]>
Commit | Line | Data |
---|---|---|
6e681866 | 1 | /* Ada language support routines for GDB, the GNU debugger. |
10a2c479 | 2 | |
61baf725 | 3 | Copyright (C) 1992-2017 Free Software Foundation, Inc. |
14f9c5c9 | 4 | |
a9762ec7 | 5 | This file is part of GDB. |
14f9c5c9 | 6 | |
a9762ec7 JB |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
14f9c5c9 | 11 | |
a9762ec7 JB |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
14f9c5c9 | 16 | |
a9762ec7 JB |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 19 | |
96d887e8 | 20 | |
4c4b4cd2 | 21 | #include "defs.h" |
14f9c5c9 | 22 | #include <ctype.h> |
14f9c5c9 | 23 | #include "demangle.h" |
4c4b4cd2 PH |
24 | #include "gdb_regex.h" |
25 | #include "frame.h" | |
14f9c5c9 AS |
26 | #include "symtab.h" |
27 | #include "gdbtypes.h" | |
28 | #include "gdbcmd.h" | |
29 | #include "expression.h" | |
30 | #include "parser-defs.h" | |
31 | #include "language.h" | |
a53b64ea | 32 | #include "varobj.h" |
14f9c5c9 AS |
33 | #include "c-lang.h" |
34 | #include "inferior.h" | |
35 | #include "symfile.h" | |
36 | #include "objfiles.h" | |
37 | #include "breakpoint.h" | |
38 | #include "gdbcore.h" | |
4c4b4cd2 PH |
39 | #include "hashtab.h" |
40 | #include "gdb_obstack.h" | |
14f9c5c9 | 41 | #include "ada-lang.h" |
4c4b4cd2 | 42 | #include "completer.h" |
53ce3c39 | 43 | #include <sys/stat.h> |
14f9c5c9 | 44 | #include "ui-out.h" |
fe898f56 | 45 | #include "block.h" |
04714b91 | 46 | #include "infcall.h" |
de4f826b | 47 | #include "dictionary.h" |
f7f9143b JB |
48 | #include "annotate.h" |
49 | #include "valprint.h" | |
9bbc9174 | 50 | #include "source.h" |
0259addd | 51 | #include "observer.h" |
2ba95b9b | 52 | #include "vec.h" |
692465f1 | 53 | #include "stack.h" |
fa864999 | 54 | #include "gdb_vecs.h" |
79d43c61 | 55 | #include "typeprint.h" |
22cee43f | 56 | #include "namespace.h" |
14f9c5c9 | 57 | |
ccefe4c4 | 58 | #include "psymtab.h" |
40bc484c | 59 | #include "value.h" |
956a9fb9 | 60 | #include "mi/mi-common.h" |
9ac4176b | 61 | #include "arch-utils.h" |
0fcd72ba | 62 | #include "cli/cli-utils.h" |
14bc53a8 | 63 | #include "common/function-view.h" |
ccefe4c4 | 64 | |
4c4b4cd2 | 65 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 66 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
67 | Copied from valarith.c. */ |
68 | ||
69 | #ifndef TRUNCATION_TOWARDS_ZERO | |
70 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
71 | #endif | |
72 | ||
d2e4a39e | 73 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 74 | |
d2e4a39e | 75 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 76 | |
d2e4a39e | 77 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 78 | |
d2e4a39e | 79 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 80 | |
d2e4a39e | 81 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 82 | |
556bdfd4 | 83 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 84 | |
d2e4a39e | 85 | static struct value *desc_data (struct value *); |
14f9c5c9 | 86 | |
d2e4a39e | 87 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 88 | |
d2e4a39e | 89 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 90 | |
d2e4a39e | 91 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 92 | |
d2e4a39e | 93 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 94 | |
d2e4a39e | 95 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 96 | |
d2e4a39e | 97 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 98 | |
d2e4a39e | 99 | static int desc_arity (struct type *); |
14f9c5c9 | 100 | |
d2e4a39e | 101 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 102 | |
d2e4a39e | 103 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 104 | |
40658b94 PH |
105 | static int full_match (const char *, const char *); |
106 | ||
40bc484c | 107 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 108 | |
4c4b4cd2 | 109 | static void ada_add_block_symbols (struct obstack *, |
f0c5f9b2 | 110 | const struct block *, const char *, |
2570f2b7 | 111 | domain_enum, struct objfile *, int); |
14f9c5c9 | 112 | |
22cee43f PMR |
113 | static void ada_add_all_symbols (struct obstack *, const struct block *, |
114 | const char *, domain_enum, int, int *); | |
115 | ||
d12307c1 | 116 | static int is_nonfunction (struct block_symbol *, int); |
14f9c5c9 | 117 | |
76a01679 | 118 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
f0c5f9b2 | 119 | const struct block *); |
14f9c5c9 | 120 | |
4c4b4cd2 PH |
121 | static int num_defns_collected (struct obstack *); |
122 | ||
d12307c1 | 123 | static struct block_symbol *defns_collected (struct obstack *, int); |
14f9c5c9 | 124 | |
4c4b4cd2 | 125 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 126 | struct type *); |
14f9c5c9 | 127 | |
d2e4a39e | 128 | static void replace_operator_with_call (struct expression **, int, int, int, |
270140bd | 129 | struct symbol *, const struct block *); |
14f9c5c9 | 130 | |
d2e4a39e | 131 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 132 | |
a121b7c1 | 133 | static const char *ada_op_name (enum exp_opcode); |
4c4b4cd2 PH |
134 | |
135 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 136 | |
d2e4a39e | 137 | static int numeric_type_p (struct type *); |
14f9c5c9 | 138 | |
d2e4a39e | 139 | static int integer_type_p (struct type *); |
14f9c5c9 | 140 | |
d2e4a39e | 141 | static int scalar_type_p (struct type *); |
14f9c5c9 | 142 | |
d2e4a39e | 143 | static int discrete_type_p (struct type *); |
14f9c5c9 | 144 | |
aeb5907d JB |
145 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
146 | const char **, | |
147 | int *, | |
148 | const char **); | |
149 | ||
150 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
270140bd | 151 | const struct block *); |
aeb5907d | 152 | |
a121b7c1 | 153 | static struct type *ada_lookup_struct_elt_type (struct type *, const char *, |
76a01679 | 154 | int, int, int *); |
4c4b4cd2 | 155 | |
d2e4a39e | 156 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 157 | |
b4ba55a1 JB |
158 | static struct type *ada_find_parallel_type_with_name (struct type *, |
159 | const char *); | |
160 | ||
d2e4a39e | 161 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 162 | |
10a2c479 | 163 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 164 | const gdb_byte *, |
4c4b4cd2 PH |
165 | CORE_ADDR, struct value *); |
166 | ||
167 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 168 | |
28c85d6c | 169 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 170 | |
d2e4a39e | 171 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 172 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 173 | |
d2e4a39e | 174 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 175 | |
ad82864c | 176 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 177 | |
ad82864c | 178 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 179 | |
ad82864c JB |
180 | static long decode_packed_array_bitsize (struct type *); |
181 | ||
182 | static struct value *decode_constrained_packed_array (struct value *); | |
183 | ||
184 | static int ada_is_packed_array_type (struct type *); | |
185 | ||
186 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 187 | |
d2e4a39e | 188 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 189 | struct value **); |
14f9c5c9 | 190 | |
50810684 | 191 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); |
52ce6436 | 192 | |
4c4b4cd2 PH |
193 | static struct value *coerce_unspec_val_to_type (struct value *, |
194 | struct type *); | |
14f9c5c9 | 195 | |
d2e4a39e | 196 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 197 | |
d2e4a39e | 198 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 199 | |
d2e4a39e | 200 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 201 | |
d2e4a39e | 202 | static int is_name_suffix (const char *); |
14f9c5c9 | 203 | |
73589123 PH |
204 | static int advance_wild_match (const char **, const char *, int); |
205 | ||
206 | static int wild_match (const char *, const char *); | |
14f9c5c9 | 207 | |
d2e4a39e | 208 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 209 | |
4c4b4cd2 PH |
210 | static LONGEST pos_atr (struct value *); |
211 | ||
3cb382c9 | 212 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 213 | |
d2e4a39e | 214 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 215 | |
4c4b4cd2 PH |
216 | static struct symbol *standard_lookup (const char *, const struct block *, |
217 | domain_enum); | |
14f9c5c9 | 218 | |
108d56a4 | 219 | static struct value *ada_search_struct_field (const char *, struct value *, int, |
4c4b4cd2 PH |
220 | struct type *); |
221 | ||
222 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
223 | struct type *); | |
224 | ||
0d5cff50 | 225 | static int find_struct_field (const char *, struct type *, int, |
52ce6436 | 226 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
227 | |
228 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
229 | struct value *); | |
230 | ||
d12307c1 | 231 | static int ada_resolve_function (struct block_symbol *, int, |
4c4b4cd2 PH |
232 | struct value **, int, const char *, |
233 | struct type *); | |
234 | ||
4c4b4cd2 PH |
235 | static int ada_is_direct_array_type (struct type *); |
236 | ||
72d5681a PH |
237 | static void ada_language_arch_info (struct gdbarch *, |
238 | struct language_arch_info *); | |
714e53ab | 239 | |
52ce6436 PH |
240 | static struct value *ada_index_struct_field (int, struct value *, int, |
241 | struct type *); | |
242 | ||
243 | static struct value *assign_aggregate (struct value *, struct value *, | |
0963b4bd MS |
244 | struct expression *, |
245 | int *, enum noside); | |
52ce6436 PH |
246 | |
247 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
248 | struct expression *, | |
249 | int *, LONGEST *, int *, | |
250 | int, LONGEST, LONGEST); | |
251 | ||
252 | static void aggregate_assign_positional (struct value *, struct value *, | |
253 | struct expression *, | |
254 | int *, LONGEST *, int *, int, | |
255 | LONGEST, LONGEST); | |
256 | ||
257 | ||
258 | static void aggregate_assign_others (struct value *, struct value *, | |
259 | struct expression *, | |
260 | int *, LONGEST *, int, LONGEST, LONGEST); | |
261 | ||
262 | ||
263 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
264 | ||
265 | ||
266 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
267 | int *, enum noside); | |
268 | ||
269 | static void ada_forward_operator_length (struct expression *, int, int *, | |
270 | int *); | |
852dff6c JB |
271 | |
272 | static struct type *ada_find_any_type (const char *name); | |
4c4b4cd2 PH |
273 | \f |
274 | ||
ee01b665 JB |
275 | /* The result of a symbol lookup to be stored in our symbol cache. */ |
276 | ||
277 | struct cache_entry | |
278 | { | |
279 | /* The name used to perform the lookup. */ | |
280 | const char *name; | |
281 | /* The namespace used during the lookup. */ | |
fe978cb0 | 282 | domain_enum domain; |
ee01b665 JB |
283 | /* The symbol returned by the lookup, or NULL if no matching symbol |
284 | was found. */ | |
285 | struct symbol *sym; | |
286 | /* The block where the symbol was found, or NULL if no matching | |
287 | symbol was found. */ | |
288 | const struct block *block; | |
289 | /* A pointer to the next entry with the same hash. */ | |
290 | struct cache_entry *next; | |
291 | }; | |
292 | ||
293 | /* The Ada symbol cache, used to store the result of Ada-mode symbol | |
294 | lookups in the course of executing the user's commands. | |
295 | ||
296 | The cache is implemented using a simple, fixed-sized hash. | |
297 | The size is fixed on the grounds that there are not likely to be | |
298 | all that many symbols looked up during any given session, regardless | |
299 | of the size of the symbol table. If we decide to go to a resizable | |
300 | table, let's just use the stuff from libiberty instead. */ | |
301 | ||
302 | #define HASH_SIZE 1009 | |
303 | ||
304 | struct ada_symbol_cache | |
305 | { | |
306 | /* An obstack used to store the entries in our cache. */ | |
307 | struct obstack cache_space; | |
308 | ||
309 | /* The root of the hash table used to implement our symbol cache. */ | |
310 | struct cache_entry *root[HASH_SIZE]; | |
311 | }; | |
312 | ||
313 | static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache); | |
76a01679 | 314 | |
4c4b4cd2 | 315 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
316 | static unsigned int varsize_limit; |
317 | ||
67cb5b2d | 318 | static const char ada_completer_word_break_characters[] = |
4c4b4cd2 PH |
319 | #ifdef VMS |
320 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
321 | #else | |
14f9c5c9 | 322 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 323 | #endif |
14f9c5c9 | 324 | |
4c4b4cd2 | 325 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 326 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 327 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 328 | |
4c4b4cd2 PH |
329 | /* Limit on the number of warnings to raise per expression evaluation. */ |
330 | static int warning_limit = 2; | |
331 | ||
332 | /* Number of warning messages issued; reset to 0 by cleanups after | |
333 | expression evaluation. */ | |
334 | static int warnings_issued = 0; | |
335 | ||
336 | static const char *known_runtime_file_name_patterns[] = { | |
337 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
338 | }; | |
339 | ||
340 | static const char *known_auxiliary_function_name_patterns[] = { | |
341 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
342 | }; | |
343 | ||
344 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
345 | static struct obstack symbol_list_obstack; | |
346 | ||
c6044dd1 JB |
347 | /* Maintenance-related settings for this module. */ |
348 | ||
349 | static struct cmd_list_element *maint_set_ada_cmdlist; | |
350 | static struct cmd_list_element *maint_show_ada_cmdlist; | |
351 | ||
352 | /* Implement the "maintenance set ada" (prefix) command. */ | |
353 | ||
354 | static void | |
355 | maint_set_ada_cmd (char *args, int from_tty) | |
356 | { | |
635c7e8a TT |
357 | help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands, |
358 | gdb_stdout); | |
c6044dd1 JB |
359 | } |
360 | ||
361 | /* Implement the "maintenance show ada" (prefix) command. */ | |
362 | ||
363 | static void | |
364 | maint_show_ada_cmd (char *args, int from_tty) | |
365 | { | |
366 | cmd_show_list (maint_show_ada_cmdlist, from_tty, ""); | |
367 | } | |
368 | ||
369 | /* The "maintenance ada set/show ignore-descriptive-type" value. */ | |
370 | ||
371 | static int ada_ignore_descriptive_types_p = 0; | |
372 | ||
e802dbe0 JB |
373 | /* Inferior-specific data. */ |
374 | ||
375 | /* Per-inferior data for this module. */ | |
376 | ||
377 | struct ada_inferior_data | |
378 | { | |
379 | /* The ada__tags__type_specific_data type, which is used when decoding | |
380 | tagged types. With older versions of GNAT, this type was directly | |
381 | accessible through a component ("tsd") in the object tag. But this | |
382 | is no longer the case, so we cache it for each inferior. */ | |
383 | struct type *tsd_type; | |
3eecfa55 JB |
384 | |
385 | /* The exception_support_info data. This data is used to determine | |
386 | how to implement support for Ada exception catchpoints in a given | |
387 | inferior. */ | |
388 | const struct exception_support_info *exception_info; | |
e802dbe0 JB |
389 | }; |
390 | ||
391 | /* Our key to this module's inferior data. */ | |
392 | static const struct inferior_data *ada_inferior_data; | |
393 | ||
394 | /* A cleanup routine for our inferior data. */ | |
395 | static void | |
396 | ada_inferior_data_cleanup (struct inferior *inf, void *arg) | |
397 | { | |
398 | struct ada_inferior_data *data; | |
399 | ||
9a3c8263 | 400 | data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data); |
e802dbe0 JB |
401 | if (data != NULL) |
402 | xfree (data); | |
403 | } | |
404 | ||
405 | /* Return our inferior data for the given inferior (INF). | |
406 | ||
407 | This function always returns a valid pointer to an allocated | |
408 | ada_inferior_data structure. If INF's inferior data has not | |
409 | been previously set, this functions creates a new one with all | |
410 | fields set to zero, sets INF's inferior to it, and then returns | |
411 | a pointer to that newly allocated ada_inferior_data. */ | |
412 | ||
413 | static struct ada_inferior_data * | |
414 | get_ada_inferior_data (struct inferior *inf) | |
415 | { | |
416 | struct ada_inferior_data *data; | |
417 | ||
9a3c8263 | 418 | data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data); |
e802dbe0 JB |
419 | if (data == NULL) |
420 | { | |
41bf6aca | 421 | data = XCNEW (struct ada_inferior_data); |
e802dbe0 JB |
422 | set_inferior_data (inf, ada_inferior_data, data); |
423 | } | |
424 | ||
425 | return data; | |
426 | } | |
427 | ||
428 | /* Perform all necessary cleanups regarding our module's inferior data | |
429 | that is required after the inferior INF just exited. */ | |
430 | ||
431 | static void | |
432 | ada_inferior_exit (struct inferior *inf) | |
433 | { | |
434 | ada_inferior_data_cleanup (inf, NULL); | |
435 | set_inferior_data (inf, ada_inferior_data, NULL); | |
436 | } | |
437 | ||
ee01b665 JB |
438 | |
439 | /* program-space-specific data. */ | |
440 | ||
441 | /* This module's per-program-space data. */ | |
442 | struct ada_pspace_data | |
443 | { | |
444 | /* The Ada symbol cache. */ | |
445 | struct ada_symbol_cache *sym_cache; | |
446 | }; | |
447 | ||
448 | /* Key to our per-program-space data. */ | |
449 | static const struct program_space_data *ada_pspace_data_handle; | |
450 | ||
451 | /* Return this module's data for the given program space (PSPACE). | |
452 | If not is found, add a zero'ed one now. | |
453 | ||
454 | This function always returns a valid object. */ | |
455 | ||
456 | static struct ada_pspace_data * | |
457 | get_ada_pspace_data (struct program_space *pspace) | |
458 | { | |
459 | struct ada_pspace_data *data; | |
460 | ||
9a3c8263 SM |
461 | data = ((struct ada_pspace_data *) |
462 | program_space_data (pspace, ada_pspace_data_handle)); | |
ee01b665 JB |
463 | if (data == NULL) |
464 | { | |
465 | data = XCNEW (struct ada_pspace_data); | |
466 | set_program_space_data (pspace, ada_pspace_data_handle, data); | |
467 | } | |
468 | ||
469 | return data; | |
470 | } | |
471 | ||
472 | /* The cleanup callback for this module's per-program-space data. */ | |
473 | ||
474 | static void | |
475 | ada_pspace_data_cleanup (struct program_space *pspace, void *data) | |
476 | { | |
9a3c8263 | 477 | struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data; |
ee01b665 JB |
478 | |
479 | if (pspace_data->sym_cache != NULL) | |
480 | ada_free_symbol_cache (pspace_data->sym_cache); | |
481 | xfree (pspace_data); | |
482 | } | |
483 | ||
4c4b4cd2 PH |
484 | /* Utilities */ |
485 | ||
720d1a40 | 486 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 487 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
488 | |
489 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
490 | In other words, we really expect the target type of a typedef type to be | |
491 | a non-typedef type. This is particularly true for Ada units, because | |
492 | the language does not have a typedef vs not-typedef distinction. | |
493 | In that respect, the Ada compiler has been trying to eliminate as many | |
494 | typedef definitions in the debugging information, since they generally | |
495 | do not bring any extra information (we still use typedef under certain | |
496 | circumstances related mostly to the GNAT encoding). | |
497 | ||
498 | Unfortunately, we have seen situations where the debugging information | |
499 | generated by the compiler leads to such multiple typedef layers. For | |
500 | instance, consider the following example with stabs: | |
501 | ||
502 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
503 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
504 | ||
505 | This is an error in the debugging information which causes type | |
506 | pck__float_array___XUP to be defined twice, and the second time, | |
507 | it is defined as a typedef of a typedef. | |
508 | ||
509 | This is on the fringe of legality as far as debugging information is | |
510 | concerned, and certainly unexpected. But it is easy to handle these | |
511 | situations correctly, so we can afford to be lenient in this case. */ | |
512 | ||
513 | static struct type * | |
514 | ada_typedef_target_type (struct type *type) | |
515 | { | |
516 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
517 | type = TYPE_TARGET_TYPE (type); | |
518 | return type; | |
519 | } | |
520 | ||
41d27058 JB |
521 | /* Given DECODED_NAME a string holding a symbol name in its |
522 | decoded form (ie using the Ada dotted notation), returns | |
523 | its unqualified name. */ | |
524 | ||
525 | static const char * | |
526 | ada_unqualified_name (const char *decoded_name) | |
527 | { | |
2b0f535a JB |
528 | const char *result; |
529 | ||
530 | /* If the decoded name starts with '<', it means that the encoded | |
531 | name does not follow standard naming conventions, and thus that | |
532 | it is not your typical Ada symbol name. Trying to unqualify it | |
533 | is therefore pointless and possibly erroneous. */ | |
534 | if (decoded_name[0] == '<') | |
535 | return decoded_name; | |
536 | ||
537 | result = strrchr (decoded_name, '.'); | |
41d27058 JB |
538 | if (result != NULL) |
539 | result++; /* Skip the dot... */ | |
540 | else | |
541 | result = decoded_name; | |
542 | ||
543 | return result; | |
544 | } | |
545 | ||
546 | /* Return a string starting with '<', followed by STR, and '>'. | |
547 | The result is good until the next call. */ | |
548 | ||
549 | static char * | |
550 | add_angle_brackets (const char *str) | |
551 | { | |
552 | static char *result = NULL; | |
553 | ||
554 | xfree (result); | |
88c15c34 | 555 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
556 | return result; |
557 | } | |
96d887e8 | 558 | |
67cb5b2d | 559 | static const char * |
4c4b4cd2 PH |
560 | ada_get_gdb_completer_word_break_characters (void) |
561 | { | |
562 | return ada_completer_word_break_characters; | |
563 | } | |
564 | ||
e79af960 JB |
565 | /* Print an array element index using the Ada syntax. */ |
566 | ||
567 | static void | |
568 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 569 | const struct value_print_options *options) |
e79af960 | 570 | { |
79a45b7d | 571 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
572 | fprintf_filtered (stream, " => "); |
573 | } | |
574 | ||
f27cf670 | 575 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 576 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 577 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 578 | |
f27cf670 AS |
579 | void * |
580 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 581 | { |
d2e4a39e AS |
582 | if (*size < min_size) |
583 | { | |
584 | *size *= 2; | |
585 | if (*size < min_size) | |
4c4b4cd2 | 586 | *size = min_size; |
f27cf670 | 587 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 588 | } |
f27cf670 | 589 | return vect; |
14f9c5c9 AS |
590 | } |
591 | ||
592 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 593 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
594 | |
595 | static int | |
ebf56fd3 | 596 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
597 | { |
598 | int len = strlen (target); | |
5b4ee69b | 599 | |
d2e4a39e | 600 | return |
4c4b4cd2 PH |
601 | (strncmp (field_name, target, len) == 0 |
602 | && (field_name[len] == '\0' | |
61012eef | 603 | || (startswith (field_name + len, "___") |
76a01679 JB |
604 | && strcmp (field_name + strlen (field_name) - 6, |
605 | "___XVN") != 0))); | |
14f9c5c9 AS |
606 | } |
607 | ||
608 | ||
872c8b51 JB |
609 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
610 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
611 | and return its index. This function also handles fields whose name | |
612 | have ___ suffixes because the compiler sometimes alters their name | |
613 | by adding such a suffix to represent fields with certain constraints. | |
614 | If the field could not be found, return a negative number if | |
615 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
616 | |
617 | int | |
618 | ada_get_field_index (const struct type *type, const char *field_name, | |
619 | int maybe_missing) | |
620 | { | |
621 | int fieldno; | |
872c8b51 JB |
622 | struct type *struct_type = check_typedef ((struct type *) type); |
623 | ||
624 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
625 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
626 | return fieldno; |
627 | ||
628 | if (!maybe_missing) | |
323e0a4a | 629 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 630 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
631 | |
632 | return -1; | |
633 | } | |
634 | ||
635 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
636 | |
637 | int | |
d2e4a39e | 638 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
639 | { |
640 | if (name == NULL) | |
641 | return 0; | |
d2e4a39e | 642 | else |
14f9c5c9 | 643 | { |
d2e4a39e | 644 | const char *p = strstr (name, "___"); |
5b4ee69b | 645 | |
14f9c5c9 | 646 | if (p == NULL) |
4c4b4cd2 | 647 | return strlen (name); |
14f9c5c9 | 648 | else |
4c4b4cd2 | 649 | return p - name; |
14f9c5c9 AS |
650 | } |
651 | } | |
652 | ||
4c4b4cd2 PH |
653 | /* Return non-zero if SUFFIX is a suffix of STR. |
654 | Return zero if STR is null. */ | |
655 | ||
14f9c5c9 | 656 | static int |
d2e4a39e | 657 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
658 | { |
659 | int len1, len2; | |
5b4ee69b | 660 | |
14f9c5c9 AS |
661 | if (str == NULL) |
662 | return 0; | |
663 | len1 = strlen (str); | |
664 | len2 = strlen (suffix); | |
4c4b4cd2 | 665 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
666 | } |
667 | ||
4c4b4cd2 PH |
668 | /* The contents of value VAL, treated as a value of type TYPE. The |
669 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 670 | |
d2e4a39e | 671 | static struct value * |
4c4b4cd2 | 672 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 673 | { |
61ee279c | 674 | type = ada_check_typedef (type); |
df407dfe | 675 | if (value_type (val) == type) |
4c4b4cd2 | 676 | return val; |
d2e4a39e | 677 | else |
14f9c5c9 | 678 | { |
4c4b4cd2 PH |
679 | struct value *result; |
680 | ||
681 | /* Make sure that the object size is not unreasonable before | |
682 | trying to allocate some memory for it. */ | |
c1b5a1a6 | 683 | ada_ensure_varsize_limit (type); |
4c4b4cd2 | 684 | |
41e8491f JK |
685 | if (value_lazy (val) |
686 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) | |
687 | result = allocate_value_lazy (type); | |
688 | else | |
689 | { | |
690 | result = allocate_value (type); | |
9a0dc9e3 | 691 | value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type)); |
41e8491f | 692 | } |
74bcbdf3 | 693 | set_value_component_location (result, val); |
9bbda503 AC |
694 | set_value_bitsize (result, value_bitsize (val)); |
695 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 696 | set_value_address (result, value_address (val)); |
14f9c5c9 AS |
697 | return result; |
698 | } | |
699 | } | |
700 | ||
fc1a4b47 AC |
701 | static const gdb_byte * |
702 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
703 | { |
704 | if (valaddr == NULL) | |
705 | return NULL; | |
706 | else | |
707 | return valaddr + offset; | |
708 | } | |
709 | ||
710 | static CORE_ADDR | |
ebf56fd3 | 711 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
712 | { |
713 | if (address == 0) | |
714 | return 0; | |
d2e4a39e | 715 | else |
14f9c5c9 AS |
716 | return address + offset; |
717 | } | |
718 | ||
4c4b4cd2 PH |
719 | /* Issue a warning (as for the definition of warning in utils.c, but |
720 | with exactly one argument rather than ...), unless the limit on the | |
721 | number of warnings has passed during the evaluation of the current | |
722 | expression. */ | |
a2249542 | 723 | |
77109804 AC |
724 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
725 | provided by "complaint". */ | |
a0b31db1 | 726 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 727 | |
14f9c5c9 | 728 | static void |
a2249542 | 729 | lim_warning (const char *format, ...) |
14f9c5c9 | 730 | { |
a2249542 | 731 | va_list args; |
a2249542 | 732 | |
5b4ee69b | 733 | va_start (args, format); |
4c4b4cd2 PH |
734 | warnings_issued += 1; |
735 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
736 | vwarning (format, args); |
737 | ||
738 | va_end (args); | |
4c4b4cd2 PH |
739 | } |
740 | ||
714e53ab PH |
741 | /* Issue an error if the size of an object of type T is unreasonable, |
742 | i.e. if it would be a bad idea to allocate a value of this type in | |
743 | GDB. */ | |
744 | ||
c1b5a1a6 JB |
745 | void |
746 | ada_ensure_varsize_limit (const struct type *type) | |
714e53ab PH |
747 | { |
748 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 749 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
750 | } |
751 | ||
0963b4bd | 752 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 753 | static LONGEST |
c3e5cd34 | 754 | max_of_size (int size) |
4c4b4cd2 | 755 | { |
76a01679 | 756 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 757 | |
76a01679 | 758 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
759 | } |
760 | ||
0963b4bd | 761 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 762 | static LONGEST |
c3e5cd34 | 763 | min_of_size (int size) |
4c4b4cd2 | 764 | { |
c3e5cd34 | 765 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
766 | } |
767 | ||
0963b4bd | 768 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 769 | static ULONGEST |
c3e5cd34 | 770 | umax_of_size (int size) |
4c4b4cd2 | 771 | { |
76a01679 | 772 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 773 | |
76a01679 | 774 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
775 | } |
776 | ||
0963b4bd | 777 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
778 | static LONGEST |
779 | max_of_type (struct type *t) | |
4c4b4cd2 | 780 | { |
c3e5cd34 PH |
781 | if (TYPE_UNSIGNED (t)) |
782 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
783 | else | |
784 | return max_of_size (TYPE_LENGTH (t)); | |
785 | } | |
786 | ||
0963b4bd | 787 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
788 | static LONGEST |
789 | min_of_type (struct type *t) | |
790 | { | |
791 | if (TYPE_UNSIGNED (t)) | |
792 | return 0; | |
793 | else | |
794 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
795 | } |
796 | ||
797 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
798 | LONGEST |
799 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 800 | { |
c3345124 | 801 | type = resolve_dynamic_type (type, NULL, 0); |
76a01679 | 802 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
803 | { |
804 | case TYPE_CODE_RANGE: | |
690cc4eb | 805 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 806 | case TYPE_CODE_ENUM: |
14e75d8e | 807 | return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1); |
690cc4eb PH |
808 | case TYPE_CODE_BOOL: |
809 | return 1; | |
810 | case TYPE_CODE_CHAR: | |
76a01679 | 811 | case TYPE_CODE_INT: |
690cc4eb | 812 | return max_of_type (type); |
4c4b4cd2 | 813 | default: |
43bbcdc2 | 814 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
815 | } |
816 | } | |
817 | ||
14e75d8e | 818 | /* The smallest value in the domain of TYPE, a discrete type, as an integer. */ |
43bbcdc2 PH |
819 | LONGEST |
820 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 821 | { |
c3345124 | 822 | type = resolve_dynamic_type (type, NULL, 0); |
76a01679 | 823 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
824 | { |
825 | case TYPE_CODE_RANGE: | |
690cc4eb | 826 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 827 | case TYPE_CODE_ENUM: |
14e75d8e | 828 | return TYPE_FIELD_ENUMVAL (type, 0); |
690cc4eb PH |
829 | case TYPE_CODE_BOOL: |
830 | return 0; | |
831 | case TYPE_CODE_CHAR: | |
76a01679 | 832 | case TYPE_CODE_INT: |
690cc4eb | 833 | return min_of_type (type); |
4c4b4cd2 | 834 | default: |
43bbcdc2 | 835 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
836 | } |
837 | } | |
838 | ||
839 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 840 | non-range scalar type. */ |
4c4b4cd2 PH |
841 | |
842 | static struct type * | |
18af8284 | 843 | get_base_type (struct type *type) |
4c4b4cd2 PH |
844 | { |
845 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
846 | { | |
76a01679 JB |
847 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
848 | return type; | |
4c4b4cd2 PH |
849 | type = TYPE_TARGET_TYPE (type); |
850 | } | |
851 | return type; | |
14f9c5c9 | 852 | } |
41246937 JB |
853 | |
854 | /* Return a decoded version of the given VALUE. This means returning | |
855 | a value whose type is obtained by applying all the GNAT-specific | |
856 | encondings, making the resulting type a static but standard description | |
857 | of the initial type. */ | |
858 | ||
859 | struct value * | |
860 | ada_get_decoded_value (struct value *value) | |
861 | { | |
862 | struct type *type = ada_check_typedef (value_type (value)); | |
863 | ||
864 | if (ada_is_array_descriptor_type (type) | |
865 | || (ada_is_constrained_packed_array_type (type) | |
866 | && TYPE_CODE (type) != TYPE_CODE_PTR)) | |
867 | { | |
868 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */ | |
869 | value = ada_coerce_to_simple_array_ptr (value); | |
870 | else | |
871 | value = ada_coerce_to_simple_array (value); | |
872 | } | |
873 | else | |
874 | value = ada_to_fixed_value (value); | |
875 | ||
876 | return value; | |
877 | } | |
878 | ||
879 | /* Same as ada_get_decoded_value, but with the given TYPE. | |
880 | Because there is no associated actual value for this type, | |
881 | the resulting type might be a best-effort approximation in | |
882 | the case of dynamic types. */ | |
883 | ||
884 | struct type * | |
885 | ada_get_decoded_type (struct type *type) | |
886 | { | |
887 | type = to_static_fixed_type (type); | |
888 | if (ada_is_constrained_packed_array_type (type)) | |
889 | type = ada_coerce_to_simple_array_type (type); | |
890 | return type; | |
891 | } | |
892 | ||
4c4b4cd2 | 893 | \f |
76a01679 | 894 | |
4c4b4cd2 | 895 | /* Language Selection */ |
14f9c5c9 AS |
896 | |
897 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 898 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 899 | |
14f9c5c9 | 900 | enum language |
ccefe4c4 | 901 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 902 | { |
d2e4a39e | 903 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
3b7344d5 | 904 | (struct objfile *) NULL).minsym != NULL) |
4c4b4cd2 | 905 | return language_ada; |
14f9c5c9 AS |
906 | |
907 | return lang; | |
908 | } | |
96d887e8 PH |
909 | |
910 | /* If the main procedure is written in Ada, then return its name. | |
911 | The result is good until the next call. Return NULL if the main | |
912 | procedure doesn't appear to be in Ada. */ | |
913 | ||
914 | char * | |
915 | ada_main_name (void) | |
916 | { | |
3b7344d5 | 917 | struct bound_minimal_symbol msym; |
f9bc20b9 | 918 | static char *main_program_name = NULL; |
6c038f32 | 919 | |
96d887e8 PH |
920 | /* For Ada, the name of the main procedure is stored in a specific |
921 | string constant, generated by the binder. Look for that symbol, | |
922 | extract its address, and then read that string. If we didn't find | |
923 | that string, then most probably the main procedure is not written | |
924 | in Ada. */ | |
925 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
926 | ||
3b7344d5 | 927 | if (msym.minsym != NULL) |
96d887e8 | 928 | { |
f9bc20b9 JB |
929 | CORE_ADDR main_program_name_addr; |
930 | int err_code; | |
931 | ||
77e371c0 | 932 | main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym); |
96d887e8 | 933 | if (main_program_name_addr == 0) |
323e0a4a | 934 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 935 | |
f9bc20b9 JB |
936 | xfree (main_program_name); |
937 | target_read_string (main_program_name_addr, &main_program_name, | |
938 | 1024, &err_code); | |
939 | ||
940 | if (err_code != 0) | |
941 | return NULL; | |
96d887e8 PH |
942 | return main_program_name; |
943 | } | |
944 | ||
945 | /* The main procedure doesn't seem to be in Ada. */ | |
946 | return NULL; | |
947 | } | |
14f9c5c9 | 948 | \f |
4c4b4cd2 | 949 | /* Symbols */ |
d2e4a39e | 950 | |
4c4b4cd2 PH |
951 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
952 | of NULLs. */ | |
14f9c5c9 | 953 | |
d2e4a39e AS |
954 | const struct ada_opname_map ada_opname_table[] = { |
955 | {"Oadd", "\"+\"", BINOP_ADD}, | |
956 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
957 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
958 | {"Odivide", "\"/\"", BINOP_DIV}, | |
959 | {"Omod", "\"mod\"", BINOP_MOD}, | |
960 | {"Orem", "\"rem\"", BINOP_REM}, | |
961 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
962 | {"Olt", "\"<\"", BINOP_LESS}, | |
963 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
964 | {"Ogt", "\">\"", BINOP_GTR}, | |
965 | {"Oge", "\">=\"", BINOP_GEQ}, | |
966 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
967 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
968 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
969 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
970 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
971 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
972 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
973 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
974 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
975 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
976 | {NULL, NULL} | |
14f9c5c9 AS |
977 | }; |
978 | ||
4c4b4cd2 PH |
979 | /* The "encoded" form of DECODED, according to GNAT conventions. |
980 | The result is valid until the next call to ada_encode. */ | |
981 | ||
14f9c5c9 | 982 | char * |
4c4b4cd2 | 983 | ada_encode (const char *decoded) |
14f9c5c9 | 984 | { |
4c4b4cd2 PH |
985 | static char *encoding_buffer = NULL; |
986 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 987 | const char *p; |
14f9c5c9 | 988 | int k; |
d2e4a39e | 989 | |
4c4b4cd2 | 990 | if (decoded == NULL) |
14f9c5c9 AS |
991 | return NULL; |
992 | ||
4c4b4cd2 PH |
993 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
994 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
995 | |
996 | k = 0; | |
4c4b4cd2 | 997 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 998 | { |
cdc7bb92 | 999 | if (*p == '.') |
4c4b4cd2 PH |
1000 | { |
1001 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
1002 | k += 2; | |
1003 | } | |
14f9c5c9 | 1004 | else if (*p == '"') |
4c4b4cd2 PH |
1005 | { |
1006 | const struct ada_opname_map *mapping; | |
1007 | ||
1008 | for (mapping = ada_opname_table; | |
1265e4aa | 1009 | mapping->encoded != NULL |
61012eef | 1010 | && !startswith (p, mapping->decoded); mapping += 1) |
4c4b4cd2 PH |
1011 | ; |
1012 | if (mapping->encoded == NULL) | |
323e0a4a | 1013 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
1014 | strcpy (encoding_buffer + k, mapping->encoded); |
1015 | k += strlen (mapping->encoded); | |
1016 | break; | |
1017 | } | |
d2e4a39e | 1018 | else |
4c4b4cd2 PH |
1019 | { |
1020 | encoding_buffer[k] = *p; | |
1021 | k += 1; | |
1022 | } | |
14f9c5c9 AS |
1023 | } |
1024 | ||
4c4b4cd2 PH |
1025 | encoding_buffer[k] = '\0'; |
1026 | return encoding_buffer; | |
14f9c5c9 AS |
1027 | } |
1028 | ||
1029 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
1030 | quotes, unfolded, but with the quotes stripped away. Result good |
1031 | to next call. */ | |
1032 | ||
d2e4a39e AS |
1033 | char * |
1034 | ada_fold_name (const char *name) | |
14f9c5c9 | 1035 | { |
d2e4a39e | 1036 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
1037 | static size_t fold_buffer_size = 0; |
1038 | ||
1039 | int len = strlen (name); | |
d2e4a39e | 1040 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
1041 | |
1042 | if (name[0] == '\'') | |
1043 | { | |
d2e4a39e AS |
1044 | strncpy (fold_buffer, name + 1, len - 2); |
1045 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
1046 | } |
1047 | else | |
1048 | { | |
1049 | int i; | |
5b4ee69b | 1050 | |
14f9c5c9 | 1051 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 1052 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
1053 | } |
1054 | ||
1055 | return fold_buffer; | |
1056 | } | |
1057 | ||
529cad9c PH |
1058 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
1059 | ||
1060 | static int | |
1061 | is_lower_alphanum (const char c) | |
1062 | { | |
1063 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
1064 | } | |
1065 | ||
c90092fe JB |
1066 | /* ENCODED is the linkage name of a symbol and LEN contains its length. |
1067 | This function saves in LEN the length of that same symbol name but | |
1068 | without either of these suffixes: | |
29480c32 JB |
1069 | . .{DIGIT}+ |
1070 | . ${DIGIT}+ | |
1071 | . ___{DIGIT}+ | |
1072 | . __{DIGIT}+. | |
c90092fe | 1073 | |
29480c32 JB |
1074 | These are suffixes introduced by the compiler for entities such as |
1075 | nested subprogram for instance, in order to avoid name clashes. | |
1076 | They do not serve any purpose for the debugger. */ | |
1077 | ||
1078 | static void | |
1079 | ada_remove_trailing_digits (const char *encoded, int *len) | |
1080 | { | |
1081 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
1082 | { | |
1083 | int i = *len - 2; | |
5b4ee69b | 1084 | |
29480c32 JB |
1085 | while (i > 0 && isdigit (encoded[i])) |
1086 | i--; | |
1087 | if (i >= 0 && encoded[i] == '.') | |
1088 | *len = i; | |
1089 | else if (i >= 0 && encoded[i] == '$') | |
1090 | *len = i; | |
61012eef | 1091 | else if (i >= 2 && startswith (encoded + i - 2, "___")) |
29480c32 | 1092 | *len = i - 2; |
61012eef | 1093 | else if (i >= 1 && startswith (encoded + i - 1, "__")) |
29480c32 JB |
1094 | *len = i - 1; |
1095 | } | |
1096 | } | |
1097 | ||
1098 | /* Remove the suffix introduced by the compiler for protected object | |
1099 | subprograms. */ | |
1100 | ||
1101 | static void | |
1102 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
1103 | { | |
1104 | /* Remove trailing N. */ | |
1105 | ||
1106 | /* Protected entry subprograms are broken into two | |
1107 | separate subprograms: The first one is unprotected, and has | |
1108 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 1109 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
1110 | the protection. Since the P subprograms are internally generated, |
1111 | we leave these names undecoded, giving the user a clue that this | |
1112 | entity is internal. */ | |
1113 | ||
1114 | if (*len > 1 | |
1115 | && encoded[*len - 1] == 'N' | |
1116 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
1117 | *len = *len - 1; | |
1118 | } | |
1119 | ||
69fadcdf JB |
1120 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
1121 | ||
1122 | static void | |
1123 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
1124 | { | |
1125 | int i = *len - 1; | |
1126 | ||
1127 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
1128 | i--; | |
1129 | ||
1130 | if (encoded[i] != 'X') | |
1131 | return; | |
1132 | ||
1133 | if (i == 0) | |
1134 | return; | |
1135 | ||
1136 | if (isalnum (encoded[i-1])) | |
1137 | *len = i; | |
1138 | } | |
1139 | ||
29480c32 JB |
1140 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
1141 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
1142 | replaced by ENCODED. | |
14f9c5c9 | 1143 | |
4c4b4cd2 | 1144 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 1145 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
1146 | is returned. */ |
1147 | ||
1148 | const char * | |
1149 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
1150 | { |
1151 | int i, j; | |
1152 | int len0; | |
d2e4a39e | 1153 | const char *p; |
4c4b4cd2 | 1154 | char *decoded; |
14f9c5c9 | 1155 | int at_start_name; |
4c4b4cd2 PH |
1156 | static char *decoding_buffer = NULL; |
1157 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 1158 | |
29480c32 JB |
1159 | /* The name of the Ada main procedure starts with "_ada_". |
1160 | This prefix is not part of the decoded name, so skip this part | |
1161 | if we see this prefix. */ | |
61012eef | 1162 | if (startswith (encoded, "_ada_")) |
4c4b4cd2 | 1163 | encoded += 5; |
14f9c5c9 | 1164 | |
29480c32 JB |
1165 | /* If the name starts with '_', then it is not a properly encoded |
1166 | name, so do not attempt to decode it. Similarly, if the name | |
1167 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 1168 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1169 | goto Suppress; |
1170 | ||
4c4b4cd2 | 1171 | len0 = strlen (encoded); |
4c4b4cd2 | 1172 | |
29480c32 JB |
1173 | ada_remove_trailing_digits (encoded, &len0); |
1174 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1175 | |
4c4b4cd2 PH |
1176 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1177 | the suffix is located before the current "end" of ENCODED. We want | |
1178 | to avoid re-matching parts of ENCODED that have previously been | |
1179 | marked as discarded (by decrementing LEN0). */ | |
1180 | p = strstr (encoded, "___"); | |
1181 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1182 | { |
1183 | if (p[3] == 'X') | |
4c4b4cd2 | 1184 | len0 = p - encoded; |
14f9c5c9 | 1185 | else |
4c4b4cd2 | 1186 | goto Suppress; |
14f9c5c9 | 1187 | } |
4c4b4cd2 | 1188 | |
29480c32 JB |
1189 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1190 | is for the body of a task, but that information does not actually | |
1191 | appear in the decoded name. */ | |
1192 | ||
61012eef | 1193 | if (len0 > 3 && startswith (encoded + len0 - 3, "TKB")) |
14f9c5c9 | 1194 | len0 -= 3; |
76a01679 | 1195 | |
a10967fa JB |
1196 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1197 | from the TKB suffix because it is used for non-anonymous task | |
1198 | bodies. */ | |
1199 | ||
61012eef | 1200 | if (len0 > 2 && startswith (encoded + len0 - 2, "TB")) |
a10967fa JB |
1201 | len0 -= 2; |
1202 | ||
29480c32 JB |
1203 | /* Remove trailing "B" suffixes. */ |
1204 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1205 | ||
61012eef | 1206 | if (len0 > 1 && startswith (encoded + len0 - 1, "B")) |
14f9c5c9 AS |
1207 | len0 -= 1; |
1208 | ||
4c4b4cd2 | 1209 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1210 | |
4c4b4cd2 PH |
1211 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
1212 | decoded = decoding_buffer; | |
14f9c5c9 | 1213 | |
29480c32 JB |
1214 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1215 | ||
4c4b4cd2 | 1216 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1217 | { |
4c4b4cd2 PH |
1218 | i = len0 - 2; |
1219 | while ((i >= 0 && isdigit (encoded[i])) | |
1220 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1221 | i -= 1; | |
1222 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1223 | len0 = i - 1; | |
1224 | else if (encoded[i] == '$') | |
1225 | len0 = i; | |
d2e4a39e | 1226 | } |
14f9c5c9 | 1227 | |
29480c32 JB |
1228 | /* The first few characters that are not alphabetic are not part |
1229 | of any encoding we use, so we can copy them over verbatim. */ | |
1230 | ||
4c4b4cd2 PH |
1231 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1232 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1233 | |
1234 | at_start_name = 1; | |
1235 | while (i < len0) | |
1236 | { | |
29480c32 | 1237 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1238 | if (at_start_name && encoded[i] == 'O') |
1239 | { | |
1240 | int k; | |
5b4ee69b | 1241 | |
4c4b4cd2 PH |
1242 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1243 | { | |
1244 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1245 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1246 | op_len - 1) == 0) | |
1247 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1248 | { |
1249 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1250 | at_start_name = 0; | |
1251 | i += op_len; | |
1252 | j += strlen (ada_opname_table[k].decoded); | |
1253 | break; | |
1254 | } | |
1255 | } | |
1256 | if (ada_opname_table[k].encoded != NULL) | |
1257 | continue; | |
1258 | } | |
14f9c5c9 AS |
1259 | at_start_name = 0; |
1260 | ||
529cad9c PH |
1261 | /* Replace "TK__" with "__", which will eventually be translated |
1262 | into "." (just below). */ | |
1263 | ||
61012eef | 1264 | if (i < len0 - 4 && startswith (encoded + i, "TK__")) |
4c4b4cd2 | 1265 | i += 2; |
529cad9c | 1266 | |
29480c32 JB |
1267 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1268 | be translated into "." (just below). These are internal names | |
1269 | generated for anonymous blocks inside which our symbol is nested. */ | |
1270 | ||
1271 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1272 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1273 | && isdigit (encoded [i+4])) | |
1274 | { | |
1275 | int k = i + 5; | |
1276 | ||
1277 | while (k < len0 && isdigit (encoded[k])) | |
1278 | k++; /* Skip any extra digit. */ | |
1279 | ||
1280 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1281 | is indeed followed by "__". */ | |
1282 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1283 | i = k; | |
1284 | } | |
1285 | ||
529cad9c PH |
1286 | /* Remove _E{DIGITS}+[sb] */ |
1287 | ||
1288 | /* Just as for protected object subprograms, there are 2 categories | |
0963b4bd | 1289 | of subprograms created by the compiler for each entry. The first |
529cad9c PH |
1290 | one implements the actual entry code, and has a suffix following |
1291 | the convention above; the second one implements the barrier and | |
1292 | uses the same convention as above, except that the 'E' is replaced | |
1293 | by a 'B'. | |
1294 | ||
1295 | Just as above, we do not decode the name of barrier functions | |
1296 | to give the user a clue that the code he is debugging has been | |
1297 | internally generated. */ | |
1298 | ||
1299 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1300 | && isdigit (encoded[i+2])) | |
1301 | { | |
1302 | int k = i + 3; | |
1303 | ||
1304 | while (k < len0 && isdigit (encoded[k])) | |
1305 | k++; | |
1306 | ||
1307 | if (k < len0 | |
1308 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1309 | { | |
1310 | k++; | |
1311 | /* Just as an extra precaution, make sure that if this | |
1312 | suffix is followed by anything else, it is a '_'. | |
1313 | Otherwise, we matched this sequence by accident. */ | |
1314 | if (k == len0 | |
1315 | || (k < len0 && encoded[k] == '_')) | |
1316 | i = k; | |
1317 | } | |
1318 | } | |
1319 | ||
1320 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1321 | the GNAT front-end in protected object subprograms. */ | |
1322 | ||
1323 | if (i < len0 + 3 | |
1324 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1325 | { | |
1326 | /* Backtrack a bit up until we reach either the begining of | |
1327 | the encoded name, or "__". Make sure that we only find | |
1328 | digits or lowercase characters. */ | |
1329 | const char *ptr = encoded + i - 1; | |
1330 | ||
1331 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1332 | ptr--; | |
1333 | if (ptr < encoded | |
1334 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1335 | i++; | |
1336 | } | |
1337 | ||
4c4b4cd2 PH |
1338 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1339 | { | |
29480c32 JB |
1340 | /* This is a X[bn]* sequence not separated from the previous |
1341 | part of the name with a non-alpha-numeric character (in other | |
1342 | words, immediately following an alpha-numeric character), then | |
1343 | verify that it is placed at the end of the encoded name. If | |
1344 | not, then the encoding is not valid and we should abort the | |
1345 | decoding. Otherwise, just skip it, it is used in body-nested | |
1346 | package names. */ | |
4c4b4cd2 PH |
1347 | do |
1348 | i += 1; | |
1349 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1350 | if (i < len0) | |
1351 | goto Suppress; | |
1352 | } | |
cdc7bb92 | 1353 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1354 | { |
29480c32 | 1355 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1356 | decoded[j] = '.'; |
1357 | at_start_name = 1; | |
1358 | i += 2; | |
1359 | j += 1; | |
1360 | } | |
14f9c5c9 | 1361 | else |
4c4b4cd2 | 1362 | { |
29480c32 JB |
1363 | /* It's a character part of the decoded name, so just copy it |
1364 | over. */ | |
4c4b4cd2 PH |
1365 | decoded[j] = encoded[i]; |
1366 | i += 1; | |
1367 | j += 1; | |
1368 | } | |
14f9c5c9 | 1369 | } |
4c4b4cd2 | 1370 | decoded[j] = '\000'; |
14f9c5c9 | 1371 | |
29480c32 JB |
1372 | /* Decoded names should never contain any uppercase character. |
1373 | Double-check this, and abort the decoding if we find one. */ | |
1374 | ||
4c4b4cd2 PH |
1375 | for (i = 0; decoded[i] != '\0'; i += 1) |
1376 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1377 | goto Suppress; |
1378 | ||
4c4b4cd2 PH |
1379 | if (strcmp (decoded, encoded) == 0) |
1380 | return encoded; | |
1381 | else | |
1382 | return decoded; | |
14f9c5c9 AS |
1383 | |
1384 | Suppress: | |
4c4b4cd2 PH |
1385 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1386 | decoded = decoding_buffer; | |
1387 | if (encoded[0] == '<') | |
1388 | strcpy (decoded, encoded); | |
14f9c5c9 | 1389 | else |
88c15c34 | 1390 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1391 | return decoded; |
1392 | ||
1393 | } | |
1394 | ||
1395 | /* Table for keeping permanent unique copies of decoded names. Once | |
1396 | allocated, names in this table are never released. While this is a | |
1397 | storage leak, it should not be significant unless there are massive | |
1398 | changes in the set of decoded names in successive versions of a | |
1399 | symbol table loaded during a single session. */ | |
1400 | static struct htab *decoded_names_store; | |
1401 | ||
1402 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1403 | in the language-specific part of GSYMBOL, if it has not been | |
1404 | previously computed. Tries to save the decoded name in the same | |
1405 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1406 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1407 | GSYMBOL). |
4c4b4cd2 PH |
1408 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1409 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1410 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1411 | |
45e6c716 | 1412 | const char * |
f85f34ed | 1413 | ada_decode_symbol (const struct general_symbol_info *arg) |
4c4b4cd2 | 1414 | { |
f85f34ed TT |
1415 | struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg; |
1416 | const char **resultp = | |
615b3f62 | 1417 | &gsymbol->language_specific.demangled_name; |
5b4ee69b | 1418 | |
f85f34ed | 1419 | if (!gsymbol->ada_mangled) |
4c4b4cd2 PH |
1420 | { |
1421 | const char *decoded = ada_decode (gsymbol->name); | |
f85f34ed | 1422 | struct obstack *obstack = gsymbol->language_specific.obstack; |
5b4ee69b | 1423 | |
f85f34ed | 1424 | gsymbol->ada_mangled = 1; |
5b4ee69b | 1425 | |
f85f34ed | 1426 | if (obstack != NULL) |
224c3ddb SM |
1427 | *resultp |
1428 | = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded)); | |
f85f34ed | 1429 | else |
76a01679 | 1430 | { |
f85f34ed TT |
1431 | /* Sometimes, we can't find a corresponding objfile, in |
1432 | which case, we put the result on the heap. Since we only | |
1433 | decode when needed, we hope this usually does not cause a | |
1434 | significant memory leak (FIXME). */ | |
1435 | ||
76a01679 JB |
1436 | char **slot = (char **) htab_find_slot (decoded_names_store, |
1437 | decoded, INSERT); | |
5b4ee69b | 1438 | |
76a01679 JB |
1439 | if (*slot == NULL) |
1440 | *slot = xstrdup (decoded); | |
1441 | *resultp = *slot; | |
1442 | } | |
4c4b4cd2 | 1443 | } |
14f9c5c9 | 1444 | |
4c4b4cd2 PH |
1445 | return *resultp; |
1446 | } | |
76a01679 | 1447 | |
2c0b251b | 1448 | static char * |
76a01679 | 1449 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1450 | { |
1451 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1452 | } |
1453 | ||
8b302db8 TT |
1454 | /* Implement la_sniff_from_mangled_name for Ada. */ |
1455 | ||
1456 | static int | |
1457 | ada_sniff_from_mangled_name (const char *mangled, char **out) | |
1458 | { | |
1459 | const char *demangled = ada_decode (mangled); | |
1460 | ||
1461 | *out = NULL; | |
1462 | ||
1463 | if (demangled != mangled && demangled != NULL && demangled[0] != '<') | |
1464 | { | |
1465 | /* Set the gsymbol language to Ada, but still return 0. | |
1466 | Two reasons for that: | |
1467 | ||
1468 | 1. For Ada, we prefer computing the symbol's decoded name | |
1469 | on the fly rather than pre-compute it, in order to save | |
1470 | memory (Ada projects are typically very large). | |
1471 | ||
1472 | 2. There are some areas in the definition of the GNAT | |
1473 | encoding where, with a bit of bad luck, we might be able | |
1474 | to decode a non-Ada symbol, generating an incorrect | |
1475 | demangled name (Eg: names ending with "TB" for instance | |
1476 | are identified as task bodies and so stripped from | |
1477 | the decoded name returned). | |
1478 | ||
1479 | Returning 1, here, but not setting *DEMANGLED, helps us get a | |
1480 | little bit of the best of both worlds. Because we're last, | |
1481 | we should not affect any of the other languages that were | |
1482 | able to demangle the symbol before us; we get to correctly | |
1483 | tag Ada symbols as such; and even if we incorrectly tagged a | |
1484 | non-Ada symbol, which should be rare, any routing through the | |
1485 | Ada language should be transparent (Ada tries to behave much | |
1486 | like C/C++ with non-Ada symbols). */ | |
1487 | return 1; | |
1488 | } | |
1489 | ||
1490 | return 0; | |
1491 | } | |
1492 | ||
14f9c5c9 | 1493 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing |
4c4b4cd2 PH |
1494 | suffixes that encode debugging information or leading _ada_ on |
1495 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1496 | information that is ignored). If WILD, then NAME need only match a | |
1497 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1498 | either argument is NULL. */ | |
14f9c5c9 | 1499 | |
2c0b251b | 1500 | static int |
40658b94 | 1501 | match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1502 | { |
1503 | if (sym_name == NULL || name == NULL) | |
1504 | return 0; | |
1505 | else if (wild) | |
73589123 | 1506 | return wild_match (sym_name, name) == 0; |
d2e4a39e AS |
1507 | else |
1508 | { | |
1509 | int len_name = strlen (name); | |
5b4ee69b | 1510 | |
4c4b4cd2 PH |
1511 | return (strncmp (sym_name, name, len_name) == 0 |
1512 | && is_name_suffix (sym_name + len_name)) | |
61012eef | 1513 | || (startswith (sym_name, "_ada_") |
4c4b4cd2 PH |
1514 | && strncmp (sym_name + 5, name, len_name) == 0 |
1515 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1516 | } |
14f9c5c9 | 1517 | } |
14f9c5c9 | 1518 | \f |
d2e4a39e | 1519 | |
4c4b4cd2 | 1520 | /* Arrays */ |
14f9c5c9 | 1521 | |
28c85d6c JB |
1522 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1523 | generated by the GNAT compiler to describe the index type used | |
1524 | for each dimension of an array, check whether it follows the latest | |
1525 | known encoding. If not, fix it up to conform to the latest encoding. | |
1526 | Otherwise, do nothing. This function also does nothing if | |
1527 | INDEX_DESC_TYPE is NULL. | |
1528 | ||
1529 | The GNAT encoding used to describle the array index type evolved a bit. | |
1530 | Initially, the information would be provided through the name of each | |
1531 | field of the structure type only, while the type of these fields was | |
1532 | described as unspecified and irrelevant. The debugger was then expected | |
1533 | to perform a global type lookup using the name of that field in order | |
1534 | to get access to the full index type description. Because these global | |
1535 | lookups can be very expensive, the encoding was later enhanced to make | |
1536 | the global lookup unnecessary by defining the field type as being | |
1537 | the full index type description. | |
1538 | ||
1539 | The purpose of this routine is to allow us to support older versions | |
1540 | of the compiler by detecting the use of the older encoding, and by | |
1541 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1542 | we essentially replace each field's meaningless type by the associated | |
1543 | index subtype). */ | |
1544 | ||
1545 | void | |
1546 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1547 | { | |
1548 | int i; | |
1549 | ||
1550 | if (index_desc_type == NULL) | |
1551 | return; | |
1552 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1553 | ||
1554 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1555 | to check one field only, no need to check them all). If not, return | |
1556 | now. | |
1557 | ||
1558 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1559 | the field type should be a meaningless integer type whose name | |
1560 | is not equal to the field name. */ | |
1561 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1562 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1563 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1564 | return; | |
1565 | ||
1566 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1567 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1568 | { | |
0d5cff50 | 1569 | const char *name = TYPE_FIELD_NAME (index_desc_type, i); |
28c85d6c JB |
1570 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); |
1571 | ||
1572 | if (raw_type) | |
1573 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1574 | } | |
1575 | } | |
1576 | ||
4c4b4cd2 | 1577 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1578 | |
a121b7c1 | 1579 | static const char *bound_name[] = { |
d2e4a39e | 1580 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", |
14f9c5c9 AS |
1581 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1582 | }; | |
1583 | ||
1584 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1585 | ||
4c4b4cd2 | 1586 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1587 | |
14f9c5c9 | 1588 | |
4c4b4cd2 PH |
1589 | /* The desc_* routines return primitive portions of array descriptors |
1590 | (fat pointers). */ | |
14f9c5c9 AS |
1591 | |
1592 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1593 | level of indirection, if needed. */ |
1594 | ||
d2e4a39e AS |
1595 | static struct type * |
1596 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1597 | { |
1598 | if (type == NULL) | |
1599 | return NULL; | |
61ee279c | 1600 | type = ada_check_typedef (type); |
720d1a40 JB |
1601 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1602 | type = ada_typedef_target_type (type); | |
1603 | ||
1265e4aa JB |
1604 | if (type != NULL |
1605 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1606 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1607 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1608 | else |
1609 | return type; | |
1610 | } | |
1611 | ||
4c4b4cd2 PH |
1612 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1613 | ||
14f9c5c9 | 1614 | static int |
d2e4a39e | 1615 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1616 | { |
d2e4a39e | 1617 | return |
14f9c5c9 AS |
1618 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1619 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1620 | } | |
1621 | ||
4c4b4cd2 PH |
1622 | /* The descriptor type for thin pointer type TYPE. */ |
1623 | ||
d2e4a39e AS |
1624 | static struct type * |
1625 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1626 | { |
d2e4a39e | 1627 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1628 | |
14f9c5c9 AS |
1629 | if (base_type == NULL) |
1630 | return NULL; | |
1631 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1632 | return base_type; | |
d2e4a39e | 1633 | else |
14f9c5c9 | 1634 | { |
d2e4a39e | 1635 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1636 | |
14f9c5c9 | 1637 | if (alt_type == NULL) |
4c4b4cd2 | 1638 | return base_type; |
14f9c5c9 | 1639 | else |
4c4b4cd2 | 1640 | return alt_type; |
14f9c5c9 AS |
1641 | } |
1642 | } | |
1643 | ||
4c4b4cd2 PH |
1644 | /* A pointer to the array data for thin-pointer value VAL. */ |
1645 | ||
d2e4a39e AS |
1646 | static struct value * |
1647 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1648 | { |
828292f2 | 1649 | struct type *type = ada_check_typedef (value_type (val)); |
556bdfd4 | 1650 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1651 | |
556bdfd4 UW |
1652 | data_type = lookup_pointer_type (data_type); |
1653 | ||
14f9c5c9 | 1654 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1655 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1656 | else |
42ae5230 | 1657 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1658 | } |
1659 | ||
4c4b4cd2 PH |
1660 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1661 | ||
14f9c5c9 | 1662 | static int |
d2e4a39e | 1663 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1664 | { |
1665 | type = desc_base_type (type); | |
1666 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1667 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1668 | } |
1669 | ||
4c4b4cd2 PH |
1670 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1671 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1672 | |
d2e4a39e AS |
1673 | static struct type * |
1674 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1675 | { |
d2e4a39e | 1676 | struct type *r; |
14f9c5c9 AS |
1677 | |
1678 | type = desc_base_type (type); | |
1679 | ||
1680 | if (type == NULL) | |
1681 | return NULL; | |
1682 | else if (is_thin_pntr (type)) | |
1683 | { | |
1684 | type = thin_descriptor_type (type); | |
1685 | if (type == NULL) | |
4c4b4cd2 | 1686 | return NULL; |
14f9c5c9 AS |
1687 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1688 | if (r != NULL) | |
61ee279c | 1689 | return ada_check_typedef (r); |
14f9c5c9 AS |
1690 | } |
1691 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1692 | { | |
1693 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1694 | if (r != NULL) | |
61ee279c | 1695 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1696 | } |
1697 | return NULL; | |
1698 | } | |
1699 | ||
1700 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1701 | one, a pointer to its bounds data. Otherwise NULL. */ |
1702 | ||
d2e4a39e AS |
1703 | static struct value * |
1704 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1705 | { |
df407dfe | 1706 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1707 | |
d2e4a39e | 1708 | if (is_thin_pntr (type)) |
14f9c5c9 | 1709 | { |
d2e4a39e | 1710 | struct type *bounds_type = |
4c4b4cd2 | 1711 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1712 | LONGEST addr; |
1713 | ||
4cdfadb1 | 1714 | if (bounds_type == NULL) |
323e0a4a | 1715 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1716 | |
1717 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1718 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1719 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1720 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1721 | addr = value_as_long (arr); |
d2e4a39e | 1722 | else |
42ae5230 | 1723 | addr = value_address (arr); |
14f9c5c9 | 1724 | |
d2e4a39e | 1725 | return |
4c4b4cd2 PH |
1726 | value_from_longest (lookup_pointer_type (bounds_type), |
1727 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1728 | } |
1729 | ||
1730 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1731 | { |
1732 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1733 | _("Bad GNAT array descriptor")); | |
1734 | struct type *p_bounds_type = value_type (p_bounds); | |
1735 | ||
1736 | if (p_bounds_type | |
1737 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1738 | { | |
1739 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1740 | ||
1741 | if (TYPE_STUB (target_type)) | |
1742 | p_bounds = value_cast (lookup_pointer_type | |
1743 | (ada_check_typedef (target_type)), | |
1744 | p_bounds); | |
1745 | } | |
1746 | else | |
1747 | error (_("Bad GNAT array descriptor")); | |
1748 | ||
1749 | return p_bounds; | |
1750 | } | |
14f9c5c9 AS |
1751 | else |
1752 | return NULL; | |
1753 | } | |
1754 | ||
4c4b4cd2 PH |
1755 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1756 | position of the field containing the address of the bounds data. */ | |
1757 | ||
14f9c5c9 | 1758 | static int |
d2e4a39e | 1759 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1760 | { |
1761 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1762 | } | |
1763 | ||
1764 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1765 | size of the field containing the address of the bounds data. */ |
1766 | ||
14f9c5c9 | 1767 | static int |
d2e4a39e | 1768 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1769 | { |
1770 | type = desc_base_type (type); | |
1771 | ||
d2e4a39e | 1772 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1773 | return TYPE_FIELD_BITSIZE (type, 1); |
1774 | else | |
61ee279c | 1775 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1776 | } |
1777 | ||
4c4b4cd2 | 1778 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1779 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1780 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1781 | data. */ | |
4c4b4cd2 | 1782 | |
d2e4a39e | 1783 | static struct type * |
556bdfd4 | 1784 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1785 | { |
1786 | type = desc_base_type (type); | |
1787 | ||
4c4b4cd2 | 1788 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1789 | if (is_thin_pntr (type)) |
556bdfd4 | 1790 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1791 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1792 | { |
1793 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1794 | ||
1795 | if (data_type | |
1796 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1797 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1798 | } |
1799 | ||
1800 | return NULL; | |
14f9c5c9 AS |
1801 | } |
1802 | ||
1803 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1804 | its array data. */ | |
4c4b4cd2 | 1805 | |
d2e4a39e AS |
1806 | static struct value * |
1807 | desc_data (struct value *arr) | |
14f9c5c9 | 1808 | { |
df407dfe | 1809 | struct type *type = value_type (arr); |
5b4ee69b | 1810 | |
14f9c5c9 AS |
1811 | if (is_thin_pntr (type)) |
1812 | return thin_data_pntr (arr); | |
1813 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1814 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1815 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1816 | else |
1817 | return NULL; | |
1818 | } | |
1819 | ||
1820 | ||
1821 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1822 | position of the field containing the address of the data. */ |
1823 | ||
14f9c5c9 | 1824 | static int |
d2e4a39e | 1825 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1826 | { |
1827 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1828 | } | |
1829 | ||
1830 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1831 | size of the field containing the address of the data. */ |
1832 | ||
14f9c5c9 | 1833 | static int |
d2e4a39e | 1834 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1835 | { |
1836 | type = desc_base_type (type); | |
1837 | ||
1838 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1839 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1840 | else |
14f9c5c9 AS |
1841 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1842 | } | |
1843 | ||
4c4b4cd2 | 1844 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1845 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1846 | bound, if WHICH is 1. The first bound is I=1. */ |
1847 | ||
d2e4a39e AS |
1848 | static struct value * |
1849 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1850 | { |
d2e4a39e | 1851 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1852 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1853 | } |
1854 | ||
1855 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1856 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1857 | bound, if WHICH is 1. The first bound is I=1. */ |
