]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
gas/
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
f7f9143b
JB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
14f9c5c9 59
4c4b4cd2
PH
60#ifndef ADA_RETAIN_DOTS
61#define ADA_RETAIN_DOTS 0
62#endif
63
64/* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
4c4b4cd2 72static void extract_string (CORE_ADDR addr, char *buf);
14f9c5c9 73
14f9c5c9
AS
74static void modify_general_field (char *, LONGEST, int, int);
75
d2e4a39e 76static struct type *desc_base_type (struct type *);
14f9c5c9 77
d2e4a39e 78static struct type *desc_bounds_type (struct type *);
14f9c5c9 79
d2e4a39e 80static struct value *desc_bounds (struct value *);
14f9c5c9 81
d2e4a39e 82static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 83
d2e4a39e 84static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 85
d2e4a39e 86static struct type *desc_data_type (struct type *);
14f9c5c9 87
d2e4a39e 88static struct value *desc_data (struct value *);
14f9c5c9 89
d2e4a39e 90static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 91
d2e4a39e 92static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 93
d2e4a39e 94static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 95
d2e4a39e 96static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 97
d2e4a39e 98static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 99
d2e4a39e 100static struct type *desc_index_type (struct type *, int);
14f9c5c9 101
d2e4a39e 102static int desc_arity (struct type *);
14f9c5c9 103
d2e4a39e 104static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 105
d2e4a39e 106static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 107
4c4b4cd2 108static struct value *ensure_lval (struct value *, CORE_ADDR *);
14f9c5c9 109
d2e4a39e 110static struct value *convert_actual (struct value *, struct type *,
4c4b4cd2 111 CORE_ADDR *);
14f9c5c9 112
d2e4a39e 113static struct value *make_array_descriptor (struct type *, struct value *,
4c4b4cd2 114 CORE_ADDR *);
14f9c5c9 115
4c4b4cd2 116static void ada_add_block_symbols (struct obstack *,
76a01679 117 struct block *, const char *,
4c4b4cd2 118 domain_enum, struct objfile *,
76a01679 119 struct symtab *, int);
14f9c5c9 120
4c4b4cd2 121static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 122
76a01679
JB
123static void add_defn_to_vec (struct obstack *, struct symbol *,
124 struct block *, struct symtab *);
14f9c5c9 125
4c4b4cd2
PH
126static int num_defns_collected (struct obstack *);
127
128static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 129
d2e4a39e 130static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
76a01679
JB
131 *, const char *, int,
132 domain_enum, int);
14f9c5c9 133
d2e4a39e 134static struct symtab *symtab_for_sym (struct symbol *);
14f9c5c9 135
4c4b4cd2 136static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 137 struct type *);
14f9c5c9 138
d2e4a39e 139static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 140 struct symbol *, struct block *);
14f9c5c9 141
d2e4a39e 142static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 143
4c4b4cd2
PH
144static char *ada_op_name (enum exp_opcode);
145
146static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 147
d2e4a39e 148static int numeric_type_p (struct type *);
14f9c5c9 149
d2e4a39e 150static int integer_type_p (struct type *);
14f9c5c9 151
d2e4a39e 152static int scalar_type_p (struct type *);
14f9c5c9 153
d2e4a39e 154static int discrete_type_p (struct type *);
14f9c5c9 155
aeb5907d
JB
156static enum ada_renaming_category parse_old_style_renaming (struct type *,
157 const char **,
158 int *,
159 const char **);
160
161static struct symbol *find_old_style_renaming_symbol (const char *,
162 struct block *);
163
4c4b4cd2 164static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 165 int, int, int *);
4c4b4cd2 166
d2e4a39e 167static struct value *evaluate_subexp (struct type *, struct expression *,
4c4b4cd2 168 int *, enum noside);
14f9c5c9 169
d2e4a39e 170static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 171
d2e4a39e 172static int is_dynamic_field (struct type *, int);
14f9c5c9 173
10a2c479 174static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 175 const gdb_byte *,
4c4b4cd2
PH
176 CORE_ADDR, struct value *);
177
178static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 179
d2e4a39e 180static struct type *to_fixed_range_type (char *, struct value *,
4c4b4cd2 181 struct objfile *);
14f9c5c9 182
d2e4a39e 183static struct type *to_static_fixed_type (struct type *);
f192137b 184static struct type *static_unwrap_type (struct type *type);
14f9c5c9 185
d2e4a39e 186static struct value *unwrap_value (struct value *);
14f9c5c9 187
d2e4a39e 188static struct type *packed_array_type (struct type *, long *);
14f9c5c9 189
d2e4a39e 190static struct type *decode_packed_array_type (struct type *);
14f9c5c9 191
d2e4a39e 192static struct value *decode_packed_array (struct value *);
14f9c5c9 193
d2e4a39e 194static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 195 struct value **);
14f9c5c9 196
52ce6436
PH
197static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
198
4c4b4cd2
PH
199static struct value *coerce_unspec_val_to_type (struct value *,
200 struct type *);
14f9c5c9 201
d2e4a39e 202static struct value *get_var_value (char *, char *);
14f9c5c9 203
d2e4a39e 204static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 205
d2e4a39e 206static int equiv_types (struct type *, struct type *);
14f9c5c9 207
d2e4a39e 208static int is_name_suffix (const char *);
14f9c5c9 209
d2e4a39e 210static int wild_match (const char *, int, const char *);
14f9c5c9 211
d2e4a39e 212static struct value *ada_coerce_ref (struct value *);
14f9c5c9 213
4c4b4cd2
PH
214static LONGEST pos_atr (struct value *);
215
d2e4a39e 216static struct value *value_pos_atr (struct value *);
14f9c5c9 217
d2e4a39e 218static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 219
4c4b4cd2
PH
220static struct symbol *standard_lookup (const char *, const struct block *,
221 domain_enum);
14f9c5c9 222
4c4b4cd2
PH
223static struct value *ada_search_struct_field (char *, struct value *, int,
224 struct type *);
225
226static struct value *ada_value_primitive_field (struct value *, int, int,
227 struct type *);
228
76a01679 229static int find_struct_field (char *, struct type *, int,
52ce6436 230 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
231
232static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
233 struct value *);
234
235static struct value *ada_to_fixed_value (struct value *);
14f9c5c9 236
4c4b4cd2
PH
237static int ada_resolve_function (struct ada_symbol_info *, int,
238 struct value **, int, const char *,
239 struct type *);
240
241static struct value *ada_coerce_to_simple_array (struct value *);
242
243static int ada_is_direct_array_type (struct type *);
244
72d5681a
PH
245static void ada_language_arch_info (struct gdbarch *,
246 struct language_arch_info *);
714e53ab
PH
247
248static void check_size (const struct type *);
52ce6436
PH
249
250static struct value *ada_index_struct_field (int, struct value *, int,
251 struct type *);
252
253static struct value *assign_aggregate (struct value *, struct value *,
254 struct expression *, int *, enum noside);
255
256static void aggregate_assign_from_choices (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *,
259 int, LONGEST, LONGEST);
260
261static void aggregate_assign_positional (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int *, int,
264 LONGEST, LONGEST);
265
266
267static void aggregate_assign_others (struct value *, struct value *,
268 struct expression *,
269 int *, LONGEST *, int, LONGEST, LONGEST);
270
271
272static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
273
274
275static struct value *ada_evaluate_subexp (struct type *, struct expression *,
276 int *, enum noside);
277
278static void ada_forward_operator_length (struct expression *, int, int *,
279 int *);
4c4b4cd2
PH
280\f
281
76a01679 282
4c4b4cd2 283/* Maximum-sized dynamic type. */
14f9c5c9
AS
284static unsigned int varsize_limit;
285
4c4b4cd2
PH
286/* FIXME: brobecker/2003-09-17: No longer a const because it is
287 returned by a function that does not return a const char *. */
288static char *ada_completer_word_break_characters =
289#ifdef VMS
290 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
291#else
14f9c5c9 292 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 293#endif
14f9c5c9 294
4c4b4cd2 295/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 296static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 297 = "__gnat_ada_main_program_name";
14f9c5c9 298
4c4b4cd2
PH
299/* Limit on the number of warnings to raise per expression evaluation. */
300static int warning_limit = 2;
301
302/* Number of warning messages issued; reset to 0 by cleanups after
303 expression evaluation. */
304static int warnings_issued = 0;
305
306static const char *known_runtime_file_name_patterns[] = {
307 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
308};
309
310static const char *known_auxiliary_function_name_patterns[] = {
311 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
312};
313
314/* Space for allocating results of ada_lookup_symbol_list. */
315static struct obstack symbol_list_obstack;
316
317 /* Utilities */
318
41d27058
JB
319/* Given DECODED_NAME a string holding a symbol name in its
320 decoded form (ie using the Ada dotted notation), returns
321 its unqualified name. */
322
323static const char *
324ada_unqualified_name (const char *decoded_name)
325{
326 const char *result = strrchr (decoded_name, '.');
327
328 if (result != NULL)
329 result++; /* Skip the dot... */
330 else
331 result = decoded_name;
332
333 return result;
334}
335
336/* Return a string starting with '<', followed by STR, and '>'.
337 The result is good until the next call. */
338
339static char *
340add_angle_brackets (const char *str)
341{
342 static char *result = NULL;
343
344 xfree (result);
345 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
346
347 sprintf (result, "<%s>", str);
348 return result;
349}
96d887e8 350
4c4b4cd2
PH
351static char *
352ada_get_gdb_completer_word_break_characters (void)
353{
354 return ada_completer_word_break_characters;
355}
356
e79af960
JB
357/* Print an array element index using the Ada syntax. */
358
359static void
360ada_print_array_index (struct value *index_value, struct ui_file *stream,
361 int format, enum val_prettyprint pretty)
362{
363 LA_VALUE_PRINT (index_value, stream, format, pretty);
364 fprintf_filtered (stream, " => ");
365}
366
4c4b4cd2
PH
367/* Read the string located at ADDR from the inferior and store the
368 result into BUF. */
369
370static void
14f9c5c9
AS
371extract_string (CORE_ADDR addr, char *buf)
372{
d2e4a39e 373 int char_index = 0;
14f9c5c9 374
4c4b4cd2
PH
375 /* Loop, reading one byte at a time, until we reach the '\000'
376 end-of-string marker. */
d2e4a39e
AS
377 do
378 {
379 target_read_memory (addr + char_index * sizeof (char),
4c4b4cd2 380 buf + char_index * sizeof (char), sizeof (char));
d2e4a39e
AS
381 char_index++;
382 }
383 while (buf[char_index - 1] != '\000');
14f9c5c9
AS
384}
385
f27cf670 386/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 387 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 388 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 389
f27cf670
AS
390void *
391grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 392{
d2e4a39e
AS
393 if (*size < min_size)
394 {
395 *size *= 2;
396 if (*size < min_size)
4c4b4cd2 397 *size = min_size;
f27cf670 398 vect = xrealloc (vect, *size * element_size);
d2e4a39e 399 }
f27cf670 400 return vect;
14f9c5c9
AS
401}
402
403/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 404 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
405
406static int
ebf56fd3 407field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
408{
409 int len = strlen (target);
d2e4a39e 410 return
4c4b4cd2
PH
411 (strncmp (field_name, target, len) == 0
412 && (field_name[len] == '\0'
413 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
414 && strcmp (field_name + strlen (field_name) - 6,
415 "___XVN") != 0)));
14f9c5c9
AS
416}
417
418
4c4b4cd2
PH
419/* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
420 FIELD_NAME, and return its index. This function also handles fields
421 whose name have ___ suffixes because the compiler sometimes alters
422 their name by adding such a suffix to represent fields with certain
423 constraints. If the field could not be found, return a negative
424 number if MAYBE_MISSING is set. Otherwise raise an error. */
425
426int
427ada_get_field_index (const struct type *type, const char *field_name,
428 int maybe_missing)
429{
430 int fieldno;
431 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
432 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
433 return fieldno;
434
435 if (!maybe_missing)
323e0a4a 436 error (_("Unable to find field %s in struct %s. Aborting"),
4c4b4cd2
PH
437 field_name, TYPE_NAME (type));
438
439 return -1;
440}
441
442/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
443
444int
d2e4a39e 445ada_name_prefix_len (const char *name)
14f9c5c9
AS
446{
447 if (name == NULL)
448 return 0;
d2e4a39e 449 else
14f9c5c9 450 {
d2e4a39e 451 const char *p = strstr (name, "___");
14f9c5c9 452 if (p == NULL)
4c4b4cd2 453 return strlen (name);
14f9c5c9 454 else
4c4b4cd2 455 return p - name;
14f9c5c9
AS
456 }
457}
458
4c4b4cd2
PH
459/* Return non-zero if SUFFIX is a suffix of STR.
460 Return zero if STR is null. */
461
14f9c5c9 462static int
d2e4a39e 463is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
464{
465 int len1, len2;
466 if (str == NULL)
467 return 0;
468 len1 = strlen (str);
469 len2 = strlen (suffix);
4c4b4cd2 470 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
471}
472
473/* Create a value of type TYPE whose contents come from VALADDR, if it
4c4b4cd2
PH
474 is non-null, and whose memory address (in the inferior) is
475 ADDRESS. */
476
d2e4a39e 477struct value *
10a2c479 478value_from_contents_and_address (struct type *type,
fc1a4b47 479 const gdb_byte *valaddr,
4c4b4cd2 480 CORE_ADDR address)
14f9c5c9 481{
d2e4a39e
AS
482 struct value *v = allocate_value (type);
483 if (valaddr == NULL)
dfa52d88 484 set_value_lazy (v, 1);
14f9c5c9 485 else
990a07ab 486 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
14f9c5c9
AS
487 VALUE_ADDRESS (v) = address;
488 if (address != 0)
489 VALUE_LVAL (v) = lval_memory;
490 return v;
491}
492
4c4b4cd2
PH
493/* The contents of value VAL, treated as a value of type TYPE. The
494 result is an lval in memory if VAL is. */
14f9c5c9 495
d2e4a39e 496static struct value *
4c4b4cd2 497coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 498{
61ee279c 499 type = ada_check_typedef (type);
df407dfe 500 if (value_type (val) == type)
4c4b4cd2 501 return val;
d2e4a39e 502 else
14f9c5c9 503 {
4c4b4cd2
PH
504 struct value *result;
505
506 /* Make sure that the object size is not unreasonable before
507 trying to allocate some memory for it. */
714e53ab 508 check_size (type);
4c4b4cd2
PH
509
510 result = allocate_value (type);
511 VALUE_LVAL (result) = VALUE_LVAL (val);
9bbda503
AC
512 set_value_bitsize (result, value_bitsize (val));
513 set_value_bitpos (result, value_bitpos (val));
df407dfe 514 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
d69fe07e 515 if (value_lazy (val)
df407dfe 516 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 517 set_value_lazy (result, 1);
d2e4a39e 518 else
0fd88904 519 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 520 TYPE_LENGTH (type));
14f9c5c9
AS
521 return result;
522 }
523}
524
fc1a4b47
AC
525static const gdb_byte *
526cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
527{
528 if (valaddr == NULL)
529 return NULL;
530 else
531 return valaddr + offset;
532}
533
534static CORE_ADDR
ebf56fd3 535cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
536{
537 if (address == 0)
538 return 0;
d2e4a39e 539 else
14f9c5c9
AS
540 return address + offset;
541}
542
4c4b4cd2
PH
543/* Issue a warning (as for the definition of warning in utils.c, but
544 with exactly one argument rather than ...), unless the limit on the
545 number of warnings has passed during the evaluation of the current
546 expression. */
a2249542 547
77109804
AC
548/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
549 provided by "complaint". */
550static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
551
14f9c5c9 552static void
a2249542 553lim_warning (const char *format, ...)
14f9c5c9 554{
a2249542
MK
555 va_list args;
556 va_start (args, format);
557
4c4b4cd2
PH
558 warnings_issued += 1;
559 if (warnings_issued <= warning_limit)
a2249542
MK
560 vwarning (format, args);
561
562 va_end (args);
4c4b4cd2
PH
563}
564
714e53ab
PH
565/* Issue an error if the size of an object of type T is unreasonable,
566 i.e. if it would be a bad idea to allocate a value of this type in
567 GDB. */
568
569static void
570check_size (const struct type *type)
571{
572 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 573 error (_("object size is larger than varsize-limit"));
714e53ab
PH
574}
575
576
c3e5cd34
PH
577/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
578 gdbtypes.h, but some of the necessary definitions in that file
579 seem to have gone missing. */
580
581/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 582static LONGEST
c3e5cd34 583max_of_size (int size)
4c4b4cd2 584{
76a01679
JB
585 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
586 return top_bit | (top_bit - 1);
4c4b4cd2
PH
587}
588
c3e5cd34 589/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 590static LONGEST
c3e5cd34 591min_of_size (int size)
4c4b4cd2 592{
c3e5cd34 593 return -max_of_size (size) - 1;
4c4b4cd2
PH
594}
595
c3e5cd34 596/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 597static ULONGEST
c3e5cd34 598umax_of_size (int size)
4c4b4cd2 599{
76a01679
JB
600 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
601 return top_bit | (top_bit - 1);
4c4b4cd2
PH
602}
603
c3e5cd34
PH
604/* Maximum value of integral type T, as a signed quantity. */
605static LONGEST
606max_of_type (struct type *t)
4c4b4cd2 607{
c3e5cd34
PH
608 if (TYPE_UNSIGNED (t))
609 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
610 else
611 return max_of_size (TYPE_LENGTH (t));
612}
613
614/* Minimum value of integral type T, as a signed quantity. */
615static LONGEST
616min_of_type (struct type *t)
617{
618 if (TYPE_UNSIGNED (t))
619 return 0;
620 else
621 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
622}
623
624/* The largest value in the domain of TYPE, a discrete type, as an integer. */
625static struct value *
626discrete_type_high_bound (struct type *type)
627{
76a01679 628 switch (TYPE_CODE (type))
4c4b4cd2
PH
629 {
630 case TYPE_CODE_RANGE:
631 return value_from_longest (TYPE_TARGET_TYPE (type),
76a01679 632 TYPE_HIGH_BOUND (type));
4c4b4cd2 633 case TYPE_CODE_ENUM:
76a01679
JB
634 return
635 value_from_longest (type,
636 TYPE_FIELD_BITPOS (type,
637 TYPE_NFIELDS (type) - 1));
638 case TYPE_CODE_INT:
c3e5cd34 639 return value_from_longest (type, max_of_type (type));
4c4b4cd2 640 default:
323e0a4a 641 error (_("Unexpected type in discrete_type_high_bound."));
4c4b4cd2
PH
642 }
643}
644
645/* The largest value in the domain of TYPE, a discrete type, as an integer. */
646static struct value *
647discrete_type_low_bound (struct type *type)
648{
76a01679 649 switch (TYPE_CODE (type))
4c4b4cd2
PH
650 {
651 case TYPE_CODE_RANGE:
652 return value_from_longest (TYPE_TARGET_TYPE (type),
76a01679 653 TYPE_LOW_BOUND (type));
4c4b4cd2 654 case TYPE_CODE_ENUM:
76a01679
JB
655 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
656 case TYPE_CODE_INT:
c3e5cd34 657 return value_from_longest (type, min_of_type (type));
4c4b4cd2 658 default:
323e0a4a 659 error (_("Unexpected type in discrete_type_low_bound."));
4c4b4cd2
PH
660 }
661}
662
663/* The identity on non-range types. For range types, the underlying
76a01679 664 non-range scalar type. */
4c4b4cd2
PH
665
666static struct type *
667base_type (struct type *type)
668{
669 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
670 {
76a01679
JB
671 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
672 return type;
4c4b4cd2
PH
673 type = TYPE_TARGET_TYPE (type);
674 }
675 return type;
14f9c5c9 676}
4c4b4cd2 677\f
76a01679 678
4c4b4cd2 679 /* Language Selection */
14f9c5c9
AS
680
681/* If the main program is in Ada, return language_ada, otherwise return LANG
682 (the main program is in Ada iif the adainit symbol is found).
683
4c4b4cd2 684 MAIN_PST is not used. */
d2e4a39e 685
14f9c5c9 686enum language
d2e4a39e 687ada_update_initial_language (enum language lang,
4c4b4cd2 688 struct partial_symtab *main_pst)
14f9c5c9 689{
d2e4a39e 690 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
691 (struct objfile *) NULL) != NULL)
692 return language_ada;
14f9c5c9
AS
693
694 return lang;
695}
96d887e8
PH
696
697/* If the main procedure is written in Ada, then return its name.
698 The result is good until the next call. Return NULL if the main
699 procedure doesn't appear to be in Ada. */
700
701char *
702ada_main_name (void)
703{
704 struct minimal_symbol *msym;
705 CORE_ADDR main_program_name_addr;
706 static char main_program_name[1024];
6c038f32 707
96d887e8
PH
708 /* For Ada, the name of the main procedure is stored in a specific
709 string constant, generated by the binder. Look for that symbol,
710 extract its address, and then read that string. If we didn't find
711 that string, then most probably the main procedure is not written
712 in Ada. */
713 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
714
715 if (msym != NULL)
716 {
717 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
718 if (main_program_name_addr == 0)
323e0a4a 719 error (_("Invalid address for Ada main program name."));
96d887e8
PH
720
721 extract_string (main_program_name_addr, main_program_name);
722 return main_program_name;
723 }
724
725 /* The main procedure doesn't seem to be in Ada. */
726 return NULL;
727}
14f9c5c9 728\f
4c4b4cd2 729 /* Symbols */
d2e4a39e 730
4c4b4cd2
PH
731/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
732 of NULLs. */
14f9c5c9 733
d2e4a39e
AS
734const struct ada_opname_map ada_opname_table[] = {
735 {"Oadd", "\"+\"", BINOP_ADD},
736 {"Osubtract", "\"-\"", BINOP_SUB},
737 {"Omultiply", "\"*\"", BINOP_MUL},
738 {"Odivide", "\"/\"", BINOP_DIV},
739 {"Omod", "\"mod\"", BINOP_MOD},
740 {"Orem", "\"rem\"", BINOP_REM},
741 {"Oexpon", "\"**\"", BINOP_EXP},
742 {"Olt", "\"<\"", BINOP_LESS},
743 {"Ole", "\"<=\"", BINOP_LEQ},
744 {"Ogt", "\">\"", BINOP_GTR},
745 {"Oge", "\">=\"", BINOP_GEQ},
746 {"Oeq", "\"=\"", BINOP_EQUAL},
747 {"One", "\"/=\"", BINOP_NOTEQUAL},
748 {"Oand", "\"and\"", BINOP_BITWISE_AND},
749 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
750 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
751 {"Oconcat", "\"&\"", BINOP_CONCAT},
752 {"Oabs", "\"abs\"", UNOP_ABS},
753 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
754 {"Oadd", "\"+\"", UNOP_PLUS},
755 {"Osubtract", "\"-\"", UNOP_NEG},
756 {NULL, NULL}
14f9c5c9
AS
757};
758
4c4b4cd2
PH
759/* Return non-zero if STR should be suppressed in info listings. */
760
14f9c5c9 761static int
d2e4a39e 762is_suppressed_name (const char *str)
14f9c5c9 763{
4c4b4cd2 764 if (strncmp (str, "_ada_", 5) == 0)
14f9c5c9
AS
765 str += 5;
766 if (str[0] == '_' || str[0] == '\000')
767 return 1;
768 else
769 {
d2e4a39e
AS
770 const char *p;
771 const char *suffix = strstr (str, "___");
14f9c5c9 772 if (suffix != NULL && suffix[3] != 'X')
4c4b4cd2 773 return 1;
14f9c5c9 774 if (suffix == NULL)
4c4b4cd2 775 suffix = str + strlen (str);
d2e4a39e 776 for (p = suffix - 1; p != str; p -= 1)
4c4b4cd2
PH
777 if (isupper (*p))
778 {
779 int i;
780 if (p[0] == 'X' && p[-1] != '_')
781 goto OK;
782 if (*p != 'O')
783 return 1;
784 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
785 if (strncmp (ada_opname_table[i].encoded, p,
786 strlen (ada_opname_table[i].encoded)) == 0)
787 goto OK;
788 return 1;
789 OK:;
790 }
14f9c5c9
AS
791 return 0;
792 }
793}
794
4c4b4cd2
PH
795/* The "encoded" form of DECODED, according to GNAT conventions.
796 The result is valid until the next call to ada_encode. */
797
14f9c5c9 798char *
4c4b4cd2 799ada_encode (const char *decoded)
14f9c5c9 800{
4c4b4cd2
PH
801 static char *encoding_buffer = NULL;
802 static size_t encoding_buffer_size = 0;
d2e4a39e 803 const char *p;
14f9c5c9 804 int k;
d2e4a39e 805
4c4b4cd2 806 if (decoded == NULL)
14f9c5c9
AS
807 return NULL;
808
4c4b4cd2
PH
809 GROW_VECT (encoding_buffer, encoding_buffer_size,
810 2 * strlen (decoded) + 10);
14f9c5c9
AS
811
812 k = 0;
4c4b4cd2 813 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 814 {
4c4b4cd2
PH
815 if (!ADA_RETAIN_DOTS && *p == '.')
816 {
817 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
818 k += 2;
819 }
14f9c5c9 820 else if (*p == '"')
4c4b4cd2
PH
821 {
822 const struct ada_opname_map *mapping;
823
824 for (mapping = ada_opname_table;
1265e4aa
JB
825 mapping->encoded != NULL
826 && strncmp (mapping->decoded, p,
827 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
828 ;
829 if (mapping->encoded == NULL)
323e0a4a 830 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
831 strcpy (encoding_buffer + k, mapping->encoded);
832 k += strlen (mapping->encoded);
833 break;
834 }
d2e4a39e 835 else
4c4b4cd2
PH
836 {
837 encoding_buffer[k] = *p;
838 k += 1;
839 }
14f9c5c9
AS
840 }
841
4c4b4cd2
PH
842 encoding_buffer[k] = '\0';
843 return encoding_buffer;
14f9c5c9
AS
844}
845
846/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
847 quotes, unfolded, but with the quotes stripped away. Result good
848 to next call. */
849
d2e4a39e
AS
850char *
851ada_fold_name (const char *name)
14f9c5c9 852{
d2e4a39e 853 static char *fold_buffer = NULL;
14f9c5c9
AS
854 static size_t fold_buffer_size = 0;
855
856 int len = strlen (name);
d2e4a39e 857 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
858
859 if (name[0] == '\'')
860 {
d2e4a39e
AS
861 strncpy (fold_buffer, name + 1, len - 2);
862 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
863 }
864 else
865 {
866 int i;
867 for (i = 0; i <= len; i += 1)
4c4b4cd2 868 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
869 }
870
871 return fold_buffer;
872}
873
529cad9c
PH
874/* Return nonzero if C is either a digit or a lowercase alphabet character. */
875
876static int
877is_lower_alphanum (const char c)
878{
879 return (isdigit (c) || (isalpha (c) && islower (c)));
880}
881
29480c32
JB
882/* Remove either of these suffixes:
883 . .{DIGIT}+
884 . ${DIGIT}+
885 . ___{DIGIT}+
886 . __{DIGIT}+.
887 These are suffixes introduced by the compiler for entities such as
888 nested subprogram for instance, in order to avoid name clashes.
889 They do not serve any purpose for the debugger. */
890
891static void
892ada_remove_trailing_digits (const char *encoded, int *len)
893{
894 if (*len > 1 && isdigit (encoded[*len - 1]))
895 {
896 int i = *len - 2;
897 while (i > 0 && isdigit (encoded[i]))
898 i--;
899 if (i >= 0 && encoded[i] == '.')
900 *len = i;
901 else if (i >= 0 && encoded[i] == '$')
902 *len = i;
903 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
904 *len = i - 2;
905 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
906 *len = i - 1;
907 }
908}
909
910/* Remove the suffix introduced by the compiler for protected object
911 subprograms. */
912
913static void
914ada_remove_po_subprogram_suffix (const char *encoded, int *len)
915{
916 /* Remove trailing N. */
917
918 /* Protected entry subprograms are broken into two
919 separate subprograms: The first one is unprotected, and has
920 a 'N' suffix; the second is the protected version, and has
921 the 'P' suffix. The second calls the first one after handling
922 the protection. Since the P subprograms are internally generated,
923 we leave these names undecoded, giving the user a clue that this
924 entity is internal. */
925
926 if (*len > 1
927 && encoded[*len - 1] == 'N'
928 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
929 *len = *len - 1;
930}
931
932/* If ENCODED follows the GNAT entity encoding conventions, then return
933 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
934 replaced by ENCODED.
14f9c5c9 935
4c4b4cd2 936 The resulting string is valid until the next call of ada_decode.
29480c32 937 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
938 is returned. */
939
940const char *
941ada_decode (const char *encoded)
14f9c5c9
AS
942{
943 int i, j;
944 int len0;
d2e4a39e 945 const char *p;
4c4b4cd2 946 char *decoded;
14f9c5c9 947 int at_start_name;
4c4b4cd2
PH
948 static char *decoding_buffer = NULL;
949 static size_t decoding_buffer_size = 0;
d2e4a39e 950
29480c32
JB
951 /* The name of the Ada main procedure starts with "_ada_".
952 This prefix is not part of the decoded name, so skip this part
953 if we see this prefix. */
4c4b4cd2
PH
954 if (strncmp (encoded, "_ada_", 5) == 0)
955 encoded += 5;
14f9c5c9 956
29480c32
JB
957 /* If the name starts with '_', then it is not a properly encoded
958 name, so do not attempt to decode it. Similarly, if the name
959 starts with '<', the name should not be decoded. */
4c4b4cd2 960 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
961 goto Suppress;
962
4c4b4cd2 963 len0 = strlen (encoded);
4c4b4cd2 964
29480c32
JB
965 ada_remove_trailing_digits (encoded, &len0);
966 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 967
4c4b4cd2
PH
968 /* Remove the ___X.* suffix if present. Do not forget to verify that
969 the suffix is located before the current "end" of ENCODED. We want
970 to avoid re-matching parts of ENCODED that have previously been
971 marked as discarded (by decrementing LEN0). */
972 p = strstr (encoded, "___");
973 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
974 {
975 if (p[3] == 'X')
4c4b4cd2 976 len0 = p - encoded;
14f9c5c9 977 else
4c4b4cd2 978 goto Suppress;
14f9c5c9 979 }
4c4b4cd2 980
29480c32
JB
981 /* Remove any trailing TKB suffix. It tells us that this symbol
982 is for the body of a task, but that information does not actually
983 appear in the decoded name. */
984
4c4b4cd2 985 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 986 len0 -= 3;
76a01679 987
29480c32
JB
988 /* Remove trailing "B" suffixes. */
989 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
990
4c4b4cd2 991 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
992 len0 -= 1;
993
4c4b4cd2 994 /* Make decoded big enough for possible expansion by operator name. */
29480c32 995
4c4b4cd2
PH
996 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
997 decoded = decoding_buffer;
14f9c5c9 998
29480c32
JB
999 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1000
4c4b4cd2 1001 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1002 {
4c4b4cd2
PH
1003 i = len0 - 2;
1004 while ((i >= 0 && isdigit (encoded[i]))
1005 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1006 i -= 1;
1007 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1008 len0 = i - 1;
1009 else if (encoded[i] == '$')
1010 len0 = i;
d2e4a39e 1011 }
14f9c5c9 1012
29480c32
JB
1013 /* The first few characters that are not alphabetic are not part
1014 of any encoding we use, so we can copy them over verbatim. */
1015
4c4b4cd2
PH
1016 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1017 decoded[j] = encoded[i];
14f9c5c9
AS
1018
1019 at_start_name = 1;
1020 while (i < len0)
1021 {
29480c32 1022 /* Is this a symbol function? */
4c4b4cd2
PH
1023 if (at_start_name && encoded[i] == 'O')
1024 {
1025 int k;
1026 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1027 {
1028 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1029 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1030 op_len - 1) == 0)
1031 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1032 {
1033 strcpy (decoded + j, ada_opname_table[k].decoded);
1034 at_start_name = 0;
1035 i += op_len;
1036 j += strlen (ada_opname_table[k].decoded);
1037 break;
1038 }
1039 }
1040 if (ada_opname_table[k].encoded != NULL)
1041 continue;
1042 }
14f9c5c9
AS
1043 at_start_name = 0;
1044
529cad9c
PH
1045 /* Replace "TK__" with "__", which will eventually be translated
1046 into "." (just below). */
1047
4c4b4cd2
PH
1048 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1049 i += 2;
529cad9c 1050
29480c32
JB
1051 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1052 be translated into "." (just below). These are internal names
1053 generated for anonymous blocks inside which our symbol is nested. */
1054
1055 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1056 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1057 && isdigit (encoded [i+4]))
1058 {
1059 int k = i + 5;
1060
1061 while (k < len0 && isdigit (encoded[k]))
1062 k++; /* Skip any extra digit. */
1063
1064 /* Double-check that the "__B_{DIGITS}+" sequence we found
1065 is indeed followed by "__". */
1066 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1067 i = k;
1068 }
1069
529cad9c
PH
1070 /* Remove _E{DIGITS}+[sb] */
1071
1072 /* Just as for protected object subprograms, there are 2 categories
1073 of subprograms created by the compiler for each entry. The first
1074 one implements the actual entry code, and has a suffix following
1075 the convention above; the second one implements the barrier and
1076 uses the same convention as above, except that the 'E' is replaced
1077 by a 'B'.
1078
1079 Just as above, we do not decode the name of barrier functions
1080 to give the user a clue that the code he is debugging has been
1081 internally generated. */
1082
1083 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1084 && isdigit (encoded[i+2]))
1085 {
1086 int k = i + 3;
1087
1088 while (k < len0 && isdigit (encoded[k]))
1089 k++;
1090
1091 if (k < len0
1092 && (encoded[k] == 'b' || encoded[k] == 's'))
1093 {
1094 k++;
1095 /* Just as an extra precaution, make sure that if this
1096 suffix is followed by anything else, it is a '_'.
1097 Otherwise, we matched this sequence by accident. */
1098 if (k == len0
1099 || (k < len0 && encoded[k] == '_'))
1100 i = k;
1101 }
1102 }
1103
1104 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1105 the GNAT front-end in protected object subprograms. */
1106
1107 if (i < len0 + 3
1108 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1109 {
1110 /* Backtrack a bit up until we reach either the begining of
1111 the encoded name, or "__". Make sure that we only find
1112 digits or lowercase characters. */
1113 const char *ptr = encoded + i - 1;
1114
1115 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1116 ptr--;
1117 if (ptr < encoded
1118 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1119 i++;
1120 }
1121
4c4b4cd2
PH
1122 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1123 {
29480c32
JB
1124 /* This is a X[bn]* sequence not separated from the previous
1125 part of the name with a non-alpha-numeric character (in other
1126 words, immediately following an alpha-numeric character), then
1127 verify that it is placed at the end of the encoded name. If
1128 not, then the encoding is not valid and we should abort the
1129 decoding. Otherwise, just skip it, it is used in body-nested
1130 package names. */
4c4b4cd2
PH
1131 do
1132 i += 1;
1133 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1134 if (i < len0)
1135 goto Suppress;
1136 }
1137 else if (!ADA_RETAIN_DOTS
1138 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1139 {
29480c32 1140 /* Replace '__' by '.'. */
4c4b4cd2
PH
1141 decoded[j] = '.';
1142 at_start_name = 1;
1143 i += 2;
1144 j += 1;
1145 }
14f9c5c9 1146 else
4c4b4cd2 1147 {
29480c32
JB
1148 /* It's a character part of the decoded name, so just copy it
1149 over. */
4c4b4cd2
PH
1150 decoded[j] = encoded[i];
1151 i += 1;
1152 j += 1;
1153 }
14f9c5c9 1154 }
4c4b4cd2 1155 decoded[j] = '\000';
14f9c5c9 1156
29480c32
JB
1157 /* Decoded names should never contain any uppercase character.
1158 Double-check this, and abort the decoding if we find one. */
1159
4c4b4cd2
PH
1160 for (i = 0; decoded[i] != '\0'; i += 1)
1161 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1162 goto Suppress;
1163
4c4b4cd2
PH
1164 if (strcmp (decoded, encoded) == 0)
1165 return encoded;
1166 else
1167 return decoded;
14f9c5c9
AS
1168
1169Suppress:
4c4b4cd2
PH
1170 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1171 decoded = decoding_buffer;
1172 if (encoded[0] == '<')
1173 strcpy (decoded, encoded);
14f9c5c9 1174 else
4c4b4cd2
PH
1175 sprintf (decoded, "<%s>", encoded);
1176 return decoded;
1177
1178}
1179
1180/* Table for keeping permanent unique copies of decoded names. Once
1181 allocated, names in this table are never released. While this is a
1182 storage leak, it should not be significant unless there are massive
1183 changes in the set of decoded names in successive versions of a
1184 symbol table loaded during a single session. */
1185static struct htab *decoded_names_store;
1186
1187/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1188 in the language-specific part of GSYMBOL, if it has not been
1189 previously computed. Tries to save the decoded name in the same
1190 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1191 in any case, the decoded symbol has a lifetime at least that of
1192 GSYMBOL).
1193 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1194 const, but nevertheless modified to a semantically equivalent form
1195 when a decoded name is cached in it.
76a01679 1196*/
4c4b4cd2 1197
76a01679
JB
1198char *
1199ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1200{
76a01679 1201 char **resultp =
4c4b4cd2
PH
1202 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1203 if (*resultp == NULL)
1204 {
1205 const char *decoded = ada_decode (gsymbol->name);
1206 if (gsymbol->bfd_section != NULL)
76a01679
JB
1207 {
1208 bfd *obfd = gsymbol->bfd_section->owner;
1209 if (obfd != NULL)
1210 {
1211 struct objfile *objf;
1212 ALL_OBJFILES (objf)
1213 {
1214 if (obfd == objf->obfd)
1215 {
1216 *resultp = obsavestring (decoded, strlen (decoded),
1217 &objf->objfile_obstack);
1218 break;
1219 }
1220 }
1221 }
1222 }
4c4b4cd2 1223 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1224 case, we put the result on the heap. Since we only decode
1225 when needed, we hope this usually does not cause a
1226 significant memory leak (FIXME). */
4c4b4cd2 1227 if (*resultp == NULL)
76a01679
JB
1228 {
1229 char **slot = (char **) htab_find_slot (decoded_names_store,
1230 decoded, INSERT);
1231 if (*slot == NULL)
1232 *slot = xstrdup (decoded);
1233 *resultp = *slot;
1234 }
4c4b4cd2 1235 }
14f9c5c9 1236
4c4b4cd2
PH
1237 return *resultp;
1238}
76a01679
JB
1239
1240char *
1241ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1242{
1243 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1244}
1245
1246/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1247 suffixes that encode debugging information or leading _ada_ on
1248 SYM_NAME (see is_name_suffix commentary for the debugging
1249 information that is ignored). If WILD, then NAME need only match a
1250 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1251 either argument is NULL. */
14f9c5c9
AS
1252
1253int
d2e4a39e 1254ada_match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1255{
1256 if (sym_name == NULL || name == NULL)
1257 return 0;
1258 else if (wild)
1259 return wild_match (name, strlen (name), sym_name);
d2e4a39e
AS
1260 else
1261 {
1262 int len_name = strlen (name);
4c4b4cd2
PH
1263 return (strncmp (sym_name, name, len_name) == 0
1264 && is_name_suffix (sym_name + len_name))
1265 || (strncmp (sym_name, "_ada_", 5) == 0
1266 && strncmp (sym_name + 5, name, len_name) == 0
1267 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1268 }
14f9c5c9
AS
1269}
1270
4c4b4cd2
PH
1271/* True (non-zero) iff, in Ada mode, the symbol SYM should be
1272 suppressed in info listings. */
14f9c5c9
AS
1273
1274int
ebf56fd3 1275ada_suppress_symbol_printing (struct symbol *sym)
14f9c5c9 1276{
176620f1 1277 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
14f9c5c9 1278 return 1;
d2e4a39e 1279 else
4c4b4cd2 1280 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
14f9c5c9 1281}
14f9c5c9 1282\f
d2e4a39e 1283
4c4b4cd2 1284 /* Arrays */
14f9c5c9 1285
4c4b4cd2 1286/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1287
d2e4a39e
AS
1288static char *bound_name[] = {
1289 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1290 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1291};
1292
1293/* Maximum number of array dimensions we are prepared to handle. */
1294
4c4b4cd2 1295#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1296
4c4b4cd2 1297/* Like modify_field, but allows bitpos > wordlength. */
14f9c5c9
AS
1298
1299static void
ebf56fd3 1300modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
14f9c5c9 1301{
4c4b4cd2 1302 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
14f9c5c9
AS
1303}
1304
1305
4c4b4cd2
PH
1306/* The desc_* routines return primitive portions of array descriptors
1307 (fat pointers). */
14f9c5c9
AS
1308
1309/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1310 level of indirection, if needed. */
1311
d2e4a39e
AS
1312static struct type *
1313desc_base_type (struct type *type)
14f9c5c9
AS
1314{
1315 if (type == NULL)
1316 return NULL;
61ee279c 1317 type = ada_check_typedef (type);
1265e4aa
JB
1318 if (type != NULL
1319 && (TYPE_CODE (type) == TYPE_CODE_PTR
1320 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1321 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1322 else
1323 return type;
1324}
1325
4c4b4cd2
PH
1326/* True iff TYPE indicates a "thin" array pointer type. */
1327
14f9c5c9 1328static int
d2e4a39e 1329is_thin_pntr (struct type *type)
14f9c5c9 1330{
d2e4a39e 1331 return
14f9c5c9
AS
1332 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1333 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1334}
1335
4c4b4cd2
PH
1336/* The descriptor type for thin pointer type TYPE. */
1337
d2e4a39e
AS
1338static struct type *
1339thin_descriptor_type (struct type *type)
14f9c5c9 1340{
d2e4a39e 1341 struct type *base_type = desc_base_type (type);
14f9c5c9
AS
1342 if (base_type == NULL)
1343 return NULL;
1344 if (is_suffix (ada_type_name (base_type), "___XVE"))
1345 return base_type;
d2e4a39e 1346 else
14f9c5c9 1347 {
d2e4a39e 1348 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
14f9c5c9 1349 if (alt_type == NULL)
4c4b4cd2 1350 return base_type;
14f9c5c9 1351 else
4c4b4cd2 1352 return alt_type;
14f9c5c9
AS
1353 }
1354}
1355
4c4b4cd2
PH
1356/* A pointer to the array data for thin-pointer value VAL. */
1357
d2e4a39e
AS
1358static struct value *
1359thin_data_pntr (struct value *val)
14f9c5c9 1360{
df407dfe 1361 struct type *type = value_type (val);
14f9c5c9 1362 if (TYPE_CODE (type) == TYPE_CODE_PTR)
d2e4a39e 1363 return value_cast (desc_data_type (thin_descriptor_type (type)),
4c4b4cd2 1364 value_copy (val));
d2e4a39e 1365 else
14f9c5c9 1366 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
df407dfe 1367 VALUE_ADDRESS (val) + value_offset (val));
14f9c5c9
AS
1368}
1369
4c4b4cd2
PH
1370/* True iff TYPE indicates a "thick" array pointer type. */
1371
14f9c5c9 1372static int
d2e4a39e 1373is_thick_pntr (struct type *type)
14f9c5c9
AS
1374{
1375 type = desc_base_type (type);
1376 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1377 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1378}
1379
4c4b4cd2
PH
1380/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1381 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1382
d2e4a39e
AS
1383static struct type *
1384desc_bounds_type (struct type *type)
14f9c5c9 1385{
d2e4a39e 1386 struct type *r;
14f9c5c9
AS
1387
1388 type = desc_base_type (type);
1389
1390 if (type == NULL)
1391 return NULL;
1392 else if (is_thin_pntr (type))
1393 {
1394 type = thin_descriptor_type (type);
1395 if (type == NULL)
4c4b4cd2 1396 return NULL;
14f9c5c9
AS
1397 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1398 if (r != NULL)
61ee279c 1399 return ada_check_typedef (r);
14f9c5c9
AS
1400 }
1401 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1402 {
1403 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1404 if (r != NULL)
61ee279c 1405 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1406 }
1407 return NULL;
1408}
1409
1410/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1411 one, a pointer to its bounds data. Otherwise NULL. */
1412
d2e4a39e
AS
1413static struct value *
1414desc_bounds (struct value *arr)
14f9c5c9 1415{
df407dfe 1416 struct type *type = ada_check_typedef (value_type (arr));
d2e4a39e 1417 if (is_thin_pntr (type))
14f9c5c9 1418 {
d2e4a39e 1419 struct type *bounds_type =
4c4b4cd2 1420 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1421 LONGEST addr;
1422
4cdfadb1 1423 if (bounds_type == NULL)
323e0a4a 1424 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1425
1426 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1427 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1428 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1429 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1430 addr = value_as_long (arr);
d2e4a39e 1431 else
df407dfe 1432 addr = VALUE_ADDRESS (arr) + value_offset (arr);
14f9c5c9 1433
d2e4a39e 1434 return
4c4b4cd2
PH
1435 value_from_longest (lookup_pointer_type (bounds_type),
1436 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1437 }
1438
1439 else if (is_thick_pntr (type))
d2e4a39e 1440 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
323e0a4a 1441 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1442 else
1443 return NULL;
1444}
1445
4c4b4cd2
PH
1446/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1447 position of the field containing the address of the bounds data. */
1448
14f9c5c9 1449static int
d2e4a39e 1450fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1451{
1452 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1453}
1454
1455/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1456 size of the field containing the address of the bounds data. */
1457
14f9c5c9 1458static int
d2e4a39e 1459fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1460{
1461 type = desc_base_type (type);
1462
d2e4a39e 1463 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1464 return TYPE_FIELD_BITSIZE (type, 1);
1465 else
61ee279c 1466 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1467}
1468
4c4b4cd2 1469/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
14f9c5c9 1470 pointer to one, the type of its array data (a
4c4b4cd2
PH
1471 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1472 ada_type_of_array to get an array type with bounds data. */
1473
d2e4a39e
AS
1474static struct type *
1475desc_data_type (struct type *type)
14f9c5c9
AS
1476{
1477 type = desc_base_type (type);
1478
4c4b4cd2 1479 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1480 if (is_thin_pntr (type))
d2e4a39e
AS
1481 return lookup_pointer_type
1482 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
14f9c5c9
AS
1483 else if (is_thick_pntr (type))
1484 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1485 else
1486 return NULL;
1487}
1488
1489/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1490 its array data. */
4c4b4cd2 1491
d2e4a39e
AS
1492static struct value *
1493desc_data (struct value *arr)
14f9c5c9 1494{
df407dfe 1495 struct type *type = value_type (arr);
14f9c5c9
AS
1496 if (is_thin_pntr (type))
1497 return thin_data_pntr (arr);
1498 else if (is_thick_pntr (type))
d2e4a39e 1499 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1500 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1501 else
1502 return NULL;
1503}
1504
1505
1506/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1507 position of the field containing the address of the data. */
1508
14f9c5c9 1509static int
d2e4a39e 1510fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1511{
1512 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1513}
1514
1515/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1516 size of the field containing the address of the data. */
1517
14f9c5c9 1518static int
d2e4a39e 1519fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1520{
1521 type = desc_base_type (type);
1522
1523 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1524 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1525 else
14f9c5c9
AS
1526 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1527}
1528
4c4b4cd2 1529/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1530 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1531 bound, if WHICH is 1. The first bound is I=1. */
1532
d2e4a39e
AS
1533static struct value *
1534desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1535{
d2e4a39e 1536 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1537 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1538}
1539
1540/* If BOUNDS is an array-bounds structure type, return the bit position
1541 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1542 bound, if WHICH is 1. The first bound is I=1. */
1543
14f9c5c9 1544static int
d2e4a39e 1545desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1546{
d2e4a39e 1547 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1548}
1549
1550/* If BOUNDS is an array-bounds structure type, return the bit field size
1551 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1552 bound, if WHICH is 1. The first bound is I=1. */
1553
76a01679 1554static int
d2e4a39e 1555desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1556{
1557 type = desc_base_type (type);
1558
d2e4a39e
AS
1559 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1560 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1561 else
1562 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1563}
1564
1565/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1566 Ith bound (numbering from 1). Otherwise, NULL. */
1567
d2e4a39e
AS
1568static struct type *
1569desc_index_type (struct type *type, int i)
14f9c5c9
AS
1570{
1571 type = desc_base_type (type);
1572
1573 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1574 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1575 else
14f9c5c9
AS
1576 return NULL;
1577}
1578
4c4b4cd2
PH
1579/* The number of index positions in the array-bounds type TYPE.
