symbol "search name" is a linkage name, whereas
12725 the regular expression used to do the matching refers to
12726 the natural name. So match against the decoded name. */
12727 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12728}
12729
12730/* Add all exceptions defined by the Ada standard whose name match
12731 a regular expression.
12732
12733 If PREG is not NULL, then this regexp_t object is used to
12734 perform the symbol name matching. Otherwise, no name-based
12735 filtering is performed.
12736
12737 EXCEPTIONS is a vector of exceptions to which matching exceptions
12738 gets pushed. */
12739
12740static void
12741ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12742{
12743 int i;
12744
12745 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12746 {
12747 if (preg == NULL
12748 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12749 {
12750 struct bound_minimal_symbol msymbol
12751 = ada_lookup_simple_minsym (standard_exc[i]);
12752
12753 if (msymbol.minsym != NULL)
12754 {
12755 struct ada_exc_info info
77e371c0 12756 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
12757
12758 VEC_safe_push (ada_exc_info, *exceptions, &info);
12759 }
12760 }
12761 }
12762}
12763
12764/* Add all Ada exceptions defined locally and accessible from the given
12765 FRAME.
12766
12767 If PREG is not NULL, then this regexp_t object is used to
12768 perform the symbol name matching. Otherwise, no name-based
12769 filtering is performed.
12770
12771 EXCEPTIONS is a vector of exceptions to which matching exceptions
12772 gets pushed. */
12773
12774static void
12775ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12776 VEC(ada_exc_info) **exceptions)
12777{
3977b71f 12778 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
12779
12780 while (block != 0)
12781 {
12782 struct block_iterator iter;
12783 struct symbol *sym;
12784
12785 ALL_BLOCK_SYMBOLS (block, iter, sym)
12786 {
12787 switch (SYMBOL_CLASS (sym))
12788 {
12789 case LOC_TYPEDEF:
12790 case LOC_BLOCK:
12791 case LOC_CONST:
12792 break;
12793 default:
12794 if (ada_is_exception_sym (sym))
12795 {
12796 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12797 SYMBOL_VALUE_ADDRESS (sym)};
12798
12799 VEC_safe_push (ada_exc_info, *exceptions, &info);
12800 }
12801 }
12802 }
12803 if (BLOCK_FUNCTION (block) != NULL)
12804 break;
12805 block = BLOCK_SUPERBLOCK (block);
12806 }
12807}
12808
12809/* Add all exceptions defined globally whose name name match
12810 a regular expression, excluding standard exceptions.
12811
12812 The reason we exclude standard exceptions is that they need
12813 to be handled separately: Standard exceptions are defined inside
12814 a runtime unit which is normally not compiled with debugging info,
12815 and thus usually do not show up in our symbol search. However,
12816 if the unit was in fact built with debugging info, we need to
12817 exclude them because they would duplicate the entry we found
12818 during the special loop that specifically searches for those
12819 standard exceptions.
12820
12821 If PREG is not NULL, then this regexp_t object is used to
12822 perform the symbol name matching. Otherwise, no name-based
12823 filtering is performed.
12824
12825 EXCEPTIONS is a vector of exceptions to which matching exceptions
12826 gets pushed. */
12827
12828static void
12829ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12830{
12831 struct objfile *objfile;
12832 struct symtab *s;
12833
bb4142cf
DE
12834 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12835 VARIABLES_DOMAIN, preg);
778865d3
JB
12836
12837 ALL_PRIMARY_SYMTABS (objfile, s)
12838 {
346d1dfe 12839 const struct blockvector *bv = BLOCKVECTOR (s);
778865d3
JB
12840 int i;
12841
12842 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12843 {
12844 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12845 struct block_iterator iter;
12846 struct symbol *sym;
12847
12848 ALL_BLOCK_SYMBOLS (b, iter, sym)
12849 if (ada_is_non_standard_exception_sym (sym)
12850 && (preg == NULL
12851 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12852 0, NULL, 0) == 0))
12853 {
12854 struct ada_exc_info info
12855 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12856
12857 VEC_safe_push (ada_exc_info, *exceptions, &info);
12858 }
12859 }
12860 }
12861}
12862
12863/* Implements ada_exceptions_list with the regular expression passed
12864 as a regex_t, rather than a string.