1858 | ||
14f9c5c9 | 1859 | static int |
d2e4a39e | 1860 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1861 | { |
d2e4a39e | 1862 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1863 | } |
1864 | ||
1865 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1866 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1867 | bound, if WHICH is 1. The first bound is I=1. */ |
1868 | ||
76a01679 | 1869 | static int |
d2e4a39e | 1870 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1871 | { |
1872 | type = desc_base_type (type); | |
1873 | ||
d2e4a39e AS |
1874 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1875 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1876 | else | |
1877 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1878 | } |
1879 | ||
1880 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1881 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1882 | ||
d2e4a39e AS |
1883 | static struct type * |
1884 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1885 | { |
1886 | type = desc_base_type (type); | |
1887 | ||
1888 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1889 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1890 | else | |
14f9c5c9 AS |
1891 | return NULL; |
1892 | } | |
1893 | ||
4c4b4cd2 PH |
1894 | /* The number of index positions in the array-bounds type TYPE. |
1895 | Return 0 if TYPE is NULL. */ | |
1896 | ||
14f9c5c9 | 1897 | static int |
d2e4a39e | 1898 | desc_arity (struct type *type) |
14f9c5c9 AS |
1899 | { |
1900 | type = desc_base_type (type); | |
1901 | ||
1902 | if (type != NULL) | |
1903 | return TYPE_NFIELDS (type) / 2; | |
1904 | return 0; | |
1905 | } | |
1906 | ||
4c4b4cd2 PH |
1907 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1908 | an array descriptor type (representing an unconstrained array | |
1909 | type). */ | |
1910 | ||
76a01679 JB |
1911 | static int |
1912 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1913 | { |
1914 | if (type == NULL) | |
1915 | return 0; | |
61ee279c | 1916 | type = ada_check_typedef (type); |
4c4b4cd2 | 1917 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1918 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1919 | } |
1920 | ||
52ce6436 | 1921 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1922 | * to one. */ |
52ce6436 | 1923 | |
2c0b251b | 1924 | static int |
52ce6436 PH |
1925 | ada_is_array_type (struct type *type) |
1926 | { | |
1927 | while (type != NULL | |
1928 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1929 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1930 | type = TYPE_TARGET_TYPE (type); | |
1931 | return ada_is_direct_array_type (type); | |
1932 | } | |
1933 | ||
4c4b4cd2 | 1934 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1935 | |
14f9c5c9 | 1936 | int |
4c4b4cd2 | 1937 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1938 | { |
1939 | if (type == NULL) | |
1940 | return 0; | |
61ee279c | 1941 | type = ada_check_typedef (type); |
14f9c5c9 | 1942 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 | 1943 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
b0dd7688 JB |
1944 | && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))) |
1945 | == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1946 | } |
1947 | ||
4c4b4cd2 PH |
1948 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1949 | ||
14f9c5c9 | 1950 | int |
4c4b4cd2 | 1951 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1952 | { |
556bdfd4 | 1953 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1954 | |
1955 | if (type == NULL) | |
1956 | return 0; | |
61ee279c | 1957 | type = ada_check_typedef (type); |
556bdfd4 UW |
1958 | return (data_type != NULL |
1959 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1960 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1961 | } |
1962 | ||
1963 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1964 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1965 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1966 | is still needed. */ |
1967 | ||
14f9c5c9 | 1968 | int |
ebf56fd3 | 1969 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1970 | { |
d2e4a39e | 1971 | return |
14f9c5c9 AS |
1972 | type != NULL |
1973 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1974 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1975 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1976 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1977 | } |
1978 | ||
1979 | ||
4c4b4cd2 | 1980 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1981 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1982 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1983 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1984 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1985 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1986 | a descriptor. */ |
d2e4a39e AS |
1987 | struct type * |
1988 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1989 | { |
ad82864c JB |
1990 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1991 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1992 | |
df407dfe AC |
1993 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1994 | return value_type (arr); | |
d2e4a39e AS |
1995 | |
1996 | if (!bounds) | |
ad82864c JB |
1997 | { |
1998 | struct type *array_type = | |
1999 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
2000 | ||
2001 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
2002 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
2003 | decode_packed_array_bitsize (value_type (arr)); | |
2004 | ||
2005 | return array_type; | |
2006 | } | |
14f9c5c9 AS |
2007 | else |
2008 | { | |
d2e4a39e | 2009 | struct type *elt_type; |
14f9c5c9 | 2010 | int arity; |
d2e4a39e | 2011 | struct value *descriptor; |
14f9c5c9 | 2012 | |
df407dfe AC |
2013 | elt_type = ada_array_element_type (value_type (arr), -1); |
2014 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 2015 | |
d2e4a39e | 2016 | if (elt_type == NULL || arity == 0) |
df407dfe | 2017 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
2018 | |
2019 | descriptor = desc_bounds (arr); | |
d2e4a39e | 2020 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 2021 | return NULL; |
d2e4a39e | 2022 | while (arity > 0) |
4c4b4cd2 | 2023 | { |
e9bb382b UW |
2024 | struct type *range_type = alloc_type_copy (value_type (arr)); |
2025 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
2026 | struct value *low = desc_one_bound (descriptor, arity, 0); |
2027 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 2028 | |
5b4ee69b | 2029 | arity -= 1; |
0c9c3474 SA |
2030 | create_static_range_type (range_type, value_type (low), |
2031 | longest_to_int (value_as_long (low)), | |
2032 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 2033 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
2034 | |
2035 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
2036 | { |
2037 | /* We need to store the element packed bitsize, as well as | |
2038 | recompute the array size, because it was previously | |
2039 | computed based on the unpacked element size. */ | |
2040 | LONGEST lo = value_as_long (low); | |
2041 | LONGEST hi = value_as_long (high); | |
2042 | ||
2043 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
2044 | decode_packed_array_bitsize (value_type (arr)); | |
2045 | /* If the array has no element, then the size is already | |
2046 | zero, and does not need to be recomputed. */ | |
2047 | if (lo < hi) | |
2048 | { | |
2049 | int array_bitsize = | |
2050 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); | |
2051 | ||
2052 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
2053 | } | |
2054 | } | |
4c4b4cd2 | 2055 | } |
14f9c5c9 AS |
2056 | |
2057 | return lookup_pointer_type (elt_type); | |
2058 | } | |
2059 | } | |
2060 | ||
2061 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
2062 | Otherwise, returns either a standard GDB array with bounds set |
2063 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
2064 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
2065 | ||
d2e4a39e AS |
2066 | struct value * |
2067 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 2068 | { |
df407dfe | 2069 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2070 | { |
d2e4a39e | 2071 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 2072 | |
14f9c5c9 | 2073 | if (arrType == NULL) |
4c4b4cd2 | 2074 | return NULL; |
14f9c5c9 AS |
2075 | return value_cast (arrType, value_copy (desc_data (arr))); |
2076 | } | |
ad82864c JB |
2077 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2078 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
2079 | else |
2080 | return arr; | |
2081 | } | |
2082 | ||
2083 | /* If ARR does not represent an array, returns ARR unchanged. | |
2084 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
2085 | be ARR itself if it already is in the proper form). */ |
2086 | ||
720d1a40 | 2087 | struct value * |
d2e4a39e | 2088 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 2089 | { |
df407dfe | 2090 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2091 | { |
d2e4a39e | 2092 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 2093 | |
14f9c5c9 | 2094 | if (arrVal == NULL) |
323e0a4a | 2095 | error (_("Bounds unavailable for null array pointer.")); |
c1b5a1a6 | 2096 | ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
2097 | return value_ind (arrVal); |
2098 | } | |
ad82864c JB |
2099 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2100 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 2101 | else |
14f9c5c9 AS |
2102 | return arr; |
2103 | } | |
2104 | ||
2105 | /* If TYPE represents a GNAT array type, return it translated to an | |
2106 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
2107 | packing). For other types, is the identity. */ |
2108 | ||
d2e4a39e AS |
2109 | struct type * |
2110 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 2111 | { |
ad82864c JB |
2112 | if (ada_is_constrained_packed_array_type (type)) |
2113 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
2114 | |
2115 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 2116 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
2117 | |
2118 | return type; | |
14f9c5c9 AS |
2119 | } |
2120 | ||
4c4b4cd2 PH |
2121 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
2122 | ||
ad82864c JB |
2123 | static int |
2124 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
2125 | { |
2126 | if (type == NULL) | |
2127 | return 0; | |
4c4b4cd2 | 2128 | type = desc_base_type (type); |
61ee279c | 2129 | type = ada_check_typedef (type); |
d2e4a39e | 2130 | return |
14f9c5c9 AS |
2131 | ada_type_name (type) != NULL |
2132 | && strstr (ada_type_name (type), "___XP") != NULL; | |
2133 | } | |
2134 | ||
ad82864c JB |
2135 | /* Non-zero iff TYPE represents a standard GNAT constrained |
2136 | packed-array type. */ | |
2137 | ||
2138 | int | |
2139 | ada_is_constrained_packed_array_type (struct type *type) | |
2140 | { | |
2141 | return ada_is_packed_array_type (type) | |
2142 | && !ada_is_array_descriptor_type (type); | |
2143 | } | |
2144 | ||
2145 | /* Non-zero iff TYPE represents an array descriptor for a | |
2146 | unconstrained packed-array type. */ | |
2147 | ||
2148 | static int | |
2149 | ada_is_unconstrained_packed_array_type (struct type *type) | |
2150 | { | |
2151 | return ada_is_packed_array_type (type) | |
2152 | && ada_is_array_descriptor_type (type); | |
2153 | } | |
2154 | ||
2155 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
2156 | return the size of its elements in bits. */ | |
2157 | ||
2158 | static long | |
2159 | decode_packed_array_bitsize (struct type *type) | |
2160 | { | |
0d5cff50 DE |
2161 | const char *raw_name; |
2162 | const char *tail; | |
ad82864c JB |
2163 | long bits; |
2164 | ||
720d1a40 JB |
2165 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
2166 | of the fat pointer type. We need the name of the fat pointer type | |
2167 | to do the decoding, so strip the typedef layer. */ | |
2168 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
2169 | type = ada_typedef_target_type (type); | |
2170 | ||
2171 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
2172 | if (!raw_name) |
2173 | raw_name = ada_type_name (desc_base_type (type)); | |
2174 | ||
2175 | if (!raw_name) | |
2176 | return 0; | |
2177 | ||
2178 | tail = strstr (raw_name, "___XP"); | |
720d1a40 | 2179 | gdb_assert (tail != NULL); |
ad82864c JB |
2180 | |
2181 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
2182 | { | |
2183 | lim_warning | |
2184 | (_("could not understand bit size information on packed array")); | |
2185 | return 0; | |
2186 | } | |
2187 | ||
2188 | return bits; | |
2189 | } | |
2190 | ||
14f9c5c9 AS |
2191 | /* Given that TYPE is a standard GDB array type with all bounds filled |
2192 | in, and that the element size of its ultimate scalar constituents | |
2193 | (that is, either its elements, or, if it is an array of arrays, its | |
2194 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
2195 | but with the bit sizes of its elements (and those of any | |
2196 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 | 2197 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
4a46959e JB |
2198 | in bits. |
2199 | ||
2200 | Note that, for arrays whose index type has an XA encoding where | |
2201 | a bound references a record discriminant, getting that discriminant, | |
2202 | and therefore the actual value of that bound, is not possible | |
2203 | because none of the given parameters gives us access to the record. | |
2204 | This function assumes that it is OK in the context where it is being | |
2205 | used to return an array whose bounds are still dynamic and where | |
2206 | the length is arbitrary. */ | |
4c4b4cd2 | 2207 | |
d2e4a39e | 2208 | static struct type * |
ad82864c | 2209 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 2210 | { |
d2e4a39e AS |
2211 | struct type *new_elt_type; |
2212 | struct type *new_type; | |
99b1c762 JB |
2213 | struct type *index_type_desc; |
2214 | struct type *index_type; | |
14f9c5c9 AS |
2215 | LONGEST low_bound, high_bound; |
2216 | ||
61ee279c | 2217 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2218 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
2219 | return type; | |
2220 | ||
99b1c762 JB |
2221 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
2222 | if (index_type_desc) | |
2223 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0), | |
2224 | NULL); | |
2225 | else | |
2226 | index_type = TYPE_INDEX_TYPE (type); | |
2227 | ||
e9bb382b | 2228 | new_type = alloc_type_copy (type); |
ad82864c JB |
2229 | new_elt_type = |
2230 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2231 | elt_bits); | |
99b1c762 | 2232 | create_array_type (new_type, new_elt_type, index_type); |
14f9c5c9 AS |
2233 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
2234 | TYPE_NAME (new_type) = ada_type_name (type); | |
2235 | ||
4a46959e JB |
2236 | if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE |
2237 | && is_dynamic_type (check_typedef (index_type))) | |
2238 | || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0) | |
14f9c5c9 AS |
2239 | low_bound = high_bound = 0; |
2240 | if (high_bound < low_bound) | |
2241 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2242 | else |
14f9c5c9 AS |
2243 | { |
2244 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2245 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 2246 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2247 | } |
2248 | ||
876cecd0 | 2249 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
2250 | return new_type; |
2251 | } | |
2252 | ||
ad82864c JB |
2253 | /* The array type encoded by TYPE, where |
2254 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2255 | |
d2e4a39e | 2256 | static struct type * |
ad82864c | 2257 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2258 | { |
0d5cff50 | 2259 | const char *raw_name = ada_type_name (ada_check_typedef (type)); |
727e3d2e | 2260 | char *name; |
0d5cff50 | 2261 | const char *tail; |
d2e4a39e | 2262 | struct type *shadow_type; |
14f9c5c9 | 2263 | long bits; |
14f9c5c9 | 2264 | |
727e3d2e JB |
2265 | if (!raw_name) |
2266 | raw_name = ada_type_name (desc_base_type (type)); | |
2267 | ||
2268 | if (!raw_name) | |
2269 | return NULL; | |
2270 | ||
2271 | name = (char *) alloca (strlen (raw_name) + 1); | |
2272 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2273 | type = desc_base_type (type); |
2274 | ||
14f9c5c9 AS |
2275 | memcpy (name, raw_name, tail - raw_name); |
2276 | name[tail - raw_name] = '\000'; | |
2277 | ||
b4ba55a1 JB |
2278 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2279 | ||
2280 | if (shadow_type == NULL) | |
14f9c5c9 | 2281 | { |
323e0a4a | 2282 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2283 | return NULL; |
2284 | } | |
f168693b | 2285 | shadow_type = check_typedef (shadow_type); |
14f9c5c9 AS |
2286 | |
2287 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2288 | { | |
0963b4bd MS |
2289 | lim_warning (_("could not understand bounds " |
2290 | "information on packed array")); | |
14f9c5c9 AS |
2291 | return NULL; |
2292 | } | |
d2e4a39e | 2293 | |
ad82864c JB |
2294 | bits = decode_packed_array_bitsize (type); |
2295 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2296 | } |
2297 | ||
ad82864c JB |
2298 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2299 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2300 | standard GDB array type except that the BITSIZEs of the array |
2301 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2302 | type length is set appropriately. */ |
14f9c5c9 | 2303 | |
d2e4a39e | 2304 | static struct value * |
ad82864c | 2305 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2306 | { |
4c4b4cd2 | 2307 | struct type *type; |
14f9c5c9 | 2308 | |
11aa919a PMR |
2309 | /* If our value is a pointer, then dereference it. Likewise if |
2310 | the value is a reference. Make sure that this operation does not | |
2311 | cause the target type to be fixed, as this would indirectly cause | |
2312 | this array to be decoded. The rest of the routine assumes that | |
2313 | the array hasn't been decoded yet, so we use the basic "coerce_ref" | |
2314 | and "value_ind" routines to perform the dereferencing, as opposed | |
2315 | to using "ada_coerce_ref" or "ada_value_ind". */ | |
2316 | arr = coerce_ref (arr); | |
828292f2 | 2317 | if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR) |
284614f0 | 2318 | arr = value_ind (arr); |
4c4b4cd2 | 2319 | |
ad82864c | 2320 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2321 | if (type == NULL) |
2322 | { | |
323e0a4a | 2323 | error (_("can't unpack array")); |
14f9c5c9 AS |
2324 | return NULL; |
2325 | } | |
61ee279c | 2326 | |
50810684 | 2327 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 2328 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2329 | { |
2330 | /* This is a (right-justified) modular type representing a packed | |
2331 | array with no wrapper. In order to interpret the value through | |
2332 | the (left-justified) packed array type we just built, we must | |
2333 | first left-justify it. */ | |
2334 | int bit_size, bit_pos; | |
2335 | ULONGEST mod; | |
2336 | ||
df407dfe | 2337 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2338 | bit_size = 0; |
2339 | while (mod > 0) | |
2340 | { | |
2341 | bit_size += 1; | |
2342 | mod >>= 1; | |
2343 | } | |
df407dfe | 2344 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2345 | arr = ada_value_primitive_packed_val (arr, NULL, |
2346 | bit_pos / HOST_CHAR_BIT, | |
2347 | bit_pos % HOST_CHAR_BIT, | |
2348 | bit_size, | |
2349 | type); | |
2350 | } | |
2351 | ||
4c4b4cd2 | 2352 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2353 | } |
2354 | ||
2355 | ||
2356 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2357 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2358 | |
d2e4a39e AS |
2359 | static struct value * |
2360 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2361 | { |
2362 | int i; | |
2363 | int bits, elt_off, bit_off; | |
2364 | long elt_total_bit_offset; | |
d2e4a39e AS |
2365 | struct type *elt_type; |
2366 | struct value *v; | |
14f9c5c9 AS |
2367 | |
2368 | bits = 0; | |
2369 | elt_total_bit_offset = 0; | |
df407dfe | 2370 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2371 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2372 | { |
d2e4a39e | 2373 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2374 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2375 | error | |
0963b4bd MS |
2376 | (_("attempt to do packed indexing of " |
2377 | "something other than a packed array")); | |
14f9c5c9 | 2378 | else |
4c4b4cd2 PH |
2379 | { |
2380 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2381 | LONGEST lowerbound, upperbound; | |
2382 | LONGEST idx; | |
2383 | ||
2384 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2385 | { | |
323e0a4a | 2386 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2387 | lowerbound = upperbound = 0; |
2388 | } | |
2389 | ||
3cb382c9 | 2390 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2391 | if (idx < lowerbound || idx > upperbound) |
0963b4bd MS |
2392 | lim_warning (_("packed array index %ld out of bounds"), |
2393 | (long) idx); | |
4c4b4cd2 PH |
2394 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2395 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2396 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2397 | } |
14f9c5c9 AS |
2398 | } |
2399 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2400 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2401 | |
2402 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2403 | bits, elt_type); |
14f9c5c9 AS |
2404 | return v; |
2405 | } | |
2406 | ||
4c4b4cd2 | 2407 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2408 | |
2409 | static int | |
d2e4a39e | 2410 | has_negatives (struct type *type) |
14f9c5c9 | 2411 | { |
d2e4a39e AS |
2412 | switch (TYPE_CODE (type)) |
2413 | { | |
2414 | default: | |
2415 | return 0; | |
2416 | case TYPE_CODE_INT: | |
2417 | return !TYPE_UNSIGNED (type); | |
2418 | case TYPE_CODE_RANGE: | |
2419 | return TYPE_LOW_BOUND (type) < 0; | |
2420 | } | |
14f9c5c9 | 2421 | } |
d2e4a39e | 2422 | |
f93fca70 | 2423 | /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET, |
5b639dea | 2424 | unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of |
f93fca70 | 2425 | the unpacked buffer. |
14f9c5c9 | 2426 | |
5b639dea JB |
2427 | The size of the unpacked buffer (UNPACKED_LEN) is expected to be large |
2428 | enough to contain at least BIT_OFFSET bits. If not, an error is raised. | |
2429 | ||
f93fca70 JB |
2430 | IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode, |
2431 | zero otherwise. | |
14f9c5c9 | 2432 | |
f93fca70 | 2433 | IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type. |
a1c95e6b | 2434 | |
f93fca70 JB |
2435 | IS_SCALAR is nonzero if the data corresponds to a signed type. */ |
2436 | ||
2437 | static void | |
2438 | ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size, | |
2439 | gdb_byte *unpacked, int unpacked_len, | |
2440 | int is_big_endian, int is_signed_type, | |
2441 | int is_scalar) | |
2442 | { | |
a1c95e6b JB |
2443 | int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; |
2444 | int src_idx; /* Index into the source area */ | |
2445 | int src_bytes_left; /* Number of source bytes left to process. */ | |
2446 | int srcBitsLeft; /* Number of source bits left to move */ | |
2447 | int unusedLS; /* Number of bits in next significant | |
2448 | byte of source that are unused */ | |
2449 | ||
a1c95e6b JB |
2450 | int unpacked_idx; /* Index into the unpacked buffer */ |
2451 | int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */ | |
2452 | ||
4c4b4cd2 | 2453 | unsigned long accum; /* Staging area for bits being transferred */ |
a1c95e6b | 2454 | int accumSize; /* Number of meaningful bits in accum */ |
14f9c5c9 | 2455 | unsigned char sign; |
a1c95e6b | 2456 | |
4c4b4cd2 PH |
2457 | /* Transmit bytes from least to most significant; delta is the direction |
2458 | the indices move. */ | |
f93fca70 | 2459 | int delta = is_big_endian ? -1 : 1; |
14f9c5c9 | 2460 | |
5b639dea JB |
2461 | /* Make sure that unpacked is large enough to receive the BIT_SIZE |
2462 | bits from SRC. .*/ | |
2463 | if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len) | |
2464 | error (_("Cannot unpack %d bits into buffer of %d bytes"), | |
2465 | bit_size, unpacked_len); | |
2466 | ||
14f9c5c9 | 2467 | srcBitsLeft = bit_size; |
086ca51f | 2468 | src_bytes_left = src_len; |
f93fca70 | 2469 | unpacked_bytes_left = unpacked_len; |
14f9c5c9 | 2470 | sign = 0; |
f93fca70 JB |
2471 | |
2472 | if (is_big_endian) | |
14f9c5c9 | 2473 | { |
086ca51f | 2474 | src_idx = src_len - 1; |
f93fca70 JB |
2475 | if (is_signed_type |
2476 | && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2477 | sign = ~0; |
d2e4a39e AS |
2478 | |
2479 | unusedLS = | |
4c4b4cd2 PH |
2480 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2481 | % HOST_CHAR_BIT; | |
14f9c5c9 | 2482 | |
f93fca70 JB |
2483 | if (is_scalar) |
2484 | { | |
2485 | accumSize = 0; | |
2486 | unpacked_idx = unpacked_len - 1; | |
2487 | } | |
2488 | else | |
2489 | { | |
4c4b4cd2 PH |
2490 | /* Non-scalar values must be aligned at a byte boundary... */ |
2491 | accumSize = | |
2492 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2493 | /* ... And are placed at the beginning (most-significant) bytes | |
2494 | of the target. */ | |
086ca51f JB |
2495 | unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
2496 | unpacked_bytes_left = unpacked_idx + 1; | |
f93fca70 | 2497 | } |
14f9c5c9 | 2498 | } |
d2e4a39e | 2499 | else |
14f9c5c9 AS |
2500 | { |
2501 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2502 | ||
086ca51f | 2503 | src_idx = unpacked_idx = 0; |
14f9c5c9 AS |
2504 | unusedLS = bit_offset; |
2505 | accumSize = 0; | |
2506 | ||
f93fca70 | 2507 | if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2508 | sign = ~0; |
14f9c5c9 | 2509 | } |
d2e4a39e | 2510 | |
14f9c5c9 | 2511 | accum = 0; |
086ca51f | 2512 | while (src_bytes_left > 0) |
14f9c5c9 AS |
2513 | { |
2514 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2515 | part of the value. */ |
d2e4a39e | 2516 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2517 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2518 | 1; | |
2519 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2520 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2521 | |
d2e4a39e | 2522 | accum |= |
086ca51f | 2523 | (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2524 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2525 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 | 2526 | { |
db297a65 | 2527 | unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT); |
4c4b4cd2 PH |
2528 | accumSize -= HOST_CHAR_BIT; |
2529 | accum >>= HOST_CHAR_BIT; | |
086ca51f JB |
2530 | unpacked_bytes_left -= 1; |
2531 | unpacked_idx += delta; | |
4c4b4cd2 | 2532 | } |
14f9c5c9 AS |
2533 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2534 | unusedLS = 0; | |
086ca51f JB |
2535 | src_bytes_left -= 1; |
2536 | src_idx += delta; | |
14f9c5c9 | 2537 | } |
086ca51f | 2538 | while (unpacked_bytes_left > 0) |
14f9c5c9 AS |
2539 | { |
2540 | accum |= sign << accumSize; | |
db297a65 | 2541 | unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT); |
14f9c5c9 | 2542 | accumSize -= HOST_CHAR_BIT; |
9cd4d857 JB |
2543 | if (accumSize < 0) |
2544 | accumSize = 0; | |
14f9c5c9 | 2545 | accum >>= HOST_CHAR_BIT; |
086ca51f JB |
2546 | unpacked_bytes_left -= 1; |
2547 | unpacked_idx += delta; | |
14f9c5c9 | 2548 | } |
f93fca70 JB |
2549 | } |
2550 | ||
2551 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2552 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2553 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
2554 | assigning through the result will set the field fetched from. | |
2555 | VALADDR is ignored unless OBJ is NULL, in which case, | |
2556 | VALADDR+OFFSET must address the start of storage containing the | |
2557 | packed value. The value returned in this case is never an lval. | |
2558 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
2559 | ||
2560 | struct value * | |
2561 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, | |
2562 | long offset, int bit_offset, int bit_size, | |
2563 | struct type *type) | |
2564 | { | |
2565 | struct value *v; | |
bfb1c796 | 2566 | const gdb_byte *src; /* First byte containing data to unpack */ |
f93fca70 | 2567 | gdb_byte *unpacked; |
220475ed | 2568 | const int is_scalar = is_scalar_type (type); |
d0a9e810 | 2569 | const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type)); |
200069c7 | 2570 | std::unique_ptr<gdb_byte[]> staging; |
d0a9e810 | 2571 | int staging_len = 0; |
f93fca70 JB |
2572 | |
2573 | type = ada_check_typedef (type); | |
2574 | ||
d0a9e810 | 2575 | if (obj == NULL) |
bfb1c796 | 2576 | src = valaddr + offset; |
d0a9e810 | 2577 | else |
bfb1c796 | 2578 | src = value_contents (obj) + offset; |
d0a9e810 JB |
2579 | |
2580 | if (is_dynamic_type (type)) | |
2581 | { | |
2582 | /* The length of TYPE might by dynamic, so we need to resolve | |
2583 | TYPE in order to know its actual size, which we then use | |
2584 | to create the contents buffer of the value we return. | |
2585 | The difficulty is that the data containing our object is | |
2586 | packed, and therefore maybe not at a byte boundary. So, what | |
2587 | we do, is unpack the data into a byte-aligned buffer, and then | |
2588 | use that buffer as our object's value for resolving the type. */ | |
2589 | staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
200069c7 | 2590 | staging.reset (new gdb_byte[staging_len]); |
d0a9e810 JB |
2591 | |
2592 | ada_unpack_from_contents (src, bit_offset, bit_size, | |
200069c7 | 2593 | staging.get (), staging_len, |
d0a9e810 JB |
2594 | is_big_endian, has_negatives (type), |
2595 | is_scalar); | |
200069c7 | 2596 | type = resolve_dynamic_type (type, staging.get (), 0); |
0cafa88c JB |
2597 | if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT) |
2598 | { | |
2599 | /* This happens when the length of the object is dynamic, | |
2600 | and is actually smaller than the space reserved for it. | |
2601 | For instance, in an array of variant records, the bit_size | |
2602 | we're given is the array stride, which is constant and | |
2603 | normally equal to the maximum size of its element. | |
2604 | But, in reality, each element only actually spans a portion | |
2605 | of that stride. */ | |
2606 | bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT; | |
2607 | } | |
d0a9e810 JB |
2608 | } |
2609 | ||
f93fca70 JB |
2610 | if (obj == NULL) |
2611 | { | |
2612 | v = allocate_value (type); | |
bfb1c796 | 2613 | src = valaddr + offset; |
f93fca70 JB |
2614 | } |
2615 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) | |
2616 | { | |
0cafa88c | 2617 | int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; |
bfb1c796 | 2618 | gdb_byte *buf; |
0cafa88c | 2619 | |
f93fca70 | 2620 | v = value_at (type, value_address (obj) + offset); |
bfb1c796 PA |
2621 | buf = (gdb_byte *) alloca (src_len); |
2622 | read_memory (value_address (v), buf, src_len); | |
2623 | src = buf; | |
f93fca70 JB |
2624 | } |
2625 | else | |
2626 | { | |
2627 | v = allocate_value (type); | |
bfb1c796 | 2628 | src = value_contents (obj) + offset; |
f93fca70 JB |
2629 | } |
2630 | ||
2631 | if (obj != NULL) | |
2632 | { | |
2633 | long new_offset = offset; | |
2634 | ||
2635 | set_value_component_location (v, obj); | |
2636 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); | |
2637 | set_value_bitsize (v, bit_size); | |
2638 | if (value_bitpos (v) >= HOST_CHAR_BIT) | |
2639 | { | |
2640 | ++new_offset; | |
2641 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); | |
2642 | } | |
2643 | set_value_offset (v, new_offset); | |
2644 | ||
2645 | /* Also set the parent value. This is needed when trying to | |
2646 | assign a new value (in inferior memory). */ | |
2647 | set_value_parent (v, obj); | |
2648 | } | |
2649 | else | |
2650 | set_value_bitsize (v, bit_size); | |
bfb1c796 | 2651 | unpacked = value_contents_writeable (v); |
f93fca70 JB |
2652 | |
2653 | if (bit_size == 0) | |
2654 | { | |
2655 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2656 | return v; | |
2657 | } | |
2658 | ||
d0a9e810 | 2659 | if (staging != NULL && staging_len == TYPE_LENGTH (type)) |
f93fca70 | 2660 | { |
d0a9e810 JB |
2661 | /* Small short-cut: If we've unpacked the data into a buffer |
2662 | of the same size as TYPE's length, then we can reuse that, | |
2663 | instead of doing the unpacking again. */ | |
200069c7 | 2664 | memcpy (unpacked, staging.get (), staging_len); |
f93fca70 | 2665 | } |
d0a9e810 JB |
2666 | else |
2667 | ada_unpack_from_contents (src, bit_offset, bit_size, | |
2668 | unpacked, TYPE_LENGTH (type), | |
2669 | is_big_endian, has_negatives (type), is_scalar); | |
f93fca70 | 2670 | |
14f9c5c9 AS |
2671 | return v; |
2672 | } | |
d2e4a39e | 2673 | |
14f9c5c9 AS |
2674 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2675 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2676 | not overlap. */ |
14f9c5c9 | 2677 | static void |
fc1a4b47 | 2678 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
50810684 | 2679 | int src_offset, int n, int bits_big_endian_p) |
14f9c5c9 AS |
2680 | { |
2681 | unsigned int accum, mask; | |
2682 | int accum_bits, chunk_size; | |
2683 | ||
2684 | target += targ_offset / HOST_CHAR_BIT; | |
2685 | targ_offset %= HOST_CHAR_BIT; | |
2686 | source += src_offset / HOST_CHAR_BIT; | |
2687 | src_offset %= HOST_CHAR_BIT; | |
50810684 | 2688 | if (bits_big_endian_p) |
14f9c5c9 AS |
2689 | { |
2690 | accum = (unsigned char) *source; | |
2691 | source += 1; | |
2692 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2693 | ||
d2e4a39e | 2694 | while (n > 0) |
4c4b4cd2 PH |
2695 | { |
2696 | int unused_right; | |
5b4ee69b | 2697 | |
4c4b4cd2 PH |
2698 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; |
2699 | accum_bits += HOST_CHAR_BIT; | |
2700 | source += 1; | |
2701 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2702 | if (chunk_size > n) | |
2703 | chunk_size = n; | |
2704 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2705 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2706 | *target = | |
2707 | (*target & ~mask) | |
2708 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2709 | n -= chunk_size; | |
2710 | accum_bits -= chunk_size; | |
2711 | target += 1; | |
2712 | targ_offset = 0; | |
2713 | } | |
14f9c5c9 AS |
2714 | } |
2715 | else | |
2716 | { | |
2717 | accum = (unsigned char) *source >> src_offset; | |
2718 | source += 1; | |
2719 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2720 | ||
d2e4a39e | 2721 | while (n > 0) |
4c4b4cd2 PH |
2722 | { |
2723 | accum = accum + ((unsigned char) *source << accum_bits); | |
2724 | accum_bits += HOST_CHAR_BIT; | |
2725 | source += 1; | |
2726 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2727 | if (chunk_size > n) | |
2728 | chunk_size = n; | |
2729 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2730 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2731 | n -= chunk_size; | |
2732 | accum_bits -= chunk_size; | |
2733 | accum >>= chunk_size; | |
2734 | target += 1; | |
2735 | targ_offset = 0; | |
2736 | } | |
14f9c5c9 AS |
2737 | } |
2738 | } | |
2739 | ||
14f9c5c9 AS |
2740 | /* Store the contents of FROMVAL into the location of TOVAL. |
2741 | Return a new value with the location of TOVAL and contents of | |
2742 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2743 | floating-point or non-scalar types. */ |
14f9c5c9 | 2744 | |
d2e4a39e AS |
2745 | static struct value * |
2746 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2747 | { |
df407dfe AC |
2748 | struct type *type = value_type (toval); |
2749 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2750 | |
52ce6436 PH |
2751 | toval = ada_coerce_ref (toval); |
2752 | fromval = ada_coerce_ref (fromval); | |
2753 | ||
2754 | if (ada_is_direct_array_type (value_type (toval))) | |
2755 | toval = ada_coerce_to_simple_array (toval); | |
2756 | if (ada_is_direct_array_type (value_type (fromval))) | |
2757 | fromval = ada_coerce_to_simple_array (fromval); | |
2758 | ||
88e3b34b | 2759 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2760 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2761 | |
d2e4a39e | 2762 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2763 | && bits > 0 |
d2e4a39e | 2764 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2765 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2766 | { |
df407dfe AC |
2767 | int len = (value_bitpos (toval) |
2768 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2769 | int from_size; |
224c3ddb | 2770 | gdb_byte *buffer = (gdb_byte *) alloca (len); |
d2e4a39e | 2771 | struct value *val; |
42ae5230 | 2772 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2773 | |
2774 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2775 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2776 | |
52ce6436 | 2777 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2778 | from_size = value_bitsize (fromval); |
2779 | if (from_size == 0) | |
2780 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2781 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
df407dfe | 2782 | move_bits (buffer, value_bitpos (toval), |
50810684 | 2783 | value_contents (fromval), from_size - bits, bits, 1); |
14f9c5c9 | 2784 | else |
50810684 UW |
2785 | move_bits (buffer, value_bitpos (toval), |
2786 | value_contents (fromval), 0, bits, 0); | |
972daa01 | 2787 | write_memory_with_notification (to_addr, buffer, len); |
8cebebb9 | 2788 | |
14f9c5c9 | 2789 | val = value_copy (toval); |
0fd88904 | 2790 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2791 | TYPE_LENGTH (type)); |
04624583 | 2792 | deprecated_set_value_type (val, type); |
d2e4a39e | 2793 | |
14f9c5c9 AS |
2794 | return val; |
2795 | } | |
2796 | ||
2797 | return value_assign (toval, fromval); | |
2798 | } | |
2799 | ||
2800 | ||
7c512744 JB |
2801 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2802 | CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2803 | CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2804 | COMPONENT, and not the inferior's memory. The current contents | |
2805 | of COMPONENT are ignored. | |
2806 | ||
2807 | Although not part of the initial design, this function also works | |
2808 | when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER | |
2809 | had a null address, and COMPONENT had an address which is equal to | |
2810 | its offset inside CONTAINER. */ | |
2811 | ||
52ce6436 PH |
2812 | static void |
2813 | value_assign_to_component (struct value *container, struct value *component, | |
2814 | struct value *val) | |
2815 | { | |
2816 | LONGEST offset_in_container = | |
42ae5230 | 2817 | (LONGEST) (value_address (component) - value_address (container)); |
7c512744 | 2818 | int bit_offset_in_container = |
52ce6436 PH |
2819 | value_bitpos (component) - value_bitpos (container); |
2820 | int bits; | |
7c512744 | 2821 | |
52ce6436 PH |
2822 | val = value_cast (value_type (component), val); |
2823 | ||
2824 | if (value_bitsize (component) == 0) | |
2825 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2826 | else | |
2827 | bits = value_bitsize (component); | |
2828 | ||
50810684 | 2829 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
7c512744 | 2830 | move_bits (value_contents_writeable (container) + offset_in_container, |
52ce6436 PH |
2831 | value_bitpos (container) + bit_offset_in_container, |
2832 | value_contents (val), | |
2833 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
50810684 | 2834 | bits, 1); |
52ce6436 | 2835 | else |
7c512744 | 2836 | move_bits (value_contents_writeable (container) + offset_in_container, |
52ce6436 | 2837 | value_bitpos (container) + bit_offset_in_container, |
50810684 | 2838 | value_contents (val), 0, bits, 0); |
7c512744 JB |
2839 | } |
2840 | ||
4c4b4cd2 PH |
2841 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2842 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2843 | thereto. */ |
2844 | ||
d2e4a39e AS |
2845 | struct value * |
2846 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2847 | { |
2848 | int k; | |
d2e4a39e AS |
2849 | struct value *elt; |
2850 | struct type *elt_type; | |
14f9c5c9 AS |
2851 | |
2852 | elt = ada_coerce_to_simple_array (arr); | |
2853 | ||
df407dfe | 2854 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2855 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2856 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2857 | return value_subscript_packed (elt, arity, ind); | |
2858 | ||
2859 | for (k = 0; k < arity; k += 1) | |
2860 | { | |
2861 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2862 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2863 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2864 | } |
2865 | return elt; | |
2866 | } | |
2867 | ||
deede10c JB |
2868 | /* Assuming ARR is a pointer to a GDB array, the value of the element |
2869 | of *ARR at the ARITY indices given in IND. | |
919e6dbe PMR |
2870 | Does not read the entire array into memory. |
2871 | ||
2872 | Note: Unlike what one would expect, this function is used instead of | |
2873 | ada_value_subscript for basically all non-packed array types. The reason | |
2874 | for this is that a side effect of doing our own pointer arithmetics instead | |
2875 | of relying on value_subscript is that there is no implicit typedef peeling. | |
2876 | This is important for arrays of array accesses, where it allows us to | |
2877 | preserve the fact that the array's element is an array access, where the | |
2878 | access part os encoded in a typedef layer. */ | |
14f9c5c9 | 2879 | |
2c0b251b | 2880 | static struct value * |
deede10c | 2881 | ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind) |
14f9c5c9 AS |
2882 | { |
2883 | int k; | |
919e6dbe | 2884 | struct value *array_ind = ada_value_ind (arr); |
deede10c | 2885 | struct type *type |
919e6dbe PMR |
2886 | = check_typedef (value_enclosing_type (array_ind)); |
2887 | ||
2888 | if (TYPE_CODE (type) == TYPE_CODE_ARRAY | |
2889 | && TYPE_FIELD_BITSIZE (type, 0) > 0) | |
2890 | return value_subscript_packed (array_ind, arity, ind); | |
14f9c5c9 AS |
2891 | |
2892 | for (k = 0; k < arity; k += 1) | |
2893 | { | |
2894 | LONGEST lwb, upb; | |
aa715135 | 2895 | struct value *lwb_value; |
14f9c5c9 AS |
2896 | |
2897 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2898 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2899 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2900 | value_copy (arr)); |
14f9c5c9 | 2901 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
aa715135 JG |
2902 | lwb_value = value_from_longest (value_type(ind[k]), lwb); |
2903 | arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value)); | |
14f9c5c9 AS |
2904 | type = TYPE_TARGET_TYPE (type); |
2905 | } | |
2906 | ||
2907 | return value_ind (arr); | |
2908 | } | |
2909 | ||
0b5d8877 | 2910 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
aa715135 JG |
2911 | actual type of ARRAY_PTR is ignored), returns the Ada slice of |
2912 | HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of | |
2913 | this array is LOW, as per Ada rules. */ | |
0b5d8877 | 2914 | static struct value * |
f5938064 JG |
2915 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2916 | int low, int high) | |
0b5d8877 | 2917 | { |
b0dd7688 | 2918 | struct type *type0 = ada_check_typedef (type); |
aa715135 | 2919 | struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)); |
0c9c3474 | 2920 | struct type *index_type |
aa715135 | 2921 | = create_static_range_type (NULL, base_index_type, low, high); |
6c038f32 | 2922 | struct type *slice_type = |
b0dd7688 | 2923 | create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type); |
aa715135 JG |
2924 | int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)); |
2925 | LONGEST base_low_pos, low_pos; | |
2926 | CORE_ADDR base; | |
2927 | ||
2928 | if (!discrete_position (base_index_type, low, &low_pos) | |
2929 | || !discrete_position (base_index_type, base_low, &base_low_pos)) | |
2930 | { | |
2931 | warning (_("unable to get positions in slice, use bounds instead")); | |
2932 | low_pos = low; | |
2933 | base_low_pos = base_low; | |
2934 | } | |
5b4ee69b | 2935 | |
aa715135 JG |
2936 | base = value_as_address (array_ptr) |
2937 | + ((low_pos - base_low_pos) | |
2938 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type0))); | |
f5938064 | 2939 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2940 | } |
2941 | ||
2942 | ||
2943 | static struct value * | |
2944 | ada_value_slice (struct value *array, int low, int high) | |
2945 | { | |
b0dd7688 | 2946 | struct type *type = ada_check_typedef (value_type (array)); |
aa715135 | 2947 | struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
0c9c3474 SA |
2948 | struct type *index_type |
2949 | = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); | |
6c038f32 | 2950 | struct type *slice_type = |
0b5d8877 | 2951 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
aa715135 | 2952 | LONGEST low_pos, high_pos; |
5b4ee69b | 2953 | |
aa715135 JG |
2954 | if (!discrete_position (base_index_type, low, &low_pos) |
2955 | || !discrete_position (base_index_type, high, &high_pos)) | |
2956 | { | |
2957 | warning (_("unable to get positions in slice, use bounds instead")); | |
2958 | low_pos = low; | |
2959 | high_pos = high; | |
2960 | } | |
2961 | ||
2962 | return value_cast (slice_type, | |
2963 | value_slice (array, low, high_pos - low_pos + 1)); | |
0b5d8877 PH |
2964 | } |
2965 | ||
14f9c5c9 AS |
2966 | /* If type is a record type in the form of a standard GNAT array |
2967 | descriptor, returns the number of dimensions for type. If arr is a | |
2968 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2969 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2970 | |
2971 | int | |
d2e4a39e | 2972 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2973 | { |
2974 | int arity; | |
2975 | ||
2976 | if (type == NULL) | |
2977 | return 0; | |
2978 | ||
2979 | type = desc_base_type (type); | |
2980 | ||
2981 | arity = 0; | |
d2e4a39e | 2982 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2983 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2984 | else |
2985 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2986 | { |
4c4b4cd2 | 2987 | arity += 1; |
61ee279c | 2988 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2989 | } |
d2e4a39e | 2990 | |
14f9c5c9 AS |
2991 | return arity; |
2992 | } | |
2993 | ||
2994 | /* If TYPE is a record type in the form of a standard GNAT array | |
2995 | descriptor or a simple array type, returns the element type for | |
2996 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2997 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2998 | |
d2e4a39e AS |
2999 | struct type * |
3000 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
3001 | { |
3002 | type = desc_base_type (type); | |
3003 | ||
d2e4a39e | 3004 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
3005 | { |
3006 | int k; | |
d2e4a39e | 3007 | struct type *p_array_type; |
14f9c5c9 | 3008 | |
556bdfd4 | 3009 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
3010 | |
3011 | k = ada_array_arity (type); | |
3012 | if (k == 0) | |
4c4b4cd2 | 3013 | return NULL; |
d2e4a39e | 3014 | |
4c4b4cd2 | 3015 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 3016 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 3017 | k = nindices; |
d2e4a39e | 3018 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 3019 | { |
61ee279c | 3020 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
3021 | k -= 1; |
3022 | } | |
14f9c5c9 AS |
3023 | return p_array_type; |
3024 | } | |
3025 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
3026 | { | |
3027 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
3028 | { |
3029 | type = TYPE_TARGET_TYPE (type); | |
3030 | nindices -= 1; | |
3031 | } | |
14f9c5c9 AS |
3032 | return type; |
3033 | } | |
3034 | ||
3035 | return NULL; | |
3036 | } | |
3037 | ||
4c4b4cd2 | 3038 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
3039 | Does not examine memory. Throws an error if N is invalid or TYPE |
3040 | is not an array type. NAME is the name of the Ada attribute being | |
3041 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
3042 | the error message. */ | |
14f9c5c9 | 3043 | |
1eea4ebd UW |
3044 | static struct type * |
3045 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 3046 | { |
4c4b4cd2 PH |
3047 | struct type *result_type; |
3048 | ||
14f9c5c9 AS |
3049 | type = desc_base_type (type); |
3050 | ||
1eea4ebd UW |
3051 | if (n < 0 || n > ada_array_arity (type)) |
3052 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 3053 | |
4c4b4cd2 | 3054 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
3055 | { |
3056 | int i; | |
3057 | ||
3058 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 3059 | type = TYPE_TARGET_TYPE (type); |
262452ec | 3060 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
3061 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
3062 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 3063 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
3064 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
3065 | result_type = NULL; | |
14f9c5c9 | 3066 | } |
d2e4a39e | 3067 | else |
1eea4ebd UW |
3068 | { |
3069 | result_type = desc_index_type (desc_bounds_type (type), n); | |
3070 | if (result_type == NULL) | |
3071 | error (_("attempt to take bound of something that is not an array")); | |
3072 | } | |
3073 | ||
3074 | return result_type; | |
14f9c5c9 AS |
3075 | } |
3076 | ||
3077 | /* Given that arr is an array type, returns the lower bound of the | |
3078 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 3079 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
3080 | array-descriptor type. It works for other arrays with bounds supplied |
3081 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 3082 | |
abb68b3e | 3083 | static LONGEST |
fb5e3d5c | 3084 | ada_array_bound_from_type (struct type *arr_type, int n, int which) |
14f9c5c9 | 3085 | { |
8a48ac95 | 3086 | struct type *type, *index_type_desc, *index_type; |
1ce677a4 | 3087 | int i; |
262452ec JK |
3088 | |
3089 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 3090 | |
ad82864c JB |
3091 | if (ada_is_constrained_packed_array_type (arr_type)) |
3092 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 3093 | |
4c4b4cd2 | 3094 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 3095 | return (LONGEST) - which; |
14f9c5c9 AS |
3096 | |
3097 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
3098 | type = TYPE_TARGET_TYPE (arr_type); | |
3099 | else | |
3100 | type = arr_type; | |
3101 | ||
bafffb51 JB |
3102 | if (TYPE_FIXED_INSTANCE (type)) |
3103 | { | |
3104 | /* The array has already been fixed, so we do not need to | |
3105 | check the parallel ___XA type again. That encoding has | |
3106 | already been applied, so ignore it now. */ | |
3107 | index_type_desc = NULL; | |
3108 | } | |
3109 | else | |
3110 | { | |
3111 | index_type_desc = ada_find_parallel_type (type, "___XA"); | |
3112 | ada_fixup_array_indexes_type (index_type_desc); | |
3113 | } | |
3114 | ||
262452ec | 3115 | if (index_type_desc != NULL) |
28c85d6c JB |
3116 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
3117 | NULL); | |
262452ec | 3118 | else |
8a48ac95 JB |
3119 | { |
3120 | struct type *elt_type = check_typedef (type); | |
3121 | ||
3122 | for (i = 1; i < n; i++) | |
3123 | elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type)); | |
3124 | ||
3125 | index_type = TYPE_INDEX_TYPE (elt_type); | |
3126 | } | |
262452ec | 3127 | |
43bbcdc2 PH |
3128 | return |
3129 | (LONGEST) (which == 0 | |
3130 | ? ada_discrete_type_low_bound (index_type) | |
3131 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
3132 | } |
3133 | ||
3134 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
3135 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
3136 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 3137 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 3138 | |
1eea4ebd | 3139 | static LONGEST |
4dc81987 | 3140 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 3141 | { |
eb479039 JB |
3142 | struct type *arr_type; |
3143 | ||
3144 | if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR) | |
3145 | arr = value_ind (arr); | |
3146 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 3147 | |
ad82864c JB |
3148 | if (ada_is_constrained_packed_array_type (arr_type)) |
3149 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 3150 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 3151 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 3152 | else |
1eea4ebd | 3153 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
3154 | } |
3155 | ||
3156 | /* Given that arr is an array value, returns the length of the | |
3157 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
3158 | supplied by run-time quantities other than discriminants. |
3159 | Does not work for arrays indexed by enumeration types with representation | |
3160 | clauses at the moment. */ | |
14f9c5c9 | 3161 | |
1eea4ebd | 3162 | static LONGEST |
d2e4a39e | 3163 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 3164 | { |
aa715135 JG |
3165 | struct type *arr_type, *index_type; |
3166 | int low, high; | |
eb479039 JB |
3167 | |
3168 | if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR) | |
3169 | arr = value_ind (arr); | |
3170 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 3171 | |
ad82864c JB |
3172 | if (ada_is_constrained_packed_array_type (arr_type)) |
3173 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 3174 | |
4c4b4cd2 | 3175 | if (ada_is_simple_array_type (arr_type)) |
aa715135 JG |
3176 | { |
3177 | low = ada_array_bound_from_type (arr_type, n, 0); | |
3178 | high = ada_array_bound_from_type (arr_type, n, 1); | |
3179 | } | |
14f9c5c9 | 3180 | else |
aa715135 JG |
3181 | { |
3182 | low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0)); | |
3183 | high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1)); | |
3184 | } | |
3185 | ||
f168693b | 3186 | arr_type = check_typedef (arr_type); |
aa715135 JG |
3187 | index_type = TYPE_INDEX_TYPE (arr_type); |
3188 | if (index_type != NULL) | |
3189 | { | |
3190 | struct type *base_type; | |
3191 | if (TYPE_CODE (index_type) == TYPE_CODE_RANGE) | |
3192 | base_type = TYPE_TARGET_TYPE (index_type); | |
3193 | else | |
3194 | base_type = index_type; | |
3195 | ||
3196 | low = pos_atr (value_from_longest (base_type, low)); | |
3197 | high = pos_atr (value_from_longest (base_type, high)); | |
3198 | } | |
3199 | return high - low + 1; | |
4c4b4cd2 PH |
3200 | } |
3201 | ||
3202 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
3203 | with bounds LOW to LOW-1. */ | |
3204 | ||
3205 | static struct value * | |
3206 | empty_array (struct type *arr_type, int low) | |
3207 | { | |
b0dd7688 | 3208 | struct type *arr_type0 = ada_check_typedef (arr_type); |
0c9c3474 SA |
3209 | struct type *index_type |
3210 | = create_static_range_type | |
3211 | (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1); | |
b0dd7688 | 3212 | struct type *elt_type = ada_array_element_type (arr_type0, 1); |
5b4ee69b | 3213 | |
0b5d8877 | 3214 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 3215 | } |
14f9c5c9 | 3216 | \f |
d2e4a39e | 3217 | |
4c4b4cd2 | 3218 | /* Name resolution */ |
14f9c5c9 | 3219 | |
4c4b4cd2 PH |
3220 | /* The "decoded" name for the user-definable Ada operator corresponding |
3221 | to OP. */ | |
14f9c5c9 | 3222 | |
d2e4a39e | 3223 | static const char * |
4c4b4cd2 | 3224 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
3225 | { |
3226 | int i; | |
3227 | ||
4c4b4cd2 | 3228 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
3229 | { |
3230 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 3231 | return ada_opname_table[i].decoded; |
14f9c5c9 | 3232 | } |
323e0a4a | 3233 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
3234 | } |
3235 | ||
3236 | ||
4c4b4cd2 PH |
3237 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
3238 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
3239 | undefined namespace) and converts operators that are | |
3240 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
3241 | non-null, it provides a preferred result type [at the moment, only |
3242 | type void has any effect---causing procedures to be preferred over | |
3243 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 3244 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 3245 | |
4c4b4cd2 PH |
3246 | static void |
3247 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 | 3248 | { |
30b15541 UW |
3249 | struct type *context_type = NULL; |
3250 | int pc = 0; | |
3251 | ||
3252 | if (void_context_p) | |
3253 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
3254 | ||
3255 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
3256 | } |
3257 | ||
4c4b4cd2 PH |
3258 | /* Resolve the operator of the subexpression beginning at |
3259 | position *POS of *EXPP. "Resolving" consists of replacing | |
3260 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
3261 | with their resolutions, replacing built-in operators with | |
3262 | function calls to user-defined operators, where appropriate, and, | |
3263 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
3264 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
3265 | are as in ada_resolve, above. */ | |
14f9c5c9 | 3266 | |
d2e4a39e | 3267 | static struct value * |
4c4b4cd2 | 3268 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 3269 | struct type *context_type) |
14f9c5c9 AS |
3270 | { |
3271 | int pc = *pos; | |
3272 | int i; | |
4c4b4cd2 | 3273 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 3274 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
3275 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
3276 | int nargs; /* Number of operands. */ | |
52ce6436 | 3277 | int oplen; |
14f9c5c9 AS |
3278 | |
3279 | argvec = NULL; | |
3280 | nargs = 0; | |
3281 | exp = *expp; | |
3282 | ||
52ce6436 PH |
3283 | /* Pass one: resolve operands, saving their types and updating *pos, |
3284 | if needed. */ | |
14f9c5c9 AS |
3285 | switch (op) |
3286 | { | |
4c4b4cd2 PH |
3287 | case OP_FUNCALL: |
3288 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
3289 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
3290 | *pos += 7; | |
4c4b4cd2 PH |
3291 | else |
3292 | { | |
3293 | *pos += 3; | |
3294 | resolve_subexp (expp, pos, 0, NULL); | |
3295 | } | |
3296 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
3297 | break; |
3298 | ||
14f9c5c9 | 3299 | case UNOP_ADDR: |
4c4b4cd2 PH |
3300 | *pos += 1; |
3301 | resolve_subexp (expp, pos, 0, NULL); | |
3302 | break; | |
3303 | ||
52ce6436 PH |
3304 | case UNOP_QUAL: |
3305 | *pos += 3; | |
17466c1a | 3306 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
3307 | break; |
3308 | ||
52ce6436 | 3309 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
3310 | case OP_ATR_SIZE: |
3311 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
3312 | case OP_ATR_FIRST: |
3313 | case OP_ATR_LAST: | |
3314 | case OP_ATR_LENGTH: | |
3315 | case OP_ATR_POS: | |
3316 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
3317 | case OP_ATR_MIN: |
3318 | case OP_ATR_MAX: | |
52ce6436 PH |
3319 | case TERNOP_IN_RANGE: |
3320 | case BINOP_IN_BOUNDS: | |
3321 | case UNOP_IN_RANGE: | |
3322 | case OP_AGGREGATE: | |
3323 | case OP_OTHERS: | |
3324 | case OP_CHOICES: | |
3325 | case OP_POSITIONAL: | |
3326 | case OP_DISCRETE_RANGE: | |
3327 | case OP_NAME: | |
3328 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
3329 | *pos += oplen; | |
14f9c5c9 AS |
3330 | break; |
3331 | ||
3332 | case BINOP_ASSIGN: | |
3333 | { | |
4c4b4cd2 PH |
3334 | struct value *arg1; |
3335 | ||
3336 | *pos += 1; | |
3337 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
3338 | if (arg1 == NULL) | |
3339 | resolve_subexp (expp, pos, 1, NULL); | |
3340 | else | |
df407dfe | 3341 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 3342 | break; |
14f9c5c9 AS |
3343 | } |
3344 | ||
4c4b4cd2 | 3345 | case UNOP_CAST: |
4c4b4cd2 PH |
3346 | *pos += 3; |
3347 | nargs = 1; | |
3348 | break; | |
14f9c5c9 | 3349 | |
4c4b4cd2 PH |
3350 | case BINOP_ADD: |
3351 | case BINOP_SUB: | |
3352 | case BINOP_MUL: | |
3353 | case BINOP_DIV: | |
3354 | case BINOP_REM: | |
3355 | case BINOP_MOD: | |
3356 | case BINOP_EXP: | |
3357 | case BINOP_CONCAT: | |
3358 | case BINOP_LOGICAL_AND: | |
3359 | case BINOP_LOGICAL_OR: | |
3360 | case BINOP_BITWISE_AND: | |
3361 | case BINOP_BITWISE_IOR: | |
3362 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 3363 | |
4c4b4cd2 PH |
3364 | case BINOP_EQUAL: |
3365 | case BINOP_NOTEQUAL: | |
3366 | case BINOP_LESS: | |
3367 | case BINOP_GTR: | |
3368 | case BINOP_LEQ: | |
3369 | case BINOP_GEQ: | |
14f9c5c9 | 3370 | |
4c4b4cd2 PH |
3371 | case BINOP_REPEAT: |
3372 | case BINOP_SUBSCRIPT: | |
3373 | case BINOP_COMMA: | |
40c8aaa9 JB |
3374 | *pos += 1; |
3375 | nargs = 2; | |
3376 | break; | |
14f9c5c9 | 3377 | |
4c4b4cd2 PH |
3378 | case UNOP_NEG: |
3379 | case UNOP_PLUS: | |
3380 | case UNOP_LOGICAL_NOT: | |
3381 | case UNOP_ABS: | |
3382 | case UNOP_IND: | |
3383 | *pos += 1; | |
3384 | nargs = 1; | |
3385 | break; | |
14f9c5c9 | 3386 | |
4c4b4cd2 PH |
3387 | case OP_LONG: |
3388 | case OP_DOUBLE: | |
3389 | case OP_VAR_VALUE: | |
3390 | *pos += 4; | |
3391 | break; | |
14f9c5c9 | 3392 | |
4c4b4cd2 PH |
3393 | case OP_TYPE: |
3394 | case OP_BOOL: | |
3395 | case OP_LAST: | |
4c4b4cd2 PH |
3396 | case OP_INTERNALVAR: |
3397 | *pos += 3; | |
3398 | break; | |
14f9c5c9 | 3399 | |
4c4b4cd2 PH |
3400 | case UNOP_MEMVAL: |
3401 | *pos += 3; | |
3402 | nargs = 1; | |
3403 | break; | |
3404 | ||
67f3407f DJ |
3405 | case OP_REGISTER: |
3406 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3407 | break; | |
3408 | ||
4c4b4cd2 PH |
3409 | case STRUCTOP_STRUCT: |
3410 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3411 | nargs = 1; | |
3412 | break; | |
3413 | ||
4c4b4cd2 | 3414 | case TERNOP_SLICE: |
4c4b4cd2 PH |
3415 | *pos += 1; |
3416 | nargs = 3; | |
3417 | break; | |
3418 | ||
52ce6436 | 3419 | case OP_STRING: |
14f9c5c9 | 3420 | break; |
4c4b4cd2 PH |
3421 | |
3422 | default: | |
323e0a4a | 3423 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
3424 | } |
3425 | ||
8d749320 | 3426 | argvec = XALLOCAVEC (struct value *, nargs + 1); |
4c4b4cd2 PH |
3427 | for (i = 0; i < nargs; i += 1) |
3428 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
3429 | argvec[i] = NULL; | |
3430 | exp = *expp; | |
3431 | ||
3432 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
3433 | switch (op) |
3434 | { | |
3435 | default: | |
3436 | break; | |
3437 | ||
14f9c5c9 | 3438 | case OP_VAR_VALUE: |
4c4b4cd2 | 3439 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 | 3440 | { |
d12307c1 | 3441 | struct block_symbol *candidates; |
76a01679 JB |
3442 | int n_candidates; |
3443 | ||
3444 | n_candidates = | |
3445 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
3446 | (exp->elts[pc + 2].symbol), | |
3447 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
4eeaa230 | 3448 | &candidates); |
76a01679 JB |
3449 | |
3450 | if (n_candidates > 1) | |
3451 | { | |
3452 | /* Types tend to get re-introduced locally, so if there | |
3453 | are any local symbols that are not types, first filter | |
3454 | out all types. */ | |
3455 | int j; | |
3456 | for (j = 0; j < n_candidates; j += 1) | |
d12307c1 | 3457 | switch (SYMBOL_CLASS (candidates[j].symbol)) |
76a01679 JB |
3458 | { |
3459 | case LOC_REGISTER: | |
3460 | case LOC_ARG: | |
3461 | case LOC_REF_ARG: | |
76a01679 JB |
3462 | case LOC_REGPARM_ADDR: |
3463 | case LOC_LOCAL: | |
76a01679 | 3464 | case LOC_COMPUTED: |
76a01679 JB |
3465 | goto FoundNonType; |
3466 | default: | |
3467 | break; | |
3468 | } | |
3469 | FoundNonType: | |
3470 | if (j < n_candidates) | |
3471 | { | |
3472 | j = 0; | |
3473 | while (j < n_candidates) | |
3474 | { | |
d12307c1 | 3475 | if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF) |
76a01679 JB |
3476 | { |
3477 | candidates[j] = candidates[n_candidates - 1]; | |
3478 | n_candidates -= 1; | |
3479 | } | |
3480 | else | |
3481 | j += 1; | |
3482 | } | |
3483 | } | |
3484 | } | |
3485 | ||
3486 | if (n_candidates == 0) | |
323e0a4a | 3487 | error (_("No definition found for %s"), |
76a01679 JB |
3488 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3489 | else if (n_candidates == 1) | |
3490 | i = 0; | |
3491 | else if (deprocedure_p | |
3492 | && !is_nonfunction (candidates, n_candidates)) | |
3493 | { | |
06d5cf63 JB |
3494 | i = ada_resolve_function |
3495 | (candidates, n_candidates, NULL, 0, | |
3496 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
3497 | context_type); | |
76a01679 | 3498 | if (i < 0) |
323e0a4a | 3499 | error (_("Could not find a match for %s"), |
76a01679 JB |
3500 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3501 | } | |
3502 | else | |
3503 | { | |
323e0a4a | 3504 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
3505 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3506 | user_select_syms (candidates, n_candidates, 1); | |
3507 | i = 0; | |
3508 | } | |
3509 | ||
3510 | exp->elts[pc + 1].block = candidates[i].block; | |
d12307c1 | 3511 | exp->elts[pc + 2].symbol = candidates[i].symbol; |
1265e4aa JB |
3512 | if (innermost_block == NULL |
3513 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
3514 | innermost_block = candidates[i].block; |
3515 | } | |
3516 | ||
3517 | if (deprocedure_p | |
3518 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3519 | == TYPE_CODE_FUNC)) | |
3520 | { | |
3521 | replace_operator_with_call (expp, pc, 0, 0, | |
3522 | exp->elts[pc + 2].symbol, | |
3523 | exp->elts[pc + 1].block); | |
3524 | exp = *expp; | |
3525 | } | |
14f9c5c9 AS |
3526 | break; |
3527 | ||
3528 | case OP_FUNCALL: | |
3529 | { | |
4c4b4cd2 | 3530 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 3531 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 | 3532 | { |
d12307c1 | 3533 | struct block_symbol *candidates; |
4c4b4cd2 PH |
3534 | int n_candidates; |
3535 | ||
3536 | n_candidates = | |
76a01679 JB |
3537 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
3538 | (exp->elts[pc + 5].symbol), | |
3539 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
4eeaa230 | 3540 | &candidates); |
4c4b4cd2 PH |
3541 | if (n_candidates == 1) |
3542 | i = 0; | |
3543 | else | |
3544 | { | |
06d5cf63 JB |
3545 | i = ada_resolve_function |
3546 | (candidates, n_candidates, | |
3547 | argvec, nargs, | |
3548 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
3549 | context_type); | |
4c4b4cd2 | 3550 | if (i < 0) |
323e0a4a | 3551 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
3552 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
3553 | } | |
3554 | ||
3555 | exp->elts[pc + 4].block = candidates[i].block; | |
d12307c1 | 3556 | exp->elts[pc + 5].symbol = candidates[i].symbol; |
1265e4aa JB |
3557 | if (innermost_block == NULL |
3558 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
3559 | innermost_block = candidates[i].block; |
3560 | } | |
14f9c5c9 AS |
3561 | } |
3562 | break; | |
3563 | case BINOP_ADD: | |
3564 | case BINOP_SUB: | |
3565 | case BINOP_MUL: | |
3566 | case BINOP_DIV: | |
3567 | case BINOP_REM: | |
3568 | case BINOP_MOD: | |
3569 | case BINOP_CONCAT: | |
3570 | case BINOP_BITWISE_AND: | |
3571 | case BINOP_BITWISE_IOR: | |
3572 | case BINOP_BITWISE_XOR: | |
3573 | case BINOP_EQUAL: | |
3574 | case BINOP_NOTEQUAL: | |
3575 | case BINOP_LESS: | |
3576 | case BINOP_GTR: | |
3577 | case BINOP_LEQ: | |
3578 | case BINOP_GEQ: | |
3579 | case BINOP_EXP: | |
3580 | case UNOP_NEG: | |
3581 | case UNOP_PLUS: | |
3582 | case UNOP_LOGICAL_NOT: | |
3583 | case UNOP_ABS: | |
3584 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 | 3585 | { |
d12307c1 | 3586 | struct block_symbol *candidates; |
4c4b4cd2 PH |
3587 | int n_candidates; |
3588 | ||
3589 | n_candidates = | |
3590 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
3591 | (struct block *) NULL, VAR_DOMAIN, | |
4eeaa230 | 3592 | &candidates); |
4c4b4cd2 | 3593 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, |
76a01679 | 3594 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3595 | if (i < 0) |
3596 | break; | |
3597 | ||
d12307c1 PMR |
3598 | replace_operator_with_call (expp, pc, nargs, 1, |
3599 | candidates[i].symbol, | |
3600 | candidates[i].block); | |
4c4b4cd2 PH |
3601 | exp = *expp; |
3602 | } | |
14f9c5c9 | 3603 | break; |
4c4b4cd2 PH |
3604 | |
3605 | case OP_TYPE: | |
b3dbf008 | 3606 | case OP_REGISTER: |
4c4b4cd2 | 3607 | return NULL; |
14f9c5c9 AS |
3608 | } |
3609 | ||
3610 | *pos = pc; | |
3611 | return evaluate_subexp_type (exp, pos); | |
3612 | } | |
3613 | ||
3614 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3615 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3616 | a non-pointer. */ |
14f9c5c9 | 3617 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3618 | liberal. */ |
14f9c5c9 AS |
3619 | |
3620 | static int | |
4dc81987 | 3621 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3622 | { |
61ee279c PH |
3623 | ftype = ada_check_typedef (ftype); |
3624 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3625 | |
3626 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3627 | ftype = TYPE_TARGET_TYPE (ftype); | |
3628 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3629 | atype = TYPE_TARGET_TYPE (atype); | |
3630 | ||
d2e4a39e | 3631 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3632 | { |
3633 | default: | |
5b3d5b7d | 3634 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3635 | case TYPE_CODE_PTR: |
3636 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3637 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3638 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3639 | else |
1265e4aa JB |
3640 | return (may_deref |
3641 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3642 | case TYPE_CODE_INT: |
3643 | case TYPE_CODE_ENUM: | |
3644 | case TYPE_CODE_RANGE: | |
3645 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3646 | { |
3647 | case TYPE_CODE_INT: | |
3648 | case TYPE_CODE_ENUM: | |
3649 | case TYPE_CODE_RANGE: | |
3650 | return 1; | |
3651 | default: | |
3652 | return 0; | |
3653 | } | |
14f9c5c9 AS |
3654 | |
3655 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3656 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3657 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3658 | |
3659 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3660 | if (ada_is_array_descriptor_type (ftype)) |
3661 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3662 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3663 | else |
4c4b4cd2 PH |
3664 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3665 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3666 | |
3667 | case TYPE_CODE_UNION: | |
3668 | case TYPE_CODE_FLT: | |
3669 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3670 | } | |
3671 | } | |
3672 | ||
3673 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3674 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3675 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3676 | argument function. */ |
14f9c5c9 AS |
3677 | |
3678 | static int | |
d2e4a39e | 3679 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3680 | { |
3681 | int i; | |
d2e4a39e | 3682 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3683 | |
1265e4aa JB |
3684 | if (SYMBOL_CLASS (func) == LOC_CONST |
3685 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3686 | return (n_actuals == 0); |