1580 Return 0 if TYPE is NULL. */
1581
14f9c5c9 1582static int
d2e4a39e 1583desc_arity (struct type *type)
14f9c5c9
AS
1584{
1585 type = desc_base_type (type);
1586
1587 if (type != NULL)
1588 return TYPE_NFIELDS (type) / 2;
1589 return 0;
1590}
1591
4c4b4cd2
PH
1592/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1593 an array descriptor type (representing an unconstrained array
1594 type). */
1595
76a01679
JB
1596static int
1597ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1598{
1599 if (type == NULL)
1600 return 0;
61ee279c 1601 type = ada_check_typedef (type);
4c4b4cd2 1602 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1603 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1604}
1605
52ce6436
PH
1606/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1607 * to one. */
1608
1609int
1610ada_is_array_type (struct type *type)
1611{
1612 while (type != NULL
1613 && (TYPE_CODE (type) == TYPE_CODE_PTR
1614 || TYPE_CODE (type) == TYPE_CODE_REF))
1615 type = TYPE_TARGET_TYPE (type);
1616 return ada_is_direct_array_type (type);
1617}
1618
4c4b4cd2 1619/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1620
14f9c5c9 1621int
4c4b4cd2 1622ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1623{
1624 if (type == NULL)
1625 return 0;
61ee279c 1626 type = ada_check_typedef (type);
14f9c5c9 1627 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1628 || (TYPE_CODE (type) == TYPE_CODE_PTR
1629 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1630}
1631
4c4b4cd2
PH
1632/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1633
14f9c5c9 1634int
4c4b4cd2 1635ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1636{
d2e4a39e 1637 struct type *data_type = desc_data_type (type);
14f9c5c9
AS
1638
1639 if (type == NULL)
1640 return 0;
61ee279c 1641 type = ada_check_typedef (type);
d2e4a39e 1642 return
14f9c5c9
AS
1643 data_type != NULL
1644 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
4c4b4cd2
PH
1645 && TYPE_TARGET_TYPE (data_type) != NULL
1646 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1265e4aa 1647 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
1648 && desc_arity (desc_bounds_type (type)) > 0;
1649}
1650
1651/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1652 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1653 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1654 is still needed. */
1655
14f9c5c9 1656int
ebf56fd3 1657ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1658{
d2e4a39e 1659 return
14f9c5c9
AS
1660 type != NULL
1661 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1662 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1663 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1664 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1665}
1666
1667
4c4b4cd2 1668/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1669 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1670 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1671 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1672 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1673 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1674 a descriptor. */
d2e4a39e
AS
1675struct type *
1676ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1677{
df407dfe
AC
1678 if (ada_is_packed_array_type (value_type (arr)))
1679 return decode_packed_array_type (value_type (arr));
14f9c5c9 1680
df407dfe
AC
1681 if (!ada_is_array_descriptor_type (value_type (arr)))
1682 return value_type (arr);
d2e4a39e
AS
1683
1684 if (!bounds)
1685 return
df407dfe 1686 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
14f9c5c9
AS
1687 else
1688 {
d2e4a39e 1689 struct type *elt_type;
14f9c5c9 1690 int arity;
d2e4a39e 1691 struct value *descriptor;
df407dfe 1692 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
14f9c5c9 1693
df407dfe
AC
1694 elt_type = ada_array_element_type (value_type (arr), -1);
1695 arity = ada_array_arity (value_type (arr));
14f9c5c9 1696
d2e4a39e 1697 if (elt_type == NULL || arity == 0)
df407dfe 1698 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1699
1700 descriptor = desc_bounds (arr);
d2e4a39e 1701 if (value_as_long (descriptor) == 0)
4c4b4cd2 1702 return NULL;
d2e4a39e 1703 while (arity > 0)
4c4b4cd2
PH
1704 {
1705 struct type *range_type = alloc_type (objf);
1706 struct type *array_type = alloc_type (objf);
1707 struct value *low = desc_one_bound (descriptor, arity, 0);
1708 struct value *high = desc_one_bound (descriptor, arity, 1);
1709 arity -= 1;
1710
df407dfe 1711 create_range_type (range_type, value_type (low),
529cad9c
PH
1712 longest_to_int (value_as_long (low)),
1713 longest_to_int (value_as_long (high)));
4c4b4cd2
PH
1714 elt_type = create_array_type (array_type, elt_type, range_type);
1715 }
14f9c5c9
AS
1716
1717 return lookup_pointer_type (elt_type);
1718 }
1719}
1720
1721/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1722 Otherwise, returns either a standard GDB array with bounds set
1723 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1724 GDB array. Returns NULL if ARR is a null fat pointer. */
1725
d2e4a39e
AS
1726struct value *
1727ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1728{
df407dfe 1729 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1730 {
d2e4a39e 1731 struct type *arrType = ada_type_of_array (arr, 1);
14f9c5c9 1732 if (arrType == NULL)
4c4b4cd2 1733 return NULL;
14f9c5c9
AS
1734 return value_cast (arrType, value_copy (desc_data (arr)));
1735 }
df407dfe 1736 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9
AS
1737 return decode_packed_array (arr);
1738 else
1739 return arr;
1740}
1741
1742/* If ARR does not represent an array, returns ARR unchanged.
1743 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1744 be ARR itself if it already is in the proper form). */
1745
1746static struct value *
d2e4a39e 1747ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1748{
df407dfe 1749 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1750 {
d2e4a39e 1751 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
14f9c5c9 1752 if (arrVal == NULL)
323e0a4a 1753 error (_("Bounds unavailable for null array pointer."));
529cad9c 1754 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1755 return value_ind (arrVal);
1756 }
df407dfe 1757 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9 1758 return decode_packed_array (arr);
d2e4a39e 1759 else
14f9c5c9
AS
1760 return arr;
1761}
1762
1763/* If TYPE represents a GNAT array type, return it translated to an
1764 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1765 packing). For other types, is the identity. */
1766
d2e4a39e
AS
1767struct type *
1768ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1769{
d2e4a39e
AS
1770 struct value *mark = value_mark ();
1771 struct value *dummy = value_from_longest (builtin_type_long, 0);
1772 struct type *result;
04624583 1773 deprecated_set_value_type (dummy, type);
14f9c5c9 1774 result = ada_type_of_array (dummy, 0);
4c4b4cd2 1775 value_free_to_mark (mark);
14f9c5c9
AS
1776 return result;
1777}
1778
4c4b4cd2
PH
1779/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1780
14f9c5c9 1781int
d2e4a39e 1782ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1783{
1784 if (type == NULL)
1785 return 0;
4c4b4cd2 1786 type = desc_base_type (type);
61ee279c 1787 type = ada_check_typedef (type);
d2e4a39e 1788 return
14f9c5c9
AS
1789 ada_type_name (type) != NULL
1790 && strstr (ada_type_name (type), "___XP") != NULL;
1791}
1792
1793/* Given that TYPE is a standard GDB array type with all bounds filled
1794 in, and that the element size of its ultimate scalar constituents
1795 (that is, either its elements, or, if it is an array of arrays, its
1796 elements' elements, etc.) is *ELT_BITS, return an identical type,
1797 but with the bit sizes of its elements (and those of any
1798 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1799 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1800 in bits. */
1801
d2e4a39e
AS
1802static struct type *
1803packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1804{
d2e4a39e
AS
1805 struct type *new_elt_type;
1806 struct type *new_type;
14f9c5c9
AS
1807 LONGEST low_bound, high_bound;
1808
61ee279c 1809 type = ada_check_typedef (type);
14f9c5c9
AS
1810 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1811 return type;
1812
1813 new_type = alloc_type (TYPE_OBJFILE (type));
61ee279c 1814 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
4c4b4cd2 1815 elt_bits);
14f9c5c9
AS
1816 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1817 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1818 TYPE_NAME (new_type) = ada_type_name (type);
1819
d2e4a39e 1820 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2 1821 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1822 low_bound = high_bound = 0;
1823 if (high_bound < low_bound)
1824 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1825 else
14f9c5c9
AS
1826 {
1827 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1828 TYPE_LENGTH (new_type) =
4c4b4cd2 1829 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
1830 }
1831
4c4b4cd2 1832 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
14f9c5c9
AS
1833 return new_type;
1834}
1835
4c4b4cd2
PH
1836/* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1837
d2e4a39e
AS
1838static struct type *
1839decode_packed_array_type (struct type *type)
1840{
4c4b4cd2 1841 struct symbol *sym;
d2e4a39e 1842 struct block **blocks;
727e3d2e
JB
1843 char *raw_name = ada_type_name (ada_check_typedef (type));
1844 char *name;
1845 char *tail;
d2e4a39e 1846 struct type *shadow_type;
14f9c5c9
AS
1847 long bits;
1848 int i, n;
1849
727e3d2e
JB
1850 if (!raw_name)
1851 raw_name = ada_type_name (desc_base_type (type));
1852
1853 if (!raw_name)
1854 return NULL;
1855
1856 name = (char *) alloca (strlen (raw_name) + 1);
1857 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
1858 type = desc_base_type (type);
1859
14f9c5c9
AS
1860 memcpy (name, raw_name, tail - raw_name);
1861 name[tail - raw_name] = '\000';
1862
4c4b4cd2
PH
1863 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1864 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
14f9c5c9 1865 {
323e0a4a 1866 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
1867 return NULL;
1868 }
4c4b4cd2 1869 shadow_type = SYMBOL_TYPE (sym);
14f9c5c9
AS
1870
1871 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1872 {
323e0a4a 1873 lim_warning (_("could not understand bounds information on packed array"));
14f9c5c9
AS
1874 return NULL;
1875 }
d2e4a39e 1876
14f9c5c9
AS
1877 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1878 {
4c4b4cd2 1879 lim_warning
323e0a4a 1880 (_("could not understand bit size information on packed array"));
14f9c5c9
AS
1881 return NULL;
1882 }
d2e4a39e 1883
14f9c5c9
AS
1884 return packed_array_type (shadow_type, &bits);
1885}
1886
4c4b4cd2 1887/* Given that ARR is a struct value *indicating a GNAT packed array,
14f9c5c9
AS
1888 returns a simple array that denotes that array. Its type is a
1889 standard GDB array type except that the BITSIZEs of the array
1890 target types are set to the number of bits in each element, and the
4c4b4cd2 1891 type length is set appropriately. */
14f9c5c9 1892
d2e4a39e
AS
1893static struct value *
1894decode_packed_array (struct value *arr)
14f9c5c9 1895{
4c4b4cd2 1896 struct type *type;
14f9c5c9 1897
4c4b4cd2 1898 arr = ada_coerce_ref (arr);
df407dfe 1899 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
4c4b4cd2
PH
1900 arr = ada_value_ind (arr);
1901
df407dfe 1902 type = decode_packed_array_type (value_type (arr));
14f9c5c9
AS
1903 if (type == NULL)
1904 {
323e0a4a 1905 error (_("can't unpack array"));
14f9c5c9
AS
1906 return NULL;
1907 }
61ee279c 1908
32c9a795
MD
1909 if (gdbarch_bits_big_endian (current_gdbarch)
1910 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
1911 {
1912 /* This is a (right-justified) modular type representing a packed
1913 array with no wrapper. In order to interpret the value through
1914 the (left-justified) packed array type we just built, we must
1915 first left-justify it. */
1916 int bit_size, bit_pos;
1917 ULONGEST mod;
1918
df407dfe 1919 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
1920 bit_size = 0;
1921 while (mod > 0)
1922 {
1923 bit_size += 1;
1924 mod >>= 1;
1925 }
df407dfe 1926 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
1927 arr = ada_value_primitive_packed_val (arr, NULL,
1928 bit_pos / HOST_CHAR_BIT,
1929 bit_pos % HOST_CHAR_BIT,
1930 bit_size,
1931 type);
1932 }
1933
4c4b4cd2 1934 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
1935}
1936
1937
1938/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 1939 given in IND. ARR must be a simple array. */
14f9c5c9 1940
d2e4a39e
AS
1941static struct value *
1942value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
1943{
1944 int i;
1945 int bits, elt_off, bit_off;
1946 long elt_total_bit_offset;
d2e4a39e
AS
1947 struct type *elt_type;
1948 struct value *v;
14f9c5c9
AS
1949
1950 bits = 0;
1951 elt_total_bit_offset = 0;
df407dfe 1952 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 1953 for (i = 0; i < arity; i += 1)
14f9c5c9 1954 {
d2e4a39e 1955 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
1956 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1957 error
323e0a4a 1958 (_("attempt to do packed indexing of something other than a packed array"));
14f9c5c9 1959 else
4c4b4cd2
PH
1960 {
1961 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1962 LONGEST lowerbound, upperbound;
1963 LONGEST idx;
1964
1965 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1966 {
323e0a4a 1967 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
1968 lowerbound = upperbound = 0;
1969 }
1970
1971 idx = value_as_long (value_pos_atr (ind[i]));
1972 if (idx < lowerbound || idx > upperbound)
323e0a4a 1973 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
4c4b4cd2
PH
1974 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1975 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 1976 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 1977 }
14f9c5c9
AS
1978 }
1979 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1980 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
1981
1982 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 1983 bits, elt_type);
14f9c5c9
AS
1984 return v;
1985}
1986
4c4b4cd2 1987/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
1988
1989static int
d2e4a39e 1990has_negatives (struct type *type)
14f9c5c9 1991{
d2e4a39e
AS
1992 switch (TYPE_CODE (type))
1993 {
1994 default:
1995 return 0;
1996 case TYPE_CODE_INT:
1997 return !TYPE_UNSIGNED (type);
1998 case TYPE_CODE_RANGE:
1999 return TYPE_LOW_BOUND (type) < 0;
2000 }
14f9c5c9 2001}
d2e4a39e 2002
14f9c5c9
AS
2003
2004/* Create a new value of type TYPE from the contents of OBJ starting
2005 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2006 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
4c4b4cd2
PH
2007 assigning through the result will set the field fetched from.
2008 VALADDR is ignored unless OBJ is NULL, in which case,
2009 VALADDR+OFFSET must address the start of storage containing the
2010 packed value. The value returned in this case is never an lval.
2011 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2012
d2e4a39e 2013struct value *
fc1a4b47 2014ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2015 long offset, int bit_offset, int bit_size,
4c4b4cd2 2016 struct type *type)
14f9c5c9 2017{
d2e4a39e 2018 struct value *v;
4c4b4cd2
PH
2019 int src, /* Index into the source area */
2020 targ, /* Index into the target area */
2021 srcBitsLeft, /* Number of source bits left to move */
2022 nsrc, ntarg, /* Number of source and target bytes */
2023 unusedLS, /* Number of bits in next significant
2024 byte of source that are unused */
2025 accumSize; /* Number of meaningful bits in accum */
2026 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2027 unsigned char *unpacked;
4c4b4cd2 2028 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2029 unsigned char sign;
2030 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2031 /* Transmit bytes from least to most significant; delta is the direction
2032 the indices move. */
32c9a795 2033 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
14f9c5c9 2034
61ee279c 2035 type = ada_check_typedef (type);
14f9c5c9
AS
2036
2037 if (obj == NULL)
2038 {
2039 v = allocate_value (type);
d2e4a39e 2040 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2041 }
9214ee5f 2042 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2043 {
2044 v = value_at (type,
df407dfe 2045 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
d2e4a39e 2046 bytes = (unsigned char *) alloca (len);
14f9c5c9
AS
2047 read_memory (VALUE_ADDRESS (v), bytes, len);
2048 }
d2e4a39e 2049 else
14f9c5c9
AS
2050 {
2051 v = allocate_value (type);
0fd88904 2052 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2053 }
d2e4a39e
AS
2054
2055 if (obj != NULL)
14f9c5c9
AS
2056 {
2057 VALUE_LVAL (v) = VALUE_LVAL (obj);
2058 if (VALUE_LVAL (obj) == lval_internalvar)
4c4b4cd2 2059 VALUE_LVAL (v) = lval_internalvar_component;
df407dfe 2060 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
9bbda503
AC
2061 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2062 set_value_bitsize (v, bit_size);
df407dfe 2063 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2
PH
2064 {
2065 VALUE_ADDRESS (v) += 1;
9bbda503 2066 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2067 }
14f9c5c9
AS
2068 }
2069 else
9bbda503 2070 set_value_bitsize (v, bit_size);
0fd88904 2071 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2072
2073 srcBitsLeft = bit_size;
2074 nsrc = len;
2075 ntarg = TYPE_LENGTH (type);
2076 sign = 0;
2077 if (bit_size == 0)
2078 {
2079 memset (unpacked, 0, TYPE_LENGTH (type));
2080 return v;
2081 }
32c9a795 2082 else if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9 2083 {
d2e4a39e 2084 src = len - 1;
1265e4aa
JB
2085 if (has_negatives (type)
2086 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2087 sign = ~0;
d2e4a39e
AS
2088
2089 unusedLS =
4c4b4cd2
PH
2090 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2091 % HOST_CHAR_BIT;
14f9c5c9
AS
2092
2093 switch (TYPE_CODE (type))
4c4b4cd2
PH
2094 {
2095 case TYPE_CODE_ARRAY:
2096 case TYPE_CODE_UNION:
2097 case TYPE_CODE_STRUCT:
2098 /* Non-scalar values must be aligned at a byte boundary... */
2099 accumSize =
2100 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2101 /* ... And are placed at the beginning (most-significant) bytes
2102 of the target. */
529cad9c 2103 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
4c4b4cd2
PH
2104 break;
2105 default:
2106 accumSize = 0;
2107 targ = TYPE_LENGTH (type) - 1;
2108 break;
2109 }
14f9c5c9 2110 }
d2e4a39e 2111 else
14f9c5c9
AS
2112 {
2113 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2114
2115 src = targ = 0;
2116 unusedLS = bit_offset;
2117 accumSize = 0;
2118
d2e4a39e 2119 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2120 sign = ~0;
14f9c5c9 2121 }
d2e4a39e 2122
14f9c5c9
AS
2123 accum = 0;
2124 while (nsrc > 0)
2125 {
2126 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2127 part of the value. */
d2e4a39e 2128 unsigned int unusedMSMask =
4c4b4cd2
PH
2129 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2130 1;
2131 /* Sign-extend bits for this byte. */
14f9c5c9 2132 unsigned int signMask = sign & ~unusedMSMask;
d2e4a39e 2133 accum |=
4c4b4cd2 2134 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2135 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2136 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2137 {
2138 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2139 accumSize -= HOST_CHAR_BIT;
2140 accum >>= HOST_CHAR_BIT;
2141 ntarg -= 1;
2142 targ += delta;
2143 }
14f9c5c9
AS
2144 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2145 unusedLS = 0;
2146 nsrc -= 1;
2147 src += delta;
2148 }
2149 while (ntarg > 0)
2150 {
2151 accum |= sign << accumSize;
2152 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2153 accumSize -= HOST_CHAR_BIT;
2154 accum >>= HOST_CHAR_BIT;
2155 ntarg -= 1;
2156 targ += delta;
2157 }
2158
2159 return v;
2160}
d2e4a39e 2161
14f9c5c9
AS
2162/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2163 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2164 not overlap. */
14f9c5c9 2165static void
fc1a4b47 2166move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
0fd88904 2167 int src_offset, int n)
14f9c5c9
AS
2168{
2169 unsigned int accum, mask;
2170 int accum_bits, chunk_size;
2171
2172 target += targ_offset / HOST_CHAR_BIT;
2173 targ_offset %= HOST_CHAR_BIT;
2174 source += src_offset / HOST_CHAR_BIT;
2175 src_offset %= HOST_CHAR_BIT;
32c9a795 2176 if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9
AS
2177 {
2178 accum = (unsigned char) *source;
2179 source += 1;
2180 accum_bits = HOST_CHAR_BIT - src_offset;
2181
d2e4a39e 2182 while (n > 0)
4c4b4cd2
PH
2183 {
2184 int unused_right;
2185 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2186 accum_bits += HOST_CHAR_BIT;
2187 source += 1;
2188 chunk_size = HOST_CHAR_BIT - targ_offset;
2189 if (chunk_size > n)
2190 chunk_size = n;
2191 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2192 mask = ((1 << chunk_size) - 1) << unused_right;
2193 *target =
2194 (*target & ~mask)
2195 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2196 n -= chunk_size;
2197 accum_bits -= chunk_size;
2198 target += 1;
2199 targ_offset = 0;
2200 }
14f9c5c9
AS
2201 }
2202 else
2203 {
2204 accum = (unsigned char) *source >> src_offset;
2205 source += 1;
2206 accum_bits = HOST_CHAR_BIT - src_offset;
2207
d2e4a39e 2208 while (n > 0)
4c4b4cd2
PH
2209 {
2210 accum = accum + ((unsigned char) *source << accum_bits);
2211 accum_bits += HOST_CHAR_BIT;
2212 source += 1;
2213 chunk_size = HOST_CHAR_BIT - targ_offset;
2214 if (chunk_size > n)
2215 chunk_size = n;
2216 mask = ((1 << chunk_size) - 1) << targ_offset;
2217 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2218 n -= chunk_size;
2219 accum_bits -= chunk_size;
2220 accum >>= chunk_size;
2221 target += 1;
2222 targ_offset = 0;
2223 }
14f9c5c9
AS
2224 }
2225}
2226
14f9c5c9
AS
2227/* Store the contents of FROMVAL into the location of TOVAL.
2228 Return a new value with the location of TOVAL and contents of
2229 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2230 floating-point or non-scalar types. */
14f9c5c9 2231
d2e4a39e
AS
2232static struct value *
2233ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2234{
df407dfe
AC
2235 struct type *type = value_type (toval);
2236 int bits = value_bitsize (toval);
14f9c5c9 2237
52ce6436
PH
2238 toval = ada_coerce_ref (toval);
2239 fromval = ada_coerce_ref (fromval);
2240
2241 if (ada_is_direct_array_type (value_type (toval)))
2242 toval = ada_coerce_to_simple_array (toval);
2243 if (ada_is_direct_array_type (value_type (fromval)))
2244 fromval = ada_coerce_to_simple_array (fromval);
2245
88e3b34b 2246 if (!deprecated_value_modifiable (toval))
323e0a4a 2247 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2248
d2e4a39e 2249 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2250 && bits > 0
d2e4a39e 2251 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2252 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2253 {
df407dfe
AC
2254 int len = (value_bitpos (toval)
2255 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
d2e4a39e
AS
2256 char *buffer = (char *) alloca (len);
2257 struct value *val;
52ce6436 2258 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
14f9c5c9
AS
2259
2260 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2261 fromval = value_cast (type, fromval);
14f9c5c9 2262
52ce6436 2263 read_memory (to_addr, buffer, len);
32c9a795 2264 if (gdbarch_bits_big_endian (current_gdbarch))
df407dfe 2265 move_bits (buffer, value_bitpos (toval),
0fd88904 2266 value_contents (fromval),
df407dfe 2267 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
4c4b4cd2 2268 bits, bits);
14f9c5c9 2269 else
0fd88904 2270 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
4c4b4cd2 2271 0, bits);
52ce6436
PH
2272 write_memory (to_addr, buffer, len);
2273 if (deprecated_memory_changed_hook)
2274 deprecated_memory_changed_hook (to_addr, len);
2275
14f9c5c9 2276 val = value_copy (toval);
0fd88904 2277 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2278 TYPE_LENGTH (type));
04624583 2279 deprecated_set_value_type (val, type);
d2e4a39e 2280
14f9c5c9
AS
2281 return val;
2282 }
2283
2284 return value_assign (toval, fromval);
2285}
2286
2287
52ce6436
PH
2288/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2289 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2290 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2291 * COMPONENT, and not the inferior's memory. The current contents
2292 * of COMPONENT are ignored. */
2293static void
2294value_assign_to_component (struct value *container, struct value *component,
2295 struct value *val)
2296{
2297 LONGEST offset_in_container =
2298 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2299 - VALUE_ADDRESS (container) - value_offset (container));
2300 int bit_offset_in_container =
2301 value_bitpos (component) - value_bitpos (container);
2302 int bits;
2303
2304 val = value_cast (value_type (component), val);
2305
2306 if (value_bitsize (component) == 0)
2307 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2308 else
2309 bits = value_bitsize (component);
2310
32c9a795 2311 if (gdbarch_bits_big_endian (current_gdbarch))
52ce6436
PH
2312 move_bits (value_contents_writeable (container) + offset_in_container,
2313 value_bitpos (container) + bit_offset_in_container,
2314 value_contents (val),
2315 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2316 bits);
2317 else
2318 move_bits (value_contents_writeable (container) + offset_in_container,
2319 value_bitpos (container) + bit_offset_in_container,
2320 value_contents (val), 0, bits);
2321}
2322
4c4b4cd2
PH
2323/* The value of the element of array ARR at the ARITY indices given in IND.
2324 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2325 thereto. */
2326
d2e4a39e
AS
2327struct value *
2328ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2329{
2330 int k;
d2e4a39e
AS
2331 struct value *elt;
2332 struct type *elt_type;
14f9c5c9
AS
2333
2334 elt = ada_coerce_to_simple_array (arr);
2335
df407dfe 2336 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2337 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2338 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2339 return value_subscript_packed (elt, arity, ind);
2340
2341 for (k = 0; k < arity; k += 1)
2342 {
2343 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2344 error (_("too many subscripts (%d expected)"), k);
14f9c5c9
AS
2345 elt = value_subscript (elt, value_pos_atr (ind[k]));
2346 }
2347 return elt;
2348}
2349
2350/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2351 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2352 IND. Does not read the entire array into memory. */
14f9c5c9 2353
d2e4a39e
AS
2354struct value *
2355ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2356 struct value **ind)
14f9c5c9
AS
2357{
2358 int k;
2359
2360 for (k = 0; k < arity; k += 1)
2361 {
2362 LONGEST lwb, upb;
d2e4a39e 2363 struct value *idx;
14f9c5c9
AS
2364
2365 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2366 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2367 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2368 value_copy (arr));
14f9c5c9 2369 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
4c4b4cd2
PH
2370 idx = value_pos_atr (ind[k]);
2371 if (lwb != 0)
2372 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
14f9c5c9
AS
2373 arr = value_add (arr, idx);
2374 type = TYPE_TARGET_TYPE (type);
2375 }
2376
2377 return value_ind (arr);
2378}
2379
0b5d8877
PH
2380/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2381 actual type of ARRAY_PTR is ignored), returns a reference to
2382 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2383 bound of this array is LOW, as per Ada rules. */
2384static struct value *
6c038f32 2385ada_value_slice_ptr (struct value *array_ptr, struct type *type,
0b5d8877
PH
2386 int low, int high)
2387{
6c038f32 2388 CORE_ADDR base = value_as_address (array_ptr)
0b5d8877
PH
2389 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2390 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2391 struct type *index_type =
2392 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2393 low, high);
6c038f32 2394 struct type *slice_type =
0b5d8877
PH
2395 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2396 return value_from_pointer (lookup_reference_type (slice_type), base);
2397}
2398
2399
2400static struct value *
2401ada_value_slice (struct value *array, int low, int high)
2402{
df407dfe 2403 struct type *type = value_type (array);
6c038f32 2404 struct type *index_type =
0b5d8877 2405 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2406 struct type *slice_type =
0b5d8877 2407 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
6c038f32 2408 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2409}
2410
14f9c5c9
AS
2411/* If type is a record type in the form of a standard GNAT array
2412 descriptor, returns the number of dimensions for type. If arr is a
2413 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2414 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2415
2416int
d2e4a39e 2417ada_array_arity (struct type *type)
14f9c5c9
AS
2418{
2419 int arity;
2420
2421 if (type == NULL)
2422 return 0;
2423
2424 type = desc_base_type (type);
2425
2426 arity = 0;
d2e4a39e 2427 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2428 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2429 else
2430 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2431 {
4c4b4cd2 2432 arity += 1;
61ee279c 2433 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2434 }
d2e4a39e 2435
14f9c5c9
AS
2436 return arity;
2437}
2438
2439/* If TYPE is a record type in the form of a standard GNAT array
2440 descriptor or a simple array type, returns the element type for
2441 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2442 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2443
d2e4a39e
AS
2444struct type *
2445ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2446{
2447 type = desc_base_type (type);
2448
d2e4a39e 2449 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2450 {
2451 int k;
d2e4a39e 2452 struct type *p_array_type;
14f9c5c9
AS
2453
2454 p_array_type = desc_data_type (type);
2455
2456 k = ada_array_arity (type);
2457 if (k == 0)
4c4b4cd2 2458 return NULL;
d2e4a39e 2459
4c4b4cd2 2460 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2461 if (nindices >= 0 && k > nindices)
4c4b4cd2 2462 k = nindices;
14f9c5c9 2463 p_array_type = TYPE_TARGET_TYPE (p_array_type);
d2e4a39e 2464 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2465 {
61ee279c 2466 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2467 k -= 1;
2468 }
14f9c5c9
AS
2469 return p_array_type;
2470 }
2471 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2472 {
2473 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2474 {
2475 type = TYPE_TARGET_TYPE (type);
2476 nindices -= 1;
2477 }
14f9c5c9
AS
2478 return type;
2479 }
2480
2481 return NULL;
2482}
2483
4c4b4cd2
PH
2484/* The type of nth index in arrays of given type (n numbering from 1).
2485 Does not examine memory. */
14f9c5c9 2486
d2e4a39e
AS
2487struct type *
2488ada_index_type (struct type *type, int n)
14f9c5c9 2489{
4c4b4cd2
PH
2490 struct type *result_type;
2491
14f9c5c9
AS
2492 type = desc_base_type (type);
2493
2494 if (n > ada_array_arity (type))
2495 return NULL;
2496
4c4b4cd2 2497 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2498 {
2499 int i;
2500
2501 for (i = 1; i < n; i += 1)
4c4b4cd2
PH
2502 type = TYPE_TARGET_TYPE (type);
2503 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2504 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2505 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679
JB
2506 perhaps stabsread.c would make more sense. */
2507 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2508 result_type = builtin_type_int;
14f9c5c9 2509
4c4b4cd2 2510 return result_type;
14f9c5c9 2511 }
d2e4a39e 2512 else
14f9c5c9
AS
2513 return desc_index_type (desc_bounds_type (type), n);
2514}
2515
2516/* Given that arr is an array type, returns the lower bound of the
2517 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2
PH
2518 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2519 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2520 bounds type. It works for other arrays with bounds supplied by
2521 run-time quantities other than discriminants. */
14f9c5c9 2522
abb68b3e 2523static LONGEST
d2e4a39e 2524ada_array_bound_from_type (struct type * arr_type, int n, int which,
4c4b4cd2 2525 struct type ** typep)
14f9c5c9 2526{
d2e4a39e
AS
2527 struct type *type;
2528 struct type *index_type_desc;
14f9c5c9
AS
2529
2530 if (ada_is_packed_array_type (arr_type))
2531 arr_type = decode_packed_array_type (arr_type);
2532
4c4b4cd2 2533 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
14f9c5c9
AS
2534 {
2535 if (typep != NULL)
4c4b4cd2 2536 *typep = builtin_type_int;
d2e4a39e 2537 return (LONGEST) - which;
14f9c5c9
AS
2538 }
2539
2540 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2541 type = TYPE_TARGET_TYPE (arr_type);
2542 else
2543 type = arr_type;
2544
2545 index_type_desc = ada_find_parallel_type (type, "___XA");
d2e4a39e 2546 if (index_type_desc == NULL)
14f9c5c9 2547 {
d2e4a39e 2548 struct type *index_type;
14f9c5c9 2549
d2e4a39e 2550 while (n > 1)
4c4b4cd2
PH
2551 {
2552 type = TYPE_TARGET_TYPE (type);
2553 n -= 1;
2554 }
14f9c5c9 2555
abb68b3e 2556 index_type = TYPE_INDEX_TYPE (type);
14f9c5c9 2557 if (typep != NULL)
4c4b4cd2 2558 *typep = index_type;
abb68b3e
JB
2559
2560 /* The index type is either a range type or an enumerated type.
2561 For the range type, we have some macros that allow us to
2562 extract the value of the low and high bounds. But they
2563 do now work for enumerated types. The expressions used
2564 below work for both range and enum types. */
d2e4a39e 2565 return
4c4b4cd2 2566 (LONGEST) (which == 0
abb68b3e
JB
2567 ? TYPE_FIELD_BITPOS (index_type, 0)
2568 : TYPE_FIELD_BITPOS (index_type,
2569 TYPE_NFIELDS (index_type) - 1));
14f9c5c9 2570 }
d2e4a39e 2571 else
14f9c5c9 2572 {
d2e4a39e 2573 struct type *index_type =
4c4b4cd2
PH
2574 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2575 NULL, TYPE_OBJFILE (arr_type));
abb68b3e 2576
14f9c5c9 2577 if (typep != NULL)
abb68b3e
JB
2578 *typep = index_type;
2579
d2e4a39e 2580 return
4c4b4cd2
PH
2581 (LONGEST) (which == 0
2582 ? TYPE_LOW_BOUND (index_type)
2583 : TYPE_HIGH_BOUND (index_type));
14f9c5c9
AS
2584 }
2585}
2586
2587/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2588 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2589 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2590 supplied by run-time quantities other than discriminants. */
14f9c5c9 2591
d2e4a39e 2592struct value *
4dc81987 2593ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2594{
df407dfe 2595 struct type *arr_type = value_type (arr);
14f9c5c9
AS
2596
2597 if (ada_is_packed_array_type (arr_type))
2598 return ada_array_bound (decode_packed_array (arr), n, which);
4c4b4cd2 2599 else if (ada_is_simple_array_type (arr_type))
14f9c5c9 2600 {
d2e4a39e 2601 struct type *type;
14f9c5c9
AS
2602 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2603 return value_from_longest (type, v);
2604 }
2605 else
2606 return desc_one_bound (desc_bounds (arr), n, which);
2607}
2608
2609/* Given that arr is an array value, returns the length of the
2610 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2611 supplied by run-time quantities other than discriminants.
