]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Fix a memory leak when processing archives.
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
61baf725 3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
14bc53a8 63#include "common/function-view.h"
d5722aa2 64#include "common/byte-vector.h"
ab816a27 65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
14f9c5c9 113
22cee43f 114static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
22cee43f 117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
4c4b4cd2 127static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
d2e4a39e 130static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
a121b7c1 135static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
a121b7c1 155static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 156 int, int);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
73589123
PH
204static int advance_wild_match (const char **, const char *, int);
205
b5ec771e 206static bool wild_match (const char *name, const char *patn);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
108d56a4 219static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
0d5cff50 225static int find_struct_field (const char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
227
228static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
d12307c1 231static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
232 struct value **, int, const char *,
233 struct type *);
234
4c4b4cd2
PH
235static int ada_is_direct_array_type (struct type *);
236
72d5681a
PH
237static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
714e53ab 239
52ce6436
PH
240static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
244 struct expression *,
245 int *, enum noside);
52ce6436
PH
246
247static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
852dff6c
JB
271
272static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
273
274static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
276
4c4b4cd2
PH
277\f
278
ee01b665
JB
279/* The result of a symbol lookup to be stored in our symbol cache. */
280
281struct cache_entry
282{
283 /* The name used to perform the lookup. */
284 const char *name;
285 /* The namespace used during the lookup. */
fe978cb0 286 domain_enum domain;
ee01b665
JB
287 /* The symbol returned by the lookup, or NULL if no matching symbol
288 was found. */
289 struct symbol *sym;
290 /* The block where the symbol was found, or NULL if no matching
291 symbol was found. */
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
295};
296
297/* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
299
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
305
306#define HASH_SIZE 1009
307
308struct ada_symbol_cache
309{
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
312
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
315};
316
317static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 318
4c4b4cd2 319/* Maximum-sized dynamic type. */
14f9c5c9
AS
320static unsigned int varsize_limit;
321
67cb5b2d 322static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
323#ifdef VMS
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
325#else
14f9c5c9 326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 327#endif
14f9c5c9 328
4c4b4cd2 329/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 330static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 331 = "__gnat_ada_main_program_name";
14f9c5c9 332
4c4b4cd2
PH
333/* Limit on the number of warnings to raise per expression evaluation. */
334static int warning_limit = 2;
335
336/* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338static int warnings_issued = 0;
339
340static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
342};
343
344static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
346};
347
348/* Space for allocating results of ada_lookup_symbol_list. */
349static struct obstack symbol_list_obstack;
350
c6044dd1
JB
351/* Maintenance-related settings for this module. */
352
353static struct cmd_list_element *maint_set_ada_cmdlist;
354static struct cmd_list_element *maint_show_ada_cmdlist;
355
356/* Implement the "maintenance set ada" (prefix) command. */
357
358static void
981a3fb3 359maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 360{
635c7e8a
TT
361 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
362 gdb_stdout);
c6044dd1
JB
363}
364
365/* Implement the "maintenance show ada" (prefix) command. */
366
367static void
981a3fb3 368maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
369{
370 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
371}
372
373/* The "maintenance ada set/show ignore-descriptive-type" value. */
374
375static int ada_ignore_descriptive_types_p = 0;
376
e802dbe0
JB
377 /* Inferior-specific data. */
378
379/* Per-inferior data for this module. */
380
381struct ada_inferior_data
382{
383 /* The ada__tags__type_specific_data type, which is used when decoding
384 tagged types. With older versions of GNAT, this type was directly
385 accessible through a component ("tsd") in the object tag. But this
386 is no longer the case, so we cache it for each inferior. */
387 struct type *tsd_type;
3eecfa55
JB
388
389 /* The exception_support_info data. This data is used to determine
390 how to implement support for Ada exception catchpoints in a given
391 inferior. */
392 const struct exception_support_info *exception_info;
e802dbe0
JB
393};
394
395/* Our key to this module's inferior data. */
396static const struct inferior_data *ada_inferior_data;
397
398/* A cleanup routine for our inferior data. */
399static void
400ada_inferior_data_cleanup (struct inferior *inf, void *arg)
401{
402 struct ada_inferior_data *data;
403
9a3c8263 404 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
405 if (data != NULL)
406 xfree (data);
407}
408
409/* Return our inferior data for the given inferior (INF).
410
411 This function always returns a valid pointer to an allocated
412 ada_inferior_data structure. If INF's inferior data has not
413 been previously set, this functions creates a new one with all
414 fields set to zero, sets INF's inferior to it, and then returns
415 a pointer to that newly allocated ada_inferior_data. */
416
417static struct ada_inferior_data *
418get_ada_inferior_data (struct inferior *inf)
419{
420 struct ada_inferior_data *data;
421
9a3c8263 422 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
423 if (data == NULL)
424 {
41bf6aca 425 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
426 set_inferior_data (inf, ada_inferior_data, data);
427 }
428
429 return data;
430}
431
432/* Perform all necessary cleanups regarding our module's inferior data
433 that is required after the inferior INF just exited. */
434
435static void
436ada_inferior_exit (struct inferior *inf)
437{
438 ada_inferior_data_cleanup (inf, NULL);
439 set_inferior_data (inf, ada_inferior_data, NULL);
440}
441
ee01b665
JB
442
443 /* program-space-specific data. */
444
445/* This module's per-program-space data. */
446struct ada_pspace_data
447{
448 /* The Ada symbol cache. */
449 struct ada_symbol_cache *sym_cache;
450};
451
452/* Key to our per-program-space data. */
453static const struct program_space_data *ada_pspace_data_handle;
454
455/* Return this module's data for the given program space (PSPACE).
456 If not is found, add a zero'ed one now.
457
458 This function always returns a valid object. */
459
460static struct ada_pspace_data *
461get_ada_pspace_data (struct program_space *pspace)
462{
463 struct ada_pspace_data *data;
464
9a3c8263
SM
465 data = ((struct ada_pspace_data *)
466 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
467 if (data == NULL)
468 {
469 data = XCNEW (struct ada_pspace_data);
470 set_program_space_data (pspace, ada_pspace_data_handle, data);
471 }
472
473 return data;
474}
475
476/* The cleanup callback for this module's per-program-space data. */
477
478static void
479ada_pspace_data_cleanup (struct program_space *pspace, void *data)
480{
9a3c8263 481 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
482
483 if (pspace_data->sym_cache != NULL)
484 ada_free_symbol_cache (pspace_data->sym_cache);
485 xfree (pspace_data);
486}
487
4c4b4cd2
PH
488 /* Utilities */
489
720d1a40 490/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 491 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
492
493 Normally, we really expect a typedef type to only have 1 typedef layer.
494 In other words, we really expect the target type of a typedef type to be
495 a non-typedef type. This is particularly true for Ada units, because
496 the language does not have a typedef vs not-typedef distinction.
497 In that respect, the Ada compiler has been trying to eliminate as many
498 typedef definitions in the debugging information, since they generally
499 do not bring any extra information (we still use typedef under certain
500 circumstances related mostly to the GNAT encoding).
501
502 Unfortunately, we have seen situations where the debugging information
503 generated by the compiler leads to such multiple typedef layers. For
504 instance, consider the following example with stabs:
505
506 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
507 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
508
509 This is an error in the debugging information which causes type
510 pck__float_array___XUP to be defined twice, and the second time,
511 it is defined as a typedef of a typedef.
512
513 This is on the fringe of legality as far as debugging information is
514 concerned, and certainly unexpected. But it is easy to handle these
515 situations correctly, so we can afford to be lenient in this case. */
516
517static struct type *
518ada_typedef_target_type (struct type *type)
519{
520 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
521 type = TYPE_TARGET_TYPE (type);
522 return type;
523}
524
41d27058
JB
525/* Given DECODED_NAME a string holding a symbol name in its
526 decoded form (ie using the Ada dotted notation), returns
527 its unqualified name. */
528
529static const char *
530ada_unqualified_name (const char *decoded_name)
531{
2b0f535a
JB
532 const char *result;
533
534 /* If the decoded name starts with '<', it means that the encoded
535 name does not follow standard naming conventions, and thus that
536 it is not your typical Ada symbol name. Trying to unqualify it
537 is therefore pointless and possibly erroneous. */
538 if (decoded_name[0] == '<')
539 return decoded_name;
540
541 result = strrchr (decoded_name, '.');
41d27058
JB
542 if (result != NULL)
543 result++; /* Skip the dot... */
544 else
545 result = decoded_name;
546
547 return result;
548}
549
550/* Return a string starting with '<', followed by STR, and '>'.
551 The result is good until the next call. */
552
553static char *
554add_angle_brackets (const char *str)
555{
556 static char *result = NULL;
557
558 xfree (result);
88c15c34 559 result = xstrprintf ("<%s>", str);
41d27058
JB
560 return result;
561}
96d887e8 562
67cb5b2d 563static const char *
4c4b4cd2
PH
564ada_get_gdb_completer_word_break_characters (void)
565{
566 return ada_completer_word_break_characters;
567}
568
e79af960
JB
569/* Print an array element index using the Ada syntax. */
570
571static void
572ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 573 const struct value_print_options *options)
e79af960 574{
79a45b7d 575 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
576 fprintf_filtered (stream, " => ");
577}
578
f27cf670 579/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 580 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 581 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 582
f27cf670
AS
583void *
584grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 585{
d2e4a39e
AS
586 if (*size < min_size)
587 {
588 *size *= 2;
589 if (*size < min_size)
4c4b4cd2 590 *size = min_size;
f27cf670 591 vect = xrealloc (vect, *size * element_size);
d2e4a39e 592 }
f27cf670 593 return vect;
14f9c5c9
AS
594}
595
596/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 597 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
598
599static int
ebf56fd3 600field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
601{
602 int len = strlen (target);
5b4ee69b 603
d2e4a39e 604 return
4c4b4cd2
PH
605 (strncmp (field_name, target, len) == 0
606 && (field_name[len] == '\0'
61012eef 607 || (startswith (field_name + len, "___")
76a01679
JB
608 && strcmp (field_name + strlen (field_name) - 6,
609 "___XVN") != 0)));
14f9c5c9
AS
610}
611
612
872c8b51
JB
613/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
614 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
615 and return its index. This function also handles fields whose name
616 have ___ suffixes because the compiler sometimes alters their name
617 by adding such a suffix to represent fields with certain constraints.
618 If the field could not be found, return a negative number if
619 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
620
621int
622ada_get_field_index (const struct type *type, const char *field_name,
623 int maybe_missing)
624{
625 int fieldno;
872c8b51
JB
626 struct type *struct_type = check_typedef ((struct type *) type);
627
628 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
629 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
630 return fieldno;
631
632 if (!maybe_missing)
323e0a4a 633 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 634 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
635
636 return -1;
637}
638
639/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
640
641int
d2e4a39e 642ada_name_prefix_len (const char *name)
14f9c5c9
AS
643{
644 if (name == NULL)
645 return 0;
d2e4a39e 646 else
14f9c5c9 647 {
d2e4a39e 648 const char *p = strstr (name, "___");
5b4ee69b 649
14f9c5c9 650 if (p == NULL)
4c4b4cd2 651 return strlen (name);
14f9c5c9 652 else
4c4b4cd2 653 return p - name;
14f9c5c9
AS
654 }
655}
656
4c4b4cd2
PH
657/* Return non-zero if SUFFIX is a suffix of STR.
658 Return zero if STR is null. */
659
14f9c5c9 660static int
d2e4a39e 661is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
662{
663 int len1, len2;
5b4ee69b 664
14f9c5c9
AS
665 if (str == NULL)
666 return 0;
667 len1 = strlen (str);
668 len2 = strlen (suffix);
4c4b4cd2 669 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
670}
671
4c4b4cd2
PH
672/* The contents of value VAL, treated as a value of type TYPE. The
673 result is an lval in memory if VAL is. */
14f9c5c9 674
d2e4a39e 675static struct value *
4c4b4cd2 676coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 677{
61ee279c 678 type = ada_check_typedef (type);
df407dfe 679 if (value_type (val) == type)
4c4b4cd2 680 return val;
d2e4a39e 681 else
14f9c5c9 682 {
4c4b4cd2
PH
683 struct value *result;
684
685 /* Make sure that the object size is not unreasonable before
686 trying to allocate some memory for it. */
c1b5a1a6 687 ada_ensure_varsize_limit (type);
4c4b4cd2 688
41e8491f
JK
689 if (value_lazy (val)
690 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
691 result = allocate_value_lazy (type);
692 else
693 {
694 result = allocate_value (type);
9a0dc9e3 695 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 696 }
74bcbdf3 697 set_value_component_location (result, val);
9bbda503
AC
698 set_value_bitsize (result, value_bitsize (val));
699 set_value_bitpos (result, value_bitpos (val));
42ae5230 700 set_value_address (result, value_address (val));
14f9c5c9
AS
701 return result;
702 }
703}
704
fc1a4b47
AC
705static const gdb_byte *
706cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
707{
708 if (valaddr == NULL)
709 return NULL;
710 else
711 return valaddr + offset;
712}
713
714static CORE_ADDR
ebf56fd3 715cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
716{
717 if (address == 0)
718 return 0;
d2e4a39e 719 else
14f9c5c9
AS
720 return address + offset;
721}
722
4c4b4cd2
PH
723/* Issue a warning (as for the definition of warning in utils.c, but
724 with exactly one argument rather than ...), unless the limit on the
725 number of warnings has passed during the evaluation of the current
726 expression. */
a2249542 727
77109804
AC
728/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
729 provided by "complaint". */
a0b31db1 730static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 731
14f9c5c9 732static void
a2249542 733lim_warning (const char *format, ...)
14f9c5c9 734{
a2249542 735 va_list args;
a2249542 736
5b4ee69b 737 va_start (args, format);
4c4b4cd2
PH
738 warnings_issued += 1;
739 if (warnings_issued <= warning_limit)
a2249542
MK
740 vwarning (format, args);
741
742 va_end (args);
4c4b4cd2
PH
743}
744
714e53ab
PH
745/* Issue an error if the size of an object of type T is unreasonable,
746 i.e. if it would be a bad idea to allocate a value of this type in
747 GDB. */
748
c1b5a1a6
JB
749void
750ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
751{
752 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 753 error (_("object size is larger than varsize-limit"));
714e53ab
PH
754}
755
0963b4bd 756/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 757static LONGEST
c3e5cd34 758max_of_size (int size)
4c4b4cd2 759{
76a01679 760 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 761
76a01679 762 return top_bit | (top_bit - 1);
4c4b4cd2
PH
763}
764
0963b4bd 765/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 766static LONGEST
c3e5cd34 767min_of_size (int size)
4c4b4cd2 768{
c3e5cd34 769 return -max_of_size (size) - 1;
4c4b4cd2
PH
770}
771
0963b4bd 772/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 773static ULONGEST
c3e5cd34 774umax_of_size (int size)
4c4b4cd2 775{
76a01679 776 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 777
76a01679 778 return top_bit | (top_bit - 1);
4c4b4cd2
PH
779}
780
0963b4bd 781/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
782static LONGEST
783max_of_type (struct type *t)
4c4b4cd2 784{
c3e5cd34
PH
785 if (TYPE_UNSIGNED (t))
786 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
787 else
788 return max_of_size (TYPE_LENGTH (t));
789}
790
0963b4bd 791/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
792static LONGEST
793min_of_type (struct type *t)
794{
795 if (TYPE_UNSIGNED (t))
796 return 0;
797 else
798 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
799}
800
801/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
802LONGEST
803ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 804{
c3345124 805 type = resolve_dynamic_type (type, NULL, 0);
76a01679 806 switch (TYPE_CODE (type))
4c4b4cd2
PH
807 {
808 case TYPE_CODE_RANGE:
690cc4eb 809 return TYPE_HIGH_BOUND (type);
4c4b4cd2 810 case TYPE_CODE_ENUM:
14e75d8e 811 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
812 case TYPE_CODE_BOOL:
813 return 1;
814 case TYPE_CODE_CHAR:
76a01679 815 case TYPE_CODE_INT:
690cc4eb 816 return max_of_type (type);
4c4b4cd2 817 default:
43bbcdc2 818 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
819 }
820}
821
14e75d8e 822/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
823LONGEST
824ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 825{
c3345124 826 type = resolve_dynamic_type (type, NULL, 0);
76a01679 827 switch (TYPE_CODE (type))
4c4b4cd2
PH
828 {
829 case TYPE_CODE_RANGE:
690cc4eb 830 return TYPE_LOW_BOUND (type);
4c4b4cd2 831 case TYPE_CODE_ENUM:
14e75d8e 832 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
833 case TYPE_CODE_BOOL:
834 return 0;
835 case TYPE_CODE_CHAR:
76a01679 836 case TYPE_CODE_INT:
690cc4eb 837 return min_of_type (type);
4c4b4cd2 838 default:
43bbcdc2 839 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
840 }
841}
842
843/* The identity on non-range types. For range types, the underlying
76a01679 844 non-range scalar type. */
4c4b4cd2
PH
845
846static struct type *
18af8284 847get_base_type (struct type *type)
4c4b4cd2
PH
848{
849 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
850 {
76a01679
JB
851 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
852 return type;
4c4b4cd2
PH
853 type = TYPE_TARGET_TYPE (type);
854 }
855 return type;
14f9c5c9 856}
41246937
JB
857
858/* Return a decoded version of the given VALUE. This means returning
859 a value whose type is obtained by applying all the GNAT-specific
860 encondings, making the resulting type a static but standard description
861 of the initial type. */
862
863struct value *
864ada_get_decoded_value (struct value *value)
865{
866 struct type *type = ada_check_typedef (value_type (value));
867
868 if (ada_is_array_descriptor_type (type)
869 || (ada_is_constrained_packed_array_type (type)
870 && TYPE_CODE (type) != TYPE_CODE_PTR))
871 {
872 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
873 value = ada_coerce_to_simple_array_ptr (value);
874 else
875 value = ada_coerce_to_simple_array (value);
876 }
877 else
878 value = ada_to_fixed_value (value);
879
880 return value;
881}
882
883/* Same as ada_get_decoded_value, but with the given TYPE.
884 Because there is no associated actual value for this type,
885 the resulting type might be a best-effort approximation in
886 the case of dynamic types. */
887
888struct type *
889ada_get_decoded_type (struct type *type)
890{
891 type = to_static_fixed_type (type);
892 if (ada_is_constrained_packed_array_type (type))
893 type = ada_coerce_to_simple_array_type (type);
894 return type;
895}
896
4c4b4cd2 897\f
76a01679 898
4c4b4cd2 899 /* Language Selection */
14f9c5c9
AS
900
901/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 902 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 903
14f9c5c9 904enum language
ccefe4c4 905ada_update_initial_language (enum language lang)
14f9c5c9 906{
d2e4a39e 907 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 908 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 909 return language_ada;
14f9c5c9
AS
910
911 return lang;
912}
96d887e8
PH
913
914/* If the main procedure is written in Ada, then return its name.
915 The result is good until the next call. Return NULL if the main
916 procedure doesn't appear to be in Ada. */
917
918char *
919ada_main_name (void)
920{
3b7344d5 921 struct bound_minimal_symbol msym;
f9bc20b9 922 static char *main_program_name = NULL;
6c038f32 923
96d887e8
PH
924 /* For Ada, the name of the main procedure is stored in a specific
925 string constant, generated by the binder. Look for that symbol,
926 extract its address, and then read that string. If we didn't find
927 that string, then most probably the main procedure is not written
928 in Ada. */
929 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
930
3b7344d5 931 if (msym.minsym != NULL)
96d887e8 932 {
f9bc20b9
JB
933 CORE_ADDR main_program_name_addr;
934 int err_code;
935
77e371c0 936 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 937 if (main_program_name_addr == 0)
323e0a4a 938 error (_("Invalid address for Ada main program name."));
96d887e8 939
f9bc20b9
JB
940 xfree (main_program_name);
941 target_read_string (main_program_name_addr, &main_program_name,
942 1024, &err_code);
943
944 if (err_code != 0)
945 return NULL;
96d887e8
PH
946 return main_program_name;
947 }
948
949 /* The main procedure doesn't seem to be in Ada. */
950 return NULL;
951}
14f9c5c9 952\f
4c4b4cd2 953 /* Symbols */
d2e4a39e 954
4c4b4cd2
PH
955/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
956 of NULLs. */
14f9c5c9 957
d2e4a39e
AS
958const struct ada_opname_map ada_opname_table[] = {
959 {"Oadd", "\"+\"", BINOP_ADD},
960 {"Osubtract", "\"-\"", BINOP_SUB},
961 {"Omultiply", "\"*\"", BINOP_MUL},
962 {"Odivide", "\"/\"", BINOP_DIV},
963 {"Omod", "\"mod\"", BINOP_MOD},
964 {"Orem", "\"rem\"", BINOP_REM},
965 {"Oexpon", "\"**\"", BINOP_EXP},
966 {"Olt", "\"<\"", BINOP_LESS},
967 {"Ole", "\"<=\"", BINOP_LEQ},
968 {"Ogt", "\">\"", BINOP_GTR},
969 {"Oge", "\">=\"", BINOP_GEQ},
970 {"Oeq", "\"=\"", BINOP_EQUAL},
971 {"One", "\"/=\"", BINOP_NOTEQUAL},
972 {"Oand", "\"and\"", BINOP_BITWISE_AND},
973 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
974 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
975 {"Oconcat", "\"&\"", BINOP_CONCAT},
976 {"Oabs", "\"abs\"", UNOP_ABS},
977 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
978 {"Oadd", "\"+\"", UNOP_PLUS},
979 {"Osubtract", "\"-\"", UNOP_NEG},
980 {NULL, NULL}
14f9c5c9
AS
981};
982
b5ec771e
PA
983/* The "encoded" form of DECODED, according to GNAT conventions. The
984 result is valid until the next call to ada_encode. If
985 THROW_ERRORS, throw an error if invalid operator name is found.
986 Otherwise, return NULL in that case. */
4c4b4cd2 987
b5ec771e
PA
988static char *
989ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 990{
4c4b4cd2
PH
991 static char *encoding_buffer = NULL;
992 static size_t encoding_buffer_size = 0;
d2e4a39e 993 const char *p;
14f9c5c9 994 int k;
d2e4a39e 995
4c4b4cd2 996 if (decoded == NULL)
14f9c5c9
AS
997 return NULL;
998
4c4b4cd2
PH
999 GROW_VECT (encoding_buffer, encoding_buffer_size,
1000 2 * strlen (decoded) + 10);
14f9c5c9
AS
1001
1002 k = 0;
4c4b4cd2 1003 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 1004 {
cdc7bb92 1005 if (*p == '.')
4c4b4cd2
PH
1006 {
1007 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1008 k += 2;
1009 }
14f9c5c9 1010 else if (*p == '"')
4c4b4cd2
PH
1011 {
1012 const struct ada_opname_map *mapping;
1013
1014 for (mapping = ada_opname_table;
1265e4aa 1015 mapping->encoded != NULL
61012eef 1016 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1017 ;
1018 if (mapping->encoded == NULL)
b5ec771e
PA
1019 {
1020 if (throw_errors)
1021 error (_("invalid Ada operator name: %s"), p);
1022 else
1023 return NULL;
1024 }
4c4b4cd2
PH
1025 strcpy (encoding_buffer + k, mapping->encoded);
1026 k += strlen (mapping->encoded);
1027 break;
1028 }
d2e4a39e 1029 else
4c4b4cd2
PH
1030 {
1031 encoding_buffer[k] = *p;
1032 k += 1;
1033 }
14f9c5c9
AS
1034 }
1035
4c4b4cd2
PH
1036 encoding_buffer[k] = '\0';
1037 return encoding_buffer;
14f9c5c9
AS
1038}
1039
b5ec771e
PA
1040/* The "encoded" form of DECODED, according to GNAT conventions.
1041 The result is valid until the next call to ada_encode. */
1042
1043char *
1044ada_encode (const char *decoded)
1045{
1046 return ada_encode_1 (decoded, true);
1047}
1048
14f9c5c9 1049/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1050 quotes, unfolded, but with the quotes stripped away. Result good
1051 to next call. */
1052
d2e4a39e
AS
1053char *
1054ada_fold_name (const char *name)
14f9c5c9 1055{
d2e4a39e 1056 static char *fold_buffer = NULL;
14f9c5c9
AS
1057 static size_t fold_buffer_size = 0;
1058
1059 int len = strlen (name);
d2e4a39e 1060 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1061
1062 if (name[0] == '\'')
1063 {
d2e4a39e
AS
1064 strncpy (fold_buffer, name + 1, len - 2);
1065 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1066 }
1067 else
1068 {
1069 int i;
5b4ee69b 1070
14f9c5c9 1071 for (i = 0; i <= len; i += 1)
4c4b4cd2 1072 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1073 }
1074
1075 return fold_buffer;
1076}
1077
529cad9c
PH
1078/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1079
1080static int
1081is_lower_alphanum (const char c)
1082{
1083 return (isdigit (c) || (isalpha (c) && islower (c)));
1084}
1085
c90092fe
JB
1086/* ENCODED is the linkage name of a symbol and LEN contains its length.
1087 This function saves in LEN the length of that same symbol name but
1088 without either of these suffixes:
29480c32
JB
1089 . .{DIGIT}+
1090 . ${DIGIT}+
1091 . ___{DIGIT}+
1092 . __{DIGIT}+.
c90092fe 1093
29480c32
JB
1094 These are suffixes introduced by the compiler for entities such as
1095 nested subprogram for instance, in order to avoid name clashes.
1096 They do not serve any purpose for the debugger. */
1097
1098static void
1099ada_remove_trailing_digits (const char *encoded, int *len)
1100{
1101 if (*len > 1 && isdigit (encoded[*len - 1]))
1102 {
1103 int i = *len - 2;
5b4ee69b 1104
29480c32
JB
1105 while (i > 0 && isdigit (encoded[i]))
1106 i--;
1107 if (i >= 0 && encoded[i] == '.')
1108 *len = i;
1109 else if (i >= 0 && encoded[i] == '$')
1110 *len = i;
61012eef 1111 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1112 *len = i - 2;
61012eef 1113 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1114 *len = i - 1;
1115 }
1116}
1117
1118/* Remove the suffix introduced by the compiler for protected object
1119 subprograms. */
1120
1121static void
1122ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1123{
1124 /* Remove trailing N. */
1125
1126 /* Protected entry subprograms are broken into two
1127 separate subprograms: The first one is unprotected, and has
1128 a 'N' suffix; the second is the protected version, and has
0963b4bd 1129 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1130 the protection. Since the P subprograms are internally generated,
1131 we leave these names undecoded, giving the user a clue that this
1132 entity is internal. */
1133
1134 if (*len > 1
1135 && encoded[*len - 1] == 'N'
1136 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1137 *len = *len - 1;
1138}
1139
69fadcdf
JB
1140/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1141
1142static void
1143ada_remove_Xbn_suffix (const char *encoded, int *len)
1144{
1145 int i = *len - 1;
1146
1147 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1148 i--;
1149
1150 if (encoded[i] != 'X')
1151 return;
1152
1153 if (i == 0)
1154 return;
1155
1156 if (isalnum (encoded[i-1]))
1157 *len = i;
1158}
1159
29480c32
JB
1160/* If ENCODED follows the GNAT entity encoding conventions, then return
1161 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1162 replaced by ENCODED.
14f9c5c9 1163
4c4b4cd2 1164 The resulting string is valid until the next call of ada_decode.
29480c32 1165 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1166 is returned. */
1167
1168const char *
1169ada_decode (const char *encoded)
14f9c5c9
AS
1170{
1171 int i, j;
1172 int len0;
d2e4a39e 1173 const char *p;
4c4b4cd2 1174 char *decoded;
14f9c5c9 1175 int at_start_name;
4c4b4cd2
PH
1176 static char *decoding_buffer = NULL;
1177 static size_t decoding_buffer_size = 0;
d2e4a39e 1178
29480c32
JB
1179 /* The name of the Ada main procedure starts with "_ada_".
1180 This prefix is not part of the decoded name, so skip this part
1181 if we see this prefix. */
61012eef 1182 if (startswith (encoded, "_ada_"))
4c4b4cd2 1183 encoded += 5;
14f9c5c9 1184
29480c32
JB
1185 /* If the name starts with '_', then it is not a properly encoded
1186 name, so do not attempt to decode it. Similarly, if the name
1187 starts with '<', the name should not be decoded. */
4c4b4cd2 1188 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1189 goto Suppress;
1190
4c4b4cd2 1191 len0 = strlen (encoded);
4c4b4cd2 1192
29480c32
JB
1193 ada_remove_trailing_digits (encoded, &len0);
1194 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1195
4c4b4cd2
PH
1196 /* Remove the ___X.* suffix if present. Do not forget to verify that
1197 the suffix is located before the current "end" of ENCODED. We want
1198 to avoid re-matching parts of ENCODED that have previously been
1199 marked as discarded (by decrementing LEN0). */
1200 p = strstr (encoded, "___");
1201 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1202 {
1203 if (p[3] == 'X')
4c4b4cd2 1204 len0 = p - encoded;
14f9c5c9 1205 else
4c4b4cd2 1206 goto Suppress;
14f9c5c9 1207 }
4c4b4cd2 1208
29480c32
JB
1209 /* Remove any trailing TKB suffix. It tells us that this symbol
1210 is for the body of a task, but that information does not actually
1211 appear in the decoded name. */
1212
61012eef 1213 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1214 len0 -= 3;
76a01679 1215
a10967fa
JB
1216 /* Remove any trailing TB suffix. The TB suffix is slightly different
1217 from the TKB suffix because it is used for non-anonymous task
1218 bodies. */
1219
61012eef 1220 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1221 len0 -= 2;
1222
29480c32
JB
1223 /* Remove trailing "B" suffixes. */
1224 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1225
61012eef 1226 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1227 len0 -= 1;
1228
4c4b4cd2 1229 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1230
4c4b4cd2
PH
1231 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1232 decoded = decoding_buffer;
14f9c5c9 1233
29480c32
JB
1234 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1235
4c4b4cd2 1236 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1237 {
4c4b4cd2
PH
1238 i = len0 - 2;
1239 while ((i >= 0 && isdigit (encoded[i]))
1240 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1241 i -= 1;
1242 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1243 len0 = i - 1;
1244 else if (encoded[i] == '$')
1245 len0 = i;
d2e4a39e 1246 }
14f9c5c9 1247
29480c32
JB
1248 /* The first few characters that are not alphabetic are not part
1249 of any encoding we use, so we can copy them over verbatim. */
1250
4c4b4cd2
PH
1251 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1252 decoded[j] = encoded[i];
14f9c5c9
AS
1253
1254 at_start_name = 1;
1255 while (i < len0)
1256 {
29480c32 1257 /* Is this a symbol function? */
4c4b4cd2
PH
1258 if (at_start_name && encoded[i] == 'O')
1259 {
1260 int k;
5b4ee69b 1261
4c4b4cd2
PH
1262 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1263 {
1264 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1265 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1266 op_len - 1) == 0)
1267 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1268 {
1269 strcpy (decoded + j, ada_opname_table[k].decoded);
1270 at_start_name = 0;
1271 i += op_len;
1272 j += strlen (ada_opname_table[k].decoded);
1273 break;
1274 }
1275 }
1276 if (ada_opname_table[k].encoded != NULL)
1277 continue;
1278 }
14f9c5c9
AS
1279 at_start_name = 0;
1280
529cad9c
PH
1281 /* Replace "TK__" with "__", which will eventually be translated
1282 into "." (just below). */
1283
61012eef 1284 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1285 i += 2;
529cad9c 1286
29480c32
JB
1287 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1288 be translated into "." (just below). These are internal names
1289 generated for anonymous blocks inside which our symbol is nested. */
1290
1291 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1292 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1293 && isdigit (encoded [i+4]))
1294 {
1295 int k = i + 5;
1296
1297 while (k < len0 && isdigit (encoded[k]))
1298 k++; /* Skip any extra digit. */
1299
1300 /* Double-check that the "__B_{DIGITS}+" sequence we found
1301 is indeed followed by "__". */
1302 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1303 i = k;
1304 }
1305
529cad9c
PH
1306 /* Remove _E{DIGITS}+[sb] */
1307
1308 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1309 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1310 one implements the actual entry code, and has a suffix following
1311 the convention above; the second one implements the barrier and
1312 uses the same convention as above, except that the 'E' is replaced
1313 by a 'B'.
1314
1315 Just as above, we do not decode the name of barrier functions
1316 to give the user a clue that the code he is debugging has been
1317 internally generated. */
1318
1319 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1320 && isdigit (encoded[i+2]))
1321 {
1322 int k = i + 3;
1323
1324 while (k < len0 && isdigit (encoded[k]))
1325 k++;
1326
1327 if (k < len0
1328 && (encoded[k] == 'b' || encoded[k] == 's'))
1329 {
1330 k++;
1331 /* Just as an extra precaution, make sure that if this
1332 suffix is followed by anything else, it is a '_'.
1333 Otherwise, we matched this sequence by accident. */
1334 if (k == len0
1335 || (k < len0 && encoded[k] == '_'))
1336 i = k;
1337 }
1338 }
1339
1340 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1341 the GNAT front-end in protected object subprograms. */
1342
1343 if (i < len0 + 3
1344 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1345 {
1346 /* Backtrack a bit up until we reach either the begining of
1347 the encoded name, or "__". Make sure that we only find
1348 digits or lowercase characters. */
1349 const char *ptr = encoded + i - 1;
1350
1351 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1352 ptr--;
1353 if (ptr < encoded
1354 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1355 i++;
1356 }
1357
4c4b4cd2
PH
1358 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1359 {
29480c32
JB
1360 /* This is a X[bn]* sequence not separated from the previous
1361 part of the name with a non-alpha-numeric character (in other
1362 words, immediately following an alpha-numeric character), then
1363 verify that it is placed at the end of the encoded name. If
1364 not, then the encoding is not valid and we should abort the
1365 decoding. Otherwise, just skip it, it is used in body-nested
1366 package names. */
4c4b4cd2
PH
1367 do
1368 i += 1;
1369 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1370 if (i < len0)
1371 goto Suppress;
1372 }
cdc7bb92 1373 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1374 {
29480c32 1375 /* Replace '__' by '.'. */
4c4b4cd2
PH
1376 decoded[j] = '.';
1377 at_start_name = 1;
1378 i += 2;
1379 j += 1;
1380 }
14f9c5c9 1381 else
4c4b4cd2 1382 {
29480c32
JB
1383 /* It's a character part of the decoded name, so just copy it
1384 over. */
4c4b4cd2
PH
1385 decoded[j] = encoded[i];
1386 i += 1;
1387 j += 1;
1388 }
14f9c5c9 1389 }
4c4b4cd2 1390 decoded[j] = '\000';
14f9c5c9 1391
29480c32
JB
1392 /* Decoded names should never contain any uppercase character.
1393 Double-check this, and abort the decoding if we find one. */
1394
4c4b4cd2
PH
1395 for (i = 0; decoded[i] != '\0'; i += 1)
1396 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1397 goto Suppress;
1398
4c4b4cd2
PH
1399 if (strcmp (decoded, encoded) == 0)
1400 return encoded;
1401 else
1402 return decoded;
14f9c5c9
AS
1403
1404Suppress:
4c4b4cd2
PH
1405 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1406 decoded = decoding_buffer;
1407 if (encoded[0] == '<')
1408 strcpy (decoded, encoded);
14f9c5c9 1409 else
88c15c34 1410 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1411 return decoded;
1412
1413}
1414
1415/* Table for keeping permanent unique copies of decoded names. Once
1416 allocated, names in this table are never released. While this is a
1417 storage leak, it should not be significant unless there are massive
1418 changes in the set of decoded names in successive versions of a
1419 symbol table loaded during a single session. */
1420static struct htab *decoded_names_store;
1421
1422/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1423 in the language-specific part of GSYMBOL, if it has not been
1424 previously computed. Tries to save the decoded name in the same
1425 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1426 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1427 GSYMBOL).
4c4b4cd2
PH
1428 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1429 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1430 when a decoded name is cached in it. */
4c4b4cd2 1431
45e6c716 1432const char *
f85f34ed 1433ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1434{
f85f34ed
TT
1435 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1436 const char **resultp =
615b3f62 1437 &gsymbol->language_specific.demangled_name;
5b4ee69b 1438
f85f34ed 1439 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1440 {
1441 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1442 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1443
f85f34ed 1444 gsymbol->ada_mangled = 1;
5b4ee69b 1445
f85f34ed 1446 if (obstack != NULL)
224c3ddb
SM
1447 *resultp
1448 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1449 else
76a01679 1450 {
f85f34ed
TT
1451 /* Sometimes, we can't find a corresponding objfile, in
1452 which case, we put the result on the heap. Since we only
1453 decode when needed, we hope this usually does not cause a
1454 significant memory leak (FIXME). */
1455
76a01679
JB
1456 char **slot = (char **) htab_find_slot (decoded_names_store,
1457 decoded, INSERT);
5b4ee69b 1458
76a01679
JB
1459 if (*slot == NULL)
1460 *slot = xstrdup (decoded);
1461 *resultp = *slot;
1462 }
4c4b4cd2 1463 }
14f9c5c9 1464
4c4b4cd2
PH
1465 return *resultp;
1466}
76a01679 1467
2c0b251b 1468static char *
76a01679 1469ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1470{
1471 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1472}
1473
8b302db8
TT
1474/* Implement la_sniff_from_mangled_name for Ada. */
1475
1476static int
1477ada_sniff_from_mangled_name (const char *mangled, char **out)
1478{
1479 const char *demangled = ada_decode (mangled);
1480
1481 *out = NULL;
1482
1483 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1484 {
1485 /* Set the gsymbol language to Ada, but still return 0.
1486 Two reasons for that:
1487
1488 1. For Ada, we prefer computing the symbol's decoded name
1489 on the fly rather than pre-compute it, in order to save
1490 memory (Ada projects are typically very large).
1491
1492 2. There are some areas in the definition of the GNAT
1493 encoding where, with a bit of bad luck, we might be able
1494 to decode a non-Ada symbol, generating an incorrect
1495 demangled name (Eg: names ending with "TB" for instance
1496 are identified as task bodies and so stripped from
1497 the decoded name returned).