12865
12866 If not NULL, PREG is used to filter out exceptions whose names
12867 do not match. Otherwise, all exceptions are listed. */
12868
12869static VEC(ada_exc_info) *
12870ada_exceptions_list_1 (regex_t *preg)
12871{
12872 VEC(ada_exc_info) *result = NULL;
12873 struct cleanup *old_chain
12874 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12875 int prev_len;
12876
12877 /* First, list the known standard exceptions. These exceptions
12878 need to be handled separately, as they are usually defined in
12879 runtime units that have been compiled without debugging info. */
12880
12881 ada_add_standard_exceptions (preg, &result);
12882
12883 /* Next, find all exceptions whose scope is local and accessible
12884 from the currently selected frame. */
12885
12886 if (has_stack_frames ())
12887 {
12888 prev_len = VEC_length (ada_exc_info, result);
12889 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12890 &result);
12891 if (VEC_length (ada_exc_info, result) > prev_len)
12892 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12893 }
12894
12895 /* Add all exceptions whose scope is global. */
12896
12897 prev_len = VEC_length (ada_exc_info, result);
12898 ada_add_global_exceptions (preg, &result);
12899 if (VEC_length (ada_exc_info, result) > prev_len)
12900 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12901
12902 discard_cleanups (old_chain);
12903 return result;
12904}
12905
12906/* Return a vector of ada_exc_info.
12907
12908 If REGEXP is NULL, all exceptions are included in the result.
12909 Otherwise, it should contain a valid regular expression,
12910 and only the exceptions whose names match that regular expression
12911 are included in the result.
12912
12913 The exceptions are sorted in the following order:
12914 - Standard exceptions (defined by the Ada language), in
12915 alphabetical order;
12916 - Exceptions only visible from the current frame, in
12917 alphabetical order;
12918 - Exceptions whose scope is global, in alphabetical order. */
12919
12920VEC(ada_exc_info) *
12921ada_exceptions_list (const char *regexp)
12922{
12923 VEC(ada_exc_info) *result = NULL;
12924 struct cleanup *old_chain = NULL;
12925 regex_t reg;
12926
12927 if (regexp != NULL)
12928 old_chain = compile_rx_or_error (&reg, regexp,
12929 _("invalid regular expression"));
12930
12931 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12932
12933 if (old_chain != NULL)
12934 do_cleanups (old_chain);
12935 return result;
12936}
12937
12938/* Implement the "info exceptions" command. */
12939
12940static void
12941info_exceptions_command (char *regexp, int from_tty)
12942{
12943 VEC(ada_exc_info) *exceptions;
12944 struct cleanup *cleanup;
12945 struct gdbarch *gdbarch = get_current_arch ();
12946 int ix;
12947 struct ada_exc_info *info;
12948
12949 exceptions = ada_exceptions_list (regexp);
12950 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12951
12952 if (regexp != NULL)
12953 printf_filtered
12954 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12955 else
12956 printf_filtered (_("All defined Ada exceptions:\n"));
12957
12958 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12959 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12960
12961 do_cleanups (cleanup);
12962}
12963
4c4b4cd2
PH
12964 /* Operators */
12965/* Information about operators given special treatment in functions
12966 below. */
12967/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12968
12969#define ADA_OPERATORS \
12970 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12971 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12972 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12973 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12974 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12975 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12976 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12977 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12978 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12979 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12980 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12981 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12982 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12983 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12984 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