2612 Does not work for arrays indexed by enumeration types with representation
2613 clauses at the moment. */
14f9c5c9 2614
d2e4a39e
AS
2615struct value *
2616ada_array_length (struct value *arr, int n)
14f9c5c9 2617{
df407dfe 2618 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9
AS
2619
2620 if (ada_is_packed_array_type (arr_type))
2621 return ada_array_length (decode_packed_array (arr), n);
2622
4c4b4cd2 2623 if (ada_is_simple_array_type (arr_type))
14f9c5c9 2624 {
d2e4a39e 2625 struct type *type;
14f9c5c9 2626 LONGEST v =
4c4b4cd2
PH
2627 ada_array_bound_from_type (arr_type, n, 1, &type) -
2628 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
14f9c5c9
AS
2629 return value_from_longest (type, v);
2630 }
2631 else
d2e4a39e 2632 return
72d5681a 2633 value_from_longest (builtin_type_int,
4c4b4cd2
PH
2634 value_as_long (desc_one_bound (desc_bounds (arr),
2635 n, 1))
2636 - value_as_long (desc_one_bound (desc_bounds (arr),
2637 n, 0)) + 1);
2638}
2639
2640/* An empty array whose type is that of ARR_TYPE (an array type),
2641 with bounds LOW to LOW-1. */
2642
2643static struct value *
2644empty_array (struct type *arr_type, int low)
2645{
6c038f32 2646 struct type *index_type =
0b5d8877
PH
2647 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2648 low, low - 1);
2649 struct type *elt_type = ada_array_element_type (arr_type, 1);
2650 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2651}
14f9c5c9 2652\f
d2e4a39e 2653
4c4b4cd2 2654 /* Name resolution */
14f9c5c9 2655
4c4b4cd2
PH
2656/* The "decoded" name for the user-definable Ada operator corresponding
2657 to OP. */
14f9c5c9 2658
d2e4a39e 2659static const char *
4c4b4cd2 2660ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2661{
2662 int i;
2663
4c4b4cd2 2664 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2665 {
2666 if (ada_opname_table[i].op == op)
4c4b4cd2 2667 return ada_opname_table[i].decoded;
14f9c5c9 2668 }
323e0a4a 2669 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2670}
2671
2672
4c4b4cd2
PH
2673/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2674 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2675 undefined namespace) and converts operators that are
2676 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2677 non-null, it provides a preferred result type [at the moment, only
2678 type void has any effect---causing procedures to be preferred over
2679 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2680 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2681
4c4b4cd2
PH
2682static void
2683resolve (struct expression **expp, int void_context_p)
14f9c5c9
AS
2684{
2685 int pc;
2686 pc = 0;
4c4b4cd2 2687 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
14f9c5c9
AS
2688}
2689
4c4b4cd2
PH
2690/* Resolve the operator of the subexpression beginning at
2691 position *POS of *EXPP. "Resolving" consists of replacing
2692 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2693 with their resolutions, replacing built-in operators with
2694 function calls to user-defined operators, where appropriate, and,
2695 when DEPROCEDURE_P is non-zero, converting function-valued variables
2696 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2697 are as in ada_resolve, above. */
14f9c5c9 2698
d2e4a39e 2699static struct value *
4c4b4cd2 2700resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2701 struct type *context_type)
14f9c5c9
AS
2702{
2703 int pc = *pos;
2704 int i;
4c4b4cd2 2705 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2706 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2707 struct value **argvec; /* Vector of operand types (alloca'ed). */
2708 int nargs; /* Number of operands. */
52ce6436 2709 int oplen;
14f9c5c9
AS
2710
2711 argvec = NULL;
2712 nargs = 0;
2713 exp = *expp;
2714
52ce6436
PH
2715 /* Pass one: resolve operands, saving their types and updating *pos,
2716 if needed. */
14f9c5c9
AS
2717 switch (op)
2718 {
4c4b4cd2
PH
2719 case OP_FUNCALL:
2720 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2721 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2722 *pos += 7;
4c4b4cd2
PH
2723 else
2724 {
2725 *pos += 3;
2726 resolve_subexp (expp, pos, 0, NULL);
2727 }
2728 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2729 break;
2730
14f9c5c9 2731 case UNOP_ADDR:
4c4b4cd2
PH
2732 *pos += 1;
2733 resolve_subexp (expp, pos, 0, NULL);
2734 break;
2735
52ce6436
PH
2736 case UNOP_QUAL:
2737 *pos += 3;
2738 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
4c4b4cd2
PH
2739 break;
2740
52ce6436 2741 case OP_ATR_MODULUS:
4c4b4cd2
PH
2742 case OP_ATR_SIZE:
2743 case OP_ATR_TAG:
4c4b4cd2
PH
2744 case OP_ATR_FIRST:
2745 case OP_ATR_LAST:
2746 case OP_ATR_LENGTH:
2747 case OP_ATR_POS:
2748 case OP_ATR_VAL:
4c4b4cd2
PH
2749 case OP_ATR_MIN:
2750 case OP_ATR_MAX:
52ce6436
PH
2751 case TERNOP_IN_RANGE:
2752 case BINOP_IN_BOUNDS:
2753 case UNOP_IN_RANGE:
2754 case OP_AGGREGATE:
2755 case OP_OTHERS:
2756 case OP_CHOICES:
2757 case OP_POSITIONAL:
2758 case OP_DISCRETE_RANGE:
2759 case OP_NAME:
2760 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2761 *pos += oplen;
14f9c5c9
AS
2762 break;
2763
2764 case BINOP_ASSIGN:
2765 {
4c4b4cd2
PH
2766 struct value *arg1;
2767
2768 *pos += 1;
2769 arg1 = resolve_subexp (expp, pos, 0, NULL);
2770 if (arg1 == NULL)
2771 resolve_subexp (expp, pos, 1, NULL);
2772 else
df407dfe 2773 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2774 break;
14f9c5c9
AS
2775 }
2776
4c4b4cd2 2777 case UNOP_CAST:
4c4b4cd2
PH
2778 *pos += 3;
2779 nargs = 1;
2780 break;
14f9c5c9 2781
4c4b4cd2
PH
2782 case BINOP_ADD:
2783 case BINOP_SUB:
2784 case BINOP_MUL:
2785 case BINOP_DIV:
2786 case BINOP_REM:
2787 case BINOP_MOD:
2788 case BINOP_EXP:
2789 case BINOP_CONCAT:
2790 case BINOP_LOGICAL_AND:
2791 case BINOP_LOGICAL_OR:
2792 case BINOP_BITWISE_AND:
2793 case BINOP_BITWISE_IOR:
2794 case BINOP_BITWISE_XOR:
14f9c5c9 2795
4c4b4cd2
PH
2796 case BINOP_EQUAL:
2797 case BINOP_NOTEQUAL:
2798 case BINOP_LESS:
2799 case BINOP_GTR:
2800 case BINOP_LEQ:
2801 case BINOP_GEQ:
14f9c5c9 2802
4c4b4cd2
PH
2803 case BINOP_REPEAT:
2804 case BINOP_SUBSCRIPT:
2805 case BINOP_COMMA:
40c8aaa9
JB
2806 *pos += 1;
2807 nargs = 2;
2808 break;
14f9c5c9 2809
4c4b4cd2
PH
2810 case UNOP_NEG:
2811 case UNOP_PLUS:
2812 case UNOP_LOGICAL_NOT:
2813 case UNOP_ABS:
2814 case UNOP_IND:
2815 *pos += 1;
2816 nargs = 1;
2817 break;
14f9c5c9 2818
4c4b4cd2
PH
2819 case OP_LONG:
2820 case OP_DOUBLE:
2821 case OP_VAR_VALUE:
2822 *pos += 4;
2823 break;
14f9c5c9 2824
4c4b4cd2
PH
2825 case OP_TYPE:
2826 case OP_BOOL:
2827 case OP_LAST:
4c4b4cd2
PH
2828 case OP_INTERNALVAR:
2829 *pos += 3;
2830 break;
14f9c5c9 2831
4c4b4cd2
PH
2832 case UNOP_MEMVAL:
2833 *pos += 3;
2834 nargs = 1;
2835 break;
2836
67f3407f
DJ
2837 case OP_REGISTER:
2838 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2839 break;
2840
4c4b4cd2
PH
2841 case STRUCTOP_STRUCT:
2842 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2843 nargs = 1;
2844 break;
2845
4c4b4cd2 2846 case TERNOP_SLICE:
4c4b4cd2
PH
2847 *pos += 1;
2848 nargs = 3;
2849 break;
2850
52ce6436 2851 case OP_STRING:
14f9c5c9 2852 break;
4c4b4cd2
PH
2853
2854 default:
323e0a4a 2855 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
2856 }
2857
76a01679 2858 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
2859 for (i = 0; i < nargs; i += 1)
2860 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2861 argvec[i] = NULL;
2862 exp = *expp;
2863
2864 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
2865 switch (op)
2866 {
2867 default:
2868 break;
2869
14f9c5c9 2870 case OP_VAR_VALUE:
4c4b4cd2 2871 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
2872 {
2873 struct ada_symbol_info *candidates;
2874 int n_candidates;
2875
2876 n_candidates =
2877 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2878 (exp->elts[pc + 2].symbol),
2879 exp->elts[pc + 1].block, VAR_DOMAIN,
2880 &candidates);
2881
2882 if (n_candidates > 1)
2883 {
2884 /* Types tend to get re-introduced locally, so if there
2885 are any local symbols that are not types, first filter
2886 out all types. */
2887 int j;
2888 for (j = 0; j < n_candidates; j += 1)
2889 switch (SYMBOL_CLASS (candidates[j].sym))
2890 {
2891 case LOC_REGISTER:
2892 case LOC_ARG:
2893 case LOC_REF_ARG:
2894 case LOC_REGPARM:
2895 case LOC_REGPARM_ADDR:
2896 case LOC_LOCAL:
2897 case LOC_LOCAL_ARG:
2898 case LOC_BASEREG:
2899 case LOC_BASEREG_ARG:
2900 case LOC_COMPUTED:
2901 case LOC_COMPUTED_ARG:
2902 goto FoundNonType;
2903 default:
2904 break;
2905 }
2906 FoundNonType:
2907 if (j < n_candidates)
2908 {
2909 j = 0;
2910 while (j < n_candidates)
2911 {
2912 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2913 {
2914 candidates[j] = candidates[n_candidates - 1];
2915 n_candidates -= 1;
2916 }
2917 else
2918 j += 1;
2919 }
2920 }
2921 }
2922
2923 if (n_candidates == 0)
323e0a4a 2924 error (_("No definition found for %s"),
76a01679
JB
2925 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2926 else if (n_candidates == 1)
2927 i = 0;
2928 else if (deprocedure_p
2929 && !is_nonfunction (candidates, n_candidates))
2930 {
06d5cf63
JB
2931 i = ada_resolve_function
2932 (candidates, n_candidates, NULL, 0,
2933 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2934 context_type);
76a01679 2935 if (i < 0)
323e0a4a 2936 error (_("Could not find a match for %s"),
76a01679
JB
2937 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2938 }
2939 else
2940 {
323e0a4a 2941 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
2942 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2943 user_select_syms (candidates, n_candidates, 1);
2944 i = 0;
2945 }
2946
2947 exp->elts[pc + 1].block = candidates[i].block;
2948 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
2949 if (innermost_block == NULL
2950 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
2951 innermost_block = candidates[i].block;
2952 }
2953
2954 if (deprocedure_p
2955 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2956 == TYPE_CODE_FUNC))
2957 {
2958 replace_operator_with_call (expp, pc, 0, 0,
2959 exp->elts[pc + 2].symbol,
2960 exp->elts[pc + 1].block);
2961 exp = *expp;
2962 }
14f9c5c9
AS
2963 break;
2964
2965 case OP_FUNCALL:
2966 {
4c4b4cd2 2967 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 2968 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
2969 {
2970 struct ada_symbol_info *candidates;
2971 int n_candidates;
2972
2973 n_candidates =
76a01679
JB
2974 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2975 (exp->elts[pc + 5].symbol),
2976 exp->elts[pc + 4].block, VAR_DOMAIN,
2977 &candidates);
4c4b4cd2
PH
2978 if (n_candidates == 1)
2979 i = 0;
2980 else
2981 {
06d5cf63
JB
2982 i = ada_resolve_function
2983 (candidates, n_candidates,
2984 argvec, nargs,
2985 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2986 context_type);
4c4b4cd2 2987 if (i < 0)
323e0a4a 2988 error (_("Could not find a match for %s"),
4c4b4cd2
PH
2989 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2990 }
2991
2992 exp->elts[pc + 4].block = candidates[i].block;
2993 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
2994 if (innermost_block == NULL
2995 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
2996 innermost_block = candidates[i].block;
2997 }
14f9c5c9
AS
2998 }
2999 break;
3000 case BINOP_ADD:
3001 case BINOP_SUB:
3002 case BINOP_MUL:
3003 case BINOP_DIV:
3004 case BINOP_REM:
3005 case BINOP_MOD:
3006 case BINOP_CONCAT:
3007 case BINOP_BITWISE_AND:
3008 case BINOP_BITWISE_IOR:
3009 case BINOP_BITWISE_XOR:
3010 case BINOP_EQUAL:
3011 case BINOP_NOTEQUAL:
3012 case BINOP_LESS:
3013 case BINOP_GTR:
3014 case BINOP_LEQ:
3015 case BINOP_GEQ:
3016 case BINOP_EXP:
3017 case UNOP_NEG:
3018 case UNOP_PLUS:
3019 case UNOP_LOGICAL_NOT:
3020 case UNOP_ABS:
3021 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3022 {
3023 struct ada_symbol_info *candidates;
3024 int n_candidates;
3025
3026 n_candidates =
3027 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3028 (struct block *) NULL, VAR_DOMAIN,
3029 &candidates);
3030 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3031 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3032 if (i < 0)
3033 break;
3034
76a01679
JB
3035 replace_operator_with_call (expp, pc, nargs, 1,
3036 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3037 exp = *expp;
3038 }
14f9c5c9 3039 break;
4c4b4cd2
PH
3040
3041 case OP_TYPE:
b3dbf008 3042 case OP_REGISTER:
4c4b4cd2 3043 return NULL;
14f9c5c9
AS
3044 }
3045
3046 *pos = pc;
3047 return evaluate_subexp_type (exp, pos);
3048}
3049
3050/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2
PH
3051 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3052 a non-pointer. A type of 'void' (which is never a valid expression type)
3053 by convention matches anything. */
14f9c5c9 3054/* The term "match" here is rather loose. The match is heuristic and
4c4b4cd2 3055 liberal. FIXME: TOO liberal, in fact. */
14f9c5c9
AS
3056
3057static int
4dc81987 3058ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3059{
61ee279c
PH
3060 ftype = ada_check_typedef (ftype);
3061 atype = ada_check_typedef (atype);
14f9c5c9
AS
3062
3063 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3064 ftype = TYPE_TARGET_TYPE (ftype);
3065 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3066 atype = TYPE_TARGET_TYPE (atype);
3067
d2e4a39e 3068 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
14f9c5c9
AS
3069 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3070 return 1;
3071
d2e4a39e 3072 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3073 {
3074 default:
3075 return 1;
3076 case TYPE_CODE_PTR:
3077 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3078 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3079 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3080 else
1265e4aa
JB
3081 return (may_deref
3082 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3083 case TYPE_CODE_INT:
3084 case TYPE_CODE_ENUM:
3085 case TYPE_CODE_RANGE:
3086 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3087 {
3088 case TYPE_CODE_INT:
3089 case TYPE_CODE_ENUM:
3090 case TYPE_CODE_RANGE:
3091 return 1;
3092 default:
3093 return 0;
3094 }
14f9c5c9
AS
3095
3096 case TYPE_CODE_ARRAY:
d2e4a39e 3097 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3098 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3099
3100 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3101 if (ada_is_array_descriptor_type (ftype))
3102 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3103 || ada_is_array_descriptor_type (atype));
14f9c5c9 3104 else
4c4b4cd2
PH
3105 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3106 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3107
3108 case TYPE_CODE_UNION:
3109 case TYPE_CODE_FLT:
3110 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3111 }
3112}
3113
3114/* Return non-zero if the formals of FUNC "sufficiently match" the
3115 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3116 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3117 argument function. */
14f9c5c9
AS
3118
3119static int
d2e4a39e 3120ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3121{
3122 int i;
d2e4a39e 3123 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3124
1265e4aa
JB
3125 if (SYMBOL_CLASS (func) == LOC_CONST
3126 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3127 return (n_actuals == 0);
3128 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3129 return 0;
3130
3131 if (TYPE_NFIELDS (func_type) != n_actuals)
3132 return 0;
3133
3134 for (i = 0; i < n_actuals; i += 1)
3135 {
4c4b4cd2 3136 if (actuals[i] == NULL)
76a01679
JB
3137 return 0;
3138 else
3139 {
61ee279c 3140 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
df407dfe 3141 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3142
76a01679
JB
3143 if (!ada_type_match (ftype, atype, 1))
3144 return 0;
3145 }
14f9c5c9
AS
3146 }
3147 return 1;
3148}
3149
3150/* False iff function type FUNC_TYPE definitely does not produce a value
3151 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3152 FUNC_TYPE is not a valid function type with a non-null return type
3153 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3154
3155static int
d2e4a39e 3156return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3157{
d2e4a39e 3158 struct type *return_type;
14f9c5c9
AS
3159
3160 if (func_type == NULL)
3161 return 1;
3162
4c4b4cd2
PH
3163 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3164 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3165 else
3166 return_type = base_type (func_type);
14f9c5c9
AS
3167 if (return_type == NULL)
3168 return 1;
3169
4c4b4cd2 3170 context_type = base_type (context_type);
14f9c5c9
AS
3171
3172 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3173 return context_type == NULL || return_type == context_type;
3174 else if (context_type == NULL)
3175 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3176 else
3177 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3178}
3179
3180
4c4b4cd2 3181/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3182 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3183 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3184 that returns that type, then eliminate matches that don't. If
3185 CONTEXT_TYPE is void and there is at least one match that does not
3186 return void, eliminate all matches that do.
3187
14f9c5c9
AS
3188 Asks the user if there is more than one match remaining. Returns -1
3189 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3190 solely for messages. May re-arrange and modify SYMS in
3191 the process; the index returned is for the modified vector. */
14f9c5c9 3192
4c4b4cd2
PH
3193static int
3194ada_resolve_function (struct ada_symbol_info syms[],
3195 int nsyms, struct value **args, int nargs,
3196 const char *name, struct type *context_type)
14f9c5c9
AS
3197{
3198 int k;
4c4b4cd2 3199 int m; /* Number of hits */
d2e4a39e
AS
3200 struct type *fallback;
3201 struct type *return_type;
14f9c5c9
AS
3202
3203 return_type = context_type;
3204 if (context_type == NULL)
3205 fallback = builtin_type_void;
3206 else
3207 fallback = NULL;
3208
d2e4a39e 3209 m = 0;
14f9c5c9
AS
3210 while (1)
3211 {
3212 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3213 {
61ee279c 3214 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3215
3216 if (ada_args_match (syms[k].sym, args, nargs)
3217 && return_match (type, return_type))
3218 {
3219 syms[m] = syms[k];
3220 m += 1;
3221 }
3222 }
14f9c5c9 3223 if (m > 0 || return_type == fallback)
4c4b4cd2 3224 break;
14f9c5c9 3225 else
4c4b4cd2 3226 return_type = fallback;
14f9c5c9
AS
3227 }
3228
3229 if (m == 0)
3230 return -1;
3231 else if (m > 1)
3232 {
323e0a4a 3233 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3234 user_select_syms (syms, m, 1);
14f9c5c9
AS
3235 return 0;
3236 }
3237 return 0;
3238}
3239
4c4b4cd2
PH
3240/* Returns true (non-zero) iff decoded name N0 should appear before N1
3241 in a listing of choices during disambiguation (see sort_choices, below).
3242 The idea is that overloadings of a subprogram name from the
3243 same package should sort in their source order. We settle for ordering
3244 such symbols by their trailing number (__N or $N). */
3245
14f9c5c9 3246static int
4c4b4cd2 3247encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3248{
3249 if (N1 == NULL)
3250 return 0;
3251 else if (N0 == NULL)
3252 return 1;
3253 else
3254 {
3255 int k0, k1;
d2e4a39e 3256 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3257 ;
d2e4a39e 3258 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3259 ;
d2e4a39e 3260 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3261 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3262 {
3263 int n0, n1;
3264 n0 = k0;
3265 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3266 n0 -= 1;
3267 n1 = k1;
3268 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3269 n1 -= 1;
3270 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3271 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3272 }
14f9c5c9
AS
3273 return (strcmp (N0, N1) < 0);
3274 }
3275}
d2e4a39e 3276
4c4b4cd2
PH
3277/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3278 encoded names. */
3279
d2e4a39e 3280static void
4c4b4cd2 3281sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3282{
4c4b4cd2 3283 int i;
d2e4a39e 3284 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3285 {
4c4b4cd2 3286 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3287 int j;
3288
d2e4a39e 3289 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3290 {
3291 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3292 SYMBOL_LINKAGE_NAME (sym.sym)))
3293 break;
3294 syms[j + 1] = syms[j];
3295 }
d2e4a39e 3296 syms[j + 1] = sym;
14f9c5c9
AS
3297 }
3298}
3299
4c4b4cd2
PH
3300/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3301 by asking the user (if necessary), returning the number selected,
3302 and setting the first elements of SYMS items. Error if no symbols
3303 selected. */
14f9c5c9
AS
3304
3305/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3306 to be re-integrated one of these days. */
14f9c5c9
AS
3307
3308int
4c4b4cd2 3309user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3310{
3311 int i;
d2e4a39e 3312 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3313 int n_chosen;
3314 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3315 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3316
3317 if (max_results < 1)
323e0a4a 3318 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3319 if (nsyms <= 1)
3320 return nsyms;
3321
717d2f5a
JB
3322 if (select_mode == multiple_symbols_cancel)
3323 error (_("\
3324canceled because the command is ambiguous\n\
3325See set/show multiple-symbol."));
3326
3327 /* If select_mode is "all", then return all possible symbols.
3328 Only do that if more than one symbol can be selected, of course.
3329 Otherwise, display the menu as usual. */
3330 if (select_mode == multiple_symbols_all && max_results > 1)
3331 return nsyms;
3332
323e0a4a 3333 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3334 if (max_results > 1)
323e0a4a 3335 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3336
4c4b4cd2 3337 sort_choices (syms, nsyms);
14f9c5c9
AS
3338
3339 for (i = 0; i < nsyms; i += 1)
3340 {
4c4b4cd2
PH
3341 if (syms[i].sym == NULL)
3342 continue;
3343
3344 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3345 {
76a01679
JB
3346 struct symtab_and_line sal =
3347 find_function_start_sal (syms[i].sym, 1);
323e0a4a
AC
3348 if (sal.symtab == NULL)
3349 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3350 i + first_choice,
3351 SYMBOL_PRINT_NAME (syms[i].sym),
3352 sal.line);
3353 else
3354 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3355 SYMBOL_PRINT_NAME (syms[i].sym),
3356 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3357 continue;
3358 }
d2e4a39e 3359 else
4c4b4cd2
PH
3360 {
3361 int is_enumeral =
3362 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3363 && SYMBOL_TYPE (syms[i].sym) != NULL
3364 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3365 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3366
3367 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3368 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3369 i + first_choice,
3370 SYMBOL_PRINT_NAME (syms[i].sym),
3371 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3372 else if (is_enumeral
3373 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3374 {
a3f17187 3375 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3376 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3377 gdb_stdout, -1, 0);
323e0a4a 3378 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3379 SYMBOL_PRINT_NAME (syms[i].sym));
3380 }
3381 else if (symtab != NULL)
3382 printf_unfiltered (is_enumeral
323e0a4a
AC
3383 ? _("[%d] %s in %s (enumeral)\n")
3384 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3385 i + first_choice,
3386 SYMBOL_PRINT_NAME (syms[i].sym),
3387 symtab->filename);
3388 else
3389 printf_unfiltered (is_enumeral
323e0a4a
AC
3390 ? _("[%d] %s (enumeral)\n")
3391 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3392 i + first_choice,
3393 SYMBOL_PRINT_NAME (syms[i].sym));
3394 }
14f9c5c9 3395 }
d2e4a39e 3396
14f9c5c9 3397 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3398 "overload-choice");
14f9c5c9
AS
3399
3400 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3401 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3402
3403 return n_chosen;
3404}
3405
3406/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3407 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3408 order in CHOICES[0 .. N-1], and return N.
3409
3410 The user types choices as a sequence of numbers on one line
3411 separated by blanks, encoding them as follows:
3412
4c4b4cd2 3413 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3414 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3415 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3416
4c4b4cd2 3417 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3418
3419 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3420 prompts (for use with the -f switch). */
14f9c5c9
AS
3421
3422int
d2e4a39e 3423get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3424 int is_all_choice, char *annotation_suffix)
14f9c5c9 3425{
d2e4a39e 3426 char *args;
0bcd0149 3427 char *prompt;
14f9c5c9
AS
3428 int n_chosen;
3429 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3430
14f9c5c9
AS
3431 prompt = getenv ("PS2");
3432 if (prompt == NULL)
0bcd0149 3433 prompt = "> ";
14f9c5c9 3434
0bcd0149 3435 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3436
14f9c5c9 3437 if (args == NULL)
323e0a4a 3438 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3439
3440 n_chosen = 0;
76a01679 3441
4c4b4cd2
PH
3442 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3443 order, as given in args. Choices are validated. */
14f9c5c9
AS
3444 while (1)
3445 {
d2e4a39e 3446 char *args2;
14f9c5c9
AS
3447 int choice, j;
3448
3449 while (isspace (*args))
4c4b4cd2 3450 args += 1;
14f9c5c9 3451 if (*args == '\0' && n_chosen == 0)
323e0a4a 3452 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3453 else if (*args == '\0')
4c4b4cd2 3454 break;
14f9c5c9
AS
3455
3456 choice = strtol (args, &args2, 10);
d2e4a39e 3457 if (args == args2 || choice < 0
4c4b4cd2 3458 || choice > n_choices + first_choice - 1)
323e0a4a 3459 error (_("Argument must be choice number"));
14f9c5c9
AS
3460 args = args2;
3461
d2e4a39e 3462 if (choice == 0)
323e0a4a 3463 error (_("cancelled"));
14f9c5c9
AS
3464
3465 if (choice < first_choice)
4c4b4cd2
PH
3466 {
3467 n_chosen = n_choices;
3468 for (j = 0; j < n_choices; j += 1)
3469 choices[j] = j;
3470 break;
3471 }
14f9c5c9
AS
3472 choice -= first_choice;
3473
d2e4a39e 3474 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3475 {
3476 }
14f9c5c9
AS
3477
3478 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3479 {
3480 int k;
3481 for (k = n_chosen - 1; k > j; k -= 1)
3482 choices[k + 1] = choices[k];
3483 choices[j + 1] = choice;
3484 n_chosen += 1;
3485 }
14f9c5c9
AS
3486 }
3487
3488 if (n_chosen > max_results)
323e0a4a 3489 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3490
14f9c5c9
AS
3491 return n_chosen;
3492}
3493
4c4b4cd2
PH
3494/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3495 on the function identified by SYM and BLOCK, and taking NARGS
3496 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3497
3498static void
d2e4a39e 3499replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3500 int oplen, struct symbol *sym,
3501 struct block *block)
14f9c5c9
AS
3502{
3503 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3504 symbol, -oplen for operator being replaced). */
d2e4a39e 3505 struct expression *newexp = (struct expression *)
14f9c5c9 3506 xmalloc (sizeof (struct expression)
4c4b4cd2 3507 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3508 struct expression *exp = *expp;
14f9c5c9
AS
3509
3510 newexp->nelts = exp->nelts + 7 - oplen;
3511 newexp->language_defn = exp->language_defn;
3512 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3513 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3514 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3515
3516 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3517 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3518
3519 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3520 newexp->elts[pc + 4].block = block;
3521 newexp->elts[pc + 5].symbol = sym;
3522
3523 *expp = newexp;
aacb1f0a 3524 xfree (exp);
d2e4a39e 3525}
14f9c5c9
AS
3526
3527/* Type-class predicates */
3528
4c4b4cd2
PH
3529/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3530 or FLOAT). */
14f9c5c9
AS
3531
3532static int
d2e4a39e 3533numeric_type_p (struct type *type)
14f9c5c9
AS
3534{
3535 if (type == NULL)
3536 return 0;
d2e4a39e
AS
3537 else
3538 {
3539 switch (TYPE_CODE (type))
4c4b4cd2
PH
3540 {
3541 case TYPE_CODE_INT:
3542 case TYPE_CODE_FLT:
3543 return 1;
3544 case TYPE_CODE_RANGE:
3545 return (type == TYPE_TARGET_TYPE (type)
3546 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3547 default:
3548 return 0;
3549 }
d2e4a39e 3550 }
14f9c5c9
AS
3551}
3552
4c4b4cd2 3553/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3554
3555static int
d2e4a39e 3556integer_type_p (struct type *type)
14f9c5c9
AS
3557{
3558 if (type == NULL)
3559 return 0;
d2e4a39e
AS
3560 else
3561 {
3562 switch (TYPE_CODE (type))
4c4b4cd2
PH
3563 {
3564 case TYPE_CODE_INT:
3565 return 1;
3566 case TYPE_CODE_RANGE:
3567 return (type == TYPE_TARGET_TYPE (type)
3568 || integer_type_p (TYPE_TARGET_TYPE (type)));
3569 default:
3570 return 0;
3571 }
d2e4a39e 3572 }
14f9c5c9
AS
3573}
3574
4c4b4cd2 3575/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3576
3577static int
d2e4a39e 3578scalar_type_p (struct type *type)
14f9c5c9
AS
3579{
3580 if (type == NULL)
3581 return 0;
d2e4a39e
AS
3582 else
3583 {
3584 switch (TYPE_CODE (type))
4c4b4cd2
PH
3585 {
3586 case TYPE_CODE_INT:
3587 case TYPE_CODE_RANGE:
3588 case TYPE_CODE_ENUM:
3589 case TYPE_CODE_FLT:
3590 return 1;
3591 default:
3592 return 0;
3593 }
d2e4a39e 3594 }
14f9c5c9
AS
3595}
3596
4c4b4cd2 3597/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3598
3599static int
d2e4a39e 3600discrete_type_p (struct type *type)
14f9c5c9
AS
3601{
3602 if (type == NULL)
3603 return 0;
d2e4a39e
AS
3604 else
3605 {
3606 switch (TYPE_CODE (type))
4c4b4cd2
PH
3607 {
3608 case TYPE_CODE_INT:
3609 case TYPE_CODE_RANGE:
3610 case TYPE_CODE_ENUM:
3611 return 1;
3612 default:
3613 return 0;
3614 }
d2e4a39e 3615 }
14f9c5c9
AS
3616}
3617
4c4b4cd2
PH
3618/* Returns non-zero if OP with operands in the vector ARGS could be
3619 a user-defined function. Errs on the side of pre-defined operators
3620 (i.e., result 0). */
14f9c5c9
AS
3621
3622static int
d2e4a39e 3623possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3624{
76a01679 3625 struct type *type0 =
df407dfe 3626 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3627 struct type *type1 =
df407dfe 3628 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3629
4c4b4cd2
PH
3630 if (type0 == NULL)
3631 return 0;
3632
14f9c5c9
AS
3633 switch (op)
3634 {
3635 default:
3636 return 0;
3637
3638 case BINOP_ADD:
3639 case BINOP_SUB:
3640 case BINOP_MUL:
3641 case BINOP_DIV:
d2e4a39e 3642 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3643
3644 case BINOP_REM:
3645 case BINOP_MOD:
3646 case BINOP_BITWISE_AND:
3647 case BINOP_BITWISE_IOR:
3648 case BINOP_BITWISE_XOR:
d2e4a39e 3649 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3650
3651 case BINOP_EQUAL:
3652 case BINOP_NOTEQUAL:
3653 case BINOP_LESS:
3654 case BINOP_GTR:
3655 case BINOP_LEQ:
3656 case BINOP_GEQ:
d2e4a39e 3657 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3658
3659 case BINOP_CONCAT:
ee90b9ab 3660 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3661
3662 case BINOP_EXP:
d2e4a39e 3663 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3664
3665 case UNOP_NEG:
3666 case UNOP_PLUS:
3667 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3668 case UNOP_ABS:
3669 return (!numeric_type_p (type0));
14f9c5c9
AS
3670
3671 }
3672}
3673\f
4c4b4cd2 3674 /* Renaming */
14f9c5c9 3675
aeb5907d
JB
3676/* NOTES:
3677
3678 1. In the following, we assume that a renaming type's name may
3679 have an ___XD suffix. It would be nice if this went away at some
3680 point.
3681 2. We handle both the (old) purely type-based representation of
3682 renamings and the (new) variable-based encoding. At some point,
3683 it is devoutly to be hoped that the former goes away
3684 (FIXME: hilfinger-2007-07-09).
3685 3. Subprogram renamings are not implemented, although the XRS
3686 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3687
3688/* If SYM encodes a renaming,
3689
3690 <renaming> renames <renamed entity>,
3691
3692 sets *LEN to the length of the renamed entity's name,
3693 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3694 the string describing the subcomponent selected from the renamed
3695 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3696 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3697 are undefined). Otherwise, returns a value indicating the category
3698 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3699 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3700 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3701 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3702 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3703 may be NULL, in which case they are not assigned.
3704
3705 [Currently, however, GCC does not generate subprogram renamings.] */
3706
3707enum ada_renaming_category
3708ada_parse_renaming (struct symbol *sym,
3709 const char **renamed_entity, int *len,
3710 const char **renaming_expr)
3711{
3712 enum ada_renaming_category kind;
3713 const char *info;
3714 const char *suffix;
3715
3716 if (sym == NULL)
3717 return ADA_NOT_RENAMING;
3718 switch (SYMBOL_CLASS (sym))
14f9c5c9 3719 {
aeb5907d
JB
3720 default:
3721 return ADA_NOT_RENAMING;
3722 case LOC_TYPEDEF:
3723 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3724 renamed_entity, len, renaming_expr);
3725 case LOC_LOCAL:
3726 case LOC_STATIC:
3727 case LOC_COMPUTED:
3728 case LOC_OPTIMIZED_OUT:
3729 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3730 if (info == NULL)
3731 return ADA_NOT_RENAMING;
3732 switch (info[5])
3733 {
3734 case '_':
3735 kind = ADA_OBJECT_RENAMING;
3736 info += 6;
3737 break;
3738 case 'E':
3739 kind = ADA_EXCEPTION_RENAMING;
3740 info += 7;
3741 break;
3742 case 'P':
3743 kind = ADA_PACKAGE_RENAMING;
3744 info += 7;
3745 break;
3746 case 'S':
3747 kind = ADA_SUBPROGRAM_RENAMING;
3748 info += 7;
3749 break;
3750 default:
3751 return ADA_NOT_RENAMING;
3752 }
14f9c5c9 3753 }
4c4b4cd2 3754
aeb5907d
JB
3755 if (renamed_entity != NULL)
3756 *renamed_entity = info;
3757 suffix = strstr (info, "___XE");
3758 if (suffix == NULL || suffix == info)
3759 return ADA_NOT_RENAMING;
3760 if (len != NULL)
3761 *len = strlen (info) - strlen (suffix);
3762 suffix += 5;
3763 if (renaming_expr != NULL)
3764 *renaming_expr = suffix;
3765 return kind;
3766}
3767
3768/* Assuming TYPE encodes a renaming according to the old encoding in
3769 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3770 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3771 ADA_NOT_RENAMING otherwise. */
3772static enum ada_renaming_category
3773parse_old_style_renaming (struct type *type,
3774 const char **renamed_entity, int *len,
3775 const char **renaming_expr)
3776{
3777 enum ada_renaming_category kind;
3778 const char *name;
3779 const char *info;
3780 const char *suffix;
14f9c5c9 3781
aeb5907d
JB
3782 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3783 || TYPE_NFIELDS (type) != 1)
3784 return ADA_NOT_RENAMING;
14f9c5c9 3785
aeb5907d
JB
3786 name = type_name_no_tag (type);
3787 if (name == NULL)
3788 return ADA_NOT_RENAMING;
3789
3790 name = strstr (name, "___XR");
3791 if (name == NULL)
3792 return ADA_NOT_RENAMING;
3793 switch (name[5])
3794 {
3795 case '\0':
3796 case '_':
3797 kind = ADA_OBJECT_RENAMING;
3798 break;
3799 case 'E':
3800 kind = ADA_EXCEPTION_RENAMING;
3801 break;
3802 case 'P':
3803 kind = ADA_PACKAGE_RENAMING;
3804 break;
3805 case 'S':
3806 kind = ADA_SUBPROGRAM_RENAMING;
3807 break;
3808 default:
3809 return ADA_NOT_RENAMING;
3810 }
14f9c5c9 3811
aeb5907d
JB
3812 info = TYPE_FIELD_NAME (type, 0);
3813 if (info == NULL)
3814 return ADA_NOT_RENAMING;
3815 if (renamed_entity != NULL)
3816 *renamed_entity = info;
3817 suffix = strstr (info, "___XE");
3818 if (renaming_expr != NULL)
3819 *renaming_expr = suffix + 5;
3820 if (suffix == NULL || suffix == info)
3821 return ADA_NOT_RENAMING;
3822 if (len != NULL)
3823 *len = suffix - info;
3824 return kind;
3825}
52ce6436 3826
14f9c5c9 3827\f
d2e4a39e 3828
4c4b4cd2 3829 /* Evaluation: Function Calls */
14f9c5c9 3830
4c4b4cd2
PH
3831/* Return an lvalue containing the value VAL. This is the identity on
3832 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3833 on the stack, using and updating *SP as the stack pointer, and
3834 returning an lvalue whose VALUE_ADDRESS points to the copy. */
14f9c5c9 3835
d2e4a39e 3836static struct value *
4c4b4cd2 3837ensure_lval (struct value *val, CORE_ADDR *sp)
14f9c5c9 3838{
c3e5cd34
PH
3839 if (! VALUE_LVAL (val))
3840 {
df407dfe 3841 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
c3e5cd34
PH
3842
3843 /* The following is taken from the structure-return code in
3844 call_function_by_hand. FIXME: Therefore, some refactoring seems
3845 indicated. */
4d1e7dd1 3846 if (gdbarch_inner_than (current_gdbarch, 1, 2))
c3e5cd34
PH
3847 {
3848 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3849 reserving sufficient space. */
3850 *sp -= len;
3851 if (gdbarch_frame_align_p (current_gdbarch))
3852 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3853 VALUE_ADDRESS (val) = *sp;
3854 }
3855 else
3856 {
3857 /* Stack grows upward. Align the frame, allocate space, and
3858 then again, re-align the frame. */
3859 if (gdbarch_frame_align_p (current_gdbarch))
3860 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3861 VALUE_ADDRESS (val) = *sp;
3862 *sp += len;
3863 if (gdbarch_frame_align_p (current_gdbarch))
3864 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3865 }
a84a8a0d 3866 VALUE_LVAL (val) = lval_memory;
14f9c5c9 3867
990a07ab 3868 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
c3e5cd34 3869 }
14f9c5c9
AS
3870
3871 return val;
3872}
3873
3874/* Return the value ACTUAL, converted to be an appropriate value for a
3875 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3876 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3877 values not residing in memory, updating it as needed. */
14f9c5c9 3878
a93c0eb6
JB
3879struct value *
3880ada_convert_actual (struct value *actual, struct type *formal_type0,
3881 CORE_ADDR *sp)
14f9c5c9 3882{
df407dfe 3883 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3884 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3885 struct type *formal_target =
3886 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3887 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
3888 struct type *actual_target =
3889 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 3890 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 3891
4c4b4cd2 3892 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9
AS
3893 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3894 return make_array_descriptor (formal_type, actual, sp);
a84a8a0d
JB
3895 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3896 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 3897 {
a84a8a0d 3898 struct value *result;
14f9c5c9 3899 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 3900 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 3901 result = desc_data (actual);
14f9c5c9 3902 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
3903 {
3904 if (VALUE_LVAL (actual) != lval_memory)
3905 {
3906 struct value *val;
df407dfe 3907 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 3908 val = allocate_value (actual_type);
990a07ab 3909 memcpy ((char *) value_contents_raw (val),
0fd88904 3910 (char *) value_contents (actual),
4c4b4cd2
PH
3911 TYPE_LENGTH (actual_type));
3912 actual = ensure_lval (val, sp);
3913 }
a84a8a0d 3914 result = value_addr (actual);
4c4b4cd2 3915 }
a84a8a0d
JB
3916 else
3917 return actual;
3918 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
3919 }
3920 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3921 return ada_value_ind (actual);
3922
3923 return actual;
3924}
3925
3926
4c4b4cd2
PH
3927/* Push a descriptor of type TYPE for array value ARR on the stack at
3928 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 3929 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
3930 to-descriptor type rather than a descriptor type), a struct value *
3931 representing a pointer to this descriptor. */
14f9c5c9 3932
d2e4a39e
AS
3933static struct value *
3934make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
14f9c5c9 3935{
d2e4a39e
AS
3936 struct type *bounds_type = desc_bounds_type (type);
3937 struct type *desc_type = desc_base_type (type);
3938 struct value *descriptor = allocate_value (desc_type);
3939 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 3940 int i;
d2e4a39e 3941
df407dfe 3942 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
14f9c5c9 3943 {
0fd88904 3944 modify_general_field (value_contents_writeable (bounds),
4c4b4cd2
PH
3945 value_as_long (ada_array_bound (arr, i, 0)),
3946 desc_bound_bitpos (bounds_type, i, 0),
3947 desc_bound_bitsize (bounds_type, i, 0));
0fd88904 3948 modify_general_field (value_contents_writeable (bounds),
4c4b4cd2
PH
3949 value_as_long (ada_array_bound (arr, i, 1)),
3950 desc_bound_bitpos (bounds_type, i, 1),
3951 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 3952 }
d2e4a39e 3953
4c4b4cd2 3954 bounds = ensure_lval (bounds, sp);
d2e4a39e 3955
0fd88904 3956 modify_general_field (value_contents_writeable (descriptor),
76a01679
JB
3957 VALUE_ADDRESS (ensure_lval (arr, sp)),
3958 fat_pntr_data_bitpos (desc_type),
3959 fat_pntr_data_bitsize (desc_type));
4c4b4cd2 3960
0fd88904 3961 modify_general_field (value_contents_writeable (descriptor),
4c4b4cd2
PH
3962 VALUE_ADDRESS (bounds),
3963 fat_pntr_bounds_bitpos (desc_type),
3964 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 3965
4c4b4cd2 3966 descriptor = ensure_lval (descriptor, sp);
14f9c5c9
AS
3967
3968 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3969 return value_addr (descriptor);
3970 else
3971 return descriptor;
3972}
14f9c5c9 3973\f
963a6417
PH
3974/* Dummy definitions for an experimental caching module that is not
3975 * used in the public sources. */
96d887e8 3976
96d887e8
PH
3977static int
3978lookup_cached_symbol (const char *name, domain_enum namespace,
76a01679
JB
3979 struct symbol **sym, struct block **block,
3980 struct symtab **symtab)
96d887e8
PH
3981{
3982 return 0;
3983}
3984
3985static void
3986cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
76a01679 3987 struct block *block, struct symtab *symtab)
96d887e8
PH
3988{
3989}
4c4b4cd2
PH
3990\f
3991 /* Symbol Lookup */
3992
3993/* Return the result of a standard (literal, C-like) lookup of NAME in
3994 given DOMAIN, visible from lexical block BLOCK. */
3995
3996static struct symbol *
3997standard_lookup (const char *name, const struct block *block,
3998 domain_enum domain)
3999{
4000 struct symbol *sym;
4001 struct symtab *symtab;
4002
4003 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
4004 return sym;
76a01679
JB
4005 sym =
4006 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
4c4b4cd2
PH
4007 cache_symbol (name, domain, sym, block_found, symtab);
4008 return sym;
4009}
4010
4011
4012/* Non-zero iff there is at least one non-function/non-enumeral symbol
4013 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4014 since they contend in overloading in the same way. */
4015static int
4016is_nonfunction (struct ada_symbol_info syms[], int n)
4017{
4018 int i;
4019
4020 for (i = 0; i < n; i += 1)
4021 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4022 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4023 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4024 return 1;
4025
4026 return 0;
4027}
4028
4029/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4030 struct types. Otherwise, they may not. */
14f9c5c9
AS
4031
4032static int
d2e4a39e 4033equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4034{
d2e4a39e 4035 if (type0 == type1)
14f9c5c9 4036 return 1;
d2e4a39e 4037 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4038 || TYPE_CODE (type0) != TYPE_CODE (type1))
4039 return 0;
d2e4a39e 4040 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4041 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4042 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4043 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4044 return 1;
d2e4a39e 4045
14f9c5c9
AS
4046 return 0;
4047}
4048
4049/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4050 no more defined than that of SYM1. */
14f9c5c9
AS
4051
4052static int
d2e4a39e 4053lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4054{
4055 if (sym0 == sym1)
4056 return 1;
176620f1 4057 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4058 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4059 return 0;
4060
d2e4a39e 4061 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4062 {
4063 case LOC_UNDEF:
4064 return 1;
4065 case LOC_TYPEDEF:
4066 {
4c4b4cd2
PH
4067 struct type *type0 = SYMBOL_TYPE (sym0);
4068 struct type *type1 = SYMBOL_TYPE (sym1);
4069 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4070 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4071 int len0 = strlen (name0);
4072 return
4073 TYPE_CODE (type0) == TYPE_CODE (type1)
4074 && (equiv_types (type0, type1)
4075 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4076 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4077 }
4078 case LOC_CONST:
4079 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4080 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4081 default:
4082 return 0;
14f9c5c9
AS
4083 }
4084}
4085
4c4b4cd2
PH
4086/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4087 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4088
4089static void
76a01679
JB
4090add_defn_to_vec (struct obstack *obstackp,
4091 struct symbol *sym,
4092 struct block *block, struct symtab *symtab)
14f9c5c9
AS
4093{
4094 int i;
4095 size_t tmp;
4c4b4cd2 4096 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4097
529cad9c
PH
4098 /* Do not try to complete stub types, as the debugger is probably
4099 already scanning all symbols matching a certain name at the
4100 time when this function is called. Trying to replace the stub
4101 type by its associated full type will cause us to restart a scan
4102 which may lead to an infinite recursion. Instead, the client
4103 collecting the matching symbols will end up collecting several
4104 matches, with at least one of them complete. It can then filter
4105 out the stub ones if needed. */
4106
4c4b4cd2
PH
4107 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4108 {
4109 if (lesseq_defined_than (sym, prevDefns[i].sym))
4110 return;
4111 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4112 {
4113 prevDefns[i].sym = sym;
4114 prevDefns[i].block = block;
76a01679 4115 prevDefns[i].symtab = symtab;
4c4b4cd2 4116 return;
76a01679 4117 }
4c4b4cd2
PH
4118 }
4119
4120 {
4121 struct ada_symbol_info info;
4122
4123 info.sym = sym;
4124 info.block = block;
4125 info.symtab = symtab;
4126 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4127 }
4128}
4129
4130/* Number of ada_symbol_info structures currently collected in
4131 current vector in *OBSTACKP. */
4132
76a01679
JB
4133static int
4134num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4135{
4136 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4137}
4138
4139/* Vector of ada_symbol_info structures currently collected in current
4140 vector in *OBSTACKP. If FINISH, close off the vector and return
4141 its final address. */
4142
76a01679 4143static struct ada_symbol_info *
4c4b4cd2
PH
4144defns_collected (struct obstack *obstackp, int finish)
4145{
4146 if (finish)
4147 return obstack_finish (obstackp);
4148 else
4149 return (struct ada_symbol_info *) obstack_base (obstackp);
4150}
4151
96d887e8
PH
4152/* Look, in partial_symtab PST, for symbol NAME in given namespace.
4153 Check the global symbols if GLOBAL, the static symbols if not.
4154 Do wild-card match if WILD. */
4c4b4cd2 4155
96d887e8
PH
4156static struct partial_symbol *
4157ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4158 int global, domain_enum namespace, int wild)
4c4b4cd2 4159{
96d887e8
PH
4160 struct partial_symbol **start;
4161 int name_len = strlen (name);
4162 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4163 int i;
4c4b4cd2 4164
96d887e8 4165 if (length == 0)
4c4b4cd2 4166 {
96d887e8 4167 return (NULL);
4c4b4cd2
PH
4168 }
4169
96d887e8
PH
4170 start = (global ?