1498
1499 Returning 1, here, but not setting *DEMANGLED, helps us get a
1500 little bit of the best of both worlds. Because we're last,
1501 we should not affect any of the other languages that were
1502 able to demangle the symbol before us; we get to correctly
1503 tag Ada symbols as such; and even if we incorrectly tagged a
1504 non-Ada symbol, which should be rare, any routing through the
1505 Ada language should be transparent (Ada tries to behave much
1506 like C/C++ with non-Ada symbols). */
1507 return 1;
1508 }
1509
1510 return 0;
1511}
1512
14f9c5c9 1513\f
d2e4a39e 1514
4c4b4cd2 1515 /* Arrays */
14f9c5c9 1516
28c85d6c
JB
1517/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1518 generated by the GNAT compiler to describe the index type used
1519 for each dimension of an array, check whether it follows the latest
1520 known encoding. If not, fix it up to conform to the latest encoding.
1521 Otherwise, do nothing. This function also does nothing if
1522 INDEX_DESC_TYPE is NULL.
1523
1524 The GNAT encoding used to describle the array index type evolved a bit.
1525 Initially, the information would be provided through the name of each
1526 field of the structure type only, while the type of these fields was
1527 described as unspecified and irrelevant. The debugger was then expected
1528 to perform a global type lookup using the name of that field in order
1529 to get access to the full index type description. Because these global
1530 lookups can be very expensive, the encoding was later enhanced to make
1531 the global lookup unnecessary by defining the field type as being
1532 the full index type description.
1533
1534 The purpose of this routine is to allow us to support older versions
1535 of the compiler by detecting the use of the older encoding, and by
1536 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1537 we essentially replace each field's meaningless type by the associated
1538 index subtype). */
1539
1540void
1541ada_fixup_array_indexes_type (struct type *index_desc_type)
1542{
1543 int i;
1544
1545 if (index_desc_type == NULL)
1546 return;
1547 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1548
1549 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1550 to check one field only, no need to check them all). If not, return
1551 now.
1552
1553 If our INDEX_DESC_TYPE was generated using the older encoding,
1554 the field type should be a meaningless integer type whose name
1555 is not equal to the field name. */
1556 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1557 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1558 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1559 return;
1560
1561 /* Fixup each field of INDEX_DESC_TYPE. */
1562 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1563 {
0d5cff50 1564 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1565 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1566
1567 if (raw_type)
1568 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1569 }
1570}
1571
4c4b4cd2 1572/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1573
a121b7c1 1574static const char *bound_name[] = {
d2e4a39e 1575 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1576 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1577};
1578
1579/* Maximum number of array dimensions we are prepared to handle. */
1580
4c4b4cd2 1581#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1582
14f9c5c9 1583
4c4b4cd2
PH
1584/* The desc_* routines return primitive portions of array descriptors
1585 (fat pointers). */
14f9c5c9
AS
1586
1587/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1588 level of indirection, if needed. */
1589
d2e4a39e
AS
1590static struct type *
1591desc_base_type (struct type *type)
14f9c5c9
AS
1592{
1593 if (type == NULL)
1594 return NULL;
61ee279c 1595 type = ada_check_typedef (type);
720d1a40
JB
1596 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1597 type = ada_typedef_target_type (type);
1598
1265e4aa
JB
1599 if (type != NULL
1600 && (TYPE_CODE (type) == TYPE_CODE_PTR
1601 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1602 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1603 else
1604 return type;
1605}
1606
4c4b4cd2
PH
1607/* True iff TYPE indicates a "thin" array pointer type. */
1608
14f9c5c9 1609static int
d2e4a39e 1610is_thin_pntr (struct type *type)
14f9c5c9 1611{
d2e4a39e 1612 return
14f9c5c9
AS
1613 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1614 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1615}
1616
4c4b4cd2
PH
1617/* The descriptor type for thin pointer type TYPE. */
1618
d2e4a39e
AS
1619static struct type *
1620thin_descriptor_type (struct type *type)
14f9c5c9 1621{
d2e4a39e 1622 struct type *base_type = desc_base_type (type);
5b4ee69b 1623
14f9c5c9
AS
1624 if (base_type == NULL)
1625 return NULL;
1626 if (is_suffix (ada_type_name (base_type), "___XVE"))
1627 return base_type;
d2e4a39e 1628 else
14f9c5c9 1629 {
d2e4a39e 1630 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1631
14f9c5c9 1632 if (alt_type == NULL)
4c4b4cd2 1633 return base_type;
14f9c5c9 1634 else
4c4b4cd2 1635 return alt_type;
14f9c5c9
AS
1636 }
1637}
1638
4c4b4cd2
PH
1639/* A pointer to the array data for thin-pointer value VAL. */
1640
d2e4a39e
AS
1641static struct value *
1642thin_data_pntr (struct value *val)
14f9c5c9 1643{
828292f2 1644 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1645 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1646
556bdfd4
UW
1647 data_type = lookup_pointer_type (data_type);
1648
14f9c5c9 1649 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1650 return value_cast (data_type, value_copy (val));
d2e4a39e 1651 else
42ae5230 1652 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1653}
1654
4c4b4cd2
PH
1655/* True iff TYPE indicates a "thick" array pointer type. */
1656
14f9c5c9 1657static int
d2e4a39e 1658is_thick_pntr (struct type *type)
14f9c5c9
AS
1659{
1660 type = desc_base_type (type);
1661 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1662 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1663}
1664
4c4b4cd2
PH
1665/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1666 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1667
d2e4a39e
AS
1668static struct type *
1669desc_bounds_type (struct type *type)
14f9c5c9 1670{
d2e4a39e 1671 struct type *r;
14f9c5c9
AS
1672
1673 type = desc_base_type (type);
1674
1675 if (type == NULL)
1676 return NULL;
1677 else if (is_thin_pntr (type))
1678 {
1679 type = thin_descriptor_type (type);
1680 if (type == NULL)
4c4b4cd2 1681 return NULL;
14f9c5c9
AS
1682 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1683 if (r != NULL)
61ee279c 1684 return ada_check_typedef (r);
14f9c5c9
AS
1685 }
1686 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1687 {
1688 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1689 if (r != NULL)
61ee279c 1690 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1691 }
1692 return NULL;
1693}
1694
1695/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1696 one, a pointer to its bounds data. Otherwise NULL. */
1697
d2e4a39e
AS
1698static struct value *
1699desc_bounds (struct value *arr)
14f9c5c9 1700{
df407dfe 1701 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1702
d2e4a39e 1703 if (is_thin_pntr (type))
14f9c5c9 1704 {
d2e4a39e 1705 struct type *bounds_type =
4c4b4cd2 1706 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1707 LONGEST addr;
1708
4cdfadb1 1709 if (bounds_type == NULL)
323e0a4a 1710 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1711
1712 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1713 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1714 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1715 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1716 addr = value_as_long (arr);
d2e4a39e 1717 else
42ae5230 1718 addr = value_address (arr);
14f9c5c9 1719
d2e4a39e 1720 return
4c4b4cd2
PH
1721 value_from_longest (lookup_pointer_type (bounds_type),
1722 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1723 }
1724
1725 else if (is_thick_pntr (type))
05e522ef
JB
1726 {
1727 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1728 _("Bad GNAT array descriptor"));
1729 struct type *p_bounds_type = value_type (p_bounds);
1730
1731 if (p_bounds_type
1732 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1733 {
1734 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1735
1736 if (TYPE_STUB (target_type))
1737 p_bounds = value_cast (lookup_pointer_type
1738 (ada_check_typedef (target_type)),
1739 p_bounds);
1740 }
1741 else
1742 error (_("Bad GNAT array descriptor"));
1743
1744 return p_bounds;
1745 }
14f9c5c9
AS
1746 else
1747 return NULL;
1748}
1749
4c4b4cd2
PH
1750/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1751 position of the field containing the address of the bounds data. */
1752
14f9c5c9 1753static int
d2e4a39e 1754fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1755{
1756 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1757}
1758
1759/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1760 size of the field containing the address of the bounds data. */
1761
14f9c5c9 1762static int
d2e4a39e 1763fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1764{
1765 type = desc_base_type (type);
1766
d2e4a39e 1767 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1768 return TYPE_FIELD_BITSIZE (type, 1);
1769 else
61ee279c 1770 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1771}
1772
4c4b4cd2 1773/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1774 pointer to one, the type of its array data (a array-with-no-bounds type);
1775 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1776 data. */
4c4b4cd2 1777
d2e4a39e 1778static struct type *
556bdfd4 1779desc_data_target_type (struct type *type)
14f9c5c9
AS
1780{
1781 type = desc_base_type (type);
1782
4c4b4cd2 1783 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1784 if (is_thin_pntr (type))
556bdfd4 1785 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1786 else if (is_thick_pntr (type))
556bdfd4
UW
1787 {
1788 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1789
1790 if (data_type
1791 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1792 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1793 }
1794
1795 return NULL;
14f9c5c9
AS
1796}
1797
1798/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1799 its array data. */
4c4b4cd2 1800
d2e4a39e
AS
1801static struct value *
1802desc_data (struct value *arr)
14f9c5c9 1803{
df407dfe 1804 struct type *type = value_type (arr);
5b4ee69b 1805
14f9c5c9
AS
1806 if (is_thin_pntr (type))
1807 return thin_data_pntr (arr);
1808 else if (is_thick_pntr (type))
d2e4a39e 1809 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1810 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1811 else
1812 return NULL;
1813}
1814
1815
1816/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1817 position of the field containing the address of the data. */
1818
14f9c5c9 1819static int
d2e4a39e 1820fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1821{
1822 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1823}
1824
1825/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1826 size of the field containing the address of the data. */
1827
14f9c5c9 1828static int
d2e4a39e 1829fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1830{
1831 type = desc_base_type (type);
1832
1833 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1834 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1835 else
14f9c5c9
AS
1836 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1837}
1838
4c4b4cd2 1839/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1840 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1841 bound, if WHICH is 1. The first bound is I=1. */
1842
d2e4a39e
AS
1843static struct value *
1844desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1845{
d2e4a39e 1846 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1847 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1848}
1849
1850/* If BOUNDS is an array-bounds structure type, return the bit position
1851 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1852 bound, if WHICH is 1. The first bound is I=1. */
1853
14f9c5c9 1854static int
d2e4a39e 1855desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1856{
d2e4a39e 1857 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1858}
1859
1860/* If BOUNDS is an array-bounds structure type, return the bit field size
1861 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1862 bound, if WHICH is 1. The first bound is I=1. */
1863
76a01679 1864static int
d2e4a39e 1865desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1866{
1867 type = desc_base_type (type);
1868
d2e4a39e
AS
1869 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1870 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1871 else
1872 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1873}
1874
1875/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1876 Ith bound (numbering from 1). Otherwise, NULL. */
1877
d2e4a39e
AS
1878static struct type *
1879desc_index_type (struct type *type, int i)
14f9c5c9
AS
1880{
1881 type = desc_base_type (type);
1882
1883 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1884 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1885 else
14f9c5c9
AS
1886 return NULL;
1887}
1888
4c4b4cd2
PH
1889/* The number of index positions in the array-bounds type TYPE.
1890 Return 0 if TYPE is NULL. */
1891
14f9c5c9 1892static int
d2e4a39e 1893desc_arity (struct type *type)
14f9c5c9
AS
1894{
1895 type = desc_base_type (type);
1896
1897 if (type != NULL)
1898 return TYPE_NFIELDS (type) / 2;
1899 return 0;
1900}
1901
4c4b4cd2
PH
1902/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1903 an array descriptor type (representing an unconstrained array
1904 type). */
1905
76a01679
JB
1906static int
1907ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1908{
1909 if (type == NULL)
1910 return 0;
61ee279c 1911 type = ada_check_typedef (type);
4c4b4cd2 1912 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1913 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1914}
1915
52ce6436 1916/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1917 * to one. */
52ce6436 1918
2c0b251b 1919static int
52ce6436
PH
1920ada_is_array_type (struct type *type)
1921{
1922 while (type != NULL
1923 && (TYPE_CODE (type) == TYPE_CODE_PTR
1924 || TYPE_CODE (type) == TYPE_CODE_REF))
1925 type = TYPE_TARGET_TYPE (type);
1926 return ada_is_direct_array_type (type);
1927}
1928
4c4b4cd2 1929/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1930
14f9c5c9 1931int
4c4b4cd2 1932ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1933{
1934 if (type == NULL)
1935 return 0;
61ee279c 1936 type = ada_check_typedef (type);
14f9c5c9 1937 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1938 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1939 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1940 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1941}
1942
4c4b4cd2
PH
1943/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1944
14f9c5c9 1945int
4c4b4cd2 1946ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1947{
556bdfd4 1948 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1949
1950 if (type == NULL)
1951 return 0;
61ee279c 1952 type = ada_check_typedef (type);
556bdfd4
UW
1953 return (data_type != NULL
1954 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1955 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1956}
1957
1958/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1959 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1960 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1961 is still needed. */
1962
14f9c5c9 1963int
ebf56fd3 1964ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1965{
d2e4a39e 1966 return
14f9c5c9
AS
1967 type != NULL
1968 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1969 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1970 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1971 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1972}
1973
1974
4c4b4cd2 1975/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1976 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1977 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1978 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1979 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1980 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1981 a descriptor. */
d2e4a39e
AS
1982struct type *
1983ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1984{
ad82864c
JB
1985 if (ada_is_constrained_packed_array_type (value_type (arr)))
1986 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1987
df407dfe
AC
1988 if (!ada_is_array_descriptor_type (value_type (arr)))
1989 return value_type (arr);
d2e4a39e
AS
1990
1991 if (!bounds)
ad82864c
JB
1992 {
1993 struct type *array_type =
1994 ada_check_typedef (desc_data_target_type (value_type (arr)));
1995
1996 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1997 TYPE_FIELD_BITSIZE (array_type, 0) =
1998 decode_packed_array_bitsize (value_type (arr));
1999
2000 return array_type;
2001 }
14f9c5c9
AS
2002 else
2003 {
d2e4a39e 2004 struct type *elt_type;
14f9c5c9 2005 int arity;
d2e4a39e 2006 struct value *descriptor;
14f9c5c9 2007
df407dfe
AC
2008 elt_type = ada_array_element_type (value_type (arr), -1);
2009 arity = ada_array_arity (value_type (arr));
14f9c5c9 2010
d2e4a39e 2011 if (elt_type == NULL || arity == 0)
df407dfe 2012 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2013
2014 descriptor = desc_bounds (arr);
d2e4a39e 2015 if (value_as_long (descriptor) == 0)
4c4b4cd2 2016 return NULL;
d2e4a39e 2017 while (arity > 0)
4c4b4cd2 2018 {
e9bb382b
UW
2019 struct type *range_type = alloc_type_copy (value_type (arr));
2020 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2021 struct value *low = desc_one_bound (descriptor, arity, 0);
2022 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2023
5b4ee69b 2024 arity -= 1;
0c9c3474
SA
2025 create_static_range_type (range_type, value_type (low),
2026 longest_to_int (value_as_long (low)),
2027 longest_to_int (value_as_long (high)));
4c4b4cd2 2028 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2029
2030 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2031 {
2032 /* We need to store the element packed bitsize, as well as
2033 recompute the array size, because it was previously
2034 computed based on the unpacked element size. */
2035 LONGEST lo = value_as_long (low);
2036 LONGEST hi = value_as_long (high);
2037
2038 TYPE_FIELD_BITSIZE (elt_type, 0) =
2039 decode_packed_array_bitsize (value_type (arr));
2040 /* If the array has no element, then the size is already
2041 zero, and does not need to be recomputed. */
2042 if (lo < hi)
2043 {
2044 int array_bitsize =
2045 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2046
2047 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2048 }
2049 }
4c4b4cd2 2050 }
14f9c5c9
AS
2051
2052 return lookup_pointer_type (elt_type);
2053 }
2054}
2055
2056/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2057 Otherwise, returns either a standard GDB array with bounds set
2058 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2059 GDB array. Returns NULL if ARR is a null fat pointer. */
2060
d2e4a39e
AS
2061struct value *
2062ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2063{
df407dfe 2064 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2065 {
d2e4a39e 2066 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2067
14f9c5c9 2068 if (arrType == NULL)
4c4b4cd2 2069 return NULL;
14f9c5c9
AS
2070 return value_cast (arrType, value_copy (desc_data (arr)));
2071 }
ad82864c
JB
2072 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2073 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2074 else
2075 return arr;
2076}
2077
2078/* If ARR does not represent an array, returns ARR unchanged.
2079 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2080 be ARR itself if it already is in the proper form). */
2081
720d1a40 2082struct value *
d2e4a39e 2083ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2084{
df407dfe 2085 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2086 {
d2e4a39e 2087 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2088
14f9c5c9 2089 if (arrVal == NULL)
323e0a4a 2090 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2091 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2092 return value_ind (arrVal);
2093 }
ad82864c
JB
2094 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2095 return decode_constrained_packed_array (arr);
d2e4a39e 2096 else
14f9c5c9
AS
2097 return arr;
2098}
2099
2100/* If TYPE represents a GNAT array type, return it translated to an
2101 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2102 packing). For other types, is the identity. */
2103
d2e4a39e
AS
2104struct type *
2105ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2106{
ad82864c
JB
2107 if (ada_is_constrained_packed_array_type (type))
2108 return decode_constrained_packed_array_type (type);
17280b9f
UW
2109
2110 if (ada_is_array_descriptor_type (type))
556bdfd4 2111 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2112
2113 return type;
14f9c5c9
AS
2114}
2115
4c4b4cd2
PH
2116/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2117
ad82864c
JB
2118static int
2119ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2120{
2121 if (type == NULL)
2122 return 0;
4c4b4cd2 2123 type = desc_base_type (type);
61ee279c 2124 type = ada_check_typedef (type);
d2e4a39e 2125 return
14f9c5c9
AS
2126 ada_type_name (type) != NULL
2127 && strstr (ada_type_name (type), "___XP") != NULL;
2128}
2129
ad82864c
JB
2130/* Non-zero iff TYPE represents a standard GNAT constrained
2131 packed-array type. */
2132
2133int
2134ada_is_constrained_packed_array_type (struct type *type)
2135{
2136 return ada_is_packed_array_type (type)
2137 && !ada_is_array_descriptor_type (type);
2138}
2139
2140/* Non-zero iff TYPE represents an array descriptor for a
2141 unconstrained packed-array type. */
2142
2143static int
2144ada_is_unconstrained_packed_array_type (struct type *type)
2145{
2146 return ada_is_packed_array_type (type)
2147 && ada_is_array_descriptor_type (type);
2148}
2149
2150/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2151 return the size of its elements in bits. */
2152
2153static long
2154decode_packed_array_bitsize (struct type *type)
2155{
0d5cff50
DE
2156 const char *raw_name;
2157 const char *tail;
ad82864c
JB
2158 long bits;
2159
720d1a40
JB
2160 /* Access to arrays implemented as fat pointers are encoded as a typedef
2161 of the fat pointer type. We need the name of the fat pointer type
2162 to do the decoding, so strip the typedef layer. */
2163 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2164 type = ada_typedef_target_type (type);
2165
2166 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2167 if (!raw_name)
2168 raw_name = ada_type_name (desc_base_type (type));
2169
2170 if (!raw_name)
2171 return 0;
2172
2173 tail = strstr (raw_name, "___XP");
720d1a40 2174 gdb_assert (tail != NULL);
ad82864c
JB
2175
2176 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2177 {
2178 lim_warning
2179 (_("could not understand bit size information on packed array"));
2180 return 0;
2181 }
2182
2183 return bits;
2184}
2185
14f9c5c9
AS
2186/* Given that TYPE is a standard GDB array type with all bounds filled
2187 in, and that the element size of its ultimate scalar constituents
2188 (that is, either its elements, or, if it is an array of arrays, its
2189 elements' elements, etc.) is *ELT_BITS, return an identical type,
2190 but with the bit sizes of its elements (and those of any
2191 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2192 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2193 in bits.
2194
2195 Note that, for arrays whose index type has an XA encoding where
2196 a bound references a record discriminant, getting that discriminant,
2197 and therefore the actual value of that bound, is not possible
2198 because none of the given parameters gives us access to the record.
2199 This function assumes that it is OK in the context where it is being
2200 used to return an array whose bounds are still dynamic and where
2201 the length is arbitrary. */
4c4b4cd2 2202
d2e4a39e 2203static struct type *
ad82864c 2204constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2205{
d2e4a39e
AS
2206 struct type *new_elt_type;
2207 struct type *new_type;
99b1c762
JB
2208 struct type *index_type_desc;
2209 struct type *index_type;
14f9c5c9
AS
2210 LONGEST low_bound, high_bound;
2211
61ee279c 2212 type = ada_check_typedef (type);
14f9c5c9
AS
2213 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2214 return type;
2215
99b1c762
JB
2216 index_type_desc = ada_find_parallel_type (type, "___XA");
2217 if (index_type_desc)
2218 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2219 NULL);
2220 else
2221 index_type = TYPE_INDEX_TYPE (type);
2222
e9bb382b 2223 new_type = alloc_type_copy (type);
ad82864c
JB
2224 new_elt_type =
2225 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2226 elt_bits);
99b1c762 2227 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2228 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2229 TYPE_NAME (new_type) = ada_type_name (type);
2230
4a46959e
JB
2231 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2232 && is_dynamic_type (check_typedef (index_type)))
2233 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2234 low_bound = high_bound = 0;
2235 if (high_bound < low_bound)
2236 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2237 else
14f9c5c9
AS
2238 {
2239 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2240 TYPE_LENGTH (new_type) =
4c4b4cd2 2241 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2242 }
2243
876cecd0 2244 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2245 return new_type;
2246}
2247
ad82864c
JB
2248/* The array type encoded by TYPE, where
2249 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2250
d2e4a39e 2251static struct type *
ad82864c 2252decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2253{
0d5cff50 2254 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2255 char *name;
0d5cff50 2256 const char *tail;
d2e4a39e 2257 struct type *shadow_type;
14f9c5c9 2258 long bits;
14f9c5c9 2259
727e3d2e
JB
2260 if (!raw_name)
2261 raw_name = ada_type_name (desc_base_type (type));
2262
2263 if (!raw_name)
2264 return NULL;
2265
2266 name = (char *) alloca (strlen (raw_name) + 1);
2267 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2268 type = desc_base_type (type);
2269
14f9c5c9
AS
2270 memcpy (name, raw_name, tail - raw_name);
2271 name[tail - raw_name] = '\000';
2272
b4ba55a1
JB
2273 shadow_type = ada_find_parallel_type_with_name (type, name);
2274
2275 if (shadow_type == NULL)
14f9c5c9 2276 {
323e0a4a 2277 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2278 return NULL;
2279 }
f168693b 2280 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2281
2282 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2283 {
0963b4bd
MS
2284 lim_warning (_("could not understand bounds "
2285 "information on packed array"));
14f9c5c9
AS
2286 return NULL;
2287 }
d2e4a39e 2288
ad82864c
JB
2289 bits = decode_packed_array_bitsize (type);
2290 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2291}
2292
ad82864c
JB
2293/* Given that ARR is a struct value *indicating a GNAT constrained packed
2294 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2295 standard GDB array type except that the BITSIZEs of the array
2296 target types are set to the number of bits in each element, and the
4c4b4cd2 2297 type length is set appropriately. */
14f9c5c9 2298
d2e4a39e 2299static struct value *
ad82864c 2300decode_constrained_packed_array (struct value *arr)
14f9c5c9 2301{
4c4b4cd2 2302 struct type *type;
14f9c5c9 2303
11aa919a
PMR
2304 /* If our value is a pointer, then dereference it. Likewise if
2305 the value is a reference. Make sure that this operation does not
2306 cause the target type to be fixed, as this would indirectly cause
2307 this array to be decoded. The rest of the routine assumes that
2308 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2309 and "value_ind" routines to perform the dereferencing, as opposed
2310 to using "ada_coerce_ref" or "ada_value_ind". */
2311 arr = coerce_ref (arr);
828292f2 2312 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2313 arr = value_ind (arr);
4c4b4cd2 2314
ad82864c 2315 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2316 if (type == NULL)
2317 {
323e0a4a 2318 error (_("can't unpack array"));
14f9c5c9
AS
2319 return NULL;
2320 }
61ee279c 2321
50810684 2322 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2323 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2324 {
2325 /* This is a (right-justified) modular type representing a packed
2326 array with no wrapper. In order to interpret the value through
2327 the (left-justified) packed array type we just built, we must
2328 first left-justify it. */
2329 int bit_size, bit_pos;
2330 ULONGEST mod;
2331
df407dfe 2332 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2333 bit_size = 0;
2334 while (mod > 0)
2335 {
2336 bit_size += 1;
2337 mod >>= 1;
2338 }
df407dfe 2339 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2340 arr = ada_value_primitive_packed_val (arr, NULL,
2341 bit_pos / HOST_CHAR_BIT,
2342 bit_pos % HOST_CHAR_BIT,
2343 bit_size,
2344 type);
2345 }
2346
4c4b4cd2 2347 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2348}
2349
2350
2351/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2352 given in IND. ARR must be a simple array. */
14f9c5c9 2353
d2e4a39e
AS
2354static struct value *
2355value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2356{
2357 int i;
2358 int bits, elt_off, bit_off;
2359 long elt_total_bit_offset;
d2e4a39e
AS
2360 struct type *elt_type;
2361 struct value *v;
14f9c5c9
AS
2362
2363 bits = 0;
2364 elt_total_bit_offset = 0;
df407dfe 2365 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2366 for (i = 0; i < arity; i += 1)
14f9c5c9 2367 {
d2e4a39e 2368 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2369 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2370 error
0963b4bd
MS
2371 (_("attempt to do packed indexing of "
2372 "something other than a packed array"));
14f9c5c9 2373 else
4c4b4cd2
PH
2374 {
2375 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2376 LONGEST lowerbound, upperbound;
2377 LONGEST idx;
2378
2379 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2380 {
323e0a4a 2381 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2382 lowerbound = upperbound = 0;
2383 }
2384
3cb382c9 2385 idx = pos_atr (ind[i]);
4c4b4cd2 2386 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2387 lim_warning (_("packed array index %ld out of bounds"),
2388 (long) idx);
4c4b4cd2
PH
2389 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2390 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2391 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2392 }
14f9c5c9
AS
2393 }
2394 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2395 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2396
2397 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2398 bits, elt_type);
14f9c5c9
AS
2399 return v;
2400}
2401
4c4b4cd2 2402/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2403
2404static int
d2e4a39e 2405has_negatives (struct type *type)
14f9c5c9 2406{
d2e4a39e
AS
2407 switch (TYPE_CODE (type))
2408 {
2409 default:
2410 return 0;
2411 case TYPE_CODE_INT:
2412 return !TYPE_UNSIGNED (type);
2413 case TYPE_CODE_RANGE:
2414 return TYPE_LOW_BOUND (type) < 0;
2415 }
14f9c5c9 2416}
d2e4a39e 2417
f93fca70 2418/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2419 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2420 the unpacked buffer.
14f9c5c9 2421
5b639dea
JB
2422 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2423 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2424
f93fca70
JB
2425 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2426 zero otherwise.
14f9c5c9 2427
f93fca70 2428 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2429
f93fca70
JB
2430 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2431
2432static void
2433ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2434 gdb_byte *unpacked, int unpacked_len,
2435 int is_big_endian, int is_signed_type,
2436 int is_scalar)
2437{
a1c95e6b
JB
2438 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2439 int src_idx; /* Index into the source area */
2440 int src_bytes_left; /* Number of source bytes left to process. */
2441 int srcBitsLeft; /* Number of source bits left to move */
2442 int unusedLS; /* Number of bits in next significant
2443 byte of source that are unused */
2444
a1c95e6b
JB
2445 int unpacked_idx; /* Index into the unpacked buffer */
2446 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2447
4c4b4cd2 2448 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2449 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2450 unsigned char sign;
a1c95e6b 2451
4c4b4cd2
PH
2452 /* Transmit bytes from least to most significant; delta is the direction
2453 the indices move. */
f93fca70 2454 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2455
5b639dea
JB
2456 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2457 bits from SRC. .*/
2458 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2459 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2460 bit_size, unpacked_len);
2461
14f9c5c9 2462 srcBitsLeft = bit_size;
086ca51f 2463 src_bytes_left = src_len;
f93fca70 2464 unpacked_bytes_left = unpacked_len;
14f9c5c9 2465 sign = 0;
f93fca70
JB
2466
2467 if (is_big_endian)
14f9c5c9 2468 {
086ca51f 2469 src_idx = src_len - 1;
f93fca70
JB
2470 if (is_signed_type
2471 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2472 sign = ~0;
d2e4a39e
AS
2473
2474 unusedLS =
4c4b4cd2
PH
2475 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2476 % HOST_CHAR_BIT;
14f9c5c9 2477
f93fca70
JB
2478 if (is_scalar)
2479 {
2480 accumSize = 0;
2481 unpacked_idx = unpacked_len - 1;
2482 }
2483 else
2484 {
4c4b4cd2
PH
2485 /* Non-scalar values must be aligned at a byte boundary... */
2486 accumSize =
2487 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2488 /* ... And are placed at the beginning (most-significant) bytes
2489 of the target. */
086ca51f
JB
2490 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2491 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2492 }
14f9c5c9 2493 }
d2e4a39e 2494 else
14f9c5c9
AS
2495 {
2496 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2497
086ca51f 2498 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2499 unusedLS = bit_offset;
2500 accumSize = 0;
2501
f93fca70 2502 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2503 sign = ~0;
14f9c5c9 2504 }
d2e4a39e 2505
14f9c5c9 2506 accum = 0;
086ca51f 2507 while (src_bytes_left > 0)
14f9c5c9
AS
2508 {
2509 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2510 part of the value. */
d2e4a39e 2511 unsigned int unusedMSMask =
4c4b4cd2
PH
2512 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2513 1;
2514 /* Sign-extend bits for this byte. */
14f9c5c9 2515 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2516
d2e4a39e 2517 accum |=
086ca51f 2518 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2519 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2520 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2521 {
db297a65 2522 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2523 accumSize -= HOST_CHAR_BIT;
2524 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2525 unpacked_bytes_left -= 1;
2526 unpacked_idx += delta;
4c4b4cd2 2527 }
14f9c5c9
AS
2528 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2529 unusedLS = 0;
086ca51f
JB
2530 src_bytes_left -= 1;
2531 src_idx += delta;
14f9c5c9 2532 }
086ca51f 2533 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2534 {
2535 accum |= sign << accumSize;
db297a65 2536 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2537 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2538 if (accumSize < 0)
2539 accumSize = 0;
14f9c5c9 2540 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2541 unpacked_bytes_left -= 1;
2542 unpacked_idx += delta;
14f9c5c9 2543 }
f93fca70
JB
2544}
2545
2546/* Create a new value of type TYPE from the contents of OBJ starting
2547 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2548 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2549 assigning through the result will set the field fetched from.
2550 VALADDR is ignored unless OBJ is NULL, in which case,
2551 VALADDR+OFFSET must address the start of storage containing the
2552 packed value. The value returned in this case is never an lval.
2553 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2554
2555struct value *
2556ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2557 long offset, int bit_offset, int bit_size,
2558 struct type *type)
2559{
2560 struct value *v;
bfb1c796 2561 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2562 gdb_byte *unpacked;
220475ed 2563 const int is_scalar = is_scalar_type (type);
d0a9e810 2564 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2565 gdb::byte_vector staging;
f93fca70
JB
2566
2567 type = ada_check_typedef (type);
2568
d0a9e810 2569 if (obj == NULL)
bfb1c796 2570 src = valaddr + offset;
d0a9e810 2571 else
bfb1c796 2572 src = value_contents (obj) + offset;
d0a9e810
JB
2573
2574 if (is_dynamic_type (type))
2575 {
2576 /* The length of TYPE might by dynamic, so we need to resolve
2577 TYPE in order to know its actual size, which we then use
2578 to create the contents buffer of the value we return.
2579 The difficulty is that the data containing our object is
2580 packed, and therefore maybe not at a byte boundary. So, what
2581 we do, is unpack the data into a byte-aligned buffer, and then
2582 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2583 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2584 staging.resize (staging_len);
d0a9e810
JB
2585
2586 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2587 staging.data (), staging.size (),
d0a9e810
JB
2588 is_big_endian, has_negatives (type),
2589 is_scalar);
d5722aa2 2590 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2591 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2592 {
2593 /* This happens when the length of the object is dynamic,
2594 and is actually smaller than the space reserved for it.
2595 For instance, in an array of variant records, the bit_size
2596 we're given is the array stride, which is constant and
2597 normally equal to the maximum size of its element.
2598 But, in reality, each element only actually spans a portion
2599 of that stride. */
2600 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2601 }
d0a9e810
JB
2602 }
2603
f93fca70
JB
2604 if (obj == NULL)
2605 {
2606 v = allocate_value (type);
bfb1c796 2607 src = valaddr + offset;
f93fca70
JB
2608 }
2609 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2610 {
0cafa88c 2611 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2612 gdb_byte *buf;
0cafa88c 2613
f93fca70 2614 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2615 buf = (gdb_byte *) alloca (src_len);
2616 read_memory (value_address (v), buf, src_len);
2617 src = buf;
f93fca70
JB
2618 }
2619 else
2620 {
2621 v = allocate_value (type);
bfb1c796 2622 src = value_contents (obj) + offset;
f93fca70
JB
2623 }
2624
2625 if (obj != NULL)
2626 {
2627 long new_offset = offset;
2628
2629 set_value_component_location (v, obj);
2630 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2631 set_value_bitsize (v, bit_size);
2632 if (value_bitpos (v) >= HOST_CHAR_BIT)
2633 {
2634 ++new_offset;
2635 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2636 }
2637 set_value_offset (v, new_offset);
2638
2639 /* Also set the parent value. This is needed when trying to
2640 assign a new value (in inferior memory). */
2641 set_value_parent (v, obj);
2642 }
2643 else
2644 set_value_bitsize (v, bit_size);
bfb1c796 2645 unpacked = value_contents_writeable (v);
f93fca70
JB
2646
2647 if (bit_size == 0)
2648 {
2649 memset (unpacked, 0, TYPE_LENGTH (type));
2650 return v;
2651 }
2652
d5722aa2 2653 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2654 {
d0a9e810
JB
2655 /* Small short-cut: If we've unpacked the data into a buffer
2656 of the same size as TYPE's length, then we can reuse that,
2657 instead of doing the unpacking again. */
d5722aa2 2658 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2659 }
d0a9e810
JB
2660 else
2661 ada_unpack_from_contents (src, bit_offset, bit_size,
2662 unpacked, TYPE_LENGTH (type),
2663 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2664
14f9c5c9
AS
2665 return v;
2666}
d2e4a39e 2667
14f9c5c9
AS
2668/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2669 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2670 not overlap. */
14f9c5c9 2671static void
fc1a4b47 2672move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2673 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2674{
2675 unsigned int accum, mask;
2676 int accum_bits, chunk_size;
2677
2678 target += targ_offset / HOST_CHAR_BIT;
2679 targ_offset %= HOST_CHAR_BIT;
2680 source += src_offset / HOST_CHAR_BIT;
2681 src_offset %= HOST_CHAR_BIT;
50810684 2682 if (bits_big_endian_p)
14f9c5c9
AS
2683 {
2684 accum = (unsigned char) *source;
2685 source += 1;
2686 accum_bits = HOST_CHAR_BIT - src_offset;
2687
d2e4a39e 2688 while (n > 0)
4c4b4cd2
PH
2689 {
2690 int unused_right;
5b4ee69b 2691
4c4b4cd2
PH
2692 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2693 accum_bits += HOST_CHAR_BIT;
2694 source += 1;
2695 chunk_size = HOST_CHAR_BIT - targ_offset;
2696 if (chunk_size > n)
2697 chunk_size = n;
2698 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2699 mask = ((1 << chunk_size) - 1) << unused_right;
2700 *target =
2701 (*target & ~mask)
2702 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2703 n -= chunk_size;
2704 accum_bits -= chunk_size;
2705 target += 1;
2706 targ_offset = 0;
2707 }
14f9c5c9
AS
2708 }
2709 else
2710 {
2711 accum = (unsigned char) *source >> src_offset;
2712 source += 1;
2713 accum_bits = HOST_CHAR_BIT - src_offset;
2714
d2e4a39e 2715 while (n > 0)
4c4b4cd2
PH
2716 {
2717 accum = accum + ((unsigned char) *source << accum_bits);
2718 accum_bits += HOST_CHAR_BIT;
2719 source += 1;
2720 chunk_size = HOST_CHAR_BIT - targ_offset;
2721 if (chunk_size > n)
2722 chunk_size = n;
2723 mask = ((1 << chunk_size) - 1) << targ_offset;
2724 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2725 n -= chunk_size;
2726 accum_bits -= chunk_size;
2727 accum >>= chunk_size;
2728 target += 1;
2729 targ_offset = 0;
2730 }
14f9c5c9
AS
2731 }
2732}
2733
14f9c5c9
AS
2734/* Store the contents of FROMVAL into the location of TOVAL.