12985 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12986 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12987 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12988 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
12989
12990static void
554794dc
SDJ
12991ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12992 int *argsp)
4c4b4cd2
PH
12993{
12994 switch (exp->elts[pc - 1].opcode)
12995 {
76a01679 12996 default:
4c4b4cd2
PH
12997 operator_length_standard (exp, pc, oplenp, argsp);
12998 break;
12999
13000#define OP_DEFN(op, len, args, binop) \
13001 case op: *oplenp = len; *argsp = args; break;
13002 ADA_OPERATORS;
13003#undef OP_DEFN
52ce6436
PH
13004
13005 case OP_AGGREGATE:
13006 *oplenp = 3;
13007 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13008 break;
13009
13010 case OP_CHOICES:
13011 *oplenp = 3;
13012 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13013 break;
4c4b4cd2
PH
13014 }
13015}
13016
c0201579
JK
13017/* Implementation of the exp_descriptor method operator_check. */
13018
13019static int
13020ada_operator_check (struct expression *exp, int pos,
13021 int (*objfile_func) (struct objfile *objfile, void *data),
13022 void *data)
13023{
13024 const union exp_element *const elts = exp->elts;
13025 struct type *type = NULL;
13026
13027 switch (elts[pos].opcode)
13028 {
13029 case UNOP_IN_RANGE:
13030 case UNOP_QUAL:
13031 type = elts[pos + 1].type;
13032 break;
13033
13034 default:
13035 return operator_check_standard (exp, pos, objfile_func, data);
13036 }
13037
13038 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13039
13040 if (type && TYPE_OBJFILE (type)
13041 && (*objfile_func) (TYPE_OBJFILE (type), data))
13042 return 1;
13043
13044 return 0;
13045}
13046
4c4b4cd2
PH
13047static char *
13048ada_op_name (enum exp_opcode opcode)
13049{
13050 switch (opcode)
13051 {
76a01679 13052 default:
4c4b4cd2 13053 return op_name_standard (opcode);
52ce6436 13054
4c4b4cd2
PH
13055#define OP_DEFN(op, len, args, binop) case op: return #op;
13056 ADA_OPERATORS;
13057#undef OP_DEFN
52ce6436
PH
13058
13059 case OP_AGGREGATE:
13060 return "OP_AGGREGATE";
13061 case OP_CHOICES:
13062 return "OP_CHOICES";
13063 case OP_NAME:
13064 return "OP_NAME";
4c4b4cd2
PH
13065 }
13066}
13067
13068/* As for operator_length, but assumes PC is pointing at the first
13069 element of the operator, and gives meaningful results only for the
52ce6436 13070 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13071
13072static void
76a01679
JB
13073ada_forward_operator_length (struct expression *exp, int pc,
13074 int *oplenp, int *argsp)
4c4b4cd2 13075{
76a01679 13076 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13077 {
13078 default:
13079 *oplenp = *argsp = 0;
13080 break;
52ce6436 13081
4c4b4cd2
PH
13082#define OP_DEFN(op, len, args, binop) \
13083 case op: *oplenp = len; *argsp = args; break;
13084 ADA_OPERATORS;
13085#undef OP_DEFN
52ce6436
PH
13086
13087 case OP_AGGREGATE:
13088 *oplenp = 3;
13089 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13090 break;
13091
13092 case OP_CHOICES:
13093 *oplenp = 3;
13094 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13095 break;
13096
13097 case OP_STRING:
13098 case OP_NAME:
13099 {
13100 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13101
52ce6436
PH
13102 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13103 *argsp = 0;
13104 break;
13105 }
4c4b4cd2
PH
13106 }
13107}
13108
13109static int
13110ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13111{
13112 enum exp_opcode op = exp->elts[elt].opcode;
13113 int oplen, nargs;
13114 int pc = elt;
13115 int i;
76a01679 13116
4c4b4cd2
PH
13117 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13118
76a01679 13119 switch (op)
4c4b4cd2 13120 {
76a01679 13121 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13122 case OP_ATR_FIRST:
13123 case OP_ATR_LAST:
13124 case OP_ATR_LENGTH:
13125 case OP_ATR_IMAGE:
13126 case OP_ATR_MAX:
13127 case OP_ATR_MIN:
13128 case OP_ATR_MODULUS:
13129 case OP_ATR_POS:
13130 case OP_ATR_SIZE:
13131 case OP_ATR_TAG:
13132 case OP_ATR_VAL:
13133 break;
13134
13135 case UNOP_IN_RANGE:
13136 case UNOP_QUAL:
323e0a4a
AC
13137 /* XXX: gdb_sprint_host_address, type_sprint */
13138 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13139 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13140 fprintf_filtered (stream, " (");
13141 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13142 fprintf_filtered (stream, ")");
13143 break;
13144 case BINOP_IN_BOUNDS:
52ce6436
PH
13145 fprintf_filtered (stream, " (%d)",
13146 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13147 break;
13148 case TERNOP_IN_RANGE:
13149 break;
13150
52ce6436
PH
13151 case OP_AGGREGATE:
13152 case OP_OTHERS:
13153 case OP_DISCRETE_RANGE:
13154 case OP_POSITIONAL:
13155 case OP_CHOICES:
13156 break;
13157
13158 case OP_NAME:
13159 case OP_STRING:
13160 {
13161 char *name = &exp->elts[elt + 2].string;
13162 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13163
52ce6436
PH
13164 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13165 break;
13166 }
13167
4c4b4cd2
PH
13168 default:
13169 return dump_subexp_body_standard (exp, stream, elt);
13170 }
13171
13172 elt += oplen;
13173 for (i = 0; i < nargs; i += 1)
13174 elt = dump_subexp (exp, stream, elt);
13175
13176 return elt;
13177}
13178
13179/* The Ada extension of print_subexp (q.v.). */
13180
76a01679
JB
13181static void
13182ada_print_subexp (struct expression *exp, int *pos,
13183 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13184{
52ce6436 13185 int oplen, nargs, i;
4c4b4cd2
PH
13186 int pc = *pos;
13187 enum exp_opcode op = exp->elts[pc].opcode;
13188
13189 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13190
52ce6436 13191 *pos += oplen;
4c4b4cd2
PH
13192 switch (op)
13193 {
13194 default:
52ce6436 13195 *pos -= oplen;
4c4b4cd2
PH
13196 print_subexp_standard (exp, pos, stream, prec);
13197 return;
13198
13199 case OP_VAR_VALUE:
4c4b4cd2
PH
13200 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13201 return;
13202
13203 case BINOP_IN_BOUNDS:
323e0a4a 13204 /* XXX: sprint_subexp */
4c4b4cd2 13205 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13206 fputs_filtered (" in ", stream);
4c4b4cd2 13207 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13208 fputs_filtered ("'range", stream);
4c4b4cd2 13209 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13210 fprintf_filtered (stream, "(%ld)",
13211 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13212 return;
13213
13214 case TERNOP_IN_RANGE:
4c4b4cd2 13215 if (prec >= PREC_EQUAL)
76a01679 13216 fputs_filtered ("(", stream);
323e0a4a 13217 /* XXX: sprint_subexp */
4c4b4cd2 13218 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13219 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13220 print_subexp (exp, pos, stream, PREC_EQUAL);
13221 fputs_filtered (" .. ", stream);
13222 print_subexp (exp, pos, stream, PREC_EQUAL);
13223 if (prec >= PREC_EQUAL)
76a01679
JB
13224 fputs_filtered (")", stream);
13225 return;
4c4b4cd2
PH
13226
13227 case OP_ATR_FIRST:
13228 case OP_ATR_LAST:
13229 case OP_ATR_LENGTH:
13230 case OP_ATR_IMAGE:
13231 case OP_ATR_MAX:
13232 case OP_ATR_MIN:
13233 case OP_ATR_MODULUS:
13234 case OP_ATR_POS:
13235 case OP_ATR_SIZE:
13236 case OP_ATR_TAG:
13237 case OP_ATR_VAL:
4c4b4cd2 13238 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13239 {
13240 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13241 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13242 &type_print_raw_options);
76a01679
JB
13243 *pos += 3;
13244 }
4c4b4cd2 13245 else
76a01679 13246 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13247 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13248 if (nargs > 1)
76a01679
JB
13249 {
13250 int tem;
5b4ee69b 13251
76a01679
JB
13252 for (tem = 1; tem < nargs; tem += 1)
13253 {
13254 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13255 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13256 }
13257 fputs_filtered (")", stream);
13258 }
4c4b4cd2 13259 return;
14f9c5c9 13260
4c4b4cd2 13261 case UNOP_QUAL:
4c4b4cd2