3687 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3688 | return 0; | |
3689 | ||
3690 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3691 | return 0; | |
3692 | ||
3693 | for (i = 0; i < n_actuals; i += 1) | |
3694 | { | |
4c4b4cd2 | 3695 | if (actuals[i] == NULL) |
76a01679 JB |
3696 | return 0; |
3697 | else | |
3698 | { | |
5b4ee69b MS |
3699 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, |
3700 | i)); | |
df407dfe | 3701 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3702 | |
76a01679 JB |
3703 | if (!ada_type_match (ftype, atype, 1)) |
3704 | return 0; | |
3705 | } | |
14f9c5c9 AS |
3706 | } |
3707 | return 1; | |
3708 | } | |
3709 | ||
3710 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3711 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3712 | FUNC_TYPE is not a valid function type with a non-null return type | |
3713 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3714 | ||
3715 | static int | |
d2e4a39e | 3716 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3717 | { |
d2e4a39e | 3718 | struct type *return_type; |
14f9c5c9 AS |
3719 | |
3720 | if (func_type == NULL) | |
3721 | return 1; | |
3722 | ||
4c4b4cd2 | 3723 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
18af8284 | 3724 | return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); |
4c4b4cd2 | 3725 | else |
18af8284 | 3726 | return_type = get_base_type (func_type); |
14f9c5c9 AS |
3727 | if (return_type == NULL) |
3728 | return 1; | |
3729 | ||
18af8284 | 3730 | context_type = get_base_type (context_type); |
14f9c5c9 AS |
3731 | |
3732 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3733 | return context_type == NULL || return_type == context_type; | |
3734 | else if (context_type == NULL) | |
3735 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3736 | else | |
3737 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3738 | } | |
3739 | ||
3740 | ||
4c4b4cd2 | 3741 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3742 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3743 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3744 | that returns that type, then eliminate matches that don't. If | |
3745 | CONTEXT_TYPE is void and there is at least one match that does not | |
3746 | return void, eliminate all matches that do. | |
3747 | ||
14f9c5c9 AS |
3748 | Asks the user if there is more than one match remaining. Returns -1 |
3749 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3750 | solely for messages. May re-arrange and modify SYMS in |
3751 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3752 | |
4c4b4cd2 | 3753 | static int |
d12307c1 | 3754 | ada_resolve_function (struct block_symbol syms[], |
4c4b4cd2 PH |
3755 | int nsyms, struct value **args, int nargs, |
3756 | const char *name, struct type *context_type) | |
14f9c5c9 | 3757 | { |
30b15541 | 3758 | int fallback; |
14f9c5c9 | 3759 | int k; |
4c4b4cd2 | 3760 | int m; /* Number of hits */ |
14f9c5c9 | 3761 | |
d2e4a39e | 3762 | m = 0; |
30b15541 UW |
3763 | /* In the first pass of the loop, we only accept functions matching |
3764 | context_type. If none are found, we add a second pass of the loop | |
3765 | where every function is accepted. */ | |
3766 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3767 | { |
3768 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3769 | { |
d12307c1 | 3770 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol)); |
4c4b4cd2 | 3771 | |
d12307c1 | 3772 | if (ada_args_match (syms[k].symbol, args, nargs) |
30b15541 | 3773 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3774 | { |
3775 | syms[m] = syms[k]; | |
3776 | m += 1; | |
3777 | } | |
3778 | } | |
14f9c5c9 AS |
3779 | } |
3780 | ||
dc5c8746 PMR |
3781 | /* If we got multiple matches, ask the user which one to use. Don't do this |
3782 | interactive thing during completion, though, as the purpose of the | |
3783 | completion is providing a list of all possible matches. Prompting the | |
3784 | user to filter it down would be completely unexpected in this case. */ | |
14f9c5c9 AS |
3785 | if (m == 0) |
3786 | return -1; | |
dc5c8746 | 3787 | else if (m > 1 && !parse_completion) |
14f9c5c9 | 3788 | { |
323e0a4a | 3789 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3790 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3791 | return 0; |
3792 | } | |
3793 | return 0; | |
3794 | } | |
3795 | ||
4c4b4cd2 PH |
3796 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3797 | in a listing of choices during disambiguation (see sort_choices, below). | |
3798 | The idea is that overloadings of a subprogram name from the | |
3799 | same package should sort in their source order. We settle for ordering | |
3800 | such symbols by their trailing number (__N or $N). */ | |
3801 | ||
14f9c5c9 | 3802 | static int |
0d5cff50 | 3803 | encoded_ordered_before (const char *N0, const char *N1) |
14f9c5c9 AS |
3804 | { |
3805 | if (N1 == NULL) | |
3806 | return 0; | |
3807 | else if (N0 == NULL) | |
3808 | return 1; | |
3809 | else | |
3810 | { | |
3811 | int k0, k1; | |
5b4ee69b | 3812 | |
d2e4a39e | 3813 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3814 | ; |
d2e4a39e | 3815 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3816 | ; |
d2e4a39e | 3817 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3818 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3819 | { | |
3820 | int n0, n1; | |
5b4ee69b | 3821 | |
4c4b4cd2 PH |
3822 | n0 = k0; |
3823 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3824 | n0 -= 1; | |
3825 | n1 = k1; | |
3826 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3827 | n1 -= 1; | |
3828 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3829 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3830 | } | |
14f9c5c9 AS |
3831 | return (strcmp (N0, N1) < 0); |
3832 | } | |
3833 | } | |
d2e4a39e | 3834 | |
4c4b4cd2 PH |
3835 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3836 | encoded names. */ | |
3837 | ||
d2e4a39e | 3838 | static void |
d12307c1 | 3839 | sort_choices (struct block_symbol syms[], int nsyms) |
14f9c5c9 | 3840 | { |
4c4b4cd2 | 3841 | int i; |
5b4ee69b | 3842 | |
d2e4a39e | 3843 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3844 | { |
d12307c1 | 3845 | struct block_symbol sym = syms[i]; |
14f9c5c9 AS |
3846 | int j; |
3847 | ||
d2e4a39e | 3848 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 | 3849 | { |
d12307c1 PMR |
3850 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol), |
3851 | SYMBOL_LINKAGE_NAME (sym.symbol))) | |
4c4b4cd2 PH |
3852 | break; |
3853 | syms[j + 1] = syms[j]; | |
3854 | } | |
d2e4a39e | 3855 | syms[j + 1] = sym; |
14f9c5c9 AS |
3856 | } |
3857 | } | |
3858 | ||
d72413e6 PMR |
3859 | /* Whether GDB should display formals and return types for functions in the |
3860 | overloads selection menu. */ | |
3861 | static int print_signatures = 1; | |
3862 | ||
3863 | /* Print the signature for SYM on STREAM according to the FLAGS options. For | |
3864 | all but functions, the signature is just the name of the symbol. For | |
3865 | functions, this is the name of the function, the list of types for formals | |
3866 | and the return type (if any). */ | |
3867 | ||
3868 | static void | |
3869 | ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym, | |
3870 | const struct type_print_options *flags) | |
3871 | { | |
3872 | struct type *type = SYMBOL_TYPE (sym); | |
3873 | ||
3874 | fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym)); | |
3875 | if (!print_signatures | |
3876 | || type == NULL | |
3877 | || TYPE_CODE (type) != TYPE_CODE_FUNC) | |
3878 | return; | |
3879 | ||
3880 | if (TYPE_NFIELDS (type) > 0) | |
3881 | { | |
3882 | int i; | |
3883 | ||
3884 | fprintf_filtered (stream, " ("); | |
3885 | for (i = 0; i < TYPE_NFIELDS (type); ++i) | |
3886 | { | |
3887 | if (i > 0) | |
3888 | fprintf_filtered (stream, "; "); | |
3889 | ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0, | |
3890 | flags); | |
3891 | } | |
3892 | fprintf_filtered (stream, ")"); | |
3893 | } | |
3894 | if (TYPE_TARGET_TYPE (type) != NULL | |
3895 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID) | |
3896 | { | |
3897 | fprintf_filtered (stream, " return "); | |
3898 | ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags); | |
3899 | } | |
3900 | } | |
3901 | ||
4c4b4cd2 PH |
3902 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3903 | by asking the user (if necessary), returning the number selected, | |
3904 | and setting the first elements of SYMS items. Error if no symbols | |
3905 | selected. */ | |
14f9c5c9 AS |
3906 | |
3907 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3908 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3909 | |
3910 | int | |
d12307c1 | 3911 | user_select_syms (struct block_symbol *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3912 | { |
3913 | int i; | |
8d749320 | 3914 | int *chosen = XALLOCAVEC (int , nsyms); |
14f9c5c9 AS |
3915 | int n_chosen; |
3916 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3917 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3918 | |
3919 | if (max_results < 1) | |
323e0a4a | 3920 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3921 | if (nsyms <= 1) |
3922 | return nsyms; | |
3923 | ||
717d2f5a JB |
3924 | if (select_mode == multiple_symbols_cancel) |
3925 | error (_("\ | |
3926 | canceled because the command is ambiguous\n\ | |
3927 | See set/show multiple-symbol.")); | |
3928 | ||
3929 | /* If select_mode is "all", then return all possible symbols. | |
3930 | Only do that if more than one symbol can be selected, of course. | |
3931 | Otherwise, display the menu as usual. */ | |
3932 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3933 | return nsyms; | |
3934 | ||
323e0a4a | 3935 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3936 | if (max_results > 1) |
323e0a4a | 3937 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3938 | |
4c4b4cd2 | 3939 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3940 | |
3941 | for (i = 0; i < nsyms; i += 1) | |
3942 | { | |
d12307c1 | 3943 | if (syms[i].symbol == NULL) |
4c4b4cd2 PH |
3944 | continue; |
3945 | ||
d12307c1 | 3946 | if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK) |
4c4b4cd2 | 3947 | { |
76a01679 | 3948 | struct symtab_and_line sal = |
d12307c1 | 3949 | find_function_start_sal (syms[i].symbol, 1); |
5b4ee69b | 3950 | |
d72413e6 PMR |
3951 | printf_unfiltered ("[%d] ", i + first_choice); |
3952 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, | |
3953 | &type_print_raw_options); | |
323e0a4a | 3954 | if (sal.symtab == NULL) |
d72413e6 | 3955 | printf_unfiltered (_(" at <no source file available>:%d\n"), |
323e0a4a AC |
3956 | sal.line); |
3957 | else | |
d72413e6 | 3958 | printf_unfiltered (_(" at %s:%d\n"), |
05cba821 JK |
3959 | symtab_to_filename_for_display (sal.symtab), |
3960 | sal.line); | |
4c4b4cd2 PH |
3961 | continue; |
3962 | } | |
d2e4a39e | 3963 | else |
4c4b4cd2 PH |
3964 | { |
3965 | int is_enumeral = | |
d12307c1 PMR |
3966 | (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST |
3967 | && SYMBOL_TYPE (syms[i].symbol) != NULL | |
3968 | && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM); | |
1994afbf DE |
3969 | struct symtab *symtab = NULL; |
3970 | ||
d12307c1 PMR |
3971 | if (SYMBOL_OBJFILE_OWNED (syms[i].symbol)) |
3972 | symtab = symbol_symtab (syms[i].symbol); | |
4c4b4cd2 | 3973 | |
d12307c1 | 3974 | if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL) |
d72413e6 PMR |
3975 | { |
3976 | printf_unfiltered ("[%d] ", i + first_choice); | |
3977 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, | |
3978 | &type_print_raw_options); | |
3979 | printf_unfiltered (_(" at %s:%d\n"), | |
3980 | symtab_to_filename_for_display (symtab), | |
3981 | SYMBOL_LINE (syms[i].symbol)); | |
3982 | } | |
76a01679 | 3983 | else if (is_enumeral |
d12307c1 | 3984 | && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL) |
4c4b4cd2 | 3985 | { |
a3f17187 | 3986 | printf_unfiltered (("[%d] "), i + first_choice); |
d12307c1 | 3987 | ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL, |
79d43c61 | 3988 | gdb_stdout, -1, 0, &type_print_raw_options); |
323e0a4a | 3989 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
d12307c1 | 3990 | SYMBOL_PRINT_NAME (syms[i].symbol)); |
4c4b4cd2 | 3991 | } |
d72413e6 PMR |
3992 | else |
3993 | { | |
3994 | printf_unfiltered ("[%d] ", i + first_choice); | |
3995 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, | |
3996 | &type_print_raw_options); | |
3997 | ||
3998 | if (symtab != NULL) | |
3999 | printf_unfiltered (is_enumeral | |
4000 | ? _(" in %s (enumeral)\n") | |
4001 | : _(" at %s:?\n"), | |
4002 | symtab_to_filename_for_display (symtab)); | |
4003 | else | |
4004 | printf_unfiltered (is_enumeral | |
4005 | ? _(" (enumeral)\n") | |
4006 | : _(" at ?\n")); | |
4007 | } | |
4c4b4cd2 | 4008 | } |
14f9c5c9 | 4009 | } |
d2e4a39e | 4010 | |
14f9c5c9 | 4011 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 4012 | "overload-choice"); |
14f9c5c9 AS |
4013 | |
4014 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 4015 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
4016 | |
4017 | return n_chosen; | |
4018 | } | |
4019 | ||
4020 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 4021 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
4022 | order in CHOICES[0 .. N-1], and return N. |
4023 | ||
4024 | The user types choices as a sequence of numbers on one line | |
4025 | separated by blanks, encoding them as follows: | |
4026 | ||
4c4b4cd2 | 4027 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
4028 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
4029 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
4030 | ||
4c4b4cd2 | 4031 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
4032 | |
4033 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 4034 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
4035 | |
4036 | int | |
d2e4a39e | 4037 | get_selections (int *choices, int n_choices, int max_results, |
a121b7c1 | 4038 | int is_all_choice, const char *annotation_suffix) |
14f9c5c9 | 4039 | { |
d2e4a39e | 4040 | char *args; |
a121b7c1 | 4041 | const char *prompt; |
14f9c5c9 AS |
4042 | int n_chosen; |
4043 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 4044 | |
14f9c5c9 AS |
4045 | prompt = getenv ("PS2"); |
4046 | if (prompt == NULL) | |
0bcd0149 | 4047 | prompt = "> "; |
14f9c5c9 | 4048 | |
0bcd0149 | 4049 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 4050 | |
14f9c5c9 | 4051 | if (args == NULL) |
323e0a4a | 4052 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
4053 | |
4054 | n_chosen = 0; | |
76a01679 | 4055 | |
4c4b4cd2 PH |
4056 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
4057 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
4058 | while (1) |
4059 | { | |
d2e4a39e | 4060 | char *args2; |
14f9c5c9 AS |
4061 | int choice, j; |
4062 | ||
0fcd72ba | 4063 | args = skip_spaces (args); |
14f9c5c9 | 4064 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 4065 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 4066 | else if (*args == '\0') |
4c4b4cd2 | 4067 | break; |
14f9c5c9 AS |
4068 | |
4069 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 4070 | if (args == args2 || choice < 0 |
4c4b4cd2 | 4071 | || choice > n_choices + first_choice - 1) |
323e0a4a | 4072 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
4073 | args = args2; |
4074 | ||
d2e4a39e | 4075 | if (choice == 0) |
323e0a4a | 4076 | error (_("cancelled")); |
14f9c5c9 AS |
4077 | |
4078 | if (choice < first_choice) | |
4c4b4cd2 PH |
4079 | { |
4080 | n_chosen = n_choices; | |
4081 | for (j = 0; j < n_choices; j += 1) | |
4082 | choices[j] = j; | |
4083 | break; | |
4084 | } | |
14f9c5c9 AS |
4085 | choice -= first_choice; |
4086 | ||
d2e4a39e | 4087 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
4088 | { |
4089 | } | |
14f9c5c9 AS |
4090 | |
4091 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
4092 | { |
4093 | int k; | |
5b4ee69b | 4094 | |
4c4b4cd2 PH |
4095 | for (k = n_chosen - 1; k > j; k -= 1) |
4096 | choices[k + 1] = choices[k]; | |
4097 | choices[j + 1] = choice; | |
4098 | n_chosen += 1; | |
4099 | } | |
14f9c5c9 AS |
4100 | } |
4101 | ||
4102 | if (n_chosen > max_results) | |
323e0a4a | 4103 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 4104 | |
14f9c5c9 AS |
4105 | return n_chosen; |
4106 | } | |
4107 | ||
4c4b4cd2 PH |
4108 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
4109 | on the function identified by SYM and BLOCK, and taking NARGS | |
4110 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
4111 | |
4112 | static void | |
d2e4a39e | 4113 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 | 4114 | int oplen, struct symbol *sym, |
270140bd | 4115 | const struct block *block) |
14f9c5c9 AS |
4116 | { |
4117 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 4118 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 4119 | struct expression *newexp = (struct expression *) |
8c1a34e7 | 4120 | xzalloc (sizeof (struct expression) |
4c4b4cd2 | 4121 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 4122 | struct expression *exp = *expp; |
14f9c5c9 AS |
4123 | |
4124 | newexp->nelts = exp->nelts + 7 - oplen; | |
4125 | newexp->language_defn = exp->language_defn; | |
3489610d | 4126 | newexp->gdbarch = exp->gdbarch; |
14f9c5c9 | 4127 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); |
d2e4a39e | 4128 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 4129 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
4130 | |
4131 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
4132 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
4133 | ||
4134 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
4135 | newexp->elts[pc + 4].block = block; | |
4136 | newexp->elts[pc + 5].symbol = sym; | |
4137 | ||
4138 | *expp = newexp; | |
aacb1f0a | 4139 | xfree (exp); |
d2e4a39e | 4140 | } |
14f9c5c9 AS |
4141 | |
4142 | /* Type-class predicates */ | |
4143 | ||
4c4b4cd2 PH |
4144 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
4145 | or FLOAT). */ | |
14f9c5c9 AS |
4146 | |
4147 | static int | |
d2e4a39e | 4148 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
4149 | { |
4150 | if (type == NULL) | |
4151 | return 0; | |
d2e4a39e AS |
4152 | else |
4153 | { | |
4154 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4155 | { |
4156 | case TYPE_CODE_INT: | |
4157 | case TYPE_CODE_FLT: | |
4158 | return 1; | |
4159 | case TYPE_CODE_RANGE: | |
4160 | return (type == TYPE_TARGET_TYPE (type) | |
4161 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
4162 | default: | |
4163 | return 0; | |
4164 | } | |
d2e4a39e | 4165 | } |
14f9c5c9 AS |
4166 | } |
4167 | ||
4c4b4cd2 | 4168 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
4169 | |
4170 | static int | |
d2e4a39e | 4171 | integer_type_p (struct type *type) |
14f9c5c9 AS |
4172 | { |
4173 | if (type == NULL) | |
4174 | return 0; | |
d2e4a39e AS |
4175 | else |
4176 | { | |
4177 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4178 | { |
4179 | case TYPE_CODE_INT: | |
4180 | return 1; | |
4181 | case TYPE_CODE_RANGE: | |
4182 | return (type == TYPE_TARGET_TYPE (type) | |
4183 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
4184 | default: | |
4185 | return 0; | |
4186 | } | |
d2e4a39e | 4187 | } |
14f9c5c9 AS |
4188 | } |
4189 | ||
4c4b4cd2 | 4190 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
4191 | |
4192 | static int | |
d2e4a39e | 4193 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
4194 | { |
4195 | if (type == NULL) | |
4196 | return 0; | |
d2e4a39e AS |
4197 | else |
4198 | { | |
4199 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4200 | { |
4201 | case TYPE_CODE_INT: | |
4202 | case TYPE_CODE_RANGE: | |
4203 | case TYPE_CODE_ENUM: | |
4204 | case TYPE_CODE_FLT: | |
4205 | return 1; | |
4206 | default: | |
4207 | return 0; | |
4208 | } | |
d2e4a39e | 4209 | } |
14f9c5c9 AS |
4210 | } |
4211 | ||
4c4b4cd2 | 4212 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
4213 | |
4214 | static int | |
d2e4a39e | 4215 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
4216 | { |
4217 | if (type == NULL) | |
4218 | return 0; | |
d2e4a39e AS |
4219 | else |
4220 | { | |
4221 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4222 | { |
4223 | case TYPE_CODE_INT: | |
4224 | case TYPE_CODE_RANGE: | |
4225 | case TYPE_CODE_ENUM: | |
872f0337 | 4226 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
4227 | return 1; |
4228 | default: | |
4229 | return 0; | |
4230 | } | |
d2e4a39e | 4231 | } |
14f9c5c9 AS |
4232 | } |
4233 | ||
4c4b4cd2 PH |
4234 | /* Returns non-zero if OP with operands in the vector ARGS could be |
4235 | a user-defined function. Errs on the side of pre-defined operators | |
4236 | (i.e., result 0). */ | |
14f9c5c9 AS |
4237 | |
4238 | static int | |
d2e4a39e | 4239 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 4240 | { |
76a01679 | 4241 | struct type *type0 = |
df407dfe | 4242 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 4243 | struct type *type1 = |
df407dfe | 4244 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 4245 | |
4c4b4cd2 PH |
4246 | if (type0 == NULL) |
4247 | return 0; | |
4248 | ||
14f9c5c9 AS |
4249 | switch (op) |
4250 | { | |
4251 | default: | |
4252 | return 0; | |
4253 | ||
4254 | case BINOP_ADD: | |
4255 | case BINOP_SUB: | |
4256 | case BINOP_MUL: | |
4257 | case BINOP_DIV: | |
d2e4a39e | 4258 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
4259 | |
4260 | case BINOP_REM: | |
4261 | case BINOP_MOD: | |
4262 | case BINOP_BITWISE_AND: | |
4263 | case BINOP_BITWISE_IOR: | |
4264 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 4265 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
4266 | |
4267 | case BINOP_EQUAL: | |
4268 | case BINOP_NOTEQUAL: | |
4269 | case BINOP_LESS: | |
4270 | case BINOP_GTR: | |
4271 | case BINOP_LEQ: | |
4272 | case BINOP_GEQ: | |
d2e4a39e | 4273 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
4274 | |
4275 | case BINOP_CONCAT: | |
ee90b9ab | 4276 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
4277 | |
4278 | case BINOP_EXP: | |
d2e4a39e | 4279 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
4280 | |
4281 | case UNOP_NEG: | |
4282 | case UNOP_PLUS: | |
4283 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
4284 | case UNOP_ABS: |
4285 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
4286 | |
4287 | } | |
4288 | } | |
4289 | \f | |
4c4b4cd2 | 4290 | /* Renaming */ |
14f9c5c9 | 4291 | |
aeb5907d JB |
4292 | /* NOTES: |
4293 | ||
4294 | 1. In the following, we assume that a renaming type's name may | |
4295 | have an ___XD suffix. It would be nice if this went away at some | |
4296 | point. | |
4297 | 2. We handle both the (old) purely type-based representation of | |
4298 | renamings and the (new) variable-based encoding. At some point, | |
4299 | it is devoutly to be hoped that the former goes away | |
4300 | (FIXME: hilfinger-2007-07-09). | |
4301 | 3. Subprogram renamings are not implemented, although the XRS | |
4302 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
4303 | ||
4304 | /* If SYM encodes a renaming, | |
4305 | ||
4306 | <renaming> renames <renamed entity>, | |
4307 | ||
4308 | sets *LEN to the length of the renamed entity's name, | |
4309 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
4310 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 4311 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
4312 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
4313 | are undefined). Otherwise, returns a value indicating the category | |
4314 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
4315 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
4316 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
4317 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
4318 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
4319 | may be NULL, in which case they are not assigned. | |
4320 | ||
4321 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
4322 | ||
4323 | enum ada_renaming_category | |
4324 | ada_parse_renaming (struct symbol *sym, | |
4325 | const char **renamed_entity, int *len, | |
4326 | const char **renaming_expr) | |
4327 | { | |
4328 | enum ada_renaming_category kind; | |
4329 | const char *info; | |
4330 | const char *suffix; | |
4331 | ||
4332 | if (sym == NULL) | |
4333 | return ADA_NOT_RENAMING; | |
4334 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 4335 | { |
aeb5907d JB |
4336 | default: |
4337 | return ADA_NOT_RENAMING; | |
4338 | case LOC_TYPEDEF: | |
4339 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
4340 | renamed_entity, len, renaming_expr); | |
4341 | case LOC_LOCAL: | |
4342 | case LOC_STATIC: | |
4343 | case LOC_COMPUTED: | |
4344 | case LOC_OPTIMIZED_OUT: | |
4345 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
4346 | if (info == NULL) | |
4347 | return ADA_NOT_RENAMING; | |
4348 | switch (info[5]) | |
4349 | { | |
4350 | case '_': | |
4351 | kind = ADA_OBJECT_RENAMING; | |
4352 | info += 6; | |
4353 | break; | |
4354 | case 'E': | |
4355 | kind = ADA_EXCEPTION_RENAMING; | |
4356 | info += 7; | |
4357 | break; | |
4358 | case 'P': | |
4359 | kind = ADA_PACKAGE_RENAMING; | |
4360 | info += 7; | |
4361 | break; | |
4362 | case 'S': | |
4363 | kind = ADA_SUBPROGRAM_RENAMING; | |
4364 | info += 7; | |
4365 | break; | |
4366 | default: | |
4367 | return ADA_NOT_RENAMING; | |
4368 | } | |
14f9c5c9 | 4369 | } |
4c4b4cd2 | 4370 | |
aeb5907d JB |
4371 | if (renamed_entity != NULL) |
4372 | *renamed_entity = info; | |
4373 | suffix = strstr (info, "___XE"); | |
4374 | if (suffix == NULL || suffix == info) | |
4375 | return ADA_NOT_RENAMING; | |
4376 | if (len != NULL) | |
4377 | *len = strlen (info) - strlen (suffix); | |
4378 | suffix += 5; | |
4379 | if (renaming_expr != NULL) | |
4380 | *renaming_expr = suffix; | |
4381 | return kind; | |
4382 | } | |
4383 | ||
4384 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
4385 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
4386 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
4387 | ADA_NOT_RENAMING otherwise. */ | |
4388 | static enum ada_renaming_category | |
4389 | parse_old_style_renaming (struct type *type, | |
4390 | const char **renamed_entity, int *len, | |
4391 | const char **renaming_expr) | |
4392 | { | |
4393 | enum ada_renaming_category kind; | |
4394 | const char *name; | |
4395 | const char *info; | |
4396 | const char *suffix; | |
14f9c5c9 | 4397 | |
aeb5907d JB |
4398 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
4399 | || TYPE_NFIELDS (type) != 1) | |
4400 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 4401 | |
aeb5907d JB |
4402 | name = type_name_no_tag (type); |
4403 | if (name == NULL) | |
4404 | return ADA_NOT_RENAMING; | |
4405 | ||
4406 | name = strstr (name, "___XR"); | |
4407 | if (name == NULL) | |
4408 | return ADA_NOT_RENAMING; | |
4409 | switch (name[5]) | |
4410 | { | |
4411 | case '\0': | |
4412 | case '_': | |
4413 | kind = ADA_OBJECT_RENAMING; | |
4414 | break; | |
4415 | case 'E': | |
4416 | kind = ADA_EXCEPTION_RENAMING; | |
4417 | break; | |
4418 | case 'P': | |
4419 | kind = ADA_PACKAGE_RENAMING; | |
4420 | break; | |
4421 | case 'S': | |
4422 | kind = ADA_SUBPROGRAM_RENAMING; | |
4423 | break; | |
4424 | default: | |
4425 | return ADA_NOT_RENAMING; | |
4426 | } | |
14f9c5c9 | 4427 | |
aeb5907d JB |
4428 | info = TYPE_FIELD_NAME (type, 0); |
4429 | if (info == NULL) | |
4430 | return ADA_NOT_RENAMING; | |
4431 | if (renamed_entity != NULL) | |
4432 | *renamed_entity = info; | |
4433 | suffix = strstr (info, "___XE"); | |
4434 | if (renaming_expr != NULL) | |
4435 | *renaming_expr = suffix + 5; | |
4436 | if (suffix == NULL || suffix == info) | |
4437 | return ADA_NOT_RENAMING; | |
4438 | if (len != NULL) | |
4439 | *len = suffix - info; | |
4440 | return kind; | |
a5ee536b JB |
4441 | } |
4442 | ||
4443 | /* Compute the value of the given RENAMING_SYM, which is expected to | |
4444 | be a symbol encoding a renaming expression. BLOCK is the block | |
4445 | used to evaluate the renaming. */ | |
52ce6436 | 4446 | |
a5ee536b JB |
4447 | static struct value * |
4448 | ada_read_renaming_var_value (struct symbol *renaming_sym, | |
3977b71f | 4449 | const struct block *block) |
a5ee536b | 4450 | { |
bbc13ae3 | 4451 | const char *sym_name; |
a5ee536b | 4452 | |
bbc13ae3 | 4453 | sym_name = SYMBOL_LINKAGE_NAME (renaming_sym); |
4d01a485 PA |
4454 | expression_up expr = parse_exp_1 (&sym_name, 0, block, 0); |
4455 | return evaluate_expression (expr.get ()); | |
a5ee536b | 4456 | } |
14f9c5c9 | 4457 | \f |
d2e4a39e | 4458 | |
4c4b4cd2 | 4459 | /* Evaluation: Function Calls */ |
14f9c5c9 | 4460 | |
4c4b4cd2 | 4461 | /* Return an lvalue containing the value VAL. This is the identity on |
40bc484c JB |
4462 | lvalues, and otherwise has the side-effect of allocating memory |
4463 | in the inferior where a copy of the value contents is copied. */ | |
14f9c5c9 | 4464 | |
d2e4a39e | 4465 | static struct value * |
40bc484c | 4466 | ensure_lval (struct value *val) |
14f9c5c9 | 4467 | { |
40bc484c JB |
4468 | if (VALUE_LVAL (val) == not_lval |
4469 | || VALUE_LVAL (val) == lval_internalvar) | |
c3e5cd34 | 4470 | { |
df407dfe | 4471 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
40bc484c JB |
4472 | const CORE_ADDR addr = |
4473 | value_as_long (value_allocate_space_in_inferior (len)); | |
c3e5cd34 | 4474 | |
a84a8a0d | 4475 | VALUE_LVAL (val) = lval_memory; |
1a088441 | 4476 | set_value_address (val, addr); |
40bc484c | 4477 | write_memory (addr, value_contents (val), len); |
c3e5cd34 | 4478 | } |
14f9c5c9 AS |
4479 | |
4480 | return val; | |
4481 | } | |
4482 | ||
4483 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4484 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4485 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4486 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4487 | |
a93c0eb6 | 4488 | struct value * |
40bc484c | 4489 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4490 | { |
df407dfe | 4491 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4492 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
4493 | struct type *formal_target = |
4494 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 4495 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
4496 | struct type *actual_target = |
4497 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 4498 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4499 | |
4c4b4cd2 | 4500 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 4501 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 4502 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
4503 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
4504 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 4505 | { |
a84a8a0d | 4506 | struct value *result; |
5b4ee69b | 4507 | |
14f9c5c9 | 4508 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 4509 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4510 | result = desc_data (actual); |
14f9c5c9 | 4511 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
4512 | { |
4513 | if (VALUE_LVAL (actual) != lval_memory) | |
4514 | { | |
4515 | struct value *val; | |
5b4ee69b | 4516 | |
df407dfe | 4517 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 4518 | val = allocate_value (actual_type); |
990a07ab | 4519 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 4520 | (char *) value_contents (actual), |
4c4b4cd2 | 4521 | TYPE_LENGTH (actual_type)); |
40bc484c | 4522 | actual = ensure_lval (val); |
4c4b4cd2 | 4523 | } |
a84a8a0d | 4524 | result = value_addr (actual); |
4c4b4cd2 | 4525 | } |
a84a8a0d JB |
4526 | else |
4527 | return actual; | |
b1af9e97 | 4528 | return value_cast_pointers (formal_type, result, 0); |
14f9c5c9 AS |
4529 | } |
4530 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
4531 | return ada_value_ind (actual); | |
8344af1e JB |
4532 | else if (ada_is_aligner_type (formal_type)) |
4533 | { | |
4534 | /* We need to turn this parameter into an aligner type | |
4535 | as well. */ | |
4536 | struct value *aligner = allocate_value (formal_type); | |
4537 | struct value *component = ada_value_struct_elt (aligner, "F", 0); | |
4538 | ||
4539 | value_assign_to_component (aligner, component, actual); | |
4540 | return aligner; | |
4541 | } | |
14f9c5c9 AS |
4542 | |
4543 | return actual; | |
4544 | } | |
4545 | ||
438c98a1 JB |
4546 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4547 | type TYPE. This is usually an inefficient no-op except on some targets | |
4548 | (such as AVR) where the representation of a pointer and an address | |
4549 | differs. */ | |
4550 | ||
4551 | static CORE_ADDR | |
4552 | value_pointer (struct value *value, struct type *type) | |
4553 | { | |
4554 | struct gdbarch *gdbarch = get_type_arch (type); | |
4555 | unsigned len = TYPE_LENGTH (type); | |
224c3ddb | 4556 | gdb_byte *buf = (gdb_byte *) alloca (len); |
438c98a1 JB |
4557 | CORE_ADDR addr; |
4558 | ||
4559 | addr = value_address (value); | |
4560 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
4561 | addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); | |
4562 | return addr; | |
4563 | } | |
4564 | ||
14f9c5c9 | 4565 | |
4c4b4cd2 PH |
4566 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4567 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4568 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4569 | to-descriptor type rather than a descriptor type), a struct value * |
4570 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4571 | |
d2e4a39e | 4572 | static struct value * |
40bc484c | 4573 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4574 | { |
d2e4a39e AS |
4575 | struct type *bounds_type = desc_bounds_type (type); |
4576 | struct type *desc_type = desc_base_type (type); | |
4577 | struct value *descriptor = allocate_value (desc_type); | |
4578 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4579 | int i; |
d2e4a39e | 4580 | |
0963b4bd MS |
4581 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4582 | i > 0; i -= 1) | |
14f9c5c9 | 4583 | { |
19f220c3 JK |
4584 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4585 | ada_array_bound (arr, i, 0), | |
4586 | desc_bound_bitpos (bounds_type, i, 0), | |
4587 | desc_bound_bitsize (bounds_type, i, 0)); | |
4588 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4589 | ada_array_bound (arr, i, 1), | |
4590 | desc_bound_bitpos (bounds_type, i, 1), | |
4591 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4592 | } |
d2e4a39e | 4593 | |
40bc484c | 4594 | bounds = ensure_lval (bounds); |
d2e4a39e | 4595 | |
19f220c3 JK |
4596 | modify_field (value_type (descriptor), |
4597 | value_contents_writeable (descriptor), | |
4598 | value_pointer (ensure_lval (arr), | |
4599 | TYPE_FIELD_TYPE (desc_type, 0)), | |
4600 | fat_pntr_data_bitpos (desc_type), | |
4601 | fat_pntr_data_bitsize (desc_type)); | |
4602 | ||
4603 | modify_field (value_type (descriptor), | |
4604 | value_contents_writeable (descriptor), | |
4605 | value_pointer (bounds, | |
4606 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4607 | fat_pntr_bounds_bitpos (desc_type), | |
4608 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4609 | |
40bc484c | 4610 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4611 | |
4612 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4613 | return value_addr (descriptor); | |
4614 | else | |
4615 | return descriptor; | |
4616 | } | |
14f9c5c9 | 4617 | \f |
3d9434b5 JB |
4618 | /* Symbol Cache Module */ |
4619 | ||
3d9434b5 | 4620 | /* Performance measurements made as of 2010-01-15 indicate that |
ee01b665 | 4621 | this cache does bring some noticeable improvements. Depending |
3d9434b5 JB |
4622 | on the type of entity being printed, the cache can make it as much |
4623 | as an order of magnitude faster than without it. | |
4624 | ||
4625 | The descriptive type DWARF extension has significantly reduced | |
4626 | the need for this cache, at least when DWARF is being used. However, | |
4627 | even in this case, some expensive name-based symbol searches are still | |
4628 | sometimes necessary - to find an XVZ variable, mostly. */ | |
4629 | ||
ee01b665 | 4630 | /* Initialize the contents of SYM_CACHE. */ |
3d9434b5 | 4631 | |
ee01b665 JB |
4632 | static void |
4633 | ada_init_symbol_cache (struct ada_symbol_cache *sym_cache) | |
4634 | { | |
4635 | obstack_init (&sym_cache->cache_space); | |
4636 | memset (sym_cache->root, '\000', sizeof (sym_cache->root)); | |
4637 | } | |
3d9434b5 | 4638 | |
ee01b665 JB |
4639 | /* Free the memory used by SYM_CACHE. */ |
4640 | ||
4641 | static void | |
4642 | ada_free_symbol_cache (struct ada_symbol_cache *sym_cache) | |
3d9434b5 | 4643 | { |
ee01b665 JB |
4644 | obstack_free (&sym_cache->cache_space, NULL); |
4645 | xfree (sym_cache); | |
4646 | } | |
3d9434b5 | 4647 | |
ee01b665 JB |
4648 | /* Return the symbol cache associated to the given program space PSPACE. |
4649 | If not allocated for this PSPACE yet, allocate and initialize one. */ | |
3d9434b5 | 4650 | |
ee01b665 JB |
4651 | static struct ada_symbol_cache * |
4652 | ada_get_symbol_cache (struct program_space *pspace) | |
4653 | { | |
4654 | struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace); | |
ee01b665 | 4655 | |
66c168ae | 4656 | if (pspace_data->sym_cache == NULL) |
ee01b665 | 4657 | { |
66c168ae JB |
4658 | pspace_data->sym_cache = XCNEW (struct ada_symbol_cache); |
4659 | ada_init_symbol_cache (pspace_data->sym_cache); | |
ee01b665 JB |
4660 | } |
4661 | ||
66c168ae | 4662 | return pspace_data->sym_cache; |
ee01b665 | 4663 | } |
3d9434b5 JB |
4664 | |
4665 | /* Clear all entries from the symbol cache. */ | |
4666 | ||
4667 | static void | |
4668 | ada_clear_symbol_cache (void) | |
4669 | { | |
ee01b665 JB |
4670 | struct ada_symbol_cache *sym_cache |
4671 | = ada_get_symbol_cache (current_program_space); | |
4672 | ||
4673 | obstack_free (&sym_cache->cache_space, NULL); | |
4674 | ada_init_symbol_cache (sym_cache); | |
3d9434b5 JB |
4675 | } |
4676 | ||
fe978cb0 | 4677 | /* Search our cache for an entry matching NAME and DOMAIN. |
3d9434b5 JB |
4678 | Return it if found, or NULL otherwise. */ |
4679 | ||
4680 | static struct cache_entry ** | |
fe978cb0 | 4681 | find_entry (const char *name, domain_enum domain) |
3d9434b5 | 4682 | { |
ee01b665 JB |
4683 | struct ada_symbol_cache *sym_cache |
4684 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4685 | int h = msymbol_hash (name) % HASH_SIZE; |
4686 | struct cache_entry **e; | |
4687 | ||
ee01b665 | 4688 | for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next) |
3d9434b5 | 4689 | { |
fe978cb0 | 4690 | if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0) |
3d9434b5 JB |
4691 | return e; |
4692 | } | |
4693 | return NULL; | |
4694 | } | |
4695 | ||
fe978cb0 | 4696 | /* Search the symbol cache for an entry matching NAME and DOMAIN. |
3d9434b5 JB |
4697 | Return 1 if found, 0 otherwise. |
4698 | ||
4699 | If an entry was found and SYM is not NULL, set *SYM to the entry's | |
4700 | SYM. Same principle for BLOCK if not NULL. */ | |
96d887e8 | 4701 | |
96d887e8 | 4702 | static int |
fe978cb0 | 4703 | lookup_cached_symbol (const char *name, domain_enum domain, |
f0c5f9b2 | 4704 | struct symbol **sym, const struct block **block) |
96d887e8 | 4705 | { |
fe978cb0 | 4706 | struct cache_entry **e = find_entry (name, domain); |
3d9434b5 JB |
4707 | |
4708 | if (e == NULL) | |
4709 | return 0; | |
4710 | if (sym != NULL) | |
4711 | *sym = (*e)->sym; | |
4712 | if (block != NULL) | |
4713 | *block = (*e)->block; | |
4714 | return 1; | |
96d887e8 PH |
4715 | } |
4716 | ||
3d9434b5 | 4717 | /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME |
fe978cb0 | 4718 | in domain DOMAIN, save this result in our symbol cache. */ |
3d9434b5 | 4719 | |
96d887e8 | 4720 | static void |
fe978cb0 | 4721 | cache_symbol (const char *name, domain_enum domain, struct symbol *sym, |
270140bd | 4722 | const struct block *block) |
96d887e8 | 4723 | { |
ee01b665 JB |
4724 | struct ada_symbol_cache *sym_cache |
4725 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4726 | int h; |
4727 | char *copy; | |
4728 | struct cache_entry *e; | |
4729 | ||
1994afbf DE |
4730 | /* Symbols for builtin types don't have a block. |
4731 | For now don't cache such symbols. */ | |
4732 | if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym)) | |
4733 | return; | |
4734 | ||
3d9434b5 JB |
4735 | /* If the symbol is a local symbol, then do not cache it, as a search |
4736 | for that symbol depends on the context. To determine whether | |
4737 | the symbol is local or not, we check the block where we found it | |
4738 | against the global and static blocks of its associated symtab. */ | |
4739 | if (sym | |
08be3fe3 | 4740 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)), |
439247b6 | 4741 | GLOBAL_BLOCK) != block |
08be3fe3 | 4742 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)), |
439247b6 | 4743 | STATIC_BLOCK) != block) |
3d9434b5 JB |
4744 | return; |
4745 | ||
4746 | h = msymbol_hash (name) % HASH_SIZE; | |
ee01b665 JB |
4747 | e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space, |
4748 | sizeof (*e)); | |
4749 | e->next = sym_cache->root[h]; | |
4750 | sym_cache->root[h] = e; | |
224c3ddb SM |
4751 | e->name = copy |
4752 | = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1); | |
3d9434b5 JB |
4753 | strcpy (copy, name); |
4754 | e->sym = sym; | |
fe978cb0 | 4755 | e->domain = domain; |
3d9434b5 | 4756 | e->block = block; |
96d887e8 | 4757 | } |
4c4b4cd2 PH |
4758 | \f |
4759 | /* Symbol Lookup */ | |
4760 | ||
c0431670 JB |
4761 | /* Return nonzero if wild matching should be used when searching for |
4762 | all symbols matching LOOKUP_NAME. | |
4763 | ||
4764 | LOOKUP_NAME is expected to be a symbol name after transformation | |
4765 | for Ada lookups (see ada_name_for_lookup). */ | |
4766 | ||
4767 | static int | |
4768 | should_use_wild_match (const char *lookup_name) | |
4769 | { | |
4770 | return (strstr (lookup_name, "__") == NULL); | |
4771 | } | |
4772 | ||
4c4b4cd2 PH |
4773 | /* Return the result of a standard (literal, C-like) lookup of NAME in |
4774 | given DOMAIN, visible from lexical block BLOCK. */ | |
4775 | ||
4776 | static struct symbol * | |
4777 | standard_lookup (const char *name, const struct block *block, | |
4778 | domain_enum domain) | |
4779 | { | |
acbd605d | 4780 | /* Initialize it just to avoid a GCC false warning. */ |
d12307c1 | 4781 | struct block_symbol sym = {NULL, NULL}; |
4c4b4cd2 | 4782 | |
d12307c1 PMR |
4783 | if (lookup_cached_symbol (name, domain, &sym.symbol, NULL)) |
4784 | return sym.symbol; | |
2570f2b7 | 4785 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
d12307c1 PMR |
4786 | cache_symbol (name, domain, sym.symbol, sym.block); |
4787 | return sym.symbol; | |
4c4b4cd2 PH |
4788 | } |
4789 | ||
4790 | ||
4791 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4792 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4793 | since they contend in overloading in the same way. */ | |
4794 | static int | |
d12307c1 | 4795 | is_nonfunction (struct block_symbol syms[], int n) |
4c4b4cd2 PH |
4796 | { |
4797 | int i; | |
4798 | ||
4799 | for (i = 0; i < n; i += 1) | |
d12307c1 PMR |
4800 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC |
4801 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM | |
4802 | || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST)) | |
14f9c5c9 AS |
4803 | return 1; |
4804 | ||
4805 | return 0; | |
4806 | } | |
4807 | ||
4808 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4809 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4810 | |
4811 | static int | |
d2e4a39e | 4812 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4813 | { |
d2e4a39e | 4814 | if (type0 == type1) |
14f9c5c9 | 4815 | return 1; |
d2e4a39e | 4816 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4817 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4818 | return 0; | |
d2e4a39e | 4819 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4820 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4821 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4822 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4823 | return 1; |
d2e4a39e | 4824 | |
14f9c5c9 AS |
4825 | return 0; |
4826 | } | |
4827 | ||
4828 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4829 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4830 | |
4831 | static int | |
d2e4a39e | 4832 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4833 | { |
4834 | if (sym0 == sym1) | |
4835 | return 1; | |
176620f1 | 4836 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4837 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4838 | return 0; | |
4839 | ||
d2e4a39e | 4840 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4841 | { |
4842 | case LOC_UNDEF: | |
4843 | return 1; | |
4844 | case LOC_TYPEDEF: | |
4845 | { | |
4c4b4cd2 PH |
4846 | struct type *type0 = SYMBOL_TYPE (sym0); |
4847 | struct type *type1 = SYMBOL_TYPE (sym1); | |
0d5cff50 DE |
4848 | const char *name0 = SYMBOL_LINKAGE_NAME (sym0); |
4849 | const char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4c4b4cd2 | 4850 | int len0 = strlen (name0); |
5b4ee69b | 4851 | |
4c4b4cd2 PH |
4852 | return |
4853 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4854 | && (equiv_types (type0, type1) | |
4855 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
61012eef | 4856 | && startswith (name1 + len0, "___XV"))); |
14f9c5c9 AS |
4857 | } |
4858 | case LOC_CONST: | |
4859 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4860 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4861 | default: |
4862 | return 0; | |
14f9c5c9 AS |
4863 | } |
4864 | } | |
4865 | ||
d12307c1 | 4866 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol |
4c4b4cd2 | 4867 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ |
14f9c5c9 AS |
4868 | |
4869 | static void | |
76a01679 JB |
4870 | add_defn_to_vec (struct obstack *obstackp, |
4871 | struct symbol *sym, | |
f0c5f9b2 | 4872 | const struct block *block) |
14f9c5c9 AS |
4873 | { |
4874 | int i; | |
d12307c1 | 4875 | struct block_symbol *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4876 | |
529cad9c PH |
4877 | /* Do not try to complete stub types, as the debugger is probably |
4878 | already scanning all symbols matching a certain name at the | |
4879 | time when this function is called. Trying to replace the stub | |
4880 | type by its associated full type will cause us to restart a scan | |
4881 | which may lead to an infinite recursion. Instead, the client | |
4882 | collecting the matching symbols will end up collecting several | |
4883 | matches, with at least one of them complete. It can then filter | |
4884 | out the stub ones if needed. */ | |
4885 | ||
4c4b4cd2 PH |
4886 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4887 | { | |
d12307c1 | 4888 | if (lesseq_defined_than (sym, prevDefns[i].symbol)) |
4c4b4cd2 | 4889 | return; |
d12307c1 | 4890 | else if (lesseq_defined_than (prevDefns[i].symbol, sym)) |
4c4b4cd2 | 4891 | { |
d12307c1 | 4892 | prevDefns[i].symbol = sym; |
4c4b4cd2 | 4893 | prevDefns[i].block = block; |
4c4b4cd2 | 4894 | return; |
76a01679 | 4895 | } |
4c4b4cd2 PH |
4896 | } |
4897 | ||
4898 | { | |
d12307c1 | 4899 | struct block_symbol info; |
4c4b4cd2 | 4900 | |
d12307c1 | 4901 | info.symbol = sym; |
4c4b4cd2 | 4902 | info.block = block; |
d12307c1 | 4903 | obstack_grow (obstackp, &info, sizeof (struct block_symbol)); |
4c4b4cd2 PH |
4904 | } |
4905 | } | |
4906 | ||
d12307c1 PMR |
4907 | /* Number of block_symbol structures currently collected in current vector in |
4908 | OBSTACKP. */ | |
4c4b4cd2 | 4909 | |
76a01679 JB |
4910 | static int |
4911 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 | 4912 | { |
d12307c1 | 4913 | return obstack_object_size (obstackp) / sizeof (struct block_symbol); |
4c4b4cd2 PH |
4914 | } |
4915 | ||
d12307c1 PMR |
4916 | /* Vector of block_symbol structures currently collected in current vector in |
4917 | OBSTACKP. If FINISH, close off the vector and return its final address. */ | |
4c4b4cd2 | 4918 | |
d12307c1 | 4919 | static struct block_symbol * |
4c4b4cd2 PH |
4920 | defns_collected (struct obstack *obstackp, int finish) |
4921 | { | |
4922 | if (finish) | |
224c3ddb | 4923 | return (struct block_symbol *) obstack_finish (obstackp); |
4c4b4cd2 | 4924 | else |
d12307c1 | 4925 | return (struct block_symbol *) obstack_base (obstackp); |
4c4b4cd2 PH |
4926 | } |
4927 | ||
7c7b6655 TT |
4928 | /* Return a bound minimal symbol matching NAME according to Ada |
4929 | decoding rules. Returns an invalid symbol if there is no such | |
4930 | minimal symbol. Names prefixed with "standard__" are handled | |
4931 | specially: "standard__" is first stripped off, and only static and | |
4932 | global symbols are searched. */ | |
4c4b4cd2 | 4933 | |
7c7b6655 | 4934 | struct bound_minimal_symbol |
96d887e8 | 4935 | ada_lookup_simple_minsym (const char *name) |
4c4b4cd2 | 4936 | { |
7c7b6655 | 4937 | struct bound_minimal_symbol result; |
4c4b4cd2 | 4938 | struct objfile *objfile; |
96d887e8 | 4939 | struct minimal_symbol *msymbol; |
dc4024cd | 4940 | const int wild_match_p = should_use_wild_match (name); |
4c4b4cd2 | 4941 | |
7c7b6655 TT |
4942 | memset (&result, 0, sizeof (result)); |
4943 | ||
c0431670 JB |
4944 | /* Special case: If the user specifies a symbol name inside package |
4945 | Standard, do a non-wild matching of the symbol name without | |
4946 | the "standard__" prefix. This was primarily introduced in order | |
4947 | to allow the user to specifically access the standard exceptions | |
4948 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4949 | is ambiguous (due to the user defining its own Constraint_Error | |
4950 | entity inside its program). */ | |
61012eef | 4951 | if (startswith (name, "standard__")) |
c0431670 | 4952 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4953 | |
96d887e8 PH |
4954 | ALL_MSYMBOLS (objfile, msymbol) |
4955 | { | |
efd66ac6 | 4956 | if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p) |
96d887e8 | 4957 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
7c7b6655 TT |
4958 | { |
4959 | result.minsym = msymbol; | |
4960 | result.objfile = objfile; | |
4961 | break; | |
4962 | } | |
96d887e8 | 4963 | } |
4c4b4cd2 | 4964 | |
7c7b6655 | 4965 | return result; |
96d887e8 | 4966 | } |
4c4b4cd2 | 4967 | |
96d887e8 PH |
4968 | /* For all subprograms that statically enclose the subprogram of the |
4969 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4970 | and their blocks to the list of data in OBSTACKP, as for | |
48b78332 JB |
4971 | ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME |
4972 | with a wildcard prefix. */ | |
4c4b4cd2 | 4973 | |
96d887e8 PH |
4974 | static void |
4975 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
fe978cb0 | 4976 | const char *name, domain_enum domain, |
48b78332 | 4977 | int wild_match_p) |
96d887e8 | 4978 | { |
96d887e8 | 4979 | } |
14f9c5c9 | 4980 | |
96d887e8 PH |
4981 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4982 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4983 | |
96d887e8 PH |
4984 | static int |
4985 | is_nondebugging_type (struct type *type) | |
4986 | { | |
0d5cff50 | 4987 | const char *name = ada_type_name (type); |
5b4ee69b | 4988 | |
96d887e8 PH |
4989 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4990 | } | |
4c4b4cd2 | 4991 | |
8f17729f JB |
4992 | /* Return nonzero if TYPE1 and TYPE2 are two enumeration types |
4993 | that are deemed "identical" for practical purposes. | |
4994 | ||
4995 | This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM | |
4996 | types and that their number of enumerals is identical (in other | |
4997 | words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */ | |
4998 | ||
4999 | static int | |
5000 | ada_identical_enum_types_p (struct type *type1, struct type *type2) | |
5001 | { | |
5002 | int i; | |
5003 | ||
5004 | /* The heuristic we use here is fairly conservative. We consider | |
5005 | that 2 enumerate types are identical if they have the same | |
5006 | number of enumerals and that all enumerals have the same | |
5007 | underlying value and name. */ | |
5008 | ||
5009 | /* All enums in the type should have an identical underlying value. */ | |
5010 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
14e75d8e | 5011 | if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i)) |
8f17729f JB |
5012 | return 0; |
5013 | ||
5014 | /* All enumerals should also have the same name (modulo any numerical | |
5015 | suffix). */ | |
5016 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
5017 | { | |
0d5cff50 DE |
5018 | const char *name_1 = TYPE_FIELD_NAME (type1, i); |
5019 | const char *name_2 = TYPE_FIELD_NAME (type2, i); | |
8f17729f JB |
5020 | int len_1 = strlen (name_1); |
5021 | int len_2 = strlen (name_2); | |
5022 | ||
5023 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1); | |
5024 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2); | |
5025 | if (len_1 != len_2 | |
5026 | || strncmp (TYPE_FIELD_NAME (type1, i), | |
5027 | TYPE_FIELD_NAME (type2, i), | |
5028 | len_1) != 0) | |
5029 | return 0; | |
5030 | } | |
5031 | ||
5032 | return 1; | |
5033 | } | |
5034 | ||
5035 | /* Return nonzero if all the symbols in SYMS are all enumeral symbols | |
5036 | that are deemed "identical" for practical purposes. Sometimes, | |
5037 | enumerals are not strictly identical, but their types are so similar | |
5038 | that they can be considered identical. | |
5039 | ||
5040 | For instance, consider the following code: | |
5041 | ||
5042 | type Color is (Black, Red, Green, Blue, White); | |
5043 | type RGB_Color is new Color range Red .. Blue; | |
5044 | ||
5045 | Type RGB_Color is a subrange of an implicit type which is a copy | |
5046 | of type Color. If we call that implicit type RGB_ColorB ("B" is | |
5047 | for "Base Type"), then type RGB_ColorB is a copy of type Color. | |
5048 | As a result, when an expression references any of the enumeral | |
5049 | by name (Eg. "print green"), the expression is technically | |
5050 | ambiguous and the user should be asked to disambiguate. But | |
5051 | doing so would only hinder the user, since it wouldn't matter | |
5052 | what choice he makes, the outcome would always be the same. | |
5053 | So, for practical purposes, we consider them as the same. */ | |
5054 | ||
5055 | static int | |
d12307c1 | 5056 | symbols_are_identical_enums (struct block_symbol *syms, int nsyms) |
8f17729f JB |
5057 | { |
5058 | int i; | |
5059 | ||
5060 | /* Before performing a thorough comparison check of each type, | |
5061 | we perform a series of inexpensive checks. We expect that these | |
5062 | checks will quickly fail in the vast majority of cases, and thus | |
5063 | help prevent the unnecessary use of a more expensive comparison. | |
5064 | Said comparison also expects us to make some of these checks | |
5065 | (see ada_identical_enum_types_p). */ | |
5066 | ||
5067 | /* Quick check: All symbols should have an enum type. */ | |
5068 | for (i = 0; i < nsyms; i++) | |
d12307c1 | 5069 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM) |
8f17729f JB |
5070 | return 0; |
5071 | ||
5072 | /* Quick check: They should all have the same value. */ | |
5073 | for (i = 1; i < nsyms; i++) | |
d12307c1 | 5074 | if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol)) |
8f17729f JB |
5075 | return 0; |
5076 | ||
5077 | /* Quick check: They should all have the same number of enumerals. */ | |
5078 | for (i = 1; i < nsyms; i++) | |
d12307c1 PMR |
5079 | if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol)) |
5080 | != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol))) | |
8f17729f JB |
5081 | return 0; |
5082 | ||
5083 | /* All the sanity checks passed, so we might have a set of | |
5084 | identical enumeration types. Perform a more complete | |
5085 | comparison of the type of each symbol. */ | |
5086 | for (i = 1; i < nsyms; i++) | |
d12307c1 PMR |
5087 | if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol), |
5088 | SYMBOL_TYPE (syms[0].symbol))) | |
8f17729f JB |
5089 | return 0; |
5090 | ||
5091 | return 1; | |
5092 | } | |
5093 | ||
96d887e8 PH |
5094 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
5095 | duplicate other symbols in the list (The only case I know of where | |
5096 | this happens is when object files containing stabs-in-ecoff are | |
5097 | linked with files containing ordinary ecoff debugging symbols (or no | |
5098 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
5099 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 5100 | |
96d887e8 | 5101 | static int |
d12307c1 | 5102 | remove_extra_symbols (struct block_symbol *syms, int nsyms) |
96d887e8 PH |
5103 | { |
5104 | int i, j; | |
4c4b4cd2 | 5105 | |
8f17729f JB |
5106 | /* We should never be called with less than 2 symbols, as there |
5107 | cannot be any extra symbol in that case. But it's easy to | |
5108 | handle, since we have nothing to do in that case. */ | |
5109 | if (nsyms < 2) | |
5110 | return nsyms; | |
5111 | ||
96d887e8 PH |
5112 | i = 0; |
5113 | while (i < nsyms) | |
5114 | { | |
a35ddb44 | 5115 | int remove_p = 0; |
339c13b6 JB |
5116 | |
5117 | /* If two symbols have the same name and one of them is a stub type, | |
5118 | the get rid of the stub. */ | |
5119 | ||
d12307c1 PMR |
5120 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol)) |
5121 | && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL) | |
339c13b6 JB |
5122 | { |
5123 | for (j = 0; j < nsyms; j++) | |
5124 | { | |
5125 | if (j != i | |
d12307c1 PMR |
5126 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol)) |
5127 | && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL | |
5128 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol), | |
5129 | SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0) | |
a35ddb44 | 5130 | remove_p = 1; |
339c13b6 JB |
5131 | } |
5132 | } | |
5133 | ||
5134 | /* Two symbols with the same name, same class and same address | |
5135 | should be identical. */ | |
5136 | ||
d12307c1 PMR |
5137 | else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL |
5138 | && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC | |
5139 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol))) | |
96d887e8 PH |
5140 | { |
5141 | for (j = 0; j < nsyms; j += 1) | |
5142 | { | |
5143 | if (i != j | |
d12307c1 PMR |
5144 | && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL |
5145 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol), | |
5146 | SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0 | |
5147 | && SYMBOL_CLASS (syms[i].symbol) | |
5148 | == SYMBOL_CLASS (syms[j].symbol) | |
5149 | && SYMBOL_VALUE_ADDRESS (syms[i].symbol) | |
5150 | == SYMBOL_VALUE_ADDRESS (syms[j].symbol)) | |
a35ddb44 | 5151 | remove_p = 1; |
4c4b4cd2 | 5152 | } |
4c4b4cd2 | 5153 | } |
339c13b6 | 5154 | |
a35ddb44 | 5155 | if (remove_p) |
339c13b6 JB |
5156 | { |
5157 | for (j = i + 1; j < nsyms; j += 1) | |
5158 | syms[j - 1] = syms[j]; | |
5159 | nsyms -= 1; | |
5160 | } | |
5161 | ||
96d887e8 | 5162 | i += 1; |
14f9c5c9 | 5163 | } |
8f17729f JB |
5164 | |
5165 | /* If all the remaining symbols are identical enumerals, then | |
5166 | just keep the first one and discard the rest. | |
5167 | ||
5168 | Unlike what we did previously, we do not discard any entry | |
5169 | unless they are ALL identical. This is because the symbol | |
5170 | comparison is not a strict comparison, but rather a practical | |
5171 | comparison. If all symbols are considered identical, then | |
5172 | we can just go ahead and use the first one and discard the rest. | |
5173 | But if we cannot reduce the list to a single element, we have | |
5174 | to ask the user to disambiguate anyways. And if we have to | |
5175 | present a multiple-choice menu, it's less confusing if the list | |
5176 | isn't missing some choices that were identical and yet distinct. */ | |
5177 | if (symbols_are_identical_enums (syms, nsyms)) | |
5178 | nsyms = 1; | |
5179 | ||
96d887e8 | 5180 | return nsyms; |
14f9c5c9 AS |
5181 | } |
5182 | ||
96d887e8 PH |
5183 | /* Given a type that corresponds to a renaming entity, use the type name |
5184 | to extract the scope (package name or function name, fully qualified, | |
5185 | and following the GNAT encoding convention) where this renaming has been | |
5186 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 5187 | |
96d887e8 PH |
5188 | static char * |
5189 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 5190 | { |
96d887e8 | 5191 | /* The renaming types adhere to the following convention: |
0963b4bd | 5192 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
5193 | So, to extract the scope, we search for the "___XR" extension, |
5194 | and then backtrack until we find the first "__". */ | |
76a01679 | 5195 | |
96d887e8 | 5196 | const char *name = type_name_no_tag (renaming_type); |
108d56a4 SM |
5197 | const char *suffix = strstr (name, "___XR"); |
5198 | const char *last; | |
96d887e8 PH |
5199 | int scope_len; |
5200 | char *scope; | |
14f9c5c9 | 5201 | |
96d887e8 PH |
5202 | /* Now, backtrack a bit until we find the first "__". Start looking |
5203 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 5204 | |
96d887e8 PH |
5205 | for (last = suffix - 3; last > name; last--) |
5206 | if (last[0] == '_' && last[1] == '_') | |
5207 | break; | |
76a01679 | 5208 | |
96d887e8 | 5209 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 5210 | |
96d887e8 PH |
5211 | scope_len = last - name; |
5212 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 5213 | |
96d887e8 PH |
5214 | strncpy (scope, name, scope_len); |
5215 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 5216 | |
96d887e8 | 5217 | return scope; |
4c4b4cd2 PH |
5218 | } |
5219 | ||
96d887e8 | 5220 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 5221 | |
96d887e8 PH |
5222 | static int |
5223 | is_package_name (const char *name) | |
4c4b4cd2 | 5224 | { |
96d887e8 PH |
5225 | /* Here, We take advantage of the fact that no symbols are generated |
5226 | for packages, while symbols are generated for each function. | |
5227 | So the condition for NAME represent a package becomes equivalent | |
5228 | to NAME not existing in our list of symbols. There is only one | |
5229 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 5230 | |
96d887e8 | 5231 | char *fun_name; |
76a01679 | 5232 | |
96d887e8 PH |
5233 | /* If it is a function that has not been defined at library level, |
5234 | then we should be able to look it up in the symbols. */ | |
5235 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
5236 | return 0; | |
14f9c5c9 | 5237 | |
96d887e8 PH |
5238 | /* Library-level function names start with "_ada_". See if function |
5239 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 5240 | |
96d887e8 | 5241 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 5242 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
5243 | if (strstr (name, "__") != NULL) |
5244 | return 0; | |
4c4b4cd2 | 5245 | |
b435e160 | 5246 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 5247 | |
96d887e8 PH |
5248 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
5249 | } | |
14f9c5c9 | 5250 | |
96d887e8 | 5251 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 5252 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 5253 | |
96d887e8 | 5254 | static int |
0d5cff50 | 5255 | old_renaming_is_invisible (const struct symbol *sym, const char *function_name) |
96d887e8 | 5256 | { |
aeb5907d | 5257 | char *scope; |
1509e573 | 5258 | struct cleanup *old_chain; |
aeb5907d JB |
5259 | |
5260 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
5261 | return 0; | |
5262 | ||
5263 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
1509e573 | 5264 | old_chain = make_cleanup (xfree, scope); |
14f9c5c9 | 5265 | |
96d887e8 PH |
5266 | /* If the rename has been defined in a package, then it is visible. */ |
5267 | if (is_package_name (scope)) | |
1509e573 JB |
5268 | { |
5269 | do_cleanups (old_chain); | |
5270 | return 0; | |
5271 | } | |
14f9c5c9 | 5272 | |
96d887e8 PH |
5273 | /* Check that the rename is in the current function scope by checking |
5274 | that its name starts with SCOPE. */ | |
76a01679 | 5275 | |
96d887e8 PH |
5276 | /* If the function name starts with "_ada_", it means that it is |
5277 | a library-level function. Strip this prefix before doing the | |
5278 | comparison, as the encoding for the renaming does not contain | |
5279 | this prefix. */ | |
61012eef | 5280 | if (startswith (function_name, "_ada_")) |
96d887e8 | 5281 | function_name += 5; |
f26caa11 | 5282 | |
1509e573 | 5283 | { |
61012eef | 5284 | int is_invisible = !startswith (function_name, scope); |
1509e573 JB |
5285 | |
5286 | do_cleanups (old_chain); | |
5287 | return is_invisible; | |
5288 | } | |
f26caa11 PH |
5289 | } |
5290 | ||
aeb5907d JB |
5291 | /* Remove entries from SYMS that corresponds to a renaming entity that |
5292 | is not visible from the function associated with CURRENT_BLOCK or | |
5293 | that is superfluous due to the presence of more specific renaming | |
5294 | information. Places surviving symbols in the initial entries of | |
5295 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
5296 | |
5297 | Rationale: | |
aeb5907d JB |
5298 | First, in cases where an object renaming is implemented as a |
5299 | reference variable, GNAT may produce both the actual reference | |
5300 | variable and the renaming encoding. In this case, we discard the | |
5301 | latter. | |
5302 | ||
5303 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
5304 | entity. Unfortunately, STABS currently does not support the definition |
5305 | of types that are local to a given lexical block, so all renamings types | |
5306 | are emitted at library level. As a consequence, if an application | |
5307 | contains two renaming entities using the same name, and a user tries to | |
5308 | print the value of one of these entities, the result of the ada symbol | |
5309 | lookup will also contain the wrong renaming type. | |
f26caa11 | 5310 | |
96d887e8 PH |
5311 | This function partially covers for this limitation by attempting to |
5312 | remove from the SYMS list renaming symbols that should be visible | |
5313 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
5314 | method with the current information available. The implementation | |
5315 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
5316 | ||
5317 | - When the user tries to print a rename in a function while there | |
5318 | is another rename entity defined in a package: Normally, the | |
5319 | rename in the function has precedence over the rename in the | |
5320 | package, so the latter should be removed from the list. This is | |
5321 | currently not the case. | |
5322 | ||
5323 | - This function will incorrectly remove valid renames if | |
5324 | the CURRENT_BLOCK corresponds to a function which symbol name | |
5325 | has been changed by an "Export" pragma. As a consequence, | |
5326 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 5327 | |
14f9c5c9 | 5328 | static int |
d12307c1 | 5329 | remove_irrelevant_renamings (struct block_symbol *syms, |
aeb5907d | 5330 | int nsyms, const struct block *current_block) |
4c4b4cd2 PH |
5331 | { |
5332 | struct symbol *current_function; | |
0d5cff50 | 5333 | const char *current_function_name; |
4c4b4cd2 | 5334 | int i; |
aeb5907d JB |
5335 | int is_new_style_renaming; |
5336 | ||
5337 | /* If there is both a renaming foo___XR... encoded as a variable and | |
5338 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 5339 | First, zero out such symbols, then compress. */ |
aeb5907d JB |
5340 | is_new_style_renaming = 0; |
5341 | for (i = 0; i < nsyms; i += 1) | |
5342 | { | |
d12307c1 | 5343 | struct symbol *sym = syms[i].symbol; |
270140bd | 5344 | const struct block *block = syms[i].block; |
aeb5907d JB |
5345 | const char *name; |
5346 | const char *suffix; | |
5347 | ||
5348 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
5349 | continue; | |
5350 | name = SYMBOL_LINKAGE_NAME (sym); | |
5351 | suffix = strstr (name, "___XR"); | |
5352 | ||
5353 | if (suffix != NULL) | |
5354 | { | |
5355 | int name_len = suffix - name; | |
5356 | int j; | |
5b4ee69b | 5357 | |
aeb5907d JB |
5358 | is_new_style_renaming = 1; |
5359 | for (j = 0; j < nsyms; j += 1) | |
d12307c1 PMR |
5360 | if (i != j && syms[j].symbol != NULL |
5361 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol), | |
aeb5907d JB |
5362 | name_len) == 0 |
5363 | && block == syms[j].block) | |
d12307c1 | 5364 | syms[j].symbol = NULL; |
aeb5907d JB |
5365 | } |
5366 | } | |
5367 | if (is_new_style_renaming) | |
5368 | { | |
5369 | int j, k; | |
5370 | ||
5371 | for (j = k = 0; j < nsyms; j += 1) | |
d12307c1 | 5372 | if (syms[j].symbol != NULL) |
aeb5907d JB |
5373 | { |
5374 | syms[k] = syms[j]; | |
5375 | k += 1; | |
5376 | } | |
5377 | return k; | |
5378 | } | |
4c4b4cd2 PH |
5379 | |
5380 | /* Extract the function name associated to CURRENT_BLOCK. | |
5381 | Abort if unable to do so. */ | |
76a01679 | 5382 | |
4c4b4cd2 PH |
5383 | if (current_block == NULL) |
5384 | return nsyms; | |
76a01679 | 5385 | |
7f0df278 | 5386 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
5387 | if (current_function == NULL) |
5388 | return nsyms; | |
5389 | ||
5390 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
5391 | if (current_function_name == NULL) | |
5392 | return nsyms; | |
5393 | ||
5394 | /* Check each of the symbols, and remove it from the list if it is | |
5395 | a type corresponding to a renaming that is out of the scope of | |
5396 | the current block. */ | |
5397 | ||
5398 | i = 0; | |
5399 | while (i < nsyms) | |
5400 | { | |
d12307c1 | 5401 | if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL) |
aeb5907d | 5402 | == ADA_OBJECT_RENAMING |
d12307c1 | 5403 | && old_renaming_is_invisible (syms[i].symbol, current_function_name)) |
4c4b4cd2 PH |
5404 | { |
5405 | int j; | |
5b4ee69b | 5406 | |
aeb5907d | 5407 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 5408 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
5409 | nsyms -= 1; |
5410 | } | |
5411 | else | |
5412 | i += 1; | |
5413 | } | |
5414 | ||
5415 | return nsyms; | |
5416 | } | |
5417 | ||
339c13b6 JB |
5418 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
5419 | whose name and domain match NAME and DOMAIN respectively. | |
5420 | If no match was found, then extend the search to "enclosing" | |
5421 | routines (in other words, if we're inside a nested function, | |
5422 | search the symbols defined inside the enclosing functions). | |
d0a8ab18 JB |
5423 | If WILD_MATCH_P is nonzero, perform the naming matching in |
5424 | "wild" mode (see function "wild_match" for more info). | |
339c13b6 JB |
5425 | |
5426 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
5427 | ||
5428 | static void | |
5429 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
f0c5f9b2 | 5430 | const struct block *block, domain_enum domain, |
d0a8ab18 | 5431 | int wild_match_p) |
339c13b6 JB |
5432 | { |
5433 | int block_depth = 0; | |
5434 | ||
5435 | while (block != NULL) | |
5436 | { | |
5437 | block_depth += 1; | |
d0a8ab18 JB |
5438 | ada_add_block_symbols (obstackp, block, name, domain, NULL, |
5439 | wild_match_p); | |
339c13b6 JB |
5440 | |
5441 | /* If we found a non-function match, assume that's the one. */ | |
5442 | if (is_nonfunction (defns_collected (obstackp, 0), | |
5443 | num_defns_collected (obstackp))) | |
5444 | return; | |
5445 | ||
5446 | block = BLOCK_SUPERBLOCK (block); | |
5447 | } | |
5448 | ||
5449 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
5450 | enclosing subprogram. */ | |
5451 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