4171 pst->objfile->global_psymbols.list + pst->globals_offset :
4172 pst->objfile->static_psymbols.list + pst->statics_offset);
4c4b4cd2 4173
96d887e8 4174 if (wild)
4c4b4cd2 4175 {
96d887e8
PH
4176 for (i = 0; i < length; i += 1)
4177 {
4178 struct partial_symbol *psym = start[i];
4c4b4cd2 4179
5eeb2539
AR
4180 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4181 SYMBOL_DOMAIN (psym), namespace)
1265e4aa 4182 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
96d887e8
PH
4183 return psym;
4184 }
4185 return NULL;
4c4b4cd2 4186 }
96d887e8
PH
4187 else
4188 {
4189 if (global)
4190 {
4191 int U;
4192 i = 0;
4193 U = length - 1;
4194 while (U - i > 4)
4195 {
4196 int M = (U + i) >> 1;
4197 struct partial_symbol *psym = start[M];
4198 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4199 i = M + 1;
4200 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4201 U = M - 1;
4202 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4203 i = M + 1;
4204 else
4205 U = M;
4206 }
4207 }
4208 else
4209 i = 0;
4c4b4cd2 4210
96d887e8
PH
4211 while (i < length)
4212 {
4213 struct partial_symbol *psym = start[i];
4c4b4cd2 4214
5eeb2539
AR
4215 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4216 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4217 {
4218 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4c4b4cd2 4219
96d887e8
PH
4220 if (cmp < 0)
4221 {
4222 if (global)
4223 break;
4224 }
4225 else if (cmp == 0
4226 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4227 + name_len))
96d887e8
PH
4228 return psym;
4229 }
4230 i += 1;
4231 }
4c4b4cd2 4232
96d887e8
PH
4233 if (global)
4234 {
4235 int U;
4236 i = 0;
4237 U = length - 1;
4238 while (U - i > 4)
4239 {
4240 int M = (U + i) >> 1;
4241 struct partial_symbol *psym = start[M];
4242 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4243 i = M + 1;
4244 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4245 U = M - 1;
4246 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4247 i = M + 1;
4248 else
4249 U = M;
4250 }
4251 }
4252 else
4253 i = 0;
4c4b4cd2 4254
96d887e8
PH
4255 while (i < length)
4256 {
4257 struct partial_symbol *psym = start[i];
4c4b4cd2 4258
5eeb2539
AR
4259 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4260 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4261 {
4262 int cmp;
4c4b4cd2 4263
96d887e8
PH
4264 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4265 if (cmp == 0)
4266 {
4267 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4268 if (cmp == 0)
4269 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
76a01679 4270 name_len);
96d887e8 4271 }
4c4b4cd2 4272
96d887e8
PH
4273 if (cmp < 0)
4274 {
4275 if (global)
4276 break;
4277 }
4278 else if (cmp == 0
4279 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4280 + name_len + 5))
96d887e8
PH
4281 return psym;
4282 }
4283 i += 1;
4284 }
4285 }
4286 return NULL;
4c4b4cd2
PH
4287}
4288
96d887e8 4289/* Find a symbol table containing symbol SYM or NULL if none. */
4c4b4cd2 4290
96d887e8
PH
4291static struct symtab *
4292symtab_for_sym (struct symbol *sym)
4c4b4cd2 4293{
96d887e8
PH
4294 struct symtab *s;
4295 struct objfile *objfile;
4296 struct block *b;
4297 struct symbol *tmp_sym;
4298 struct dict_iterator iter;
4299 int j;
4c4b4cd2 4300
11309657 4301 ALL_PRIMARY_SYMTABS (objfile, s)
96d887e8
PH
4302 {
4303 switch (SYMBOL_CLASS (sym))
4304 {
4305 case LOC_CONST:
4306 case LOC_STATIC:
4307 case LOC_TYPEDEF:
4308 case LOC_REGISTER:
4309 case LOC_LABEL:
4310 case LOC_BLOCK:
4311 case LOC_CONST_BYTES:
76a01679
JB
4312 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4313 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4314 return s;
4315 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4316 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4317 return s;
96d887e8
PH
4318 break;
4319 default:
4320 break;
4321 }
4322 switch (SYMBOL_CLASS (sym))
4323 {
4324 case LOC_REGISTER:
4325 case LOC_ARG:
4326 case LOC_REF_ARG:
4327 case LOC_REGPARM:
4328 case LOC_REGPARM_ADDR:
4329 case LOC_LOCAL:
4330 case LOC_TYPEDEF:
4331 case LOC_LOCAL_ARG:
4332 case LOC_BASEREG:
4333 case LOC_BASEREG_ARG:
4334 case LOC_COMPUTED:
4335 case LOC_COMPUTED_ARG:
76a01679
JB
4336 for (j = FIRST_LOCAL_BLOCK;
4337 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4338 {
4339 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4340 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4341 return s;
4342 }
4343 break;
96d887e8
PH
4344 default:
4345 break;
4346 }
4347 }
4348 return NULL;
4c4b4cd2
PH
4349}
4350
96d887e8
PH
4351/* Return a minimal symbol matching NAME according to Ada decoding
4352 rules. Returns NULL if there is no such minimal symbol. Names
4353 prefixed with "standard__" are handled specially: "standard__" is
4354 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4355
96d887e8
PH
4356struct minimal_symbol *
4357ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4358{
4c4b4cd2 4359 struct objfile *objfile;
96d887e8
PH
4360 struct minimal_symbol *msymbol;
4361 int wild_match;
4c4b4cd2 4362
96d887e8 4363 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4364 {
96d887e8 4365 name += sizeof ("standard__") - 1;
4c4b4cd2 4366 wild_match = 0;
4c4b4cd2
PH
4367 }
4368 else
96d887e8 4369 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4370
96d887e8
PH
4371 ALL_MSYMBOLS (objfile, msymbol)
4372 {
4373 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4374 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4375 return msymbol;
4376 }
4c4b4cd2 4377
96d887e8
PH
4378 return NULL;
4379}
4c4b4cd2 4380
96d887e8
PH
4381/* For all subprograms that statically enclose the subprogram of the
4382 selected frame, add symbols matching identifier NAME in DOMAIN
4383 and their blocks to the list of data in OBSTACKP, as for
4384 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4385 wildcard prefix. */
4c4b4cd2 4386
96d887e8
PH
4387static void
4388add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4389 const char *name, domain_enum namespace,
96d887e8
PH
4390 int wild_match)
4391{
96d887e8 4392}
14f9c5c9 4393
96d887e8
PH
4394/* True if TYPE is definitely an artificial type supplied to a symbol
4395 for which no debugging information was given in the symbol file. */
14f9c5c9 4396
96d887e8
PH
4397static int
4398is_nondebugging_type (struct type *type)
4399{
4400 char *name = ada_type_name (type);
4401 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4402}
4c4b4cd2 4403
96d887e8
PH
4404/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4405 duplicate other symbols in the list (The only case I know of where
4406 this happens is when object files containing stabs-in-ecoff are
4407 linked with files containing ordinary ecoff debugging symbols (or no
4408 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4409 Returns the number of items in the modified list. */
4c4b4cd2 4410
96d887e8
PH
4411static int
4412remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4413{
4414 int i, j;
4c4b4cd2 4415
96d887e8
PH
4416 i = 0;
4417 while (i < nsyms)
4418 {
4419 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4420 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4421 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4422 {
4423 for (j = 0; j < nsyms; j += 1)
4424 {
4425 if (i != j
4426 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4427 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4428 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4429 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4430 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4431 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4c4b4cd2 4432 {
96d887e8
PH
4433 int k;
4434 for (k = i + 1; k < nsyms; k += 1)
76a01679 4435 syms[k - 1] = syms[k];
96d887e8
PH
4436 nsyms -= 1;
4437 goto NextSymbol;
4c4b4cd2 4438 }
4c4b4cd2 4439 }
4c4b4cd2 4440 }
96d887e8
PH
4441 i += 1;
4442 NextSymbol:
4443 ;
14f9c5c9 4444 }
96d887e8 4445 return nsyms;
14f9c5c9
AS
4446}
4447
96d887e8
PH
4448/* Given a type that corresponds to a renaming entity, use the type name
4449 to extract the scope (package name or function name, fully qualified,
4450 and following the GNAT encoding convention) where this renaming has been
4451 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4452
96d887e8
PH
4453static char *
4454xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4455{
96d887e8
PH
4456 /* The renaming types adhere to the following convention:
4457 <scope>__<rename>___<XR extension>.
4458 So, to extract the scope, we search for the "___XR" extension,
4459 and then backtrack until we find the first "__". */
76a01679 4460
96d887e8
PH
4461 const char *name = type_name_no_tag (renaming_type);
4462 char *suffix = strstr (name, "___XR");
4463 char *last;
4464 int scope_len;
4465 char *scope;
14f9c5c9 4466
96d887e8
PH
4467 /* Now, backtrack a bit until we find the first "__". Start looking
4468 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4469
96d887e8
PH
4470 for (last = suffix - 3; last > name; last--)
4471 if (last[0] == '_' && last[1] == '_')
4472 break;
76a01679 4473
96d887e8 4474 /* Make a copy of scope and return it. */
14f9c5c9 4475
96d887e8
PH
4476 scope_len = last - name;
4477 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4478
96d887e8
PH
4479 strncpy (scope, name, scope_len);
4480 scope[scope_len] = '\0';
4c4b4cd2 4481
96d887e8 4482 return scope;
4c4b4cd2
PH
4483}
4484
96d887e8 4485/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4486
96d887e8
PH
4487static int
4488is_package_name (const char *name)
4c4b4cd2 4489{
96d887e8
PH
4490 /* Here, We take advantage of the fact that no symbols are generated
4491 for packages, while symbols are generated for each function.
4492 So the condition for NAME represent a package becomes equivalent
4493 to NAME not existing in our list of symbols. There is only one
4494 small complication with library-level functions (see below). */
4c4b4cd2 4495
96d887e8 4496 char *fun_name;
76a01679 4497
96d887e8
PH
4498 /* If it is a function that has not been defined at library level,
4499 then we should be able to look it up in the symbols. */
4500 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4501 return 0;
14f9c5c9 4502
96d887e8
PH
4503 /* Library-level function names start with "_ada_". See if function
4504 "_ada_" followed by NAME can be found. */
14f9c5c9 4505
96d887e8 4506 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4507 functions names cannot contain "__" in them. */
96d887e8
PH
4508 if (strstr (name, "__") != NULL)
4509 return 0;
4c4b4cd2 4510
b435e160 4511 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4512
96d887e8
PH
4513 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4514}
14f9c5c9 4515
96d887e8 4516/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4517 not visible from FUNCTION_NAME. */
14f9c5c9 4518
96d887e8 4519static int
aeb5907d 4520old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4521{
aeb5907d
JB
4522 char *scope;
4523
4524 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4525 return 0;
4526
4527 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4528
96d887e8 4529 make_cleanup (xfree, scope);
14f9c5c9 4530
96d887e8
PH
4531 /* If the rename has been defined in a package, then it is visible. */
4532 if (is_package_name (scope))
aeb5907d 4533 return 0;
14f9c5c9 4534
96d887e8
PH
4535 /* Check that the rename is in the current function scope by checking
4536 that its name starts with SCOPE. */
76a01679 4537
96d887e8
PH
4538 /* If the function name starts with "_ada_", it means that it is
4539 a library-level function. Strip this prefix before doing the
4540 comparison, as the encoding for the renaming does not contain
4541 this prefix. */
4542 if (strncmp (function_name, "_ada_", 5) == 0)
4543 function_name += 5;
f26caa11 4544
aeb5907d 4545 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4546}
4547
aeb5907d
JB
4548/* Remove entries from SYMS that corresponds to a renaming entity that
4549 is not visible from the function associated with CURRENT_BLOCK or
4550 that is superfluous due to the presence of more specific renaming
4551 information. Places surviving symbols in the initial entries of
4552 SYMS and returns the number of surviving symbols.
96d887e8
PH
4553
4554 Rationale:
aeb5907d
JB
4555 First, in cases where an object renaming is implemented as a
4556 reference variable, GNAT may produce both the actual reference
4557 variable and the renaming encoding. In this case, we discard the
4558 latter.
4559
4560 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4561 entity. Unfortunately, STABS currently does not support the definition
4562 of types that are local to a given lexical block, so all renamings types
4563 are emitted at library level. As a consequence, if an application
4564 contains two renaming entities using the same name, and a user tries to
4565 print the value of one of these entities, the result of the ada symbol
4566 lookup will also contain the wrong renaming type.
f26caa11 4567
96d887e8
PH
4568 This function partially covers for this limitation by attempting to
4569 remove from the SYMS list renaming symbols that should be visible
4570 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4571 method with the current information available. The implementation
4572 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4573
4574 - When the user tries to print a rename in a function while there
4575 is another rename entity defined in a package: Normally, the
4576 rename in the function has precedence over the rename in the
4577 package, so the latter should be removed from the list. This is
4578 currently not the case.
4579
4580 - This function will incorrectly remove valid renames if
4581 the CURRENT_BLOCK corresponds to a function which symbol name
4582 has been changed by an "Export" pragma. As a consequence,
4583 the user will be unable to print such rename entities. */
4c4b4cd2 4584
14f9c5c9 4585static int
aeb5907d
JB
4586remove_irrelevant_renamings (struct ada_symbol_info *syms,
4587 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4588{
4589 struct symbol *current_function;
4590 char *current_function_name;
4591 int i;
aeb5907d
JB
4592 int is_new_style_renaming;
4593
4594 /* If there is both a renaming foo___XR... encoded as a variable and
4595 a simple variable foo in the same block, discard the latter.
4596 First, zero out such symbols, then compress. */
4597 is_new_style_renaming = 0;
4598 for (i = 0; i < nsyms; i += 1)
4599 {
4600 struct symbol *sym = syms[i].sym;
4601 struct block *block = syms[i].block;
4602 const char *name;
4603 const char *suffix;
4604
4605 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4606 continue;
4607 name = SYMBOL_LINKAGE_NAME (sym);
4608 suffix = strstr (name, "___XR");
4609
4610 if (suffix != NULL)
4611 {
4612 int name_len = suffix - name;
4613 int j;
4614 is_new_style_renaming = 1;
4615 for (j = 0; j < nsyms; j += 1)
4616 if (i != j && syms[j].sym != NULL
4617 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4618 name_len) == 0
4619 && block == syms[j].block)
4620 syms[j].sym = NULL;
4621 }
4622 }
4623 if (is_new_style_renaming)
4624 {
4625 int j, k;
4626
4627 for (j = k = 0; j < nsyms; j += 1)
4628 if (syms[j].sym != NULL)
4629 {
4630 syms[k] = syms[j];
4631 k += 1;
4632 }
4633 return k;
4634 }
4c4b4cd2
PH
4635
4636 /* Extract the function name associated to CURRENT_BLOCK.
4637 Abort if unable to do so. */
76a01679 4638
4c4b4cd2
PH
4639 if (current_block == NULL)
4640 return nsyms;
76a01679 4641
4c4b4cd2
PH
4642 current_function = block_function (current_block);
4643 if (current_function == NULL)
4644 return nsyms;
4645
4646 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4647 if (current_function_name == NULL)
4648 return nsyms;
4649
4650 /* Check each of the symbols, and remove it from the list if it is
4651 a type corresponding to a renaming that is out of the scope of
4652 the current block. */
4653
4654 i = 0;
4655 while (i < nsyms)
4656 {
aeb5907d
JB
4657 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4658 == ADA_OBJECT_RENAMING
4659 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4660 {
4661 int j;
aeb5907d 4662 for (j = i + 1; j < nsyms; j += 1)
76a01679 4663 syms[j - 1] = syms[j];
4c4b4cd2
PH
4664 nsyms -= 1;
4665 }
4666 else
4667 i += 1;
4668 }
4669
4670 return nsyms;
4671}
4672
4673/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4674 scope and in global scopes, returning the number of matches. Sets
4675 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4676 indicating the symbols found and the blocks and symbol tables (if
4677 any) in which they were found. This vector are transient---good only to
4678 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4679 symbol match within the nest of blocks whose innermost member is BLOCK0,
4680 is the one match returned (no other matches in that or
4681 enclosing blocks is returned). If there are any matches in or
4682 surrounding BLOCK0, then these alone are returned. Otherwise, the
4683 search extends to global and file-scope (static) symbol tables.
4684 Names prefixed with "standard__" are handled specially: "standard__"
4685 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4686
4687int
4c4b4cd2 4688ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4689 domain_enum namespace,
4690 struct ada_symbol_info **results)
14f9c5c9
AS
4691{
4692 struct symbol *sym;
4693 struct symtab *s;
4694 struct partial_symtab *ps;
4695 struct blockvector *bv;
4696 struct objfile *objfile;
14f9c5c9 4697 struct block *block;
4c4b4cd2 4698 const char *name;
14f9c5c9 4699 struct minimal_symbol *msymbol;
4c4b4cd2 4700 int wild_match;
14f9c5c9 4701 int cacheIfUnique;
4c4b4cd2
PH
4702 int block_depth;
4703 int ndefns;
14f9c5c9 4704
4c4b4cd2
PH
4705 obstack_free (&symbol_list_obstack, NULL);
4706 obstack_init (&symbol_list_obstack);
14f9c5c9 4707
14f9c5c9
AS
4708 cacheIfUnique = 0;
4709
4710 /* Search specified block and its superiors. */
4711
4c4b4cd2
PH
4712 wild_match = (strstr (name0, "__") == NULL);
4713 name = name0;
76a01679
JB
4714 block = (struct block *) block0; /* FIXME: No cast ought to be
4715 needed, but adding const will
4716 have a cascade effect. */
4c4b4cd2
PH
4717 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4718 {
4719 wild_match = 0;
4720 block = NULL;
4721 name = name0 + sizeof ("standard__") - 1;
4722 }
4723
4724 block_depth = 0;
14f9c5c9
AS
4725 while (block != NULL)
4726 {
4c4b4cd2 4727 block_depth += 1;
76a01679
JB
4728 ada_add_block_symbols (&symbol_list_obstack, block, name,
4729 namespace, NULL, NULL, wild_match);
14f9c5c9 4730
4c4b4cd2
PH
4731 /* If we found a non-function match, assume that's the one. */
4732 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
76a01679 4733 num_defns_collected (&symbol_list_obstack)))
4c4b4cd2 4734 goto done;
14f9c5c9
AS
4735
4736 block = BLOCK_SUPERBLOCK (block);
4737 }
4738
4c4b4cd2
PH
4739 /* If no luck so far, try to find NAME as a local symbol in some lexically
4740 enclosing subprogram. */
4741 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4742 add_symbols_from_enclosing_procs (&symbol_list_obstack,
76a01679 4743 name, namespace, wild_match);
4c4b4cd2
PH
4744
4745 /* If we found ANY matches among non-global symbols, we're done. */
14f9c5c9 4746
4c4b4cd2 4747 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4748 goto done;
d2e4a39e 4749
14f9c5c9 4750 cacheIfUnique = 1;
4c4b4cd2
PH
4751 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4752 {
4753 if (sym != NULL)
4754 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4755 goto done;
4756 }
14f9c5c9
AS
4757
4758 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4c4b4cd2 4759 tables, and psymtab's. */
14f9c5c9 4760
11309657 4761 ALL_PRIMARY_SYMTABS (objfile, s)
d2e4a39e
AS
4762 {
4763 QUIT;
d2e4a39e
AS
4764 bv = BLOCKVECTOR (s);
4765 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
76a01679
JB
4766 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4767 objfile, s, wild_match);
d2e4a39e 4768 }
14f9c5c9 4769
4c4b4cd2 4770 if (namespace == VAR_DOMAIN)
14f9c5c9
AS
4771 {
4772 ALL_MSYMBOLS (objfile, msymbol)
d2e4a39e 4773 {
4c4b4cd2
PH
4774 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4775 {
4776 switch (MSYMBOL_TYPE (msymbol))
4777 {
4778 case mst_solib_trampoline:
4779 break;
4780 default:
4781 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4782 if (s != NULL)
4783 {
4784 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4785 QUIT;
4786 bv = BLOCKVECTOR (s);
4787 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4788 ada_add_block_symbols (&symbol_list_obstack, block,
4789 SYMBOL_LINKAGE_NAME (msymbol),
4790 namespace, objfile, s, wild_match);
76a01679 4791
4c4b4cd2
PH
4792 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4793 {
4794 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4795 ada_add_block_symbols (&symbol_list_obstack, block,
4796 SYMBOL_LINKAGE_NAME (msymbol),
4797 namespace, objfile, s,
4798 wild_match);
4799 }
4800 }
4801 }
4802 }
d2e4a39e 4803 }
14f9c5c9 4804 }
d2e4a39e 4805
14f9c5c9 4806 ALL_PSYMTABS (objfile, ps)
d2e4a39e
AS
4807 {
4808 QUIT;
4809 if (!ps->readin
4c4b4cd2 4810 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
d2e4a39e 4811 {
4c4b4cd2
PH
4812 s = PSYMTAB_TO_SYMTAB (ps);
4813 if (!s->primary)
4814 continue;
4815 bv = BLOCKVECTOR (s);
4816 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4817 ada_add_block_symbols (&symbol_list_obstack, block, name,
76a01679 4818 namespace, objfile, s, wild_match);
d2e4a39e
AS
4819 }
4820 }
4821
4c4b4cd2 4822 /* Now add symbols from all per-file blocks if we've gotten no hits
14f9c5c9 4823 (Not strictly correct, but perhaps better than an error).
4c4b4cd2 4824 Do the symtabs first, then check the psymtabs. */
d2e4a39e 4825
4c4b4cd2 4826 if (num_defns_collected (&symbol_list_obstack) == 0)
14f9c5c9
AS
4827 {
4828
11309657 4829 ALL_PRIMARY_SYMTABS (objfile, s)
d2e4a39e 4830 {
4c4b4cd2 4831 QUIT;
4c4b4cd2
PH
4832 bv = BLOCKVECTOR (s);
4833 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
76a01679
JB
4834 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4835 objfile, s, wild_match);
d2e4a39e
AS
4836 }
4837
14f9c5c9 4838 ALL_PSYMTABS (objfile, ps)
d2e4a39e 4839 {
4c4b4cd2
PH
4840 QUIT;
4841 if (!ps->readin
4842 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4843 {
4844 s = PSYMTAB_TO_SYMTAB (ps);
4845 bv = BLOCKVECTOR (s);
4846 if (!s->primary)
4847 continue;
4848 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
76a01679
JB
4849 ada_add_block_symbols (&symbol_list_obstack, block, name,
4850 namespace, objfile, s, wild_match);
4c4b4cd2 4851 }
d2e4a39e
AS
4852 }
4853 }
14f9c5c9 4854
4c4b4cd2
PH
4855done:
4856 ndefns = num_defns_collected (&symbol_list_obstack);
4857 *results = defns_collected (&symbol_list_obstack, 1);
4858
4859 ndefns = remove_extra_symbols (*results, ndefns);
4860
d2e4a39e 4861 if (ndefns == 0)
4c4b4cd2 4862 cache_symbol (name0, namespace, NULL, NULL, NULL);
14f9c5c9 4863
4c4b4cd2 4864 if (ndefns == 1 && cacheIfUnique)
76a01679
JB
4865 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4866 (*results)[0].symtab);
14f9c5c9 4867
aeb5907d 4868 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4869
14f9c5c9
AS
4870 return ndefns;
4871}
4872
d2e4a39e 4873struct symbol *
aeb5907d
JB
4874ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4875 domain_enum namespace,
4876 struct block **block_found, struct symtab **symtab)
14f9c5c9 4877{
4c4b4cd2 4878 struct ada_symbol_info *candidates;
14f9c5c9
AS
4879 int n_candidates;
4880
aeb5907d 4881 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4882
4883 if (n_candidates == 0)
4884 return NULL;
4c4b4cd2 4885
aeb5907d
JB
4886 if (block_found != NULL)
4887 *block_found = candidates[0].block;
4c4b4cd2 4888
76a01679 4889 if (symtab != NULL)
4c4b4cd2
PH
4890 {
4891 *symtab = candidates[0].symtab;
76a01679
JB
4892 if (*symtab == NULL && candidates[0].block != NULL)
4893 {
4894 struct objfile *objfile;
4895 struct symtab *s;
4896 struct block *b;
4897 struct blockvector *bv;
4898
4899 /* Search the list of symtabs for one which contains the
4900 address of the start of this block. */
11309657 4901 ALL_PRIMARY_SYMTABS (objfile, s)
76a01679
JB
4902 {
4903 bv = BLOCKVECTOR (s);
4904 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4905 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4906 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4907 {
4908 *symtab = s;
4909 return fixup_symbol_section (candidates[0].sym, objfile);
4910 }
76a01679 4911 }
529cad9c
PH
4912 /* FIXME: brobecker/2004-11-12: I think that we should never
4913 reach this point. I don't see a reason why we would not
4914 find a symtab for a given block, so I suggest raising an
4915 internal_error exception here. Otherwise, we end up
4916 returning a symbol but no symtab, which certain parts of
4917 the code that rely (indirectly) on this function do not
4918 expect, eventually causing a SEGV. */
4919 return fixup_symbol_section (candidates[0].sym, NULL);
76a01679
JB
4920 }
4921 }
4c4b4cd2 4922 return candidates[0].sym;
aeb5907d
JB
4923}
4924
4925/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4926 scope and in global scopes, or NULL if none. NAME is folded and
4927 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4928 choosing the first symbol if there are multiple choices.
4929 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4930 table in which the symbol was found (in both cases, these
4931 assignments occur only if the pointers are non-null). */
4932struct symbol *
4933ada_lookup_symbol (const char *name, const struct block *block0,
4934 domain_enum namespace, int *is_a_field_of_this,
4935 struct symtab **symtab)
4936{
4937 if (is_a_field_of_this != NULL)
4938 *is_a_field_of_this = 0;
4939
4940 return
4941 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4942 block0, namespace, NULL, symtab);
4c4b4cd2 4943}
14f9c5c9 4944
4c4b4cd2
PH
4945static struct symbol *
4946ada_lookup_symbol_nonlocal (const char *name,
76a01679
JB
4947 const char *linkage_name,
4948 const struct block *block,
4949 const domain_enum domain, struct symtab **symtab)
4c4b4cd2
PH
4950{
4951 if (linkage_name == NULL)
4952 linkage_name = name;
76a01679
JB
4953 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4954 NULL, symtab);
14f9c5c9
AS
4955}
4956
4957
4c4b4cd2
PH
4958/* True iff STR is a possible encoded suffix of a normal Ada name
4959 that is to be ignored for matching purposes. Suffixes of parallel
4960 names (e.g., XVE) are not included here. Currently, the possible suffixes
4961 are given by either of the regular expression:
4962
babe1480
JB
4963 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4964 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4965 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4966 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4967
4968 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4969 match is performed. This sequence is used to differentiate homonyms,
4970 is an optional part of a valid name suffix. */
4c4b4cd2 4971
14f9c5c9 4972static int
d2e4a39e 4973is_name_suffix (const char *str)
14f9c5c9
AS
4974{
4975 int k;
4c4b4cd2
PH
4976 const char *matching;
4977 const int len = strlen (str);
4978
babe1480
JB
4979 /* Skip optional leading __[0-9]+. */
4980
4c4b4cd2
PH
4981 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4982 {
babe1480
JB
4983 str += 3;
4984 while (isdigit (str[0]))
4985 str += 1;
4c4b4cd2 4986 }
babe1480
JB
4987
4988 /* [.$][0-9]+ */
4c4b4cd2 4989
babe1480 4990 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 4991 {
babe1480 4992 matching = str + 1;
4c4b4cd2
PH
4993 while (isdigit (matching[0]))
4994 matching += 1;
4995 if (matching[0] == '\0')
4996 return 1;
4997 }
4998
4999 /* ___[0-9]+ */
babe1480 5000
4c4b4cd2
PH
5001 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5002 {
5003 matching = str + 3;
5004 while (isdigit (matching[0]))
5005 matching += 1;
5006 if (matching[0] == '\0')
5007 return 1;
5008 }
5009
529cad9c
PH
5010#if 0
5011 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5012 with a N at the end. Unfortunately, the compiler uses the same
5013 convention for other internal types it creates. So treating
5014 all entity names that end with an "N" as a name suffix causes
5015 some regressions. For instance, consider the case of an enumerated
5016 type. To support the 'Image attribute, it creates an array whose
5017 name ends with N.
5018 Having a single character like this as a suffix carrying some
5019 information is a bit risky. Perhaps we should change the encoding
5020 to be something like "_N" instead. In the meantime, do not do
5021 the following check. */
5022 /* Protected Object Subprograms */
5023 if (len == 1 && str [0] == 'N')
5024 return 1;
5025#endif
5026
5027 /* _E[0-9]+[bs]$ */
5028 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5029 {
5030 matching = str + 3;
5031 while (isdigit (matching[0]))
5032 matching += 1;
5033 if ((matching[0] == 'b' || matching[0] == 's')
5034 && matching [1] == '\0')
5035 return 1;
5036 }
5037
4c4b4cd2
PH
5038 /* ??? We should not modify STR directly, as we are doing below. This
5039 is fine in this case, but may become problematic later if we find
5040 that this alternative did not work, and want to try matching
5041 another one from the begining of STR. Since we modified it, we
5042 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5043 if (str[0] == 'X')
5044 {
5045 str += 1;
d2e4a39e 5046 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5047 {
5048 if (str[0] != 'n' && str[0] != 'b')
5049 return 0;
5050 str += 1;
5051 }
14f9c5c9 5052 }
babe1480 5053
14f9c5c9
AS
5054 if (str[0] == '\000')
5055 return 1;
babe1480 5056
d2e4a39e 5057 if (str[0] == '_')
14f9c5c9
AS
5058 {
5059 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5060 return 0;
d2e4a39e 5061 if (str[2] == '_')
4c4b4cd2 5062 {
61ee279c
PH
5063 if (strcmp (str + 3, "JM") == 0)
5064 return 1;
5065 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5066 the LJM suffix in favor of the JM one. But we will
5067 still accept LJM as a valid suffix for a reasonable
5068 amount of time, just to allow ourselves to debug programs
5069 compiled using an older version of GNAT. */
4c4b4cd2
PH
5070 if (strcmp (str + 3, "LJM") == 0)
5071 return 1;
5072 if (str[3] != 'X')
5073 return 0;
1265e4aa
JB
5074 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5075 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5076 return 1;
5077 if (str[4] == 'R' && str[5] != 'T')
5078 return 1;
5079 return 0;
5080 }
5081 if (!isdigit (str[2]))
5082 return 0;
5083 for (k = 3; str[k] != '\0'; k += 1)
5084 if (!isdigit (str[k]) && str[k] != '_')
5085 return 0;
14f9c5c9
AS
5086 return 1;
5087 }
4c4b4cd2 5088 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5089 {
4c4b4cd2
PH
5090 for (k = 2; str[k] != '\0'; k += 1)
5091 if (!isdigit (str[k]) && str[k] != '_')
5092 return 0;
14f9c5c9
AS
5093 return 1;
5094 }
5095 return 0;
5096}
d2e4a39e 5097
4c4b4cd2
PH
5098/* Return nonzero if the given string starts with a dot ('.')
5099 followed by zero or more digits.
5100
5101 Note: brobecker/2003-11-10: A forward declaration has not been
5102 added at the begining of this file yet, because this function
5103 is only used to work around a problem found during wild matching
5104 when trying to match minimal symbol names against symbol names
5105 obtained from dwarf-2 data. This function is therefore currently
5106 only used in wild_match() and is likely to be deleted when the
5107 problem in dwarf-2 is fixed. */
5108
5109static int
5110is_dot_digits_suffix (const char *str)
5111{
5112 if (str[0] != '.')
5113 return 0;
5114
5115 str++;
5116 while (isdigit (str[0]))
5117 str++;
5118 return (str[0] == '\0');
5119}
5120
aeb5907d
JB
5121/* Return non-zero if the string starting at NAME and ending before
5122 NAME_END contains no capital letters. */
529cad9c
PH
5123
5124static int
5125is_valid_name_for_wild_match (const char *name0)
5126{
5127 const char *decoded_name = ada_decode (name0);
5128 int i;
5129
5130 for (i=0; decoded_name[i] != '\0'; i++)
5131 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5132 return 0;
5133
5134 return 1;
5135}
5136
4c4b4cd2
PH
5137/* True if NAME represents a name of the form A1.A2....An, n>=1 and
5138 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5139 informational suffixes of NAME (i.e., for which is_name_suffix is
5140 true). */
5141
14f9c5c9 5142static int
4c4b4cd2 5143wild_match (const char *patn0, int patn_len, const char *name0)
14f9c5c9
AS
5144{
5145 int name_len;
4c4b4cd2 5146 char *name;
aeb5907d 5147 char *name_start;
4c4b4cd2
PH
5148 char *patn;
5149
5150 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5151 stored in the symbol table for nested function names is sometimes
5152 different from the name of the associated entity stored in
5153 the dwarf-2 data: This is the case for nested subprograms, where
5154 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5155 while the symbol name from the dwarf-2 data does not.
5156
5157 Although the DWARF-2 standard documents that entity names stored
5158 in the dwarf-2 data should be identical to the name as seen in
5159 the source code, GNAT takes a different approach as we already use
5160 a special encoding mechanism to convey the information so that
5161 a C debugger can still use the information generated to debug
5162 Ada programs. A corollary is that the symbol names in the dwarf-2
5163 data should match the names found in the symbol table. I therefore
5164 consider this issue as a compiler defect.
76a01679 5165
4c4b4cd2
PH
5166 Until the compiler is properly fixed, we work-around the problem
5167 by ignoring such suffixes during the match. We do so by making
5168 a copy of PATN0 and NAME0, and then by stripping such a suffix
5169 if present. We then perform the match on the resulting strings. */
5170 {
5171 char *dot;
5172 name_len = strlen (name0);
5173
aeb5907d 5174 name = name_start = (char *) alloca ((name_len + 1) * sizeof (char));
4c4b4cd2
PH
5175 strcpy (name, name0);
5176 dot = strrchr (name, '.');
5177 if (dot != NULL && is_dot_digits_suffix (dot))
5178 *dot = '\0';
5179
5180 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5181 strncpy (patn, patn0, patn_len);
5182 patn[patn_len] = '\0';
5183 dot = strrchr (patn, '.');
5184 if (dot != NULL && is_dot_digits_suffix (dot))
5185 {
5186 *dot = '\0';
5187 patn_len = dot - patn;
5188 }
5189 }
5190
5191 /* Now perform the wild match. */
14f9c5c9
AS
5192
5193 name_len = strlen (name);
4c4b4cd2
PH
5194 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5195 && strncmp (patn, name + 5, patn_len) == 0
d2e4a39e 5196 && is_name_suffix (name + patn_len + 5))
14f9c5c9
AS
5197 return 1;
5198
d2e4a39e 5199 while (name_len >= patn_len)
14f9c5c9 5200 {
4c4b4cd2
PH
5201 if (strncmp (patn, name, patn_len) == 0
5202 && is_name_suffix (name + patn_len))
aeb5907d 5203 return (name == name_start || is_valid_name_for_wild_match (name0));
4c4b4cd2
PH
5204 do
5205 {
5206 name += 1;
5207 name_len -= 1;
5208 }
d2e4a39e 5209 while (name_len > 0
4c4b4cd2 5210 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
14f9c5c9 5211 if (name_len <= 0)
4c4b4cd2 5212 return 0;
14f9c5c9 5213 if (name[0] == '_')
4c4b4cd2
PH
5214 {
5215 if (!islower (name[2]))
5216 return 0;
5217 name += 2;
5218 name_len -= 2;
5219 }
14f9c5c9 5220 else
4c4b4cd2
PH
5221 {
5222 if (!islower (name[1]))
5223 return 0;
5224 name += 1;
5225 name_len -= 1;
5226 }
96d887e8
PH
5227 }
5228
5229 return 0;
5230}
5231
5232
5233/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5234 vector *defn_symbols, updating the list of symbols in OBSTACKP
5235 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5236 OBJFILE is the section containing BLOCK.
5237 SYMTAB is recorded with each symbol added. */
5238
5239static void
5240ada_add_block_symbols (struct obstack *obstackp,
76a01679 5241 struct block *block, const char *name,
96d887e8
PH
5242 domain_enum domain, struct objfile *objfile,
5243 struct symtab *symtab, int wild)
5244{
5245 struct dict_iterator iter;
5246 int name_len = strlen (name);
5247 /* A matching argument symbol, if any. */
5248 struct symbol *arg_sym;
5249 /* Set true when we find a matching non-argument symbol. */
5250 int found_sym;
5251 struct symbol *sym;
5252
5253 arg_sym = NULL;
5254 found_sym = 0;
5255 if (wild)
5256 {
5257 struct symbol *sym;
5258 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5259 {
5eeb2539
AR
5260 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5261 SYMBOL_DOMAIN (sym), domain)
1265e4aa 5262 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
76a01679
JB
5263 {
5264 switch (SYMBOL_CLASS (sym))
5265 {
5266 case LOC_ARG:
5267 case LOC_LOCAL_ARG:
5268 case LOC_REF_ARG:
5269 case LOC_REGPARM:
5270 case LOC_REGPARM_ADDR:
5271 case LOC_BASEREG_ARG:
5272 case LOC_COMPUTED_ARG:
5273 arg_sym = sym;
5274 break;
5275 case LOC_UNRESOLVED:
5276 continue;
5277 default:
5278 found_sym = 1;
5279 add_defn_to_vec (obstackp,
5280 fixup_symbol_section (sym, objfile),
5281 block, symtab);
5282 break;
5283 }
5284 }
5285 }
96d887e8
PH
5286 }
5287 else
5288 {
5289 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5290 {
5eeb2539
AR
5291 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5292 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5293 {
5294 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5295 if (cmp == 0
5296 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5297 {
5298 switch (SYMBOL_CLASS (sym))
5299 {
5300 case LOC_ARG:
5301 case LOC_LOCAL_ARG:
5302 case LOC_REF_ARG:
5303 case LOC_REGPARM:
5304 case LOC_REGPARM_ADDR:
5305 case LOC_BASEREG_ARG:
5306 case LOC_COMPUTED_ARG:
5307 arg_sym = sym;
5308 break;
5309 case LOC_UNRESOLVED:
5310 break;
5311 default:
5312 found_sym = 1;
5313 add_defn_to_vec (obstackp,
5314 fixup_symbol_section (sym, objfile),
5315 block, symtab);
5316 break;
5317 }
5318 }
5319 }
5320 }
96d887e8
PH
5321 }
5322
5323 if (!found_sym && arg_sym != NULL)
5324 {
76a01679
JB
5325 add_defn_to_vec (obstackp,
5326 fixup_symbol_section (arg_sym, objfile),
5327 block, symtab);
96d887e8
PH
5328 }
5329
5330 if (!wild)
5331 {
5332 arg_sym = NULL;
5333 found_sym = 0;
5334
5335 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5336 {
5eeb2539
AR
5337 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5338 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5339 {
5340 int cmp;
5341
5342 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5343 if (cmp == 0)
5344 {
5345 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5346 if (cmp == 0)
5347 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5348 name_len);
5349 }
5350
5351 if (cmp == 0
5352 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5353 {
5354 switch (SYMBOL_CLASS (sym))
5355 {
5356 case LOC_ARG:
5357 case LOC_LOCAL_ARG:
5358 case LOC_REF_ARG:
5359 case LOC_REGPARM:
5360 case LOC_REGPARM_ADDR:
5361 case LOC_BASEREG_ARG:
5362 case LOC_COMPUTED_ARG:
5363 arg_sym = sym;
5364 break;
5365 case LOC_UNRESOLVED:
5366 break;
5367 default:
5368 found_sym = 1;
5369 add_defn_to_vec (obstackp,
5370 fixup_symbol_section (sym, objfile),
5371 block, symtab);
5372 break;
5373 }
5374 }
5375 }
76a01679 5376 }
96d887e8
PH
5377
5378 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5379 They aren't parameters, right? */
5380 if (!found_sym && arg_sym != NULL)
5381 {
5382 add_defn_to_vec (obstackp,
76a01679
JB
5383 fixup_symbol_section (arg_sym, objfile),
5384 block, symtab);
96d887e8
PH
5385 }
5386 }
5387}
5388\f
41d27058
JB
5389
5390 /* Symbol Completion */
5391
5392/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5393 name in a form that's appropriate for the completion. The result
5394 does not need to be deallocated, but is only good until the next call.
5395
5396 TEXT_LEN is equal to the length of TEXT.
5397 Perform a wild match if WILD_MATCH is set.
5398 ENCODED should be set if TEXT represents the start of a symbol name
5399 in its encoded form. */
5400
5401static const char *
5402symbol_completion_match (const char *sym_name,
5403 const char *text, int text_len,
5404 int wild_match, int encoded)
5405{
5406 char *result;
5407 const int verbatim_match = (text[0] == '<');
5408 int match = 0;
5409
5410 if (verbatim_match)
5411 {
5412 /* Strip the leading angle bracket. */
5413 text = text + 1;
5414 text_len--;
5415 }
5416
5417 /* First, test against the fully qualified name of the symbol. */
5418
5419 if (strncmp (sym_name, text, text_len) == 0)
5420 match = 1;
5421
5422 if (match && !encoded)
5423 {
5424 /* One needed check before declaring a positive match is to verify
5425 that iff we are doing a verbatim match, the decoded version
5426 of the symbol name starts with '<'. Otherwise, this symbol name
5427 is not a suitable completion. */
5428 const char *sym_name_copy = sym_name;
5429 int has_angle_bracket;
5430
5431 sym_name = ada_decode (sym_name);
5432 has_angle_bracket = (sym_name[0] == '<');
5433 match = (has_angle_bracket == verbatim_match);
5434 sym_name = sym_name_copy;
5435 }
5436
5437 if (match && !verbatim_match)
5438 {
5439 /* When doing non-verbatim match, another check that needs to
5440 be done is to verify that the potentially matching symbol name
5441 does not include capital letters, because the ada-mode would
5442 not be able to understand these symbol names without the
5443 angle bracket notation. */
5444 const char *tmp;
5445
5446 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5447 if (*tmp != '\0')
5448 match = 0;
5449 }
5450
5451 /* Second: Try wild matching... */
5452
5453 if (!match && wild_match)
5454 {
5455 /* Since we are doing wild matching, this means that TEXT
5456 may represent an unqualified symbol name. We therefore must
5457 also compare TEXT against the unqualified name of the symbol. */
5458 sym_name = ada_unqualified_name (ada_decode (sym_name));
5459
5460 if (strncmp (sym_name, text, text_len) == 0)
5461 match = 1;
5462 }
5463
5464 /* Finally: If we found a mach, prepare the result to return. */
5465
5466 if (!match)
5467 return NULL;
5468
5469 if (verbatim_match)
5470 sym_name = add_angle_brackets (sym_name);
5471
5472 if (!encoded)
5473 sym_name = ada_decode (sym_name);
5474
5475 return sym_name;
5476}
5477
2ba95b9b
JB
5478typedef char *char_ptr;
5479DEF_VEC_P (char_ptr);
5480
41d27058
JB
5481/* A companion function to ada_make_symbol_completion_list().
5482 Check if SYM_NAME represents a symbol which name would be suitable
5483 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5484 it is appended at the end of the given string vector SV.
5485
5486 ORIG_TEXT is the string original string from the user command
5487 that needs to be completed. WORD is the entire command on which
5488 completion should be performed. These two parameters are used to
5489 determine which part of the symbol name should be added to the
5490 completion vector.
5491 if WILD_MATCH is set, then wild matching is performed.
