]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
* frame.h (frame_unwind_arch): New.
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
14f9c5c9 59
4c4b4cd2
PH
60/* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64#ifndef TRUNCATION_TOWARDS_ZERO
65#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66#endif
67
4c4b4cd2 68static void extract_string (CORE_ADDR addr, char *buf);
14f9c5c9 69
50810684 70static void modify_general_field (struct type *, char *, LONGEST, int, int);
14f9c5c9 71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
4a399546
UW
104static struct value *ensure_lval (struct value *,
105 struct gdbarch *, CORE_ADDR *);
14f9c5c9 106
d2e4a39e 107static struct value *make_array_descriptor (struct type *, struct value *,
4a399546 108 struct gdbarch *, CORE_ADDR *);
14f9c5c9 109
4c4b4cd2 110static void ada_add_block_symbols (struct obstack *,
76a01679 111 struct block *, const char *,
2570f2b7 112 domain_enum, struct objfile *, int);
14f9c5c9 113
4c4b4cd2 114static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 115
76a01679 116static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 117 struct block *);
14f9c5c9 118
4c4b4cd2
PH
119static int num_defns_collected (struct obstack *);
120
121static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 122
d2e4a39e 123static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
76a01679
JB
124 *, const char *, int,
125 domain_enum, int);
14f9c5c9 126
4c4b4cd2 127static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
d2e4a39e 130static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 131 struct symbol *, struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
4c4b4cd2
PH
135static char *ada_op_name (enum exp_opcode);
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
153 struct block *);
154
4c4b4cd2 155static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 156 int, int, int *);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
d2e4a39e 168static struct type *to_fixed_range_type (char *, struct value *,
1ce677a4 169 struct type *);
14f9c5c9 170
d2e4a39e 171static struct type *to_static_fixed_type (struct type *);
f192137b 172static struct type *static_unwrap_type (struct type *type);
14f9c5c9 173
d2e4a39e 174static struct value *unwrap_value (struct value *);
14f9c5c9 175
d2e4a39e 176static struct type *packed_array_type (struct type *, long *);
14f9c5c9 177
d2e4a39e 178static struct type *decode_packed_array_type (struct type *);
14f9c5c9 179
d2e4a39e 180static struct value *decode_packed_array (struct value *);
14f9c5c9 181
d2e4a39e 182static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 183 struct value **);
14f9c5c9 184
50810684 185static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 186
4c4b4cd2
PH
187static struct value *coerce_unspec_val_to_type (struct value *,
188 struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *get_var_value (char *, char *);
14f9c5c9 191
d2e4a39e 192static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 193
d2e4a39e 194static int equiv_types (struct type *, struct type *);
14f9c5c9 195
d2e4a39e 196static int is_name_suffix (const char *);
14f9c5c9 197
d2e4a39e 198static int wild_match (const char *, int, const char *);
14f9c5c9 199
d2e4a39e 200static struct value *ada_coerce_ref (struct value *);
14f9c5c9 201
4c4b4cd2
PH
202static LONGEST pos_atr (struct value *);
203
3cb382c9 204static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 205
d2e4a39e 206static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 207
4c4b4cd2
PH
208static struct symbol *standard_lookup (const char *, const struct block *,
209 domain_enum);
14f9c5c9 210
4c4b4cd2
PH
211static struct value *ada_search_struct_field (char *, struct value *, int,
212 struct type *);
213
214static struct value *ada_value_primitive_field (struct value *, int, int,
215 struct type *);
216
76a01679 217static int find_struct_field (char *, struct type *, int,
52ce6436 218 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
219
220static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
221 struct value *);
222
223static struct value *ada_to_fixed_value (struct value *);
14f9c5c9 224
4c4b4cd2
PH
225static int ada_resolve_function (struct ada_symbol_info *, int,
226 struct value **, int, const char *,
227 struct type *);
228
229static struct value *ada_coerce_to_simple_array (struct value *);
230
231static int ada_is_direct_array_type (struct type *);
232
72d5681a
PH
233static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
714e53ab
PH
235
236static void check_size (const struct type *);
52ce6436
PH
237
238static struct value *ada_index_struct_field (int, struct value *, int,
239 struct type *);
240
241static struct value *assign_aggregate (struct value *, struct value *,
242 struct expression *, int *, enum noside);
243
244static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
4c4b4cd2
PH
268\f
269
76a01679 270
4c4b4cd2 271/* Maximum-sized dynamic type. */
14f9c5c9
AS
272static unsigned int varsize_limit;
273
4c4b4cd2
PH
274/* FIXME: brobecker/2003-09-17: No longer a const because it is
275 returned by a function that does not return a const char *. */
276static char *ada_completer_word_break_characters =
277#ifdef VMS
278 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
279#else
14f9c5c9 280 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 281#endif
14f9c5c9 282
4c4b4cd2 283/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 284static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 285 = "__gnat_ada_main_program_name";
14f9c5c9 286
4c4b4cd2
PH
287/* Limit on the number of warnings to raise per expression evaluation. */
288static int warning_limit = 2;
289
290/* Number of warning messages issued; reset to 0 by cleanups after
291 expression evaluation. */
292static int warnings_issued = 0;
293
294static const char *known_runtime_file_name_patterns[] = {
295 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
296};
297
298static const char *known_auxiliary_function_name_patterns[] = {
299 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
300};
301
302/* Space for allocating results of ada_lookup_symbol_list. */
303static struct obstack symbol_list_obstack;
304
305 /* Utilities */
306
41d27058
JB
307/* Given DECODED_NAME a string holding a symbol name in its
308 decoded form (ie using the Ada dotted notation), returns
309 its unqualified name. */
310
311static const char *
312ada_unqualified_name (const char *decoded_name)
313{
314 const char *result = strrchr (decoded_name, '.');
315
316 if (result != NULL)
317 result++; /* Skip the dot... */
318 else
319 result = decoded_name;
320
321 return result;
322}
323
324/* Return a string starting with '<', followed by STR, and '>'.
325 The result is good until the next call. */
326
327static char *
328add_angle_brackets (const char *str)
329{
330 static char *result = NULL;
331
332 xfree (result);
88c15c34 333 result = xstrprintf ("<%s>", str);
41d27058
JB
334 return result;
335}
96d887e8 336
4c4b4cd2
PH
337static char *
338ada_get_gdb_completer_word_break_characters (void)
339{
340 return ada_completer_word_break_characters;
341}
342
e79af960
JB
343/* Print an array element index using the Ada syntax. */
344
345static void
346ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 347 const struct value_print_options *options)
e79af960 348{
79a45b7d 349 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
350 fprintf_filtered (stream, " => ");
351}
352
4c4b4cd2
PH
353/* Read the string located at ADDR from the inferior and store the
354 result into BUF. */
355
356static void
14f9c5c9
AS
357extract_string (CORE_ADDR addr, char *buf)
358{
d2e4a39e 359 int char_index = 0;
14f9c5c9 360
4c4b4cd2
PH
361 /* Loop, reading one byte at a time, until we reach the '\000'
362 end-of-string marker. */
d2e4a39e
AS
363 do
364 {
365 target_read_memory (addr + char_index * sizeof (char),
4c4b4cd2 366 buf + char_index * sizeof (char), sizeof (char));
d2e4a39e
AS
367 char_index++;
368 }
369 while (buf[char_index - 1] != '\000');
14f9c5c9
AS
370}
371
f27cf670 372/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 373 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 374 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 375
f27cf670
AS
376void *
377grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 378{
d2e4a39e
AS
379 if (*size < min_size)
380 {
381 *size *= 2;
382 if (*size < min_size)
4c4b4cd2 383 *size = min_size;
f27cf670 384 vect = xrealloc (vect, *size * element_size);
d2e4a39e 385 }
f27cf670 386 return vect;
14f9c5c9
AS
387}
388
389/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 390 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
391
392static int
ebf56fd3 393field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
394{
395 int len = strlen (target);
d2e4a39e 396 return
4c4b4cd2
PH
397 (strncmp (field_name, target, len) == 0
398 && (field_name[len] == '\0'
399 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
400 && strcmp (field_name + strlen (field_name) - 6,
401 "___XVN") != 0)));
14f9c5c9
AS
402}
403
404
872c8b51
JB
405/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
406 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
407 and return its index. This function also handles fields whose name
408 have ___ suffixes because the compiler sometimes alters their name
409 by adding such a suffix to represent fields with certain constraints.
410 If the field could not be found, return a negative number if
411 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
412
413int
414ada_get_field_index (const struct type *type, const char *field_name,
415 int maybe_missing)
416{
417 int fieldno;
872c8b51
JB
418 struct type *struct_type = check_typedef ((struct type *) type);
419
420 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
421 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
422 return fieldno;
423
424 if (!maybe_missing)
323e0a4a 425 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 426 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
427
428 return -1;
429}
430
431/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
432
433int
d2e4a39e 434ada_name_prefix_len (const char *name)
14f9c5c9
AS
435{
436 if (name == NULL)
437 return 0;
d2e4a39e 438 else
14f9c5c9 439 {
d2e4a39e 440 const char *p = strstr (name, "___");
14f9c5c9 441 if (p == NULL)
4c4b4cd2 442 return strlen (name);
14f9c5c9 443 else
4c4b4cd2 444 return p - name;
14f9c5c9
AS
445 }
446}
447
4c4b4cd2
PH
448/* Return non-zero if SUFFIX is a suffix of STR.
449 Return zero if STR is null. */
450
14f9c5c9 451static int
d2e4a39e 452is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
453{
454 int len1, len2;
455 if (str == NULL)
456 return 0;
457 len1 = strlen (str);
458 len2 = strlen (suffix);
4c4b4cd2 459 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
460}
461
4c4b4cd2
PH
462/* The contents of value VAL, treated as a value of type TYPE. The
463 result is an lval in memory if VAL is. */
14f9c5c9 464
d2e4a39e 465static struct value *
4c4b4cd2 466coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 467{
61ee279c 468 type = ada_check_typedef (type);
df407dfe 469 if (value_type (val) == type)
4c4b4cd2 470 return val;
d2e4a39e 471 else
14f9c5c9 472 {
4c4b4cd2
PH
473 struct value *result;
474
475 /* Make sure that the object size is not unreasonable before
476 trying to allocate some memory for it. */
714e53ab 477 check_size (type);
4c4b4cd2
PH
478
479 result = allocate_value (type);
74bcbdf3 480 set_value_component_location (result, val);
9bbda503
AC
481 set_value_bitsize (result, value_bitsize (val));
482 set_value_bitpos (result, value_bitpos (val));
42ae5230 483 set_value_address (result, value_address (val));
d69fe07e 484 if (value_lazy (val)
df407dfe 485 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 486 set_value_lazy (result, 1);
d2e4a39e 487 else
0fd88904 488 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 489 TYPE_LENGTH (type));
14f9c5c9
AS
490 return result;
491 }
492}
493
fc1a4b47
AC
494static const gdb_byte *
495cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
496{
497 if (valaddr == NULL)
498 return NULL;
499 else
500 return valaddr + offset;
501}
502
503static CORE_ADDR
ebf56fd3 504cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
505{
506 if (address == 0)
507 return 0;
d2e4a39e 508 else
14f9c5c9
AS
509 return address + offset;
510}
511
4c4b4cd2
PH
512/* Issue a warning (as for the definition of warning in utils.c, but
513 with exactly one argument rather than ...), unless the limit on the
514 number of warnings has passed during the evaluation of the current
515 expression. */
a2249542 516
77109804
AC
517/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
518 provided by "complaint". */
519static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
520
14f9c5c9 521static void
a2249542 522lim_warning (const char *format, ...)
14f9c5c9 523{
a2249542
MK
524 va_list args;
525 va_start (args, format);
526
4c4b4cd2
PH
527 warnings_issued += 1;
528 if (warnings_issued <= warning_limit)
a2249542
MK
529 vwarning (format, args);
530
531 va_end (args);
4c4b4cd2
PH
532}
533
714e53ab
PH
534/* Issue an error if the size of an object of type T is unreasonable,
535 i.e. if it would be a bad idea to allocate a value of this type in
536 GDB. */
537
538static void
539check_size (const struct type *type)
540{
541 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 542 error (_("object size is larger than varsize-limit"));
714e53ab
PH
543}
544
545
c3e5cd34
PH
546/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
547 gdbtypes.h, but some of the necessary definitions in that file
548 seem to have gone missing. */
549
550/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 551static LONGEST
c3e5cd34 552max_of_size (int size)
4c4b4cd2 553{
76a01679
JB
554 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
555 return top_bit | (top_bit - 1);
4c4b4cd2
PH
556}
557
c3e5cd34 558/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 559static LONGEST
c3e5cd34 560min_of_size (int size)
4c4b4cd2 561{
c3e5cd34 562 return -max_of_size (size) - 1;
4c4b4cd2
PH
563}
564
c3e5cd34 565/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 566static ULONGEST
c3e5cd34 567umax_of_size (int size)
4c4b4cd2 568{
76a01679
JB
569 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
570 return top_bit | (top_bit - 1);
4c4b4cd2
PH
571}
572
c3e5cd34
PH
573/* Maximum value of integral type T, as a signed quantity. */
574static LONGEST
575max_of_type (struct type *t)
4c4b4cd2 576{
c3e5cd34
PH
577 if (TYPE_UNSIGNED (t))
578 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
579 else
580 return max_of_size (TYPE_LENGTH (t));
581}
582
583/* Minimum value of integral type T, as a signed quantity. */
584static LONGEST
585min_of_type (struct type *t)
586{
587 if (TYPE_UNSIGNED (t))
588 return 0;
589 else
590 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
591}
592
593/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 594static LONGEST
4c4b4cd2
PH
595discrete_type_high_bound (struct type *type)
596{
76a01679 597 switch (TYPE_CODE (type))
4c4b4cd2
PH
598 {
599 case TYPE_CODE_RANGE:
690cc4eb 600 return TYPE_HIGH_BOUND (type);
4c4b4cd2 601 case TYPE_CODE_ENUM:
690cc4eb
PH
602 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
603 case TYPE_CODE_BOOL:
604 return 1;
605 case TYPE_CODE_CHAR:
76a01679 606 case TYPE_CODE_INT:
690cc4eb 607 return max_of_type (type);
4c4b4cd2 608 default:
323e0a4a 609 error (_("Unexpected type in discrete_type_high_bound."));
4c4b4cd2
PH
610 }
611}
612
613/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 614static LONGEST
4c4b4cd2
PH
615discrete_type_low_bound (struct type *type)
616{
76a01679 617 switch (TYPE_CODE (type))
4c4b4cd2
PH
618 {
619 case TYPE_CODE_RANGE:
690cc4eb 620 return TYPE_LOW_BOUND (type);
4c4b4cd2 621 case TYPE_CODE_ENUM:
690cc4eb
PH
622 return TYPE_FIELD_BITPOS (type, 0);
623 case TYPE_CODE_BOOL:
624 return 0;
625 case TYPE_CODE_CHAR:
76a01679 626 case TYPE_CODE_INT:
690cc4eb 627 return min_of_type (type);
4c4b4cd2 628 default:
323e0a4a 629 error (_("Unexpected type in discrete_type_low_bound."));
4c4b4cd2
PH
630 }
631}
632
633/* The identity on non-range types. For range types, the underlying
76a01679 634 non-range scalar type. */
4c4b4cd2
PH
635
636static struct type *
637base_type (struct type *type)
638{
639 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
640 {
76a01679
JB
641 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
642 return type;
4c4b4cd2
PH
643 type = TYPE_TARGET_TYPE (type);
644 }
645 return type;
14f9c5c9 646}
4c4b4cd2 647\f
76a01679 648
4c4b4cd2 649 /* Language Selection */
14f9c5c9
AS
650
651/* If the main program is in Ada, return language_ada, otherwise return LANG
652 (the main program is in Ada iif the adainit symbol is found).
653
4c4b4cd2 654 MAIN_PST is not used. */
d2e4a39e 655
14f9c5c9 656enum language
d2e4a39e 657ada_update_initial_language (enum language lang,
4c4b4cd2 658 struct partial_symtab *main_pst)
14f9c5c9 659{
d2e4a39e 660 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
661 (struct objfile *) NULL) != NULL)
662 return language_ada;
14f9c5c9
AS
663
664 return lang;
665}
96d887e8
PH
666
667/* If the main procedure is written in Ada, then return its name.
668 The result is good until the next call. Return NULL if the main
669 procedure doesn't appear to be in Ada. */
670
671char *
672ada_main_name (void)
673{
674 struct minimal_symbol *msym;
f9bc20b9 675 static char *main_program_name = NULL;
6c038f32 676
96d887e8
PH
677 /* For Ada, the name of the main procedure is stored in a specific
678 string constant, generated by the binder. Look for that symbol,
679 extract its address, and then read that string. If we didn't find
680 that string, then most probably the main procedure is not written
681 in Ada. */
682 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
683
684 if (msym != NULL)
685 {
f9bc20b9
JB
686 CORE_ADDR main_program_name_addr;
687 int err_code;
688
96d887e8
PH
689 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
690 if (main_program_name_addr == 0)
323e0a4a 691 error (_("Invalid address for Ada main program name."));
96d887e8 692
f9bc20b9
JB
693 xfree (main_program_name);
694 target_read_string (main_program_name_addr, &main_program_name,
695 1024, &err_code);
696
697 if (err_code != 0)
698 return NULL;
96d887e8
PH
699 return main_program_name;
700 }
701
702 /* The main procedure doesn't seem to be in Ada. */
703 return NULL;
704}
14f9c5c9 705\f
4c4b4cd2 706 /* Symbols */
d2e4a39e 707
4c4b4cd2
PH
708/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
709 of NULLs. */
14f9c5c9 710
d2e4a39e
AS
711const struct ada_opname_map ada_opname_table[] = {
712 {"Oadd", "\"+\"", BINOP_ADD},
713 {"Osubtract", "\"-\"", BINOP_SUB},
714 {"Omultiply", "\"*\"", BINOP_MUL},
715 {"Odivide", "\"/\"", BINOP_DIV},
716 {"Omod", "\"mod\"", BINOP_MOD},
717 {"Orem", "\"rem\"", BINOP_REM},
718 {"Oexpon", "\"**\"", BINOP_EXP},
719 {"Olt", "\"<\"", BINOP_LESS},
720 {"Ole", "\"<=\"", BINOP_LEQ},
721 {"Ogt", "\">\"", BINOP_GTR},
722 {"Oge", "\">=\"", BINOP_GEQ},
723 {"Oeq", "\"=\"", BINOP_EQUAL},
724 {"One", "\"/=\"", BINOP_NOTEQUAL},
725 {"Oand", "\"and\"", BINOP_BITWISE_AND},
726 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
727 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
728 {"Oconcat", "\"&\"", BINOP_CONCAT},
729 {"Oabs", "\"abs\"", UNOP_ABS},
730 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
731 {"Oadd", "\"+\"", UNOP_PLUS},
732 {"Osubtract", "\"-\"", UNOP_NEG},
733 {NULL, NULL}
14f9c5c9
AS
734};
735
4c4b4cd2
PH
736/* The "encoded" form of DECODED, according to GNAT conventions.
737 The result is valid until the next call to ada_encode. */
738
14f9c5c9 739char *
4c4b4cd2 740ada_encode (const char *decoded)
14f9c5c9 741{
4c4b4cd2
PH
742 static char *encoding_buffer = NULL;
743 static size_t encoding_buffer_size = 0;
d2e4a39e 744 const char *p;
14f9c5c9 745 int k;
d2e4a39e 746
4c4b4cd2 747 if (decoded == NULL)
14f9c5c9
AS
748 return NULL;
749
4c4b4cd2
PH
750 GROW_VECT (encoding_buffer, encoding_buffer_size,
751 2 * strlen (decoded) + 10);
14f9c5c9
AS
752
753 k = 0;
4c4b4cd2 754 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 755 {
cdc7bb92 756 if (*p == '.')
4c4b4cd2
PH
757 {
758 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
759 k += 2;
760 }
14f9c5c9 761 else if (*p == '"')
4c4b4cd2
PH
762 {
763 const struct ada_opname_map *mapping;
764
765 for (mapping = ada_opname_table;
1265e4aa
JB
766 mapping->encoded != NULL
767 && strncmp (mapping->decoded, p,
768 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
769 ;
770 if (mapping->encoded == NULL)
323e0a4a 771 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
772 strcpy (encoding_buffer + k, mapping->encoded);
773 k += strlen (mapping->encoded);
774 break;
775 }
d2e4a39e 776 else
4c4b4cd2
PH
777 {
778 encoding_buffer[k] = *p;
779 k += 1;
780 }
14f9c5c9
AS
781 }
782
4c4b4cd2
PH
783 encoding_buffer[k] = '\0';
784 return encoding_buffer;
14f9c5c9
AS
785}
786
787/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
788 quotes, unfolded, but with the quotes stripped away. Result good
789 to next call. */
790
d2e4a39e
AS
791char *
792ada_fold_name (const char *name)
14f9c5c9 793{
d2e4a39e 794 static char *fold_buffer = NULL;
14f9c5c9
AS
795 static size_t fold_buffer_size = 0;
796
797 int len = strlen (name);
d2e4a39e 798 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
799
800 if (name[0] == '\'')
801 {
d2e4a39e
AS
802 strncpy (fold_buffer, name + 1, len - 2);
803 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
804 }
805 else
806 {
807 int i;
808 for (i = 0; i <= len; i += 1)
4c4b4cd2 809 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
810 }
811
812 return fold_buffer;
813}
814
529cad9c
PH
815/* Return nonzero if C is either a digit or a lowercase alphabet character. */
816
817static int
818is_lower_alphanum (const char c)
819{
820 return (isdigit (c) || (isalpha (c) && islower (c)));
821}
822
29480c32
JB
823/* Remove either of these suffixes:
824 . .{DIGIT}+
825 . ${DIGIT}+
826 . ___{DIGIT}+
827 . __{DIGIT}+.
828 These are suffixes introduced by the compiler for entities such as
829 nested subprogram for instance, in order to avoid name clashes.
830 They do not serve any purpose for the debugger. */
831
832static void
833ada_remove_trailing_digits (const char *encoded, int *len)
834{
835 if (*len > 1 && isdigit (encoded[*len - 1]))
836 {
837 int i = *len - 2;
838 while (i > 0 && isdigit (encoded[i]))
839 i--;
840 if (i >= 0 && encoded[i] == '.')
841 *len = i;
842 else if (i >= 0 && encoded[i] == '$')
843 *len = i;
844 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
845 *len = i - 2;
846 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
847 *len = i - 1;
848 }
849}
850
851/* Remove the suffix introduced by the compiler for protected object
852 subprograms. */
853
854static void
855ada_remove_po_subprogram_suffix (const char *encoded, int *len)
856{
857 /* Remove trailing N. */
858
859 /* Protected entry subprograms are broken into two
860 separate subprograms: The first one is unprotected, and has
861 a 'N' suffix; the second is the protected version, and has
862 the 'P' suffix. The second calls the first one after handling
863 the protection. Since the P subprograms are internally generated,
864 we leave these names undecoded, giving the user a clue that this
865 entity is internal. */
866
867 if (*len > 1
868 && encoded[*len - 1] == 'N'
869 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
870 *len = *len - 1;
871}
872
873/* If ENCODED follows the GNAT entity encoding conventions, then return
874 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
875 replaced by ENCODED.
14f9c5c9 876
4c4b4cd2 877 The resulting string is valid until the next call of ada_decode.
29480c32 878 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
879 is returned. */
880
881const char *
882ada_decode (const char *encoded)
14f9c5c9
AS
883{
884 int i, j;
885 int len0;
d2e4a39e 886 const char *p;
4c4b4cd2 887 char *decoded;
14f9c5c9 888 int at_start_name;
4c4b4cd2
PH
889 static char *decoding_buffer = NULL;
890 static size_t decoding_buffer_size = 0;
d2e4a39e 891
29480c32
JB
892 /* The name of the Ada main procedure starts with "_ada_".
893 This prefix is not part of the decoded name, so skip this part
894 if we see this prefix. */
4c4b4cd2
PH
895 if (strncmp (encoded, "_ada_", 5) == 0)
896 encoded += 5;
14f9c5c9 897
29480c32
JB
898 /* If the name starts with '_', then it is not a properly encoded
899 name, so do not attempt to decode it. Similarly, if the name
900 starts with '<', the name should not be decoded. */
4c4b4cd2 901 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
902 goto Suppress;
903
4c4b4cd2 904 len0 = strlen (encoded);
4c4b4cd2 905
29480c32
JB
906 ada_remove_trailing_digits (encoded, &len0);
907 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 908
4c4b4cd2
PH
909 /* Remove the ___X.* suffix if present. Do not forget to verify that
910 the suffix is located before the current "end" of ENCODED. We want
911 to avoid re-matching parts of ENCODED that have previously been
912 marked as discarded (by decrementing LEN0). */
913 p = strstr (encoded, "___");
914 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
915 {
916 if (p[3] == 'X')
4c4b4cd2 917 len0 = p - encoded;
14f9c5c9 918 else
4c4b4cd2 919 goto Suppress;
14f9c5c9 920 }
4c4b4cd2 921
29480c32
JB
922 /* Remove any trailing TKB suffix. It tells us that this symbol
923 is for the body of a task, but that information does not actually
924 appear in the decoded name. */
925
4c4b4cd2 926 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 927 len0 -= 3;
76a01679 928
29480c32
JB
929 /* Remove trailing "B" suffixes. */
930 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
931
4c4b4cd2 932 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
933 len0 -= 1;
934
4c4b4cd2 935 /* Make decoded big enough for possible expansion by operator name. */
29480c32 936
4c4b4cd2
PH
937 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
938 decoded = decoding_buffer;
14f9c5c9 939
29480c32
JB
940 /* Remove trailing __{digit}+ or trailing ${digit}+. */
941
4c4b4cd2 942 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 943 {
4c4b4cd2
PH
944 i = len0 - 2;
945 while ((i >= 0 && isdigit (encoded[i]))
946 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
947 i -= 1;
948 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
949 len0 = i - 1;
950 else if (encoded[i] == '$')
951 len0 = i;
d2e4a39e 952 }
14f9c5c9 953
29480c32
JB
954 /* The first few characters that are not alphabetic are not part
955 of any encoding we use, so we can copy them over verbatim. */
956
4c4b4cd2
PH
957 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
958 decoded[j] = encoded[i];
14f9c5c9
AS
959
960 at_start_name = 1;
961 while (i < len0)
962 {
29480c32 963 /* Is this a symbol function? */
4c4b4cd2
PH
964 if (at_start_name && encoded[i] == 'O')
965 {
966 int k;
967 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
968 {
969 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
970 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
971 op_len - 1) == 0)
972 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
973 {
974 strcpy (decoded + j, ada_opname_table[k].decoded);
975 at_start_name = 0;
976 i += op_len;
977 j += strlen (ada_opname_table[k].decoded);
978 break;
979 }
980 }
981 if (ada_opname_table[k].encoded != NULL)
982 continue;
983 }
14f9c5c9
AS
984 at_start_name = 0;
985
529cad9c
PH
986 /* Replace "TK__" with "__", which will eventually be translated
987 into "." (just below). */
988
4c4b4cd2
PH
989 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
990 i += 2;
529cad9c 991
29480c32
JB
992 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
993 be translated into "." (just below). These are internal names
994 generated for anonymous blocks inside which our symbol is nested. */
995
996 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
997 && encoded [i+2] == 'B' && encoded [i+3] == '_'
998 && isdigit (encoded [i+4]))
999 {
1000 int k = i + 5;
1001
1002 while (k < len0 && isdigit (encoded[k]))
1003 k++; /* Skip any extra digit. */
1004
1005 /* Double-check that the "__B_{DIGITS}+" sequence we found
1006 is indeed followed by "__". */
1007 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1008 i = k;
1009 }
1010
529cad9c
PH
1011 /* Remove _E{DIGITS}+[sb] */
1012
1013 /* Just as for protected object subprograms, there are 2 categories
1014 of subprograms created by the compiler for each entry. The first
1015 one implements the actual entry code, and has a suffix following
1016 the convention above; the second one implements the barrier and
1017 uses the same convention as above, except that the 'E' is replaced
1018 by a 'B'.
1019
1020 Just as above, we do not decode the name of barrier functions
1021 to give the user a clue that the code he is debugging has been
1022 internally generated. */
1023
1024 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1025 && isdigit (encoded[i+2]))
1026 {
1027 int k = i + 3;
1028
1029 while (k < len0 && isdigit (encoded[k]))
1030 k++;
1031
1032 if (k < len0
1033 && (encoded[k] == 'b' || encoded[k] == 's'))
1034 {
1035 k++;
1036 /* Just as an extra precaution, make sure that if this
1037 suffix is followed by anything else, it is a '_'.
1038 Otherwise, we matched this sequence by accident. */
1039 if (k == len0
1040 || (k < len0 && encoded[k] == '_'))
1041 i = k;
1042 }
1043 }
1044
1045 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1046 the GNAT front-end in protected object subprograms. */
1047
1048 if (i < len0 + 3
1049 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1050 {
1051 /* Backtrack a bit up until we reach either the begining of
1052 the encoded name, or "__". Make sure that we only find
1053 digits or lowercase characters. */
1054 const char *ptr = encoded + i - 1;
1055
1056 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1057 ptr--;
1058 if (ptr < encoded
1059 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1060 i++;
1061 }
1062
4c4b4cd2
PH
1063 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1064 {
29480c32
JB
1065 /* This is a X[bn]* sequence not separated from the previous
1066 part of the name with a non-alpha-numeric character (in other
1067 words, immediately following an alpha-numeric character), then
1068 verify that it is placed at the end of the encoded name. If
1069 not, then the encoding is not valid and we should abort the
1070 decoding. Otherwise, just skip it, it is used in body-nested
1071 package names. */
4c4b4cd2
PH
1072 do
1073 i += 1;
1074 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1075 if (i < len0)
1076 goto Suppress;
1077 }
cdc7bb92 1078 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1079 {
29480c32 1080 /* Replace '__' by '.'. */
4c4b4cd2
PH
1081 decoded[j] = '.';
1082 at_start_name = 1;
1083 i += 2;
1084 j += 1;
1085 }
14f9c5c9 1086 else
4c4b4cd2 1087 {
29480c32
JB
1088 /* It's a character part of the decoded name, so just copy it
1089 over. */
4c4b4cd2
PH
1090 decoded[j] = encoded[i];
1091 i += 1;
1092 j += 1;
1093 }
14f9c5c9 1094 }
4c4b4cd2 1095 decoded[j] = '\000';
14f9c5c9 1096
29480c32
JB
1097 /* Decoded names should never contain any uppercase character.
1098 Double-check this, and abort the decoding if we find one. */
1099
4c4b4cd2
PH
1100 for (i = 0; decoded[i] != '\0'; i += 1)
1101 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1102 goto Suppress;
1103
4c4b4cd2
PH
1104 if (strcmp (decoded, encoded) == 0)
1105 return encoded;
1106 else
1107 return decoded;
14f9c5c9
AS
1108
1109Suppress:
4c4b4cd2
PH
1110 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1111 decoded = decoding_buffer;
1112 if (encoded[0] == '<')
1113 strcpy (decoded, encoded);
14f9c5c9 1114 else
88c15c34 1115 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1116 return decoded;
1117
1118}
1119
1120/* Table for keeping permanent unique copies of decoded names. Once
1121 allocated, names in this table are never released. While this is a
1122 storage leak, it should not be significant unless there are massive
1123 changes in the set of decoded names in successive versions of a
1124 symbol table loaded during a single session. */
1125static struct htab *decoded_names_store;
1126
1127/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1128 in the language-specific part of GSYMBOL, if it has not been
1129 previously computed. Tries to save the decoded name in the same
1130 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1131 in any case, the decoded symbol has a lifetime at least that of
1132 GSYMBOL).
1133 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1134 const, but nevertheless modified to a semantically equivalent form
1135 when a decoded name is cached in it.
76a01679 1136*/
4c4b4cd2 1137
76a01679
JB
1138char *
1139ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1140{
76a01679 1141 char **resultp =
4c4b4cd2
PH
1142 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1143 if (*resultp == NULL)
1144 {
1145 const char *decoded = ada_decode (gsymbol->name);
714835d5 1146 if (gsymbol->obj_section != NULL)
76a01679 1147 {
714835d5
UW
1148 struct objfile *objf = gsymbol->obj_section->objfile;
1149 *resultp = obsavestring (decoded, strlen (decoded),
1150 &objf->objfile_obstack);
76a01679 1151 }
4c4b4cd2 1152 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1153 case, we put the result on the heap. Since we only decode
1154 when needed, we hope this usually does not cause a
1155 significant memory leak (FIXME). */
4c4b4cd2 1156 if (*resultp == NULL)
76a01679
JB
1157 {
1158 char **slot = (char **) htab_find_slot (decoded_names_store,
1159 decoded, INSERT);
1160 if (*slot == NULL)
1161 *slot = xstrdup (decoded);
1162 *resultp = *slot;
1163 }
4c4b4cd2 1164 }
14f9c5c9 1165
4c4b4cd2
PH
1166 return *resultp;
1167}
76a01679 1168
2c0b251b 1169static char *
76a01679 1170ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1171{
1172 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1173}
1174
1175/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1176 suffixes that encode debugging information or leading _ada_ on
1177 SYM_NAME (see is_name_suffix commentary for the debugging
1178 information that is ignored). If WILD, then NAME need only match a
1179 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1180 either argument is NULL. */
14f9c5c9 1181
2c0b251b 1182static int
d2e4a39e 1183ada_match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1184{
1185 if (sym_name == NULL || name == NULL)
1186 return 0;
1187 else if (wild)
1188 return wild_match (name, strlen (name), sym_name);
d2e4a39e
AS
1189 else
1190 {
1191 int len_name = strlen (name);
4c4b4cd2
PH
1192 return (strncmp (sym_name, name, len_name) == 0
1193 && is_name_suffix (sym_name + len_name))
1194 || (strncmp (sym_name, "_ada_", 5) == 0
1195 && strncmp (sym_name + 5, name, len_name) == 0
1196 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1197 }
14f9c5c9 1198}
14f9c5c9 1199\f
d2e4a39e 1200
4c4b4cd2 1201 /* Arrays */
14f9c5c9 1202
4c4b4cd2 1203/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1204
d2e4a39e
AS
1205static char *bound_name[] = {
1206 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1207 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1208};
1209
1210/* Maximum number of array dimensions we are prepared to handle. */
1211
4c4b4cd2 1212#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1213
4c4b4cd2 1214/* Like modify_field, but allows bitpos > wordlength. */
14f9c5c9
AS
1215
1216static void
50810684
UW
1217modify_general_field (struct type *type, char *addr,
1218 LONGEST fieldval, int bitpos, int bitsize)
14f9c5c9 1219{
50810684 1220 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
14f9c5c9
AS
1221}
1222
1223
4c4b4cd2
PH
1224/* The desc_* routines return primitive portions of array descriptors
1225 (fat pointers). */
14f9c5c9
AS
1226
1227/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1228 level of indirection, if needed. */
1229
d2e4a39e
AS
1230static struct type *
1231desc_base_type (struct type *type)
14f9c5c9
AS
1232{
1233 if (type == NULL)
1234 return NULL;
61ee279c 1235 type = ada_check_typedef (type);
1265e4aa
JB
1236 if (type != NULL
1237 && (TYPE_CODE (type) == TYPE_CODE_PTR
1238 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1239 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1240 else
1241 return type;
1242}
1243
4c4b4cd2
PH
1244/* True iff TYPE indicates a "thin" array pointer type. */
1245
14f9c5c9 1246static int
d2e4a39e 1247is_thin_pntr (struct type *type)
14f9c5c9 1248{
d2e4a39e 1249 return
14f9c5c9
AS
1250 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1251 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1252}
1253
4c4b4cd2
PH
1254/* The descriptor type for thin pointer type TYPE. */
1255
d2e4a39e
AS
1256static struct type *
1257thin_descriptor_type (struct type *type)
14f9c5c9 1258{
d2e4a39e 1259 struct type *base_type = desc_base_type (type);
14f9c5c9
AS
1260 if (base_type == NULL)
1261 return NULL;
1262 if (is_suffix (ada_type_name (base_type), "___XVE"))
1263 return base_type;
d2e4a39e 1264 else
14f9c5c9 1265 {
d2e4a39e 1266 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
14f9c5c9 1267 if (alt_type == NULL)
4c4b4cd2 1268 return base_type;
14f9c5c9 1269 else
4c4b4cd2 1270 return alt_type;
14f9c5c9
AS
1271 }
1272}
1273
4c4b4cd2
PH
1274/* A pointer to the array data for thin-pointer value VAL. */
1275
d2e4a39e
AS
1276static struct value *
1277thin_data_pntr (struct value *val)
14f9c5c9 1278{
df407dfe 1279 struct type *type = value_type (val);
556bdfd4
UW
1280 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1281 data_type = lookup_pointer_type (data_type);
1282
14f9c5c9 1283 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1284 return value_cast (data_type, value_copy (val));
d2e4a39e 1285 else
42ae5230 1286 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1287}
1288
4c4b4cd2
PH
1289/* True iff TYPE indicates a "thick" array pointer type. */
1290
14f9c5c9 1291static int
d2e4a39e 1292is_thick_pntr (struct type *type)
14f9c5c9
AS
1293{
1294 type = desc_base_type (type);
1295 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1296 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1297}
1298
4c4b4cd2
PH
1299/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1300 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1301
d2e4a39e
AS
1302static struct type *
1303desc_bounds_type (struct type *type)
14f9c5c9 1304{
d2e4a39e 1305 struct type *r;
14f9c5c9
AS
1306
1307 type = desc_base_type (type);
1308
1309 if (type == NULL)
1310 return NULL;
1311 else if (is_thin_pntr (type))
1312 {
1313 type = thin_descriptor_type (type);
1314 if (type == NULL)
4c4b4cd2 1315 return NULL;
14f9c5c9
AS
1316 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1317 if (r != NULL)
61ee279c 1318 return ada_check_typedef (r);
14f9c5c9
AS
1319 }
1320 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1321 {
1322 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1323 if (r != NULL)
61ee279c 1324 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1325 }
1326 return NULL;
1327}
1328
1329/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1330 one, a pointer to its bounds data. Otherwise NULL. */
1331
d2e4a39e
AS
1332static struct value *
1333desc_bounds (struct value *arr)
14f9c5c9 1334{
df407dfe 1335 struct type *type = ada_check_typedef (value_type (arr));
d2e4a39e 1336 if (is_thin_pntr (type))
14f9c5c9 1337 {
d2e4a39e 1338 struct type *bounds_type =
4c4b4cd2 1339 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1340 LONGEST addr;
1341
4cdfadb1 1342 if (bounds_type == NULL)
323e0a4a 1343 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1344
1345 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1346 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1347 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1348 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1349 addr = value_as_long (arr);
d2e4a39e 1350 else
42ae5230 1351 addr = value_address (arr);
14f9c5c9 1352
d2e4a39e 1353 return
4c4b4cd2
PH
1354 value_from_longest (lookup_pointer_type (bounds_type),
1355 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1356 }
1357
1358 else if (is_thick_pntr (type))
d2e4a39e 1359 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
323e0a4a 1360 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1361 else
1362 return NULL;
1363}
1364
4c4b4cd2
PH
1365/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1366 position of the field containing the address of the bounds data. */
1367
14f9c5c9 1368static int
d2e4a39e 1369fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1370{
1371 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1372}
1373
1374/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1375 size of the field containing the address of the bounds data. */
1376
14f9c5c9 1377static int
d2e4a39e 1378fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1379{
1380 type = desc_base_type (type);
1381
d2e4a39e 1382 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1383 return TYPE_FIELD_BITSIZE (type, 1);
1384 else
61ee279c 1385 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1386}
1387
4c4b4cd2 1388/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1389 pointer to one, the type of its array data (a array-with-no-bounds type);
1390 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1391 data. */
4c4b4cd2 1392
d2e4a39e 1393static struct type *
556bdfd4 1394desc_data_target_type (struct type *type)
14f9c5c9
AS
1395{
1396 type = desc_base_type (type);
1397
4c4b4cd2 1398 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1399 if (is_thin_pntr (type))
556bdfd4 1400 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1401 else if (is_thick_pntr (type))
556bdfd4
UW
1402 {
1403 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1404
1405 if (data_type
1406 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1407 return TYPE_TARGET_TYPE (data_type);
1408 }
1409
1410 return NULL;
14f9c5c9
AS
1411}
1412
1413/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1414 its array data. */
4c4b4cd2 1415
d2e4a39e
AS
1416static struct value *
1417desc_data (struct value *arr)
14f9c5c9 1418{
df407dfe 1419 struct type *type = value_type (arr);
14f9c5c9
AS
1420 if (is_thin_pntr (type))
1421 return thin_data_pntr (arr);
1422 else if (is_thick_pntr (type))
d2e4a39e 1423 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1424 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1425 else
1426 return NULL;
1427}
1428
1429
1430/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1431 position of the field containing the address of the data. */
1432
14f9c5c9 1433static int
d2e4a39e 1434fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1435{
1436 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1437}
1438
1439/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1440 size of the field containing the address of the data. */
1441
14f9c5c9 1442static int
d2e4a39e 1443fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1444{
1445 type = desc_base_type (type);
1446
1447 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1448 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1449 else
14f9c5c9
AS
1450 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1451}
1452
4c4b4cd2 1453/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1454 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1455 bound, if WHICH is 1. The first bound is I=1. */
1456
d2e4a39e
AS
1457static struct value *
1458desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1459{
d2e4a39e 1460 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1461 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1462}
1463
1464/* If BOUNDS is an array-bounds structure type, return the bit position
1465 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1466 bound, if WHICH is 1. The first bound is I=1. */
1467
14f9c5c9 1468static int
d2e4a39e 1469desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1470{
d2e4a39e 1471 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1472}
1473
1474/* If BOUNDS is an array-bounds structure type, return the bit field size
1475 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1476 bound, if WHICH is 1. The first bound is I=1. */
1477
76a01679 1478static int
d2e4a39e 1479desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1480{
1481 type = desc_base_type (type);
1482
d2e4a39e
AS
1483 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1484 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1485 else
1486 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1487}
1488
1489/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1490 Ith bound (numbering from 1). Otherwise, NULL. */
1491
d2e4a39e
AS
1492static struct type *
1493desc_index_type (struct type *type, int i)
14f9c5c9
AS
1494{
1495 type = desc_base_type (type);
1496
1497 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1498 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1499 else
14f9c5c9
AS
1500 return NULL;
1501}
1502
4c4b4cd2
PH
1503/* The number of index positions in the array-bounds type TYPE.