d0a8ab18 | 5452 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p); |
339c13b6 JB |
5453 | } |
5454 | ||
ccefe4c4 | 5455 | /* An object of this type is used as the user_data argument when |
40658b94 | 5456 | calling the map_matching_symbols method. */ |
ccefe4c4 | 5457 | |
40658b94 | 5458 | struct match_data |
ccefe4c4 | 5459 | { |
40658b94 | 5460 | struct objfile *objfile; |
ccefe4c4 | 5461 | struct obstack *obstackp; |
40658b94 PH |
5462 | struct symbol *arg_sym; |
5463 | int found_sym; | |
ccefe4c4 TT |
5464 | }; |
5465 | ||
22cee43f | 5466 | /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK, |
40658b94 PH |
5467 | to a list of symbols. DATA0 is a pointer to a struct match_data * |
5468 | containing the obstack that collects the symbol list, the file that SYM | |
5469 | must come from, a flag indicating whether a non-argument symbol has | |
5470 | been found in the current block, and the last argument symbol | |
5471 | passed in SYM within the current block (if any). When SYM is null, | |
5472 | marking the end of a block, the argument symbol is added if no | |
5473 | other has been found. */ | |
ccefe4c4 | 5474 | |
40658b94 PH |
5475 | static int |
5476 | aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0) | |
ccefe4c4 | 5477 | { |
40658b94 PH |
5478 | struct match_data *data = (struct match_data *) data0; |
5479 | ||
5480 | if (sym == NULL) | |
5481 | { | |
5482 | if (!data->found_sym && data->arg_sym != NULL) | |
5483 | add_defn_to_vec (data->obstackp, | |
5484 | fixup_symbol_section (data->arg_sym, data->objfile), | |
5485 | block); | |
5486 | data->found_sym = 0; | |
5487 | data->arg_sym = NULL; | |
5488 | } | |
5489 | else | |
5490 | { | |
5491 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
5492 | return 0; | |
5493 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5494 | data->arg_sym = sym; | |
5495 | else | |
5496 | { | |
5497 | data->found_sym = 1; | |
5498 | add_defn_to_vec (data->obstackp, | |
5499 | fixup_symbol_section (sym, data->objfile), | |
5500 | block); | |
5501 | } | |
5502 | } | |
5503 | return 0; | |
5504 | } | |
5505 | ||
22cee43f PMR |
5506 | /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted |
5507 | by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If | |
5508 | WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see | |
5509 | function "wild_match" for more information). Return whether we found such | |
5510 | symbols. */ | |
5511 | ||
5512 | static int | |
5513 | ada_add_block_renamings (struct obstack *obstackp, | |
5514 | const struct block *block, | |
5515 | const char *name, | |
5516 | domain_enum domain, | |
5517 | int wild_match_p) | |
5518 | { | |
5519 | struct using_direct *renaming; | |
5520 | int defns_mark = num_defns_collected (obstackp); | |
5521 | ||
5522 | for (renaming = block_using (block); | |
5523 | renaming != NULL; | |
5524 | renaming = renaming->next) | |
5525 | { | |
5526 | const char *r_name; | |
5527 | int name_match; | |
5528 | ||
5529 | /* Avoid infinite recursions: skip this renaming if we are actually | |
5530 | already traversing it. | |
5531 | ||
5532 | Currently, symbol lookup in Ada don't use the namespace machinery from | |
5533 | C++/Fortran support: skip namespace imports that use them. */ | |
5534 | if (renaming->searched | |
5535 | || (renaming->import_src != NULL | |
5536 | && renaming->import_src[0] != '\0') | |
5537 | || (renaming->import_dest != NULL | |
5538 | && renaming->import_dest[0] != '\0')) | |
5539 | continue; | |
5540 | renaming->searched = 1; | |
5541 | ||
5542 | /* TODO: here, we perform another name-based symbol lookup, which can | |
5543 | pull its own multiple overloads. In theory, we should be able to do | |
5544 | better in this case since, in DWARF, DW_AT_import is a DIE reference, | |
5545 | not a simple name. But in order to do this, we would need to enhance | |
5546 | the DWARF reader to associate a symbol to this renaming, instead of a | |
5547 | name. So, for now, we do something simpler: re-use the C++/Fortran | |
5548 | namespace machinery. */ | |
5549 | r_name = (renaming->alias != NULL | |
5550 | ? renaming->alias | |
5551 | : renaming->declaration); | |
5552 | name_match | |
5553 | = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name); | |
5554 | if (name_match == 0) | |
5555 | ada_add_all_symbols (obstackp, block, renaming->declaration, domain, | |
5556 | 1, NULL); | |
5557 | renaming->searched = 0; | |
5558 | } | |
5559 | return num_defns_collected (obstackp) != defns_mark; | |
5560 | } | |
5561 | ||
db230ce3 JB |
5562 | /* Implements compare_names, but only applying the comparision using |
5563 | the given CASING. */ | |
5b4ee69b | 5564 | |
40658b94 | 5565 | static int |
db230ce3 JB |
5566 | compare_names_with_case (const char *string1, const char *string2, |
5567 | enum case_sensitivity casing) | |
40658b94 PH |
5568 | { |
5569 | while (*string1 != '\0' && *string2 != '\0') | |
5570 | { | |
db230ce3 JB |
5571 | char c1, c2; |
5572 | ||
40658b94 PH |
5573 | if (isspace (*string1) || isspace (*string2)) |
5574 | return strcmp_iw_ordered (string1, string2); | |
db230ce3 JB |
5575 | |
5576 | if (casing == case_sensitive_off) | |
5577 | { | |
5578 | c1 = tolower (*string1); | |
5579 | c2 = tolower (*string2); | |
5580 | } | |
5581 | else | |
5582 | { | |
5583 | c1 = *string1; | |
5584 | c2 = *string2; | |
5585 | } | |
5586 | if (c1 != c2) | |
40658b94 | 5587 | break; |
db230ce3 | 5588 | |
40658b94 PH |
5589 | string1 += 1; |
5590 | string2 += 1; | |
5591 | } | |
db230ce3 | 5592 | |
40658b94 PH |
5593 | switch (*string1) |
5594 | { | |
5595 | case '(': | |
5596 | return strcmp_iw_ordered (string1, string2); | |
5597 | case '_': | |
5598 | if (*string2 == '\0') | |
5599 | { | |
052874e8 | 5600 | if (is_name_suffix (string1)) |
40658b94 PH |
5601 | return 0; |
5602 | else | |
1a1d5513 | 5603 | return 1; |
40658b94 | 5604 | } |
dbb8534f | 5605 | /* FALLTHROUGH */ |
40658b94 PH |
5606 | default: |
5607 | if (*string2 == '(') | |
5608 | return strcmp_iw_ordered (string1, string2); | |
5609 | else | |
db230ce3 JB |
5610 | { |
5611 | if (casing == case_sensitive_off) | |
5612 | return tolower (*string1) - tolower (*string2); | |
5613 | else | |
5614 | return *string1 - *string2; | |
5615 | } | |
40658b94 | 5616 | } |
ccefe4c4 TT |
5617 | } |
5618 | ||
db230ce3 JB |
5619 | /* Compare STRING1 to STRING2, with results as for strcmp. |
5620 | Compatible with strcmp_iw_ordered in that... | |
5621 | ||
5622 | strcmp_iw_ordered (STRING1, STRING2) <= 0 | |
5623 | ||
5624 | ... implies... | |
5625 | ||
5626 | compare_names (STRING1, STRING2) <= 0 | |
5627 | ||
5628 | (they may differ as to what symbols compare equal). */ | |
5629 | ||
5630 | static int | |
5631 | compare_names (const char *string1, const char *string2) | |
5632 | { | |
5633 | int result; | |
5634 | ||
5635 | /* Similar to what strcmp_iw_ordered does, we need to perform | |
5636 | a case-insensitive comparison first, and only resort to | |
5637 | a second, case-sensitive, comparison if the first one was | |
5638 | not sufficient to differentiate the two strings. */ | |
5639 | ||
5640 | result = compare_names_with_case (string1, string2, case_sensitive_off); | |
5641 | if (result == 0) | |
5642 | result = compare_names_with_case (string1, string2, case_sensitive_on); | |
5643 | ||
5644 | return result; | |
5645 | } | |
5646 | ||
339c13b6 JB |
5647 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
5648 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
5649 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
5650 | ||
5651 | static void | |
40658b94 PH |
5652 | add_nonlocal_symbols (struct obstack *obstackp, const char *name, |
5653 | domain_enum domain, int global, | |
5654 | int is_wild_match) | |
339c13b6 JB |
5655 | { |
5656 | struct objfile *objfile; | |
22cee43f | 5657 | struct compunit_symtab *cu; |
40658b94 | 5658 | struct match_data data; |
339c13b6 | 5659 | |
6475f2fe | 5660 | memset (&data, 0, sizeof data); |
ccefe4c4 | 5661 | data.obstackp = obstackp; |
339c13b6 | 5662 | |
ccefe4c4 | 5663 | ALL_OBJFILES (objfile) |
40658b94 PH |
5664 | { |
5665 | data.objfile = objfile; | |
5666 | ||
5667 | if (is_wild_match) | |
4186eb54 KS |
5668 | objfile->sf->qf->map_matching_symbols (objfile, name, domain, global, |
5669 | aux_add_nonlocal_symbols, &data, | |
5670 | wild_match, NULL); | |
40658b94 | 5671 | else |
4186eb54 KS |
5672 | objfile->sf->qf->map_matching_symbols (objfile, name, domain, global, |
5673 | aux_add_nonlocal_symbols, &data, | |
5674 | full_match, compare_names); | |
22cee43f PMR |
5675 | |
5676 | ALL_OBJFILE_COMPUNITS (objfile, cu) | |
5677 | { | |
5678 | const struct block *global_block | |
5679 | = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK); | |
5680 | ||
5681 | if (ada_add_block_renamings (obstackp, global_block , name, domain, | |
5682 | is_wild_match)) | |
5683 | data.found_sym = 1; | |
5684 | } | |
40658b94 PH |
5685 | } |
5686 | ||
5687 | if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) | |
5688 | { | |
5689 | ALL_OBJFILES (objfile) | |
5690 | { | |
224c3ddb | 5691 | char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_")); |
40658b94 PH |
5692 | strcpy (name1, "_ada_"); |
5693 | strcpy (name1 + sizeof ("_ada_") - 1, name); | |
5694 | data.objfile = objfile; | |
ade7ed9e DE |
5695 | objfile->sf->qf->map_matching_symbols (objfile, name1, domain, |
5696 | global, | |
0963b4bd MS |
5697 | aux_add_nonlocal_symbols, |
5698 | &data, | |
40658b94 PH |
5699 | full_match, compare_names); |
5700 | } | |
5701 | } | |
339c13b6 JB |
5702 | } |
5703 | ||
22cee43f | 5704 | /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is |
4eeaa230 | 5705 | non-zero, enclosing scope and in global scopes, returning the number of |
22cee43f | 5706 | matches. Add these to OBSTACKP. |
4eeaa230 | 5707 | |
22cee43f PMR |
5708 | When FULL_SEARCH is non-zero, any non-function/non-enumeral |
5709 | symbol match within the nest of blocks whose innermost member is BLOCK, | |
4c4b4cd2 | 5710 | is the one match returned (no other matches in that or |
d9680e73 | 5711 | enclosing blocks is returned). If there are any matches in or |
22cee43f | 5712 | surrounding BLOCK, then these alone are returned. |
4eeaa230 | 5713 | |
9f88c959 | 5714 | Names prefixed with "standard__" are handled specially: "standard__" |
22cee43f | 5715 | is first stripped off, and only static and global symbols are searched. |
14f9c5c9 | 5716 | |
22cee43f PMR |
5717 | If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had |
5718 | to lookup global symbols. */ | |
5719 | ||
5720 | static void | |
5721 | ada_add_all_symbols (struct obstack *obstackp, | |
5722 | const struct block *block, | |
5723 | const char *name, | |
5724 | domain_enum domain, | |
5725 | int full_search, | |
5726 | int *made_global_lookup_p) | |
14f9c5c9 AS |
5727 | { |
5728 | struct symbol *sym; | |
22cee43f | 5729 | const int wild_match_p = should_use_wild_match (name); |
14f9c5c9 | 5730 | |
22cee43f PMR |
5731 | if (made_global_lookup_p) |
5732 | *made_global_lookup_p = 0; | |
339c13b6 JB |
5733 | |
5734 | /* Special case: If the user specifies a symbol name inside package | |
5735 | Standard, do a non-wild matching of the symbol name without | |
5736 | the "standard__" prefix. This was primarily introduced in order | |
5737 | to allow the user to specifically access the standard exceptions | |
5738 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
5739 | is ambiguous (due to the user defining its own Constraint_Error | |
5740 | entity inside its program). */ | |
22cee43f | 5741 | if (startswith (name, "standard__")) |
4c4b4cd2 | 5742 | { |
4c4b4cd2 | 5743 | block = NULL; |
22cee43f | 5744 | name = name + sizeof ("standard__") - 1; |
4c4b4cd2 PH |
5745 | } |
5746 | ||
339c13b6 | 5747 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 5748 | |
4eeaa230 DE |
5749 | if (block != NULL) |
5750 | { | |
5751 | if (full_search) | |
22cee43f | 5752 | ada_add_local_symbols (obstackp, name, block, domain, wild_match_p); |
4eeaa230 DE |
5753 | else |
5754 | { | |
5755 | /* In the !full_search case we're are being called by | |
5756 | ada_iterate_over_symbols, and we don't want to search | |
5757 | superblocks. */ | |
22cee43f PMR |
5758 | ada_add_block_symbols (obstackp, block, name, domain, NULL, |
5759 | wild_match_p); | |
4eeaa230 | 5760 | } |
22cee43f PMR |
5761 | if (num_defns_collected (obstackp) > 0 || !full_search) |
5762 | return; | |
4eeaa230 | 5763 | } |
d2e4a39e | 5764 | |
339c13b6 JB |
5765 | /* No non-global symbols found. Check our cache to see if we have |
5766 | already performed this search before. If we have, then return | |
5767 | the same result. */ | |
5768 | ||
22cee43f | 5769 | if (lookup_cached_symbol (name, domain, &sym, &block)) |
4c4b4cd2 PH |
5770 | { |
5771 | if (sym != NULL) | |
22cee43f PMR |
5772 | add_defn_to_vec (obstackp, sym, block); |
5773 | return; | |
4c4b4cd2 | 5774 | } |
14f9c5c9 | 5775 | |
22cee43f PMR |
5776 | if (made_global_lookup_p) |
5777 | *made_global_lookup_p = 1; | |
b1eedac9 | 5778 | |
339c13b6 JB |
5779 | /* Search symbols from all global blocks. */ |
5780 | ||
22cee43f | 5781 | add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p); |
d2e4a39e | 5782 | |
4c4b4cd2 | 5783 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 5784 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 5785 | |
22cee43f PMR |
5786 | if (num_defns_collected (obstackp) == 0) |
5787 | add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p); | |
5788 | } | |
5789 | ||
5790 | /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is | |
5791 | non-zero, enclosing scope and in global scopes, returning the number of | |
5792 | matches. | |
5793 | Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples, | |
5794 | indicating the symbols found and the blocks and symbol tables (if | |
5795 | any) in which they were found. This vector is transient---good only to | |
5796 | the next call of ada_lookup_symbol_list. | |
5797 | ||
5798 | When full_search is non-zero, any non-function/non-enumeral | |
5799 | symbol match within the nest of blocks whose innermost member is BLOCK, | |
5800 | is the one match returned (no other matches in that or | |
5801 | enclosing blocks is returned). If there are any matches in or | |
5802 | surrounding BLOCK, then these alone are returned. | |
5803 | ||
5804 | Names prefixed with "standard__" are handled specially: "standard__" | |
5805 | is first stripped off, and only static and global symbols are searched. */ | |
5806 | ||
5807 | static int | |
5808 | ada_lookup_symbol_list_worker (const char *name, const struct block *block, | |
5809 | domain_enum domain, | |
5810 | struct block_symbol **results, | |
5811 | int full_search) | |
5812 | { | |
5813 | const int wild_match_p = should_use_wild_match (name); | |
5814 | int syms_from_global_search; | |
5815 | int ndefns; | |
5816 | ||
5817 | obstack_free (&symbol_list_obstack, NULL); | |
5818 | obstack_init (&symbol_list_obstack); | |
5819 | ada_add_all_symbols (&symbol_list_obstack, block, name, domain, | |
5820 | full_search, &syms_from_global_search); | |
14f9c5c9 | 5821 | |
4c4b4cd2 PH |
5822 | ndefns = num_defns_collected (&symbol_list_obstack); |
5823 | *results = defns_collected (&symbol_list_obstack, 1); | |
5824 | ||
5825 | ndefns = remove_extra_symbols (*results, ndefns); | |
5826 | ||
b1eedac9 | 5827 | if (ndefns == 0 && full_search && syms_from_global_search) |
22cee43f | 5828 | cache_symbol (name, domain, NULL, NULL); |
14f9c5c9 | 5829 | |
b1eedac9 | 5830 | if (ndefns == 1 && full_search && syms_from_global_search) |
22cee43f | 5831 | cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block); |
14f9c5c9 | 5832 | |
22cee43f | 5833 | ndefns = remove_irrelevant_renamings (*results, ndefns, block); |
14f9c5c9 AS |
5834 | return ndefns; |
5835 | } | |
5836 | ||
4eeaa230 DE |
5837 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and |
5838 | in global scopes, returning the number of matches, and setting *RESULTS | |
5839 | to a vector of (SYM,BLOCK) tuples. | |
5840 | See ada_lookup_symbol_list_worker for further details. */ | |
5841 | ||
5842 | int | |
5843 | ada_lookup_symbol_list (const char *name0, const struct block *block0, | |
d12307c1 | 5844 | domain_enum domain, struct block_symbol **results) |
4eeaa230 DE |
5845 | { |
5846 | return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1); | |
5847 | } | |
5848 | ||
5849 | /* Implementation of the la_iterate_over_symbols method. */ | |
5850 | ||
5851 | static void | |
14bc53a8 PA |
5852 | ada_iterate_over_symbols |
5853 | (const struct block *block, const char *name, domain_enum domain, | |
5854 | gdb::function_view<symbol_found_callback_ftype> callback) | |
4eeaa230 DE |
5855 | { |
5856 | int ndefs, i; | |
d12307c1 | 5857 | struct block_symbol *results; |
4eeaa230 DE |
5858 | |
5859 | ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0); | |
5860 | for (i = 0; i < ndefs; ++i) | |
5861 | { | |
14bc53a8 | 5862 | if (!callback (results[i].symbol)) |
4eeaa230 DE |
5863 | break; |
5864 | } | |
5865 | } | |
5866 | ||
f8eba3c6 | 5867 | /* If NAME is the name of an entity, return a string that should |
2f408ecb | 5868 | be used to look that entity up in Ada units. |
f8eba3c6 TT |
5869 | |
5870 | NAME can have any form that the "break" or "print" commands might | |
5871 | recognize. In other words, it does not have to be the "natural" | |
5872 | name, or the "encoded" name. */ | |
5873 | ||
2f408ecb | 5874 | std::string |
f8eba3c6 TT |
5875 | ada_name_for_lookup (const char *name) |
5876 | { | |
f8eba3c6 TT |
5877 | int nlen = strlen (name); |
5878 | ||
5879 | if (name[0] == '<' && name[nlen - 1] == '>') | |
2f408ecb | 5880 | return std::string (name + 1, nlen - 2); |
f8eba3c6 | 5881 | else |
2f408ecb | 5882 | return ada_encode (ada_fold_name (name)); |
f8eba3c6 TT |
5883 | } |
5884 | ||
4e5c77fe JB |
5885 | /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set |
5886 | to 1, but choosing the first symbol found if there are multiple | |
5887 | choices. | |
5888 | ||
5e2336be JB |
5889 | The result is stored in *INFO, which must be non-NULL. |
5890 | If no match is found, INFO->SYM is set to NULL. */ | |
4e5c77fe JB |
5891 | |
5892 | void | |
5893 | ada_lookup_encoded_symbol (const char *name, const struct block *block, | |
fe978cb0 | 5894 | domain_enum domain, |
d12307c1 | 5895 | struct block_symbol *info) |
14f9c5c9 | 5896 | { |
d12307c1 | 5897 | struct block_symbol *candidates; |
14f9c5c9 AS |
5898 | int n_candidates; |
5899 | ||
5e2336be | 5900 | gdb_assert (info != NULL); |
d12307c1 | 5901 | memset (info, 0, sizeof (struct block_symbol)); |
4e5c77fe | 5902 | |
fe978cb0 | 5903 | n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates); |
14f9c5c9 | 5904 | if (n_candidates == 0) |
4e5c77fe | 5905 | return; |
4c4b4cd2 | 5906 | |
5e2336be | 5907 | *info = candidates[0]; |
d12307c1 | 5908 | info->symbol = fixup_symbol_section (info->symbol, NULL); |
4e5c77fe | 5909 | } |
aeb5907d JB |
5910 | |
5911 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
5912 | scope and in global scopes, or NULL if none. NAME is folded and | |
5913 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
0963b4bd | 5914 | choosing the first symbol if there are multiple choices. |
4e5c77fe JB |
5915 | If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */ |
5916 | ||
d12307c1 | 5917 | struct block_symbol |
aeb5907d | 5918 | ada_lookup_symbol (const char *name, const struct block *block0, |
fe978cb0 | 5919 | domain_enum domain, int *is_a_field_of_this) |
aeb5907d | 5920 | { |
d12307c1 | 5921 | struct block_symbol info; |
4e5c77fe | 5922 | |
aeb5907d JB |
5923 | if (is_a_field_of_this != NULL) |
5924 | *is_a_field_of_this = 0; | |
5925 | ||
4e5c77fe | 5926 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), |
fe978cb0 | 5927 | block0, domain, &info); |
d12307c1 | 5928 | return info; |
4c4b4cd2 | 5929 | } |
14f9c5c9 | 5930 | |
d12307c1 | 5931 | static struct block_symbol |
f606139a DE |
5932 | ada_lookup_symbol_nonlocal (const struct language_defn *langdef, |
5933 | const char *name, | |
76a01679 | 5934 | const struct block *block, |
21b556f4 | 5935 | const domain_enum domain) |
4c4b4cd2 | 5936 | { |
d12307c1 | 5937 | struct block_symbol sym; |
04dccad0 JB |
5938 | |
5939 | sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL); | |
d12307c1 | 5940 | if (sym.symbol != NULL) |
04dccad0 JB |
5941 | return sym; |
5942 | ||
5943 | /* If we haven't found a match at this point, try the primitive | |
5944 | types. In other languages, this search is performed before | |
5945 | searching for global symbols in order to short-circuit that | |
5946 | global-symbol search if it happens that the name corresponds | |
5947 | to a primitive type. But we cannot do the same in Ada, because | |
5948 | it is perfectly legitimate for a program to declare a type which | |
5949 | has the same name as a standard type. If looking up a type in | |
5950 | that situation, we have traditionally ignored the primitive type | |
5951 | in favor of user-defined types. This is why, unlike most other | |
5952 | languages, we search the primitive types this late and only after | |
5953 | having searched the global symbols without success. */ | |
5954 | ||
5955 | if (domain == VAR_DOMAIN) | |
5956 | { | |
5957 | struct gdbarch *gdbarch; | |
5958 | ||
5959 | if (block == NULL) | |
5960 | gdbarch = target_gdbarch (); | |
5961 | else | |
5962 | gdbarch = block_gdbarch (block); | |
d12307c1 PMR |
5963 | sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name); |
5964 | if (sym.symbol != NULL) | |
04dccad0 JB |
5965 | return sym; |
5966 | } | |
5967 | ||
d12307c1 | 5968 | return (struct block_symbol) {NULL, NULL}; |
14f9c5c9 AS |
5969 | } |
5970 | ||
5971 | ||
4c4b4cd2 PH |
5972 | /* True iff STR is a possible encoded suffix of a normal Ada name |
5973 | that is to be ignored for matching purposes. Suffixes of parallel | |
5974 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 5975 | are given by any of the regular expressions: |
4c4b4cd2 | 5976 | |
babe1480 JB |
5977 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
5978 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
9ac7f98e | 5979 | TKB [subprogram suffix for task bodies] |
babe1480 | 5980 | _E[0-9]+[bs]$ [protected object entry suffixes] |
61ee279c | 5981 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
5982 | |
5983 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
5984 | match is performed. This sequence is used to differentiate homonyms, | |
5985 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 5986 | |
14f9c5c9 | 5987 | static int |
d2e4a39e | 5988 | is_name_suffix (const char *str) |
14f9c5c9 AS |
5989 | { |
5990 | int k; | |
4c4b4cd2 PH |
5991 | const char *matching; |
5992 | const int len = strlen (str); | |
5993 | ||
babe1480 JB |
5994 | /* Skip optional leading __[0-9]+. */ |
5995 | ||
4c4b4cd2 PH |
5996 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
5997 | { | |
babe1480 JB |
5998 | str += 3; |
5999 | while (isdigit (str[0])) | |
6000 | str += 1; | |
4c4b4cd2 | 6001 | } |
babe1480 JB |
6002 | |
6003 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 6004 | |
babe1480 | 6005 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 6006 | { |
babe1480 | 6007 | matching = str + 1; |
4c4b4cd2 PH |
6008 | while (isdigit (matching[0])) |
6009 | matching += 1; | |
6010 | if (matching[0] == '\0') | |
6011 | return 1; | |
6012 | } | |
6013 | ||
6014 | /* ___[0-9]+ */ | |
babe1480 | 6015 | |
4c4b4cd2 PH |
6016 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
6017 | { | |
6018 | matching = str + 3; | |
6019 | while (isdigit (matching[0])) | |
6020 | matching += 1; | |
6021 | if (matching[0] == '\0') | |
6022 | return 1; | |
6023 | } | |
6024 | ||
9ac7f98e JB |
6025 | /* "TKB" suffixes are used for subprograms implementing task bodies. */ |
6026 | ||
6027 | if (strcmp (str, "TKB") == 0) | |
6028 | return 1; | |
6029 | ||
529cad9c PH |
6030 | #if 0 |
6031 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
6032 | with a N at the end. Unfortunately, the compiler uses the same |
6033 | convention for other internal types it creates. So treating | |
529cad9c | 6034 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
6035 | some regressions. For instance, consider the case of an enumerated |
6036 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
6037 | name ends with N. |
6038 | Having a single character like this as a suffix carrying some | |
0963b4bd | 6039 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
6040 | to be something like "_N" instead. In the meantime, do not do |
6041 | the following check. */ | |
6042 | /* Protected Object Subprograms */ | |
6043 | if (len == 1 && str [0] == 'N') | |
6044 | return 1; | |
6045 | #endif | |
6046 | ||
6047 | /* _E[0-9]+[bs]$ */ | |
6048 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
6049 | { | |
6050 | matching = str + 3; | |
6051 | while (isdigit (matching[0])) | |
6052 | matching += 1; | |
6053 | if ((matching[0] == 'b' || matching[0] == 's') | |
6054 | && matching [1] == '\0') | |
6055 | return 1; | |
6056 | } | |
6057 | ||
4c4b4cd2 PH |
6058 | /* ??? We should not modify STR directly, as we are doing below. This |
6059 | is fine in this case, but may become problematic later if we find | |
6060 | that this alternative did not work, and want to try matching | |
6061 | another one from the begining of STR. Since we modified it, we | |
6062 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
6063 | if (str[0] == 'X') |
6064 | { | |
6065 | str += 1; | |
d2e4a39e | 6066 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
6067 | { |
6068 | if (str[0] != 'n' && str[0] != 'b') | |
6069 | return 0; | |
6070 | str += 1; | |
6071 | } | |
14f9c5c9 | 6072 | } |
babe1480 | 6073 | |
14f9c5c9 AS |
6074 | if (str[0] == '\000') |
6075 | return 1; | |
babe1480 | 6076 | |
d2e4a39e | 6077 | if (str[0] == '_') |
14f9c5c9 AS |
6078 | { |
6079 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 6080 | return 0; |
d2e4a39e | 6081 | if (str[2] == '_') |
4c4b4cd2 | 6082 | { |
61ee279c PH |
6083 | if (strcmp (str + 3, "JM") == 0) |
6084 | return 1; | |
6085 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
6086 | the LJM suffix in favor of the JM one. But we will | |
6087 | still accept LJM as a valid suffix for a reasonable | |
6088 | amount of time, just to allow ourselves to debug programs | |
6089 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
6090 | if (strcmp (str + 3, "LJM") == 0) |
6091 | return 1; | |
6092 | if (str[3] != 'X') | |
6093 | return 0; | |
1265e4aa JB |
6094 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
6095 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
6096 | return 1; |
6097 | if (str[4] == 'R' && str[5] != 'T') | |
6098 | return 1; | |
6099 | return 0; | |
6100 | } | |
6101 | if (!isdigit (str[2])) | |
6102 | return 0; | |
6103 | for (k = 3; str[k] != '\0'; k += 1) | |
6104 | if (!isdigit (str[k]) && str[k] != '_') | |
6105 | return 0; | |
14f9c5c9 AS |
6106 | return 1; |
6107 | } | |
4c4b4cd2 | 6108 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 6109 | { |
4c4b4cd2 PH |
6110 | for (k = 2; str[k] != '\0'; k += 1) |
6111 | if (!isdigit (str[k]) && str[k] != '_') | |
6112 | return 0; | |
14f9c5c9 AS |
6113 | return 1; |
6114 | } | |
6115 | return 0; | |
6116 | } | |
d2e4a39e | 6117 | |
aeb5907d JB |
6118 | /* Return non-zero if the string starting at NAME and ending before |
6119 | NAME_END contains no capital letters. */ | |
529cad9c PH |
6120 | |
6121 | static int | |
6122 | is_valid_name_for_wild_match (const char *name0) | |
6123 | { | |
6124 | const char *decoded_name = ada_decode (name0); | |
6125 | int i; | |
6126 | ||
5823c3ef JB |
6127 | /* If the decoded name starts with an angle bracket, it means that |
6128 | NAME0 does not follow the GNAT encoding format. It should then | |
6129 | not be allowed as a possible wild match. */ | |
6130 | if (decoded_name[0] == '<') | |
6131 | return 0; | |
6132 | ||
529cad9c PH |
6133 | for (i=0; decoded_name[i] != '\0'; i++) |
6134 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
6135 | return 0; | |
6136 | ||
6137 | return 1; | |
6138 | } | |
6139 | ||
73589123 PH |
6140 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
6141 | that could start a simple name. Assumes that *NAMEP points into | |
6142 | the string beginning at NAME0. */ | |
4c4b4cd2 | 6143 | |
14f9c5c9 | 6144 | static int |
73589123 | 6145 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 6146 | { |
73589123 | 6147 | const char *name = *namep; |
5b4ee69b | 6148 | |
5823c3ef | 6149 | while (1) |
14f9c5c9 | 6150 | { |
aa27d0b3 | 6151 | int t0, t1; |
73589123 PH |
6152 | |
6153 | t0 = *name; | |
6154 | if (t0 == '_') | |
6155 | { | |
6156 | t1 = name[1]; | |
6157 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
6158 | { | |
6159 | name += 1; | |
61012eef | 6160 | if (name == name0 + 5 && startswith (name0, "_ada")) |
73589123 PH |
6161 | break; |
6162 | else | |
6163 | name += 1; | |
6164 | } | |
aa27d0b3 JB |
6165 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
6166 | || name[2] == target0)) | |
73589123 PH |
6167 | { |
6168 | name += 2; | |
6169 | break; | |
6170 | } | |
6171 | else | |
6172 | return 0; | |
6173 | } | |
6174 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
6175 | name += 1; | |
6176 | else | |
5823c3ef | 6177 | return 0; |
73589123 PH |
6178 | } |
6179 | ||
6180 | *namep = name; | |
6181 | return 1; | |
6182 | } | |
6183 | ||
6184 | /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any | |
6185 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
6186 | true). Assumes that PATN is a lower-cased Ada simple name. */ | |
6187 | ||
6188 | static int | |
6189 | wild_match (const char *name, const char *patn) | |
6190 | { | |
22e048c9 | 6191 | const char *p; |
73589123 PH |
6192 | const char *name0 = name; |
6193 | ||
6194 | while (1) | |
6195 | { | |
6196 | const char *match = name; | |
6197 | ||
6198 | if (*name == *patn) | |
6199 | { | |
6200 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
6201 | if (*p != *name) | |
6202 | break; | |
6203 | if (*p == '\0' && is_name_suffix (name)) | |
6204 | return match != name0 && !is_valid_name_for_wild_match (name0); | |
6205 | ||
6206 | if (name[-1] == '_') | |
6207 | name -= 1; | |
6208 | } | |
6209 | if (!advance_wild_match (&name, name0, *patn)) | |
6210 | return 1; | |
96d887e8 | 6211 | } |
96d887e8 PH |
6212 | } |
6213 | ||
40658b94 PH |
6214 | /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from |
6215 | informational suffix. */ | |
6216 | ||
c4d840bd PH |
6217 | static int |
6218 | full_match (const char *sym_name, const char *search_name) | |
6219 | { | |
40658b94 | 6220 | return !match_name (sym_name, search_name, 0); |
c4d840bd PH |
6221 | } |
6222 | ||
6223 | ||
96d887e8 PH |
6224 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
6225 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
0963b4bd | 6226 | (if necessary). If WILD, treat as NAME with a wildcard prefix. |
4eeaa230 | 6227 | OBJFILE is the section containing BLOCK. */ |
96d887e8 PH |
6228 | |
6229 | static void | |
6230 | ada_add_block_symbols (struct obstack *obstackp, | |
f0c5f9b2 | 6231 | const struct block *block, const char *name, |
96d887e8 | 6232 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 6233 | int wild) |
96d887e8 | 6234 | { |
8157b174 | 6235 | struct block_iterator iter; |
96d887e8 PH |
6236 | int name_len = strlen (name); |
6237 | /* A matching argument symbol, if any. */ | |
6238 | struct symbol *arg_sym; | |
6239 | /* Set true when we find a matching non-argument symbol. */ | |
6240 | int found_sym; | |
6241 | struct symbol *sym; | |
6242 | ||
6243 | arg_sym = NULL; | |
6244 | found_sym = 0; | |
6245 | if (wild) | |
6246 | { | |
8157b174 TT |
6247 | for (sym = block_iter_match_first (block, name, wild_match, &iter); |
6248 | sym != NULL; sym = block_iter_match_next (name, wild_match, &iter)) | |
76a01679 | 6249 | { |
4186eb54 KS |
6250 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
6251 | SYMBOL_DOMAIN (sym), domain) | |
73589123 | 6252 | && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0) |
76a01679 | 6253 | { |
2a2d4dc3 AS |
6254 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
6255 | continue; | |
6256 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
6257 | arg_sym = sym; | |
6258 | else | |
6259 | { | |
76a01679 JB |
6260 | found_sym = 1; |
6261 | add_defn_to_vec (obstackp, | |
6262 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 6263 | block); |
76a01679 JB |
6264 | } |
6265 | } | |
6266 | } | |
96d887e8 PH |
6267 | } |
6268 | else | |
6269 | { | |
8157b174 TT |
6270 | for (sym = block_iter_match_first (block, name, full_match, &iter); |
6271 | sym != NULL; sym = block_iter_match_next (name, full_match, &iter)) | |
76a01679 | 6272 | { |
4186eb54 KS |
6273 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
6274 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 | 6275 | { |
c4d840bd PH |
6276 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
6277 | { | |
6278 | if (SYMBOL_IS_ARGUMENT (sym)) | |
6279 | arg_sym = sym; | |
6280 | else | |
2a2d4dc3 | 6281 | { |
c4d840bd PH |
6282 | found_sym = 1; |
6283 | add_defn_to_vec (obstackp, | |
6284 | fixup_symbol_section (sym, objfile), | |
6285 | block); | |
2a2d4dc3 | 6286 | } |
c4d840bd | 6287 | } |
76a01679 JB |
6288 | } |
6289 | } | |
96d887e8 PH |
6290 | } |
6291 | ||
22cee43f PMR |
6292 | /* Handle renamings. */ |
6293 | ||
6294 | if (ada_add_block_renamings (obstackp, block, name, domain, wild)) | |
6295 | found_sym = 1; | |
6296 | ||
96d887e8 PH |
6297 | if (!found_sym && arg_sym != NULL) |
6298 | { | |
76a01679 JB |
6299 | add_defn_to_vec (obstackp, |
6300 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 6301 | block); |
96d887e8 PH |
6302 | } |
6303 | ||
6304 | if (!wild) | |
6305 | { | |
6306 | arg_sym = NULL; | |
6307 | found_sym = 0; | |
6308 | ||
6309 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 6310 | { |
4186eb54 KS |
6311 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
6312 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
6313 | { |
6314 | int cmp; | |
6315 | ||
6316 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
6317 | if (cmp == 0) | |
6318 | { | |
61012eef | 6319 | cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_"); |
76a01679 JB |
6320 | if (cmp == 0) |
6321 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
6322 | name_len); | |
6323 | } | |
6324 | ||
6325 | if (cmp == 0 | |
6326 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
6327 | { | |
2a2d4dc3 AS |
6328 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
6329 | { | |
6330 | if (SYMBOL_IS_ARGUMENT (sym)) | |
6331 | arg_sym = sym; | |
6332 | else | |
6333 | { | |
6334 | found_sym = 1; | |
6335 | add_defn_to_vec (obstackp, | |
6336 | fixup_symbol_section (sym, objfile), | |
6337 | block); | |
6338 | } | |
6339 | } | |
76a01679 JB |
6340 | } |
6341 | } | |
76a01679 | 6342 | } |
96d887e8 PH |
6343 | |
6344 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
6345 | They aren't parameters, right? */ | |
6346 | if (!found_sym && arg_sym != NULL) | |
6347 | { | |
6348 | add_defn_to_vec (obstackp, | |
76a01679 | 6349 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 6350 | block); |
96d887e8 PH |
6351 | } |
6352 | } | |
6353 | } | |
6354 | \f | |
41d27058 JB |
6355 | |
6356 | /* Symbol Completion */ | |
6357 | ||
6358 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
6359 | name in a form that's appropriate for the completion. The result | |
6360 | does not need to be deallocated, but is only good until the next call. | |
6361 | ||
6362 | TEXT_LEN is equal to the length of TEXT. | |
e701b3c0 | 6363 | Perform a wild match if WILD_MATCH_P is set. |
6ea35997 | 6364 | ENCODED_P should be set if TEXT represents the start of a symbol name |
41d27058 JB |
6365 | in its encoded form. */ |
6366 | ||
6367 | static const char * | |
6368 | symbol_completion_match (const char *sym_name, | |
6369 | const char *text, int text_len, | |
6ea35997 | 6370 | int wild_match_p, int encoded_p) |
41d27058 | 6371 | { |
41d27058 JB |
6372 | const int verbatim_match = (text[0] == '<'); |
6373 | int match = 0; | |
6374 | ||
6375 | if (verbatim_match) | |
6376 | { | |
6377 | /* Strip the leading angle bracket. */ | |
6378 | text = text + 1; | |
6379 | text_len--; | |
6380 | } | |
6381 | ||
6382 | /* First, test against the fully qualified name of the symbol. */ | |
6383 | ||
6384 | if (strncmp (sym_name, text, text_len) == 0) | |
6385 | match = 1; | |
6386 | ||
6ea35997 | 6387 | if (match && !encoded_p) |
41d27058 JB |
6388 | { |
6389 | /* One needed check before declaring a positive match is to verify | |
6390 | that iff we are doing a verbatim match, the decoded version | |
6391 | of the symbol name starts with '<'. Otherwise, this symbol name | |
6392 | is not a suitable completion. */ | |
6393 | const char *sym_name_copy = sym_name; | |
6394 | int has_angle_bracket; | |
6395 | ||
6396 | sym_name = ada_decode (sym_name); | |
6397 | has_angle_bracket = (sym_name[0] == '<'); | |
6398 | match = (has_angle_bracket == verbatim_match); | |
6399 | sym_name = sym_name_copy; | |
6400 | } | |
6401 | ||
6402 | if (match && !verbatim_match) | |
6403 | { | |
6404 | /* When doing non-verbatim match, another check that needs to | |
6405 | be done is to verify that the potentially matching symbol name | |
6406 | does not include capital letters, because the ada-mode would | |
6407 | not be able to understand these symbol names without the | |
6408 | angle bracket notation. */ | |
6409 | const char *tmp; | |
6410 | ||
6411 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
6412 | if (*tmp != '\0') | |
6413 | match = 0; | |
6414 | } | |
6415 | ||
6416 | /* Second: Try wild matching... */ | |
6417 | ||
e701b3c0 | 6418 | if (!match && wild_match_p) |
41d27058 JB |
6419 | { |
6420 | /* Since we are doing wild matching, this means that TEXT | |
6421 | may represent an unqualified symbol name. We therefore must | |
6422 | also compare TEXT against the unqualified name of the symbol. */ | |
6423 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
6424 | ||
6425 | if (strncmp (sym_name, text, text_len) == 0) | |
6426 | match = 1; | |
6427 | } | |
6428 | ||
6429 | /* Finally: If we found a mach, prepare the result to return. */ | |
6430 | ||
6431 | if (!match) | |
6432 | return NULL; | |
6433 | ||
6434 | if (verbatim_match) | |
6435 | sym_name = add_angle_brackets (sym_name); | |
6436 | ||
6ea35997 | 6437 | if (!encoded_p) |
41d27058 JB |
6438 | sym_name = ada_decode (sym_name); |
6439 | ||
6440 | return sym_name; | |
6441 | } | |
6442 | ||
6443 | /* A companion function to ada_make_symbol_completion_list(). | |
6444 | Check if SYM_NAME represents a symbol which name would be suitable | |
6445 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
6446 | it is appended at the end of the given string vector SV. | |
6447 | ||
6448 | ORIG_TEXT is the string original string from the user command | |
6449 | that needs to be completed. WORD is the entire command on which | |
6450 | completion should be performed. These two parameters are used to | |
6451 | determine which part of the symbol name should be added to the | |
6452 | completion vector. | |
c0af1706 | 6453 | if WILD_MATCH_P is set, then wild matching is performed. |
cb8e9b97 | 6454 | ENCODED_P should be set if TEXT represents a symbol name in its |
41d27058 JB |
6455 | encoded formed (in which case the completion should also be |
6456 | encoded). */ | |
6457 | ||
6458 | static void | |
d6565258 | 6459 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
6460 | const char *sym_name, |
6461 | const char *text, int text_len, | |
6462 | const char *orig_text, const char *word, | |
cb8e9b97 | 6463 | int wild_match_p, int encoded_p) |
41d27058 JB |
6464 | { |
6465 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
cb8e9b97 | 6466 | wild_match_p, encoded_p); |
41d27058 JB |
6467 | char *completion; |
6468 | ||
6469 | if (match == NULL) | |
6470 | return; | |
6471 | ||
6472 | /* We found a match, so add the appropriate completion to the given | |
6473 | string vector. */ | |
6474 | ||
6475 | if (word == orig_text) | |
6476 | { | |
224c3ddb | 6477 | completion = (char *) xmalloc (strlen (match) + 5); |
41d27058 JB |
6478 | strcpy (completion, match); |
6479 | } | |
6480 | else if (word > orig_text) | |
6481 | { | |
6482 | /* Return some portion of sym_name. */ | |
224c3ddb | 6483 | completion = (char *) xmalloc (strlen (match) + 5); |
41d27058 JB |
6484 | strcpy (completion, match + (word - orig_text)); |
6485 | } | |
6486 | else | |
6487 | { | |
6488 | /* Return some of ORIG_TEXT plus sym_name. */ | |
224c3ddb | 6489 | completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5); |
41d27058 JB |
6490 | strncpy (completion, word, orig_text - word); |
6491 | completion[orig_text - word] = '\0'; | |
6492 | strcat (completion, match); | |
6493 | } | |
6494 | ||
d6565258 | 6495 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
6496 | } |
6497 | ||
49c4e619 TT |
6498 | /* Return a list of possible symbol names completing TEXT0. WORD is |
6499 | the entire command on which completion is made. */ | |
41d27058 | 6500 | |
49c4e619 | 6501 | static VEC (char_ptr) * |
6f937416 PA |
6502 | ada_make_symbol_completion_list (const char *text0, const char *word, |
6503 | enum type_code code) | |
41d27058 JB |
6504 | { |
6505 | char *text; | |
6506 | int text_len; | |
b1ed564a JB |
6507 | int wild_match_p; |
6508 | int encoded_p; | |
2ba95b9b | 6509 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 | 6510 | struct symbol *sym; |
43f3e411 | 6511 | struct compunit_symtab *s; |
41d27058 JB |
6512 | struct minimal_symbol *msymbol; |
6513 | struct objfile *objfile; | |
3977b71f | 6514 | const struct block *b, *surrounding_static_block = 0; |
41d27058 | 6515 | int i; |
8157b174 | 6516 | struct block_iterator iter; |
b8fea896 | 6517 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
41d27058 | 6518 | |
2f68a895 TT |
6519 | gdb_assert (code == TYPE_CODE_UNDEF); |
6520 | ||
41d27058 JB |
6521 | if (text0[0] == '<') |
6522 | { | |
6523 | text = xstrdup (text0); | |
6524 | make_cleanup (xfree, text); | |
6525 | text_len = strlen (text); | |
b1ed564a JB |
6526 | wild_match_p = 0; |
6527 | encoded_p = 1; | |
41d27058 JB |
6528 | } |
6529 | else | |
6530 | { | |
6531 | text = xstrdup (ada_encode (text0)); | |
6532 | make_cleanup (xfree, text); | |
6533 | text_len = strlen (text); | |
6534 | for (i = 0; i < text_len; i++) | |
6535 | text[i] = tolower (text[i]); | |
6536 | ||
b1ed564a | 6537 | encoded_p = (strstr (text0, "__") != NULL); |
41d27058 JB |
6538 | /* If the name contains a ".", then the user is entering a fully |
6539 | qualified entity name, and the match must not be done in wild | |
6540 | mode. Similarly, if the user wants to complete what looks like | |
6541 | an encoded name, the match must not be done in wild mode. */ | |
b1ed564a | 6542 | wild_match_p = (strchr (text0, '.') == NULL && !encoded_p); |
41d27058 JB |
6543 | } |
6544 | ||
6545 | /* First, look at the partial symtab symbols. */ | |
14bc53a8 PA |
6546 | expand_symtabs_matching (NULL, |
6547 | [&] (const char *symname) | |
6548 | { | |
6549 | return symbol_completion_match (symname, | |
6550 | text, text_len, | |
6551 | wild_match_p, | |
6552 | encoded_p); | |
6553 | }, | |
6554 | NULL, | |
6555 | ALL_DOMAIN); | |
41d27058 JB |
6556 | |
6557 | /* At this point scan through the misc symbol vectors and add each | |
6558 | symbol you find to the list. Eventually we want to ignore | |
6559 | anything that isn't a text symbol (everything else will be | |
6560 | handled by the psymtab code above). */ | |
6561 | ||
6562 | ALL_MSYMBOLS (objfile, msymbol) | |
6563 | { | |
6564 | QUIT; | |
efd66ac6 | 6565 | symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol), |
b1ed564a JB |
6566 | text, text_len, text0, word, wild_match_p, |
6567 | encoded_p); | |
41d27058 JB |
6568 | } |
6569 | ||
6570 | /* Search upwards from currently selected frame (so that we can | |
6571 | complete on local vars. */ | |
6572 | ||
6573 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
6574 | { | |
6575 | if (!BLOCK_SUPERBLOCK (b)) | |
6576 | surrounding_static_block = b; /* For elmin of dups */ | |
6577 | ||
6578 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6579 | { | |
d6565258 | 6580 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6581 | text, text_len, text0, word, |
b1ed564a | 6582 | wild_match_p, encoded_p); |
41d27058 JB |
6583 | } |
6584 | } | |
6585 | ||
6586 | /* Go through the symtabs and check the externs and statics for | |
43f3e411 | 6587 | symbols which match. */ |
41d27058 | 6588 | |
43f3e411 | 6589 | ALL_COMPUNITS (objfile, s) |
41d27058 JB |
6590 | { |
6591 | QUIT; | |
43f3e411 | 6592 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK); |
41d27058 JB |
6593 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
6594 | { | |
d6565258 | 6595 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6596 | text, text_len, text0, word, |
b1ed564a | 6597 | wild_match_p, encoded_p); |
41d27058 JB |
6598 | } |
6599 | } | |
6600 | ||
43f3e411 | 6601 | ALL_COMPUNITS (objfile, s) |
41d27058 JB |
6602 | { |
6603 | QUIT; | |
43f3e411 | 6604 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK); |
41d27058 JB |
6605 | /* Don't do this block twice. */ |
6606 | if (b == surrounding_static_block) | |
6607 | continue; | |
6608 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6609 | { | |
d6565258 | 6610 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6611 | text, text_len, text0, word, |
b1ed564a | 6612 | wild_match_p, encoded_p); |
41d27058 JB |
6613 | } |
6614 | } | |
6615 | ||
b8fea896 | 6616 | do_cleanups (old_chain); |
49c4e619 | 6617 | return completions; |
41d27058 JB |
6618 | } |
6619 | ||
963a6417 | 6620 | /* Field Access */ |
96d887e8 | 6621 | |
73fb9985 JB |
6622 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
6623 | for tagged types. */ | |
6624 | ||
6625 | static int | |
6626 | ada_is_dispatch_table_ptr_type (struct type *type) | |
6627 | { | |
0d5cff50 | 6628 | const char *name; |
73fb9985 JB |
6629 | |
6630 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
6631 | return 0; | |
6632 | ||
6633 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
6634 | if (name == NULL) | |
6635 | return 0; | |
6636 | ||
6637 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
6638 | } | |
6639 | ||
ac4a2da4 JG |
6640 | /* Return non-zero if TYPE is an interface tag. */ |
6641 | ||
6642 | static int | |
6643 | ada_is_interface_tag (struct type *type) | |
6644 | { | |
6645 | const char *name = TYPE_NAME (type); | |
6646 | ||
6647 | if (name == NULL) | |
6648 | return 0; | |
6649 | ||
6650 | return (strcmp (name, "ada__tags__interface_tag") == 0); | |
6651 | } | |
6652 | ||
963a6417 PH |
6653 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
6654 | to be invisible to users. */ | |
96d887e8 | 6655 | |
963a6417 PH |
6656 | int |
6657 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 6658 | { |
963a6417 PH |
6659 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
6660 | return 1; | |
ffde82bf | 6661 | |
73fb9985 JB |
6662 | /* Check the name of that field. */ |
6663 | { | |
6664 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
6665 | ||
6666 | /* Anonymous field names should not be printed. | |
6667 | brobecker/2007-02-20: I don't think this can actually happen | |
6668 | but we don't want to print the value of annonymous fields anyway. */ | |
6669 | if (name == NULL) | |
6670 | return 1; | |
6671 | ||
ffde82bf JB |
6672 | /* Normally, fields whose name start with an underscore ("_") |
6673 | are fields that have been internally generated by the compiler, | |
6674 | and thus should not be printed. The "_parent" field is special, | |
6675 | however: This is a field internally generated by the compiler | |
6676 | for tagged types, and it contains the components inherited from | |
6677 | the parent type. This field should not be printed as is, but | |
6678 | should not be ignored either. */ | |
61012eef | 6679 | if (name[0] == '_' && !startswith (name, "_parent")) |
73fb9985 JB |
6680 | return 1; |
6681 | } | |
6682 | ||
ac4a2da4 JG |
6683 | /* If this is the dispatch table of a tagged type or an interface tag, |
6684 | then ignore. */ | |
73fb9985 | 6685 | if (ada_is_tagged_type (type, 1) |
ac4a2da4 JG |
6686 | && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)) |
6687 | || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num)))) | |
73fb9985 JB |
6688 | return 1; |
6689 | ||
6690 | /* Not a special field, so it should not be ignored. */ | |
6691 | return 0; | |
963a6417 | 6692 | } |
96d887e8 | 6693 | |
963a6417 | 6694 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 6695 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 6696 | |
963a6417 PH |
6697 | int |
6698 | ada_is_tagged_type (struct type *type, int refok) | |
6699 | { | |
6700 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
6701 | } | |
96d887e8 | 6702 | |
963a6417 | 6703 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 6704 | |
963a6417 PH |
6705 | int |
6706 | ada_is_tag_type (struct type *type) | |
6707 | { | |
460efde1 JB |
6708 | type = ada_check_typedef (type); |
6709 | ||
963a6417 PH |
6710 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) |
6711 | return 0; | |
6712 | else | |
96d887e8 | 6713 | { |
963a6417 | 6714 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 6715 | |
963a6417 PH |
6716 | return (name != NULL |
6717 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 6718 | } |
96d887e8 PH |
6719 | } |
6720 | ||
963a6417 | 6721 | /* The type of the tag on VAL. */ |
76a01679 | 6722 | |
963a6417 PH |
6723 | struct type * |
6724 | ada_tag_type (struct value *val) | |
96d887e8 | 6725 | { |
df407dfe | 6726 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 6727 | } |
96d887e8 | 6728 | |
b50d69b5 JG |
6729 | /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95, |
6730 | retired at Ada 05). */ | |
6731 | ||
6732 | static int | |
6733 | is_ada95_tag (struct value *tag) | |
6734 | { | |
6735 | return ada_value_struct_elt (tag, "tsd", 1) != NULL; | |
6736 | } | |
6737 | ||
963a6417 | 6738 | /* The value of the tag on VAL. */ |
96d887e8 | 6739 | |
963a6417 PH |
6740 | struct value * |
6741 | ada_value_tag (struct value *val) | |
6742 | { | |
03ee6b2e | 6743 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
6744 | } |
6745 | ||
963a6417 PH |
6746 | /* The value of the tag on the object of type TYPE whose contents are |
6747 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 6748 | ADDRESS. */ |
96d887e8 | 6749 | |
963a6417 | 6750 | static struct value * |
10a2c479 | 6751 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 6752 | const gdb_byte *valaddr, |
963a6417 | 6753 | CORE_ADDR address) |
96d887e8 | 6754 | { |
b5385fc0 | 6755 | int tag_byte_offset; |
963a6417 | 6756 | struct type *tag_type; |
5b4ee69b | 6757 | |
963a6417 | 6758 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 6759 | NULL, NULL, NULL)) |
96d887e8 | 6760 | { |
fc1a4b47 | 6761 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
6762 | ? NULL |
6763 | : valaddr + tag_byte_offset); | |
963a6417 | 6764 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 6765 | |
963a6417 | 6766 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 6767 | } |
963a6417 PH |
6768 | return NULL; |
6769 | } | |
96d887e8 | 6770 | |
963a6417 PH |
6771 | static struct type * |
6772 | type_from_tag (struct value *tag) | |
6773 | { | |
6774 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 6775 | |
963a6417 PH |
6776 | if (type_name != NULL) |
6777 | return ada_find_any_type (ada_encode (type_name)); | |
6778 | return NULL; | |
6779 | } | |
96d887e8 | 6780 | |
b50d69b5 JG |
6781 | /* Given a value OBJ of a tagged type, return a value of this |
6782 | type at the base address of the object. The base address, as | |
6783 | defined in Ada.Tags, it is the address of the primary tag of | |
6784 | the object, and therefore where the field values of its full | |
6785 | view can be fetched. */ | |
6786 | ||
6787 | struct value * | |
6788 | ada_tag_value_at_base_address (struct value *obj) | |
6789 | { | |
b50d69b5 JG |
6790 | struct value *val; |
6791 | LONGEST offset_to_top = 0; | |
6792 | struct type *ptr_type, *obj_type; | |
6793 | struct value *tag; | |
6794 | CORE_ADDR base_address; | |
6795 | ||
6796 | obj_type = value_type (obj); | |
6797 | ||
6798 | /* It is the responsability of the caller to deref pointers. */ | |
6799 | ||
6800 | if (TYPE_CODE (obj_type) == TYPE_CODE_PTR | |
6801 | || TYPE_CODE (obj_type) == TYPE_CODE_REF) | |
6802 | return obj; | |
6803 | ||
6804 | tag = ada_value_tag (obj); | |
6805 | if (!tag) | |
6806 | return obj; | |
6807 | ||
6808 | /* Base addresses only appeared with Ada 05 and multiple inheritance. */ | |
6809 | ||
6810 | if (is_ada95_tag (tag)) | |
6811 | return obj; | |
6812 | ||
6813 | ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; | |
6814 | ptr_type = lookup_pointer_type (ptr_type); | |
6815 | val = value_cast (ptr_type, tag); | |
6816 | if (!val) | |
6817 | return obj; | |
6818 | ||
6819 | /* It is perfectly possible that an exception be raised while | |
6820 | trying to determine the base address, just like for the tag; | |
6821 | see ada_tag_name for more details. We do not print the error | |
6822 | message for the same reason. */ | |
6823 | ||
492d29ea | 6824 | TRY |
b50d69b5 JG |
6825 | { |
6826 | offset_to_top = value_as_long (value_ind (value_ptradd (val, -2))); | |
6827 | } | |
6828 | ||
492d29ea PA |
6829 | CATCH (e, RETURN_MASK_ERROR) |
6830 | { | |
6831 | return obj; | |
6832 | } | |
6833 | END_CATCH | |
b50d69b5 JG |
6834 | |
6835 | /* If offset is null, nothing to do. */ | |
6836 | ||
6837 | if (offset_to_top == 0) | |
6838 | return obj; | |
6839 | ||
6840 | /* -1 is a special case in Ada.Tags; however, what should be done | |
6841 | is not quite clear from the documentation. So do nothing for | |
6842 | now. */ | |
6843 | ||
6844 | if (offset_to_top == -1) | |
6845 | return obj; | |
6846 | ||
6847 | base_address = value_address (obj) - offset_to_top; | |
6848 | tag = value_tag_from_contents_and_address (obj_type, NULL, base_address); | |
6849 | ||
6850 | /* Make sure that we have a proper tag at the new address. | |
6851 | Otherwise, offset_to_top is bogus (which can happen when | |
6852 | the object is not initialized yet). */ | |
6853 | ||
6854 | if (!tag) | |
6855 | return obj; | |
6856 | ||
6857 | obj_type = type_from_tag (tag); | |
6858 | ||
6859 | if (!obj_type) | |
6860 | return obj; | |
6861 | ||
6862 | return value_from_contents_and_address (obj_type, NULL, base_address); | |
6863 | } | |
6864 | ||
1b611343 JB |
6865 | /* Return the "ada__tags__type_specific_data" type. */ |
6866 | ||
6867 | static struct type * | |
6868 | ada_get_tsd_type (struct inferior *inf) | |
963a6417 | 6869 | { |
1b611343 | 6870 | struct ada_inferior_data *data = get_ada_inferior_data (inf); |
4c4b4cd2 | 6871 | |
1b611343 JB |
6872 | if (data->tsd_type == 0) |
6873 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
6874 | return data->tsd_type; | |
6875 | } | |
529cad9c | 6876 | |
1b611343 JB |
6877 | /* Return the TSD (type-specific data) associated to the given TAG. |
6878 | TAG is assumed to be the tag of a tagged-type entity. | |
529cad9c | 6879 | |
1b611343 | 6880 | May return NULL if we are unable to get the TSD. */ |
4c4b4cd2 | 6881 | |
1b611343 JB |
6882 | static struct value * |
6883 | ada_get_tsd_from_tag (struct value *tag) | |
4c4b4cd2 | 6884 | { |
4c4b4cd2 | 6885 | struct value *val; |
1b611343 | 6886 | struct type *type; |
5b4ee69b | 6887 | |
1b611343 JB |
6888 | /* First option: The TSD is simply stored as a field of our TAG. |
6889 | Only older versions of GNAT would use this format, but we have | |
6890 | to test it first, because there are no visible markers for | |
6891 | the current approach except the absence of that field. */ | |
529cad9c | 6892 | |
1b611343 JB |
6893 | val = ada_value_struct_elt (tag, "tsd", 1); |
6894 | if (val) | |
6895 | return val; | |
e802dbe0 | 6896 | |
1b611343 JB |
6897 | /* Try the second representation for the dispatch table (in which |
6898 | there is no explicit 'tsd' field in the referent of the tag pointer, | |
6899 | and instead the tsd pointer is stored just before the dispatch | |
6900 | table. */ | |
e802dbe0 | 6901 | |
1b611343 JB |
6902 | type = ada_get_tsd_type (current_inferior()); |
6903 | if (type == NULL) | |
6904 | return NULL; | |
6905 | type = lookup_pointer_type (lookup_pointer_type (type)); | |
6906 | val = value_cast (type, tag); | |
6907 | if (val == NULL) | |
6908 | return NULL; | |
6909 | return value_ind (value_ptradd (val, -1)); | |
e802dbe0 JB |
6910 | } |
6911 | ||
1b611343 JB |
6912 | /* Given the TSD of a tag (type-specific data), return a string |
6913 | containing the name of the associated type. | |
6914 | ||
6915 | The returned value is good until the next call. May return NULL | |
6916 | if we are unable to determine the tag name. */ | |
6917 | ||
6918 | static char * | |
6919 | ada_tag_name_from_tsd (struct value *tsd) | |
529cad9c | 6920 | { |
529cad9c PH |
6921 | static char name[1024]; |
6922 | char *p; | |
1b611343 | 6923 | struct value *val; |
529cad9c | 6924 | |
1b611343 | 6925 | val = ada_value_struct_elt (tsd, "expanded_name", 1); |
4c4b4cd2 | 6926 | if (val == NULL) |
1b611343 | 6927 | return NULL; |
4c4b4cd2 PH |
6928 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); |
6929 | for (p = name; *p != '\0'; p += 1) | |
6930 | if (isalpha (*p)) | |
6931 | *p = tolower (*p); | |
1b611343 | 6932 | return name; |
4c4b4cd2 PH |
6933 | } |
6934 | ||
6935 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
1b611343 JB |
6936 | a C string. |
6937 | ||
6938 | Return NULL if the TAG is not an Ada tag, or if we were unable to | |
6939 | determine the name of that tag. The result is good until the next | |
6940 | call. */ | |
4c4b4cd2 PH |
6941 | |
6942 | const char * | |
6943 | ada_tag_name (struct value *tag) | |
6944 | { | |
1b611343 | 6945 | char *name = NULL; |
5b4ee69b | 6946 | |
df407dfe | 6947 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 6948 | return NULL; |
1b611343 JB |
6949 | |
6950 | /* It is perfectly possible that an exception be raised while trying | |
6951 | to determine the TAG's name, even under normal circumstances: | |
6952 | The associated variable may be uninitialized or corrupted, for | |
6953 | instance. We do not let any exception propagate past this point. | |
6954 | instead we return NULL. | |
6955 | ||
6956 | We also do not print the error message either (which often is very | |
6957 | low-level (Eg: "Cannot read memory at 0x[...]"), but instead let | |
6958 | the caller print a more meaningful message if necessary. */ | |
492d29ea | 6959 | TRY |
1b611343 JB |
6960 | { |
6961 | struct value *tsd = ada_get_tsd_from_tag (tag); | |
6962 | ||
6963 | if (tsd != NULL) | |
6964 | name = ada_tag_name_from_tsd (tsd); | |
6965 | } | |
492d29ea PA |
6966 | CATCH (e, RETURN_MASK_ERROR) |
6967 | { | |
6968 | } | |
6969 | END_CATCH | |
1b611343 JB |
6970 | |
6971 | return name; | |
4c4b4cd2 PH |
6972 | } |
6973 | ||
6974 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 6975 | |
d2e4a39e | 6976 | struct type * |
ebf56fd3 | 6977 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
6978 | { |
6979 | int i; | |
6980 | ||
61ee279c | 6981 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6982 | |
6983 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
6984 | return NULL; | |
6985 | ||
6986 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6987 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
6988 | { |
6989 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
6990 | ||
6991 | /* If the _parent field is a pointer, then dereference it. */ | |
6992 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
6993 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
6994 | /* If there is a parallel XVS type, get the actual base type. */ | |
6995 | parent_type = ada_get_base_type (parent_type); | |
6996 | ||
6997 | return ada_check_typedef (parent_type); | |
6998 | } | |
14f9c5c9 AS |
6999 | |
7000 | return NULL; | |
7001 | } | |
7002 | ||
4c4b4cd2 PH |
7003 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
7004 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
7005 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
7006 | |
7007 | int | |
ebf56fd3 | 7008 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 7009 | { |
61ee279c | 7010 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 7011 | |
4c4b4cd2 | 7012 | return (name != NULL |
61012eef GB |
7013 | && (startswith (name, "PARENT") |
7014 | || startswith (name, "_parent"))); | |
14f9c5c9 AS |
7015 | } |
7016 | ||
4c4b4cd2 | 7017 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 7018 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 7019 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 7020 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 7021 | structures. */ |
14f9c5c9 AS |
7022 | |
7023 | int | |
ebf56fd3 | 7024 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 7025 | { |
d2e4a39e | 7026 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 7027 | |
dddc0e16 JB |
7028 | if (name != NULL && strcmp (name, "RETVAL") == 0) |
7029 | { | |
7030 | /* This happens in functions with "out" or "in out" parameters | |
7031 | which are passed by copy. For such functions, GNAT describes | |
7032 | the function's return type as being a struct where the return | |
7033 | value is in a field called RETVAL, and where the other "out" | |
7034 | or "in out" parameters are fields of that struct. This is not | |
7035 | a wrapper. */ | |
7036 | return 0; | |
7037 | } | |
7038 | ||
d2e4a39e | 7039 | return (name != NULL |
61012eef | 7040 | && (startswith (name, "PARENT") |
4c4b4cd2 | 7041 | || strcmp (name, "REP") == 0 |
61012eef | 7042 | || startswith (name, "_parent") |
4c4b4cd2 | 7043 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); |
14f9c5c9 AS |
7044 | } |
7045 | ||
4c4b4cd2 PH |
7046 | /* True iff field number FIELD_NUM of structure or union type TYPE |
7047 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
7048 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
7049 | |
7050 | int | |
ebf56fd3 | 7051 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 7052 | { |
d2e4a39e | 7053 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 7054 | |
14f9c5c9 | 7055 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 7056 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
7057 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
7058 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
7059 | } |
7060 | ||
7061 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 7062 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
7063 | returns the type of the controlling discriminant for the variant. |
7064 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 7065 | |
d2e4a39e | 7066 | struct type * |
ebf56fd3 | 7067 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 7068 | { |
a121b7c1 | 7069 | const char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 7070 | |
7c964f07 | 7071 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 AS |
7072 | } |
7073 | ||
4c4b4cd2 | 7074 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 7075 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 7076 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
7077 | |
7078 | int | |
ebf56fd3 | 7079 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 7080 | { |
d2e4a39e | 7081 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 7082 | |
14f9c5c9 AS |
7083 | return (name != NULL && name[0] == 'O'); |
7084 | } | |
7085 | ||
7086 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
7087 | returns the name of the discriminant controlling the variant. |
7088 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 7089 | |
a121b7c1 | 7090 | const char * |
ebf56fd3 | 7091 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 7092 | { |
d2e4a39e | 7093 | static char *result = NULL; |
14f9c5c9 | 7094 | static size_t result_len = 0; |
d2e4a39e AS |
7095 | struct type *type; |
7096 | const char *name; | |
7097 | const char *discrim_end; | |
7098 | const char *discrim_start; | |
14f9c5c9 AS |
7099 | |
7100 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
7101 | type = TYPE_TARGET_TYPE (type0); | |
7102 | else | |
7103 | type = type0; | |
7104 | ||
7105 | name = ada_type_name (type); | |
7106 | ||
7107 | if (name == NULL || name[0] == '\000') | |
7108 | return ""; | |
7109 | ||
7110 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
7111 | discrim_end -= 1) | |
7112 | { | |
61012eef | 7113 | if (startswith (discrim_end, "___XVN")) |
4c4b4cd2 | 7114 | break; |
14f9c5c9 AS |
7115 | } |
7116 | if (discrim_end == name) | |
7117 | return ""; | |
7118 | ||
d2e4a39e | 7119 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
7120 | discrim_start -= 1) |
7121 | { | |
d2e4a39e | 7122 | if (discrim_start == name + 1) |
4c4b4cd2 | 7123 | return ""; |
76a01679 | 7124 | if ((discrim_start > name + 3 |
61012eef | 7125 | && startswith (discrim_start - 3, "___")) |
4c4b4cd2 PH |
7126 | || discrim_start[-1] == '.') |
7127 | break; | |
14f9c5c9 AS |
7128 | } |
7129 | ||
7130 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
7131 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 7132 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
7133 | return result; |
7134 | } | |
7135 | ||
4c4b4cd2 PH |
7136 | /* Scan STR for a subtype-encoded number, beginning at position K. |
7137 | Put the position of the character just past the number scanned in | |
7138 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
7139 | Return 1 if there was a valid number at the given position, and 0 | |
7140 | otherwise. A "subtype-encoded" number consists of the absolute value | |
7141 | in decimal, followed by the letter 'm' to indicate a negative number. | |
7142 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
7143 | |
7144 | int | |
d2e4a39e | 7145 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
7146 | { |
7147 | ULONGEST RU; | |
7148 | ||
d2e4a39e | 7149 | if (!isdigit (str[k])) |
14f9c5c9 AS |
7150 | return 0; |
7151 | ||
4c4b4cd2 | 7152 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 7153 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 7154 | LONGEST. */ |
14f9c5c9 AS |
7155 | RU = 0; |
7156 | while (isdigit (str[k])) | |
7157 | { | |
d2e4a39e | 7158 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
7159 | k += 1; |
7160 | } | |
7161 | ||
d2e4a39e | 7162 | if (str[k] == 'm') |
14f9c5c9 AS |
7163 | { |
7164 | if (R != NULL) | |
4c4b4cd2 | 7165 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
7166 | k += 1; |
7167 | } | |
7168 | else if (R != NULL) | |
7169 | *R = (LONGEST) RU; | |
7170 | ||
4c4b4cd2 | 7171 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
7172 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
7173 | number representable as a LONGEST (although either would probably work | |
7174 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 7175 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
7176 | |
7177 | if (new_k != NULL) | |
7178 | *new_k = k; | |
7179 | return 1; | |
7180 | } | |
7181 | ||
4c4b4cd2 PH |
7182 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
7183 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
7184 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 7185 | |
d2e4a39e | 7186 | int |
ebf56fd3 | 7187 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 7188 | { |
d2e4a39e | 7189 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
7190 | int p; |
7191 | ||
7192 | p = 0; | |
7193 | while (1) | |
7194 | { | |
d2e4a39e | 7195 | switch (name[p]) |
4c4b4cd2 PH |
7196 | { |
7197 | case '\0': | |
7198 | return 0; | |
7199 | case 'S': | |
7200 | { | |
7201 | LONGEST W; | |
5b4ee69b | 7202 | |
4c4b4cd2 PH |
7203 | if (!ada_scan_number (name, p + 1, &W, &p)) |
7204 | return 0; | |
7205 | if (val == W) | |
7206 | return 1; | |
7207 | break; | |
7208 | } | |
7209 | case 'R': | |
7210 | { | |
7211 | LONGEST L, U; | |
5b4ee69b | 7212 | |
4c4b4cd2 PH |
7213 | if (!ada_scan_number (name, p + 1, &L, &p) |
7214 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
7215 | return 0; | |
7216 | if (val >= L && val <= U) | |
7217 | return 1; | |
7218 | break; | |
7219 | } | |
7220 | case 'O': | |
7221 | return 1; | |
7222 | default: | |
7223 | return 0; | |
7224 | } | |
7225 | } | |
7226 | } | |
7227 | ||
0963b4bd | 7228 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
7229 | |
7230 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
7231 | ARG_TYPE, extract and return the value of one of its (non-static) | |
7232 | fields. FIELDNO says which field. Differs from value_primitive_field | |
7233 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 7234 | |
4c4b4cd2 | 7235 | static struct value * |
d2e4a39e | 7236 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 7237 | struct type *arg_type) |
14f9c5c9 | 7238 | { |
14f9c5c9 AS |
7239 | struct type *type; |
7240 | ||
61ee279c | 7241 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
7242 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
7243 | ||
4c4b4cd2 | 7244 | /* Handle packed fields. */ |
14f9c5c9 AS |
7245 | |
7246 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
7247 | { | |
7248 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
7249 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 7250 | |
0fd88904 | 7251 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
7252 | offset + bit_pos / 8, |
7253 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
7254 | } |
7255 | else | |
7256 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
7257 | } | |
7258 | ||
52ce6436 PH |
7259 | /* Find field with name NAME in object of type TYPE. If found, |
7260 | set the following for each argument that is non-null: | |
7261 | - *FIELD_TYPE_P to the field's type; | |
7262 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
7263 | an object of that type; | |
7264 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
7265 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
7266 | 0 otherwise; | |
7267 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
7268 | fields up to but not including the desired field, or by the total | |
7269 | number of fields if not found. A NULL value of NAME never | |
7270 | matches; the function just counts visible fields in this case. | |
7271 | ||
0963b4bd | 7272 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 7273 | |
4c4b4cd2 | 7274 | static int |
0d5cff50 | 7275 | find_struct_field (const char *name, struct type *type, int offset, |
76a01679 | 7276 | struct type **field_type_p, |
52ce6436 PH |
7277 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
7278 | int *index_p) | |
4c4b4cd2 PH |
7279 | { |
7280 | int i; | |
7281 | ||
61ee279c | 7282 | type = ada_check_typedef (type); |
76a01679 | 7283 | |
52ce6436 PH |
7284 | if (field_type_p != NULL) |
7285 | *field_type_p = NULL; | |
7286 | if (byte_offset_p != NULL) | |
d5d6fca5 | 7287 | *byte_offset_p = 0; |
52ce6436 PH |
7288 | if (bit_offset_p != NULL) |
7289 | *bit_offset_p = 0; | |
7290 | if (bit_size_p != NULL) | |
7291 | *bit_size_p = 0; | |
7292 | ||
7293 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
7294 | { |
7295 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
7296 | int fld_offset = offset + bit_pos / 8; | |
0d5cff50 | 7297 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
76a01679 | 7298 | |
4c4b4cd2 PH |
7299 | if (t_field_name == NULL) |
7300 | continue; | |
7301 | ||
52ce6436 | 7302 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
7303 | { |
7304 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 7305 | |