5492 ENCODED should be set if TEXT represents a symbol name in its
5493 encoded formed (in which case the completion should also be
5494 encoded). */
5495
5496static void
d6565258 5497symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5498 const char *sym_name,
5499 const char *text, int text_len,
5500 const char *orig_text, const char *word,
5501 int wild_match, int encoded)
5502{
5503 const char *match = symbol_completion_match (sym_name, text, text_len,
5504 wild_match, encoded);
5505 char *completion;
5506
5507 if (match == NULL)
5508 return;
5509
5510 /* We found a match, so add the appropriate completion to the given
5511 string vector. */
5512
5513 if (word == orig_text)
5514 {
5515 completion = xmalloc (strlen (match) + 5);
5516 strcpy (completion, match);
5517 }
5518 else if (word > orig_text)
5519 {
5520 /* Return some portion of sym_name. */
5521 completion = xmalloc (strlen (match) + 5);
5522 strcpy (completion, match + (word - orig_text));
5523 }
5524 else
5525 {
5526 /* Return some of ORIG_TEXT plus sym_name. */
5527 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5528 strncpy (completion, word, orig_text - word);
5529 completion[orig_text - word] = '\0';
5530 strcat (completion, match);
5531 }
5532
d6565258 5533 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5534}
5535
5536/* Return a list of possible symbol names completing TEXT0. The list
5537 is NULL terminated. WORD is the entire command on which completion
5538 is made. */
5539
5540static char **
5541ada_make_symbol_completion_list (char *text0, char *word)
5542{
5543 char *text;
5544 int text_len;
5545 int wild_match;
5546 int encoded;
2ba95b9b 5547 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5548 struct symbol *sym;
5549 struct symtab *s;
5550 struct partial_symtab *ps;
5551 struct minimal_symbol *msymbol;
5552 struct objfile *objfile;
5553 struct block *b, *surrounding_static_block = 0;
5554 int i;
5555 struct dict_iterator iter;
5556
5557 if (text0[0] == '<')
5558 {
5559 text = xstrdup (text0);
5560 make_cleanup (xfree, text);
5561 text_len = strlen (text);
5562 wild_match = 0;
5563 encoded = 1;
5564 }
5565 else
5566 {
5567 text = xstrdup (ada_encode (text0));
5568 make_cleanup (xfree, text);
5569 text_len = strlen (text);
5570 for (i = 0; i < text_len; i++)
5571 text[i] = tolower (text[i]);
5572
5573 encoded = (strstr (text0, "__") != NULL);
5574 /* If the name contains a ".", then the user is entering a fully
5575 qualified entity name, and the match must not be done in wild
5576 mode. Similarly, if the user wants to complete what looks like
5577 an encoded name, the match must not be done in wild mode. */
5578 wild_match = (strchr (text0, '.') == NULL && !encoded);
5579 }
5580
5581 /* First, look at the partial symtab symbols. */
5582 ALL_PSYMTABS (objfile, ps)
5583 {
5584 struct partial_symbol **psym;
5585
5586 /* If the psymtab's been read in we'll get it when we search
5587 through the blockvector. */
5588 if (ps->readin)
5589 continue;
5590
5591 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5592 psym < (objfile->global_psymbols.list + ps->globals_offset
5593 + ps->n_global_syms); psym++)
5594 {
5595 QUIT;
d6565258 5596 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5597 text, text_len, text0, word,
5598 wild_match, encoded);
5599 }
5600
5601 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5602 psym < (objfile->static_psymbols.list + ps->statics_offset
5603 + ps->n_static_syms); psym++)
5604 {
5605 QUIT;
d6565258 5606 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5607 text, text_len, text0, word,
5608 wild_match, encoded);
5609 }
5610 }
5611
5612 /* At this point scan through the misc symbol vectors and add each
5613 symbol you find to the list. Eventually we want to ignore
5614 anything that isn't a text symbol (everything else will be
5615 handled by the psymtab code above). */
5616
5617 ALL_MSYMBOLS (objfile, msymbol)
5618 {
5619 QUIT;
d6565258 5620 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5621 text, text_len, text0, word, wild_match, encoded);
5622 }
5623
5624 /* Search upwards from currently selected frame (so that we can
5625 complete on local vars. */
5626
5627 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5628 {
5629 if (!BLOCK_SUPERBLOCK (b))
5630 surrounding_static_block = b; /* For elmin of dups */
5631
5632 ALL_BLOCK_SYMBOLS (b, iter, sym)
5633 {
d6565258 5634 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5635 text, text_len, text0, word,
5636 wild_match, encoded);
5637 }
5638 }
5639
5640 /* Go through the symtabs and check the externs and statics for
5641 symbols which match. */
5642
5643 ALL_SYMTABS (objfile, s)
5644 {
5645 QUIT;
5646 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5647 ALL_BLOCK_SYMBOLS (b, iter, sym)
5648 {
d6565258 5649 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5650 text, text_len, text0, word,
5651 wild_match, encoded);
5652 }
5653 }
5654
5655 ALL_SYMTABS (objfile, s)
5656 {
5657 QUIT;
5658 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5659 /* Don't do this block twice. */
5660 if (b == surrounding_static_block)
5661 continue;
5662 ALL_BLOCK_SYMBOLS (b, iter, sym)
5663 {
d6565258 5664 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5665 text, text_len, text0, word,
5666 wild_match, encoded);
5667 }
5668 }
5669
5670 /* Append the closing NULL entry. */
2ba95b9b 5671 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5672
2ba95b9b
JB
5673 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5674 return the copy. It's unfortunate that we have to make a copy
5675 of an array that we're about to destroy, but there is nothing much
5676 we can do about it. Fortunately, it's typically not a very large
5677 array. */
5678 {
5679 const size_t completions_size =
5680 VEC_length (char_ptr, completions) * sizeof (char *);
5681 char **result = malloc (completions_size);
5682
5683 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5684
5685 VEC_free (char_ptr, completions);
5686 return result;
5687 }
41d27058
JB
5688}
5689
963a6417 5690 /* Field Access */
96d887e8 5691
73fb9985
JB
5692/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5693 for tagged types. */
5694
5695static int
5696ada_is_dispatch_table_ptr_type (struct type *type)
5697{
5698 char *name;
5699
5700 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5701 return 0;
5702
5703 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5704 if (name == NULL)
5705 return 0;
5706
5707 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5708}
5709
963a6417
PH
5710/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5711 to be invisible to users. */
96d887e8 5712
963a6417
PH
5713int
5714ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5715{
963a6417
PH
5716 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5717 return 1;
73fb9985
JB
5718
5719 /* Check the name of that field. */
5720 {
5721 const char *name = TYPE_FIELD_NAME (type, field_num);
5722
5723 /* Anonymous field names should not be printed.
5724 brobecker/2007-02-20: I don't think this can actually happen
5725 but we don't want to print the value of annonymous fields anyway. */
5726 if (name == NULL)
5727 return 1;
5728
5729 /* A field named "_parent" is internally generated by GNAT for
5730 tagged types, and should not be printed either. */
5731 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5732 return 1;
5733 }
5734
5735 /* If this is the dispatch table of a tagged type, then ignore. */
5736 if (ada_is_tagged_type (type, 1)
5737 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5738 return 1;
5739
5740 /* Not a special field, so it should not be ignored. */
5741 return 0;
963a6417 5742}
96d887e8 5743
963a6417
PH
5744/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5745 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5746
963a6417
PH
5747int
5748ada_is_tagged_type (struct type *type, int refok)
5749{
5750 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5751}
96d887e8 5752
963a6417 5753/* True iff TYPE represents the type of X'Tag */
96d887e8 5754
963a6417
PH
5755int
5756ada_is_tag_type (struct type *type)
5757{
5758 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5759 return 0;
5760 else
96d887e8 5761 {
963a6417
PH
5762 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5763 return (name != NULL
5764 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5765 }
96d887e8
PH
5766}
5767
963a6417 5768/* The type of the tag on VAL. */
76a01679 5769
963a6417
PH
5770struct type *
5771ada_tag_type (struct value *val)
96d887e8 5772{
df407dfe 5773 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5774}
96d887e8 5775
963a6417 5776/* The value of the tag on VAL. */
96d887e8 5777
963a6417
PH
5778struct value *
5779ada_value_tag (struct value *val)
5780{
03ee6b2e 5781 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5782}
5783
963a6417
PH
5784/* The value of the tag on the object of type TYPE whose contents are
5785 saved at VALADDR, if it is non-null, or is at memory address
5786 ADDRESS. */
96d887e8 5787
963a6417 5788static struct value *
10a2c479 5789value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5790 const gdb_byte *valaddr,
963a6417 5791 CORE_ADDR address)
96d887e8 5792{
963a6417
PH
5793 int tag_byte_offset, dummy1, dummy2;
5794 struct type *tag_type;
5795 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5796 NULL, NULL, NULL))
96d887e8 5797 {
fc1a4b47 5798 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5799 ? NULL
5800 : valaddr + tag_byte_offset);
963a6417 5801 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5802
963a6417 5803 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5804 }
963a6417
PH
5805 return NULL;
5806}
96d887e8 5807
963a6417
PH
5808static struct type *
5809type_from_tag (struct value *tag)
5810{
5811 const char *type_name = ada_tag_name (tag);
5812 if (type_name != NULL)
5813 return ada_find_any_type (ada_encode (type_name));
5814 return NULL;
5815}
96d887e8 5816
963a6417
PH
5817struct tag_args
5818{
5819 struct value *tag;
5820 char *name;
5821};
4c4b4cd2 5822
529cad9c
PH
5823
5824static int ada_tag_name_1 (void *);
5825static int ada_tag_name_2 (struct tag_args *);
5826
4c4b4cd2
PH
5827/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5828 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5829 The value stored in ARGS->name is valid until the next call to
5830 ada_tag_name_1. */
5831
5832static int
5833ada_tag_name_1 (void *args0)
5834{
5835 struct tag_args *args = (struct tag_args *) args0;
5836 static char name[1024];
76a01679 5837 char *p;
4c4b4cd2
PH
5838 struct value *val;
5839 args->name = NULL;
03ee6b2e 5840 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5841 if (val == NULL)
5842 return ada_tag_name_2 (args);
03ee6b2e 5843 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5844 if (val == NULL)
5845 return 0;
5846 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5847 for (p = name; *p != '\0'; p += 1)
5848 if (isalpha (*p))
5849 *p = tolower (*p);
5850 args->name = name;
5851 return 0;
5852}
5853
5854/* Utility function for ada_tag_name_1 that tries the second
5855 representation for the dispatch table (in which there is no
5856 explicit 'tsd' field in the referent of the tag pointer, and instead
5857 the tsd pointer is stored just before the dispatch table. */
5858
5859static int
5860ada_tag_name_2 (struct tag_args *args)
5861{
5862 struct type *info_type;
5863 static char name[1024];
5864 char *p;
5865 struct value *val, *valp;
5866
5867 args->name = NULL;
5868 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5869 if (info_type == NULL)
5870 return 0;
5871 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5872 valp = value_cast (info_type, args->tag);
5873 if (valp == NULL)
5874 return 0;
5875 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
4c4b4cd2
PH
5876 if (val == NULL)
5877 return 0;
03ee6b2e 5878 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5879 if (val == NULL)
5880 return 0;
5881 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5882 for (p = name; *p != '\0'; p += 1)
5883 if (isalpha (*p))
5884 *p = tolower (*p);
5885 args->name = name;
5886 return 0;
5887}
5888
5889/* The type name of the dynamic type denoted by the 'tag value TAG, as
5890 * a C string. */
5891
5892const char *
5893ada_tag_name (struct value *tag)
5894{
5895 struct tag_args args;
df407dfe 5896 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5897 return NULL;
76a01679 5898 args.tag = tag;
4c4b4cd2
PH
5899 args.name = NULL;
5900 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5901 return args.name;
5902}
5903
5904/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5905
d2e4a39e 5906struct type *
ebf56fd3 5907ada_parent_type (struct type *type)
14f9c5c9
AS
5908{
5909 int i;
5910
61ee279c 5911 type = ada_check_typedef (type);
14f9c5c9
AS
5912
5913 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5914 return NULL;
5915
5916 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5917 if (ada_is_parent_field (type, i))
61ee279c 5918 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
14f9c5c9
AS
5919
5920 return NULL;
5921}
5922
4c4b4cd2
PH
5923/* True iff field number FIELD_NUM of structure type TYPE contains the
5924 parent-type (inherited) fields of a derived type. Assumes TYPE is
5925 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5926
5927int
ebf56fd3 5928ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5929{
61ee279c 5930 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
4c4b4cd2
PH
5931 return (name != NULL
5932 && (strncmp (name, "PARENT", 6) == 0
5933 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5934}
5935
4c4b4cd2 5936/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5937 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5938 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5939 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5940 structures. */
14f9c5c9
AS
5941
5942int
ebf56fd3 5943ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5944{
d2e4a39e
AS
5945 const char *name = TYPE_FIELD_NAME (type, field_num);
5946 return (name != NULL
4c4b4cd2
PH
5947 && (strncmp (name, "PARENT", 6) == 0
5948 || strcmp (name, "REP") == 0
5949 || strncmp (name, "_parent", 7) == 0
5950 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5951}
5952
4c4b4cd2
PH
5953/* True iff field number FIELD_NUM of structure or union type TYPE
5954 is a variant wrapper. Assumes TYPE is a structure type with at least
5955 FIELD_NUM+1 fields. */
14f9c5c9
AS
5956
5957int
ebf56fd3 5958ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5959{
d2e4a39e 5960 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
14f9c5c9 5961 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5962 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5963 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5964 == TYPE_CODE_UNION)));
14f9c5c9
AS
5965}
5966
5967/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5968 whose discriminants are contained in the record type OUTER_TYPE,
14f9c5c9
AS
5969 returns the type of the controlling discriminant for the variant. */
5970
d2e4a39e 5971struct type *
ebf56fd3 5972ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5973{
d2e4a39e 5974 char *name = ada_variant_discrim_name (var_type);
76a01679 5975 struct type *type =
4c4b4cd2 5976 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
5977 if (type == NULL)
5978 return builtin_type_int;
5979 else
5980 return type;
5981}
5982
4c4b4cd2 5983/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5984 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5985 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5986
5987int
ebf56fd3 5988ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5989{
d2e4a39e 5990 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5991 return (name != NULL && name[0] == 'O');
5992}
5993
5994/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5995 returns the name of the discriminant controlling the variant.
5996 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5997
d2e4a39e 5998char *
ebf56fd3 5999ada_variant_discrim_name (struct type *type0)
14f9c5c9 6000{
d2e4a39e 6001 static char *result = NULL;
14f9c5c9 6002 static size_t result_len = 0;
d2e4a39e
AS
6003 struct type *type;
6004 const char *name;
6005 const char *discrim_end;
6006 const char *discrim_start;
14f9c5c9
AS
6007
6008 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6009 type = TYPE_TARGET_TYPE (type0);
6010 else
6011 type = type0;
6012
6013 name = ada_type_name (type);
6014
6015 if (name == NULL || name[0] == '\000')
6016 return "";
6017
6018 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6019 discrim_end -= 1)
6020 {
4c4b4cd2
PH
6021 if (strncmp (discrim_end, "___XVN", 6) == 0)
6022 break;
14f9c5c9
AS
6023 }
6024 if (discrim_end == name)
6025 return "";
6026
d2e4a39e 6027 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6028 discrim_start -= 1)
6029 {
d2e4a39e 6030 if (discrim_start == name + 1)
4c4b4cd2 6031 return "";
76a01679 6032 if ((discrim_start > name + 3
4c4b4cd2
PH
6033 && strncmp (discrim_start - 3, "___", 3) == 0)
6034 || discrim_start[-1] == '.')
6035 break;
14f9c5c9
AS
6036 }
6037
6038 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6039 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6040 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6041 return result;
6042}
6043
4c4b4cd2
PH
6044/* Scan STR for a subtype-encoded number, beginning at position K.
6045 Put the position of the character just past the number scanned in
6046 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6047 Return 1 if there was a valid number at the given position, and 0
6048 otherwise. A "subtype-encoded" number consists of the absolute value
6049 in decimal, followed by the letter 'm' to indicate a negative number.
6050 Assumes 0m does not occur. */
14f9c5c9
AS
6051
6052int
d2e4a39e 6053ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6054{
6055 ULONGEST RU;
6056
d2e4a39e 6057 if (!isdigit (str[k]))
14f9c5c9
AS
6058 return 0;
6059
4c4b4cd2 6060 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6061 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6062 LONGEST. */
14f9c5c9
AS
6063 RU = 0;
6064 while (isdigit (str[k]))
6065 {
d2e4a39e 6066 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6067 k += 1;
6068 }
6069
d2e4a39e 6070 if (str[k] == 'm')
14f9c5c9
AS
6071 {
6072 if (R != NULL)
4c4b4cd2 6073 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6074 k += 1;
6075 }
6076 else if (R != NULL)
6077 *R = (LONGEST) RU;
6078
4c4b4cd2 6079 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6080 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6081 number representable as a LONGEST (although either would probably work
6082 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6083 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6084
6085 if (new_k != NULL)
6086 *new_k = k;
6087 return 1;
6088}
6089
4c4b4cd2
PH
6090/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6091 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6092 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6093
d2e4a39e 6094int
ebf56fd3 6095ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6096{
d2e4a39e 6097 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6098 int p;
6099
6100 p = 0;
6101 while (1)
6102 {
d2e4a39e 6103 switch (name[p])
4c4b4cd2
PH
6104 {
6105 case '\0':
6106 return 0;
6107 case 'S':
6108 {
6109 LONGEST W;
6110 if (!ada_scan_number (name, p + 1, &W, &p))
6111 return 0;
6112 if (val == W)
6113 return 1;
6114 break;
6115 }
6116 case 'R':
6117 {
6118 LONGEST L, U;
6119 if (!ada_scan_number (name, p + 1, &L, &p)
6120 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6121 return 0;
6122 if (val >= L && val <= U)
6123 return 1;
6124 break;
6125 }
6126 case 'O':
6127 return 1;
6128 default:
6129 return 0;
6130 }
6131 }
6132}
6133
6134/* FIXME: Lots of redundancy below. Try to consolidate. */
6135
6136/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6137 ARG_TYPE, extract and return the value of one of its (non-static)
6138 fields. FIELDNO says which field. Differs from value_primitive_field
6139 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6140
4c4b4cd2 6141static struct value *
d2e4a39e 6142ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6143 struct type *arg_type)
14f9c5c9 6144{
14f9c5c9
AS
6145 struct type *type;
6146
61ee279c 6147 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6148 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6149
4c4b4cd2 6150 /* Handle packed fields. */
14f9c5c9
AS
6151
6152 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6153 {
6154 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6155 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6156
0fd88904 6157 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6158 offset + bit_pos / 8,
6159 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6160 }
6161 else
6162 return value_primitive_field (arg1, offset, fieldno, arg_type);
6163}
6164
52ce6436
PH
6165/* Find field with name NAME in object of type TYPE. If found,
6166 set the following for each argument that is non-null:
6167 - *FIELD_TYPE_P to the field's type;
6168 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6169 an object of that type;
6170 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6171 - *BIT_SIZE_P to its size in bits if the field is packed, and
6172 0 otherwise;
6173 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6174 fields up to but not including the desired field, or by the total
6175 number of fields if not found. A NULL value of NAME never
6176 matches; the function just counts visible fields in this case.
6177
6178 Returns 1 if found, 0 otherwise. */
6179
4c4b4cd2 6180static int
76a01679
JB
6181find_struct_field (char *name, struct type *type, int offset,
6182 struct type **field_type_p,
52ce6436
PH
6183 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6184 int *index_p)
4c4b4cd2
PH
6185{
6186 int i;
6187
61ee279c 6188 type = ada_check_typedef (type);
76a01679 6189
52ce6436
PH
6190 if (field_type_p != NULL)
6191 *field_type_p = NULL;
6192 if (byte_offset_p != NULL)
d5d6fca5 6193 *byte_offset_p = 0;
52ce6436
PH
6194 if (bit_offset_p != NULL)
6195 *bit_offset_p = 0;
6196 if (bit_size_p != NULL)
6197 *bit_size_p = 0;
6198
6199 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6200 {
6201 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6202 int fld_offset = offset + bit_pos / 8;
6203 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6204
4c4b4cd2
PH
6205 if (t_field_name == NULL)
6206 continue;
6207
52ce6436 6208 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6209 {
6210 int bit_size = TYPE_FIELD_BITSIZE (type, i);
52ce6436
PH
6211 if (field_type_p != NULL)
6212 *field_type_p = TYPE_FIELD_TYPE (type, i);
6213 if (byte_offset_p != NULL)
6214 *byte_offset_p = fld_offset;
6215 if (bit_offset_p != NULL)
6216 *bit_offset_p = bit_pos % 8;
6217 if (bit_size_p != NULL)
6218 *bit_size_p = bit_size;
76a01679
JB
6219 return 1;
6220 }
4c4b4cd2
PH
6221 else if (ada_is_wrapper_field (type, i))
6222 {
52ce6436
PH
6223 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6224 field_type_p, byte_offset_p, bit_offset_p,
6225 bit_size_p, index_p))
76a01679
JB
6226 return 1;
6227 }
4c4b4cd2
PH
6228 else if (ada_is_variant_part (type, i))
6229 {
52ce6436
PH
6230 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6231 fixed type?? */
4c4b4cd2 6232 int j;
52ce6436
PH
6233 struct type *field_type
6234 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6235
52ce6436 6236 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6237 {
76a01679
JB
6238 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6239 fld_offset
6240 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6241 field_type_p, byte_offset_p,
52ce6436 6242 bit_offset_p, bit_size_p, index_p))
76a01679 6243 return 1;
4c4b4cd2
PH
6244 }
6245 }
52ce6436
PH
6246 else if (index_p != NULL)
6247 *index_p += 1;
4c4b4cd2
PH
6248 }
6249 return 0;
6250}
6251
52ce6436 6252/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6253
52ce6436
PH
6254static int
6255num_visible_fields (struct type *type)
6256{
6257 int n;
6258 n = 0;
6259 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6260 return n;
6261}
14f9c5c9 6262
4c4b4cd2 6263/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6264 and search in it assuming it has (class) type TYPE.
6265 If found, return value, else return NULL.
6266
4c4b4cd2 6267 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6268
4c4b4cd2 6269static struct value *
d2e4a39e 6270ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6271 struct type *type)
14f9c5c9
AS
6272{
6273 int i;
61ee279c 6274 type = ada_check_typedef (type);
14f9c5c9 6275
52ce6436 6276 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
6277 {
6278 char *t_field_name = TYPE_FIELD_NAME (type, i);
6279
6280 if (t_field_name == NULL)
4c4b4cd2 6281 continue;
14f9c5c9
AS
6282
6283 else if (field_name_match (t_field_name, name))
4c4b4cd2 6284 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6285
6286 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6287 {
06d5cf63
JB
6288 struct value *v = /* Do not let indent join lines here. */
6289 ada_search_struct_field (name, arg,
6290 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6291 TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6292 if (v != NULL)
6293 return v;
6294 }
14f9c5c9
AS
6295
6296 else if (ada_is_variant_part (type, i))
4c4b4cd2 6297 {
52ce6436 6298 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6299 int j;
61ee279c 6300 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6301 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6302
52ce6436 6303 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6304 {
06d5cf63
JB
6305 struct value *v = ada_search_struct_field /* Force line break. */
6306 (name, arg,
6307 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6308 TYPE_FIELD_TYPE (field_type, j));
4c4b4cd2
PH
6309 if (v != NULL)
6310 return v;
6311 }
6312 }
14f9c5c9
AS
6313 }
6314 return NULL;
6315}
d2e4a39e 6316
52ce6436
PH
6317static struct value *ada_index_struct_field_1 (int *, struct value *,
6318 int, struct type *);
6319
6320
6321/* Return field #INDEX in ARG, where the index is that returned by
6322 * find_struct_field through its INDEX_P argument. Adjust the address
6323 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6324 * If found, return value, else return NULL. */
6325
6326static struct value *
6327ada_index_struct_field (int index, struct value *arg, int offset,
6328 struct type *type)
6329{
6330 return ada_index_struct_field_1 (&index, arg, offset, type);
6331}
6332
6333
6334/* Auxiliary function for ada_index_struct_field. Like
6335 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6336 * *INDEX_P. */
6337
6338static struct value *
6339ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6340 struct type *type)
6341{
6342 int i;
6343 type = ada_check_typedef (type);
6344
6345 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6346 {
6347 if (TYPE_FIELD_NAME (type, i) == NULL)
6348 continue;
6349 else if (ada_is_wrapper_field (type, i))
6350 {
6351 struct value *v = /* Do not let indent join lines here. */
6352 ada_index_struct_field_1 (index_p, arg,
6353 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6354 TYPE_FIELD_TYPE (type, i));
6355 if (v != NULL)
6356 return v;
6357 }
6358
6359 else if (ada_is_variant_part (type, i))
6360 {
6361 /* PNH: Do we ever get here? See ada_search_struct_field,
6362 find_struct_field. */
6363 error (_("Cannot assign this kind of variant record"));
6364 }
6365 else if (*index_p == 0)
6366 return ada_value_primitive_field (arg, offset, i, type);
6367 else
6368 *index_p -= 1;
6369 }
6370 return NULL;
6371}
6372
4c4b4cd2
PH
6373/* Given ARG, a value of type (pointer or reference to a)*
6374 structure/union, extract the component named NAME from the ultimate
6375 target structure/union and return it as a value with its
6376 appropriate type. If ARG is a pointer or reference and the field
6377 is not packed, returns a reference to the field, otherwise the
6378 value of the field (an lvalue if ARG is an lvalue).
14f9c5c9 6379
4c4b4cd2
PH
6380 The routine searches for NAME among all members of the structure itself
6381 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6382 (e.g., '_parent').
6383
03ee6b2e
PH
6384 If NO_ERR, then simply return NULL in case of error, rather than
6385 calling error. */
14f9c5c9 6386
d2e4a39e 6387struct value *
03ee6b2e 6388ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6389{
4c4b4cd2 6390 struct type *t, *t1;
d2e4a39e 6391 struct value *v;
14f9c5c9 6392
4c4b4cd2 6393 v = NULL;
df407dfe 6394 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6395 if (TYPE_CODE (t) == TYPE_CODE_REF)
6396 {
6397 t1 = TYPE_TARGET_TYPE (t);
6398 if (t1 == NULL)
03ee6b2e 6399 goto BadValue;
61ee279c 6400 t1 = ada_check_typedef (t1);
4c4b4cd2 6401 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6402 {
994b9211 6403 arg = coerce_ref (arg);
76a01679
JB
6404 t = t1;
6405 }
4c4b4cd2 6406 }
14f9c5c9 6407
4c4b4cd2
PH
6408 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6409 {
6410 t1 = TYPE_TARGET_TYPE (t);
6411 if (t1 == NULL)
03ee6b2e 6412 goto BadValue;
61ee279c 6413 t1 = ada_check_typedef (t1);
4c4b4cd2 6414 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6415 {
6416 arg = value_ind (arg);
6417 t = t1;
6418 }
4c4b4cd2 6419 else
76a01679 6420 break;
4c4b4cd2 6421 }
14f9c5c9 6422
4c4b4cd2 6423 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6424 goto BadValue;
14f9c5c9 6425
4c4b4cd2
PH
6426 if (t1 == t)
6427 v = ada_search_struct_field (name, arg, 0, t);
6428 else
6429 {
6430 int bit_offset, bit_size, byte_offset;
6431 struct type *field_type;
6432 CORE_ADDR address;
6433
76a01679
JB
6434 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6435 address = value_as_address (arg);
4c4b4cd2 6436 else
0fd88904 6437 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6438
1ed6ede0 6439 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6440 if (find_struct_field (name, t1, 0,
6441 &field_type, &byte_offset, &bit_offset,
52ce6436 6442 &bit_size, NULL))
76a01679
JB
6443 {
6444 if (bit_size != 0)
6445 {
714e53ab
PH
6446 if (TYPE_CODE (t) == TYPE_CODE_REF)
6447 arg = ada_coerce_ref (arg);
6448 else
6449 arg = ada_value_ind (arg);
76a01679
JB
6450 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6451 bit_offset, bit_size,
6452 field_type);
6453 }
6454 else
6455 v = value_from_pointer (lookup_reference_type (field_type),
6456 address + byte_offset);
6457 }
6458 }
6459
03ee6b2e
PH
6460 if (v != NULL || no_err)
6461 return v;
6462 else
323e0a4a 6463 error (_("There is no member named %s."), name);
14f9c5c9 6464
03ee6b2e
PH
6465 BadValue:
6466 if (no_err)
6467 return NULL;
6468 else
6469 error (_("Attempt to extract a component of a value that is not a record."));
14f9c5c9
AS
6470}
6471
6472/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6473 If DISPP is non-null, add its byte displacement from the beginning of a
6474 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6475 work for packed fields).
6476
6477 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6478 followed by "___".
14f9c5c9 6479
4c4b4cd2
PH
6480 TYPE can be either a struct or union. If REFOK, TYPE may also
6481 be a (pointer or reference)+ to a struct or union, and the
6482 ultimate target type will be searched.
14f9c5c9
AS
6483
6484 Looks recursively into variant clauses and parent types.
6485
4c4b4cd2
PH
6486 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6487 TYPE is not a type of the right kind. */
14f9c5c9 6488
4c4b4cd2 6489static struct type *
76a01679
JB
6490ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6491 int noerr, int *dispp)
14f9c5c9
AS
6492{
6493 int i;
6494
6495 if (name == NULL)
6496 goto BadName;
6497
76a01679 6498 if (refok && type != NULL)
4c4b4cd2
PH
6499 while (1)
6500 {
61ee279c 6501 type = ada_check_typedef (type);
76a01679
JB
6502 if (TYPE_CODE (type) != TYPE_CODE_PTR
6503 && TYPE_CODE (type) != TYPE_CODE_REF)
6504 break;
6505 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6506 }
14f9c5c9 6507
76a01679 6508 if (type == NULL
1265e4aa
JB
6509 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6510 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6511 {
4c4b4cd2 6512 if (noerr)
76a01679 6513 return NULL;
4c4b4cd2 6514 else
76a01679
JB
6515 {
6516 target_terminal_ours ();
6517 gdb_flush (gdb_stdout);
323e0a4a
AC
6518 if (type == NULL)
6519 error (_("Type (null) is not a structure or union type"));
6520 else
6521 {
6522 /* XXX: type_sprint */
6523 fprintf_unfiltered (gdb_stderr, _("Type "));
6524 type_print (type, "", gdb_stderr, -1);
6525 error (_(" is not a structure or union type"));
6526 }
76a01679 6527 }
14f9c5c9
AS
6528 }
6529
6530 type = to_static_fixed_type (type);
6531
6532 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6533 {
6534 char *t_field_name = TYPE_FIELD_NAME (type, i);
6535 struct type *t;
6536 int disp;
d2e4a39e 6537
14f9c5c9 6538 if (t_field_name == NULL)
4c4b4cd2 6539 continue;
14f9c5c9
AS
6540
6541 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6542 {
6543 if (dispp != NULL)
6544 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6545 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6546 }
14f9c5c9
AS
6547
6548 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6549 {
6550 disp = 0;
6551 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6552 0, 1, &disp);
6553 if (t != NULL)
6554 {
6555 if (dispp != NULL)
6556 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6557 return t;
6558 }
6559 }
14f9c5c9
AS
6560
6561 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6562 {
6563 int j;
61ee279c 6564 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6565
6566 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6567 {
6568 disp = 0;
6569 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6570 name, 0, 1, &disp);
6571 if (t != NULL)
6572 {
6573 if (dispp != NULL)
6574 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6575 return t;
6576 }
6577 }
6578 }
14f9c5c9
AS
6579
6580 }
6581
6582BadName:
d2e4a39e 6583 if (!noerr)
14f9c5c9
AS
6584 {
6585 target_terminal_ours ();
6586 gdb_flush (gdb_stdout);
323e0a4a
AC
6587 if (name == NULL)
6588 {
6589 /* XXX: type_sprint */
6590 fprintf_unfiltered (gdb_stderr, _("Type "));
6591 type_print (type, "", gdb_stderr, -1);
6592 error (_(" has no component named <null>"));
6593 }
6594 else
6595 {
6596 /* XXX: type_sprint */
6597 fprintf_unfiltered (gdb_stderr, _("Type "));
6598 type_print (type, "", gdb_stderr, -1);
6599 error (_(" has no component named %s"), name);
6600 }
14f9c5c9
AS
6601 }
6602
6603 return NULL;
6604}
6605
6606/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6607 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6608 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6609 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6610
d2e4a39e 6611int
ebf56fd3 6612ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6613 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6614{
6615 int others_clause;
6616 int i;
d2e4a39e 6617 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6618 struct value *outer;
6619 struct value *discrim;
14f9c5c9
AS
6620 LONGEST discrim_val;
6621
0c281816
JB
6622 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6623 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6624 if (discrim == NULL)
14f9c5c9 6625 return -1;
0c281816 6626 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6627
6628 others_clause = -1;
6629 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6630 {
6631 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6632 others_clause = i;
14f9c5c9 6633 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6634 return i;
14f9c5c9
AS
6635 }
6636
6637 return others_clause;
6638}
d2e4a39e 6639\f
14f9c5c9
AS
6640
6641
4c4b4cd2 6642 /* Dynamic-Sized Records */
14f9c5c9
AS
6643
6644/* Strategy: The type ostensibly attached to a value with dynamic size
6645 (i.e., a size that is not statically recorded in the debugging
6646 data) does not accurately reflect the size or layout of the value.
6647 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6648 conventional types that are constructed on the fly. */
14f9c5c9
AS
6649
6650/* There is a subtle and tricky problem here. In general, we cannot
6651 determine the size of dynamic records without its data. However,
6652 the 'struct value' data structure, which GDB uses to represent
6653 quantities in the inferior process (the target), requires the size
6654 of the type at the time of its allocation in order to reserve space
6655 for GDB's internal copy of the data. That's why the
6656 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6657 rather than struct value*s.
14f9c5c9
AS
6658
6659 However, GDB's internal history variables ($1, $2, etc.) are
6660 struct value*s containing internal copies of the data that are not, in
6661 general, the same as the data at their corresponding addresses in
6662 the target. Fortunately, the types we give to these values are all
6663 conventional, fixed-size types (as per the strategy described
6664 above), so that we don't usually have to perform the
6665 'to_fixed_xxx_type' conversions to look at their values.
6666 Unfortunately, there is one exception: if one of the internal
6667 history variables is an array whose elements are unconstrained
6668 records, then we will need to create distinct fixed types for each
6669 element selected. */
6670
6671/* The upshot of all of this is that many routines take a (type, host
6672 address, target address) triple as arguments to represent a value.
6673 The host address, if non-null, is supposed to contain an internal
6674 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6675 target at the target address. */
14f9c5c9
AS
6676
6677/* Assuming that VAL0 represents a pointer value, the result of
6678 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6679 dynamic-sized types. */
14f9c5c9 6680
d2e4a39e
AS
6681struct value *
6682ada_value_ind (struct value *val0)
14f9c5c9 6683{
d2e4a39e 6684 struct value *val = unwrap_value (value_ind (val0));
4c4b4cd2 6685 return ada_to_fixed_value (val);
14f9c5c9
AS
6686}
6687
6688/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6689 qualifiers on VAL0. */
6690
d2e4a39e
AS
6691static struct value *
6692ada_coerce_ref (struct value *val0)
6693{
df407dfe 6694 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6695 {
6696 struct value *val = val0;
994b9211 6697 val = coerce_ref (val);
d2e4a39e 6698 val = unwrap_value (val);
4c4b4cd2 6699 return ada_to_fixed_value (val);
d2e4a39e
AS
6700 }
6701 else
14f9c5c9
AS
6702 return val0;
6703}
6704
6705/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6706 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6707
6708static unsigned int
ebf56fd3 6709align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6710{
6711 return (off + alignment - 1) & ~(alignment - 1);
6712}
6713
4c4b4cd2 6714/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6715
6716static unsigned int
ebf56fd3 6717field_alignment (struct type *type, int f)
14f9c5c9 6718{
d2e4a39e 6719 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6720 int len;
14f9c5c9
AS
6721 int align_offset;
6722
64a1bf19
JB
6723 /* The field name should never be null, unless the debugging information
6724 is somehow malformed. In this case, we assume the field does not
6725 require any alignment. */
6726 if (name == NULL)
6727 return 1;
6728
6729 len = strlen (name);
6730
4c4b4cd2
PH
6731 if (!isdigit (name[len - 1]))
6732 return 1;
14f9c5c9 6733
d2e4a39e 6734 if (isdigit (name[len - 2]))
14f9c5c9
AS
6735 align_offset = len - 2;
6736 else
6737 align_offset = len - 1;
6738
4c4b4cd2 6739 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6740 return TARGET_CHAR_BIT;
6741
4c4b4cd2
PH
6742 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6743}
6744
6745/* Find a symbol named NAME. Ignores ambiguity. */
6746
6747struct symbol *
6748ada_find_any_symbol (const char *name)
6749{
6750 struct symbol *sym;
6751
6752 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6753 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6754 return sym;
6755
6756 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6757 return sym;
14f9c5c9
AS
6758}
6759
6760/* Find a type named NAME. Ignores ambiguity. */
4c4b4cd2 6761
d2e4a39e 6762struct type *
ebf56fd3 6763ada_find_any_type (const char *name)
14f9c5c9 6764{
4c4b4cd2 6765 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6766
14f9c5c9
AS
6767 if (sym != NULL)
6768 return SYMBOL_TYPE (sym);
6769
6770 return NULL;
6771}
6772
aeb5907d
JB
6773/* Given NAME and an associated BLOCK, search all symbols for
6774 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6775 associated to NAME. Return this symbol if found, return
6776 NULL otherwise. */
6777
6778struct symbol *
6779ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6780{
6781 struct symbol *sym;
6782
6783 sym = find_old_style_renaming_symbol (name, block);
6784
6785 if (sym != NULL)
6786 return sym;
6787
6788 /* Not right yet. FIXME pnh 7/20/2007. */
6789 sym = ada_find_any_symbol (name);
6790 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6791 return sym;
6792 else
6793 return NULL;
6794}
6795
6796static struct symbol *
6797find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2
PH
6798{
6799 const struct symbol *function_sym = block_function (block);
6800 char *rename;
6801
6802 if (function_sym != NULL)
6803 {
6804 /* If the symbol is defined inside a function, NAME is not fully
6805 qualified. This means we need to prepend the function name
6806 as well as adding the ``___XR'' suffix to build the name of
6807 the associated renaming symbol. */
6808 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6809 /* Function names sometimes contain suffixes used
6810 for instance to qualify nested subprograms. When building
6811 the XR type name, we need to make sure that this suffix is
6812 not included. So do not include any suffix in the function
6813 name length below. */
6814 const int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6815 const int rename_len = function_name_len + 2 /* "__" */
6816 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6817
529cad9c
PH
6818 /* Strip the suffix if necessary. */
6819 function_name[function_name_len] = '\0';
6820
4c4b4cd2
PH
6821 /* Library-level functions are a special case, as GNAT adds
6822 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6823 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6824 have this prefix, so we need to skip this prefix if present. */
6825 if (function_name_len > 5 /* "_ada_" */
6826 && strstr (function_name, "_ada_") == function_name)
6827 function_name = function_name + 5;
6828
6829 rename = (char *) alloca (rename_len * sizeof (char));
6830 sprintf (rename, "%s__%s___XR", function_name, name);
6831 }
6832 else
6833 {
6834 const int rename_len = strlen (name) + 6;
6835 rename = (char *) alloca (rename_len * sizeof (char));
6836 sprintf (rename, "%s___XR", name);
6837 }
6838
6839 return ada_find_any_symbol (rename);
6840}
6841
14f9c5c9 6842/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6843 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6844 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6845 otherwise return 0. */
6846
14f9c5c9 6847int
d2e4a39e 6848ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6849{
6850 if (type1 == NULL)
6851 return 1;
6852 else if (type0 == NULL)
6853 return 0;
6854 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6855 return 1;
6856 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6857 return 0;
4c4b4cd2
PH
6858 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6859 return 1;
14f9c5c9
AS
6860 else if (ada_is_packed_array_type (type0))
6861 return 1;
4c4b4cd2
PH
6862 else if (ada_is_array_descriptor_type (type0)
6863 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6864 return 1;
aeb5907d
JB
6865 else
6866 {
6867 const char *type0_name = type_name_no_tag (type0);
6868 const char *type1_name = type_name_no_tag (type1);
6869
6870 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6871 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6872 return 1;
6873 }
14f9c5c9
AS
6874 return 0;
6875}
6876
6877/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6878 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6879
d2e4a39e
AS
6880char *
6881ada_type_name (struct type *type)
14f9c5c9 6882{
d2e4a39e 6883 if (type == NULL)
14f9c5c9
AS
6884 return NULL;
6885 else if (TYPE_NAME (type) != NULL)
6886 return TYPE_NAME (type);
6887 else
6888 return TYPE_TAG_NAME (type);
6889}
6890
6891/* Find a parallel type to TYPE whose name is formed by appending
4c4b4cd2 6892 SUFFIX to the name of TYPE. */
14f9c5c9 6893
d2e4a39e 6894struct type *
ebf56fd3 6895ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6896{
d2e4a39e 6897 static char *name;
14f9c5c9 6898 static size_t name_len = 0;
14f9c5c9 6899 int len;
d2e4a39e
AS
6900 char *typename = ada_type_name (type);
6901
14f9c5c9
AS
6902 if (typename == NULL)
6903 return NULL;
6904
6905 len = strlen (typename);
6906
d2e4a39e 6907 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
14f9c5c9
AS
6908
6909 strcpy (name, typename);
6910 strcpy (name + len, suffix);
6911
6912 return ada_find_any_type (name);
6913}
6914
6915
6916/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6917 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6918
d2e4a39e
AS
6919static struct type *
6920dynamic_template_type (struct type *type)
14f9c5c9 6921{
61ee279c 6922 type = ada_check_typedef (type);
14f9c5c9
AS
6923
6924 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6925 || ada_type_name (type) == NULL)
14f9c5c9 6926 return NULL;
d2e4a39e 6927 else
14f9c5c9
AS
6928 {
6929 int len = strlen (ada_type_name (type));
4c4b4cd2
PH
6930 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6931 return type;
14f9c5c9 6932 else
4c4b4cd2 6933 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
6934 }
6935}
6936
6937/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 6938 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 6939
d2e4a39e
AS
6940static int
6941is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
6942{
6943 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
d2e4a39e 6944 return name != NULL
14f9c5c9
AS
6945 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6946 && strstr (name, "___XVL") != NULL;
6947}
6948
4c4b4cd2
PH
6949/* The index of the variant field of TYPE, or -1 if TYPE does not
6950 represent a variant record type. */
14f9c5c9 6951
d2e4a39e 6952static int
4c4b4cd2 6953variant_field_index (struct type *type)
14f9c5c9
AS
6954{
6955 int f;
6956
4c4b4cd2
PH
6957 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6958 return -1;
6959
6960 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6961 {
6962 if (ada_is_variant_part (type, f))
6963 return f;
6964 }
6965 return -1;
14f9c5c9
AS
6966}
6967
4c4b4cd2
PH
6968/* A record type with no fields. */
6969
d2e4a39e
AS
6970static struct type *
6971empty_record (struct objfile *objfile)
14f9c5c9 6972{
d2e4a39e 6973 struct type *type = alloc_type (objfile);
14f9c5c9
AS
6974 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6975 TYPE_NFIELDS (type) = 0;
6976 TYPE_FIELDS (type) = NULL;
6977 TYPE_NAME (type) = "<empty>";
6978 TYPE_TAG_NAME (type) = NULL;
6979 TYPE_FLAGS (type) = 0;
6980 TYPE_LENGTH (type) = 0;
6981 return type;
6982}
6983
6984/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
6985 the value of type TYPE at VALADDR or ADDRESS (see comments at
6986 the beginning of this section) VAL according to GNAT conventions.
6987 DVAL0 should describe the (portion of a) record that contains any
df407dfe 6988 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
6989 an outer-level type (i.e., as opposed to a branch of a variant.) A
6990 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 6991 of the variant.