PH
13262 type_print (exp->elts[pc + 1].type, "", stream, 0);
13263 fputs_filtered ("'(", stream);
13264 print_subexp (exp, pos, stream, PREC_PREFIX);
13265 fputs_filtered (")", stream);
13266 return;
14f9c5c9 13267
4c4b4cd2 13268 case UNOP_IN_RANGE:
323e0a4a 13269 /* XXX: sprint_subexp */
4c4b4cd2 13270 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13271 fputs_filtered (" in ", stream);
79d43c61
TT
13272 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13273 &type_print_raw_options);
4c4b4cd2 13274 return;
52ce6436
PH
13275
13276 case OP_DISCRETE_RANGE:
13277 print_subexp (exp, pos, stream, PREC_SUFFIX);
13278 fputs_filtered ("..", stream);
13279 print_subexp (exp, pos, stream, PREC_SUFFIX);
13280 return;
13281
13282 case OP_OTHERS:
13283 fputs_filtered ("others => ", stream);
13284 print_subexp (exp, pos, stream, PREC_SUFFIX);
13285 return;
13286
13287 case OP_CHOICES:
13288 for (i = 0; i < nargs-1; i += 1)
13289 {
13290 if (i > 0)
13291 fputs_filtered ("|", stream);
13292 print_subexp (exp, pos, stream, PREC_SUFFIX);
13293 }
13294 fputs_filtered (" => ", stream);
13295 print_subexp (exp, pos, stream, PREC_SUFFIX);
13296 return;
13297
13298 case OP_POSITIONAL:
13299 print_subexp (exp, pos, stream, PREC_SUFFIX);
13300 return;
13301
13302 case OP_AGGREGATE:
13303 fputs_filtered ("(", stream);
13304 for (i = 0; i < nargs; i += 1)
13305 {
13306 if (i > 0)
13307 fputs_filtered (", ", stream);
13308 print_subexp (exp, pos, stream, PREC_SUFFIX);
13309 }
13310 fputs_filtered (")", stream);
13311 return;
4c4b4cd2
PH
13312 }
13313}
14f9c5c9
AS
13314
13315/* Table mapping opcodes into strings for printing operators
13316 and precedences of the operators. */
13317
d2e4a39e
AS
13318static const struct op_print ada_op_print_tab[] = {
13319 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13320 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13321 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13322 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13323 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13324 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13325 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13326 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13327 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13328 {">=", BINOP_GEQ, PREC_ORDER, 0},
13329 {">", BINOP_GTR, PREC_ORDER, 0},
13330 {"<", BINOP_LESS, PREC_ORDER, 0},
13331 {">>", BINOP_RSH, PREC_SHIFT, 0},
13332 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13333 {"+", BINOP_ADD, PREC_ADD, 0},
13334 {"-", BINOP_SUB, PREC_ADD, 0},
13335 {"&", BINOP_CONCAT, PREC_ADD, 0},
13336 {"*", BINOP_MUL, PREC_MUL, 0},
13337 {"/", BINOP_DIV, PREC_MUL, 0},
13338 {"rem", BINOP_REM, PREC_MUL, 0},
13339 {"mod", BINOP_MOD, PREC_MUL, 0},
13340 {"**", BINOP_EXP, PREC_REPEAT, 0},
13341 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13342 {"-", UNOP_NEG, PREC_PREFIX, 0},
13343 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13344 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13345 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13346 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13347 {".all", UNOP_IND, PREC_SUFFIX, 1},
13348 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13349 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 13350 {NULL, 0, 0, 0}
14f9c5c9
AS
13351};
13352\f
72d5681a
PH
13353enum ada_primitive_types {
13354 ada_primitive_type_int,
13355 ada_primitive_type_long,
13356 ada_primitive_type_short,
13357 ada_primitive_type_char,
13358 ada_primitive_type_float,
13359 ada_primitive_type_double,
13360 ada_primitive_type_void,
13361 ada_primitive_type_long_long,
13362 ada_primitive_type_long_double,
13363 ada_primitive_type_natural,
13364 ada_primitive_type_positive,
13365 ada_primitive_type_system_address,
13366 nr_ada_primitive_types
13367};
6c038f32
PH
13368
13369static void
d4a9a881 13370ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13371 struct language_arch_info *lai)
13372{
d4a9a881 13373 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13374
72d5681a 13375 lai->primitive_type_vector
d4a9a881 13376 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13377 struct type *);