2735 Return a new value with the location of TOVAL and contents of
2736 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2737 floating-point or non-scalar types. */
14f9c5c9 2738
d2e4a39e
AS
2739static struct value *
2740ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2741{
df407dfe
AC
2742 struct type *type = value_type (toval);
2743 int bits = value_bitsize (toval);
14f9c5c9 2744
52ce6436
PH
2745 toval = ada_coerce_ref (toval);
2746 fromval = ada_coerce_ref (fromval);
2747
2748 if (ada_is_direct_array_type (value_type (toval)))
2749 toval = ada_coerce_to_simple_array (toval);
2750 if (ada_is_direct_array_type (value_type (fromval)))
2751 fromval = ada_coerce_to_simple_array (fromval);
2752
88e3b34b 2753 if (!deprecated_value_modifiable (toval))
323e0a4a 2754 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2755
d2e4a39e 2756 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2757 && bits > 0
d2e4a39e 2758 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2759 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2760 {
df407dfe
AC
2761 int len = (value_bitpos (toval)
2762 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2763 int from_size;
224c3ddb 2764 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2765 struct value *val;
42ae5230 2766 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2767
2768 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2769 fromval = value_cast (type, fromval);
14f9c5c9 2770
52ce6436 2771 read_memory (to_addr, buffer, len);
aced2898
PH
2772 from_size = value_bitsize (fromval);
2773 if (from_size == 0)
2774 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2775 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2776 move_bits (buffer, value_bitpos (toval),
50810684 2777 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2778 else
50810684
UW
2779 move_bits (buffer, value_bitpos (toval),
2780 value_contents (fromval), 0, bits, 0);
972daa01 2781 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2782
14f9c5c9 2783 val = value_copy (toval);
0fd88904 2784 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2785 TYPE_LENGTH (type));
04624583 2786 deprecated_set_value_type (val, type);
d2e4a39e 2787
14f9c5c9
AS
2788 return val;
2789 }
2790
2791 return value_assign (toval, fromval);
2792}
2793
2794
7c512744
JB
2795/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2796 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2797 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2798 COMPONENT, and not the inferior's memory. The current contents
2799 of COMPONENT are ignored.
2800
2801 Although not part of the initial design, this function also works
2802 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2803 had a null address, and COMPONENT had an address which is equal to
2804 its offset inside CONTAINER. */
2805
52ce6436
PH
2806static void
2807value_assign_to_component (struct value *container, struct value *component,
2808 struct value *val)
2809{
2810 LONGEST offset_in_container =
42ae5230 2811 (LONGEST) (value_address (component) - value_address (container));
7c512744 2812 int bit_offset_in_container =
52ce6436
PH
2813 value_bitpos (component) - value_bitpos (container);
2814 int bits;
7c512744 2815
52ce6436
PH
2816 val = value_cast (value_type (component), val);
2817
2818 if (value_bitsize (component) == 0)
2819 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2820 else
2821 bits = value_bitsize (component);
2822
50810684 2823 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2824 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2825 value_bitpos (container) + bit_offset_in_container,
2826 value_contents (val),
2827 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2828 bits, 1);
52ce6436 2829 else
7c512744 2830 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2831 value_bitpos (container) + bit_offset_in_container,
50810684 2832 value_contents (val), 0, bits, 0);
7c512744
JB
2833}
2834
4c4b4cd2
PH
2835/* The value of the element of array ARR at the ARITY indices given in IND.
2836 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2837 thereto. */
2838
d2e4a39e
AS
2839struct value *
2840ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2841{
2842 int k;
d2e4a39e
AS
2843 struct value *elt;
2844 struct type *elt_type;
14f9c5c9
AS
2845
2846 elt = ada_coerce_to_simple_array (arr);
2847
df407dfe 2848 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2849 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2850 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2851 return value_subscript_packed (elt, arity, ind);
2852
2853 for (k = 0; k < arity; k += 1)
2854 {
2855 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2856 error (_("too many subscripts (%d expected)"), k);
2497b498 2857 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2858 }
2859 return elt;
2860}
2861
deede10c
JB
2862/* Assuming ARR is a pointer to a GDB array, the value of the element
2863 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2864 Does not read the entire array into memory.
2865
2866 Note: Unlike what one would expect, this function is used instead of
2867 ada_value_subscript for basically all non-packed array types. The reason
2868 for this is that a side effect of doing our own pointer arithmetics instead
2869 of relying on value_subscript is that there is no implicit typedef peeling.
2870 This is important for arrays of array accesses, where it allows us to
2871 preserve the fact that the array's element is an array access, where the
2872 access part os encoded in a typedef layer. */
14f9c5c9 2873
2c0b251b 2874static struct value *
deede10c 2875ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2876{
2877 int k;
919e6dbe 2878 struct value *array_ind = ada_value_ind (arr);
deede10c 2879 struct type *type
919e6dbe
PMR
2880 = check_typedef (value_enclosing_type (array_ind));
2881
2882 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2883 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2884 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2885
2886 for (k = 0; k < arity; k += 1)
2887 {
2888 LONGEST lwb, upb;
aa715135 2889 struct value *lwb_value;
14f9c5c9
AS
2890
2891 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2892 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2893 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2894 value_copy (arr));
14f9c5c9 2895 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2896 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2897 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2898 type = TYPE_TARGET_TYPE (type);
2899 }
2900
2901 return value_ind (arr);
2902}
2903
0b5d8877 2904/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2905 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2906 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2907 this array is LOW, as per Ada rules. */
0b5d8877 2908static struct value *
f5938064
JG
2909ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2910 int low, int high)
0b5d8877 2911{
b0dd7688 2912 struct type *type0 = ada_check_typedef (type);
aa715135 2913 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2914 struct type *index_type
aa715135 2915 = create_static_range_type (NULL, base_index_type, low, high);
6c038f32 2916 struct type *slice_type =
b0dd7688 2917 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
aa715135
JG
2918 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2919 LONGEST base_low_pos, low_pos;
2920 CORE_ADDR base;
2921
2922 if (!discrete_position (base_index_type, low, &low_pos)
2923 || !discrete_position (base_index_type, base_low, &base_low_pos))
2924 {
2925 warning (_("unable to get positions in slice, use bounds instead"));
2926 low_pos = low;
2927 base_low_pos = base_low;
2928 }
5b4ee69b 2929
aa715135
JG
2930 base = value_as_address (array_ptr)
2931 + ((low_pos - base_low_pos)
2932 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2933 return value_at_lazy (slice_type, base);
0b5d8877
PH
2934}
2935
2936
2937static struct value *
2938ada_value_slice (struct value *array, int low, int high)
2939{
b0dd7688 2940 struct type *type = ada_check_typedef (value_type (array));
aa715135 2941 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2942 struct type *index_type
2943 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2944 struct type *slice_type =
0b5d8877 2945 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
aa715135 2946 LONGEST low_pos, high_pos;
5b4ee69b 2947
aa715135
JG
2948 if (!discrete_position (base_index_type, low, &low_pos)
2949 || !discrete_position (base_index_type, high, &high_pos))
2950 {
2951 warning (_("unable to get positions in slice, use bounds instead"));
2952 low_pos = low;
2953 high_pos = high;
2954 }
2955
2956 return value_cast (slice_type,
2957 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2958}
2959
14f9c5c9
AS
2960/* If type is a record type in the form of a standard GNAT array
2961 descriptor, returns the number of dimensions for type. If arr is a
2962 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2963 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2964
2965int
d2e4a39e 2966ada_array_arity (struct type *type)
14f9c5c9
AS
2967{
2968 int arity;
2969
2970 if (type == NULL)
2971 return 0;
2972
2973 type = desc_base_type (type);
2974
2975 arity = 0;
d2e4a39e 2976 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2977 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2978 else
2979 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2980 {
4c4b4cd2 2981 arity += 1;
61ee279c 2982 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2983 }
d2e4a39e 2984
14f9c5c9
AS
2985 return arity;
2986}
2987
2988/* If TYPE is a record type in the form of a standard GNAT array
2989 descriptor or a simple array type, returns the element type for
2990 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2991 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2992
d2e4a39e
AS
2993struct type *
2994ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2995{
2996 type = desc_base_type (type);
2997
d2e4a39e 2998 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2999 {
3000 int k;
d2e4a39e 3001 struct type *p_array_type;
14f9c5c9 3002
556bdfd4 3003 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3004
3005 k = ada_array_arity (type);
3006 if (k == 0)
4c4b4cd2 3007 return NULL;
d2e4a39e 3008
4c4b4cd2 3009 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3010 if (nindices >= 0 && k > nindices)
4c4b4cd2 3011 k = nindices;
d2e4a39e 3012 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3013 {
61ee279c 3014 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3015 k -= 1;
3016 }
14f9c5c9
AS
3017 return p_array_type;
3018 }
3019 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3020 {
3021 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3022 {
3023 type = TYPE_TARGET_TYPE (type);
3024 nindices -= 1;
3025 }
14f9c5c9
AS
3026 return type;
3027 }
3028
3029 return NULL;
3030}
3031
4c4b4cd2 3032/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3033 Does not examine memory. Throws an error if N is invalid or TYPE
3034 is not an array type. NAME is the name of the Ada attribute being
3035 evaluated ('range, 'first, 'last, or 'length); it is used in building
3036 the error message. */
14f9c5c9 3037
1eea4ebd
UW
3038static struct type *
3039ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3040{
4c4b4cd2
PH
3041 struct type *result_type;
3042
14f9c5c9
AS
3043 type = desc_base_type (type);
3044
1eea4ebd
UW
3045 if (n < 0 || n > ada_array_arity (type))
3046 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3047
4c4b4cd2 3048 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3049 {
3050 int i;
3051
3052 for (i = 1; i < n; i += 1)
4c4b4cd2 3053 type = TYPE_TARGET_TYPE (type);
262452ec 3054 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3055 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3056 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3057 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3058 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3059 result_type = NULL;
14f9c5c9 3060 }
d2e4a39e 3061 else
1eea4ebd
UW
3062 {
3063 result_type = desc_index_type (desc_bounds_type (type), n);
3064 if (result_type == NULL)
3065 error (_("attempt to take bound of something that is not an array"));
3066 }
3067
3068 return result_type;
14f9c5c9
AS
3069}
3070
3071/* Given that arr is an array type, returns the lower bound of the
3072 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3073 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3074 array-descriptor type. It works for other arrays with bounds supplied
3075 by run-time quantities other than discriminants. */
14f9c5c9 3076
abb68b3e 3077static LONGEST
fb5e3d5c 3078ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3079{
8a48ac95 3080 struct type *type, *index_type_desc, *index_type;
1ce677a4 3081 int i;
262452ec
JK
3082
3083 gdb_assert (which == 0 || which == 1);
14f9c5c9 3084
ad82864c
JB
3085 if (ada_is_constrained_packed_array_type (arr_type))
3086 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3087
4c4b4cd2 3088 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3089 return (LONGEST) - which;
14f9c5c9
AS
3090
3091 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3092 type = TYPE_TARGET_TYPE (arr_type);
3093 else
3094 type = arr_type;
3095
bafffb51
JB
3096 if (TYPE_FIXED_INSTANCE (type))
3097 {
3098 /* The array has already been fixed, so we do not need to
3099 check the parallel ___XA type again. That encoding has
3100 already been applied, so ignore it now. */
3101 index_type_desc = NULL;
3102 }
3103 else
3104 {
3105 index_type_desc = ada_find_parallel_type (type, "___XA");
3106 ada_fixup_array_indexes_type (index_type_desc);
3107 }
3108
262452ec 3109 if (index_type_desc != NULL)
28c85d6c
JB
3110 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3111 NULL);
262452ec 3112 else
8a48ac95
JB
3113 {
3114 struct type *elt_type = check_typedef (type);
3115
3116 for (i = 1; i < n; i++)
3117 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3118
3119 index_type = TYPE_INDEX_TYPE (elt_type);
3120 }
262452ec 3121
43bbcdc2
PH
3122 return
3123 (LONGEST) (which == 0
3124 ? ada_discrete_type_low_bound (index_type)
3125 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3126}
3127
3128/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3129 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3130 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3131 supplied by run-time quantities other than discriminants. */
14f9c5c9 3132
1eea4ebd 3133static LONGEST
4dc81987 3134ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3135{
eb479039
JB
3136 struct type *arr_type;
3137
3138 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3139 arr = value_ind (arr);
3140 arr_type = value_enclosing_type (arr);
14f9c5c9 3141
ad82864c
JB
3142 if (ada_is_constrained_packed_array_type (arr_type))
3143 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3144 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3145 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3146 else
1eea4ebd 3147 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3148}
3149
3150/* Given that arr is an array value, returns the length of the
3151 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3152 supplied by run-time quantities other than discriminants.
3153 Does not work for arrays indexed by enumeration types with representation
3154 clauses at the moment. */
14f9c5c9 3155
1eea4ebd 3156static LONGEST
d2e4a39e 3157ada_array_length (struct value *arr, int n)
14f9c5c9 3158{
aa715135
JG
3159 struct type *arr_type, *index_type;
3160 int low, high;
eb479039
JB
3161
3162 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3163 arr = value_ind (arr);
3164 arr_type = value_enclosing_type (arr);
14f9c5c9 3165
ad82864c
JB
3166 if (ada_is_constrained_packed_array_type (arr_type))
3167 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3168
4c4b4cd2 3169 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3170 {
3171 low = ada_array_bound_from_type (arr_type, n, 0);
3172 high = ada_array_bound_from_type (arr_type, n, 1);
3173 }
14f9c5c9 3174 else
aa715135
JG
3175 {
3176 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3177 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3178 }
3179
f168693b 3180 arr_type = check_typedef (arr_type);
aa715135
JG
3181 index_type = TYPE_INDEX_TYPE (arr_type);
3182 if (index_type != NULL)
3183 {
3184 struct type *base_type;
3185 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3186 base_type = TYPE_TARGET_TYPE (index_type);
3187 else
3188 base_type = index_type;
3189
3190 low = pos_atr (value_from_longest (base_type, low));
3191 high = pos_atr (value_from_longest (base_type, high));
3192 }
3193 return high - low + 1;
4c4b4cd2
PH
3194}
3195
3196/* An empty array whose type is that of ARR_TYPE (an array type),
3197 with bounds LOW to LOW-1. */
3198
3199static struct value *
3200empty_array (struct type *arr_type, int low)
3201{
b0dd7688 3202 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3203 struct type *index_type
3204 = create_static_range_type
3205 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3206 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3207
0b5d8877 3208 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3209}
14f9c5c9 3210\f
d2e4a39e 3211
4c4b4cd2 3212 /* Name resolution */
14f9c5c9 3213
4c4b4cd2
PH
3214/* The "decoded" name for the user-definable Ada operator corresponding
3215 to OP. */
14f9c5c9 3216
d2e4a39e 3217static const char *
4c4b4cd2 3218ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3219{
3220 int i;
3221
4c4b4cd2 3222 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3223 {
3224 if (ada_opname_table[i].op == op)
4c4b4cd2 3225 return ada_opname_table[i].decoded;
14f9c5c9 3226 }
323e0a4a 3227 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3228}
3229
3230
4c4b4cd2
PH
3231/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3232 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3233 undefined namespace) and converts operators that are
3234 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3235 non-null, it provides a preferred result type [at the moment, only
3236 type void has any effect---causing procedures to be preferred over
3237 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3238 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3239
4c4b4cd2
PH
3240static void
3241resolve (struct expression **expp, int void_context_p)
14f9c5c9 3242{
30b15541
UW
3243 struct type *context_type = NULL;
3244 int pc = 0;
3245
3246 if (void_context_p)
3247 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3248
3249 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3250}
3251
4c4b4cd2
PH
3252/* Resolve the operator of the subexpression beginning at
3253 position *POS of *EXPP. "Resolving" consists of replacing
3254 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3255 with their resolutions, replacing built-in operators with
3256 function calls to user-defined operators, where appropriate, and,
3257 when DEPROCEDURE_P is non-zero, converting function-valued variables
3258 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3259 are as in ada_resolve, above. */
14f9c5c9 3260
d2e4a39e 3261static struct value *
4c4b4cd2 3262resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3263 struct type *context_type)
14f9c5c9
AS
3264{
3265 int pc = *pos;
3266 int i;
4c4b4cd2 3267 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3268 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3269 struct value **argvec; /* Vector of operand types (alloca'ed). */
3270 int nargs; /* Number of operands. */
52ce6436 3271 int oplen;
14f9c5c9
AS
3272
3273 argvec = NULL;
3274 nargs = 0;
3275 exp = *expp;
3276
52ce6436
PH
3277 /* Pass one: resolve operands, saving their types and updating *pos,
3278 if needed. */
14f9c5c9
AS
3279 switch (op)
3280 {
4c4b4cd2
PH
3281 case OP_FUNCALL:
3282 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3283 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3284 *pos += 7;
4c4b4cd2
PH
3285 else
3286 {
3287 *pos += 3;
3288 resolve_subexp (expp, pos, 0, NULL);
3289 }
3290 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3291 break;
3292
14f9c5c9 3293 case UNOP_ADDR:
4c4b4cd2
PH
3294 *pos += 1;
3295 resolve_subexp (expp, pos, 0, NULL);
3296 break;
3297
52ce6436
PH
3298 case UNOP_QUAL:
3299 *pos += 3;
17466c1a 3300 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3301 break;
3302
52ce6436 3303 case OP_ATR_MODULUS:
4c4b4cd2
PH
3304 case OP_ATR_SIZE:
3305 case OP_ATR_TAG:
4c4b4cd2
PH
3306 case OP_ATR_FIRST:
3307 case OP_ATR_LAST:
3308 case OP_ATR_LENGTH:
3309 case OP_ATR_POS:
3310 case OP_ATR_VAL:
4c4b4cd2
PH
3311 case OP_ATR_MIN:
3312 case OP_ATR_MAX:
52ce6436
PH
3313 case TERNOP_IN_RANGE:
3314 case BINOP_IN_BOUNDS:
3315 case UNOP_IN_RANGE:
3316 case OP_AGGREGATE:
3317 case OP_OTHERS:
3318 case OP_CHOICES:
3319 case OP_POSITIONAL:
3320 case OP_DISCRETE_RANGE:
3321 case OP_NAME:
3322 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3323 *pos += oplen;
14f9c5c9
AS
3324 break;
3325
3326 case BINOP_ASSIGN:
3327 {
4c4b4cd2
PH
3328 struct value *arg1;
3329
3330 *pos += 1;
3331 arg1 = resolve_subexp (expp, pos, 0, NULL);
3332 if (arg1 == NULL)
3333 resolve_subexp (expp, pos, 1, NULL);
3334 else
df407dfe 3335 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3336 break;
14f9c5c9
AS
3337 }
3338
4c4b4cd2 3339 case UNOP_CAST:
4c4b4cd2
PH
3340 *pos += 3;
3341 nargs = 1;
3342 break;
14f9c5c9 3343
4c4b4cd2
PH
3344 case BINOP_ADD:
3345 case BINOP_SUB:
3346 case BINOP_MUL:
3347 case BINOP_DIV:
3348 case BINOP_REM:
3349 case BINOP_MOD:
3350 case BINOP_EXP:
3351 case BINOP_CONCAT:
3352 case BINOP_LOGICAL_AND:
3353 case BINOP_LOGICAL_OR:
3354 case BINOP_BITWISE_AND:
3355 case BINOP_BITWISE_IOR:
3356 case BINOP_BITWISE_XOR:
14f9c5c9 3357
4c4b4cd2
PH
3358 case BINOP_EQUAL:
3359 case BINOP_NOTEQUAL:
3360 case BINOP_LESS:
3361 case BINOP_GTR:
3362 case BINOP_LEQ:
3363 case BINOP_GEQ:
14f9c5c9 3364
4c4b4cd2
PH
3365 case BINOP_REPEAT:
3366 case BINOP_SUBSCRIPT:
3367 case BINOP_COMMA:
40c8aaa9
JB
3368 *pos += 1;
3369 nargs = 2;
3370 break;
14f9c5c9 3371
4c4b4cd2
PH
3372 case UNOP_NEG:
3373 case UNOP_PLUS:
3374 case UNOP_LOGICAL_NOT:
3375 case UNOP_ABS:
3376 case UNOP_IND:
3377 *pos += 1;
3378 nargs = 1;
3379 break;
14f9c5c9 3380
4c4b4cd2 3381 case OP_LONG:
edd079d9 3382 case OP_FLOAT:
4c4b4cd2 3383 case OP_VAR_VALUE:
74ea4be4 3384 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3385 *pos += 4;
3386 break;
14f9c5c9 3387
4c4b4cd2
PH
3388 case OP_TYPE:
3389 case OP_BOOL:
3390 case OP_LAST:
4c4b4cd2
PH
3391 case OP_INTERNALVAR:
3392 *pos += 3;
3393 break;
14f9c5c9 3394
4c4b4cd2
PH
3395 case UNOP_MEMVAL:
3396 *pos += 3;
3397 nargs = 1;
3398 break;
3399
67f3407f
DJ
3400 case OP_REGISTER:
3401 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3402 break;
3403
4c4b4cd2
PH
3404 case STRUCTOP_STRUCT:
3405 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3406 nargs = 1;
3407 break;
3408
4c4b4cd2 3409 case TERNOP_SLICE:
4c4b4cd2
PH
3410 *pos += 1;
3411 nargs = 3;
3412 break;
3413
52ce6436 3414 case OP_STRING:
14f9c5c9 3415 break;
4c4b4cd2
PH
3416
3417 default:
323e0a4a 3418 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3419 }
3420
8d749320 3421 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3422 for (i = 0; i < nargs; i += 1)
3423 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3424 argvec[i] = NULL;
3425 exp = *expp;
3426
3427 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3428 switch (op)
3429 {
3430 default:
3431 break;
3432
14f9c5c9 3433 case OP_VAR_VALUE:
4c4b4cd2 3434 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3435 {
d12307c1 3436 struct block_symbol *candidates;
76a01679
JB
3437 int n_candidates;
3438
3439 n_candidates =
3440 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3441 (exp->elts[pc + 2].symbol),
3442 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3443 &candidates);
76a01679
JB
3444
3445 if (n_candidates > 1)
3446 {
3447 /* Types tend to get re-introduced locally, so if there
3448 are any local symbols that are not types, first filter
3449 out all types. */
3450 int j;
3451 for (j = 0; j < n_candidates; j += 1)
d12307c1 3452 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3453 {
3454 case LOC_REGISTER:
3455 case LOC_ARG:
3456 case LOC_REF_ARG:
76a01679
JB
3457 case LOC_REGPARM_ADDR:
3458 case LOC_LOCAL:
76a01679 3459 case LOC_COMPUTED:
76a01679
JB
3460 goto FoundNonType;
3461 default:
3462 break;
3463 }
3464 FoundNonType:
3465 if (j < n_candidates)
3466 {
3467 j = 0;
3468 while (j < n_candidates)
3469 {
d12307c1 3470 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3471 {
3472 candidates[j] = candidates[n_candidates - 1];
3473 n_candidates -= 1;
3474 }
3475 else
3476 j += 1;
3477 }
3478 }
3479 }
3480
3481 if (n_candidates == 0)
323e0a4a 3482 error (_("No definition found for %s"),
76a01679
JB
3483 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3484 else if (n_candidates == 1)
3485 i = 0;
3486 else if (deprocedure_p
3487 && !is_nonfunction (candidates, n_candidates))
3488 {
06d5cf63
JB
3489 i = ada_resolve_function
3490 (candidates, n_candidates, NULL, 0,
3491 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3492 context_type);
76a01679 3493 if (i < 0)
323e0a4a 3494 error (_("Could not find a match for %s"),
76a01679
JB
3495 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3496 }
3497 else
3498 {
323e0a4a 3499 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3500 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3501 user_select_syms (candidates, n_candidates, 1);
3502 i = 0;
3503 }
3504
3505 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3506 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3507 if (innermost_block == NULL
3508 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3509 innermost_block = candidates[i].block;
3510 }
3511
3512 if (deprocedure_p
3513 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3514 == TYPE_CODE_FUNC))
3515 {
3516 replace_operator_with_call (expp, pc, 0, 0,
3517 exp->elts[pc + 2].symbol,
3518 exp->elts[pc + 1].block);
3519 exp = *expp;
3520 }
14f9c5c9
AS
3521 break;
3522
3523 case OP_FUNCALL:
3524 {
4c4b4cd2 3525 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3526 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3527 {
d12307c1 3528 struct block_symbol *candidates;
4c4b4cd2
PH
3529 int n_candidates;
3530
3531 n_candidates =
76a01679
JB
3532 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3533 (exp->elts[pc + 5].symbol),
3534 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3535 &candidates);
4c4b4cd2
PH
3536 if (n_candidates == 1)
3537 i = 0;
3538 else
3539 {
06d5cf63
JB
3540 i = ada_resolve_function
3541 (candidates, n_candidates,
3542 argvec, nargs,
3543 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3544 context_type);
4c4b4cd2 3545 if (i < 0)
323e0a4a 3546 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3547 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3548 }
3549
3550 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3551 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3552 if (innermost_block == NULL
3553 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3554 innermost_block = candidates[i].block;
3555 }
14f9c5c9
AS
3556 }
3557 break;
3558 case BINOP_ADD:
3559 case BINOP_SUB:
3560 case BINOP_MUL:
3561 case BINOP_DIV:
3562 case BINOP_REM:
3563 case BINOP_MOD:
3564 case BINOP_CONCAT:
3565 case BINOP_BITWISE_AND:
3566 case BINOP_BITWISE_IOR:
3567 case BINOP_BITWISE_XOR:
3568 case BINOP_EQUAL:
3569 case BINOP_NOTEQUAL:
3570 case BINOP_LESS:
3571 case BINOP_GTR:
3572 case BINOP_LEQ:
3573 case BINOP_GEQ:
3574 case BINOP_EXP:
3575 case UNOP_NEG:
3576 case UNOP_PLUS:
3577 case UNOP_LOGICAL_NOT:
3578 case UNOP_ABS:
3579 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3580 {
d12307c1 3581 struct block_symbol *candidates;
4c4b4cd2
PH
3582 int n_candidates;
3583
3584 n_candidates =
b5ec771e 3585 ada_lookup_symbol_list (ada_decoded_op_name (op),
4c4b4cd2 3586 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3587 &candidates);
4c4b4cd2 3588 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3589 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3590 if (i < 0)
3591 break;
3592
d12307c1
PMR
3593 replace_operator_with_call (expp, pc, nargs, 1,
3594 candidates[i].symbol,
3595 candidates[i].block);
4c4b4cd2
PH
3596 exp = *expp;
3597 }
14f9c5c9 3598 break;
4c4b4cd2
PH
3599
3600 case OP_TYPE:
b3dbf008 3601 case OP_REGISTER:
4c4b4cd2 3602 return NULL;
14f9c5c9
AS
3603 }
3604
3605 *pos = pc;
3606 return evaluate_subexp_type (exp, pos);
3607}
3608
3609/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3610 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3611 a non-pointer. */
14f9c5c9 3612/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3613 liberal. */
14f9c5c9
AS
3614
3615static int
4dc81987 3616ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3617{
61ee279c
PH
3618 ftype = ada_check_typedef (ftype);
3619 atype = ada_check_typedef (atype);
14f9c5c9
AS
3620
3621 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3622 ftype = TYPE_TARGET_TYPE (ftype);
3623 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3624 atype = TYPE_TARGET_TYPE (atype);
3625
d2e4a39e 3626 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3627 {
3628 default:
5b3d5b7d 3629 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3630 case TYPE_CODE_PTR:
3631 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3632 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3633 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3634 else
1265e4aa
JB
3635 return (may_deref
3636 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3637 case TYPE_CODE_INT:
3638 case TYPE_CODE_ENUM:
3639 case TYPE_CODE_RANGE:
3640 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3641 {
3642 case TYPE_CODE_INT:
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_RANGE:
3645 return 1;
3646 default:
3647 return 0;
3648 }
14f9c5c9
AS
3649
3650 case TYPE_CODE_ARRAY:
d2e4a39e 3651 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3652 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3653
3654 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3655 if (ada_is_array_descriptor_type (ftype))
3656 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3657 || ada_is_array_descriptor_type (atype));
14f9c5c9 3658 else
4c4b4cd2
PH
3659 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3660 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3661
3662 case TYPE_CODE_UNION:
3663 case TYPE_CODE_FLT:
3664 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3665 }
3666}
3667
3668/* Return non-zero if the formals of FUNC "sufficiently match" the
3669 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3670 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3671 argument function. */
14f9c5c9
AS
3672
3673static int
d2e4a39e 3674ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3675{
3676 int i;
d2e4a39e 3677 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3678
1265e4aa
JB
3679 if (SYMBOL_CLASS (func) == LOC_CONST
3680 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3681 return (n_actuals == 0);
3682 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3683 return 0;
3684
3685 if (TYPE_NFIELDS (func_type) != n_actuals)
3686 return 0;
3687
3688 for (i = 0; i < n_actuals; i += 1)
3689 {
4c4b4cd2 3690 if (actuals[i] == NULL)
76a01679
JB
3691 return 0;
3692 else
3693 {
5b4ee69b
MS
3694 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3695 i));
df407dfe 3696 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3697
76a01679
JB
3698 if (!ada_type_match (ftype, atype, 1))
3699 return 0;
3700 }
14f9c5c9
AS
3701 }
3702 return 1;
3703}
3704
3705/* False iff function type FUNC_TYPE definitely does not produce a value
3706 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3707 FUNC_TYPE is not a valid function type with a non-null return type
3708 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3709
3710static int
d2e4a39e 3711return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3712{
d2e4a39e 3713 struct type *return_type;
14f9c5c9
AS
3714
3715 if (func_type == NULL)
3716 return 1;
3717
4c4b4cd2 3718 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3719 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3720 else
18af8284 3721 return_type = get_base_type (func_type);
14f9c5c9
AS
3722 if (return_type == NULL)
3723 return 1;
3724
18af8284 3725 context_type = get_base_type (context_type);
14f9c5c9
AS
3726
3727 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3728 return context_type == NULL || return_type == context_type;
3729 else if (context_type == NULL)
3730 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3731 else
3732 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3733}
3734
3735
4c4b4cd2 3736/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3737 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3738 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3739 that returns that type, then eliminate matches that don't. If
3740 CONTEXT_TYPE is void and there is at least one match that does not
3741 return void, eliminate all matches that do.
3742
14f9c5c9
AS
3743 Asks the user if there is more than one match remaining. Returns -1
3744 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3745 solely for messages. May re-arrange and modify SYMS in
3746 the process; the index returned is for the modified vector. */
14f9c5c9 3747
4c4b4cd2 3748static int
d12307c1 3749ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3750 int nsyms, struct value **args, int nargs,
3751 const char *name, struct type *context_type)
14f9c5c9 3752{
30b15541 3753 int fallback;
14f9c5c9 3754 int k;
4c4b4cd2 3755 int m; /* Number of hits */
14f9c5c9 3756
d2e4a39e 3757 m = 0;
30b15541
UW
3758 /* In the first pass of the loop, we only accept functions matching
3759 context_type. If none are found, we add a second pass of the loop
3760 where every function is accepted. */
3761 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3762 {
3763 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3764 {
d12307c1 3765 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3766
d12307c1 3767 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3768 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3769 {
3770 syms[m] = syms[k];
3771 m += 1;
3772 }
3773 }
14f9c5c9
AS
3774 }
3775
dc5c8746
PMR
3776 /* If we got multiple matches, ask the user which one to use. Don't do this
3777 interactive thing during completion, though, as the purpose of the
3778 completion is providing a list of all possible matches. Prompting the
3779 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3780 if (m == 0)
3781 return -1;
dc5c8746 3782 else if (m > 1 && !parse_completion)
14f9c5c9 3783 {
323e0a4a 3784 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3785 user_select_syms (syms, m, 1);
14f9c5c9
AS
3786 return 0;
3787 }
3788 return 0;
3789}
3790
4c4b4cd2
PH
3791/* Returns true (non-zero) iff decoded name N0 should appear before N1
3792 in a listing of choices during disambiguation (see sort_choices, below).
3793 The idea is that overloadings of a subprogram name from the
3794 same package should sort in their source order. We settle for ordering
3795 such symbols by their trailing number (__N or $N). */
3796
14f9c5c9 3797static int
0d5cff50 3798encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3799{
3800 if (N1 == NULL)
3801 return 0;
3802 else if (N0 == NULL)
3803 return 1;
3804 else
3805 {
3806 int k0, k1;
5b4ee69b 3807
d2e4a39e 3808 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3809 ;
d2e4a39e 3810 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3811 ;
d2e4a39e 3812 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3813 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3814 {
3815 int n0, n1;
5b4ee69b 3816
4c4b4cd2
PH
3817 n0 = k0;
3818 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3819 n0 -= 1;
3820 n1 = k1;
3821 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3822 n1 -= 1;
3823 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3824 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3825 }
14f9c5c9
AS
3826 return (strcmp (N0, N1) < 0);
3827 }
3828}
d2e4a39e 3829
4c4b4cd2
PH
3830/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3831 encoded names. */
3832
d2e4a39e 3833static void
d12307c1 3834sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3835{
4c4b4cd2 3836 int i;
5b4ee69b 3837
d2e4a39e 3838 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3839 {
d12307c1 3840 struct block_symbol sym = syms[i];
14f9c5c9
AS
3841 int j;
3842
d2e4a39e 3843 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3844 {
d12307c1
PMR
3845 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3846 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3847 break;
3848 syms[j + 1] = syms[j];
3849 }
d2e4a39e 3850 syms[j + 1] = sym;
14f9c5c9
AS
3851 }
3852}
3853
d72413e6
PMR
3854/* Whether GDB should display formals and return types for functions in the
3855 overloads selection menu. */
3856static int print_signatures = 1;
3857
3858/* Print the signature for SYM on STREAM according to the FLAGS options. For
3859 all but functions, the signature is just the name of the symbol. For
3860 functions, this is the name of the function, the list of types for formals
3861 and the return type (if any). */
3862
3863static void
3864ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3865 const struct type_print_options *flags)
3866{
3867 struct type *type = SYMBOL_TYPE (sym);
3868
3869 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3870 if (!print_signatures
3871 || type == NULL
3872 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3873 return;
3874
3875 if (TYPE_NFIELDS (type) > 0)
3876 {
3877 int i;
3878
3879 fprintf_filtered (stream, " (");
3880 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3881 {
3882 if (i > 0)
3883 fprintf_filtered (stream, "; ");
3884 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3885 flags);
3886 }
3887 fprintf_filtered (stream, ")");
3888 }
3889 if (TYPE_TARGET_TYPE (type) != NULL
3890 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3891 {
3892 fprintf_filtered (stream, " return ");
3893 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3894 }
3895}
3896
4c4b4cd2
PH
3897/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3898 by asking the user (if necessary), returning the number selected,
3899 and setting the first elements of SYMS items. Error if no symbols
3900 selected. */
14f9c5c9
AS
3901
3902/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3903 to be re-integrated one of these days. */
14f9c5c9
AS
3904
3905int
d12307c1 3906user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3907{
3908 int i;
8d749320 3909 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3910 int n_chosen;
3911 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3912 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3913
3914 if (max_results < 1)
323e0a4a 3915 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3916 if (nsyms <= 1)
3917 return nsyms;
3918
717d2f5a
JB
3919 if (select_mode == multiple_symbols_cancel)
3920 error (_("\
3921canceled because the command is ambiguous\n\
3922See set/show multiple-symbol."));
3923
3924 /* If select_mode is "all", then return all possible symbols.
3925 Only do that if more than one symbol can be selected, of course.
3926 Otherwise, display the menu as usual. */
3927 if (select_mode == multiple_symbols_all && max_results > 1)
3928 return nsyms;
3929
323e0a4a 3930 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3931 if (max_results > 1)
323e0a4a 3932 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3933
4c4b4cd2 3934 sort_choices (syms, nsyms);
14f9c5c9
AS
3935
3936 for (i = 0; i < nsyms; i += 1)
3937 {
d12307c1 3938 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3939 continue;
3940
d12307c1 3941 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3942 {
76a01679 3943 struct symtab_and_line sal =
d12307c1 3944 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3945
d72413e6
PMR
3946 printf_unfiltered ("[%d] ", i + first_choice);
3947 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3948 &type_print_raw_options);
323e0a4a 3949 if (sal.symtab == NULL)
d72413e6 3950 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3951 sal.line);
3952 else
d72413e6 3953 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3954 symtab_to_filename_for_display (sal.symtab),
3955 sal.line);
4c4b4cd2
PH
3956 continue;
3957 }
d2e4a39e 3958 else
4c4b4cd2
PH
3959 {
3960 int is_enumeral =
d12307c1
PMR
3961 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3962 && SYMBOL_TYPE (syms[i].symbol) != NULL
3963 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3964 struct symtab *symtab = NULL;
3965
d12307c1
PMR
3966 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3967 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3968
d12307c1 3969 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3970 {
3971 printf_unfiltered ("[%d] ", i + first_choice);
3972 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3973 &type_print_raw_options);
3974 printf_unfiltered (_(" at %s:%d\n"),
3975 symtab_to_filename_for_display (symtab),
3976 SYMBOL_LINE (syms[i].symbol));
3977 }
76a01679 3978 else if (is_enumeral
d12307c1 3979 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3980 {
a3f17187 3981 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3982 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3983 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3984 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3985 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3986 }
d72413e6
PMR
3987 else
3988 {
3989 printf_unfiltered ("[%d] ", i + first_choice);
3990 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3991 &type_print_raw_options);
3992
3993 if (symtab != NULL)
3994 printf_unfiltered (is_enumeral
3995 ? _(" in %s (enumeral)\n")
3996 : _(" at %s:?\n"),
3997 symtab_to_filename_for_display (symtab));
3998 else
3999 printf_unfiltered (is_enumeral
4000 ? _(" (enumeral)\n")
4001 : _(" at ?\n"));
4002 }
4c4b4cd2 4003 }
14f9c5c9 4004 }
d2e4a39e 4005
14f9c5c9 4006 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4007 "overload-choice");
14f9c5c9
AS
4008
4009 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4010 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4011
4012 return n_chosen;
4013}
4014
4015/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4016 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4017 order in CHOICES[0 .. N-1], and return N.