1504 Return 0 if TYPE is NULL. */
1505
14f9c5c9 1506static int
d2e4a39e 1507desc_arity (struct type *type)
14f9c5c9
AS
1508{
1509 type = desc_base_type (type);
1510
1511 if (type != NULL)
1512 return TYPE_NFIELDS (type) / 2;
1513 return 0;
1514}
1515
4c4b4cd2
PH
1516/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1517 an array descriptor type (representing an unconstrained array
1518 type). */
1519
76a01679
JB
1520static int
1521ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1522{
1523 if (type == NULL)
1524 return 0;
61ee279c 1525 type = ada_check_typedef (type);
4c4b4cd2 1526 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1527 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1528}
1529
52ce6436
PH
1530/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1531 * to one. */
1532
2c0b251b 1533static int
52ce6436
PH
1534ada_is_array_type (struct type *type)
1535{
1536 while (type != NULL
1537 && (TYPE_CODE (type) == TYPE_CODE_PTR
1538 || TYPE_CODE (type) == TYPE_CODE_REF))
1539 type = TYPE_TARGET_TYPE (type);
1540 return ada_is_direct_array_type (type);
1541}
1542
4c4b4cd2 1543/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1544
14f9c5c9 1545int
4c4b4cd2 1546ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1547{
1548 if (type == NULL)
1549 return 0;
61ee279c 1550 type = ada_check_typedef (type);
14f9c5c9 1551 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1552 || (TYPE_CODE (type) == TYPE_CODE_PTR
1553 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1554}
1555
4c4b4cd2
PH
1556/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1557
14f9c5c9 1558int
4c4b4cd2 1559ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1560{
556bdfd4 1561 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1562
1563 if (type == NULL)
1564 return 0;
61ee279c 1565 type = ada_check_typedef (type);
556bdfd4
UW
1566 return (data_type != NULL
1567 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1568 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1569}
1570
1571/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1572 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1573 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1574 is still needed. */
1575
14f9c5c9 1576int
ebf56fd3 1577ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1578{
d2e4a39e 1579 return
14f9c5c9
AS
1580 type != NULL
1581 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1582 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1583 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1584 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1585}
1586
1587
4c4b4cd2 1588/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1589 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1590 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1591 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1592 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1593 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1594 a descriptor. */
d2e4a39e
AS
1595struct type *
1596ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1597{
df407dfe
AC
1598 if (ada_is_packed_array_type (value_type (arr)))
1599 return decode_packed_array_type (value_type (arr));
14f9c5c9 1600
df407dfe
AC
1601 if (!ada_is_array_descriptor_type (value_type (arr)))
1602 return value_type (arr);
d2e4a39e
AS
1603
1604 if (!bounds)
1605 return
556bdfd4 1606 ada_check_typedef (desc_data_target_type (value_type (arr)));
14f9c5c9
AS
1607 else
1608 {
d2e4a39e 1609 struct type *elt_type;
14f9c5c9 1610 int arity;
d2e4a39e 1611 struct value *descriptor;
14f9c5c9 1612
df407dfe
AC
1613 elt_type = ada_array_element_type (value_type (arr), -1);
1614 arity = ada_array_arity (value_type (arr));
14f9c5c9 1615
d2e4a39e 1616 if (elt_type == NULL || arity == 0)
df407dfe 1617 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1618
1619 descriptor = desc_bounds (arr);
d2e4a39e 1620 if (value_as_long (descriptor) == 0)
4c4b4cd2 1621 return NULL;
d2e4a39e 1622 while (arity > 0)
4c4b4cd2 1623 {
e9bb382b
UW
1624 struct type *range_type = alloc_type_copy (value_type (arr));
1625 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1626 struct value *low = desc_one_bound (descriptor, arity, 0);
1627 struct value *high = desc_one_bound (descriptor, arity, 1);
1628 arity -= 1;
1629
df407dfe 1630 create_range_type (range_type, value_type (low),
529cad9c
PH
1631 longest_to_int (value_as_long (low)),
1632 longest_to_int (value_as_long (high)));
4c4b4cd2
PH
1633 elt_type = create_array_type (array_type, elt_type, range_type);
1634 }
14f9c5c9
AS
1635
1636 return lookup_pointer_type (elt_type);
1637 }
1638}
1639
1640/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1641 Otherwise, returns either a standard GDB array with bounds set
1642 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1643 GDB array. Returns NULL if ARR is a null fat pointer. */
1644
d2e4a39e
AS
1645struct value *
1646ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1647{
df407dfe 1648 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1649 {
d2e4a39e 1650 struct type *arrType = ada_type_of_array (arr, 1);
14f9c5c9 1651 if (arrType == NULL)
4c4b4cd2 1652 return NULL;
14f9c5c9
AS
1653 return value_cast (arrType, value_copy (desc_data (arr)));
1654 }
df407dfe 1655 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9
AS
1656 return decode_packed_array (arr);
1657 else
1658 return arr;
1659}
1660
1661/* If ARR does not represent an array, returns ARR unchanged.
1662 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1663 be ARR itself if it already is in the proper form). */
1664
1665static struct value *
d2e4a39e 1666ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1667{
df407dfe 1668 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1669 {
d2e4a39e 1670 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
14f9c5c9 1671 if (arrVal == NULL)
323e0a4a 1672 error (_("Bounds unavailable for null array pointer."));
529cad9c 1673 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1674 return value_ind (arrVal);
1675 }
df407dfe 1676 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9 1677 return decode_packed_array (arr);
d2e4a39e 1678 else
14f9c5c9
AS
1679 return arr;
1680}
1681
1682/* If TYPE represents a GNAT array type, return it translated to an
1683 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1684 packing). For other types, is the identity. */
1685
d2e4a39e
AS
1686struct type *
1687ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1688{
17280b9f
UW
1689 if (ada_is_packed_array_type (type))
1690 return decode_packed_array_type (type);
1691
1692 if (ada_is_array_descriptor_type (type))
556bdfd4 1693 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1694
1695 return type;
14f9c5c9
AS
1696}
1697
4c4b4cd2
PH
1698/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1699
14f9c5c9 1700int
d2e4a39e 1701ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1702{
1703 if (type == NULL)
1704 return 0;
4c4b4cd2 1705 type = desc_base_type (type);
61ee279c 1706 type = ada_check_typedef (type);
d2e4a39e 1707 return
14f9c5c9
AS
1708 ada_type_name (type) != NULL
1709 && strstr (ada_type_name (type), "___XP") != NULL;
1710}
1711
1712/* Given that TYPE is a standard GDB array type with all bounds filled
1713 in, and that the element size of its ultimate scalar constituents
1714 (that is, either its elements, or, if it is an array of arrays, its
1715 elements' elements, etc.) is *ELT_BITS, return an identical type,
1716 but with the bit sizes of its elements (and those of any
1717 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1718 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1719 in bits. */
1720
d2e4a39e
AS
1721static struct type *
1722packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1723{
d2e4a39e
AS
1724 struct type *new_elt_type;
1725 struct type *new_type;
14f9c5c9
AS
1726 LONGEST low_bound, high_bound;
1727
61ee279c 1728 type = ada_check_typedef (type);
14f9c5c9
AS
1729 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1730 return type;
1731
e9bb382b 1732 new_type = alloc_type_copy (type);
61ee279c 1733 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
4c4b4cd2 1734 elt_bits);
262452ec 1735 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
1736 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1737 TYPE_NAME (new_type) = ada_type_name (type);
1738
262452ec 1739 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 1740 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1741 low_bound = high_bound = 0;
1742 if (high_bound < low_bound)
1743 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1744 else
14f9c5c9
AS
1745 {
1746 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1747 TYPE_LENGTH (new_type) =
4c4b4cd2 1748 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
1749 }
1750
876cecd0 1751 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
1752 return new_type;
1753}
1754
4c4b4cd2
PH
1755/* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1756
d2e4a39e
AS
1757static struct type *
1758decode_packed_array_type (struct type *type)
1759{
4c4b4cd2 1760 struct symbol *sym;
d2e4a39e 1761 struct block **blocks;
727e3d2e
JB
1762 char *raw_name = ada_type_name (ada_check_typedef (type));
1763 char *name;
1764 char *tail;
d2e4a39e 1765 struct type *shadow_type;
14f9c5c9
AS
1766 long bits;
1767 int i, n;
1768
727e3d2e
JB
1769 if (!raw_name)
1770 raw_name = ada_type_name (desc_base_type (type));
1771
1772 if (!raw_name)
1773 return NULL;
1774
1775 name = (char *) alloca (strlen (raw_name) + 1);
1776 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
1777 type = desc_base_type (type);
1778
14f9c5c9
AS
1779 memcpy (name, raw_name, tail - raw_name);
1780 name[tail - raw_name] = '\000';
1781
4c4b4cd2
PH
1782 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1783 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
14f9c5c9 1784 {
323e0a4a 1785 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
1786 return NULL;
1787 }
4c4b4cd2 1788 shadow_type = SYMBOL_TYPE (sym);
cb249c71 1789 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
1790
1791 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1792 {
323e0a4a 1793 lim_warning (_("could not understand bounds information on packed array"));
14f9c5c9
AS
1794 return NULL;
1795 }
d2e4a39e 1796
14f9c5c9
AS
1797 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1798 {
4c4b4cd2 1799 lim_warning
323e0a4a 1800 (_("could not understand bit size information on packed array"));
14f9c5c9
AS
1801 return NULL;
1802 }
d2e4a39e 1803
14f9c5c9
AS
1804 return packed_array_type (shadow_type, &bits);
1805}
1806
4c4b4cd2 1807/* Given that ARR is a struct value *indicating a GNAT packed array,
14f9c5c9
AS
1808 returns a simple array that denotes that array. Its type is a
1809 standard GDB array type except that the BITSIZEs of the array
1810 target types are set to the number of bits in each element, and the
4c4b4cd2 1811 type length is set appropriately. */
14f9c5c9 1812
d2e4a39e
AS
1813static struct value *
1814decode_packed_array (struct value *arr)
14f9c5c9 1815{
4c4b4cd2 1816 struct type *type;
14f9c5c9 1817
4c4b4cd2 1818 arr = ada_coerce_ref (arr);
284614f0
JB
1819
1820 /* If our value is a pointer, then dererence it. Make sure that
1821 this operation does not cause the target type to be fixed, as
1822 this would indirectly cause this array to be decoded. The rest
1823 of the routine assumes that the array hasn't been decoded yet,
1824 so we use the basic "value_ind" routine to perform the dereferencing,
1825 as opposed to using "ada_value_ind". */
df407dfe 1826 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
284614f0 1827 arr = value_ind (arr);
4c4b4cd2 1828
df407dfe 1829 type = decode_packed_array_type (value_type (arr));
14f9c5c9
AS
1830 if (type == NULL)
1831 {
323e0a4a 1832 error (_("can't unpack array"));
14f9c5c9
AS
1833 return NULL;
1834 }
61ee279c 1835
50810684 1836 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 1837 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
1838 {
1839 /* This is a (right-justified) modular type representing a packed
1840 array with no wrapper. In order to interpret the value through
1841 the (left-justified) packed array type we just built, we must
1842 first left-justify it. */
1843 int bit_size, bit_pos;
1844 ULONGEST mod;
1845
df407dfe 1846 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
1847 bit_size = 0;
1848 while (mod > 0)
1849 {
1850 bit_size += 1;
1851 mod >>= 1;
1852 }
df407dfe 1853 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
1854 arr = ada_value_primitive_packed_val (arr, NULL,
1855 bit_pos / HOST_CHAR_BIT,
1856 bit_pos % HOST_CHAR_BIT,
1857 bit_size,
1858 type);
1859 }
1860
4c4b4cd2 1861 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
1862}
1863
1864
1865/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 1866 given in IND. ARR must be a simple array. */
14f9c5c9 1867
d2e4a39e
AS
1868static struct value *
1869value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
1870{
1871 int i;
1872 int bits, elt_off, bit_off;
1873 long elt_total_bit_offset;
d2e4a39e
AS
1874 struct type *elt_type;
1875 struct value *v;
14f9c5c9
AS
1876
1877 bits = 0;
1878 elt_total_bit_offset = 0;
df407dfe 1879 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 1880 for (i = 0; i < arity; i += 1)
14f9c5c9 1881 {
d2e4a39e 1882 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
1883 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1884 error
323e0a4a 1885 (_("attempt to do packed indexing of something other than a packed array"));
14f9c5c9 1886 else
4c4b4cd2
PH
1887 {
1888 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1889 LONGEST lowerbound, upperbound;
1890 LONGEST idx;
1891
1892 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1893 {
323e0a4a 1894 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
1895 lowerbound = upperbound = 0;
1896 }
1897
3cb382c9 1898 idx = pos_atr (ind[i]);
4c4b4cd2 1899 if (idx < lowerbound || idx > upperbound)
323e0a4a 1900 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
4c4b4cd2
PH
1901 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1902 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 1903 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 1904 }
14f9c5c9
AS
1905 }
1906 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1907 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
1908
1909 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 1910 bits, elt_type);
14f9c5c9
AS
1911 return v;
1912}
1913
4c4b4cd2 1914/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
1915
1916static int
d2e4a39e 1917has_negatives (struct type *type)
14f9c5c9 1918{
d2e4a39e
AS
1919 switch (TYPE_CODE (type))
1920 {
1921 default:
1922 return 0;
1923 case TYPE_CODE_INT:
1924 return !TYPE_UNSIGNED (type);
1925 case TYPE_CODE_RANGE:
1926 return TYPE_LOW_BOUND (type) < 0;
1927 }
14f9c5c9 1928}
d2e4a39e 1929
14f9c5c9
AS
1930
1931/* Create a new value of type TYPE from the contents of OBJ starting
1932 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1933 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
4c4b4cd2
PH
1934 assigning through the result will set the field fetched from.
1935 VALADDR is ignored unless OBJ is NULL, in which case,
1936 VALADDR+OFFSET must address the start of storage containing the
1937 packed value. The value returned in this case is never an lval.
1938 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 1939
d2e4a39e 1940struct value *
fc1a4b47 1941ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 1942 long offset, int bit_offset, int bit_size,
4c4b4cd2 1943 struct type *type)
14f9c5c9 1944{
d2e4a39e 1945 struct value *v;
4c4b4cd2
PH
1946 int src, /* Index into the source area */
1947 targ, /* Index into the target area */
1948 srcBitsLeft, /* Number of source bits left to move */
1949 nsrc, ntarg, /* Number of source and target bytes */
1950 unusedLS, /* Number of bits in next significant
1951 byte of source that are unused */
1952 accumSize; /* Number of meaningful bits in accum */
1953 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 1954 unsigned char *unpacked;
4c4b4cd2 1955 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
1956 unsigned char sign;
1957 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
1958 /* Transmit bytes from least to most significant; delta is the direction
1959 the indices move. */
50810684 1960 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 1961
61ee279c 1962 type = ada_check_typedef (type);
14f9c5c9
AS
1963
1964 if (obj == NULL)
1965 {
1966 v = allocate_value (type);
d2e4a39e 1967 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 1968 }
9214ee5f 1969 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
1970 {
1971 v = value_at (type,
42ae5230 1972 value_address (obj) + offset);
d2e4a39e 1973 bytes = (unsigned char *) alloca (len);
42ae5230 1974 read_memory (value_address (v), bytes, len);
14f9c5c9 1975 }
d2e4a39e 1976 else
14f9c5c9
AS
1977 {
1978 v = allocate_value (type);
0fd88904 1979 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 1980 }
d2e4a39e
AS
1981
1982 if (obj != NULL)
14f9c5c9 1983 {
42ae5230 1984 CORE_ADDR new_addr;
74bcbdf3 1985 set_value_component_location (v, obj);
42ae5230 1986 new_addr = value_address (obj) + offset;
9bbda503
AC
1987 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1988 set_value_bitsize (v, bit_size);
df407dfe 1989 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 1990 {
42ae5230 1991 ++new_addr;
9bbda503 1992 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 1993 }
42ae5230 1994 set_value_address (v, new_addr);
14f9c5c9
AS
1995 }
1996 else
9bbda503 1997 set_value_bitsize (v, bit_size);
0fd88904 1998 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
1999
2000 srcBitsLeft = bit_size;
2001 nsrc = len;
2002 ntarg = TYPE_LENGTH (type);
2003 sign = 0;
2004 if (bit_size == 0)
2005 {
2006 memset (unpacked, 0, TYPE_LENGTH (type));
2007 return v;
2008 }
50810684 2009 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2010 {
d2e4a39e 2011 src = len - 1;
1265e4aa
JB
2012 if (has_negatives (type)
2013 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2014 sign = ~0;
d2e4a39e
AS
2015
2016 unusedLS =
4c4b4cd2
PH
2017 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2018 % HOST_CHAR_BIT;
14f9c5c9
AS
2019
2020 switch (TYPE_CODE (type))
4c4b4cd2
PH
2021 {
2022 case TYPE_CODE_ARRAY:
2023 case TYPE_CODE_UNION:
2024 case TYPE_CODE_STRUCT:
2025 /* Non-scalar values must be aligned at a byte boundary... */
2026 accumSize =
2027 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2028 /* ... And are placed at the beginning (most-significant) bytes
2029 of the target. */
529cad9c 2030 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2031 ntarg = targ + 1;
4c4b4cd2
PH
2032 break;
2033 default:
2034 accumSize = 0;
2035 targ = TYPE_LENGTH (type) - 1;
2036 break;
2037 }
14f9c5c9 2038 }
d2e4a39e 2039 else
14f9c5c9
AS
2040 {
2041 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2042
2043 src = targ = 0;
2044 unusedLS = bit_offset;
2045 accumSize = 0;
2046
d2e4a39e 2047 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2048 sign = ~0;
14f9c5c9 2049 }
d2e4a39e 2050
14f9c5c9
AS
2051 accum = 0;
2052 while (nsrc > 0)
2053 {
2054 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2055 part of the value. */
d2e4a39e 2056 unsigned int unusedMSMask =
4c4b4cd2
PH
2057 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2058 1;
2059 /* Sign-extend bits for this byte. */
14f9c5c9 2060 unsigned int signMask = sign & ~unusedMSMask;
d2e4a39e 2061 accum |=
4c4b4cd2 2062 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2063 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2064 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2065 {
2066 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2067 accumSize -= HOST_CHAR_BIT;
2068 accum >>= HOST_CHAR_BIT;
2069 ntarg -= 1;
2070 targ += delta;
2071 }
14f9c5c9
AS
2072 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2073 unusedLS = 0;
2074 nsrc -= 1;
2075 src += delta;
2076 }
2077 while (ntarg > 0)
2078 {
2079 accum |= sign << accumSize;
2080 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2081 accumSize -= HOST_CHAR_BIT;
2082 accum >>= HOST_CHAR_BIT;
2083 ntarg -= 1;
2084 targ += delta;
2085 }
2086
2087 return v;
2088}
d2e4a39e 2089
14f9c5c9
AS
2090/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2091 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2092 not overlap. */
14f9c5c9 2093static void
fc1a4b47 2094move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2095 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2096{
2097 unsigned int accum, mask;
2098 int accum_bits, chunk_size;
2099
2100 target += targ_offset / HOST_CHAR_BIT;
2101 targ_offset %= HOST_CHAR_BIT;
2102 source += src_offset / HOST_CHAR_BIT;
2103 src_offset %= HOST_CHAR_BIT;
50810684 2104 if (bits_big_endian_p)
14f9c5c9
AS
2105 {
2106 accum = (unsigned char) *source;
2107 source += 1;
2108 accum_bits = HOST_CHAR_BIT - src_offset;
2109
d2e4a39e 2110 while (n > 0)
4c4b4cd2
PH
2111 {
2112 int unused_right;
2113 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2114 accum_bits += HOST_CHAR_BIT;
2115 source += 1;
2116 chunk_size = HOST_CHAR_BIT - targ_offset;
2117 if (chunk_size > n)
2118 chunk_size = n;
2119 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2120 mask = ((1 << chunk_size) - 1) << unused_right;
2121 *target =
2122 (*target & ~mask)
2123 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2124 n -= chunk_size;
2125 accum_bits -= chunk_size;
2126 target += 1;
2127 targ_offset = 0;
2128 }
14f9c5c9
AS
2129 }
2130 else
2131 {
2132 accum = (unsigned char) *source >> src_offset;
2133 source += 1;
2134 accum_bits = HOST_CHAR_BIT - src_offset;
2135
d2e4a39e 2136 while (n > 0)
4c4b4cd2
PH
2137 {
2138 accum = accum + ((unsigned char) *source << accum_bits);
2139 accum_bits += HOST_CHAR_BIT;
2140 source += 1;
2141 chunk_size = HOST_CHAR_BIT - targ_offset;
2142 if (chunk_size > n)
2143 chunk_size = n;
2144 mask = ((1 << chunk_size) - 1) << targ_offset;
2145 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2146 n -= chunk_size;
2147 accum_bits -= chunk_size;
2148 accum >>= chunk_size;
2149 target += 1;
2150 targ_offset = 0;
2151 }
14f9c5c9
AS
2152 }
2153}
2154
14f9c5c9
AS
2155/* Store the contents of FROMVAL into the location of TOVAL.
2156 Return a new value with the location of TOVAL and contents of
2157 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2158 floating-point or non-scalar types. */
14f9c5c9 2159
d2e4a39e
AS
2160static struct value *
2161ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2162{
df407dfe
AC
2163 struct type *type = value_type (toval);
2164 int bits = value_bitsize (toval);
14f9c5c9 2165
52ce6436
PH
2166 toval = ada_coerce_ref (toval);
2167 fromval = ada_coerce_ref (fromval);
2168
2169 if (ada_is_direct_array_type (value_type (toval)))
2170 toval = ada_coerce_to_simple_array (toval);
2171 if (ada_is_direct_array_type (value_type (fromval)))
2172 fromval = ada_coerce_to_simple_array (fromval);
2173
88e3b34b 2174 if (!deprecated_value_modifiable (toval))
323e0a4a 2175 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2176
d2e4a39e 2177 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2178 && bits > 0
d2e4a39e 2179 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2180 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2181 {
df407dfe
AC
2182 int len = (value_bitpos (toval)
2183 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2184 int from_size;
d2e4a39e
AS
2185 char *buffer = (char *) alloca (len);
2186 struct value *val;
42ae5230 2187 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2188
2189 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2190 fromval = value_cast (type, fromval);
14f9c5c9 2191
52ce6436 2192 read_memory (to_addr, buffer, len);
aced2898
PH
2193 from_size = value_bitsize (fromval);
2194 if (from_size == 0)
2195 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2196 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2197 move_bits (buffer, value_bitpos (toval),
50810684 2198 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2199 else
50810684
UW
2200 move_bits (buffer, value_bitpos (toval),
2201 value_contents (fromval), 0, bits, 0);
52ce6436
PH
2202 write_memory (to_addr, buffer, len);
2203 if (deprecated_memory_changed_hook)
2204 deprecated_memory_changed_hook (to_addr, len);
2205
14f9c5c9 2206 val = value_copy (toval);
0fd88904 2207 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2208 TYPE_LENGTH (type));
04624583 2209 deprecated_set_value_type (val, type);
d2e4a39e 2210
14f9c5c9
AS
2211 return val;
2212 }
2213
2214 return value_assign (toval, fromval);
2215}
2216
2217
52ce6436
PH
2218/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2219 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2220 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2221 * COMPONENT, and not the inferior's memory. The current contents
2222 * of COMPONENT are ignored. */
2223static void
2224value_assign_to_component (struct value *container, struct value *component,
2225 struct value *val)
2226{
2227 LONGEST offset_in_container =
42ae5230 2228 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2229 int bit_offset_in_container =
2230 value_bitpos (component) - value_bitpos (container);
2231 int bits;
2232
2233 val = value_cast (value_type (component), val);
2234
2235 if (value_bitsize (component) == 0)
2236 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2237 else
2238 bits = value_bitsize (component);
2239
50810684 2240 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2241 move_bits (value_contents_writeable (container) + offset_in_container,
2242 value_bitpos (container) + bit_offset_in_container,
2243 value_contents (val),
2244 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2245 bits, 1);
52ce6436
PH
2246 else
2247 move_bits (value_contents_writeable (container) + offset_in_container,
2248 value_bitpos (container) + bit_offset_in_container,
50810684 2249 value_contents (val), 0, bits, 0);
52ce6436
PH
2250}
2251
4c4b4cd2
PH
2252/* The value of the element of array ARR at the ARITY indices given in IND.
2253 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2254 thereto. */
2255
d2e4a39e
AS
2256struct value *
2257ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2258{
2259 int k;
d2e4a39e
AS
2260 struct value *elt;
2261 struct type *elt_type;
14f9c5c9
AS
2262
2263 elt = ada_coerce_to_simple_array (arr);
2264
df407dfe 2265 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2266 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2267 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2268 return value_subscript_packed (elt, arity, ind);
2269
2270 for (k = 0; k < arity; k += 1)
2271 {
2272 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2273 error (_("too many subscripts (%d expected)"), k);
2497b498 2274 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2275 }
2276 return elt;
2277}
2278
2279/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2280 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2281 IND. Does not read the entire array into memory. */
14f9c5c9 2282
2c0b251b 2283static struct value *
d2e4a39e 2284ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2285 struct value **ind)
14f9c5c9
AS
2286{
2287 int k;
2288
2289 for (k = 0; k < arity; k += 1)
2290 {
2291 LONGEST lwb, upb;
14f9c5c9
AS
2292
2293 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2294 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2295 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2296 value_copy (arr));
14f9c5c9 2297 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2298 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2299 type = TYPE_TARGET_TYPE (type);
2300 }
2301
2302 return value_ind (arr);
2303}
2304
0b5d8877 2305/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2306 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2307 elements starting at index LOW. The lower bound of this array is LOW, as
2308 per Ada rules. */
0b5d8877 2309static struct value *
f5938064
JG
2310ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2311 int low, int high)
0b5d8877 2312{
6c038f32 2313 CORE_ADDR base = value_as_address (array_ptr)
0b5d8877
PH
2314 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2315 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2316 struct type *index_type =
2317 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2318 low, high);
6c038f32 2319 struct type *slice_type =
0b5d8877 2320 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
f5938064 2321 return value_at_lazy (slice_type, base);
0b5d8877
PH
2322}
2323
2324
2325static struct value *
2326ada_value_slice (struct value *array, int low, int high)
2327{
df407dfe 2328 struct type *type = value_type (array);
6c038f32 2329 struct type *index_type =
0b5d8877 2330 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2331 struct type *slice_type =
0b5d8877 2332 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
6c038f32 2333 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2334}
2335
14f9c5c9
AS
2336/* If type is a record type in the form of a standard GNAT array
2337 descriptor, returns the number of dimensions for type. If arr is a
2338 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2339 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2340
2341int
d2e4a39e 2342ada_array_arity (struct type *type)
14f9c5c9
AS
2343{
2344 int arity;
2345
2346 if (type == NULL)
2347 return 0;
2348
2349 type = desc_base_type (type);
2350
2351 arity = 0;
d2e4a39e 2352 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2353 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2354 else
2355 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2356 {
4c4b4cd2 2357 arity += 1;
61ee279c 2358 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2359 }
d2e4a39e 2360
14f9c5c9
AS
2361 return arity;
2362}
2363
2364/* If TYPE is a record type in the form of a standard GNAT array
2365 descriptor or a simple array type, returns the element type for
2366 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2367 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2368
d2e4a39e
AS
2369struct type *
2370ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2371{
2372 type = desc_base_type (type);
2373
d2e4a39e 2374 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2375 {
2376 int k;
d2e4a39e 2377 struct type *p_array_type;
14f9c5c9 2378
556bdfd4 2379 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2380
2381 k = ada_array_arity (type);
2382 if (k == 0)
4c4b4cd2 2383 return NULL;
d2e4a39e 2384
4c4b4cd2 2385 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2386 if (nindices >= 0 && k > nindices)
4c4b4cd2 2387 k = nindices;
d2e4a39e 2388 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2389 {
61ee279c 2390 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2391 k -= 1;
2392 }
14f9c5c9
AS
2393 return p_array_type;
2394 }
2395 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2396 {
2397 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2398 {
2399 type = TYPE_TARGET_TYPE (type);
2400 nindices -= 1;
2401 }
14f9c5c9
AS
2402 return type;
2403 }
2404
2405 return NULL;
2406}
2407
4c4b4cd2 2408/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2409 Does not examine memory. Throws an error if N is invalid or TYPE
2410 is not an array type. NAME is the name of the Ada attribute being
2411 evaluated ('range, 'first, 'last, or 'length); it is used in building
2412 the error message. */
14f9c5c9 2413
1eea4ebd
UW
2414static struct type *
2415ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2416{
4c4b4cd2
PH
2417 struct type *result_type;
2418
14f9c5c9
AS
2419 type = desc_base_type (type);
2420
1eea4ebd
UW
2421 if (n < 0 || n > ada_array_arity (type))
2422 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2423
4c4b4cd2 2424 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2425 {
2426 int i;
2427
2428 for (i = 1; i < n; i += 1)
4c4b4cd2 2429 type = TYPE_TARGET_TYPE (type);
262452ec 2430 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2431 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2432 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2433 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2434 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2435 result_type = NULL;
14f9c5c9 2436 }
d2e4a39e 2437 else
1eea4ebd
UW
2438 {
2439 result_type = desc_index_type (desc_bounds_type (type), n);
2440 if (result_type == NULL)
2441 error (_("attempt to take bound of something that is not an array"));
2442 }
2443
2444 return result_type;
14f9c5c9
AS
2445}
2446
2447/* Given that arr is an array type, returns the lower bound of the
2448 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2449 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2450 array-descriptor type. It works for other arrays with bounds supplied
2451 by run-time quantities other than discriminants. */
14f9c5c9 2452
abb68b3e 2453static LONGEST
1eea4ebd 2454ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2455{
1ce677a4 2456 struct type *type, *elt_type, *index_type_desc, *index_type;
262452ec 2457 LONGEST retval;
1ce677a4 2458 int i;
262452ec
JK
2459
2460 gdb_assert (which == 0 || which == 1);
14f9c5c9
AS
2461
2462 if (ada_is_packed_array_type (arr_type))
2463 arr_type = decode_packed_array_type (arr_type);
2464
4c4b4cd2 2465 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2466 return (LONGEST) - which;
14f9c5c9
AS
2467
2468 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2469 type = TYPE_TARGET_TYPE (arr_type);
2470 else
2471 type = arr_type;
2472
1ce677a4
UW
2473 elt_type = type;
2474 for (i = n; i > 1; i--)
2475 elt_type = TYPE_TARGET_TYPE (type);
2476
14f9c5c9 2477 index_type_desc = ada_find_parallel_type (type, "___XA");
262452ec
JK
2478 if (index_type_desc != NULL)
2479 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
1ce677a4 2480 NULL, TYPE_INDEX_TYPE (elt_type));
262452ec 2481 else
1ce677a4 2482 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec
JK
2483
2484 switch (TYPE_CODE (index_type))
14f9c5c9 2485 {
262452ec
JK
2486 case TYPE_CODE_RANGE:
2487 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2488 : TYPE_HIGH_BOUND (index_type);
2489 break;
2490 case TYPE_CODE_ENUM:
2491 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2492 : TYPE_FIELD_BITPOS (index_type,
2493 TYPE_NFIELDS (index_type) - 1);
2494 break;
2495 default:
2496 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2497 }
abb68b3e 2498
262452ec 2499 return retval;
14f9c5c9
AS
2500}
2501
2502/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2503 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2504 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2505 supplied by run-time quantities other than discriminants. */
14f9c5c9 2506
1eea4ebd 2507static LONGEST
4dc81987 2508ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2509{
df407dfe 2510 struct type *arr_type = value_type (arr);
14f9c5c9
AS
2511
2512 if (ada_is_packed_array_type (arr_type))
2513 return ada_array_bound (decode_packed_array (arr), n, which);
4c4b4cd2 2514 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2515 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2516 else
1eea4ebd 2517 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2518}
2519
2520/* Given that arr is an array value, returns the length of the
2521 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2522 supplied by run-time quantities other than discriminants.
2523 Does not work for arrays indexed by enumeration types with representation
2524 clauses at the moment. */
14f9c5c9 2525
1eea4ebd 2526static LONGEST
d2e4a39e 2527ada_array_length (struct value *arr, int n)
14f9c5c9 2528{
df407dfe 2529 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9
AS
2530
2531 if (ada_is_packed_array_type (arr_type))
2532 return ada_array_length (decode_packed_array (arr), n);
2533
4c4b4cd2 2534 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2535 return (ada_array_bound_from_type (arr_type, n, 1)
2536 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2537 else
1eea4ebd
UW
2538 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2539 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2540}
2541
2542/* An empty array whose type is that of ARR_TYPE (an array type),
2543 with bounds LOW to LOW-1. */
2544
2545static struct value *
2546empty_array (struct type *arr_type, int low)
2547{
6c038f32 2548 struct type *index_type =
0b5d8877
PH
2549 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2550 low, low - 1);
2551 struct type *elt_type = ada_array_element_type (arr_type, 1);
2552 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2553}
14f9c5c9 2554\f
d2e4a39e 2555
4c4b4cd2 2556 /* Name resolution */
14f9c5c9 2557
4c4b4cd2
PH
2558/* The "decoded" name for the user-definable Ada operator corresponding
2559 to OP. */
14f9c5c9 2560
d2e4a39e 2561static const char *
4c4b4cd2 2562ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2563{
2564 int i;
2565
4c4b4cd2 2566 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2567 {
2568 if (ada_opname_table[i].op == op)
4c4b4cd2 2569 return ada_opname_table[i].decoded;
14f9c5c9 2570 }
323e0a4a 2571 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2572}
2573
2574
4c4b4cd2
PH
2575/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2576 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2577 undefined namespace) and converts operators that are
2578 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2579 non-null, it provides a preferred result type [at the moment, only
2580 type void has any effect---causing procedures to be preferred over
2581 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2582 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2583
4c4b4cd2
PH
2584static void
2585resolve (struct expression **expp, int void_context_p)
14f9c5c9 2586{
30b15541
UW
2587 struct type *context_type = NULL;
2588 int pc = 0;
2589
2590 if (void_context_p)
2591 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2592
2593 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2594}
2595
4c4b4cd2
PH
2596/* Resolve the operator of the subexpression beginning at
2597 position *POS of *EXPP. "Resolving" consists of replacing
2598 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2599 with their resolutions, replacing built-in operators with
2600 function calls to user-defined operators, where appropriate, and,
2601 when DEPROCEDURE_P is non-zero, converting function-valued variables
2602 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2603 are as in ada_resolve, above. */
14f9c5c9 2604
d2e4a39e 2605static struct value *
4c4b4cd2 2606resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2607 struct type *context_type)
14f9c5c9
AS
2608{
2609 int pc = *pos;
2610 int i;
4c4b4cd2 2611 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2612 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2613 struct value **argvec; /* Vector of operand types (alloca'ed). */
2614 int nargs; /* Number of operands. */
52ce6436 2615 int oplen;
14f9c5c9
AS
2616
2617 argvec = NULL;
2618 nargs = 0;
2619 exp = *expp;
2620
52ce6436
PH
2621 /* Pass one: resolve operands, saving their types and updating *pos,
2622 if needed. */
14f9c5c9
AS
2623 switch (op)
2624 {
4c4b4cd2
PH
2625 case OP_FUNCALL:
2626 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2627 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2628 *pos += 7;
4c4b4cd2
PH
2629 else
2630 {
2631 *pos += 3;
2632 resolve_subexp (expp, pos, 0, NULL);
2633 }
2634 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2635 break;
2636
14f9c5c9 2637 case UNOP_ADDR:
4c4b4cd2
PH
2638 *pos += 1;
2639 resolve_subexp (expp, pos, 0, NULL);
2640 break;
2641
52ce6436
PH
2642 case UNOP_QUAL:
2643 *pos += 3;
17466c1a 2644 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2645 break;
2646
52ce6436 2647 case OP_ATR_MODULUS:
4c4b4cd2
PH
2648 case OP_ATR_SIZE:
2649 case OP_ATR_TAG:
4c4b4cd2
PH
2650 case OP_ATR_FIRST:
2651 case OP_ATR_LAST:
2652 case OP_ATR_LENGTH:
2653 case OP_ATR_POS:
2654 case OP_ATR_VAL:
4c4b4cd2
PH
2655 case OP_ATR_MIN:
2656 case OP_ATR_MAX:
52ce6436
PH
2657 case TERNOP_IN_RANGE:
2658 case BINOP_IN_BOUNDS:
2659 case UNOP_IN_RANGE:
2660 case OP_AGGREGATE:
2661 case OP_OTHERS:
2662 case OP_CHOICES:
2663 case OP_POSITIONAL:
2664 case OP_DISCRETE_RANGE:
2665 case OP_NAME:
2666 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2667 *pos += oplen;
14f9c5c9
AS
2668 break;
2669
2670 case BINOP_ASSIGN:
2671 {
4c4b4cd2
PH
2672 struct value *arg1;
2673
2674 *pos += 1;
2675 arg1 = resolve_subexp (expp, pos, 0, NULL);
2676 if (arg1 == NULL)
2677 resolve_subexp (expp, pos, 1, NULL);
2678 else
df407dfe 2679 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2680 break;
14f9c5c9
AS
2681 }
2682
4c4b4cd2 2683 case UNOP_CAST:
4c4b4cd2
PH
2684 *pos += 3;
2685 nargs = 1;
2686 break;
14f9c5c9 2687
4c4b4cd2
PH
2688 case BINOP_ADD:
2689 case BINOP_SUB:
2690 case BINOP_MUL:
2691 case BINOP_DIV:
2692 case BINOP_REM:
2693 case BINOP_MOD:
2694 case BINOP_EXP:
2695 case BINOP_CONCAT:
2696 case BINOP_LOGICAL_AND:
2697 case BINOP_LOGICAL_OR:
2698 case BINOP_BITWISE_AND:
2699 case BINOP_BITWISE_IOR:
2700 case BINOP_BITWISE_XOR:
14f9c5c9 2701
4c4b4cd2
PH
2702 case BINOP_EQUAL:
2703 case BINOP_NOTEQUAL:
2704 case BINOP_LESS:
2705 case BINOP_GTR:
2706 case BINOP_LEQ:
2707 case BINOP_GEQ:
14f9c5c9 2708
4c4b4cd2
PH
2709 case BINOP_REPEAT:
2710 case BINOP_SUBSCRIPT:
2711 case BINOP_COMMA:
40c8aaa9
JB
2712 *pos += 1;
2713 nargs = 2;
2714 break;
14f9c5c9 2715
4c4b4cd2
PH
2716 case UNOP_NEG:
2717 case UNOP_PLUS:
2718 case UNOP_LOGICAL_NOT:
2719 case UNOP_ABS:
2720 case UNOP_IND:
2721 *pos += 1;
2722 nargs = 1;
2723 break;
14f9c5c9 2724
4c4b4cd2
PH
2725 case OP_LONG:
2726 case OP_DOUBLE:
2727 case OP_VAR_VALUE:
2728 *pos += 4;
2729 break;
14f9c5c9 2730
4c4b4cd2
PH
2731 case OP_TYPE:
2732 case OP_BOOL:
2733 case OP_LAST:
4c4b4cd2
PH
2734 case OP_INTERNALVAR:
2735 *pos += 3;
2736 break;
14f9c5c9 2737
4c4b4cd2
PH
2738 case UNOP_MEMVAL:
2739 *pos += 3;
2740 nargs = 1;
2741 break;
2742
67f3407f
DJ
2743 case OP_REGISTER:
2744 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2745 break;
2746
4c4b4cd2
PH
2747 case STRUCTOP_STRUCT:
2748 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2749 nargs = 1;
2750 break;
2751
4c4b4cd2 2752 case TERNOP_SLICE:
4c4b4cd2
PH
2753 *pos += 1;
2754 nargs = 3;
2755 break;
2756
52ce6436 2757 case OP_STRING:
14f9c5c9 2758 break;
4c4b4cd2
PH
2759
2760 default:
323e0a4a 2761 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
2762 }
2763
76a01679 2764 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
2765 for (i = 0; i < nargs; i += 1)
2766 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2767 argvec[i] = NULL;
2768 exp = *expp;
2769
2770 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
2771 switch (op)
2772 {
2773 default:
2774 break;
2775
14f9c5c9 2776 case OP_VAR_VALUE:
4c4b4cd2 2777 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
2778 {
2779 struct ada_symbol_info *candidates;
2780 int n_candidates;
2781
2782 n_candidates =
2783 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2784 (exp->elts[pc + 2].symbol),
2785 exp->elts[pc + 1].block, VAR_DOMAIN,
2786 &candidates);
2787
2788 if (n_candidates > 1)
2789 {
2790 /* Types tend to get re-introduced locally, so if there
2791 are any local symbols that are not types, first filter
2792 out all types. */
2793 int j;
2794 for (j = 0; j < n_candidates; j += 1)
2795 switch (SYMBOL_CLASS (candidates[j].sym))
2796 {
2797 case LOC_REGISTER:
2798 case LOC_ARG:
2799 case LOC_REF_ARG:
76a01679
JB
2800 case LOC_REGPARM_ADDR:
2801 case LOC_LOCAL:
76a01679 2802 case LOC_COMPUTED:
76a01679
JB
2803 goto FoundNonType;
2804 default:
2805 break;
2806 }
2807 FoundNonType:
2808 if (j < n_candidates)
2809 {
2810 j = 0;
2811 while (j < n_candidates)
2812 {
2813 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2814 {
2815 candidates[j] = candidates[n_candidates - 1];
2816 n_candidates -= 1;
2817 }
2818 else
2819 j += 1;
2820 }
2821 }
2822 }
2823
2824 if (n_candidates == 0)
323e0a4a 2825 error (_("No definition found for %s"),
76a01679
JB
2826 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2827 else if (n_candidates == 1)
2828 i = 0;
2829 else if (deprocedure_p
2830 && !is_nonfunction (candidates, n_candidates))
2831 {
06d5cf63
JB
2832 i = ada_resolve_function
2833 (candidates, n_candidates, NULL, 0,
2834 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2835 context_type);
76a01679 2836 if (i < 0)
323e0a4a 2837 error (_("Could not find a match for %s"),
76a01679
JB
2838 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2839 }
2840 else
2841 {
323e0a4a 2842 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
2843 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2844 user_select_syms (candidates, n_candidates, 1);
2845 i = 0;
2846 }
2847
2848 exp->elts[pc + 1].block = candidates[i].block;
2849 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
2850 if (innermost_block == NULL
2851 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
2852 innermost_block = candidates[i].block;
2853 }
2854
2855 if (deprocedure_p
2856 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2857 == TYPE_CODE_FUNC))
2858 {
2859 replace_operator_with_call (expp, pc, 0, 0,
2860 exp->elts[pc + 2].symbol,
2861 exp->elts[pc + 1].block);
2862 exp = *expp;
2863 }
14f9c5c9
AS
2864 break;
2865
2866 case OP_FUNCALL:
2867 {
4c4b4cd2 2868 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 2869 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
2870 {
2871 struct ada_symbol_info *candidates;
2872 int n_candidates;
2873
2874 n_candidates =
76a01679
JB
2875 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2876 (exp->elts[pc + 5].symbol),
2877 exp->elts[pc + 4].block, VAR_DOMAIN,
2878 &candidates);
4c4b4cd2
PH
2879 if (n_candidates == 1)
2880 i = 0;
2881 else
2882 {
06d5cf63
JB
2883 i = ada_resolve_function
2884 (candidates, n_candidates,
2885 argvec, nargs,
2886 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2887 context_type);
4c4b4cd2 2888 if (i < 0)
323e0a4a 2889 error (_("Could not find a match for %s"),
4c4b4cd2
PH
2890 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2891 }
2892
2893 exp->elts[pc + 4].block = candidates[i].block;
2894 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
2895 if (innermost_block == NULL
2896 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
2897 innermost_block = candidates[i].block;
2898 }
14f9c5c9
AS
2899 }
2900 break;
2901 case BINOP_ADD:
2902 case BINOP_SUB:
2903 case BINOP_MUL:
2904 case BINOP_DIV:
2905 case BINOP_REM:
2906 case BINOP_MOD:
2907 case BINOP_CONCAT:
2908 case BINOP_BITWISE_AND:
2909 case BINOP_BITWISE_IOR:
2910 case BINOP_BITWISE_XOR:
2911 case BINOP_EQUAL:
2912 case BINOP_NOTEQUAL:
2913 case BINOP_LESS:
2914 case BINOP_GTR:
2915 case BINOP_LEQ:
2916 case BINOP_GEQ:
2917 case BINOP_EXP:
2918 case UNOP_NEG:
2919 case UNOP_PLUS:
2920 case UNOP_LOGICAL_NOT:
2921 case UNOP_ABS:
2922 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
2923 {
2924 struct ada_symbol_info *candidates;
2925 int n_candidates;
2926
2927 n_candidates =
2928 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2929 (struct block *) NULL, VAR_DOMAIN,
2930 &candidates);
2931 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 2932 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
2933 if (i < 0)
2934 break;
2935
76a01679
JB
2936 replace_operator_with_call (expp, pc, nargs, 1,
2937 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
2938 exp = *expp;
2939 }
14f9c5c9 2940 break;
4c4b4cd2
PH
2941
2942 case OP_TYPE:
b3dbf008 2943 case OP_REGISTER:
4c4b4cd2 2944 return NULL;
14f9c5c9
AS
2945 }
2946
2947 *pos = pc;
2948 return evaluate_subexp_type (exp, pos);
2949}
2950
2951/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2
PH
2952 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2953 a non-pointer. A type of 'void' (which is never a valid expression type)
2954 by convention matches anything. */
14f9c5c9 2955/* The term "match" here is rather loose. The match is heuristic and
4c4b4cd2 2956 liberal. FIXME: TOO liberal, in fact. */
14f9c5c9
AS
2957
2958static int
4dc81987 2959ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 2960{
61ee279c
PH
2961 ftype = ada_check_typedef (ftype);
2962 atype = ada_check_typedef (atype);
14f9c5c9
AS
2963
2964 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2965 ftype = TYPE_TARGET_TYPE (ftype);
2966 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2967 atype = TYPE_TARGET_TYPE (atype);
2968
d2e4a39e 2969 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
14f9c5c9
AS
2970 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2971 return 1;
2972
d2e4a39e 2973 switch (TYPE_CODE (ftype))
14f9c5c9
AS
2974 {
2975 default:
2976 return 1;
2977 case TYPE_CODE_PTR:
2978 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
2979 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2980 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 2981 else
1265e4aa
JB
2982 return (may_deref
2983 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
2984 case TYPE_CODE_INT:
2985 case TYPE_CODE_ENUM:
2986 case TYPE_CODE_RANGE:
2987 switch (TYPE_CODE (atype))
4c4b4cd2
PH
2988 {
2989 case TYPE_CODE_INT:
2990 case TYPE_CODE_ENUM:
2991 case TYPE_CODE_RANGE:
2992 return 1;
2993 default:
2994 return 0;
2995 }
14f9c5c9
AS
2996
2997 case TYPE_CODE_ARRAY:
d2e4a39e 2998 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 2999 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3000
3001 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3002 if (ada_is_array_descriptor_type (ftype))
3003 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3004 || ada_is_array_descriptor_type (atype));
14f9c5c9 3005 else
4c4b4cd2
PH
3006 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3007 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3008
3009 case TYPE_CODE_UNION:
3010 case TYPE_CODE_FLT:
3011 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3012 }
3013}
3014
3015/* Return non-zero if the formals of FUNC "sufficiently match" the
3016 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3017 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3018 argument function. */
14f9c5c9
AS
3019
3020static int
d2e4a39e 3021ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3022{
3023 int i;
d2e4a39e 3024 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3025
1265e4aa
JB
3026 if (SYMBOL_CLASS (func) == LOC_CONST
3027 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3028 return (n_actuals == 0);
3029 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3030 return 0;
3031
3032 if (TYPE_NFIELDS (func_type) != n_actuals)
3033 return 0;
3034
3035 for (i = 0; i < n_actuals; i += 1)
3036 {
4c4b4cd2 3037 if (actuals[i] == NULL)
76a01679
JB
3038 return 0;
3039 else
3040 {
61ee279c 3041 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
df407dfe 3042 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3043
76a01679
JB
3044 if (!ada_type_match (ftype, atype, 1))
3045 return 0;
3046 }
14f9c5c9
AS
3047 }
3048 return 1;
3049}
3050
3051/* False iff function type FUNC_TYPE definitely does not produce a value
3052 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3053 FUNC_TYPE is not a valid function type with a non-null return type
3054 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3055
3056static int
d2e4a39e 3057return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3058{
d2e4a39e 3059 struct type *return_type;
14f9c5c9
AS
3060
3061 if (func_type == NULL)
3062 return 1;
3063
4c4b4cd2
PH
3064 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3065 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3066 else
3067 return_type = base_type (func_type);
14f9c5c9
AS
3068 if (return_type == NULL)
3069 return 1;
3070
4c4b4cd2 3071 context_type = base_type (context_type);
14f9c5c9
AS
3072
3073 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3074 return context_type == NULL || return_type == context_type;
3075 else if (context_type == NULL)
3076 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3077 else
3078 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3079}
3080
3081
4c4b4cd2 3082/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3083 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3084 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3085 that returns that type, then eliminate matches that don't. If
3086 CONTEXT_TYPE is void and there is at least one match that does not
3087 return void, eliminate all matches that do.