14f9c5c9 6992
4c4b4cd2
PH
6993 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6994 length are not statically known are discarded. As a consequence,
6995 VALADDR, ADDRESS and DVAL0 are ignored.
6996
6997 NOTE: Limitations: For now, we assume that dynamic fields and
6998 variants occupy whole numbers of bytes. However, they need not be
6999 byte-aligned. */
7000
7001struct type *
10a2c479 7002ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7003 const gdb_byte *valaddr,
4c4b4cd2
PH
7004 CORE_ADDR address, struct value *dval0,
7005 int keep_dynamic_fields)
14f9c5c9 7006{
d2e4a39e
AS
7007 struct value *mark = value_mark ();
7008 struct value *dval;
7009 struct type *rtype;
14f9c5c9 7010 int nfields, bit_len;
4c4b4cd2 7011 int variant_field;
14f9c5c9 7012 long off;
4c4b4cd2 7013 int fld_bit_len, bit_incr;
14f9c5c9
AS
7014 int f;
7015
4c4b4cd2
PH
7016 /* Compute the number of fields in this record type that are going
7017 to be processed: unless keep_dynamic_fields, this includes only
7018 fields whose position and length are static will be processed. */
7019 if (keep_dynamic_fields)
7020 nfields = TYPE_NFIELDS (type);
7021 else
7022 {
7023 nfields = 0;
76a01679 7024 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7025 && !ada_is_variant_part (type, nfields)
7026 && !is_dynamic_field (type, nfields))
7027 nfields++;
7028 }
7029
14f9c5c9
AS
7030 rtype = alloc_type (TYPE_OBJFILE (type));
7031 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7032 INIT_CPLUS_SPECIFIC (rtype);
7033 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7034 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7035 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7036 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7037 TYPE_NAME (rtype) = ada_type_name (type);
7038 TYPE_TAG_NAME (rtype) = NULL;
4c4b4cd2 7039 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
14f9c5c9 7040
d2e4a39e
AS
7041 off = 0;
7042 bit_len = 0;
4c4b4cd2
PH
7043 variant_field = -1;
7044
14f9c5c9
AS
7045 for (f = 0; f < nfields; f += 1)
7046 {
6c038f32
PH
7047 off = align_value (off, field_alignment (type, f))
7048 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 7049 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 7050 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7051
d2e4a39e 7052 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7053 {
7054 variant_field = f;
7055 fld_bit_len = bit_incr = 0;
7056 }
14f9c5c9 7057 else if (is_dynamic_field (type, f))
4c4b4cd2
PH
7058 {
7059 if (dval0 == NULL)
7060 dval = value_from_contents_and_address (rtype, valaddr, address);
7061 else
7062 dval = dval0;
7063
1ed6ede0
JB
7064 /* Get the fixed type of the field. Note that, in this case, we
7065 do not want to get the real type out of the tag: if the current
7066 field is the parent part of a tagged record, we will get the
7067 tag of the object. Clearly wrong: the real type of the parent
7068 is not the real type of the child. We would end up in an infinite
7069 loop. */
4c4b4cd2
PH
7070 TYPE_FIELD_TYPE (rtype, f) =
7071 ada_to_fixed_type
7072 (ada_get_base_type
7073 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
7074 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
1ed6ede0 7075 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
4c4b4cd2
PH
7076 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7077 bit_incr = fld_bit_len =
7078 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7079 }
14f9c5c9 7080 else
4c4b4cd2
PH
7081 {
7082 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7083 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7084 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7085 bit_incr = fld_bit_len =
7086 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7087 else
7088 bit_incr = fld_bit_len =
7089 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
7090 }
14f9c5c9 7091 if (off + fld_bit_len > bit_len)
4c4b4cd2 7092 bit_len = off + fld_bit_len;
14f9c5c9 7093 off += bit_incr;
4c4b4cd2
PH
7094 TYPE_LENGTH (rtype) =
7095 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7096 }
4c4b4cd2
PH
7097
7098 /* We handle the variant part, if any, at the end because of certain
7099 odd cases in which it is re-ordered so as NOT the last field of
7100 the record. This can happen in the presence of representation
7101 clauses. */
7102 if (variant_field >= 0)
7103 {
7104 struct type *branch_type;
7105
7106 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7107
7108 if (dval0 == NULL)
7109 dval = value_from_contents_and_address (rtype, valaddr, address);
7110 else
7111 dval = dval0;
7112
7113 branch_type =
7114 to_fixed_variant_branch_type
7115 (TYPE_FIELD_TYPE (type, variant_field),
7116 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7117 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7118 if (branch_type == NULL)
7119 {
7120 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7121 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7122 TYPE_NFIELDS (rtype) -= 1;
7123 }
7124 else
7125 {
7126 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7127 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7128 fld_bit_len =
7129 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7130 TARGET_CHAR_BIT;
7131 if (off + fld_bit_len > bit_len)
7132 bit_len = off + fld_bit_len;
7133 TYPE_LENGTH (rtype) =
7134 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7135 }
7136 }
7137
714e53ab
PH
7138 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7139 should contain the alignment of that record, which should be a strictly
7140 positive value. If null or negative, then something is wrong, most
7141 probably in the debug info. In that case, we don't round up the size
7142 of the resulting type. If this record is not part of another structure,
7143 the current RTYPE length might be good enough for our purposes. */
7144 if (TYPE_LENGTH (type) <= 0)
7145 {
323e0a4a
AC
7146 if (TYPE_NAME (rtype))
7147 warning (_("Invalid type size for `%s' detected: %d."),
7148 TYPE_NAME (rtype), TYPE_LENGTH (type));
7149 else
7150 warning (_("Invalid type size for <unnamed> detected: %d."),
7151 TYPE_LENGTH (type));
714e53ab
PH
7152 }
7153 else
7154 {
7155 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7156 TYPE_LENGTH (type));
7157 }
14f9c5c9
AS
7158
7159 value_free_to_mark (mark);
d2e4a39e 7160 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7161 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7162 return rtype;
7163}
7164
4c4b4cd2
PH
7165/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7166 of 1. */
14f9c5c9 7167
d2e4a39e 7168static struct type *
fc1a4b47 7169template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7170 CORE_ADDR address, struct value *dval0)
7171{
7172 return ada_template_to_fixed_record_type_1 (type, valaddr,
7173 address, dval0, 1);
7174}
7175
7176/* An ordinary record type in which ___XVL-convention fields and
7177 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7178 static approximations, containing all possible fields. Uses
7179 no runtime values. Useless for use in values, but that's OK,
7180 since the results are used only for type determinations. Works on both
7181 structs and unions. Representation note: to save space, we memorize
7182 the result of this function in the TYPE_TARGET_TYPE of the
7183 template type. */
7184
7185static struct type *
7186template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7187{
7188 struct type *type;
7189 int nfields;
7190 int f;
7191
4c4b4cd2
PH
7192 if (TYPE_TARGET_TYPE (type0) != NULL)
7193 return TYPE_TARGET_TYPE (type0);
7194
7195 nfields = TYPE_NFIELDS (type0);
7196 type = type0;
14f9c5c9
AS
7197
7198 for (f = 0; f < nfields; f += 1)
7199 {
61ee279c 7200 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7201 struct type *new_type;
14f9c5c9 7202
4c4b4cd2
PH
7203 if (is_dynamic_field (type0, f))
7204 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7205 else
f192137b 7206 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7207 if (type == type0 && new_type != field_type)
7208 {
7209 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7210 TYPE_CODE (type) = TYPE_CODE (type0);
7211 INIT_CPLUS_SPECIFIC (type);
7212 TYPE_NFIELDS (type) = nfields;
7213 TYPE_FIELDS (type) = (struct field *)
7214 TYPE_ALLOC (type, nfields * sizeof (struct field));
7215 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7216 sizeof (struct field) * nfields);
7217 TYPE_NAME (type) = ada_type_name (type0);
7218 TYPE_TAG_NAME (type) = NULL;
7219 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
7220 TYPE_LENGTH (type) = 0;
7221 }
7222 TYPE_FIELD_TYPE (type, f) = new_type;
7223 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7224 }
14f9c5c9
AS
7225 return type;
7226}
7227
4c4b4cd2
PH
7228/* Given an object of type TYPE whose contents are at VALADDR and
7229 whose address in memory is ADDRESS, returns a revision of TYPE --
7230 a non-dynamic-sized record with a variant part -- in which
7231 the variant part is replaced with the appropriate branch. Looks
7232 for discriminant values in DVAL0, which can be NULL if the record
7233 contains the necessary discriminant values. */
7234
d2e4a39e 7235static struct type *
fc1a4b47 7236to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7237 CORE_ADDR address, struct value *dval0)
14f9c5c9 7238{
d2e4a39e 7239 struct value *mark = value_mark ();
4c4b4cd2 7240 struct value *dval;
d2e4a39e 7241 struct type *rtype;
14f9c5c9
AS
7242 struct type *branch_type;
7243 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7244 int variant_field = variant_field_index (type);
14f9c5c9 7245
4c4b4cd2 7246 if (variant_field == -1)
14f9c5c9
AS
7247 return type;
7248
4c4b4cd2
PH
7249 if (dval0 == NULL)
7250 dval = value_from_contents_and_address (type, valaddr, address);
7251 else
7252 dval = dval0;
7253
14f9c5c9
AS
7254 rtype = alloc_type (TYPE_OBJFILE (type));
7255 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7256 INIT_CPLUS_SPECIFIC (rtype);
7257 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7258 TYPE_FIELDS (rtype) =
7259 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7260 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7261 sizeof (struct field) * nfields);
14f9c5c9
AS
7262 TYPE_NAME (rtype) = ada_type_name (type);
7263 TYPE_TAG_NAME (rtype) = NULL;
4c4b4cd2 7264 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
14f9c5c9
AS
7265 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7266
4c4b4cd2
PH
7267 branch_type = to_fixed_variant_branch_type
7268 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7269 cond_offset_host (valaddr,
4c4b4cd2
PH
7270 TYPE_FIELD_BITPOS (type, variant_field)
7271 / TARGET_CHAR_BIT),
d2e4a39e 7272 cond_offset_target (address,
4c4b4cd2
PH
7273 TYPE_FIELD_BITPOS (type, variant_field)
7274 / TARGET_CHAR_BIT), dval);
d2e4a39e 7275 if (branch_type == NULL)
14f9c5c9 7276 {
4c4b4cd2
PH
7277 int f;
7278 for (f = variant_field + 1; f < nfields; f += 1)
7279 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7280 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7281 }
7282 else
7283 {
4c4b4cd2
PH
7284 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7285 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7286 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7287 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7288 }
4c4b4cd2 7289 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7290
4c4b4cd2 7291 value_free_to_mark (mark);
14f9c5c9
AS
7292 return rtype;
7293}
7294
7295/* An ordinary record type (with fixed-length fields) that describes
7296 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7297 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7298 should be in DVAL, a record value; it may be NULL if the object
7299 at ADDR itself contains any necessary discriminant values.
7300 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7301 values from the record are needed. Except in the case that DVAL,
7302 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7303 unchecked) is replaced by a particular branch of the variant.
7304
7305 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7306 is questionable and may be removed. It can arise during the
7307 processing of an unconstrained-array-of-record type where all the
7308 variant branches have exactly the same size. This is because in
7309 such cases, the compiler does not bother to use the XVS convention
7310 when encoding the record. I am currently dubious of this
7311 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7312
d2e4a39e 7313static struct type *
fc1a4b47 7314to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7315 CORE_ADDR address, struct value *dval)
14f9c5c9 7316{
d2e4a39e 7317 struct type *templ_type;
14f9c5c9 7318
4c4b4cd2
PH
7319 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7320 return type0;
7321
d2e4a39e 7322 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7323
7324 if (templ_type != NULL)
7325 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7326 else if (variant_field_index (type0) >= 0)
7327 {
7328 if (dval == NULL && valaddr == NULL && address == 0)
7329 return type0;
7330 return to_record_with_fixed_variant_part (type0, valaddr, address,
7331 dval);
7332 }
14f9c5c9
AS
7333 else
7334 {
4c4b4cd2 7335 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
14f9c5c9
AS
7336 return type0;
7337 }
7338
7339}
7340
7341/* An ordinary record type (with fixed-length fields) that describes
7342 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7343 union type. Any necessary discriminants' values should be in DVAL,
7344 a record value. That is, this routine selects the appropriate
7345 branch of the union at ADDR according to the discriminant value
4c4b4cd2 7346 indicated in the union's type name. */
14f9c5c9 7347
d2e4a39e 7348static struct type *
fc1a4b47 7349to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7350 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7351{
7352 int which;
d2e4a39e
AS
7353 struct type *templ_type;
7354 struct type *var_type;
14f9c5c9
AS
7355
7356 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7357 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7358 else
14f9c5c9
AS
7359 var_type = var_type0;
7360
7361 templ_type = ada_find_parallel_type (var_type, "___XVU");
7362
7363 if (templ_type != NULL)
7364 var_type = templ_type;
7365
d2e4a39e
AS
7366 which =
7367 ada_which_variant_applies (var_type,
0fd88904 7368 value_type (dval), value_contents (dval));
14f9c5c9
AS
7369
7370 if (which < 0)
7371 return empty_record (TYPE_OBJFILE (var_type));
7372 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7373 return to_fixed_record_type
d2e4a39e
AS
7374 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7375 valaddr, address, dval);
4c4b4cd2 7376 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7377 return
7378 to_fixed_record_type
7379 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7380 else
7381 return TYPE_FIELD_TYPE (var_type, which);
7382}
7383
7384/* Assuming that TYPE0 is an array type describing the type of a value
7385 at ADDR, and that DVAL describes a record containing any
7386 discriminants used in TYPE0, returns a type for the value that
7387 contains no dynamic components (that is, no components whose sizes
7388 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7389 true, gives an error message if the resulting type's size is over
4c4b4cd2 7390 varsize_limit. */
14f9c5c9 7391
d2e4a39e
AS
7392static struct type *
7393to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7394 int ignore_too_big)
14f9c5c9 7395{
d2e4a39e
AS
7396 struct type *index_type_desc;
7397 struct type *result;
14f9c5c9 7398
4c4b4cd2
PH
7399 if (ada_is_packed_array_type (type0) /* revisit? */
7400 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
7401 return type0;
14f9c5c9
AS
7402
7403 index_type_desc = ada_find_parallel_type (type0, "___XA");
7404 if (index_type_desc == NULL)
7405 {
61ee279c 7406 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
14f9c5c9 7407 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7408 depend on the contents of the array in properly constructed
7409 debugging data. */
529cad9c
PH
7410 /* Create a fixed version of the array element type.
7411 We're not providing the address of an element here,
e1d5a0d2 7412 and thus the actual object value cannot be inspected to do
529cad9c
PH
7413 the conversion. This should not be a problem, since arrays of
7414 unconstrained objects are not allowed. In particular, all
7415 the elements of an array of a tagged type should all be of
7416 the same type specified in the debugging info. No need to
7417 consult the object tag. */
1ed6ede0 7418 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9
AS
7419
7420 if (elt_type0 == elt_type)
4c4b4cd2 7421 result = type0;
14f9c5c9 7422 else
4c4b4cd2
PH
7423 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7424 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7425 }
7426 else
7427 {
7428 int i;
7429 struct type *elt_type0;
7430
7431 elt_type0 = type0;
7432 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7433 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7434
7435 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7436 depend on the contents of the array in properly constructed
7437 debugging data. */
529cad9c
PH
7438 /* Create a fixed version of the array element type.
7439 We're not providing the address of an element here,
e1d5a0d2 7440 and thus the actual object value cannot be inspected to do
529cad9c
PH
7441 the conversion. This should not be a problem, since arrays of
7442 unconstrained objects are not allowed. In particular, all
7443 the elements of an array of a tagged type should all be of
7444 the same type specified in the debugging info. No need to
7445 consult the object tag. */
1ed6ede0
JB
7446 result =
7447 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
14f9c5c9 7448 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7449 {
7450 struct type *range_type =
7451 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7452 dval, TYPE_OBJFILE (type0));
7453 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7454 result, range_type);
7455 }
d2e4a39e 7456 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7457 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7458 }
7459
4c4b4cd2 7460 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
14f9c5c9 7461 return result;
d2e4a39e 7462}
14f9c5c9
AS
7463
7464
7465/* A standard type (containing no dynamically sized components)
7466 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7467 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7468 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7469 ADDRESS or in VALADDR contains these discriminants.
7470
1ed6ede0
JB
7471 If CHECK_TAG is not null, in the case of tagged types, this function
7472 attempts to locate the object's tag and use it to compute the actual
7473 type. However, when ADDRESS is null, we cannot use it to determine the
7474 location of the tag, and therefore compute the tagged type's actual type.
7475 So we return the tagged type without consulting the tag. */
529cad9c 7476
f192137b
JB
7477static struct type *
7478ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7479 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7480{
61ee279c 7481 type = ada_check_typedef (type);
d2e4a39e
AS
7482 switch (TYPE_CODE (type))
7483 {
7484 default:
14f9c5c9 7485 return type;
d2e4a39e 7486 case TYPE_CODE_STRUCT:
4c4b4cd2 7487 {
76a01679 7488 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7489 struct type *fixed_record_type =
7490 to_fixed_record_type (type, valaddr, address, NULL);
529cad9c
PH
7491 /* If STATIC_TYPE is a tagged type and we know the object's address,
7492 then we can determine its tag, and compute the object's actual
1ed6ede0
JB
7493 type from there. Note that we have to use the fixed record
7494 type (the parent part of the record may have dynamic fields
7495 and the way the location of _tag is expressed may depend on
7496 them). */
529cad9c 7497
1ed6ede0 7498 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7499 {
7500 struct type *real_type =
1ed6ede0
JB
7501 type_from_tag (value_tag_from_contents_and_address
7502 (fixed_record_type,
7503 valaddr,
7504 address));
76a01679 7505 if (real_type != NULL)
1ed6ede0 7506 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7507 }
1ed6ede0 7508 return fixed_record_type;
4c4b4cd2 7509 }
d2e4a39e 7510 case TYPE_CODE_ARRAY:
4c4b4cd2 7511 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7512 case TYPE_CODE_UNION:
7513 if (dval == NULL)
4c4b4cd2 7514 return type;
d2e4a39e 7515 else
4c4b4cd2 7516 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7517 }
14f9c5c9
AS
7518}
7519
f192137b
JB
7520/* The same as ada_to_fixed_type_1, except that it preserves the type
7521 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7522 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7523
7524struct type *
7525ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7526 CORE_ADDR address, struct value *dval, int check_tag)
7527
7528{
7529 struct type *fixed_type =
7530 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7531
7532 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7533 && TYPE_TARGET_TYPE (type) == fixed_type)
7534 return type;
7535
7536 return fixed_type;
7537}
7538
14f9c5c9 7539/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7540 TYPE0, but based on no runtime data. */
14f9c5c9 7541
d2e4a39e
AS
7542static struct type *
7543to_static_fixed_type (struct type *type0)
14f9c5c9 7544{
d2e4a39e 7545 struct type *type;
14f9c5c9
AS
7546
7547 if (type0 == NULL)
7548 return NULL;
7549
4c4b4cd2
PH
7550 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7551 return type0;
7552
61ee279c 7553 type0 = ada_check_typedef (type0);
d2e4a39e 7554
14f9c5c9
AS
7555 switch (TYPE_CODE (type0))
7556 {
7557 default:
7558 return type0;
7559 case TYPE_CODE_STRUCT:
7560 type = dynamic_template_type (type0);
d2e4a39e 7561 if (type != NULL)
4c4b4cd2
PH
7562 return template_to_static_fixed_type (type);
7563 else
7564 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7565 case TYPE_CODE_UNION:
7566 type = ada_find_parallel_type (type0, "___XVU");
7567 if (type != NULL)
4c4b4cd2
PH
7568 return template_to_static_fixed_type (type);
7569 else
7570 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7571 }
7572}
7573
4c4b4cd2
PH
7574/* A static approximation of TYPE with all type wrappers removed. */
7575
d2e4a39e
AS
7576static struct type *
7577static_unwrap_type (struct type *type)
14f9c5c9
AS
7578{
7579 if (ada_is_aligner_type (type))
7580 {
61ee279c 7581 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7582 if (ada_type_name (type1) == NULL)
4c4b4cd2 7583 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7584
7585 return static_unwrap_type (type1);
7586 }
d2e4a39e 7587 else
14f9c5c9 7588 {
d2e4a39e
AS
7589 struct type *raw_real_type = ada_get_base_type (type);
7590 if (raw_real_type == type)
4c4b4cd2 7591 return type;
14f9c5c9 7592 else
4c4b4cd2 7593 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7594 }
7595}
7596
7597/* In some cases, incomplete and private types require
4c4b4cd2 7598 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7599 type Foo;
7600 type FooP is access Foo;
7601 V: FooP;
7602 type Foo is array ...;
4c4b4cd2 7603 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7604 cross-references to such types, we instead substitute for FooP a
7605 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7606 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7607
7608/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7609 exists, otherwise TYPE. */
7610
d2e4a39e 7611struct type *
61ee279c 7612ada_check_typedef (struct type *type)
14f9c5c9 7613{
727e3d2e
JB
7614 if (type == NULL)
7615 return NULL;
7616
14f9c5c9
AS
7617 CHECK_TYPEDEF (type);
7618 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7619 || !TYPE_STUB (type)
14f9c5c9
AS
7620 || TYPE_TAG_NAME (type) == NULL)
7621 return type;
d2e4a39e 7622 else
14f9c5c9 7623 {
d2e4a39e
AS
7624 char *name = TYPE_TAG_NAME (type);
7625 struct type *type1 = ada_find_any_type (name);
14f9c5c9
AS
7626 return (type1 == NULL) ? type : type1;
7627 }
7628}
7629
7630/* A value representing the data at VALADDR/ADDRESS as described by
7631 type TYPE0, but with a standard (static-sized) type that correctly
7632 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7633 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7634 creation of struct values]. */
14f9c5c9 7635
4c4b4cd2
PH
7636static struct value *
7637ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7638 struct value *val0)
14f9c5c9 7639{
1ed6ede0 7640 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
14f9c5c9
AS
7641 if (type == type0 && val0 != NULL)
7642 return val0;
d2e4a39e 7643 else
4c4b4cd2
PH
7644 return value_from_contents_and_address (type, 0, address);
7645}
7646
7647/* A value representing VAL, but with a standard (static-sized) type
7648 that correctly describes it. Does not necessarily create a new
7649 value. */
7650
7651static struct value *
7652ada_to_fixed_value (struct value *val)
7653{
df407dfe
AC
7654 return ada_to_fixed_value_create (value_type (val),
7655 VALUE_ADDRESS (val) + value_offset (val),
4c4b4cd2 7656 val);
14f9c5c9
AS
7657}
7658
4c4b4cd2 7659/* A value representing VAL, but with a standard (static-sized) type
14f9c5c9
AS
7660 chosen to approximate the real type of VAL as well as possible, but
7661 without consulting any runtime values. For Ada dynamic-sized
4c4b4cd2 7662 types, therefore, the type of the result is likely to be inaccurate. */
14f9c5c9 7663
d2e4a39e
AS
7664struct value *
7665ada_to_static_fixed_value (struct value *val)
14f9c5c9 7666{
d2e4a39e 7667 struct type *type =
df407dfe
AC
7668 to_static_fixed_type (static_unwrap_type (value_type (val)));
7669 if (type == value_type (val))
14f9c5c9
AS
7670 return val;
7671 else
4c4b4cd2 7672 return coerce_unspec_val_to_type (val, type);
14f9c5c9 7673}
d2e4a39e 7674\f
14f9c5c9 7675
14f9c5c9
AS
7676/* Attributes */
7677
4c4b4cd2
PH
7678/* Table mapping attribute numbers to names.
7679 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7680
d2e4a39e 7681static const char *attribute_names[] = {
14f9c5c9
AS
7682 "<?>",
7683
d2e4a39e 7684 "first",
14f9c5c9
AS
7685 "last",
7686 "length",
7687 "image",
14f9c5c9
AS
7688 "max",
7689 "min",
4c4b4cd2
PH
7690 "modulus",
7691 "pos",
7692 "size",
7693 "tag",
14f9c5c9 7694 "val",
14f9c5c9
AS
7695 0
7696};
7697
d2e4a39e 7698const char *
4c4b4cd2 7699ada_attribute_name (enum exp_opcode n)
14f9c5c9 7700{
4c4b4cd2
PH
7701 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7702 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7703 else
7704 return attribute_names[0];
7705}
7706
4c4b4cd2 7707/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7708
4c4b4cd2
PH
7709static LONGEST
7710pos_atr (struct value *arg)
14f9c5c9 7711{
df407dfe 7712 struct type *type = value_type (arg);
14f9c5c9 7713
d2e4a39e 7714 if (!discrete_type_p (type))
323e0a4a 7715 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7716
7717 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7718 {
7719 int i;
7720 LONGEST v = value_as_long (arg);
7721
d2e4a39e 7722 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7723 {
7724 if (v == TYPE_FIELD_BITPOS (type, i))
7725 return i;
7726 }
323e0a4a 7727 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7728 }
7729 else
4c4b4cd2
PH
7730 return value_as_long (arg);
7731}
7732
7733static struct value *
7734value_pos_atr (struct value *arg)
7735{
72d5681a 7736 return value_from_longest (builtin_type_int, pos_atr (arg));
14f9c5c9
AS
7737}
7738
4c4b4cd2 7739/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7740
d2e4a39e
AS
7741static struct value *
7742value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7743{
d2e4a39e 7744 if (!discrete_type_p (type))
323e0a4a 7745 error (_("'VAL only defined on discrete types"));
df407dfe 7746 if (!integer_type_p (value_type (arg)))
323e0a4a 7747 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7748
7749 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7750 {
7751 long pos = value_as_long (arg);
7752 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7753 error (_("argument to 'VAL out of range"));
d2e4a39e 7754 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7755 }
7756 else
7757 return value_from_longest (type, value_as_long (arg));
7758}
14f9c5c9 7759\f
d2e4a39e 7760
4c4b4cd2 7761 /* Evaluation */
14f9c5c9 7762
4c4b4cd2
PH
7763/* True if TYPE appears to be an Ada character type.
7764 [At the moment, this is true only for Character and Wide_Character;
7765 It is a heuristic test that could stand improvement]. */
14f9c5c9 7766
d2e4a39e
AS
7767int
7768ada_is_character_type (struct type *type)
14f9c5c9 7769{
7b9f71f2
JB
7770 const char *name;
7771
7772 /* If the type code says it's a character, then assume it really is,
7773 and don't check any further. */
7774 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7775 return 1;
7776
7777 /* Otherwise, assume it's a character type iff it is a discrete type
7778 with a known character type name. */
7779 name = ada_type_name (type);
7780 return (name != NULL
7781 && (TYPE_CODE (type) == TYPE_CODE_INT
7782 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7783 && (strcmp (name, "character") == 0
7784 || strcmp (name, "wide_character") == 0
5a517ebd 7785 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 7786 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
7787}
7788
4c4b4cd2 7789/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
7790
7791int
ebf56fd3 7792ada_is_string_type (struct type *type)
14f9c5c9 7793{
61ee279c 7794 type = ada_check_typedef (type);
d2e4a39e 7795 if (type != NULL
14f9c5c9 7796 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
7797 && (ada_is_simple_array_type (type)
7798 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
7799 && ada_array_arity (type) == 1)
7800 {
7801 struct type *elttype = ada_array_element_type (type, 1);
7802
7803 return ada_is_character_type (elttype);
7804 }
d2e4a39e 7805 else
14f9c5c9
AS
7806 return 0;
7807}
7808
7809
7810/* True if TYPE is a struct type introduced by the compiler to force the
7811 alignment of a value. Such types have a single field with a
4c4b4cd2 7812 distinctive name. */
14f9c5c9
AS
7813
7814int
ebf56fd3 7815ada_is_aligner_type (struct type *type)
14f9c5c9 7816{
61ee279c 7817 type = ada_check_typedef (type);
714e53ab
PH
7818
7819 /* If we can find a parallel XVS type, then the XVS type should
7820 be used instead of this type. And hence, this is not an aligner
7821 type. */
7822 if (ada_find_parallel_type (type, "___XVS") != NULL)
7823 return 0;
7824
14f9c5c9 7825 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
7826 && TYPE_NFIELDS (type) == 1
7827 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
7828}
7829
7830/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 7831 the parallel type. */
14f9c5c9 7832
d2e4a39e
AS
7833struct type *
7834ada_get_base_type (struct type *raw_type)
14f9c5c9 7835{
d2e4a39e
AS
7836 struct type *real_type_namer;
7837 struct type *raw_real_type;
14f9c5c9
AS
7838
7839 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7840 return raw_type;
7841
7842 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 7843 if (real_type_namer == NULL
14f9c5c9
AS
7844 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7845 || TYPE_NFIELDS (real_type_namer) != 1)
7846 return raw_type;
7847
7848 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
d2e4a39e 7849 if (raw_real_type == NULL)
14f9c5c9
AS
7850 return raw_type;
7851 else
7852 return raw_real_type;
d2e4a39e 7853}
14f9c5c9 7854
4c4b4cd2 7855/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 7856
d2e4a39e
AS
7857struct type *
7858ada_aligned_type (struct type *type)
14f9c5c9
AS
7859{
7860 if (ada_is_aligner_type (type))
7861 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7862 else
7863 return ada_get_base_type (type);
7864}
7865
7866
7867/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 7868 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 7869
fc1a4b47
AC
7870const gdb_byte *
7871ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 7872{
d2e4a39e 7873 if (ada_is_aligner_type (type))
14f9c5c9 7874 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
7875 valaddr +
7876 TYPE_FIELD_BITPOS (type,
7877 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
7878 else
7879 return valaddr;
7880}
7881
4c4b4cd2
PH
7882
7883
14f9c5c9 7884/* The printed representation of an enumeration literal with encoded
4c4b4cd2 7885 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
7886const char *
7887ada_enum_name (const char *name)
14f9c5c9 7888{
4c4b4cd2
PH
7889 static char *result;
7890 static size_t result_len = 0;
d2e4a39e 7891 char *tmp;
14f9c5c9 7892
4c4b4cd2
PH
7893 /* First, unqualify the enumeration name:
7894 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
7895 all the preceeding characters, the unqualified name starts
7896 right after that dot.
4c4b4cd2 7897 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
7898 translates dots into "__". Search forward for double underscores,
7899 but stop searching when we hit an overloading suffix, which is
7900 of the form "__" followed by digits. */
4c4b4cd2 7901
c3e5cd34
PH
7902 tmp = strrchr (name, '.');
7903 if (tmp != NULL)
4c4b4cd2
PH
7904 name = tmp + 1;
7905 else
14f9c5c9 7906 {
4c4b4cd2
PH
7907 while ((tmp = strstr (name, "__")) != NULL)
7908 {
7909 if (isdigit (tmp[2]))
7910 break;
7911 else
7912 name = tmp + 2;
7913 }
14f9c5c9
AS
7914 }
7915
7916 if (name[0] == 'Q')
7917 {
14f9c5c9
AS
7918 int v;
7919 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
7920 {
7921 if (sscanf (name + 2, "%x", &v) != 1)
7922 return name;
7923 }
14f9c5c9 7924 else
4c4b4cd2 7925 return name;
14f9c5c9 7926
4c4b4cd2 7927 GROW_VECT (result, result_len, 16);
14f9c5c9 7928 if (isascii (v) && isprint (v))
4c4b4cd2 7929 sprintf (result, "'%c'", v);
14f9c5c9 7930 else if (name[1] == 'U')
4c4b4cd2 7931 sprintf (result, "[\"%02x\"]", v);
14f9c5c9 7932 else
4c4b4cd2 7933 sprintf (result, "[\"%04x\"]", v);
14f9c5c9
AS
7934
7935 return result;
7936 }
d2e4a39e 7937 else
4c4b4cd2 7938 {
c3e5cd34
PH
7939 tmp = strstr (name, "__");
7940 if (tmp == NULL)
7941 tmp = strstr (name, "$");
7942 if (tmp != NULL)
4c4b4cd2
PH
7943 {
7944 GROW_VECT (result, result_len, tmp - name + 1);
7945 strncpy (result, name, tmp - name);
7946 result[tmp - name] = '\0';
7947 return result;
7948 }
7949
7950 return name;
7951 }
14f9c5c9
AS
7952}
7953
d2e4a39e 7954static struct value *
ebf56fd3 7955evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
4c4b4cd2 7956 enum noside noside)
14f9c5c9 7957{
76a01679 7958 return (*exp->language_defn->la_exp_desc->evaluate_exp)
4c4b4cd2 7959 (expect_type, exp, pos, noside);
14f9c5c9
AS
7960}
7961
7962/* Evaluate the subexpression of EXP starting at *POS as for
7963 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 7964 expression. */
14f9c5c9 7965
d2e4a39e
AS
7966static struct value *
7967evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 7968{
4c4b4cd2 7969 return (*exp->language_defn->la_exp_desc->evaluate_exp)
14f9c5c9
AS
7970 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7971}
7972
7973/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 7974 value it wraps. */
14f9c5c9 7975
d2e4a39e
AS
7976static struct value *
7977unwrap_value (struct value *val)
14f9c5c9 7978{
df407dfe 7979 struct type *type = ada_check_typedef (value_type (val));
14f9c5c9
AS
7980 if (ada_is_aligner_type (type))
7981 {
de4d072f 7982 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 7983 struct type *val_type = ada_check_typedef (value_type (v));
14f9c5c9 7984 if (ada_type_name (val_type) == NULL)
4c4b4cd2 7985 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
7986
7987 return unwrap_value (v);
7988 }
d2e4a39e 7989 else
14f9c5c9 7990 {
d2e4a39e 7991 struct type *raw_real_type =
61ee279c 7992 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 7993
14f9c5c9 7994 if (type == raw_real_type)
4c4b4cd2 7995 return val;
14f9c5c9 7996
d2e4a39e 7997 return
4c4b4cd2
PH
7998 coerce_unspec_val_to_type
7999 (val, ada_to_fixed_type (raw_real_type, 0,
df407dfe 8000 VALUE_ADDRESS (val) + value_offset (val),
1ed6ede0 8001 NULL, 1));
14f9c5c9
AS
8002 }
8003}
d2e4a39e
AS
8004
8005static struct value *
8006cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8007{
8008 LONGEST val;
8009
df407dfe 8010 if (type == value_type (arg))
14f9c5c9 8011 return arg;
df407dfe 8012 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8013 val = ada_float_to_fixed (type,
df407dfe 8014 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8015 value_as_long (arg)));
d2e4a39e 8016 else
14f9c5c9 8017 {
d2e4a39e 8018 DOUBLEST argd =
4c4b4cd2 8019 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
14f9c5c9
AS
8020 val = ada_float_to_fixed (type, argd);
8021 }
8022
8023 return value_from_longest (type, val);
8024}
8025
d2e4a39e
AS
8026static struct value *
8027cast_from_fixed_to_double (struct value *arg)
14f9c5c9 8028{
df407dfe 8029 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8030 value_as_long (arg));
14f9c5c9
AS
8031 return value_from_double (builtin_type_double, val);
8032}
8033
4c4b4cd2
PH
8034/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8035 return the converted value. */
8036
d2e4a39e
AS
8037static struct value *
8038coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8039{
df407dfe 8040 struct type *type2 = value_type (val);
14f9c5c9
AS
8041 if (type == type2)
8042 return val;
8043
61ee279c
PH
8044 type2 = ada_check_typedef (type2);
8045 type = ada_check_typedef (type);
14f9c5c9 8046
d2e4a39e
AS
8047 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8048 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8049 {
8050 val = ada_value_ind (val);
df407dfe 8051 type2 = value_type (val);
14f9c5c9
AS
8052 }
8053
d2e4a39e 8054 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8055 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8056 {
8057 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
8058 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8059 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 8060 error (_("Incompatible types in assignment"));
04624583 8061 deprecated_set_value_type (val, type);
14f9c5c9 8062 }
d2e4a39e 8063 return val;
14f9c5c9
AS
8064}
8065
4c4b4cd2
PH
8066static struct value *
8067ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8068{
8069 struct value *val;
8070 struct type *type1, *type2;
8071 LONGEST v, v1, v2;
8072
994b9211
AC
8073 arg1 = coerce_ref (arg1);
8074 arg2 = coerce_ref (arg2);
df407dfe
AC
8075 type1 = base_type (ada_check_typedef (value_type (arg1)));
8076 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8077
76a01679
JB
8078 if (TYPE_CODE (type1) != TYPE_CODE_INT
8079 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8080 return value_binop (arg1, arg2, op);
8081
76a01679 8082 switch (op)
4c4b4cd2
PH
8083 {
8084 case BINOP_MOD:
8085 case BINOP_DIV:
8086 case BINOP_REM:
8087 break;
8088 default:
8089 return value_binop (arg1, arg2, op);
8090 }
8091
8092 v2 = value_as_long (arg2);
8093 if (v2 == 0)
323e0a4a 8094 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8095
8096 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8097 return value_binop (arg1, arg2, op);
8098
8099 v1 = value_as_long (arg1);
8100 switch (op)
8101 {
8102 case BINOP_DIV:
8103 v = v1 / v2;
76a01679
JB
8104 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8105 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8106 break;
8107 case BINOP_REM:
8108 v = v1 % v2;
76a01679
JB
8109 if (v * v1 < 0)
8110 v -= v2;
4c4b4cd2
PH
8111 break;
8112 default:
8113 /* Should not reach this point. */
8114 v = 0;
8115 }
8116
8117 val = allocate_value (type1);
990a07ab 8118 store_unsigned_integer (value_contents_raw (val),
df407dfe 8119 TYPE_LENGTH (value_type (val)), v);
4c4b4cd2
PH
8120 return val;
8121}
8122
8123static int
8124ada_value_equal (struct value *arg1, struct value *arg2)
8125{
df407dfe
AC
8126 if (ada_is_direct_array_type (value_type (arg1))
8127 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8128 {
f58b38bf
JB
8129 /* Automatically dereference any array reference before
8130 we attempt to perform the comparison. */
8131 arg1 = ada_coerce_ref (arg1);
8132 arg2 = ada_coerce_ref (arg2);
8133
4c4b4cd2
PH
8134 arg1 = ada_coerce_to_simple_array (arg1);
8135 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8136 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8137 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8138 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8139 /* FIXME: The following works only for types whose
76a01679
JB
8140 representations use all bits (no padding or undefined bits)
8141 and do not have user-defined equality. */
8142 return
df407dfe 8143 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8144 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8145 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8146 }
8147 return value_equal (arg1, arg2);
8148}
8149
52ce6436
PH
8150/* Total number of component associations in the aggregate starting at
8151 index PC in EXP. Assumes that index PC is the start of an
8152 OP_AGGREGATE. */
8153
8154static int
8155num_component_specs (struct expression *exp, int pc)
8156{
8157 int n, m, i;
8158 m = exp->elts[pc + 1].longconst;
8159 pc += 3;
8160 n = 0;
8161 for (i = 0; i < m; i += 1)
8162 {
8163 switch (exp->elts[pc].opcode)
8164 {
8165 default:
8166 n += 1;
8167 break;
8168 case OP_CHOICES:
8169 n += exp->elts[pc + 1].longconst;
8170 break;
8171 }
8172 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8173 }
8174 return n;
8175}
8176
8177/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8178 component of LHS (a simple array or a record), updating *POS past
8179 the expression, assuming that LHS is contained in CONTAINER. Does
8180 not modify the inferior's memory, nor does it modify LHS (unless
8181 LHS == CONTAINER). */
8182
8183static void
8184assign_component (struct value *container, struct value *lhs, LONGEST index,
8185 struct expression *exp, int *pos)
8186{
8187 struct value *mark = value_mark ();
8188 struct value *elt;
8189 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8190 {
8191 struct value *index_val = value_from_longest (builtin_type_int, index);
8192 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8193 }
8194 else
8195 {
8196 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8197 elt = ada_to_fixed_value (unwrap_value (elt));
8198 }
8199
8200 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8201 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8202 else
8203 value_assign_to_component (container, elt,
8204 ada_evaluate_subexp (NULL, exp, pos,
8205 EVAL_NORMAL));
8206
8207 value_free_to_mark (mark);
8208}
8209
8210/* Assuming that LHS represents an lvalue having a record or array
8211 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8212 of that aggregate's value to LHS, advancing *POS past the
8213 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8214 lvalue containing LHS (possibly LHS itself). Does not modify
8215 the inferior's memory, nor does it modify the contents of
8216 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8217
8218static struct value *
8219assign_aggregate (struct value *container,
8220 struct value *lhs, struct expression *exp,
8221 int *pos, enum noside noside)
8222{
8223 struct type *lhs_type;
8224 int n = exp->elts[*pos+1].longconst;
8225 LONGEST low_index, high_index;
8226 int num_specs;
8227 LONGEST *indices;
8228 int max_indices, num_indices;
8229 int is_array_aggregate;
8230 int i;
8231 struct value *mark = value_mark ();
8232
8233 *pos += 3;
8234 if (noside != EVAL_NORMAL)
8235 {
8236 int i;
8237 for (i = 0; i < n; i += 1)
8238 ada_evaluate_subexp (NULL, exp, pos, noside);
8239 return container;
8240 }
8241
8242 container = ada_coerce_ref (container);
8243 if (ada_is_direct_array_type (value_type (container)))
8244 container = ada_coerce_to_simple_array (container);
8245 lhs = ada_coerce_ref (lhs);
8246 if (!deprecated_value_modifiable (lhs))
8247 error (_("Left operand of assignment is not a modifiable lvalue."));
8248
8249 lhs_type = value_type (lhs);
8250 if (ada_is_direct_array_type (lhs_type))
8251 {
8252 lhs = ada_coerce_to_simple_array (lhs);
8253 lhs_type = value_type (lhs);
8254 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8255 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8256 is_array_aggregate = 1;
8257 }
8258 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8259 {
8260 low_index = 0;
8261 high_index = num_visible_fields (lhs_type) - 1;
8262 is_array_aggregate = 0;
8263 }
8264 else
8265 error (_("Left-hand side must be array or record."));
8266
8267 num_specs = num_component_specs (exp, *pos - 3);
8268 max_indices = 4 * num_specs + 4;
8269 indices = alloca (max_indices * sizeof (indices[0]));
8270 indices[0] = indices[1] = low_index - 1;
8271 indices[2] = indices[3] = high_index + 1;
8272 num_indices = 4;
8273
8274 for (i = 0; i < n; i += 1)
8275 {
8276 switch (exp->elts[*pos].opcode)
8277 {
8278 case OP_CHOICES:
8279 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8280 &num_indices, max_indices,
8281 low_index, high_index);
8282 break;
8283 case OP_POSITIONAL:
8284 aggregate_assign_positional (container, lhs, exp, pos, indices,
8285 &num_indices, max_indices,
8286 low_index, high_index);
8287 break;
8288 case OP_OTHERS:
8289 if (i != n-1)
8290 error (_("Misplaced 'others' clause"));
8291 aggregate_assign_others (container, lhs, exp, pos, indices,
8292 num_indices, low_index, high_index);
8293 break;
8294 default:
8295 error (_("Internal error: bad aggregate clause"));
8296 }
8297 }
8298
8299 return container;
8300}
8301
8302/* Assign into the component of LHS indexed by the OP_POSITIONAL
8303 construct at *POS, updating *POS past the construct, given that
8304 the positions are relative to lower bound LOW, where HIGH is the
8305 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8306 updating *NUM_INDICES as needed. CONTAINER is as for
8307 assign_aggregate. */
8308static void
8309aggregate_assign_positional (struct value *container,
8310 struct value *lhs, struct expression *exp,
8311 int *pos, LONGEST *indices, int *num_indices,
8312 int max_indices, LONGEST low, LONGEST high)
8313{
8314 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8315
8316 if (ind - 1 == high)
e1d5a0d2 8317 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8318 if (ind <= high)
8319 {
8320 add_component_interval (ind, ind, indices, num_indices, max_indices);
8321 *pos += 3;
8322 assign_component (container, lhs, ind, exp, pos);
8323 }
8324 else
8325 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8326}
8327
8328/* Assign into the components of LHS indexed by the OP_CHOICES
8329 construct at *POS, updating *POS past the construct, given that
8330 the allowable indices are LOW..HIGH. Record the indices assigned
8331 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8332 needed. CONTAINER is as for assign_aggregate. */
8333static void
8334aggregate_assign_from_choices (struct value *container,
8335 struct value *lhs, struct expression *exp,
8336 int *pos, LONGEST *indices, int *num_indices,
8337 int max_indices, LONGEST low, LONGEST high)
8338{
8339 int j;
8340 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8341 int choice_pos, expr_pc;
8342 int is_array = ada_is_direct_array_type (value_type (lhs));
8343
8344 choice_pos = *pos += 3;
8345
8346 for (j = 0; j < n_choices; j += 1)
8347 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8348 expr_pc = *pos;
8349 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8350
8351 for (j = 0; j < n_choices; j += 1)
8352 {
8353 LONGEST lower, upper;
8354 enum exp_opcode op = exp->elts[choice_pos].opcode;
8355 if (op == OP_DISCRETE_RANGE)
8356 {
8357 choice_pos += 1;
8358 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8359 EVAL_NORMAL));
8360 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8361 EVAL_NORMAL));
8362 }
8363 else if (is_array)
8364 {
8365 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8366 EVAL_NORMAL));
8367 upper = lower;
8368 }
8369 else
8370 {
8371 int ind;
8372 char *name;
8373 switch (op)
8374 {
8375 case OP_NAME:
8376 name = &exp->elts[choice_pos + 2].string;
8377 break;
8378 case OP_VAR_VALUE:
8379 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8380 break;
8381 default:
8382 error (_("Invalid record component association."));
8383 }
8384 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8385 ind = 0;
8386 if (! find_struct_field (name, value_type (lhs), 0,
8387 NULL, NULL, NULL, NULL, &ind))
8388 error (_("Unknown component name: %s."), name);
8389 lower = upper = ind;
8390 }
8391
8392 if (lower <= upper && (lower < low || upper > high))
8393 error (_("Index in component association out of bounds."));
8394
8395 add_component_interval (lower, upper, indices, num_indices,
8396 max_indices);
8397 while (lower <= upper)
8398 {
8399 int pos1;
8400 pos1 = expr_pc;
8401 assign_component (container, lhs, lower, exp, &pos1);
8402 lower += 1;
8403 }
8404 }
8405}
8406
8407/* Assign the value of the expression in the OP_OTHERS construct in
8408 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8409 have not been previously assigned. The index intervals already assigned
8410 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8411 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8412static void
8413aggregate_assign_others (struct value *container,
8414 struct value *lhs, struct expression *exp,
8415 int *pos, LONGEST *indices, int num_indices,
8416 LONGEST low, LONGEST high)
8417{
8418 int i;
8419 int expr_pc = *pos+1;
8420
8421 for (i = 0; i < num_indices - 2; i += 2)
8422 {
8423 LONGEST ind;
8424 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8425 {
8426 int pos;
8427 pos = expr_pc;
8428 assign_component (container, lhs, ind, exp, &pos);
8429 }
8430 }
8431 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8432}
8433
8434/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8435 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8436 modifying *SIZE as needed. It is an error if *SIZE exceeds
8437 MAX_SIZE. The resulting intervals do not overlap. */
8438static void
8439add_component_interval (LONGEST low, LONGEST high,
8440 LONGEST* indices, int *size, int max_size)
8441{
8442 int i, j;
8443 for (i = 0; i < *size; i += 2) {
8444 if (high >= indices[i] && low <= indices[i + 1])
8445 {
8446 int kh;
8447 for (kh = i + 2; kh < *size; kh += 2)
8448 if (high < indices[kh])
8449 break;
8450 if (low < indices[i])
8451 indices[i] = low;
8452 indices[i + 1] = indices[kh - 1];
8453 if (high > indices[i + 1])
8454 indices[i + 1] = high;
8455 memcpy (indices + i + 2, indices + kh, *size - kh);
8456 *size -= kh - i - 2;
8457 return;
8458 }
8459 else if (high < indices[i])
8460 break;
8461 }
8462
8463 if (*size == max_size)
8464 error (_("Internal error: miscounted aggregate components."));
8465 *size += 2;
8466 for (j = *size-1; j >= i+2; j -= 1)
8467 indices[j] = indices[j - 2];
8468 indices[i] = low;
8469 indices[i + 1] = high;
8470}
8471
6e48bd2c
JB
8472/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8473 is different. */
8474
8475static struct value *
8476ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8477{
8478 if (type == ada_check_typedef (value_type (arg2)))
8479 return arg2;
8480
8481 if (ada_is_fixed_point_type (type))
8482 return (cast_to_fixed (type, arg2));
8483
8484 if (ada_is_fixed_point_type (value_type (arg2)))
8485 return value_cast (type, cast_from_fixed_to_double (arg2));
8486
8487 return value_cast (type, arg2);
8488}
8489
52ce6436 8490static struct value *
ebf56fd3 8491ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 8492 int *pos, enum noside noside)
14f9c5c9
AS
8493{
8494 enum exp_opcode op;
14f9c5c9
AS
8495 int tem, tem2, tem3;
8496 int pc;
8497 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8498 struct type *type;
52ce6436 8499 int nargs, oplen;
d2e4a39e 8500 struct value **argvec;
14f9c5c9 8501
d2e4a39e
AS
8502 pc = *pos;
8503 *pos += 1;
14f9c5c9
AS
8504 op = exp->elts[pc].opcode;
8505
d2e4a39e 8506 switch (op)
14f9c5c9
AS
8507 {
8508 default:
8509 *pos -= 1;
6e48bd2c
JB
8510 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8511 arg1 = unwrap_value (arg1);
8512
8513 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8514 then we need to perform the conversion manually, because
8515 evaluate_subexp_standard doesn't do it. This conversion is
8516 necessary in Ada because the different kinds of float/fixed
8517 types in Ada have different representations.