4018
4019 The user types choices as a sequence of numbers on one line
4020 separated by blanks, encoding them as follows:
4021
4c4b4cd2 4022 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4023 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4024 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4025
4c4b4cd2 4026 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4027
4028 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4029 prompts (for use with the -f switch). */
14f9c5c9
AS
4030
4031int
d2e4a39e 4032get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4033 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4034{
d2e4a39e 4035 char *args;
a121b7c1 4036 const char *prompt;
14f9c5c9
AS
4037 int n_chosen;
4038 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4039
14f9c5c9
AS
4040 prompt = getenv ("PS2");
4041 if (prompt == NULL)
0bcd0149 4042 prompt = "> ";
14f9c5c9 4043
0bcd0149 4044 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 4045
14f9c5c9 4046 if (args == NULL)
323e0a4a 4047 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4048
4049 n_chosen = 0;
76a01679 4050
4c4b4cd2
PH
4051 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4052 order, as given in args. Choices are validated. */
14f9c5c9
AS
4053 while (1)
4054 {
d2e4a39e 4055 char *args2;
14f9c5c9
AS
4056 int choice, j;
4057
0fcd72ba 4058 args = skip_spaces (args);
14f9c5c9 4059 if (*args == '\0' && n_chosen == 0)
323e0a4a 4060 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4061 else if (*args == '\0')
4c4b4cd2 4062 break;
14f9c5c9
AS
4063
4064 choice = strtol (args, &args2, 10);
d2e4a39e 4065 if (args == args2 || choice < 0
4c4b4cd2 4066 || choice > n_choices + first_choice - 1)
323e0a4a 4067 error (_("Argument must be choice number"));
14f9c5c9
AS
4068 args = args2;
4069
d2e4a39e 4070 if (choice == 0)
323e0a4a 4071 error (_("cancelled"));
14f9c5c9
AS
4072
4073 if (choice < first_choice)
4c4b4cd2
PH
4074 {
4075 n_chosen = n_choices;
4076 for (j = 0; j < n_choices; j += 1)
4077 choices[j] = j;
4078 break;
4079 }
14f9c5c9
AS
4080 choice -= first_choice;
4081
d2e4a39e 4082 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4083 {
4084 }
14f9c5c9
AS
4085
4086 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4087 {
4088 int k;
5b4ee69b 4089
4c4b4cd2
PH
4090 for (k = n_chosen - 1; k > j; k -= 1)
4091 choices[k + 1] = choices[k];
4092 choices[j + 1] = choice;
4093 n_chosen += 1;
4094 }
14f9c5c9
AS
4095 }
4096
4097 if (n_chosen > max_results)
323e0a4a 4098 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4099
14f9c5c9
AS
4100 return n_chosen;
4101}
4102
4c4b4cd2
PH
4103/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4104 on the function identified by SYM and BLOCK, and taking NARGS
4105 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4106
4107static void
d2e4a39e 4108replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 4109 int oplen, struct symbol *sym,
270140bd 4110 const struct block *block)
14f9c5c9
AS
4111{
4112 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4113 symbol, -oplen for operator being replaced). */
d2e4a39e 4114 struct expression *newexp = (struct expression *)
8c1a34e7 4115 xzalloc (sizeof (struct expression)
4c4b4cd2 4116 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 4117 struct expression *exp = *expp;
14f9c5c9
AS
4118
4119 newexp->nelts = exp->nelts + 7 - oplen;
4120 newexp->language_defn = exp->language_defn;
3489610d 4121 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4122 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4123 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4124 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4125
4126 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4127 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4128
4129 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4130 newexp->elts[pc + 4].block = block;
4131 newexp->elts[pc + 5].symbol = sym;
4132
4133 *expp = newexp;
aacb1f0a 4134 xfree (exp);
d2e4a39e 4135}
14f9c5c9
AS
4136
4137/* Type-class predicates */
4138
4c4b4cd2
PH
4139/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4140 or FLOAT). */
14f9c5c9
AS
4141
4142static int
d2e4a39e 4143numeric_type_p (struct type *type)
14f9c5c9
AS
4144{
4145 if (type == NULL)
4146 return 0;
d2e4a39e
AS
4147 else
4148 {
4149 switch (TYPE_CODE (type))
4c4b4cd2
PH
4150 {
4151 case TYPE_CODE_INT:
4152 case TYPE_CODE_FLT:
4153 return 1;
4154 case TYPE_CODE_RANGE:
4155 return (type == TYPE_TARGET_TYPE (type)
4156 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4157 default:
4158 return 0;
4159 }
d2e4a39e 4160 }
14f9c5c9
AS
4161}
4162
4c4b4cd2 4163/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4164
4165static int
d2e4a39e 4166integer_type_p (struct type *type)
14f9c5c9
AS
4167{
4168 if (type == NULL)
4169 return 0;
d2e4a39e
AS
4170 else
4171 {
4172 switch (TYPE_CODE (type))
4c4b4cd2
PH
4173 {
4174 case TYPE_CODE_INT:
4175 return 1;
4176 case TYPE_CODE_RANGE:
4177 return (type == TYPE_TARGET_TYPE (type)
4178 || integer_type_p (TYPE_TARGET_TYPE (type)));
4179 default:
4180 return 0;
4181 }
d2e4a39e 4182 }
14f9c5c9
AS
4183}
4184
4c4b4cd2 4185/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4186
4187static int
d2e4a39e 4188scalar_type_p (struct type *type)
14f9c5c9
AS
4189{
4190 if (type == NULL)
4191 return 0;
d2e4a39e
AS
4192 else
4193 {
4194 switch (TYPE_CODE (type))
4c4b4cd2
PH
4195 {
4196 case TYPE_CODE_INT:
4197 case TYPE_CODE_RANGE:
4198 case TYPE_CODE_ENUM:
4199 case TYPE_CODE_FLT:
4200 return 1;
4201 default:
4202 return 0;
4203 }
d2e4a39e 4204 }
14f9c5c9
AS
4205}
4206
4c4b4cd2 4207/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4208
4209static int
d2e4a39e 4210discrete_type_p (struct type *type)
14f9c5c9
AS
4211{
4212 if (type == NULL)
4213 return 0;
d2e4a39e
AS
4214 else
4215 {
4216 switch (TYPE_CODE (type))
4c4b4cd2
PH
4217 {
4218 case TYPE_CODE_INT:
4219 case TYPE_CODE_RANGE:
4220 case TYPE_CODE_ENUM:
872f0337 4221 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4222 return 1;
4223 default:
4224 return 0;
4225 }
d2e4a39e 4226 }
14f9c5c9
AS
4227}
4228
4c4b4cd2
PH
4229/* Returns non-zero if OP with operands in the vector ARGS could be
4230 a user-defined function. Errs on the side of pre-defined operators
4231 (i.e., result 0). */
14f9c5c9
AS
4232
4233static int
d2e4a39e 4234possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4235{
76a01679 4236 struct type *type0 =
df407dfe 4237 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4238 struct type *type1 =
df407dfe 4239 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4240
4c4b4cd2
PH
4241 if (type0 == NULL)
4242 return 0;
4243
14f9c5c9
AS
4244 switch (op)
4245 {
4246 default:
4247 return 0;
4248
4249 case BINOP_ADD:
4250 case BINOP_SUB:
4251 case BINOP_MUL:
4252 case BINOP_DIV:
d2e4a39e 4253 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4254
4255 case BINOP_REM:
4256 case BINOP_MOD:
4257 case BINOP_BITWISE_AND:
4258 case BINOP_BITWISE_IOR:
4259 case BINOP_BITWISE_XOR:
d2e4a39e 4260 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4261
4262 case BINOP_EQUAL:
4263 case BINOP_NOTEQUAL:
4264 case BINOP_LESS:
4265 case BINOP_GTR:
4266 case BINOP_LEQ:
4267 case BINOP_GEQ:
d2e4a39e 4268 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4269
4270 case BINOP_CONCAT:
ee90b9ab 4271 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4272
4273 case BINOP_EXP:
d2e4a39e 4274 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4275
4276 case UNOP_NEG:
4277 case UNOP_PLUS:
4278 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4279 case UNOP_ABS:
4280 return (!numeric_type_p (type0));
14f9c5c9
AS
4281
4282 }
4283}
4284\f
4c4b4cd2 4285 /* Renaming */
14f9c5c9 4286
aeb5907d
JB
4287/* NOTES:
4288
4289 1. In the following, we assume that a renaming type's name may
4290 have an ___XD suffix. It would be nice if this went away at some
4291 point.
4292 2. We handle both the (old) purely type-based representation of
4293 renamings and the (new) variable-based encoding. At some point,
4294 it is devoutly to be hoped that the former goes away
4295 (FIXME: hilfinger-2007-07-09).
4296 3. Subprogram renamings are not implemented, although the XRS
4297 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4298
4299/* If SYM encodes a renaming,
4300
4301 <renaming> renames <renamed entity>,
4302
4303 sets *LEN to the length of the renamed entity's name,
4304 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4305 the string describing the subcomponent selected from the renamed
0963b4bd 4306 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4307 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4308 are undefined). Otherwise, returns a value indicating the category
4309 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4310 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4311 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4312 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4313 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4314 may be NULL, in which case they are not assigned.
4315
4316 [Currently, however, GCC does not generate subprogram renamings.] */
4317
4318enum ada_renaming_category
4319ada_parse_renaming (struct symbol *sym,
4320 const char **renamed_entity, int *len,
4321 const char **renaming_expr)
4322{
4323 enum ada_renaming_category kind;
4324 const char *info;
4325 const char *suffix;
4326
4327 if (sym == NULL)
4328 return ADA_NOT_RENAMING;
4329 switch (SYMBOL_CLASS (sym))
14f9c5c9 4330 {
aeb5907d
JB
4331 default:
4332 return ADA_NOT_RENAMING;
4333 case LOC_TYPEDEF:
4334 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4335 renamed_entity, len, renaming_expr);
4336 case LOC_LOCAL:
4337 case LOC_STATIC:
4338 case LOC_COMPUTED:
4339 case LOC_OPTIMIZED_OUT:
4340 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4341 if (info == NULL)
4342 return ADA_NOT_RENAMING;
4343 switch (info[5])
4344 {
4345 case '_':
4346 kind = ADA_OBJECT_RENAMING;
4347 info += 6;
4348 break;
4349 case 'E':
4350 kind = ADA_EXCEPTION_RENAMING;
4351 info += 7;
4352 break;
4353 case 'P':
4354 kind = ADA_PACKAGE_RENAMING;
4355 info += 7;
4356 break;
4357 case 'S':
4358 kind = ADA_SUBPROGRAM_RENAMING;
4359 info += 7;
4360 break;
4361 default:
4362 return ADA_NOT_RENAMING;
4363 }
14f9c5c9 4364 }
4c4b4cd2 4365
aeb5907d
JB
4366 if (renamed_entity != NULL)
4367 *renamed_entity = info;
4368 suffix = strstr (info, "___XE");
4369 if (suffix == NULL || suffix == info)
4370 return ADA_NOT_RENAMING;
4371 if (len != NULL)
4372 *len = strlen (info) - strlen (suffix);
4373 suffix += 5;
4374 if (renaming_expr != NULL)
4375 *renaming_expr = suffix;
4376 return kind;
4377}
4378
4379/* Assuming TYPE encodes a renaming according to the old encoding in
4380 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4381 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4382 ADA_NOT_RENAMING otherwise. */
4383static enum ada_renaming_category
4384parse_old_style_renaming (struct type *type,
4385 const char **renamed_entity, int *len,
4386 const char **renaming_expr)
4387{
4388 enum ada_renaming_category kind;
4389 const char *name;
4390 const char *info;
4391 const char *suffix;
14f9c5c9 4392
aeb5907d
JB
4393 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4394 || TYPE_NFIELDS (type) != 1)
4395 return ADA_NOT_RENAMING;
14f9c5c9 4396
aeb5907d
JB
4397 name = type_name_no_tag (type);
4398 if (name == NULL)
4399 return ADA_NOT_RENAMING;
4400
4401 name = strstr (name, "___XR");
4402 if (name == NULL)
4403 return ADA_NOT_RENAMING;
4404 switch (name[5])
4405 {
4406 case '\0':
4407 case '_':
4408 kind = ADA_OBJECT_RENAMING;
4409 break;
4410 case 'E':
4411 kind = ADA_EXCEPTION_RENAMING;
4412 break;
4413 case 'P':
4414 kind = ADA_PACKAGE_RENAMING;
4415 break;
4416 case 'S':
4417 kind = ADA_SUBPROGRAM_RENAMING;
4418 break;
4419 default:
4420 return ADA_NOT_RENAMING;
4421 }
14f9c5c9 4422
aeb5907d
JB
4423 info = TYPE_FIELD_NAME (type, 0);
4424 if (info == NULL)
4425 return ADA_NOT_RENAMING;
4426 if (renamed_entity != NULL)
4427 *renamed_entity = info;
4428 suffix = strstr (info, "___XE");
4429 if (renaming_expr != NULL)
4430 *renaming_expr = suffix + 5;
4431 if (suffix == NULL || suffix == info)
4432 return ADA_NOT_RENAMING;
4433 if (len != NULL)
4434 *len = suffix - info;
4435 return kind;
a5ee536b
JB
4436}
4437
4438/* Compute the value of the given RENAMING_SYM, which is expected to
4439 be a symbol encoding a renaming expression. BLOCK is the block
4440 used to evaluate the renaming. */
52ce6436 4441
a5ee536b
JB
4442static struct value *
4443ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4444 const struct block *block)
a5ee536b 4445{
bbc13ae3 4446 const char *sym_name;
a5ee536b 4447
bbc13ae3 4448 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4449 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4450 return evaluate_expression (expr.get ());
a5ee536b 4451}
14f9c5c9 4452\f
d2e4a39e 4453
4c4b4cd2 4454 /* Evaluation: Function Calls */
14f9c5c9 4455
4c4b4cd2 4456/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4457 lvalues, and otherwise has the side-effect of allocating memory
4458 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4459
d2e4a39e 4460static struct value *
40bc484c 4461ensure_lval (struct value *val)
14f9c5c9 4462{
40bc484c
JB
4463 if (VALUE_LVAL (val) == not_lval
4464 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4465 {
df407dfe 4466 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4467 const CORE_ADDR addr =
4468 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4469
a84a8a0d 4470 VALUE_LVAL (val) = lval_memory;
1a088441 4471 set_value_address (val, addr);
40bc484c 4472 write_memory (addr, value_contents (val), len);
c3e5cd34 4473 }
14f9c5c9
AS
4474
4475 return val;
4476}
4477
4478/* Return the value ACTUAL, converted to be an appropriate value for a
4479 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4480 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4481 values not residing in memory, updating it as needed. */
14f9c5c9 4482
a93c0eb6 4483struct value *
40bc484c 4484ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4485{
df407dfe 4486 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4487 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4488 struct type *formal_target =
4489 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4490 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4491 struct type *actual_target =
4492 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4493 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4494
4c4b4cd2 4495 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4496 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4497 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4498 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4499 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4500 {
a84a8a0d 4501 struct value *result;
5b4ee69b 4502
14f9c5c9 4503 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4504 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4505 result = desc_data (actual);
14f9c5c9 4506 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4507 {
4508 if (VALUE_LVAL (actual) != lval_memory)
4509 {
4510 struct value *val;
5b4ee69b 4511
df407dfe 4512 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4513 val = allocate_value (actual_type);
990a07ab 4514 memcpy ((char *) value_contents_raw (val),
0fd88904 4515 (char *) value_contents (actual),
4c4b4cd2 4516 TYPE_LENGTH (actual_type));
40bc484c 4517 actual = ensure_lval (val);
4c4b4cd2 4518 }
a84a8a0d 4519 result = value_addr (actual);
4c4b4cd2 4520 }
a84a8a0d
JB
4521 else
4522 return actual;
b1af9e97 4523 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4524 }
4525 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4526 return ada_value_ind (actual);
8344af1e
JB
4527 else if (ada_is_aligner_type (formal_type))
4528 {
4529 /* We need to turn this parameter into an aligner type
4530 as well. */
4531 struct value *aligner = allocate_value (formal_type);
4532 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4533
4534 value_assign_to_component (aligner, component, actual);
4535 return aligner;
4536 }
14f9c5c9
AS
4537
4538 return actual;
4539}
4540
438c98a1
JB
4541/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4542 type TYPE. This is usually an inefficient no-op except on some targets
4543 (such as AVR) where the representation of a pointer and an address
4544 differs. */
4545
4546static CORE_ADDR
4547value_pointer (struct value *value, struct type *type)
4548{
4549 struct gdbarch *gdbarch = get_type_arch (type);
4550 unsigned len = TYPE_LENGTH (type);
224c3ddb 4551 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4552 CORE_ADDR addr;
4553
4554 addr = value_address (value);
4555 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4556 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4557 return addr;
4558}
4559
14f9c5c9 4560
4c4b4cd2
PH
4561/* Push a descriptor of type TYPE for array value ARR on the stack at
4562 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4563 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4564 to-descriptor type rather than a descriptor type), a struct value *
4565 representing a pointer to this descriptor. */
14f9c5c9 4566
d2e4a39e 4567static struct value *
40bc484c 4568make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4569{
d2e4a39e
AS
4570 struct type *bounds_type = desc_bounds_type (type);
4571 struct type *desc_type = desc_base_type (type);
4572 struct value *descriptor = allocate_value (desc_type);
4573 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4574 int i;
d2e4a39e 4575
0963b4bd
MS
4576 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4577 i > 0; i -= 1)
14f9c5c9 4578 {
19f220c3
JK
4579 modify_field (value_type (bounds), value_contents_writeable (bounds),
4580 ada_array_bound (arr, i, 0),
4581 desc_bound_bitpos (bounds_type, i, 0),
4582 desc_bound_bitsize (bounds_type, i, 0));
4583 modify_field (value_type (bounds), value_contents_writeable (bounds),
4584 ada_array_bound (arr, i, 1),
4585 desc_bound_bitpos (bounds_type, i, 1),
4586 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4587 }
d2e4a39e 4588
40bc484c 4589 bounds = ensure_lval (bounds);
d2e4a39e 4590
19f220c3
JK
4591 modify_field (value_type (descriptor),
4592 value_contents_writeable (descriptor),
4593 value_pointer (ensure_lval (arr),
4594 TYPE_FIELD_TYPE (desc_type, 0)),
4595 fat_pntr_data_bitpos (desc_type),
4596 fat_pntr_data_bitsize (desc_type));
4597
4598 modify_field (value_type (descriptor),
4599 value_contents_writeable (descriptor),
4600 value_pointer (bounds,
4601 TYPE_FIELD_TYPE (desc_type, 1)),
4602 fat_pntr_bounds_bitpos (desc_type),
4603 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4604
40bc484c 4605 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4606
4607 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4608 return value_addr (descriptor);
4609 else
4610 return descriptor;
4611}
14f9c5c9 4612\f
3d9434b5
JB
4613 /* Symbol Cache Module */
4614
3d9434b5 4615/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4616 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4617 on the type of entity being printed, the cache can make it as much
4618 as an order of magnitude faster than without it.
4619
4620 The descriptive type DWARF extension has significantly reduced
4621 the need for this cache, at least when DWARF is being used. However,
4622 even in this case, some expensive name-based symbol searches are still
4623 sometimes necessary - to find an XVZ variable, mostly. */
4624
ee01b665 4625/* Initialize the contents of SYM_CACHE. */
3d9434b5 4626
ee01b665
JB
4627static void
4628ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4629{
4630 obstack_init (&sym_cache->cache_space);
4631 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4632}
3d9434b5 4633
ee01b665
JB
4634/* Free the memory used by SYM_CACHE. */
4635
4636static void
4637ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4638{
ee01b665
JB
4639 obstack_free (&sym_cache->cache_space, NULL);
4640 xfree (sym_cache);
4641}
3d9434b5 4642
ee01b665
JB
4643/* Return the symbol cache associated to the given program space PSPACE.
4644 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4645
ee01b665
JB
4646static struct ada_symbol_cache *
4647ada_get_symbol_cache (struct program_space *pspace)
4648{
4649 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4650
66c168ae 4651 if (pspace_data->sym_cache == NULL)
ee01b665 4652 {
66c168ae
JB
4653 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4654 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4655 }
4656
66c168ae 4657 return pspace_data->sym_cache;
ee01b665 4658}
3d9434b5
JB
4659
4660/* Clear all entries from the symbol cache. */
4661
4662static void
4663ada_clear_symbol_cache (void)
4664{
ee01b665
JB
4665 struct ada_symbol_cache *sym_cache
4666 = ada_get_symbol_cache (current_program_space);
4667
4668 obstack_free (&sym_cache->cache_space, NULL);
4669 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4670}
4671
fe978cb0 4672/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4673 Return it if found, or NULL otherwise. */
4674
4675static struct cache_entry **
fe978cb0 4676find_entry (const char *name, domain_enum domain)
3d9434b5 4677{
ee01b665
JB
4678 struct ada_symbol_cache *sym_cache
4679 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4680 int h = msymbol_hash (name) % HASH_SIZE;
4681 struct cache_entry **e;
4682
ee01b665 4683 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4684 {
fe978cb0 4685 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4686 return e;
4687 }
4688 return NULL;
4689}
4690
fe978cb0 4691/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4692 Return 1 if found, 0 otherwise.
4693
4694 If an entry was found and SYM is not NULL, set *SYM to the entry's
4695 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4696
96d887e8 4697static int
fe978cb0 4698lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4699 struct symbol **sym, const struct block **block)
96d887e8 4700{
fe978cb0 4701 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4702
4703 if (e == NULL)
4704 return 0;
4705 if (sym != NULL)
4706 *sym = (*e)->sym;
4707 if (block != NULL)
4708 *block = (*e)->block;
4709 return 1;
96d887e8
PH
4710}
4711
3d9434b5 4712/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4713 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4714
96d887e8 4715static void
fe978cb0 4716cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4717 const struct block *block)
96d887e8 4718{
ee01b665
JB
4719 struct ada_symbol_cache *sym_cache
4720 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4721 int h;
4722 char *copy;
4723 struct cache_entry *e;
4724
1994afbf
DE
4725 /* Symbols for builtin types don't have a block.
4726 For now don't cache such symbols. */
4727 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4728 return;
4729
3d9434b5
JB
4730 /* If the symbol is a local symbol, then do not cache it, as a search
4731 for that symbol depends on the context. To determine whether
4732 the symbol is local or not, we check the block where we found it
4733 against the global and static blocks of its associated symtab. */
4734 if (sym
08be3fe3 4735 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4736 GLOBAL_BLOCK) != block
08be3fe3 4737 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4738 STATIC_BLOCK) != block)
3d9434b5
JB
4739 return;
4740
4741 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4742 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4743 sizeof (*e));
4744 e->next = sym_cache->root[h];
4745 sym_cache->root[h] = e;
224c3ddb
SM
4746 e->name = copy
4747 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4748 strcpy (copy, name);
4749 e->sym = sym;
fe978cb0 4750 e->domain = domain;
3d9434b5 4751 e->block = block;
96d887e8 4752}
4c4b4cd2
PH
4753\f
4754 /* Symbol Lookup */
4755
b5ec771e
PA
4756/* Return the symbol name match type that should be used used when
4757 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4758
4759 LOOKUP_NAME is expected to be a symbol name after transformation
4760 for Ada lookups (see ada_name_for_lookup). */
4761
b5ec771e
PA
4762static symbol_name_match_type
4763name_match_type_from_name (const char *lookup_name)
c0431670 4764{
b5ec771e
PA
4765 return (strstr (lookup_name, "__") == NULL
4766 ? symbol_name_match_type::WILD
4767 : symbol_name_match_type::FULL);
c0431670
JB
4768}
4769
4c4b4cd2
PH
4770/* Return the result of a standard (literal, C-like) lookup of NAME in
4771 given DOMAIN, visible from lexical block BLOCK. */
4772
4773static struct symbol *
4774standard_lookup (const char *name, const struct block *block,
4775 domain_enum domain)
4776{
acbd605d 4777 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4778 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4779
d12307c1
PMR
4780 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4781 return sym.symbol;
2570f2b7 4782 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4783 cache_symbol (name, domain, sym.symbol, sym.block);
4784 return sym.symbol;
4c4b4cd2
PH
4785}
4786
4787
4788/* Non-zero iff there is at least one non-function/non-enumeral symbol
4789 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4790 since they contend in overloading in the same way. */
4791static int
d12307c1 4792is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4793{
4794 int i;
4795
4796 for (i = 0; i < n; i += 1)
d12307c1
PMR
4797 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4798 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4799 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4800 return 1;
4801
4802 return 0;
4803}
4804
4805/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4806 struct types. Otherwise, they may not. */
14f9c5c9
AS
4807
4808static int
d2e4a39e 4809equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4810{
d2e4a39e 4811 if (type0 == type1)
14f9c5c9 4812 return 1;
d2e4a39e 4813 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4814 || TYPE_CODE (type0) != TYPE_CODE (type1))
4815 return 0;
d2e4a39e 4816 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4817 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4818 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4819 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4820 return 1;
d2e4a39e 4821
14f9c5c9
AS
4822 return 0;
4823}
4824
4825/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4826 no more defined than that of SYM1. */
14f9c5c9
AS
4827
4828static int
d2e4a39e 4829lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4830{
4831 if (sym0 == sym1)
4832 return 1;
176620f1 4833 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4834 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4835 return 0;
4836
d2e4a39e 4837 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4838 {
4839 case LOC_UNDEF:
4840 return 1;
4841 case LOC_TYPEDEF:
4842 {
4c4b4cd2
PH
4843 struct type *type0 = SYMBOL_TYPE (sym0);
4844 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4845 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4846 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4847 int len0 = strlen (name0);
5b4ee69b 4848
4c4b4cd2
PH
4849 return
4850 TYPE_CODE (type0) == TYPE_CODE (type1)
4851 && (equiv_types (type0, type1)
4852 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4853 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4854 }
4855 case LOC_CONST:
4856 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4857 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4858 default:
4859 return 0;
14f9c5c9
AS
4860 }
4861}
4862
d12307c1 4863/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4864 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4865
4866static void
76a01679
JB
4867add_defn_to_vec (struct obstack *obstackp,
4868 struct symbol *sym,
f0c5f9b2 4869 const struct block *block)
14f9c5c9
AS
4870{
4871 int i;
d12307c1 4872 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4873
529cad9c
PH
4874 /* Do not try to complete stub types, as the debugger is probably
4875 already scanning all symbols matching a certain name at the
4876 time when this function is called. Trying to replace the stub
4877 type by its associated full type will cause us to restart a scan
4878 which may lead to an infinite recursion. Instead, the client
4879 collecting the matching symbols will end up collecting several
4880 matches, with at least one of them complete. It can then filter
4881 out the stub ones if needed. */
4882
4c4b4cd2
PH
4883 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4884 {
d12307c1 4885 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4886 return;
d12307c1 4887 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4888 {
d12307c1 4889 prevDefns[i].symbol = sym;
4c4b4cd2 4890 prevDefns[i].block = block;
4c4b4cd2 4891 return;
76a01679 4892 }
4c4b4cd2
PH
4893 }
4894
4895 {
d12307c1 4896 struct block_symbol info;
4c4b4cd2 4897
d12307c1 4898 info.symbol = sym;
4c4b4cd2 4899 info.block = block;
d12307c1 4900 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4901 }
4902}
4903
d12307c1
PMR
4904/* Number of block_symbol structures currently collected in current vector in
4905 OBSTACKP. */
4c4b4cd2 4906
76a01679
JB
4907static int
4908num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4909{
d12307c1 4910 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4911}
4912
d12307c1
PMR
4913/* Vector of block_symbol structures currently collected in current vector in
4914 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4915
d12307c1 4916static struct block_symbol *
4c4b4cd2
PH
4917defns_collected (struct obstack *obstackp, int finish)
4918{
4919 if (finish)
224c3ddb 4920 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4921 else
d12307c1 4922 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4923}
4924
7c7b6655
TT
4925/* Return a bound minimal symbol matching NAME according to Ada
4926 decoding rules. Returns an invalid symbol if there is no such
4927 minimal symbol. Names prefixed with "standard__" are handled
4928 specially: "standard__" is first stripped off, and only static and
4929 global symbols are searched. */
4c4b4cd2 4930
7c7b6655 4931struct bound_minimal_symbol
96d887e8 4932ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4933{
7c7b6655 4934 struct bound_minimal_symbol result;
4c4b4cd2 4935 struct objfile *objfile;
96d887e8 4936 struct minimal_symbol *msymbol;
4c4b4cd2 4937
7c7b6655
TT
4938 memset (&result, 0, sizeof (result));
4939
b5ec771e
PA
4940 symbol_name_match_type match_type = name_match_type_from_name (name);
4941 lookup_name_info lookup_name (name, match_type);
4942
4943 symbol_name_matcher_ftype *match_name
4944 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4945
96d887e8
PH
4946 ALL_MSYMBOLS (objfile, msymbol)
4947 {
b5ec771e 4948 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
96d887e8 4949 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4950 {
4951 result.minsym = msymbol;
4952 result.objfile = objfile;
4953 break;
4954 }
96d887e8 4955 }
4c4b4cd2 4956
7c7b6655 4957 return result;
96d887e8 4958}
4c4b4cd2 4959
96d887e8
PH
4960/* For all subprograms that statically enclose the subprogram of the
4961 selected frame, add symbols matching identifier NAME in DOMAIN
4962 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4963 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4964 with a wildcard prefix. */
4c4b4cd2 4965
96d887e8
PH
4966static void
4967add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4968 const lookup_name_info &lookup_name,
4969 domain_enum domain)
96d887e8 4970{
96d887e8 4971}
14f9c5c9 4972
96d887e8
PH
4973/* True if TYPE is definitely an artificial type supplied to a symbol
4974 for which no debugging information was given in the symbol file. */
14f9c5c9 4975
96d887e8
PH
4976static int
4977is_nondebugging_type (struct type *type)
4978{
0d5cff50 4979 const char *name = ada_type_name (type);
5b4ee69b 4980
96d887e8
PH
4981 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4982}
4c4b4cd2 4983
8f17729f
JB
4984/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4985 that are deemed "identical" for practical purposes.
4986
4987 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4988 types and that their number of enumerals is identical (in other
4989 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4990
4991static int
4992ada_identical_enum_types_p (struct type *type1, struct type *type2)
4993{
4994 int i;
4995
4996 /* The heuristic we use here is fairly conservative. We consider
4997 that 2 enumerate types are identical if they have the same
4998 number of enumerals and that all enumerals have the same
4999 underlying value and name. */
5000
5001 /* All enums in the type should have an identical underlying value. */
5002 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5003 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5004 return 0;
5005
5006 /* All enumerals should also have the same name (modulo any numerical
5007 suffix). */
5008 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5009 {
0d5cff50
DE
5010 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5011 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5012 int len_1 = strlen (name_1);
5013 int len_2 = strlen (name_2);
5014
5015 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5016 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5017 if (len_1 != len_2
5018 || strncmp (TYPE_FIELD_NAME (type1, i),
5019 TYPE_FIELD_NAME (type2, i),
5020 len_1) != 0)
5021 return 0;
5022 }
5023
5024 return 1;
5025}
5026
5027/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5028 that are deemed "identical" for practical purposes. Sometimes,
5029 enumerals are not strictly identical, but their types are so similar
5030 that they can be considered identical.
5031
5032 For instance, consider the following code:
5033
5034 type Color is (Black, Red, Green, Blue, White);
5035 type RGB_Color is new Color range Red .. Blue;
5036
5037 Type RGB_Color is a subrange of an implicit type which is a copy
5038 of type Color. If we call that implicit type RGB_ColorB ("B" is
5039 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5040 As a result, when an expression references any of the enumeral
5041 by name (Eg. "print green"), the expression is technically
5042 ambiguous and the user should be asked to disambiguate. But
5043 doing so would only hinder the user, since it wouldn't matter
5044 what choice he makes, the outcome would always be the same.
5045 So, for practical purposes, we consider them as the same. */
5046
5047static int
d12307c1 5048symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
5049{
5050 int i;
5051
5052 /* Before performing a thorough comparison check of each type,
5053 we perform a series of inexpensive checks. We expect that these
5054 checks will quickly fail in the vast majority of cases, and thus
5055 help prevent the unnecessary use of a more expensive comparison.
5056 Said comparison also expects us to make some of these checks
5057 (see ada_identical_enum_types_p). */
5058
5059 /* Quick check: All symbols should have an enum type. */
5060 for (i = 0; i < nsyms; i++)
d12307c1 5061 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5062 return 0;
5063
5064 /* Quick check: They should all have the same value. */
5065 for (i = 1; i < nsyms; i++)
d12307c1 5066 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5067 return 0;
5068
5069 /* Quick check: They should all have the same number of enumerals. */
5070 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5071 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5072 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5073 return 0;
5074
5075 /* All the sanity checks passed, so we might have a set of
5076 identical enumeration types. Perform a more complete
5077 comparison of the type of each symbol. */
5078 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5079 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5080 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5081 return 0;
5082
5083 return 1;
5084}
5085
96d887e8
PH
5086/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5087 duplicate other symbols in the list (The only case I know of where
5088 this happens is when object files containing stabs-in-ecoff are
5089 linked with files containing ordinary ecoff debugging symbols (or no
5090 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5091 Returns the number of items in the modified list. */
4c4b4cd2 5092
96d887e8 5093static int
d12307c1 5094remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5095{
5096 int i, j;
4c4b4cd2 5097
8f17729f
JB
5098 /* We should never be called with less than 2 symbols, as there
5099 cannot be any extra symbol in that case. But it's easy to
5100 handle, since we have nothing to do in that case. */
5101 if (nsyms < 2)
5102 return nsyms;
5103
96d887e8
PH
5104 i = 0;
5105 while (i < nsyms)
5106 {
a35ddb44 5107 int remove_p = 0;
339c13b6
JB
5108
5109 /* If two symbols have the same name and one of them is a stub type,
5110 the get rid of the stub. */
5111
d12307c1
PMR
5112 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5113 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5114 {
5115 for (j = 0; j < nsyms; j++)
5116 {
5117 if (j != i
d12307c1
PMR
5118 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5119 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5120 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5121 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5122 remove_p = 1;
339c13b6
JB
5123 }
5124 }
5125
5126 /* Two symbols with the same name, same class and same address
5127 should be identical. */
5128
d12307c1
PMR
5129 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5130 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5131 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5132 {
5133 for (j = 0; j < nsyms; j += 1)
5134 {
5135 if (i != j
d12307c1
PMR
5136 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5137 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5138 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5139 && SYMBOL_CLASS (syms[i].symbol)
5140 == SYMBOL_CLASS (syms[j].symbol)
5141 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5142 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5143 remove_p = 1;
4c4b4cd2 5144 }
4c4b4cd2 5145 }
339c13b6 5146
a35ddb44 5147 if (remove_p)
339c13b6
JB
5148 {
5149 for (j = i + 1; j < nsyms; j += 1)
5150 syms[j - 1] = syms[j];
5151 nsyms -= 1;
5152 }
5153
96d887e8 5154 i += 1;
14f9c5c9 5155 }
8f17729f
JB
5156
5157 /* If all the remaining symbols are identical enumerals, then
5158 just keep the first one and discard the rest.
5159
5160 Unlike what we did previously, we do not discard any entry
5161 unless they are ALL identical. This is because the symbol
5162 comparison is not a strict comparison, but rather a practical
5163 comparison. If all symbols are considered identical, then
5164 we can just go ahead and use the first one and discard the rest.
5165 But if we cannot reduce the list to a single element, we have
5166 to ask the user to disambiguate anyways. And if we have to
5167 present a multiple-choice menu, it's less confusing if the list
5168 isn't missing some choices that were identical and yet distinct. */
5169 if (symbols_are_identical_enums (syms, nsyms))
5170 nsyms = 1;
5171
96d887e8 5172 return nsyms;
14f9c5c9
AS
5173}
5174
96d887e8
PH
5175/* Given a type that corresponds to a renaming entity, use the type name
5176 to extract the scope (package name or function name, fully qualified,
5177 and following the GNAT encoding convention) where this renaming has been
5178 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5179
96d887e8
PH
5180static char *
5181xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5182{
96d887e8 5183 /* The renaming types adhere to the following convention:
0963b4bd 5184 <scope>__<rename>___<XR extension>.
96d887e8
PH
5185 So, to extract the scope, we search for the "___XR" extension,
5186 and then backtrack until we find the first "__". */
76a01679 5187
96d887e8 5188 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5189 const char *suffix = strstr (name, "___XR");
5190 const char *last;
96d887e8
PH
5191 int scope_len;
5192 char *scope;
14f9c5c9 5193
96d887e8
PH
5194 /* Now, backtrack a bit until we find the first "__". Start looking
5195 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5196
96d887e8
PH
5197 for (last = suffix - 3; last > name; last--)
5198 if (last[0] == '_' && last[1] == '_')
5199 break;
76a01679 5200
96d887e8 5201 /* Make a copy of scope and return it. */
14f9c5c9 5202
96d887e8
PH
5203 scope_len = last - name;
5204 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5205
96d887e8
PH
5206 strncpy (scope, name, scope_len);
5207 scope[scope_len] = '\0';
4c4b4cd2 5208
96d887e8 5209 return scope;
4c4b4cd2
PH
5210}
5211
96d887e8 5212/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5213
96d887e8
PH
5214static int
5215is_package_name (const char *name)
4c4b4cd2 5216{
96d887e8
PH
5217 /* Here, We take advantage of the fact that no symbols are generated
5218 for packages, while symbols are generated for each function.
5219 So the condition for NAME represent a package becomes equivalent
5220 to NAME not existing in our list of symbols. There is only one
5221 small complication with library-level functions (see below). */
4c4b4cd2 5222
96d887e8 5223 char *fun_name;
76a01679 5224
96d887e8
PH
5225 /* If it is a function that has not been defined at library level,
5226 then we should be able to look it up in the symbols. */
5227 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5228 return 0;
14f9c5c9 5229
96d887e8
PH
5230 /* Library-level function names start with "_ada_". See if function
5231 "_ada_" followed by NAME can be found. */
14f9c5c9 5232
96d887e8 5233 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5234 functions names cannot contain "__" in them. */
96d887e8
PH
5235 if (strstr (name, "__") != NULL)
5236 return 0;
4c4b4cd2 5237
b435e160 5238 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5239
96d887e8
PH
5240 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5241}
14f9c5c9 5242
96d887e8 5243/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5244 not visible from FUNCTION_NAME. */
14f9c5c9 5245
96d887e8 5246static int
0d5cff50 5247old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5248{
aeb5907d 5249 char *scope;
1509e573 5250 struct cleanup *old_chain;
aeb5907d
JB
5251
5252 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5253 return 0;
5254
5255 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5256 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5257
96d887e8
PH
5258 /* If the rename has been defined in a package, then it is visible. */
5259 if (is_package_name (scope))
1509e573
JB
5260 {
5261 do_cleanups (old_chain);
5262 return 0;
5263 }
14f9c5c9 5264
96d887e8
PH
5265 /* Check that the rename is in the current function scope by checking
5266 that its name starts with SCOPE. */
76a01679 5267
96d887e8
PH
5268 /* If the function name starts with "_ada_", it means that it is
5269 a library-level function. Strip this prefix before doing the
5270 comparison, as the encoding for the renaming does not contain
5271 this prefix. */
61012eef 5272 if (startswith (function_name, "_ada_"))
96d887e8 5273 function_name += 5;
f26caa11 5274
1509e573 5275 {
61012eef 5276 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5277
5278 do_cleanups (old_chain);
5279 return is_invisible;
5280 }
f26caa11
PH
5281}
5282
aeb5907d
JB
5283/* Remove entries from SYMS that corresponds to a renaming entity that
5284 is not visible from the function associated with CURRENT_BLOCK or
5285 that is superfluous due to the presence of more specific renaming
5286 information. Places surviving symbols in the initial entries of
5287 SYMS and returns the number of surviving symbols.
96d887e8
PH
5288
5289 Rationale:
aeb5907d
JB
5290 First, in cases where an object renaming is implemented as a
5291 reference variable, GNAT may produce both the actual reference
5292 variable and the renaming encoding. In this case, we discard the
5293 latter.