52ce6436 PH |
7306 | if (field_type_p != NULL) |
7307 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
7308 | if (byte_offset_p != NULL) | |
7309 | *byte_offset_p = fld_offset; | |
7310 | if (bit_offset_p != NULL) | |
7311 | *bit_offset_p = bit_pos % 8; | |
7312 | if (bit_size_p != NULL) | |
7313 | *bit_size_p = bit_size; | |
76a01679 JB |
7314 | return 1; |
7315 | } | |
4c4b4cd2 PH |
7316 | else if (ada_is_wrapper_field (type, i)) |
7317 | { | |
52ce6436 PH |
7318 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
7319 | field_type_p, byte_offset_p, bit_offset_p, | |
7320 | bit_size_p, index_p)) | |
76a01679 JB |
7321 | return 1; |
7322 | } | |
4c4b4cd2 PH |
7323 | else if (ada_is_variant_part (type, i)) |
7324 | { | |
52ce6436 PH |
7325 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
7326 | fixed type?? */ | |
4c4b4cd2 | 7327 | int j; |
52ce6436 PH |
7328 | struct type *field_type |
7329 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 7330 | |
52ce6436 | 7331 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 7332 | { |
76a01679 JB |
7333 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
7334 | fld_offset | |
7335 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
7336 | field_type_p, byte_offset_p, | |
52ce6436 | 7337 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 7338 | return 1; |
4c4b4cd2 PH |
7339 | } |
7340 | } | |
52ce6436 PH |
7341 | else if (index_p != NULL) |
7342 | *index_p += 1; | |
4c4b4cd2 PH |
7343 | } |
7344 | return 0; | |
7345 | } | |
7346 | ||
0963b4bd | 7347 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 7348 | |
52ce6436 PH |
7349 | static int |
7350 | num_visible_fields (struct type *type) | |
7351 | { | |
7352 | int n; | |
5b4ee69b | 7353 | |
52ce6436 PH |
7354 | n = 0; |
7355 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
7356 | return n; | |
7357 | } | |
14f9c5c9 | 7358 | |
4c4b4cd2 | 7359 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
7360 | and search in it assuming it has (class) type TYPE. |
7361 | If found, return value, else return NULL. | |
7362 | ||
4c4b4cd2 | 7363 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 7364 | |
4c4b4cd2 | 7365 | static struct value * |
108d56a4 | 7366 | ada_search_struct_field (const char *name, struct value *arg, int offset, |
4c4b4cd2 | 7367 | struct type *type) |
14f9c5c9 AS |
7368 | { |
7369 | int i; | |
14f9c5c9 | 7370 | |
5b4ee69b | 7371 | type = ada_check_typedef (type); |
52ce6436 | 7372 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 | 7373 | { |
0d5cff50 | 7374 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
7375 | |
7376 | if (t_field_name == NULL) | |
4c4b4cd2 | 7377 | continue; |
14f9c5c9 AS |
7378 | |
7379 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 7380 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
7381 | |
7382 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 7383 | { |
0963b4bd | 7384 | struct value *v = /* Do not let indent join lines here. */ |
06d5cf63 JB |
7385 | ada_search_struct_field (name, arg, |
7386 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7387 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7388 | |
4c4b4cd2 PH |
7389 | if (v != NULL) |
7390 | return v; | |
7391 | } | |
14f9c5c9 AS |
7392 | |
7393 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 7394 | { |
0963b4bd | 7395 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 7396 | int j; |
5b4ee69b MS |
7397 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7398 | i)); | |
4c4b4cd2 PH |
7399 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
7400 | ||
52ce6436 | 7401 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 7402 | { |
0963b4bd MS |
7403 | struct value *v = ada_search_struct_field /* Force line |
7404 | break. */ | |
06d5cf63 JB |
7405 | (name, arg, |
7406 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
7407 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 7408 | |
4c4b4cd2 PH |
7409 | if (v != NULL) |
7410 | return v; | |
7411 | } | |
7412 | } | |
14f9c5c9 AS |
7413 | } |
7414 | return NULL; | |
7415 | } | |
d2e4a39e | 7416 | |
52ce6436 PH |
7417 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
7418 | int, struct type *); | |
7419 | ||
7420 | ||
7421 | /* Return field #INDEX in ARG, where the index is that returned by | |
7422 | * find_struct_field through its INDEX_P argument. Adjust the address | |
7423 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 7424 | * If found, return value, else return NULL. */ |
52ce6436 PH |
7425 | |
7426 | static struct value * | |
7427 | ada_index_struct_field (int index, struct value *arg, int offset, | |
7428 | struct type *type) | |
7429 | { | |
7430 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
7431 | } | |
7432 | ||
7433 | ||
7434 | /* Auxiliary function for ada_index_struct_field. Like | |
7435 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 7436 | * *INDEX_P. */ |
52ce6436 PH |
7437 | |
7438 | static struct value * | |
7439 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
7440 | struct type *type) | |
7441 | { | |
7442 | int i; | |
7443 | type = ada_check_typedef (type); | |
7444 | ||
7445 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7446 | { | |
7447 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
7448 | continue; | |
7449 | else if (ada_is_wrapper_field (type, i)) | |
7450 | { | |
0963b4bd | 7451 | struct value *v = /* Do not let indent join lines here. */ |
52ce6436 PH |
7452 | ada_index_struct_field_1 (index_p, arg, |
7453 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7454 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7455 | |
52ce6436 PH |
7456 | if (v != NULL) |
7457 | return v; | |
7458 | } | |
7459 | ||
7460 | else if (ada_is_variant_part (type, i)) | |
7461 | { | |
7462 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
0963b4bd | 7463 | find_struct_field. */ |
52ce6436 PH |
7464 | error (_("Cannot assign this kind of variant record")); |
7465 | } | |
7466 | else if (*index_p == 0) | |
7467 | return ada_value_primitive_field (arg, offset, i, type); | |
7468 | else | |
7469 | *index_p -= 1; | |
7470 | } | |
7471 | return NULL; | |
7472 | } | |
7473 | ||
4c4b4cd2 PH |
7474 | /* Given ARG, a value of type (pointer or reference to a)* |
7475 | structure/union, extract the component named NAME from the ultimate | |
7476 | target structure/union and return it as a value with its | |
f5938064 | 7477 | appropriate type. |
14f9c5c9 | 7478 | |
4c4b4cd2 PH |
7479 | The routine searches for NAME among all members of the structure itself |
7480 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
7481 | (e.g., '_parent'). |
7482 | ||
03ee6b2e PH |
7483 | If NO_ERR, then simply return NULL in case of error, rather than |
7484 | calling error. */ | |
14f9c5c9 | 7485 | |
d2e4a39e | 7486 | struct value * |
a121b7c1 | 7487 | ada_value_struct_elt (struct value *arg, const char *name, int no_err) |
14f9c5c9 | 7488 | { |
4c4b4cd2 | 7489 | struct type *t, *t1; |
d2e4a39e | 7490 | struct value *v; |
14f9c5c9 | 7491 | |
4c4b4cd2 | 7492 | v = NULL; |
df407dfe | 7493 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
7494 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
7495 | { | |
7496 | t1 = TYPE_TARGET_TYPE (t); | |
7497 | if (t1 == NULL) | |
03ee6b2e | 7498 | goto BadValue; |
61ee279c | 7499 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 7500 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 7501 | { |
994b9211 | 7502 | arg = coerce_ref (arg); |
76a01679 JB |
7503 | t = t1; |
7504 | } | |
4c4b4cd2 | 7505 | } |
14f9c5c9 | 7506 | |
4c4b4cd2 PH |
7507 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
7508 | { | |
7509 | t1 = TYPE_TARGET_TYPE (t); | |
7510 | if (t1 == NULL) | |
03ee6b2e | 7511 | goto BadValue; |
61ee279c | 7512 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 7513 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
7514 | { |
7515 | arg = value_ind (arg); | |
7516 | t = t1; | |
7517 | } | |
4c4b4cd2 | 7518 | else |
76a01679 | 7519 | break; |
4c4b4cd2 | 7520 | } |
14f9c5c9 | 7521 | |
4c4b4cd2 | 7522 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 7523 | goto BadValue; |
14f9c5c9 | 7524 | |
4c4b4cd2 PH |
7525 | if (t1 == t) |
7526 | v = ada_search_struct_field (name, arg, 0, t); | |
7527 | else | |
7528 | { | |
7529 | int bit_offset, bit_size, byte_offset; | |
7530 | struct type *field_type; | |
7531 | CORE_ADDR address; | |
7532 | ||
76a01679 | 7533 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
b50d69b5 | 7534 | address = value_address (ada_value_ind (arg)); |
4c4b4cd2 | 7535 | else |
b50d69b5 | 7536 | address = value_address (ada_coerce_ref (arg)); |
14f9c5c9 | 7537 | |
1ed6ede0 | 7538 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
7539 | if (find_struct_field (name, t1, 0, |
7540 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 7541 | &bit_size, NULL)) |
76a01679 JB |
7542 | { |
7543 | if (bit_size != 0) | |
7544 | { | |
714e53ab PH |
7545 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
7546 | arg = ada_coerce_ref (arg); | |
7547 | else | |
7548 | arg = ada_value_ind (arg); | |
76a01679 JB |
7549 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
7550 | bit_offset, bit_size, | |
7551 | field_type); | |
7552 | } | |
7553 | else | |
f5938064 | 7554 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
7555 | } |
7556 | } | |
7557 | ||
03ee6b2e PH |
7558 | if (v != NULL || no_err) |
7559 | return v; | |
7560 | else | |
323e0a4a | 7561 | error (_("There is no member named %s."), name); |
14f9c5c9 | 7562 | |
03ee6b2e PH |
7563 | BadValue: |
7564 | if (no_err) | |
7565 | return NULL; | |
7566 | else | |
0963b4bd MS |
7567 | error (_("Attempt to extract a component of " |
7568 | "a value that is not a record.")); | |
14f9c5c9 AS |
7569 | } |
7570 | ||
3b4de39c | 7571 | /* Return a string representation of type TYPE. */ |
99bbb428 | 7572 | |
3b4de39c | 7573 | static std::string |
99bbb428 PA |
7574 | type_as_string (struct type *type) |
7575 | { | |
d7e74731 | 7576 | string_file tmp_stream; |
99bbb428 | 7577 | |
d7e74731 | 7578 | type_print (type, "", &tmp_stream, -1); |
99bbb428 | 7579 | |
d7e74731 | 7580 | return std::move (tmp_stream.string ()); |
99bbb428 PA |
7581 | } |
7582 | ||
14f9c5c9 | 7583 | /* Given a type TYPE, look up the type of the component of type named NAME. |
4c4b4cd2 PH |
7584 | If DISPP is non-null, add its byte displacement from the beginning of a |
7585 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
7586 | work for packed fields). |
7587 | ||
7588 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 7589 | followed by "___". |
14f9c5c9 | 7590 | |
0963b4bd | 7591 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
7592 | be a (pointer or reference)+ to a struct or union, and the |
7593 | ultimate target type will be searched. | |
14f9c5c9 AS |
7594 | |
7595 | Looks recursively into variant clauses and parent types. | |
7596 | ||
4c4b4cd2 PH |
7597 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
7598 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 7599 | |
4c4b4cd2 | 7600 | static struct type * |
a121b7c1 | 7601 | ada_lookup_struct_elt_type (struct type *type, const char *name, int refok, |
76a01679 | 7602 | int noerr, int *dispp) |
14f9c5c9 AS |
7603 | { |
7604 | int i; | |
7605 | ||
7606 | if (name == NULL) | |
7607 | goto BadName; | |
7608 | ||
76a01679 | 7609 | if (refok && type != NULL) |
4c4b4cd2 PH |
7610 | while (1) |
7611 | { | |
61ee279c | 7612 | type = ada_check_typedef (type); |
76a01679 JB |
7613 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
7614 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
7615 | break; | |
7616 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 7617 | } |
14f9c5c9 | 7618 | |
76a01679 | 7619 | if (type == NULL |
1265e4aa JB |
7620 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
7621 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 7622 | { |
4c4b4cd2 | 7623 | if (noerr) |
76a01679 | 7624 | return NULL; |
99bbb428 | 7625 | |
3b4de39c PA |
7626 | error (_("Type %s is not a structure or union type"), |
7627 | type != NULL ? type_as_string (type).c_str () : _("(null)")); | |
14f9c5c9 AS |
7628 | } |
7629 | ||
7630 | type = to_static_fixed_type (type); | |
7631 | ||
7632 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7633 | { | |
0d5cff50 | 7634 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
7635 | struct type *t; |
7636 | int disp; | |
d2e4a39e | 7637 | |
14f9c5c9 | 7638 | if (t_field_name == NULL) |
4c4b4cd2 | 7639 | continue; |
14f9c5c9 AS |
7640 | |
7641 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
7642 | { |
7643 | if (dispp != NULL) | |
7644 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
460efde1 | 7645 | return TYPE_FIELD_TYPE (type, i); |
4c4b4cd2 | 7646 | } |
14f9c5c9 AS |
7647 | |
7648 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
7649 | { |
7650 | disp = 0; | |
7651 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
7652 | 0, 1, &disp); | |
7653 | if (t != NULL) | |
7654 | { | |
7655 | if (dispp != NULL) | |
7656 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
7657 | return t; | |
7658 | } | |
7659 | } | |
14f9c5c9 AS |
7660 | |
7661 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
7662 | { |
7663 | int j; | |
5b4ee69b MS |
7664 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7665 | i)); | |
4c4b4cd2 PH |
7666 | |
7667 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
7668 | { | |
b1f33ddd JB |
7669 | /* FIXME pnh 2008/01/26: We check for a field that is |
7670 | NOT wrapped in a struct, since the compiler sometimes | |
7671 | generates these for unchecked variant types. Revisit | |
0963b4bd | 7672 | if the compiler changes this practice. */ |
0d5cff50 | 7673 | const char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
4c4b4cd2 | 7674 | disp = 0; |
b1f33ddd JB |
7675 | if (v_field_name != NULL |
7676 | && field_name_match (v_field_name, name)) | |
460efde1 | 7677 | t = TYPE_FIELD_TYPE (field_type, j); |
b1f33ddd | 7678 | else |
0963b4bd MS |
7679 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, |
7680 | j), | |
b1f33ddd JB |
7681 | name, 0, 1, &disp); |
7682 | ||
4c4b4cd2 PH |
7683 | if (t != NULL) |
7684 | { | |
7685 | if (dispp != NULL) | |
7686 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
7687 | return t; | |
7688 | } | |
7689 | } | |
7690 | } | |
14f9c5c9 AS |
7691 | |
7692 | } | |
7693 | ||
7694 | BadName: | |
d2e4a39e | 7695 | if (!noerr) |
14f9c5c9 | 7696 | { |
2b2798cc | 7697 | const char *name_str = name != NULL ? name : _("<null>"); |
99bbb428 PA |
7698 | |
7699 | error (_("Type %s has no component named %s"), | |
3b4de39c | 7700 | type_as_string (type).c_str (), name_str); |
14f9c5c9 AS |
7701 | } |
7702 | ||
7703 | return NULL; | |
7704 | } | |
7705 | ||
b1f33ddd JB |
7706 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7707 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
7708 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 7709 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
7710 | |
7711 | static int | |
7712 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
7713 | { | |
a121b7c1 | 7714 | const char *discrim_name = ada_variant_discrim_name (var_type); |
5b4ee69b | 7715 | |
b1f33ddd JB |
7716 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) |
7717 | == NULL); | |
7718 | } | |
7719 | ||
7720 | ||
14f9c5c9 AS |
7721 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7722 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
7723 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
7724 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 7725 | |
d2e4a39e | 7726 | int |
ebf56fd3 | 7727 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 7728 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
7729 | { |
7730 | int others_clause; | |
7731 | int i; | |
a121b7c1 | 7732 | const char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
7733 | struct value *outer; |
7734 | struct value *discrim; | |
14f9c5c9 AS |
7735 | LONGEST discrim_val; |
7736 | ||
012370f6 TT |
7737 | /* Using plain value_from_contents_and_address here causes problems |
7738 | because we will end up trying to resolve a type that is currently | |
7739 | being constructed. */ | |
7740 | outer = value_from_contents_and_address_unresolved (outer_type, | |
7741 | outer_valaddr, 0); | |
0c281816 JB |
7742 | discrim = ada_value_struct_elt (outer, discrim_name, 1); |
7743 | if (discrim == NULL) | |
14f9c5c9 | 7744 | return -1; |
0c281816 | 7745 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
7746 | |
7747 | others_clause = -1; | |
7748 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
7749 | { | |
7750 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 7751 | others_clause = i; |
14f9c5c9 | 7752 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 7753 | return i; |
14f9c5c9 AS |
7754 | } |
7755 | ||
7756 | return others_clause; | |
7757 | } | |
d2e4a39e | 7758 | \f |
14f9c5c9 AS |
7759 | |
7760 | ||
4c4b4cd2 | 7761 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
7762 | |
7763 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
7764 | (i.e., a size that is not statically recorded in the debugging | |
7765 | data) does not accurately reflect the size or layout of the value. | |
7766 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 7767 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
7768 | |
7769 | /* There is a subtle and tricky problem here. In general, we cannot | |
7770 | determine the size of dynamic records without its data. However, | |
7771 | the 'struct value' data structure, which GDB uses to represent | |
7772 | quantities in the inferior process (the target), requires the size | |
7773 | of the type at the time of its allocation in order to reserve space | |
7774 | for GDB's internal copy of the data. That's why the | |
7775 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 7776 | rather than struct value*s. |
14f9c5c9 AS |
7777 | |
7778 | However, GDB's internal history variables ($1, $2, etc.) are | |
7779 | struct value*s containing internal copies of the data that are not, in | |
7780 | general, the same as the data at their corresponding addresses in | |
7781 | the target. Fortunately, the types we give to these values are all | |
7782 | conventional, fixed-size types (as per the strategy described | |
7783 | above), so that we don't usually have to perform the | |
7784 | 'to_fixed_xxx_type' conversions to look at their values. | |
7785 | Unfortunately, there is one exception: if one of the internal | |
7786 | history variables is an array whose elements are unconstrained | |
7787 | records, then we will need to create distinct fixed types for each | |
7788 | element selected. */ | |
7789 | ||
7790 | /* The upshot of all of this is that many routines take a (type, host | |
7791 | address, target address) triple as arguments to represent a value. | |
7792 | The host address, if non-null, is supposed to contain an internal | |
7793 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 7794 | target at the target address. */ |
14f9c5c9 AS |
7795 | |
7796 | /* Assuming that VAL0 represents a pointer value, the result of | |
7797 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 7798 | dynamic-sized types. */ |
14f9c5c9 | 7799 | |
d2e4a39e AS |
7800 | struct value * |
7801 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 7802 | { |
c48db5ca | 7803 | struct value *val = value_ind (val0); |
5b4ee69b | 7804 | |
b50d69b5 JG |
7805 | if (ada_is_tagged_type (value_type (val), 0)) |
7806 | val = ada_tag_value_at_base_address (val); | |
7807 | ||
4c4b4cd2 | 7808 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
7809 | } |
7810 | ||
7811 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
7812 | qualifiers on VAL0. */ |
7813 | ||
d2e4a39e AS |
7814 | static struct value * |
7815 | ada_coerce_ref (struct value *val0) | |
7816 | { | |
df407dfe | 7817 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
7818 | { |
7819 | struct value *val = val0; | |
5b4ee69b | 7820 | |
994b9211 | 7821 | val = coerce_ref (val); |
b50d69b5 JG |
7822 | |
7823 | if (ada_is_tagged_type (value_type (val), 0)) | |
7824 | val = ada_tag_value_at_base_address (val); | |
7825 | ||
4c4b4cd2 | 7826 | return ada_to_fixed_value (val); |
d2e4a39e AS |
7827 | } |
7828 | else | |
14f9c5c9 AS |
7829 | return val0; |
7830 | } | |
7831 | ||
7832 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 7833 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
7834 | |
7835 | static unsigned int | |
ebf56fd3 | 7836 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
7837 | { |
7838 | return (off + alignment - 1) & ~(alignment - 1); | |
7839 | } | |
7840 | ||
4c4b4cd2 | 7841 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
7842 | |
7843 | static unsigned int | |
ebf56fd3 | 7844 | field_alignment (struct type *type, int f) |
14f9c5c9 | 7845 | { |
d2e4a39e | 7846 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 7847 | int len; |
14f9c5c9 AS |
7848 | int align_offset; |
7849 | ||
64a1bf19 JB |
7850 | /* The field name should never be null, unless the debugging information |
7851 | is somehow malformed. In this case, we assume the field does not | |
7852 | require any alignment. */ | |
7853 | if (name == NULL) | |
7854 | return 1; | |
7855 | ||
7856 | len = strlen (name); | |
7857 | ||
4c4b4cd2 PH |
7858 | if (!isdigit (name[len - 1])) |
7859 | return 1; | |
14f9c5c9 | 7860 | |
d2e4a39e | 7861 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
7862 | align_offset = len - 2; |
7863 | else | |
7864 | align_offset = len - 1; | |
7865 | ||
61012eef | 7866 | if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV")) |
14f9c5c9 AS |
7867 | return TARGET_CHAR_BIT; |
7868 | ||
4c4b4cd2 PH |
7869 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
7870 | } | |
7871 | ||
852dff6c | 7872 | /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */ |
4c4b4cd2 | 7873 | |
852dff6c JB |
7874 | static struct symbol * |
7875 | ada_find_any_type_symbol (const char *name) | |
4c4b4cd2 PH |
7876 | { |
7877 | struct symbol *sym; | |
7878 | ||
7879 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
4186eb54 | 7880 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) |
4c4b4cd2 PH |
7881 | return sym; |
7882 | ||
4186eb54 KS |
7883 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); |
7884 | return sym; | |
14f9c5c9 AS |
7885 | } |
7886 | ||
dddfab26 UW |
7887 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
7888 | solely for types defined by debug info, it will not search the GDB | |
7889 | primitive types. */ | |
4c4b4cd2 | 7890 | |
852dff6c | 7891 | static struct type * |
ebf56fd3 | 7892 | ada_find_any_type (const char *name) |
14f9c5c9 | 7893 | { |
852dff6c | 7894 | struct symbol *sym = ada_find_any_type_symbol (name); |
14f9c5c9 | 7895 | |
14f9c5c9 | 7896 | if (sym != NULL) |
dddfab26 | 7897 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 7898 | |
dddfab26 | 7899 | return NULL; |
14f9c5c9 AS |
7900 | } |
7901 | ||
739593e0 JB |
7902 | /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol |
7903 | associated with NAME_SYM's name. NAME_SYM may itself be a renaming | |
7904 | symbol, in which case it is returned. Otherwise, this looks for | |
7905 | symbols whose name is that of NAME_SYM suffixed with "___XR". | |
7906 | Return symbol if found, and NULL otherwise. */ | |
4c4b4cd2 PH |
7907 | |
7908 | struct symbol * | |
270140bd | 7909 | ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block) |
aeb5907d | 7910 | { |
739593e0 | 7911 | const char *name = SYMBOL_LINKAGE_NAME (name_sym); |
aeb5907d JB |
7912 | struct symbol *sym; |
7913 | ||
739593e0 JB |
7914 | if (strstr (name, "___XR") != NULL) |
7915 | return name_sym; | |
7916 | ||
aeb5907d JB |
7917 | sym = find_old_style_renaming_symbol (name, block); |
7918 | ||
7919 | if (sym != NULL) | |
7920 | return sym; | |
7921 | ||
0963b4bd | 7922 | /* Not right yet. FIXME pnh 7/20/2007. */ |
852dff6c | 7923 | sym = ada_find_any_type_symbol (name); |
aeb5907d JB |
7924 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) |
7925 | return sym; | |
7926 | else | |
7927 | return NULL; | |
7928 | } | |
7929 | ||
7930 | static struct symbol * | |
270140bd | 7931 | find_old_style_renaming_symbol (const char *name, const struct block *block) |
4c4b4cd2 | 7932 | { |
7f0df278 | 7933 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
7934 | char *rename; |
7935 | ||
7936 | if (function_sym != NULL) | |
7937 | { | |
7938 | /* If the symbol is defined inside a function, NAME is not fully | |
7939 | qualified. This means we need to prepend the function name | |
7940 | as well as adding the ``___XR'' suffix to build the name of | |
7941 | the associated renaming symbol. */ | |
0d5cff50 | 7942 | const char *function_name = SYMBOL_LINKAGE_NAME (function_sym); |
529cad9c PH |
7943 | /* Function names sometimes contain suffixes used |
7944 | for instance to qualify nested subprograms. When building | |
7945 | the XR type name, we need to make sure that this suffix is | |
7946 | not included. So do not include any suffix in the function | |
7947 | name length below. */ | |
69fadcdf | 7948 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
7949 | const int rename_len = function_name_len + 2 /* "__" */ |
7950 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 7951 | |
529cad9c | 7952 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
7953 | ada_remove_trailing_digits (function_name, &function_name_len); |
7954 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
7955 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 7956 | |
4c4b4cd2 PH |
7957 | /* Library-level functions are a special case, as GNAT adds |
7958 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 7959 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
7960 | have this prefix, so we need to skip this prefix if present. */ |
7961 | if (function_name_len > 5 /* "_ada_" */ | |
7962 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
7963 | { |
7964 | function_name += 5; | |
7965 | function_name_len -= 5; | |
7966 | } | |
4c4b4cd2 PH |
7967 | |
7968 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
7969 | strncpy (rename, function_name, function_name_len); |
7970 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
7971 | "__%s___XR", name); | |
4c4b4cd2 PH |
7972 | } |
7973 | else | |
7974 | { | |
7975 | const int rename_len = strlen (name) + 6; | |
5b4ee69b | 7976 | |
4c4b4cd2 | 7977 | rename = (char *) alloca (rename_len * sizeof (char)); |
88c15c34 | 7978 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
7979 | } |
7980 | ||
852dff6c | 7981 | return ada_find_any_type_symbol (rename); |
4c4b4cd2 PH |
7982 | } |
7983 | ||
14f9c5c9 | 7984 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 7985 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 7986 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
7987 | otherwise return 0. */ |
7988 | ||
14f9c5c9 | 7989 | int |
d2e4a39e | 7990 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
7991 | { |
7992 | if (type1 == NULL) | |
7993 | return 1; | |
7994 | else if (type0 == NULL) | |
7995 | return 0; | |
7996 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
7997 | return 1; | |
7998 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
7999 | return 0; | |
4c4b4cd2 PH |
8000 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
8001 | return 1; | |
ad82864c | 8002 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 8003 | return 1; |
4c4b4cd2 PH |
8004 | else if (ada_is_array_descriptor_type (type0) |
8005 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 8006 | return 1; |
aeb5907d JB |
8007 | else |
8008 | { | |
8009 | const char *type0_name = type_name_no_tag (type0); | |
8010 | const char *type1_name = type_name_no_tag (type1); | |
8011 | ||
8012 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
8013 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
8014 | return 1; | |
8015 | } | |
14f9c5c9 AS |
8016 | return 0; |
8017 | } | |
8018 | ||
8019 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
8020 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
8021 | ||
0d5cff50 | 8022 | const char * |
d2e4a39e | 8023 | ada_type_name (struct type *type) |
14f9c5c9 | 8024 | { |
d2e4a39e | 8025 | if (type == NULL) |
14f9c5c9 AS |
8026 | return NULL; |
8027 | else if (TYPE_NAME (type) != NULL) | |
8028 | return TYPE_NAME (type); | |
8029 | else | |
8030 | return TYPE_TAG_NAME (type); | |
8031 | } | |
8032 | ||
b4ba55a1 JB |
8033 | /* Search the list of "descriptive" types associated to TYPE for a type |
8034 | whose name is NAME. */ | |
8035 | ||
8036 | static struct type * | |
8037 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
8038 | { | |
931e5bc3 | 8039 | struct type *result, *tmp; |
b4ba55a1 | 8040 | |
c6044dd1 JB |
8041 | if (ada_ignore_descriptive_types_p) |
8042 | return NULL; | |
8043 | ||
b4ba55a1 JB |
8044 | /* If there no descriptive-type info, then there is no parallel type |
8045 | to be found. */ | |
8046 | if (!HAVE_GNAT_AUX_INFO (type)) | |
8047 | return NULL; | |
8048 | ||
8049 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
8050 | while (result != NULL) | |
8051 | { | |
0d5cff50 | 8052 | const char *result_name = ada_type_name (result); |
b4ba55a1 JB |
8053 | |
8054 | if (result_name == NULL) | |
8055 | { | |
8056 | warning (_("unexpected null name on descriptive type")); | |
8057 | return NULL; | |
8058 | } | |
8059 | ||
8060 | /* If the names match, stop. */ | |
8061 | if (strcmp (result_name, name) == 0) | |
8062 | break; | |
8063 | ||
8064 | /* Otherwise, look at the next item on the list, if any. */ | |
8065 | if (HAVE_GNAT_AUX_INFO (result)) | |
931e5bc3 JG |
8066 | tmp = TYPE_DESCRIPTIVE_TYPE (result); |
8067 | else | |
8068 | tmp = NULL; | |
8069 | ||
8070 | /* If not found either, try after having resolved the typedef. */ | |
8071 | if (tmp != NULL) | |
8072 | result = tmp; | |
b4ba55a1 | 8073 | else |
931e5bc3 | 8074 | { |
f168693b | 8075 | result = check_typedef (result); |
931e5bc3 JG |
8076 | if (HAVE_GNAT_AUX_INFO (result)) |
8077 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
8078 | else | |
8079 | result = NULL; | |
8080 | } | |
b4ba55a1 JB |
8081 | } |
8082 | ||
8083 | /* If we didn't find a match, see whether this is a packed array. With | |
8084 | older compilers, the descriptive type information is either absent or | |
8085 | irrelevant when it comes to packed arrays so the above lookup fails. | |
8086 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 8087 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
8088 | return ada_find_any_type (name); |
8089 | ||
8090 | return result; | |
8091 | } | |
8092 | ||
8093 | /* Find a parallel type to TYPE with the specified NAME, using the | |
8094 | descriptive type taken from the debugging information, if available, | |
8095 | and otherwise using the (slower) name-based method. */ | |
8096 | ||
8097 | static struct type * | |
8098 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
8099 | { | |
8100 | struct type *result = NULL; | |
8101 | ||
8102 | if (HAVE_GNAT_AUX_INFO (type)) | |
8103 | result = find_parallel_type_by_descriptive_type (type, name); | |
8104 | else | |
8105 | result = ada_find_any_type (name); | |
8106 | ||
8107 | return result; | |
8108 | } | |
8109 | ||
8110 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 8111 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 8112 | |
d2e4a39e | 8113 | struct type * |
ebf56fd3 | 8114 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 8115 | { |
0d5cff50 | 8116 | char *name; |
fe978cb0 | 8117 | const char *type_name = ada_type_name (type); |
14f9c5c9 | 8118 | int len; |
d2e4a39e | 8119 | |
fe978cb0 | 8120 | if (type_name == NULL) |
14f9c5c9 AS |
8121 | return NULL; |
8122 | ||
fe978cb0 | 8123 | len = strlen (type_name); |
14f9c5c9 | 8124 | |
b4ba55a1 | 8125 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 | 8126 | |
fe978cb0 | 8127 | strcpy (name, type_name); |
14f9c5c9 AS |
8128 | strcpy (name + len, suffix); |
8129 | ||
b4ba55a1 | 8130 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
8131 | } |
8132 | ||
14f9c5c9 | 8133 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 8134 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 8135 | |
d2e4a39e AS |
8136 | static struct type * |
8137 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 8138 | { |
61ee279c | 8139 | type = ada_check_typedef (type); |
14f9c5c9 AS |
8140 | |
8141 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 8142 | || ada_type_name (type) == NULL) |
14f9c5c9 | 8143 | return NULL; |
d2e4a39e | 8144 | else |
14f9c5c9 AS |
8145 | { |
8146 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 8147 | |
4c4b4cd2 PH |
8148 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
8149 | return type; | |
14f9c5c9 | 8150 | else |
4c4b4cd2 | 8151 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
8152 | } |
8153 | } | |
8154 | ||
8155 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 8156 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 8157 | |
d2e4a39e AS |
8158 | static int |
8159 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
8160 | { |
8161 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 8162 | |
d2e4a39e | 8163 | return name != NULL |
14f9c5c9 AS |
8164 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
8165 | && strstr (name, "___XVL") != NULL; | |
8166 | } | |
8167 | ||
4c4b4cd2 PH |
8168 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
8169 | represent a variant record type. */ | |
14f9c5c9 | 8170 | |
d2e4a39e | 8171 | static int |
4c4b4cd2 | 8172 | variant_field_index (struct type *type) |
14f9c5c9 AS |
8173 | { |
8174 | int f; | |
8175 | ||
4c4b4cd2 PH |
8176 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
8177 | return -1; | |
8178 | ||
8179 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
8180 | { | |
8181 | if (ada_is_variant_part (type, f)) | |
8182 | return f; | |
8183 | } | |
8184 | return -1; | |
14f9c5c9 AS |
8185 | } |
8186 | ||
4c4b4cd2 PH |
8187 | /* A record type with no fields. */ |
8188 | ||
d2e4a39e | 8189 | static struct type * |
fe978cb0 | 8190 | empty_record (struct type *templ) |
14f9c5c9 | 8191 | { |
fe978cb0 | 8192 | struct type *type = alloc_type_copy (templ); |
5b4ee69b | 8193 | |
14f9c5c9 AS |
8194 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
8195 | TYPE_NFIELDS (type) = 0; | |
8196 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 8197 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
8198 | TYPE_NAME (type) = "<empty>"; |
8199 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
8200 | TYPE_LENGTH (type) = 0; |
8201 | return type; | |
8202 | } | |
8203 | ||
8204 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
8205 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
8206 | the beginning of this section) VAL according to GNAT conventions. | |
8207 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 8208 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
8209 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
8210 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 8211 | of the variant. |
14f9c5c9 | 8212 | |
4c4b4cd2 PH |
8213 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
8214 | length are not statically known are discarded. As a consequence, | |
8215 | VALADDR, ADDRESS and DVAL0 are ignored. | |
8216 | ||
8217 | NOTE: Limitations: For now, we assume that dynamic fields and | |
8218 | variants occupy whole numbers of bytes. However, they need not be | |
8219 | byte-aligned. */ | |
8220 | ||
8221 | struct type * | |
10a2c479 | 8222 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 8223 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
8224 | CORE_ADDR address, struct value *dval0, |
8225 | int keep_dynamic_fields) | |
14f9c5c9 | 8226 | { |
d2e4a39e AS |
8227 | struct value *mark = value_mark (); |
8228 | struct value *dval; | |
8229 | struct type *rtype; | |
14f9c5c9 | 8230 | int nfields, bit_len; |
4c4b4cd2 | 8231 | int variant_field; |
14f9c5c9 | 8232 | long off; |
d94e4f4f | 8233 | int fld_bit_len; |
14f9c5c9 AS |
8234 | int f; |
8235 | ||
4c4b4cd2 PH |
8236 | /* Compute the number of fields in this record type that are going |
8237 | to be processed: unless keep_dynamic_fields, this includes only | |
8238 | fields whose position and length are static will be processed. */ | |
8239 | if (keep_dynamic_fields) | |
8240 | nfields = TYPE_NFIELDS (type); | |
8241 | else | |
8242 | { | |
8243 | nfields = 0; | |
76a01679 | 8244 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
8245 | && !ada_is_variant_part (type, nfields) |
8246 | && !is_dynamic_field (type, nfields)) | |
8247 | nfields++; | |
8248 | } | |
8249 | ||
e9bb382b | 8250 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
8251 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
8252 | INIT_CPLUS_SPECIFIC (rtype); | |
8253 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 8254 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
8255 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
8256 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
8257 | TYPE_NAME (rtype) = ada_type_name (type); | |
8258 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 8259 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 8260 | |
d2e4a39e AS |
8261 | off = 0; |
8262 | bit_len = 0; | |
4c4b4cd2 PH |
8263 | variant_field = -1; |
8264 | ||
14f9c5c9 AS |
8265 | for (f = 0; f < nfields; f += 1) |
8266 | { | |
6c038f32 PH |
8267 | off = align_value (off, field_alignment (type, f)) |
8268 | + TYPE_FIELD_BITPOS (type, f); | |
945b3a32 | 8269 | SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off); |
d2e4a39e | 8270 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 8271 | |
d2e4a39e | 8272 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
8273 | { |
8274 | variant_field = f; | |
d94e4f4f | 8275 | fld_bit_len = 0; |
4c4b4cd2 | 8276 | } |
14f9c5c9 | 8277 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 8278 | { |
284614f0 JB |
8279 | const gdb_byte *field_valaddr = valaddr; |
8280 | CORE_ADDR field_address = address; | |
8281 | struct type *field_type = | |
8282 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
8283 | ||
4c4b4cd2 | 8284 | if (dval0 == NULL) |
b5304971 JG |
8285 | { |
8286 | /* rtype's length is computed based on the run-time | |
8287 | value of discriminants. If the discriminants are not | |
8288 | initialized, the type size may be completely bogus and | |
0963b4bd | 8289 | GDB may fail to allocate a value for it. So check the |
b5304971 | 8290 | size first before creating the value. */ |
c1b5a1a6 | 8291 | ada_ensure_varsize_limit (rtype); |
012370f6 TT |
8292 | /* Using plain value_from_contents_and_address here |
8293 | causes problems because we will end up trying to | |
8294 | resolve a type that is currently being | |
8295 | constructed. */ | |
8296 | dval = value_from_contents_and_address_unresolved (rtype, | |
8297 | valaddr, | |
8298 | address); | |
9f1f738a | 8299 | rtype = value_type (dval); |
b5304971 | 8300 | } |
4c4b4cd2 PH |
8301 | else |
8302 | dval = dval0; | |
8303 | ||
284614f0 JB |
8304 | /* If the type referenced by this field is an aligner type, we need |
8305 | to unwrap that aligner type, because its size might not be set. | |
8306 | Keeping the aligner type would cause us to compute the wrong | |
8307 | size for this field, impacting the offset of the all the fields | |
8308 | that follow this one. */ | |
8309 | if (ada_is_aligner_type (field_type)) | |
8310 | { | |
8311 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
8312 | ||
8313 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
8314 | field_address = cond_offset_target (field_address, field_offset); | |
8315 | field_type = ada_aligned_type (field_type); | |
8316 | } | |
8317 | ||
8318 | field_valaddr = cond_offset_host (field_valaddr, | |
8319 | off / TARGET_CHAR_BIT); | |
8320 | field_address = cond_offset_target (field_address, | |
8321 | off / TARGET_CHAR_BIT); | |
8322 | ||
8323 | /* Get the fixed type of the field. Note that, in this case, | |
8324 | we do not want to get the real type out of the tag: if | |
8325 | the current field is the parent part of a tagged record, | |
8326 | we will get the tag of the object. Clearly wrong: the real | |
8327 | type of the parent is not the real type of the child. We | |
8328 | would end up in an infinite loop. */ | |
8329 | field_type = ada_get_base_type (field_type); | |
8330 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
8331 | field_address, dval, 0); | |
27f2a97b JB |
8332 | /* If the field size is already larger than the maximum |
8333 | object size, then the record itself will necessarily | |
8334 | be larger than the maximum object size. We need to make | |
8335 | this check now, because the size might be so ridiculously | |
8336 | large (due to an uninitialized variable in the inferior) | |
8337 | that it would cause an overflow when adding it to the | |
8338 | record size. */ | |
c1b5a1a6 | 8339 | ada_ensure_varsize_limit (field_type); |
284614f0 JB |
8340 | |
8341 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 | 8342 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
8343 | /* The multiplication can potentially overflow. But because |
8344 | the field length has been size-checked just above, and | |
8345 | assuming that the maximum size is a reasonable value, | |
8346 | an overflow should not happen in practice. So rather than | |
8347 | adding overflow recovery code to this already complex code, | |
8348 | we just assume that it's not going to happen. */ | |
d94e4f4f | 8349 | fld_bit_len = |
4c4b4cd2 PH |
8350 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; |
8351 | } | |
14f9c5c9 | 8352 | else |
4c4b4cd2 | 8353 | { |
5ded5331 JB |
8354 | /* Note: If this field's type is a typedef, it is important |
8355 | to preserve the typedef layer. | |
8356 | ||
8357 | Otherwise, we might be transforming a typedef to a fat | |
8358 | pointer (encoding a pointer to an unconstrained array), | |
8359 | into a basic fat pointer (encoding an unconstrained | |
8360 | array). As both types are implemented using the same | |
8361 | structure, the typedef is the only clue which allows us | |
8362 | to distinguish between the two options. Stripping it | |
8363 | would prevent us from printing this field appropriately. */ | |
8364 | TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); | |
4c4b4cd2 PH |
8365 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
8366 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
d94e4f4f | 8367 | fld_bit_len = |
4c4b4cd2 PH |
8368 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
8369 | else | |
5ded5331 JB |
8370 | { |
8371 | struct type *field_type = TYPE_FIELD_TYPE (type, f); | |
8372 | ||
8373 | /* We need to be careful of typedefs when computing | |
8374 | the length of our field. If this is a typedef, | |
8375 | get the length of the target type, not the length | |
8376 | of the typedef. */ | |
8377 | if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) | |
8378 | field_type = ada_typedef_target_type (field_type); | |
8379 | ||
8380 | fld_bit_len = | |
8381 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; | |
8382 | } | |
4c4b4cd2 | 8383 | } |
14f9c5c9 | 8384 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 8385 | bit_len = off + fld_bit_len; |
d94e4f4f | 8386 | off += fld_bit_len; |
4c4b4cd2 PH |
8387 | TYPE_LENGTH (rtype) = |
8388 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 8389 | } |
4c4b4cd2 PH |
8390 | |
8391 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 8392 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
8393 | the record. This can happen in the presence of representation |
8394 | clauses. */ | |
8395 | if (variant_field >= 0) | |
8396 | { | |
8397 | struct type *branch_type; | |
8398 | ||
8399 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
8400 | ||
8401 | if (dval0 == NULL) | |
9f1f738a | 8402 | { |
012370f6 TT |
8403 | /* Using plain value_from_contents_and_address here causes |
8404 | problems because we will end up trying to resolve a type | |
8405 | that is currently being constructed. */ | |
8406 | dval = value_from_contents_and_address_unresolved (rtype, valaddr, | |
8407 | address); | |
9f1f738a SA |
8408 | rtype = value_type (dval); |
8409 | } | |
4c4b4cd2 PH |
8410 | else |
8411 | dval = dval0; | |
8412 | ||
8413 | branch_type = | |
8414 | to_fixed_variant_branch_type | |
8415 | (TYPE_FIELD_TYPE (type, variant_field), | |
8416 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
8417 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
8418 | if (branch_type == NULL) | |
8419 | { | |
8420 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
8421 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
8422 | TYPE_NFIELDS (rtype) -= 1; | |
8423 | } | |
8424 | else | |
8425 | { | |
8426 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
8427 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8428 | fld_bit_len = | |
8429 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
8430 | TARGET_CHAR_BIT; | |
8431 | if (off + fld_bit_len > bit_len) | |
8432 | bit_len = off + fld_bit_len; | |
8433 | TYPE_LENGTH (rtype) = | |
8434 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
8435 | } | |
8436 | } | |
8437 | ||
714e53ab PH |
8438 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
8439 | should contain the alignment of that record, which should be a strictly | |
8440 | positive value. If null or negative, then something is wrong, most | |
8441 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 8442 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
8443 | the current RTYPE length might be good enough for our purposes. */ |
8444 | if (TYPE_LENGTH (type) <= 0) | |
8445 | { | |
323e0a4a AC |
8446 | if (TYPE_NAME (rtype)) |
8447 | warning (_("Invalid type size for `%s' detected: %d."), | |
8448 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
8449 | else | |
8450 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
8451 | TYPE_LENGTH (type)); | |
714e53ab PH |
8452 | } |
8453 | else | |
8454 | { | |
8455 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
8456 | TYPE_LENGTH (type)); | |
8457 | } | |
14f9c5c9 AS |
8458 | |
8459 | value_free_to_mark (mark); | |
d2e4a39e | 8460 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 8461 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8462 | return rtype; |
8463 | } | |
8464 | ||
4c4b4cd2 PH |
8465 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
8466 | of 1. */ | |
14f9c5c9 | 8467 | |
d2e4a39e | 8468 | static struct type * |
fc1a4b47 | 8469 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
8470 | CORE_ADDR address, struct value *dval0) |
8471 | { | |
8472 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
8473 | address, dval0, 1); | |
8474 | } | |
8475 | ||
8476 | /* An ordinary record type in which ___XVL-convention fields and | |
8477 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
8478 | static approximations, containing all possible fields. Uses | |
8479 | no runtime values. Useless for use in values, but that's OK, | |
8480 | since the results are used only for type determinations. Works on both | |
8481 | structs and unions. Representation note: to save space, we memorize | |
8482 | the result of this function in the TYPE_TARGET_TYPE of the | |
8483 | template type. */ | |
8484 | ||
8485 | static struct type * | |
8486 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
8487 | { |
8488 | struct type *type; | |
8489 | int nfields; | |
8490 | int f; | |
8491 | ||
9e195661 PMR |
8492 | /* No need no do anything if the input type is already fixed. */ |
8493 | if (TYPE_FIXED_INSTANCE (type0)) | |
8494 | return type0; | |
8495 | ||
8496 | /* Likewise if we already have computed the static approximation. */ | |
4c4b4cd2 PH |
8497 | if (TYPE_TARGET_TYPE (type0) != NULL) |
8498 | return TYPE_TARGET_TYPE (type0); | |
8499 | ||
9e195661 | 8500 | /* Don't clone TYPE0 until we are sure we are going to need a copy. */ |
4c4b4cd2 | 8501 | type = type0; |
9e195661 PMR |
8502 | nfields = TYPE_NFIELDS (type0); |
8503 | ||
8504 | /* Whether or not we cloned TYPE0, cache the result so that we don't do | |
8505 | recompute all over next time. */ | |
8506 | TYPE_TARGET_TYPE (type0) = type; | |
14f9c5c9 AS |
8507 | |
8508 | for (f = 0; f < nfields; f += 1) | |
8509 | { | |
460efde1 | 8510 | struct type *field_type = TYPE_FIELD_TYPE (type0, f); |
4c4b4cd2 | 8511 | struct type *new_type; |
14f9c5c9 | 8512 | |
4c4b4cd2 | 8513 | if (is_dynamic_field (type0, f)) |
460efde1 JB |
8514 | { |
8515 | field_type = ada_check_typedef (field_type); | |
8516 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
8517 | } | |
14f9c5c9 | 8518 | else |
f192137b | 8519 | new_type = static_unwrap_type (field_type); |
9e195661 PMR |
8520 | |
8521 | if (new_type != field_type) | |
8522 | { | |
8523 | /* Clone TYPE0 only the first time we get a new field type. */ | |
8524 | if (type == type0) | |
8525 | { | |
8526 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); | |
8527 | TYPE_CODE (type) = TYPE_CODE (type0); | |
8528 | INIT_CPLUS_SPECIFIC (type); | |
8529 | TYPE_NFIELDS (type) = nfields; | |
8530 | TYPE_FIELDS (type) = (struct field *) | |
8531 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
8532 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
8533 | sizeof (struct field) * nfields); | |
8534 | TYPE_NAME (type) = ada_type_name (type0); | |
8535 | TYPE_TAG_NAME (type) = NULL; | |
8536 | TYPE_FIXED_INSTANCE (type) = 1; | |
8537 | TYPE_LENGTH (type) = 0; | |
8538 | } | |
8539 | TYPE_FIELD_TYPE (type, f) = new_type; | |
8540 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
8541 | } | |
14f9c5c9 | 8542 | } |
9e195661 | 8543 | |
14f9c5c9 AS |
8544 | return type; |
8545 | } | |
8546 | ||
4c4b4cd2 | 8547 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
8548 | whose address in memory is ADDRESS, returns a revision of TYPE, |
8549 | which should be a non-dynamic-sized record, in which the variant | |
8550 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
8551 | for discriminant values in DVAL0, which can be NULL if the record |
8552 | contains the necessary discriminant values. */ | |
8553 | ||
d2e4a39e | 8554 | static struct type * |
fc1a4b47 | 8555 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 8556 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 8557 | { |
d2e4a39e | 8558 | struct value *mark = value_mark (); |
4c4b4cd2 | 8559 | struct value *dval; |
d2e4a39e | 8560 | struct type *rtype; |
14f9c5c9 AS |
8561 | struct type *branch_type; |
8562 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 8563 | int variant_field = variant_field_index (type); |
14f9c5c9 | 8564 | |
4c4b4cd2 | 8565 | if (variant_field == -1) |
14f9c5c9 AS |
8566 | return type; |
8567 | ||
4c4b4cd2 | 8568 | if (dval0 == NULL) |
9f1f738a SA |
8569 | { |
8570 | dval = value_from_contents_and_address (type, valaddr, address); | |
8571 | type = value_type (dval); | |
8572 | } | |
4c4b4cd2 PH |
8573 | else |
8574 | dval = dval0; | |
8575 | ||
e9bb382b | 8576 | rtype = alloc_type_copy (type); |
14f9c5c9 | 8577 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
8578 | INIT_CPLUS_SPECIFIC (rtype); |
8579 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
8580 | TYPE_FIELDS (rtype) = |
8581 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
8582 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 8583 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
8584 | TYPE_NAME (rtype) = ada_type_name (type); |
8585 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 8586 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
8587 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
8588 | ||
4c4b4cd2 PH |
8589 | branch_type = to_fixed_variant_branch_type |
8590 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 8591 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
8592 | TYPE_FIELD_BITPOS (type, variant_field) |
8593 | / TARGET_CHAR_BIT), | |
d2e4a39e | 8594 | cond_offset_target (address, |
4c4b4cd2 PH |
8595 | TYPE_FIELD_BITPOS (type, variant_field) |
8596 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 8597 | if (branch_type == NULL) |
14f9c5c9 | 8598 | { |
4c4b4cd2 | 8599 | int f; |
5b4ee69b | 8600 | |
4c4b4cd2 PH |
8601 | for (f = variant_field + 1; f < nfields; f += 1) |
8602 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 8603 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
8604 | } |
8605 | else | |
8606 | { | |
4c4b4cd2 PH |
8607 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
8608 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8609 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 8610 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 8611 | } |
4c4b4cd2 | 8612 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 8613 | |
4c4b4cd2 | 8614 | value_free_to_mark (mark); |
14f9c5c9 AS |
8615 | return rtype; |
8616 | } | |
8617 | ||
8618 | /* An ordinary record type (with fixed-length fields) that describes | |
8619 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
8620 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
8621 | should be in DVAL, a record value; it may be NULL if the object |
8622 | at ADDR itself contains any necessary discriminant values. | |
8623 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
8624 | values from the record are needed. Except in the case that DVAL, | |
8625 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
8626 | unchecked) is replaced by a particular branch of the variant. | |
8627 | ||
8628 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
8629 | is questionable and may be removed. It can arise during the | |
8630 | processing of an unconstrained-array-of-record type where all the | |
8631 | variant branches have exactly the same size. This is because in | |
8632 | such cases, the compiler does not bother to use the XVS convention | |
8633 | when encoding the record. I am currently dubious of this | |
8634 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 8635 | |
d2e4a39e | 8636 | static struct type * |
fc1a4b47 | 8637 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8638 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 8639 | { |
d2e4a39e | 8640 | struct type *templ_type; |
14f9c5c9 | 8641 | |
876cecd0 | 8642 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8643 | return type0; |
8644 | ||
d2e4a39e | 8645 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
8646 | |
8647 | if (templ_type != NULL) | |
8648 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
8649 | else if (variant_field_index (type0) >= 0) |
8650 | { | |
8651 | if (dval == NULL && valaddr == NULL && address == 0) | |
8652 | return type0; | |
8653 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
8654 | dval); | |
8655 | } | |
14f9c5c9 AS |
8656 | else |
8657 | { | |
876cecd0 | 8658 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
8659 | return type0; |
8660 | } | |
8661 | ||
8662 | } | |
8663 | ||
8664 | /* An ordinary record type (with fixed-length fields) that describes | |
8665 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
8666 | union type. Any necessary discriminants' values should be in DVAL, | |
8667 | a record value. That is, this routine selects the appropriate | |
8668 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 8669 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 8670 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 8671 | |
d2e4a39e | 8672 | static struct type * |
fc1a4b47 | 8673 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8674 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
8675 | { |
8676 | int which; | |
d2e4a39e AS |
8677 | struct type *templ_type; |
8678 | struct type *var_type; | |
14f9c5c9 AS |
8679 | |
8680 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
8681 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 8682 | else |
14f9c5c9 AS |
8683 | var_type = var_type0; |
8684 | ||
8685 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
8686 | ||
8687 | if (templ_type != NULL) | |
8688 | var_type = templ_type; | |
8689 | ||
b1f33ddd JB |
8690 | if (is_unchecked_variant (var_type, value_type (dval))) |
8691 | return var_type0; | |
d2e4a39e AS |
8692 | which = |
8693 | ada_which_variant_applies (var_type, | |
0fd88904 | 8694 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
8695 | |
8696 | if (which < 0) | |
e9bb382b | 8697 | return empty_record (var_type); |
14f9c5c9 | 8698 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 8699 | return to_fixed_record_type |
d2e4a39e AS |
8700 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
8701 | valaddr, address, dval); | |
4c4b4cd2 | 8702 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
8703 | return |
8704 | to_fixed_record_type | |
8705 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
8706 | else |
8707 | return TYPE_FIELD_TYPE (var_type, which); | |
8708 | } | |
8709 | ||
8908fca5 JB |
8710 | /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if |
8711 | ENCODING_TYPE, a type following the GNAT conventions for discrete | |
8712 | type encodings, only carries redundant information. */ | |
8713 | ||
8714 | static int | |
8715 | ada_is_redundant_range_encoding (struct type *range_type, | |
8716 | struct type *encoding_type) | |
8717 | { | |
8718 | struct type *fixed_range_type; | |
108d56a4 | 8719 | const char *bounds_str; |
8908fca5 JB |
8720 | int n; |
8721 | LONGEST lo, hi; | |
8722 | ||
8723 | gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE); | |
8724 | ||
005e2509 JB |
8725 | if (TYPE_CODE (get_base_type (range_type)) |
8726 | != TYPE_CODE (get_base_type (encoding_type))) | |
8727 | { | |
8728 | /* The compiler probably used a simple base type to describe | |
8729 | the range type instead of the range's actual base type, | |
8730 | expecting us to get the real base type from the encoding | |
8731 | anyway. In this situation, the encoding cannot be ignored | |
8732 | as redundant. */ | |
8733 | return 0; | |
8734 | } | |
8735 | ||
8908fca5 JB |
8736 | if (is_dynamic_type (range_type)) |
8737 | return 0; | |
8738 | ||
8739 | if (TYPE_NAME (encoding_type) == NULL) | |
8740 | return 0; | |
8741 | ||
8742 | bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_"); | |
8743 | if (bounds_str == NULL) | |
8744 | return 0; | |
8745 | ||
8746 | n = 8; /* Skip "___XDLU_". */ | |
8747 | if (!ada_scan_number (bounds_str, n, &lo, &n)) | |
8748 | return 0; | |
8749 | if (TYPE_LOW_BOUND (range_type) != lo) | |
8750 | return 0; | |
8751 | ||
8752 | n += 2; /* Skip the "__" separator between the two bounds. */ | |
8753 | if (!ada_scan_number (bounds_str, n, &hi, &n)) | |
8754 | return 0; | |
8755 | if (TYPE_HIGH_BOUND (range_type) != hi) | |
8756 | return 0; | |
8757 | ||
8758 | return 1; | |
8759 | } | |
8760 | ||
8761 | /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE, | |
8762 | a type following the GNAT encoding for describing array type | |
8763 | indices, only carries redundant information. */ | |
8764 | ||
8765 | static int | |
8766 | ada_is_redundant_index_type_desc (struct type *array_type, | |
8767 | struct type *desc_type) | |
8768 | { | |
8769 | struct type *this_layer = check_typedef (array_type); | |
8770 | int i; | |
8771 | ||
8772 | for (i = 0; i < TYPE_NFIELDS (desc_type); i++) | |
8773 | { | |
8774 | if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer), | |
8775 | TYPE_FIELD_TYPE (desc_type, i))) | |
8776 | return 0; | |
8777 | this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer)); | |
8778 | } | |
8779 | ||
8780 | return 1; | |
8781 | } | |
8782 | ||
14f9c5c9 AS |
8783 | /* Assuming that TYPE0 is an array type describing the type of a value |
8784 | at ADDR, and that DVAL describes a record containing any | |
8785 | discriminants used in TYPE0, returns a type for the value that | |
8786 | contains no dynamic components (that is, no components whose sizes | |
8787 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
8788 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 8789 | varsize_limit. */ |
14f9c5c9 | 8790 | |
d2e4a39e AS |
8791 | static struct type * |
8792 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 8793 | int ignore_too_big) |
14f9c5c9 | 8794 | { |
d2e4a39e AS |
8795 | struct type *index_type_desc; |
8796 | struct type *result; | |
ad82864c | 8797 | int constrained_packed_array_p; |
931e5bc3 | 8798 | static const char *xa_suffix = "___XA"; |
14f9c5c9 | 8799 | |
b0dd7688 | 8800 | type0 = ada_check_typedef (type0); |
284614f0 | 8801 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 8802 | return type0; |
14f9c5c9 | 8803 | |
ad82864c JB |
8804 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
8805 | if (constrained_packed_array_p) | |
8806 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 8807 | |
931e5bc3 JG |
8808 | index_type_desc = ada_find_parallel_type (type0, xa_suffix); |
8809 | ||
8810 | /* As mentioned in exp_dbug.ads, for non bit-packed arrays an | |
8811 | encoding suffixed with 'P' may still be generated. If so, | |
8812 | it should be used to find the XA type. */ | |
8813 | ||
8814 | if (index_type_desc == NULL) | |
8815 | { | |
1da0522e | 8816 | const char *type_name = ada_type_name (type0); |
931e5bc3 | 8817 | |
1da0522e | 8818 | if (type_name != NULL) |
931e5bc3 | 8819 | { |
1da0522e | 8820 | const int len = strlen (type_name); |
931e5bc3 JG |
8821 | char *name = (char *) alloca (len + strlen (xa_suffix)); |
8822 | ||
1da0522e | 8823 | if (type_name[len - 1] == 'P') |
931e5bc3 | 8824 | { |
1da0522e | 8825 | strcpy (name, type_name); |
931e5bc3 JG |
8826 | strcpy (name + len - 1, xa_suffix); |
8827 | index_type_desc = ada_find_parallel_type_with_name (type0, name); | |
8828 | } | |
8829 | } | |
8830 | } | |
8831 | ||
28c85d6c | 8832 | ada_fixup_array_indexes_type (index_type_desc); |
8908fca5 JB |
8833 | if (index_type_desc != NULL |
8834 | && ada_is_redundant_index_type_desc (type0, index_type_desc)) | |
8835 | { | |
8836 | /* Ignore this ___XA parallel type, as it does not bring any | |
8837 | useful information. This allows us to avoid creating fixed | |
8838 | versions of the array's index types, which would be identical | |
8839 | to the original ones. This, in turn, can also help avoid | |
8840 | the creation of fixed versions of the array itself. */ | |
8841 | index_type_desc = NULL; | |
8842 | } | |
8843 | ||
14f9c5c9 AS |
8844 | if (index_type_desc == NULL) |
8845 | { | |
61ee279c | 8846 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 8847 | |
14f9c5c9 | 8848 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
8849 | depend on the contents of the array in properly constructed |
8850 | debugging data. */ | |
529cad9c PH |
8851 | /* Create a fixed version of the array element type. |
8852 | We're not providing the address of an element here, | |
e1d5a0d2 | 8853 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8854 | the conversion. This should not be a problem, since arrays of |
8855 | unconstrained objects are not allowed. In particular, all | |
8856 | the elements of an array of a tagged type should all be of | |
8857 | the same type specified in the debugging info. No need to | |
8858 | consult the object tag. */ | |
1ed6ede0 | 8859 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 8860 | |
284614f0 JB |
8861 | /* Make sure we always create a new array type when dealing with |
8862 | packed array types, since we're going to fix-up the array | |
8863 | type length and element bitsize a little further down. */ | |
ad82864c | 8864 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 8865 | result = type0; |
14f9c5c9 | 8866 | else |
e9bb382b | 8867 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 8868 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
8869 | } |
8870 | else | |
8871 | { | |
8872 | int i; | |
8873 | struct type *elt_type0; | |
8874 | ||
8875 | elt_type0 = type0; | |
8876 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 8877 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
8878 | |
8879 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
8880 | depend on the contents of the array in properly constructed |
8881 | debugging data. */ | |
529cad9c PH |
8882 | /* Create a fixed version of the array element type. |
8883 | We're not providing the address of an element here, | |
e1d5a0d2 | 8884 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8885 | the conversion. This should not be a problem, since arrays of |
8886 | unconstrained objects are not allowed. In particular, all | |
8887 | the elements of an array of a tagged type should all be of | |
8888 | the same type specified in the debugging info. No need to | |
8889 | consult the object tag. */ | |
1ed6ede0 JB |
8890 | result = |
8891 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
8892 | |
8893 | elt_type0 = type0; | |
14f9c5c9 | 8894 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
8895 | { |
8896 | struct type *range_type = | |
28c85d6c | 8897 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 8898 | |
e9bb382b | 8899 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 8900 | result, range_type); |
1ce677a4 | 8901 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 8902 | } |
d2e4a39e | 8903 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 8904 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8905 | } |
8906 | ||
2e6fda7d JB |
8907 | /* We want to preserve the type name. This can be useful when |
8908 | trying to get the type name of a value that has already been | |
8909 | printed (for instance, if the user did "print VAR; whatis $". */ | |
8910 | TYPE_NAME (result) = TYPE_NAME (type0); | |
8911 | ||
ad82864c | 8912 | if (constrained_packed_array_p) |
284614f0 JB |
8913 | { |
8914 | /* So far, the resulting type has been created as if the original | |
8915 | type was a regular (non-packed) array type. As a result, the | |
8916 | bitsize of the array elements needs to be set again, and the array | |
8917 | length needs to be recomputed based on that bitsize. */ | |
8918 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
8919 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
8920 | ||
8921 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
8922 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
8923 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
8924 | TYPE_LENGTH (result)++; | |
8925 | } | |
8926 | ||
876cecd0 | 8927 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 8928 | return result; |
d2e4a39e | 8929 | } |
14f9c5c9 AS |
8930 | |
8931 | ||
8932 | /* A standard type (containing no dynamically sized components) | |
8933 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
8934 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 8935 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
8936 | ADDRESS or in VALADDR contains these discriminants. |
8937 | ||
1ed6ede0 JB |
8938 | If CHECK_TAG is not null, in the case of tagged types, this function |
8939 | attempts to locate the object's tag and use it to compute the actual | |
8940 | type. However, when ADDRESS is null, we cannot use it to determine the | |
8941 | location of the tag, and therefore compute the tagged type's actual type. | |
8942 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 8943 | |
f192137b JB |
8944 | static struct type * |
8945 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 8946 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 8947 | { |
61ee279c | 8948 | type = ada_check_typedef (type); |
d2e4a39e AS |
8949 | switch (TYPE_CODE (type)) |
8950 | { | |
8951 | default: | |
14f9c5c9 | 8952 | return type; |
d2e4a39e | 8953 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 8954 | { |
76a01679 | 8955 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
8956 | struct type *fixed_record_type = |
8957 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 8958 | |
529cad9c PH |
8959 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
8960 | then we can determine its tag, and compute the object's actual | |
0963b4bd | 8961 | type from there. Note that we have to use the fixed record |
1ed6ede0 JB |
8962 | type (the parent part of the record may have dynamic fields |
8963 | and the way the location of _tag is expressed may depend on | |
8964 | them). */ | |
529cad9c | 8965 | |
1ed6ede0 | 8966 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 | 8967 | { |
b50d69b5 JG |
8968 | struct value *tag = |
8969 | value_tag_from_contents_and_address | |
8970 | (fixed_record_type, | |
8971 | valaddr, | |
8972 | address); | |
8973 | struct type *real_type = type_from_tag (tag); | |
8974 | struct value *obj = | |
8975 | value_from_contents_and_address (fixed_record_type, | |
8976 | valaddr, | |
8977 | address); | |
9f1f738a | 8978 | fixed_record_type = value_type (obj); |
76a01679 | 8979 | if (real_type != NULL) |
b50d69b5 JG |
8980 | return to_fixed_record_type |
8981 | (real_type, NULL, | |
8982 | value_address (ada_tag_value_at_base_address (obj)), NULL); | |
76a01679 | 8983 | } |
4af88198 JB |
8984 | |
8985 | /* Check to see if there is a parallel ___XVZ variable. | |
8986 | If there is, then it provides the actual size of our type. */ | |
8987 | else if (ada_type_name (fixed_record_type) != NULL) | |
8988 | { | |
0d5cff50 | 8989 | const char *name = ada_type_name (fixed_record_type); |
224c3ddb SM |
8990 | char *xvz_name |
8991 | = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */); | |
4af88198 JB |
8992 | int xvz_found = 0; |
8993 | LONGEST size; | |
8994 | ||
88c15c34 | 8995 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
4af88198 JB |
8996 | size = get_int_var_value (xvz_name, &xvz_found); |
8997 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
8998 | { | |
8999 | fixed_record_type = copy_type (fixed_record_type); | |
9000 | TYPE_LENGTH (fixed_record_type) = size; | |
9001 | ||
9002 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
9003 | observed this when the debugging info is STABS, and | |
9004 | apparently it is something that is hard to fix. | |
9005 | ||
9006 | In practice, we don't need the actual type definition | |
9007 | at all, because the presence of the XVZ variable allows us | |
9008 | to assume that there must be a XVS type as well, which we | |
9009 | should be able to use later, when we need the actual type | |
9010 | definition. | |
9011 | ||
9012 | In the meantime, pretend that the "fixed" type we are | |
9013 | returning is NOT a stub, because this can cause trouble | |
9014 | when using this type to create new types targeting it. | |
9015 | Indeed, the associated creation routines often check | |
9016 | whether the target type is a stub and will try to replace | |
0963b4bd | 9017 | it, thus using a type with the wrong size. This, in turn, |
4af88198 JB |
9018 | might cause the new type to have the wrong size too. |
9019 | Consider the case of an array, for instance, where the size | |
9020 | of the array is computed from the number of elements in | |
9021 | our array multiplied by the size of its element. */ | |
9022 | TYPE_STUB (fixed_record_type) = 0; | |
9023 | } | |
9024 | } | |
1ed6ede0 | 9025 | return fixed_record_type; |
4c4b4cd2 | 9026 | } |
d2e4a39e | 9027 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 9028 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
9029 | case TYPE_CODE_UNION: |
9030 | if (dval == NULL) | |
4c4b4cd2 | 9031 | return type; |
d2e4a39e | 9032 | else |
4c4b4cd2 | 9033 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 9034 | } |
14f9c5c9 AS |
9035 | } |
9036 | ||
f192137b JB |
9037 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
9038 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
9039 | |
9040 | The typedef layer needs be preserved in order to differentiate between | |
9041 | arrays and array pointers when both types are implemented using the same | |