8518
8519 Similarly, we need to perform the conversion from OP_LONG
8520 ourselves. */
8521 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8522 arg1 = ada_value_cast (expect_type, arg1, noside);
8523
8524 return arg1;
4c4b4cd2
PH
8525
8526 case OP_STRING:
8527 {
76a01679
JB
8528 struct value *result;
8529 *pos -= 1;
8530 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8531 /* The result type will have code OP_STRING, bashed there from
8532 OP_ARRAY. Bash it back. */
df407dfe
AC
8533 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8534 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 8535 return result;
4c4b4cd2 8536 }
14f9c5c9
AS
8537
8538 case UNOP_CAST:
8539 (*pos) += 2;
8540 type = exp->elts[pc + 1].type;
8541 arg1 = evaluate_subexp (type, exp, pos, noside);
8542 if (noside == EVAL_SKIP)
4c4b4cd2 8543 goto nosideret;
6e48bd2c 8544 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
8545 return arg1;
8546
4c4b4cd2
PH
8547 case UNOP_QUAL:
8548 (*pos) += 2;
8549 type = exp->elts[pc + 1].type;
8550 return ada_evaluate_subexp (type, exp, pos, noside);
8551
14f9c5c9
AS
8552 case BINOP_ASSIGN:
8553 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
8554 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8555 {
8556 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8557 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8558 return arg1;
8559 return ada_value_assign (arg1, arg1);
8560 }
df407dfe 8561 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 8562 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8563 return arg1;
df407dfe
AC
8564 if (ada_is_fixed_point_type (value_type (arg1)))
8565 arg2 = cast_to_fixed (value_type (arg1), arg2);
8566 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 8567 error
323e0a4a 8568 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 8569 else
df407dfe 8570 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 8571 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
8572
8573 case BINOP_ADD:
8574 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8575 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8576 if (noside == EVAL_SKIP)
4c4b4cd2 8577 goto nosideret;
df407dfe
AC
8578 if ((ada_is_fixed_point_type (value_type (arg1))
8579 || ada_is_fixed_point_type (value_type (arg2)))
8580 && value_type (arg1) != value_type (arg2))
323e0a4a 8581 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
8582 /* Do the addition, and cast the result to the type of the first
8583 argument. We cannot cast the result to a reference type, so if
8584 ARG1 is a reference type, find its underlying type. */
8585 type = value_type (arg1);
8586 while (TYPE_CODE (type) == TYPE_CODE_REF)
8587 type = TYPE_TARGET_TYPE (type);
8588 return value_cast (type, value_add (arg1, arg2));
14f9c5c9
AS
8589
8590 case BINOP_SUB:
8591 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8592 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8593 if (noside == EVAL_SKIP)
4c4b4cd2 8594 goto nosideret;
df407dfe
AC
8595 if ((ada_is_fixed_point_type (value_type (arg1))
8596 || ada_is_fixed_point_type (value_type (arg2)))
8597 && value_type (arg1) != value_type (arg2))
323e0a4a 8598 error (_("Operands of fixed-point subtraction must have the same type"));
b7789565
JB
8599 /* Do the substraction, and cast the result to the type of the first
8600 argument. We cannot cast the result to a reference type, so if
8601 ARG1 is a reference type, find its underlying type. */
8602 type = value_type (arg1);
8603 while (TYPE_CODE (type) == TYPE_CODE_REF)
8604 type = TYPE_TARGET_TYPE (type);
8605 return value_cast (type, value_sub (arg1, arg2));
14f9c5c9
AS
8606
8607 case BINOP_MUL:
8608 case BINOP_DIV:
8609 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8610 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8611 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8612 goto nosideret;
8613 else if (noside == EVAL_AVOID_SIDE_EFFECTS
76a01679 8614 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
df407dfe 8615 return value_zero (value_type (arg1), not_lval);
14f9c5c9 8616 else
4c4b4cd2 8617 {
df407dfe 8618 if (ada_is_fixed_point_type (value_type (arg1)))
4c4b4cd2 8619 arg1 = cast_from_fixed_to_double (arg1);
df407dfe 8620 if (ada_is_fixed_point_type (value_type (arg2)))
4c4b4cd2
PH
8621 arg2 = cast_from_fixed_to_double (arg2);
8622 return ada_value_binop (arg1, arg2, op);
8623 }
8624
8625 case BINOP_REM:
8626 case BINOP_MOD:
8627 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8628 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8629 if (noside == EVAL_SKIP)
76a01679 8630 goto nosideret;
4c4b4cd2 8631 else if (noside == EVAL_AVOID_SIDE_EFFECTS
76a01679 8632 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
df407dfe 8633 return value_zero (value_type (arg1), not_lval);
14f9c5c9 8634 else
76a01679 8635 return ada_value_binop (arg1, arg2, op);
14f9c5c9 8636
4c4b4cd2
PH
8637 case BINOP_EQUAL:
8638 case BINOP_NOTEQUAL:
14f9c5c9 8639 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 8640 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 8641 if (noside == EVAL_SKIP)
76a01679 8642 goto nosideret;
4c4b4cd2 8643 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8644 tem = 0;
4c4b4cd2 8645 else
76a01679 8646 tem = ada_value_equal (arg1, arg2);
4c4b4cd2 8647 if (op == BINOP_NOTEQUAL)
76a01679 8648 tem = !tem;
4c4b4cd2
PH
8649 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8650
8651 case UNOP_NEG:
8652 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8653 if (noside == EVAL_SKIP)
8654 goto nosideret;
df407dfe
AC
8655 else if (ada_is_fixed_point_type (value_type (arg1)))
8656 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 8657 else
4c4b4cd2
PH
8658 return value_neg (arg1);
8659
2330c6c6
JB
8660 case BINOP_LOGICAL_AND:
8661 case BINOP_LOGICAL_OR:
8662 case UNOP_LOGICAL_NOT:
000d5124
JB
8663 {
8664 struct value *val;
8665
8666 *pos -= 1;
8667 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8668 return value_cast (LA_BOOL_TYPE, val);
8669 }
2330c6c6
JB
8670
8671 case BINOP_BITWISE_AND:
8672 case BINOP_BITWISE_IOR:
8673 case BINOP_BITWISE_XOR:
000d5124
JB
8674 {
8675 struct value *val;
8676
8677 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8678 *pos = pc;
8679 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8680
8681 return value_cast (value_type (arg1), val);
8682 }
2330c6c6 8683
14f9c5c9
AS
8684 case OP_VAR_VALUE:
8685 *pos -= 1;
6799def4
JB
8686
8687 /* Tagged types are a little special in the fact that the real type
8688 is dynamic and can only be determined by inspecting the object
8689 value. So even if we're support to do an EVAL_AVOID_SIDE_EFFECTS
8690 evaluation, we force an EVAL_NORMAL evaluation for tagged types. */
8691 if (noside == EVAL_AVOID_SIDE_EFFECTS
8692 && ada_is_tagged_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol), 1))
8693 noside = EVAL_NORMAL;
8694
14f9c5c9 8695 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8696 {
8697 *pos += 4;
8698 goto nosideret;
8699 }
8700 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
8701 /* Only encountered when an unresolved symbol occurs in a
8702 context other than a function call, in which case, it is
52ce6436 8703 invalid. */
323e0a4a 8704 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 8705 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 8706 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
8707 {
8708 *pos += 4;
8709 return value_zero
8710 (to_static_fixed_type
8711 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8712 not_lval);
8713 }
d2e4a39e 8714 else
4c4b4cd2
PH
8715 {
8716 arg1 =
8717 unwrap_value (evaluate_subexp_standard
8718 (expect_type, exp, pos, noside));
8719 return ada_to_fixed_value (arg1);
8720 }
8721
8722 case OP_FUNCALL:
8723 (*pos) += 2;
8724
8725 /* Allocate arg vector, including space for the function to be
8726 called in argvec[0] and a terminating NULL. */
8727 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8728 argvec =
8729 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8730
8731 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 8732 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 8733 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
8734 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8735 else
8736 {
8737 for (tem = 0; tem <= nargs; tem += 1)
8738 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8739 argvec[tem] = 0;
8740
8741 if (noside == EVAL_SKIP)
8742 goto nosideret;
8743 }
8744
df407dfe 8745 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 8746 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
df407dfe
AC
8747 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8748 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 8749 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
8750 argvec[0] = value_addr (argvec[0]);
8751
df407dfe 8752 type = ada_check_typedef (value_type (argvec[0]));
4c4b4cd2
PH
8753 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8754 {
61ee279c 8755 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
8756 {
8757 case TYPE_CODE_FUNC:
61ee279c 8758 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8759 break;
8760 case TYPE_CODE_ARRAY:
8761 break;
8762 case TYPE_CODE_STRUCT:
8763 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8764 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 8765 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8766 break;
8767 default:
323e0a4a 8768 error (_("cannot subscript or call something of type `%s'"),
df407dfe 8769 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
8770 break;
8771 }
8772 }
8773
8774 switch (TYPE_CODE (type))
8775 {
8776 case TYPE_CODE_FUNC:
8777 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8778 return allocate_value (TYPE_TARGET_TYPE (type));
8779 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8780 case TYPE_CODE_STRUCT:
8781 {
8782 int arity;
8783
4c4b4cd2
PH
8784 arity = ada_array_arity (type);
8785 type = ada_array_element_type (type, nargs);
8786 if (type == NULL)
323e0a4a 8787 error (_("cannot subscript or call a record"));
4c4b4cd2 8788 if (arity != nargs)
323e0a4a 8789 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 8790 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 8791 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8792 return
8793 unwrap_value (ada_value_subscript
8794 (argvec[0], nargs, argvec + 1));
8795 }
8796 case TYPE_CODE_ARRAY:
8797 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8798 {
8799 type = ada_array_element_type (type, nargs);
8800 if (type == NULL)
323e0a4a 8801 error (_("element type of array unknown"));
4c4b4cd2 8802 else
0a07e705 8803 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8804 }
8805 return
8806 unwrap_value (ada_value_subscript
8807 (ada_coerce_to_simple_array (argvec[0]),
8808 nargs, argvec + 1));
8809 case TYPE_CODE_PTR: /* Pointer to array */
8810 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8811 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8812 {
8813 type = ada_array_element_type (type, nargs);
8814 if (type == NULL)
323e0a4a 8815 error (_("element type of array unknown"));
4c4b4cd2 8816 else
0a07e705 8817 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8818 }
8819 return
8820 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8821 nargs, argvec + 1));
8822
8823 default:
e1d5a0d2
PH
8824 error (_("Attempt to index or call something other than an "
8825 "array or function"));
4c4b4cd2
PH
8826 }
8827
8828 case TERNOP_SLICE:
8829 {
8830 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8831 struct value *low_bound_val =
8832 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
8833 struct value *high_bound_val =
8834 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8835 LONGEST low_bound;
8836 LONGEST high_bound;
994b9211
AC
8837 low_bound_val = coerce_ref (low_bound_val);
8838 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
8839 low_bound = pos_atr (low_bound_val);
8840 high_bound = pos_atr (high_bound_val);
963a6417 8841
4c4b4cd2
PH
8842 if (noside == EVAL_SKIP)
8843 goto nosideret;
8844
4c4b4cd2
PH
8845 /* If this is a reference to an aligner type, then remove all
8846 the aligners. */
df407dfe
AC
8847 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8848 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8849 TYPE_TARGET_TYPE (value_type (array)) =
8850 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 8851
df407dfe 8852 if (ada_is_packed_array_type (value_type (array)))
323e0a4a 8853 error (_("cannot slice a packed array"));
4c4b4cd2
PH
8854
8855 /* If this is a reference to an array or an array lvalue,
8856 convert to a pointer. */
df407dfe
AC
8857 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8858 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
8859 && VALUE_LVAL (array) == lval_memory))
8860 array = value_addr (array);
8861
1265e4aa 8862 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 8863 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 8864 (value_type (array))))
0b5d8877 8865 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
8866
8867 array = ada_coerce_to_simple_array_ptr (array);
8868
714e53ab
PH
8869 /* If we have more than one level of pointer indirection,
8870 dereference the value until we get only one level. */
df407dfe
AC
8871 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8872 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
8873 == TYPE_CODE_PTR))
8874 array = value_ind (array);
8875
8876 /* Make sure we really do have an array type before going further,
8877 to avoid a SEGV when trying to get the index type or the target
8878 type later down the road if the debug info generated by
8879 the compiler is incorrect or incomplete. */
df407dfe 8880 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 8881 error (_("cannot take slice of non-array"));
714e53ab 8882
df407dfe 8883 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 8884 {
0b5d8877 8885 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 8886 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
8887 low_bound);
8888 else
8889 {
8890 struct type *arr_type0 =
df407dfe 8891 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 8892 NULL, 1);
0b5d8877 8893 return ada_value_slice_ptr (array, arr_type0,
529cad9c
PH
8894 longest_to_int (low_bound),
8895 longest_to_int (high_bound));
4c4b4cd2
PH
8896 }
8897 }
8898 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8899 return array;
8900 else if (high_bound < low_bound)
df407dfe 8901 return empty_array (value_type (array), low_bound);
4c4b4cd2 8902 else
529cad9c
PH
8903 return ada_value_slice (array, longest_to_int (low_bound),
8904 longest_to_int (high_bound));
4c4b4cd2 8905 }
14f9c5c9 8906
4c4b4cd2
PH
8907 case UNOP_IN_RANGE:
8908 (*pos) += 2;
8909 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8910 type = exp->elts[pc + 1].type;
14f9c5c9 8911
14f9c5c9 8912 if (noside == EVAL_SKIP)
4c4b4cd2 8913 goto nosideret;
14f9c5c9 8914
4c4b4cd2
PH
8915 switch (TYPE_CODE (type))
8916 {
8917 default:
e1d5a0d2
PH
8918 lim_warning (_("Membership test incompletely implemented; "
8919 "always returns true"));
4c4b4cd2
PH
8920 return value_from_longest (builtin_type_int, (LONGEST) 1);
8921
8922 case TYPE_CODE_RANGE:
76a01679 8923 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
4c4b4cd2
PH
8924 arg3 = value_from_longest (builtin_type_int,
8925 TYPE_HIGH_BOUND (type));
8926 return
8927 value_from_longest (builtin_type_int,
8928 (value_less (arg1, arg3)
8929 || value_equal (arg1, arg3))
8930 && (value_less (arg2, arg1)
8931 || value_equal (arg2, arg1)));
8932 }
8933
8934 case BINOP_IN_BOUNDS:
14f9c5c9 8935 (*pos) += 2;
4c4b4cd2
PH
8936 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8937 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 8938
4c4b4cd2
PH
8939 if (noside == EVAL_SKIP)
8940 goto nosideret;
14f9c5c9 8941
4c4b4cd2
PH
8942 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8943 return value_zero (builtin_type_int, not_lval);
14f9c5c9 8944
4c4b4cd2 8945 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 8946
df407dfe 8947 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
323e0a4a 8948 error (_("invalid dimension number to 'range"));
14f9c5c9 8949
4c4b4cd2
PH
8950 arg3 = ada_array_bound (arg2, tem, 1);
8951 arg2 = ada_array_bound (arg2, tem, 0);
d2e4a39e 8952
4c4b4cd2
PH
8953 return
8954 value_from_longest (builtin_type_int,
8955 (value_less (arg1, arg3)
8956 || value_equal (arg1, arg3))
8957 && (value_less (arg2, arg1)
8958 || value_equal (arg2, arg1)));
8959
8960 case TERNOP_IN_RANGE:
8961 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8962 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8963 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8964
8965 if (noside == EVAL_SKIP)
8966 goto nosideret;
8967
8968 return
8969 value_from_longest (builtin_type_int,
8970 (value_less (arg1, arg3)
8971 || value_equal (arg1, arg3))
8972 && (value_less (arg2, arg1)
8973 || value_equal (arg2, arg1)));
8974
8975 case OP_ATR_FIRST:
8976 case OP_ATR_LAST:
8977 case OP_ATR_LENGTH:
8978 {
76a01679
JB
8979 struct type *type_arg;
8980 if (exp->elts[*pos].opcode == OP_TYPE)
8981 {
8982 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8983 arg1 = NULL;
8984 type_arg = exp->elts[pc + 2].type;
8985 }
8986 else
8987 {
8988 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8989 type_arg = NULL;
8990 }
8991
8992 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 8993 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
8994 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8995 *pos += 4;
8996
8997 if (noside == EVAL_SKIP)
8998 goto nosideret;
8999
9000 if (type_arg == NULL)
9001 {
9002 arg1 = ada_coerce_ref (arg1);
9003
df407dfe 9004 if (ada_is_packed_array_type (value_type (arg1)))
76a01679
JB
9005 arg1 = ada_coerce_to_simple_array (arg1);
9006
df407dfe 9007 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
323e0a4a 9008 error (_("invalid dimension number to '%s"),
76a01679
JB
9009 ada_attribute_name (op));
9010
9011 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9012 {
df407dfe 9013 type = ada_index_type (value_type (arg1), tem);
76a01679
JB
9014 if (type == NULL)
9015 error
323e0a4a 9016 (_("attempt to take bound of something that is not an array"));
76a01679
JB
9017 return allocate_value (type);
9018 }
9019
9020 switch (op)
9021 {
9022 default: /* Should never happen. */
323e0a4a 9023 error (_("unexpected attribute encountered"));
76a01679
JB
9024 case OP_ATR_FIRST:
9025 return ada_array_bound (arg1, tem, 0);
9026 case OP_ATR_LAST:
9027 return ada_array_bound (arg1, tem, 1);
9028 case OP_ATR_LENGTH:
9029 return ada_array_length (arg1, tem);
9030 }
9031 }
9032 else if (discrete_type_p (type_arg))
9033 {
9034 struct type *range_type;
9035 char *name = ada_type_name (type_arg);
9036 range_type = NULL;
9037 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9038 range_type =
9039 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
9040 if (range_type == NULL)
9041 range_type = type_arg;
9042 switch (op)
9043 {
9044 default:
323e0a4a 9045 error (_("unexpected attribute encountered"));
76a01679
JB
9046 case OP_ATR_FIRST:
9047 return discrete_type_low_bound (range_type);
9048 case OP_ATR_LAST:
9049 return discrete_type_high_bound (range_type);
9050 case OP_ATR_LENGTH:
323e0a4a 9051 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9052 }
9053 }
9054 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9055 error (_("unimplemented type attribute"));
76a01679
JB
9056 else
9057 {
9058 LONGEST low, high;
9059
9060 if (ada_is_packed_array_type (type_arg))
9061 type_arg = decode_packed_array_type (type_arg);
9062
9063 if (tem < 1 || tem > ada_array_arity (type_arg))
323e0a4a 9064 error (_("invalid dimension number to '%s"),
76a01679
JB
9065 ada_attribute_name (op));
9066
9067 type = ada_index_type (type_arg, tem);
9068 if (type == NULL)
9069 error
323e0a4a 9070 (_("attempt to take bound of something that is not an array"));
76a01679
JB
9071 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9072 return allocate_value (type);
9073
9074 switch (op)
9075 {
9076 default:
323e0a4a 9077 error (_("unexpected attribute encountered"));
76a01679
JB
9078 case OP_ATR_FIRST:
9079 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9080 return value_from_longest (type, low);
9081 case OP_ATR_LAST:
9082 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
9083 return value_from_longest (type, high);
9084 case OP_ATR_LENGTH:
9085 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9086 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
9087 return value_from_longest (type, high - low + 1);
9088 }
9089 }
14f9c5c9
AS
9090 }
9091
4c4b4cd2
PH
9092 case OP_ATR_TAG:
9093 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9094 if (noside == EVAL_SKIP)
76a01679 9095 goto nosideret;
4c4b4cd2
PH
9096
9097 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9098 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9099
9100 return ada_value_tag (arg1);
9101
9102 case OP_ATR_MIN:
9103 case OP_ATR_MAX:
9104 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9105 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9106 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9107 if (noside == EVAL_SKIP)
76a01679 9108 goto nosideret;
d2e4a39e 9109 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9110 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9111 else
76a01679
JB
9112 return value_binop (arg1, arg2,
9113 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
14f9c5c9 9114
4c4b4cd2
PH
9115 case OP_ATR_MODULUS:
9116 {
76a01679
JB
9117 struct type *type_arg = exp->elts[pc + 2].type;
9118 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
4c4b4cd2 9119
76a01679
JB
9120 if (noside == EVAL_SKIP)
9121 goto nosideret;
4c4b4cd2 9122
76a01679 9123 if (!ada_is_modular_type (type_arg))
323e0a4a 9124 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9125
76a01679
JB
9126 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9127 ada_modulus (type_arg));
4c4b4cd2
PH
9128 }
9129
9130
9131 case OP_ATR_POS:
9132 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9133 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9134 if (noside == EVAL_SKIP)
76a01679 9135 goto nosideret;
4c4b4cd2 9136 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
72d5681a 9137 return value_zero (builtin_type_int, not_lval);
14f9c5c9 9138 else
76a01679 9139 return value_pos_atr (arg1);
14f9c5c9 9140
4c4b4cd2
PH
9141 case OP_ATR_SIZE:
9142 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9143 if (noside == EVAL_SKIP)
76a01679 9144 goto nosideret;
4c4b4cd2 9145 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
72d5681a 9146 return value_zero (builtin_type_int, not_lval);
4c4b4cd2 9147 else
72d5681a 9148 return value_from_longest (builtin_type_int,
76a01679 9149 TARGET_CHAR_BIT
df407dfe 9150 * TYPE_LENGTH (value_type (arg1)));
4c4b4cd2
PH
9151
9152 case OP_ATR_VAL:
9153 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9154 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9155 type = exp->elts[pc + 2].type;
14f9c5c9 9156 if (noside == EVAL_SKIP)
76a01679 9157 goto nosideret;
4c4b4cd2 9158 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9159 return value_zero (type, not_lval);
4c4b4cd2 9160 else
76a01679 9161 return value_val_atr (type, arg1);
4c4b4cd2
PH
9162
9163 case BINOP_EXP:
9164 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9165 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9166 if (noside == EVAL_SKIP)
9167 goto nosideret;
9168 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9169 return value_zero (value_type (arg1), not_lval);
4c4b4cd2
PH
9170 else
9171 return value_binop (arg1, arg2, op);
9172
9173 case UNOP_PLUS:
9174 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9175 if (noside == EVAL_SKIP)
9176 goto nosideret;
9177 else
9178 return arg1;
9179
9180 case UNOP_ABS:
9181 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9182 if (noside == EVAL_SKIP)
9183 goto nosideret;
df407dfe 9184 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9185 return value_neg (arg1);
14f9c5c9 9186 else
4c4b4cd2 9187 return arg1;
14f9c5c9
AS
9188
9189 case UNOP_IND:
9190 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
61ee279c 9191 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
14f9c5c9
AS
9192 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
9193 if (noside == EVAL_SKIP)
4c4b4cd2 9194 goto nosideret;
df407dfe 9195 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9196 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9197 {
9198 if (ada_is_array_descriptor_type (type))
9199 /* GDB allows dereferencing GNAT array descriptors. */
9200 {
9201 struct type *arrType = ada_type_of_array (arg1, 0);
9202 if (arrType == NULL)
323e0a4a 9203 error (_("Attempt to dereference null array pointer."));
00a4c844 9204 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9205 }
9206 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9207 || TYPE_CODE (type) == TYPE_CODE_REF
9208 /* In C you can dereference an array to get the 1st elt. */
9209 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9210 {
9211 type = to_static_fixed_type
9212 (ada_aligned_type
9213 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9214 check_size (type);
9215 return value_zero (type, lval_memory);
9216 }
4c4b4cd2
PH
9217 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9218 /* GDB allows dereferencing an int. */
9219 return value_zero (builtin_type_int, lval_memory);
9220 else
323e0a4a 9221 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9222 }
76a01679 9223 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9224 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9225
4c4b4cd2
PH
9226 if (ada_is_array_descriptor_type (type))
9227 /* GDB allows dereferencing GNAT array descriptors. */
9228 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9229 else
4c4b4cd2 9230 return ada_value_ind (arg1);
14f9c5c9
AS
9231
9232 case STRUCTOP_STRUCT:
9233 tem = longest_to_int (exp->elts[pc + 1].longconst);
9234 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9235 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9236 if (noside == EVAL_SKIP)
4c4b4cd2 9237 goto nosideret;
14f9c5c9 9238 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9239 {
df407dfe 9240 struct type *type1 = value_type (arg1);
76a01679
JB
9241 if (ada_is_tagged_type (type1, 1))
9242 {
9243 type = ada_lookup_struct_elt_type (type1,
9244 &exp->elts[pc + 2].string,
9245 1, 1, NULL);
9246 if (type == NULL)
9247 /* In this case, we assume that the field COULD exist
9248 in some extension of the type. Return an object of
9249 "type" void, which will match any formal
9250 (see ada_type_match). */
9251 return value_zero (builtin_type_void, lval_memory);
9252 }
9253 else
9254 type =
9255 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9256 0, NULL);
9257
9258 return value_zero (ada_aligned_type (type), lval_memory);
9259 }
14f9c5c9 9260 else
76a01679
JB
9261 return
9262 ada_to_fixed_value (unwrap_value
9263 (ada_value_struct_elt
03ee6b2e 9264 (arg1, &exp->elts[pc + 2].string, 0)));
14f9c5c9 9265 case OP_TYPE:
4c4b4cd2
PH
9266 /* The value is not supposed to be used. This is here to make it
9267 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9268 (*pos) += 2;
9269 if (noside == EVAL_SKIP)
4c4b4cd2 9270 goto nosideret;
14f9c5c9 9271 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9272 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9273 else
323e0a4a 9274 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9275
9276 case OP_AGGREGATE:
9277 case OP_CHOICES:
9278 case OP_OTHERS:
9279 case OP_DISCRETE_RANGE:
9280 case OP_POSITIONAL:
9281 case OP_NAME:
9282 if (noside == EVAL_NORMAL)
9283 switch (op)
9284 {
9285 case OP_NAME:
9286 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9287 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9288 case OP_AGGREGATE:
9289 error (_("Aggregates only allowed on the right of an assignment"));
9290 default:
e1d5a0d2 9291 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
52ce6436
PH
9292 }
9293
9294 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9295 *pos += oplen - 1;
9296 for (tem = 0; tem < nargs; tem += 1)
9297 ada_evaluate_subexp (NULL, exp, pos, noside);
9298 goto nosideret;
14f9c5c9
AS
9299 }
9300
9301nosideret:
9302 return value_from_longest (builtin_type_long, (LONGEST) 1);
9303}
14f9c5c9 9304\f
d2e4a39e 9305
4c4b4cd2 9306 /* Fixed point */
14f9c5c9
AS
9307
9308/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9309 type name that encodes the 'small and 'delta information.
4c4b4cd2 9310 Otherwise, return NULL. */
14f9c5c9 9311
d2e4a39e 9312static const char *
ebf56fd3 9313fixed_type_info (struct type *type)
14f9c5c9 9314{
d2e4a39e 9315 const char *name = ada_type_name (type);
14f9c5c9
AS
9316 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9317
d2e4a39e
AS
9318 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9319 {
14f9c5c9
AS
9320 const char *tail = strstr (name, "___XF_");
9321 if (tail == NULL)
4c4b4cd2 9322 return NULL;
d2e4a39e 9323 else
4c4b4cd2 9324 return tail + 5;
14f9c5c9
AS
9325 }
9326 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9327 return fixed_type_info (TYPE_TARGET_TYPE (type));
9328 else
9329 return NULL;
9330}
9331
4c4b4cd2 9332/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
9333
9334int
ebf56fd3 9335ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
9336{
9337 return fixed_type_info (type) != NULL;
9338}
9339
4c4b4cd2
PH
9340/* Return non-zero iff TYPE represents a System.Address type. */
9341
9342int
9343ada_is_system_address_type (struct type *type)
9344{
9345 return (TYPE_NAME (type)
9346 && strcmp (TYPE_NAME (type), "system__address") == 0);
9347}
9348
14f9c5c9
AS
9349/* Assuming that TYPE is the representation of an Ada fixed-point
9350 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 9351 delta cannot be determined. */
14f9c5c9
AS
9352
9353DOUBLEST
ebf56fd3 9354ada_delta (struct type *type)
14f9c5c9
AS
9355{
9356 const char *encoding = fixed_type_info (type);
9357 long num, den;
9358
9359 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9360 return -1.0;
d2e4a39e 9361 else
14f9c5c9
AS
9362 return (DOUBLEST) num / (DOUBLEST) den;
9363}
9364
9365/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 9366 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
9367
9368static DOUBLEST
ebf56fd3 9369scaling_factor (struct type *type)
14f9c5c9
AS
9370{
9371 const char *encoding = fixed_type_info (type);
9372 unsigned long num0, den0, num1, den1;
9373 int n;
d2e4a39e 9374
14f9c5c9
AS
9375 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9376
9377 if (n < 2)
9378 return 1.0;
9379 else if (n == 4)
9380 return (DOUBLEST) num1 / (DOUBLEST) den1;
d2e4a39e 9381 else
14f9c5c9
AS
9382 return (DOUBLEST) num0 / (DOUBLEST) den0;
9383}
9384
9385
9386/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 9387 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
9388
9389DOUBLEST
ebf56fd3 9390ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 9391{
d2e4a39e 9392 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
9393}
9394
4c4b4cd2
PH
9395/* The representation of a fixed-point value of type TYPE
9396 corresponding to the value X. */
14f9c5c9
AS
9397
9398LONGEST
ebf56fd3 9399ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
9400{
9401 return (LONGEST) (x / scaling_factor (type) + 0.5);
9402}
9403
9404
4c4b4cd2 9405 /* VAX floating formats */
14f9c5c9
AS
9406
9407/* Non-zero iff TYPE represents one of the special VAX floating-point
4c4b4cd2
PH
9408 types. */
9409
14f9c5c9 9410int
d2e4a39e 9411ada_is_vax_floating_type (struct type *type)
14f9c5c9 9412{
d2e4a39e 9413 int name_len =
14f9c5c9 9414 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
d2e4a39e 9415 return
14f9c5c9 9416 name_len > 6
d2e4a39e 9417 && (TYPE_CODE (type) == TYPE_CODE_INT
4c4b4cd2
PH
9418 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9419 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
14f9c5c9
AS
9420}
9421
9422/* The type of special VAX floating-point type this is, assuming
4c4b4cd2
PH
9423 ada_is_vax_floating_point. */
9424
14f9c5c9 9425int
d2e4a39e 9426ada_vax_float_type_suffix (struct type *type)
14f9c5c9 9427{
d2e4a39e 9428 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
14f9c5c9
AS
9429}
9430
4c4b4cd2 9431/* A value representing the special debugging function that outputs
14f9c5c9 9432 VAX floating-point values of the type represented by TYPE. Assumes
4c4b4cd2
PH
9433 ada_is_vax_floating_type (TYPE). */
9434
d2e4a39e
AS
9435struct value *
9436ada_vax_float_print_function (struct type *type)
9437{
9438 switch (ada_vax_float_type_suffix (type))
9439 {
9440 case 'F':
9441 return get_var_value ("DEBUG_STRING_F", 0);
9442 case 'D':
9443 return get_var_value ("DEBUG_STRING_D", 0);
9444 case 'G':
9445 return get_var_value ("DEBUG_STRING_G", 0);
9446 default:
323e0a4a 9447 error (_("invalid VAX floating-point type"));
d2e4a39e 9448 }
14f9c5c9 9449}
14f9c5c9 9450\f
d2e4a39e 9451
4c4b4cd2 9452 /* Range types */
14f9c5c9
AS
9453
9454/* Scan STR beginning at position K for a discriminant name, and
9455 return the value of that discriminant field of DVAL in *PX. If
9456 PNEW_K is not null, put the position of the character beyond the
9457 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 9458 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
9459
9460static int
07d8f827 9461scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 9462 int *pnew_k)
14f9c5c9
AS
9463{
9464 static char *bound_buffer = NULL;
9465 static size_t bound_buffer_len = 0;
9466 char *bound;
9467 char *pend;
d2e4a39e 9468 struct value *bound_val;
14f9c5c9
AS
9469
9470 if (dval == NULL || str == NULL || str[k] == '\0')
9471 return 0;
9472
d2e4a39e 9473 pend = strstr (str + k, "__");
14f9c5c9
AS
9474 if (pend == NULL)
9475 {
d2e4a39e 9476 bound = str + k;
14f9c5c9
AS
9477 k += strlen (bound);
9478 }
d2e4a39e 9479 else
14f9c5c9 9480 {
d2e4a39e 9481 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 9482 bound = bound_buffer;
d2e4a39e
AS
9483 strncpy (bound_buffer, str + k, pend - (str + k));
9484 bound[pend - (str + k)] = '\0';
9485 k = pend - str;
14f9c5c9 9486 }
d2e4a39e 9487
df407dfe 9488 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
9489 if (bound_val == NULL)
9490 return 0;
9491
9492 *px = value_as_long (bound_val);
9493 if (pnew_k != NULL)
9494 *pnew_k = k;
9495 return 1;
9496}
9497
9498/* Value of variable named NAME in the current environment. If
9499 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
9500 otherwise causes an error with message ERR_MSG. */
9501
d2e4a39e
AS
9502static struct value *
9503get_var_value (char *name, char *err_msg)
14f9c5c9 9504{
4c4b4cd2 9505 struct ada_symbol_info *syms;
14f9c5c9
AS
9506 int nsyms;
9507
4c4b4cd2
PH
9508 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9509 &syms);
14f9c5c9
AS
9510
9511 if (nsyms != 1)
9512 {
9513 if (err_msg == NULL)
4c4b4cd2 9514 return 0;
14f9c5c9 9515 else
8a3fe4f8 9516 error (("%s"), err_msg);
14f9c5c9
AS
9517 }
9518
4c4b4cd2 9519 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 9520}
d2e4a39e 9521
14f9c5c9 9522/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
9523 no such variable found, returns 0, and sets *FLAG to 0. If
9524 successful, sets *FLAG to 1. */
9525
14f9c5c9 9526LONGEST
4c4b4cd2 9527get_int_var_value (char *name, int *flag)
14f9c5c9 9528{
4c4b4cd2 9529 struct value *var_val = get_var_value (name, 0);
d2e4a39e 9530
14f9c5c9
AS
9531 if (var_val == 0)
9532 {
9533 if (flag != NULL)
4c4b4cd2 9534 *flag = 0;
14f9c5c9
AS
9535 return 0;
9536 }
9537 else
9538 {
9539 if (flag != NULL)
4c4b4cd2 9540 *flag = 1;
14f9c5c9
AS
9541 return value_as_long (var_val);
9542 }
9543}
d2e4a39e 9544
14f9c5c9
AS
9545
9546/* Return a range type whose base type is that of the range type named
9547 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 9548 from NAME according to the GNAT range encoding conventions.
14f9c5c9
AS
9549 Extract discriminant values, if needed, from DVAL. If a new type
9550 must be created, allocate in OBJFILE's space. The bounds
9551 information, in general, is encoded in NAME, the base type given in
4c4b4cd2 9552 the named range type. */
14f9c5c9 9553
d2e4a39e 9554static struct type *
ebf56fd3 9555to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
14f9c5c9
AS
9556{
9557 struct type *raw_type = ada_find_any_type (name);
9558 struct type *base_type;
d2e4a39e 9559 char *subtype_info;
14f9c5c9
AS
9560
9561 if (raw_type == NULL)
9562 base_type = builtin_type_int;
9563 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9564 base_type = TYPE_TARGET_TYPE (raw_type);
9565 else
9566 base_type = raw_type;
9567
9568 subtype_info = strstr (name, "___XD");
9569 if (subtype_info == NULL)
9570 return raw_type;
9571 else
9572 {
9573 static char *name_buf = NULL;
9574 static size_t name_len = 0;
9575 int prefix_len = subtype_info - name;
9576 LONGEST L, U;
9577 struct type *type;
9578 char *bounds_str;
9579 int n;
9580
9581 GROW_VECT (name_buf, name_len, prefix_len + 5);
9582 strncpy (name_buf, name, prefix_len);
9583 name_buf[prefix_len] = '\0';
9584
9585 subtype_info += 5;
9586 bounds_str = strchr (subtype_info, '_');
9587 n = 1;
9588
d2e4a39e 9589 if (*subtype_info == 'L')
4c4b4cd2
PH
9590 {
9591 if (!ada_scan_number (bounds_str, n, &L, &n)
9592 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9593 return raw_type;
9594 if (bounds_str[n] == '_')
9595 n += 2;
9596 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9597 n += 1;
9598 subtype_info += 1;
9599 }
d2e4a39e 9600 else
4c4b4cd2
PH
9601 {
9602 int ok;
9603 strcpy (name_buf + prefix_len, "___L");
9604 L = get_int_var_value (name_buf, &ok);
9605 if (!ok)
9606 {
323e0a4a 9607 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
9608 L = 1;
9609 }
9610 }
14f9c5c9 9611
d2e4a39e 9612 if (*subtype_info == 'U')
4c4b4cd2
PH
9613 {
9614 if (!ada_scan_number (bounds_str, n, &U, &n)
9615 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9616 return raw_type;
9617 }
d2e4a39e 9618 else
4c4b4cd2
PH
9619 {
9620 int ok;
9621 strcpy (name_buf + prefix_len, "___U");
9622 U = get_int_var_value (name_buf, &ok);
9623 if (!ok)
9624 {
323e0a4a 9625 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
9626 U = L;
9627 }
9628 }
14f9c5c9 9629
d2e4a39e 9630 if (objfile == NULL)
4c4b4cd2 9631 objfile = TYPE_OBJFILE (base_type);
14f9c5c9 9632 type = create_range_type (alloc_type (objfile), base_type, L, U);
d2e4a39e 9633 TYPE_NAME (type) = name;
14f9c5c9
AS
9634 return type;
9635 }
9636}
9637
4c4b4cd2
PH
9638/* True iff NAME is the name of a range type. */
9639
14f9c5c9 9640int
d2e4a39e 9641ada_is_range_type_name (const char *name)
14f9c5c9
AS
9642{
9643 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 9644}
14f9c5c9 9645\f
d2e4a39e 9646
4c4b4cd2
PH
9647 /* Modular types */
9648
9649/* True iff TYPE is an Ada modular type. */
14f9c5c9 9650
14f9c5c9 9651int
d2e4a39e 9652ada_is_modular_type (struct type *type)
14f9c5c9 9653{
4c4b4cd2 9654 struct type *subranged_type = base_type (type);
14f9c5c9
AS
9655
9656 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
4c4b4cd2
PH
9657 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
9658 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
9659}
9660
4c4b4cd2
PH
9661/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9662
61ee279c 9663ULONGEST
d2e4a39e 9664ada_modulus (struct type * type)
14f9c5c9 9665{
61ee279c 9666 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 9667}
d2e4a39e 9668\f
f7f9143b
JB
9669
9670/* Ada exception catchpoint support:
9671 ---------------------------------
9672
9673 We support 3 kinds of exception catchpoints:
9674 . catchpoints on Ada exceptions
9675 . catchpoints on unhandled Ada exceptions
9676 . catchpoints on failed assertions
9677
9678 Exceptions raised during failed assertions, or unhandled exceptions
9679 could perfectly be caught with the general catchpoint on Ada exceptions.