5294
5295 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5296 entity. Unfortunately, STABS currently does not support the definition
5297 of types that are local to a given lexical block, so all renamings types
5298 are emitted at library level. As a consequence, if an application
5299 contains two renaming entities using the same name, and a user tries to
5300 print the value of one of these entities, the result of the ada symbol
5301 lookup will also contain the wrong renaming type.
f26caa11 5302
96d887e8
PH
5303 This function partially covers for this limitation by attempting to
5304 remove from the SYMS list renaming symbols that should be visible
5305 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5306 method with the current information available. The implementation
5307 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5308
5309 - When the user tries to print a rename in a function while there
5310 is another rename entity defined in a package: Normally, the
5311 rename in the function has precedence over the rename in the
5312 package, so the latter should be removed from the list. This is
5313 currently not the case.
5314
5315 - This function will incorrectly remove valid renames if
5316 the CURRENT_BLOCK corresponds to a function which symbol name
5317 has been changed by an "Export" pragma. As a consequence,
5318 the user will be unable to print such rename entities. */
4c4b4cd2 5319
14f9c5c9 5320static int
d12307c1 5321remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5322 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5323{
5324 struct symbol *current_function;
0d5cff50 5325 const char *current_function_name;
4c4b4cd2 5326 int i;
aeb5907d
JB
5327 int is_new_style_renaming;
5328
5329 /* If there is both a renaming foo___XR... encoded as a variable and
5330 a simple variable foo in the same block, discard the latter.
0963b4bd 5331 First, zero out such symbols, then compress. */
aeb5907d
JB
5332 is_new_style_renaming = 0;
5333 for (i = 0; i < nsyms; i += 1)
5334 {
d12307c1 5335 struct symbol *sym = syms[i].symbol;
270140bd 5336 const struct block *block = syms[i].block;
aeb5907d
JB
5337 const char *name;
5338 const char *suffix;
5339
5340 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5341 continue;
5342 name = SYMBOL_LINKAGE_NAME (sym);
5343 suffix = strstr (name, "___XR");
5344
5345 if (suffix != NULL)
5346 {
5347 int name_len = suffix - name;
5348 int j;
5b4ee69b 5349
aeb5907d
JB
5350 is_new_style_renaming = 1;
5351 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5352 if (i != j && syms[j].symbol != NULL
5353 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5354 name_len) == 0
5355 && block == syms[j].block)
d12307c1 5356 syms[j].symbol = NULL;
aeb5907d
JB
5357 }
5358 }
5359 if (is_new_style_renaming)
5360 {
5361 int j, k;
5362
5363 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5364 if (syms[j].symbol != NULL)
aeb5907d
JB
5365 {
5366 syms[k] = syms[j];
5367 k += 1;
5368 }
5369 return k;
5370 }
4c4b4cd2
PH
5371
5372 /* Extract the function name associated to CURRENT_BLOCK.
5373 Abort if unable to do so. */
76a01679 5374
4c4b4cd2
PH
5375 if (current_block == NULL)
5376 return nsyms;
76a01679 5377
7f0df278 5378 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5379 if (current_function == NULL)
5380 return nsyms;
5381
5382 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5383 if (current_function_name == NULL)
5384 return nsyms;
5385
5386 /* Check each of the symbols, and remove it from the list if it is
5387 a type corresponding to a renaming that is out of the scope of
5388 the current block. */
5389
5390 i = 0;
5391 while (i < nsyms)
5392 {
d12307c1 5393 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5394 == ADA_OBJECT_RENAMING
d12307c1 5395 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5396 {
5397 int j;
5b4ee69b 5398
aeb5907d 5399 for (j = i + 1; j < nsyms; j += 1)
76a01679 5400 syms[j - 1] = syms[j];
4c4b4cd2
PH
5401 nsyms -= 1;
5402 }
5403 else
5404 i += 1;
5405 }
5406
5407 return nsyms;
5408}
5409
339c13b6
JB
5410/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5411 whose name and domain match NAME and DOMAIN respectively.
5412 If no match was found, then extend the search to "enclosing"
5413 routines (in other words, if we're inside a nested function,
5414 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5415 If WILD_MATCH_P is nonzero, perform the naming matching in
5416 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5417
5418 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5419
5420static void
b5ec771e
PA
5421ada_add_local_symbols (struct obstack *obstackp,
5422 const lookup_name_info &lookup_name,
5423 const struct block *block, domain_enum domain)
339c13b6
JB
5424{
5425 int block_depth = 0;
5426
5427 while (block != NULL)
5428 {
5429 block_depth += 1;
b5ec771e 5430 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5431
5432 /* If we found a non-function match, assume that's the one. */
5433 if (is_nonfunction (defns_collected (obstackp, 0),
5434 num_defns_collected (obstackp)))
5435 return;
5436
5437 block = BLOCK_SUPERBLOCK (block);
5438 }
5439
5440 /* If no luck so far, try to find NAME as a local symbol in some lexically
5441 enclosing subprogram. */
5442 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5443 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5444}
5445
ccefe4c4 5446/* An object of this type is used as the user_data argument when
40658b94 5447 calling the map_matching_symbols method. */
ccefe4c4 5448
40658b94 5449struct match_data
ccefe4c4 5450{
40658b94 5451 struct objfile *objfile;
ccefe4c4 5452 struct obstack *obstackp;
40658b94
PH
5453 struct symbol *arg_sym;
5454 int found_sym;
ccefe4c4
TT
5455};
5456
22cee43f 5457/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5458 to a list of symbols. DATA0 is a pointer to a struct match_data *
5459 containing the obstack that collects the symbol list, the file that SYM
5460 must come from, a flag indicating whether a non-argument symbol has
5461 been found in the current block, and the last argument symbol
5462 passed in SYM within the current block (if any). When SYM is null,
5463 marking the end of a block, the argument symbol is added if no
5464 other has been found. */
ccefe4c4 5465
40658b94
PH
5466static int
5467aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5468{
40658b94
PH
5469 struct match_data *data = (struct match_data *) data0;
5470
5471 if (sym == NULL)
5472 {
5473 if (!data->found_sym && data->arg_sym != NULL)
5474 add_defn_to_vec (data->obstackp,
5475 fixup_symbol_section (data->arg_sym, data->objfile),
5476 block);
5477 data->found_sym = 0;
5478 data->arg_sym = NULL;
5479 }
5480 else
5481 {
5482 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5483 return 0;
5484 else if (SYMBOL_IS_ARGUMENT (sym))
5485 data->arg_sym = sym;
5486 else
5487 {
5488 data->found_sym = 1;
5489 add_defn_to_vec (data->obstackp,
5490 fixup_symbol_section (sym, data->objfile),
5491 block);
5492 }
5493 }
5494 return 0;
5495}
5496
b5ec771e
PA
5497/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5498 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5499 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5500
5501static int
5502ada_add_block_renamings (struct obstack *obstackp,
5503 const struct block *block,
b5ec771e
PA
5504 const lookup_name_info &lookup_name,
5505 domain_enum domain)
22cee43f
PMR
5506{
5507 struct using_direct *renaming;
5508 int defns_mark = num_defns_collected (obstackp);
5509
b5ec771e
PA
5510 symbol_name_matcher_ftype *name_match
5511 = ada_get_symbol_name_matcher (lookup_name);
5512
22cee43f
PMR
5513 for (renaming = block_using (block);
5514 renaming != NULL;
5515 renaming = renaming->next)
5516 {
5517 const char *r_name;
22cee43f
PMR
5518
5519 /* Avoid infinite recursions: skip this renaming if we are actually
5520 already traversing it.
5521
5522 Currently, symbol lookup in Ada don't use the namespace machinery from
5523 C++/Fortran support: skip namespace imports that use them. */
5524 if (renaming->searched
5525 || (renaming->import_src != NULL
5526 && renaming->import_src[0] != '\0')
5527 || (renaming->import_dest != NULL
5528 && renaming->import_dest[0] != '\0'))
5529 continue;
5530 renaming->searched = 1;
5531
5532 /* TODO: here, we perform another name-based symbol lookup, which can
5533 pull its own multiple overloads. In theory, we should be able to do
5534 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5535 not a simple name. But in order to do this, we would need to enhance
5536 the DWARF reader to associate a symbol to this renaming, instead of a
5537 name. So, for now, we do something simpler: re-use the C++/Fortran
5538 namespace machinery. */
5539 r_name = (renaming->alias != NULL
5540 ? renaming->alias
5541 : renaming->declaration);
b5ec771e
PA
5542 if (name_match (r_name, lookup_name, NULL))
5543 {
5544 lookup_name_info decl_lookup_name (renaming->declaration,
5545 lookup_name.match_type ());
5546 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5547 1, NULL);
5548 }
22cee43f
PMR
5549 renaming->searched = 0;
5550 }
5551 return num_defns_collected (obstackp) != defns_mark;
5552}
5553
db230ce3
JB
5554/* Implements compare_names, but only applying the comparision using
5555 the given CASING. */
5b4ee69b 5556
40658b94 5557static int
db230ce3
JB
5558compare_names_with_case (const char *string1, const char *string2,
5559 enum case_sensitivity casing)
40658b94
PH
5560{
5561 while (*string1 != '\0' && *string2 != '\0')
5562 {
db230ce3
JB
5563 char c1, c2;
5564
40658b94
PH
5565 if (isspace (*string1) || isspace (*string2))
5566 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5567
5568 if (casing == case_sensitive_off)
5569 {
5570 c1 = tolower (*string1);
5571 c2 = tolower (*string2);
5572 }
5573 else
5574 {
5575 c1 = *string1;
5576 c2 = *string2;
5577 }
5578 if (c1 != c2)
40658b94 5579 break;
db230ce3 5580
40658b94
PH
5581 string1 += 1;
5582 string2 += 1;
5583 }
db230ce3 5584
40658b94
PH
5585 switch (*string1)
5586 {
5587 case '(':
5588 return strcmp_iw_ordered (string1, string2);
5589 case '_':
5590 if (*string2 == '\0')
5591 {
052874e8 5592 if (is_name_suffix (string1))
40658b94
PH
5593 return 0;
5594 else
1a1d5513 5595 return 1;
40658b94 5596 }
dbb8534f 5597 /* FALLTHROUGH */
40658b94
PH
5598 default:
5599 if (*string2 == '(')
5600 return strcmp_iw_ordered (string1, string2);
5601 else
db230ce3
JB
5602 {
5603 if (casing == case_sensitive_off)
5604 return tolower (*string1) - tolower (*string2);
5605 else
5606 return *string1 - *string2;
5607 }
40658b94 5608 }
ccefe4c4
TT
5609}
5610
db230ce3
JB
5611/* Compare STRING1 to STRING2, with results as for strcmp.
5612 Compatible with strcmp_iw_ordered in that...
5613
5614 strcmp_iw_ordered (STRING1, STRING2) <= 0
5615
5616 ... implies...
5617
5618 compare_names (STRING1, STRING2) <= 0
5619
5620 (they may differ as to what symbols compare equal). */
5621
5622static int
5623compare_names (const char *string1, const char *string2)
5624{
5625 int result;
5626
5627 /* Similar to what strcmp_iw_ordered does, we need to perform
5628 a case-insensitive comparison first, and only resort to
5629 a second, case-sensitive, comparison if the first one was
5630 not sufficient to differentiate the two strings. */
5631
5632 result = compare_names_with_case (string1, string2, case_sensitive_off);
5633 if (result == 0)
5634 result = compare_names_with_case (string1, string2, case_sensitive_on);
5635
5636 return result;
5637}
5638
b5ec771e
PA
5639/* Convenience function to get at the Ada encoded lookup name for
5640 LOOKUP_NAME, as a C string. */
5641
5642static const char *
5643ada_lookup_name (const lookup_name_info &lookup_name)
5644{
5645 return lookup_name.ada ().lookup_name ().c_str ();
5646}
5647
339c13b6 5648/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5649 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5650 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5651 symbols otherwise. */
339c13b6
JB
5652
5653static void
b5ec771e
PA
5654add_nonlocal_symbols (struct obstack *obstackp,
5655 const lookup_name_info &lookup_name,
5656 domain_enum domain, int global)
339c13b6
JB
5657{
5658 struct objfile *objfile;
22cee43f 5659 struct compunit_symtab *cu;
40658b94 5660 struct match_data data;
339c13b6 5661
6475f2fe 5662 memset (&data, 0, sizeof data);
ccefe4c4 5663 data.obstackp = obstackp;
339c13b6 5664
b5ec771e
PA
5665 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5666
ccefe4c4 5667 ALL_OBJFILES (objfile)
40658b94
PH
5668 {
5669 data.objfile = objfile;
5670
5671 if (is_wild_match)
b5ec771e
PA
5672 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5673 domain, global,
4186eb54 5674 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5675 symbol_name_match_type::WILD,
5676 NULL);
40658b94 5677 else
b5ec771e
PA
5678 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5679 domain, global,
4186eb54 5680 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5681 symbol_name_match_type::FULL,
5682 compare_names);
22cee43f
PMR
5683
5684 ALL_OBJFILE_COMPUNITS (objfile, cu)
5685 {
5686 const struct block *global_block
5687 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5688
b5ec771e
PA
5689 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5690 domain))
22cee43f
PMR
5691 data.found_sym = 1;
5692 }
40658b94
PH
5693 }
5694
5695 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5696 {
b5ec771e
PA
5697 const char *name = ada_lookup_name (lookup_name);
5698 std::string name1 = std::string ("<_ada_") + name + '>';
5699
40658b94
PH
5700 ALL_OBJFILES (objfile)
5701 {
40658b94 5702 data.objfile = objfile;
b5ec771e
PA
5703 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5704 domain, global,
0963b4bd
MS
5705 aux_add_nonlocal_symbols,
5706 &data,
b5ec771e
PA
5707 symbol_name_match_type::FULL,
5708 compare_names);
40658b94
PH
5709 }
5710 }
339c13b6
JB
5711}
5712
b5ec771e
PA
5713/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5714 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5715 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5716
22cee43f
PMR
5717 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5718 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5719 is the one match returned (no other matches in that or
d9680e73 5720 enclosing blocks is returned). If there are any matches in or
22cee43f 5721 surrounding BLOCK, then these alone are returned.
4eeaa230 5722
b5ec771e
PA
5723 Names prefixed with "standard__" are handled specially:
5724 "standard__" is first stripped off (by the lookup_name
5725 constructor), and only static and global symbols are searched.
14f9c5c9 5726
22cee43f
PMR
5727 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5728 to lookup global symbols. */
5729
5730static void
5731ada_add_all_symbols (struct obstack *obstackp,
5732 const struct block *block,
b5ec771e 5733 const lookup_name_info &lookup_name,
22cee43f
PMR
5734 domain_enum domain,
5735 int full_search,
5736 int *made_global_lookup_p)
14f9c5c9
AS
5737{
5738 struct symbol *sym;
14f9c5c9 5739
22cee43f
PMR
5740 if (made_global_lookup_p)
5741 *made_global_lookup_p = 0;
339c13b6
JB
5742
5743 /* Special case: If the user specifies a symbol name inside package
5744 Standard, do a non-wild matching of the symbol name without
5745 the "standard__" prefix. This was primarily introduced in order
5746 to allow the user to specifically access the standard exceptions
5747 using, for instance, Standard.Constraint_Error when Constraint_Error
5748 is ambiguous (due to the user defining its own Constraint_Error
5749 entity inside its program). */
b5ec771e
PA
5750 if (lookup_name.ada ().standard_p ())
5751 block = NULL;
4c4b4cd2 5752
339c13b6 5753 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5754
4eeaa230
DE
5755 if (block != NULL)
5756 {
5757 if (full_search)
b5ec771e 5758 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5759 else
5760 {
5761 /* In the !full_search case we're are being called by
5762 ada_iterate_over_symbols, and we don't want to search
5763 superblocks. */
b5ec771e 5764 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5765 }
22cee43f
PMR
5766 if (num_defns_collected (obstackp) > 0 || !full_search)
5767 return;
4eeaa230 5768 }
d2e4a39e 5769
339c13b6
JB
5770 /* No non-global symbols found. Check our cache to see if we have
5771 already performed this search before. If we have, then return
5772 the same result. */
5773
b5ec771e
PA
5774 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5775 domain, &sym, &block))
4c4b4cd2
PH
5776 {
5777 if (sym != NULL)
b5ec771e 5778 add_defn_to_vec (obstackp, sym, block);
22cee43f 5779 return;
4c4b4cd2 5780 }
14f9c5c9 5781
22cee43f
PMR
5782 if (made_global_lookup_p)
5783 *made_global_lookup_p = 1;
b1eedac9 5784
339c13b6
JB
5785 /* Search symbols from all global blocks. */
5786
b5ec771e 5787 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5788
4c4b4cd2 5789 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5790 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5791
22cee43f 5792 if (num_defns_collected (obstackp) == 0)
b5ec771e 5793 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5794}
5795
b5ec771e
PA
5796/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5797 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f
PMR
5798 matches.
5799 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5800 indicating the symbols found and the blocks and symbol tables (if
5801 any) in which they were found. This vector is transient---good only to
5802 the next call of ada_lookup_symbol_list.
5803
5804 When full_search is non-zero, any non-function/non-enumeral
5805 symbol match within the nest of blocks whose innermost member is BLOCK,
5806 is the one match returned (no other matches in that or
5807 enclosing blocks is returned). If there are any matches in or
5808 surrounding BLOCK, then these alone are returned.
5809
5810 Names prefixed with "standard__" are handled specially: "standard__"
5811 is first stripped off, and only static and global symbols are searched. */
5812
5813static int
b5ec771e
PA
5814ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5815 const struct block *block,
22cee43f
PMR
5816 domain_enum domain,
5817 struct block_symbol **results,
5818 int full_search)
5819{
22cee43f
PMR
5820 int syms_from_global_search;
5821 int ndefns;
5822
5823 obstack_free (&symbol_list_obstack, NULL);
5824 obstack_init (&symbol_list_obstack);
b5ec771e
PA
5825 ada_add_all_symbols (&symbol_list_obstack, block, lookup_name,
5826 domain, full_search, &syms_from_global_search);
14f9c5c9 5827
4c4b4cd2
PH
5828 ndefns = num_defns_collected (&symbol_list_obstack);
5829 *results = defns_collected (&symbol_list_obstack, 1);
5830
5831 ndefns = remove_extra_symbols (*results, ndefns);
5832
b1eedac9 5833 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5834 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5835
b1eedac9 5836 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5837 cache_symbol (ada_lookup_name (lookup_name), domain,
5838 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5839
22cee43f 5840 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
14f9c5c9
AS
5841 return ndefns;
5842}
5843
b5ec771e 5844/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
4eeaa230
DE
5845 in global scopes, returning the number of matches, and setting *RESULTS
5846 to a vector of (SYM,BLOCK) tuples.
5847 See ada_lookup_symbol_list_worker for further details. */
5848
5849int
b5ec771e 5850ada_lookup_symbol_list (const char *name, const struct block *block,
d12307c1 5851 domain_enum domain, struct block_symbol **results)
4eeaa230 5852{
b5ec771e
PA
5853 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5854 lookup_name_info lookup_name (name, name_match_type);
5855
5856 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5857}
5858
5859/* Implementation of the la_iterate_over_symbols method. */
5860
5861static void
14bc53a8 5862ada_iterate_over_symbols
b5ec771e
PA
5863 (const struct block *block, const lookup_name_info &name,
5864 domain_enum domain,
14bc53a8 5865 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5866{
5867 int ndefs, i;
d12307c1 5868 struct block_symbol *results;
4eeaa230
DE
5869
5870 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5871 for (i = 0; i < ndefs; ++i)
5872 {
14bc53a8 5873 if (!callback (results[i].symbol))
4eeaa230
DE
5874 break;
5875 }
5876}
5877
4e5c77fe
JB
5878/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5879 to 1, but choosing the first symbol found if there are multiple
5880 choices.
5881
5e2336be
JB
5882 The result is stored in *INFO, which must be non-NULL.
5883 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5884
5885void
5886ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5887 domain_enum domain,
d12307c1 5888 struct block_symbol *info)
14f9c5c9 5889{
d12307c1 5890 struct block_symbol *candidates;
14f9c5c9
AS
5891 int n_candidates;
5892
b5ec771e
PA
5893 /* Since we already have an encoded name, wrap it in '<>' to force a
5894 verbatim match. Otherwise, if the name happens to not look like
5895 an encoded name (because it doesn't include a "__"),
5896 ada_lookup_name_info would re-encode/fold it again, and that
5897 would e.g., incorrectly lowercase object renaming names like
5898 "R28b" -> "r28b". */
5899 std::string verbatim = std::string ("<") + name + '>';
5900
5e2336be 5901 gdb_assert (info != NULL);
d12307c1 5902 memset (info, 0, sizeof (struct block_symbol));
4e5c77fe 5903
b5ec771e
PA
5904 n_candidates = ada_lookup_symbol_list (verbatim.c_str (), block,
5905 domain, &candidates);
14f9c5c9 5906 if (n_candidates == 0)
4e5c77fe 5907 return;
4c4b4cd2 5908
5e2336be 5909 *info = candidates[0];
d12307c1 5910 info->symbol = fixup_symbol_section (info->symbol, NULL);
4e5c77fe 5911}
aeb5907d
JB
5912
5913/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5914 scope and in global scopes, or NULL if none. NAME is folded and
5915 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5916 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5917 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5918
d12307c1 5919struct block_symbol
aeb5907d 5920ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5921 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5922{
d12307c1 5923 struct block_symbol info;
4e5c77fe 5924
aeb5907d
JB
5925 if (is_a_field_of_this != NULL)
5926 *is_a_field_of_this = 0;
5927
4e5c77fe 5928 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5929 block0, domain, &info);
d12307c1 5930 return info;
4c4b4cd2 5931}
14f9c5c9 5932
d12307c1 5933static struct block_symbol
f606139a
DE
5934ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5935 const char *name,
76a01679 5936 const struct block *block,
21b556f4 5937 const domain_enum domain)
4c4b4cd2 5938{
d12307c1 5939 struct block_symbol sym;
04dccad0
JB
5940
5941 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5942 if (sym.symbol != NULL)
04dccad0
JB
5943 return sym;
5944
5945 /* If we haven't found a match at this point, try the primitive
5946 types. In other languages, this search is performed before
5947 searching for global symbols in order to short-circuit that
5948 global-symbol search if it happens that the name corresponds
5949 to a primitive type. But we cannot do the same in Ada, because
5950 it is perfectly legitimate for a program to declare a type which
5951 has the same name as a standard type. If looking up a type in
5952 that situation, we have traditionally ignored the primitive type
5953 in favor of user-defined types. This is why, unlike most other
5954 languages, we search the primitive types this late and only after
5955 having searched the global symbols without success. */
5956
5957 if (domain == VAR_DOMAIN)
5958 {
5959 struct gdbarch *gdbarch;
5960
5961 if (block == NULL)
5962 gdbarch = target_gdbarch ();
5963 else
5964 gdbarch = block_gdbarch (block);
d12307c1
PMR
5965 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5966 if (sym.symbol != NULL)
04dccad0
JB
5967 return sym;
5968 }
5969
d12307c1 5970 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5971}
5972
5973
4c4b4cd2
PH
5974/* True iff STR is a possible encoded suffix of a normal Ada name
5975 that is to be ignored for matching purposes. Suffixes of parallel
5976 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5977 are given by any of the regular expressions:
4c4b4cd2 5978
babe1480
JB
5979 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5980 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5981 TKB [subprogram suffix for task bodies]
babe1480 5982 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5983 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5984
5985 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5986 match is performed. This sequence is used to differentiate homonyms,
5987 is an optional part of a valid name suffix. */
4c4b4cd2 5988
14f9c5c9 5989static int
d2e4a39e 5990is_name_suffix (const char *str)
14f9c5c9
AS
5991{
5992 int k;
4c4b4cd2
PH
5993 const char *matching;
5994 const int len = strlen (str);
5995
babe1480
JB
5996 /* Skip optional leading __[0-9]+. */
5997
4c4b4cd2
PH
5998 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5999 {
babe1480
JB
6000 str += 3;
6001 while (isdigit (str[0]))
6002 str += 1;
4c4b4cd2 6003 }
babe1480
JB
6004
6005 /* [.$][0-9]+ */
4c4b4cd2 6006
babe1480 6007 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 6008 {
babe1480 6009 matching = str + 1;
4c4b4cd2
PH
6010 while (isdigit (matching[0]))
6011 matching += 1;
6012 if (matching[0] == '\0')
6013 return 1;
6014 }
6015
6016 /* ___[0-9]+ */
babe1480 6017
4c4b4cd2
PH
6018 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6019 {
6020 matching = str + 3;
6021 while (isdigit (matching[0]))
6022 matching += 1;
6023 if (matching[0] == '\0')
6024 return 1;
6025 }
6026
9ac7f98e
JB
6027 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6028
6029 if (strcmp (str, "TKB") == 0)
6030 return 1;
6031
529cad9c
PH
6032#if 0
6033 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6034 with a N at the end. Unfortunately, the compiler uses the same
6035 convention for other internal types it creates. So treating
529cad9c 6036 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6037 some regressions. For instance, consider the case of an enumerated
6038 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6039 name ends with N.
6040 Having a single character like this as a suffix carrying some
0963b4bd 6041 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6042 to be something like "_N" instead. In the meantime, do not do
6043 the following check. */
6044 /* Protected Object Subprograms */
6045 if (len == 1 && str [0] == 'N')
6046 return 1;
6047#endif
6048
6049 /* _E[0-9]+[bs]$ */
6050 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6051 {
6052 matching = str + 3;
6053 while (isdigit (matching[0]))
6054 matching += 1;
6055 if ((matching[0] == 'b' || matching[0] == 's')
6056 && matching [1] == '\0')
6057 return 1;
6058 }
6059
4c4b4cd2
PH
6060 /* ??? We should not modify STR directly, as we are doing below. This
6061 is fine in this case, but may become problematic later if we find
6062 that this alternative did not work, and want to try matching
6063 another one from the begining of STR. Since we modified it, we
6064 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6065 if (str[0] == 'X')
6066 {
6067 str += 1;
d2e4a39e 6068 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6069 {
6070 if (str[0] != 'n' && str[0] != 'b')
6071 return 0;
6072 str += 1;
6073 }
14f9c5c9 6074 }
babe1480 6075
14f9c5c9
AS
6076 if (str[0] == '\000')
6077 return 1;
babe1480 6078
d2e4a39e 6079 if (str[0] == '_')
14f9c5c9
AS
6080 {
6081 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6082 return 0;
d2e4a39e 6083 if (str[2] == '_')
4c4b4cd2 6084 {
61ee279c
PH
6085 if (strcmp (str + 3, "JM") == 0)
6086 return 1;
6087 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6088 the LJM suffix in favor of the JM one. But we will
6089 still accept LJM as a valid suffix for a reasonable
6090 amount of time, just to allow ourselves to debug programs
6091 compiled using an older version of GNAT. */
4c4b4cd2
PH
6092 if (strcmp (str + 3, "LJM") == 0)
6093 return 1;
6094 if (str[3] != 'X')
6095 return 0;
1265e4aa
JB
6096 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6097 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6098 return 1;
6099 if (str[4] == 'R' && str[5] != 'T')
6100 return 1;
6101 return 0;
6102 }
6103 if (!isdigit (str[2]))
6104 return 0;
6105 for (k = 3; str[k] != '\0'; k += 1)
6106 if (!isdigit (str[k]) && str[k] != '_')
6107 return 0;
14f9c5c9
AS
6108 return 1;
6109 }
4c4b4cd2 6110 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6111 {
4c4b4cd2
PH
6112 for (k = 2; str[k] != '\0'; k += 1)
6113 if (!isdigit (str[k]) && str[k] != '_')
6114 return 0;
14f9c5c9
AS
6115 return 1;
6116 }
6117 return 0;
6118}
d2e4a39e 6119
aeb5907d
JB
6120/* Return non-zero if the string starting at NAME and ending before
6121 NAME_END contains no capital letters. */
529cad9c
PH
6122
6123static int
6124is_valid_name_for_wild_match (const char *name0)
6125{
6126 const char *decoded_name = ada_decode (name0);
6127 int i;
6128
5823c3ef
JB
6129 /* If the decoded name starts with an angle bracket, it means that
6130 NAME0 does not follow the GNAT encoding format. It should then
6131 not be allowed as a possible wild match. */
6132 if (decoded_name[0] == '<')
6133 return 0;
6134
529cad9c
PH
6135 for (i=0; decoded_name[i] != '\0'; i++)
6136 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6137 return 0;
6138
6139 return 1;
6140}
6141
73589123
PH
6142/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6143 that could start a simple name. Assumes that *NAMEP points into
6144 the string beginning at NAME0. */
4c4b4cd2 6145
14f9c5c9 6146static int
73589123 6147advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6148{
73589123 6149 const char *name = *namep;
5b4ee69b 6150
5823c3ef 6151 while (1)
14f9c5c9 6152 {
aa27d0b3 6153 int t0, t1;
73589123
PH
6154
6155 t0 = *name;
6156 if (t0 == '_')
6157 {
6158 t1 = name[1];
6159 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6160 {
6161 name += 1;
61012eef 6162 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6163 break;
6164 else
6165 name += 1;
6166 }
aa27d0b3
JB
6167 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6168 || name[2] == target0))
73589123
PH
6169 {
6170 name += 2;
6171 break;
6172 }
6173 else
6174 return 0;
6175 }
6176 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6177 name += 1;
6178 else
5823c3ef 6179 return 0;
73589123
PH
6180 }
6181
6182 *namep = name;
6183 return 1;
6184}
6185
b5ec771e
PA
6186/* Return true iff NAME encodes a name of the form prefix.PATN.
6187 Ignores any informational suffixes of NAME (i.e., for which
6188 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6189 simple name. */
73589123 6190
b5ec771e 6191static bool
73589123
PH
6192wild_match (const char *name, const char *patn)
6193{
22e048c9 6194 const char *p;
73589123
PH
6195 const char *name0 = name;
6196
6197 while (1)
6198 {
6199 const char *match = name;
6200
6201 if (*name == *patn)
6202 {
6203 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6204 if (*p != *name)
6205 break;
6206 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6207 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6208
6209 if (name[-1] == '_')
6210 name -= 1;
6211 }
6212 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6213 return false;
96d887e8 6214 }
96d887e8
PH
6215}
6216
b5ec771e
PA
6217/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6218 any trailing suffixes that encode debugging information or leading
6219 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6220 information that is ignored). */
40658b94 6221
b5ec771e 6222static bool
c4d840bd
PH
6223full_match (const char *sym_name, const char *search_name)
6224{
b5ec771e
PA
6225 size_t search_name_len = strlen (search_name);
6226
6227 if (strncmp (sym_name, search_name, search_name_len) == 0
6228 && is_name_suffix (sym_name + search_name_len))
6229 return true;
6230
6231 if (startswith (sym_name, "_ada_")
6232 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6233 && is_name_suffix (sym_name + search_name_len + 5))
6234 return true;
c4d840bd 6235
b5ec771e
PA
6236 return false;
6237}
c4d840bd 6238
b5ec771e
PA
6239/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6240 *defn_symbols, updating the list of symbols in OBSTACKP (if
6241 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6242
6243static void
6244ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6245 const struct block *block,
6246 const lookup_name_info &lookup_name,
6247 domain_enum domain, struct objfile *objfile)
96d887e8 6248{
8157b174 6249 struct block_iterator iter;
96d887e8
PH
6250 /* A matching argument symbol, if any. */
6251 struct symbol *arg_sym;
6252 /* Set true when we find a matching non-argument symbol. */
6253 int found_sym;
6254 struct symbol *sym;
6255
6256 arg_sym = NULL;
6257 found_sym = 0;
b5ec771e
PA
6258 for (sym = block_iter_match_first (block, lookup_name, &iter);
6259 sym != NULL;
6260 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6261 {
b5ec771e
PA
6262 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6263 SYMBOL_DOMAIN (sym), domain))
6264 {
6265 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6266 {
6267 if (SYMBOL_IS_ARGUMENT (sym))
6268 arg_sym = sym;
6269 else
6270 {
6271 found_sym = 1;
6272 add_defn_to_vec (obstackp,
6273 fixup_symbol_section (sym, objfile),
6274 block);
6275 }
6276 }
6277 }
96d887e8
PH
6278 }
6279
22cee43f
PMR
6280 /* Handle renamings. */
6281
b5ec771e 6282 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6283 found_sym = 1;
6284
96d887e8
PH
6285 if (!found_sym && arg_sym != NULL)
6286 {
76a01679
JB
6287 add_defn_to_vec (obstackp,
6288 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6289 block);
96d887e8
PH
6290 }
6291
b5ec771e 6292 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6293 {
6294 arg_sym = NULL;
6295 found_sym = 0;
b5ec771e
PA
6296 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6297 const char *name = ada_lookup_name.c_str ();
6298 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6299
6300 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6301 {
4186eb54
KS
6302 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6303 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6304 {
6305 int cmp;
6306
6307 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6308 if (cmp == 0)
6309 {
61012eef 6310 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6311 if (cmp == 0)
6312 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6313 name_len);
6314 }
6315
6316 if (cmp == 0
6317 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6318 {
2a2d4dc3
AS
6319 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6320 {
6321 if (SYMBOL_IS_ARGUMENT (sym))
6322 arg_sym = sym;
6323 else
6324 {
6325 found_sym = 1;
6326 add_defn_to_vec (obstackp,
6327 fixup_symbol_section (sym, objfile),
6328 block);
6329 }
6330 }
76a01679
JB
6331 }
6332 }
76a01679 6333 }
96d887e8
PH
6334
6335 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6336 They aren't parameters, right? */
6337 if (!found_sym && arg_sym != NULL)
6338 {
6339 add_defn_to_vec (obstackp,
76a01679 6340 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6341 block);
96d887e8
PH
6342 }
6343 }
6344}
6345\f
41d27058
JB
6346
6347 /* Symbol Completion */
6348
b5ec771e 6349/* See symtab.h. */
41d27058 6350
b5ec771e
PA
6351bool
6352ada_lookup_name_info::matches
6353 (const char *sym_name,
6354 symbol_name_match_type match_type,
6355 completion_match *comp_match) const
41d27058 6356{
b5ec771e
PA
6357 bool match = false;
6358 const char *text = m_encoded_name.c_str ();
6359 size_t text_len = m_encoded_name.size ();
41d27058
JB
6360
6361 /* First, test against the fully qualified name of the symbol. */
6362
6363 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6364 match = true;
41d27058 6365
b5ec771e 6366 if (match && !m_encoded_p)
41d27058
JB
6367 {
6368 /* One needed check before declaring a positive match is to verify
6369 that iff we are doing a verbatim match, the decoded version
6370 of the symbol name starts with '<'. Otherwise, this symbol name
6371 is not a suitable completion. */
6372 const char *sym_name_copy = sym_name;
b5ec771e 6373 bool has_angle_bracket;
41d27058
JB
6374
6375 sym_name = ada_decode (sym_name);
6376 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6377 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6378 sym_name = sym_name_copy;
6379 }
6380
b5ec771e 6381 if (match && !m_verbatim_p)
41d27058
JB
6382 {
6383 /* When doing non-verbatim match, another check that needs to
6384 be done is to verify that the potentially matching symbol name
6385 does not include capital letters, because the ada-mode would
6386 not be able to understand these symbol names without the
6387 angle bracket notation. */
6388 const char *tmp;
6389
6390 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6391 if (*tmp != '\0')
b5ec771e 6392 match = false;
41d27058
JB
6393 }
6394
6395 /* Second: Try wild matching... */
6396
b5ec771e 6397 if (!match && m_wild_match_p)
41d27058
JB
6398 {
6399 /* Since we are doing wild matching, this means that TEXT
6400 may represent an unqualified symbol name. We therefore must
6401 also compare TEXT against the unqualified name of the symbol. */
6402 sym_name = ada_unqualified_name (ada_decode (sym_name));
6403
6404 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6405 match = true;
41d27058
JB
6406 }
6407
b5ec771e 6408 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6409
6410 if (!match)
b5ec771e 6411 return false;
41d27058 6412
b5ec771e
PA
6413 if (comp_match != NULL)
6414 {
6415 std::string &match_str = comp_match->storage ();
41d27058 6416
b5ec771e
PA
6417 if (!m_encoded_p)
6418 {
6419 match_str = ada_decode (sym_name);
6420 comp_match->set_match (match_str.c_str ());
6421 }
6422 else
6423 {
6424 if (m_verbatim_p)
6425 match_str = add_angle_brackets (sym_name);
6426 else
6427 match_str = sym_name;
41d27058 6428
b5ec771e
PA
6429 comp_match->set_match (match_str.c_str ());
6430 }
41d27058
JB
6431 }
6432
b5ec771e 6433 return true;
41d27058
JB
6434}
6435
b5ec771e 6436/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6437 WORD is the entire command on which completion is made. */
41d27058 6438
eb3ff9a5
PA
6439static void
6440ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6441 complete_symbol_mode mode,
b5ec771e
PA
6442 symbol_name_match_type name_match_type,
6443 const char *text, const char *word,
eb3ff9a5 6444 enum type_code code)
41d27058 6445{
41d27058 6446 struct symbol *sym;
43f3e411 6447 struct compunit_symtab *s;
41d27058
JB
6448 struct minimal_symbol *msymbol;
6449 struct objfile *objfile;
3977b71f 6450 const struct block *b, *surrounding_static_block = 0;
41d27058 6451 int i;
8157b174 6452 struct block_iterator iter;
b8fea896 6453 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6454
2f68a895
TT
6455 gdb_assert (code == TYPE_CODE_UNDEF);
6456
1b026119 6457 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6458
6459 /* First, look at the partial symtab symbols. */
14bc53a8 6460 expand_symtabs_matching (NULL,
b5ec771e
PA
6461 lookup_name,
6462 NULL,
14bc53a8
PA
6463 NULL,
6464 ALL_DOMAIN);
41d27058
JB
6465
6466 /* At this point scan through the misc symbol vectors and add each
6467 symbol you find to the list. Eventually we want to ignore
6468 anything that isn't a text symbol (everything else will be
6469 handled by the psymtab code above). */
6470
6471 ALL_MSYMBOLS (objfile, msymbol)
6472 {
6473 QUIT;
b5ec771e 6474
f9d67a22
PA
6475 if (completion_skip_symbol (mode, msymbol))
6476 continue;
6477
b5ec771e
PA
6478 completion_list_add_name (tracker,
6479 MSYMBOL_LANGUAGE (msymbol),
6480 MSYMBOL_LINKAGE_NAME (msymbol),
1b026119 6481 lookup_name, text, word);
41d27058
JB
6482 }
6483
6484 /* Search upwards from currently selected frame (so that we can
6485 complete on local vars. */
6486
6487 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6488 {
6489 if (!BLOCK_SUPERBLOCK (b))
6490 surrounding_static_block = b; /* For elmin of dups */
6491
6492 ALL_BLOCK_SYMBOLS (b, iter, sym)
6493 {
f9d67a22
PA
6494 if (completion_skip_symbol (mode, sym))
6495 continue;
6496
b5ec771e
PA
6497 completion_list_add_name (tracker,
6498 SYMBOL_LANGUAGE (sym),
6499 SYMBOL_LINKAGE_NAME (sym),
1b026119 6500 lookup_name, text, word);
41d27058
JB
6501 }
6502 }
6503
6504 /* Go through the symtabs and check the externs and statics for
43f3e411 6505 symbols which match. */
41d27058 6506
43f3e411 6507 ALL_COMPUNITS (objfile, s)
41d27058
JB
6508 {
6509 QUIT;
43f3e411 6510 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6511 ALL_BLOCK_SYMBOLS (b, iter, sym)
6512 {
f9d67a22
PA
6513 if (completion_skip_symbol (mode, sym))
6514 continue;
6515
b5ec771e
PA
6516 completion_list_add_name (tracker,
6517 SYMBOL_LANGUAGE (sym),
6518 SYMBOL_LINKAGE_NAME (sym),
1b026119 6519 lookup_name, text, word);
41d27058
JB
6520 }
6521 }
6522
43f3e411 6523 ALL_COMPUNITS (objfile, s)
41d27058
JB
6524 {
6525 QUIT;
43f3e411 6526 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6527 /* Don't do this block twice. */
6528 if (b == surrounding_static_block)
6529 continue;
6530 ALL_BLOCK_SYMBOLS (b, iter, sym)
6531 {
f9d67a22
PA
6532 if (completion_skip_symbol (mode, sym))
6533 continue;
6534
b5ec771e
PA
6535 completion_list_add_name (tracker,
6536 SYMBOL_LANGUAGE (sym),
6537 SYMBOL_LINKAGE_NAME (sym),
1b026119 6538 lookup_name, text, word);
41d27058
JB
6539 }
6540 }
6541
b8fea896 6542 do_cleanups (old_chain);
41d27058
JB
6543}
6544
963a6417 6545 /* Field Access */
96d887e8 6546
73fb9985
JB
6547/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6548 for tagged types. */
6549
6550static int
6551ada_is_dispatch_table_ptr_type (struct type *type)
6552{
0d5cff50 6553 const char *name;
73fb9985
JB
6554
6555 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6556 return 0;
6557
6558 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6559 if (name == NULL)
6560 return 0;
6561
6562 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6563}
6564
ac4a2da4
JG
6565/* Return non-zero if TYPE is an interface tag. */
6566
6567static int
6568ada_is_interface_tag (struct type *type)
6569{
6570 const char *name = TYPE_NAME (type);
6571
6572 if (name == NULL)
6573 return 0;
6574
6575 return (strcmp (name, "ada__tags__interface_tag") == 0);
6576}
6577
963a6417
PH
6578/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6579 to be invisible to users. */
96d887e8 6580
963a6417
PH
6581int
6582ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6583{
963a6417
PH
6584 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6585 return 1;
ffde82bf 6586
73fb9985
JB
6587 /* Check the name of that field. */
6588 {
6589 const char *name = TYPE_FIELD_NAME (type, field_num);
6590
6591 /* Anonymous field names should not be printed.