e9bb382b
UW
13378
13379 lai->primitive_type_vector [ada_primitive_type_int]
13380 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13381 0, "integer");
13382 lai->primitive_type_vector [ada_primitive_type_long]
13383 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13384 0, "long_integer");
13385 lai->primitive_type_vector [ada_primitive_type_short]
13386 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13387 0, "short_integer");
13388 lai->string_char_type
13389 = lai->primitive_type_vector [ada_primitive_type_char]
13390 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13391 lai->primitive_type_vector [ada_primitive_type_float]
13392 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13393 "float", NULL);
13394 lai->primitive_type_vector [ada_primitive_type_double]
13395 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13396 "long_float", NULL);
13397 lai->primitive_type_vector [ada_primitive_type_long_long]
13398 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13399 0, "long_long_integer");
13400 lai->primitive_type_vector [ada_primitive_type_long_double]
13401 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13402 "long_long_float", NULL);
13403 lai->primitive_type_vector [ada_primitive_type_natural]
13404 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13405 0, "natural");
13406 lai->primitive_type_vector [ada_primitive_type_positive]
13407 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13408 0, "positive");
13409 lai->primitive_type_vector [ada_primitive_type_void]
13410 = builtin->builtin_void;
13411
13412 lai->primitive_type_vector [ada_primitive_type_system_address]
13413 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13414 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13415 = "system__address";
fbb06eb1 13416
47e729a8 13417 lai->bool_type_symbol = NULL;
fbb06eb1 13418 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13419}
6c038f32
PH
13420\f
13421 /* Language vector */
13422
13423/* Not really used, but needed in the ada_language_defn. */
13424
13425static void
6c7a06a3 13426emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13427{
6c7a06a3 13428 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13429}
13430
13431static int
410a0ff2 13432parse (struct parser_state *ps)
6c038f32
PH
13433{
13434 warnings_issued = 0;
410a0ff2 13435 return ada_parse (ps);
6c038f32
PH
13436}
13437
13438static const struct exp_descriptor ada_exp_descriptor = {
13439 ada_print_subexp,
13440 ada_operator_length,
c0201579 13441 ada_operator_check,
6c038f32
PH
13442 ada_op_name,
13443 ada_dump_subexp_body,
13444 ada_evaluate_subexp
13445};
13446
1a119f36 13447/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13448 for Ada. */
13449
1a119f36
JB
13450static symbol_name_cmp_ftype
13451ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13452{
13453 if (should_use_wild_match (lookup_name))
13454 return wild_match;
13455 else
13456 return compare_names;
13457}
13458
a5ee536b
JB
13459/* Implement the "la_read_var_value" language_defn method for Ada. */
13460
13461static struct value *
13462ada_read_var_value (struct symbol *var, struct frame_info *frame)
13463{
3977b71f 13464 const struct block *frame_block = NULL;
a5ee536b
JB
13465 struct symbol *renaming_sym = NULL;
13466
13467 /* The only case where default_read_var_value is not sufficient
13468 is when VAR is a renaming... */
13469 if (frame)
13470 frame_block = get_frame_block (frame, NULL);
13471 if (frame_block)
13472 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13473 if (renaming_sym != NULL)
13474 return ada_read_renaming_var_value (renaming_sym, frame_block);
13475
13476 /* This is a typical case where we expect the default_read_var_value
13477 function to work. */
13478 return default_read_var_value (var, frame);
13479}
13480
6c038f32
PH
13481const struct language_defn ada_language_defn = {
13482 "ada", /* Language name */
6abde28f 13483 "Ada",
6c038f32 13484 language_ada,
6c038f32 13485 range_check_off,
6c038f32
PH
13486 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13487 that's not quite what this means. */