9680 However, we can easily differentiate these two special cases, and having
9681 the option to distinguish these two cases from the rest can be useful
9682 to zero-in on certain situations.
9683
9684 Exception catchpoints are a specialized form of breakpoint,
9685 since they rely on inserting breakpoints inside known routines
9686 of the GNAT runtime. The implementation therefore uses a standard
9687 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9688 of breakpoint_ops.
9689
0259addd
JB
9690 Support in the runtime for exception catchpoints have been changed
9691 a few times already, and these changes affect the implementation
9692 of these catchpoints. In order to be able to support several
9693 variants of the runtime, we use a sniffer that will determine
9694 the runtime variant used by the program being debugged.
9695
f7f9143b
JB
9696 At this time, we do not support the use of conditions on Ada exception
9697 catchpoints. The COND and COND_STRING fields are therefore set
9698 to NULL (most of the time, see below).
9699
9700 Conditions where EXP_STRING, COND, and COND_STRING are used:
9701
9702 When a user specifies the name of a specific exception in the case
9703 of catchpoints on Ada exceptions, we store the name of that exception
9704 in the EXP_STRING. We then translate this request into an actual
9705 condition stored in COND_STRING, and then parse it into an expression
9706 stored in COND. */
9707
9708/* The different types of catchpoints that we introduced for catching
9709 Ada exceptions. */
9710
9711enum exception_catchpoint_kind
9712{
9713 ex_catch_exception,
9714 ex_catch_exception_unhandled,
9715 ex_catch_assert
9716};
9717
0259addd
JB
9718typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9719
9720/* A structure that describes how to support exception catchpoints
9721 for a given executable. */
9722
9723struct exception_support_info
9724{
9725 /* The name of the symbol to break on in order to insert
9726 a catchpoint on exceptions. */
9727 const char *catch_exception_sym;
9728
9729 /* The name of the symbol to break on in order to insert
9730 a catchpoint on unhandled exceptions. */
9731 const char *catch_exception_unhandled_sym;
9732
9733 /* The name of the symbol to break on in order to insert
9734 a catchpoint on failed assertions. */
9735 const char *catch_assert_sym;
9736
9737 /* Assuming that the inferior just triggered an unhandled exception
9738 catchpoint, this function is responsible for returning the address
9739 in inferior memory where the name of that exception is stored.
9740 Return zero if the address could not be computed. */
9741 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9742};
9743
9744static CORE_ADDR ada_unhandled_exception_name_addr (void);
9745static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9746
9747/* The following exception support info structure describes how to
9748 implement exception catchpoints with the latest version of the
9749 Ada runtime (as of 2007-03-06). */
9750
9751static const struct exception_support_info default_exception_support_info =
9752{
9753 "__gnat_debug_raise_exception", /* catch_exception_sym */
9754 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9755 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9756 ada_unhandled_exception_name_addr
9757};
9758
9759/* The following exception support info structure describes how to
9760 implement exception catchpoints with a slightly older version
9761 of the Ada runtime. */
9762
9763static const struct exception_support_info exception_support_info_fallback =
9764{
9765 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9766 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9767 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9768 ada_unhandled_exception_name_addr_from_raise
9769};
9770
9771/* For each executable, we sniff which exception info structure to use
9772 and cache it in the following global variable. */
9773
9774static const struct exception_support_info *exception_info = NULL;
9775
9776/* Inspect the Ada runtime and determine which exception info structure
9777 should be used to provide support for exception catchpoints.
9778
9779 This function will always set exception_info, or raise an error. */
9780
9781static void
9782ada_exception_support_info_sniffer (void)
9783{
9784 struct symbol *sym;
9785
9786 /* If the exception info is already known, then no need to recompute it. */
9787 if (exception_info != NULL)
9788 return;
9789
9790 /* Check the latest (default) exception support info. */
9791 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9792 NULL, VAR_DOMAIN);
9793 if (sym != NULL)
9794 {
9795 exception_info = &default_exception_support_info;
9796 return;
9797 }
9798
9799 /* Try our fallback exception suport info. */
9800 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9801 NULL, VAR_DOMAIN);
9802 if (sym != NULL)
9803 {
9804 exception_info = &exception_support_info_fallback;
9805 return;
9806 }
9807
9808 /* Sometimes, it is normal for us to not be able to find the routine
9809 we are looking for. This happens when the program is linked with
9810 the shared version of the GNAT runtime, and the program has not been
9811 started yet. Inform the user of these two possible causes if
9812 applicable. */
9813
9814 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9815 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9816
9817 /* If the symbol does not exist, then check that the program is
9818 already started, to make sure that shared libraries have been
9819 loaded. If it is not started, this may mean that the symbol is
9820 in a shared library. */
9821
9822 if (ptid_get_pid (inferior_ptid) == 0)
9823 error (_("Unable to insert catchpoint. Try to start the program first."));
9824
9825 /* At this point, we know that we are debugging an Ada program and
9826 that the inferior has been started, but we still are not able to
9827 find the run-time symbols. That can mean that we are in
9828 configurable run time mode, or that a-except as been optimized
9829 out by the linker... In any case, at this point it is not worth
9830 supporting this feature. */
9831
9832 error (_("Cannot insert catchpoints in this configuration."));
9833}
9834
9835/* An observer of "executable_changed" events.
9836 Its role is to clear certain cached values that need to be recomputed
9837 each time a new executable is loaded by GDB. */
9838
9839static void
9840ada_executable_changed_observer (void *unused)
9841{
9842 /* If the executable changed, then it is possible that the Ada runtime
9843 is different. So we need to invalidate the exception support info
9844 cache. */
9845 exception_info = NULL;
9846}
9847
f7f9143b
JB
9848/* Return the name of the function at PC, NULL if could not find it.
9849 This function only checks the debugging information, not the symbol
9850 table. */
9851
9852static char *
9853function_name_from_pc (CORE_ADDR pc)
9854{
9855 char *func_name;
9856
9857 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9858 return NULL;
9859
9860 return func_name;
9861}
9862
9863/* True iff FRAME is very likely to be that of a function that is
9864 part of the runtime system. This is all very heuristic, but is
9865 intended to be used as advice as to what frames are uninteresting
9866 to most users. */
9867
9868static int
9869is_known_support_routine (struct frame_info *frame)
9870{
4ed6b5be 9871 struct symtab_and_line sal;
f7f9143b
JB
9872 char *func_name;
9873 int i;
f7f9143b 9874
4ed6b5be
JB
9875 /* If this code does not have any debugging information (no symtab),
9876 This cannot be any user code. */
f7f9143b 9877
4ed6b5be 9878 find_frame_sal (frame, &sal);
f7f9143b
JB
9879 if (sal.symtab == NULL)
9880 return 1;
9881
4ed6b5be
JB
9882 /* If there is a symtab, but the associated source file cannot be
9883 located, then assume this is not user code: Selecting a frame
9884 for which we cannot display the code would not be very helpful
9885 for the user. This should also take care of case such as VxWorks
9886 where the kernel has some debugging info provided for a few units. */
f7f9143b 9887
9bbc9174 9888 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
9889 return 1;
9890
4ed6b5be
JB
9891 /* Check the unit filename againt the Ada runtime file naming.
9892 We also check the name of the objfile against the name of some
9893 known system libraries that sometimes come with debugging info
9894 too. */
9895
f7f9143b
JB
9896 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9897 {
9898 re_comp (known_runtime_file_name_patterns[i]);
9899 if (re_exec (sal.symtab->filename))
9900 return 1;
4ed6b5be
JB
9901 if (sal.symtab->objfile != NULL
9902 && re_exec (sal.symtab->objfile->name))
9903 return 1;
f7f9143b
JB
9904 }
9905
4ed6b5be 9906 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 9907
4ed6b5be 9908 func_name = function_name_from_pc (get_frame_address_in_block (frame));
f7f9143b
JB
9909 if (func_name == NULL)
9910 return 1;
9911
9912 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9913 {
9914 re_comp (known_auxiliary_function_name_patterns[i]);
9915 if (re_exec (func_name))
9916 return 1;
9917 }
9918
9919 return 0;
9920}
9921
9922/* Find the first frame that contains debugging information and that is not
9923 part of the Ada run-time, starting from FI and moving upward. */
9924
9925static void
9926ada_find_printable_frame (struct frame_info *fi)
9927{
9928 for (; fi != NULL; fi = get_prev_frame (fi))
9929 {
9930 if (!is_known_support_routine (fi))
9931 {
9932 select_frame (fi);
9933 break;
9934 }
9935 }
9936
9937}
9938
9939/* Assuming that the inferior just triggered an unhandled exception
9940 catchpoint, return the address in inferior memory where the name
9941 of the exception is stored.
9942
9943 Return zero if the address could not be computed. */
9944
9945static CORE_ADDR
9946ada_unhandled_exception_name_addr (void)
0259addd
JB
9947{
9948 return parse_and_eval_address ("e.full_name");
9949}
9950
9951/* Same as ada_unhandled_exception_name_addr, except that this function
9952 should be used when the inferior uses an older version of the runtime,
9953 where the exception name needs to be extracted from a specific frame
9954 several frames up in the callstack. */
9955
9956static CORE_ADDR
9957ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
9958{
9959 int frame_level;
9960 struct frame_info *fi;
9961
9962 /* To determine the name of this exception, we need to select
9963 the frame corresponding to RAISE_SYM_NAME. This frame is
9964 at least 3 levels up, so we simply skip the first 3 frames
9965 without checking the name of their associated function. */
9966 fi = get_current_frame ();
9967 for (frame_level = 0; frame_level < 3; frame_level += 1)
9968 if (fi != NULL)
9969 fi = get_prev_frame (fi);
9970
9971 while (fi != NULL)
9972 {
9973 const char *func_name =
9974 function_name_from_pc (get_frame_address_in_block (fi));
9975 if (func_name != NULL
0259addd 9976 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
9977 break; /* We found the frame we were looking for... */
9978 fi = get_prev_frame (fi);
9979 }
9980
9981 if (fi == NULL)
9982 return 0;
9983
9984 select_frame (fi);
9985 return parse_and_eval_address ("id.full_name");
9986}
9987
9988/* Assuming the inferior just triggered an Ada exception catchpoint
9989 (of any type), return the address in inferior memory where the name
9990 of the exception is stored, if applicable.
9991
9992 Return zero if the address could not be computed, or if not relevant. */
9993
9994static CORE_ADDR
9995ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9996 struct breakpoint *b)
9997{
9998 switch (ex)
9999 {
10000 case ex_catch_exception:
10001 return (parse_and_eval_address ("e.full_name"));
10002 break;
10003
10004 case ex_catch_exception_unhandled:
0259addd 10005 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10006 break;
10007
10008 case ex_catch_assert:
10009 return 0; /* Exception name is not relevant in this case. */
10010 break;
10011
10012 default:
10013 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10014 break;
10015 }
10016
10017 return 0; /* Should never be reached. */
10018}
10019
10020/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10021 any error that ada_exception_name_addr_1 might cause to be thrown.
10022 When an error is intercepted, a warning with the error message is printed,
10023 and zero is returned. */
10024
10025static CORE_ADDR
10026ada_exception_name_addr (enum exception_catchpoint_kind ex,
10027 struct breakpoint *b)
10028{
10029 struct gdb_exception e;
10030 CORE_ADDR result = 0;
10031
10032 TRY_CATCH (e, RETURN_MASK_ERROR)
10033 {
10034 result = ada_exception_name_addr_1 (ex, b);
10035 }
10036
10037 if (e.reason < 0)
10038 {
10039 warning (_("failed to get exception name: %s"), e.message);
10040 return 0;
10041 }
10042
10043 return result;
10044}
10045
10046/* Implement the PRINT_IT method in the breakpoint_ops structure
10047 for all exception catchpoint kinds. */
10048
10049static enum print_stop_action
10050print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10051{
10052 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10053 char exception_name[256];
10054
10055 if (addr != 0)
10056 {
10057 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10058 exception_name [sizeof (exception_name) - 1] = '\0';
10059 }
10060
10061 ada_find_printable_frame (get_current_frame ());
10062
10063 annotate_catchpoint (b->number);
10064 switch (ex)
10065 {
10066 case ex_catch_exception:
10067 if (addr != 0)
10068 printf_filtered (_("\nCatchpoint %d, %s at "),
10069 b->number, exception_name);
10070 else
10071 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10072 break;
10073 case ex_catch_exception_unhandled:
10074 if (addr != 0)
10075 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10076 b->number, exception_name);
10077 else
10078 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10079 b->number);
10080 break;
10081 case ex_catch_assert:
10082 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10083 b->number);
10084 break;
10085 }
10086
10087 return PRINT_SRC_AND_LOC;
10088}
10089
10090/* Implement the PRINT_ONE method in the breakpoint_ops structure
10091 for all exception catchpoint kinds. */
10092
10093static void
10094print_one_exception (enum exception_catchpoint_kind ex,
10095 struct breakpoint *b, CORE_ADDR *last_addr)
10096{
10097 if (addressprint)
10098 {
10099 annotate_field (4);
10100 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10101 }
10102
10103 annotate_field (5);
10104 *last_addr = b->loc->address;
10105 switch (ex)
10106 {
10107 case ex_catch_exception:
10108 if (b->exp_string != NULL)
10109 {
10110 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10111
10112 ui_out_field_string (uiout, "what", msg);
10113 xfree (msg);
10114 }
10115 else
10116 ui_out_field_string (uiout, "what", "all Ada exceptions");
10117
10118 break;
10119
10120 case ex_catch_exception_unhandled:
10121 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10122 break;
10123
10124 case ex_catch_assert:
10125 ui_out_field_string (uiout, "what", "failed Ada assertions");
10126 break;
10127
10128 default:
10129 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10130 break;
10131 }
10132}
10133
10134/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10135 for all exception catchpoint kinds. */
10136
10137static void
10138print_mention_exception (enum exception_catchpoint_kind ex,
10139 struct breakpoint *b)
10140{
10141 switch (ex)
10142 {
10143 case ex_catch_exception:
10144 if (b->exp_string != NULL)
10145 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10146 b->number, b->exp_string);
10147 else
10148 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10149
10150 break;
10151
10152 case ex_catch_exception_unhandled:
10153 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10154 b->number);
10155 break;
10156
10157 case ex_catch_assert:
10158 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10159 break;
10160
10161 default:
10162 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10163 break;
10164 }
10165}
10166
10167/* Virtual table for "catch exception" breakpoints. */
10168
10169static enum print_stop_action
10170print_it_catch_exception (struct breakpoint *b)
10171{
10172 return print_it_exception (ex_catch_exception, b);
10173}
10174
10175static void
10176print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10177{
10178 print_one_exception (ex_catch_exception, b, last_addr);
10179}
10180
10181static void
10182print_mention_catch_exception (struct breakpoint *b)
10183{
10184 print_mention_exception (ex_catch_exception, b);
10185}
10186
10187static struct breakpoint_ops catch_exception_breakpoint_ops =
10188{
10189 print_it_catch_exception,
10190 print_one_catch_exception,
10191 print_mention_catch_exception
10192};
10193
10194/* Virtual table for "catch exception unhandled" breakpoints. */
10195
10196static enum print_stop_action
10197print_it_catch_exception_unhandled (struct breakpoint *b)
10198{
10199 return print_it_exception (ex_catch_exception_unhandled, b);
10200}
10201
10202static void
10203print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10204{
10205 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10206}
10207
10208static void
10209print_mention_catch_exception_unhandled (struct breakpoint *b)
10210{
10211 print_mention_exception (ex_catch_exception_unhandled, b);
10212}
10213
10214static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10215 print_it_catch_exception_unhandled,
10216 print_one_catch_exception_unhandled,
10217 print_mention_catch_exception_unhandled
10218};
10219
10220/* Virtual table for "catch assert" breakpoints. */
10221
10222static enum print_stop_action
10223print_it_catch_assert (struct breakpoint *b)
10224{
10225 return print_it_exception (ex_catch_assert, b);
10226}
10227
10228static void
10229print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10230{
10231 print_one_exception (ex_catch_assert, b, last_addr);
10232}
10233
10234static void
10235print_mention_catch_assert (struct breakpoint *b)
10236{
10237 print_mention_exception (ex_catch_assert, b);
10238}
10239
10240static struct breakpoint_ops catch_assert_breakpoint_ops = {
10241 print_it_catch_assert,
10242 print_one_catch_assert,
10243 print_mention_catch_assert
10244};
10245
10246/* Return non-zero if B is an Ada exception catchpoint. */
10247
10248int
10249ada_exception_catchpoint_p (struct breakpoint *b)
10250{
10251 return (b->ops == &catch_exception_breakpoint_ops
10252 || b->ops == &catch_exception_unhandled_breakpoint_ops
10253 || b->ops == &catch_assert_breakpoint_ops);
10254}
10255
f7f9143b
JB
10256/* Return a newly allocated copy of the first space-separated token
10257 in ARGSP, and then adjust ARGSP to point immediately after that
10258 token.
10259
10260 Return NULL if ARGPS does not contain any more tokens. */
10261
10262static char *
10263ada_get_next_arg (char **argsp)
10264{
10265 char *args = *argsp;
10266 char *end;
10267 char *result;
10268
10269 /* Skip any leading white space. */
10270
10271 while (isspace (*args))
10272 args++;
10273
10274 if (args[0] == '\0')
10275 return NULL; /* No more arguments. */
10276
10277 /* Find the end of the current argument. */
10278
10279 end = args;
10280 while (*end != '\0' && !isspace (*end))
10281 end++;
10282
10283 /* Adjust ARGSP to point to the start of the next argument. */
10284
10285 *argsp = end;
10286
10287 /* Make a copy of the current argument and return it. */
10288
10289 result = xmalloc (end - args + 1);
10290 strncpy (result, args, end - args);
10291 result[end - args] = '\0';
10292
10293 return result;
10294}
10295
10296/* Split the arguments specified in a "catch exception" command.
10297 Set EX to the appropriate catchpoint type.
10298 Set EXP_STRING to the name of the specific exception if
10299 specified by the user. */
10300
10301static void
10302catch_ada_exception_command_split (char *args,
10303 enum exception_catchpoint_kind *ex,
10304 char **exp_string)
10305{
10306 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10307 char *exception_name;
10308
10309 exception_name = ada_get_next_arg (&args);
10310 make_cleanup (xfree, exception_name);
10311
10312 /* Check that we do not have any more arguments. Anything else
10313 is unexpected. */
10314
10315 while (isspace (*args))
10316 args++;
10317
10318 if (args[0] != '\0')
10319 error (_("Junk at end of expression"));
10320
10321 discard_cleanups (old_chain);
10322
10323 if (exception_name == NULL)
10324 {
10325 /* Catch all exceptions. */
10326 *ex = ex_catch_exception;
10327 *exp_string = NULL;
10328 }
10329 else if (strcmp (exception_name, "unhandled") == 0)
10330 {
10331 /* Catch unhandled exceptions. */
10332 *ex = ex_catch_exception_unhandled;
10333 *exp_string = NULL;
10334 }
10335 else
10336 {
10337 /* Catch a specific exception. */
10338 *ex = ex_catch_exception;
10339 *exp_string = exception_name;
10340 }
10341}
10342
10343/* Return the name of the symbol on which we should break in order to
10344 implement a catchpoint of the EX kind. */
10345
10346static const char *
10347ada_exception_sym_name (enum exception_catchpoint_kind ex)
10348{
0259addd
JB
10349 gdb_assert (exception_info != NULL);
10350
f7f9143b
JB
10351 switch (ex)
10352 {
10353 case ex_catch_exception:
0259addd 10354 return (exception_info->catch_exception_sym);
f7f9143b
JB
10355 break;
10356 case ex_catch_exception_unhandled:
0259addd 10357 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
10358 break;
10359 case ex_catch_assert:
0259addd 10360 return (exception_info->catch_assert_sym);
f7f9143b
JB
10361 break;
10362 default:
10363 internal_error (__FILE__, __LINE__,
10364 _("unexpected catchpoint kind (%d)"), ex);
10365 }
10366}
10367
10368/* Return the breakpoint ops "virtual table" used for catchpoints
10369 of the EX kind. */
10370
10371static struct breakpoint_ops *
4b9eee8c 10372ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
10373{
10374 switch (ex)
10375 {
10376 case ex_catch_exception:
10377 return (&catch_exception_breakpoint_ops);
10378 break;
10379 case ex_catch_exception_unhandled:
10380 return (&catch_exception_unhandled_breakpoint_ops);
10381 break;
10382 case ex_catch_assert:
10383 return (&catch_assert_breakpoint_ops);
10384 break;
10385 default:
10386 internal_error (__FILE__, __LINE__,
10387 _("unexpected catchpoint kind (%d)"), ex);
10388 }
10389}
10390
10391/* Return the condition that will be used to match the current exception
10392 being raised with the exception that the user wants to catch. This
10393 assumes that this condition is used when the inferior just triggered
10394 an exception catchpoint.
10395
10396 The string returned is a newly allocated string that needs to be
10397 deallocated later. */
10398
10399static char *
10400ada_exception_catchpoint_cond_string (const char *exp_string)
10401{
10402 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10403}
10404
10405/* Return the expression corresponding to COND_STRING evaluated at SAL. */
10406
10407static struct expression *
10408ada_parse_catchpoint_condition (char *cond_string,
10409 struct symtab_and_line sal)
10410{
10411 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10412}
10413
10414/* Return the symtab_and_line that should be used to insert an exception
10415 catchpoint of the TYPE kind.
10416
10417 EX_STRING should contain the name of a specific exception
10418 that the catchpoint should catch, or NULL otherwise.
10419
10420 The idea behind all the remaining parameters is that their names match
10421 the name of certain fields in the breakpoint structure that are used to
10422 handle exception catchpoints. This function returns the value to which
10423 these fields should be set, depending on the type of catchpoint we need
10424 to create.
10425
10426 If COND and COND_STRING are both non-NULL, any value they might
10427 hold will be free'ed, and then replaced by newly allocated ones.
10428 These parameters are left untouched otherwise. */
10429
10430static struct symtab_and_line
10431ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10432 char **addr_string, char **cond_string,
10433 struct expression **cond, struct breakpoint_ops **ops)
10434{
10435 const char *sym_name;
10436 struct symbol *sym;
10437 struct symtab_and_line sal;
10438
0259addd
JB
10439 /* First, find out which exception support info to use. */
10440 ada_exception_support_info_sniffer ();
10441
10442 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
10443 the Ada exceptions requested by the user. */
10444
10445 sym_name = ada_exception_sym_name (ex);
10446 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10447
10448 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10449 that should be compiled with debugging information. As a result, we
10450 expect to find that symbol in the symtabs. If we don't find it, then
10451 the target most likely does not support Ada exceptions, or we cannot
10452 insert exception breakpoints yet, because the GNAT runtime hasn't been
10453 loaded yet. */
10454
10455 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10456 in such a way that no debugging information is produced for the symbol
10457 we are looking for. In this case, we could search the minimal symbols
10458 as a fall-back mechanism. This would still be operating in degraded
10459 mode, however, as we would still be missing the debugging information
10460 that is needed in order to extract the name of the exception being
10461 raised (this name is printed in the catchpoint message, and is also
10462 used when trying to catch a specific exception). We do not handle
10463 this case for now. */
10464
10465 if (sym == NULL)
0259addd 10466 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
10467
10468 /* Make sure that the symbol we found corresponds to a function. */
10469 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10470 error (_("Symbol \"%s\" is not a function (class = %d)"),
10471 sym_name, SYMBOL_CLASS (sym));
10472
10473 sal = find_function_start_sal (sym, 1);
10474
10475 /* Set ADDR_STRING. */
10476
10477 *addr_string = xstrdup (sym_name);
10478
10479 /* Set the COND and COND_STRING (if not NULL). */
10480
10481 if (cond_string != NULL && cond != NULL)
10482 {
10483 if (*cond_string != NULL)
10484 {
10485 xfree (*cond_string);
10486 *cond_string = NULL;
10487 }
10488 if (*cond != NULL)
10489 {
10490 xfree (*cond);
10491 *cond = NULL;
10492 }
10493 if (exp_string != NULL)
10494 {
10495 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10496 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10497 }
10498 }
10499
10500 /* Set OPS. */
4b9eee8c 10501 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
10502
10503 return sal;
10504}
10505
10506/* Parse the arguments (ARGS) of the "catch exception" command.
10507
10508 Set TYPE to the appropriate exception catchpoint type.
10509 If the user asked the catchpoint to catch only a specific
10510 exception, then save the exception name in ADDR_STRING.
10511
10512 See ada_exception_sal for a description of all the remaining
10513 function arguments of this function. */
10514
10515struct symtab_and_line
10516ada_decode_exception_location (char *args, char **addr_string,
10517 char **exp_string, char **cond_string,
10518 struct expression **cond,
10519 struct breakpoint_ops **ops)
10520{
10521 enum exception_catchpoint_kind ex;
10522
10523 catch_ada_exception_command_split (args, &ex, exp_string);
10524 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10525 cond, ops);
10526}
10527
10528struct symtab_and_line
10529ada_decode_assert_location (char *args, char **addr_string,
10530 struct breakpoint_ops **ops)
10531{
10532 /* Check that no argument where provided at the end of the command. */
10533
10534 if (args != NULL)
10535 {
10536 while (isspace (*args))
10537 args++;
10538 if (*args != '\0')
10539 error (_("Junk at end of arguments."));
10540 }
10541
10542 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10543 ops);
10544}
10545
4c4b4cd2
PH
10546 /* Operators */
10547/* Information about operators given special treatment in functions
10548 below. */
10549/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10550
10551#define ADA_OPERATORS \
10552 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10553 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10554 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10555 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10556 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10557 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10558 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10559 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10560 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10561 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10562 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10563 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10564 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10565 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10566 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
10567 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10568 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10569 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10570 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
10571
10572static void
10573ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10574{
10575 switch (exp->elts[pc - 1].opcode)
10576 {
76a01679 10577 default:
4c4b4cd2
PH
10578 operator_length_standard (exp, pc, oplenp, argsp);
10579 break;
10580
10581#define OP_DEFN(op, len, args, binop) \
10582 case op: *oplenp = len; *argsp = args; break;
10583 ADA_OPERATORS;
10584#undef OP_DEFN
52ce6436
PH
10585
10586 case OP_AGGREGATE:
10587 *oplenp = 3;
10588 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10589 break;
10590
10591 case OP_CHOICES:
10592 *oplenp = 3;
10593 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10594 break;
4c4b4cd2
PH
10595 }
10596}
10597
10598static char *
10599ada_op_name (enum exp_opcode opcode)
10600{
10601 switch (opcode)
10602 {
76a01679 10603 default:
4c4b4cd2 10604 return op_name_standard (opcode);
52ce6436 10605
4c4b4cd2
PH
10606#define OP_DEFN(op, len, args, binop) case op: return #op;
10607 ADA_OPERATORS;
10608#undef OP_DEFN
52ce6436
PH
10609
10610 case OP_AGGREGATE:
10611 return "OP_AGGREGATE";
10612 case OP_CHOICES:
10613 return "OP_CHOICES";
10614 case OP_NAME:
10615 return "OP_NAME";
4c4b4cd2
PH
10616 }
10617}
10618
10619/* As for operator_length, but assumes PC is pointing at the first
10620 element of the operator, and gives meaningful results only for the
52ce6436 10621 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
10622
10623static void
76a01679
JB
10624ada_forward_operator_length (struct expression *exp, int pc,
10625 int *oplenp, int *argsp)
4c4b4cd2 10626{
76a01679 10627 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
10628 {
10629 default:
10630 *oplenp = *argsp = 0;
10631 break;
52ce6436 10632
4c4b4cd2
PH
10633#define OP_DEFN(op, len, args, binop) \
10634 case op: *oplenp = len; *argsp = args; break;
10635 ADA_OPERATORS;
10636#undef OP_DEFN
52ce6436
PH
10637
10638 case OP_AGGREGATE:
10639 *oplenp = 3;
10640 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10641 break;
10642
10643 case OP_CHOICES:
10644 *oplenp = 3;
10645 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10646 break;
10647
10648 case OP_STRING:
10649 case OP_NAME:
10650 {
10651 int len = longest_to_int (exp->elts[pc + 1].longconst);
10652 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10653 *argsp = 0;
10654 break;
10655 }
4c4b4cd2
PH
10656 }
10657}
10658
10659static int
10660ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10661{
10662 enum exp_opcode op = exp->elts[elt].opcode;
10663 int oplen, nargs;
10664 int pc = elt;
10665 int i;
76a01679 10666
4c4b4cd2
PH
10667 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10668
76a01679 10669 switch (op)
4c4b4cd2 10670 {
76a01679 10671 /* Ada attributes ('Foo). */
4c4b4cd2
PH
10672 case OP_ATR_FIRST:
10673 case OP_ATR_LAST:
10674 case OP_ATR_LENGTH:
10675 case OP_ATR_IMAGE:
10676 case OP_ATR_MAX:
10677 case OP_ATR_MIN:
10678 case OP_ATR_MODULUS:
10679 case OP_ATR_POS:
10680 case OP_ATR_SIZE:
10681 case OP_ATR_TAG:
10682 case OP_ATR_VAL:
10683 break;
10684
10685 case UNOP_IN_RANGE:
10686 case UNOP_QUAL:
323e0a4a
AC
10687 /* XXX: gdb_sprint_host_address, type_sprint */
10688 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
10689 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10690 fprintf_filtered (stream, " (");
10691 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10692 fprintf_filtered (stream, ")");
10693 break;
10694 case BINOP_IN_BOUNDS:
52ce6436
PH
10695 fprintf_filtered (stream, " (%d)",
10696 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
10697 break;
10698 case TERNOP_IN_RANGE:
10699 break;
10700
52ce6436
PH
10701 case OP_AGGREGATE:
10702 case OP_OTHERS:
10703 case OP_DISCRETE_RANGE:
10704 case OP_POSITIONAL:
10705 case OP_CHOICES:
10706 break;
10707
10708 case OP_NAME:
10709 case OP_STRING:
10710 {
10711 char *name = &exp->elts[elt + 2].string;
10712 int len = longest_to_int (exp->elts[elt + 1].longconst);
10713 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10714 break;
10715 }
10716
4c4b4cd2
PH
10717 default:
10718 return dump_subexp_body_standard (exp, stream, elt);
10719 }
10720
10721 elt += oplen;
10722 for (i = 0; i < nargs; i += 1)
10723 elt = dump_subexp (exp, stream, elt);
10724
10725 return elt;
10726}
10727
10728/* The Ada extension of print_subexp (q.v.). */
10729
76a01679
JB
10730static void
10731ada_print_subexp (struct expression *exp, int *pos,
10732 struct ui_file *stream, enum precedence prec)
4c4b4cd2 10733{
52ce6436 10734 int oplen, nargs, i;
4c4b4cd2
PH
10735 int pc = *pos;
10736 enum exp_opcode op = exp->elts[pc].opcode;
10737
10738 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10739
52ce6436 10740 *pos += oplen;
4c4b4cd2
PH
10741 switch (op)
10742 {
10743 default:
52ce6436 10744 *pos -= oplen;
4c4b4cd2
PH
10745 print_subexp_standard (exp, pos, stream, prec);
10746 return;
10747
10748 case OP_VAR_VALUE:
4c4b4cd2
PH
10749 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10750 return;
10751
10752 case BINOP_IN_BOUNDS:
323e0a4a 10753 /* XXX: sprint_subexp */
4c4b4cd2 10754 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10755 fputs_filtered (" in ", stream);
4c4b4cd2 10756 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10757 fputs_filtered ("'range", stream);
4c4b4cd2 10758 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
10759 fprintf_filtered (stream, "(%ld)",
10760 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
10761 return;
10762
10763 case TERNOP_IN_RANGE:
4c4b4cd2 10764 if (prec >= PREC_EQUAL)
76a01679 10765 fputs_filtered ("(", stream);
323e0a4a 10766 /* XXX: sprint_subexp */
4c4b4cd2 10767 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10768 fputs_filtered (" in ", stream);
4c4b4cd2
PH
10769 print_subexp (exp, pos, stream, PREC_EQUAL);
10770 fputs_filtered (" .. ", stream);
10771 print_subexp (exp, pos, stream, PREC_EQUAL);
10772 if (prec >= PREC_EQUAL)
76a01679
JB
10773 fputs_filtered (")", stream);
10774 return;
4c4b4cd2
PH
10775
10776 case OP_ATR_FIRST:
10777 case OP_ATR_LAST:
10778 case OP_ATR_LENGTH:
10779 case OP_ATR_IMAGE:
10780 case OP_ATR_MAX:
10781 case OP_ATR_MIN:
10782 case OP_ATR_MODULUS:
10783 case OP_ATR_POS:
10784 case OP_ATR_SIZE:
10785 case OP_ATR_TAG:
10786 case OP_ATR_VAL:
4c4b4cd2 10787 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
10788 {
10789 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10790 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10791 *pos += 3;
10792 }
4c4b4cd2 10793 else
76a01679 10794 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
10795 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10796 if (nargs > 1)
76a01679
JB
10797 {
10798 int tem;
10799 for (tem = 1; tem < nargs; tem += 1)
10800 {
10801 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10802 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10803 }
10804 fputs_filtered (")", stream);
10805 }
4c4b4cd2 10806 return;
14f9c5c9 10807
4c4b4cd2 10808 case UNOP_QUAL:
4c4b4cd2
PH
10809 type_print (exp->elts[pc + 1].type, "", stream, 0);
10810 fputs_filtered ("'(", stream);
10811 print_subexp (exp, pos, stream, PREC_PREFIX);
10812 fputs_filtered (")", stream);
10813 return;
14f9c5c9 10814
4c4b4cd2 10815 case UNOP_IN_RANGE:
323e0a4a 10816 /* XXX: sprint_subexp */
4c4b4cd2 10817 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10818 fputs_filtered (" in ", stream);
4c4b4cd2
PH
10819 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10820 return;
52ce6436
PH
10821
10822 case OP_DISCRETE_RANGE:
10823 print_subexp (exp, pos, stream, PREC_SUFFIX);
10824 fputs_filtered ("..", stream);
10825 print_subexp (exp, pos, stream, PREC_SUFFIX);
10826 return;
10827
10828 case OP_OTHERS:
10829 fputs_filtered ("others => ", stream);
10830 print_subexp (exp, pos, stream, PREC_SUFFIX);
10831 return;
10832
10833 case OP_CHOICES:
10834 for (i = 0; i < nargs-1; i += 1)
10835 {
10836 if (i > 0)
10837 fputs_filtered ("|", stream);
10838 print_subexp (exp, pos, stream, PREC_SUFFIX);
10839 }
10840 fputs_filtered (" => ", stream);
10841 print_subexp (exp, pos, stream, PREC_SUFFIX);
10842 return;
10843
10844 case OP_POSITIONAL:
10845 print_subexp (exp, pos, stream, PREC_SUFFIX);
10846 return;
10847
10848 case OP_AGGREGATE:
10849 fputs_filtered ("(", stream);
10850 for (i = 0; i < nargs; i += 1)
10851 {
10852 if (i > 0)
10853 fputs_filtered (", ", stream);
10854 print_subexp (exp, pos, stream, PREC_SUFFIX);
10855 }
10856 fputs_filtered (")", stream);
10857 return;
4c4b4cd2
PH
10858 }
10859}
14f9c5c9
AS
10860
10861/* Table mapping opcodes into strings for printing operators
10862 and precedences of the operators. */
10863
d2e4a39e
AS
10864static const struct op_print ada_op_print_tab[] = {
10865 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10866 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10867 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10868 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10869 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10870 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10871 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10872 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10873 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10874 {">=", BINOP_GEQ, PREC_ORDER, 0},
10875 {">", BINOP_GTR, PREC_ORDER, 0},
10876 {"<", BINOP_LESS, PREC_ORDER, 0},
10877 {">>", BINOP_RSH, PREC_SHIFT, 0},
10878 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10879 {"+", BINOP_ADD, PREC_ADD, 0},
10880 {"-", BINOP_SUB, PREC_ADD, 0},
10881 {"&", BINOP_CONCAT, PREC_ADD, 0},
10882 {"*", BINOP_MUL, PREC_MUL, 0},
10883 {"/", BINOP_DIV, PREC_MUL, 0},
10884 {"rem", BINOP_REM, PREC_MUL, 0},
10885 {"mod", BINOP_MOD, PREC_MUL, 0},
10886 {"**", BINOP_EXP, PREC_REPEAT, 0},
10887 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10888 {"-", UNOP_NEG, PREC_PREFIX, 0},
10889 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10890 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10891 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10892 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
10893 {".all", UNOP_IND, PREC_SUFFIX, 1},
10894 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10895 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 10896 {NULL, 0, 0, 0}
14f9c5c9
AS
10897};
10898\f
72d5681a
PH
10899enum ada_primitive_types {
10900 ada_primitive_type_int,
10901 ada_primitive_type_long,
10902 ada_primitive_type_short,
10903 ada_primitive_type_char,
10904 ada_primitive_type_float,
10905 ada_primitive_type_double,
10906 ada_primitive_type_void,
10907 ada_primitive_type_long_long,
10908 ada_primitive_type_long_double,
10909 ada_primitive_type_natural,
10910 ada_primitive_type_positive,
10911 ada_primitive_type_system_address,
10912 nr_ada_primitive_types
10913};
6c038f32
PH
10914
10915static void
d4a9a881 10916ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
10917 struct language_arch_info *lai)
10918{
d4a9a881 10919 const struct builtin_type *builtin = builtin_type (gdbarch);
72d5681a 10920 lai->primitive_type_vector
d4a9a881 10921 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a
PH
10922 struct type *);
10923 lai->primitive_type_vector [ada_primitive_type_int] =
9a76efb6 10924 init_type (TYPE_CODE_INT,
d4a9a881 10925 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10926 0, "integer", (struct objfile *) NULL);
72d5681a 10927 lai->primitive_type_vector [ada_primitive_type_long] =
9a76efb6 10928 init_type (TYPE_CODE_INT,
d4a9a881 10929 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10930 0, "long_integer", (struct objfile *) NULL);
72d5681a 10931 lai->primitive_type_vector [ada_primitive_type_short] =
9a76efb6 10932 init_type (TYPE_CODE_INT,
d4a9a881 10933 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10934 0, "short_integer", (struct objfile *) NULL);
61ee279c
PH
10935 lai->string_char_type =
10936 lai->primitive_type_vector [ada_primitive_type_char] =
6c038f32
PH
10937 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10938 0, "character", (struct objfile *) NULL);
72d5681a 10939 lai->primitive_type_vector [ada_primitive_type_float] =
ea06eb3d 10940 init_type (TYPE_CODE_FLT,
d4a9a881 10941 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
6c038f32 10942 0, "float", (struct objfile *) NULL);
72d5681a 10943 lai->primitive_type_vector [ada_primitive_type_double] =
ea06eb3d 10944 init_type (TYPE_CODE_FLT,
d4a9a881 10945 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 10946 0, "long_float", (struct objfile *) NULL);
72d5681a 10947 lai->primitive_type_vector [ada_primitive_type_long_long] =
9a76efb6 10948 init_type (TYPE_CODE_INT,
d4a9a881 10949 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 10950 0, "long_long_integer", (struct objfile *) NULL);
72d5681a 10951 lai->primitive_type_vector [ada_primitive_type_long_double] =
ea06eb3d 10952 init_type (TYPE_CODE_FLT,
d4a9a881 10953 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 10954 0, "long_long_float", (struct objfile *) NULL);
72d5681a 10955 lai->primitive_type_vector [ada_primitive_type_natural] =
9a76efb6 10956 init_type (TYPE_CODE_INT,
d4a9a881 10957 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10958 0, "natural", (struct objfile *) NULL);
72d5681a 10959 lai->primitive_type_vector [ada_primitive_type_positive] =
9a76efb6 10960 init_type (TYPE_CODE_INT,
d4a9a881 10961 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10962 0, "positive", (struct objfile *) NULL);
72d5681a 10963 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
6c038f32 10964
72d5681a 10965 lai->primitive_type_vector [ada_primitive_type_system_address] =
6c038f32
PH
10966 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10967 (struct objfile *) NULL));
72d5681a
PH
10968 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10969 = "system__address";
6c038f32 10970}
6c038f32
PH
10971\f
10972 /* Language vector */
10973
10974/* Not really used, but needed in the ada_language_defn. */
10975
10976static void
10977emit_char (int c, struct ui_file *stream, int quoter)
10978{
10979 ada_emit_char (c, stream, quoter, 1);
10980}
10981
10982static int
10983parse (void)
10984{
10985 warnings_issued = 0;
10986 return ada_parse ();
10987}
10988
10989static const struct exp_descriptor ada_exp_descriptor = {
10990 ada_print_subexp,
10991 ada_operator_length,
10992 ada_op_name,
10993 ada_dump_subexp_body,
10994 ada_evaluate_subexp
10995};
10996
10997const struct language_defn ada_language_defn = {
10998 "ada", /* Language name */
10999 language_ada,
6c038f32
PH
11000 range_check_off,
11001 type_check_off,
11002 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11003 that's not quite what this means. */
6c038f32
PH
11004 array_row_major,
11005 &ada_exp_descriptor,
11006 parse,
11007 ada_error,
11008 resolve,
11009 ada_printchar, /* Print a character constant */
11010 ada_printstr, /* Function to print string constant */
11011 emit_char, /* Function to print single char (not used) */
6c038f32
PH
11012 ada_print_type, /* Print a type using appropriate syntax */
11013 ada_val_print, /* Print a value using appropriate syntax */
11014 ada_value_print, /* Print a top-level value */
11015 NULL, /* Language specific skip_trampoline */
2b2d9e11 11016 NULL, /* name_of_this */
6c038f32
PH
11017 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11018 basic_lookup_transparent_type, /* lookup_transparent_type */
11019 ada_la_decode, /* Language specific symbol demangler */
11020 NULL, /* Language specific class_name_from_physname */
11021 ada_op_print_tab, /* expression operators for printing */
11022 0, /* c-style arrays */
11023 1, /* String lower bound */
6c038f32 11024 ada_get_gdb_completer_word_break_characters,
41d27058 11025 ada_make_symbol_completion_list,
72d5681a 11026 ada_language_arch_info,
e79af960 11027 ada_print_array_index,
41f1b697 11028 default_pass_by_reference,
6c038f32
PH
11029 LANG_MAGIC
11030};
11031
d2e4a39e 11032void
6c038f32 11033_initialize_ada_language (void)
14f9c5c9 11034{
6c038f32
PH
11035 add_language (&ada_language_defn);
11036
11037 varsize_limit = 65536;
6c038f32
PH
11038
11039 obstack_init (&symbol_list_obstack);
11040
11041 decoded_names_store = htab_create_alloc
11042 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11043 NULL, xcalloc, xfree);
6b69afc4
JB
11044
11045 observer_attach_executable_changed (ada_executable_changed_observer);
14f9c5c9 11046}