9042 | fat pointer. In the array pointer case, the pointer is encoded as | |
9043 | a typedef of the pointer type. For instance, considering: | |
9044 | ||
9045 | type String_Access is access String; | |
9046 | S1 : String_Access := null; | |
9047 | ||
9048 | To the debugger, S1 is defined as a typedef of type String. But | |
9049 | to the user, it is a pointer. So if the user tries to print S1, | |
9050 | we should not dereference the array, but print the array address | |
9051 | instead. | |
9052 | ||
9053 | If we didn't preserve the typedef layer, we would lose the fact that | |
9054 | the type is to be presented as a pointer (needs de-reference before | |
9055 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
9056 | |
9057 | struct type * | |
9058 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
9059 | CORE_ADDR address, struct value *dval, int check_tag) | |
9060 | ||
9061 | { | |
9062 | struct type *fixed_type = | |
9063 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
9064 | ||
96dbd2c1 JB |
9065 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
9066 | then preserve the typedef layer. | |
9067 | ||
9068 | Implementation note: We can only check the main-type portion of | |
9069 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
9070 | from TYPE now returns a type that has the same instance flags | |
9071 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
9072 | target type is a "struct", then the typedef elimination will return | |
9073 | a "const" version of the target type. See check_typedef for more | |
9074 | details about how the typedef layer elimination is done. | |
9075 | ||
9076 | brobecker/2010-11-19: It seems to me that the only case where it is | |
9077 | useful to preserve the typedef layer is when dealing with fat pointers. | |
9078 | Perhaps, we could add a check for that and preserve the typedef layer | |
9079 | only in that situation. But this seems unecessary so far, probably | |
9080 | because we call check_typedef/ada_check_typedef pretty much everywhere. | |
9081 | */ | |
f192137b | 9082 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF |
720d1a40 | 9083 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 9084 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
9085 | return type; |
9086 | ||
9087 | return fixed_type; | |
9088 | } | |
9089 | ||
14f9c5c9 | 9090 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 9091 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 9092 | |
d2e4a39e AS |
9093 | static struct type * |
9094 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 9095 | { |
d2e4a39e | 9096 | struct type *type; |
14f9c5c9 AS |
9097 | |
9098 | if (type0 == NULL) | |
9099 | return NULL; | |
9100 | ||
876cecd0 | 9101 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
9102 | return type0; |
9103 | ||
61ee279c | 9104 | type0 = ada_check_typedef (type0); |
d2e4a39e | 9105 | |
14f9c5c9 AS |
9106 | switch (TYPE_CODE (type0)) |
9107 | { | |
9108 | default: | |
9109 | return type0; | |
9110 | case TYPE_CODE_STRUCT: | |
9111 | type = dynamic_template_type (type0); | |
d2e4a39e | 9112 | if (type != NULL) |
4c4b4cd2 PH |
9113 | return template_to_static_fixed_type (type); |
9114 | else | |
9115 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
9116 | case TYPE_CODE_UNION: |
9117 | type = ada_find_parallel_type (type0, "___XVU"); | |
9118 | if (type != NULL) | |
4c4b4cd2 PH |
9119 | return template_to_static_fixed_type (type); |
9120 | else | |
9121 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
9122 | } |
9123 | } | |
9124 | ||
4c4b4cd2 PH |
9125 | /* A static approximation of TYPE with all type wrappers removed. */ |
9126 | ||
d2e4a39e AS |
9127 | static struct type * |
9128 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
9129 | { |
9130 | if (ada_is_aligner_type (type)) | |
9131 | { | |
61ee279c | 9132 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 9133 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 9134 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
9135 | |
9136 | return static_unwrap_type (type1); | |
9137 | } | |
d2e4a39e | 9138 | else |
14f9c5c9 | 9139 | { |
d2e4a39e | 9140 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 9141 | |
d2e4a39e | 9142 | if (raw_real_type == type) |
4c4b4cd2 | 9143 | return type; |
14f9c5c9 | 9144 | else |
4c4b4cd2 | 9145 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
9146 | } |
9147 | } | |
9148 | ||
9149 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 9150 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
9151 | type Foo; |
9152 | type FooP is access Foo; | |
9153 | V: FooP; | |
9154 | type Foo is array ...; | |
4c4b4cd2 | 9155 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
9156 | cross-references to such types, we instead substitute for FooP a |
9157 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 9158 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
9159 | |
9160 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
9161 | exists, otherwise TYPE. */ |
9162 | ||
d2e4a39e | 9163 | struct type * |
61ee279c | 9164 | ada_check_typedef (struct type *type) |
14f9c5c9 | 9165 | { |
727e3d2e JB |
9166 | if (type == NULL) |
9167 | return NULL; | |
9168 | ||
720d1a40 JB |
9169 | /* If our type is a typedef type of a fat pointer, then we're done. |
9170 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is | |
9171 | what allows us to distinguish between fat pointers that represent | |
9172 | array types, and fat pointers that represent array access types | |
9173 | (in both cases, the compiler implements them as fat pointers). */ | |
9174 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
9175 | && is_thick_pntr (ada_typedef_target_type (type))) | |
9176 | return type; | |
9177 | ||
f168693b | 9178 | type = check_typedef (type); |
14f9c5c9 | 9179 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
529cad9c | 9180 | || !TYPE_STUB (type) |
14f9c5c9 AS |
9181 | || TYPE_TAG_NAME (type) == NULL) |
9182 | return type; | |
d2e4a39e | 9183 | else |
14f9c5c9 | 9184 | { |
0d5cff50 | 9185 | const char *name = TYPE_TAG_NAME (type); |
d2e4a39e | 9186 | struct type *type1 = ada_find_any_type (name); |
5b4ee69b | 9187 | |
05e522ef JB |
9188 | if (type1 == NULL) |
9189 | return type; | |
9190 | ||
9191 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
9192 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
9193 | types, only for the typedef-to-array types). If that's the case, |
9194 | strip the typedef layer. */ | |
9195 | if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) | |
9196 | type1 = ada_check_typedef (type1); | |
9197 | ||
9198 | return type1; | |
14f9c5c9 AS |
9199 | } |
9200 | } | |
9201 | ||
9202 | /* A value representing the data at VALADDR/ADDRESS as described by | |
9203 | type TYPE0, but with a standard (static-sized) type that correctly | |
9204 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
9205 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 9206 | creation of struct values]. */ |
14f9c5c9 | 9207 | |
4c4b4cd2 PH |
9208 | static struct value * |
9209 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
9210 | struct value *val0) | |
14f9c5c9 | 9211 | { |
1ed6ede0 | 9212 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 9213 | |
14f9c5c9 AS |
9214 | if (type == type0 && val0 != NULL) |
9215 | return val0; | |
d2e4a39e | 9216 | else |
4c4b4cd2 PH |
9217 | return value_from_contents_and_address (type, 0, address); |
9218 | } | |
9219 | ||
9220 | /* A value representing VAL, but with a standard (static-sized) type | |
9221 | that correctly describes it. Does not necessarily create a new | |
9222 | value. */ | |
9223 | ||
0c3acc09 | 9224 | struct value * |
4c4b4cd2 PH |
9225 | ada_to_fixed_value (struct value *val) |
9226 | { | |
c48db5ca JB |
9227 | val = unwrap_value (val); |
9228 | val = ada_to_fixed_value_create (value_type (val), | |
9229 | value_address (val), | |
9230 | val); | |
9231 | return val; | |
14f9c5c9 | 9232 | } |
d2e4a39e | 9233 | \f |
14f9c5c9 | 9234 | |
14f9c5c9 AS |
9235 | /* Attributes */ |
9236 | ||
4c4b4cd2 PH |
9237 | /* Table mapping attribute numbers to names. |
9238 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 9239 | |
d2e4a39e | 9240 | static const char *attribute_names[] = { |
14f9c5c9 AS |
9241 | "<?>", |
9242 | ||
d2e4a39e | 9243 | "first", |
14f9c5c9 AS |
9244 | "last", |
9245 | "length", | |
9246 | "image", | |
14f9c5c9 AS |
9247 | "max", |
9248 | "min", | |
4c4b4cd2 PH |
9249 | "modulus", |
9250 | "pos", | |
9251 | "size", | |
9252 | "tag", | |
14f9c5c9 | 9253 | "val", |
14f9c5c9 AS |
9254 | 0 |
9255 | }; | |
9256 | ||
d2e4a39e | 9257 | const char * |
4c4b4cd2 | 9258 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 9259 | { |
4c4b4cd2 PH |
9260 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
9261 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
9262 | else |
9263 | return attribute_names[0]; | |
9264 | } | |
9265 | ||
4c4b4cd2 | 9266 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 9267 | |
4c4b4cd2 PH |
9268 | static LONGEST |
9269 | pos_atr (struct value *arg) | |
14f9c5c9 | 9270 | { |
24209737 PH |
9271 | struct value *val = coerce_ref (arg); |
9272 | struct type *type = value_type (val); | |
aa715135 | 9273 | LONGEST result; |
14f9c5c9 | 9274 | |
d2e4a39e | 9275 | if (!discrete_type_p (type)) |
323e0a4a | 9276 | error (_("'POS only defined on discrete types")); |
14f9c5c9 | 9277 | |
aa715135 JG |
9278 | if (!discrete_position (type, value_as_long (val), &result)) |
9279 | error (_("enumeration value is invalid: can't find 'POS")); | |
14f9c5c9 | 9280 | |
aa715135 | 9281 | return result; |
4c4b4cd2 PH |
9282 | } |
9283 | ||
9284 | static struct value * | |
3cb382c9 | 9285 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 9286 | { |
3cb382c9 | 9287 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
9288 | } |
9289 | ||
4c4b4cd2 | 9290 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 9291 | |
d2e4a39e AS |
9292 | static struct value * |
9293 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 9294 | { |
d2e4a39e | 9295 | if (!discrete_type_p (type)) |
323e0a4a | 9296 | error (_("'VAL only defined on discrete types")); |
df407dfe | 9297 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 9298 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
9299 | |
9300 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
9301 | { | |
9302 | long pos = value_as_long (arg); | |
5b4ee69b | 9303 | |
14f9c5c9 | 9304 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 9305 | error (_("argument to 'VAL out of range")); |
14e75d8e | 9306 | return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos)); |
14f9c5c9 AS |
9307 | } |
9308 | else | |
9309 | return value_from_longest (type, value_as_long (arg)); | |
9310 | } | |
14f9c5c9 | 9311 | \f |
d2e4a39e | 9312 | |
4c4b4cd2 | 9313 | /* Evaluation */ |
14f9c5c9 | 9314 | |
4c4b4cd2 PH |
9315 | /* True if TYPE appears to be an Ada character type. |
9316 | [At the moment, this is true only for Character and Wide_Character; | |
9317 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 9318 | |
d2e4a39e AS |
9319 | int |
9320 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 9321 | { |
7b9f71f2 JB |
9322 | const char *name; |
9323 | ||
9324 | /* If the type code says it's a character, then assume it really is, | |
9325 | and don't check any further. */ | |
9326 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
9327 | return 1; | |
9328 | ||
9329 | /* Otherwise, assume it's a character type iff it is a discrete type | |
9330 | with a known character type name. */ | |
9331 | name = ada_type_name (type); | |
9332 | return (name != NULL | |
9333 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
9334 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
9335 | && (strcmp (name, "character") == 0 | |
9336 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 9337 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 9338 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
9339 | } |
9340 | ||
4c4b4cd2 | 9341 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
9342 | |
9343 | int | |
ebf56fd3 | 9344 | ada_is_string_type (struct type *type) |
14f9c5c9 | 9345 | { |
61ee279c | 9346 | type = ada_check_typedef (type); |
d2e4a39e | 9347 | if (type != NULL |
14f9c5c9 | 9348 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
9349 | && (ada_is_simple_array_type (type) |
9350 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
9351 | && ada_array_arity (type) == 1) |
9352 | { | |
9353 | struct type *elttype = ada_array_element_type (type, 1); | |
9354 | ||
9355 | return ada_is_character_type (elttype); | |
9356 | } | |
d2e4a39e | 9357 | else |
14f9c5c9 AS |
9358 | return 0; |
9359 | } | |
9360 | ||
5bf03f13 JB |
9361 | /* The compiler sometimes provides a parallel XVS type for a given |
9362 | PAD type. Normally, it is safe to follow the PAD type directly, | |
9363 | but older versions of the compiler have a bug that causes the offset | |
9364 | of its "F" field to be wrong. Following that field in that case | |
9365 | would lead to incorrect results, but this can be worked around | |
9366 | by ignoring the PAD type and using the associated XVS type instead. | |
9367 | ||
9368 | Set to True if the debugger should trust the contents of PAD types. | |
9369 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
9370 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
9371 | |
9372 | /* True if TYPE is a struct type introduced by the compiler to force the | |
9373 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 9374 | distinctive name. */ |
14f9c5c9 AS |
9375 | |
9376 | int | |
ebf56fd3 | 9377 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 9378 | { |
61ee279c | 9379 | type = ada_check_typedef (type); |
714e53ab | 9380 | |
5bf03f13 | 9381 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
9382 | return 0; |
9383 | ||
14f9c5c9 | 9384 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
9385 | && TYPE_NFIELDS (type) == 1 |
9386 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
9387 | } |
9388 | ||
9389 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 9390 | the parallel type. */ |
14f9c5c9 | 9391 | |
d2e4a39e AS |
9392 | struct type * |
9393 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 9394 | { |
d2e4a39e AS |
9395 | struct type *real_type_namer; |
9396 | struct type *raw_real_type; | |
14f9c5c9 AS |
9397 | |
9398 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
9399 | return raw_type; | |
9400 | ||
284614f0 JB |
9401 | if (ada_is_aligner_type (raw_type)) |
9402 | /* The encoding specifies that we should always use the aligner type. | |
9403 | So, even if this aligner type has an associated XVS type, we should | |
9404 | simply ignore it. | |
9405 | ||
9406 | According to the compiler gurus, an XVS type parallel to an aligner | |
9407 | type may exist because of a stabs limitation. In stabs, aligner | |
9408 | types are empty because the field has a variable-sized type, and | |
9409 | thus cannot actually be used as an aligner type. As a result, | |
9410 | we need the associated parallel XVS type to decode the type. | |
9411 | Since the policy in the compiler is to not change the internal | |
9412 | representation based on the debugging info format, we sometimes | |
9413 | end up having a redundant XVS type parallel to the aligner type. */ | |
9414 | return raw_type; | |
9415 | ||
14f9c5c9 | 9416 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 9417 | if (real_type_namer == NULL |
14f9c5c9 AS |
9418 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
9419 | || TYPE_NFIELDS (real_type_namer) != 1) | |
9420 | return raw_type; | |
9421 | ||
f80d3ff2 JB |
9422 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
9423 | { | |
9424 | /* This is an older encoding form where the base type needs to be | |
9425 | looked up by name. We prefer the newer enconding because it is | |
9426 | more efficient. */ | |
9427 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
9428 | if (raw_real_type == NULL) | |
9429 | return raw_type; | |
9430 | else | |
9431 | return raw_real_type; | |
9432 | } | |
9433 | ||
9434 | /* The field in our XVS type is a reference to the base type. */ | |
9435 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 9436 | } |
14f9c5c9 | 9437 | |
4c4b4cd2 | 9438 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 9439 | |
d2e4a39e AS |
9440 | struct type * |
9441 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
9442 | { |
9443 | if (ada_is_aligner_type (type)) | |
9444 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
9445 | else | |
9446 | return ada_get_base_type (type); | |
9447 | } | |
9448 | ||
9449 | ||
9450 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 9451 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 9452 | |
fc1a4b47 AC |
9453 | const gdb_byte * |
9454 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 9455 | { |
d2e4a39e | 9456 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 9457 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
9458 | valaddr + |
9459 | TYPE_FIELD_BITPOS (type, | |
9460 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
9461 | else |
9462 | return valaddr; | |
9463 | } | |
9464 | ||
4c4b4cd2 PH |
9465 | |
9466 | ||
14f9c5c9 | 9467 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 9468 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
9469 | const char * |
9470 | ada_enum_name (const char *name) | |
14f9c5c9 | 9471 | { |
4c4b4cd2 PH |
9472 | static char *result; |
9473 | static size_t result_len = 0; | |
e6a959d6 | 9474 | const char *tmp; |
14f9c5c9 | 9475 | |
4c4b4cd2 PH |
9476 | /* First, unqualify the enumeration name: |
9477 | 1. Search for the last '.' character. If we find one, then skip | |
177b42fe | 9478 | all the preceding characters, the unqualified name starts |
76a01679 | 9479 | right after that dot. |
4c4b4cd2 | 9480 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
9481 | translates dots into "__". Search forward for double underscores, |
9482 | but stop searching when we hit an overloading suffix, which is | |
9483 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 9484 | |
c3e5cd34 PH |
9485 | tmp = strrchr (name, '.'); |
9486 | if (tmp != NULL) | |
4c4b4cd2 PH |
9487 | name = tmp + 1; |
9488 | else | |
14f9c5c9 | 9489 | { |
4c4b4cd2 PH |
9490 | while ((tmp = strstr (name, "__")) != NULL) |
9491 | { | |
9492 | if (isdigit (tmp[2])) | |
9493 | break; | |
9494 | else | |
9495 | name = tmp + 2; | |
9496 | } | |
14f9c5c9 AS |
9497 | } |
9498 | ||
9499 | if (name[0] == 'Q') | |
9500 | { | |
14f9c5c9 | 9501 | int v; |
5b4ee69b | 9502 | |
14f9c5c9 | 9503 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
9504 | { |
9505 | if (sscanf (name + 2, "%x", &v) != 1) | |
9506 | return name; | |
9507 | } | |
14f9c5c9 | 9508 | else |
4c4b4cd2 | 9509 | return name; |
14f9c5c9 | 9510 | |
4c4b4cd2 | 9511 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 9512 | if (isascii (v) && isprint (v)) |
88c15c34 | 9513 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 9514 | else if (name[1] == 'U') |
88c15c34 | 9515 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 9516 | else |
88c15c34 | 9517 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
9518 | |
9519 | return result; | |
9520 | } | |
d2e4a39e | 9521 | else |
4c4b4cd2 | 9522 | { |
c3e5cd34 PH |
9523 | tmp = strstr (name, "__"); |
9524 | if (tmp == NULL) | |
9525 | tmp = strstr (name, "$"); | |
9526 | if (tmp != NULL) | |
4c4b4cd2 PH |
9527 | { |
9528 | GROW_VECT (result, result_len, tmp - name + 1); | |
9529 | strncpy (result, name, tmp - name); | |
9530 | result[tmp - name] = '\0'; | |
9531 | return result; | |
9532 | } | |
9533 | ||
9534 | return name; | |
9535 | } | |
14f9c5c9 AS |
9536 | } |
9537 | ||
14f9c5c9 AS |
9538 | /* Evaluate the subexpression of EXP starting at *POS as for |
9539 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 9540 | expression. */ |
14f9c5c9 | 9541 | |
d2e4a39e AS |
9542 | static struct value * |
9543 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 9544 | { |
4b27a620 | 9545 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
9546 | } |
9547 | ||
9548 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 9549 | value it wraps. */ |
14f9c5c9 | 9550 | |
d2e4a39e AS |
9551 | static struct value * |
9552 | unwrap_value (struct value *val) | |
14f9c5c9 | 9553 | { |
df407dfe | 9554 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 9555 | |
14f9c5c9 AS |
9556 | if (ada_is_aligner_type (type)) |
9557 | { | |
de4d072f | 9558 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 9559 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 9560 | |
14f9c5c9 | 9561 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 9562 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
9563 | |
9564 | return unwrap_value (v); | |
9565 | } | |
d2e4a39e | 9566 | else |
14f9c5c9 | 9567 | { |
d2e4a39e | 9568 | struct type *raw_real_type = |
61ee279c | 9569 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 9570 | |
5bf03f13 JB |
9571 | /* If there is no parallel XVS or XVE type, then the value is |
9572 | already unwrapped. Return it without further modification. */ | |
9573 | if ((type == raw_real_type) | |
9574 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
9575 | return val; | |
14f9c5c9 | 9576 | |
d2e4a39e | 9577 | return |
4c4b4cd2 PH |
9578 | coerce_unspec_val_to_type |
9579 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 9580 | value_address (val), |
1ed6ede0 | 9581 | NULL, 1)); |
14f9c5c9 AS |
9582 | } |
9583 | } | |
d2e4a39e AS |
9584 | |
9585 | static struct value * | |
9586 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
9587 | { |
9588 | LONGEST val; | |
9589 | ||
df407dfe | 9590 | if (type == value_type (arg)) |
14f9c5c9 | 9591 | return arg; |
df407dfe | 9592 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 9593 | val = ada_float_to_fixed (type, |
df407dfe | 9594 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 9595 | value_as_long (arg))); |
d2e4a39e | 9596 | else |
14f9c5c9 | 9597 | { |
a53b7a21 | 9598 | DOUBLEST argd = value_as_double (arg); |
5b4ee69b | 9599 | |
14f9c5c9 AS |
9600 | val = ada_float_to_fixed (type, argd); |
9601 | } | |
9602 | ||
9603 | return value_from_longest (type, val); | |
9604 | } | |
9605 | ||
d2e4a39e | 9606 | static struct value * |
a53b7a21 | 9607 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 9608 | { |
df407dfe | 9609 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 9610 | value_as_long (arg)); |
5b4ee69b | 9611 | |
a53b7a21 | 9612 | return value_from_double (type, val); |
14f9c5c9 AS |
9613 | } |
9614 | ||
d99dcf51 JB |
9615 | /* Given two array types T1 and T2, return nonzero iff both arrays |
9616 | contain the same number of elements. */ | |
9617 | ||
9618 | static int | |
9619 | ada_same_array_size_p (struct type *t1, struct type *t2) | |
9620 | { | |
9621 | LONGEST lo1, hi1, lo2, hi2; | |
9622 | ||
9623 | /* Get the array bounds in order to verify that the size of | |
9624 | the two arrays match. */ | |
9625 | if (!get_array_bounds (t1, &lo1, &hi1) | |
9626 | || !get_array_bounds (t2, &lo2, &hi2)) | |
9627 | error (_("unable to determine array bounds")); | |
9628 | ||
9629 | /* To make things easier for size comparison, normalize a bit | |
9630 | the case of empty arrays by making sure that the difference | |
9631 | between upper bound and lower bound is always -1. */ | |
9632 | if (lo1 > hi1) | |
9633 | hi1 = lo1 - 1; | |
9634 | if (lo2 > hi2) | |
9635 | hi2 = lo2 - 1; | |
9636 | ||
9637 | return (hi1 - lo1 == hi2 - lo2); | |
9638 | } | |
9639 | ||
9640 | /* Assuming that VAL is an array of integrals, and TYPE represents | |
9641 | an array with the same number of elements, but with wider integral | |
9642 | elements, return an array "casted" to TYPE. In practice, this | |
9643 | means that the returned array is built by casting each element | |
9644 | of the original array into TYPE's (wider) element type. */ | |
9645 | ||
9646 | static struct value * | |
9647 | ada_promote_array_of_integrals (struct type *type, struct value *val) | |
9648 | { | |
9649 | struct type *elt_type = TYPE_TARGET_TYPE (type); | |
9650 | LONGEST lo, hi; | |
9651 | struct value *res; | |
9652 | LONGEST i; | |
9653 | ||
9654 | /* Verify that both val and type are arrays of scalars, and | |
9655 | that the size of val's elements is smaller than the size | |
9656 | of type's element. */ | |
9657 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY); | |
9658 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type))); | |
9659 | gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY); | |
9660 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val)))); | |
9661 | gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type)) | |
9662 | > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val)))); | |
9663 | ||
9664 | if (!get_array_bounds (type, &lo, &hi)) | |
9665 | error (_("unable to determine array bounds")); | |
9666 | ||
9667 | res = allocate_value (type); | |
9668 | ||
9669 | /* Promote each array element. */ | |
9670 | for (i = 0; i < hi - lo + 1; i++) | |
9671 | { | |
9672 | struct value *elt = value_cast (elt_type, value_subscript (val, lo + i)); | |
9673 | ||
9674 | memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)), | |
9675 | value_contents_all (elt), TYPE_LENGTH (elt_type)); | |
9676 | } | |
9677 | ||
9678 | return res; | |
9679 | } | |
9680 | ||
4c4b4cd2 PH |
9681 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
9682 | return the converted value. */ | |
9683 | ||
d2e4a39e AS |
9684 | static struct value * |
9685 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 9686 | { |
df407dfe | 9687 | struct type *type2 = value_type (val); |
5b4ee69b | 9688 | |
14f9c5c9 AS |
9689 | if (type == type2) |
9690 | return val; | |
9691 | ||
61ee279c PH |
9692 | type2 = ada_check_typedef (type2); |
9693 | type = ada_check_typedef (type); | |
14f9c5c9 | 9694 | |
d2e4a39e AS |
9695 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
9696 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
9697 | { |
9698 | val = ada_value_ind (val); | |
df407dfe | 9699 | type2 = value_type (val); |
14f9c5c9 AS |
9700 | } |
9701 | ||
d2e4a39e | 9702 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
9703 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
9704 | { | |
d99dcf51 JB |
9705 | if (!ada_same_array_size_p (type, type2)) |
9706 | error (_("cannot assign arrays of different length")); | |
9707 | ||
9708 | if (is_integral_type (TYPE_TARGET_TYPE (type)) | |
9709 | && is_integral_type (TYPE_TARGET_TYPE (type2)) | |
9710 | && TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9711 | < TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
9712 | { | |
9713 | /* Allow implicit promotion of the array elements to | |
9714 | a wider type. */ | |
9715 | return ada_promote_array_of_integrals (type, val); | |
9716 | } | |
9717 | ||
9718 | if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9719 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
323e0a4a | 9720 | error (_("Incompatible types in assignment")); |
04624583 | 9721 | deprecated_set_value_type (val, type); |
14f9c5c9 | 9722 | } |
d2e4a39e | 9723 | return val; |
14f9c5c9 AS |
9724 | } |
9725 | ||
4c4b4cd2 PH |
9726 | static struct value * |
9727 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
9728 | { | |
9729 | struct value *val; | |
9730 | struct type *type1, *type2; | |
9731 | LONGEST v, v1, v2; | |
9732 | ||
994b9211 AC |
9733 | arg1 = coerce_ref (arg1); |
9734 | arg2 = coerce_ref (arg2); | |
18af8284 JB |
9735 | type1 = get_base_type (ada_check_typedef (value_type (arg1))); |
9736 | type2 = get_base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 9737 | |
76a01679 JB |
9738 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
9739 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
9740 | return value_binop (arg1, arg2, op); |
9741 | ||
76a01679 | 9742 | switch (op) |
4c4b4cd2 PH |
9743 | { |
9744 | case BINOP_MOD: | |
9745 | case BINOP_DIV: | |
9746 | case BINOP_REM: | |
9747 | break; | |
9748 | default: | |
9749 | return value_binop (arg1, arg2, op); | |
9750 | } | |
9751 | ||
9752 | v2 = value_as_long (arg2); | |
9753 | if (v2 == 0) | |
323e0a4a | 9754 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
9755 | |
9756 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
9757 | return value_binop (arg1, arg2, op); | |
9758 | ||
9759 | v1 = value_as_long (arg1); | |
9760 | switch (op) | |
9761 | { | |
9762 | case BINOP_DIV: | |
9763 | v = v1 / v2; | |
76a01679 JB |
9764 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
9765 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
9766 | break; |
9767 | case BINOP_REM: | |
9768 | v = v1 % v2; | |
76a01679 JB |
9769 | if (v * v1 < 0) |
9770 | v -= v2; | |
4c4b4cd2 PH |
9771 | break; |
9772 | default: | |
9773 | /* Should not reach this point. */ | |
9774 | v = 0; | |
9775 | } | |
9776 | ||
9777 | val = allocate_value (type1); | |
990a07ab | 9778 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
9779 | TYPE_LENGTH (value_type (val)), |
9780 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
9781 | return val; |
9782 | } | |
9783 | ||
9784 | static int | |
9785 | ada_value_equal (struct value *arg1, struct value *arg2) | |
9786 | { | |
df407dfe AC |
9787 | if (ada_is_direct_array_type (value_type (arg1)) |
9788 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 9789 | { |
f58b38bf JB |
9790 | /* Automatically dereference any array reference before |
9791 | we attempt to perform the comparison. */ | |
9792 | arg1 = ada_coerce_ref (arg1); | |
9793 | arg2 = ada_coerce_ref (arg2); | |
9794 | ||
4c4b4cd2 PH |
9795 | arg1 = ada_coerce_to_simple_array (arg1); |
9796 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
9797 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
9798 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 9799 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 9800 | /* FIXME: The following works only for types whose |
76a01679 JB |
9801 | representations use all bits (no padding or undefined bits) |
9802 | and do not have user-defined equality. */ | |
9803 | return | |
df407dfe | 9804 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 9805 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 9806 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
9807 | } |
9808 | return value_equal (arg1, arg2); | |
9809 | } | |
9810 | ||
52ce6436 PH |
9811 | /* Total number of component associations in the aggregate starting at |
9812 | index PC in EXP. Assumes that index PC is the start of an | |
0963b4bd | 9813 | OP_AGGREGATE. */ |
52ce6436 PH |
9814 | |
9815 | static int | |
9816 | num_component_specs (struct expression *exp, int pc) | |
9817 | { | |
9818 | int n, m, i; | |
5b4ee69b | 9819 | |
52ce6436 PH |
9820 | m = exp->elts[pc + 1].longconst; |
9821 | pc += 3; | |
9822 | n = 0; | |
9823 | for (i = 0; i < m; i += 1) | |
9824 | { | |
9825 | switch (exp->elts[pc].opcode) | |
9826 | { | |
9827 | default: | |
9828 | n += 1; | |
9829 | break; | |
9830 | case OP_CHOICES: | |
9831 | n += exp->elts[pc + 1].longconst; | |
9832 | break; | |
9833 | } | |
9834 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
9835 | } | |
9836 | return n; | |
9837 | } | |
9838 | ||
9839 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
9840 | component of LHS (a simple array or a record), updating *POS past | |
9841 | the expression, assuming that LHS is contained in CONTAINER. Does | |
9842 | not modify the inferior's memory, nor does it modify LHS (unless | |
9843 | LHS == CONTAINER). */ | |
9844 | ||
9845 | static void | |
9846 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
9847 | struct expression *exp, int *pos) | |
9848 | { | |
9849 | struct value *mark = value_mark (); | |
9850 | struct value *elt; | |
5b4ee69b | 9851 | |
52ce6436 PH |
9852 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) |
9853 | { | |
22601c15 UW |
9854 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
9855 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 9856 | |
52ce6436 PH |
9857 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
9858 | } | |
9859 | else | |
9860 | { | |
9861 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
c48db5ca | 9862 | elt = ada_to_fixed_value (elt); |
52ce6436 PH |
9863 | } |
9864 | ||
9865 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
9866 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
9867 | else | |
9868 | value_assign_to_component (container, elt, | |
9869 | ada_evaluate_subexp (NULL, exp, pos, | |
9870 | EVAL_NORMAL)); | |
9871 | ||
9872 | value_free_to_mark (mark); | |
9873 | } | |
9874 | ||
9875 | /* Assuming that LHS represents an lvalue having a record or array | |
9876 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
9877 | of that aggregate's value to LHS, advancing *POS past the | |
9878 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
9879 | lvalue containing LHS (possibly LHS itself). Does not modify | |
9880 | the inferior's memory, nor does it modify the contents of | |
0963b4bd | 9881 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ |
52ce6436 PH |
9882 | |
9883 | static struct value * | |
9884 | assign_aggregate (struct value *container, | |
9885 | struct value *lhs, struct expression *exp, | |
9886 | int *pos, enum noside noside) | |
9887 | { | |
9888 | struct type *lhs_type; | |
9889 | int n = exp->elts[*pos+1].longconst; | |
9890 | LONGEST low_index, high_index; | |
9891 | int num_specs; | |
9892 | LONGEST *indices; | |
9893 | int max_indices, num_indices; | |
52ce6436 | 9894 | int i; |
52ce6436 PH |
9895 | |
9896 | *pos += 3; | |
9897 | if (noside != EVAL_NORMAL) | |
9898 | { | |
52ce6436 PH |
9899 | for (i = 0; i < n; i += 1) |
9900 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9901 | return container; | |
9902 | } | |
9903 | ||
9904 | container = ada_coerce_ref (container); | |
9905 | if (ada_is_direct_array_type (value_type (container))) | |
9906 | container = ada_coerce_to_simple_array (container); | |
9907 | lhs = ada_coerce_ref (lhs); | |
9908 | if (!deprecated_value_modifiable (lhs)) | |
9909 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
9910 | ||
9911 | lhs_type = value_type (lhs); | |
9912 | if (ada_is_direct_array_type (lhs_type)) | |
9913 | { | |
9914 | lhs = ada_coerce_to_simple_array (lhs); | |
9915 | lhs_type = value_type (lhs); | |
9916 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
9917 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
52ce6436 PH |
9918 | } |
9919 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
9920 | { | |
9921 | low_index = 0; | |
9922 | high_index = num_visible_fields (lhs_type) - 1; | |
52ce6436 PH |
9923 | } |
9924 | else | |
9925 | error (_("Left-hand side must be array or record.")); | |
9926 | ||
9927 | num_specs = num_component_specs (exp, *pos - 3); | |
9928 | max_indices = 4 * num_specs + 4; | |
8d749320 | 9929 | indices = XALLOCAVEC (LONGEST, max_indices); |
52ce6436 PH |
9930 | indices[0] = indices[1] = low_index - 1; |
9931 | indices[2] = indices[3] = high_index + 1; | |
9932 | num_indices = 4; | |
9933 | ||
9934 | for (i = 0; i < n; i += 1) | |
9935 | { | |
9936 | switch (exp->elts[*pos].opcode) | |
9937 | { | |
1fbf5ada JB |
9938 | case OP_CHOICES: |
9939 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
9940 | &num_indices, max_indices, | |
9941 | low_index, high_index); | |
9942 | break; | |
9943 | case OP_POSITIONAL: | |
9944 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
52ce6436 PH |
9945 | &num_indices, max_indices, |
9946 | low_index, high_index); | |
1fbf5ada JB |
9947 | break; |
9948 | case OP_OTHERS: | |
9949 | if (i != n-1) | |
9950 | error (_("Misplaced 'others' clause")); | |
9951 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
9952 | num_indices, low_index, high_index); | |
9953 | break; | |
9954 | default: | |
9955 | error (_("Internal error: bad aggregate clause")); | |
52ce6436 PH |
9956 | } |
9957 | } | |
9958 | ||
9959 | return container; | |
9960 | } | |
9961 | ||
9962 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
9963 | construct at *POS, updating *POS past the construct, given that | |
9964 | the positions are relative to lower bound LOW, where HIGH is the | |
9965 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
9966 | updating *NUM_INDICES as needed. CONTAINER is as for | |
0963b4bd | 9967 | assign_aggregate. */ |
52ce6436 PH |
9968 | static void |
9969 | aggregate_assign_positional (struct value *container, | |
9970 | struct value *lhs, struct expression *exp, | |
9971 | int *pos, LONGEST *indices, int *num_indices, | |
9972 | int max_indices, LONGEST low, LONGEST high) | |
9973 | { | |
9974 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
9975 | ||
9976 | if (ind - 1 == high) | |
e1d5a0d2 | 9977 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
9978 | if (ind <= high) |
9979 | { | |
9980 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
9981 | *pos += 3; | |
9982 | assign_component (container, lhs, ind, exp, pos); | |
9983 | } | |
9984 | else | |
9985 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9986 | } | |
9987 | ||
9988 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
9989 | construct at *POS, updating *POS past the construct, given that | |
9990 | the allowable indices are LOW..HIGH. Record the indices assigned | |
9991 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
0963b4bd | 9992 | needed. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
9993 | static void |
9994 | aggregate_assign_from_choices (struct value *container, | |
9995 | struct value *lhs, struct expression *exp, | |
9996 | int *pos, LONGEST *indices, int *num_indices, | |
9997 | int max_indices, LONGEST low, LONGEST high) | |
9998 | { | |
9999 | int j; | |
10000 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
10001 | int choice_pos, expr_pc; | |
10002 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
10003 | ||
10004 | choice_pos = *pos += 3; | |
10005 | ||
10006 | for (j = 0; j < n_choices; j += 1) | |
10007 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
10008 | expr_pc = *pos; | |
10009 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
10010 | ||
10011 | for (j = 0; j < n_choices; j += 1) | |
10012 | { | |
10013 | LONGEST lower, upper; | |
10014 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 10015 | |
52ce6436 PH |
10016 | if (op == OP_DISCRETE_RANGE) |
10017 | { | |
10018 | choice_pos += 1; | |
10019 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
10020 | EVAL_NORMAL)); | |
10021 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
10022 | EVAL_NORMAL)); | |
10023 | } | |
10024 | else if (is_array) | |
10025 | { | |
10026 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
10027 | EVAL_NORMAL)); | |
10028 | upper = lower; | |
10029 | } | |
10030 | else | |
10031 | { | |
10032 | int ind; | |
0d5cff50 | 10033 | const char *name; |
5b4ee69b | 10034 | |
52ce6436 PH |
10035 | switch (op) |
10036 | { | |
10037 | case OP_NAME: | |
10038 | name = &exp->elts[choice_pos + 2].string; | |
10039 | break; | |
10040 | case OP_VAR_VALUE: | |
10041 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
10042 | break; | |
10043 | default: | |
10044 | error (_("Invalid record component association.")); | |
10045 | } | |
10046 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
10047 | ind = 0; | |
10048 | if (! find_struct_field (name, value_type (lhs), 0, | |
10049 | NULL, NULL, NULL, NULL, &ind)) | |
10050 | error (_("Unknown component name: %s."), name); | |
10051 | lower = upper = ind; | |
10052 | } | |
10053 | ||
10054 | if (lower <= upper && (lower < low || upper > high)) | |
10055 | error (_("Index in component association out of bounds.")); | |
10056 | ||
10057 | add_component_interval (lower, upper, indices, num_indices, | |
10058 | max_indices); | |
10059 | while (lower <= upper) | |
10060 | { | |
10061 | int pos1; | |
5b4ee69b | 10062 | |
52ce6436 PH |
10063 | pos1 = expr_pc; |
10064 | assign_component (container, lhs, lower, exp, &pos1); | |
10065 | lower += 1; | |
10066 | } | |
10067 | } | |
10068 | } | |
10069 | ||
10070 | /* Assign the value of the expression in the OP_OTHERS construct in | |
10071 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
10072 | have not been previously assigned. The index intervals already assigned | |
10073 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
0963b4bd | 10074 | OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
10075 | static void |
10076 | aggregate_assign_others (struct value *container, | |
10077 | struct value *lhs, struct expression *exp, | |
10078 | int *pos, LONGEST *indices, int num_indices, | |
10079 | LONGEST low, LONGEST high) | |
10080 | { | |
10081 | int i; | |
5ce64950 | 10082 | int expr_pc = *pos + 1; |
52ce6436 PH |
10083 | |
10084 | for (i = 0; i < num_indices - 2; i += 2) | |
10085 | { | |
10086 | LONGEST ind; | |
5b4ee69b | 10087 | |
52ce6436 PH |
10088 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
10089 | { | |
5ce64950 | 10090 | int localpos; |
5b4ee69b | 10091 | |
5ce64950 MS |
10092 | localpos = expr_pc; |
10093 | assign_component (container, lhs, ind, exp, &localpos); | |
52ce6436 PH |
10094 | } |
10095 | } | |
10096 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
10097 | } | |
10098 | ||
10099 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
10100 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
10101 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
10102 | MAX_SIZE. The resulting intervals do not overlap. */ | |
10103 | static void | |
10104 | add_component_interval (LONGEST low, LONGEST high, | |
10105 | LONGEST* indices, int *size, int max_size) | |
10106 | { | |
10107 | int i, j; | |
5b4ee69b | 10108 | |
52ce6436 PH |
10109 | for (i = 0; i < *size; i += 2) { |
10110 | if (high >= indices[i] && low <= indices[i + 1]) | |
10111 | { | |
10112 | int kh; | |
5b4ee69b | 10113 | |
52ce6436 PH |
10114 | for (kh = i + 2; kh < *size; kh += 2) |
10115 | if (high < indices[kh]) | |
10116 | break; | |
10117 | if (low < indices[i]) | |
10118 | indices[i] = low; | |
10119 | indices[i + 1] = indices[kh - 1]; | |
10120 | if (high > indices[i + 1]) | |
10121 | indices[i + 1] = high; | |
10122 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
10123 | *size -= kh - i - 2; | |
10124 | return; | |
10125 | } | |
10126 | else if (high < indices[i]) | |
10127 | break; | |
10128 | } | |
10129 | ||
10130 | if (*size == max_size) | |
10131 | error (_("Internal error: miscounted aggregate components.")); | |
10132 | *size += 2; | |
10133 | for (j = *size-1; j >= i+2; j -= 1) | |
10134 | indices[j] = indices[j - 2]; | |
10135 | indices[i] = low; | |
10136 | indices[i + 1] = high; | |
10137 | } | |
10138 | ||
6e48bd2c JB |
10139 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
10140 | is different. */ | |
10141 | ||
10142 | static struct value * | |
10143 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
10144 | { | |
10145 | if (type == ada_check_typedef (value_type (arg2))) | |
10146 | return arg2; | |
10147 | ||
10148 | if (ada_is_fixed_point_type (type)) | |
10149 | return (cast_to_fixed (type, arg2)); | |
10150 | ||
10151 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 10152 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
10153 | |
10154 | return value_cast (type, arg2); | |
10155 | } | |
10156 | ||
284614f0 JB |
10157 | /* Evaluating Ada expressions, and printing their result. |
10158 | ------------------------------------------------------ | |
10159 | ||
21649b50 JB |
10160 | 1. Introduction: |
10161 | ---------------- | |
10162 | ||
284614f0 JB |
10163 | We usually evaluate an Ada expression in order to print its value. |
10164 | We also evaluate an expression in order to print its type, which | |
10165 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
10166 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
10167 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
10168 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
10169 | similar. | |
10170 | ||
10171 | Evaluating expressions is a little more complicated for Ada entities | |
10172 | than it is for entities in languages such as C. The main reason for | |
10173 | this is that Ada provides types whose definition might be dynamic. | |
10174 | One example of such types is variant records. Or another example | |
10175 | would be an array whose bounds can only be known at run time. | |
10176 | ||
10177 | The following description is a general guide as to what should be | |
10178 | done (and what should NOT be done) in order to evaluate an expression | |
10179 | involving such types, and when. This does not cover how the semantic | |
10180 | information is encoded by GNAT as this is covered separatly. For the | |
10181 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
10182 | in the GNAT sources. | |
10183 | ||
10184 | Ideally, we should embed each part of this description next to its | |
10185 | associated code. Unfortunately, the amount of code is so vast right | |
10186 | now that it's hard to see whether the code handling a particular | |
10187 | situation might be duplicated or not. One day, when the code is | |
10188 | cleaned up, this guide might become redundant with the comments | |
10189 | inserted in the code, and we might want to remove it. | |
10190 | ||
21649b50 JB |
10191 | 2. ``Fixing'' an Entity, the Simple Case: |
10192 | ----------------------------------------- | |
10193 | ||
284614f0 JB |
10194 | When evaluating Ada expressions, the tricky issue is that they may |
10195 | reference entities whose type contents and size are not statically | |
10196 | known. Consider for instance a variant record: | |
10197 | ||
10198 | type Rec (Empty : Boolean := True) is record | |
10199 | case Empty is | |
10200 | when True => null; | |
10201 | when False => Value : Integer; | |
10202 | end case; | |
10203 | end record; | |
10204 | Yes : Rec := (Empty => False, Value => 1); | |
10205 | No : Rec := (empty => True); | |
10206 | ||
10207 | The size and contents of that record depends on the value of the | |
10208 | descriminant (Rec.Empty). At this point, neither the debugging | |
10209 | information nor the associated type structure in GDB are able to | |
10210 | express such dynamic types. So what the debugger does is to create | |
10211 | "fixed" versions of the type that applies to the specific object. | |
10212 | We also informally refer to this opperation as "fixing" an object, | |
10213 | which means creating its associated fixed type. | |
10214 | ||
10215 | Example: when printing the value of variable "Yes" above, its fixed | |
10216 | type would look like this: | |
10217 | ||
10218 | type Rec is record | |
10219 | Empty : Boolean; | |
10220 | Value : Integer; | |
10221 | end record; | |
10222 | ||
10223 | On the other hand, if we printed the value of "No", its fixed type | |
10224 | would become: | |
10225 | ||
10226 | type Rec is record | |
10227 | Empty : Boolean; | |
10228 | end record; | |
10229 | ||
10230 | Things become a little more complicated when trying to fix an entity | |
10231 | with a dynamic type that directly contains another dynamic type, | |
10232 | such as an array of variant records, for instance. There are | |
10233 | two possible cases: Arrays, and records. | |
10234 | ||
21649b50 JB |
10235 | 3. ``Fixing'' Arrays: |
10236 | --------------------- | |
10237 | ||
10238 | The type structure in GDB describes an array in terms of its bounds, | |
10239 | and the type of its elements. By design, all elements in the array | |
10240 | have the same type and we cannot represent an array of variant elements | |
10241 | using the current type structure in GDB. When fixing an array, | |
10242 | we cannot fix the array element, as we would potentially need one | |
10243 | fixed type per element of the array. As a result, the best we can do | |
10244 | when fixing an array is to produce an array whose bounds and size | |
10245 | are correct (allowing us to read it from memory), but without having | |
10246 | touched its element type. Fixing each element will be done later, | |
10247 | when (if) necessary. | |
10248 | ||
10249 | Arrays are a little simpler to handle than records, because the same | |
10250 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 10251 | the amount of space actually used by each element differs from element |
21649b50 | 10252 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
10253 | |
10254 | type Rec_Array is array (1 .. 2) of Rec; | |
10255 | ||
1b536f04 JB |
10256 | The actual amount of memory occupied by each element might be different |
10257 | from element to element, depending on the value of their discriminant. | |
21649b50 | 10258 | But the amount of space reserved for each element in the array remains |
1b536f04 | 10259 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
10260 | the debugging information available, from which we can then determine |
10261 | the array size (we multiply the number of elements of the array by | |
10262 | the size of each element). | |
10263 | ||
10264 | The simplest case is when we have an array of a constrained element | |
10265 | type. For instance, consider the following type declarations: | |
10266 | ||
10267 | type Bounded_String (Max_Size : Integer) is | |
10268 | Length : Integer; | |
10269 | Buffer : String (1 .. Max_Size); | |
10270 | end record; | |
10271 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
10272 | ||
10273 | In this case, the compiler describes the array as an array of | |
10274 | variable-size elements (identified by its XVS suffix) for which | |
10275 | the size can be read in the parallel XVZ variable. | |
10276 | ||
10277 | In the case of an array of an unconstrained element type, the compiler | |
10278 | wraps the array element inside a private PAD type. This type should not | |
10279 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
10280 | that we also use the adjective "aligner" in our code to designate |
10281 | these wrapper types. | |
10282 | ||
1b536f04 | 10283 | In some cases, the size allocated for each element is statically |
21649b50 JB |
10284 | known. In that case, the PAD type already has the correct size, |
10285 | and the array element should remain unfixed. | |
10286 | ||
10287 | But there are cases when this size is not statically known. | |
10288 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
10289 | |
10290 | type Dynamic is array (1 .. Five) of Integer; | |
10291 | type Wrapper (Has_Length : Boolean := False) is record | |
10292 | Data : Dynamic; | |
10293 | case Has_Length is | |
10294 | when True => Length : Integer; | |
10295 | when False => null; | |
10296 | end case; | |
10297 | end record; | |
10298 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
10299 | ||
10300 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
10301 | Data => (others => 17), | |
10302 | Length => 1)); | |
10303 | ||
10304 | ||
10305 | The debugging info would describe variable Hello as being an | |
10306 | array of a PAD type. The size of that PAD type is not statically | |
10307 | known, but can be determined using a parallel XVZ variable. | |
10308 | In that case, a copy of the PAD type with the correct size should | |
10309 | be used for the fixed array. | |
10310 | ||
21649b50 JB |
10311 | 3. ``Fixing'' record type objects: |
10312 | ---------------------------------- | |
10313 | ||
10314 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
10315 | record types. In this case, in order to compute the associated |
10316 | fixed type, we need to determine the size and offset of each of | |
10317 | its components. This, in turn, requires us to compute the fixed | |
10318 | type of each of these components. | |
10319 | ||
10320 | Consider for instance the example: | |
10321 | ||
10322 | type Bounded_String (Max_Size : Natural) is record | |
10323 | Str : String (1 .. Max_Size); | |
10324 | Length : Natural; | |
10325 | end record; | |
10326 | My_String : Bounded_String (Max_Size => 10); | |
10327 | ||
10328 | In that case, the position of field "Length" depends on the size | |
10329 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 10330 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
10331 | we need to fix the type of field Str. Therefore, fixing a variant |
10332 | record requires us to fix each of its components. | |
10333 | ||
10334 | However, if a component does not have a dynamic size, the component | |
10335 | should not be fixed. In particular, fields that use a PAD type | |
10336 | should not fixed. Here is an example where this might happen | |
10337 | (assuming type Rec above): | |
10338 | ||
10339 | type Container (Big : Boolean) is record | |
10340 | First : Rec; | |
10341 | After : Integer; | |
10342 | case Big is | |
10343 | when True => Another : Integer; | |
10344 | when False => null; | |
10345 | end case; | |
10346 | end record; | |
10347 | My_Container : Container := (Big => False, | |
10348 | First => (Empty => True), | |
10349 | After => 42); | |
10350 | ||
10351 | In that example, the compiler creates a PAD type for component First, | |
10352 | whose size is constant, and then positions the component After just | |
10353 | right after it. The offset of component After is therefore constant | |
10354 | in this case. | |
10355 | ||
10356 | The debugger computes the position of each field based on an algorithm | |
10357 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
10358 | preceding it. Let's now imagine that the user is trying to print |
10359 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
10360 | end up computing the offset of field After based on the size of the |
10361 | fixed version of field First. And since in our example First has | |
10362 | only one actual field, the size of the fixed type is actually smaller | |
10363 | than the amount of space allocated to that field, and thus we would | |
10364 | compute the wrong offset of field After. | |
10365 | ||
21649b50 JB |
10366 | To make things more complicated, we need to watch out for dynamic |
10367 | components of variant records (identified by the ___XVL suffix in | |
10368 | the component name). Even if the target type is a PAD type, the size | |
10369 | of that type might not be statically known. So the PAD type needs | |
10370 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
10371 | we might end up with the wrong size for our component. This can be | |
10372 | observed with the following type declarations: | |
284614f0 JB |
10373 | |
10374 | type Octal is new Integer range 0 .. 7; | |
10375 | type Octal_Array is array (Positive range <>) of Octal; | |
10376 | pragma Pack (Octal_Array); | |
10377 | ||
10378 | type Octal_Buffer (Size : Positive) is record | |
10379 | Buffer : Octal_Array (1 .. Size); | |
10380 | Length : Integer; | |
10381 | end record; | |
10382 | ||
10383 | In that case, Buffer is a PAD type whose size is unset and needs | |
10384 | to be computed by fixing the unwrapped type. | |
10385 | ||
21649b50 JB |
10386 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
10387 | ---------------------------------------------------------- | |
10388 | ||
10389 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
10390 | thus far, be actually fixed? |
10391 | ||
10392 | The answer is: Only when referencing that element. For instance | |
10393 | when selecting one component of a record, this specific component | |
10394 | should be fixed at that point in time. Or when printing the value | |
10395 | of a record, each component should be fixed before its value gets | |
10396 | printed. Similarly for arrays, the element of the array should be | |
10397 | fixed when printing each element of the array, or when extracting | |
10398 | one element out of that array. On the other hand, fixing should | |
10399 | not be performed on the elements when taking a slice of an array! | |
10400 | ||
10401 | Note that one of the side-effects of miscomputing the offset and | |
10402 | size of each field is that we end up also miscomputing the size | |
10403 | of the containing type. This can have adverse results when computing | |
10404 | the value of an entity. GDB fetches the value of an entity based | |
10405 | on the size of its type, and thus a wrong size causes GDB to fetch | |
10406 | the wrong amount of memory. In the case where the computed size is | |
10407 | too small, GDB fetches too little data to print the value of our | |
10408 | entiry. Results in this case as unpredicatble, as we usually read | |
10409 | past the buffer containing the data =:-o. */ | |
10410 | ||
10411 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
10412 | for the Ada language. */ | |
10413 | ||
52ce6436 | 10414 | static struct value * |
ebf56fd3 | 10415 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 10416 | int *pos, enum noside noside) |
14f9c5c9 AS |
10417 | { |
10418 | enum exp_opcode op; | |
b5385fc0 | 10419 | int tem; |
14f9c5c9 | 10420 | int pc; |
5ec18f2b | 10421 | int preeval_pos; |
14f9c5c9 AS |
10422 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; |
10423 | struct type *type; | |
52ce6436 | 10424 | int nargs, oplen; |
d2e4a39e | 10425 | struct value **argvec; |
14f9c5c9 | 10426 | |
d2e4a39e AS |
10427 | pc = *pos; |
10428 | *pos += 1; | |
14f9c5c9 AS |
10429 | op = exp->elts[pc].opcode; |
10430 | ||
d2e4a39e | 10431 | switch (op) |
14f9c5c9 AS |
10432 | { |
10433 | default: | |
10434 | *pos -= 1; | |
6e48bd2c | 10435 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
ca1f964d JG |
10436 | |
10437 | if (noside == EVAL_NORMAL) | |
10438 | arg1 = unwrap_value (arg1); | |
6e48bd2c JB |
10439 | |
10440 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
10441 | then we need to perform the conversion manually, because | |
10442 | evaluate_subexp_standard doesn't do it. This conversion is | |
10443 | necessary in Ada because the different kinds of float/fixed | |
10444 | types in Ada have different representations. | |
10445 | ||
10446 | Similarly, we need to perform the conversion from OP_LONG | |
10447 | ourselves. */ | |
10448 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
10449 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
10450 | ||
10451 | return arg1; | |
4c4b4cd2 PH |
10452 | |
10453 | case OP_STRING: | |
10454 | { | |
76a01679 | 10455 | struct value *result; |
5b4ee69b | 10456 | |
76a01679 JB |
10457 | *pos -= 1; |
10458 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10459 | /* The result type will have code OP_STRING, bashed there from | |
10460 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
10461 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
10462 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 10463 | return result; |
4c4b4cd2 | 10464 | } |
14f9c5c9 AS |
10465 | |
10466 | case UNOP_CAST: | |
10467 | (*pos) += 2; | |
10468 | type = exp->elts[pc + 1].type; | |
10469 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
10470 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10471 | goto nosideret; |
6e48bd2c | 10472 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
10473 | return arg1; |
10474 | ||
4c4b4cd2 PH |
10475 | case UNOP_QUAL: |
10476 | (*pos) += 2; | |
10477 | type = exp->elts[pc + 1].type; | |
10478 | return ada_evaluate_subexp (type, exp, pos, noside); | |
10479 | ||
14f9c5c9 AS |
10480 | case BINOP_ASSIGN: |
10481 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
10482 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
10483 | { | |
10484 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
10485 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
10486 | return arg1; | |
10487 | return ada_value_assign (arg1, arg1); | |
10488 | } | |
003f3813 JB |
10489 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
10490 | except if the lhs of our assignment is a convenience variable. | |
10491 | In the case of assigning to a convenience variable, the lhs | |
10492 | should be exactly the result of the evaluation of the rhs. */ | |
10493 | type = value_type (arg1); | |
10494 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
10495 | type = NULL; | |
10496 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 10497 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 10498 | return arg1; |
df407dfe AC |
10499 | if (ada_is_fixed_point_type (value_type (arg1))) |
10500 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
10501 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 10502 | error |
323e0a4a | 10503 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 10504 | else |
df407dfe | 10505 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 10506 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
10507 | |
10508 | case BINOP_ADD: | |
10509 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10510 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10511 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10512 | goto nosideret; |
2ac8a782 JB |
10513 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10514 | return (value_from_longest | |
10515 | (value_type (arg1), | |
10516 | value_as_long (arg1) + value_as_long (arg2))); | |
c40cc657 JB |
10517 | if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR) |
10518 | return (value_from_longest | |
10519 | (value_type (arg2), | |
10520 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
10521 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10522 | || ada_is_fixed_point_type (value_type (arg2))) | |
10523 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 10524 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
10525 | /* Do the addition, and cast the result to the type of the first |
10526 | argument. We cannot cast the result to a reference type, so if | |
10527 | ARG1 is a reference type, find its underlying type. */ | |
10528 | type = value_type (arg1); | |
10529 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10530 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10531 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10532 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
10533 | |
10534 | case BINOP_SUB: | |
10535 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10536 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10537 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10538 | goto nosideret; |
2ac8a782 JB |
10539 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10540 | return (value_from_longest | |
10541 | (value_type (arg1), | |
10542 | value_as_long (arg1) - value_as_long (arg2))); | |
c40cc657 JB |
10543 | if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR) |
10544 | return (value_from_longest | |
10545 | (value_type (arg2), | |
10546 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
10547 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10548 | || ada_is_fixed_point_type (value_type (arg2))) | |
10549 | && value_type (arg1) != value_type (arg2)) | |
0963b4bd MS |
10550 | error (_("Operands of fixed-point subtraction " |
10551 | "must have the same type")); | |
b7789565 JB |
10552 | /* Do the substraction, and cast the result to the type of the first |
10553 | argument. We cannot cast the result to a reference type, so if | |
10554 | ARG1 is a reference type, find its underlying type. */ | |
10555 | type = value_type (arg1); | |
10556 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10557 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10558 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10559 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
10560 | |
10561 | case BINOP_MUL: | |
10562 | case BINOP_DIV: | |
e1578042 JB |
10563 | case BINOP_REM: |
10564 | case BINOP_MOD: | |
14f9c5c9 AS |
10565 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10566 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10567 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10568 | goto nosideret; |
e1578042 | 10569 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
10570 | { |
10571 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10572 | return value_zero (value_type (arg1), not_lval); | |
10573 | } | |
14f9c5c9 | 10574 | else |
4c4b4cd2 | 10575 | { |
a53b7a21 | 10576 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 10577 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 10578 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 10579 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 10580 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 10581 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
10582 | return ada_value_binop (arg1, arg2, op); |
10583 | } | |
10584 | ||
4c4b4cd2 PH |
10585 | case BINOP_EQUAL: |
10586 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 10587 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 10588 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 10589 | if (noside == EVAL_SKIP) |
76a01679 | 10590 | goto nosideret; |
4c4b4cd2 | 10591 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10592 | tem = 0; |
4c4b4cd2 | 10593 | else |
f44316fa UW |
10594 | { |
10595 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10596 | tem = ada_value_equal (arg1, arg2); | |
10597 | } | |
4c4b4cd2 | 10598 | if (op == BINOP_NOTEQUAL) |
76a01679 | 10599 | tem = !tem; |
fbb06eb1 UW |
10600 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10601 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
10602 | |
10603 | case UNOP_NEG: | |
10604 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10605 | if (noside == EVAL_SKIP) | |
10606 | goto nosideret; | |
df407dfe AC |
10607 | else if (ada_is_fixed_point_type (value_type (arg1))) |
10608 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 10609 | else |
f44316fa UW |
10610 | { |
10611 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10612 | return value_neg (arg1); | |
10613 | } | |
4c4b4cd2 | 10614 | |
2330c6c6 JB |
10615 | case BINOP_LOGICAL_AND: |
10616 | case BINOP_LOGICAL_OR: | |
10617 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
10618 | { |
10619 | struct value *val; | |
10620 | ||
10621 | *pos -= 1; | |
10622 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
10623 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10624 | return value_cast (type, val); | |
000d5124 | 10625 | } |
2330c6c6 JB |
10626 | |
10627 | case BINOP_BITWISE_AND: | |
10628 | case BINOP_BITWISE_IOR: | |
10629 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
10630 | { |
10631 | struct value *val; | |
10632 | ||
10633 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
10634 | *pos = pc; | |
10635 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10636 | ||
10637 | return value_cast (value_type (arg1), val); | |
10638 | } | |
2330c6c6 | 10639 | |
14f9c5c9 AS |
10640 | case OP_VAR_VALUE: |
10641 | *pos -= 1; | |
6799def4 | 10642 | |
14f9c5c9 | 10643 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
10644 | { |
10645 | *pos += 4; | |
10646 | goto nosideret; | |
10647 | } | |
da5c522f JB |
10648 | |
10649 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
10650 | /* Only encountered when an unresolved symbol occurs in a |
10651 | context other than a function call, in which case, it is | |
52ce6436 | 10652 | invalid. */ |
323e0a4a | 10653 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 10654 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
da5c522f JB |
10655 | |
10656 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
4c4b4cd2 | 10657 | { |
0c1f74cf | 10658 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
10659 | /* Check to see if this is a tagged type. We also need to handle |
10660 | the case where the type is a reference to a tagged type, but | |
10661 | we have to be careful to exclude pointers to tagged types. | |
10662 | The latter should be shown as usual (as a pointer), whereas | |
10663 | a reference should mostly be transparent to the user. */ | |
10664 | if (ada_is_tagged_type (type, 0) | |
023db19c | 10665 | || (TYPE_CODE (type) == TYPE_CODE_REF |
31dbc1c5 | 10666 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) |
0d72a7c3 JB |
10667 | { |
10668 | /* Tagged types are a little special in the fact that the real | |
10669 | type is dynamic and can only be determined by inspecting the | |
10670 | object's tag. This means that we need to get the object's | |
10671 | value first (EVAL_NORMAL) and then extract the actual object | |
10672 | type from its tag. | |
10673 | ||
10674 | Note that we cannot skip the final step where we extract | |
10675 | the object type from its tag, because the EVAL_NORMAL phase | |
10676 | results in dynamic components being resolved into fixed ones. | |
10677 | This can cause problems when trying to print the type | |
10678 | description of tagged types whose parent has a dynamic size: | |
10679 | We use the type name of the "_parent" component in order | |
10680 | to print the name of the ancestor type in the type description. | |
10681 | If that component had a dynamic size, the resolution into | |
10682 | a fixed type would result in the loss of that type name, | |
10683 | thus preventing us from printing the name of the ancestor | |
10684 | type in the type description. */ | |
10685 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); | |
10686 | ||
10687 | if (TYPE_CODE (type) != TYPE_CODE_REF) | |
10688 | { | |
10689 | struct type *actual_type; | |
10690 | ||
10691 | actual_type = type_from_tag (ada_value_tag (arg1)); | |
10692 | if (actual_type == NULL) | |
10693 | /* If, for some reason, we were unable to determine | |
10694 | the actual type from the tag, then use the static | |
10695 | approximation that we just computed as a fallback. | |
10696 | This can happen if the debugging information is | |
10697 | incomplete, for instance. */ | |
10698 | actual_type = type; | |
10699 | return value_zero (actual_type, not_lval); | |
10700 | } | |
10701 | else | |
10702 | { | |
10703 | /* In the case of a ref, ada_coerce_ref takes care | |
10704 | of determining the actual type. But the evaluation | |
10705 | should return a ref as it should be valid to ask | |
10706 | for its address; so rebuild a ref after coerce. */ | |
10707 | arg1 = ada_coerce_ref (arg1); | |
a65cfae5 | 10708 | return value_ref (arg1, TYPE_CODE_REF); |
0d72a7c3 JB |
10709 | } |
10710 | } | |
0c1f74cf | 10711 | |
84754697 JB |
10712 | /* Records and unions for which GNAT encodings have been |
10713 | generated need to be statically fixed as well. | |
10714 | Otherwise, non-static fixing produces a type where | |
10715 | all dynamic properties are removed, which prevents "ptype" | |
10716 | from being able to completely describe the type. | |
10717 | For instance, a case statement in a variant record would be | |
10718 | replaced by the relevant components based on the actual | |
10719 | value of the discriminants. */ | |
10720 | if ((TYPE_CODE (type) == TYPE_CODE_STRUCT | |
10721 | && dynamic_template_type (type) != NULL) | |
10722 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
10723 | && ada_find_parallel_type (type, "___XVU") != NULL)) | |
10724 | { | |
10725 | *pos += 4; | |
10726 | return value_zero (to_static_fixed_type (type), not_lval); | |
10727 | } | |
4c4b4cd2 | 10728 | } |
da5c522f JB |
10729 | |
10730 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10731 | return ada_to_fixed_value (arg1); | |
4c4b4cd2 PH |
10732 | |
10733 | case OP_FUNCALL: | |
10734 | (*pos) += 2; | |
10735 | ||
10736 | /* Allocate arg vector, including space for the function to be | |
10737 | called in argvec[0] and a terminating NULL. */ | |
10738 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
8d749320 | 10739 | argvec = XALLOCAVEC (struct value *, nargs + 2); |
4c4b4cd2 PH |
10740 | |
10741 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 10742 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 10743 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