6c038f32 13488 array_row_major,
9a044a89 13489 macro_expansion_no,
6c038f32
PH
13490 &ada_exp_descriptor,
13491 parse,
13492 ada_error,
13493 resolve,
13494 ada_printchar, /* Print a character constant */
13495 ada_printstr, /* Function to print string constant */
13496 emit_char, /* Function to print single char (not used) */
6c038f32 13497 ada_print_type, /* Print a type using appropriate syntax */
be942545 13498 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13499 ada_val_print, /* Print a value using appropriate syntax */
13500 ada_value_print, /* Print a top-level value */
a5ee536b 13501 ada_read_var_value, /* la_read_var_value */
6c038f32 13502 NULL, /* Language specific skip_trampoline */
2b2d9e11 13503 NULL, /* name_of_this */
6c038f32
PH
13504 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13505 basic_lookup_transparent_type, /* lookup_transparent_type */
13506 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13507 NULL, /* Language specific
13508 class_name_from_physname */
6c038f32
PH
13509 ada_op_print_tab, /* expression operators for printing */
13510 0, /* c-style arrays */
13511 1, /* String lower bound */
6c038f32 13512 ada_get_gdb_completer_word_break_characters,
41d27058 13513 ada_make_symbol_completion_list,
72d5681a 13514 ada_language_arch_info,
e79af960 13515 ada_print_array_index,
41f1b697 13516 default_pass_by_reference,
ae6a3a4c 13517 c_get_string,
1a119f36 13518 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13519 ada_iterate_over_symbols,
a53b64ea 13520 &ada_varobj_ops,
6c038f32
PH
13521 LANG_MAGIC
13522};
13523
2c0b251b
PA
13524/* Provide a prototype to silence -Wmissing-prototypes. */
13525extern initialize_file_ftype _initialize_ada_language;
13526
5bf03f13
JB
13527/* Command-list for the "set/show ada" prefix command. */
13528static struct cmd_list_element *set_ada_list;
13529static struct cmd_list_element *show_ada_list;
13530
13531/* Implement the "set ada" prefix command. */
13532
13533static void
13534set_ada_command (char *arg, int from_tty)
13535{
13536 printf_unfiltered (_(\
13537"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 13538 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
13539}
13540
13541/* Implement the "show ada" prefix command. */
13542
13543static void
13544show_ada_command (char *args, int from_tty)
13545{
13546 cmd_show_list (show_ada_list, from_tty, "");
13547}
13548
2060206e
PA
13549static void
13550initialize_ada_catchpoint_ops (void)
13551{
13552 struct breakpoint_ops *ops;
13553
13554 initialize_breakpoint_ops ();
13555
13556 ops = &catch_exception_breakpoint_ops;
13557 *ops = bkpt_breakpoint_ops;
13558 ops->dtor = dtor_catch_exception;
13559 ops->allocate_location = allocate_location_catch_exception;
13560 ops->re_set = re_set_catch_exception;
13561 ops->check_status = check_status_catch_exception;
13562 ops->print_it = print_it_catch_exception;
13563 ops->print_one = print_one_catch_exception;
13564 ops->print_mention = print_mention_catch_exception;
13565 ops->print_recreate = print_recreate_catch_exception;
13566
13567 ops = &catch_exception_unhandled_breakpoint_ops;
13568 *ops = bkpt_breakpoint_ops;
13569 ops->dtor = dtor_catch_exception_unhandled;
13570 ops->allocate_location = allocate_location_catch_exception_unhandled;
13571 ops->re_set = re_set_catch_exception_unhandled;
13572 ops->check_status = check_status_catch_exception_unhandled;
13573 ops->print_it = print_it_catch_exception_unhandled;
13574 ops->print_one = print_one_catch_exception_unhandled;
13575 ops->print_mention = print_mention_catch_exception_unhandled;
13576 ops->print_recreate = print_recreate_catch_exception_unhandled;
13577
13578 ops = &catch_assert_breakpoint_ops;
13579 *ops = bkpt_breakpoint_ops;
13580 ops->dtor = dtor_catch_assert;
13581 ops->allocate_location = allocate_location_catch_assert;
13582 ops->re_set = re_set_catch_assert;
13583 ops->check_status = check_status_catch_assert;
13584 ops->print_it = print_it_catch_assert;
13585 ops->print_one = print_one_catch_assert;
13586 ops->print_mention = print_mention_catch_assert;
13587 ops->print_recreate = print_recreate_catch_assert;
13588}
13589
3d9434b5
JB