3088
14f9c5c9
AS
3089 Asks the user if there is more than one match remaining. Returns -1
3090 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3091 solely for messages. May re-arrange and modify SYMS in
3092 the process; the index returned is for the modified vector. */
14f9c5c9 3093
4c4b4cd2
PH
3094static int
3095ada_resolve_function (struct ada_symbol_info syms[],
3096 int nsyms, struct value **args, int nargs,
3097 const char *name, struct type *context_type)
14f9c5c9 3098{
30b15541 3099 int fallback;
14f9c5c9 3100 int k;
4c4b4cd2 3101 int m; /* Number of hits */
14f9c5c9 3102
d2e4a39e 3103 m = 0;
30b15541
UW
3104 /* In the first pass of the loop, we only accept functions matching
3105 context_type. If none are found, we add a second pass of the loop
3106 where every function is accepted. */
3107 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3108 {
3109 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3110 {
61ee279c 3111 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3112
3113 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3114 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3115 {
3116 syms[m] = syms[k];
3117 m += 1;
3118 }
3119 }
14f9c5c9
AS
3120 }
3121
3122 if (m == 0)
3123 return -1;
3124 else if (m > 1)
3125 {
323e0a4a 3126 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3127 user_select_syms (syms, m, 1);
14f9c5c9
AS
3128 return 0;
3129 }
3130 return 0;
3131}
3132
4c4b4cd2
PH
3133/* Returns true (non-zero) iff decoded name N0 should appear before N1
3134 in a listing of choices during disambiguation (see sort_choices, below).
3135 The idea is that overloadings of a subprogram name from the
3136 same package should sort in their source order. We settle for ordering
3137 such symbols by their trailing number (__N or $N). */
3138
14f9c5c9 3139static int
4c4b4cd2 3140encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3141{
3142 if (N1 == NULL)
3143 return 0;
3144 else if (N0 == NULL)
3145 return 1;
3146 else
3147 {
3148 int k0, k1;
d2e4a39e 3149 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3150 ;
d2e4a39e 3151 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3152 ;
d2e4a39e 3153 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3154 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3155 {
3156 int n0, n1;
3157 n0 = k0;
3158 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3159 n0 -= 1;
3160 n1 = k1;
3161 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3162 n1 -= 1;
3163 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3164 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3165 }
14f9c5c9
AS
3166 return (strcmp (N0, N1) < 0);
3167 }
3168}
d2e4a39e 3169
4c4b4cd2
PH
3170/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3171 encoded names. */
3172
d2e4a39e 3173static void
4c4b4cd2 3174sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3175{
4c4b4cd2 3176 int i;
d2e4a39e 3177 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3178 {
4c4b4cd2 3179 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3180 int j;
3181
d2e4a39e 3182 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3183 {
3184 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3185 SYMBOL_LINKAGE_NAME (sym.sym)))
3186 break;
3187 syms[j + 1] = syms[j];
3188 }
d2e4a39e 3189 syms[j + 1] = sym;
14f9c5c9
AS
3190 }
3191}
3192
4c4b4cd2
PH
3193/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3194 by asking the user (if necessary), returning the number selected,
3195 and setting the first elements of SYMS items. Error if no symbols
3196 selected. */
14f9c5c9
AS
3197
3198/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3199 to be re-integrated one of these days. */
14f9c5c9
AS
3200
3201int
4c4b4cd2 3202user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3203{
3204 int i;
d2e4a39e 3205 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3206 int n_chosen;
3207 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3208 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3209
3210 if (max_results < 1)
323e0a4a 3211 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3212 if (nsyms <= 1)
3213 return nsyms;
3214
717d2f5a
JB
3215 if (select_mode == multiple_symbols_cancel)
3216 error (_("\
3217canceled because the command is ambiguous\n\
3218See set/show multiple-symbol."));
3219
3220 /* If select_mode is "all", then return all possible symbols.
3221 Only do that if more than one symbol can be selected, of course.
3222 Otherwise, display the menu as usual. */
3223 if (select_mode == multiple_symbols_all && max_results > 1)
3224 return nsyms;
3225
323e0a4a 3226 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3227 if (max_results > 1)
323e0a4a 3228 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3229
4c4b4cd2 3230 sort_choices (syms, nsyms);
14f9c5c9
AS
3231
3232 for (i = 0; i < nsyms; i += 1)
3233 {
4c4b4cd2
PH
3234 if (syms[i].sym == NULL)
3235 continue;
3236
3237 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3238 {
76a01679
JB
3239 struct symtab_and_line sal =
3240 find_function_start_sal (syms[i].sym, 1);
323e0a4a
AC
3241 if (sal.symtab == NULL)
3242 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3243 i + first_choice,
3244 SYMBOL_PRINT_NAME (syms[i].sym),
3245 sal.line);
3246 else
3247 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3248 SYMBOL_PRINT_NAME (syms[i].sym),
3249 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3250 continue;
3251 }
d2e4a39e 3252 else
4c4b4cd2
PH
3253 {
3254 int is_enumeral =
3255 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3256 && SYMBOL_TYPE (syms[i].sym) != NULL
3257 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3258 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3259
3260 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3261 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3262 i + first_choice,
3263 SYMBOL_PRINT_NAME (syms[i].sym),
3264 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3265 else if (is_enumeral
3266 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3267 {
a3f17187 3268 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3269 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3270 gdb_stdout, -1, 0);
323e0a4a 3271 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3272 SYMBOL_PRINT_NAME (syms[i].sym));
3273 }
3274 else if (symtab != NULL)
3275 printf_unfiltered (is_enumeral
323e0a4a
AC
3276 ? _("[%d] %s in %s (enumeral)\n")
3277 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3278 i + first_choice,
3279 SYMBOL_PRINT_NAME (syms[i].sym),
3280 symtab->filename);
3281 else
3282 printf_unfiltered (is_enumeral
323e0a4a
AC
3283 ? _("[%d] %s (enumeral)\n")
3284 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3285 i + first_choice,
3286 SYMBOL_PRINT_NAME (syms[i].sym));
3287 }
14f9c5c9 3288 }
d2e4a39e 3289
14f9c5c9 3290 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3291 "overload-choice");
14f9c5c9
AS
3292
3293 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3294 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3295
3296 return n_chosen;
3297}
3298
3299/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3300 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3301 order in CHOICES[0 .. N-1], and return N.
3302
3303 The user types choices as a sequence of numbers on one line
3304 separated by blanks, encoding them as follows:
3305
4c4b4cd2 3306 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3307 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3308 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3309
4c4b4cd2 3310 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3311
3312 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3313 prompts (for use with the -f switch). */
14f9c5c9
AS
3314
3315int
d2e4a39e 3316get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3317 int is_all_choice, char *annotation_suffix)
14f9c5c9 3318{
d2e4a39e 3319 char *args;
0bcd0149 3320 char *prompt;
14f9c5c9
AS
3321 int n_chosen;
3322 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3323
14f9c5c9
AS
3324 prompt = getenv ("PS2");
3325 if (prompt == NULL)
0bcd0149 3326 prompt = "> ";
14f9c5c9 3327
0bcd0149 3328 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3329
14f9c5c9 3330 if (args == NULL)
323e0a4a 3331 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3332
3333 n_chosen = 0;
76a01679 3334
4c4b4cd2
PH
3335 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3336 order, as given in args. Choices are validated. */
14f9c5c9
AS
3337 while (1)
3338 {
d2e4a39e 3339 char *args2;
14f9c5c9
AS
3340 int choice, j;
3341
3342 while (isspace (*args))
4c4b4cd2 3343 args += 1;
14f9c5c9 3344 if (*args == '\0' && n_chosen == 0)
323e0a4a 3345 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3346 else if (*args == '\0')
4c4b4cd2 3347 break;
14f9c5c9
AS
3348
3349 choice = strtol (args, &args2, 10);
d2e4a39e 3350 if (args == args2 || choice < 0
4c4b4cd2 3351 || choice > n_choices + first_choice - 1)
323e0a4a 3352 error (_("Argument must be choice number"));
14f9c5c9
AS
3353 args = args2;
3354
d2e4a39e 3355 if (choice == 0)
323e0a4a 3356 error (_("cancelled"));
14f9c5c9
AS
3357
3358 if (choice < first_choice)
4c4b4cd2
PH
3359 {
3360 n_chosen = n_choices;
3361 for (j = 0; j < n_choices; j += 1)
3362 choices[j] = j;
3363 break;
3364 }
14f9c5c9
AS
3365 choice -= first_choice;
3366
d2e4a39e 3367 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3368 {
3369 }
14f9c5c9
AS
3370
3371 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3372 {
3373 int k;
3374 for (k = n_chosen - 1; k > j; k -= 1)
3375 choices[k + 1] = choices[k];
3376 choices[j + 1] = choice;
3377 n_chosen += 1;
3378 }
14f9c5c9
AS
3379 }
3380
3381 if (n_chosen > max_results)
323e0a4a 3382 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3383
14f9c5c9
AS
3384 return n_chosen;
3385}
3386
4c4b4cd2
PH
3387/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3388 on the function identified by SYM and BLOCK, and taking NARGS
3389 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3390
3391static void
d2e4a39e 3392replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3393 int oplen, struct symbol *sym,
3394 struct block *block)
14f9c5c9
AS
3395{
3396 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3397 symbol, -oplen for operator being replaced). */
d2e4a39e 3398 struct expression *newexp = (struct expression *)
14f9c5c9 3399 xmalloc (sizeof (struct expression)
4c4b4cd2 3400 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3401 struct expression *exp = *expp;
14f9c5c9
AS
3402
3403 newexp->nelts = exp->nelts + 7 - oplen;
3404 newexp->language_defn = exp->language_defn;
3405 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3406 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3407 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3408
3409 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3410 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3411
3412 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3413 newexp->elts[pc + 4].block = block;
3414 newexp->elts[pc + 5].symbol = sym;
3415
3416 *expp = newexp;
aacb1f0a 3417 xfree (exp);
d2e4a39e 3418}
14f9c5c9
AS
3419
3420/* Type-class predicates */
3421
4c4b4cd2
PH
3422/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3423 or FLOAT). */
14f9c5c9
AS
3424
3425static int
d2e4a39e 3426numeric_type_p (struct type *type)
14f9c5c9
AS
3427{
3428 if (type == NULL)
3429 return 0;
d2e4a39e
AS
3430 else
3431 {
3432 switch (TYPE_CODE (type))
4c4b4cd2
PH
3433 {
3434 case TYPE_CODE_INT:
3435 case TYPE_CODE_FLT:
3436 return 1;
3437 case TYPE_CODE_RANGE:
3438 return (type == TYPE_TARGET_TYPE (type)
3439 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3440 default:
3441 return 0;
3442 }
d2e4a39e 3443 }
14f9c5c9
AS
3444}
3445
4c4b4cd2 3446/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3447
3448static int
d2e4a39e 3449integer_type_p (struct type *type)
14f9c5c9
AS
3450{
3451 if (type == NULL)
3452 return 0;
d2e4a39e
AS
3453 else
3454 {
3455 switch (TYPE_CODE (type))
4c4b4cd2
PH
3456 {
3457 case TYPE_CODE_INT:
3458 return 1;
3459 case TYPE_CODE_RANGE:
3460 return (type == TYPE_TARGET_TYPE (type)
3461 || integer_type_p (TYPE_TARGET_TYPE (type)));
3462 default:
3463 return 0;
3464 }
d2e4a39e 3465 }
14f9c5c9
AS
3466}
3467
4c4b4cd2 3468/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3469
3470static int
d2e4a39e 3471scalar_type_p (struct type *type)
14f9c5c9
AS
3472{
3473 if (type == NULL)
3474 return 0;
d2e4a39e
AS
3475 else
3476 {
3477 switch (TYPE_CODE (type))
4c4b4cd2
PH
3478 {
3479 case TYPE_CODE_INT:
3480 case TYPE_CODE_RANGE:
3481 case TYPE_CODE_ENUM:
3482 case TYPE_CODE_FLT:
3483 return 1;
3484 default:
3485 return 0;
3486 }
d2e4a39e 3487 }
14f9c5c9
AS
3488}
3489
4c4b4cd2 3490/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3491
3492static int
d2e4a39e 3493discrete_type_p (struct type *type)
14f9c5c9
AS
3494{
3495 if (type == NULL)
3496 return 0;
d2e4a39e
AS
3497 else
3498 {
3499 switch (TYPE_CODE (type))
4c4b4cd2
PH
3500 {
3501 case TYPE_CODE_INT:
3502 case TYPE_CODE_RANGE:
3503 case TYPE_CODE_ENUM:
3504 return 1;
3505 default:
3506 return 0;
3507 }
d2e4a39e 3508 }
14f9c5c9
AS
3509}
3510
4c4b4cd2
PH
3511/* Returns non-zero if OP with operands in the vector ARGS could be
3512 a user-defined function. Errs on the side of pre-defined operators
3513 (i.e., result 0). */
14f9c5c9
AS
3514
3515static int
d2e4a39e 3516possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3517{
76a01679 3518 struct type *type0 =
df407dfe 3519 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3520 struct type *type1 =
df407dfe 3521 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3522
4c4b4cd2
PH
3523 if (type0 == NULL)
3524 return 0;
3525
14f9c5c9
AS
3526 switch (op)
3527 {
3528 default:
3529 return 0;
3530
3531 case BINOP_ADD:
3532 case BINOP_SUB:
3533 case BINOP_MUL:
3534 case BINOP_DIV:
d2e4a39e 3535 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3536
3537 case BINOP_REM:
3538 case BINOP_MOD:
3539 case BINOP_BITWISE_AND:
3540 case BINOP_BITWISE_IOR:
3541 case BINOP_BITWISE_XOR:
d2e4a39e 3542 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3543
3544 case BINOP_EQUAL:
3545 case BINOP_NOTEQUAL:
3546 case BINOP_LESS:
3547 case BINOP_GTR:
3548 case BINOP_LEQ:
3549 case BINOP_GEQ:
d2e4a39e 3550 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3551
3552 case BINOP_CONCAT:
ee90b9ab 3553 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3554
3555 case BINOP_EXP:
d2e4a39e 3556 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3557
3558 case UNOP_NEG:
3559 case UNOP_PLUS:
3560 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3561 case UNOP_ABS:
3562 return (!numeric_type_p (type0));
14f9c5c9
AS
3563
3564 }
3565}
3566\f
4c4b4cd2 3567 /* Renaming */
14f9c5c9 3568
aeb5907d
JB
3569/* NOTES:
3570
3571 1. In the following, we assume that a renaming type's name may
3572 have an ___XD suffix. It would be nice if this went away at some
3573 point.
3574 2. We handle both the (old) purely type-based representation of
3575 renamings and the (new) variable-based encoding. At some point,
3576 it is devoutly to be hoped that the former goes away
3577 (FIXME: hilfinger-2007-07-09).
3578 3. Subprogram renamings are not implemented, although the XRS
3579 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3580
3581/* If SYM encodes a renaming,
3582
3583 <renaming> renames <renamed entity>,
3584
3585 sets *LEN to the length of the renamed entity's name,
3586 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3587 the string describing the subcomponent selected from the renamed
3588 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3589 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3590 are undefined). Otherwise, returns a value indicating the category
3591 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3592 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3593 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3594 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3595 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3596 may be NULL, in which case they are not assigned.
3597
3598 [Currently, however, GCC does not generate subprogram renamings.] */
3599
3600enum ada_renaming_category
3601ada_parse_renaming (struct symbol *sym,
3602 const char **renamed_entity, int *len,
3603 const char **renaming_expr)
3604{
3605 enum ada_renaming_category kind;
3606 const char *info;
3607 const char *suffix;
3608
3609 if (sym == NULL)
3610 return ADA_NOT_RENAMING;
3611 switch (SYMBOL_CLASS (sym))
14f9c5c9 3612 {
aeb5907d
JB
3613 default:
3614 return ADA_NOT_RENAMING;
3615 case LOC_TYPEDEF:
3616 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3617 renamed_entity, len, renaming_expr);
3618 case LOC_LOCAL:
3619 case LOC_STATIC:
3620 case LOC_COMPUTED:
3621 case LOC_OPTIMIZED_OUT:
3622 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3623 if (info == NULL)
3624 return ADA_NOT_RENAMING;
3625 switch (info[5])
3626 {
3627 case '_':
3628 kind = ADA_OBJECT_RENAMING;
3629 info += 6;
3630 break;
3631 case 'E':
3632 kind = ADA_EXCEPTION_RENAMING;
3633 info += 7;
3634 break;
3635 case 'P':
3636 kind = ADA_PACKAGE_RENAMING;
3637 info += 7;
3638 break;
3639 case 'S':
3640 kind = ADA_SUBPROGRAM_RENAMING;
3641 info += 7;
3642 break;
3643 default:
3644 return ADA_NOT_RENAMING;
3645 }
14f9c5c9 3646 }
4c4b4cd2 3647
aeb5907d
JB
3648 if (renamed_entity != NULL)
3649 *renamed_entity = info;
3650 suffix = strstr (info, "___XE");
3651 if (suffix == NULL || suffix == info)
3652 return ADA_NOT_RENAMING;
3653 if (len != NULL)
3654 *len = strlen (info) - strlen (suffix);
3655 suffix += 5;
3656 if (renaming_expr != NULL)
3657 *renaming_expr = suffix;
3658 return kind;
3659}
3660
3661/* Assuming TYPE encodes a renaming according to the old encoding in
3662 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3663 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3664 ADA_NOT_RENAMING otherwise. */
3665static enum ada_renaming_category
3666parse_old_style_renaming (struct type *type,
3667 const char **renamed_entity, int *len,
3668 const char **renaming_expr)
3669{
3670 enum ada_renaming_category kind;
3671 const char *name;
3672 const char *info;
3673 const char *suffix;
14f9c5c9 3674
aeb5907d
JB
3675 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3676 || TYPE_NFIELDS (type) != 1)
3677 return ADA_NOT_RENAMING;
14f9c5c9 3678
aeb5907d
JB
3679 name = type_name_no_tag (type);
3680 if (name == NULL)
3681 return ADA_NOT_RENAMING;
3682
3683 name = strstr (name, "___XR");
3684 if (name == NULL)
3685 return ADA_NOT_RENAMING;
3686 switch (name[5])
3687 {
3688 case '\0':
3689 case '_':
3690 kind = ADA_OBJECT_RENAMING;
3691 break;
3692 case 'E':
3693 kind = ADA_EXCEPTION_RENAMING;
3694 break;
3695 case 'P':
3696 kind = ADA_PACKAGE_RENAMING;
3697 break;
3698 case 'S':
3699 kind = ADA_SUBPROGRAM_RENAMING;
3700 break;
3701 default:
3702 return ADA_NOT_RENAMING;
3703 }
14f9c5c9 3704
aeb5907d
JB
3705 info = TYPE_FIELD_NAME (type, 0);
3706 if (info == NULL)
3707 return ADA_NOT_RENAMING;
3708 if (renamed_entity != NULL)
3709 *renamed_entity = info;
3710 suffix = strstr (info, "___XE");
3711 if (renaming_expr != NULL)
3712 *renaming_expr = suffix + 5;
3713 if (suffix == NULL || suffix == info)
3714 return ADA_NOT_RENAMING;
3715 if (len != NULL)
3716 *len = suffix - info;
3717 return kind;
3718}
52ce6436 3719
14f9c5c9 3720\f
d2e4a39e 3721
4c4b4cd2 3722 /* Evaluation: Function Calls */
14f9c5c9 3723
4c4b4cd2
PH
3724/* Return an lvalue containing the value VAL. This is the identity on
3725 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3726 on the stack, using and updating *SP as the stack pointer, and
42ae5230 3727 returning an lvalue whose value_address points to the copy. */
14f9c5c9 3728
d2e4a39e 3729static struct value *
4a399546 3730ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3731{
c3e5cd34
PH
3732 if (! VALUE_LVAL (val))
3733 {
df407dfe 3734 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
c3e5cd34
PH
3735
3736 /* The following is taken from the structure-return code in
3737 call_function_by_hand. FIXME: Therefore, some refactoring seems
3738 indicated. */
4a399546 3739 if (gdbarch_inner_than (gdbarch, 1, 2))
c3e5cd34 3740 {
42ae5230 3741 /* Stack grows downward. Align SP and value_address (val) after
c3e5cd34
PH
3742 reserving sufficient space. */
3743 *sp -= len;
4a399546
UW
3744 if (gdbarch_frame_align_p (gdbarch))
3745 *sp = gdbarch_frame_align (gdbarch, *sp);
42ae5230 3746 set_value_address (val, *sp);
c3e5cd34
PH
3747 }
3748 else
3749 {
3750 /* Stack grows upward. Align the frame, allocate space, and
3751 then again, re-align the frame. */
4a399546
UW
3752 if (gdbarch_frame_align_p (gdbarch))
3753 *sp = gdbarch_frame_align (gdbarch, *sp);
42ae5230 3754 set_value_address (val, *sp);
c3e5cd34 3755 *sp += len;
4a399546
UW
3756 if (gdbarch_frame_align_p (gdbarch))
3757 *sp = gdbarch_frame_align (gdbarch, *sp);
c3e5cd34 3758 }
a84a8a0d 3759 VALUE_LVAL (val) = lval_memory;
14f9c5c9 3760
42ae5230 3761 write_memory (value_address (val), value_contents_raw (val), len);
c3e5cd34 3762 }
14f9c5c9
AS
3763
3764 return val;
3765}
3766
3767/* Return the value ACTUAL, converted to be an appropriate value for a
3768 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3769 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3770 values not residing in memory, updating it as needed. */
14f9c5c9 3771
a93c0eb6
JB
3772struct value *
3773ada_convert_actual (struct value *actual, struct type *formal_type0,
4a399546 3774 struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3775{
df407dfe 3776 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3777 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3778 struct type *formal_target =
3779 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3780 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
3781 struct type *actual_target =
3782 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 3783 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 3784
4c4b4cd2 3785 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 3786 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4a399546 3787 return make_array_descriptor (formal_type, actual, gdbarch, sp);
a84a8a0d
JB
3788 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3789 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 3790 {
a84a8a0d 3791 struct value *result;
14f9c5c9 3792 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 3793 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 3794 result = desc_data (actual);
14f9c5c9 3795 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
3796 {
3797 if (VALUE_LVAL (actual) != lval_memory)
3798 {
3799 struct value *val;
df407dfe 3800 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 3801 val = allocate_value (actual_type);
990a07ab 3802 memcpy ((char *) value_contents_raw (val),
0fd88904 3803 (char *) value_contents (actual),
4c4b4cd2 3804 TYPE_LENGTH (actual_type));
4a399546 3805 actual = ensure_lval (val, gdbarch, sp);
4c4b4cd2 3806 }
a84a8a0d 3807 result = value_addr (actual);
4c4b4cd2 3808 }
a84a8a0d
JB
3809 else
3810 return actual;
3811 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
3812 }
3813 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3814 return ada_value_ind (actual);
3815
3816 return actual;
3817}
3818
3819
4c4b4cd2
PH
3820/* Push a descriptor of type TYPE for array value ARR on the stack at
3821 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 3822 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
3823 to-descriptor type rather than a descriptor type), a struct value *
3824 representing a pointer to this descriptor. */
14f9c5c9 3825
d2e4a39e 3826static struct value *
4a399546
UW
3827make_array_descriptor (struct type *type, struct value *arr,
3828 struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3829{
d2e4a39e
AS
3830 struct type *bounds_type = desc_bounds_type (type);
3831 struct type *desc_type = desc_base_type (type);
3832 struct value *descriptor = allocate_value (desc_type);
3833 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 3834 int i;
d2e4a39e 3835
df407dfe 3836 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
14f9c5c9 3837 {
50810684
UW
3838 modify_general_field (value_type (bounds),
3839 value_contents_writeable (bounds),
1eea4ebd 3840 ada_array_bound (arr, i, 0),
4c4b4cd2
PH
3841 desc_bound_bitpos (bounds_type, i, 0),
3842 desc_bound_bitsize (bounds_type, i, 0));
50810684
UW
3843 modify_general_field (value_type (bounds),
3844 value_contents_writeable (bounds),
1eea4ebd 3845 ada_array_bound (arr, i, 1),
4c4b4cd2
PH
3846 desc_bound_bitpos (bounds_type, i, 1),
3847 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 3848 }
d2e4a39e 3849
4a399546 3850 bounds = ensure_lval (bounds, gdbarch, sp);
d2e4a39e 3851
50810684
UW
3852 modify_general_field (value_type (descriptor),
3853 value_contents_writeable (descriptor),
4a399546 3854 value_address (ensure_lval (arr, gdbarch, sp)),
76a01679
JB
3855 fat_pntr_data_bitpos (desc_type),
3856 fat_pntr_data_bitsize (desc_type));
4c4b4cd2 3857
50810684
UW
3858 modify_general_field (value_type (descriptor),
3859 value_contents_writeable (descriptor),
42ae5230 3860 value_address (bounds),
4c4b4cd2
PH
3861 fat_pntr_bounds_bitpos (desc_type),
3862 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 3863
4a399546 3864 descriptor = ensure_lval (descriptor, gdbarch, sp);
14f9c5c9
AS
3865
3866 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3867 return value_addr (descriptor);
3868 else
3869 return descriptor;
3870}
14f9c5c9 3871\f
963a6417
PH
3872/* Dummy definitions for an experimental caching module that is not
3873 * used in the public sources. */
96d887e8 3874
96d887e8
PH
3875static int
3876lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 3877 struct symbol **sym, struct block **block)
96d887e8
PH
3878{
3879 return 0;
3880}
3881
3882static void
3883cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 3884 struct block *block)
96d887e8
PH
3885{
3886}
4c4b4cd2
PH
3887\f
3888 /* Symbol Lookup */
3889
3890/* Return the result of a standard (literal, C-like) lookup of NAME in
3891 given DOMAIN, visible from lexical block BLOCK. */
3892
3893static struct symbol *
3894standard_lookup (const char *name, const struct block *block,
3895 domain_enum domain)
3896{
3897 struct symbol *sym;
4c4b4cd2 3898
2570f2b7 3899 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 3900 return sym;
2570f2b7
UW
3901 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3902 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
3903 return sym;
3904}
3905
3906
3907/* Non-zero iff there is at least one non-function/non-enumeral symbol
3908 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3909 since they contend in overloading in the same way. */
3910static int
3911is_nonfunction (struct ada_symbol_info syms[], int n)
3912{
3913 int i;
3914
3915 for (i = 0; i < n; i += 1)
3916 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3917 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3918 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
3919 return 1;
3920
3921 return 0;
3922}
3923
3924/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 3925 struct types. Otherwise, they may not. */
14f9c5c9
AS
3926
3927static int
d2e4a39e 3928equiv_types (struct type *type0, struct type *type1)
14f9c5c9 3929{
d2e4a39e 3930 if (type0 == type1)
14f9c5c9 3931 return 1;
d2e4a39e 3932 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
3933 || TYPE_CODE (type0) != TYPE_CODE (type1))
3934 return 0;
d2e4a39e 3935 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
3936 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3937 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 3938 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 3939 return 1;
d2e4a39e 3940
14f9c5c9
AS
3941 return 0;
3942}
3943
3944/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 3945 no more defined than that of SYM1. */
14f9c5c9
AS
3946
3947static int
d2e4a39e 3948lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
3949{
3950 if (sym0 == sym1)
3951 return 1;
176620f1 3952 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
3953 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3954 return 0;
3955
d2e4a39e 3956 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
3957 {
3958 case LOC_UNDEF:
3959 return 1;
3960 case LOC_TYPEDEF:
3961 {
4c4b4cd2
PH
3962 struct type *type0 = SYMBOL_TYPE (sym0);
3963 struct type *type1 = SYMBOL_TYPE (sym1);
3964 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3965 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3966 int len0 = strlen (name0);
3967 return
3968 TYPE_CODE (type0) == TYPE_CODE (type1)
3969 && (equiv_types (type0, type1)
3970 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3971 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
3972 }
3973 case LOC_CONST:
3974 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 3975 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
3976 default:
3977 return 0;
14f9c5c9
AS
3978 }
3979}
3980
4c4b4cd2
PH
3981/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3982 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
3983
3984static void
76a01679
JB
3985add_defn_to_vec (struct obstack *obstackp,
3986 struct symbol *sym,
2570f2b7 3987 struct block *block)
14f9c5c9
AS
3988{
3989 int i;
3990 size_t tmp;
4c4b4cd2 3991 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 3992
529cad9c
PH
3993 /* Do not try to complete stub types, as the debugger is probably
3994 already scanning all symbols matching a certain name at the
3995 time when this function is called. Trying to replace the stub
3996 type by its associated full type will cause us to restart a scan
3997 which may lead to an infinite recursion. Instead, the client
3998 collecting the matching symbols will end up collecting several
3999 matches, with at least one of them complete. It can then filter
4000 out the stub ones if needed. */
4001
4c4b4cd2
PH
4002 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4003 {
4004 if (lesseq_defined_than (sym, prevDefns[i].sym))
4005 return;
4006 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4007 {
4008 prevDefns[i].sym = sym;
4009 prevDefns[i].block = block;
4c4b4cd2 4010 return;
76a01679 4011 }
4c4b4cd2
PH
4012 }
4013
4014 {
4015 struct ada_symbol_info info;
4016
4017 info.sym = sym;
4018 info.block = block;
4c4b4cd2
PH
4019 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4020 }
4021}
4022
4023/* Number of ada_symbol_info structures currently collected in
4024 current vector in *OBSTACKP. */
4025
76a01679
JB
4026static int
4027num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4028{
4029 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4030}
4031
4032/* Vector of ada_symbol_info structures currently collected in current
4033 vector in *OBSTACKP. If FINISH, close off the vector and return
4034 its final address. */
4035
76a01679 4036static struct ada_symbol_info *
4c4b4cd2
PH
4037defns_collected (struct obstack *obstackp, int finish)
4038{
4039 if (finish)
4040 return obstack_finish (obstackp);
4041 else
4042 return (struct ada_symbol_info *) obstack_base (obstackp);
4043}
4044
96d887e8
PH
4045/* Look, in partial_symtab PST, for symbol NAME in given namespace.
4046 Check the global symbols if GLOBAL, the static symbols if not.
4047 Do wild-card match if WILD. */
4c4b4cd2 4048
96d887e8
PH
4049static struct partial_symbol *
4050ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4051 int global, domain_enum namespace, int wild)
4c4b4cd2 4052{
96d887e8
PH
4053 struct partial_symbol **start;
4054 int name_len = strlen (name);
4055 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4056 int i;
4c4b4cd2 4057
96d887e8 4058 if (length == 0)
4c4b4cd2 4059 {
96d887e8 4060 return (NULL);
4c4b4cd2
PH
4061 }
4062
96d887e8
PH
4063 start = (global ?
4064 pst->objfile->global_psymbols.list + pst->globals_offset :
4065 pst->objfile->static_psymbols.list + pst->statics_offset);
4c4b4cd2 4066
96d887e8 4067 if (wild)
4c4b4cd2 4068 {
96d887e8
PH
4069 for (i = 0; i < length; i += 1)
4070 {
4071 struct partial_symbol *psym = start[i];
4c4b4cd2 4072
5eeb2539
AR
4073 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4074 SYMBOL_DOMAIN (psym), namespace)
1265e4aa 4075 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
96d887e8
PH
4076 return psym;
4077 }
4078 return NULL;
4c4b4cd2 4079 }
96d887e8
PH
4080 else
4081 {
4082 if (global)
4083 {
4084 int U;
4085 i = 0;
4086 U = length - 1;
4087 while (U - i > 4)
4088 {
4089 int M = (U + i) >> 1;
4090 struct partial_symbol *psym = start[M];
4091 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4092 i = M + 1;
4093 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4094 U = M - 1;
4095 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4096 i = M + 1;
4097 else
4098 U = M;
4099 }
4100 }
4101 else
4102 i = 0;
4c4b4cd2 4103
96d887e8
PH
4104 while (i < length)
4105 {
4106 struct partial_symbol *psym = start[i];
4c4b4cd2 4107
5eeb2539
AR
4108 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4109 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4110 {
4111 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4c4b4cd2 4112
96d887e8
PH
4113 if (cmp < 0)
4114 {
4115 if (global)
4116 break;
4117 }
4118 else if (cmp == 0
4119 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4120 + name_len))
96d887e8
PH
4121 return psym;
4122 }
4123 i += 1;
4124 }
4c4b4cd2 4125
96d887e8
PH
4126 if (global)
4127 {
4128 int U;
4129 i = 0;
4130 U = length - 1;
4131 while (U - i > 4)
4132 {
4133 int M = (U + i) >> 1;
4134 struct partial_symbol *psym = start[M];
4135 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4136 i = M + 1;
4137 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4138 U = M - 1;
4139 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4140 i = M + 1;
4141 else
4142 U = M;
4143 }
4144 }
4145 else
4146 i = 0;
4c4b4cd2 4147
96d887e8
PH
4148 while (i < length)
4149 {
4150 struct partial_symbol *psym = start[i];
4c4b4cd2 4151
5eeb2539
AR
4152 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4153 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4154 {
4155 int cmp;
4c4b4cd2 4156
96d887e8
PH
4157 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4158 if (cmp == 0)
4159 {
4160 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4161 if (cmp == 0)
4162 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
76a01679 4163 name_len);
96d887e8 4164 }
4c4b4cd2 4165
96d887e8
PH
4166 if (cmp < 0)
4167 {
4168 if (global)
4169 break;
4170 }
4171 else if (cmp == 0
4172 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4173 + name_len + 5))
96d887e8
PH
4174 return psym;
4175 }
4176 i += 1;
4177 }
4178 }
4179 return NULL;
4c4b4cd2
PH
4180}
4181
96d887e8
PH
4182/* Return a minimal symbol matching NAME according to Ada decoding
4183 rules. Returns NULL if there is no such minimal symbol. Names
4184 prefixed with "standard__" are handled specially: "standard__" is
4185 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4186
96d887e8
PH
4187struct minimal_symbol *
4188ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4189{
4c4b4cd2 4190 struct objfile *objfile;
96d887e8
PH
4191 struct minimal_symbol *msymbol;
4192 int wild_match;
4c4b4cd2 4193
96d887e8 4194 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4195 {
96d887e8 4196 name += sizeof ("standard__") - 1;
4c4b4cd2 4197 wild_match = 0;
4c4b4cd2
PH
4198 }
4199 else
96d887e8 4200 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4201
96d887e8
PH
4202 ALL_MSYMBOLS (objfile, msymbol)
4203 {
4204 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4205 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4206 return msymbol;
4207 }
4c4b4cd2 4208
96d887e8
PH
4209 return NULL;
4210}
4c4b4cd2 4211
96d887e8
PH
4212/* For all subprograms that statically enclose the subprogram of the
4213 selected frame, add symbols matching identifier NAME in DOMAIN
4214 and their blocks to the list of data in OBSTACKP, as for
4215 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4216 wildcard prefix. */
4c4b4cd2 4217
96d887e8
PH
4218static void
4219add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4220 const char *name, domain_enum namespace,
96d887e8
PH
4221 int wild_match)
4222{
96d887e8 4223}
14f9c5c9 4224
96d887e8
PH
4225/* True if TYPE is definitely an artificial type supplied to a symbol
4226 for which no debugging information was given in the symbol file. */
14f9c5c9 4227
96d887e8
PH
4228static int
4229is_nondebugging_type (struct type *type)
4230{
4231 char *name = ada_type_name (type);
4232 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4233}
4c4b4cd2 4234
96d887e8
PH
4235/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4236 duplicate other symbols in the list (The only case I know of where
4237 this happens is when object files containing stabs-in-ecoff are
4238 linked with files containing ordinary ecoff debugging symbols (or no
4239 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4240 Returns the number of items in the modified list. */
4c4b4cd2 4241
96d887e8
PH
4242static int
4243remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4244{
4245 int i, j;
4c4b4cd2 4246
96d887e8
PH
4247 i = 0;
4248 while (i < nsyms)
4249 {
339c13b6
JB
4250 int remove = 0;
4251
4252 /* If two symbols have the same name and one of them is a stub type,
4253 the get rid of the stub. */
4254
4255 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4256 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4257 {
4258 for (j = 0; j < nsyms; j++)
4259 {
4260 if (j != i
4261 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4262 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4263 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4264 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4265 remove = 1;
4266 }
4267 }
4268
4269 /* Two symbols with the same name, same class and same address
4270 should be identical. */
4271
4272 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4273 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4274 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4275 {
4276 for (j = 0; j < nsyms; j += 1)
4277 {
4278 if (i != j
4279 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4280 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4281 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4282 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4283 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4284 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4285 remove = 1;
4c4b4cd2 4286 }
4c4b4cd2 4287 }
339c13b6
JB
4288
4289 if (remove)
4290 {
4291 for (j = i + 1; j < nsyms; j += 1)
4292 syms[j - 1] = syms[j];
4293 nsyms -= 1;
4294 }
4295
96d887e8 4296 i += 1;
14f9c5c9 4297 }
96d887e8 4298 return nsyms;
14f9c5c9
AS
4299}
4300
96d887e8
PH
4301/* Given a type that corresponds to a renaming entity, use the type name
4302 to extract the scope (package name or function name, fully qualified,
4303 and following the GNAT encoding convention) where this renaming has been
4304 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4305
96d887e8
PH
4306static char *
4307xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4308{
96d887e8
PH
4309 /* The renaming types adhere to the following convention:
4310 <scope>__<rename>___<XR extension>.
4311 So, to extract the scope, we search for the "___XR" extension,
4312 and then backtrack until we find the first "__". */
76a01679 4313
96d887e8
PH
4314 const char *name = type_name_no_tag (renaming_type);
4315 char *suffix = strstr (name, "___XR");
4316 char *last;
4317 int scope_len;
4318 char *scope;
14f9c5c9 4319
96d887e8
PH
4320 /* Now, backtrack a bit until we find the first "__". Start looking
4321 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4322
96d887e8
PH
4323 for (last = suffix - 3; last > name; last--)
4324 if (last[0] == '_' && last[1] == '_')
4325 break;
76a01679 4326
96d887e8 4327 /* Make a copy of scope and return it. */
14f9c5c9 4328
96d887e8
PH
4329 scope_len = last - name;
4330 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4331
96d887e8
PH
4332 strncpy (scope, name, scope_len);
4333 scope[scope_len] = '\0';
4c4b4cd2 4334
96d887e8 4335 return scope;
4c4b4cd2
PH
4336}
4337
96d887e8 4338/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4339
96d887e8
PH
4340static int
4341is_package_name (const char *name)
4c4b4cd2 4342{
96d887e8
PH
4343 /* Here, We take advantage of the fact that no symbols are generated
4344 for packages, while symbols are generated for each function.