10744 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
10745 | else | |
10746 | { | |
10747 | for (tem = 0; tem <= nargs; tem += 1) | |
10748 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10749 | argvec[tem] = 0; | |
10750 | ||
10751 | if (noside == EVAL_SKIP) | |
10752 | goto nosideret; | |
10753 | } | |
10754 | ||
ad82864c JB |
10755 | if (ada_is_constrained_packed_array_type |
10756 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 10757 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
10758 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
10759 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
10760 | /* This is a packed array that has already been fixed, and | |
10761 | therefore already coerced to a simple array. Nothing further | |
10762 | to do. */ | |
10763 | ; | |
e6c2c623 PMR |
10764 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF) |
10765 | { | |
10766 | /* Make sure we dereference references so that all the code below | |
10767 | feels like it's really handling the referenced value. Wrapping | |
10768 | types (for alignment) may be there, so make sure we strip them as | |
10769 | well. */ | |
10770 | argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0])); | |
10771 | } | |
10772 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
10773 | && VALUE_LVAL (argvec[0]) == lval_memory) | |
10774 | argvec[0] = value_addr (argvec[0]); | |
4c4b4cd2 | 10775 | |
df407dfe | 10776 | type = ada_check_typedef (value_type (argvec[0])); |
720d1a40 JB |
10777 | |
10778 | /* Ada allows us to implicitly dereference arrays when subscripting | |
8f465ea7 JB |
10779 | them. So, if this is an array typedef (encoding use for array |
10780 | access types encoded as fat pointers), strip it now. */ | |
720d1a40 JB |
10781 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
10782 | type = ada_typedef_target_type (type); | |
10783 | ||
4c4b4cd2 PH |
10784 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
10785 | { | |
61ee279c | 10786 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
10787 | { |
10788 | case TYPE_CODE_FUNC: | |
61ee279c | 10789 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10790 | break; |
10791 | case TYPE_CODE_ARRAY: | |
10792 | break; | |
10793 | case TYPE_CODE_STRUCT: | |
10794 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
10795 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 10796 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10797 | break; |
10798 | default: | |
323e0a4a | 10799 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 10800 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
10801 | break; |
10802 | } | |
10803 | } | |
10804 | ||
10805 | switch (TYPE_CODE (type)) | |
10806 | { | |
10807 | case TYPE_CODE_FUNC: | |
10808 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
c8ea1972 PH |
10809 | { |
10810 | struct type *rtype = TYPE_TARGET_TYPE (type); | |
10811 | ||
10812 | if (TYPE_GNU_IFUNC (type)) | |
10813 | return allocate_value (TYPE_TARGET_TYPE (rtype)); | |
10814 | return allocate_value (rtype); | |
10815 | } | |
4c4b4cd2 | 10816 | return call_function_by_hand (argvec[0], nargs, argvec + 1); |
c8ea1972 PH |
10817 | case TYPE_CODE_INTERNAL_FUNCTION: |
10818 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10819 | /* We don't know anything about what the internal | |
10820 | function might return, but we have to return | |
10821 | something. */ | |
10822 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10823 | not_lval); | |
10824 | else | |
10825 | return call_internal_function (exp->gdbarch, exp->language_defn, | |
10826 | argvec[0], nargs, argvec + 1); | |
10827 | ||
4c4b4cd2 PH |
10828 | case TYPE_CODE_STRUCT: |
10829 | { | |
10830 | int arity; | |
10831 | ||
4c4b4cd2 PH |
10832 | arity = ada_array_arity (type); |
10833 | type = ada_array_element_type (type, nargs); | |
10834 | if (type == NULL) | |
323e0a4a | 10835 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 10836 | if (arity != nargs) |
323e0a4a | 10837 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 10838 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 10839 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10840 | return |
10841 | unwrap_value (ada_value_subscript | |
10842 | (argvec[0], nargs, argvec + 1)); | |
10843 | } | |
10844 | case TYPE_CODE_ARRAY: | |
10845 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10846 | { | |
10847 | type = ada_array_element_type (type, nargs); | |
10848 | if (type == NULL) | |
323e0a4a | 10849 | error (_("element type of array unknown")); |
4c4b4cd2 | 10850 | else |
0a07e705 | 10851 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10852 | } |
10853 | return | |
10854 | unwrap_value (ada_value_subscript | |
10855 | (ada_coerce_to_simple_array (argvec[0]), | |
10856 | nargs, argvec + 1)); | |
10857 | case TYPE_CODE_PTR: /* Pointer to array */ | |
4c4b4cd2 PH |
10858 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
10859 | { | |
deede10c | 10860 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); |
4c4b4cd2 PH |
10861 | type = ada_array_element_type (type, nargs); |
10862 | if (type == NULL) | |
323e0a4a | 10863 | error (_("element type of array unknown")); |
4c4b4cd2 | 10864 | else |
0a07e705 | 10865 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10866 | } |
10867 | return | |
deede10c JB |
10868 | unwrap_value (ada_value_ptr_subscript (argvec[0], |
10869 | nargs, argvec + 1)); | |
4c4b4cd2 PH |
10870 | |
10871 | default: | |
e1d5a0d2 PH |
10872 | error (_("Attempt to index or call something other than an " |
10873 | "array or function")); | |
4c4b4cd2 PH |
10874 | } |
10875 | ||
10876 | case TERNOP_SLICE: | |
10877 | { | |
10878 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10879 | struct value *low_bound_val = | |
10880 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
10881 | struct value *high_bound_val = |
10882 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10883 | LONGEST low_bound; | |
10884 | LONGEST high_bound; | |
5b4ee69b | 10885 | |
994b9211 AC |
10886 | low_bound_val = coerce_ref (low_bound_val); |
10887 | high_bound_val = coerce_ref (high_bound_val); | |
aa715135 JG |
10888 | low_bound = value_as_long (low_bound_val); |
10889 | high_bound = value_as_long (high_bound_val); | |
963a6417 | 10890 | |
4c4b4cd2 PH |
10891 | if (noside == EVAL_SKIP) |
10892 | goto nosideret; | |
10893 | ||
4c4b4cd2 PH |
10894 | /* If this is a reference to an aligner type, then remove all |
10895 | the aligners. */ | |
df407dfe AC |
10896 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10897 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
10898 | TYPE_TARGET_TYPE (value_type (array)) = | |
10899 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 10900 | |
ad82864c | 10901 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 10902 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
10903 | |
10904 | /* If this is a reference to an array or an array lvalue, | |
10905 | convert to a pointer. */ | |
df407dfe AC |
10906 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10907 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
10908 | && VALUE_LVAL (array) == lval_memory)) |
10909 | array = value_addr (array); | |
10910 | ||
1265e4aa | 10911 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 10912 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 10913 | (value_type (array)))) |
0b5d8877 | 10914 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
10915 | |
10916 | array = ada_coerce_to_simple_array_ptr (array); | |
10917 | ||
714e53ab PH |
10918 | /* If we have more than one level of pointer indirection, |
10919 | dereference the value until we get only one level. */ | |
df407dfe AC |
10920 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
10921 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
10922 | == TYPE_CODE_PTR)) |
10923 | array = value_ind (array); | |
10924 | ||
10925 | /* Make sure we really do have an array type before going further, | |
10926 | to avoid a SEGV when trying to get the index type or the target | |
10927 | type later down the road if the debug info generated by | |
10928 | the compiler is incorrect or incomplete. */ | |
df407dfe | 10929 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 10930 | error (_("cannot take slice of non-array")); |
714e53ab | 10931 | |
828292f2 JB |
10932 | if (TYPE_CODE (ada_check_typedef (value_type (array))) |
10933 | == TYPE_CODE_PTR) | |
4c4b4cd2 | 10934 | { |
828292f2 JB |
10935 | struct type *type0 = ada_check_typedef (value_type (array)); |
10936 | ||
0b5d8877 | 10937 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
828292f2 | 10938 | return empty_array (TYPE_TARGET_TYPE (type0), low_bound); |
4c4b4cd2 PH |
10939 | else |
10940 | { | |
10941 | struct type *arr_type0 = | |
828292f2 | 10942 | to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); |
5b4ee69b | 10943 | |
f5938064 JG |
10944 | return ada_value_slice_from_ptr (array, arr_type0, |
10945 | longest_to_int (low_bound), | |
10946 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
10947 | } |
10948 | } | |
10949 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10950 | return array; | |
10951 | else if (high_bound < low_bound) | |
df407dfe | 10952 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 10953 | else |
529cad9c PH |
10954 | return ada_value_slice (array, longest_to_int (low_bound), |
10955 | longest_to_int (high_bound)); | |
4c4b4cd2 | 10956 | } |
14f9c5c9 | 10957 | |
4c4b4cd2 PH |
10958 | case UNOP_IN_RANGE: |
10959 | (*pos) += 2; | |
10960 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 10961 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 10962 | |
14f9c5c9 | 10963 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 10964 | goto nosideret; |
14f9c5c9 | 10965 | |
4c4b4cd2 PH |
10966 | switch (TYPE_CODE (type)) |
10967 | { | |
10968 | default: | |
e1d5a0d2 PH |
10969 | lim_warning (_("Membership test incompletely implemented; " |
10970 | "always returns true")); | |
fbb06eb1 UW |
10971 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10972 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
10973 | |
10974 | case TYPE_CODE_RANGE: | |
030b4912 UW |
10975 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
10976 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
10977 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10978 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
10979 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10980 | return | |
10981 | value_from_longest (type, | |
4c4b4cd2 PH |
10982 | (value_less (arg1, arg3) |
10983 | || value_equal (arg1, arg3)) | |
10984 | && (value_less (arg2, arg1) | |
10985 | || value_equal (arg2, arg1))); | |
10986 | } | |
10987 | ||
10988 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 10989 | (*pos) += 2; |
4c4b4cd2 PH |
10990 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10991 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 10992 | |
4c4b4cd2 PH |
10993 | if (noside == EVAL_SKIP) |
10994 | goto nosideret; | |
14f9c5c9 | 10995 | |
4c4b4cd2 | 10996 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
10997 | { |
10998 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
10999 | return value_zero (type, not_lval); | |
11000 | } | |
14f9c5c9 | 11001 | |
4c4b4cd2 | 11002 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 11003 | |
1eea4ebd UW |
11004 | type = ada_index_type (value_type (arg2), tem, "range"); |
11005 | if (!type) | |
11006 | type = value_type (arg1); | |
14f9c5c9 | 11007 | |
1eea4ebd UW |
11008 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
11009 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 11010 | |
f44316fa UW |
11011 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
11012 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 11013 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 11014 | return |
fbb06eb1 | 11015 | value_from_longest (type, |
4c4b4cd2 PH |
11016 | (value_less (arg1, arg3) |
11017 | || value_equal (arg1, arg3)) | |
11018 | && (value_less (arg2, arg1) | |
11019 | || value_equal (arg2, arg1))); | |
11020 | ||
11021 | case TERNOP_IN_RANGE: | |
11022 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11023 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11024 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11025 | ||
11026 | if (noside == EVAL_SKIP) | |
11027 | goto nosideret; | |
11028 | ||
f44316fa UW |
11029 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
11030 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 11031 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 11032 | return |
fbb06eb1 | 11033 | value_from_longest (type, |
4c4b4cd2 PH |
11034 | (value_less (arg1, arg3) |
11035 | || value_equal (arg1, arg3)) | |
11036 | && (value_less (arg2, arg1) | |
11037 | || value_equal (arg2, arg1))); | |
11038 | ||
11039 | case OP_ATR_FIRST: | |
11040 | case OP_ATR_LAST: | |
11041 | case OP_ATR_LENGTH: | |
11042 | { | |
76a01679 | 11043 | struct type *type_arg; |
5b4ee69b | 11044 | |
76a01679 JB |
11045 | if (exp->elts[*pos].opcode == OP_TYPE) |
11046 | { | |
11047 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
11048 | arg1 = NULL; | |
5bc23cb3 | 11049 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
11050 | } |
11051 | else | |
11052 | { | |
11053 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11054 | type_arg = NULL; | |
11055 | } | |
11056 | ||
11057 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 11058 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
11059 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
11060 | *pos += 4; | |
11061 | ||
11062 | if (noside == EVAL_SKIP) | |
11063 | goto nosideret; | |
11064 | ||
11065 | if (type_arg == NULL) | |
11066 | { | |
11067 | arg1 = ada_coerce_ref (arg1); | |
11068 | ||
ad82864c | 11069 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
11070 | arg1 = ada_coerce_to_simple_array (arg1); |
11071 | ||
aa4fb036 | 11072 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 11073 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
11074 | else |
11075 | { | |
11076 | type = ada_index_type (value_type (arg1), tem, | |
11077 | ada_attribute_name (op)); | |
11078 | if (type == NULL) | |
11079 | type = builtin_type (exp->gdbarch)->builtin_int; | |
11080 | } | |
76a01679 JB |
11081 | |
11082 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 11083 | return allocate_value (type); |
76a01679 JB |
11084 | |
11085 | switch (op) | |
11086 | { | |
11087 | default: /* Should never happen. */ | |
323e0a4a | 11088 | error (_("unexpected attribute encountered")); |
76a01679 | 11089 | case OP_ATR_FIRST: |
1eea4ebd UW |
11090 | return value_from_longest |
11091 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 11092 | case OP_ATR_LAST: |
1eea4ebd UW |
11093 | return value_from_longest |
11094 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 11095 | case OP_ATR_LENGTH: |
1eea4ebd UW |
11096 | return value_from_longest |
11097 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
11098 | } |
11099 | } | |
11100 | else if (discrete_type_p (type_arg)) | |
11101 | { | |
11102 | struct type *range_type; | |
0d5cff50 | 11103 | const char *name = ada_type_name (type_arg); |
5b4ee69b | 11104 | |
76a01679 JB |
11105 | range_type = NULL; |
11106 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 11107 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
11108 | if (range_type == NULL) |
11109 | range_type = type_arg; | |
11110 | switch (op) | |
11111 | { | |
11112 | default: | |
323e0a4a | 11113 | error (_("unexpected attribute encountered")); |
76a01679 | 11114 | case OP_ATR_FIRST: |
690cc4eb | 11115 | return value_from_longest |
43bbcdc2 | 11116 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 11117 | case OP_ATR_LAST: |
690cc4eb | 11118 | return value_from_longest |
43bbcdc2 | 11119 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 11120 | case OP_ATR_LENGTH: |
323e0a4a | 11121 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
11122 | } |
11123 | } | |
11124 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 11125 | error (_("unimplemented type attribute")); |
76a01679 JB |
11126 | else |
11127 | { | |
11128 | LONGEST low, high; | |
11129 | ||
ad82864c JB |
11130 | if (ada_is_constrained_packed_array_type (type_arg)) |
11131 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 11132 | |
aa4fb036 | 11133 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 11134 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
11135 | else |
11136 | { | |
11137 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); | |
11138 | if (type == NULL) | |
11139 | type = builtin_type (exp->gdbarch)->builtin_int; | |
11140 | } | |
1eea4ebd | 11141 | |
76a01679 JB |
11142 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
11143 | return allocate_value (type); | |
11144 | ||
11145 | switch (op) | |
11146 | { | |
11147 | default: | |
323e0a4a | 11148 | error (_("unexpected attribute encountered")); |
76a01679 | 11149 | case OP_ATR_FIRST: |
1eea4ebd | 11150 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
11151 | return value_from_longest (type, low); |
11152 | case OP_ATR_LAST: | |
1eea4ebd | 11153 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
11154 | return value_from_longest (type, high); |
11155 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
11156 | low = ada_array_bound_from_type (type_arg, tem, 0); |
11157 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
11158 | return value_from_longest (type, high - low + 1); |
11159 | } | |
11160 | } | |
14f9c5c9 AS |
11161 | } |
11162 | ||
4c4b4cd2 PH |
11163 | case OP_ATR_TAG: |
11164 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11165 | if (noside == EVAL_SKIP) | |
76a01679 | 11166 | goto nosideret; |
4c4b4cd2 PH |
11167 | |
11168 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 11169 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
11170 | |
11171 | return ada_value_tag (arg1); | |
11172 | ||
11173 | case OP_ATR_MIN: | |
11174 | case OP_ATR_MAX: | |
11175 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
11176 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11177 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11178 | if (noside == EVAL_SKIP) | |
76a01679 | 11179 | goto nosideret; |
d2e4a39e | 11180 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 11181 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 11182 | else |
f44316fa UW |
11183 | { |
11184 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
11185 | return value_binop (arg1, arg2, | |
11186 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
11187 | } | |
14f9c5c9 | 11188 | |
4c4b4cd2 PH |
11189 | case OP_ATR_MODULUS: |
11190 | { | |
31dedfee | 11191 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 11192 | |
5b4ee69b | 11193 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
11194 | if (noside == EVAL_SKIP) |
11195 | goto nosideret; | |
4c4b4cd2 | 11196 | |
76a01679 | 11197 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 11198 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 11199 | |
76a01679 JB |
11200 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
11201 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
11202 | } |
11203 | ||
11204 | ||
11205 | case OP_ATR_POS: | |
11206 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
11207 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11208 | if (noside == EVAL_SKIP) | |
76a01679 | 11209 | goto nosideret; |
3cb382c9 UW |
11210 | type = builtin_type (exp->gdbarch)->builtin_int; |
11211 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
11212 | return value_zero (type, not_lval); | |
14f9c5c9 | 11213 | else |
3cb382c9 | 11214 | return value_pos_atr (type, arg1); |
14f9c5c9 | 11215 | |
4c4b4cd2 PH |
11216 | case OP_ATR_SIZE: |
11217 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
11218 | type = value_type (arg1); |
11219 | ||
11220 | /* If the argument is a reference, then dereference its type, since | |
11221 | the user is really asking for the size of the actual object, | |
11222 | not the size of the pointer. */ | |
11223 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
11224 | type = TYPE_TARGET_TYPE (type); | |
11225 | ||
4c4b4cd2 | 11226 | if (noside == EVAL_SKIP) |
76a01679 | 11227 | goto nosideret; |
4c4b4cd2 | 11228 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 11229 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 11230 | else |
22601c15 | 11231 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 11232 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
11233 | |
11234 | case OP_ATR_VAL: | |
11235 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 11236 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 11237 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 11238 | if (noside == EVAL_SKIP) |
76a01679 | 11239 | goto nosideret; |
4c4b4cd2 | 11240 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 11241 | return value_zero (type, not_lval); |
4c4b4cd2 | 11242 | else |
76a01679 | 11243 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
11244 | |
11245 | case BINOP_EXP: | |
11246 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11247 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11248 | if (noside == EVAL_SKIP) | |
11249 | goto nosideret; | |
11250 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 11251 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 11252 | else |
f44316fa UW |
11253 | { |
11254 | /* For integer exponentiation operations, | |
11255 | only promote the first argument. */ | |
11256 | if (is_integral_type (value_type (arg2))) | |
11257 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
11258 | else | |
11259 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
11260 | ||
11261 | return value_binop (arg1, arg2, op); | |
11262 | } | |
4c4b4cd2 PH |
11263 | |
11264 | case UNOP_PLUS: | |
11265 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11266 | if (noside == EVAL_SKIP) | |
11267 | goto nosideret; | |
11268 | else | |
11269 | return arg1; | |
11270 | ||
11271 | case UNOP_ABS: | |
11272 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11273 | if (noside == EVAL_SKIP) | |
11274 | goto nosideret; | |
f44316fa | 11275 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 11276 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 11277 | return value_neg (arg1); |
14f9c5c9 | 11278 | else |
4c4b4cd2 | 11279 | return arg1; |
14f9c5c9 AS |
11280 | |
11281 | case UNOP_IND: | |
5ec18f2b | 11282 | preeval_pos = *pos; |
6b0d7253 | 11283 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 11284 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 11285 | goto nosideret; |
df407dfe | 11286 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 11287 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
11288 | { |
11289 | if (ada_is_array_descriptor_type (type)) | |
11290 | /* GDB allows dereferencing GNAT array descriptors. */ | |
11291 | { | |
11292 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 11293 | |
4c4b4cd2 | 11294 | if (arrType == NULL) |
323e0a4a | 11295 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 11296 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
11297 | } |
11298 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
11299 | || TYPE_CODE (type) == TYPE_CODE_REF | |
11300 | /* In C you can dereference an array to get the 1st elt. */ | |
11301 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab | 11302 | { |
5ec18f2b JG |
11303 | /* As mentioned in the OP_VAR_VALUE case, tagged types can |
11304 | only be determined by inspecting the object's tag. | |
11305 | This means that we need to evaluate completely the | |
11306 | expression in order to get its type. */ | |
11307 | ||
023db19c JB |
11308 | if ((TYPE_CODE (type) == TYPE_CODE_REF |
11309 | || TYPE_CODE (type) == TYPE_CODE_PTR) | |
5ec18f2b JG |
11310 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)) |
11311 | { | |
11312 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
11313 | EVAL_NORMAL); | |
11314 | type = value_type (ada_value_ind (arg1)); | |
11315 | } | |
11316 | else | |
11317 | { | |
11318 | type = to_static_fixed_type | |
11319 | (ada_aligned_type | |
11320 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
11321 | } | |
c1b5a1a6 | 11322 | ada_ensure_varsize_limit (type); |
714e53ab PH |
11323 | return value_zero (type, lval_memory); |
11324 | } | |
4c4b4cd2 | 11325 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
11326 | { |
11327 | /* GDB allows dereferencing an int. */ | |
11328 | if (expect_type == NULL) | |
11329 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
11330 | lval_memory); | |
11331 | else | |
11332 | { | |
11333 | expect_type = | |
11334 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
11335 | return value_zero (expect_type, lval_memory); | |
11336 | } | |
11337 | } | |
4c4b4cd2 | 11338 | else |
323e0a4a | 11339 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 11340 | } |
0963b4bd | 11341 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 11342 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 11343 | |
96967637 JB |
11344 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
11345 | /* GDB allows dereferencing an int. If we were given | |
11346 | the expect_type, then use that as the target type. | |
11347 | Otherwise, assume that the target type is an int. */ | |
11348 | { | |
11349 | if (expect_type != NULL) | |
11350 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
11351 | arg1)); | |
11352 | else | |
11353 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
11354 | (CORE_ADDR) value_as_address (arg1)); | |
11355 | } | |
6b0d7253 | 11356 | |
4c4b4cd2 PH |
11357 | if (ada_is_array_descriptor_type (type)) |
11358 | /* GDB allows dereferencing GNAT array descriptors. */ | |
11359 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 11360 | else |
4c4b4cd2 | 11361 | return ada_value_ind (arg1); |
14f9c5c9 AS |
11362 | |
11363 | case STRUCTOP_STRUCT: | |
11364 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
11365 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
5ec18f2b | 11366 | preeval_pos = *pos; |
14f9c5c9 AS |
11367 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11368 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 11369 | goto nosideret; |
14f9c5c9 | 11370 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 11371 | { |
df407dfe | 11372 | struct type *type1 = value_type (arg1); |
5b4ee69b | 11373 | |
76a01679 JB |
11374 | if (ada_is_tagged_type (type1, 1)) |
11375 | { | |
11376 | type = ada_lookup_struct_elt_type (type1, | |
11377 | &exp->elts[pc + 2].string, | |
11378 | 1, 1, NULL); | |
5ec18f2b JG |
11379 | |
11380 | /* If the field is not found, check if it exists in the | |
11381 | extension of this object's type. This means that we | |
11382 | need to evaluate completely the expression. */ | |
11383 | ||
76a01679 | 11384 | if (type == NULL) |
5ec18f2b JG |
11385 | { |
11386 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
11387 | EVAL_NORMAL); | |
11388 | arg1 = ada_value_struct_elt (arg1, | |
11389 | &exp->elts[pc + 2].string, | |
11390 | 0); | |
11391 | arg1 = unwrap_value (arg1); | |
11392 | type = value_type (ada_to_fixed_value (arg1)); | |
11393 | } | |
76a01679 JB |
11394 | } |
11395 | else | |
11396 | type = | |
11397 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
11398 | 0, NULL); | |
11399 | ||
11400 | return value_zero (ada_aligned_type (type), lval_memory); | |
11401 | } | |
14f9c5c9 | 11402 | else |
a579cd9a MW |
11403 | { |
11404 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); | |
11405 | arg1 = unwrap_value (arg1); | |
11406 | return ada_to_fixed_value (arg1); | |
11407 | } | |
284614f0 | 11408 | |
14f9c5c9 | 11409 | case OP_TYPE: |
4c4b4cd2 PH |
11410 | /* The value is not supposed to be used. This is here to make it |
11411 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
11412 | (*pos) += 2; |
11413 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 11414 | goto nosideret; |
14f9c5c9 | 11415 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 11416 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 11417 | else |
323e0a4a | 11418 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
11419 | |
11420 | case OP_AGGREGATE: | |
11421 | case OP_CHOICES: | |
11422 | case OP_OTHERS: | |
11423 | case OP_DISCRETE_RANGE: | |
11424 | case OP_POSITIONAL: | |
11425 | case OP_NAME: | |
11426 | if (noside == EVAL_NORMAL) | |
11427 | switch (op) | |
11428 | { | |
11429 | case OP_NAME: | |
11430 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 11431 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
11432 | case OP_AGGREGATE: |
11433 | error (_("Aggregates only allowed on the right of an assignment")); | |
11434 | default: | |
0963b4bd MS |
11435 | internal_error (__FILE__, __LINE__, |
11436 | _("aggregate apparently mangled")); | |
52ce6436 PH |
11437 | } |
11438 | ||
11439 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
11440 | *pos += oplen - 1; | |
11441 | for (tem = 0; tem < nargs; tem += 1) | |
11442 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
11443 | goto nosideret; | |
14f9c5c9 AS |
11444 | } |
11445 | ||
11446 | nosideret: | |
22601c15 | 11447 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); |
14f9c5c9 | 11448 | } |
14f9c5c9 | 11449 | \f |
d2e4a39e | 11450 | |
4c4b4cd2 | 11451 | /* Fixed point */ |
14f9c5c9 AS |
11452 | |
11453 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
11454 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 11455 | Otherwise, return NULL. */ |
14f9c5c9 | 11456 | |
d2e4a39e | 11457 | static const char * |
ebf56fd3 | 11458 | fixed_type_info (struct type *type) |
14f9c5c9 | 11459 | { |
d2e4a39e | 11460 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
11461 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
11462 | ||
d2e4a39e AS |
11463 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
11464 | { | |
14f9c5c9 | 11465 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 11466 | |
14f9c5c9 | 11467 | if (tail == NULL) |
4c4b4cd2 | 11468 | return NULL; |
d2e4a39e | 11469 | else |
4c4b4cd2 | 11470 | return tail + 5; |
14f9c5c9 AS |
11471 | } |
11472 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
11473 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
11474 | else | |
11475 | return NULL; | |
11476 | } | |
11477 | ||
4c4b4cd2 | 11478 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
11479 | |
11480 | int | |
ebf56fd3 | 11481 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
11482 | { |
11483 | return fixed_type_info (type) != NULL; | |
11484 | } | |
11485 | ||
4c4b4cd2 PH |
11486 | /* Return non-zero iff TYPE represents a System.Address type. */ |
11487 | ||
11488 | int | |
11489 | ada_is_system_address_type (struct type *type) | |
11490 | { | |
11491 | return (TYPE_NAME (type) | |
11492 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
11493 | } | |
11494 | ||
14f9c5c9 AS |
11495 | /* Assuming that TYPE is the representation of an Ada fixed-point |
11496 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 11497 | delta cannot be determined. */ |
14f9c5c9 AS |
11498 | |
11499 | DOUBLEST | |
ebf56fd3 | 11500 | ada_delta (struct type *type) |
14f9c5c9 AS |
11501 | { |
11502 | const char *encoding = fixed_type_info (type); | |
facc390f | 11503 | DOUBLEST num, den; |
14f9c5c9 | 11504 | |
facc390f JB |
11505 | /* Strictly speaking, num and den are encoded as integer. However, |
11506 | they may not fit into a long, and they will have to be converted | |
11507 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
11508 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
11509 | &num, &den) < 2) | |
14f9c5c9 | 11510 | return -1.0; |
d2e4a39e | 11511 | else |
facc390f | 11512 | return num / den; |
14f9c5c9 AS |
11513 | } |
11514 | ||
11515 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 11516 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
11517 | |
11518 | static DOUBLEST | |
ebf56fd3 | 11519 | scaling_factor (struct type *type) |
14f9c5c9 AS |
11520 | { |
11521 | const char *encoding = fixed_type_info (type); | |
facc390f | 11522 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 11523 | int n; |
d2e4a39e | 11524 | |
facc390f JB |
11525 | /* Strictly speaking, num's and den's are encoded as integer. However, |
11526 | they may not fit into a long, and they will have to be converted | |
11527 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
11528 | n = sscanf (encoding, | |
11529 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
11530 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
11531 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
11532 | |
11533 | if (n < 2) | |
11534 | return 1.0; | |
11535 | else if (n == 4) | |
facc390f | 11536 | return num1 / den1; |
d2e4a39e | 11537 | else |
facc390f | 11538 | return num0 / den0; |
14f9c5c9 AS |
11539 | } |
11540 | ||
11541 | ||
11542 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 11543 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
11544 | |
11545 | DOUBLEST | |
ebf56fd3 | 11546 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 11547 | { |
d2e4a39e | 11548 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
11549 | } |
11550 | ||
4c4b4cd2 PH |
11551 | /* The representation of a fixed-point value of type TYPE |
11552 | corresponding to the value X. */ | |
14f9c5c9 AS |
11553 | |
11554 | LONGEST | |
ebf56fd3 | 11555 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
11556 | { |
11557 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
11558 | } | |
11559 | ||
14f9c5c9 | 11560 | \f |
d2e4a39e | 11561 | |
4c4b4cd2 | 11562 | /* Range types */ |
14f9c5c9 AS |
11563 | |
11564 | /* Scan STR beginning at position K for a discriminant name, and | |
11565 | return the value of that discriminant field of DVAL in *PX. If | |
11566 | PNEW_K is not null, put the position of the character beyond the | |
11567 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 11568 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
11569 | |
11570 | static int | |
108d56a4 | 11571 | scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 11572 | int *pnew_k) |
14f9c5c9 AS |
11573 | { |
11574 | static char *bound_buffer = NULL; | |
11575 | static size_t bound_buffer_len = 0; | |
5da1a4d3 | 11576 | const char *pstart, *pend, *bound; |
d2e4a39e | 11577 | struct value *bound_val; |
14f9c5c9 AS |
11578 | |
11579 | if (dval == NULL || str == NULL || str[k] == '\0') | |
11580 | return 0; | |
11581 | ||
5da1a4d3 SM |
11582 | pstart = str + k; |
11583 | pend = strstr (pstart, "__"); | |
14f9c5c9 AS |
11584 | if (pend == NULL) |
11585 | { | |
5da1a4d3 | 11586 | bound = pstart; |
14f9c5c9 AS |
11587 | k += strlen (bound); |
11588 | } | |
d2e4a39e | 11589 | else |
14f9c5c9 | 11590 | { |
5da1a4d3 SM |
11591 | int len = pend - pstart; |
11592 | ||
11593 | /* Strip __ and beyond. */ | |
11594 | GROW_VECT (bound_buffer, bound_buffer_len, len + 1); | |
11595 | strncpy (bound_buffer, pstart, len); | |
11596 | bound_buffer[len] = '\0'; | |
11597 | ||
14f9c5c9 | 11598 | bound = bound_buffer; |
d2e4a39e | 11599 | k = pend - str; |
14f9c5c9 | 11600 | } |
d2e4a39e | 11601 | |
df407dfe | 11602 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
11603 | if (bound_val == NULL) |
11604 | return 0; | |
11605 | ||
11606 | *px = value_as_long (bound_val); | |
11607 | if (pnew_k != NULL) | |
11608 | *pnew_k = k; | |
11609 | return 1; | |
11610 | } | |
11611 | ||
11612 | /* Value of variable named NAME in the current environment. If | |
11613 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
11614 | otherwise causes an error with message ERR_MSG. */ |
11615 | ||
d2e4a39e AS |
11616 | static struct value * |
11617 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 11618 | { |
d12307c1 | 11619 | struct block_symbol *syms; |
14f9c5c9 AS |
11620 | int nsyms; |
11621 | ||
4c4b4cd2 | 11622 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
4eeaa230 | 11623 | &syms); |
14f9c5c9 AS |
11624 | |
11625 | if (nsyms != 1) | |
11626 | { | |
11627 | if (err_msg == NULL) | |
4c4b4cd2 | 11628 | return 0; |
14f9c5c9 | 11629 | else |
8a3fe4f8 | 11630 | error (("%s"), err_msg); |
14f9c5c9 AS |
11631 | } |
11632 | ||
d12307c1 | 11633 | return value_of_variable (syms[0].symbol, syms[0].block); |
14f9c5c9 | 11634 | } |
d2e4a39e | 11635 | |
14f9c5c9 | 11636 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
11637 | no such variable found, returns 0, and sets *FLAG to 0. If |
11638 | successful, sets *FLAG to 1. */ | |
11639 | ||
14f9c5c9 | 11640 | LONGEST |
4c4b4cd2 | 11641 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 11642 | { |
4c4b4cd2 | 11643 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 11644 | |
14f9c5c9 AS |
11645 | if (var_val == 0) |
11646 | { | |
11647 | if (flag != NULL) | |
4c4b4cd2 | 11648 | *flag = 0; |
14f9c5c9 AS |
11649 | return 0; |
11650 | } | |
11651 | else | |
11652 | { | |
11653 | if (flag != NULL) | |
4c4b4cd2 | 11654 | *flag = 1; |
14f9c5c9 AS |
11655 | return value_as_long (var_val); |
11656 | } | |
11657 | } | |
d2e4a39e | 11658 | |
14f9c5c9 AS |
11659 | |
11660 | /* Return a range type whose base type is that of the range type named | |
11661 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 11662 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
11663 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
11664 | corresponding range type from debug information; fall back to using it | |
11665 | if symbol lookup fails. If a new type must be created, allocate it | |
11666 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
11667 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 11668 | |
d2e4a39e | 11669 | static struct type * |
28c85d6c | 11670 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 11671 | { |
0d5cff50 | 11672 | const char *name; |
14f9c5c9 | 11673 | struct type *base_type; |
108d56a4 | 11674 | const char *subtype_info; |
14f9c5c9 | 11675 | |
28c85d6c JB |
11676 | gdb_assert (raw_type != NULL); |
11677 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 11678 | |
1ce677a4 | 11679 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
11680 | base_type = TYPE_TARGET_TYPE (raw_type); |
11681 | else | |
11682 | base_type = raw_type; | |
11683 | ||
28c85d6c | 11684 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
11685 | subtype_info = strstr (name, "___XD"); |
11686 | if (subtype_info == NULL) | |
690cc4eb | 11687 | { |
43bbcdc2 PH |
11688 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
11689 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 11690 | |
690cc4eb PH |
11691 | if (L < INT_MIN || U > INT_MAX) |
11692 | return raw_type; | |
11693 | else | |
0c9c3474 SA |
11694 | return create_static_range_type (alloc_type_copy (raw_type), raw_type, |
11695 | L, U); | |
690cc4eb | 11696 | } |
14f9c5c9 AS |
11697 | else |
11698 | { | |
11699 | static char *name_buf = NULL; | |
11700 | static size_t name_len = 0; | |
11701 | int prefix_len = subtype_info - name; | |
11702 | LONGEST L, U; | |
11703 | struct type *type; | |
108d56a4 | 11704 | const char *bounds_str; |
14f9c5c9 AS |
11705 | int n; |
11706 | ||
11707 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
11708 | strncpy (name_buf, name, prefix_len); | |
11709 | name_buf[prefix_len] = '\0'; | |
11710 | ||
11711 | subtype_info += 5; | |
11712 | bounds_str = strchr (subtype_info, '_'); | |
11713 | n = 1; | |
11714 | ||
d2e4a39e | 11715 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
11716 | { |
11717 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
11718 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
11719 | return raw_type; | |
11720 | if (bounds_str[n] == '_') | |
11721 | n += 2; | |
0963b4bd | 11722 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
4c4b4cd2 PH |
11723 | n += 1; |
11724 | subtype_info += 1; | |
11725 | } | |
d2e4a39e | 11726 | else |
4c4b4cd2 PH |
11727 | { |
11728 | int ok; | |
5b4ee69b | 11729 | |
4c4b4cd2 PH |
11730 | strcpy (name_buf + prefix_len, "___L"); |
11731 | L = get_int_var_value (name_buf, &ok); | |
11732 | if (!ok) | |
11733 | { | |
323e0a4a | 11734 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
11735 | L = 1; |
11736 | } | |
11737 | } | |
14f9c5c9 | 11738 | |
d2e4a39e | 11739 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
11740 | { |
11741 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
11742 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
11743 | return raw_type; | |
11744 | } | |
d2e4a39e | 11745 | else |
4c4b4cd2 PH |
11746 | { |
11747 | int ok; | |
5b4ee69b | 11748 | |
4c4b4cd2 PH |
11749 | strcpy (name_buf + prefix_len, "___U"); |
11750 | U = get_int_var_value (name_buf, &ok); | |
11751 | if (!ok) | |
11752 | { | |
323e0a4a | 11753 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
11754 | U = L; |
11755 | } | |
11756 | } | |
14f9c5c9 | 11757 | |
0c9c3474 SA |
11758 | type = create_static_range_type (alloc_type_copy (raw_type), |
11759 | base_type, L, U); | |
d2e4a39e | 11760 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
11761 | return type; |
11762 | } | |
11763 | } | |
11764 | ||
4c4b4cd2 PH |
11765 | /* True iff NAME is the name of a range type. */ |
11766 | ||
14f9c5c9 | 11767 | int |
d2e4a39e | 11768 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
11769 | { |
11770 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 11771 | } |
14f9c5c9 | 11772 | \f |
d2e4a39e | 11773 | |
4c4b4cd2 PH |
11774 | /* Modular types */ |
11775 | ||
11776 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 11777 | |
14f9c5c9 | 11778 | int |
d2e4a39e | 11779 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 11780 | { |
18af8284 | 11781 | struct type *subranged_type = get_base_type (type); |
14f9c5c9 AS |
11782 | |
11783 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 11784 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 11785 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
11786 | } |
11787 | ||
4c4b4cd2 PH |
11788 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
11789 | ||
61ee279c | 11790 | ULONGEST |
0056e4d5 | 11791 | ada_modulus (struct type *type) |
14f9c5c9 | 11792 | { |
43bbcdc2 | 11793 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 11794 | } |
d2e4a39e | 11795 | \f |
f7f9143b JB |
11796 | |
11797 | /* Ada exception catchpoint support: | |
11798 | --------------------------------- | |
11799 | ||
11800 | We support 3 kinds of exception catchpoints: | |
11801 | . catchpoints on Ada exceptions | |
11802 | . catchpoints on unhandled Ada exceptions | |
11803 | . catchpoints on failed assertions | |
11804 | ||
11805 | Exceptions raised during failed assertions, or unhandled exceptions | |
11806 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
11807 | However, we can easily differentiate these two special cases, and having | |
11808 | the option to distinguish these two cases from the rest can be useful | |
11809 | to zero-in on certain situations. | |
11810 | ||
11811 | Exception catchpoints are a specialized form of breakpoint, | |
11812 | since they rely on inserting breakpoints inside known routines | |
11813 | of the GNAT runtime. The implementation therefore uses a standard | |
11814 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
11815 | of breakpoint_ops. | |
11816 | ||
0259addd JB |
11817 | Support in the runtime for exception catchpoints have been changed |
11818 | a few times already, and these changes affect the implementation | |
11819 | of these catchpoints. In order to be able to support several | |
11820 | variants of the runtime, we use a sniffer that will determine | |
28010a5d | 11821 | the runtime variant used by the program being debugged. */ |
f7f9143b | 11822 | |
82eacd52 JB |
11823 | /* Ada's standard exceptions. |
11824 | ||
11825 | The Ada 83 standard also defined Numeric_Error. But there so many | |
11826 | situations where it was unclear from the Ada 83 Reference Manual | |
11827 | (RM) whether Constraint_Error or Numeric_Error should be raised, | |
11828 | that the ARG (Ada Rapporteur Group) eventually issued a Binding | |
11829 | Interpretation saying that anytime the RM says that Numeric_Error | |
11830 | should be raised, the implementation may raise Constraint_Error. | |
11831 | Ada 95 went one step further and pretty much removed Numeric_Error | |
11832 | from the list of standard exceptions (it made it a renaming of | |
11833 | Constraint_Error, to help preserve compatibility when compiling | |
11834 | an Ada83 compiler). As such, we do not include Numeric_Error from | |
11835 | this list of standard exceptions. */ | |
3d0b0fa3 | 11836 | |
a121b7c1 | 11837 | static const char *standard_exc[] = { |
3d0b0fa3 JB |
11838 | "constraint_error", |
11839 | "program_error", | |
11840 | "storage_error", | |
11841 | "tasking_error" | |
11842 | }; | |
11843 | ||
0259addd JB |
11844 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
11845 | ||
11846 | /* A structure that describes how to support exception catchpoints | |
11847 | for a given executable. */ | |
11848 | ||
11849 | struct exception_support_info | |
11850 | { | |
11851 | /* The name of the symbol to break on in order to insert | |
11852 | a catchpoint on exceptions. */ | |
11853 | const char *catch_exception_sym; | |
11854 | ||
11855 | /* The name of the symbol to break on in order to insert | |
11856 | a catchpoint on unhandled exceptions. */ | |
11857 | const char *catch_exception_unhandled_sym; | |
11858 | ||
11859 | /* The name of the symbol to break on in order to insert | |
11860 | a catchpoint on failed assertions. */ | |
11861 | const char *catch_assert_sym; | |
11862 | ||
11863 | /* Assuming that the inferior just triggered an unhandled exception | |
11864 | catchpoint, this function is responsible for returning the address | |
11865 | in inferior memory where the name of that exception is stored. | |
11866 | Return zero if the address could not be computed. */ | |
11867 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
11868 | }; | |
11869 | ||
11870 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
11871 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
11872 | ||
11873 | /* The following exception support info structure describes how to | |
11874 | implement exception catchpoints with the latest version of the | |
11875 | Ada runtime (as of 2007-03-06). */ | |
11876 | ||
11877 | static const struct exception_support_info default_exception_support_info = | |
11878 | { | |
11879 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
11880 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11881 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
11882 | ada_unhandled_exception_name_addr | |
11883 | }; | |
11884 | ||
11885 | /* The following exception support info structure describes how to | |
11886 | implement exception catchpoints with a slightly older version | |
11887 | of the Ada runtime. */ | |
11888 | ||
11889 | static const struct exception_support_info exception_support_info_fallback = | |
11890 | { | |
11891 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
11892 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11893 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
11894 | ada_unhandled_exception_name_addr_from_raise | |
11895 | }; | |
11896 | ||
f17011e0 JB |
11897 | /* Return nonzero if we can detect the exception support routines |
11898 | described in EINFO. | |
11899 | ||
11900 | This function errors out if an abnormal situation is detected | |
11901 | (for instance, if we find the exception support routines, but | |
11902 | that support is found to be incomplete). */ | |
11903 | ||
11904 | static int | |
11905 | ada_has_this_exception_support (const struct exception_support_info *einfo) | |
11906 | { | |
11907 | struct symbol *sym; | |
11908 | ||
11909 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
11910 | that should be compiled with debugging information. As a result, we | |
11911 | expect to find that symbol in the symtabs. */ | |
11912 | ||
11913 | sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN); | |
11914 | if (sym == NULL) | |
a6af7abe JB |
11915 | { |
11916 | /* Perhaps we did not find our symbol because the Ada runtime was | |
11917 | compiled without debugging info, or simply stripped of it. | |
11918 | It happens on some GNU/Linux distributions for instance, where | |
11919 | users have to install a separate debug package in order to get | |
11920 | the runtime's debugging info. In that situation, let the user | |
11921 | know why we cannot insert an Ada exception catchpoint. | |
11922 | ||
11923 | Note: Just for the purpose of inserting our Ada exception | |
11924 | catchpoint, we could rely purely on the associated minimal symbol. | |
11925 | But we would be operating in degraded mode anyway, since we are | |
11926 | still lacking the debugging info needed later on to extract | |
11927 | the name of the exception being raised (this name is printed in | |
11928 | the catchpoint message, and is also used when trying to catch | |
11929 | a specific exception). We do not handle this case for now. */ | |
3b7344d5 | 11930 | struct bound_minimal_symbol msym |
1c8e84b0 JB |
11931 | = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL); |
11932 | ||
3b7344d5 | 11933 | if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline) |
a6af7abe JB |
11934 | error (_("Your Ada runtime appears to be missing some debugging " |
11935 | "information.\nCannot insert Ada exception catchpoint " | |
11936 | "in this configuration.")); | |
11937 | ||
11938 | return 0; | |
11939 | } | |
f17011e0 JB |
11940 | |
11941 | /* Make sure that the symbol we found corresponds to a function. */ | |
11942 | ||
11943 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
11944 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
11945 | SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym)); | |
11946 | ||
11947 | return 1; | |
11948 | } | |
11949 | ||
0259addd JB |
11950 | /* Inspect the Ada runtime and determine which exception info structure |
11951 | should be used to provide support for exception catchpoints. | |
11952 | ||
3eecfa55 JB |
11953 | This function will always set the per-inferior exception_info, |
11954 | or raise an error. */ | |
0259addd JB |
11955 | |
11956 | static void | |
11957 | ada_exception_support_info_sniffer (void) | |
11958 | { | |
3eecfa55 | 11959 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
0259addd JB |
11960 | |
11961 | /* If the exception info is already known, then no need to recompute it. */ | |
3eecfa55 | 11962 | if (data->exception_info != NULL) |
0259addd JB |
11963 | return; |
11964 | ||
11965 | /* Check the latest (default) exception support info. */ | |
f17011e0 | 11966 | if (ada_has_this_exception_support (&default_exception_support_info)) |
0259addd | 11967 | { |
3eecfa55 | 11968 | data->exception_info = &default_exception_support_info; |
0259addd JB |
11969 | return; |
11970 | } | |
11971 | ||
11972 | /* Try our fallback exception suport info. */ | |
f17011e0 | 11973 | if (ada_has_this_exception_support (&exception_support_info_fallback)) |
0259addd | 11974 | { |
3eecfa55 | 11975 | data->exception_info = &exception_support_info_fallback; |
0259addd JB |
11976 | return; |
11977 | } | |
11978 | ||
11979 | /* Sometimes, it is normal for us to not be able to find the routine | |
11980 | we are looking for. This happens when the program is linked with | |
11981 | the shared version of the GNAT runtime, and the program has not been | |
11982 | started yet. Inform the user of these two possible causes if | |
11983 | applicable. */ | |
11984 | ||
ccefe4c4 | 11985 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
11986 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
11987 | ||
11988 | /* If the symbol does not exist, then check that the program is | |
11989 | already started, to make sure that shared libraries have been | |
11990 | loaded. If it is not started, this may mean that the symbol is | |
11991 | in a shared library. */ | |
11992 | ||
11993 | if (ptid_get_pid (inferior_ptid) == 0) | |
11994 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
11995 | ||
11996 | /* At this point, we know that we are debugging an Ada program and | |
11997 | that the inferior has been started, but we still are not able to | |
0963b4bd | 11998 | find the run-time symbols. That can mean that we are in |
0259addd JB |
11999 | configurable run time mode, or that a-except as been optimized |
12000 | out by the linker... In any case, at this point it is not worth | |
12001 | supporting this feature. */ | |
12002 | ||
7dda8cff | 12003 | error (_("Cannot insert Ada exception catchpoints in this configuration.")); |
0259addd JB |
12004 | } |
12005 | ||
f7f9143b JB |
12006 | /* True iff FRAME is very likely to be that of a function that is |
12007 | part of the runtime system. This is all very heuristic, but is | |
12008 | intended to be used as advice as to what frames are uninteresting | |
12009 | to most users. */ | |
12010 | ||
12011 | static int | |
12012 | is_known_support_routine (struct frame_info *frame) | |
12013 | { | |
4ed6b5be | 12014 | struct symtab_and_line sal; |
55b87a52 | 12015 | char *func_name; |
692465f1 | 12016 | enum language func_lang; |
f7f9143b | 12017 | int i; |
f35a17b5 | 12018 | const char *fullname; |
f7f9143b | 12019 | |
4ed6b5be JB |
12020 | /* If this code does not have any debugging information (no symtab), |
12021 | This cannot be any user code. */ | |
f7f9143b | 12022 | |
4ed6b5be | 12023 | find_frame_sal (frame, &sal); |
f7f9143b JB |
12024 | if (sal.symtab == NULL) |
12025 | return 1; | |
12026 | ||
4ed6b5be JB |
12027 | /* If there is a symtab, but the associated source file cannot be |
12028 | located, then assume this is not user code: Selecting a frame | |
12029 | for which we cannot display the code would not be very helpful | |
12030 | for the user. This should also take care of case such as VxWorks | |
12031 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 12032 | |
f35a17b5 JK |
12033 | fullname = symtab_to_fullname (sal.symtab); |
12034 | if (access (fullname, R_OK) != 0) | |
f7f9143b JB |
12035 | return 1; |
12036 | ||
4ed6b5be JB |
12037 | /* Check the unit filename againt the Ada runtime file naming. |
12038 | We also check the name of the objfile against the name of some | |
12039 | known system libraries that sometimes come with debugging info | |
12040 | too. */ | |
12041 | ||
f7f9143b JB |
12042 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
12043 | { | |
12044 | re_comp (known_runtime_file_name_patterns[i]); | |
f69c91ad | 12045 | if (re_exec (lbasename (sal.symtab->filename))) |
f7f9143b | 12046 | return 1; |
eb822aa6 DE |
12047 | if (SYMTAB_OBJFILE (sal.symtab) != NULL |
12048 | && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab)))) | |
4ed6b5be | 12049 | return 1; |
f7f9143b JB |
12050 | } |
12051 | ||
4ed6b5be | 12052 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 12053 | |
e9e07ba6 | 12054 | find_frame_funname (frame, &func_name, &func_lang, NULL); |
f7f9143b JB |
12055 | if (func_name == NULL) |
12056 | return 1; | |
12057 | ||
12058 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
12059 | { | |
12060 | re_comp (known_auxiliary_function_name_patterns[i]); | |
12061 | if (re_exec (func_name)) | |
55b87a52 KS |
12062 | { |
12063 | xfree (func_name); | |
12064 | return 1; | |
12065 | } | |
f7f9143b JB |
12066 | } |
12067 | ||
55b87a52 | 12068 | xfree (func_name); |
f7f9143b JB |
12069 | return 0; |
12070 | } | |
12071 | ||
12072 | /* Find the first frame that contains debugging information and that is not | |
12073 | part of the Ada run-time, starting from FI and moving upward. */ | |
12074 | ||
0ef643c8 | 12075 | void |
f7f9143b JB |
12076 | ada_find_printable_frame (struct frame_info *fi) |
12077 | { | |
12078 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
12079 | { | |
12080 | if (!is_known_support_routine (fi)) | |
12081 | { | |
12082 | select_frame (fi); | |
12083 | break; | |
12084 | } | |
12085 | } | |
12086 | ||
12087 | } | |
12088 | ||
12089 | /* Assuming that the inferior just triggered an unhandled exception | |
12090 | catchpoint, return the address in inferior memory where the name | |
12091 | of the exception is stored. | |
12092 | ||
12093 | Return zero if the address could not be computed. */ | |
12094 | ||
12095 | static CORE_ADDR | |
12096 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
12097 | { |
12098 | return parse_and_eval_address ("e.full_name"); | |
12099 | } | |
12100 | ||
12101 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
12102 | should be used when the inferior uses an older version of the runtime, | |
12103 | where the exception name needs to be extracted from a specific frame | |
12104 | several frames up in the callstack. */ | |
12105 | ||
12106 | static CORE_ADDR | |
12107 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
12108 | { |
12109 | int frame_level; | |
12110 | struct frame_info *fi; | |
3eecfa55 | 12111 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
55b87a52 | 12112 | struct cleanup *old_chain; |
f7f9143b JB |
12113 | |
12114 | /* To determine the name of this exception, we need to select | |
12115 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
12116 | at least 3 levels up, so we simply skip the first 3 frames | |
12117 | without checking the name of their associated function. */ | |
12118 | fi = get_current_frame (); | |
12119 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
12120 | if (fi != NULL) | |
12121 | fi = get_prev_frame (fi); | |
12122 | ||
55b87a52 | 12123 | old_chain = make_cleanup (null_cleanup, NULL); |
f7f9143b JB |
12124 | while (fi != NULL) |
12125 | { | |
55b87a52 | 12126 | char *func_name; |
692465f1 JB |
12127 | enum language func_lang; |
12128 | ||
e9e07ba6 | 12129 | find_frame_funname (fi, &func_name, &func_lang, NULL); |
55b87a52 KS |
12130 | if (func_name != NULL) |
12131 | { | |
12132 | make_cleanup (xfree, func_name); | |
12133 | ||
12134 | if (strcmp (func_name, | |
12135 | data->exception_info->catch_exception_sym) == 0) | |
12136 | break; /* We found the frame we were looking for... */ | |
12137 | fi = get_prev_frame (fi); | |
12138 | } | |
f7f9143b | 12139 | } |
55b87a52 | 12140 | do_cleanups (old_chain); |
f7f9143b JB |
12141 | |
12142 | if (fi == NULL) | |
12143 | return 0; | |
12144 | ||
12145 | select_frame (fi); | |
12146 | return parse_and_eval_address ("id.full_name"); | |
12147 | } | |
12148 | ||
12149 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
12150 | (of any type), return the address in inferior memory where the name | |
12151 | of the exception is stored, if applicable. | |
12152 | ||
45db7c09 PA |
12153 | Assumes the selected frame is the current frame. |
12154 | ||
f7f9143b JB |
12155 | Return zero if the address could not be computed, or if not relevant. */ |
12156 | ||
12157 | static CORE_ADDR | |
761269c8 | 12158 | ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12159 | struct breakpoint *b) |
12160 | { | |
3eecfa55 JB |
12161 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
12162 | ||
f7f9143b JB |
12163 | switch (ex) |
12164 | { | |
761269c8 | 12165 | case ada_catch_exception: |
f7f9143b JB |
12166 | return (parse_and_eval_address ("e.full_name")); |
12167 | break; | |
12168 | ||
761269c8 | 12169 | case ada_catch_exception_unhandled: |
3eecfa55 | 12170 | return data->exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
12171 | break; |
12172 | ||
761269c8 | 12173 | case ada_catch_assert: |
f7f9143b JB |
12174 | return 0; /* Exception name is not relevant in this case. */ |
12175 | break; | |
12176 | ||
12177 | default: | |
12178 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12179 | break; | |
12180 | } | |
12181 | ||
12182 | return 0; /* Should never be reached. */ | |
12183 | } | |
12184 | ||
12185 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
12186 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
12187 | When an error is intercepted, a warning with the error message is printed, | |
12188 | and zero is returned. */ | |
12189 | ||
12190 | static CORE_ADDR | |
761269c8 | 12191 | ada_exception_name_addr (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12192 | struct breakpoint *b) |
12193 | { | |
f7f9143b JB |
12194 | CORE_ADDR result = 0; |
12195 | ||
492d29ea | 12196 | TRY |
f7f9143b JB |
12197 | { |
12198 | result = ada_exception_name_addr_1 (ex, b); | |
12199 | } | |
12200 | ||
492d29ea | 12201 | CATCH (e, RETURN_MASK_ERROR) |
f7f9143b JB |
12202 | { |
12203 | warning (_("failed to get exception name: %s"), e.message); | |
12204 | return 0; | |
12205 | } | |
492d29ea | 12206 | END_CATCH |
f7f9143b JB |
12207 | |
12208 | return result; | |
12209 | } | |
12210 | ||
28010a5d PA |
12211 | static char *ada_exception_catchpoint_cond_string (const char *excep_string); |
12212 | ||
12213 | /* Ada catchpoints. | |
12214 | ||
12215 | In the case of catchpoints on Ada exceptions, the catchpoint will | |
12216 | stop the target on every exception the program throws. When a user | |
12217 | specifies the name of a specific exception, we translate this | |
12218 | request into a condition expression (in text form), and then parse | |
12219 | it into an expression stored in each of the catchpoint's locations. | |
12220 | We then use this condition to check whether the exception that was | |
12221 | raised is the one the user is interested in. If not, then the | |
12222 | target is resumed again. We store the name of the requested | |
12223 | exception, in order to be able to re-set the condition expression | |
12224 | when symbols change. */ | |
12225 | ||
12226 | /* An instance of this type is used to represent an Ada catchpoint | |
5625a286 | 12227 | breakpoint location. */ |
28010a5d | 12228 | |
5625a286 | 12229 | class ada_catchpoint_location : public bp_location |
28010a5d | 12230 | { |
5625a286 PA |
12231 | public: |
12232 | ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner) | |
12233 | : bp_location (ops, owner) | |
12234 | {} | |
28010a5d PA |
12235 | |
12236 | /* The condition that checks whether the exception that was raised | |
12237 | is the specific exception the user specified on catchpoint | |
12238 | creation. */ | |
4d01a485 | 12239 | expression_up excep_cond_expr; |
28010a5d PA |
12240 | }; |
12241 | ||
12242 | /* Implement the DTOR method in the bp_location_ops structure for all | |
12243 | Ada exception catchpoint kinds. */ | |
12244 | ||
12245 | static void | |
12246 | ada_catchpoint_location_dtor (struct bp_location *bl) | |
12247 | { | |
12248 | struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl; | |
12249 | ||
4d01a485 | 12250 | al->excep_cond_expr.reset (); |
28010a5d PA |
12251 | } |
12252 | ||
12253 | /* The vtable to be used in Ada catchpoint locations. */ | |
12254 | ||
12255 | static const struct bp_location_ops ada_catchpoint_location_ops = | |
12256 | { | |
12257 | ada_catchpoint_location_dtor | |
12258 | }; | |
12259 | ||
12260 | /* An instance of this type is used to represent an Ada catchpoint. | |
12261 | It includes a "struct breakpoint" as a kind of base class; users | |
12262 | downcast to "struct breakpoint *" when needed. */ | |
12263 | ||
12264 | struct ada_catchpoint | |
12265 | { | |
12266 | /* The base class. */ | |
12267 | struct breakpoint base; | |
12268 | ||
12269 | /* The name of the specific exception the user specified. */ | |
12270 | char *excep_string; | |
12271 | }; | |
12272 | ||
12273 | /* Parse the exception condition string in the context of each of the | |
12274 | catchpoint's locations, and store them for later evaluation. */ | |
12275 | ||
12276 | static void | |
12277 | create_excep_cond_exprs (struct ada_catchpoint *c) | |
12278 | { | |
12279 | struct cleanup *old_chain; | |
12280 | struct bp_location *bl; | |
12281 | char *cond_string; | |
12282 | ||
12283 | /* Nothing to do if there's no specific exception to catch. */ | |
12284 | if (c->excep_string == NULL) | |
12285 | return; | |
12286 | ||
12287 | /* Same if there are no locations... */ | |
12288 | if (c->base.loc == NULL) | |
12289 | return; | |
12290 | ||
12291 | /* Compute the condition expression in text form, from the specific | |
12292 | expection we want to catch. */ | |
12293 | cond_string = ada_exception_catchpoint_cond_string (c->excep_string); | |
12294 | old_chain = make_cleanup (xfree, cond_string); | |
12295 | ||
12296 | /* Iterate over all the catchpoint's locations, and parse an | |
12297 | expression for each. */ | |
12298 | for (bl = c->base.loc; bl != NULL; bl = bl->next) | |
12299 | { | |
12300 | struct ada_catchpoint_location *ada_loc | |
12301 | = (struct ada_catchpoint_location *) bl; | |
4d01a485 | 12302 | expression_up exp; |
28010a5d PA |
12303 | |
12304 | if (!bl->shlib_disabled) | |
12305 | { | |
bbc13ae3 | 12306 | const char *s; |
28010a5d PA |
12307 | |
12308 | s = cond_string; | |
492d29ea | 12309 | TRY |
28010a5d | 12310 | { |
036e657b JB |
12311 | exp = parse_exp_1 (&s, bl->address, |
12312 | block_for_pc (bl->address), | |
12313 | 0); | |
28010a5d | 12314 | } |
492d29ea | 12315 | CATCH (e, RETURN_MASK_ERROR) |
849f2b52 JB |
12316 | { |
12317 | warning (_("failed to reevaluate internal exception condition " | |
12318 | "for catchpoint %d: %s"), | |
12319 | c->base.number, e.message); | |
849f2b52 | 12320 | } |
492d29ea | 12321 | END_CATCH |
28010a5d PA |
12322 | } |
12323 | ||
b22e99fd | 12324 | ada_loc->excep_cond_expr = std::move (exp); |
28010a5d PA |
12325 | } |
12326 | ||
12327 | do_cleanups (old_chain); | |
12328 | } | |
12329 | ||
12330 | /* Implement the DTOR method in the breakpoint_ops structure for all | |
12331 | exception catchpoint kinds. */ | |
12332 | ||
12333 | static void | |
761269c8 | 12334 | dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b) |
28010a5d PA |
12335 | { |
12336 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
12337 | ||
12338 | xfree (c->excep_string); | |
348d480f | 12339 | |
2060206e | 12340 | bkpt_breakpoint_ops.dtor (b); |
28010a5d PA |
12341 | } |
12342 | ||
12343 | /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops | |
12344 | structure for all exception catchpoint kinds. */ | |
12345 | ||
12346 | static struct bp_location * | |
761269c8 | 12347 | allocate_location_exception (enum ada_exception_catchpoint_kind ex, |
28010a5d PA |
12348 | struct breakpoint *self) |
12349 | { | |
5625a286 | 12350 | return new ada_catchpoint_location (&ada_catchpoint_location_ops, self); |
28010a5d PA |
12351 | } |
12352 | ||
12353 | /* Implement the RE_SET method in the breakpoint_ops structure for all | |
12354 | exception catchpoint kinds. */ | |
12355 | ||
12356 | static void | |
761269c8 | 12357 | re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b) |
28010a5d PA |
12358 | { |
12359 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
12360 | ||
12361 | /* Call the base class's method. This updates the catchpoint's | |
12362 | locations. */ | |
2060206e | 12363 | bkpt_breakpoint_ops.re_set (b); |
28010a5d PA |
12364 | |
12365 | /* Reparse the exception conditional expressions. One for each | |
12366 | location. */ | |
12367 | create_excep_cond_exprs (c); | |
12368 | } | |
12369 | ||
12370 | /* Returns true if we should stop for this breakpoint hit. If the | |
12371 | user specified a specific exception, we only want to cause a stop | |
12372 | if the program thrown that exception. */ | |
12373 | ||
12374 | static int | |
12375 | should_stop_exception (const struct bp_location *bl) | |
12376 | { | |
12377 | struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; | |
12378 | const struct ada_catchpoint_location *ada_loc | |
12379 | = (const struct ada_catchpoint_location *) bl; | |
28010a5d PA |
12380 | int stop; |
12381 | ||
12382 | /* With no specific exception, should always stop. */ | |
12383 | if (c->excep_string == NULL) | |
12384 | return 1; | |
12385 | ||
12386 | if (ada_loc->excep_cond_expr == NULL) | |
12387 | { | |
12388 | /* We will have a NULL expression if back when we were creating | |
12389 | the expressions, this location's had failed to parse. */ | |
12390 | return 1; | |
12391 | } | |
12392 | ||
12393 | stop = 1; | |
492d29ea | 12394 | TRY |
28010a5d PA |
12395 | { |
12396 | struct value *mark; | |
12397 | ||
12398 | mark = value_mark (); | |
4d01a485 | 12399 | stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ())); |
28010a5d PA |
12400 | value_free_to_mark (mark); |
12401 | } | |
492d29ea PA |
12402 | CATCH (ex, RETURN_MASK_ALL) |
12403 | { | |
12404 | exception_fprintf (gdb_stderr, ex, | |
12405 | _("Error in testing exception condition:\n")); | |
12406 | } | |
12407 | END_CATCH | |
12408 | ||
28010a5d PA |
12409 | return stop; |
12410 | } | |
12411 | ||
12412 | /* Implement the CHECK_STATUS method in the breakpoint_ops structure | |
12413 | for all exception catchpoint kinds. */ | |
12414 | ||
12415 | static void | |
761269c8 | 12416 | check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
28010a5d PA |
12417 | { |
12418 | bs->stop = should_stop_exception (bs->bp_location_at); | |
12419 | } | |
12420 | ||
f7f9143b JB |
12421 | /* Implement the PRINT_IT method in the breakpoint_ops structure |
12422 | for all exception catchpoint kinds. */ | |
12423 | ||
12424 | static enum print_stop_action | |
761269c8 | 12425 | print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
f7f9143b | 12426 | { |
79a45e25 | 12427 | struct ui_out *uiout = current_uiout; |
348d480f PA |
12428 | struct breakpoint *b = bs->breakpoint_at; |
12429 | ||
956a9fb9 | 12430 | annotate_catchpoint (b->number); |
f7f9143b | 12431 | |
112e8700 | 12432 | if (uiout->is_mi_like_p ()) |
f7f9143b | 12433 | { |
112e8700 | 12434 | uiout->field_string ("reason", |
956a9fb9 | 12435 | async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); |
112e8700 | 12436 | uiout->field_string ("disp", bpdisp_text (b->disposition)); |
f7f9143b JB |
12437 | } |
12438 | ||
112e8700 SM |
12439 | uiout->text (b->disposition == disp_del |
12440 | ? "\nTemporary catchpoint " : "\nCatchpoint "); | |
12441 | uiout->field_int ("bkptno", b->number); | |
12442 | uiout->text (", "); | |
f7f9143b | 12443 | |
45db7c09 PA |
12444 | /* ada_exception_name_addr relies on the selected frame being the |
12445 | current frame. Need to do this here because this function may be | |
12446 | called more than once when printing a stop, and below, we'll | |
12447 | select the first frame past the Ada run-time (see | |
12448 | ada_find_printable_frame). */ | |
12449 | select_frame (get_current_frame ()); | |
12450 | ||
f7f9143b JB |
12451 | switch (ex) |
12452 | { | |
761269c8 JB |
12453 | case ada_catch_exception: |
12454 | case ada_catch_exception_unhandled: | |
956a9fb9 JB |
12455 | { |
12456 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
12457 | char exception_name[256]; | |
12458 | ||
12459 | if (addr != 0) | |
12460 | { | |
c714b426 PA |
12461 | read_memory (addr, (gdb_byte *) exception_name, |
12462 | sizeof (exception_name) - 1); | |
956a9fb9 JB |
12463 | exception_name [sizeof (exception_name) - 1] = '\0'; |
12464 | } | |
12465 | else | |
12466 | { | |
12467 | /* For some reason, we were unable to read the exception | |
12468 | name. This could happen if the Runtime was compiled | |
12469 | without debugging info, for instance. In that case, | |
12470 | just replace the exception name by the generic string | |
12471 | "exception" - it will read as "an exception" in the | |
12472 | notification we are about to print. */ | |
967cff16 | 12473 | memcpy (exception_name, "exception", sizeof ("exception")); |
956a9fb9 JB |
12474 | } |
12475 | /* In the case of unhandled exception breakpoints, we print | |
12476 | the exception name as "unhandled EXCEPTION_NAME", to make | |
12477 | it clearer to the user which kind of catchpoint just got | |
12478 | hit. We used ui_out_text to make sure that this extra | |