6592 brobecker/2007-02-20: I don't think this can actually happen
6593 but we don't want to print the value of annonymous fields anyway. */
6594 if (name == NULL)
6595 return 1;
6596
ffde82bf
JB
6597 /* Normally, fields whose name start with an underscore ("_")
6598 are fields that have been internally generated by the compiler,
6599 and thus should not be printed. The "_parent" field is special,
6600 however: This is a field internally generated by the compiler
6601 for tagged types, and it contains the components inherited from
6602 the parent type. This field should not be printed as is, but
6603 should not be ignored either. */
61012eef 6604 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6605 return 1;
6606 }
6607
ac4a2da4
JG
6608 /* If this is the dispatch table of a tagged type or an interface tag,
6609 then ignore. */
73fb9985 6610 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6611 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6612 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6613 return 1;
6614
6615 /* Not a special field, so it should not be ignored. */
6616 return 0;
963a6417 6617}
96d887e8 6618
963a6417 6619/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6620 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6621
963a6417
PH
6622int
6623ada_is_tagged_type (struct type *type, int refok)
6624{
988f6b3d 6625 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6626}
96d887e8 6627
963a6417 6628/* True iff TYPE represents the type of X'Tag */
96d887e8 6629
963a6417
PH
6630int
6631ada_is_tag_type (struct type *type)
6632{
460efde1
JB
6633 type = ada_check_typedef (type);
6634
963a6417
PH
6635 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6636 return 0;
6637 else
96d887e8 6638 {
963a6417 6639 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6640
963a6417
PH
6641 return (name != NULL
6642 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6643 }
96d887e8
PH
6644}
6645
963a6417 6646/* The type of the tag on VAL. */
76a01679 6647
963a6417
PH
6648struct type *
6649ada_tag_type (struct value *val)
96d887e8 6650{
988f6b3d 6651 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6652}
96d887e8 6653
b50d69b5
JG
6654/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6655 retired at Ada 05). */
6656
6657static int
6658is_ada95_tag (struct value *tag)
6659{
6660 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6661}
6662
963a6417 6663/* The value of the tag on VAL. */
96d887e8 6664
963a6417
PH
6665struct value *
6666ada_value_tag (struct value *val)
6667{
03ee6b2e 6668 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6669}
6670
963a6417
PH
6671/* The value of the tag on the object of type TYPE whose contents are
6672 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6673 ADDRESS. */
96d887e8 6674
963a6417 6675static struct value *
10a2c479 6676value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6677 const gdb_byte *valaddr,
963a6417 6678 CORE_ADDR address)
96d887e8 6679{
b5385fc0 6680 int tag_byte_offset;
963a6417 6681 struct type *tag_type;
5b4ee69b 6682
963a6417 6683 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6684 NULL, NULL, NULL))
96d887e8 6685 {
fc1a4b47 6686 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6687 ? NULL
6688 : valaddr + tag_byte_offset);
963a6417 6689 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6690
963a6417 6691 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6692 }
963a6417
PH
6693 return NULL;
6694}
96d887e8 6695
963a6417
PH
6696static struct type *
6697type_from_tag (struct value *tag)
6698{
6699 const char *type_name = ada_tag_name (tag);
5b4ee69b 6700
963a6417
PH
6701 if (type_name != NULL)
6702 return ada_find_any_type (ada_encode (type_name));
6703 return NULL;
6704}
96d887e8 6705
b50d69b5
JG
6706/* Given a value OBJ of a tagged type, return a value of this
6707 type at the base address of the object. The base address, as
6708 defined in Ada.Tags, it is the address of the primary tag of
6709 the object, and therefore where the field values of its full
6710 view can be fetched. */
6711
6712struct value *
6713ada_tag_value_at_base_address (struct value *obj)
6714{
b50d69b5
JG
6715 struct value *val;
6716 LONGEST offset_to_top = 0;
6717 struct type *ptr_type, *obj_type;
6718 struct value *tag;
6719 CORE_ADDR base_address;
6720
6721 obj_type = value_type (obj);
6722
6723 /* It is the responsability of the caller to deref pointers. */
6724
6725 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6726 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6727 return obj;
6728
6729 tag = ada_value_tag (obj);
6730 if (!tag)
6731 return obj;
6732
6733 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6734
6735 if (is_ada95_tag (tag))
6736 return obj;
6737
6738 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6739 ptr_type = lookup_pointer_type (ptr_type);
6740 val = value_cast (ptr_type, tag);
6741 if (!val)
6742 return obj;
6743
6744 /* It is perfectly possible that an exception be raised while
6745 trying to determine the base address, just like for the tag;
6746 see ada_tag_name for more details. We do not print the error
6747 message for the same reason. */
6748
492d29ea 6749 TRY
b50d69b5
JG
6750 {
6751 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6752 }
6753
492d29ea
PA
6754 CATCH (e, RETURN_MASK_ERROR)
6755 {
6756 return obj;
6757 }
6758 END_CATCH
b50d69b5
JG
6759
6760 /* If offset is null, nothing to do. */
6761
6762 if (offset_to_top == 0)
6763 return obj;
6764
6765 /* -1 is a special case in Ada.Tags; however, what should be done
6766 is not quite clear from the documentation. So do nothing for
6767 now. */
6768
6769 if (offset_to_top == -1)
6770 return obj;
6771
6772 base_address = value_address (obj) - offset_to_top;
6773 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6774
6775 /* Make sure that we have a proper tag at the new address.
6776 Otherwise, offset_to_top is bogus (which can happen when
6777 the object is not initialized yet). */
6778
6779 if (!tag)
6780 return obj;
6781
6782 obj_type = type_from_tag (tag);
6783
6784 if (!obj_type)
6785 return obj;
6786
6787 return value_from_contents_and_address (obj_type, NULL, base_address);
6788}
6789
1b611343
JB
6790/* Return the "ada__tags__type_specific_data" type. */
6791
6792static struct type *
6793ada_get_tsd_type (struct inferior *inf)
963a6417 6794{
1b611343 6795 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6796
1b611343
JB
6797 if (data->tsd_type == 0)
6798 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6799 return data->tsd_type;
6800}
529cad9c 6801
1b611343
JB
6802/* Return the TSD (type-specific data) associated to the given TAG.
6803 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6804
1b611343 6805 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6806
1b611343
JB
6807static struct value *
6808ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6809{
4c4b4cd2 6810 struct value *val;
1b611343 6811 struct type *type;
5b4ee69b 6812
1b611343
JB
6813 /* First option: The TSD is simply stored as a field of our TAG.
6814 Only older versions of GNAT would use this format, but we have
6815 to test it first, because there are no visible markers for
6816 the current approach except the absence of that field. */
529cad9c 6817
1b611343
JB
6818 val = ada_value_struct_elt (tag, "tsd", 1);
6819 if (val)
6820 return val;
e802dbe0 6821
1b611343
JB
6822 /* Try the second representation for the dispatch table (in which
6823 there is no explicit 'tsd' field in the referent of the tag pointer,
6824 and instead the tsd pointer is stored just before the dispatch
6825 table. */
e802dbe0 6826
1b611343
JB
6827 type = ada_get_tsd_type (current_inferior());
6828 if (type == NULL)
6829 return NULL;
6830 type = lookup_pointer_type (lookup_pointer_type (type));
6831 val = value_cast (type, tag);
6832 if (val == NULL)
6833 return NULL;
6834 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6835}
6836
1b611343
JB
6837/* Given the TSD of a tag (type-specific data), return a string
6838 containing the name of the associated type.
6839
6840 The returned value is good until the next call. May return NULL
6841 if we are unable to determine the tag name. */
6842
6843static char *
6844ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6845{
529cad9c
PH
6846 static char name[1024];
6847 char *p;
1b611343 6848 struct value *val;
529cad9c 6849
1b611343 6850 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6851 if (val == NULL)
1b611343 6852 return NULL;
4c4b4cd2
PH
6853 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6854 for (p = name; *p != '\0'; p += 1)
6855 if (isalpha (*p))
6856 *p = tolower (*p);
1b611343 6857 return name;
4c4b4cd2
PH
6858}
6859
6860/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6861 a C string.
6862
6863 Return NULL if the TAG is not an Ada tag, or if we were unable to
6864 determine the name of that tag. The result is good until the next
6865 call. */
4c4b4cd2
PH
6866
6867const char *
6868ada_tag_name (struct value *tag)
6869{
1b611343 6870 char *name = NULL;
5b4ee69b 6871
df407dfe 6872 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6873 return NULL;
1b611343
JB
6874
6875 /* It is perfectly possible that an exception be raised while trying
6876 to determine the TAG's name, even under normal circumstances:
6877 The associated variable may be uninitialized or corrupted, for
6878 instance. We do not let any exception propagate past this point.
6879 instead we return NULL.
6880
6881 We also do not print the error message either (which often is very
6882 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6883 the caller print a more meaningful message if necessary. */
492d29ea 6884 TRY
1b611343
JB
6885 {
6886 struct value *tsd = ada_get_tsd_from_tag (tag);
6887
6888 if (tsd != NULL)
6889 name = ada_tag_name_from_tsd (tsd);
6890 }
492d29ea
PA
6891 CATCH (e, RETURN_MASK_ERROR)
6892 {
6893 }
6894 END_CATCH
1b611343
JB
6895
6896 return name;
4c4b4cd2
PH
6897}
6898
6899/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6900
d2e4a39e 6901struct type *
ebf56fd3 6902ada_parent_type (struct type *type)
14f9c5c9
AS
6903{
6904 int i;
6905
61ee279c 6906 type = ada_check_typedef (type);
14f9c5c9
AS
6907
6908 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6909 return NULL;
6910
6911 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6912 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6913 {
6914 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6915
6916 /* If the _parent field is a pointer, then dereference it. */
6917 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6918 parent_type = TYPE_TARGET_TYPE (parent_type);
6919 /* If there is a parallel XVS type, get the actual base type. */
6920 parent_type = ada_get_base_type (parent_type);
6921
6922 return ada_check_typedef (parent_type);
6923 }
14f9c5c9
AS
6924
6925 return NULL;
6926}
6927
4c4b4cd2
PH
6928/* True iff field number FIELD_NUM of structure type TYPE contains the
6929 parent-type (inherited) fields of a derived type. Assumes TYPE is
6930 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6931
6932int
ebf56fd3 6933ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6934{
61ee279c 6935 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6936
4c4b4cd2 6937 return (name != NULL
61012eef
GB
6938 && (startswith (name, "PARENT")
6939 || startswith (name, "_parent")));
14f9c5c9
AS
6940}
6941
4c4b4cd2 6942/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6943 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6944 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6945 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6946 structures. */
14f9c5c9
AS
6947
6948int
ebf56fd3 6949ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6950{
d2e4a39e 6951 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6952
dddc0e16
JB
6953 if (name != NULL && strcmp (name, "RETVAL") == 0)
6954 {
6955 /* This happens in functions with "out" or "in out" parameters
6956 which are passed by copy. For such functions, GNAT describes
6957 the function's return type as being a struct where the return
6958 value is in a field called RETVAL, and where the other "out"
6959 or "in out" parameters are fields of that struct. This is not
6960 a wrapper. */
6961 return 0;
6962 }
6963
d2e4a39e 6964 return (name != NULL
61012eef 6965 && (startswith (name, "PARENT")
4c4b4cd2 6966 || strcmp (name, "REP") == 0
61012eef 6967 || startswith (name, "_parent")
4c4b4cd2 6968 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6969}
6970
4c4b4cd2
PH
6971/* True iff field number FIELD_NUM of structure or union type TYPE
6972 is a variant wrapper. Assumes TYPE is a structure type with at least
6973 FIELD_NUM+1 fields. */
14f9c5c9
AS
6974
6975int
ebf56fd3 6976ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6977{
d2e4a39e 6978 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6979
14f9c5c9 6980 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6981 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6982 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6983 == TYPE_CODE_UNION)));
14f9c5c9
AS
6984}
6985
6986/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6987 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6988 returns the type of the controlling discriminant for the variant.
6989 May return NULL if the type could not be found. */
14f9c5c9 6990
d2e4a39e 6991struct type *
ebf56fd3 6992ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6993{
a121b7c1 6994 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6995
988f6b3d 6996 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6997}
6998
4c4b4cd2 6999/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7000 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7001 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7002
7003int
ebf56fd3 7004ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7005{
d2e4a39e 7006 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7007
14f9c5c9
AS
7008 return (name != NULL && name[0] == 'O');
7009}
7010
7011/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7012 returns the name of the discriminant controlling the variant.
7013 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7014
a121b7c1 7015const char *
ebf56fd3 7016ada_variant_discrim_name (struct type *type0)
14f9c5c9 7017{
d2e4a39e 7018 static char *result = NULL;
14f9c5c9 7019 static size_t result_len = 0;
d2e4a39e
AS
7020 struct type *type;
7021 const char *name;
7022 const char *discrim_end;
7023 const char *discrim_start;
14f9c5c9
AS
7024
7025 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7026 type = TYPE_TARGET_TYPE (type0);
7027 else
7028 type = type0;
7029
7030 name = ada_type_name (type);
7031
7032 if (name == NULL || name[0] == '\000')
7033 return "";
7034
7035 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7036 discrim_end -= 1)
7037 {
61012eef 7038 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7039 break;
14f9c5c9
AS
7040 }
7041 if (discrim_end == name)
7042 return "";
7043
d2e4a39e 7044 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7045 discrim_start -= 1)
7046 {
d2e4a39e 7047 if (discrim_start == name + 1)
4c4b4cd2 7048 return "";
76a01679 7049 if ((discrim_start > name + 3
61012eef 7050 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7051 || discrim_start[-1] == '.')
7052 break;
14f9c5c9
AS
7053 }
7054
7055 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7056 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7057 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7058 return result;
7059}
7060
4c4b4cd2
PH
7061/* Scan STR for a subtype-encoded number, beginning at position K.
7062 Put the position of the character just past the number scanned in
7063 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7064 Return 1 if there was a valid number at the given position, and 0
7065 otherwise. A "subtype-encoded" number consists of the absolute value
7066 in decimal, followed by the letter 'm' to indicate a negative number.
7067 Assumes 0m does not occur. */
14f9c5c9
AS
7068
7069int
d2e4a39e 7070ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7071{
7072 ULONGEST RU;
7073
d2e4a39e 7074 if (!isdigit (str[k]))
14f9c5c9
AS
7075 return 0;
7076
4c4b4cd2 7077 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7078 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7079 LONGEST. */
14f9c5c9
AS
7080 RU = 0;
7081 while (isdigit (str[k]))
7082 {
d2e4a39e 7083 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7084 k += 1;
7085 }
7086
d2e4a39e 7087 if (str[k] == 'm')
14f9c5c9
AS
7088 {
7089 if (R != NULL)
4c4b4cd2 7090 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7091 k += 1;
7092 }
7093 else if (R != NULL)
7094 *R = (LONGEST) RU;
7095
4c4b4cd2 7096 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7097 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7098 number representable as a LONGEST (although either would probably work
7099 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7100 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7101
7102 if (new_k != NULL)
7103 *new_k = k;
7104 return 1;
7105}
7106
4c4b4cd2
PH
7107/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7108 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7109 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7110
d2e4a39e 7111int
ebf56fd3 7112ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7113{
d2e4a39e 7114 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7115 int p;
7116
7117 p = 0;
7118 while (1)
7119 {
d2e4a39e 7120 switch (name[p])
4c4b4cd2
PH
7121 {
7122 case '\0':
7123 return 0;
7124 case 'S':
7125 {
7126 LONGEST W;
5b4ee69b 7127
4c4b4cd2
PH
7128 if (!ada_scan_number (name, p + 1, &W, &p))
7129 return 0;
7130 if (val == W)
7131 return 1;
7132 break;
7133 }
7134 case 'R':
7135 {
7136 LONGEST L, U;
5b4ee69b 7137
4c4b4cd2
PH
7138 if (!ada_scan_number (name, p + 1, &L, &p)
7139 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7140 return 0;
7141 if (val >= L && val <= U)
7142 return 1;
7143 break;
7144 }
7145 case 'O':
7146 return 1;
7147 default:
7148 return 0;
7149 }
7150 }
7151}
7152
0963b4bd 7153/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7154
7155/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7156 ARG_TYPE, extract and return the value of one of its (non-static)
7157 fields. FIELDNO says which field. Differs from value_primitive_field
7158 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7159
4c4b4cd2 7160static struct value *
d2e4a39e 7161ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7162 struct type *arg_type)
14f9c5c9 7163{
14f9c5c9
AS
7164 struct type *type;
7165
61ee279c 7166 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7167 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7168
4c4b4cd2 7169 /* Handle packed fields. */
14f9c5c9
AS
7170
7171 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7172 {
7173 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7174 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7175
0fd88904 7176 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7177 offset + bit_pos / 8,
7178 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7179 }
7180 else
7181 return value_primitive_field (arg1, offset, fieldno, arg_type);
7182}
7183
52ce6436
PH
7184/* Find field with name NAME in object of type TYPE. If found,
7185 set the following for each argument that is non-null:
7186 - *FIELD_TYPE_P to the field's type;
7187 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7188 an object of that type;
7189 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7190 - *BIT_SIZE_P to its size in bits if the field is packed, and
7191 0 otherwise;
7192 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7193 fields up to but not including the desired field, or by the total
7194 number of fields if not found. A NULL value of NAME never
7195 matches; the function just counts visible fields in this case.
7196
0963b4bd 7197 Returns 1 if found, 0 otherwise. */
52ce6436 7198
4c4b4cd2 7199static int
0d5cff50 7200find_struct_field (const char *name, struct type *type, int offset,
76a01679 7201 struct type **field_type_p,
52ce6436
PH
7202 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7203 int *index_p)
4c4b4cd2
PH
7204{
7205 int i;
7206
61ee279c 7207 type = ada_check_typedef (type);
76a01679 7208
52ce6436
PH
7209 if (field_type_p != NULL)
7210 *field_type_p = NULL;
7211 if (byte_offset_p != NULL)
d5d6fca5 7212 *byte_offset_p = 0;
52ce6436
PH
7213 if (bit_offset_p != NULL)
7214 *bit_offset_p = 0;
7215 if (bit_size_p != NULL)
7216 *bit_size_p = 0;
7217
7218 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7219 {
7220 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7221 int fld_offset = offset + bit_pos / 8;
0d5cff50 7222 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7223
4c4b4cd2
PH
7224 if (t_field_name == NULL)
7225 continue;
7226
52ce6436 7227 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7228 {
7229 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7230
52ce6436
PH
7231 if (field_type_p != NULL)
7232 *field_type_p = TYPE_FIELD_TYPE (type, i);
7233 if (byte_offset_p != NULL)
7234 *byte_offset_p = fld_offset;
7235 if (bit_offset_p != NULL)
7236 *bit_offset_p = bit_pos % 8;
7237 if (bit_size_p != NULL)
7238 *bit_size_p = bit_size;
76a01679
JB
7239 return 1;
7240 }
4c4b4cd2
PH
7241 else if (ada_is_wrapper_field (type, i))
7242 {
52ce6436
PH
7243 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7244 field_type_p, byte_offset_p, bit_offset_p,
7245 bit_size_p, index_p))
76a01679
JB
7246 return 1;
7247 }
4c4b4cd2
PH
7248 else if (ada_is_variant_part (type, i))
7249 {
52ce6436
PH
7250 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7251 fixed type?? */
4c4b4cd2 7252 int j;
52ce6436
PH
7253 struct type *field_type
7254 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7255
52ce6436 7256 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7257 {
76a01679
JB
7258 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7259 fld_offset
7260 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7261 field_type_p, byte_offset_p,
52ce6436 7262 bit_offset_p, bit_size_p, index_p))
76a01679 7263 return 1;
4c4b4cd2
PH
7264 }
7265 }
52ce6436
PH
7266 else if (index_p != NULL)
7267 *index_p += 1;
4c4b4cd2
PH
7268 }
7269 return 0;
7270}
7271
0963b4bd 7272/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7273
52ce6436
PH
7274static int
7275num_visible_fields (struct type *type)
7276{
7277 int n;
5b4ee69b 7278
52ce6436
PH
7279 n = 0;
7280 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7281 return n;
7282}
14f9c5c9 7283
4c4b4cd2 7284/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7285 and search in it assuming it has (class) type TYPE.
7286 If found, return value, else return NULL.
7287
4c4b4cd2 7288 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7289
4c4b4cd2 7290static struct value *
108d56a4 7291ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7292 struct type *type)
14f9c5c9
AS
7293{
7294 int i;
14f9c5c9 7295
5b4ee69b 7296 type = ada_check_typedef (type);
52ce6436 7297 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7298 {
0d5cff50 7299 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7300
7301 if (t_field_name == NULL)
4c4b4cd2 7302 continue;
14f9c5c9
AS
7303
7304 else if (field_name_match (t_field_name, name))
4c4b4cd2 7305 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7306
7307 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7308 {
0963b4bd 7309 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7310 ada_search_struct_field (name, arg,
7311 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7312 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7313
4c4b4cd2
PH
7314 if (v != NULL)
7315 return v;
7316 }
14f9c5c9
AS
7317
7318 else if (ada_is_variant_part (type, i))
4c4b4cd2 7319 {
0963b4bd 7320 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7321 int j;
5b4ee69b
MS
7322 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7323 i));
4c4b4cd2
PH
7324 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7325
52ce6436 7326 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7327 {
0963b4bd
MS
7328 struct value *v = ada_search_struct_field /* Force line
7329 break. */
06d5cf63
JB
7330 (name, arg,
7331 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7332 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7333
4c4b4cd2
PH
7334 if (v != NULL)
7335 return v;
7336 }
7337 }
14f9c5c9
AS
7338 }
7339 return NULL;
7340}
d2e4a39e 7341
52ce6436
PH
7342static struct value *ada_index_struct_field_1 (int *, struct value *,
7343 int, struct type *);
7344
7345
7346/* Return field #INDEX in ARG, where the index is that returned by
7347 * find_struct_field through its INDEX_P argument. Adjust the address
7348 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7349 * If found, return value, else return NULL. */
52ce6436
PH
7350
7351static struct value *
7352ada_index_struct_field (int index, struct value *arg, int offset,
7353 struct type *type)
7354{
7355 return ada_index_struct_field_1 (&index, arg, offset, type);
7356}
7357
7358
7359/* Auxiliary function for ada_index_struct_field. Like
7360 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7361 * *INDEX_P. */
52ce6436
PH
7362
7363static struct value *
7364ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7365 struct type *type)
7366{
7367 int i;
7368 type = ada_check_typedef (type);
7369
7370 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7371 {
7372 if (TYPE_FIELD_NAME (type, i) == NULL)
7373 continue;
7374 else if (ada_is_wrapper_field (type, i))
7375 {
0963b4bd 7376 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7377 ada_index_struct_field_1 (index_p, arg,
7378 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7379 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7380
52ce6436
PH
7381 if (v != NULL)
7382 return v;
7383 }
7384
7385 else if (ada_is_variant_part (type, i))
7386 {
7387 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7388 find_struct_field. */
52ce6436
PH
7389 error (_("Cannot assign this kind of variant record"));
7390 }
7391 else if (*index_p == 0)
7392 return ada_value_primitive_field (arg, offset, i, type);
7393 else
7394 *index_p -= 1;
7395 }
7396 return NULL;
7397}
7398
4c4b4cd2
PH
7399/* Given ARG, a value of type (pointer or reference to a)*
7400 structure/union, extract the component named NAME from the ultimate
7401 target structure/union and return it as a value with its
f5938064 7402 appropriate type.
14f9c5c9 7403
4c4b4cd2
PH
7404 The routine searches for NAME among all members of the structure itself
7405 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7406 (e.g., '_parent').
7407
03ee6b2e
PH
7408 If NO_ERR, then simply return NULL in case of error, rather than
7409 calling error. */
14f9c5c9 7410
d2e4a39e 7411struct value *
a121b7c1 7412ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7413{
4c4b4cd2 7414 struct type *t, *t1;
d2e4a39e 7415 struct value *v;
14f9c5c9 7416
4c4b4cd2 7417 v = NULL;
df407dfe 7418 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7419 if (TYPE_CODE (t) == TYPE_CODE_REF)
7420 {
7421 t1 = TYPE_TARGET_TYPE (t);
7422 if (t1 == NULL)
03ee6b2e 7423 goto BadValue;
61ee279c 7424 t1 = ada_check_typedef (t1);
4c4b4cd2 7425 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7426 {
994b9211 7427 arg = coerce_ref (arg);
76a01679
JB
7428 t = t1;
7429 }
4c4b4cd2 7430 }
14f9c5c9 7431
4c4b4cd2
PH
7432 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7433 {
7434 t1 = TYPE_TARGET_TYPE (t);
7435 if (t1 == NULL)
03ee6b2e 7436 goto BadValue;
61ee279c 7437 t1 = ada_check_typedef (t1);
4c4b4cd2 7438 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7439 {
7440 arg = value_ind (arg);
7441 t = t1;
7442 }
4c4b4cd2 7443 else
76a01679 7444 break;
4c4b4cd2 7445 }
14f9c5c9 7446
4c4b4cd2 7447 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7448 goto BadValue;
14f9c5c9 7449
4c4b4cd2
PH
7450 if (t1 == t)
7451 v = ada_search_struct_field (name, arg, 0, t);
7452 else
7453 {
7454 int bit_offset, bit_size, byte_offset;
7455 struct type *field_type;
7456 CORE_ADDR address;
7457
76a01679 7458 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7459 address = value_address (ada_value_ind (arg));
4c4b4cd2 7460 else
b50d69b5 7461 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7462
1ed6ede0 7463 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7464 if (find_struct_field (name, t1, 0,
7465 &field_type, &byte_offset, &bit_offset,
52ce6436 7466 &bit_size, NULL))
76a01679
JB
7467 {
7468 if (bit_size != 0)
7469 {
714e53ab
PH
7470 if (TYPE_CODE (t) == TYPE_CODE_REF)
7471 arg = ada_coerce_ref (arg);
7472 else
7473 arg = ada_value_ind (arg);
76a01679
JB
7474 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7475 bit_offset, bit_size,
7476 field_type);
7477 }
7478 else
f5938064 7479 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7480 }
7481 }
7482
03ee6b2e
PH
7483 if (v != NULL || no_err)
7484 return v;
7485 else
323e0a4a 7486 error (_("There is no member named %s."), name);
14f9c5c9 7487
03ee6b2e
PH
7488 BadValue:
7489 if (no_err)
7490 return NULL;
7491 else
0963b4bd
MS
7492 error (_("Attempt to extract a component of "
7493 "a value that is not a record."));
14f9c5c9
AS
7494}
7495
3b4de39c 7496/* Return a string representation of type TYPE. */
99bbb428 7497
3b4de39c 7498static std::string
99bbb428
PA
7499type_as_string (struct type *type)
7500{
d7e74731 7501 string_file tmp_stream;
99bbb428 7502
d7e74731 7503 type_print (type, "", &tmp_stream, -1);
99bbb428 7504
d7e74731 7505 return std::move (tmp_stream.string ());
99bbb428
PA
7506}
7507
14f9c5c9 7508/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7509 If DISPP is non-null, add its byte displacement from the beginning of a
7510 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7511 work for packed fields).
7512
7513 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7514 followed by "___".
14f9c5c9 7515
0963b4bd 7516 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7517 be a (pointer or reference)+ to a struct or union, and the
7518 ultimate target type will be searched.
14f9c5c9
AS
7519
7520 Looks recursively into variant clauses and parent types.
7521
4c4b4cd2
PH
7522 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7523 TYPE is not a type of the right kind. */
14f9c5c9 7524
4c4b4cd2 7525static struct type *
a121b7c1 7526ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7527 int noerr)
14f9c5c9
AS
7528{
7529 int i;
7530
7531 if (name == NULL)
7532 goto BadName;
7533
76a01679 7534 if (refok && type != NULL)
4c4b4cd2
PH
7535 while (1)
7536 {
61ee279c 7537 type = ada_check_typedef (type);
76a01679
JB
7538 if (TYPE_CODE (type) != TYPE_CODE_PTR
7539 && TYPE_CODE (type) != TYPE_CODE_REF)
7540 break;
7541 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7542 }
14f9c5c9 7543
76a01679 7544 if (type == NULL
1265e4aa
JB
7545 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7546 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7547 {
4c4b4cd2 7548 if (noerr)
76a01679 7549 return NULL;
99bbb428 7550
3b4de39c
PA
7551 error (_("Type %s is not a structure or union type"),
7552 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7553 }
7554
7555 type = to_static_fixed_type (type);
7556
7557 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7558 {
0d5cff50 7559 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7560 struct type *t;
d2e4a39e 7561
14f9c5c9 7562 if (t_field_name == NULL)
4c4b4cd2 7563 continue;
14f9c5c9
AS
7564
7565 else if (field_name_match (t_field_name, name))
988f6b3d 7566 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7567
7568 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7569 {
4c4b4cd2 7570 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7571 0, 1);
4c4b4cd2 7572 if (t != NULL)
988f6b3d 7573 return t;
4c4b4cd2 7574 }
14f9c5c9
AS
7575
7576 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7577 {
7578 int j;
5b4ee69b
MS
7579 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7580 i));
4c4b4cd2
PH
7581
7582 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7583 {
b1f33ddd
JB
7584 /* FIXME pnh 2008/01/26: We check for a field that is
7585 NOT wrapped in a struct, since the compiler sometimes
7586 generates these for unchecked variant types. Revisit
0963b4bd 7587 if the compiler changes this practice. */
0d5cff50 7588 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7589
b1f33ddd
JB
7590 if (v_field_name != NULL
7591 && field_name_match (v_field_name, name))
460efde1 7592 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7593 else
0963b4bd
MS
7594 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7595 j),
988f6b3d 7596 name, 0, 1);
b1f33ddd 7597
4c4b4cd2 7598 if (t != NULL)
988f6b3d 7599 return t;
4c4b4cd2
PH
7600 }
7601 }
14f9c5c9
AS
7602
7603 }
7604
7605BadName:
d2e4a39e 7606 if (!noerr)
14f9c5c9 7607 {
2b2798cc 7608 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7609
7610 error (_("Type %s has no component named %s"),
3b4de39c 7611 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7612 }
7613
7614 return NULL;
7615}
7616
b1f33ddd
JB
7617/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7618 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7619 represents an unchecked union (that is, the variant part of a
0963b4bd 7620 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7621
7622static int
7623is_unchecked_variant (struct type *var_type, struct type *outer_type)
7624{
a121b7c1 7625 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7626
988f6b3d 7627 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7628}
7629
7630
14f9c5c9
AS
7631/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7632 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7633 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7634 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7635
d2e4a39e 7636int
ebf56fd3 7637ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7638 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7639{
7640 int others_clause;
7641 int i;
a121b7c1 7642 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7643 struct value *outer;
7644 struct value *discrim;
14f9c5c9
AS
7645 LONGEST discrim_val;
7646
012370f6
TT
7647 /* Using plain value_from_contents_and_address here causes problems
7648 because we will end up trying to resolve a type that is currently
7649 being constructed. */
7650 outer = value_from_contents_and_address_unresolved (outer_type,
7651 outer_valaddr, 0);
0c281816
JB
7652 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7653 if (discrim == NULL)
14f9c5c9 7654 return -1;
0c281816 7655 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7656
7657 others_clause = -1;
7658 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7659 {
7660 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7661 others_clause = i;
14f9c5c9 7662 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7663 return i;
14f9c5c9
AS
7664 }
7665
7666 return others_clause;
7667}
d2e4a39e 7668\f
14f9c5c9
AS
7669
7670
4c4b4cd2 7671 /* Dynamic-Sized Records */
14f9c5c9
AS
7672
7673/* Strategy: The type ostensibly attached to a value with dynamic size
7674 (i.e., a size that is not statically recorded in the debugging
7675 data) does not accurately reflect the size or layout of the value.
7676 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7677 conventional types that are constructed on the fly. */
14f9c5c9
AS
7678
7679/* There is a subtle and tricky problem here. In general, we cannot
7680 determine the size of dynamic records without its data. However,
7681 the 'struct value' data structure, which GDB uses to represent
7682 quantities in the inferior process (the target), requires the size
7683 of the type at the time of its allocation in order to reserve space
7684 for GDB's internal copy of the data. That's why the
7685 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7686 rather than struct value*s.
14f9c5c9
AS
7687
7688 However, GDB's internal history variables ($1, $2, etc.) are
7689 struct value*s containing internal copies of the data that are not, in
7690 general, the same as the data at their corresponding addresses in
7691 the target. Fortunately, the types we give to these values are all
7692 conventional, fixed-size types (as per the strategy described
7693 above), so that we don't usually have to perform the
7694 'to_fixed_xxx_type' conversions to look at their values.
7695 Unfortunately, there is one exception: if one of the internal
7696 history variables is an array whose elements are unconstrained
7697 records, then we will need to create distinct fixed types for each
7698 element selected. */
7699
7700/* The upshot of all of this is that many routines take a (type, host
7701 address, target address) triple as arguments to represent a value.