4345 So the condition for NAME represent a package becomes equivalent
4346 to NAME not existing in our list of symbols. There is only one
4347 small complication with library-level functions (see below). */
4c4b4cd2 4348
96d887e8 4349 char *fun_name;
76a01679 4350
96d887e8
PH
4351 /* If it is a function that has not been defined at library level,
4352 then we should be able to look it up in the symbols. */
4353 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4354 return 0;
14f9c5c9 4355
96d887e8
PH
4356 /* Library-level function names start with "_ada_". See if function
4357 "_ada_" followed by NAME can be found. */
14f9c5c9 4358
96d887e8 4359 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4360 functions names cannot contain "__" in them. */
96d887e8
PH
4361 if (strstr (name, "__") != NULL)
4362 return 0;
4c4b4cd2 4363
b435e160 4364 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4365
96d887e8
PH
4366 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4367}
14f9c5c9 4368
96d887e8 4369/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4370 not visible from FUNCTION_NAME. */
14f9c5c9 4371
96d887e8 4372static int
aeb5907d 4373old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4374{
aeb5907d
JB
4375 char *scope;
4376
4377 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4378 return 0;
4379
4380 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4381
96d887e8 4382 make_cleanup (xfree, scope);
14f9c5c9 4383
96d887e8
PH
4384 /* If the rename has been defined in a package, then it is visible. */
4385 if (is_package_name (scope))
aeb5907d 4386 return 0;
14f9c5c9 4387
96d887e8
PH
4388 /* Check that the rename is in the current function scope by checking
4389 that its name starts with SCOPE. */
76a01679 4390
96d887e8
PH
4391 /* If the function name starts with "_ada_", it means that it is
4392 a library-level function. Strip this prefix before doing the
4393 comparison, as the encoding for the renaming does not contain
4394 this prefix. */
4395 if (strncmp (function_name, "_ada_", 5) == 0)
4396 function_name += 5;
f26caa11 4397
aeb5907d 4398 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4399}
4400
aeb5907d
JB
4401/* Remove entries from SYMS that corresponds to a renaming entity that
4402 is not visible from the function associated with CURRENT_BLOCK or
4403 that is superfluous due to the presence of more specific renaming
4404 information. Places surviving symbols in the initial entries of
4405 SYMS and returns the number of surviving symbols.
96d887e8
PH
4406
4407 Rationale:
aeb5907d
JB
4408 First, in cases where an object renaming is implemented as a
4409 reference variable, GNAT may produce both the actual reference
4410 variable and the renaming encoding. In this case, we discard the
4411 latter.
4412
4413 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4414 entity. Unfortunately, STABS currently does not support the definition
4415 of types that are local to a given lexical block, so all renamings types
4416 are emitted at library level. As a consequence, if an application
4417 contains two renaming entities using the same name, and a user tries to
4418 print the value of one of these entities, the result of the ada symbol
4419 lookup will also contain the wrong renaming type.
f26caa11 4420
96d887e8
PH
4421 This function partially covers for this limitation by attempting to
4422 remove from the SYMS list renaming symbols that should be visible
4423 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4424 method with the current information available. The implementation
4425 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4426
4427 - When the user tries to print a rename in a function while there
4428 is another rename entity defined in a package: Normally, the
4429 rename in the function has precedence over the rename in the
4430 package, so the latter should be removed from the list. This is
4431 currently not the case.
4432
4433 - This function will incorrectly remove valid renames if
4434 the CURRENT_BLOCK corresponds to a function which symbol name
4435 has been changed by an "Export" pragma. As a consequence,
4436 the user will be unable to print such rename entities. */
4c4b4cd2 4437
14f9c5c9 4438static int
aeb5907d
JB
4439remove_irrelevant_renamings (struct ada_symbol_info *syms,
4440 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4441{
4442 struct symbol *current_function;
4443 char *current_function_name;
4444 int i;
aeb5907d
JB
4445 int is_new_style_renaming;
4446
4447 /* If there is both a renaming foo___XR... encoded as a variable and
4448 a simple variable foo in the same block, discard the latter.
4449 First, zero out such symbols, then compress. */
4450 is_new_style_renaming = 0;
4451 for (i = 0; i < nsyms; i += 1)
4452 {
4453 struct symbol *sym = syms[i].sym;
4454 struct block *block = syms[i].block;
4455 const char *name;
4456 const char *suffix;
4457
4458 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4459 continue;
4460 name = SYMBOL_LINKAGE_NAME (sym);
4461 suffix = strstr (name, "___XR");
4462
4463 if (suffix != NULL)
4464 {
4465 int name_len = suffix - name;
4466 int j;
4467 is_new_style_renaming = 1;
4468 for (j = 0; j < nsyms; j += 1)
4469 if (i != j && syms[j].sym != NULL
4470 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4471 name_len) == 0
4472 && block == syms[j].block)
4473 syms[j].sym = NULL;
4474 }
4475 }
4476 if (is_new_style_renaming)
4477 {
4478 int j, k;
4479
4480 for (j = k = 0; j < nsyms; j += 1)
4481 if (syms[j].sym != NULL)
4482 {
4483 syms[k] = syms[j];
4484 k += 1;
4485 }
4486 return k;
4487 }
4c4b4cd2
PH
4488
4489 /* Extract the function name associated to CURRENT_BLOCK.
4490 Abort if unable to do so. */
76a01679 4491
4c4b4cd2
PH
4492 if (current_block == NULL)
4493 return nsyms;
76a01679 4494
7f0df278 4495 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4496 if (current_function == NULL)
4497 return nsyms;
4498
4499 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4500 if (current_function_name == NULL)
4501 return nsyms;
4502
4503 /* Check each of the symbols, and remove it from the list if it is
4504 a type corresponding to a renaming that is out of the scope of
4505 the current block. */
4506
4507 i = 0;
4508 while (i < nsyms)
4509 {
aeb5907d
JB
4510 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4511 == ADA_OBJECT_RENAMING
4512 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4513 {
4514 int j;
aeb5907d 4515 for (j = i + 1; j < nsyms; j += 1)
76a01679 4516 syms[j - 1] = syms[j];
4c4b4cd2
PH
4517 nsyms -= 1;
4518 }
4519 else
4520 i += 1;
4521 }
4522
4523 return nsyms;
4524}
4525
339c13b6
JB
4526/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4527 whose name and domain match NAME and DOMAIN respectively.
4528 If no match was found, then extend the search to "enclosing"
4529 routines (in other words, if we're inside a nested function,
4530 search the symbols defined inside the enclosing functions).
4531
4532 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4533
4534static void
4535ada_add_local_symbols (struct obstack *obstackp, const char *name,
4536 struct block *block, domain_enum domain,
4537 int wild_match)
4538{
4539 int block_depth = 0;
4540
4541 while (block != NULL)
4542 {
4543 block_depth += 1;
4544 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4545
4546 /* If we found a non-function match, assume that's the one. */
4547 if (is_nonfunction (defns_collected (obstackp, 0),
4548 num_defns_collected (obstackp)))
4549 return;
4550
4551 block = BLOCK_SUPERBLOCK (block);
4552 }
4553
4554 /* If no luck so far, try to find NAME as a local symbol in some lexically
4555 enclosing subprogram. */
4556 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4557 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4558}
4559
4560/* Add to OBSTACKP all non-local symbols whose name and domain match
4561 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4562 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4563
4564static void
4565ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4566 domain_enum domain, int global,
4567 int wild_match)
4568{
4569 struct objfile *objfile;
4570 struct partial_symtab *ps;
4571
4572 ALL_PSYMTABS (objfile, ps)
4573 {
4574 QUIT;
4575 if (ps->readin
4576 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4577 {
4578 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4579 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4580
4581 if (s == NULL || !s->primary)
4582 continue;
4583 ada_add_block_symbols (obstackp,
4584 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4585 name, domain, objfile, wild_match);
4586 }
4587 }
4588}
4589
4c4b4cd2
PH
4590/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4591 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4592 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4593 indicating the symbols found and the blocks and symbol tables (if
4594 any) in which they were found. This vector are transient---good only to
4595 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4596 symbol match within the nest of blocks whose innermost member is BLOCK0,
4597 is the one match returned (no other matches in that or
4598 enclosing blocks is returned). If there are any matches in or
4599 surrounding BLOCK0, then these alone are returned. Otherwise, the
4600 search extends to global and file-scope (static) symbol tables.
4601 Names prefixed with "standard__" are handled specially: "standard__"
4602 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4603
4604int
4c4b4cd2 4605ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4606 domain_enum namespace,
4607 struct ada_symbol_info **results)
14f9c5c9
AS
4608{
4609 struct symbol *sym;
14f9c5c9 4610 struct block *block;
4c4b4cd2 4611 const char *name;
4c4b4cd2 4612 int wild_match;
14f9c5c9 4613 int cacheIfUnique;
4c4b4cd2 4614 int ndefns;
14f9c5c9 4615
4c4b4cd2
PH
4616 obstack_free (&symbol_list_obstack, NULL);
4617 obstack_init (&symbol_list_obstack);
14f9c5c9 4618
14f9c5c9
AS
4619 cacheIfUnique = 0;
4620
4621 /* Search specified block and its superiors. */
4622
4c4b4cd2
PH
4623 wild_match = (strstr (name0, "__") == NULL);
4624 name = name0;
76a01679
JB
4625 block = (struct block *) block0; /* FIXME: No cast ought to be
4626 needed, but adding const will
4627 have a cascade effect. */
339c13b6
JB
4628
4629 /* Special case: If the user specifies a symbol name inside package
4630 Standard, do a non-wild matching of the symbol name without
4631 the "standard__" prefix. This was primarily introduced in order
4632 to allow the user to specifically access the standard exceptions
4633 using, for instance, Standard.Constraint_Error when Constraint_Error
4634 is ambiguous (due to the user defining its own Constraint_Error
4635 entity inside its program). */
4c4b4cd2
PH
4636 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4637 {
4638 wild_match = 0;
4639 block = NULL;
4640 name = name0 + sizeof ("standard__") - 1;
4641 }
4642
339c13b6 4643 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4644
339c13b6
JB
4645 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4646 wild_match);
4c4b4cd2 4647 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4648 goto done;
d2e4a39e 4649
339c13b6
JB
4650 /* No non-global symbols found. Check our cache to see if we have
4651 already performed this search before. If we have, then return
4652 the same result. */
4653
14f9c5c9 4654 cacheIfUnique = 1;
2570f2b7 4655 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4656 {
4657 if (sym != NULL)
2570f2b7 4658 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4659 goto done;
4660 }
14f9c5c9 4661
339c13b6
JB
4662 /* Search symbols from all global blocks. */
4663
4664 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4665 wild_match);
d2e4a39e 4666
4c4b4cd2 4667 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4668 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4669
4c4b4cd2 4670 if (num_defns_collected (&symbol_list_obstack) == 0)
339c13b6
JB
4671 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4672 wild_match);
14f9c5c9 4673
4c4b4cd2
PH
4674done:
4675 ndefns = num_defns_collected (&symbol_list_obstack);
4676 *results = defns_collected (&symbol_list_obstack, 1);
4677
4678 ndefns = remove_extra_symbols (*results, ndefns);
4679
d2e4a39e 4680 if (ndefns == 0)
2570f2b7 4681 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4682
4c4b4cd2 4683 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4684 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4685
aeb5907d 4686 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4687
14f9c5c9
AS
4688 return ndefns;
4689}
4690
d2e4a39e 4691struct symbol *
aeb5907d 4692ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4693 domain_enum namespace, struct block **block_found)
14f9c5c9 4694{
4c4b4cd2 4695 struct ada_symbol_info *candidates;
14f9c5c9
AS
4696 int n_candidates;
4697
aeb5907d 4698 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4699
4700 if (n_candidates == 0)
4701 return NULL;
4c4b4cd2 4702
aeb5907d
JB
4703 if (block_found != NULL)
4704 *block_found = candidates[0].block;
4c4b4cd2 4705
21b556f4 4706 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4707}
4708
4709/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4710 scope and in global scopes, or NULL if none. NAME is folded and
4711 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4712 choosing the first symbol if there are multiple choices.
4713 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4714 table in which the symbol was found (in both cases, these
4715 assignments occur only if the pointers are non-null). */
4716struct symbol *
4717ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4718 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4719{
4720 if (is_a_field_of_this != NULL)
4721 *is_a_field_of_this = 0;
4722
4723 return
4724 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4725 block0, namespace, NULL);
4c4b4cd2 4726}
14f9c5c9 4727
4c4b4cd2
PH
4728static struct symbol *
4729ada_lookup_symbol_nonlocal (const char *name,
76a01679
JB
4730 const char *linkage_name,
4731 const struct block *block,
21b556f4 4732 const domain_enum domain)
4c4b4cd2
PH
4733{
4734 if (linkage_name == NULL)
4735 linkage_name = name;
76a01679 4736 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
21b556f4 4737 NULL);
14f9c5c9
AS
4738}
4739
4740
4c4b4cd2
PH
4741/* True iff STR is a possible encoded suffix of a normal Ada name
4742 that is to be ignored for matching purposes. Suffixes of parallel
4743 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4744 are given by any of the regular expressions:
4c4b4cd2 4745
babe1480
JB
4746 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4747 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4748 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4749 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4750
4751 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4752 match is performed. This sequence is used to differentiate homonyms,
4753 is an optional part of a valid name suffix. */
4c4b4cd2 4754
14f9c5c9 4755static int
d2e4a39e 4756is_name_suffix (const char *str)
14f9c5c9
AS
4757{
4758 int k;
4c4b4cd2
PH
4759 const char *matching;
4760 const int len = strlen (str);
4761
babe1480
JB
4762 /* Skip optional leading __[0-9]+. */
4763
4c4b4cd2
PH
4764 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4765 {
babe1480
JB
4766 str += 3;
4767 while (isdigit (str[0]))
4768 str += 1;
4c4b4cd2 4769 }
babe1480
JB
4770
4771 /* [.$][0-9]+ */
4c4b4cd2 4772
babe1480 4773 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 4774 {
babe1480 4775 matching = str + 1;
4c4b4cd2
PH
4776 while (isdigit (matching[0]))
4777 matching += 1;
4778 if (matching[0] == '\0')
4779 return 1;
4780 }
4781
4782 /* ___[0-9]+ */
babe1480 4783
4c4b4cd2
PH
4784 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4785 {
4786 matching = str + 3;
4787 while (isdigit (matching[0]))
4788 matching += 1;
4789 if (matching[0] == '\0')
4790 return 1;
4791 }
4792
529cad9c
PH
4793#if 0
4794 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4795 with a N at the end. Unfortunately, the compiler uses the same
4796 convention for other internal types it creates. So treating
4797 all entity names that end with an "N" as a name suffix causes
4798 some regressions. For instance, consider the case of an enumerated
4799 type. To support the 'Image attribute, it creates an array whose
4800 name ends with N.
4801 Having a single character like this as a suffix carrying some
4802 information is a bit risky. Perhaps we should change the encoding
4803 to be something like "_N" instead. In the meantime, do not do
4804 the following check. */
4805 /* Protected Object Subprograms */
4806 if (len == 1 && str [0] == 'N')
4807 return 1;
4808#endif
4809
4810 /* _E[0-9]+[bs]$ */
4811 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4812 {
4813 matching = str + 3;
4814 while (isdigit (matching[0]))
4815 matching += 1;
4816 if ((matching[0] == 'b' || matching[0] == 's')
4817 && matching [1] == '\0')
4818 return 1;
4819 }
4820
4c4b4cd2
PH
4821 /* ??? We should not modify STR directly, as we are doing below. This
4822 is fine in this case, but may become problematic later if we find
4823 that this alternative did not work, and want to try matching
4824 another one from the begining of STR. Since we modified it, we
4825 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
4826 if (str[0] == 'X')
4827 {
4828 str += 1;
d2e4a39e 4829 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
4830 {
4831 if (str[0] != 'n' && str[0] != 'b')
4832 return 0;
4833 str += 1;
4834 }
14f9c5c9 4835 }
babe1480 4836
14f9c5c9
AS
4837 if (str[0] == '\000')
4838 return 1;
babe1480 4839
d2e4a39e 4840 if (str[0] == '_')
14f9c5c9
AS
4841 {
4842 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 4843 return 0;
d2e4a39e 4844 if (str[2] == '_')
4c4b4cd2 4845 {
61ee279c
PH
4846 if (strcmp (str + 3, "JM") == 0)
4847 return 1;
4848 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4849 the LJM suffix in favor of the JM one. But we will
4850 still accept LJM as a valid suffix for a reasonable
4851 amount of time, just to allow ourselves to debug programs
4852 compiled using an older version of GNAT. */
4c4b4cd2
PH
4853 if (strcmp (str + 3, "LJM") == 0)
4854 return 1;
4855 if (str[3] != 'X')
4856 return 0;
1265e4aa
JB
4857 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4858 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
4859 return 1;
4860 if (str[4] == 'R' && str[5] != 'T')
4861 return 1;
4862 return 0;
4863 }
4864 if (!isdigit (str[2]))
4865 return 0;
4866 for (k = 3; str[k] != '\0'; k += 1)
4867 if (!isdigit (str[k]) && str[k] != '_')
4868 return 0;
14f9c5c9
AS
4869 return 1;
4870 }
4c4b4cd2 4871 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 4872 {
4c4b4cd2
PH
4873 for (k = 2; str[k] != '\0'; k += 1)
4874 if (!isdigit (str[k]) && str[k] != '_')
4875 return 0;
14f9c5c9
AS
4876 return 1;
4877 }
4878 return 0;
4879}
d2e4a39e 4880
aeb5907d
JB
4881/* Return non-zero if the string starting at NAME and ending before
4882 NAME_END contains no capital letters. */
529cad9c
PH
4883
4884static int
4885is_valid_name_for_wild_match (const char *name0)
4886{
4887 const char *decoded_name = ada_decode (name0);
4888 int i;
4889
5823c3ef
JB
4890 /* If the decoded name starts with an angle bracket, it means that
4891 NAME0 does not follow the GNAT encoding format. It should then
4892 not be allowed as a possible wild match. */
4893 if (decoded_name[0] == '<')
4894 return 0;
4895
529cad9c
PH
4896 for (i=0; decoded_name[i] != '\0'; i++)
4897 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4898 return 0;
4899
4900 return 1;
4901}
4902
4c4b4cd2
PH
4903/* True if NAME represents a name of the form A1.A2....An, n>=1 and
4904 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4905 informational suffixes of NAME (i.e., for which is_name_suffix is
4906 true). */
4907
14f9c5c9 4908static int
4c4b4cd2 4909wild_match (const char *patn0, int patn_len, const char *name0)
14f9c5c9 4910{
5823c3ef
JB
4911 char* match;
4912 const char* start;
4913 start = name0;
4914 while (1)
14f9c5c9 4915 {
5823c3ef
JB
4916 match = strstr (start, patn0);
4917 if (match == NULL)
4918 return 0;
4919 if ((match == name0
4920 || match[-1] == '.'
4921 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4922 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4923 && is_name_suffix (match + patn_len))
4924 return (match == name0 || is_valid_name_for_wild_match (name0));
4925 start = match + 1;
96d887e8 4926 }
96d887e8
PH
4927}
4928
96d887e8
PH
4929/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4930 vector *defn_symbols, updating the list of symbols in OBSTACKP
4931 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4932 OBJFILE is the section containing BLOCK.
4933 SYMTAB is recorded with each symbol added. */
4934
4935static void
4936ada_add_block_symbols (struct obstack *obstackp,
76a01679 4937 struct block *block, const char *name,
96d887e8 4938 domain_enum domain, struct objfile *objfile,
2570f2b7 4939 int wild)
96d887e8
PH
4940{
4941 struct dict_iterator iter;
4942 int name_len = strlen (name);
4943 /* A matching argument symbol, if any. */
4944 struct symbol *arg_sym;
4945 /* Set true when we find a matching non-argument symbol. */
4946 int found_sym;
4947 struct symbol *sym;
4948
4949 arg_sym = NULL;
4950 found_sym = 0;
4951 if (wild)
4952 {
4953 struct symbol *sym;
4954 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 4955 {
5eeb2539
AR
4956 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4957 SYMBOL_DOMAIN (sym), domain)
1265e4aa 4958 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
76a01679 4959 {
2a2d4dc3
AS
4960 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4961 continue;
4962 else if (SYMBOL_IS_ARGUMENT (sym))
4963 arg_sym = sym;
4964 else
4965 {
76a01679
JB
4966 found_sym = 1;
4967 add_defn_to_vec (obstackp,
4968 fixup_symbol_section (sym, objfile),
2570f2b7 4969 block);
76a01679
JB
4970 }
4971 }
4972 }
96d887e8
PH
4973 }
4974 else
4975 {
4976 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 4977 {
5eeb2539
AR
4978 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4979 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
4980 {
4981 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4982 if (cmp == 0
4983 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4984 {
2a2d4dc3
AS
4985 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4986 {
4987 if (SYMBOL_IS_ARGUMENT (sym))
4988 arg_sym = sym;
4989 else
4990 {
4991 found_sym = 1;
4992 add_defn_to_vec (obstackp,
4993 fixup_symbol_section (sym, objfile),
4994 block);
4995 }
4996 }
76a01679
JB
4997 }
4998 }
4999 }
96d887e8
PH
5000 }
5001
5002 if (!found_sym && arg_sym != NULL)
5003 {
76a01679
JB
5004 add_defn_to_vec (obstackp,
5005 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5006 block);
96d887e8
PH
5007 }
5008
5009 if (!wild)
5010 {
5011 arg_sym = NULL;
5012 found_sym = 0;
5013
5014 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5015 {
5eeb2539
AR
5016 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5017 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5018 {
5019 int cmp;
5020
5021 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5022 if (cmp == 0)
5023 {
5024 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5025 if (cmp == 0)
5026 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5027 name_len);
5028 }
5029
5030 if (cmp == 0
5031 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5032 {
2a2d4dc3
AS
5033 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5034 {
5035 if (SYMBOL_IS_ARGUMENT (sym))
5036 arg_sym = sym;
5037 else
5038 {
5039 found_sym = 1;
5040 add_defn_to_vec (obstackp,
5041 fixup_symbol_section (sym, objfile),
5042 block);
5043 }
5044 }
76a01679
JB
5045 }
5046 }
76a01679 5047 }
96d887e8
PH
5048
5049 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5050 They aren't parameters, right? */
5051 if (!found_sym && arg_sym != NULL)
5052 {
5053 add_defn_to_vec (obstackp,
76a01679 5054 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5055 block);
96d887e8
PH
5056 }
5057 }
5058}
5059\f
41d27058
JB
5060
5061 /* Symbol Completion */
5062
5063/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5064 name in a form that's appropriate for the completion. The result
5065 does not need to be deallocated, but is only good until the next call.
5066
5067 TEXT_LEN is equal to the length of TEXT.
5068 Perform a wild match if WILD_MATCH is set.
5069 ENCODED should be set if TEXT represents the start of a symbol name
5070 in its encoded form. */
5071
5072static const char *
5073symbol_completion_match (const char *sym_name,
5074 const char *text, int text_len,
5075 int wild_match, int encoded)
5076{
5077 char *result;
5078 const int verbatim_match = (text[0] == '<');
5079 int match = 0;
5080
5081 if (verbatim_match)
5082 {
5083 /* Strip the leading angle bracket. */
5084 text = text + 1;
5085 text_len--;
5086 }
5087
5088 /* First, test against the fully qualified name of the symbol. */
5089
5090 if (strncmp (sym_name, text, text_len) == 0)
5091 match = 1;
5092
5093 if (match && !encoded)
5094 {
5095 /* One needed check before declaring a positive match is to verify
5096 that iff we are doing a verbatim match, the decoded version
5097 of the symbol name starts with '<'. Otherwise, this symbol name
5098 is not a suitable completion. */
5099 const char *sym_name_copy = sym_name;
5100 int has_angle_bracket;
5101
5102 sym_name = ada_decode (sym_name);
5103 has_angle_bracket = (sym_name[0] == '<');
5104 match = (has_angle_bracket == verbatim_match);
5105 sym_name = sym_name_copy;
5106 }
5107
5108 if (match && !verbatim_match)
5109 {
5110 /* When doing non-verbatim match, another check that needs to
5111 be done is to verify that the potentially matching symbol name
5112 does not include capital letters, because the ada-mode would
5113 not be able to understand these symbol names without the
5114 angle bracket notation. */
5115 const char *tmp;
5116
5117 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5118 if (*tmp != '\0')
5119 match = 0;
5120 }
5121
5122 /* Second: Try wild matching... */
5123
5124 if (!match && wild_match)
5125 {
5126 /* Since we are doing wild matching, this means that TEXT
5127 may represent an unqualified symbol name. We therefore must
5128 also compare TEXT against the unqualified name of the symbol. */
5129 sym_name = ada_unqualified_name (ada_decode (sym_name));
5130
5131 if (strncmp (sym_name, text, text_len) == 0)
5132 match = 1;
5133 }
5134
5135 /* Finally: If we found a mach, prepare the result to return. */
5136
5137 if (!match)
5138 return NULL;
5139
5140 if (verbatim_match)
5141 sym_name = add_angle_brackets (sym_name);
5142
5143 if (!encoded)
5144 sym_name = ada_decode (sym_name);
5145
5146 return sym_name;
5147}
5148
2ba95b9b
JB
5149typedef char *char_ptr;
5150DEF_VEC_P (char_ptr);
5151
41d27058
JB
5152/* A companion function to ada_make_symbol_completion_list().
5153 Check if SYM_NAME represents a symbol which name would be suitable
5154 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5155 it is appended at the end of the given string vector SV.
5156
5157 ORIG_TEXT is the string original string from the user command
5158 that needs to be completed. WORD is the entire command on which
5159 completion should be performed. These two parameters are used to
5160 determine which part of the symbol name should be added to the
5161 completion vector.
5162 if WILD_MATCH is set, then wild matching is performed.
5163 ENCODED should be set if TEXT represents a symbol name in its
5164 encoded formed (in which case the completion should also be
5165 encoded). */
5166
5167static void
d6565258 5168symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5169 const char *sym_name,
5170 const char *text, int text_len,
5171 const char *orig_text, const char *word,
5172 int wild_match, int encoded)
5173{
5174 const char *match = symbol_completion_match (sym_name, text, text_len,
5175 wild_match, encoded);
5176 char *completion;
5177
5178 if (match == NULL)
5179 return;
5180
5181 /* We found a match, so add the appropriate completion to the given
5182 string vector. */
5183
5184 if (word == orig_text)
5185 {
5186 completion = xmalloc (strlen (match) + 5);
5187 strcpy (completion, match);
5188 }
5189 else if (word > orig_text)
5190 {
5191 /* Return some portion of sym_name. */
5192 completion = xmalloc (strlen (match) + 5);
5193 strcpy (completion, match + (word - orig_text));
5194 }
5195 else
5196 {
5197 /* Return some of ORIG_TEXT plus sym_name. */
5198 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5199 strncpy (completion, word, orig_text - word);
5200 completion[orig_text - word] = '\0';
5201 strcat (completion, match);
5202 }
5203
d6565258 5204 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5205}
5206
5207/* Return a list of possible symbol names completing TEXT0. The list
5208 is NULL terminated. WORD is the entire command on which completion
5209 is made. */
5210
5211static char **
5212ada_make_symbol_completion_list (char *text0, char *word)
5213{
5214 char *text;
5215 int text_len;
5216 int wild_match;
5217 int encoded;
2ba95b9b 5218 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5219 struct symbol *sym;
5220 struct symtab *s;
5221 struct partial_symtab *ps;
5222 struct minimal_symbol *msymbol;
5223 struct objfile *objfile;
5224 struct block *b, *surrounding_static_block = 0;
5225 int i;
5226 struct dict_iterator iter;
5227
5228 if (text0[0] == '<')
5229 {
5230 text = xstrdup (text0);
5231 make_cleanup (xfree, text);
5232 text_len = strlen (text);
5233 wild_match = 0;
5234 encoded = 1;
5235 }
5236 else
5237 {
5238 text = xstrdup (ada_encode (text0));
5239 make_cleanup (xfree, text);
5240 text_len = strlen (text);
5241 for (i = 0; i < text_len; i++)
5242 text[i] = tolower (text[i]);
5243
5244 encoded = (strstr (text0, "__") != NULL);
5245 /* If the name contains a ".", then the user is entering a fully
5246 qualified entity name, and the match must not be done in wild
5247 mode. Similarly, if the user wants to complete what looks like
5248 an encoded name, the match must not be done in wild mode. */
5249 wild_match = (strchr (text0, '.') == NULL && !encoded);
5250 }
5251
5252 /* First, look at the partial symtab symbols. */
5253 ALL_PSYMTABS (objfile, ps)
5254 {
5255 struct partial_symbol **psym;
5256
5257 /* If the psymtab's been read in we'll get it when we search
5258 through the blockvector. */
5259 if (ps->readin)
5260 continue;
5261
5262 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5263 psym < (objfile->global_psymbols.list + ps->globals_offset
5264 + ps->n_global_syms); psym++)
5265 {
5266 QUIT;
d6565258 5267 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5268 text, text_len, text0, word,
5269 wild_match, encoded);
5270 }
5271
5272 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5273 psym < (objfile->static_psymbols.list + ps->statics_offset
5274 + ps->n_static_syms); psym++)
5275 {
5276 QUIT;
d6565258 5277 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5278 text, text_len, text0, word,
5279 wild_match, encoded);
5280 }
5281 }
5282
5283 /* At this point scan through the misc symbol vectors and add each
5284 symbol you find to the list. Eventually we want to ignore
5285 anything that isn't a text symbol (everything else will be
5286 handled by the psymtab code above). */
5287
5288 ALL_MSYMBOLS (objfile, msymbol)
5289 {
5290 QUIT;
d6565258 5291 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5292 text, text_len, text0, word, wild_match, encoded);
5293 }
5294
5295 /* Search upwards from currently selected frame (so that we can
5296 complete on local vars. */
5297
5298 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5299 {
5300 if (!BLOCK_SUPERBLOCK (b))
5301 surrounding_static_block = b; /* For elmin of dups */
5302
5303 ALL_BLOCK_SYMBOLS (b, iter, sym)
5304 {
d6565258 5305 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5306 text, text_len, text0, word,
5307 wild_match, encoded);
5308 }
5309 }
5310
5311 /* Go through the symtabs and check the externs and statics for
5312 symbols which match. */
5313
5314 ALL_SYMTABS (objfile, s)
5315 {
5316 QUIT;
5317 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5318 ALL_BLOCK_SYMBOLS (b, iter, sym)
5319 {
d6565258 5320 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5321 text, text_len, text0, word,
5322 wild_match, encoded);
5323 }
5324 }
5325
5326 ALL_SYMTABS (objfile, s)
5327 {
5328 QUIT;
5329 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5330 /* Don't do this block twice. */
5331 if (b == surrounding_static_block)
5332 continue;
5333 ALL_BLOCK_SYMBOLS (b, iter, sym)
5334 {
d6565258 5335 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5336 text, text_len, text0, word,
5337 wild_match, encoded);
5338 }
5339 }
5340
5341 /* Append the closing NULL entry. */
2ba95b9b 5342 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5343
2ba95b9b
JB
5344 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5345 return the copy. It's unfortunate that we have to make a copy
5346 of an array that we're about to destroy, but there is nothing much
5347 we can do about it. Fortunately, it's typically not a very large
5348 array. */
5349 {
5350 const size_t completions_size =
5351 VEC_length (char_ptr, completions) * sizeof (char *);
5352 char **result = malloc (completions_size);
5353
5354 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5355
5356 VEC_free (char_ptr, completions);
5357 return result;
5358 }
41d27058
JB
5359}
5360
963a6417 5361 /* Field Access */
96d887e8 5362
73fb9985
JB
5363/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5364 for tagged types. */
5365
5366static int
5367ada_is_dispatch_table_ptr_type (struct type *type)
5368{
5369 char *name;
5370
5371 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5372 return 0;
5373
5374 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5375 if (name == NULL)
5376 return 0;
5377
5378 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5379}
5380
963a6417
PH
5381/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5382 to be invisible to users. */
96d887e8 5383
963a6417
PH
5384int
5385ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5386{
963a6417
PH
5387 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5388 return 1;
73fb9985
JB
5389
5390 /* Check the name of that field. */
5391 {
5392 const char *name = TYPE_FIELD_NAME (type, field_num);
5393
5394 /* Anonymous field names should not be printed.
5395 brobecker/2007-02-20: I don't think this can actually happen
5396 but we don't want to print the value of annonymous fields anyway. */
5397 if (name == NULL)
5398 return 1;
5399
5400 /* A field named "_parent" is internally generated by GNAT for
5401 tagged types, and should not be printed either. */
5402 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5403 return 1;
5404 }
5405
5406 /* If this is the dispatch table of a tagged type, then ignore. */
5407 if (ada_is_tagged_type (type, 1)
5408 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5409 return 1;
5410
5411 /* Not a special field, so it should not be ignored. */
5412 return 0;
963a6417 5413}
96d887e8 5414
963a6417
PH
5415/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5416 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5417
963a6417
PH
5418int
5419ada_is_tagged_type (struct type *type, int refok)
5420{
5421 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5422}
96d887e8 5423
963a6417 5424/* True iff TYPE represents the type of X'Tag */
96d887e8 5425
963a6417
PH
5426int
5427ada_is_tag_type (struct type *type)
5428{
5429 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5430 return 0;
5431 else
96d887e8 5432 {
963a6417
PH
5433 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5434 return (name != NULL
5435 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5436 }
96d887e8
PH
5437}
5438
963a6417 5439/* The type of the tag on VAL. */
76a01679 5440
963a6417
PH
5441struct type *
5442ada_tag_type (struct value *val)
96d887e8 5443{
df407dfe 5444 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5445}
96d887e8 5446
963a6417 5447/* The value of the tag on VAL. */
96d887e8 5448
963a6417
PH
5449struct value *
5450ada_value_tag (struct value *val)
5451{
03ee6b2e 5452 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5453}
5454
963a6417
PH
5455/* The value of the tag on the object of type TYPE whose contents are
5456 saved at VALADDR, if it is non-null, or is at memory address
5457 ADDRESS. */
96d887e8 5458
963a6417 5459static struct value *
10a2c479 5460value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5461 const gdb_byte *valaddr,
963a6417 5462 CORE_ADDR address)
96d887e8 5463{
963a6417
PH
5464 int tag_byte_offset, dummy1, dummy2;
5465 struct type *tag_type;
5466 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5467 NULL, NULL, NULL))
96d887e8 5468 {
fc1a4b47 5469 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5470 ? NULL
5471 : valaddr + tag_byte_offset);
963a6417 5472 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5473
963a6417 5474 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5475 }
963a6417
PH
5476 return NULL;
5477}
96d887e8 5478
963a6417
PH
5479static struct type *
5480type_from_tag (struct value *tag)
5481{
5482 const char *type_name = ada_tag_name (tag);
5483 if (type_name != NULL)
5484 return ada_find_any_type (ada_encode (type_name));
5485 return NULL;
5486}
96d887e8 5487
963a6417
PH
5488struct tag_args
5489{
5490 struct value *tag;
5491 char *name;
5492};
4c4b4cd2 5493
529cad9c
PH
5494
5495static int ada_tag_name_1 (void *);
5496static int ada_tag_name_2 (struct tag_args *);
5497
4c4b4cd2
PH
5498/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5499 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5500 The value stored in ARGS->name is valid until the next call to
5501 ada_tag_name_1. */
5502
5503static int
5504ada_tag_name_1 (void *args0)
5505{
5506 struct tag_args *args = (struct tag_args *) args0;
5507 static char name[1024];
76a01679 5508 char *p;
4c4b4cd2
PH
5509 struct value *val;
5510 args->name = NULL;
03ee6b2e 5511 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5512 if (val == NULL)
5513 return ada_tag_name_2 (args);
03ee6b2e 5514 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5515 if (val == NULL)
5516 return 0;
5517 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5518 for (p = name; *p != '\0'; p += 1)
5519 if (isalpha (*p))
5520 *p = tolower (*p);
5521 args->name = name;
5522 return 0;
5523}
5524
5525/* Utility function for ada_tag_name_1 that tries the second
5526 representation for the dispatch table (in which there is no
5527 explicit 'tsd' field in the referent of the tag pointer, and instead
5528 the tsd pointer is stored just before the dispatch table. */
5529
5530static int
5531ada_tag_name_2 (struct tag_args *args)
5532{
5533 struct type *info_type;
5534 static char name[1024];
5535 char *p;
5536 struct value *val, *valp;
5537
5538 args->name = NULL;
5539 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5540 if (info_type == NULL)
5541 return 0;
5542 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5543 valp = value_cast (info_type, args->tag);
5544 if (valp == NULL)
5545 return 0;
2497b498 5546 val = value_ind (value_ptradd (valp, -1));
4c4b4cd2
PH
5547 if (val == NULL)
5548 return 0;
03ee6b2e 5549 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5550 if (val == NULL)
5551 return 0;
5552 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5553 for (p = name; *p != '\0'; p += 1)
5554 if (isalpha (*p))
5555 *p = tolower (*p);
5556 args->name = name;
5557 return 0;
5558}
5559
5560/* The type name of the dynamic type denoted by the 'tag value TAG, as
5561 * a C string. */
5562
5563const char *
5564ada_tag_name (struct value *tag)
5565{
5566 struct tag_args args;
df407dfe 5567 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5568 return NULL;
76a01679 5569 args.tag = tag;
4c4b4cd2
PH
5570 args.name = NULL;
5571 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5572 return args.name;
5573}
5574
5575/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5576
d2e4a39e 5577struct type *
ebf56fd3 5578ada_parent_type (struct type *type)
14f9c5c9
AS
5579{
5580 int i;
5581
61ee279c 5582 type = ada_check_typedef (type);
14f9c5c9
AS
5583
5584 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5585 return NULL;
5586
5587 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5588 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5589 {
5590 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5591
5592 /* If the _parent field is a pointer, then dereference it. */
5593 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5594 parent_type = TYPE_TARGET_TYPE (parent_type);
5595 /* If there is a parallel XVS type, get the actual base type. */
5596 parent_type = ada_get_base_type (parent_type);
5597
5598 return ada_check_typedef (parent_type);
5599 }
14f9c5c9
AS
5600
5601 return NULL;
5602}
5603
4c4b4cd2
PH
5604/* True iff field number FIELD_NUM of structure type TYPE contains the
5605 parent-type (inherited) fields of a derived type. Assumes TYPE is
5606 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5607
5608int
ebf56fd3 5609ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5610{
61ee279c 5611 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
4c4b4cd2
PH
5612 return (name != NULL
5613 && (strncmp (name, "PARENT", 6) == 0
5614 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5615}
5616
4c4b4cd2 5617/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5618 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5619 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5620 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5621 structures. */
14f9c5c9
AS
5622
5623int
ebf56fd3 5624ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5625{
d2e4a39e
AS
5626 const char *name = TYPE_FIELD_NAME (type, field_num);
5627 return (name != NULL
4c4b4cd2
PH
5628 && (strncmp (name, "PARENT", 6) == 0
5629 || strcmp (name, "REP") == 0
5630 || strncmp (name, "_parent", 7) == 0
5631 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5632}
5633
4c4b4cd2
PH
5634/* True iff field number FIELD_NUM of structure or union type TYPE
5635 is a variant wrapper. Assumes TYPE is a structure type with at least
5636 FIELD_NUM+1 fields. */
14f9c5c9
AS
5637
5638int
ebf56fd3 5639ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5640{
d2e4a39e 5641 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
14f9c5c9 5642 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5643 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5644 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5645 == TYPE_CODE_UNION)));
14f9c5c9
AS
5646}
5647
5648/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5649 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
5650 returns the type of the controlling discriminant for the variant.
5651 May return NULL if the type could not be found. */
14f9c5c9 5652
d2e4a39e 5653struct type *
ebf56fd3 5654ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5655{
d2e4a39e 5656 char *name = ada_variant_discrim_name (var_type);
7c964f07 5657 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
5658}
5659
4c4b4cd2 5660/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5661 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5662 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5663
5664int
ebf56fd3 5665ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5666{
d2e4a39e 5667 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5668 return (name != NULL && name[0] == 'O');
5669}
5670
5671/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5672 returns the name of the discriminant controlling the variant.
5673 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5674
d2e4a39e 5675char *
ebf56fd3 5676ada_variant_discrim_name (struct type *type0)
14f9c5c9 5677{
d2e4a39e 5678 static char *result = NULL;
14f9c5c9 5679 static size_t result_len = 0;
d2e4a39e
AS
5680 struct type *type;
5681 const char *name;
5682 const char *discrim_end;
5683 const char *discrim_start;
14f9c5c9
AS
5684
5685 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5686 type = TYPE_TARGET_TYPE (type0);
5687 else
5688 type = type0;
5689
5690 name = ada_type_name (type);
5691
5692 if (name == NULL || name[0] == '\000')
5693 return "";
5694
5695 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5696 discrim_end -= 1)
5697 {
4c4b4cd2
PH
5698 if (strncmp (discrim_end, "___XVN", 6) == 0)
5699 break;
14f9c5c9
AS
5700 }
5701 if (discrim_end == name)
5702 return "";
5703
d2e4a39e 5704 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
5705 discrim_start -= 1)
5706 {
d2e4a39e 5707 if (discrim_start == name + 1)
4c4b4cd2 5708 return "";
76a01679 5709 if ((discrim_start > name + 3
4c4b4cd2
PH
5710 && strncmp (discrim_start - 3, "___", 3) == 0)
5711 || discrim_start[-1] == '.')
5712 break;
14f9c5c9
AS
5713 }
5714
5715 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5716 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 5717 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
5718 return result;
5719}
5720
4c4b4cd2
PH
5721/* Scan STR for a subtype-encoded number, beginning at position K.
5722 Put the position of the character just past the number scanned in
5723 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5724 Return 1 if there was a valid number at the given position, and 0
5725 otherwise. A "subtype-encoded" number consists of the absolute value
5726 in decimal, followed by the letter 'm' to indicate a negative number.
5727 Assumes 0m does not occur. */
14f9c5c9
AS
5728
5729int
d2e4a39e 5730ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
5731{
5732 ULONGEST RU;
5733
d2e4a39e 5734 if (!isdigit (str[k]))
14f9c5c9
AS
5735 return 0;
5736
4c4b4cd2 5737 /* Do it the hard way so as not to make any assumption about
14f9c5c9 5738 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 5739 LONGEST. */
14f9c5c9
AS
5740 RU = 0;
5741 while (isdigit (str[k]))
5742 {
d2e4a39e 5743 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
5744 k += 1;
5745 }
5746
d2e4a39e 5747 if (str[k] == 'm')
14f9c5c9
AS
5748 {
5749 if (R != NULL)
4c4b4cd2 5750 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
5751 k += 1;
5752 }
5753 else if (R != NULL)
5754 *R = (LONGEST) RU;
5755
4c4b4cd2 5756 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
5757 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5758 number representable as a LONGEST (although either would probably work
5759 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 5760 above is always equivalent to the negative of RU. */
14f9c5c9
AS
5761
5762 if (new_k != NULL)
5763 *new_k = k;
5764 return 1;
5765}
5766
4c4b4cd2
PH
5767/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5768 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5769 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 5770
d2e4a39e 5771int
ebf56fd3 5772ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 5773{
d2e4a39e 5774 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5775 int p;
5776
5777 p = 0;
5778 while (1)
5779 {
d2e4a39e 5780 switch (name[p])
4c4b4cd2
PH
5781 {
5782 case '\0':
5783 return 0;
5784 case 'S':
5785 {
5786 LONGEST W;
5787 if (!ada_scan_number (name, p + 1, &W, &p))
5788 return 0;
5789 if (val == W)
5790 return 1;
5791 break;
5792 }
5793 case 'R':
5794 {
5795 LONGEST L, U;
5796 if (!ada_scan_number (name, p + 1, &L, &p)
5797 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5798 return 0;
5799 if (val >= L && val <= U)
5800 return 1;
5801 break;
5802 }
5803 case 'O':
5804 return 1;
5805 default:
5806 return 0;
5807 }
5808 }
5809}
5810
5811/* FIXME: Lots of redundancy below. Try to consolidate. */
5812
5813/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5814 ARG_TYPE, extract and return the value of one of its (non-static)
5815 fields. FIELDNO says which field. Differs from value_primitive_field
5816 only in that it can handle packed values of arbitrary type. */
14f9c5c9 5817
4c4b4cd2 5818static struct value *
d2e4a39e 5819ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 5820 struct type *arg_type)
14f9c5c9 5821{
14f9c5c9
AS
5822 struct type *type;
5823
61ee279c 5824 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
5825 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5826
4c4b4cd2 5827 /* Handle packed fields. */
14f9c5c9
AS
5828
5829 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5830 {
5831 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5832 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 5833
0fd88904 5834 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
5835 offset + bit_pos / 8,
5836 bit_pos % 8, bit_size, type);
14f9c5c9
AS
5837 }
5838 else
5839 return value_primitive_field (arg1, offset, fieldno, arg_type);
5840}
5841
52ce6436
PH
5842/* Find field with name NAME in object of type TYPE. If found,
5843 set the following for each argument that is non-null:
5844 - *FIELD_TYPE_P to the field's type;
5845 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5846 an object of that type;
5847 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5848 - *BIT_SIZE_P to its size in bits if the field is packed, and
5849 0 otherwise;
5850 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5851 fields up to but not including the desired field, or by the total
5852 number of fields if not found. A NULL value of NAME never
5853 matches; the function just counts visible fields in this case.