13590/* This module's 'new_objfile' observer. */
13591
13592static void
13593ada_new_objfile_observer (struct objfile *objfile)
13594{
13595 ada_clear_symbol_cache ();
13596}
13597
13598/* This module's 'free_objfile' observer. */
13599
13600static void
13601ada_free_objfile_observer (struct objfile *objfile)
13602{
13603 ada_clear_symbol_cache ();
13604}
13605
d2e4a39e 13606void
6c038f32 13607_initialize_ada_language (void)
14f9c5c9 13608{
6c038f32
PH
13609 add_language (&ada_language_defn);
13610
2060206e
PA
13611 initialize_ada_catchpoint_ops ();
13612
5bf03f13
JB
13613 add_prefix_cmd ("ada", no_class, set_ada_command,
13614 _("Prefix command for changing Ada-specfic settings"),
13615 &set_ada_list, "set ada ", 0, &setlist);
13616
13617 add_prefix_cmd ("ada", no_class, show_ada_command,
13618 _("Generic command for showing Ada-specific settings."),
13619 &show_ada_list, "show ada ", 0, &showlist);
13620
13621 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13622 &trust_pad_over_xvs, _("\
13623Enable or disable an optimization trusting PAD types over XVS types"), _("\
13624Show whether an optimization trusting PAD types over XVS types is activated"),
13625 _("\
13626This is related to the encoding used by the GNAT compiler. The debugger\n\
13627should normally trust the contents of PAD types, but certain older versions\n\
13628of GNAT have a bug that sometimes causes the information in the PAD type\n\
13629to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13630work around this bug. It is always safe to turn this option \"off\", but\n\
13631this incurs a slight performance penalty, so it is recommended to NOT change\n\
13632this option to \"off\" unless necessary."),
13633 NULL, NULL, &set_ada_list, &show_ada_list);
13634
9ac4176b
PA
13635 add_catch_command ("exception", _("\
13636Catch Ada exceptions, when raised.\n\
13637With an argument, catch only exceptions with the given name."),
13638 catch_ada_exception_command,
13639 NULL,
13640 CATCH_PERMANENT,
13641 CATCH_TEMPORARY);
13642 add_catch_command ("assert", _("\
13643Catch failed Ada assertions, when raised.\n\
13644With an argument, catch only exceptions with the given name."),
13645 catch_assert_command,
13646 NULL,
13647 CATCH_PERMANENT,
13648 CATCH_TEMPORARY);
13649
6c038f32 13650 varsize_limit = 65536;
6c038f32 13651
778865d3
JB
13652 add_info ("exceptions", info_exceptions_command,
13653 _("\
13654List all Ada exception names.\n\
13655If a regular expression is passed as an argument, only those matching\n\
13656the regular expression are listed."));
13657
c6044dd1
JB
13658 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13659 _("Set Ada maintenance-related variables."),
13660 &maint_set_ada_cmdlist, "maintenance set ada ",
13661 0/*allow-unknown*/, &maintenance_set_cmdlist);
13662
13663 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13664 _("Show Ada maintenance-related variables"),
13665 &maint_show_ada_cmdlist, "maintenance show ada ",
13666 0/*allow-unknown*/, &maintenance_show_cmdlist);
13667
13668 add_setshow_boolean_cmd
13669 ("ignore-descriptive-types", class_maintenance,
13670 &ada_ignore_descriptive_types_p,
13671 _("Set whether descriptive types generated by GNAT should be ignored."),
13672 _("Show whether descriptive types generated by GNAT should be ignored."),
13673 _("\
13674When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13675DWARF attribute."),
13676 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13677
6c038f32
PH
13678 obstack_init (&symbol_list_obstack);
13679
13680 decoded_names_store = htab_create_alloc
13681 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13682 NULL, xcalloc, xfree);
6b69afc4 13683
3d9434b5
JB
13684 /* The ada-lang observers. */
13685 observer_attach_new_objfile (ada_new_objfile_observer);
13686 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 13687 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
13688
13689 /* Setup various context-specific data. */
e802dbe0 13690 ada_inferior_data
8e260fc0 13691 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
13692 ada_pspace_data_handle
13693 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 13694}