7702 The host address, if non-null, is supposed to contain an internal
7703 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7704 target at the target address. */
14f9c5c9
AS
7705
7706/* Assuming that VAL0 represents a pointer value, the result of
7707 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7708 dynamic-sized types. */
14f9c5c9 7709
d2e4a39e
AS
7710struct value *
7711ada_value_ind (struct value *val0)
14f9c5c9 7712{
c48db5ca 7713 struct value *val = value_ind (val0);
5b4ee69b 7714
b50d69b5
JG
7715 if (ada_is_tagged_type (value_type (val), 0))
7716 val = ada_tag_value_at_base_address (val);
7717
4c4b4cd2 7718 return ada_to_fixed_value (val);
14f9c5c9
AS
7719}
7720
7721/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7722 qualifiers on VAL0. */
7723
d2e4a39e
AS
7724static struct value *
7725ada_coerce_ref (struct value *val0)
7726{
df407dfe 7727 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7728 {
7729 struct value *val = val0;
5b4ee69b 7730
994b9211 7731 val = coerce_ref (val);
b50d69b5
JG
7732
7733 if (ada_is_tagged_type (value_type (val), 0))
7734 val = ada_tag_value_at_base_address (val);
7735
4c4b4cd2 7736 return ada_to_fixed_value (val);
d2e4a39e
AS
7737 }
7738 else
14f9c5c9
AS
7739 return val0;
7740}
7741
7742/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7743 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7744
7745static unsigned int
ebf56fd3 7746align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7747{
7748 return (off + alignment - 1) & ~(alignment - 1);
7749}
7750
4c4b4cd2 7751/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7752
7753static unsigned int
ebf56fd3 7754field_alignment (struct type *type, int f)
14f9c5c9 7755{
d2e4a39e 7756 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7757 int len;
14f9c5c9
AS
7758 int align_offset;
7759
64a1bf19
JB
7760 /* The field name should never be null, unless the debugging information
7761 is somehow malformed. In this case, we assume the field does not
7762 require any alignment. */
7763 if (name == NULL)
7764 return 1;
7765
7766 len = strlen (name);
7767
4c4b4cd2
PH
7768 if (!isdigit (name[len - 1]))
7769 return 1;
14f9c5c9 7770
d2e4a39e 7771 if (isdigit (name[len - 2]))
14f9c5c9
AS
7772 align_offset = len - 2;
7773 else
7774 align_offset = len - 1;
7775
61012eef 7776 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7777 return TARGET_CHAR_BIT;
7778
4c4b4cd2
PH
7779 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7780}
7781
852dff6c 7782/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7783
852dff6c
JB
7784static struct symbol *
7785ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7786{
7787 struct symbol *sym;
7788
7789 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7790 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7791 return sym;
7792
4186eb54
KS
7793 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7794 return sym;
14f9c5c9
AS
7795}
7796
dddfab26
UW
7797/* Find a type named NAME. Ignores ambiguity. This routine will look
7798 solely for types defined by debug info, it will not search the GDB
7799 primitive types. */
4c4b4cd2 7800
852dff6c 7801static struct type *
ebf56fd3 7802ada_find_any_type (const char *name)
14f9c5c9 7803{
852dff6c 7804 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7805
14f9c5c9 7806 if (sym != NULL)
dddfab26 7807 return SYMBOL_TYPE (sym);
14f9c5c9 7808
dddfab26 7809 return NULL;
14f9c5c9
AS
7810}
7811
739593e0
JB
7812/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7813 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7814 symbol, in which case it is returned. Otherwise, this looks for
7815 symbols whose name is that of NAME_SYM suffixed with "___XR".
7816 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7817
7818struct symbol *
270140bd 7819ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7820{
739593e0 7821 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7822 struct symbol *sym;
7823
739593e0
JB
7824 if (strstr (name, "___XR") != NULL)
7825 return name_sym;
7826
aeb5907d
JB
7827 sym = find_old_style_renaming_symbol (name, block);
7828
7829 if (sym != NULL)
7830 return sym;
7831
0963b4bd 7832 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7833 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7834 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7835 return sym;
7836 else
7837 return NULL;
7838}
7839
7840static struct symbol *
270140bd 7841find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7842{
7f0df278 7843 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7844 char *rename;
7845
7846 if (function_sym != NULL)
7847 {
7848 /* If the symbol is defined inside a function, NAME is not fully
7849 qualified. This means we need to prepend the function name
7850 as well as adding the ``___XR'' suffix to build the name of
7851 the associated renaming symbol. */
0d5cff50 7852 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7853 /* Function names sometimes contain suffixes used
7854 for instance to qualify nested subprograms. When building
7855 the XR type name, we need to make sure that this suffix is
7856 not included. So do not include any suffix in the function
7857 name length below. */
69fadcdf 7858 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7859 const int rename_len = function_name_len + 2 /* "__" */
7860 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7861
529cad9c 7862 /* Strip the suffix if necessary. */
69fadcdf
JB
7863 ada_remove_trailing_digits (function_name, &function_name_len);
7864 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7865 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7866
4c4b4cd2
PH
7867 /* Library-level functions are a special case, as GNAT adds
7868 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7869 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7870 have this prefix, so we need to skip this prefix if present. */
7871 if (function_name_len > 5 /* "_ada_" */
7872 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7873 {
7874 function_name += 5;
7875 function_name_len -= 5;
7876 }
4c4b4cd2
PH
7877
7878 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7879 strncpy (rename, function_name, function_name_len);
7880 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7881 "__%s___XR", name);
4c4b4cd2
PH
7882 }
7883 else
7884 {
7885 const int rename_len = strlen (name) + 6;
5b4ee69b 7886
4c4b4cd2 7887 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7888 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7889 }
7890
852dff6c 7891 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7892}
7893
14f9c5c9 7894/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7895 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7896 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7897 otherwise return 0. */
7898
14f9c5c9 7899int
d2e4a39e 7900ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7901{
7902 if (type1 == NULL)
7903 return 1;
7904 else if (type0 == NULL)
7905 return 0;
7906 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7907 return 1;
7908 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7909 return 0;
4c4b4cd2
PH
7910 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7911 return 1;
ad82864c 7912 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7913 return 1;
4c4b4cd2
PH
7914 else if (ada_is_array_descriptor_type (type0)
7915 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7916 return 1;
aeb5907d
JB
7917 else
7918 {
7919 const char *type0_name = type_name_no_tag (type0);
7920 const char *type1_name = type_name_no_tag (type1);
7921
7922 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7923 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7924 return 1;
7925 }
14f9c5c9
AS
7926 return 0;
7927}
7928
7929/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7930 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7931
0d5cff50 7932const char *
d2e4a39e 7933ada_type_name (struct type *type)
14f9c5c9 7934{
d2e4a39e 7935 if (type == NULL)
14f9c5c9
AS
7936 return NULL;
7937 else if (TYPE_NAME (type) != NULL)
7938 return TYPE_NAME (type);
7939 else
7940 return TYPE_TAG_NAME (type);
7941}
7942
b4ba55a1
JB
7943/* Search the list of "descriptive" types associated to TYPE for a type
7944 whose name is NAME. */
7945
7946static struct type *
7947find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7948{
931e5bc3 7949 struct type *result, *tmp;
b4ba55a1 7950
c6044dd1
JB
7951 if (ada_ignore_descriptive_types_p)
7952 return NULL;
7953
b4ba55a1
JB
7954 /* If there no descriptive-type info, then there is no parallel type
7955 to be found. */
7956 if (!HAVE_GNAT_AUX_INFO (type))
7957 return NULL;
7958
7959 result = TYPE_DESCRIPTIVE_TYPE (type);
7960 while (result != NULL)
7961 {
0d5cff50 7962 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7963
7964 if (result_name == NULL)
7965 {
7966 warning (_("unexpected null name on descriptive type"));
7967 return NULL;
7968 }
7969
7970 /* If the names match, stop. */
7971 if (strcmp (result_name, name) == 0)
7972 break;
7973
7974 /* Otherwise, look at the next item on the list, if any. */
7975 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7976 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7977 else
7978 tmp = NULL;
7979
7980 /* If not found either, try after having resolved the typedef. */
7981 if (tmp != NULL)
7982 result = tmp;
b4ba55a1 7983 else
931e5bc3 7984 {
f168693b 7985 result = check_typedef (result);
931e5bc3
JG
7986 if (HAVE_GNAT_AUX_INFO (result))
7987 result = TYPE_DESCRIPTIVE_TYPE (result);
7988 else
7989 result = NULL;
7990 }
b4ba55a1
JB
7991 }
7992
7993 /* If we didn't find a match, see whether this is a packed array. With
7994 older compilers, the descriptive type information is either absent or
7995 irrelevant when it comes to packed arrays so the above lookup fails.
7996 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7997 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7998 return ada_find_any_type (name);
7999
8000 return result;
8001}
8002
8003/* Find a parallel type to TYPE with the specified NAME, using the
8004 descriptive type taken from the debugging information, if available,
8005 and otherwise using the (slower) name-based method. */
8006
8007static struct type *
8008ada_find_parallel_type_with_name (struct type *type, const char *name)
8009{
8010 struct type *result = NULL;
8011
8012 if (HAVE_GNAT_AUX_INFO (type))
8013 result = find_parallel_type_by_descriptive_type (type, name);
8014 else
8015 result = ada_find_any_type (name);
8016
8017 return result;
8018}
8019
8020/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8021 SUFFIX to the name of TYPE. */
14f9c5c9 8022
d2e4a39e 8023struct type *
ebf56fd3 8024ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8025{
0d5cff50 8026 char *name;
fe978cb0 8027 const char *type_name = ada_type_name (type);
14f9c5c9 8028 int len;
d2e4a39e 8029
fe978cb0 8030 if (type_name == NULL)
14f9c5c9
AS
8031 return NULL;
8032
fe978cb0 8033 len = strlen (type_name);
14f9c5c9 8034
b4ba55a1 8035 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8036
fe978cb0 8037 strcpy (name, type_name);
14f9c5c9
AS
8038 strcpy (name + len, suffix);
8039
b4ba55a1 8040 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8041}
8042
14f9c5c9 8043/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8044 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8045
d2e4a39e
AS
8046static struct type *
8047dynamic_template_type (struct type *type)
14f9c5c9 8048{
61ee279c 8049 type = ada_check_typedef (type);
14f9c5c9
AS
8050
8051 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8052 || ada_type_name (type) == NULL)
14f9c5c9 8053 return NULL;
d2e4a39e 8054 else
14f9c5c9
AS
8055 {
8056 int len = strlen (ada_type_name (type));
5b4ee69b 8057
4c4b4cd2
PH
8058 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8059 return type;
14f9c5c9 8060 else
4c4b4cd2 8061 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8062 }
8063}
8064
8065/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8066 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8067
d2e4a39e
AS
8068static int
8069is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8070{
8071 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8072
d2e4a39e 8073 return name != NULL
14f9c5c9
AS
8074 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8075 && strstr (name, "___XVL") != NULL;
8076}
8077
4c4b4cd2
PH
8078/* The index of the variant field of TYPE, or -1 if TYPE does not
8079 represent a variant record type. */
14f9c5c9 8080
d2e4a39e 8081static int
4c4b4cd2 8082variant_field_index (struct type *type)
14f9c5c9
AS
8083{
8084 int f;
8085
4c4b4cd2
PH
8086 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8087 return -1;
8088
8089 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8090 {
8091 if (ada_is_variant_part (type, f))
8092 return f;
8093 }
8094 return -1;
14f9c5c9
AS
8095}
8096
4c4b4cd2
PH
8097/* A record type with no fields. */
8098
d2e4a39e 8099static struct type *
fe978cb0 8100empty_record (struct type *templ)
14f9c5c9 8101{
fe978cb0 8102 struct type *type = alloc_type_copy (templ);
5b4ee69b 8103
14f9c5c9
AS
8104 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8105 TYPE_NFIELDS (type) = 0;
8106 TYPE_FIELDS (type) = NULL;
b1f33ddd 8107 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8108 TYPE_NAME (type) = "<empty>";
8109 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8110 TYPE_LENGTH (type) = 0;
8111 return type;
8112}
8113
8114/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8115 the value of type TYPE at VALADDR or ADDRESS (see comments at
8116 the beginning of this section) VAL according to GNAT conventions.
8117 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8118 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8119 an outer-level type (i.e., as opposed to a branch of a variant.) A
8120 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8121 of the variant.
14f9c5c9 8122
4c4b4cd2
PH
8123 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8124 length are not statically known are discarded. As a consequence,
8125 VALADDR, ADDRESS and DVAL0 are ignored.
8126
8127 NOTE: Limitations: For now, we assume that dynamic fields and
8128 variants occupy whole numbers of bytes. However, they need not be
8129 byte-aligned. */
8130
8131struct type *
10a2c479 8132ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8133 const gdb_byte *valaddr,
4c4b4cd2
PH
8134 CORE_ADDR address, struct value *dval0,
8135 int keep_dynamic_fields)
14f9c5c9 8136{
d2e4a39e
AS
8137 struct value *mark = value_mark ();
8138 struct value *dval;
8139 struct type *rtype;
14f9c5c9 8140 int nfields, bit_len;
4c4b4cd2 8141 int variant_field;
14f9c5c9 8142 long off;
d94e4f4f 8143 int fld_bit_len;
14f9c5c9
AS
8144 int f;
8145
4c4b4cd2
PH
8146 /* Compute the number of fields in this record type that are going
8147 to be processed: unless keep_dynamic_fields, this includes only
8148 fields whose position and length are static will be processed. */
8149 if (keep_dynamic_fields)
8150 nfields = TYPE_NFIELDS (type);
8151 else
8152 {
8153 nfields = 0;
76a01679 8154 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8155 && !ada_is_variant_part (type, nfields)
8156 && !is_dynamic_field (type, nfields))
8157 nfields++;
8158 }
8159
e9bb382b 8160 rtype = alloc_type_copy (type);
14f9c5c9
AS
8161 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8162 INIT_CPLUS_SPECIFIC (rtype);
8163 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8164 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8165 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8166 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8167 TYPE_NAME (rtype) = ada_type_name (type);
8168 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8169 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8170
d2e4a39e
AS
8171 off = 0;
8172 bit_len = 0;
4c4b4cd2
PH
8173 variant_field = -1;
8174
14f9c5c9
AS
8175 for (f = 0; f < nfields; f += 1)
8176 {
6c038f32
PH
8177 off = align_value (off, field_alignment (type, f))
8178 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8179 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8180 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8181
d2e4a39e 8182 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8183 {
8184 variant_field = f;
d94e4f4f 8185 fld_bit_len = 0;
4c4b4cd2 8186 }
14f9c5c9 8187 else if (is_dynamic_field (type, f))
4c4b4cd2 8188 {
284614f0
JB
8189 const gdb_byte *field_valaddr = valaddr;
8190 CORE_ADDR field_address = address;
8191 struct type *field_type =
8192 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8193
4c4b4cd2 8194 if (dval0 == NULL)
b5304971
JG
8195 {
8196 /* rtype's length is computed based on the run-time
8197 value of discriminants. If the discriminants are not
8198 initialized, the type size may be completely bogus and
0963b4bd 8199 GDB may fail to allocate a value for it. So check the
b5304971 8200 size first before creating the value. */
c1b5a1a6 8201 ada_ensure_varsize_limit (rtype);
012370f6
TT
8202 /* Using plain value_from_contents_and_address here
8203 causes problems because we will end up trying to
8204 resolve a type that is currently being
8205 constructed. */
8206 dval = value_from_contents_and_address_unresolved (rtype,
8207 valaddr,
8208 address);
9f1f738a 8209 rtype = value_type (dval);
b5304971 8210 }
4c4b4cd2
PH
8211 else
8212 dval = dval0;
8213
284614f0
JB
8214 /* If the type referenced by this field is an aligner type, we need
8215 to unwrap that aligner type, because its size might not be set.
8216 Keeping the aligner type would cause us to compute the wrong
8217 size for this field, impacting the offset of the all the fields
8218 that follow this one. */
8219 if (ada_is_aligner_type (field_type))
8220 {
8221 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8222
8223 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8224 field_address = cond_offset_target (field_address, field_offset);
8225 field_type = ada_aligned_type (field_type);
8226 }
8227
8228 field_valaddr = cond_offset_host (field_valaddr,
8229 off / TARGET_CHAR_BIT);
8230 field_address = cond_offset_target (field_address,
8231 off / TARGET_CHAR_BIT);
8232
8233 /* Get the fixed type of the field. Note that, in this case,
8234 we do not want to get the real type out of the tag: if
8235 the current field is the parent part of a tagged record,
8236 we will get the tag of the object. Clearly wrong: the real
8237 type of the parent is not the real type of the child. We
8238 would end up in an infinite loop. */
8239 field_type = ada_get_base_type (field_type);
8240 field_type = ada_to_fixed_type (field_type, field_valaddr,
8241 field_address, dval, 0);
27f2a97b
JB
8242 /* If the field size is already larger than the maximum
8243 object size, then the record itself will necessarily
8244 be larger than the maximum object size. We need to make
8245 this check now, because the size might be so ridiculously
8246 large (due to an uninitialized variable in the inferior)
8247 that it would cause an overflow when adding it to the
8248 record size. */
c1b5a1a6 8249 ada_ensure_varsize_limit (field_type);
284614f0
JB
8250
8251 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8252 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8253 /* The multiplication can potentially overflow. But because
8254 the field length has been size-checked just above, and
8255 assuming that the maximum size is a reasonable value,
8256 an overflow should not happen in practice. So rather than
8257 adding overflow recovery code to this already complex code,
8258 we just assume that it's not going to happen. */
d94e4f4f 8259 fld_bit_len =
4c4b4cd2
PH
8260 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8261 }
14f9c5c9 8262 else
4c4b4cd2 8263 {
5ded5331
JB
8264 /* Note: If this field's type is a typedef, it is important
8265 to preserve the typedef layer.
8266
8267 Otherwise, we might be transforming a typedef to a fat
8268 pointer (encoding a pointer to an unconstrained array),
8269 into a basic fat pointer (encoding an unconstrained
8270 array). As both types are implemented using the same
8271 structure, the typedef is the only clue which allows us
8272 to distinguish between the two options. Stripping it
8273 would prevent us from printing this field appropriately. */
8274 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8275 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8276 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8277 fld_bit_len =
4c4b4cd2
PH
8278 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8279 else
5ded5331
JB
8280 {
8281 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8282
8283 /* We need to be careful of typedefs when computing
8284 the length of our field. If this is a typedef,
8285 get the length of the target type, not the length
8286 of the typedef. */
8287 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8288 field_type = ada_typedef_target_type (field_type);
8289
8290 fld_bit_len =
8291 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8292 }
4c4b4cd2 8293 }
14f9c5c9 8294 if (off + fld_bit_len > bit_len)
4c4b4cd2 8295 bit_len = off + fld_bit_len;
d94e4f4f 8296 off += fld_bit_len;
4c4b4cd2
PH
8297 TYPE_LENGTH (rtype) =
8298 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8299 }
4c4b4cd2
PH
8300
8301 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8302 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8303 the record. This can happen in the presence of representation
8304 clauses. */
8305 if (variant_field >= 0)
8306 {
8307 struct type *branch_type;
8308
8309 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8310
8311 if (dval0 == NULL)
9f1f738a 8312 {
012370f6
TT
8313 /* Using plain value_from_contents_and_address here causes
8314 problems because we will end up trying to resolve a type
8315 that is currently being constructed. */
8316 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8317 address);
9f1f738a
SA
8318 rtype = value_type (dval);
8319 }
4c4b4cd2
PH
8320 else
8321 dval = dval0;
8322
8323 branch_type =
8324 to_fixed_variant_branch_type
8325 (TYPE_FIELD_TYPE (type, variant_field),
8326 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8327 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8328 if (branch_type == NULL)
8329 {
8330 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8331 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8332 TYPE_NFIELDS (rtype) -= 1;
8333 }
8334 else
8335 {
8336 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8337 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8338 fld_bit_len =
8339 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8340 TARGET_CHAR_BIT;
8341 if (off + fld_bit_len > bit_len)
8342 bit_len = off + fld_bit_len;
8343 TYPE_LENGTH (rtype) =
8344 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8345 }
8346 }
8347
714e53ab
PH
8348 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8349 should contain the alignment of that record, which should be a strictly
8350 positive value. If null or negative, then something is wrong, most
8351 probably in the debug info. In that case, we don't round up the size
0963b4bd 8352 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8353 the current RTYPE length might be good enough for our purposes. */
8354 if (TYPE_LENGTH (type) <= 0)
8355 {
323e0a4a
AC
8356 if (TYPE_NAME (rtype))
8357 warning (_("Invalid type size for `%s' detected: %d."),
8358 TYPE_NAME (rtype), TYPE_LENGTH (type));
8359 else
8360 warning (_("Invalid type size for <unnamed> detected: %d."),
8361 TYPE_LENGTH (type));
714e53ab
PH
8362 }
8363 else
8364 {
8365 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8366 TYPE_LENGTH (type));
8367 }
14f9c5c9
AS
8368
8369 value_free_to_mark (mark);
d2e4a39e 8370 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8371 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8372 return rtype;
8373}
8374
4c4b4cd2
PH
8375/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8376 of 1. */
14f9c5c9 8377
d2e4a39e 8378static struct type *
fc1a4b47 8379template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8380 CORE_ADDR address, struct value *dval0)
8381{
8382 return ada_template_to_fixed_record_type_1 (type, valaddr,
8383 address, dval0, 1);
8384}
8385
8386/* An ordinary record type in which ___XVL-convention fields and
8387 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8388 static approximations, containing all possible fields. Uses
8389 no runtime values. Useless for use in values, but that's OK,
8390 since the results are used only for type determinations. Works on both
8391 structs and unions. Representation note: to save space, we memorize
8392 the result of this function in the TYPE_TARGET_TYPE of the
8393 template type. */
8394
8395static struct type *
8396template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8397{
8398 struct type *type;
8399 int nfields;
8400 int f;
8401
9e195661
PMR
8402 /* No need no do anything if the input type is already fixed. */
8403 if (TYPE_FIXED_INSTANCE (type0))
8404 return type0;
8405
8406 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8407 if (TYPE_TARGET_TYPE (type0) != NULL)
8408 return TYPE_TARGET_TYPE (type0);
8409
9e195661 8410 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8411 type = type0;
9e195661
PMR
8412 nfields = TYPE_NFIELDS (type0);
8413
8414 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8415 recompute all over next time. */
8416 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8417
8418 for (f = 0; f < nfields; f += 1)
8419 {
460efde1 8420 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8421 struct type *new_type;
14f9c5c9 8422
4c4b4cd2 8423 if (is_dynamic_field (type0, f))
460efde1
JB
8424 {
8425 field_type = ada_check_typedef (field_type);
8426 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8427 }
14f9c5c9 8428 else
f192137b 8429 new_type = static_unwrap_type (field_type);
9e195661
PMR
8430
8431 if (new_type != field_type)
8432 {
8433 /* Clone TYPE0 only the first time we get a new field type. */
8434 if (type == type0)
8435 {
8436 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8437 TYPE_CODE (type) = TYPE_CODE (type0);
8438 INIT_CPLUS_SPECIFIC (type);
8439 TYPE_NFIELDS (type) = nfields;
8440 TYPE_FIELDS (type) = (struct field *)
8441 TYPE_ALLOC (type, nfields * sizeof (struct field));
8442 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8443 sizeof (struct field) * nfields);
8444 TYPE_NAME (type) = ada_type_name (type0);
8445 TYPE_TAG_NAME (type) = NULL;
8446 TYPE_FIXED_INSTANCE (type) = 1;
8447 TYPE_LENGTH (type) = 0;
8448 }
8449 TYPE_FIELD_TYPE (type, f) = new_type;
8450 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8451 }
14f9c5c9 8452 }
9e195661 8453
14f9c5c9
AS
8454 return type;
8455}
8456
4c4b4cd2 8457/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8458 whose address in memory is ADDRESS, returns a revision of TYPE,
8459 which should be a non-dynamic-sized record, in which the variant
8460 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8461 for discriminant values in DVAL0, which can be NULL if the record
8462 contains the necessary discriminant values. */
8463
d2e4a39e 8464static struct type *
fc1a4b47 8465to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8466 CORE_ADDR address, struct value *dval0)
14f9c5c9 8467{
d2e4a39e 8468 struct value *mark = value_mark ();
4c4b4cd2 8469 struct value *dval;
d2e4a39e 8470 struct type *rtype;
14f9c5c9
AS
8471 struct type *branch_type;
8472 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8473 int variant_field = variant_field_index (type);
14f9c5c9 8474
4c4b4cd2 8475 if (variant_field == -1)
14f9c5c9
AS
8476 return type;
8477
4c4b4cd2 8478 if (dval0 == NULL)
9f1f738a
SA
8479 {
8480 dval = value_from_contents_and_address (type, valaddr, address);
8481 type = value_type (dval);
8482 }
4c4b4cd2
PH
8483 else
8484 dval = dval0;
8485
e9bb382b 8486 rtype = alloc_type_copy (type);
14f9c5c9 8487 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8488 INIT_CPLUS_SPECIFIC (rtype);
8489 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8490 TYPE_FIELDS (rtype) =
8491 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8492 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8493 sizeof (struct field) * nfields);
14f9c5c9
AS
8494 TYPE_NAME (rtype) = ada_type_name (type);
8495 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8496 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8497 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8498
4c4b4cd2
PH
8499 branch_type = to_fixed_variant_branch_type
8500 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8501 cond_offset_host (valaddr,
4c4b4cd2
PH
8502 TYPE_FIELD_BITPOS (type, variant_field)
8503 / TARGET_CHAR_BIT),
d2e4a39e 8504 cond_offset_target (address,
4c4b4cd2
PH
8505 TYPE_FIELD_BITPOS (type, variant_field)
8506 / TARGET_CHAR_BIT), dval);
d2e4a39e 8507 if (branch_type == NULL)
14f9c5c9 8508 {
4c4b4cd2 8509 int f;
5b4ee69b 8510
4c4b4cd2
PH
8511 for (f = variant_field + 1; f < nfields; f += 1)
8512 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8513 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8514 }
8515 else
8516 {
4c4b4cd2
PH
8517 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8518 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8519 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8520 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8521 }
4c4b4cd2 8522 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8523
4c4b4cd2 8524 value_free_to_mark (mark);
14f9c5c9
AS
8525 return rtype;
8526}
8527
8528/* An ordinary record type (with fixed-length fields) that describes
8529 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8530 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8531 should be in DVAL, a record value; it may be NULL if the object
8532 at ADDR itself contains any necessary discriminant values.
8533 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8534 values from the record are needed. Except in the case that DVAL,
8535 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8536 unchecked) is replaced by a particular branch of the variant.
8537
8538 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8539 is questionable and may be removed. It can arise during the
8540 processing of an unconstrained-array-of-record type where all the
8541 variant branches have exactly the same size. This is because in
8542 such cases, the compiler does not bother to use the XVS convention
8543 when encoding the record. I am currently dubious of this
8544 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8545
d2e4a39e 8546static struct type *
fc1a4b47 8547to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8548 CORE_ADDR address, struct value *dval)
14f9c5c9 8549{
d2e4a39e 8550 struct type *templ_type;
14f9c5c9 8551
876cecd0 8552 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8553 return type0;
8554
d2e4a39e 8555 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8556
8557 if (templ_type != NULL)
8558 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8559 else if (variant_field_index (type0) >= 0)
8560 {
8561 if (dval == NULL && valaddr == NULL && address == 0)
8562 return type0;
8563 return to_record_with_fixed_variant_part (type0, valaddr, address,
8564 dval);
8565 }
14f9c5c9
AS
8566 else
8567 {
876cecd0 8568 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8569 return type0;
8570 }
8571
8572}
8573
8574/* An ordinary record type (with fixed-length fields) that describes
8575 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8576 union type. Any necessary discriminants' values should be in DVAL,
8577 a record value. That is, this routine selects the appropriate
8578 branch of the union at ADDR according to the discriminant value
b1f33ddd 8579 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8580 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8581
d2e4a39e 8582static struct type *
fc1a4b47 8583to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8584 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8585{
8586 int which;
d2e4a39e
AS
8587 struct type *templ_type;
8588 struct type *var_type;
14f9c5c9
AS
8589
8590 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8591 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8592 else
14f9c5c9
AS
8593 var_type = var_type0;
8594
8595 templ_type = ada_find_parallel_type (var_type, "___XVU");
8596
8597 if (templ_type != NULL)
8598 var_type = templ_type;
8599
b1f33ddd
JB
8600 if (is_unchecked_variant (var_type, value_type (dval)))
8601 return var_type0;
d2e4a39e
AS
8602 which =
8603 ada_which_variant_applies (var_type,
0fd88904 8604 value_type (dval), value_contents (dval));
14f9c5c9
AS
8605
8606 if (which < 0)
e9bb382b 8607 return empty_record (var_type);
14f9c5c9 8608 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8609 return to_fixed_record_type
d2e4a39e
AS
8610 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8611 valaddr, address, dval);
4c4b4cd2 8612 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8613 return
8614 to_fixed_record_type
8615 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8616 else
8617 return TYPE_FIELD_TYPE (var_type, which);
8618}
8619
8908fca5
JB
8620/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8621 ENCODING_TYPE, a type following the GNAT conventions for discrete
8622 type encodings, only carries redundant information. */
8623
8624static int
8625ada_is_redundant_range_encoding (struct type *range_type,
8626 struct type *encoding_type)
8627{
8628 struct type *fixed_range_type;
108d56a4 8629 const char *bounds_str;
8908fca5
JB
8630 int n;
8631 LONGEST lo, hi;
8632
8633 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8634
005e2509
JB
8635 if (TYPE_CODE (get_base_type (range_type))
8636 != TYPE_CODE (get_base_type (encoding_type)))
8637 {
8638 /* The compiler probably used a simple base type to describe
8639 the range type instead of the range's actual base type,
8640 expecting us to get the real base type from the encoding
8641 anyway. In this situation, the encoding cannot be ignored
8642 as redundant. */
8643 return 0;
8644 }
8645
8908fca5
JB
8646 if (is_dynamic_type (range_type))
8647 return 0;
8648
8649 if (TYPE_NAME (encoding_type) == NULL)
8650 return 0;
8651
8652 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8653 if (bounds_str == NULL)
8654 return 0;
8655
8656 n = 8; /* Skip "___XDLU_". */
8657 if (!ada_scan_number (bounds_str, n, &lo, &n))
8658 return 0;
8659 if (TYPE_LOW_BOUND (range_type) != lo)
8660 return 0;
8661
8662 n += 2; /* Skip the "__" separator between the two bounds. */
8663 if (!ada_scan_number (bounds_str, n, &hi, &n))
8664 return 0;
8665 if (TYPE_HIGH_BOUND (range_type) != hi)
8666 return 0;
8667
8668 return 1;
8669}
8670
8671/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8672 a type following the GNAT encoding for describing array type
8673 indices, only carries redundant information. */
8674
8675static int
8676ada_is_redundant_index_type_desc (struct type *array_type,
8677 struct type *desc_type)
8678{
8679 struct type *this_layer = check_typedef (array_type);
8680 int i;
8681
8682 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8683 {
8684 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8685 TYPE_FIELD_TYPE (desc_type, i)))
8686 return 0;
8687 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8688 }
8689
8690 return 1;
8691}
8692
14f9c5c9
AS
8693/* Assuming that TYPE0 is an array type describing the type of a value
8694 at ADDR, and that DVAL describes a record containing any
8695 discriminants used in TYPE0, returns a type for the value that
8696 contains no dynamic components (that is, no components whose sizes
8697 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8698 true, gives an error message if the resulting type's size is over
4c4b4cd2 8699 varsize_limit. */
14f9c5c9 8700
d2e4a39e
AS
8701static struct type *
8702to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8703 int ignore_too_big)
14f9c5c9 8704{
d2e4a39e
AS
8705 struct type *index_type_desc;
8706 struct type *result;
ad82864c 8707 int constrained_packed_array_p;
931e5bc3 8708 static const char *xa_suffix = "___XA";
14f9c5c9 8709
b0dd7688 8710 type0 = ada_check_typedef (type0);
284614f0 8711 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8712 return type0;
14f9c5c9 8713
ad82864c
JB
8714 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8715 if (constrained_packed_array_p)
8716 type0 = decode_constrained_packed_array_type (type0);
284614f0 8717
931e5bc3
JG
8718 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8719
8720 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8721 encoding suffixed with 'P' may still be generated. If so,
8722 it should be used to find the XA type. */
8723
8724 if (index_type_desc == NULL)
8725 {
1da0522e 8726 const char *type_name = ada_type_name (type0);
931e5bc3 8727
1da0522e 8728 if (type_name != NULL)
931e5bc3 8729 {
1da0522e 8730 const int len = strlen (type_name);
931e5bc3
JG
8731 char *name = (char *) alloca (len + strlen (xa_suffix));
8732
1da0522e 8733 if (type_name[len - 1] == 'P')
931e5bc3 8734 {
1da0522e 8735 strcpy (name, type_name);
931e5bc3
JG
8736 strcpy (name + len - 1, xa_suffix);
8737 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8738 }
8739 }
8740 }
8741
28c85d6c 8742 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8743 if (index_type_desc != NULL
8744 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8745 {
8746 /* Ignore this ___XA parallel type, as it does not bring any
8747 useful information. This allows us to avoid creating fixed
8748 versions of the array's index types, which would be identical
8749 to the original ones. This, in turn, can also help avoid
8750 the creation of fixed versions of the array itself. */
8751 index_type_desc = NULL;
8752 }
8753
14f9c5c9
AS
8754 if (index_type_desc == NULL)
8755 {
61ee279c 8756 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8757
14f9c5c9 8758 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8759 depend on the contents of the array in properly constructed
8760 debugging data. */
529cad9c
PH
8761 /* Create a fixed version of the array element type.
8762 We're not providing the address of an element here,
e1d5a0d2 8763 and thus the actual object value cannot be inspected to do
529cad9c
PH
8764 the conversion. This should not be a problem, since arrays of
8765 unconstrained objects are not allowed. In particular, all
8766 the elements of an array of a tagged type should all be of
8767 the same type specified in the debugging info. No need to
8768 consult the object tag. */
1ed6ede0 8769 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8770
284614f0
JB
8771 /* Make sure we always create a new array type when dealing with
8772 packed array types, since we're going to fix-up the array
8773 type length and element bitsize a little further down. */
ad82864c 8774 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8775 result = type0;
14f9c5c9 8776 else
e9bb382b 8777 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8778 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8779 }
8780 else
8781 {
8782 int i;
8783 struct type *elt_type0;
8784
8785 elt_type0 = type0;
8786 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8787 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8788
8789 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8790 depend on the contents of the array in properly constructed
8791 debugging data. */
529cad9c
PH
8792 /* Create a fixed version of the array element type.
8793 We're not providing the address of an element here,
e1d5a0d2 8794 and thus the actual object value cannot be inspected to do
529cad9c
PH
8795 the conversion. This should not be a problem, since arrays of
8796 unconstrained objects are not allowed. In particular, all
8797 the elements of an array of a tagged type should all be of
8798 the same type specified in the debugging info. No need to
8799 consult the object tag. */
1ed6ede0
JB
8800 result =
8801 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8802
8803 elt_type0 = type0;
14f9c5c9 8804 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8805 {
8806 struct type *range_type =
28c85d6c 8807 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8808
e9bb382b 8809 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8810 result, range_type);
1ce677a4 8811 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8812 }
d2e4a39e 8813 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8814 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8815 }
8816
2e6fda7d
JB
8817 /* We want to preserve the type name. This can be useful when
8818 trying to get the type name of a value that has already been
8819 printed (for instance, if the user did "print VAR; whatis $". */
8820 TYPE_NAME (result) = TYPE_NAME (type0);
8821
ad82864c 8822 if (constrained_packed_array_p)
284614f0
JB
8823 {
8824 /* So far, the resulting type has been created as if the original
8825 type was a regular (non-packed) array type. As a result, the
8826 bitsize of the array elements needs to be set again, and the array
8827 length needs to be recomputed based on that bitsize. */
8828 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8829 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8830
8831 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8832 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8833 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8834 TYPE_LENGTH (result)++;
8835 }
8836
876cecd0 8837 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8838 return result;
d2e4a39e 8839}
14f9c5c9
AS
8840
8841
8842/* A standard type (containing no dynamically sized components)
8843 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8844 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8845 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8846 ADDRESS or in VALADDR contains these discriminants.
8847
1ed6ede0
JB
8848 If CHECK_TAG is not null, in the case of tagged types, this function
8849 attempts to locate the object's tag and use it to compute the actual
8850 type. However, when ADDRESS is null, we cannot use it to determine the
8851 location of the tag, and therefore compute the tagged type's actual type.
8852 So we return the tagged type without consulting the tag. */
529cad9c 8853
f192137b
JB
8854static struct type *
8855ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8856 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8857{
61ee279c 8858 type = ada_check_typedef (type);
d2e4a39e
AS
8859 switch (TYPE_CODE (type))
8860 {
8861 default:
14f9c5c9 8862 return type;
d2e4a39e 8863 case TYPE_CODE_STRUCT:
4c4b4cd2 8864 {
76a01679 8865 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8866 struct type *fixed_record_type =
8867 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8868
529cad9c
PH
8869 /* If STATIC_TYPE is a tagged type and we know the object's address,
8870 then we can determine its tag, and compute the object's actual
0963b4bd 8871 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8872 type (the parent part of the record may have dynamic fields
8873 and the way the location of _tag is expressed may depend on
8874 them). */
529cad9c 8875
1ed6ede0 8876 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8877 {
b50d69b5
JG
8878 struct value *tag =
8879 value_tag_from_contents_and_address
8880 (fixed_record_type,
8881 valaddr,
8882 address);
8883 struct type *real_type = type_from_tag (tag);
8884 struct value *obj =
8885 value_from_contents_and_address (fixed_record_type,
8886 valaddr,
8887 address);
9f1f738a 8888 fixed_record_type = value_type (obj);
76a01679 8889 if (real_type != NULL)
b50d69b5
JG
8890 return to_fixed_record_type
8891 (real_type, NULL,
8892 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8893 }
4af88198
JB
8894
8895 /* Check to see if there is a parallel ___XVZ variable.