5854
5855 Returns 1 if found, 0 otherwise. */
5856
4c4b4cd2 5857static int
76a01679
JB
5858find_struct_field (char *name, struct type *type, int offset,
5859 struct type **field_type_p,
52ce6436
PH
5860 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5861 int *index_p)
4c4b4cd2
PH
5862{
5863 int i;
5864
61ee279c 5865 type = ada_check_typedef (type);
76a01679 5866
52ce6436
PH
5867 if (field_type_p != NULL)
5868 *field_type_p = NULL;
5869 if (byte_offset_p != NULL)
d5d6fca5 5870 *byte_offset_p = 0;
52ce6436
PH
5871 if (bit_offset_p != NULL)
5872 *bit_offset_p = 0;
5873 if (bit_size_p != NULL)
5874 *bit_size_p = 0;
5875
5876 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
5877 {
5878 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5879 int fld_offset = offset + bit_pos / 8;
5880 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 5881
4c4b4cd2
PH
5882 if (t_field_name == NULL)
5883 continue;
5884
52ce6436 5885 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
5886 {
5887 int bit_size = TYPE_FIELD_BITSIZE (type, i);
52ce6436
PH
5888 if (field_type_p != NULL)
5889 *field_type_p = TYPE_FIELD_TYPE (type, i);
5890 if (byte_offset_p != NULL)
5891 *byte_offset_p = fld_offset;
5892 if (bit_offset_p != NULL)
5893 *bit_offset_p = bit_pos % 8;
5894 if (bit_size_p != NULL)
5895 *bit_size_p = bit_size;
76a01679
JB
5896 return 1;
5897 }
4c4b4cd2
PH
5898 else if (ada_is_wrapper_field (type, i))
5899 {
52ce6436
PH
5900 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5901 field_type_p, byte_offset_p, bit_offset_p,
5902 bit_size_p, index_p))
76a01679
JB
5903 return 1;
5904 }
4c4b4cd2
PH
5905 else if (ada_is_variant_part (type, i))
5906 {
52ce6436
PH
5907 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5908 fixed type?? */
4c4b4cd2 5909 int j;
52ce6436
PH
5910 struct type *field_type
5911 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 5912
52ce6436 5913 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 5914 {
76a01679
JB
5915 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5916 fld_offset
5917 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5918 field_type_p, byte_offset_p,
52ce6436 5919 bit_offset_p, bit_size_p, index_p))
76a01679 5920 return 1;
4c4b4cd2
PH
5921 }
5922 }
52ce6436
PH
5923 else if (index_p != NULL)
5924 *index_p += 1;
4c4b4cd2
PH
5925 }
5926 return 0;
5927}
5928
52ce6436 5929/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 5930
52ce6436
PH
5931static int
5932num_visible_fields (struct type *type)
5933{
5934 int n;
5935 n = 0;
5936 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5937 return n;
5938}
14f9c5c9 5939
4c4b4cd2 5940/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
5941 and search in it assuming it has (class) type TYPE.
5942 If found, return value, else return NULL.
5943
4c4b4cd2 5944 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 5945
4c4b4cd2 5946static struct value *
d2e4a39e 5947ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 5948 struct type *type)
14f9c5c9
AS
5949{
5950 int i;
61ee279c 5951 type = ada_check_typedef (type);
14f9c5c9 5952
52ce6436 5953 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
5954 {
5955 char *t_field_name = TYPE_FIELD_NAME (type, i);
5956
5957 if (t_field_name == NULL)
4c4b4cd2 5958 continue;
14f9c5c9
AS
5959
5960 else if (field_name_match (t_field_name, name))
4c4b4cd2 5961 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
5962
5963 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 5964 {
06d5cf63
JB
5965 struct value *v = /* Do not let indent join lines here. */
5966 ada_search_struct_field (name, arg,
5967 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5968 TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
5969 if (v != NULL)
5970 return v;
5971 }
14f9c5c9
AS
5972
5973 else if (ada_is_variant_part (type, i))
4c4b4cd2 5974 {
52ce6436 5975 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 5976 int j;
61ee279c 5977 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
5978 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5979
52ce6436 5980 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 5981 {
06d5cf63
JB
5982 struct value *v = ada_search_struct_field /* Force line break. */
5983 (name, arg,
5984 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5985 TYPE_FIELD_TYPE (field_type, j));
4c4b4cd2
PH
5986 if (v != NULL)
5987 return v;
5988 }
5989 }
14f9c5c9
AS
5990 }
5991 return NULL;
5992}
d2e4a39e 5993
52ce6436
PH
5994static struct value *ada_index_struct_field_1 (int *, struct value *,
5995 int, struct type *);
5996
5997
5998/* Return field #INDEX in ARG, where the index is that returned by
5999 * find_struct_field through its INDEX_P argument. Adjust the address
6000 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6001 * If found, return value, else return NULL. */
6002
6003static struct value *
6004ada_index_struct_field (int index, struct value *arg, int offset,
6005 struct type *type)
6006{
6007 return ada_index_struct_field_1 (&index, arg, offset, type);
6008}
6009
6010
6011/* Auxiliary function for ada_index_struct_field. Like
6012 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6013 * *INDEX_P. */
6014
6015static struct value *
6016ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6017 struct type *type)
6018{
6019 int i;
6020 type = ada_check_typedef (type);
6021
6022 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6023 {
6024 if (TYPE_FIELD_NAME (type, i) == NULL)
6025 continue;
6026 else if (ada_is_wrapper_field (type, i))
6027 {
6028 struct value *v = /* Do not let indent join lines here. */
6029 ada_index_struct_field_1 (index_p, arg,
6030 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6031 TYPE_FIELD_TYPE (type, i));
6032 if (v != NULL)
6033 return v;
6034 }
6035
6036 else if (ada_is_variant_part (type, i))
6037 {
6038 /* PNH: Do we ever get here? See ada_search_struct_field,
6039 find_struct_field. */
6040 error (_("Cannot assign this kind of variant record"));
6041 }
6042 else if (*index_p == 0)
6043 return ada_value_primitive_field (arg, offset, i, type);
6044 else
6045 *index_p -= 1;
6046 }
6047 return NULL;
6048}
6049
4c4b4cd2
PH
6050/* Given ARG, a value of type (pointer or reference to a)*
6051 structure/union, extract the component named NAME from the ultimate
6052 target structure/union and return it as a value with its
f5938064 6053 appropriate type.
14f9c5c9 6054
4c4b4cd2
PH
6055 The routine searches for NAME among all members of the structure itself
6056 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6057 (e.g., '_parent').
6058
03ee6b2e
PH
6059 If NO_ERR, then simply return NULL in case of error, rather than
6060 calling error. */
14f9c5c9 6061
d2e4a39e 6062struct value *
03ee6b2e 6063ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6064{
4c4b4cd2 6065 struct type *t, *t1;
d2e4a39e 6066 struct value *v;
14f9c5c9 6067
4c4b4cd2 6068 v = NULL;
df407dfe 6069 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6070 if (TYPE_CODE (t) == TYPE_CODE_REF)
6071 {
6072 t1 = TYPE_TARGET_TYPE (t);
6073 if (t1 == NULL)
03ee6b2e 6074 goto BadValue;
61ee279c 6075 t1 = ada_check_typedef (t1);
4c4b4cd2 6076 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6077 {
994b9211 6078 arg = coerce_ref (arg);
76a01679
JB
6079 t = t1;
6080 }
4c4b4cd2 6081 }
14f9c5c9 6082
4c4b4cd2
PH
6083 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6084 {
6085 t1 = TYPE_TARGET_TYPE (t);
6086 if (t1 == NULL)
03ee6b2e 6087 goto BadValue;
61ee279c 6088 t1 = ada_check_typedef (t1);
4c4b4cd2 6089 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6090 {
6091 arg = value_ind (arg);
6092 t = t1;
6093 }
4c4b4cd2 6094 else
76a01679 6095 break;
4c4b4cd2 6096 }
14f9c5c9 6097
4c4b4cd2 6098 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6099 goto BadValue;
14f9c5c9 6100
4c4b4cd2
PH
6101 if (t1 == t)
6102 v = ada_search_struct_field (name, arg, 0, t);
6103 else
6104 {
6105 int bit_offset, bit_size, byte_offset;
6106 struct type *field_type;
6107 CORE_ADDR address;
6108
76a01679
JB
6109 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6110 address = value_as_address (arg);
4c4b4cd2 6111 else
0fd88904 6112 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6113
1ed6ede0 6114 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6115 if (find_struct_field (name, t1, 0,
6116 &field_type, &byte_offset, &bit_offset,
52ce6436 6117 &bit_size, NULL))
76a01679
JB
6118 {
6119 if (bit_size != 0)
6120 {
714e53ab
PH
6121 if (TYPE_CODE (t) == TYPE_CODE_REF)
6122 arg = ada_coerce_ref (arg);
6123 else
6124 arg = ada_value_ind (arg);
76a01679
JB
6125 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6126 bit_offset, bit_size,
6127 field_type);
6128 }
6129 else
f5938064 6130 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6131 }
6132 }
6133
03ee6b2e
PH
6134 if (v != NULL || no_err)
6135 return v;
6136 else
323e0a4a 6137 error (_("There is no member named %s."), name);
14f9c5c9 6138
03ee6b2e
PH
6139 BadValue:
6140 if (no_err)
6141 return NULL;
6142 else
6143 error (_("Attempt to extract a component of a value that is not a record."));
14f9c5c9
AS
6144}
6145
6146/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6147 If DISPP is non-null, add its byte displacement from the beginning of a
6148 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6149 work for packed fields).
6150
6151 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6152 followed by "___".
14f9c5c9 6153
4c4b4cd2
PH
6154 TYPE can be either a struct or union. If REFOK, TYPE may also
6155 be a (pointer or reference)+ to a struct or union, and the
6156 ultimate target type will be searched.
14f9c5c9
AS
6157
6158 Looks recursively into variant clauses and parent types.
6159
4c4b4cd2
PH
6160 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6161 TYPE is not a type of the right kind. */
14f9c5c9 6162
4c4b4cd2 6163static struct type *
76a01679
JB
6164ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6165 int noerr, int *dispp)
14f9c5c9
AS
6166{
6167 int i;
6168
6169 if (name == NULL)
6170 goto BadName;
6171
76a01679 6172 if (refok && type != NULL)
4c4b4cd2
PH
6173 while (1)
6174 {
61ee279c 6175 type = ada_check_typedef (type);
76a01679
JB
6176 if (TYPE_CODE (type) != TYPE_CODE_PTR
6177 && TYPE_CODE (type) != TYPE_CODE_REF)
6178 break;
6179 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6180 }
14f9c5c9 6181
76a01679 6182 if (type == NULL
1265e4aa
JB
6183 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6184 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6185 {
4c4b4cd2 6186 if (noerr)
76a01679 6187 return NULL;
4c4b4cd2 6188 else
76a01679
JB
6189 {
6190 target_terminal_ours ();
6191 gdb_flush (gdb_stdout);
323e0a4a
AC
6192 if (type == NULL)
6193 error (_("Type (null) is not a structure or union type"));
6194 else
6195 {
6196 /* XXX: type_sprint */
6197 fprintf_unfiltered (gdb_stderr, _("Type "));
6198 type_print (type, "", gdb_stderr, -1);
6199 error (_(" is not a structure or union type"));
6200 }
76a01679 6201 }
14f9c5c9
AS
6202 }
6203
6204 type = to_static_fixed_type (type);
6205
6206 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6207 {
6208 char *t_field_name = TYPE_FIELD_NAME (type, i);
6209 struct type *t;
6210 int disp;
d2e4a39e 6211
14f9c5c9 6212 if (t_field_name == NULL)
4c4b4cd2 6213 continue;
14f9c5c9
AS
6214
6215 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6216 {
6217 if (dispp != NULL)
6218 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6219 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6220 }
14f9c5c9
AS
6221
6222 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6223 {
6224 disp = 0;
6225 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6226 0, 1, &disp);
6227 if (t != NULL)
6228 {
6229 if (dispp != NULL)
6230 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6231 return t;
6232 }
6233 }
14f9c5c9
AS
6234
6235 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6236 {
6237 int j;
61ee279c 6238 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6239
6240 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6241 {
b1f33ddd
JB
6242 /* FIXME pnh 2008/01/26: We check for a field that is
6243 NOT wrapped in a struct, since the compiler sometimes
6244 generates these for unchecked variant types. Revisit
6245 if the compiler changes this practice. */
6246 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6247 disp = 0;
b1f33ddd
JB
6248 if (v_field_name != NULL
6249 && field_name_match (v_field_name, name))
6250 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6251 else
6252 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6253 name, 0, 1, &disp);
6254
4c4b4cd2
PH
6255 if (t != NULL)
6256 {
6257 if (dispp != NULL)
6258 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6259 return t;
6260 }
6261 }
6262 }
14f9c5c9
AS
6263
6264 }
6265
6266BadName:
d2e4a39e 6267 if (!noerr)
14f9c5c9
AS
6268 {
6269 target_terminal_ours ();
6270 gdb_flush (gdb_stdout);
323e0a4a
AC
6271 if (name == NULL)
6272 {
6273 /* XXX: type_sprint */
6274 fprintf_unfiltered (gdb_stderr, _("Type "));
6275 type_print (type, "", gdb_stderr, -1);
6276 error (_(" has no component named <null>"));
6277 }
6278 else
6279 {
6280 /* XXX: type_sprint */
6281 fprintf_unfiltered (gdb_stderr, _("Type "));
6282 type_print (type, "", gdb_stderr, -1);
6283 error (_(" has no component named %s"), name);
6284 }
14f9c5c9
AS
6285 }
6286
6287 return NULL;
6288}
6289
b1f33ddd
JB
6290/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6291 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6292 represents an unchecked union (that is, the variant part of a
6293 record that is named in an Unchecked_Union pragma). */
6294
6295static int
6296is_unchecked_variant (struct type *var_type, struct type *outer_type)
6297{
6298 char *discrim_name = ada_variant_discrim_name (var_type);
6299 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6300 == NULL);
6301}
6302
6303
14f9c5c9
AS
6304/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6305 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6306 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6307 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6308
d2e4a39e 6309int
ebf56fd3 6310ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6311 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6312{
6313 int others_clause;
6314 int i;
d2e4a39e 6315 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6316 struct value *outer;
6317 struct value *discrim;
14f9c5c9
AS
6318 LONGEST discrim_val;
6319
0c281816
JB
6320 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6321 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6322 if (discrim == NULL)
14f9c5c9 6323 return -1;
0c281816 6324 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6325
6326 others_clause = -1;
6327 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6328 {
6329 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6330 others_clause = i;
14f9c5c9 6331 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6332 return i;
14f9c5c9
AS
6333 }
6334
6335 return others_clause;
6336}
d2e4a39e 6337\f
14f9c5c9
AS
6338
6339
4c4b4cd2 6340 /* Dynamic-Sized Records */
14f9c5c9
AS
6341
6342/* Strategy: The type ostensibly attached to a value with dynamic size
6343 (i.e., a size that is not statically recorded in the debugging
6344 data) does not accurately reflect the size or layout of the value.
6345 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6346 conventional types that are constructed on the fly. */
14f9c5c9
AS
6347
6348/* There is a subtle and tricky problem here. In general, we cannot
6349 determine the size of dynamic records without its data. However,
6350 the 'struct value' data structure, which GDB uses to represent
6351 quantities in the inferior process (the target), requires the size
6352 of the type at the time of its allocation in order to reserve space
6353 for GDB's internal copy of the data. That's why the
6354 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6355 rather than struct value*s.
14f9c5c9
AS
6356
6357 However, GDB's internal history variables ($1, $2, etc.) are
6358 struct value*s containing internal copies of the data that are not, in
6359 general, the same as the data at their corresponding addresses in
6360 the target. Fortunately, the types we give to these values are all
6361 conventional, fixed-size types (as per the strategy described
6362 above), so that we don't usually have to perform the
6363 'to_fixed_xxx_type' conversions to look at their values.
6364 Unfortunately, there is one exception: if one of the internal
6365 history variables is an array whose elements are unconstrained
6366 records, then we will need to create distinct fixed types for each
6367 element selected. */
6368
6369/* The upshot of all of this is that many routines take a (type, host
6370 address, target address) triple as arguments to represent a value.
6371 The host address, if non-null, is supposed to contain an internal
6372 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6373 target at the target address. */
14f9c5c9
AS
6374
6375/* Assuming that VAL0 represents a pointer value, the result of
6376 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6377 dynamic-sized types. */
14f9c5c9 6378
d2e4a39e
AS
6379struct value *
6380ada_value_ind (struct value *val0)
14f9c5c9 6381{
d2e4a39e 6382 struct value *val = unwrap_value (value_ind (val0));
4c4b4cd2 6383 return ada_to_fixed_value (val);
14f9c5c9
AS
6384}
6385
6386/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6387 qualifiers on VAL0. */
6388
d2e4a39e
AS
6389static struct value *
6390ada_coerce_ref (struct value *val0)
6391{
df407dfe 6392 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6393 {
6394 struct value *val = val0;
994b9211 6395 val = coerce_ref (val);
d2e4a39e 6396 val = unwrap_value (val);
4c4b4cd2 6397 return ada_to_fixed_value (val);
d2e4a39e
AS
6398 }
6399 else
14f9c5c9
AS
6400 return val0;
6401}
6402
6403/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6404 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6405
6406static unsigned int
ebf56fd3 6407align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6408{
6409 return (off + alignment - 1) & ~(alignment - 1);
6410}
6411
4c4b4cd2 6412/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6413
6414static unsigned int
ebf56fd3 6415field_alignment (struct type *type, int f)
14f9c5c9 6416{
d2e4a39e 6417 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6418 int len;
14f9c5c9
AS
6419 int align_offset;
6420
64a1bf19
JB
6421 /* The field name should never be null, unless the debugging information
6422 is somehow malformed. In this case, we assume the field does not
6423 require any alignment. */
6424 if (name == NULL)
6425 return 1;
6426
6427 len = strlen (name);
6428
4c4b4cd2
PH
6429 if (!isdigit (name[len - 1]))
6430 return 1;
14f9c5c9 6431
d2e4a39e 6432 if (isdigit (name[len - 2]))
14f9c5c9
AS
6433 align_offset = len - 2;
6434 else
6435 align_offset = len - 1;
6436
4c4b4cd2 6437 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6438 return TARGET_CHAR_BIT;
6439
4c4b4cd2
PH
6440 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6441}
6442
6443/* Find a symbol named NAME. Ignores ambiguity. */
6444
6445struct symbol *
6446ada_find_any_symbol (const char *name)
6447{
6448 struct symbol *sym;
6449
6450 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6451 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6452 return sym;
6453
6454 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6455 return sym;
14f9c5c9
AS
6456}
6457
dddfab26
UW
6458/* Find a type named NAME. Ignores ambiguity. This routine will look
6459 solely for types defined by debug info, it will not search the GDB
6460 primitive types. */
4c4b4cd2 6461
d2e4a39e 6462struct type *
ebf56fd3 6463ada_find_any_type (const char *name)
14f9c5c9 6464{
4c4b4cd2 6465 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6466
14f9c5c9 6467 if (sym != NULL)
dddfab26 6468 return SYMBOL_TYPE (sym);
14f9c5c9 6469
dddfab26 6470 return NULL;
14f9c5c9
AS
6471}
6472
aeb5907d
JB
6473/* Given NAME and an associated BLOCK, search all symbols for
6474 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6475 associated to NAME. Return this symbol if found, return
6476 NULL otherwise. */
6477
6478struct symbol *
6479ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6480{
6481 struct symbol *sym;
6482
6483 sym = find_old_style_renaming_symbol (name, block);
6484
6485 if (sym != NULL)
6486 return sym;
6487
6488 /* Not right yet. FIXME pnh 7/20/2007. */
6489 sym = ada_find_any_symbol (name);
6490 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6491 return sym;
6492 else
6493 return NULL;
6494}
6495
6496static struct symbol *
6497find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6498{
7f0df278 6499 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6500 char *rename;
6501
6502 if (function_sym != NULL)
6503 {
6504 /* If the symbol is defined inside a function, NAME is not fully
6505 qualified. This means we need to prepend the function name
6506 as well as adding the ``___XR'' suffix to build the name of
6507 the associated renaming symbol. */
6508 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6509 /* Function names sometimes contain suffixes used
6510 for instance to qualify nested subprograms. When building
6511 the XR type name, we need to make sure that this suffix is
6512 not included. So do not include any suffix in the function
6513 name length below. */
6514 const int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6515 const int rename_len = function_name_len + 2 /* "__" */
6516 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6517
529cad9c
PH
6518 /* Strip the suffix if necessary. */
6519 function_name[function_name_len] = '\0';
6520
4c4b4cd2
PH
6521 /* Library-level functions are a special case, as GNAT adds
6522 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6523 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6524 have this prefix, so we need to skip this prefix if present. */
6525 if (function_name_len > 5 /* "_ada_" */
6526 && strstr (function_name, "_ada_") == function_name)
6527 function_name = function_name + 5;
6528
6529 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34
PM
6530 xsnprintf (rename, rename_len * sizeof (char), "%s__%s___XR",
6531 function_name, name);
4c4b4cd2
PH
6532 }
6533 else
6534 {
6535 const int rename_len = strlen (name) + 6;
6536 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 6537 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
6538 }
6539
6540 return ada_find_any_symbol (rename);
6541}
6542
14f9c5c9 6543/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6544 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6545 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6546 otherwise return 0. */
6547
14f9c5c9 6548int
d2e4a39e 6549ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6550{
6551 if (type1 == NULL)
6552 return 1;
6553 else if (type0 == NULL)
6554 return 0;
6555 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6556 return 1;
6557 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6558 return 0;
4c4b4cd2
PH
6559 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6560 return 1;
14f9c5c9
AS
6561 else if (ada_is_packed_array_type (type0))
6562 return 1;
4c4b4cd2
PH
6563 else if (ada_is_array_descriptor_type (type0)
6564 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6565 return 1;
aeb5907d
JB
6566 else
6567 {
6568 const char *type0_name = type_name_no_tag (type0);
6569 const char *type1_name = type_name_no_tag (type1);
6570
6571 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6572 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6573 return 1;
6574 }
14f9c5c9
AS
6575 return 0;
6576}
6577
6578/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6579 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6580
d2e4a39e
AS
6581char *
6582ada_type_name (struct type *type)
14f9c5c9 6583{
d2e4a39e 6584 if (type == NULL)
14f9c5c9
AS
6585 return NULL;
6586 else if (TYPE_NAME (type) != NULL)
6587 return TYPE_NAME (type);
6588 else
6589 return TYPE_TAG_NAME (type);
6590}
6591
6592/* Find a parallel type to TYPE whose name is formed by appending
4c4b4cd2 6593 SUFFIX to the name of TYPE. */
14f9c5c9 6594
d2e4a39e 6595struct type *
ebf56fd3 6596ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6597{
d2e4a39e 6598 static char *name;
14f9c5c9 6599 static size_t name_len = 0;
14f9c5c9 6600 int len;
d2e4a39e
AS
6601 char *typename = ada_type_name (type);
6602
14f9c5c9
AS
6603 if (typename == NULL)
6604 return NULL;
6605
6606 len = strlen (typename);
6607
d2e4a39e 6608 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
14f9c5c9
AS
6609
6610 strcpy (name, typename);
6611 strcpy (name + len, suffix);
6612
6613 return ada_find_any_type (name);
6614}
6615
6616
6617/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6618 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6619
d2e4a39e
AS
6620static struct type *
6621dynamic_template_type (struct type *type)
14f9c5c9 6622{
61ee279c 6623 type = ada_check_typedef (type);
14f9c5c9
AS
6624
6625 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6626 || ada_type_name (type) == NULL)
14f9c5c9 6627 return NULL;
d2e4a39e 6628 else
14f9c5c9
AS
6629 {
6630 int len = strlen (ada_type_name (type));
4c4b4cd2
PH
6631 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6632 return type;
14f9c5c9 6633 else
4c4b4cd2 6634 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
6635 }
6636}
6637
6638/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 6639 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 6640
d2e4a39e
AS
6641static int
6642is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
6643{
6644 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
d2e4a39e 6645 return name != NULL
14f9c5c9
AS
6646 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6647 && strstr (name, "___XVL") != NULL;
6648}
6649
4c4b4cd2
PH
6650/* The index of the variant field of TYPE, or -1 if TYPE does not
6651 represent a variant record type. */
14f9c5c9 6652
d2e4a39e 6653static int
4c4b4cd2 6654variant_field_index (struct type *type)
14f9c5c9
AS
6655{
6656 int f;
6657
4c4b4cd2
PH
6658 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6659 return -1;
6660
6661 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6662 {
6663 if (ada_is_variant_part (type, f))
6664 return f;
6665 }
6666 return -1;
14f9c5c9
AS
6667}
6668
4c4b4cd2
PH
6669/* A record type with no fields. */
6670
d2e4a39e 6671static struct type *
e9bb382b 6672empty_record (struct type *template)
14f9c5c9 6673{
e9bb382b 6674 struct type *type = alloc_type_copy (template);
14f9c5c9
AS
6675 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6676 TYPE_NFIELDS (type) = 0;
6677 TYPE_FIELDS (type) = NULL;
b1f33ddd 6678 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
6679 TYPE_NAME (type) = "<empty>";
6680 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
6681 TYPE_LENGTH (type) = 0;
6682 return type;
6683}
6684
6685/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
6686 the value of type TYPE at VALADDR or ADDRESS (see comments at
6687 the beginning of this section) VAL according to GNAT conventions.
6688 DVAL0 should describe the (portion of a) record that contains any
df407dfe 6689 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
6690 an outer-level type (i.e., as opposed to a branch of a variant.) A
6691 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 6692 of the variant.
14f9c5c9 6693
4c4b4cd2
PH
6694 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6695 length are not statically known are discarded. As a consequence,
6696 VALADDR, ADDRESS and DVAL0 are ignored.
6697
6698 NOTE: Limitations: For now, we assume that dynamic fields and
6699 variants occupy whole numbers of bytes. However, they need not be
6700 byte-aligned. */
6701
6702struct type *
10a2c479 6703ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 6704 const gdb_byte *valaddr,
4c4b4cd2
PH
6705 CORE_ADDR address, struct value *dval0,
6706 int keep_dynamic_fields)
14f9c5c9 6707{
d2e4a39e
AS
6708 struct value *mark = value_mark ();
6709 struct value *dval;
6710 struct type *rtype;
14f9c5c9 6711 int nfields, bit_len;
4c4b4cd2 6712 int variant_field;
14f9c5c9 6713 long off;
4c4b4cd2 6714 int fld_bit_len, bit_incr;
14f9c5c9
AS
6715 int f;
6716
4c4b4cd2
PH
6717 /* Compute the number of fields in this record type that are going
6718 to be processed: unless keep_dynamic_fields, this includes only
6719 fields whose position and length are static will be processed. */
6720 if (keep_dynamic_fields)
6721 nfields = TYPE_NFIELDS (type);
6722 else
6723 {
6724 nfields = 0;
76a01679 6725 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
6726 && !ada_is_variant_part (type, nfields)
6727 && !is_dynamic_field (type, nfields))
6728 nfields++;
6729 }
6730
e9bb382b 6731 rtype = alloc_type_copy (type);
14f9c5c9
AS
6732 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6733 INIT_CPLUS_SPECIFIC (rtype);
6734 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 6735 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
6736 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6737 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6738 TYPE_NAME (rtype) = ada_type_name (type);
6739 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6740 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 6741
d2e4a39e
AS
6742 off = 0;
6743 bit_len = 0;
4c4b4cd2
PH
6744 variant_field = -1;
6745
14f9c5c9
AS
6746 for (f = 0; f < nfields; f += 1)
6747 {
6c038f32
PH
6748 off = align_value (off, field_alignment (type, f))
6749 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 6750 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 6751 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 6752
d2e4a39e 6753 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
6754 {
6755 variant_field = f;
6756 fld_bit_len = bit_incr = 0;
6757 }
14f9c5c9 6758 else if (is_dynamic_field (type, f))
4c4b4cd2 6759 {
284614f0
JB
6760 const gdb_byte *field_valaddr = valaddr;
6761 CORE_ADDR field_address = address;
6762 struct type *field_type =
6763 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6764
4c4b4cd2 6765 if (dval0 == NULL)
b5304971
JG
6766 {
6767 /* rtype's length is computed based on the run-time
6768 value of discriminants. If the discriminants are not
6769 initialized, the type size may be completely bogus and
6770 GDB may fail to allocate a value for it. So check the
6771 size first before creating the value. */
6772 check_size (rtype);
6773 dval = value_from_contents_and_address (rtype, valaddr, address);
6774 }
4c4b4cd2
PH
6775 else
6776 dval = dval0;
6777
284614f0
JB
6778 /* If the type referenced by this field is an aligner type, we need
6779 to unwrap that aligner type, because its size might not be set.
6780 Keeping the aligner type would cause us to compute the wrong
6781 size for this field, impacting the offset of the all the fields
6782 that follow this one. */
6783 if (ada_is_aligner_type (field_type))
6784 {
6785 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6786
6787 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6788 field_address = cond_offset_target (field_address, field_offset);
6789 field_type = ada_aligned_type (field_type);
6790 }
6791
6792 field_valaddr = cond_offset_host (field_valaddr,
6793 off / TARGET_CHAR_BIT);
6794 field_address = cond_offset_target (field_address,
6795 off / TARGET_CHAR_BIT);
6796
6797 /* Get the fixed type of the field. Note that, in this case,
6798 we do not want to get the real type out of the tag: if
6799 the current field is the parent part of a tagged record,
6800 we will get the tag of the object. Clearly wrong: the real
6801 type of the parent is not the real type of the child. We
6802 would end up in an infinite loop. */
6803 field_type = ada_get_base_type (field_type);
6804 field_type = ada_to_fixed_type (field_type, field_valaddr,
6805 field_address, dval, 0);
6806
6807 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
6808 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6809 bit_incr = fld_bit_len =
6810 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6811 }
14f9c5c9 6812 else
4c4b4cd2
PH
6813 {
6814 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6815 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6816 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6817 bit_incr = fld_bit_len =
6818 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6819 else
6820 bit_incr = fld_bit_len =
6821 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6822 }
14f9c5c9 6823 if (off + fld_bit_len > bit_len)
4c4b4cd2 6824 bit_len = off + fld_bit_len;
14f9c5c9 6825 off += bit_incr;
4c4b4cd2
PH
6826 TYPE_LENGTH (rtype) =
6827 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 6828 }
4c4b4cd2
PH
6829
6830 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 6831 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
6832 the record. This can happen in the presence of representation
6833 clauses. */
6834 if (variant_field >= 0)
6835 {
6836 struct type *branch_type;
6837
6838 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6839
6840 if (dval0 == NULL)
6841 dval = value_from_contents_and_address (rtype, valaddr, address);
6842 else
6843 dval = dval0;
6844
6845 branch_type =
6846 to_fixed_variant_branch_type
6847 (TYPE_FIELD_TYPE (type, variant_field),
6848 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6849 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6850 if (branch_type == NULL)
6851 {
6852 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6853 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6854 TYPE_NFIELDS (rtype) -= 1;
6855 }
6856 else
6857 {
6858 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6859 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6860 fld_bit_len =
6861 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6862 TARGET_CHAR_BIT;
6863 if (off + fld_bit_len > bit_len)
6864 bit_len = off + fld_bit_len;
6865 TYPE_LENGTH (rtype) =
6866 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6867 }
6868 }
6869
714e53ab
PH
6870 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6871 should contain the alignment of that record, which should be a strictly
6872 positive value. If null or negative, then something is wrong, most
6873 probably in the debug info. In that case, we don't round up the size
6874 of the resulting type. If this record is not part of another structure,
6875 the current RTYPE length might be good enough for our purposes. */
6876 if (TYPE_LENGTH (type) <= 0)
6877 {
323e0a4a
AC
6878 if (TYPE_NAME (rtype))
6879 warning (_("Invalid type size for `%s' detected: %d."),
6880 TYPE_NAME (rtype), TYPE_LENGTH (type));
6881 else
6882 warning (_("Invalid type size for <unnamed> detected: %d."),
6883 TYPE_LENGTH (type));
714e53ab
PH
6884 }
6885 else
6886 {
6887 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6888 TYPE_LENGTH (type));
6889 }
14f9c5c9
AS
6890
6891 value_free_to_mark (mark);
d2e4a39e 6892 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 6893 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
6894 return rtype;
6895}
6896
4c4b4cd2
PH
6897/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6898 of 1. */
14f9c5c9 6899
d2e4a39e 6900static struct type *
fc1a4b47 6901template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
6902 CORE_ADDR address, struct value *dval0)
6903{
6904 return ada_template_to_fixed_record_type_1 (type, valaddr,
6905 address, dval0, 1);
6906}
6907
6908/* An ordinary record type in which ___XVL-convention fields and
6909 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6910 static approximations, containing all possible fields. Uses
6911 no runtime values. Useless for use in values, but that's OK,
6912 since the results are used only for type determinations. Works on both
6913 structs and unions. Representation note: to save space, we memorize
6914 the result of this function in the TYPE_TARGET_TYPE of the
6915 template type. */
6916
6917static struct type *
6918template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
6919{
6920 struct type *type;
6921 int nfields;
6922 int f;
6923
4c4b4cd2
PH
6924 if (TYPE_TARGET_TYPE (type0) != NULL)
6925 return TYPE_TARGET_TYPE (type0);
6926
6927 nfields = TYPE_NFIELDS (type0);
6928 type = type0;
14f9c5c9
AS
6929
6930 for (f = 0; f < nfields; f += 1)
6931 {
61ee279c 6932 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 6933 struct type *new_type;
14f9c5c9 6934
4c4b4cd2
PH
6935 if (is_dynamic_field (type0, f))
6936 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 6937 else
f192137b 6938 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
6939 if (type == type0 && new_type != field_type)
6940 {
e9bb382b 6941 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
6942 TYPE_CODE (type) = TYPE_CODE (type0);
6943 INIT_CPLUS_SPECIFIC (type);
6944 TYPE_NFIELDS (type) = nfields;
6945 TYPE_FIELDS (type) = (struct field *)
6946 TYPE_ALLOC (type, nfields * sizeof (struct field));
6947 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6948 sizeof (struct field) * nfields);
6949 TYPE_NAME (type) = ada_type_name (type0);
6950 TYPE_TAG_NAME (type) = NULL;
876cecd0 6951 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
6952 TYPE_LENGTH (type) = 0;
6953 }
6954 TYPE_FIELD_TYPE (type, f) = new_type;
6955 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 6956 }
14f9c5c9
AS
6957 return type;
6958}
6959
4c4b4cd2 6960/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
6961 whose address in memory is ADDRESS, returns a revision of TYPE,
6962 which should be a non-dynamic-sized record, in which the variant
6963 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
6964 for discriminant values in DVAL0, which can be NULL if the record
6965 contains the necessary discriminant values. */
6966
d2e4a39e 6967static struct type *
fc1a4b47 6968to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 6969 CORE_ADDR address, struct value *dval0)
14f9c5c9 6970{
d2e4a39e 6971 struct value *mark = value_mark ();
4c4b4cd2 6972 struct value *dval;
d2e4a39e 6973 struct type *rtype;
14f9c5c9
AS
6974 struct type *branch_type;
6975 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 6976 int variant_field = variant_field_index (type);
14f9c5c9 6977
4c4b4cd2 6978 if (variant_field == -1)
14f9c5c9
AS
6979 return type;
6980
4c4b4cd2
PH
6981 if (dval0 == NULL)
6982 dval = value_from_contents_and_address (type, valaddr, address);
6983 else
6984 dval = dval0;
6985
e9bb382b 6986 rtype = alloc_type_copy (type);
14f9c5c9 6987 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
6988 INIT_CPLUS_SPECIFIC (rtype);
6989 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
6990 TYPE_FIELDS (rtype) =
6991 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6992 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 6993 sizeof (struct field) * nfields);
14f9c5c9
AS
6994 TYPE_NAME (rtype) = ada_type_name (type);
6995 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6996 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
6997 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6998
4c4b4cd2
PH
6999 branch_type = to_fixed_variant_branch_type
7000 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7001 cond_offset_host (valaddr,
4c4b4cd2
PH
7002 TYPE_FIELD_BITPOS (type, variant_field)
7003 / TARGET_CHAR_BIT),
d2e4a39e 7004 cond_offset_target (address,
4c4b4cd2
PH
7005 TYPE_FIELD_BITPOS (type, variant_field)
7006 / TARGET_CHAR_BIT), dval);
d2e4a39e 7007 if (branch_type == NULL)
14f9c5c9 7008 {
4c4b4cd2
PH
7009 int f;
7010 for (f = variant_field + 1; f < nfields; f += 1)
7011 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7012 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7013 }
7014 else
7015 {
4c4b4cd2
PH
7016 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7017 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7018 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7019 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7020 }
4c4b4cd2 7021 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7022
4c4b4cd2 7023 value_free_to_mark (mark);
14f9c5c9
AS
7024 return rtype;
7025}
7026
7027/* An ordinary record type (with fixed-length fields) that describes
7028 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7029 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7030 should be in DVAL, a record value; it may be NULL if the object
7031 at ADDR itself contains any necessary discriminant values.
7032 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7033 values from the record are needed. Except in the case that DVAL,
7034 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7035 unchecked) is replaced by a particular branch of the variant.
7036
7037 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7038 is questionable and may be removed. It can arise during the
7039 processing of an unconstrained-array-of-record type where all the
7040 variant branches have exactly the same size. This is because in
7041 such cases, the compiler does not bother to use the XVS convention
7042 when encoding the record. I am currently dubious of this
7043 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7044
d2e4a39e 7045static struct type *
fc1a4b47 7046to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7047 CORE_ADDR address, struct value *dval)
14f9c5c9 7048{
d2e4a39e 7049 struct type *templ_type;
14f9c5c9 7050
876cecd0 7051 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7052 return type0;
7053
d2e4a39e 7054 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7055
7056 if (templ_type != NULL)
7057 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7058 else if (variant_field_index (type0) >= 0)
7059 {
7060 if (dval == NULL && valaddr == NULL && address == 0)
7061 return type0;
7062 return to_record_with_fixed_variant_part (type0, valaddr, address,
7063 dval);
7064 }
14f9c5c9
AS
7065 else
7066 {
876cecd0 7067 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7068 return type0;
7069 }
7070
7071}
7072
7073/* An ordinary record type (with fixed-length fields) that describes
7074 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7075 union type. Any necessary discriminants' values should be in DVAL,
7076 a record value. That is, this routine selects the appropriate
7077 branch of the union at ADDR according to the discriminant value
b1f33ddd
JB
7078 indicated in the union's type name. Returns VAR_TYPE0 itself if
7079 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7080
d2e4a39e 7081static struct type *
fc1a4b47 7082to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7083 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7084{
7085 int which;
d2e4a39e
AS
7086 struct type *templ_type;
7087 struct type *var_type;
14f9c5c9
AS
7088
7089 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7090 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7091 else
14f9c5c9
AS
7092 var_type = var_type0;
7093
7094 templ_type = ada_find_parallel_type (var_type, "___XVU");
7095
7096 if (templ_type != NULL)
7097 var_type = templ_type;
7098
b1f33ddd
JB
7099 if (is_unchecked_variant (var_type, value_type (dval)))
7100 return var_type0;
d2e4a39e
AS
7101 which =
7102 ada_which_variant_applies (var_type,
0fd88904 7103 value_type (dval), value_contents (dval));
14f9c5c9
AS
7104
7105 if (which < 0)
e9bb382b 7106 return empty_record (var_type);
14f9c5c9 7107 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7108 return to_fixed_record_type
d2e4a39e
AS
7109 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7110 valaddr, address, dval);
4c4b4cd2 7111 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7112 return
7113 to_fixed_record_type
7114 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7115 else
7116 return TYPE_FIELD_TYPE (var_type, which);
7117}
7118
7119/* Assuming that TYPE0 is an array type describing the type of a value
7120 at ADDR, and that DVAL describes a record containing any
7121 discriminants used in TYPE0, returns a type for the value that
7122 contains no dynamic components (that is, no components whose sizes
7123 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7124 true, gives an error message if the resulting type's size is over
4c4b4cd2 7125 varsize_limit. */
14f9c5c9 7126
d2e4a39e
AS
7127static struct type *
7128to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7129 int ignore_too_big)
14f9c5c9 7130{
d2e4a39e
AS
7131 struct type *index_type_desc;
7132 struct type *result;
284614f0 7133 int packed_array_p;
14f9c5c9 7134
284614f0 7135 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7136 return type0;
14f9c5c9 7137
284614f0
JB
7138 packed_array_p = ada_is_packed_array_type (type0);
7139 if (packed_array_p)
7140 type0 = decode_packed_array_type (type0);
7141
14f9c5c9
AS
7142 index_type_desc = ada_find_parallel_type (type0, "___XA");
7143 if (index_type_desc == NULL)
7144 {
61ee279c 7145 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
14f9c5c9 7146 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7147 depend on the contents of the array in properly constructed
7148 debugging data. */
529cad9c
PH
7149 /* Create a fixed version of the array element type.
7150 We're not providing the address of an element here,
e1d5a0d2 7151 and thus the actual object value cannot be inspected to do
529cad9c
PH
7152 the conversion. This should not be a problem, since arrays of
7153 unconstrained objects are not allowed. In particular, all
7154 the elements of an array of a tagged type should all be of
7155 the same type specified in the debugging info. No need to
7156 consult the object tag. */
1ed6ede0 7157 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7158
284614f0
JB
7159 /* Make sure we always create a new array type when dealing with
7160 packed array types, since we're going to fix-up the array
7161 type length and element bitsize a little further down. */
7162 if (elt_type0 == elt_type && !packed_array_p)
4c4b4cd2 7163 result = type0;
14f9c5c9 7164 else
e9bb382b 7165 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7166 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7167 }
7168 else
7169 {
7170 int i;
7171 struct type *elt_type0;
7172
7173 elt_type0 = type0;
7174 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7175 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7176
7177 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7178 depend on the contents of the array in properly constructed
7179 debugging data. */
529cad9c
PH
7180 /* Create a fixed version of the array element type.
7181 We're not providing the address of an element here,
e1d5a0d2 7182 and thus the actual object value cannot be inspected to do
529cad9c
PH
7183 the conversion. This should not be a problem, since arrays of
7184 unconstrained objects are not allowed. In particular, all
7185 the elements of an array of a tagged type should all be of
7186 the same type specified in the debugging info. No need to
7187 consult the object tag. */
1ed6ede0
JB
7188 result =
7189 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7190
7191 elt_type0 = type0;
14f9c5c9 7192 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7193 {
7194 struct type *range_type =
7195 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
1ce677a4 7196 dval, TYPE_INDEX_TYPE (elt_type0));
e9bb382b 7197 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7198 result, range_type);
1ce677a4 7199 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7200 }
d2e4a39e 7201 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7202 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7203 }
7204
284614f0
JB
7205 if (packed_array_p)
7206 {
7207 /* So far, the resulting type has been created as if the original
7208 type was a regular (non-packed) array type. As a result, the
7209 bitsize of the array elements needs to be set again, and the array
7210 length needs to be recomputed based on that bitsize. */
7211 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7212 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7213
7214 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7215 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7216 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7217 TYPE_LENGTH (result)++;
7218 }
7219
876cecd0 7220 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7221 return result;
d2e4a39e 7222}
14f9c5c9
AS
7223
7224
7225/* A standard type (containing no dynamically sized components)
7226 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7227 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7228 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7229 ADDRESS or in VALADDR contains these discriminants.