12479 | info does not pollute the exception name in the MI case. */ | |
761269c8 | 12480 | if (ex == ada_catch_exception_unhandled) |
112e8700 SM |
12481 | uiout->text ("unhandled "); |
12482 | uiout->field_string ("exception-name", exception_name); | |
956a9fb9 JB |
12483 | } |
12484 | break; | |
761269c8 | 12485 | case ada_catch_assert: |
956a9fb9 JB |
12486 | /* In this case, the name of the exception is not really |
12487 | important. Just print "failed assertion" to make it clearer | |
12488 | that his program just hit an assertion-failure catchpoint. | |
12489 | We used ui_out_text because this info does not belong in | |
12490 | the MI output. */ | |
112e8700 | 12491 | uiout->text ("failed assertion"); |
956a9fb9 | 12492 | break; |
f7f9143b | 12493 | } |
112e8700 | 12494 | uiout->text (" at "); |
956a9fb9 | 12495 | ada_find_printable_frame (get_current_frame ()); |
f7f9143b JB |
12496 | |
12497 | return PRINT_SRC_AND_LOC; | |
12498 | } | |
12499 | ||
12500 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
12501 | for all exception catchpoint kinds. */ | |
12502 | ||
12503 | static void | |
761269c8 | 12504 | print_one_exception (enum ada_exception_catchpoint_kind ex, |
a6d9a66e | 12505 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12506 | { |
79a45e25 | 12507 | struct ui_out *uiout = current_uiout; |
28010a5d | 12508 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45b7d TT |
12509 | struct value_print_options opts; |
12510 | ||
12511 | get_user_print_options (&opts); | |
12512 | if (opts.addressprint) | |
f7f9143b JB |
12513 | { |
12514 | annotate_field (4); | |
112e8700 | 12515 | uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
12516 | } |
12517 | ||
12518 | annotate_field (5); | |
a6d9a66e | 12519 | *last_loc = b->loc; |
f7f9143b JB |
12520 | switch (ex) |
12521 | { | |
761269c8 | 12522 | case ada_catch_exception: |
28010a5d | 12523 | if (c->excep_string != NULL) |
f7f9143b | 12524 | { |
28010a5d PA |
12525 | char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string); |
12526 | ||
112e8700 | 12527 | uiout->field_string ("what", msg); |
f7f9143b JB |
12528 | xfree (msg); |
12529 | } | |
12530 | else | |
112e8700 | 12531 | uiout->field_string ("what", "all Ada exceptions"); |
f7f9143b JB |
12532 | |
12533 | break; | |
12534 | ||
761269c8 | 12535 | case ada_catch_exception_unhandled: |
112e8700 | 12536 | uiout->field_string ("what", "unhandled Ada exceptions"); |
f7f9143b JB |
12537 | break; |
12538 | ||
761269c8 | 12539 | case ada_catch_assert: |
112e8700 | 12540 | uiout->field_string ("what", "failed Ada assertions"); |
f7f9143b JB |
12541 | break; |
12542 | ||
12543 | default: | |
12544 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12545 | break; | |
12546 | } | |
12547 | } | |
12548 | ||
12549 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
12550 | for all exception catchpoint kinds. */ | |
12551 | ||
12552 | static void | |
761269c8 | 12553 | print_mention_exception (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12554 | struct breakpoint *b) |
12555 | { | |
28010a5d | 12556 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45e25 | 12557 | struct ui_out *uiout = current_uiout; |
28010a5d | 12558 | |
112e8700 | 12559 | uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ") |
00eb2c4a | 12560 | : _("Catchpoint ")); |
112e8700 SM |
12561 | uiout->field_int ("bkptno", b->number); |
12562 | uiout->text (": "); | |
00eb2c4a | 12563 | |
f7f9143b JB |
12564 | switch (ex) |
12565 | { | |
761269c8 | 12566 | case ada_catch_exception: |
28010a5d | 12567 | if (c->excep_string != NULL) |
00eb2c4a JB |
12568 | { |
12569 | char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string); | |
12570 | struct cleanup *old_chain = make_cleanup (xfree, info); | |
12571 | ||
112e8700 | 12572 | uiout->text (info); |
00eb2c4a JB |
12573 | do_cleanups (old_chain); |
12574 | } | |
f7f9143b | 12575 | else |
112e8700 | 12576 | uiout->text (_("all Ada exceptions")); |
f7f9143b JB |
12577 | break; |
12578 | ||
761269c8 | 12579 | case ada_catch_exception_unhandled: |
112e8700 | 12580 | uiout->text (_("unhandled Ada exceptions")); |
f7f9143b JB |
12581 | break; |
12582 | ||
761269c8 | 12583 | case ada_catch_assert: |
112e8700 | 12584 | uiout->text (_("failed Ada assertions")); |
f7f9143b JB |
12585 | break; |
12586 | ||
12587 | default: | |
12588 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12589 | break; | |
12590 | } | |
12591 | } | |
12592 | ||
6149aea9 PA |
12593 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
12594 | for all exception catchpoint kinds. */ | |
12595 | ||
12596 | static void | |
761269c8 | 12597 | print_recreate_exception (enum ada_exception_catchpoint_kind ex, |
6149aea9 PA |
12598 | struct breakpoint *b, struct ui_file *fp) |
12599 | { | |
28010a5d PA |
12600 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
12601 | ||
6149aea9 PA |
12602 | switch (ex) |
12603 | { | |
761269c8 | 12604 | case ada_catch_exception: |
6149aea9 | 12605 | fprintf_filtered (fp, "catch exception"); |
28010a5d PA |
12606 | if (c->excep_string != NULL) |
12607 | fprintf_filtered (fp, " %s", c->excep_string); | |
6149aea9 PA |
12608 | break; |
12609 | ||
761269c8 | 12610 | case ada_catch_exception_unhandled: |
78076abc | 12611 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
12612 | break; |
12613 | ||
761269c8 | 12614 | case ada_catch_assert: |
6149aea9 PA |
12615 | fprintf_filtered (fp, "catch assert"); |
12616 | break; | |
12617 | ||
12618 | default: | |
12619 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12620 | } | |
d9b3f62e | 12621 | print_recreate_thread (b, fp); |
6149aea9 PA |
12622 | } |
12623 | ||
f7f9143b JB |
12624 | /* Virtual table for "catch exception" breakpoints. */ |
12625 | ||
28010a5d PA |
12626 | static void |
12627 | dtor_catch_exception (struct breakpoint *b) | |
12628 | { | |
761269c8 | 12629 | dtor_exception (ada_catch_exception, b); |
28010a5d PA |
12630 | } |
12631 | ||
12632 | static struct bp_location * | |
12633 | allocate_location_catch_exception (struct breakpoint *self) | |
12634 | { | |
761269c8 | 12635 | return allocate_location_exception (ada_catch_exception, self); |
28010a5d PA |
12636 | } |
12637 | ||
12638 | static void | |
12639 | re_set_catch_exception (struct breakpoint *b) | |
12640 | { | |
761269c8 | 12641 | re_set_exception (ada_catch_exception, b); |
28010a5d PA |
12642 | } |
12643 | ||
12644 | static void | |
12645 | check_status_catch_exception (bpstat bs) | |
12646 | { | |
761269c8 | 12647 | check_status_exception (ada_catch_exception, bs); |
28010a5d PA |
12648 | } |
12649 | ||
f7f9143b | 12650 | static enum print_stop_action |
348d480f | 12651 | print_it_catch_exception (bpstat bs) |
f7f9143b | 12652 | { |
761269c8 | 12653 | return print_it_exception (ada_catch_exception, bs); |
f7f9143b JB |
12654 | } |
12655 | ||
12656 | static void | |
a6d9a66e | 12657 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12658 | { |
761269c8 | 12659 | print_one_exception (ada_catch_exception, b, last_loc); |
f7f9143b JB |
12660 | } |
12661 | ||
12662 | static void | |
12663 | print_mention_catch_exception (struct breakpoint *b) | |
12664 | { | |
761269c8 | 12665 | print_mention_exception (ada_catch_exception, b); |
f7f9143b JB |
12666 | } |
12667 | ||
6149aea9 PA |
12668 | static void |
12669 | print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) | |
12670 | { | |
761269c8 | 12671 | print_recreate_exception (ada_catch_exception, b, fp); |
6149aea9 PA |
12672 | } |
12673 | ||
2060206e | 12674 | static struct breakpoint_ops catch_exception_breakpoint_ops; |
f7f9143b JB |
12675 | |
12676 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
12677 | ||
28010a5d PA |
12678 | static void |
12679 | dtor_catch_exception_unhandled (struct breakpoint *b) | |
12680 | { | |
761269c8 | 12681 | dtor_exception (ada_catch_exception_unhandled, b); |
28010a5d PA |
12682 | } |
12683 | ||
12684 | static struct bp_location * | |
12685 | allocate_location_catch_exception_unhandled (struct breakpoint *self) | |
12686 | { | |
761269c8 | 12687 | return allocate_location_exception (ada_catch_exception_unhandled, self); |
28010a5d PA |
12688 | } |
12689 | ||
12690 | static void | |
12691 | re_set_catch_exception_unhandled (struct breakpoint *b) | |
12692 | { | |
761269c8 | 12693 | re_set_exception (ada_catch_exception_unhandled, b); |
28010a5d PA |
12694 | } |
12695 | ||
12696 | static void | |
12697 | check_status_catch_exception_unhandled (bpstat bs) | |
12698 | { | |
761269c8 | 12699 | check_status_exception (ada_catch_exception_unhandled, bs); |
28010a5d PA |
12700 | } |
12701 | ||
f7f9143b | 12702 | static enum print_stop_action |
348d480f | 12703 | print_it_catch_exception_unhandled (bpstat bs) |
f7f9143b | 12704 | { |
761269c8 | 12705 | return print_it_exception (ada_catch_exception_unhandled, bs); |
f7f9143b JB |
12706 | } |
12707 | ||
12708 | static void | |
a6d9a66e UW |
12709 | print_one_catch_exception_unhandled (struct breakpoint *b, |
12710 | struct bp_location **last_loc) | |
f7f9143b | 12711 | { |
761269c8 | 12712 | print_one_exception (ada_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
12713 | } |
12714 | ||
12715 | static void | |
12716 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
12717 | { | |
761269c8 | 12718 | print_mention_exception (ada_catch_exception_unhandled, b); |
f7f9143b JB |
12719 | } |
12720 | ||
6149aea9 PA |
12721 | static void |
12722 | print_recreate_catch_exception_unhandled (struct breakpoint *b, | |
12723 | struct ui_file *fp) | |
12724 | { | |
761269c8 | 12725 | print_recreate_exception (ada_catch_exception_unhandled, b, fp); |
6149aea9 PA |
12726 | } |
12727 | ||
2060206e | 12728 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops; |
f7f9143b JB |
12729 | |
12730 | /* Virtual table for "catch assert" breakpoints. */ | |
12731 | ||
28010a5d PA |
12732 | static void |
12733 | dtor_catch_assert (struct breakpoint *b) | |
12734 | { | |
761269c8 | 12735 | dtor_exception (ada_catch_assert, b); |
28010a5d PA |
12736 | } |
12737 | ||
12738 | static struct bp_location * | |
12739 | allocate_location_catch_assert (struct breakpoint *self) | |
12740 | { | |
761269c8 | 12741 | return allocate_location_exception (ada_catch_assert, self); |
28010a5d PA |
12742 | } |
12743 | ||
12744 | static void | |
12745 | re_set_catch_assert (struct breakpoint *b) | |
12746 | { | |
761269c8 | 12747 | re_set_exception (ada_catch_assert, b); |
28010a5d PA |
12748 | } |
12749 | ||
12750 | static void | |
12751 | check_status_catch_assert (bpstat bs) | |
12752 | { | |
761269c8 | 12753 | check_status_exception (ada_catch_assert, bs); |
28010a5d PA |
12754 | } |
12755 | ||
f7f9143b | 12756 | static enum print_stop_action |
348d480f | 12757 | print_it_catch_assert (bpstat bs) |
f7f9143b | 12758 | { |
761269c8 | 12759 | return print_it_exception (ada_catch_assert, bs); |
f7f9143b JB |
12760 | } |
12761 | ||
12762 | static void | |
a6d9a66e | 12763 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12764 | { |
761269c8 | 12765 | print_one_exception (ada_catch_assert, b, last_loc); |
f7f9143b JB |
12766 | } |
12767 | ||
12768 | static void | |
12769 | print_mention_catch_assert (struct breakpoint *b) | |
12770 | { | |
761269c8 | 12771 | print_mention_exception (ada_catch_assert, b); |
f7f9143b JB |
12772 | } |
12773 | ||
6149aea9 PA |
12774 | static void |
12775 | print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) | |
12776 | { | |
761269c8 | 12777 | print_recreate_exception (ada_catch_assert, b, fp); |
6149aea9 PA |
12778 | } |
12779 | ||
2060206e | 12780 | static struct breakpoint_ops catch_assert_breakpoint_ops; |
f7f9143b | 12781 | |
f7f9143b JB |
12782 | /* Return a newly allocated copy of the first space-separated token |
12783 | in ARGSP, and then adjust ARGSP to point immediately after that | |
12784 | token. | |
12785 | ||
12786 | Return NULL if ARGPS does not contain any more tokens. */ | |
12787 | ||
12788 | static char * | |
a121b7c1 | 12789 | ada_get_next_arg (const char **argsp) |
f7f9143b | 12790 | { |
a121b7c1 PA |
12791 | const char *args = *argsp; |
12792 | const char *end; | |
f7f9143b JB |
12793 | char *result; |
12794 | ||
a121b7c1 | 12795 | args = skip_spaces_const (args); |
f7f9143b JB |
12796 | if (args[0] == '\0') |
12797 | return NULL; /* No more arguments. */ | |
12798 | ||
12799 | /* Find the end of the current argument. */ | |
12800 | ||
a121b7c1 | 12801 | end = skip_to_space_const (args); |
f7f9143b JB |
12802 | |
12803 | /* Adjust ARGSP to point to the start of the next argument. */ | |
12804 | ||
12805 | *argsp = end; | |
12806 | ||
12807 | /* Make a copy of the current argument and return it. */ | |
12808 | ||
224c3ddb | 12809 | result = (char *) xmalloc (end - args + 1); |
f7f9143b JB |
12810 | strncpy (result, args, end - args); |
12811 | result[end - args] = '\0'; | |
12812 | ||
12813 | return result; | |
12814 | } | |
12815 | ||
12816 | /* Split the arguments specified in a "catch exception" command. | |
12817 | Set EX to the appropriate catchpoint type. | |
28010a5d | 12818 | Set EXCEP_STRING to the name of the specific exception if |
5845583d JB |
12819 | specified by the user. |
12820 | If a condition is found at the end of the arguments, the condition | |
12821 | expression is stored in COND_STRING (memory must be deallocated | |
12822 | after use). Otherwise COND_STRING is set to NULL. */ | |
f7f9143b JB |
12823 | |
12824 | static void | |
a121b7c1 | 12825 | catch_ada_exception_command_split (const char *args, |
761269c8 | 12826 | enum ada_exception_catchpoint_kind *ex, |
5845583d JB |
12827 | char **excep_string, |
12828 | char **cond_string) | |
f7f9143b JB |
12829 | { |
12830 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
12831 | char *exception_name; | |
5845583d | 12832 | char *cond = NULL; |
f7f9143b JB |
12833 | |
12834 | exception_name = ada_get_next_arg (&args); | |
5845583d JB |
12835 | if (exception_name != NULL && strcmp (exception_name, "if") == 0) |
12836 | { | |
12837 | /* This is not an exception name; this is the start of a condition | |
12838 | expression for a catchpoint on all exceptions. So, "un-get" | |
12839 | this token, and set exception_name to NULL. */ | |
12840 | xfree (exception_name); | |
12841 | exception_name = NULL; | |
12842 | args -= 2; | |
12843 | } | |
f7f9143b JB |
12844 | make_cleanup (xfree, exception_name); |
12845 | ||
5845583d | 12846 | /* Check to see if we have a condition. */ |
f7f9143b | 12847 | |
a121b7c1 | 12848 | args = skip_spaces_const (args); |
61012eef | 12849 | if (startswith (args, "if") |
5845583d JB |
12850 | && (isspace (args[2]) || args[2] == '\0')) |
12851 | { | |
12852 | args += 2; | |
a121b7c1 | 12853 | args = skip_spaces_const (args); |
5845583d JB |
12854 | |
12855 | if (args[0] == '\0') | |
12856 | error (_("Condition missing after `if' keyword")); | |
12857 | cond = xstrdup (args); | |
12858 | make_cleanup (xfree, cond); | |
12859 | ||
12860 | args += strlen (args); | |
12861 | } | |
12862 | ||
12863 | /* Check that we do not have any more arguments. Anything else | |
12864 | is unexpected. */ | |
f7f9143b JB |
12865 | |
12866 | if (args[0] != '\0') | |
12867 | error (_("Junk at end of expression")); | |
12868 | ||
12869 | discard_cleanups (old_chain); | |
12870 | ||
12871 | if (exception_name == NULL) | |
12872 | { | |
12873 | /* Catch all exceptions. */ | |
761269c8 | 12874 | *ex = ada_catch_exception; |
28010a5d | 12875 | *excep_string = NULL; |
f7f9143b JB |
12876 | } |
12877 | else if (strcmp (exception_name, "unhandled") == 0) | |
12878 | { | |
12879 | /* Catch unhandled exceptions. */ | |
761269c8 | 12880 | *ex = ada_catch_exception_unhandled; |
28010a5d | 12881 | *excep_string = NULL; |
f7f9143b JB |
12882 | } |
12883 | else | |
12884 | { | |
12885 | /* Catch a specific exception. */ | |
761269c8 | 12886 | *ex = ada_catch_exception; |
28010a5d | 12887 | *excep_string = exception_name; |
f7f9143b | 12888 | } |
5845583d | 12889 | *cond_string = cond; |
f7f9143b JB |
12890 | } |
12891 | ||
12892 | /* Return the name of the symbol on which we should break in order to | |
12893 | implement a catchpoint of the EX kind. */ | |
12894 | ||
12895 | static const char * | |
761269c8 | 12896 | ada_exception_sym_name (enum ada_exception_catchpoint_kind ex) |
f7f9143b | 12897 | { |
3eecfa55 JB |
12898 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
12899 | ||
12900 | gdb_assert (data->exception_info != NULL); | |
0259addd | 12901 | |
f7f9143b JB |
12902 | switch (ex) |
12903 | { | |
761269c8 | 12904 | case ada_catch_exception: |
3eecfa55 | 12905 | return (data->exception_info->catch_exception_sym); |
f7f9143b | 12906 | break; |
761269c8 | 12907 | case ada_catch_exception_unhandled: |
3eecfa55 | 12908 | return (data->exception_info->catch_exception_unhandled_sym); |
f7f9143b | 12909 | break; |
761269c8 | 12910 | case ada_catch_assert: |
3eecfa55 | 12911 | return (data->exception_info->catch_assert_sym); |
f7f9143b JB |
12912 | break; |
12913 | default: | |
12914 | internal_error (__FILE__, __LINE__, | |
12915 | _("unexpected catchpoint kind (%d)"), ex); | |
12916 | } | |
12917 | } | |
12918 | ||
12919 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
12920 | of the EX kind. */ | |
12921 | ||
c0a91b2b | 12922 | static const struct breakpoint_ops * |
761269c8 | 12923 | ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex) |
f7f9143b JB |
12924 | { |
12925 | switch (ex) | |
12926 | { | |
761269c8 | 12927 | case ada_catch_exception: |
f7f9143b JB |
12928 | return (&catch_exception_breakpoint_ops); |
12929 | break; | |
761269c8 | 12930 | case ada_catch_exception_unhandled: |
f7f9143b JB |
12931 | return (&catch_exception_unhandled_breakpoint_ops); |
12932 | break; | |
761269c8 | 12933 | case ada_catch_assert: |
f7f9143b JB |
12934 | return (&catch_assert_breakpoint_ops); |
12935 | break; | |
12936 | default: | |
12937 | internal_error (__FILE__, __LINE__, | |
12938 | _("unexpected catchpoint kind (%d)"), ex); | |
12939 | } | |
12940 | } | |
12941 | ||
12942 | /* Return the condition that will be used to match the current exception | |
12943 | being raised with the exception that the user wants to catch. This | |
12944 | assumes that this condition is used when the inferior just triggered | |
12945 | an exception catchpoint. | |
12946 | ||
12947 | The string returned is a newly allocated string that needs to be | |
12948 | deallocated later. */ | |
12949 | ||
12950 | static char * | |
28010a5d | 12951 | ada_exception_catchpoint_cond_string (const char *excep_string) |
f7f9143b | 12952 | { |
3d0b0fa3 JB |
12953 | int i; |
12954 | ||
0963b4bd | 12955 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 | 12956 | runtime units that have been compiled without debugging info; if |
28010a5d | 12957 | EXCEP_STRING is the not-fully-qualified name of a standard |
3d0b0fa3 JB |
12958 | exception (e.g. "constraint_error") then, during the evaluation |
12959 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 12960 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
12961 | may then be set only on user-defined exceptions which have the |
12962 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
12963 | ||
12964 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 12965 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
12966 | exception constraint_error" is rewritten into "catch exception |
12967 | standard.constraint_error". | |
12968 | ||
12969 | If an exception named contraint_error is defined in another package of | |
12970 | the inferior program, then the only way to specify this exception as a | |
12971 | breakpoint condition is to use its fully-qualified named: | |
12972 | e.g. my_package.constraint_error. */ | |
12973 | ||
12974 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
12975 | { | |
28010a5d | 12976 | if (strcmp (standard_exc [i], excep_string) == 0) |
3d0b0fa3 JB |
12977 | { |
12978 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
28010a5d | 12979 | excep_string); |
3d0b0fa3 JB |
12980 | } |
12981 | } | |
28010a5d | 12982 | return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string); |
f7f9143b JB |
12983 | } |
12984 | ||
12985 | /* Return the symtab_and_line that should be used to insert an exception | |
12986 | catchpoint of the TYPE kind. | |
12987 | ||
28010a5d PA |
12988 | EXCEP_STRING should contain the name of a specific exception that |
12989 | the catchpoint should catch, or NULL otherwise. | |
f7f9143b | 12990 | |
28010a5d PA |
12991 | ADDR_STRING returns the name of the function where the real |
12992 | breakpoint that implements the catchpoints is set, depending on the | |
12993 | type of catchpoint we need to create. */ | |
f7f9143b JB |
12994 | |
12995 | static struct symtab_and_line | |
761269c8 | 12996 | ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string, |
c0a91b2b | 12997 | char **addr_string, const struct breakpoint_ops **ops) |
f7f9143b JB |
12998 | { |
12999 | const char *sym_name; | |
13000 | struct symbol *sym; | |
f7f9143b | 13001 | |
0259addd JB |
13002 | /* First, find out which exception support info to use. */ |
13003 | ada_exception_support_info_sniffer (); | |
13004 | ||
13005 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b | 13006 | the Ada exceptions requested by the user. */ |
f7f9143b JB |
13007 | sym_name = ada_exception_sym_name (ex); |
13008 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
13009 | ||
f17011e0 JB |
13010 | /* We can assume that SYM is not NULL at this stage. If the symbol |
13011 | did not exist, ada_exception_support_info_sniffer would have | |
13012 | raised an exception. | |
f7f9143b | 13013 | |
f17011e0 JB |
13014 | Also, ada_exception_support_info_sniffer should have already |
13015 | verified that SYM is a function symbol. */ | |
13016 | gdb_assert (sym != NULL); | |
13017 | gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK); | |
f7f9143b JB |
13018 | |
13019 | /* Set ADDR_STRING. */ | |
f7f9143b JB |
13020 | *addr_string = xstrdup (sym_name); |
13021 | ||
f7f9143b | 13022 | /* Set OPS. */ |
4b9eee8c | 13023 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b | 13024 | |
f17011e0 | 13025 | return find_function_start_sal (sym, 1); |
f7f9143b JB |
13026 | } |
13027 | ||
b4a5b78b | 13028 | /* Create an Ada exception catchpoint. |
f7f9143b | 13029 | |
b4a5b78b | 13030 | EX_KIND is the kind of exception catchpoint to be created. |
5845583d | 13031 | |
2df4d1d5 JB |
13032 | If EXCEPT_STRING is NULL, this catchpoint is expected to trigger |
13033 | for all exceptions. Otherwise, EXCEPT_STRING indicates the name | |
13034 | of the exception to which this catchpoint applies. When not NULL, | |
13035 | the string must be allocated on the heap, and its deallocation | |
13036 | is no longer the responsibility of the caller. | |
13037 | ||
13038 | COND_STRING, if not NULL, is the catchpoint condition. This string | |
13039 | must be allocated on the heap, and its deallocation is no longer | |
13040 | the responsibility of the caller. | |
f7f9143b | 13041 | |
b4a5b78b JB |
13042 | TEMPFLAG, if nonzero, means that the underlying breakpoint |
13043 | should be temporary. | |
28010a5d | 13044 | |
b4a5b78b | 13045 | FROM_TTY is the usual argument passed to all commands implementations. */ |
28010a5d | 13046 | |
349774ef | 13047 | void |
28010a5d | 13048 | create_ada_exception_catchpoint (struct gdbarch *gdbarch, |
761269c8 | 13049 | enum ada_exception_catchpoint_kind ex_kind, |
28010a5d | 13050 | char *excep_string, |
5845583d | 13051 | char *cond_string, |
28010a5d | 13052 | int tempflag, |
349774ef | 13053 | int disabled, |
28010a5d PA |
13054 | int from_tty) |
13055 | { | |
13056 | struct ada_catchpoint *c; | |
b4a5b78b JB |
13057 | char *addr_string = NULL; |
13058 | const struct breakpoint_ops *ops = NULL; | |
13059 | struct symtab_and_line sal | |
13060 | = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops); | |
28010a5d | 13061 | |
4d01a485 | 13062 | c = new ada_catchpoint (); |
28010a5d | 13063 | init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string, |
349774ef | 13064 | ops, tempflag, disabled, from_tty); |
28010a5d PA |
13065 | c->excep_string = excep_string; |
13066 | create_excep_cond_exprs (c); | |
5845583d JB |
13067 | if (cond_string != NULL) |
13068 | set_breakpoint_condition (&c->base, cond_string, from_tty); | |
3ea46bff | 13069 | install_breakpoint (0, &c->base, 1); |
f7f9143b JB |
13070 | } |
13071 | ||
9ac4176b PA |
13072 | /* Implement the "catch exception" command. */ |
13073 | ||
13074 | static void | |
a121b7c1 | 13075 | catch_ada_exception_command (char *arg_entry, int from_tty, |
9ac4176b PA |
13076 | struct cmd_list_element *command) |
13077 | { | |
a121b7c1 | 13078 | const char *arg = arg_entry; |
9ac4176b PA |
13079 | struct gdbarch *gdbarch = get_current_arch (); |
13080 | int tempflag; | |
761269c8 | 13081 | enum ada_exception_catchpoint_kind ex_kind; |
28010a5d | 13082 | char *excep_string = NULL; |
5845583d | 13083 | char *cond_string = NULL; |
9ac4176b PA |
13084 | |
13085 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
13086 | ||
13087 | if (!arg) | |
13088 | arg = ""; | |
b4a5b78b JB |
13089 | catch_ada_exception_command_split (arg, &ex_kind, &excep_string, |
13090 | &cond_string); | |
13091 | create_ada_exception_catchpoint (gdbarch, ex_kind, | |
13092 | excep_string, cond_string, | |
349774ef JB |
13093 | tempflag, 1 /* enabled */, |
13094 | from_tty); | |
9ac4176b PA |
13095 | } |
13096 | ||
b4a5b78b | 13097 | /* Split the arguments specified in a "catch assert" command. |
5845583d | 13098 | |
b4a5b78b JB |
13099 | ARGS contains the command's arguments (or the empty string if |
13100 | no arguments were passed). | |
5845583d JB |
13101 | |
13102 | If ARGS contains a condition, set COND_STRING to that condition | |
b4a5b78b | 13103 | (the memory needs to be deallocated after use). */ |
5845583d | 13104 | |
b4a5b78b | 13105 | static void |
a121b7c1 | 13106 | catch_ada_assert_command_split (const char *args, char **cond_string) |
f7f9143b | 13107 | { |
a121b7c1 | 13108 | args = skip_spaces_const (args); |
f7f9143b | 13109 | |
5845583d | 13110 | /* Check whether a condition was provided. */ |
61012eef | 13111 | if (startswith (args, "if") |
5845583d | 13112 | && (isspace (args[2]) || args[2] == '\0')) |
f7f9143b | 13113 | { |
5845583d | 13114 | args += 2; |
a121b7c1 | 13115 | args = skip_spaces_const (args); |
5845583d JB |
13116 | if (args[0] == '\0') |
13117 | error (_("condition missing after `if' keyword")); | |
13118 | *cond_string = xstrdup (args); | |
f7f9143b JB |
13119 | } |
13120 | ||
5845583d JB |
13121 | /* Otherwise, there should be no other argument at the end of |
13122 | the command. */ | |
13123 | else if (args[0] != '\0') | |
13124 | error (_("Junk at end of arguments.")); | |
f7f9143b JB |
13125 | } |
13126 | ||
9ac4176b PA |
13127 | /* Implement the "catch assert" command. */ |
13128 | ||
13129 | static void | |
a121b7c1 | 13130 | catch_assert_command (char *arg_entry, int from_tty, |
9ac4176b PA |
13131 | struct cmd_list_element *command) |
13132 | { | |
a121b7c1 | 13133 | const char *arg = arg_entry; |
9ac4176b PA |
13134 | struct gdbarch *gdbarch = get_current_arch (); |
13135 | int tempflag; | |
5845583d | 13136 | char *cond_string = NULL; |
9ac4176b PA |
13137 | |
13138 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
13139 | ||
13140 | if (!arg) | |
13141 | arg = ""; | |
b4a5b78b | 13142 | catch_ada_assert_command_split (arg, &cond_string); |
761269c8 | 13143 | create_ada_exception_catchpoint (gdbarch, ada_catch_assert, |
b4a5b78b | 13144 | NULL, cond_string, |
349774ef JB |
13145 | tempflag, 1 /* enabled */, |
13146 | from_tty); | |
9ac4176b | 13147 | } |
778865d3 JB |
13148 | |
13149 | /* Return non-zero if the symbol SYM is an Ada exception object. */ | |
13150 | ||
13151 | static int | |
13152 | ada_is_exception_sym (struct symbol *sym) | |
13153 | { | |
13154 | const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym)); | |
13155 | ||
13156 | return (SYMBOL_CLASS (sym) != LOC_TYPEDEF | |
13157 | && SYMBOL_CLASS (sym) != LOC_BLOCK | |
13158 | && SYMBOL_CLASS (sym) != LOC_CONST | |
13159 | && SYMBOL_CLASS (sym) != LOC_UNRESOLVED | |
13160 | && type_name != NULL && strcmp (type_name, "exception") == 0); | |
13161 | } | |
13162 | ||
13163 | /* Given a global symbol SYM, return non-zero iff SYM is a non-standard | |
13164 | Ada exception object. This matches all exceptions except the ones | |
13165 | defined by the Ada language. */ | |
13166 | ||
13167 | static int | |
13168 | ada_is_non_standard_exception_sym (struct symbol *sym) | |
13169 | { | |
13170 | int i; | |
13171 | ||
13172 | if (!ada_is_exception_sym (sym)) | |
13173 | return 0; | |
13174 | ||
13175 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
13176 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0) | |
13177 | return 0; /* A standard exception. */ | |
13178 | ||
13179 | /* Numeric_Error is also a standard exception, so exclude it. | |
13180 | See the STANDARD_EXC description for more details as to why | |
13181 | this exception is not listed in that array. */ | |
13182 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0) | |
13183 | return 0; | |
13184 | ||
13185 | return 1; | |
13186 | } | |
13187 | ||
13188 | /* A helper function for qsort, comparing two struct ada_exc_info | |
13189 | objects. | |
13190 | ||
13191 | The comparison is determined first by exception name, and then | |
13192 | by exception address. */ | |
13193 | ||
13194 | static int | |
13195 | compare_ada_exception_info (const void *a, const void *b) | |
13196 | { | |
13197 | const struct ada_exc_info *exc_a = (struct ada_exc_info *) a; | |
13198 | const struct ada_exc_info *exc_b = (struct ada_exc_info *) b; | |
13199 | int result; | |
13200 | ||
13201 | result = strcmp (exc_a->name, exc_b->name); | |
13202 | if (result != 0) | |
13203 | return result; | |
13204 | ||
13205 | if (exc_a->addr < exc_b->addr) | |
13206 | return -1; | |
13207 | if (exc_a->addr > exc_b->addr) | |
13208 | return 1; | |
13209 | ||
13210 | return 0; | |
13211 | } | |
13212 | ||
13213 | /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison | |
13214 | routine, but keeping the first SKIP elements untouched. | |
13215 | ||
13216 | All duplicates are also removed. */ | |
13217 | ||
13218 | static void | |
13219 | sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions, | |
13220 | int skip) | |
13221 | { | |
13222 | struct ada_exc_info *to_sort | |
13223 | = VEC_address (ada_exc_info, *exceptions) + skip; | |
13224 | int to_sort_len | |
13225 | = VEC_length (ada_exc_info, *exceptions) - skip; | |
13226 | int i, j; | |
13227 | ||
13228 | qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info), | |
13229 | compare_ada_exception_info); | |
13230 | ||
13231 | for (i = 1, j = 1; i < to_sort_len; i++) | |
13232 | if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0) | |
13233 | to_sort[j++] = to_sort[i]; | |
13234 | to_sort_len = j; | |
13235 | VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len); | |
13236 | } | |
13237 | ||
778865d3 JB |
13238 | /* Add all exceptions defined by the Ada standard whose name match |
13239 | a regular expression. | |
13240 | ||
13241 | If PREG is not NULL, then this regexp_t object is used to | |
13242 | perform the symbol name matching. Otherwise, no name-based | |
13243 | filtering is performed. | |
13244 | ||
13245 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13246 | gets pushed. */ | |
13247 | ||
13248 | static void | |
13249 | ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions) | |
13250 | { | |
13251 | int i; | |
13252 | ||
13253 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
13254 | { | |
13255 | if (preg == NULL | |
13256 | || regexec (preg, standard_exc[i], 0, NULL, 0) == 0) | |
13257 | { | |
13258 | struct bound_minimal_symbol msymbol | |
13259 | = ada_lookup_simple_minsym (standard_exc[i]); | |
13260 | ||
13261 | if (msymbol.minsym != NULL) | |
13262 | { | |
13263 | struct ada_exc_info info | |
77e371c0 | 13264 | = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)}; |
778865d3 JB |
13265 | |
13266 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
13267 | } | |
13268 | } | |
13269 | } | |
13270 | } | |
13271 | ||
13272 | /* Add all Ada exceptions defined locally and accessible from the given | |
13273 | FRAME. | |
13274 | ||
13275 | If PREG is not NULL, then this regexp_t object is used to | |
13276 | perform the symbol name matching. Otherwise, no name-based | |
13277 | filtering is performed. | |
13278 | ||
13279 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13280 | gets pushed. */ | |
13281 | ||
13282 | static void | |
13283 | ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame, | |
13284 | VEC(ada_exc_info) **exceptions) | |
13285 | { | |
3977b71f | 13286 | const struct block *block = get_frame_block (frame, 0); |
778865d3 JB |
13287 | |
13288 | while (block != 0) | |
13289 | { | |
13290 | struct block_iterator iter; | |
13291 | struct symbol *sym; | |
13292 | ||
13293 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
13294 | { | |
13295 | switch (SYMBOL_CLASS (sym)) | |
13296 | { | |
13297 | case LOC_TYPEDEF: | |
13298 | case LOC_BLOCK: | |
13299 | case LOC_CONST: | |
13300 | break; | |
13301 | default: | |
13302 | if (ada_is_exception_sym (sym)) | |
13303 | { | |
13304 | struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym), | |
13305 | SYMBOL_VALUE_ADDRESS (sym)}; | |
13306 | ||
13307 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
13308 | } | |
13309 | } | |
13310 | } | |
13311 | if (BLOCK_FUNCTION (block) != NULL) | |
13312 | break; | |
13313 | block = BLOCK_SUPERBLOCK (block); | |
13314 | } | |
13315 | } | |
13316 | ||
14bc53a8 PA |
13317 | /* Return true if NAME matches PREG or if PREG is NULL. */ |
13318 | ||
13319 | static bool | |
13320 | name_matches_regex (const char *name, regex_t *preg) | |
13321 | { | |
13322 | return (preg == NULL | |
13323 | || regexec (preg, ada_decode (name), 0, NULL, 0) == 0); | |
13324 | } | |
13325 | ||
778865d3 JB |
13326 | /* Add all exceptions defined globally whose name name match |
13327 | a regular expression, excluding standard exceptions. | |
13328 | ||
13329 | The reason we exclude standard exceptions is that they need | |
13330 | to be handled separately: Standard exceptions are defined inside | |
13331 | a runtime unit which is normally not compiled with debugging info, | |
13332 | and thus usually do not show up in our symbol search. However, | |
13333 | if the unit was in fact built with debugging info, we need to | |
13334 | exclude them because they would duplicate the entry we found | |
13335 | during the special loop that specifically searches for those | |
13336 | standard exceptions. | |
13337 | ||
13338 | If PREG is not NULL, then this regexp_t object is used to | |
13339 | perform the symbol name matching. Otherwise, no name-based | |
13340 | filtering is performed. | |
13341 | ||
13342 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13343 | gets pushed. */ | |
13344 | ||
13345 | static void | |
13346 | ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions) | |
13347 | { | |
13348 | struct objfile *objfile; | |
43f3e411 | 13349 | struct compunit_symtab *s; |
778865d3 | 13350 | |
14bc53a8 PA |
13351 | /* In Ada, the symbol "search name" is a linkage name, whereas the |
13352 | regular expression used to do the matching refers to the natural | |
13353 | name. So match against the decoded name. */ | |
13354 | expand_symtabs_matching (NULL, | |
13355 | [&] (const char *search_name) | |
13356 | { | |
13357 | const char *decoded = ada_decode (search_name); | |
13358 | return name_matches_regex (decoded, preg); | |
13359 | }, | |
13360 | NULL, | |
13361 | VARIABLES_DOMAIN); | |
778865d3 | 13362 | |
43f3e411 | 13363 | ALL_COMPUNITS (objfile, s) |
778865d3 | 13364 | { |
43f3e411 | 13365 | const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s); |
778865d3 JB |
13366 | int i; |
13367 | ||
13368 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) | |
13369 | { | |
13370 | struct block *b = BLOCKVECTOR_BLOCK (bv, i); | |
13371 | struct block_iterator iter; | |
13372 | struct symbol *sym; | |
13373 | ||
13374 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
13375 | if (ada_is_non_standard_exception_sym (sym) | |
14bc53a8 | 13376 | && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg)) |
778865d3 JB |
13377 | { |
13378 | struct ada_exc_info info | |
13379 | = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)}; | |
13380 | ||
13381 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
13382 | } | |
13383 | } | |
13384 | } | |
13385 | } | |
13386 | ||
13387 | /* Implements ada_exceptions_list with the regular expression passed | |
13388 | as a regex_t, rather than a string. | |
13389 | ||
13390 | If not NULL, PREG is used to filter out exceptions whose names | |
13391 | do not match. Otherwise, all exceptions are listed. */ | |
13392 | ||
13393 | static VEC(ada_exc_info) * | |
13394 | ada_exceptions_list_1 (regex_t *preg) | |
13395 | { | |
13396 | VEC(ada_exc_info) *result = NULL; | |
13397 | struct cleanup *old_chain | |
13398 | = make_cleanup (VEC_cleanup (ada_exc_info), &result); | |
13399 | int prev_len; | |
13400 | ||
13401 | /* First, list the known standard exceptions. These exceptions | |
13402 | need to be handled separately, as they are usually defined in | |
13403 | runtime units that have been compiled without debugging info. */ | |
13404 | ||
13405 | ada_add_standard_exceptions (preg, &result); | |
13406 | ||
13407 | /* Next, find all exceptions whose scope is local and accessible | |
13408 | from the currently selected frame. */ | |
13409 | ||
13410 | if (has_stack_frames ()) | |
13411 | { | |
13412 | prev_len = VEC_length (ada_exc_info, result); | |
13413 | ada_add_exceptions_from_frame (preg, get_selected_frame (NULL), | |
13414 | &result); | |
13415 | if (VEC_length (ada_exc_info, result) > prev_len) | |
13416 | sort_remove_dups_ada_exceptions_list (&result, prev_len); | |
13417 | } | |
13418 | ||
13419 | /* Add all exceptions whose scope is global. */ | |
13420 | ||
13421 | prev_len = VEC_length (ada_exc_info, result); | |
13422 | ada_add_global_exceptions (preg, &result); | |
13423 | if (VEC_length (ada_exc_info, result) > prev_len) | |
13424 | sort_remove_dups_ada_exceptions_list (&result, prev_len); | |
13425 | ||
13426 | discard_cleanups (old_chain); | |
13427 | return result; | |
13428 | } | |
13429 | ||
13430 | /* Return a vector of ada_exc_info. | |
13431 | ||
13432 | If REGEXP is NULL, all exceptions are included in the result. | |
13433 | Otherwise, it should contain a valid regular expression, | |
13434 | and only the exceptions whose names match that regular expression | |
13435 | are included in the result. | |
13436 | ||
13437 | The exceptions are sorted in the following order: | |
13438 | - Standard exceptions (defined by the Ada language), in | |
13439 | alphabetical order; | |
13440 | - Exceptions only visible from the current frame, in | |
13441 | alphabetical order; | |
13442 | - Exceptions whose scope is global, in alphabetical order. */ | |
13443 | ||
13444 | VEC(ada_exc_info) * | |
13445 | ada_exceptions_list (const char *regexp) | |
13446 | { | |
13447 | VEC(ada_exc_info) *result = NULL; | |
13448 | struct cleanup *old_chain = NULL; | |
13449 | regex_t reg; | |
13450 | ||
13451 | if (regexp != NULL) | |
13452 | old_chain = compile_rx_or_error (®, regexp, | |
13453 | _("invalid regular expression")); | |
13454 | ||
13455 | result = ada_exceptions_list_1 (regexp != NULL ? ® : NULL); | |
13456 | ||
13457 | if (old_chain != NULL) | |
13458 | do_cleanups (old_chain); | |
13459 | return result; | |
13460 | } | |
13461 | ||
13462 | /* Implement the "info exceptions" command. */ | |
13463 | ||
13464 | static void | |
13465 | info_exceptions_command (char *regexp, int from_tty) | |
13466 | { | |
13467 | VEC(ada_exc_info) *exceptions; | |
13468 | struct cleanup *cleanup; | |
13469 | struct gdbarch *gdbarch = get_current_arch (); | |
13470 | int ix; | |
13471 | struct ada_exc_info *info; | |
13472 | ||
13473 | exceptions = ada_exceptions_list (regexp); | |
13474 | cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions); | |
13475 | ||
13476 | if (regexp != NULL) | |
13477 | printf_filtered | |
13478 | (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp); | |
13479 | else | |
13480 | printf_filtered (_("All defined Ada exceptions:\n")); | |
13481 | ||
13482 | for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++) | |
13483 | printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr)); | |
13484 | ||
13485 | do_cleanups (cleanup); | |
13486 | } | |
13487 | ||
4c4b4cd2 PH |
13488 | /* Operators */ |
13489 | /* Information about operators given special treatment in functions | |
13490 | below. */ | |
13491 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
13492 | ||
13493 | #define ADA_OPERATORS \ | |
13494 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
13495 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
13496 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
13497 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
13498 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
13499 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
13500 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
13501 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
13502 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
13503 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
13504 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
13505 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
13506 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
13507 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
13508 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
13509 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
13510 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
13511 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
13512 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
13513 | |
13514 | static void | |
554794dc SDJ |
13515 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
13516 | int *argsp) | |
4c4b4cd2 PH |
13517 | { |
13518 | switch (exp->elts[pc - 1].opcode) | |
13519 | { | |
76a01679 | 13520 | default: |
4c4b4cd2 PH |
13521 | operator_length_standard (exp, pc, oplenp, argsp); |
13522 | break; | |
13523 | ||
13524 | #define OP_DEFN(op, len, args, binop) \ | |
13525 | case op: *oplenp = len; *argsp = args; break; | |
13526 | ADA_OPERATORS; | |
13527 | #undef OP_DEFN | |
52ce6436 PH |
13528 | |
13529 | case OP_AGGREGATE: | |
13530 | *oplenp = 3; | |
13531 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
13532 | break; | |
13533 | ||
13534 | case OP_CHOICES: | |
13535 | *oplenp = 3; | |
13536 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
13537 | break; | |
4c4b4cd2 PH |
13538 | } |
13539 | } | |
13540 | ||
c0201579 JK |
13541 | /* Implementation of the exp_descriptor method operator_check. */ |
13542 | ||
13543 | static int | |
13544 | ada_operator_check (struct expression *exp, int pos, | |
13545 | int (*objfile_func) (struct objfile *objfile, void *data), | |
13546 | void *data) | |
13547 | { | |
13548 | const union exp_element *const elts = exp->elts; | |
13549 | struct type *type = NULL; | |
13550 | ||
13551 | switch (elts[pos].opcode) | |
13552 | { | |
13553 | case UNOP_IN_RANGE: | |
13554 | case UNOP_QUAL: | |
13555 | type = elts[pos + 1].type; | |
13556 | break; | |
13557 | ||
13558 | default: | |
13559 | return operator_check_standard (exp, pos, objfile_func, data); | |
13560 | } | |
13561 | ||
13562 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
13563 | ||
13564 | if (type && TYPE_OBJFILE (type) | |
13565 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
13566 | return 1; | |
13567 | ||
13568 | return 0; | |
13569 | } | |
13570 | ||
a121b7c1 | 13571 | static const char * |
4c4b4cd2 PH |
13572 | ada_op_name (enum exp_opcode opcode) |
13573 | { | |
13574 | switch (opcode) | |
13575 | { | |
76a01679 | 13576 | default: |
4c4b4cd2 | 13577 | return op_name_standard (opcode); |
52ce6436 | 13578 | |
4c4b4cd2 PH |
13579 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
13580 | ADA_OPERATORS; | |
13581 | #undef OP_DEFN | |
52ce6436 PH |
13582 | |
13583 | case OP_AGGREGATE: | |
13584 | return "OP_AGGREGATE"; | |
13585 | case OP_CHOICES: | |
13586 | return "OP_CHOICES"; | |
13587 | case OP_NAME: | |
13588 | return "OP_NAME"; | |
4c4b4cd2 PH |
13589 | } |
13590 | } | |
13591 | ||
13592 | /* As for operator_length, but assumes PC is pointing at the first | |
13593 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 13594 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
13595 | |
13596 | static void | |
76a01679 JB |
13597 | ada_forward_operator_length (struct expression *exp, int pc, |
13598 | int *oplenp, int *argsp) | |
4c4b4cd2 | 13599 | { |
76a01679 | 13600 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
13601 | { |
13602 | default: | |
13603 | *oplenp = *argsp = 0; | |
13604 | break; | |
52ce6436 | 13605 | |
4c4b4cd2 PH |
13606 | #define OP_DEFN(op, len, args, binop) \ |
13607 | case op: *oplenp = len; *argsp = args; break; | |
13608 | ADA_OPERATORS; | |
13609 | #undef OP_DEFN | |
52ce6436 PH |
13610 | |
13611 | case OP_AGGREGATE: | |
13612 | *oplenp = 3; | |
13613 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
13614 | break; | |
13615 | ||
13616 | case OP_CHOICES: | |
13617 | *oplenp = 3; | |
13618 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
13619 | break; | |
13620 | ||
13621 | case OP_STRING: | |
13622 | case OP_NAME: | |
13623 | { | |
13624 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 13625 | |
52ce6436 PH |
13626 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
13627 | *argsp = 0; | |
13628 | break; | |
13629 | } | |
4c4b4cd2 PH |
13630 | } |
13631 | } | |
13632 | ||
13633 | static int | |
13634 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
13635 | { | |
13636 | enum exp_opcode op = exp->elts[elt].opcode; | |
13637 | int oplen, nargs; | |
13638 | int pc = elt; | |
13639 | int i; | |
76a01679 | 13640 | |
4c4b4cd2 PH |
13641 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
13642 | ||
76a01679 | 13643 | switch (op) |
4c4b4cd2 | 13644 | { |
76a01679 | 13645 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
13646 | case OP_ATR_FIRST: |
13647 | case OP_ATR_LAST: | |
13648 | case OP_ATR_LENGTH: | |
13649 | case OP_ATR_IMAGE: | |
13650 | case OP_ATR_MAX: | |
13651 | case OP_ATR_MIN: | |
13652 | case OP_ATR_MODULUS: | |
13653 | case OP_ATR_POS: | |
13654 | case OP_ATR_SIZE: | |
13655 | case OP_ATR_TAG: | |
13656 | case OP_ATR_VAL: | |
13657 | break; | |
13658 | ||
13659 | case UNOP_IN_RANGE: | |
13660 | case UNOP_QUAL: | |
323e0a4a AC |
13661 | /* XXX: gdb_sprint_host_address, type_sprint */ |
13662 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
13663 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
13664 | fprintf_filtered (stream, " ("); | |
13665 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
13666 | fprintf_filtered (stream, ")"); | |
13667 | break; | |
13668 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
13669 | fprintf_filtered (stream, " (%d)", |
13670 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
13671 | break; |
13672 | case TERNOP_IN_RANGE: | |
13673 | break; | |
13674 | ||
52ce6436 PH |
13675 | case OP_AGGREGATE: |
13676 | case OP_OTHERS: | |
13677 | case OP_DISCRETE_RANGE: | |
13678 | case OP_POSITIONAL: | |
13679 | case OP_CHOICES: | |
13680 | break; | |
13681 | ||
13682 | case OP_NAME: | |
13683 | case OP_STRING: | |
13684 | { | |
13685 | char *name = &exp->elts[elt + 2].string; | |
13686 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 13687 | |
52ce6436 PH |
13688 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
13689 | break; | |
13690 | } | |
13691 | ||
4c4b4cd2 PH |
13692 | default: |
13693 | return dump_subexp_body_standard (exp, stream, elt); | |
13694 | } | |
13695 | ||
13696 | elt += oplen; | |
13697 | for (i = 0; i < nargs; i += 1) | |
13698 | elt = dump_subexp (exp, stream, elt); | |
13699 | ||
13700 | return elt; | |
13701 | } | |
13702 | ||
13703 | /* The Ada extension of print_subexp (q.v.). */ | |
13704 | ||
76a01679 JB |
13705 | static void |
13706 | ada_print_subexp (struct expression *exp, int *pos, | |
13707 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 13708 | { |
52ce6436 | 13709 | int oplen, nargs, i; |
4c4b4cd2 PH |
13710 | int pc = *pos; |
13711 | enum exp_opcode op = exp->elts[pc].opcode; | |
13712 | ||
13713 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
13714 | ||
52ce6436 | 13715 | *pos += oplen; |
4c4b4cd2 PH |
13716 | switch (op) |
13717 | { | |
13718 | default: | |
52ce6436 | 13719 | *pos -= oplen; |
4c4b4cd2 PH |
13720 | print_subexp_standard (exp, pos, stream, prec); |
13721 | return; | |
13722 | ||
13723 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
13724 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
13725 | return; | |
13726 | ||
13727 | case BINOP_IN_BOUNDS: | |
323e0a4a | 13728 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13729 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13730 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 13731 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13732 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 13733 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
13734 | fprintf_filtered (stream, "(%ld)", |
13735 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
13736 | return; |
13737 | ||
13738 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 13739 | if (prec >= PREC_EQUAL) |
76a01679 | 13740 | fputs_filtered ("(", stream); |
323e0a4a | 13741 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13742 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13743 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
13744 | print_subexp (exp, pos, stream, PREC_EQUAL); |
13745 | fputs_filtered (" .. ", stream); | |
13746 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
13747 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
13748 | fputs_filtered (")", stream); |
13749 | return; | |
4c4b4cd2 PH |
13750 | |
13751 | case OP_ATR_FIRST: | |
13752 | case OP_ATR_LAST: | |
13753 | case OP_ATR_LENGTH: | |
13754 | case OP_ATR_IMAGE: | |
13755 | case OP_ATR_MAX: | |
13756 | case OP_ATR_MIN: | |
13757 | case OP_ATR_MODULUS: | |
13758 | case OP_ATR_POS: | |
13759 | case OP_ATR_SIZE: | |
13760 | case OP_ATR_TAG: | |
13761 | case OP_ATR_VAL: | |
4c4b4cd2 | 13762 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
13763 | { |
13764 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
79d43c61 TT |
13765 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0, |
13766 | &type_print_raw_options); | |
76a01679 JB |
13767 | *pos += 3; |
13768 | } | |
4c4b4cd2 | 13769 | else |
76a01679 | 13770 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
13771 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
13772 | if (nargs > 1) | |
76a01679 JB |
13773 | { |
13774 | int tem; | |
5b4ee69b | 13775 | |
76a01679 JB |
13776 | for (tem = 1; tem < nargs; tem += 1) |
13777 | { | |
13778 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
13779 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
13780 | } | |
13781 | fputs_filtered (")", stream); | |
13782 | } | |
4c4b4cd2 | 13783 | return; |
14f9c5c9 | 13784 | |
4c4b4cd2 | 13785 | case UNOP_QUAL: |
4c4b4cd2 PH |
13786 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
13787 | fputs_filtered ("'(", stream); | |
13788 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
13789 | fputs_filtered (")", stream); | |
13790 | return; | |
14f9c5c9 | 13791 | |
4c4b4cd2 | 13792 | case UNOP_IN_RANGE: |
323e0a4a | 13793 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13794 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13795 | fputs_filtered (" in ", stream); |
79d43c61 TT |
13796 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0, |
13797 | &type_print_raw_options); | |
4c4b4cd2 | 13798 | return; |
52ce6436 PH |
13799 | |
13800 | case OP_DISCRETE_RANGE: | |
13801 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13802 | fputs_filtered ("..", stream); | |
13803 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13804 | return; | |
13805 | ||
13806 | case OP_OTHERS: | |
13807 | fputs_filtered ("others => ", stream); | |
13808 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13809 | return; | |
13810 | ||
13811 | case OP_CHOICES: | |
13812 | for (i = 0; i < nargs-1; i += 1) | |
13813 | { | |
13814 | if (i > 0) | |
13815 | fputs_filtered ("|", stream); | |
13816 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13817 | } | |
13818 | fputs_filtered (" => ", stream); | |
13819 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13820 | return; | |
13821 | ||
13822 | case OP_POSITIONAL: | |
13823 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13824 | return; | |
13825 | ||
13826 | case OP_AGGREGATE: | |
13827 | fputs_filtered ("(", stream); | |
13828 | for (i = 0; i < nargs; i += 1) | |
13829 | { | |
13830 | if (i > 0) | |
13831 | fputs_filtered (", ", stream); | |
13832 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13833 | } | |
13834 | fputs_filtered (")", stream); | |
13835 | return; | |
4c4b4cd2 PH |
13836 | } |
13837 | } | |
14f9c5c9 AS |
13838 | |
13839 | /* Table mapping opcodes into strings for printing operators | |
13840 | and precedences of the operators. */ | |
13841 | ||
d2e4a39e AS |
13842 | static const struct op_print ada_op_print_tab[] = { |
13843 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
13844 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
13845 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
13846 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
13847 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
13848 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
13849 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
13850 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
13851 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
13852 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
13853 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
13854 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
13855 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
13856 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
13857 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
13858 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
13859 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
13860 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
13861 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
13862 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
13863 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
13864 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
13865 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
13866 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
13867 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
13868 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
13869 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
13870 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
13871 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
13872 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
13873 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
f486487f | 13874 | {NULL, OP_NULL, PREC_SUFFIX, 0} |
14f9c5c9 AS |
13875 | }; |
13876 | \f | |
72d5681a PH |
13877 | enum ada_primitive_types { |
13878 | ada_primitive_type_int, | |
13879 | ada_primitive_type_long, | |
13880 | ada_primitive_type_short, | |
13881 | ada_primitive_type_char, | |
13882 | ada_primitive_type_float, | |
13883 | ada_primitive_type_double, | |
13884 | ada_primitive_type_void, | |
13885 | ada_primitive_type_long_long, | |
13886 | ada_primitive_type_long_double, | |
13887 | ada_primitive_type_natural, | |
13888 | ada_primitive_type_positive, | |
13889 | ada_primitive_type_system_address, | |
13890 | nr_ada_primitive_types | |
13891 | }; | |
6c038f32 PH |
13892 | |
13893 | static void | |
d4a9a881 | 13894 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
13895 | struct language_arch_info *lai) |
13896 | { | |
d4a9a881 | 13897 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 13898 | |
72d5681a | 13899 | lai->primitive_type_vector |
d4a9a881 | 13900 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 13901 | struct type *); |
e9bb382b UW |
13902 | |
13903 | lai->primitive_type_vector [ada_primitive_type_int] | |
13904 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13905 | 0, "integer"); | |
13906 | lai->primitive_type_vector [ada_primitive_type_long] | |
13907 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
13908 | 0, "long_integer"); | |
13909 | lai->primitive_type_vector [ada_primitive_type_short] | |
13910 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
13911 | 0, "short_integer"); | |
13912 | lai->string_char_type | |
13913 | = lai->primitive_type_vector [ada_primitive_type_char] | |
cd7c1778 | 13914 | = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); |
e9bb382b UW |
13915 | lai->primitive_type_vector [ada_primitive_type_float] |
13916 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
49f190bc | 13917 | "float", gdbarch_float_format (gdbarch)); |
e9bb382b UW |
13918 | lai->primitive_type_vector [ada_primitive_type_double] |
13919 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
49f190bc | 13920 | "long_float", gdbarch_double_format (gdbarch)); |
e9bb382b UW |
13921 | lai->primitive_type_vector [ada_primitive_type_long_long] |
13922 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
13923 | 0, "long_long_integer"); | |
13924 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
5f3bceb6 | 13925 | = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch), |
49f190bc | 13926 | "long_long_float", gdbarch_long_double_format (gdbarch)); |
e9bb382b UW |
13927 | lai->primitive_type_vector [ada_primitive_type_natural] |
13928 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13929 | 0, "natural"); | |
13930 | lai->primitive_type_vector [ada_primitive_type_positive] | |
13931 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13932 | 0, "positive"); | |
13933 | lai->primitive_type_vector [ada_primitive_type_void] | |
13934 | = builtin->builtin_void; | |
13935 | ||
13936 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
13937 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void")); | |
72d5681a PH |
13938 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
13939 | = "system__address"; | |
fbb06eb1 | 13940 | |
47e729a8 | 13941 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 13942 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 13943 | } |
6c038f32 PH |
13944 | \f |
13945 | /* Language vector */ | |
13946 | ||
13947 | /* Not really used, but needed in the ada_language_defn. */ | |
13948 | ||
13949 | static void | |
6c7a06a3 | 13950 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 13951 | { |
6c7a06a3 | 13952 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
13953 | } |
13954 | ||
13955 | static int | |
410a0ff2 | 13956 | parse (struct parser_state *ps) |
6c038f32 PH |
13957 | { |
13958 | warnings_issued = 0; | |
410a0ff2 | 13959 | return ada_parse (ps); |
6c038f32 PH |
13960 | } |
13961 | ||
13962 | static const struct exp_descriptor ada_exp_descriptor = { | |
13963 | ada_print_subexp, | |
13964 | ada_operator_length, | |
c0201579 | 13965 | ada_operator_check, |
6c038f32 PH |
13966 | ada_op_name, |
13967 | ada_dump_subexp_body, | |
13968 | ada_evaluate_subexp | |
13969 | }; | |
13970 | ||
1a119f36 | 13971 | /* Implement the "la_get_symbol_name_cmp" language_defn method |
74ccd7f5 JB |
13972 | for Ada. */ |
13973 | ||
1a119f36 JB |
13974 | static symbol_name_cmp_ftype |
13975 | ada_get_symbol_name_cmp (const char *lookup_name) | |
74ccd7f5 JB |
13976 | { |
13977 | if (should_use_wild_match (lookup_name)) | |
13978 | return wild_match; | |
13979 | else | |
13980 | return compare_names; | |
13981 | } | |
13982 | ||
a5ee536b JB |
13983 | /* Implement the "la_read_var_value" language_defn method for Ada. */ |
13984 | ||
13985 | static struct value * | |
63e43d3a PMR |
13986 | ada_read_var_value (struct symbol *var, const struct block *var_block, |
13987 | struct frame_info *frame) | |
a5ee536b | 13988 | { |
3977b71f | 13989 | const struct block *frame_block = NULL; |
a5ee536b JB |
13990 | struct symbol *renaming_sym = NULL; |
13991 | ||
13992 | /* The only case where default_read_var_value is not sufficient | |
13993 | is when VAR is a renaming... */ | |
13994 | if (frame) | |
13995 | frame_block = get_frame_block (frame, NULL); | |
13996 | if (frame_block) | |
13997 | renaming_sym = ada_find_renaming_symbol (var, frame_block); | |
13998 | if (renaming_sym != NULL) | |
13999 | return ada_read_renaming_var_value (renaming_sym, frame_block); | |
14000 | ||
14001 | /* This is a typical case where we expect the default_read_var_value | |
14002 | function to work. */ | |
63e43d3a | 14003 | return default_read_var_value (var, var_block, frame); |
a5ee536b JB |
14004 | } |
14005 | ||
56618e20 TT |
14006 | static const char *ada_extensions[] = |
14007 | { | |
14008 | ".adb", ".ads", ".a", ".ada", ".dg", NULL | |
14009 | }; | |
14010 | ||
6c038f32 PH |
14011 | const struct language_defn ada_language_defn = { |
14012 | "ada", /* Language name */ | |
6abde28f | 14013 | "Ada", |
6c038f32 | 14014 | language_ada, |
6c038f32 | 14015 | range_check_off, |
6c038f32 PH |
14016 | case_sensitive_on, /* Yes, Ada is case-insensitive, but |
14017 | that's not quite what this means. */ | |
6c038f32 | 14018 | array_row_major, |
9a044a89 | 14019 | macro_expansion_no, |
56618e20 | 14020 | ada_extensions, |
6c038f32 PH |
14021 | &ada_exp_descriptor, |
14022 | parse, | |
b3f11165 | 14023 | ada_yyerror, |
6c038f32 PH |
14024 | resolve, |
14025 | ada_printchar, /* Print a character constant */ | |
14026 | ada_printstr, /* Function to print string constant */ | |
14027 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 14028 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 14029 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
14030 | ada_val_print, /* Print a value using appropriate syntax */ |
14031 | ada_value_print, /* Print a top-level value */ | |
a5ee536b | 14032 | ada_read_var_value, /* la_read_var_value */ |
6c038f32 | 14033 | NULL, /* Language specific skip_trampoline */ |
2b2d9e11 | 14034 | NULL, /* name_of_this */ |
6c038f32 PH |
14035 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
14036 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
14037 | ada_la_decode, /* Language specific symbol demangler */ | |
8b302db8 | 14038 | ada_sniff_from_mangled_name, |
0963b4bd MS |
14039 | NULL, /* Language specific |
14040 | class_name_from_physname */ | |
6c038f32 PH |
14041 | ada_op_print_tab, /* expression operators for printing */ |
14042 | 0, /* c-style arrays */ | |
14043 | 1, /* String lower bound */ | |
6c038f32 | 14044 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 14045 | ada_make_symbol_completion_list, |
72d5681a | 14046 | ada_language_arch_info, |
e79af960 | 14047 | ada_print_array_index, |
41f1b697 | 14048 | default_pass_by_reference, |
ae6a3a4c | 14049 | c_get_string, |
43cc5389 | 14050 | c_watch_location_expression, |
1a119f36 | 14051 | ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */ |
f8eba3c6 | 14052 | ada_iterate_over_symbols, |
a53b64ea | 14053 | &ada_varobj_ops, |
bb2ec1b3 TT |
14054 | NULL, |
14055 | NULL, | |
6c038f32 PH |
14056 | LANG_MAGIC |
14057 | }; | |
14058 | ||
2c0b251b PA |
14059 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
14060 | extern initialize_file_ftype _initialize_ada_language; | |
14061 | ||
5bf03f13 JB |
14062 | /* Command-list for the "set/show ada" prefix command. */ |
14063 | static struct cmd_list_element *set_ada_list; | |
14064 | static struct cmd_list_element *show_ada_list; | |
14065 | ||
14066 | /* Implement the "set ada" prefix command. */ | |
14067 | ||
14068 | static void | |
14069 | set_ada_command (char *arg, int from_tty) | |
14070 | { | |
14071 | printf_unfiltered (_(\ | |
14072 | "\"set ada\" must be followed by the name of a setting.\n")); | |
635c7e8a | 14073 | help_list (set_ada_list, "set ada ", all_commands, gdb_stdout); |
5bf03f13 JB |
14074 | } |
14075 | ||
14076 | /* Implement the "show ada" prefix command. */ | |
14077 | ||
14078 | static void | |
14079 | show_ada_command (char *args, int from_tty) | |
14080 | { | |
14081 | cmd_show_list (show_ada_list, from_tty, ""); | |
14082 | } | |
14083 | ||
2060206e PA |
14084 | static void |
14085 | initialize_ada_catchpoint_ops (void) | |
14086 | { | |
14087 | struct breakpoint_ops *ops; | |
14088 | ||
14089 | initialize_breakpoint_ops (); | |
14090 | ||
14091 | ops = &catch_exception_breakpoint_ops; | |
14092 | *ops = bkpt_breakpoint_ops; | |
14093 | ops->dtor = dtor_catch_exception; | |
14094 | ops->allocate_location = allocate_location_catch_exception; | |
14095 | ops->re_set = re_set_catch_exception; | |
14096 | ops->check_status = check_status_catch_exception; | |
14097 | ops->print_it = print_it_catch_exception; | |
14098 | ops->print_one = print_one_catch_exception; | |
14099 | ops->print_mention = print_mention_catch_exception; | |
14100 | ops->print_recreate = print_recreate_catch_exception; | |
14101 | ||
14102 | ops = &catch_exception_unhandled_breakpoint_ops; | |
14103 | *ops = bkpt_breakpoint_ops; | |
14104 | ops->dtor = dtor_catch_exception_unhandled; | |
14105 | ops->allocate_location = allocate_location_catch_exception_unhandled; | |
14106 | ops->re_set = re_set_catch_exception_unhandled; | |
14107 | ops->check_status = check_status_catch_exception_unhandled; | |
14108 | ops->print_it = print_it_catch_exception_unhandled; | |
14109 | ops->print_one = print_one_catch_exception_unhandled; | |
14110 | ops->print_mention = print_mention_catch_exception_unhandled; | |
14111 | ops->print_recreate = print_recreate_catch_exception_unhandled; | |
14112 | ||
14113 | ops = &catch_assert_breakpoint_ops; | |
14114 | *ops = bkpt_breakpoint_ops; | |
14115 | ops->dtor = dtor_catch_assert; | |
14116 | ops->allocate_location = allocate_location_catch_assert; | |
14117 | ops->re_set = re_set_catch_assert; | |
14118 | ops->check_status = check_status_catch_assert; | |
14119 | ops->print_it = print_it_catch_assert; | |
14120 | ops->print_one = print_one_catch_assert; | |
14121 | ops->print_mention = print_mention_catch_assert; | |
14122 | ops->print_recreate = print_recreate_catch_assert; | |
14123 | } | |
14124 | ||
3d9434b5 JB |
14125 | /* This module's 'new_objfile' observer. */ |
14126 | ||
14127 | static void | |
14128 | ada_new_objfile_observer (struct objfile *objfile) | |
14129 | { | |
14130 | ada_clear_symbol_cache (); | |
14131 | } | |
14132 | ||
14133 | /* This module's 'free_objfile' observer. */ | |
14134 | ||
14135 | static void | |
14136 | ada_free_objfile_observer (struct objfile *objfile) | |
14137 | { | |
14138 | ada_clear_symbol_cache (); | |
14139 | } | |
14140 | ||
d2e4a39e | 14141 | void |
6c038f32 | 14142 | _initialize_ada_language (void) |
14f9c5c9 | 14143 | { |
6c038f32 PH |
14144 | add_language (&ada_language_defn); |
14145 | ||
2060206e PA |
14146 | initialize_ada_catchpoint_ops (); |
14147 | ||
5bf03f13 JB |
14148 | add_prefix_cmd ("ada", no_class, set_ada_command, |
14149 | _("Prefix command for changing Ada-specfic settings"), | |
14150 | &set_ada_list, "set ada ", 0, &setlist); | |
14151 | ||
14152 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
14153 | _("Generic command for showing Ada-specific settings."), | |
14154 | &show_ada_list, "show ada ", 0, &showlist); | |
14155 | ||
14156 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
14157 | &trust_pad_over_xvs, _("\ | |
14158 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
14159 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
14160 | _("\ | |
14161 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
14162 | should normally trust the contents of PAD types, but certain older versions\n\ | |
14163 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
14164 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
14165 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
14166 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
14167 | this option to \"off\" unless necessary."), | |
14168 | NULL, NULL, &set_ada_list, &show_ada_list); | |
14169 | ||
d72413e6 PMR |
14170 | add_setshow_boolean_cmd ("print-signatures", class_vars, |
14171 | &print_signatures, _("\ | |
14172 | Enable or disable the output of formal and return types for functions in the \ | |
14173 | overloads selection menu"), _("\ | |
14174 | Show whether the output of formal and return types for functions in the \ | |
14175 | overloads selection menu is activated"), | |
14176 | NULL, NULL, NULL, &set_ada_list, &show_ada_list); | |
14177 | ||
9ac4176b PA |
14178 | add_catch_command ("exception", _("\ |
14179 | Catch Ada exceptions, when raised.\n\ | |
14180 | With an argument, catch only exceptions with the given name."), | |
14181 | catch_ada_exception_command, | |
14182 | NULL, | |
14183 | CATCH_PERMANENT, | |
14184 | CATCH_TEMPORARY); | |
14185 | add_catch_command ("assert", _("\ | |
14186 | Catch failed Ada assertions, when raised.\n\ | |
14187 | With an argument, catch only exceptions with the given name."), | |
14188 | catch_assert_command, | |
14189 | NULL, | |
14190 | CATCH_PERMANENT, | |
14191 | CATCH_TEMPORARY); | |
14192 | ||
6c038f32 | 14193 | varsize_limit = 65536; |
6c038f32 | 14194 | |
778865d3 JB |
14195 | add_info ("exceptions", info_exceptions_command, |
14196 | _("\ | |
14197 | List all Ada exception names.\n\ | |
14198 | If a regular expression is passed as an argument, only those matching\n\ | |
14199 | the regular expression are listed.")); | |
14200 | ||
c6044dd1 JB |
14201 | add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd, |
14202 | _("Set Ada maintenance-related variables."), | |
14203 | &maint_set_ada_cmdlist, "maintenance set ada ", | |
14204 | 0/*allow-unknown*/, &maintenance_set_cmdlist); | |
14205 | ||
14206 | add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd, | |
14207 | _("Show Ada maintenance-related variables"), | |
14208 | &maint_show_ada_cmdlist, "maintenance show ada ", | |
14209 | 0/*allow-unknown*/, &maintenance_show_cmdlist); | |
14210 | ||
14211 | add_setshow_boolean_cmd | |
14212 | ("ignore-descriptive-types", class_maintenance, | |
14213 | &ada_ignore_descriptive_types_p, | |
14214 | _("Set whether descriptive types generated by GNAT should be ignored."), | |
14215 | _("Show whether descriptive types generated by GNAT should be ignored."), | |
14216 | _("\ | |
14217 | When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\ | |
14218 | DWARF attribute."), | |
14219 | NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist); | |
14220 | ||
6c038f32 PH |
14221 | obstack_init (&symbol_list_obstack); |
14222 | ||
14223 | decoded_names_store = htab_create_alloc | |
14224 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
14225 | NULL, xcalloc, xfree); | |
6b69afc4 | 14226 | |
3d9434b5 JB |
14227 | /* The ada-lang observers. */ |
14228 | observer_attach_new_objfile (ada_new_objfile_observer); | |
14229 | observer_attach_free_objfile (ada_free_objfile_observer); | |
e802dbe0 | 14230 | observer_attach_inferior_exit (ada_inferior_exit); |
ee01b665 JB |
14231 | |
14232 | /* Setup various context-specific data. */ | |
e802dbe0 | 14233 | ada_inferior_data |
8e260fc0 | 14234 | = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup); |
ee01b665 JB |
14235 | ada_pspace_data_handle |
14236 | = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup); | |
14f9c5c9 | 14237 | } |