7230
1ed6ede0
JB
7231 If CHECK_TAG is not null, in the case of tagged types, this function
7232 attempts to locate the object's tag and use it to compute the actual
7233 type. However, when ADDRESS is null, we cannot use it to determine the
7234 location of the tag, and therefore compute the tagged type's actual type.
7235 So we return the tagged type without consulting the tag. */
529cad9c 7236
f192137b
JB
7237static struct type *
7238ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7239 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7240{
61ee279c 7241 type = ada_check_typedef (type);
d2e4a39e
AS
7242 switch (TYPE_CODE (type))
7243 {
7244 default:
14f9c5c9 7245 return type;
d2e4a39e 7246 case TYPE_CODE_STRUCT:
4c4b4cd2 7247 {
76a01679 7248 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7249 struct type *fixed_record_type =
7250 to_fixed_record_type (type, valaddr, address, NULL);
529cad9c
PH
7251 /* If STATIC_TYPE is a tagged type and we know the object's address,
7252 then we can determine its tag, and compute the object's actual
1ed6ede0
JB
7253 type from there. Note that we have to use the fixed record
7254 type (the parent part of the record may have dynamic fields
7255 and the way the location of _tag is expressed may depend on
7256 them). */
529cad9c 7257
1ed6ede0 7258 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7259 {
7260 struct type *real_type =
1ed6ede0
JB
7261 type_from_tag (value_tag_from_contents_and_address
7262 (fixed_record_type,
7263 valaddr,
7264 address));
76a01679 7265 if (real_type != NULL)
1ed6ede0 7266 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7267 }
4af88198
JB
7268
7269 /* Check to see if there is a parallel ___XVZ variable.
7270 If there is, then it provides the actual size of our type. */
7271 else if (ada_type_name (fixed_record_type) != NULL)
7272 {
7273 char *name = ada_type_name (fixed_record_type);
7274 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7275 int xvz_found = 0;
7276 LONGEST size;
7277
88c15c34 7278 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7279 size = get_int_var_value (xvz_name, &xvz_found);
7280 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7281 {
7282 fixed_record_type = copy_type (fixed_record_type);
7283 TYPE_LENGTH (fixed_record_type) = size;
7284
7285 /* The FIXED_RECORD_TYPE may have be a stub. We have
7286 observed this when the debugging info is STABS, and
7287 apparently it is something that is hard to fix.
7288
7289 In practice, we don't need the actual type definition
7290 at all, because the presence of the XVZ variable allows us
7291 to assume that there must be a XVS type as well, which we
7292 should be able to use later, when we need the actual type
7293 definition.
7294
7295 In the meantime, pretend that the "fixed" type we are
7296 returning is NOT a stub, because this can cause trouble
7297 when using this type to create new types targeting it.
7298 Indeed, the associated creation routines often check
7299 whether the target type is a stub and will try to replace
7300 it, thus using a type with the wrong size. This, in turn,
7301 might cause the new type to have the wrong size too.
7302 Consider the case of an array, for instance, where the size
7303 of the array is computed from the number of elements in
7304 our array multiplied by the size of its element. */
7305 TYPE_STUB (fixed_record_type) = 0;
7306 }
7307 }
1ed6ede0 7308 return fixed_record_type;
4c4b4cd2 7309 }
d2e4a39e 7310 case TYPE_CODE_ARRAY:
4c4b4cd2 7311 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7312 case TYPE_CODE_UNION:
7313 if (dval == NULL)
4c4b4cd2 7314 return type;
d2e4a39e 7315 else
4c4b4cd2 7316 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7317 }
14f9c5c9
AS
7318}
7319
f192137b
JB
7320/* The same as ada_to_fixed_type_1, except that it preserves the type
7321 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7322 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7323
7324struct type *
7325ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7326 CORE_ADDR address, struct value *dval, int check_tag)
7327
7328{
7329 struct type *fixed_type =
7330 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7331
7332 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7333 && TYPE_TARGET_TYPE (type) == fixed_type)
7334 return type;
7335
7336 return fixed_type;
7337}
7338
14f9c5c9 7339/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7340 TYPE0, but based on no runtime data. */
14f9c5c9 7341
d2e4a39e
AS
7342static struct type *
7343to_static_fixed_type (struct type *type0)
14f9c5c9 7344{
d2e4a39e 7345 struct type *type;
14f9c5c9
AS
7346
7347 if (type0 == NULL)
7348 return NULL;
7349
876cecd0 7350 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7351 return type0;
7352
61ee279c 7353 type0 = ada_check_typedef (type0);
d2e4a39e 7354
14f9c5c9
AS
7355 switch (TYPE_CODE (type0))
7356 {
7357 default:
7358 return type0;
7359 case TYPE_CODE_STRUCT:
7360 type = dynamic_template_type (type0);
d2e4a39e 7361 if (type != NULL)
4c4b4cd2
PH
7362 return template_to_static_fixed_type (type);
7363 else
7364 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7365 case TYPE_CODE_UNION:
7366 type = ada_find_parallel_type (type0, "___XVU");
7367 if (type != NULL)
4c4b4cd2
PH
7368 return template_to_static_fixed_type (type);
7369 else
7370 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7371 }
7372}
7373
4c4b4cd2
PH
7374/* A static approximation of TYPE with all type wrappers removed. */
7375
d2e4a39e
AS
7376static struct type *
7377static_unwrap_type (struct type *type)
14f9c5c9
AS
7378{
7379 if (ada_is_aligner_type (type))
7380 {
61ee279c 7381 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7382 if (ada_type_name (type1) == NULL)
4c4b4cd2 7383 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7384
7385 return static_unwrap_type (type1);
7386 }
d2e4a39e 7387 else
14f9c5c9 7388 {
d2e4a39e
AS
7389 struct type *raw_real_type = ada_get_base_type (type);
7390 if (raw_real_type == type)
4c4b4cd2 7391 return type;
14f9c5c9 7392 else
4c4b4cd2 7393 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7394 }
7395}
7396
7397/* In some cases, incomplete and private types require
4c4b4cd2 7398 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7399 type Foo;
7400 type FooP is access Foo;
7401 V: FooP;
7402 type Foo is array ...;
4c4b4cd2 7403 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7404 cross-references to such types, we instead substitute for FooP a
7405 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7406 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7407
7408/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7409 exists, otherwise TYPE. */
7410
d2e4a39e 7411struct type *
61ee279c 7412ada_check_typedef (struct type *type)
14f9c5c9 7413{
727e3d2e
JB
7414 if (type == NULL)
7415 return NULL;
7416
14f9c5c9
AS
7417 CHECK_TYPEDEF (type);
7418 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7419 || !TYPE_STUB (type)
14f9c5c9
AS
7420 || TYPE_TAG_NAME (type) == NULL)
7421 return type;
d2e4a39e 7422 else
14f9c5c9 7423 {
d2e4a39e
AS
7424 char *name = TYPE_TAG_NAME (type);
7425 struct type *type1 = ada_find_any_type (name);
14f9c5c9
AS
7426 return (type1 == NULL) ? type : type1;
7427 }
7428}
7429
7430/* A value representing the data at VALADDR/ADDRESS as described by
7431 type TYPE0, but with a standard (static-sized) type that correctly
7432 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7433 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7434 creation of struct values]. */
14f9c5c9 7435
4c4b4cd2
PH
7436static struct value *
7437ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7438 struct value *val0)
14f9c5c9 7439{
1ed6ede0 7440 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
14f9c5c9
AS
7441 if (type == type0 && val0 != NULL)
7442 return val0;
d2e4a39e 7443 else
4c4b4cd2
PH
7444 return value_from_contents_and_address (type, 0, address);
7445}
7446
7447/* A value representing VAL, but with a standard (static-sized) type
7448 that correctly describes it. Does not necessarily create a new
7449 value. */
7450
7451static struct value *
7452ada_to_fixed_value (struct value *val)
7453{
df407dfe 7454 return ada_to_fixed_value_create (value_type (val),
42ae5230 7455 value_address (val),
4c4b4cd2 7456 val);
14f9c5c9
AS
7457}
7458
4c4b4cd2 7459/* A value representing VAL, but with a standard (static-sized) type
14f9c5c9
AS
7460 chosen to approximate the real type of VAL as well as possible, but
7461 without consulting any runtime values. For Ada dynamic-sized
4c4b4cd2 7462 types, therefore, the type of the result is likely to be inaccurate. */
14f9c5c9 7463
2c0b251b 7464static struct value *
d2e4a39e 7465ada_to_static_fixed_value (struct value *val)
14f9c5c9 7466{
d2e4a39e 7467 struct type *type =
df407dfe
AC
7468 to_static_fixed_type (static_unwrap_type (value_type (val)));
7469 if (type == value_type (val))
14f9c5c9
AS
7470 return val;
7471 else
4c4b4cd2 7472 return coerce_unspec_val_to_type (val, type);
14f9c5c9 7473}
d2e4a39e 7474\f
14f9c5c9 7475
14f9c5c9
AS
7476/* Attributes */
7477
4c4b4cd2
PH
7478/* Table mapping attribute numbers to names.
7479 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7480
d2e4a39e 7481static const char *attribute_names[] = {
14f9c5c9
AS
7482 "<?>",
7483
d2e4a39e 7484 "first",
14f9c5c9
AS
7485 "last",
7486 "length",
7487 "image",
14f9c5c9
AS
7488 "max",
7489 "min",
4c4b4cd2
PH
7490 "modulus",
7491 "pos",
7492 "size",
7493 "tag",
14f9c5c9 7494 "val",
14f9c5c9
AS
7495 0
7496};
7497
d2e4a39e 7498const char *
4c4b4cd2 7499ada_attribute_name (enum exp_opcode n)
14f9c5c9 7500{
4c4b4cd2
PH
7501 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7502 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7503 else
7504 return attribute_names[0];
7505}
7506
4c4b4cd2 7507/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7508
4c4b4cd2
PH
7509static LONGEST
7510pos_atr (struct value *arg)
14f9c5c9 7511{
24209737
PH
7512 struct value *val = coerce_ref (arg);
7513 struct type *type = value_type (val);
14f9c5c9 7514
d2e4a39e 7515 if (!discrete_type_p (type))
323e0a4a 7516 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7517
7518 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7519 {
7520 int i;
24209737 7521 LONGEST v = value_as_long (val);
14f9c5c9 7522
d2e4a39e 7523 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7524 {
7525 if (v == TYPE_FIELD_BITPOS (type, i))
7526 return i;
7527 }
323e0a4a 7528 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7529 }
7530 else
24209737 7531 return value_as_long (val);
4c4b4cd2
PH
7532}
7533
7534static struct value *
3cb382c9 7535value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 7536{
3cb382c9 7537 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
7538}
7539
4c4b4cd2 7540/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7541
d2e4a39e
AS
7542static struct value *
7543value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7544{
d2e4a39e 7545 if (!discrete_type_p (type))
323e0a4a 7546 error (_("'VAL only defined on discrete types"));
df407dfe 7547 if (!integer_type_p (value_type (arg)))
323e0a4a 7548 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7549
7550 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7551 {
7552 long pos = value_as_long (arg);
7553 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7554 error (_("argument to 'VAL out of range"));
d2e4a39e 7555 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7556 }
7557 else
7558 return value_from_longest (type, value_as_long (arg));
7559}
14f9c5c9 7560\f
d2e4a39e 7561
4c4b4cd2 7562 /* Evaluation */
14f9c5c9 7563
4c4b4cd2
PH
7564/* True if TYPE appears to be an Ada character type.
7565 [At the moment, this is true only for Character and Wide_Character;
7566 It is a heuristic test that could stand improvement]. */
14f9c5c9 7567
d2e4a39e
AS
7568int
7569ada_is_character_type (struct type *type)
14f9c5c9 7570{
7b9f71f2
JB
7571 const char *name;
7572
7573 /* If the type code says it's a character, then assume it really is,
7574 and don't check any further. */
7575 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7576 return 1;
7577
7578 /* Otherwise, assume it's a character type iff it is a discrete type
7579 with a known character type name. */
7580 name = ada_type_name (type);
7581 return (name != NULL
7582 && (TYPE_CODE (type) == TYPE_CODE_INT
7583 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7584 && (strcmp (name, "character") == 0
7585 || strcmp (name, "wide_character") == 0
5a517ebd 7586 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 7587 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
7588}
7589
4c4b4cd2 7590/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
7591
7592int
ebf56fd3 7593ada_is_string_type (struct type *type)
14f9c5c9 7594{
61ee279c 7595 type = ada_check_typedef (type);
d2e4a39e 7596 if (type != NULL
14f9c5c9 7597 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
7598 && (ada_is_simple_array_type (type)
7599 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
7600 && ada_array_arity (type) == 1)
7601 {
7602 struct type *elttype = ada_array_element_type (type, 1);
7603
7604 return ada_is_character_type (elttype);
7605 }
d2e4a39e 7606 else
14f9c5c9
AS
7607 return 0;
7608}
7609
7610
7611/* True if TYPE is a struct type introduced by the compiler to force the
7612 alignment of a value. Such types have a single field with a
4c4b4cd2 7613 distinctive name. */
14f9c5c9
AS
7614
7615int
ebf56fd3 7616ada_is_aligner_type (struct type *type)
14f9c5c9 7617{
61ee279c 7618 type = ada_check_typedef (type);
714e53ab
PH
7619
7620 /* If we can find a parallel XVS type, then the XVS type should
7621 be used instead of this type. And hence, this is not an aligner
7622 type. */
7623 if (ada_find_parallel_type (type, "___XVS") != NULL)
7624 return 0;
7625
14f9c5c9 7626 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
7627 && TYPE_NFIELDS (type) == 1
7628 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
7629}
7630
7631/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 7632 the parallel type. */
14f9c5c9 7633
d2e4a39e
AS
7634struct type *
7635ada_get_base_type (struct type *raw_type)
14f9c5c9 7636{
d2e4a39e
AS
7637 struct type *real_type_namer;
7638 struct type *raw_real_type;
14f9c5c9
AS
7639
7640 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7641 return raw_type;
7642
284614f0
JB
7643 if (ada_is_aligner_type (raw_type))
7644 /* The encoding specifies that we should always use the aligner type.
7645 So, even if this aligner type has an associated XVS type, we should
7646 simply ignore it.
7647
7648 According to the compiler gurus, an XVS type parallel to an aligner
7649 type may exist because of a stabs limitation. In stabs, aligner
7650 types are empty because the field has a variable-sized type, and
7651 thus cannot actually be used as an aligner type. As a result,
7652 we need the associated parallel XVS type to decode the type.
7653 Since the policy in the compiler is to not change the internal
7654 representation based on the debugging info format, we sometimes
7655 end up having a redundant XVS type parallel to the aligner type. */
7656 return raw_type;
7657
14f9c5c9 7658 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 7659 if (real_type_namer == NULL
14f9c5c9
AS
7660 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7661 || TYPE_NFIELDS (real_type_namer) != 1)
7662 return raw_type;
7663
7664 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
d2e4a39e 7665 if (raw_real_type == NULL)
14f9c5c9
AS
7666 return raw_type;
7667 else
7668 return raw_real_type;
d2e4a39e 7669}
14f9c5c9 7670
4c4b4cd2 7671/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 7672
d2e4a39e
AS
7673struct type *
7674ada_aligned_type (struct type *type)
14f9c5c9
AS
7675{
7676 if (ada_is_aligner_type (type))
7677 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7678 else
7679 return ada_get_base_type (type);
7680}
7681
7682
7683/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 7684 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 7685
fc1a4b47
AC
7686const gdb_byte *
7687ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 7688{
d2e4a39e 7689 if (ada_is_aligner_type (type))
14f9c5c9 7690 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
7691 valaddr +
7692 TYPE_FIELD_BITPOS (type,
7693 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
7694 else
7695 return valaddr;
7696}
7697
4c4b4cd2
PH
7698
7699
14f9c5c9 7700/* The printed representation of an enumeration literal with encoded
4c4b4cd2 7701 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
7702const char *
7703ada_enum_name (const char *name)
14f9c5c9 7704{
4c4b4cd2
PH
7705 static char *result;
7706 static size_t result_len = 0;
d2e4a39e 7707 char *tmp;
14f9c5c9 7708
4c4b4cd2
PH
7709 /* First, unqualify the enumeration name:
7710 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
7711 all the preceeding characters, the unqualified name starts
7712 right after that dot.
4c4b4cd2 7713 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
7714 translates dots into "__". Search forward for double underscores,
7715 but stop searching when we hit an overloading suffix, which is
7716 of the form "__" followed by digits. */
4c4b4cd2 7717
c3e5cd34
PH
7718 tmp = strrchr (name, '.');
7719 if (tmp != NULL)
4c4b4cd2
PH
7720 name = tmp + 1;
7721 else
14f9c5c9 7722 {
4c4b4cd2
PH
7723 while ((tmp = strstr (name, "__")) != NULL)
7724 {
7725 if (isdigit (tmp[2]))
7726 break;
7727 else
7728 name = tmp + 2;
7729 }
14f9c5c9
AS
7730 }
7731
7732 if (name[0] == 'Q')
7733 {
14f9c5c9
AS
7734 int v;
7735 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
7736 {
7737 if (sscanf (name + 2, "%x", &v) != 1)
7738 return name;
7739 }
14f9c5c9 7740 else
4c4b4cd2 7741 return name;
14f9c5c9 7742
4c4b4cd2 7743 GROW_VECT (result, result_len, 16);
14f9c5c9 7744 if (isascii (v) && isprint (v))
88c15c34 7745 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 7746 else if (name[1] == 'U')
88c15c34 7747 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 7748 else
88c15c34 7749 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
7750
7751 return result;
7752 }
d2e4a39e 7753 else
4c4b4cd2 7754 {
c3e5cd34
PH
7755 tmp = strstr (name, "__");
7756 if (tmp == NULL)
7757 tmp = strstr (name, "$");
7758 if (tmp != NULL)
4c4b4cd2
PH
7759 {
7760 GROW_VECT (result, result_len, tmp - name + 1);
7761 strncpy (result, name, tmp - name);
7762 result[tmp - name] = '\0';
7763 return result;
7764 }
7765
7766 return name;
7767 }
14f9c5c9
AS
7768}
7769
14f9c5c9
AS
7770/* Evaluate the subexpression of EXP starting at *POS as for
7771 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 7772 expression. */
14f9c5c9 7773
d2e4a39e
AS
7774static struct value *
7775evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 7776{
4b27a620 7777 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
7778}
7779
7780/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 7781 value it wraps. */
14f9c5c9 7782
d2e4a39e
AS
7783static struct value *
7784unwrap_value (struct value *val)
14f9c5c9 7785{
df407dfe 7786 struct type *type = ada_check_typedef (value_type (val));
14f9c5c9
AS
7787 if (ada_is_aligner_type (type))
7788 {
de4d072f 7789 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 7790 struct type *val_type = ada_check_typedef (value_type (v));
14f9c5c9 7791 if (ada_type_name (val_type) == NULL)
4c4b4cd2 7792 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
7793
7794 return unwrap_value (v);
7795 }
d2e4a39e 7796 else
14f9c5c9 7797 {
d2e4a39e 7798 struct type *raw_real_type =
61ee279c 7799 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 7800
14f9c5c9 7801 if (type == raw_real_type)
4c4b4cd2 7802 return val;
14f9c5c9 7803
d2e4a39e 7804 return
4c4b4cd2
PH
7805 coerce_unspec_val_to_type
7806 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 7807 value_address (val),
1ed6ede0 7808 NULL, 1));
14f9c5c9
AS
7809 }
7810}
d2e4a39e
AS
7811
7812static struct value *
7813cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
7814{
7815 LONGEST val;
7816
df407dfe 7817 if (type == value_type (arg))
14f9c5c9 7818 return arg;
df407dfe 7819 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 7820 val = ada_float_to_fixed (type,
df407dfe 7821 ada_fixed_to_float (value_type (arg),
4c4b4cd2 7822 value_as_long (arg)));
d2e4a39e 7823 else
14f9c5c9 7824 {
a53b7a21 7825 DOUBLEST argd = value_as_double (arg);
14f9c5c9
AS
7826 val = ada_float_to_fixed (type, argd);
7827 }
7828
7829 return value_from_longest (type, val);
7830}
7831
d2e4a39e 7832static struct value *
a53b7a21 7833cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 7834{
df407dfe 7835 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 7836 value_as_long (arg));
a53b7a21 7837 return value_from_double (type, val);
14f9c5c9
AS
7838}
7839
4c4b4cd2
PH
7840/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7841 return the converted value. */
7842
d2e4a39e
AS
7843static struct value *
7844coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 7845{
df407dfe 7846 struct type *type2 = value_type (val);
14f9c5c9
AS
7847 if (type == type2)
7848 return val;
7849
61ee279c
PH
7850 type2 = ada_check_typedef (type2);
7851 type = ada_check_typedef (type);
14f9c5c9 7852
d2e4a39e
AS
7853 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7854 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
7855 {
7856 val = ada_value_ind (val);
df407dfe 7857 type2 = value_type (val);
14f9c5c9
AS
7858 }
7859
d2e4a39e 7860 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
7861 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7862 {
7863 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
7864 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7865 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 7866 error (_("Incompatible types in assignment"));
04624583 7867 deprecated_set_value_type (val, type);
14f9c5c9 7868 }
d2e4a39e 7869 return val;
14f9c5c9
AS
7870}
7871
4c4b4cd2
PH
7872static struct value *
7873ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7874{
7875 struct value *val;
7876 struct type *type1, *type2;
7877 LONGEST v, v1, v2;
7878
994b9211
AC
7879 arg1 = coerce_ref (arg1);
7880 arg2 = coerce_ref (arg2);
df407dfe
AC
7881 type1 = base_type (ada_check_typedef (value_type (arg1)));
7882 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 7883
76a01679
JB
7884 if (TYPE_CODE (type1) != TYPE_CODE_INT
7885 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
7886 return value_binop (arg1, arg2, op);
7887
76a01679 7888 switch (op)
4c4b4cd2
PH
7889 {
7890 case BINOP_MOD:
7891 case BINOP_DIV:
7892 case BINOP_REM:
7893 break;
7894 default:
7895 return value_binop (arg1, arg2, op);
7896 }
7897
7898 v2 = value_as_long (arg2);
7899 if (v2 == 0)
323e0a4a 7900 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
7901
7902 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7903 return value_binop (arg1, arg2, op);
7904
7905 v1 = value_as_long (arg1);
7906 switch (op)
7907 {
7908 case BINOP_DIV:
7909 v = v1 / v2;
76a01679
JB
7910 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7911 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
7912 break;
7913 case BINOP_REM:
7914 v = v1 % v2;
76a01679
JB
7915 if (v * v1 < 0)
7916 v -= v2;
4c4b4cd2
PH
7917 break;
7918 default:
7919 /* Should not reach this point. */
7920 v = 0;
7921 }
7922
7923 val = allocate_value (type1);
990a07ab 7924 store_unsigned_integer (value_contents_raw (val),
df407dfe 7925 TYPE_LENGTH (value_type (val)), v);
4c4b4cd2
PH
7926 return val;
7927}
7928
7929static int
7930ada_value_equal (struct value *arg1, struct value *arg2)
7931{
df407dfe
AC
7932 if (ada_is_direct_array_type (value_type (arg1))
7933 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 7934 {
f58b38bf
JB
7935 /* Automatically dereference any array reference before
7936 we attempt to perform the comparison. */
7937 arg1 = ada_coerce_ref (arg1);
7938 arg2 = ada_coerce_ref (arg2);
7939
4c4b4cd2
PH
7940 arg1 = ada_coerce_to_simple_array (arg1);
7941 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
7942 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7943 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 7944 error (_("Attempt to compare array with non-array"));
4c4b4cd2 7945 /* FIXME: The following works only for types whose
76a01679
JB
7946 representations use all bits (no padding or undefined bits)
7947 and do not have user-defined equality. */
7948 return
df407dfe 7949 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 7950 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 7951 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
7952 }
7953 return value_equal (arg1, arg2);
7954}
7955
52ce6436
PH
7956/* Total number of component associations in the aggregate starting at
7957 index PC in EXP. Assumes that index PC is the start of an
7958 OP_AGGREGATE. */
7959
7960static int
7961num_component_specs (struct expression *exp, int pc)
7962{
7963 int n, m, i;
7964 m = exp->elts[pc + 1].longconst;
7965 pc += 3;
7966 n = 0;
7967 for (i = 0; i < m; i += 1)
7968 {
7969 switch (exp->elts[pc].opcode)
7970 {
7971 default:
7972 n += 1;
7973 break;
7974 case OP_CHOICES:
7975 n += exp->elts[pc + 1].longconst;
7976 break;
7977 }
7978 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7979 }
7980 return n;
7981}
7982
7983/* Assign the result of evaluating EXP starting at *POS to the INDEXth
7984 component of LHS (a simple array or a record), updating *POS past
7985 the expression, assuming that LHS is contained in CONTAINER. Does
7986 not modify the inferior's memory, nor does it modify LHS (unless
7987 LHS == CONTAINER). */
7988
7989static void
7990assign_component (struct value *container, struct value *lhs, LONGEST index,
7991 struct expression *exp, int *pos)
7992{
7993 struct value *mark = value_mark ();
7994 struct value *elt;
7995 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7996 {
22601c15
UW
7997 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
7998 struct value *index_val = value_from_longest (index_type, index);
52ce6436
PH
7999 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8000 }
8001 else
8002 {
8003 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8004 elt = ada_to_fixed_value (unwrap_value (elt));
8005 }
8006
8007 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8008 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8009 else
8010 value_assign_to_component (container, elt,
8011 ada_evaluate_subexp (NULL, exp, pos,
8012 EVAL_NORMAL));
8013
8014 value_free_to_mark (mark);
8015}
8016
8017/* Assuming that LHS represents an lvalue having a record or array
8018 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8019 of that aggregate's value to LHS, advancing *POS past the
8020 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8021 lvalue containing LHS (possibly LHS itself). Does not modify
8022 the inferior's memory, nor does it modify the contents of
8023 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8024
8025static struct value *
8026assign_aggregate (struct value *container,
8027 struct value *lhs, struct expression *exp,
8028 int *pos, enum noside noside)
8029{
8030 struct type *lhs_type;
8031 int n = exp->elts[*pos+1].longconst;
8032 LONGEST low_index, high_index;
8033 int num_specs;
8034 LONGEST *indices;
8035 int max_indices, num_indices;
8036 int is_array_aggregate;
8037 int i;
8038 struct value *mark = value_mark ();
8039
8040 *pos += 3;
8041 if (noside != EVAL_NORMAL)
8042 {
8043 int i;
8044 for (i = 0; i < n; i += 1)
8045 ada_evaluate_subexp (NULL, exp, pos, noside);
8046 return container;
8047 }
8048
8049 container = ada_coerce_ref (container);
8050 if (ada_is_direct_array_type (value_type (container)))
8051 container = ada_coerce_to_simple_array (container);
8052 lhs = ada_coerce_ref (lhs);
8053 if (!deprecated_value_modifiable (lhs))
8054 error (_("Left operand of assignment is not a modifiable lvalue."));
8055
8056 lhs_type = value_type (lhs);
8057 if (ada_is_direct_array_type (lhs_type))
8058 {
8059 lhs = ada_coerce_to_simple_array (lhs);
8060 lhs_type = value_type (lhs);
8061 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8062 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8063 is_array_aggregate = 1;
8064 }
8065 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8066 {
8067 low_index = 0;
8068 high_index = num_visible_fields (lhs_type) - 1;
8069 is_array_aggregate = 0;
8070 }
8071 else
8072 error (_("Left-hand side must be array or record."));
8073
8074 num_specs = num_component_specs (exp, *pos - 3);
8075 max_indices = 4 * num_specs + 4;
8076 indices = alloca (max_indices * sizeof (indices[0]));
8077 indices[0] = indices[1] = low_index - 1;
8078 indices[2] = indices[3] = high_index + 1;
8079 num_indices = 4;
8080
8081 for (i = 0; i < n; i += 1)
8082 {
8083 switch (exp->elts[*pos].opcode)
8084 {
8085 case OP_CHOICES:
8086 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8087 &num_indices, max_indices,
8088 low_index, high_index);
8089 break;
8090 case OP_POSITIONAL:
8091 aggregate_assign_positional (container, lhs, exp, pos, indices,
8092 &num_indices, max_indices,
8093 low_index, high_index);
8094 break;
8095 case OP_OTHERS:
8096 if (i != n-1)
8097 error (_("Misplaced 'others' clause"));
8098 aggregate_assign_others (container, lhs, exp, pos, indices,
8099 num_indices, low_index, high_index);
8100 break;
8101 default:
8102 error (_("Internal error: bad aggregate clause"));
8103 }
8104 }
8105
8106 return container;
8107}
8108
8109/* Assign into the component of LHS indexed by the OP_POSITIONAL
8110 construct at *POS, updating *POS past the construct, given that
8111 the positions are relative to lower bound LOW, where HIGH is the
8112 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8113 updating *NUM_INDICES as needed. CONTAINER is as for
8114 assign_aggregate. */
8115static void
8116aggregate_assign_positional (struct value *container,
8117 struct value *lhs, struct expression *exp,
8118 int *pos, LONGEST *indices, int *num_indices,
8119 int max_indices, LONGEST low, LONGEST high)
8120{
8121 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8122
8123 if (ind - 1 == high)
e1d5a0d2 8124 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8125 if (ind <= high)
8126 {
8127 add_component_interval (ind, ind, indices, num_indices, max_indices);
8128 *pos += 3;
8129 assign_component (container, lhs, ind, exp, pos);
8130 }
8131 else
8132 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8133}
8134
8135/* Assign into the components of LHS indexed by the OP_CHOICES
8136 construct at *POS, updating *POS past the construct, given that
8137 the allowable indices are LOW..HIGH. Record the indices assigned
8138 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8139 needed. CONTAINER is as for assign_aggregate. */
8140static void
8141aggregate_assign_from_choices (struct value *container,
8142 struct value *lhs, struct expression *exp,
8143 int *pos, LONGEST *indices, int *num_indices,
8144 int max_indices, LONGEST low, LONGEST high)
8145{
8146 int j;
8147 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8148 int choice_pos, expr_pc;
8149 int is_array = ada_is_direct_array_type (value_type (lhs));
8150
8151 choice_pos = *pos += 3;
8152
8153 for (j = 0; j < n_choices; j += 1)
8154 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8155 expr_pc = *pos;
8156 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8157
8158 for (j = 0; j < n_choices; j += 1)
8159 {
8160 LONGEST lower, upper;
8161 enum exp_opcode op = exp->elts[choice_pos].opcode;
8162 if (op == OP_DISCRETE_RANGE)
8163 {
8164 choice_pos += 1;
8165 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8166 EVAL_NORMAL));
8167 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8168 EVAL_NORMAL));
8169 }
8170 else if (is_array)
8171 {
8172 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8173 EVAL_NORMAL));
8174 upper = lower;
8175 }
8176 else
8177 {
8178 int ind;
8179 char *name;
8180 switch (op)
8181 {
8182 case OP_NAME:
8183 name = &exp->elts[choice_pos + 2].string;
8184 break;
8185 case OP_VAR_VALUE:
8186 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8187 break;
8188 default:
8189 error (_("Invalid record component association."));
8190 }
8191 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8192 ind = 0;
8193 if (! find_struct_field (name, value_type (lhs), 0,
8194 NULL, NULL, NULL, NULL, &ind))
8195 error (_("Unknown component name: %s."), name);
8196 lower = upper = ind;
8197 }
8198
8199 if (lower <= upper && (lower < low || upper > high))
8200 error (_("Index in component association out of bounds."));
8201
8202 add_component_interval (lower, upper, indices, num_indices,
8203 max_indices);
8204 while (lower <= upper)
8205 {
8206 int pos1;
8207 pos1 = expr_pc;
8208 assign_component (container, lhs, lower, exp, &pos1);
8209 lower += 1;
8210 }
8211 }
8212}
8213
8214/* Assign the value of the expression in the OP_OTHERS construct in
8215 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8216 have not been previously assigned. The index intervals already assigned
8217 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8218 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8219static void
8220aggregate_assign_others (struct value *container,
8221 struct value *lhs, struct expression *exp,
8222 int *pos, LONGEST *indices, int num_indices,
8223 LONGEST low, LONGEST high)
8224{
8225 int i;
8226 int expr_pc = *pos+1;
8227
8228 for (i = 0; i < num_indices - 2; i += 2)
8229 {
8230 LONGEST ind;
8231 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8232 {
8233 int pos;
8234 pos = expr_pc;
8235 assign_component (container, lhs, ind, exp, &pos);
8236 }
8237 }
8238 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8239}
8240
8241/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8242 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8243 modifying *SIZE as needed. It is an error if *SIZE exceeds
8244 MAX_SIZE. The resulting intervals do not overlap. */
8245static void
8246add_component_interval (LONGEST low, LONGEST high,
8247 LONGEST* indices, int *size, int max_size)
8248{
8249 int i, j;
8250 for (i = 0; i < *size; i += 2) {
8251 if (high >= indices[i] && low <= indices[i + 1])
8252 {
8253 int kh;
8254 for (kh = i + 2; kh < *size; kh += 2)
8255 if (high < indices[kh])
8256 break;
8257 if (low < indices[i])
8258 indices[i] = low;
8259 indices[i + 1] = indices[kh - 1];
8260 if (high > indices[i + 1])
8261 indices[i + 1] = high;
8262 memcpy (indices + i + 2, indices + kh, *size - kh);
8263 *size -= kh - i - 2;
8264 return;
8265 }
8266 else if (high < indices[i])
8267 break;
8268 }
8269
8270 if (*size == max_size)
8271 error (_("Internal error: miscounted aggregate components."));
8272 *size += 2;
8273 for (j = *size-1; j >= i+2; j -= 1)
8274 indices[j] = indices[j - 2];
8275 indices[i] = low;
8276 indices[i + 1] = high;
8277}
8278
6e48bd2c
JB
8279/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8280 is different. */
8281
8282static struct value *
8283ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8284{
8285 if (type == ada_check_typedef (value_type (arg2)))
8286 return arg2;
8287
8288 if (ada_is_fixed_point_type (type))
8289 return (cast_to_fixed (type, arg2));
8290
8291 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8292 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8293
8294 return value_cast (type, arg2);
8295}
8296
284614f0
JB
8297/* Evaluating Ada expressions, and printing their result.
8298 ------------------------------------------------------
8299
8300 We usually evaluate an Ada expression in order to print its value.
8301 We also evaluate an expression in order to print its type, which
8302 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8303 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8304 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8305 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8306 similar.
8307
8308 Evaluating expressions is a little more complicated for Ada entities
8309 than it is for entities in languages such as C. The main reason for
8310 this is that Ada provides types whose definition might be dynamic.
8311 One example of such types is variant records. Or another example
8312 would be an array whose bounds can only be known at run time.
8313
8314 The following description is a general guide as to what should be
8315 done (and what should NOT be done) in order to evaluate an expression
8316 involving such types, and when. This does not cover how the semantic
8317 information is encoded by GNAT as this is covered separatly. For the
8318 document used as the reference for the GNAT encoding, see exp_dbug.ads
8319 in the GNAT sources.
8320
8321 Ideally, we should embed each part of this description next to its
8322 associated code. Unfortunately, the amount of code is so vast right
8323 now that it's hard to see whether the code handling a particular
8324 situation might be duplicated or not. One day, when the code is
8325 cleaned up, this guide might become redundant with the comments
8326 inserted in the code, and we might want to remove it.
8327
8328 When evaluating Ada expressions, the tricky issue is that they may
8329 reference entities whose type contents and size are not statically
8330 known. Consider for instance a variant record:
8331
8332 type Rec (Empty : Boolean := True) is record
8333 case Empty is
8334 when True => null;
8335 when False => Value : Integer;
8336 end case;
8337 end record;
8338 Yes : Rec := (Empty => False, Value => 1);
8339 No : Rec := (empty => True);
8340
8341 The size and contents of that record depends on the value of the
8342 descriminant (Rec.Empty). At this point, neither the debugging
8343 information nor the associated type structure in GDB are able to
8344 express such dynamic types. So what the debugger does is to create
8345 "fixed" versions of the type that applies to the specific object.
8346 We also informally refer to this opperation as "fixing" an object,
8347 which means creating its associated fixed type.
8348
8349 Example: when printing the value of variable "Yes" above, its fixed
8350 type would look like this:
8351
8352 type Rec is record
8353 Empty : Boolean;
8354 Value : Integer;
8355 end record;
8356
8357 On the other hand, if we printed the value of "No", its fixed type
8358 would become:
8359
8360 type Rec is record
8361 Empty : Boolean;
8362 end record;
8363
8364 Things become a little more complicated when trying to fix an entity
8365 with a dynamic type that directly contains another dynamic type,
8366 such as an array of variant records, for instance. There are
8367 two possible cases: Arrays, and records.
8368
8369 Arrays are a little simpler to handle, because the same amount of
8370 memory is allocated for each element of the array, even if the amount
8371 of space used by each element changes from element to element.
8372 Consider for instance the following array of type Rec:
8373
8374 type Rec_Array is array (1 .. 2) of Rec;
8375
8376 The type structure in GDB describes an array in terms of its
8377 bounds, and the type of its elements. By design, all elements
8378 in the array have the same type. So we cannot use a fixed type
8379 for the array elements in this case, since the fixed type depends
8380 on the actual value of each element.
8381
8382 Fortunately, what happens in practice is that each element of
8383 the array has the same size, which is the maximum size that
8384 might be needed in order to hold an object of the element type.
8385 And the compiler shows it in the debugging information by wrapping
8386 the array element inside a private PAD type. This type should not
8387 be shown to the user, and must be "unwrap"'ed before printing. Note
8388 that we also use the adjective "aligner" in our code to designate
8389 these wrapper types.
8390
8391 These wrapper types should have a constant size, which is the size
8392 of each element of the array. In the case when the size is statically
8393 known, the PAD type will already have the right size, and the array
8394 element type should remain unfixed. But there are cases when
8395 this size is not statically known. For instance, assuming that
8396 "Five" is an integer variable:
8397
8398 type Dynamic is array (1 .. Five) of Integer;
8399 type Wrapper (Has_Length : Boolean := False) is record
8400 Data : Dynamic;
8401 case Has_Length is
8402 when True => Length : Integer;
8403 when False => null;
8404 end case;
8405 end record;
8406 type Wrapper_Array is array (1 .. 2) of Wrapper;
8407
8408 Hello : Wrapper_Array := (others => (Has_Length => True,
8409 Data => (others => 17),
8410 Length => 1));
8411
8412
8413 The debugging info would describe variable Hello as being an
8414 array of a PAD type. The size of that PAD type is not statically
8415 known, but can be determined using a parallel XVZ variable.
8416 In that case, a copy of the PAD type with the correct size should
8417 be used for the fixed array.
8418
8419 However, things are slightly different in the case of dynamic
8420 record types. In this case, in order to compute the associated
8421 fixed type, we need to determine the size and offset of each of
8422 its components. This, in turn, requires us to compute the fixed
8423 type of each of these components.
8424
8425 Consider for instance the example:
8426
8427 type Bounded_String (Max_Size : Natural) is record
8428 Str : String (1 .. Max_Size);
8429 Length : Natural;
8430 end record;
8431 My_String : Bounded_String (Max_Size => 10);
8432
8433 In that case, the position of field "Length" depends on the size
8434 of field Str, which itself depends on the value of the Max_Size
8435 discriminant. In order to fix the type of variable My_String,
8436 we need to fix the type of field Str. Therefore, fixing a variant
8437 record requires us to fix each of its components.
8438
8439 However, if a component does not have a dynamic size, the component
8440 should not be fixed. In particular, fields that use a PAD type
8441 should not fixed. Here is an example where this might happen
8442 (assuming type Rec above):
8443
8444 type Container (Big : Boolean) is record
8445 First : Rec;
8446 After : Integer;
8447 case Big is
8448 when True => Another : Integer;
8449 when False => null;
8450 end case;
8451 end record;
8452 My_Container : Container := (Big => False,
8453 First => (Empty => True),
8454 After => 42);
8455
8456 In that example, the compiler creates a PAD type for component First,
8457 whose size is constant, and then positions the component After just
8458 right after it. The offset of component After is therefore constant
8459 in this case.
8460
8461 The debugger computes the position of each field based on an algorithm
8462 that uses, among other things, the actual position and size of the field
8463 preceding it. Let's now imagine that the user is trying to print the
8464 value of My_Container. If the type fixing was recursive, we would
8465 end up computing the offset of field After based on the size of the
8466 fixed version of field First. And since in our example First has
8467 only one actual field, the size of the fixed type is actually smaller
8468 than the amount of space allocated to that field, and thus we would
8469 compute the wrong offset of field After.
8470
8471 Unfortunately, we need to watch out for dynamic components of variant
8472 records (identified by the ___XVL suffix in the component name).
8473 Even if the target type is a PAD type, the size of that type might
8474 not be statically known. So the PAD type needs to be unwrapped and
8475 the resulting type needs to be fixed. Otherwise, we might end up
8476 with the wrong size for our component. This can be observed with
8477 the following type declarations:
8478
8479 type Octal is new Integer range 0 .. 7;
8480 type Octal_Array is array (Positive range <>) of Octal;
8481 pragma Pack (Octal_Array);
8482
8483 type Octal_Buffer (Size : Positive) is record
8484 Buffer : Octal_Array (1 .. Size);
8485 Length : Integer;
8486 end record;
8487
8488 In that case, Buffer is a PAD type whose size is unset and needs
8489 to be computed by fixing the unwrapped type.
8490
8491 Lastly, when should the sub-elements of a type that remained unfixed
8492 thus far, be actually fixed?
8493
8494 The answer is: Only when referencing that element. For instance
8495 when selecting one component of a record, this specific component
8496 should be fixed at that point in time. Or when printing the value
8497 of a record, each component should be fixed before its value gets
8498 printed. Similarly for arrays, the element of the array should be
8499 fixed when printing each element of the array, or when extracting
8500 one element out of that array. On the other hand, fixing should
8501 not be performed on the elements when taking a slice of an array!
8502
8503 Note that one of the side-effects of miscomputing the offset and
8504 size of each field is that we end up also miscomputing the size
8505 of the containing type. This can have adverse results when computing
8506 the value of an entity. GDB fetches the value of an entity based
8507 on the size of its type, and thus a wrong size causes GDB to fetch
8508 the wrong amount of memory. In the case where the computed size is
8509 too small, GDB fetches too little data to print the value of our
8510 entiry. Results in this case as unpredicatble, as we usually read
8511 past the buffer containing the data =:-o. */
8512
8513/* Implement the evaluate_exp routine in the exp_descriptor structure
8514 for the Ada language. */
8515
52ce6436 8516static struct value *
ebf56fd3 8517ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 8518 int *pos, enum noside noside)
14f9c5c9
AS
8519{
8520 enum exp_opcode op;
14f9c5c9
AS
8521 int tem, tem2, tem3;
8522 int pc;
8523 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8524 struct type *type;
52ce6436 8525 int nargs, oplen;
d2e4a39e 8526 struct value **argvec;
14f9c5c9 8527
d2e4a39e
AS
8528 pc = *pos;
8529 *pos += 1;
14f9c5c9
AS
8530 op = exp->elts[pc].opcode;
8531
d2e4a39e 8532 switch (op)
14f9c5c9
AS
8533 {
8534 default:
8535 *pos -= 1;
6e48bd2c
JB
8536 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8537 arg1 = unwrap_value (arg1);
8538
8539 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8540 then we need to perform the conversion manually, because
8541 evaluate_subexp_standard doesn't do it. This conversion is
8542 necessary in Ada because the different kinds of float/fixed
8543 types in Ada have different representations.
8544
8545 Similarly, we need to perform the conversion from OP_LONG
8546 ourselves. */
8547 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8548 arg1 = ada_value_cast (expect_type, arg1, noside);
8549
8550 return arg1;
4c4b4cd2
PH
8551
8552 case OP_STRING:
8553 {
76a01679
JB
8554 struct value *result;
8555 *pos -= 1;
8556 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8557 /* The result type will have code OP_STRING, bashed there from
8558 OP_ARRAY. Bash it back. */
df407dfe
AC
8559 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8560 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 8561 return result;
4c4b4cd2 8562 }
14f9c5c9
AS
8563
8564 case UNOP_CAST:
8565 (*pos) += 2;
8566 type = exp->elts[pc + 1].type;
8567 arg1 = evaluate_subexp (type, exp, pos, noside);
8568 if (noside == EVAL_SKIP)
4c4b4cd2 8569 goto nosideret;
6e48bd2c 8570 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
8571 return arg1;
8572
4c4b4cd2
PH
8573 case UNOP_QUAL:
8574 (*pos) += 2;
8575 type = exp->elts[pc + 1].type;
8576 return ada_evaluate_subexp (type, exp, pos, noside);
8577
14f9c5c9
AS
8578 case BINOP_ASSIGN:
8579 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
8580 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8581 {
8582 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8583 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8584 return arg1;
8585 return ada_value_assign (arg1, arg1);
8586 }
003f3813
JB
8587 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8588 except if the lhs of our assignment is a convenience variable.
8589 In the case of assigning to a convenience variable, the lhs
8590 should be exactly the result of the evaluation of the rhs. */
8591 type = value_type (arg1);
8592 if (VALUE_LVAL (arg1) == lval_internalvar)
8593 type = NULL;
8594 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 8595 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8596 return arg1;
df407dfe
AC
8597 if (ada_is_fixed_point_type (value_type (arg1)))
8598 arg2 = cast_to_fixed (value_type (arg1), arg2);
8599 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 8600 error
323e0a4a 8601 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 8602 else
df407dfe 8603 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 8604 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
8605
8606 case BINOP_ADD:
8607 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8608 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8609 if (noside == EVAL_SKIP)
4c4b4cd2 8610 goto nosideret;
2ac8a782
JB
8611 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8612 return (value_from_longest
8613 (value_type (arg1),
8614 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
8615 if ((ada_is_fixed_point_type (value_type (arg1))
8616 || ada_is_fixed_point_type (value_type (arg2)))
8617 && value_type (arg1) != value_type (arg2))
323e0a4a 8618 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
8619 /* Do the addition, and cast the result to the type of the first
8620 argument. We cannot cast the result to a reference type, so if
8621 ARG1 is a reference type, find its underlying type. */
8622 type = value_type (arg1);
8623 while (TYPE_CODE (type) == TYPE_CODE_REF)
8624 type = TYPE_TARGET_TYPE (type);
f44316fa 8625 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8626 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
8627
8628 case BINOP_SUB:
8629 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8630 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8631 if (noside == EVAL_SKIP)
4c4b4cd2 8632 goto nosideret;
2ac8a782
JB
8633 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8634 return (value_from_longest
8635 (value_type (arg1),
8636 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
8637 if ((ada_is_fixed_point_type (value_type (arg1))
8638 || ada_is_fixed_point_type (value_type (arg2)))
8639 && value_type (arg1) != value_type (arg2))
323e0a4a 8640 error (_("Operands of fixed-point subtraction must have the same type"));
b7789565
JB
8641 /* Do the substraction, and cast the result to the type of the first
8642 argument. We cannot cast the result to a reference type, so if
8643 ARG1 is a reference type, find its underlying type. */
8644 type = value_type (arg1);
8645 while (TYPE_CODE (type) == TYPE_CODE_REF)
8646 type = TYPE_TARGET_TYPE (type);
f44316fa 8647 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8648 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
8649
8650 case BINOP_MUL:
8651 case BINOP_DIV:
e1578042
JB
8652 case BINOP_REM:
8653 case BINOP_MOD:
14f9c5c9
AS
8654 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8655 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8656 if (noside == EVAL_SKIP)
4c4b4cd2 8657 goto nosideret;
e1578042 8658 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
8659 {
8660 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8661 return value_zero (value_type (arg1), not_lval);
8662 }
14f9c5c9 8663 else
4c4b4cd2 8664 {
a53b7a21 8665 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 8666 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 8667 arg1 = cast_from_fixed (type, arg1);
df407dfe 8668 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8669 arg2 = cast_from_fixed (type, arg2);
f44316fa 8670 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
8671 return ada_value_binop (arg1, arg2, op);
8672 }
8673
4c4b4cd2
PH
8674 case BINOP_EQUAL:
8675 case BINOP_NOTEQUAL:
14f9c5c9 8676 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 8677 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 8678 if (noside == EVAL_SKIP)
76a01679 8679 goto nosideret;
4c4b4cd2 8680 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8681 tem = 0;
4c4b4cd2 8682 else
f44316fa
UW
8683 {
8684 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8685 tem = ada_value_equal (arg1, arg2);
8686 }
4c4b4cd2 8687 if (op == BINOP_NOTEQUAL)
76a01679 8688 tem = !tem;
fbb06eb1
UW
8689 type = language_bool_type (exp->language_defn, exp->gdbarch);
8690 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
8691
8692 case UNOP_NEG:
8693 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8694 if (noside == EVAL_SKIP)
8695 goto nosideret;
df407dfe
AC
8696 else if (ada_is_fixed_point_type (value_type (arg1)))
8697 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 8698 else
f44316fa
UW
8699 {
8700 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8701 return value_neg (arg1);
8702 }
4c4b4cd2 8703
2330c6c6
JB
8704 case BINOP_LOGICAL_AND:
8705 case BINOP_LOGICAL_OR:
8706 case UNOP_LOGICAL_NOT:
000d5124
JB
8707 {
8708 struct value *val;
8709
8710 *pos -= 1;
8711 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
8712 type = language_bool_type (exp->language_defn, exp->gdbarch);
8713 return value_cast (type, val);
000d5124 8714 }
2330c6c6
JB
8715
8716 case BINOP_BITWISE_AND:
8717 case BINOP_BITWISE_IOR:
8718 case BINOP_BITWISE_XOR:
000d5124
JB
8719 {
8720 struct value *val;
8721
8722 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8723 *pos = pc;
8724 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8725
8726 return value_cast (value_type (arg1), val);
8727 }
2330c6c6 8728
14f9c5c9
AS
8729 case OP_VAR_VALUE:
8730 *pos -= 1;
6799def4 8731
14f9c5c9 8732 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8733 {
8734 *pos += 4;
8735 goto nosideret;
8736 }
8737 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
8738 /* Only encountered when an unresolved symbol occurs in a
8739 context other than a function call, in which case, it is
52ce6436 8740 invalid. */
323e0a4a 8741 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 8742 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 8743 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8744 {
0c1f74cf
JB
8745 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8746 if (ada_is_tagged_type (type, 0))
8747 {
8748 /* Tagged types are a little special in the fact that the real
8749 type is dynamic and can only be determined by inspecting the
8750 object's tag. This means that we need to get the object's
8751 value first (EVAL_NORMAL) and then extract the actual object
8752 type from its tag.
8753
8754 Note that we cannot skip the final step where we extract
8755 the object type from its tag, because the EVAL_NORMAL phase
8756 results in dynamic components being resolved into fixed ones.
8757 This can cause problems when trying to print the type
8758 description of tagged types whose parent has a dynamic size:
8759 We use the type name of the "_parent" component in order
8760 to print the name of the ancestor type in the type description.
8761 If that component had a dynamic size, the resolution into
8762 a fixed type would result in the loss of that type name,
8763 thus preventing us from printing the name of the ancestor
8764 type in the type description. */
b79819ba
JB
8765 struct type *actual_type;
8766
0c1f74cf 8767 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
8768 actual_type = type_from_tag (ada_value_tag (arg1));
8769 if (actual_type == NULL)
8770 /* If, for some reason, we were unable to determine
8771 the actual type from the tag, then use the static
8772 approximation that we just computed as a fallback.
8773 This can happen if the debugging information is
8774 incomplete, for instance. */
8775 actual_type = type;
8776
8777 return value_zero (actual_type, not_lval);
0c1f74cf
JB
8778 }
8779
4c4b4cd2
PH
8780 *pos += 4;
8781 return value_zero
8782 (to_static_fixed_type
8783 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8784 not_lval);
8785 }
d2e4a39e 8786 else
4c4b4cd2 8787 {
284614f0
JB
8788 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8789 arg1 = unwrap_value (arg1);
4c4b4cd2
PH
8790 return ada_to_fixed_value (arg1);
8791 }
8792
8793 case OP_FUNCALL:
8794 (*pos) += 2;
8795
8796 /* Allocate arg vector, including space for the function to be
8797 called in argvec[0] and a terminating NULL. */
8798 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8799 argvec =
8800 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8801
8802 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 8803 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 8804 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
8805 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8806 else
8807 {
8808 for (tem = 0; tem <= nargs; tem += 1)
8809 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8810 argvec[tem] = 0;
8811
8812 if (noside == EVAL_SKIP)
8813 goto nosideret;
8814 }
8815
df407dfe 8816 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 8817 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
8818 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8819 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8820 /* This is a packed array that has already been fixed, and
8821 therefore already coerced to a simple array. Nothing further
8822 to do. */
8823 ;
df407dfe
AC
8824 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8825 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 8826 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
8827 argvec[0] = value_addr (argvec[0]);
8828
df407dfe 8829 type = ada_check_typedef (value_type (argvec[0]));
4c4b4cd2
PH
8830 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8831 {
61ee279c 8832 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
8833 {
8834 case TYPE_CODE_FUNC:
61ee279c 8835 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8836 break;
8837 case TYPE_CODE_ARRAY:
8838 break;
8839 case TYPE_CODE_STRUCT:
8840 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8841 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 8842 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8843 break;
8844 default:
323e0a4a 8845 error (_("cannot subscript or call something of type `%s'"),
df407dfe 8846 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
8847 break;
8848 }
8849 }
8850
8851 switch (TYPE_CODE (type))
8852 {
8853 case TYPE_CODE_FUNC:
8854 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8855 return allocate_value (TYPE_TARGET_TYPE (type));
8856 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8857 case TYPE_CODE_STRUCT:
8858 {
8859 int arity;
8860
4c4b4cd2
PH
8861 arity = ada_array_arity (type);
8862 type = ada_array_element_type (type, nargs);
8863 if (type == NULL)
323e0a4a 8864 error (_("cannot subscript or call a record"));
4c4b4cd2 8865 if (arity != nargs)
323e0a4a 8866 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 8867 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 8868 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8869 return
8870 unwrap_value (ada_value_subscript
8871 (argvec[0], nargs, argvec + 1));
8872 }
8873 case TYPE_CODE_ARRAY:
8874 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8875 {
8876 type = ada_array_element_type (type, nargs);
8877 if (type == NULL)
323e0a4a 8878 error (_("element type of array unknown"));
4c4b4cd2 8879 else
0a07e705 8880 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8881 }
8882 return
8883 unwrap_value (ada_value_subscript
8884 (ada_coerce_to_simple_array (argvec[0]),
8885 nargs, argvec + 1));
8886 case TYPE_CODE_PTR: /* Pointer to array */
8887 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8888 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8889 {
8890 type = ada_array_element_type (type, nargs);
8891 if (type == NULL)
323e0a4a 8892 error (_("element type of array unknown"));
4c4b4cd2 8893 else
0a07e705 8894 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8895 }
8896 return
8897 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8898 nargs, argvec + 1));
8899
8900 default:
e1d5a0d2
PH
8901 error (_("Attempt to index or call something other than an "
8902 "array or function"));
4c4b4cd2
PH
8903 }
8904
8905 case TERNOP_SLICE:
8906 {
8907 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8908 struct value *low_bound_val =
8909 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
8910 struct value *high_bound_val =
8911 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8912 LONGEST low_bound;
8913 LONGEST high_bound;
994b9211
AC
8914 low_bound_val = coerce_ref (low_bound_val);
8915 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
8916 low_bound = pos_atr (low_bound_val);
8917 high_bound = pos_atr (high_bound_val);
963a6417 8918
4c4b4cd2
PH
8919 if (noside == EVAL_SKIP)
8920 goto nosideret;
8921
4c4b4cd2
PH
8922 /* If this is a reference to an aligner type, then remove all
8923 the aligners. */
df407dfe
AC
8924 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8925 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8926 TYPE_TARGET_TYPE (value_type (array)) =
8927 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 8928
df407dfe 8929 if (ada_is_packed_array_type (value_type (array)))
323e0a4a 8930 error (_("cannot slice a packed array"));
4c4b4cd2
PH
8931
8932 /* If this is a reference to an array or an array lvalue,
8933 convert to a pointer. */
df407dfe
AC
8934 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8935 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
8936 && VALUE_LVAL (array) == lval_memory))
8937 array = value_addr (array);
8938
1265e4aa 8939 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 8940 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 8941 (value_type (array))))
0b5d8877 8942 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
8943
8944 array = ada_coerce_to_simple_array_ptr (array);
8945
714e53ab
PH
8946 /* If we have more than one level of pointer indirection,
8947 dereference the value until we get only one level. */
df407dfe
AC
8948 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8949 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
8950 == TYPE_CODE_PTR))
8951 array = value_ind (array);
8952
8953 /* Make sure we really do have an array type before going further,
8954 to avoid a SEGV when trying to get the index type or the target
8955 type later down the road if the debug info generated by
8956 the compiler is incorrect or incomplete. */
df407dfe 8957 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 8958 error (_("cannot take slice of non-array"));
714e53ab 8959
df407dfe 8960 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 8961 {
0b5d8877 8962 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 8963 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
8964 low_bound);
8965 else
8966 {
8967 struct type *arr_type0 =
df407dfe 8968 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 8969 NULL, 1);
f5938064
JG
8970 return ada_value_slice_from_ptr (array, arr_type0,
8971 longest_to_int (low_bound),
8972 longest_to_int (high_bound));
4c4b4cd2
PH
8973 }
8974 }
8975 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8976 return array;
8977 else if (high_bound < low_bound)
df407dfe 8978 return empty_array (value_type (array), low_bound);
4c4b4cd2 8979 else
529cad9c
PH
8980 return ada_value_slice (array, longest_to_int (low_bound),
8981 longest_to_int (high_bound));
4c4b4cd2 8982 }
14f9c5c9 8983
4c4b4cd2
PH
8984 case UNOP_IN_RANGE:
8985 (*pos) += 2;
8986 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 8987 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 8988
14f9c5c9 8989 if (noside == EVAL_SKIP)
4c4b4cd2 8990 goto nosideret;
14f9c5c9 8991
4c4b4cd2
PH
8992 switch (TYPE_CODE (type))
8993 {
8994 default:
e1d5a0d2
PH
8995 lim_warning (_("Membership test incompletely implemented; "
8996 "always returns true"));
fbb06eb1
UW
8997 type = language_bool_type (exp->language_defn, exp->gdbarch);
8998 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
8999
9000 case TYPE_CODE_RANGE:
030b4912
UW
9001 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9002 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9003 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9004 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9005 type = language_bool_type (exp->language_defn, exp->gdbarch);
9006 return
9007 value_from_longest (type,
4c4b4cd2
PH
9008 (value_less (arg1, arg3)
9009 || value_equal (arg1, arg3))
9010 && (value_less (arg2, arg1)
9011 || value_equal (arg2, arg1)));
9012 }
9013
9014 case BINOP_IN_BOUNDS:
14f9c5c9 9015 (*pos) += 2;
4c4b4cd2
PH
9016 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9017 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9018
4c4b4cd2
PH
9019 if (noside == EVAL_SKIP)
9020 goto nosideret;
14f9c5c9 9021
4c4b4cd2 9022 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9023 {
9024 type = language_bool_type (exp->language_defn, exp->gdbarch);
9025 return value_zero (type, not_lval);
9026 }
14f9c5c9 9027
4c4b4cd2 9028 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9029
1eea4ebd
UW
9030 type = ada_index_type (value_type (arg2), tem, "range");
9031 if (!type)
9032 type = value_type (arg1);
14f9c5c9 9033
1eea4ebd
UW
9034 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9035 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9036
f44316fa
UW
9037 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9038 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9039 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9040 return
fbb06eb1 9041 value_from_longest (type,
4c4b4cd2
PH
9042 (value_less (arg1, arg3)
9043 || value_equal (arg1, arg3))
9044 && (value_less (arg2, arg1)
9045 || value_equal (arg2, arg1)));
9046
9047 case TERNOP_IN_RANGE:
9048 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9049 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9050 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9051
9052 if (noside == EVAL_SKIP)
9053 goto nosideret;
9054
f44316fa
UW
9055 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9056 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9057 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9058 return
fbb06eb1 9059 value_from_longest (type,
4c4b4cd2
PH
9060 (value_less (arg1, arg3)
9061 || value_equal (arg1, arg3))
9062 && (value_less (arg2, arg1)
9063 || value_equal (arg2, arg1)));
9064
9065 case OP_ATR_FIRST:
9066 case OP_ATR_LAST:
9067 case OP_ATR_LENGTH:
9068 {
76a01679
JB
9069 struct type *type_arg;
9070 if (exp->elts[*pos].opcode == OP_TYPE)
9071 {
9072 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9073 arg1 = NULL;
5bc23cb3 9074 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9075 }
9076 else
9077 {
9078 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9079 type_arg = NULL;
9080 }
9081
9082 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9083 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9084 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9085 *pos += 4;
9086
9087 if (noside == EVAL_SKIP)
9088 goto nosideret;
9089
9090 if (type_arg == NULL)
9091 {
9092 arg1 = ada_coerce_ref (arg1);
9093
df407dfe 9094 if (ada_is_packed_array_type (value_type (arg1)))
76a01679
JB
9095 arg1 = ada_coerce_to_simple_array (arg1);
9096
1eea4ebd
UW
9097 type = ada_index_type (value_type (arg1), tem,
9098 ada_attribute_name (op));
9099 if (type == NULL)
9100 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9101
9102 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9103 return allocate_value (type);
76a01679
JB
9104
9105 switch (op)
9106 {
9107 default: /* Should never happen. */
323e0a4a 9108 error (_("unexpected attribute encountered"));
76a01679 9109 case OP_ATR_FIRST:
1eea4ebd
UW
9110 return value_from_longest
9111 (type, ada_array_bound (arg1, tem, 0));
76a01679 9112 case OP_ATR_LAST:
1eea4ebd
UW
9113 return value_from_longest
9114 (type, ada_array_bound (arg1, tem, 1));
76a01679 9115 case OP_ATR_LENGTH:
1eea4ebd
UW
9116 return value_from_longest
9117 (type, ada_array_length (arg1, tem));
76a01679
JB
9118 }
9119 }
9120 else if (discrete_type_p (type_arg))
9121 {
9122 struct type *range_type;
9123 char *name = ada_type_name (type_arg);
9124 range_type = NULL;
9125 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
1ce677a4 9126 range_type = to_fixed_range_type (name, NULL, type_arg);
76a01679
JB
9127 if (range_type == NULL)
9128 range_type = type_arg;
9129 switch (op)
9130 {
9131 default:
323e0a4a 9132 error (_("unexpected attribute encountered"));
76a01679 9133 case OP_ATR_FIRST:
690cc4eb
PH
9134 return value_from_longest
9135 (range_type, discrete_type_low_bound (range_type));
76a01679 9136 case OP_ATR_LAST:
690cc4eb
PH
9137 return value_from_longest
9138 (range_type, discrete_type_high_bound (range_type));
76a01679 9139 case OP_ATR_LENGTH:
323e0a4a 9140 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9141 }
9142 }
9143 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9144 error (_("unimplemented type attribute"));
76a01679
JB
9145 else
9146 {
9147 LONGEST low, high;
9148
9149 if (ada_is_packed_array_type (type_arg))
9150 type_arg = decode_packed_array_type (type_arg);
9151
1eea4ebd 9152 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9153 if (type == NULL)
1eea4ebd
UW
9154 type = builtin_type (exp->gdbarch)->builtin_int;
9155
76a01679
JB
9156 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9157 return allocate_value (type);
9158
9159 switch (op)
9160 {
9161 default:
323e0a4a 9162 error (_("unexpected attribute encountered"));
76a01679 9163 case OP_ATR_FIRST:
1eea4ebd 9164 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9165 return value_from_longest (type, low);
9166 case OP_ATR_LAST:
1eea4ebd 9167 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9168 return value_from_longest (type, high);
9169 case OP_ATR_LENGTH:
1eea4ebd
UW
9170 low = ada_array_bound_from_type (type_arg, tem, 0);
9171 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9172 return value_from_longest (type, high - low + 1);
9173 }
9174 }
14f9c5c9
AS
9175 }
9176
4c4b4cd2
PH
9177 case OP_ATR_TAG:
9178 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9179 if (noside == EVAL_SKIP)
76a01679 9180 goto nosideret;
4c4b4cd2
PH
9181
9182 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9183 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9184
9185 return ada_value_tag (arg1);
9186
9187 case OP_ATR_MIN:
9188 case OP_ATR_MAX:
9189 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9190 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9191 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9192 if (noside == EVAL_SKIP)
76a01679 9193 goto nosideret;
d2e4a39e 9194 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9195 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9196 else
f44316fa
UW
9197 {
9198 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9199 return value_binop (arg1, arg2,
9200 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9201 }
14f9c5c9 9202
4c4b4cd2
PH
9203 case OP_ATR_MODULUS:
9204 {
31dedfee 9205 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679 9206 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
4c4b4cd2 9207
76a01679
JB
9208 if (noside == EVAL_SKIP)
9209 goto nosideret;
4c4b4cd2 9210
76a01679 9211 if (!ada_is_modular_type (type_arg))
323e0a4a 9212 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9213
76a01679
JB
9214 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9215 ada_modulus (type_arg));
4c4b4cd2
PH
9216 }
9217
9218
9219 case OP_ATR_POS:
9220 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9221 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9222 if (noside == EVAL_SKIP)
76a01679 9223 goto nosideret;
3cb382c9
UW
9224 type = builtin_type (exp->gdbarch)->builtin_int;
9225 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9226 return value_zero (type, not_lval);
14f9c5c9 9227 else
3cb382c9 9228 return value_pos_atr (type, arg1);
14f9c5c9 9229
4c4b4cd2
PH
9230 case OP_ATR_SIZE:
9231 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9232 type = value_type (arg1);
9233
9234 /* If the argument is a reference, then dereference its type, since
9235 the user is really asking for the size of the actual object,
9236 not the size of the pointer. */
9237 if (TYPE_CODE (type) == TYPE_CODE_REF)
9238 type = TYPE_TARGET_TYPE (type);
9239
4c4b4cd2 9240 if (noside == EVAL_SKIP)
76a01679 9241 goto nosideret;
4c4b4cd2 9242 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 9243 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 9244 else
22601c15 9245 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 9246 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9247
9248 case OP_ATR_VAL:
9249 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9250 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9251 type = exp->elts[pc + 2].type;
14f9c5c9 9252 if (noside == EVAL_SKIP)
76a01679 9253 goto nosideret;
4c4b4cd2 9254 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9255 return value_zero (type, not_lval);
4c4b4cd2 9256 else
76a01679 9257 return value_val_atr (type, arg1);
4c4b4cd2
PH
9258
9259 case BINOP_EXP:
9260 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9261 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9262 if (noside == EVAL_SKIP)
9263 goto nosideret;
9264 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9265 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9266 else
f44316fa
UW
9267 {
9268 /* For integer exponentiation operations,
9269 only promote the first argument. */
9270 if (is_integral_type (value_type (arg2)))
9271 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9272 else
9273 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9274
9275 return value_binop (arg1, arg2, op);
9276 }
4c4b4cd2
PH
9277
9278 case UNOP_PLUS:
9279 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9280 if (noside == EVAL_SKIP)
9281 goto nosideret;
9282 else
9283 return arg1;
9284
9285 case UNOP_ABS:
9286 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9287 if (noside == EVAL_SKIP)
9288 goto nosideret;
f44316fa 9289 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9290 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9291 return value_neg (arg1);
14f9c5c9 9292 else
4c4b4cd2 9293 return arg1;
14f9c5c9
AS
9294
9295 case UNOP_IND:
6b0d7253 9296 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9297 if (noside == EVAL_SKIP)
4c4b4cd2 9298 goto nosideret;
df407dfe 9299 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9300 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9301 {
9302 if (ada_is_array_descriptor_type (type))
9303 /* GDB allows dereferencing GNAT array descriptors. */
9304 {
9305 struct type *arrType = ada_type_of_array (arg1, 0);
9306 if (arrType == NULL)
323e0a4a 9307 error (_("Attempt to dereference null array pointer."));
00a4c844 9308 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9309 }
9310 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9311 || TYPE_CODE (type) == TYPE_CODE_REF
9312 /* In C you can dereference an array to get the 1st elt. */
9313 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9314 {
9315 type = to_static_fixed_type
9316 (ada_aligned_type
9317 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9318 check_size (type);
9319 return value_zero (type, lval_memory);
9320 }
4c4b4cd2 9321 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9322 {
9323 /* GDB allows dereferencing an int. */
9324 if (expect_type == NULL)
9325 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9326 lval_memory);
9327 else
9328 {
9329 expect_type =
9330 to_static_fixed_type (ada_aligned_type (expect_type));
9331 return value_zero (expect_type, lval_memory);
9332 }
9333 }
4c4b4cd2 9334 else
323e0a4a 9335 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9336 }
76a01679 9337 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9338 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9339
96967637
JB
9340 if (TYPE_CODE (type) == TYPE_CODE_INT)
9341 /* GDB allows dereferencing an int. If we were given
9342 the expect_type, then use that as the target type.
9343 Otherwise, assume that the target type is an int. */
9344 {
9345 if (expect_type != NULL)
9346 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9347 arg1));
9348 else
9349 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9350 (CORE_ADDR) value_as_address (arg1));
9351 }
6b0d7253 9352
4c4b4cd2
PH
9353 if (ada_is_array_descriptor_type (type))
9354 /* GDB allows dereferencing GNAT array descriptors. */
9355 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9356 else
4c4b4cd2 9357 return ada_value_ind (arg1);
14f9c5c9
AS
9358
9359 case STRUCTOP_STRUCT:
9360 tem = longest_to_int (exp->elts[pc + 1].longconst);
9361 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9362 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9363 if (noside == EVAL_SKIP)
4c4b4cd2 9364 goto nosideret;
14f9c5c9 9365 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9366 {
df407dfe 9367 struct type *type1 = value_type (arg1);
76a01679
JB
9368 if (ada_is_tagged_type (type1, 1))
9369 {
9370 type = ada_lookup_struct_elt_type (type1,
9371 &exp->elts[pc + 2].string,
9372 1, 1, NULL);
9373 if (type == NULL)
9374 /* In this case, we assume that the field COULD exist
9375 in some extension of the type. Return an object of
9376 "type" void, which will match any formal
9377 (see ada_type_match). */
30b15541
UW
9378 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9379 lval_memory);
76a01679
JB
9380 }
9381 else
9382 type =
9383 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9384 0, NULL);
9385
9386 return value_zero (ada_aligned_type (type), lval_memory);
9387 }
14f9c5c9 9388 else
284614f0
JB
9389 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9390 arg1 = unwrap_value (arg1);
9391 return ada_to_fixed_value (arg1);
9392
14f9c5c9 9393 case OP_TYPE:
4c4b4cd2
PH
9394 /* The value is not supposed to be used. This is here to make it
9395 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9396 (*pos) += 2;
9397 if (noside == EVAL_SKIP)
4c4b4cd2 9398 goto nosideret;
14f9c5c9 9399 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9400 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9401 else
323e0a4a 9402 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9403
9404 case OP_AGGREGATE:
9405 case OP_CHOICES:
9406 case OP_OTHERS:
9407 case OP_DISCRETE_RANGE:
9408 case OP_POSITIONAL:
9409 case OP_NAME:
9410 if (noside == EVAL_NORMAL)
9411 switch (op)
9412 {
9413 case OP_NAME:
9414 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9415 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9416 case OP_AGGREGATE:
9417 error (_("Aggregates only allowed on the right of an assignment"));
9418 default:
e1d5a0d2 9419 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
52ce6436
PH
9420 }
9421
9422 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9423 *pos += oplen - 1;
9424 for (tem = 0; tem < nargs; tem += 1)
9425 ada_evaluate_subexp (NULL, exp, pos, noside);
9426 goto nosideret;
14f9c5c9
AS
9427 }
9428
9429nosideret:
22601c15 9430 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 9431}
14f9c5c9 9432\f
d2e4a39e 9433
4c4b4cd2 9434 /* Fixed point */
14f9c5c9
AS
9435
9436/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9437 type name that encodes the 'small and 'delta information.
4c4b4cd2 9438 Otherwise, return NULL. */
14f9c5c9 9439
d2e4a39e 9440static const char *
ebf56fd3 9441fixed_type_info (struct type *type)
14f9c5c9 9442{
d2e4a39e 9443 const char *name = ada_type_name (type);
14f9c5c9
AS
9444 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9445
d2e4a39e
AS
9446 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9447 {
14f9c5c9
AS
9448 const char *tail = strstr (name, "___XF_");
9449 if (tail == NULL)
4c4b4cd2 9450 return NULL;
d2e4a39e 9451 else
4c4b4cd2 9452 return tail + 5;
14f9c5c9
AS
9453 }
9454 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9455 return fixed_type_info (TYPE_TARGET_TYPE (type));
9456 else
9457 return NULL;
9458}
9459
4c4b4cd2 9460/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
9461
9462int
ebf56fd3 9463ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
9464{
9465 return fixed_type_info (type) != NULL;
9466}
9467
4c4b4cd2
PH
9468/* Return non-zero iff TYPE represents a System.Address type. */
9469
9470int
9471ada_is_system_address_type (struct type *type)
9472{
9473 return (TYPE_NAME (type)
9474 && strcmp (TYPE_NAME (type), "system__address") == 0);
9475}
9476
14f9c5c9
AS
9477/* Assuming that TYPE is the representation of an Ada fixed-point
9478 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 9479 delta cannot be determined. */
14f9c5c9
AS
9480
9481DOUBLEST
ebf56fd3 9482ada_delta (struct type *type)
14f9c5c9
AS
9483{
9484 const char *encoding = fixed_type_info (type);
facc390f 9485 DOUBLEST num, den;
14f9c5c9 9486
facc390f
JB
9487 /* Strictly speaking, num and den are encoded as integer. However,
9488 they may not fit into a long, and they will have to be converted
9489 to DOUBLEST anyway. So scan them as DOUBLEST. */
9490 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9491 &num, &den) < 2)
14f9c5c9 9492 return -1.0;
d2e4a39e 9493 else
facc390f 9494 return num / den;
14f9c5c9
AS
9495}
9496
9497/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 9498 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
9499
9500static DOUBLEST
ebf56fd3 9501scaling_factor (struct type *type)
14f9c5c9
AS
9502{
9503 const char *encoding = fixed_type_info (type);
facc390f 9504 DOUBLEST num0, den0, num1, den1;
14f9c5c9 9505 int n;
d2e4a39e 9506
facc390f
JB
9507 /* Strictly speaking, num's and den's are encoded as integer. However,
9508 they may not fit into a long, and they will have to be converted
9509 to DOUBLEST anyway. So scan them as DOUBLEST. */
9510 n = sscanf (encoding,
9511 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9512 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9513 &num0, &den0, &num1, &den1);
14f9c5c9
AS
9514
9515 if (n < 2)
9516 return 1.0;
9517 else if (n == 4)
facc390f 9518 return num1 / den1;
d2e4a39e 9519 else
facc390f 9520 return num0 / den0;
14f9c5c9
AS
9521}
9522
9523
9524/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 9525 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
9526
9527DOUBLEST
ebf56fd3 9528ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 9529{
d2e4a39e 9530 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
9531}
9532
4c4b4cd2
PH
9533/* The representation of a fixed-point value of type TYPE
9534 corresponding to the value X. */
14f9c5c9
AS
9535
9536LONGEST
ebf56fd3 9537ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
9538{
9539 return (LONGEST) (x / scaling_factor (type) + 0.5);
9540}
9541
9542
4c4b4cd2 9543 /* VAX floating formats */
14f9c5c9
AS
9544
9545/* Non-zero iff TYPE represents one of the special VAX floating-point
4c4b4cd2
PH
9546 types. */
9547
14f9c5c9 9548int
d2e4a39e 9549ada_is_vax_floating_type (struct type *type)
14f9c5c9 9550{
d2e4a39e 9551 int name_len =
14f9c5c9 9552 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
d2e4a39e 9553 return
14f9c5c9 9554 name_len > 6
d2e4a39e 9555 && (TYPE_CODE (type) == TYPE_CODE_INT
4c4b4cd2
PH
9556 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9557 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
14f9c5c9
AS
9558}
9559
9560/* The type of special VAX floating-point type this is, assuming
4c4b4cd2
PH
9561 ada_is_vax_floating_point. */
9562
14f9c5c9 9563int
d2e4a39e 9564ada_vax_float_type_suffix (struct type *type)
14f9c5c9 9565{
d2e4a39e 9566 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
14f9c5c9
AS
9567}
9568
4c4b4cd2 9569/* A value representing the special debugging function that outputs
14f9c5c9 9570 VAX floating-point values of the type represented by TYPE. Assumes
4c4b4cd2
PH
9571 ada_is_vax_floating_type (TYPE). */
9572
d2e4a39e
AS
9573struct value *
9574ada_vax_float_print_function (struct type *type)
9575{
9576 switch (ada_vax_float_type_suffix (type))
9577 {
9578 case 'F':
9579 return get_var_value ("DEBUG_STRING_F", 0);
9580 case 'D':
9581 return get_var_value ("DEBUG_STRING_D", 0);
9582 case 'G':
9583 return get_var_value ("DEBUG_STRING_G", 0);
9584 default:
323e0a4a 9585 error (_("invalid VAX floating-point type"));
d2e4a39e 9586 }
14f9c5c9 9587}
14f9c5c9 9588\f
d2e4a39e 9589
4c4b4cd2 9590 /* Range types */
14f9c5c9
AS
9591
9592/* Scan STR beginning at position K for a discriminant name, and
9593 return the value of that discriminant field of DVAL in *PX. If
9594 PNEW_K is not null, put the position of the character beyond the
9595 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 9596 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
9597
9598static int
07d8f827 9599scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 9600 int *pnew_k)
14f9c5c9
AS
9601{
9602 static char *bound_buffer = NULL;
9603 static size_t bound_buffer_len = 0;
9604 char *bound;
9605 char *pend;
d2e4a39e 9606 struct value *bound_val;
14f9c5c9
AS
9607
9608 if (dval == NULL || str == NULL || str[k] == '\0')
9609 return 0;
9610
d2e4a39e 9611 pend = strstr (str + k, "__");
14f9c5c9
AS
9612 if (pend == NULL)
9613 {
d2e4a39e 9614 bound = str + k;
14f9c5c9
AS
9615 k += strlen (bound);
9616 }
d2e4a39e 9617 else
14f9c5c9 9618 {
d2e4a39e 9619 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 9620 bound = bound_buffer;
d2e4a39e
AS
9621 strncpy (bound_buffer, str + k, pend - (str + k));
9622 bound[pend - (str + k)] = '\0';
9623 k = pend - str;
14f9c5c9 9624 }
d2e4a39e 9625
df407dfe 9626 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
9627 if (bound_val == NULL)
9628 return 0;
9629
9630 *px = value_as_long (bound_val);
9631 if (pnew_k != NULL)
9632 *pnew_k = k;
9633 return 1;
9634}
9635
9636/* Value of variable named NAME in the current environment. If
9637 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
9638 otherwise causes an error with message ERR_MSG. */
9639
d2e4a39e
AS
9640static struct value *
9641get_var_value (char *name, char *err_msg)
14f9c5c9 9642{
4c4b4cd2 9643 struct ada_symbol_info *syms;
14f9c5c9
AS
9644 int nsyms;
9645
4c4b4cd2
PH
9646 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9647 &syms);
14f9c5c9
AS
9648
9649 if (nsyms != 1)
9650 {
9651 if (err_msg == NULL)
4c4b4cd2 9652 return 0;
14f9c5c9 9653 else
8a3fe4f8 9654 error (("%s"), err_msg);
14f9c5c9
AS
9655 }
9656
4c4b4cd2 9657 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 9658}
d2e4a39e 9659
14f9c5c9 9660/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
9661 no such variable found, returns 0, and sets *FLAG to 0. If
9662 successful, sets *FLAG to 1. */
9663
14f9c5c9 9664LONGEST
4c4b4cd2 9665get_int_var_value (char *name, int *flag)
14f9c5c9 9666{
4c4b4cd2 9667 struct value *var_val = get_var_value (name, 0);
d2e4a39e 9668
14f9c5c9
AS
9669 if (var_val == 0)
9670 {
9671 if (flag != NULL)
4c4b4cd2 9672 *flag = 0;
14f9c5c9
AS
9673 return 0;
9674 }
9675 else
9676 {
9677 if (flag != NULL)
4c4b4cd2 9678 *flag = 1;
14f9c5c9
AS
9679 return value_as_long (var_val);
9680 }
9681}
d2e4a39e 9682
14f9c5c9
AS
9683
9684/* Return a range type whose base type is that of the range type named
9685 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 9686 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
9687 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9688 corresponding range type from debug information; fall back to using it
9689 if symbol lookup fails. If a new type must be created, allocate it
9690 like ORIG_TYPE was. The bounds information, in general, is encoded
9691 in NAME, the base type given in the named range type. */
14f9c5c9 9692
d2e4a39e 9693static struct type *
1ce677a4 9694to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
14f9c5c9
AS
9695{
9696 struct type *raw_type = ada_find_any_type (name);
9697 struct type *base_type;
d2e4a39e 9698 char *subtype_info;
14f9c5c9 9699
1ce677a4 9700 /* Fall back to the original type if symbol lookup failed. */
dddfab26 9701 if (raw_type == NULL)
1ce677a4 9702 raw_type = orig_type;
dddfab26 9703
1ce677a4 9704 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
9705 base_type = TYPE_TARGET_TYPE (raw_type);
9706 else
9707 base_type = raw_type;
9708
9709 subtype_info = strstr (name, "___XD");
9710 if (subtype_info == NULL)
690cc4eb
PH
9711 {
9712 LONGEST L = discrete_type_low_bound (raw_type);
9713 LONGEST U = discrete_type_high_bound (raw_type);
9714 if (L < INT_MIN || U > INT_MAX)
9715 return raw_type;
9716 else
e9bb382b 9717 return create_range_type (alloc_type_copy (orig_type), raw_type,
690cc4eb
PH
9718 discrete_type_low_bound (raw_type),
9719 discrete_type_high_bound (raw_type));
9720 }
14f9c5c9
AS
9721 else
9722 {
9723 static char *name_buf = NULL;
9724 static size_t name_len = 0;
9725 int prefix_len = subtype_info - name;
9726 LONGEST L, U;
9727 struct type *type;
9728 char *bounds_str;
9729 int n;
9730
9731 GROW_VECT (name_buf, name_len, prefix_len + 5);
9732 strncpy (name_buf, name, prefix_len);
9733 name_buf[prefix_len] = '\0';
9734
9735 subtype_info += 5;
9736 bounds_str = strchr (subtype_info, '_');
9737 n = 1;
9738
d2e4a39e 9739 if (*subtype_info == 'L')
4c4b4cd2
PH
9740 {
9741 if (!ada_scan_number (bounds_str, n, &L, &n)
9742 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9743 return raw_type;
9744 if (bounds_str[n] == '_')
9745 n += 2;
9746 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9747 n += 1;
9748 subtype_info += 1;
9749 }
d2e4a39e 9750 else
4c4b4cd2
PH
9751 {
9752 int ok;
9753 strcpy (name_buf + prefix_len, "___L");
9754 L = get_int_var_value (name_buf, &ok);
9755 if (!ok)
9756 {
323e0a4a 9757 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
9758 L = 1;
9759 }
9760 }
14f9c5c9 9761
d2e4a39e 9762 if (*subtype_info == 'U')
4c4b4cd2
PH
9763 {
9764 if (!ada_scan_number (bounds_str, n, &U, &n)
9765 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9766 return raw_type;
9767 }
d2e4a39e 9768 else
4c4b4cd2
PH
9769 {
9770 int ok;
9771 strcpy (name_buf + prefix_len, "___U");
9772 U = get_int_var_value (name_buf, &ok);
9773 if (!ok)
9774 {
323e0a4a 9775 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
9776 U = L;
9777 }
9778 }
14f9c5c9 9779
e9bb382b 9780 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
d2e4a39e 9781 TYPE_NAME (type) = name;
14f9c5c9
AS
9782 return type;
9783 }
9784}
9785
4c4b4cd2
PH
9786/* True iff NAME is the name of a range type. */
9787
14f9c5c9 9788int
d2e4a39e 9789ada_is_range_type_name (const char *name)
14f9c5c9
AS
9790{
9791 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 9792}
14f9c5c9 9793\f
d2e4a39e 9794
4c4b4cd2
PH
9795 /* Modular types */
9796
9797/* True iff TYPE is an Ada modular type. */
14f9c5c9 9798
14f9c5c9 9799int
d2e4a39e 9800ada_is_modular_type (struct type *type)
14f9c5c9 9801{
4c4b4cd2 9802 struct type *subranged_type = base_type (type);
14f9c5c9
AS
9803
9804 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 9805 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 9806 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
9807}
9808
0056e4d5
JB
9809/* Try to determine the lower and upper bounds of the given modular type
9810 using the type name only. Return non-zero and set L and U as the lower
9811 and upper bounds (respectively) if successful. */
9812
9813int
9814ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9815{
9816 char *name = ada_type_name (type);
9817 char *suffix;
9818 int k;
9819 LONGEST U;
9820
9821 if (name == NULL)
9822 return 0;
9823
9824 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9825 we are looking for static bounds, which means an __XDLU suffix.
9826 Moreover, we know that the lower bound of modular types is always
9827 zero, so the actual suffix should start with "__XDLU_0__", and
9828 then be followed by the upper bound value. */
9829 suffix = strstr (name, "__XDLU_0__");
9830 if (suffix == NULL)
9831 return 0;
9832 k = 10;
9833 if (!ada_scan_number (suffix, k, &U, NULL))
9834 return 0;
9835
9836 *modulus = (ULONGEST) U + 1;
9837 return 1;
9838}
9839
4c4b4cd2
PH
9840/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9841
61ee279c 9842ULONGEST
0056e4d5 9843ada_modulus (struct type *type)
14f9c5c9 9844{
0056e4d5
JB
9845 ULONGEST modulus;
9846
9847 /* Normally, the modulus of a modular type is equal to the value of
9848 its upper bound + 1. However, the upper bound is currently stored
9849 as an int, which is not always big enough to hold the actual bound
9850 value. To workaround this, try to take advantage of the encoding
9851 that GNAT uses with with discrete types. To avoid some unnecessary
9852 parsing, we do this only when the size of TYPE is greater than
9853 the size of the field holding the bound. */
9854 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9855 && ada_modulus_from_name (type, &modulus))
9856 return modulus;
9857
d37209fd 9858 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 9859}
d2e4a39e 9860\f
f7f9143b
JB
9861
9862/* Ada exception catchpoint support:
9863 ---------------------------------
9864
9865 We support 3 kinds of exception catchpoints:
9866 . catchpoints on Ada exceptions
9867 . catchpoints on unhandled Ada exceptions
9868 . catchpoints on failed assertions
9869
9870 Exceptions raised during failed assertions, or unhandled exceptions
9871 could perfectly be caught with the general catchpoint on Ada exceptions.
9872 However, we can easily differentiate these two special cases, and having
9873 the option to distinguish these two cases from the rest can be useful
9874 to zero-in on certain situations.
9875
9876 Exception catchpoints are a specialized form of breakpoint,
9877 since they rely on inserting breakpoints inside known routines
9878 of the GNAT runtime. The implementation therefore uses a standard
9879 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9880 of breakpoint_ops.
9881
0259addd
JB
9882 Support in the runtime for exception catchpoints have been changed
9883 a few times already, and these changes affect the implementation
9884 of these catchpoints. In order to be able to support several
9885 variants of the runtime, we use a sniffer that will determine
9886 the runtime variant used by the program being debugged.
9887
f7f9143b
JB
9888 At this time, we do not support the use of conditions on Ada exception
9889 catchpoints. The COND and COND_STRING fields are therefore set
9890 to NULL (most of the time, see below).
9891
9892 Conditions where EXP_STRING, COND, and COND_STRING are used:
9893
9894 When a user specifies the name of a specific exception in the case
9895 of catchpoints on Ada exceptions, we store the name of that exception
9896 in the EXP_STRING. We then translate this request into an actual
9897 condition stored in COND_STRING, and then parse it into an expression
9898 stored in COND. */
9899
9900/* The different types of catchpoints that we introduced for catching
9901 Ada exceptions. */
9902
9903enum exception_catchpoint_kind
9904{
9905 ex_catch_exception,
9906 ex_catch_exception_unhandled,
9907 ex_catch_assert
9908};
9909
3d0b0fa3
JB
9910/* Ada's standard exceptions. */
9911
9912static char *standard_exc[] = {
9913 "constraint_error",
9914 "program_error",
9915 "storage_error",
9916 "tasking_error"
9917};
9918
0259addd
JB
9919typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9920
9921/* A structure that describes how to support exception catchpoints
9922 for a given executable. */
9923
9924struct exception_support_info
9925{
9926 /* The name of the symbol to break on in order to insert
9927 a catchpoint on exceptions. */
9928 const char *catch_exception_sym;
9929
9930 /* The name of the symbol to break on in order to insert
9931 a catchpoint on unhandled exceptions. */
9932 const char *catch_exception_unhandled_sym;
9933
9934 /* The name of the symbol to break on in order to insert
9935 a catchpoint on failed assertions. */
9936 const char *catch_assert_sym;
9937
9938 /* Assuming that the inferior just triggered an unhandled exception
9939 catchpoint, this function is responsible for returning the address
9940 in inferior memory where the name of that exception is stored.
9941 Return zero if the address could not be computed. */
9942 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9943};
9944
9945static CORE_ADDR ada_unhandled_exception_name_addr (void);
9946static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9947
9948/* The following exception support info structure describes how to
9949 implement exception catchpoints with the latest version of the
9950 Ada runtime (as of 2007-03-06). */
9951
9952static const struct exception_support_info default_exception_support_info =
9953{
9954 "__gnat_debug_raise_exception", /* catch_exception_sym */
9955 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9956 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9957 ada_unhandled_exception_name_addr
9958};
9959
9960/* The following exception support info structure describes how to
9961 implement exception catchpoints with a slightly older version
9962 of the Ada runtime. */
9963
9964static const struct exception_support_info exception_support_info_fallback =
9965{
9966 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9967 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9968 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9969 ada_unhandled_exception_name_addr_from_raise
9970};
9971
9972/* For each executable, we sniff which exception info structure to use
9973 and cache it in the following global variable. */
9974
9975static const struct exception_support_info *exception_info = NULL;
9976
9977/* Inspect the Ada runtime and determine which exception info structure
9978 should be used to provide support for exception catchpoints.
9979
9980 This function will always set exception_info, or raise an error. */
9981
9982static void
9983ada_exception_support_info_sniffer (void)
9984{
9985 struct symbol *sym;
9986
9987 /* If the exception info is already known, then no need to recompute it. */
9988 if (exception_info != NULL)
9989 return;
9990
9991 /* Check the latest (default) exception support info. */
9992 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9993 NULL, VAR_DOMAIN);
9994 if (sym != NULL)
9995 {
9996 exception_info = &default_exception_support_info;
9997 return;
9998 }
9999
10000 /* Try our fallback exception suport info. */
10001 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10002 NULL, VAR_DOMAIN);
10003 if (sym != NULL)
10004 {
10005 exception_info = &exception_support_info_fallback;
10006 return;
10007 }
10008
10009 /* Sometimes, it is normal for us to not be able to find the routine
10010 we are looking for. This happens when the program is linked with
10011 the shared version of the GNAT runtime, and the program has not been
10012 started yet. Inform the user of these two possible causes if
10013 applicable. */
10014
10015 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10016 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10017
10018 /* If the symbol does not exist, then check that the program is
10019 already started, to make sure that shared libraries have been
10020 loaded. If it is not started, this may mean that the symbol is
10021 in a shared library. */
10022
10023 if (ptid_get_pid (inferior_ptid) == 0)
10024 error (_("Unable to insert catchpoint. Try to start the program first."));
10025
10026 /* At this point, we know that we are debugging an Ada program and
10027 that the inferior has been started, but we still are not able to
10028 find the run-time symbols. That can mean that we are in
10029 configurable run time mode, or that a-except as been optimized
10030 out by the linker... In any case, at this point it is not worth
10031 supporting this feature. */
10032
10033 error (_("Cannot insert catchpoints in this configuration."));
10034}
10035
10036/* An observer of "executable_changed" events.
10037 Its role is to clear certain cached values that need to be recomputed
10038 each time a new executable is loaded by GDB. */
10039
10040static void
781b42b0 10041ada_executable_changed_observer (void)
0259addd
JB
10042{
10043 /* If the executable changed, then it is possible that the Ada runtime
10044 is different. So we need to invalidate the exception support info
10045 cache. */
10046 exception_info = NULL;
10047}
10048
f7f9143b
JB
10049/* Return the name of the function at PC, NULL if could not find it.
10050 This function only checks the debugging information, not the symbol
10051 table. */
10052
10053static char *
10054function_name_from_pc (CORE_ADDR pc)
10055{
10056 char *func_name;
10057
10058 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
10059 return NULL;
10060
10061 return func_name;
10062}
10063
10064/* True iff FRAME is very likely to be that of a function that is
10065 part of the runtime system. This is all very heuristic, but is
10066 intended to be used as advice as to what frames are uninteresting
10067 to most users. */
10068
10069static int
10070is_known_support_routine (struct frame_info *frame)
10071{
4ed6b5be 10072 struct symtab_and_line sal;
f7f9143b
JB
10073 char *func_name;
10074 int i;
f7f9143b 10075
4ed6b5be
JB
10076 /* If this code does not have any debugging information (no symtab),
10077 This cannot be any user code. */
f7f9143b 10078
4ed6b5be 10079 find_frame_sal (frame, &sal);
f7f9143b
JB
10080 if (sal.symtab == NULL)
10081 return 1;
10082
4ed6b5be
JB
10083 /* If there is a symtab, but the associated source file cannot be
10084 located, then assume this is not user code: Selecting a frame
10085 for which we cannot display the code would not be very helpful
10086 for the user. This should also take care of case such as VxWorks
10087 where the kernel has some debugging info provided for a few units. */
f7f9143b 10088
9bbc9174 10089 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10090 return 1;
10091
4ed6b5be
JB
10092 /* Check the unit filename againt the Ada runtime file naming.
10093 We also check the name of the objfile against the name of some
10094 known system libraries that sometimes come with debugging info
10095 too. */
10096
f7f9143b
JB
10097 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10098 {
10099 re_comp (known_runtime_file_name_patterns[i]);
10100 if (re_exec (sal.symtab->filename))
10101 return 1;
4ed6b5be
JB
10102 if (sal.symtab->objfile != NULL
10103 && re_exec (sal.symtab->objfile->name))
10104 return 1;
f7f9143b
JB
10105 }
10106
4ed6b5be 10107 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10108
4ed6b5be 10109 func_name = function_name_from_pc (get_frame_address_in_block (frame));
f7f9143b
JB
10110 if (func_name == NULL)
10111 return 1;
10112
10113 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10114 {
10115 re_comp (known_auxiliary_function_name_patterns[i]);
10116 if (re_exec (func_name))
10117 return 1;
10118 }
10119
10120 return 0;
10121}
10122
10123/* Find the first frame that contains debugging information and that is not
10124 part of the Ada run-time, starting from FI and moving upward. */
10125
0ef643c8 10126void
f7f9143b
JB
10127ada_find_printable_frame (struct frame_info *fi)
10128{
10129 for (; fi != NULL; fi = get_prev_frame (fi))
10130 {
10131 if (!is_known_support_routine (fi))
10132 {
10133 select_frame (fi);
10134 break;
10135 }
10136 }
10137
10138}
10139
10140/* Assuming that the inferior just triggered an unhandled exception
10141 catchpoint, return the address in inferior memory where the name
10142 of the exception is stored.
10143
10144 Return zero if the address could not be computed. */
10145
10146static CORE_ADDR
10147ada_unhandled_exception_name_addr (void)
0259addd
JB
10148{
10149 return parse_and_eval_address ("e.full_name");
10150}
10151
10152/* Same as ada_unhandled_exception_name_addr, except that this function
10153 should be used when the inferior uses an older version of the runtime,
10154 where the exception name needs to be extracted from a specific frame
10155 several frames up in the callstack. */
10156
10157static CORE_ADDR
10158ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10159{
10160 int frame_level;
10161 struct frame_info *fi;
10162
10163 /* To determine the name of this exception, we need to select
10164 the frame corresponding to RAISE_SYM_NAME. This frame is
10165 at least 3 levels up, so we simply skip the first 3 frames
10166 without checking the name of their associated function. */
10167 fi = get_current_frame ();
10168 for (frame_level = 0; frame_level < 3; frame_level += 1)
10169 if (fi != NULL)
10170 fi = get_prev_frame (fi);
10171
10172 while (fi != NULL)
10173 {
10174 const char *func_name =
10175 function_name_from_pc (get_frame_address_in_block (fi));
10176 if (func_name != NULL
0259addd 10177 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10178 break; /* We found the frame we were looking for... */
10179 fi = get_prev_frame (fi);
10180 }
10181
10182 if (fi == NULL)
10183 return 0;
10184
10185 select_frame (fi);
10186 return parse_and_eval_address ("id.full_name");
10187}
10188
10189/* Assuming the inferior just triggered an Ada exception catchpoint
10190 (of any type), return the address in inferior memory where the name
10191 of the exception is stored, if applicable.
10192
10193 Return zero if the address could not be computed, or if not relevant. */
10194
10195static CORE_ADDR
10196ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10197 struct breakpoint *b)
10198{
10199 switch (ex)
10200 {
10201 case ex_catch_exception:
10202 return (parse_and_eval_address ("e.full_name"));
10203 break;
10204
10205 case ex_catch_exception_unhandled:
0259addd 10206 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10207 break;
10208
10209 case ex_catch_assert:
10210 return 0; /* Exception name is not relevant in this case. */
10211 break;
10212
10213 default:
10214 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10215 break;
10216 }
10217
10218 return 0; /* Should never be reached. */
10219}
10220
10221/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10222 any error that ada_exception_name_addr_1 might cause to be thrown.
10223 When an error is intercepted, a warning with the error message is printed,
10224 and zero is returned. */
10225
10226static CORE_ADDR
10227ada_exception_name_addr (enum exception_catchpoint_kind ex,
10228 struct breakpoint *b)
10229{
10230 struct gdb_exception e;
10231 CORE_ADDR result = 0;
10232
10233 TRY_CATCH (e, RETURN_MASK_ERROR)
10234 {
10235 result = ada_exception_name_addr_1 (ex, b);
10236 }
10237
10238 if (e.reason < 0)
10239 {
10240 warning (_("failed to get exception name: %s"), e.message);
10241 return 0;
10242 }
10243
10244 return result;
10245}
10246
10247/* Implement the PRINT_IT method in the breakpoint_ops structure
10248 for all exception catchpoint kinds. */
10249
10250static enum print_stop_action
10251print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10252{
10253 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10254 char exception_name[256];
10255
10256 if (addr != 0)
10257 {
10258 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10259 exception_name [sizeof (exception_name) - 1] = '\0';
10260 }
10261
10262 ada_find_printable_frame (get_current_frame ());
10263
10264 annotate_catchpoint (b->number);
10265 switch (ex)
10266 {
10267 case ex_catch_exception:
10268 if (addr != 0)
10269 printf_filtered (_("\nCatchpoint %d, %s at "),
10270 b->number, exception_name);
10271 else
10272 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10273 break;
10274 case ex_catch_exception_unhandled:
10275 if (addr != 0)
10276 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10277 b->number, exception_name);
10278 else
10279 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10280 b->number);
10281 break;
10282 case ex_catch_assert:
10283 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10284 b->number);
10285 break;
10286 }
10287
10288 return PRINT_SRC_AND_LOC;
10289}
10290
10291/* Implement the PRINT_ONE method in the breakpoint_ops structure
10292 for all exception catchpoint kinds. */
10293
10294static void
10295print_one_exception (enum exception_catchpoint_kind ex,
10296 struct breakpoint *b, CORE_ADDR *last_addr)
10297{
79a45b7d
TT
10298 struct value_print_options opts;
10299
10300 get_user_print_options (&opts);
10301 if (opts.addressprint)
f7f9143b
JB
10302 {
10303 annotate_field (4);
10304 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10305 }
10306
10307 annotate_field (5);
10308 *last_addr = b->loc->address;
10309 switch (ex)
10310 {
10311 case ex_catch_exception:
10312 if (b->exp_string != NULL)
10313 {
10314 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10315
10316 ui_out_field_string (uiout, "what", msg);
10317 xfree (msg);
10318 }
10319 else
10320 ui_out_field_string (uiout, "what", "all Ada exceptions");
10321
10322 break;
10323
10324 case ex_catch_exception_unhandled:
10325 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10326 break;
10327
10328 case ex_catch_assert:
10329 ui_out_field_string (uiout, "what", "failed Ada assertions");
10330 break;
10331
10332 default:
10333 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10334 break;
10335 }
10336}
10337
10338/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10339 for all exception catchpoint kinds. */
10340
10341static void
10342print_mention_exception (enum exception_catchpoint_kind ex,
10343 struct breakpoint *b)
10344{
10345 switch (ex)
10346 {
10347 case ex_catch_exception:
10348 if (b->exp_string != NULL)
10349 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10350 b->number, b->exp_string);
10351 else
10352 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10353
10354 break;
10355
10356 case ex_catch_exception_unhandled:
10357 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10358 b->number);
10359 break;
10360
10361 case ex_catch_assert:
10362 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10363 break;
10364
10365 default:
10366 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10367 break;
10368 }
10369}
10370
10371/* Virtual table for "catch exception" breakpoints. */
10372
10373static enum print_stop_action
10374print_it_catch_exception (struct breakpoint *b)
10375{
10376 return print_it_exception (ex_catch_exception, b);
10377}
10378
10379static void
10380print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10381{
10382 print_one_exception (ex_catch_exception, b, last_addr);
10383}
10384
10385static void
10386print_mention_catch_exception (struct breakpoint *b)
10387{
10388 print_mention_exception (ex_catch_exception, b);
10389}
10390
10391static struct breakpoint_ops catch_exception_breakpoint_ops =
10392{
ce78b96d
JB
10393 NULL, /* insert */
10394 NULL, /* remove */
10395 NULL, /* breakpoint_hit */
f7f9143b
JB
10396 print_it_catch_exception,
10397 print_one_catch_exception,
10398 print_mention_catch_exception
10399};
10400
10401/* Virtual table for "catch exception unhandled" breakpoints. */
10402
10403static enum print_stop_action
10404print_it_catch_exception_unhandled (struct breakpoint *b)
10405{
10406 return print_it_exception (ex_catch_exception_unhandled, b);
10407}
10408
10409static void
10410print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10411{
10412 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10413}
10414
10415static void
10416print_mention_catch_exception_unhandled (struct breakpoint *b)
10417{
10418 print_mention_exception (ex_catch_exception_unhandled, b);
10419}
10420
10421static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
ce78b96d
JB
10422 NULL, /* insert */
10423 NULL, /* remove */
10424 NULL, /* breakpoint_hit */
f7f9143b
JB
10425 print_it_catch_exception_unhandled,
10426 print_one_catch_exception_unhandled,
10427 print_mention_catch_exception_unhandled
10428};
10429
10430/* Virtual table for "catch assert" breakpoints. */
10431
10432static enum print_stop_action
10433print_it_catch_assert (struct breakpoint *b)
10434{
10435 return print_it_exception (ex_catch_assert, b);
10436}
10437
10438static void
10439print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10440{
10441 print_one_exception (ex_catch_assert, b, last_addr);
10442}
10443
10444static void
10445print_mention_catch_assert (struct breakpoint *b)
10446{
10447 print_mention_exception (ex_catch_assert, b);
10448}
10449
10450static struct breakpoint_ops catch_assert_breakpoint_ops = {
ce78b96d
JB
10451 NULL, /* insert */
10452 NULL, /* remove */
10453 NULL, /* breakpoint_hit */
f7f9143b
JB
10454 print_it_catch_assert,
10455 print_one_catch_assert,
10456 print_mention_catch_assert
10457};
10458
10459/* Return non-zero if B is an Ada exception catchpoint. */
10460
10461int
10462ada_exception_catchpoint_p (struct breakpoint *b)
10463{
10464 return (b->ops == &catch_exception_breakpoint_ops
10465 || b->ops == &catch_exception_unhandled_breakpoint_ops
10466 || b->ops == &catch_assert_breakpoint_ops);
10467}
10468
f7f9143b
JB
10469/* Return a newly allocated copy of the first space-separated token
10470 in ARGSP, and then adjust ARGSP to point immediately after that
10471 token.
10472
10473 Return NULL if ARGPS does not contain any more tokens. */
10474
10475static char *
10476ada_get_next_arg (char **argsp)
10477{
10478 char *args = *argsp;
10479 char *end;
10480 char *result;
10481
10482 /* Skip any leading white space. */
10483
10484 while (isspace (*args))
10485 args++;
10486
10487 if (args[0] == '\0')
10488 return NULL; /* No more arguments. */
10489
10490 /* Find the end of the current argument. */
10491
10492 end = args;
10493 while (*end != '\0' && !isspace (*end))
10494 end++;
10495
10496 /* Adjust ARGSP to point to the start of the next argument. */
10497
10498 *argsp = end;
10499
10500 /* Make a copy of the current argument and return it. */
10501
10502 result = xmalloc (end - args + 1);
10503 strncpy (result, args, end - args);
10504 result[end - args] = '\0';
10505
10506 return result;
10507}
10508
10509/* Split the arguments specified in a "catch exception" command.
10510 Set EX to the appropriate catchpoint type.
10511 Set EXP_STRING to the name of the specific exception if
10512 specified by the user. */
10513
10514static void
10515catch_ada_exception_command_split (char *args,
10516 enum exception_catchpoint_kind *ex,
10517 char **exp_string)
10518{
10519 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10520 char *exception_name;
10521
10522 exception_name = ada_get_next_arg (&args);
10523 make_cleanup (xfree, exception_name);
10524
10525 /* Check that we do not have any more arguments. Anything else
10526 is unexpected. */
10527
10528 while (isspace (*args))
10529 args++;
10530
10531 if (args[0] != '\0')
10532 error (_("Junk at end of expression"));
10533
10534 discard_cleanups (old_chain);
10535
10536 if (exception_name == NULL)
10537 {
10538 /* Catch all exceptions. */
10539 *ex = ex_catch_exception;
10540 *exp_string = NULL;
10541 }
10542 else if (strcmp (exception_name, "unhandled") == 0)
10543 {
10544 /* Catch unhandled exceptions. */
10545 *ex = ex_catch_exception_unhandled;
10546 *exp_string = NULL;
10547 }
10548 else
10549 {
10550 /* Catch a specific exception. */
10551 *ex = ex_catch_exception;
10552 *exp_string = exception_name;
10553 }
10554}
10555
10556/* Return the name of the symbol on which we should break in order to
10557 implement a catchpoint of the EX kind. */
10558
10559static const char *
10560ada_exception_sym_name (enum exception_catchpoint_kind ex)
10561{
0259addd
JB
10562 gdb_assert (exception_info != NULL);
10563
f7f9143b
JB
10564 switch (ex)
10565 {
10566 case ex_catch_exception:
0259addd 10567 return (exception_info->catch_exception_sym);
f7f9143b
JB
10568 break;
10569 case ex_catch_exception_unhandled:
0259addd 10570 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
10571 break;
10572 case ex_catch_assert:
0259addd 10573 return (exception_info->catch_assert_sym);
f7f9143b
JB
10574 break;
10575 default:
10576 internal_error (__FILE__, __LINE__,
10577 _("unexpected catchpoint kind (%d)"), ex);
10578 }
10579}
10580
10581/* Return the breakpoint ops "virtual table" used for catchpoints
10582 of the EX kind. */
10583
10584static struct breakpoint_ops *
4b9eee8c 10585ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
10586{
10587 switch (ex)
10588 {
10589 case ex_catch_exception:
10590 return (&catch_exception_breakpoint_ops);
10591 break;
10592 case ex_catch_exception_unhandled:
10593 return (&catch_exception_unhandled_breakpoint_ops);
10594 break;
10595 case ex_catch_assert:
10596 return (&catch_assert_breakpoint_ops);
10597 break;
10598 default:
10599 internal_error (__FILE__, __LINE__,
10600 _("unexpected catchpoint kind (%d)"), ex);
10601 }
10602}
10603
10604/* Return the condition that will be used to match the current exception
10605 being raised with the exception that the user wants to catch. This
10606 assumes that this condition is used when the inferior just triggered
10607 an exception catchpoint.
10608
10609 The string returned is a newly allocated string that needs to be
10610 deallocated later. */
10611
10612static char *
10613ada_exception_catchpoint_cond_string (const char *exp_string)
10614{
3d0b0fa3
JB
10615 int i;
10616
10617 /* The standard exceptions are a special case. They are defined in
10618 runtime units that have been compiled without debugging info; if
10619 EXP_STRING is the not-fully-qualified name of a standard
10620 exception (e.g. "constraint_error") then, during the evaluation
10621 of the condition expression, the symbol lookup on this name would
10622 *not* return this standard exception. The catchpoint condition
10623 may then be set only on user-defined exceptions which have the
10624 same not-fully-qualified name (e.g. my_package.constraint_error).
10625
10626 To avoid this unexcepted behavior, these standard exceptions are
10627 systematically prefixed by "standard". This means that "catch
10628 exception constraint_error" is rewritten into "catch exception
10629 standard.constraint_error".
10630
10631 If an exception named contraint_error is defined in another package of
10632 the inferior program, then the only way to specify this exception as a
10633 breakpoint condition is to use its fully-qualified named:
10634 e.g. my_package.constraint_error. */
10635
10636 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10637 {
10638 if (strcmp (standard_exc [i], exp_string) == 0)
10639 {
10640 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10641 exp_string);
10642 }
10643 }
f7f9143b
JB
10644 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10645}
10646
10647/* Return the expression corresponding to COND_STRING evaluated at SAL. */
10648
10649static struct expression *
10650ada_parse_catchpoint_condition (char *cond_string,
10651 struct symtab_and_line sal)
10652{
10653 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10654}
10655
10656/* Return the symtab_and_line that should be used to insert an exception
10657 catchpoint of the TYPE kind.
10658
10659 EX_STRING should contain the name of a specific exception
10660 that the catchpoint should catch, or NULL otherwise.
10661
10662 The idea behind all the remaining parameters is that their names match
10663 the name of certain fields in the breakpoint structure that are used to
10664 handle exception catchpoints. This function returns the value to which
10665 these fields should be set, depending on the type of catchpoint we need
10666 to create.
10667
10668 If COND and COND_STRING are both non-NULL, any value they might
10669 hold will be free'ed, and then replaced by newly allocated ones.
10670 These parameters are left untouched otherwise. */
10671
10672static struct symtab_and_line
10673ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10674 char **addr_string, char **cond_string,
10675 struct expression **cond, struct breakpoint_ops **ops)
10676{
10677 const char *sym_name;
10678 struct symbol *sym;
10679 struct symtab_and_line sal;
10680
0259addd
JB
10681 /* First, find out which exception support info to use. */
10682 ada_exception_support_info_sniffer ();
10683
10684 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
10685 the Ada exceptions requested by the user. */
10686
10687 sym_name = ada_exception_sym_name (ex);
10688 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10689
10690 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10691 that should be compiled with debugging information. As a result, we
10692 expect to find that symbol in the symtabs. If we don't find it, then
10693 the target most likely does not support Ada exceptions, or we cannot
10694 insert exception breakpoints yet, because the GNAT runtime hasn't been
10695 loaded yet. */
10696
10697 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10698 in such a way that no debugging information is produced for the symbol
10699 we are looking for. In this case, we could search the minimal symbols
10700 as a fall-back mechanism. This would still be operating in degraded
10701 mode, however, as we would still be missing the debugging information
10702 that is needed in order to extract the name of the exception being
10703 raised (this name is printed in the catchpoint message, and is also
10704 used when trying to catch a specific exception). We do not handle
10705 this case for now. */
10706
10707 if (sym == NULL)
0259addd 10708 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
10709
10710 /* Make sure that the symbol we found corresponds to a function. */
10711 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10712 error (_("Symbol \"%s\" is not a function (class = %d)"),
10713 sym_name, SYMBOL_CLASS (sym));
10714
10715 sal = find_function_start_sal (sym, 1);
10716
10717 /* Set ADDR_STRING. */
10718
10719 *addr_string = xstrdup (sym_name);
10720
10721 /* Set the COND and COND_STRING (if not NULL). */
10722
10723 if (cond_string != NULL && cond != NULL)
10724 {
10725 if (*cond_string != NULL)
10726 {
10727 xfree (*cond_string);
10728 *cond_string = NULL;
10729 }
10730 if (*cond != NULL)
10731 {
10732 xfree (*cond);
10733 *cond = NULL;
10734 }
10735 if (exp_string != NULL)
10736 {
10737 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10738 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10739 }
10740 }
10741
10742 /* Set OPS. */
4b9eee8c 10743 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
10744
10745 return sal;
10746}
10747
10748/* Parse the arguments (ARGS) of the "catch exception" command.
10749
10750 Set TYPE to the appropriate exception catchpoint type.
10751 If the user asked the catchpoint to catch only a specific
10752 exception, then save the exception name in ADDR_STRING.
10753
10754 See ada_exception_sal for a description of all the remaining
10755 function arguments of this function. */
10756
10757struct symtab_and_line
10758ada_decode_exception_location (char *args, char **addr_string,
10759 char **exp_string, char **cond_string,
10760 struct expression **cond,
10761 struct breakpoint_ops **ops)
10762{
10763 enum exception_catchpoint_kind ex;
10764
10765 catch_ada_exception_command_split (args, &ex, exp_string);
10766 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10767 cond, ops);
10768}
10769
10770struct symtab_and_line
10771ada_decode_assert_location (char *args, char **addr_string,
10772 struct breakpoint_ops **ops)
10773{
10774 /* Check that no argument where provided at the end of the command. */
10775
10776 if (args != NULL)
10777 {
10778 while (isspace (*args))
10779 args++;
10780 if (*args != '\0')
10781 error (_("Junk at end of arguments."));
10782 }
10783
10784 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10785 ops);
10786}
10787
4c4b4cd2
PH
10788 /* Operators */
10789/* Information about operators given special treatment in functions
10790 below. */
10791/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10792
10793#define ADA_OPERATORS \
10794 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10795 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10796 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10797 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10798 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10799 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10800 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10801 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10802 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10803 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10804 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10805 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10806 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10807 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10808 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
10809 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10810 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10811 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10812 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
10813
10814static void
10815ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10816{
10817 switch (exp->elts[pc - 1].opcode)
10818 {
76a01679 10819 default:
4c4b4cd2
PH
10820 operator_length_standard (exp, pc, oplenp, argsp);
10821 break;
10822
10823#define OP_DEFN(op, len, args, binop) \
10824 case op: *oplenp = len; *argsp = args; break;
10825 ADA_OPERATORS;
10826#undef OP_DEFN
52ce6436
PH
10827
10828 case OP_AGGREGATE:
10829 *oplenp = 3;
10830 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10831 break;
10832
10833 case OP_CHOICES:
10834 *oplenp = 3;
10835 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10836 break;
4c4b4cd2
PH
10837 }
10838}
10839
10840static char *
10841ada_op_name (enum exp_opcode opcode)
10842{
10843 switch (opcode)
10844 {
76a01679 10845 default:
4c4b4cd2 10846 return op_name_standard (opcode);
52ce6436 10847
4c4b4cd2
PH
10848#define OP_DEFN(op, len, args, binop) case op: return #op;
10849 ADA_OPERATORS;
10850#undef OP_DEFN
52ce6436
PH
10851
10852 case OP_AGGREGATE:
10853 return "OP_AGGREGATE";
10854 case OP_CHOICES:
10855 return "OP_CHOICES";
10856 case OP_NAME:
10857 return "OP_NAME";
4c4b4cd2
PH
10858 }
10859}
10860
10861/* As for operator_length, but assumes PC is pointing at the first
10862 element of the operator, and gives meaningful results only for the
52ce6436 10863 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
10864
10865static void
76a01679
JB
10866ada_forward_operator_length (struct expression *exp, int pc,
10867 int *oplenp, int *argsp)
4c4b4cd2 10868{
76a01679 10869 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
10870 {
10871 default:
10872 *oplenp = *argsp = 0;
10873 break;
52ce6436 10874
4c4b4cd2
PH
10875#define OP_DEFN(op, len, args, binop) \
10876 case op: *oplenp = len; *argsp = args; break;
10877 ADA_OPERATORS;
10878#undef OP_DEFN
52ce6436
PH
10879
10880 case OP_AGGREGATE:
10881 *oplenp = 3;
10882 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10883 break;
10884
10885 case OP_CHOICES:
10886 *oplenp = 3;
10887 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10888 break;
10889
10890 case OP_STRING:
10891 case OP_NAME:
10892 {
10893 int len = longest_to_int (exp->elts[pc + 1].longconst);
10894 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10895 *argsp = 0;
10896 break;
10897 }
4c4b4cd2
PH
10898 }
10899}
10900
10901static int
10902ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10903{
10904 enum exp_opcode op = exp->elts[elt].opcode;
10905 int oplen, nargs;
10906 int pc = elt;
10907 int i;
76a01679 10908
4c4b4cd2
PH
10909 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10910
76a01679 10911 switch (op)
4c4b4cd2 10912 {
76a01679 10913 /* Ada attributes ('Foo). */
4c4b4cd2
PH
10914 case OP_ATR_FIRST:
10915 case OP_ATR_LAST:
10916 case OP_ATR_LENGTH:
10917 case OP_ATR_IMAGE:
10918 case OP_ATR_MAX:
10919 case OP_ATR_MIN:
10920 case OP_ATR_MODULUS:
10921 case OP_ATR_POS:
10922 case OP_ATR_SIZE:
10923 case OP_ATR_TAG:
10924 case OP_ATR_VAL:
10925 break;
10926
10927 case UNOP_IN_RANGE:
10928 case UNOP_QUAL:
323e0a4a
AC
10929 /* XXX: gdb_sprint_host_address, type_sprint */
10930 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
10931 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10932 fprintf_filtered (stream, " (");
10933 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10934 fprintf_filtered (stream, ")");
10935 break;
10936 case BINOP_IN_BOUNDS:
52ce6436
PH
10937 fprintf_filtered (stream, " (%d)",
10938 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
10939 break;
10940 case TERNOP_IN_RANGE:
10941 break;
10942
52ce6436
PH
10943 case OP_AGGREGATE:
10944 case OP_OTHERS:
10945 case OP_DISCRETE_RANGE:
10946 case OP_POSITIONAL:
10947 case OP_CHOICES:
10948 break;
10949
10950 case OP_NAME:
10951 case OP_STRING:
10952 {
10953 char *name = &exp->elts[elt + 2].string;
10954 int len = longest_to_int (exp->elts[elt + 1].longconst);
10955 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10956 break;
10957 }
10958
4c4b4cd2
PH
10959 default:
10960 return dump_subexp_body_standard (exp, stream, elt);
10961 }
10962
10963 elt += oplen;
10964 for (i = 0; i < nargs; i += 1)
10965 elt = dump_subexp (exp, stream, elt);
10966
10967 return elt;
10968}
10969
10970/* The Ada extension of print_subexp (q.v.). */
10971
76a01679
JB
10972static void
10973ada_print_subexp (struct expression *exp, int *pos,
10974 struct ui_file *stream, enum precedence prec)
4c4b4cd2 10975{
52ce6436 10976 int oplen, nargs, i;
4c4b4cd2
PH
10977 int pc = *pos;
10978 enum exp_opcode op = exp->elts[pc].opcode;
10979
10980 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10981
52ce6436 10982 *pos += oplen;
4c4b4cd2
PH
10983 switch (op)
10984 {
10985 default:
52ce6436 10986 *pos -= oplen;
4c4b4cd2
PH
10987 print_subexp_standard (exp, pos, stream, prec);
10988 return;
10989
10990 case OP_VAR_VALUE:
4c4b4cd2
PH
10991 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10992 return;
10993
10994 case BINOP_IN_BOUNDS:
323e0a4a 10995 /* XXX: sprint_subexp */
4c4b4cd2 10996 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10997 fputs_filtered (" in ", stream);
4c4b4cd2 10998 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10999 fputs_filtered ("'range", stream);
4c4b4cd2 11000 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
11001 fprintf_filtered (stream, "(%ld)",
11002 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
11003 return;
11004
11005 case TERNOP_IN_RANGE:
4c4b4cd2 11006 if (prec >= PREC_EQUAL)
76a01679 11007 fputs_filtered ("(", stream);
323e0a4a 11008 /* XXX: sprint_subexp */
4c4b4cd2 11009 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11010 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11011 print_subexp (exp, pos, stream, PREC_EQUAL);
11012 fputs_filtered (" .. ", stream);
11013 print_subexp (exp, pos, stream, PREC_EQUAL);
11014 if (prec >= PREC_EQUAL)
76a01679
JB
11015 fputs_filtered (")", stream);
11016 return;
4c4b4cd2
PH
11017
11018 case OP_ATR_FIRST:
11019 case OP_ATR_LAST:
11020 case OP_ATR_LENGTH:
11021 case OP_ATR_IMAGE:
11022 case OP_ATR_MAX:
11023 case OP_ATR_MIN:
11024 case OP_ATR_MODULUS:
11025 case OP_ATR_POS:
11026 case OP_ATR_SIZE:
11027 case OP_ATR_TAG:
11028 case OP_ATR_VAL:
4c4b4cd2 11029 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
11030 {
11031 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11032 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11033 *pos += 3;
11034 }
4c4b4cd2 11035 else
76a01679 11036 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
11037 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11038 if (nargs > 1)
76a01679
JB
11039 {
11040 int tem;
11041 for (tem = 1; tem < nargs; tem += 1)
11042 {
11043 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11044 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11045 }
11046 fputs_filtered (")", stream);
11047 }
4c4b4cd2 11048 return;
14f9c5c9 11049
4c4b4cd2 11050 case UNOP_QUAL:
4c4b4cd2
PH
11051 type_print (exp->elts[pc + 1].type, "", stream, 0);
11052 fputs_filtered ("'(", stream);
11053 print_subexp (exp, pos, stream, PREC_PREFIX);
11054 fputs_filtered (")", stream);
11055 return;
14f9c5c9 11056
4c4b4cd2 11057 case UNOP_IN_RANGE:
323e0a4a 11058 /* XXX: sprint_subexp */
4c4b4cd2 11059 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11060 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11061 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11062 return;
52ce6436
PH
11063
11064 case OP_DISCRETE_RANGE:
11065 print_subexp (exp, pos, stream, PREC_SUFFIX);
11066 fputs_filtered ("..", stream);
11067 print_subexp (exp, pos, stream, PREC_SUFFIX);
11068 return;
11069
11070 case OP_OTHERS:
11071 fputs_filtered ("others => ", stream);
11072 print_subexp (exp, pos, stream, PREC_SUFFIX);
11073 return;
11074
11075 case OP_CHOICES:
11076 for (i = 0; i < nargs-1; i += 1)
11077 {
11078 if (i > 0)
11079 fputs_filtered ("|", stream);
11080 print_subexp (exp, pos, stream, PREC_SUFFIX);
11081 }
11082 fputs_filtered (" => ", stream);
11083 print_subexp (exp, pos, stream, PREC_SUFFIX);
11084 return;
11085
11086 case OP_POSITIONAL:
11087 print_subexp (exp, pos, stream, PREC_SUFFIX);
11088 return;
11089
11090 case OP_AGGREGATE:
11091 fputs_filtered ("(", stream);
11092 for (i = 0; i < nargs; i += 1)
11093 {
11094 if (i > 0)
11095 fputs_filtered (", ", stream);
11096 print_subexp (exp, pos, stream, PREC_SUFFIX);
11097 }
11098 fputs_filtered (")", stream);
11099 return;
4c4b4cd2
PH
11100 }
11101}
14f9c5c9
AS
11102
11103/* Table mapping opcodes into strings for printing operators
11104 and precedences of the operators. */
11105
d2e4a39e
AS
11106static const struct op_print ada_op_print_tab[] = {
11107 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11108 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11109 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11110 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11111 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11112 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11113 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11114 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11115 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11116 {">=", BINOP_GEQ, PREC_ORDER, 0},
11117 {">", BINOP_GTR, PREC_ORDER, 0},
11118 {"<", BINOP_LESS, PREC_ORDER, 0},
11119 {">>", BINOP_RSH, PREC_SHIFT, 0},
11120 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11121 {"+", BINOP_ADD, PREC_ADD, 0},
11122 {"-", BINOP_SUB, PREC_ADD, 0},
11123 {"&", BINOP_CONCAT, PREC_ADD, 0},
11124 {"*", BINOP_MUL, PREC_MUL, 0},
11125 {"/", BINOP_DIV, PREC_MUL, 0},
11126 {"rem", BINOP_REM, PREC_MUL, 0},
11127 {"mod", BINOP_MOD, PREC_MUL, 0},
11128 {"**", BINOP_EXP, PREC_REPEAT, 0},
11129 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11130 {"-", UNOP_NEG, PREC_PREFIX, 0},
11131 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11132 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11133 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11134 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
11135 {".all", UNOP_IND, PREC_SUFFIX, 1},
11136 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11137 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 11138 {NULL, 0, 0, 0}
14f9c5c9
AS
11139};
11140\f
72d5681a
PH
11141enum ada_primitive_types {
11142 ada_primitive_type_int,
11143 ada_primitive_type_long,
11144 ada_primitive_type_short,
11145 ada_primitive_type_char,
11146 ada_primitive_type_float,
11147 ada_primitive_type_double,
11148 ada_primitive_type_void,
11149 ada_primitive_type_long_long,
11150 ada_primitive_type_long_double,
11151 ada_primitive_type_natural,
11152 ada_primitive_type_positive,
11153 ada_primitive_type_system_address,
11154 nr_ada_primitive_types
11155};
6c038f32
PH
11156
11157static void
d4a9a881 11158ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
11159 struct language_arch_info *lai)
11160{
d4a9a881 11161 const struct builtin_type *builtin = builtin_type (gdbarch);
72d5681a 11162 lai->primitive_type_vector
d4a9a881 11163 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 11164 struct type *);
e9bb382b
UW
11165
11166 lai->primitive_type_vector [ada_primitive_type_int]
11167 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11168 0, "integer");
11169 lai->primitive_type_vector [ada_primitive_type_long]
11170 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11171 0, "long_integer");
11172 lai->primitive_type_vector [ada_primitive_type_short]
11173 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11174 0, "short_integer");
11175 lai->string_char_type
11176 = lai->primitive_type_vector [ada_primitive_type_char]
11177 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11178 lai->primitive_type_vector [ada_primitive_type_float]
11179 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11180 "float", NULL);
11181 lai->primitive_type_vector [ada_primitive_type_double]
11182 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11183 "long_float", NULL);
11184 lai->primitive_type_vector [ada_primitive_type_long_long]
11185 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11186 0, "long_long_integer");
11187 lai->primitive_type_vector [ada_primitive_type_long_double]
11188 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11189 "long_long_float", NULL);
11190 lai->primitive_type_vector [ada_primitive_type_natural]
11191 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11192 0, "natural");
11193 lai->primitive_type_vector [ada_primitive_type_positive]
11194 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11195 0, "positive");
11196 lai->primitive_type_vector [ada_primitive_type_void]
11197 = builtin->builtin_void;
11198
11199 lai->primitive_type_vector [ada_primitive_type_system_address]
11200 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
11201 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11202 = "system__address";
fbb06eb1 11203
47e729a8 11204 lai->bool_type_symbol = NULL;
fbb06eb1 11205 lai->bool_type_default = builtin->builtin_bool;
6c038f32 11206}
6c038f32
PH
11207\f
11208 /* Language vector */
11209
11210/* Not really used, but needed in the ada_language_defn. */
11211
11212static void
6c7a06a3 11213emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 11214{
6c7a06a3 11215 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
11216}
11217
11218static int
11219parse (void)
11220{
11221 warnings_issued = 0;
11222 return ada_parse ();
11223}
11224
11225static const struct exp_descriptor ada_exp_descriptor = {
11226 ada_print_subexp,
11227 ada_operator_length,
11228 ada_op_name,
11229 ada_dump_subexp_body,
11230 ada_evaluate_subexp
11231};
11232
11233const struct language_defn ada_language_defn = {
11234 "ada", /* Language name */
11235 language_ada,
6c038f32
PH
11236 range_check_off,
11237 type_check_off,
11238 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11239 that's not quite what this means. */
6c038f32 11240 array_row_major,
9a044a89 11241 macro_expansion_no,
6c038f32
PH
11242 &ada_exp_descriptor,
11243 parse,
11244 ada_error,
11245 resolve,
11246 ada_printchar, /* Print a character constant */
11247 ada_printstr, /* Function to print string constant */
11248 emit_char, /* Function to print single char (not used) */
6c038f32 11249 ada_print_type, /* Print a type using appropriate syntax */
5c6ce71d 11250 default_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
11251 ada_val_print, /* Print a value using appropriate syntax */
11252 ada_value_print, /* Print a top-level value */
11253 NULL, /* Language specific skip_trampoline */
2b2d9e11 11254 NULL, /* name_of_this */
6c038f32
PH
11255 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11256 basic_lookup_transparent_type, /* lookup_transparent_type */
11257 ada_la_decode, /* Language specific symbol demangler */
11258 NULL, /* Language specific class_name_from_physname */
11259 ada_op_print_tab, /* expression operators for printing */
11260 0, /* c-style arrays */
11261 1, /* String lower bound */
6c038f32 11262 ada_get_gdb_completer_word_break_characters,
41d27058 11263 ada_make_symbol_completion_list,
72d5681a 11264 ada_language_arch_info,
e79af960 11265 ada_print_array_index,
41f1b697 11266 default_pass_by_reference,
ae6a3a4c 11267 c_get_string,
6c038f32
PH
11268 LANG_MAGIC
11269};
11270
2c0b251b
PA
11271/* Provide a prototype to silence -Wmissing-prototypes. */
11272extern initialize_file_ftype _initialize_ada_language;
11273
d2e4a39e 11274void
6c038f32 11275_initialize_ada_language (void)
14f9c5c9 11276{
6c038f32
PH
11277 add_language (&ada_language_defn);
11278
11279 varsize_limit = 65536;
6c038f32
PH
11280
11281 obstack_init (&symbol_list_obstack);
11282
11283 decoded_names_store = htab_create_alloc
11284 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11285 NULL, xcalloc, xfree);
6b69afc4
JB
11286
11287 observer_attach_executable_changed (ada_executable_changed_observer);
14f9c5c9 11288}