8896 If there is, then it provides the actual size of our type. */
8897 else if (ada_type_name (fixed_record_type) != NULL)
8898 {
0d5cff50 8899 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8900 char *xvz_name
8901 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
4af88198
JB
8902 LONGEST size;
8903
88c15c34 8904 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
edb0c9cb
PA
8905 if (get_int_var_value (xvz_name, size)
8906 && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8907 {
8908 fixed_record_type = copy_type (fixed_record_type);
8909 TYPE_LENGTH (fixed_record_type) = size;
8910
8911 /* The FIXED_RECORD_TYPE may have be a stub. We have
8912 observed this when the debugging info is STABS, and
8913 apparently it is something that is hard to fix.
8914
8915 In practice, we don't need the actual type definition
8916 at all, because the presence of the XVZ variable allows us
8917 to assume that there must be a XVS type as well, which we
8918 should be able to use later, when we need the actual type
8919 definition.
8920
8921 In the meantime, pretend that the "fixed" type we are
8922 returning is NOT a stub, because this can cause trouble
8923 when using this type to create new types targeting it.
8924 Indeed, the associated creation routines often check
8925 whether the target type is a stub and will try to replace
0963b4bd 8926 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8927 might cause the new type to have the wrong size too.
8928 Consider the case of an array, for instance, where the size
8929 of the array is computed from the number of elements in
8930 our array multiplied by the size of its element. */
8931 TYPE_STUB (fixed_record_type) = 0;
8932 }
8933 }
1ed6ede0 8934 return fixed_record_type;
4c4b4cd2 8935 }
d2e4a39e 8936 case TYPE_CODE_ARRAY:
4c4b4cd2 8937 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8938 case TYPE_CODE_UNION:
8939 if (dval == NULL)
4c4b4cd2 8940 return type;
d2e4a39e 8941 else
4c4b4cd2 8942 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8943 }
14f9c5c9
AS
8944}
8945
f192137b
JB
8946/* The same as ada_to_fixed_type_1, except that it preserves the type
8947 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8948
8949 The typedef layer needs be preserved in order to differentiate between
8950 arrays and array pointers when both types are implemented using the same
8951 fat pointer. In the array pointer case, the pointer is encoded as
8952 a typedef of the pointer type. For instance, considering:
8953
8954 type String_Access is access String;
8955 S1 : String_Access := null;
8956
8957 To the debugger, S1 is defined as a typedef of type String. But
8958 to the user, it is a pointer. So if the user tries to print S1,
8959 we should not dereference the array, but print the array address
8960 instead.
8961
8962 If we didn't preserve the typedef layer, we would lose the fact that
8963 the type is to be presented as a pointer (needs de-reference before
8964 being printed). And we would also use the source-level type name. */
f192137b
JB
8965
8966struct type *
8967ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8968 CORE_ADDR address, struct value *dval, int check_tag)
8969
8970{
8971 struct type *fixed_type =
8972 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8973
96dbd2c1
JB
8974 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8975 then preserve the typedef layer.
8976
8977 Implementation note: We can only check the main-type portion of
8978 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8979 from TYPE now returns a type that has the same instance flags
8980 as TYPE. For instance, if TYPE is a "typedef const", and its
8981 target type is a "struct", then the typedef elimination will return
8982 a "const" version of the target type. See check_typedef for more
8983 details about how the typedef layer elimination is done.
8984
8985 brobecker/2010-11-19: It seems to me that the only case where it is
8986 useful to preserve the typedef layer is when dealing with fat pointers.
8987 Perhaps, we could add a check for that and preserve the typedef layer
8988 only in that situation. But this seems unecessary so far, probably
8989 because we call check_typedef/ada_check_typedef pretty much everywhere.
8990 */
f192137b 8991 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8992 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8993 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8994 return type;
8995
8996 return fixed_type;
8997}
8998
14f9c5c9 8999/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9000 TYPE0, but based on no runtime data. */
14f9c5c9 9001
d2e4a39e
AS
9002static struct type *
9003to_static_fixed_type (struct type *type0)
14f9c5c9 9004{
d2e4a39e 9005 struct type *type;
14f9c5c9
AS
9006
9007 if (type0 == NULL)
9008 return NULL;
9009
876cecd0 9010 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9011 return type0;
9012
61ee279c 9013 type0 = ada_check_typedef (type0);
d2e4a39e 9014
14f9c5c9
AS
9015 switch (TYPE_CODE (type0))
9016 {
9017 default:
9018 return type0;
9019 case TYPE_CODE_STRUCT:
9020 type = dynamic_template_type (type0);
d2e4a39e 9021 if (type != NULL)
4c4b4cd2
PH
9022 return template_to_static_fixed_type (type);
9023 else
9024 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9025 case TYPE_CODE_UNION:
9026 type = ada_find_parallel_type (type0, "___XVU");
9027 if (type != NULL)
4c4b4cd2
PH
9028 return template_to_static_fixed_type (type);
9029 else
9030 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9031 }
9032}
9033
4c4b4cd2
PH
9034/* A static approximation of TYPE with all type wrappers removed. */
9035
d2e4a39e
AS
9036static struct type *
9037static_unwrap_type (struct type *type)
14f9c5c9
AS
9038{
9039 if (ada_is_aligner_type (type))
9040 {
61ee279c 9041 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9042 if (ada_type_name (type1) == NULL)
4c4b4cd2 9043 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9044
9045 return static_unwrap_type (type1);
9046 }
d2e4a39e 9047 else
14f9c5c9 9048 {
d2e4a39e 9049 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9050
d2e4a39e 9051 if (raw_real_type == type)
4c4b4cd2 9052 return type;
14f9c5c9 9053 else
4c4b4cd2 9054 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9055 }
9056}
9057
9058/* In some cases, incomplete and private types require
4c4b4cd2 9059 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9060 type Foo;
9061 type FooP is access Foo;
9062 V: FooP;
9063 type Foo is array ...;
4c4b4cd2 9064 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9065 cross-references to such types, we instead substitute for FooP a
9066 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9067 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9068
9069/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9070 exists, otherwise TYPE. */
9071
d2e4a39e 9072struct type *
61ee279c 9073ada_check_typedef (struct type *type)
14f9c5c9 9074{
727e3d2e
JB
9075 if (type == NULL)
9076 return NULL;
9077
720d1a40
JB
9078 /* If our type is a typedef type of a fat pointer, then we're done.
9079 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9080 what allows us to distinguish between fat pointers that represent
9081 array types, and fat pointers that represent array access types
9082 (in both cases, the compiler implements them as fat pointers). */
9083 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9084 && is_thick_pntr (ada_typedef_target_type (type)))
9085 return type;
9086
f168693b 9087 type = check_typedef (type);
14f9c5c9 9088 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9089 || !TYPE_STUB (type)
14f9c5c9
AS
9090 || TYPE_TAG_NAME (type) == NULL)
9091 return type;
d2e4a39e 9092 else
14f9c5c9 9093 {
0d5cff50 9094 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9095 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9096
05e522ef
JB
9097 if (type1 == NULL)
9098 return type;
9099
9100 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9101 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9102 types, only for the typedef-to-array types). If that's the case,
9103 strip the typedef layer. */
9104 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9105 type1 = ada_check_typedef (type1);
9106
9107 return type1;
14f9c5c9
AS
9108 }
9109}
9110
9111/* A value representing the data at VALADDR/ADDRESS as described by
9112 type TYPE0, but with a standard (static-sized) type that correctly
9113 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9114 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9115 creation of struct values]. */
14f9c5c9 9116
4c4b4cd2
PH
9117static struct value *
9118ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9119 struct value *val0)
14f9c5c9 9120{
1ed6ede0 9121 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9122
14f9c5c9
AS
9123 if (type == type0 && val0 != NULL)
9124 return val0;
d2e4a39e 9125 else
4c4b4cd2
PH
9126 return value_from_contents_and_address (type, 0, address);
9127}
9128
9129/* A value representing VAL, but with a standard (static-sized) type
9130 that correctly describes it. Does not necessarily create a new
9131 value. */
9132
0c3acc09 9133struct value *
4c4b4cd2
PH
9134ada_to_fixed_value (struct value *val)
9135{
c48db5ca
JB
9136 val = unwrap_value (val);
9137 val = ada_to_fixed_value_create (value_type (val),
9138 value_address (val),
9139 val);
9140 return val;
14f9c5c9 9141}
d2e4a39e 9142\f
14f9c5c9 9143
14f9c5c9
AS
9144/* Attributes */
9145
4c4b4cd2
PH
9146/* Table mapping attribute numbers to names.
9147 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9148
d2e4a39e 9149static const char *attribute_names[] = {
14f9c5c9
AS
9150 "<?>",
9151
d2e4a39e 9152 "first",
14f9c5c9
AS
9153 "last",
9154 "length",
9155 "image",
14f9c5c9
AS
9156 "max",
9157 "min",
4c4b4cd2
PH
9158 "modulus",
9159 "pos",
9160 "size",
9161 "tag",
14f9c5c9 9162 "val",
14f9c5c9
AS
9163 0
9164};
9165
d2e4a39e 9166const char *
4c4b4cd2 9167ada_attribute_name (enum exp_opcode n)
14f9c5c9 9168{
4c4b4cd2
PH
9169 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9170 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9171 else
9172 return attribute_names[0];
9173}
9174
4c4b4cd2 9175/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9176
4c4b4cd2
PH
9177static LONGEST
9178pos_atr (struct value *arg)
14f9c5c9 9179{
24209737
PH
9180 struct value *val = coerce_ref (arg);
9181 struct type *type = value_type (val);
aa715135 9182 LONGEST result;
14f9c5c9 9183
d2e4a39e 9184 if (!discrete_type_p (type))
323e0a4a 9185 error (_("'POS only defined on discrete types"));
14f9c5c9 9186
aa715135
JG
9187 if (!discrete_position (type, value_as_long (val), &result))
9188 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9189
aa715135 9190 return result;
4c4b4cd2
PH
9191}
9192
9193static struct value *
3cb382c9 9194value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9195{
3cb382c9 9196 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9197}
9198
4c4b4cd2 9199/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9200
d2e4a39e
AS
9201static struct value *
9202value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9203{
d2e4a39e 9204 if (!discrete_type_p (type))
323e0a4a 9205 error (_("'VAL only defined on discrete types"));
df407dfe 9206 if (!integer_type_p (value_type (arg)))
323e0a4a 9207 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9208
9209 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9210 {
9211 long pos = value_as_long (arg);
5b4ee69b 9212
14f9c5c9 9213 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9214 error (_("argument to 'VAL out of range"));
14e75d8e 9215 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9216 }
9217 else
9218 return value_from_longest (type, value_as_long (arg));
9219}
14f9c5c9 9220\f
d2e4a39e 9221
4c4b4cd2 9222 /* Evaluation */
14f9c5c9 9223
4c4b4cd2
PH
9224/* True if TYPE appears to be an Ada character type.
9225 [At the moment, this is true only for Character and Wide_Character;
9226 It is a heuristic test that could stand improvement]. */
14f9c5c9 9227
d2e4a39e
AS
9228int
9229ada_is_character_type (struct type *type)
14f9c5c9 9230{
7b9f71f2
JB
9231 const char *name;
9232
9233 /* If the type code says it's a character, then assume it really is,
9234 and don't check any further. */
9235 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9236 return 1;
9237
9238 /* Otherwise, assume it's a character type iff it is a discrete type
9239 with a known character type name. */
9240 name = ada_type_name (type);
9241 return (name != NULL
9242 && (TYPE_CODE (type) == TYPE_CODE_INT
9243 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9244 && (strcmp (name, "character") == 0
9245 || strcmp (name, "wide_character") == 0
5a517ebd 9246 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9247 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9248}
9249
4c4b4cd2 9250/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9251
9252int
ebf56fd3 9253ada_is_string_type (struct type *type)
14f9c5c9 9254{
61ee279c 9255 type = ada_check_typedef (type);
d2e4a39e 9256 if (type != NULL
14f9c5c9 9257 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9258 && (ada_is_simple_array_type (type)
9259 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9260 && ada_array_arity (type) == 1)
9261 {
9262 struct type *elttype = ada_array_element_type (type, 1);
9263
9264 return ada_is_character_type (elttype);
9265 }
d2e4a39e 9266 else
14f9c5c9
AS
9267 return 0;
9268}
9269
5bf03f13
JB
9270/* The compiler sometimes provides a parallel XVS type for a given
9271 PAD type. Normally, it is safe to follow the PAD type directly,
9272 but older versions of the compiler have a bug that causes the offset
9273 of its "F" field to be wrong. Following that field in that case
9274 would lead to incorrect results, but this can be worked around
9275 by ignoring the PAD type and using the associated XVS type instead.
9276
9277 Set to True if the debugger should trust the contents of PAD types.
9278 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9279static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9280
9281/* True if TYPE is a struct type introduced by the compiler to force the
9282 alignment of a value. Such types have a single field with a
4c4b4cd2 9283 distinctive name. */
14f9c5c9
AS
9284
9285int
ebf56fd3 9286ada_is_aligner_type (struct type *type)
14f9c5c9 9287{
61ee279c 9288 type = ada_check_typedef (type);
714e53ab 9289
5bf03f13 9290 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9291 return 0;
9292
14f9c5c9 9293 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9294 && TYPE_NFIELDS (type) == 1
9295 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9296}
9297
9298/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9299 the parallel type. */
14f9c5c9 9300
d2e4a39e
AS
9301struct type *
9302ada_get_base_type (struct type *raw_type)
14f9c5c9 9303{
d2e4a39e
AS
9304 struct type *real_type_namer;
9305 struct type *raw_real_type;
14f9c5c9
AS
9306
9307 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9308 return raw_type;
9309
284614f0
JB
9310 if (ada_is_aligner_type (raw_type))
9311 /* The encoding specifies that we should always use the aligner type.
9312 So, even if this aligner type has an associated XVS type, we should
9313 simply ignore it.
9314
9315 According to the compiler gurus, an XVS type parallel to an aligner
9316 type may exist because of a stabs limitation. In stabs, aligner
9317 types are empty because the field has a variable-sized type, and
9318 thus cannot actually be used as an aligner type. As a result,
9319 we need the associated parallel XVS type to decode the type.
9320 Since the policy in the compiler is to not change the internal
9321 representation based on the debugging info format, we sometimes
9322 end up having a redundant XVS type parallel to the aligner type. */
9323 return raw_type;
9324
14f9c5c9 9325 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9326 if (real_type_namer == NULL
14f9c5c9
AS
9327 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9328 || TYPE_NFIELDS (real_type_namer) != 1)
9329 return raw_type;
9330
f80d3ff2
JB
9331 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9332 {
9333 /* This is an older encoding form where the base type needs to be
9334 looked up by name. We prefer the newer enconding because it is
9335 more efficient. */
9336 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9337 if (raw_real_type == NULL)
9338 return raw_type;
9339 else
9340 return raw_real_type;
9341 }
9342
9343 /* The field in our XVS type is a reference to the base type. */
9344 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9345}
14f9c5c9 9346
4c4b4cd2 9347/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9348
d2e4a39e
AS
9349struct type *
9350ada_aligned_type (struct type *type)
14f9c5c9
AS
9351{
9352 if (ada_is_aligner_type (type))
9353 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9354 else
9355 return ada_get_base_type (type);
9356}
9357
9358
9359/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9360 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9361
fc1a4b47
AC
9362const gdb_byte *
9363ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9364{
d2e4a39e 9365 if (ada_is_aligner_type (type))
14f9c5c9 9366 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9367 valaddr +
9368 TYPE_FIELD_BITPOS (type,
9369 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9370 else
9371 return valaddr;
9372}
9373
4c4b4cd2
PH
9374
9375
14f9c5c9 9376/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9377 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9378const char *
9379ada_enum_name (const char *name)
14f9c5c9 9380{
4c4b4cd2
PH
9381 static char *result;
9382 static size_t result_len = 0;
e6a959d6 9383 const char *tmp;
14f9c5c9 9384
4c4b4cd2
PH
9385 /* First, unqualify the enumeration name:
9386 1. Search for the last '.' character. If we find one, then skip
177b42fe 9387 all the preceding characters, the unqualified name starts
76a01679 9388 right after that dot.
4c4b4cd2 9389 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9390 translates dots into "__". Search forward for double underscores,
9391 but stop searching when we hit an overloading suffix, which is
9392 of the form "__" followed by digits. */
4c4b4cd2 9393
c3e5cd34
PH
9394 tmp = strrchr (name, '.');
9395 if (tmp != NULL)
4c4b4cd2
PH
9396 name = tmp + 1;
9397 else
14f9c5c9 9398 {
4c4b4cd2
PH
9399 while ((tmp = strstr (name, "__")) != NULL)
9400 {
9401 if (isdigit (tmp[2]))
9402 break;
9403 else
9404 name = tmp + 2;
9405 }
14f9c5c9
AS
9406 }
9407
9408 if (name[0] == 'Q')
9409 {
14f9c5c9 9410 int v;
5b4ee69b 9411
14f9c5c9 9412 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9413 {
9414 if (sscanf (name + 2, "%x", &v) != 1)
9415 return name;
9416 }
14f9c5c9 9417 else
4c4b4cd2 9418 return name;
14f9c5c9 9419
4c4b4cd2 9420 GROW_VECT (result, result_len, 16);
14f9c5c9 9421 if (isascii (v) && isprint (v))
88c15c34 9422 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9423 else if (name[1] == 'U')
88c15c34 9424 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9425 else
88c15c34 9426 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9427
9428 return result;
9429 }
d2e4a39e 9430 else
4c4b4cd2 9431 {
c3e5cd34
PH
9432 tmp = strstr (name, "__");
9433 if (tmp == NULL)
9434 tmp = strstr (name, "$");
9435 if (tmp != NULL)
4c4b4cd2
PH
9436 {
9437 GROW_VECT (result, result_len, tmp - name + 1);
9438 strncpy (result, name, tmp - name);
9439 result[tmp - name] = '\0';
9440 return result;
9441 }
9442
9443 return name;
9444 }
14f9c5c9
AS
9445}
9446
14f9c5c9
AS
9447/* Evaluate the subexpression of EXP starting at *POS as for
9448 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9449 expression. */
14f9c5c9 9450
d2e4a39e
AS
9451static struct value *
9452evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9453{
4b27a620 9454 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9455}
9456
9457/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9458 value it wraps. */
14f9c5c9 9459
d2e4a39e
AS
9460static struct value *
9461unwrap_value (struct value *val)
14f9c5c9 9462{
df407dfe 9463 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9464
14f9c5c9
AS
9465 if (ada_is_aligner_type (type))
9466 {
de4d072f 9467 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9468 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9469
14f9c5c9 9470 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9471 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9472
9473 return unwrap_value (v);
9474 }
d2e4a39e 9475 else
14f9c5c9 9476 {
d2e4a39e 9477 struct type *raw_real_type =
61ee279c 9478 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9479
5bf03f13
JB
9480 /* If there is no parallel XVS or XVE type, then the value is
9481 already unwrapped. Return it without further modification. */
9482 if ((type == raw_real_type)
9483 && ada_find_parallel_type (type, "___XVE") == NULL)
9484 return val;
14f9c5c9 9485
d2e4a39e 9486 return
4c4b4cd2
PH
9487 coerce_unspec_val_to_type
9488 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9489 value_address (val),
1ed6ede0 9490 NULL, 1));
14f9c5c9
AS
9491 }
9492}
d2e4a39e
AS
9493
9494static struct value *
50eff16b 9495cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9496{
50eff16b
UW
9497 struct value *scale = ada_scaling_factor (value_type (arg));
9498 arg = value_cast (value_type (scale), arg);
14f9c5c9 9499
50eff16b
UW
9500 arg = value_binop (arg, scale, BINOP_MUL);
9501 return value_cast (type, arg);
14f9c5c9
AS
9502}
9503
d2e4a39e 9504static struct value *
50eff16b 9505cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9506{
50eff16b
UW
9507 if (type == value_type (arg))
9508 return arg;
5b4ee69b 9509
50eff16b
UW
9510 struct value *scale = ada_scaling_factor (type);
9511 if (ada_is_fixed_point_type (value_type (arg)))
9512 arg = cast_from_fixed (value_type (scale), arg);
9513 else
9514 arg = value_cast (value_type (scale), arg);
9515
9516 arg = value_binop (arg, scale, BINOP_DIV);
9517 return value_cast (type, arg);
14f9c5c9
AS
9518}
9519
d99dcf51
JB
9520/* Given two array types T1 and T2, return nonzero iff both arrays
9521 contain the same number of elements. */
9522
9523static int
9524ada_same_array_size_p (struct type *t1, struct type *t2)
9525{
9526 LONGEST lo1, hi1, lo2, hi2;
9527
9528 /* Get the array bounds in order to verify that the size of
9529 the two arrays match. */
9530 if (!get_array_bounds (t1, &lo1, &hi1)
9531 || !get_array_bounds (t2, &lo2, &hi2))
9532 error (_("unable to determine array bounds"));
9533
9534 /* To make things easier for size comparison, normalize a bit
9535 the case of empty arrays by making sure that the difference
9536 between upper bound and lower bound is always -1. */
9537 if (lo1 > hi1)
9538 hi1 = lo1 - 1;
9539 if (lo2 > hi2)
9540 hi2 = lo2 - 1;
9541
9542 return (hi1 - lo1 == hi2 - lo2);
9543}
9544
9545/* Assuming that VAL is an array of integrals, and TYPE represents
9546 an array with the same number of elements, but with wider integral
9547 elements, return an array "casted" to TYPE. In practice, this
9548 means that the returned array is built by casting each element
9549 of the original array into TYPE's (wider) element type. */
9550
9551static struct value *
9552ada_promote_array_of_integrals (struct type *type, struct value *val)
9553{
9554 struct type *elt_type = TYPE_TARGET_TYPE (type);
9555 LONGEST lo, hi;
9556 struct value *res;
9557 LONGEST i;
9558
9559 /* Verify that both val and type are arrays of scalars, and
9560 that the size of val's elements is smaller than the size
9561 of type's element. */
9562 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9563 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9564 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9565 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9566 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9567 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9568
9569 if (!get_array_bounds (type, &lo, &hi))
9570 error (_("unable to determine array bounds"));
9571
9572 res = allocate_value (type);
9573
9574 /* Promote each array element. */
9575 for (i = 0; i < hi - lo + 1; i++)
9576 {
9577 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9578
9579 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9580 value_contents_all (elt), TYPE_LENGTH (elt_type));
9581 }
9582
9583 return res;
9584}
9585
4c4b4cd2
PH
9586/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9587 return the converted value. */
9588
d2e4a39e
AS
9589static struct value *
9590coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9591{
df407dfe 9592 struct type *type2 = value_type (val);
5b4ee69b 9593
14f9c5c9
AS
9594 if (type == type2)
9595 return val;
9596
61ee279c
PH
9597 type2 = ada_check_typedef (type2);
9598 type = ada_check_typedef (type);
14f9c5c9 9599
d2e4a39e
AS
9600 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9601 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9602 {
9603 val = ada_value_ind (val);
df407dfe 9604 type2 = value_type (val);
14f9c5c9
AS
9605 }
9606
d2e4a39e 9607 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9608 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9609 {
d99dcf51
JB
9610 if (!ada_same_array_size_p (type, type2))
9611 error (_("cannot assign arrays of different length"));
9612
9613 if (is_integral_type (TYPE_TARGET_TYPE (type))
9614 && is_integral_type (TYPE_TARGET_TYPE (type2))
9615 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9616 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9617 {
9618 /* Allow implicit promotion of the array elements to
9619 a wider type. */
9620 return ada_promote_array_of_integrals (type, val);
9621 }
9622
9623 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9624 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9625 error (_("Incompatible types in assignment"));
04624583 9626 deprecated_set_value_type (val, type);
14f9c5c9 9627 }
d2e4a39e 9628 return val;
14f9c5c9
AS
9629}
9630
4c4b4cd2
PH
9631static struct value *
9632ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9633{
9634 struct value *val;
9635 struct type *type1, *type2;
9636 LONGEST v, v1, v2;
9637
994b9211
AC
9638 arg1 = coerce_ref (arg1);
9639 arg2 = coerce_ref (arg2);
18af8284
JB
9640 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9641 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9642
76a01679
JB
9643 if (TYPE_CODE (type1) != TYPE_CODE_INT
9644 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9645 return value_binop (arg1, arg2, op);
9646
76a01679 9647 switch (op)
4c4b4cd2
PH
9648 {
9649 case BINOP_MOD:
9650 case BINOP_DIV:
9651 case BINOP_REM:
9652 break;
9653 default:
9654 return value_binop (arg1, arg2, op);
9655 }
9656
9657 v2 = value_as_long (arg2);
9658 if (v2 == 0)
323e0a4a 9659 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9660
9661 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9662 return value_binop (arg1, arg2, op);
9663
9664 v1 = value_as_long (arg1);
9665 switch (op)
9666 {
9667 case BINOP_DIV:
9668 v = v1 / v2;
76a01679
JB
9669 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9670 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9671 break;
9672 case BINOP_REM:
9673 v = v1 % v2;
76a01679
JB
9674 if (v * v1 < 0)
9675 v -= v2;
4c4b4cd2
PH
9676 break;
9677 default:
9678 /* Should not reach this point. */
9679 v = 0;
9680 }
9681
9682 val = allocate_value (type1);
990a07ab 9683 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9684 TYPE_LENGTH (value_type (val)),
9685 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9686 return val;
9687}
9688
9689static int
9690ada_value_equal (struct value *arg1, struct value *arg2)
9691{
df407dfe
AC
9692 if (ada_is_direct_array_type (value_type (arg1))
9693 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9694 {
f58b38bf
JB
9695 /* Automatically dereference any array reference before
9696 we attempt to perform the comparison. */
9697 arg1 = ada_coerce_ref (arg1);
9698 arg2 = ada_coerce_ref (arg2);
9699
4c4b4cd2
PH
9700 arg1 = ada_coerce_to_simple_array (arg1);
9701 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9702 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9703 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9704 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9705 /* FIXME: The following works only for types whose
76a01679
JB
9706 representations use all bits (no padding or undefined bits)
9707 and do not have user-defined equality. */
9708 return
df407dfe 9709 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9710 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9711 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9712 }
9713 return value_equal (arg1, arg2);
9714}
9715
52ce6436
PH
9716/* Total number of component associations in the aggregate starting at
9717 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9718 OP_AGGREGATE. */
52ce6436
PH
9719
9720static int
9721num_component_specs (struct expression *exp, int pc)
9722{
9723 int n, m, i;
5b4ee69b 9724
52ce6436
PH
9725 m = exp->elts[pc + 1].longconst;
9726 pc += 3;
9727 n = 0;
9728 for (i = 0; i < m; i += 1)
9729 {
9730 switch (exp->elts[pc].opcode)
9731 {
9732 default:
9733 n += 1;
9734 break;
9735 case OP_CHOICES:
9736 n += exp->elts[pc + 1].longconst;
9737 break;
9738 }
9739 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9740 }
9741 return n;
9742}
9743
9744/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9745 component of LHS (a simple array or a record), updating *POS past
9746 the expression, assuming that LHS is contained in CONTAINER. Does
9747 not modify the inferior's memory, nor does it modify LHS (unless
9748 LHS == CONTAINER). */
9749
9750static void
9751assign_component (struct value *container, struct value *lhs, LONGEST index,
9752 struct expression *exp, int *pos)
9753{
9754 struct value *mark = value_mark ();
9755 struct value *elt;
5b4ee69b 9756
52ce6436
PH
9757 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9758 {
22601c15
UW
9759 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9760 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9761
52ce6436
PH
9762 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9763 }
9764 else
9765 {
9766 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9767 elt = ada_to_fixed_value (elt);
52ce6436
PH
9768 }
9769
9770 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9771 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9772 else
9773 value_assign_to_component (container, elt,
9774 ada_evaluate_subexp (NULL, exp, pos,
9775 EVAL_NORMAL));
9776
9777 value_free_to_mark (mark);
9778}
9779
9780/* Assuming that LHS represents an lvalue having a record or array
9781 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9782 of that aggregate's value to LHS, advancing *POS past the
9783 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9784 lvalue containing LHS (possibly LHS itself). Does not modify
9785 the inferior's memory, nor does it modify the contents of
0963b4bd 9786 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9787
9788static struct value *
9789assign_aggregate (struct value *container,
9790 struct value *lhs, struct expression *exp,
9791 int *pos, enum noside noside)
9792{
9793 struct type *lhs_type;
9794 int n = exp->elts[*pos+1].longconst;
9795 LONGEST low_index, high_index;
9796 int num_specs;
9797 LONGEST *indices;
9798 int max_indices, num_indices;
52ce6436 9799 int i;
52ce6436
PH
9800
9801 *pos += 3;
9802 if (noside != EVAL_NORMAL)
9803 {
52ce6436
PH
9804 for (i = 0; i < n; i += 1)
9805 ada_evaluate_subexp (NULL, exp, pos, noside);
9806 return container;
9807 }
9808
9809 container = ada_coerce_ref (container);
9810 if (ada_is_direct_array_type (value_type (container)))
9811 container = ada_coerce_to_simple_array (container);
9812 lhs = ada_coerce_ref (lhs);
9813 if (!deprecated_value_modifiable (lhs))
9814 error (_("Left operand of assignment is not a modifiable lvalue."));
9815
9816 lhs_type = value_type (lhs);
9817 if (ada_is_direct_array_type (lhs_type))
9818 {
9819 lhs = ada_coerce_to_simple_array (lhs);
9820 lhs_type = value_type (lhs);
9821 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9822 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9823 }
9824 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9825 {
9826 low_index = 0;
9827 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9828 }
9829 else
9830 error (_("Left-hand side must be array or record."));
9831
9832 num_specs = num_component_specs (exp, *pos - 3);
9833 max_indices = 4 * num_specs + 4;
8d749320 9834 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9835 indices[0] = indices[1] = low_index - 1;
9836 indices[2] = indices[3] = high_index + 1;
9837 num_indices = 4;
9838
9839 for (i = 0; i < n; i += 1)
9840 {
9841 switch (exp->elts[*pos].opcode)
9842 {
1fbf5ada
JB
9843 case OP_CHOICES:
9844 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9845 &num_indices, max_indices,
9846 low_index, high_index);
9847 break;
9848 case OP_POSITIONAL:
9849 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9850 &num_indices, max_indices,
9851 low_index, high_index);
1fbf5ada
JB
9852 break;
9853 case OP_OTHERS:
9854 if (i != n-1)
9855 error (_("Misplaced 'others' clause"));
9856 aggregate_assign_others (container, lhs, exp, pos, indices,
9857 num_indices, low_index, high_index);
9858 break;
9859 default:
9860 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9861 }
9862 }
9863
9864 return container;
9865}
9866
9867/* Assign into the component of LHS indexed by the OP_POSITIONAL
9868 construct at *POS, updating *POS past the construct, given that
9869 the positions are relative to lower bound LOW, where HIGH is the
9870 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9871 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9872 assign_aggregate. */
52ce6436
PH
9873static void
9874aggregate_assign_positional (struct value *container,
9875 struct value *lhs, struct expression *exp,
9876 int *pos, LONGEST *indices, int *num_indices,
9877 int max_indices, LONGEST low, LONGEST high)
9878{
9879 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9880
9881 if (ind - 1 == high)
e1d5a0d2 9882 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9883 if (ind <= high)
9884 {
9885 add_component_interval (ind, ind, indices, num_indices, max_indices);
9886 *pos += 3;
9887 assign_component (container, lhs, ind, exp, pos);
9888 }
9889 else
9890 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9891}
9892
9893/* Assign into the components of LHS indexed by the OP_CHOICES
9894 construct at *POS, updating *POS past the construct, given that
9895 the allowable indices are LOW..HIGH. Record the indices assigned
9896 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9897 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9898static void
9899aggregate_assign_from_choices (struct value *container,
9900 struct value *lhs, struct expression *exp,
9901 int *pos, LONGEST *indices, int *num_indices,
9902 int max_indices, LONGEST low, LONGEST high)
9903{
9904 int j;
9905 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9906 int choice_pos, expr_pc;
9907 int is_array = ada_is_direct_array_type (value_type (lhs));
9908
9909 choice_pos = *pos += 3;
9910
9911 for (j = 0; j < n_choices; j += 1)
9912 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9913 expr_pc = *pos;
9914 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9915
9916 for (j = 0; j < n_choices; j += 1)
9917 {
9918 LONGEST lower, upper;
9919 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9920
52ce6436
PH
9921 if (op == OP_DISCRETE_RANGE)
9922 {
9923 choice_pos += 1;
9924 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9925 EVAL_NORMAL));
9926 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9927 EVAL_NORMAL));
9928 }
9929 else if (is_array)
9930 {
9931 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9932 EVAL_NORMAL));
9933 upper = lower;
9934 }
9935 else
9936 {
9937 int ind;
0d5cff50 9938 const char *name;
5b4ee69b 9939
52ce6436
PH
9940 switch (op)
9941 {
9942 case OP_NAME:
9943 name = &exp->elts[choice_pos + 2].string;
9944 break;
9945 case OP_VAR_VALUE:
9946 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9947 break;
9948 default:
9949 error (_("Invalid record component association."));
9950 }
9951 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9952 ind = 0;
9953 if (! find_struct_field (name, value_type (lhs), 0,
9954 NULL, NULL, NULL, NULL, &ind))
9955 error (_("Unknown component name: %s."), name);
9956 lower = upper = ind;
9957 }
9958
9959 if (lower <= upper && (lower < low || upper > high))
9960 error (_("Index in component association out of bounds."));
9961
9962 add_component_interval (lower, upper, indices, num_indices,
9963 max_indices);
9964 while (lower <= upper)
9965 {
9966 int pos1;
5b4ee69b 9967
52ce6436
PH
9968 pos1 = expr_pc;
9969 assign_component (container, lhs, lower, exp, &pos1);
9970 lower += 1;
9971 }
9972 }
9973}
9974
9975/* Assign the value of the expression in the OP_OTHERS construct in
9976 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9977 have not been previously assigned. The index intervals already assigned
9978 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9979 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9980static void
9981aggregate_assign_others (struct value *container,
9982 struct value *lhs, struct expression *exp,
9983 int *pos, LONGEST *indices, int num_indices,
9984 LONGEST low, LONGEST high)
9985{
9986 int i;
5ce64950 9987 int expr_pc = *pos + 1;
52ce6436
PH
9988
9989 for (i = 0; i < num_indices - 2; i += 2)
9990 {
9991 LONGEST ind;
5b4ee69b 9992
52ce6436
PH
9993 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9994 {
5ce64950 9995 int localpos;
5b4ee69b 9996
5ce64950
MS
9997 localpos = expr_pc;
9998 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9999 }
10000 }
10001 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10002}
10003
10004/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10005 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10006 modifying *SIZE as needed. It is an error if *SIZE exceeds
10007 MAX_SIZE. The resulting intervals do not overlap. */
10008static void
10009add_component_interval (LONGEST low, LONGEST high,
10010 LONGEST* indices, int *size, int max_size)
10011{
10012 int i, j;
5b4ee69b 10013
52ce6436
PH
10014 for (i = 0; i < *size; i += 2) {
10015 if (high >= indices[i] && low <= indices[i + 1])
10016 {
10017 int kh;
5b4ee69b 10018
52ce6436
PH
10019 for (kh = i + 2; kh < *size; kh += 2)
10020 if (high < indices[kh])
10021 break;
10022 if (low < indices[i])
10023 indices[i] = low;
10024 indices[i + 1] = indices[kh - 1];
10025 if (high > indices[i + 1])
10026 indices[i + 1] = high;
10027 memcpy (indices + i + 2, indices + kh, *size - kh);
10028 *size -= kh - i - 2;
10029 return;
10030 }
10031 else if (high < indices[i])
10032 break;
10033 }
10034
10035 if (*size == max_size)
10036 error (_("Internal error: miscounted aggregate components."));
10037 *size += 2;
10038 for (j = *size-1; j >= i+2; j -= 1)
10039 indices[j] = indices[j - 2];
10040 indices[i] = low;
10041 indices[i + 1] = high;
10042}
10043
6e48bd2c
JB
10044/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10045 is different. */
10046
10047static struct value *
b7e22850 10048ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10049{
10050 if (type == ada_check_typedef (value_type (arg2)))
10051 return arg2;
10052
10053 if (ada_is_fixed_point_type (type))
10054 return (cast_to_fixed (type, arg2));
10055
10056 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10057 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10058
10059 return value_cast (type, arg2);
10060}
10061
284614f0
JB
10062/* Evaluating Ada expressions, and printing their result.
10063 ------------------------------------------------------
10064
21649b50
JB
10065 1. Introduction:
10066 ----------------
10067
284614f0
JB
10068 We usually evaluate an Ada expression in order to print its value.
10069 We also evaluate an expression in order to print its type, which
10070 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10071 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10072 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10073 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10074 similar.
10075
10076 Evaluating expressions is a little more complicated for Ada entities
10077 than it is for entities in languages such as C. The main reason for
10078 this is that Ada provides types whose definition might be dynamic.
10079 One example of such types is variant records. Or another example
10080 would be an array whose bounds can only be known at run time.
10081
10082 The following description is a general guide as to what should be
10083 done (and what should NOT be done) in order to evaluate an expression
10084 involving such types, and when. This does not cover how the semantic
10085 information is encoded by GNAT as this is covered separatly. For the
10086 document used as the reference for the GNAT encoding, see exp_dbug.ads
10087 in the GNAT sources.
10088
10089 Ideally, we should embed each part of this description next to its
10090 associated code. Unfortunately, the amount of code is so vast right
10091 now that it's hard to see whether the code handling a particular
10092 situation might be duplicated or not. One day, when the code is
10093 cleaned up, this guide might become redundant with the comments
10094 inserted in the code, and we might want to remove it.
10095
21649b50
JB
10096 2. ``Fixing'' an Entity, the Simple Case:
10097 -----------------------------------------
10098
284614f0
JB
10099 When evaluating Ada expressions, the tricky issue is that they may
10100 reference entities whose type contents and size are not statically
10101 known. Consider for instance a variant record:
10102
10103 type Rec (Empty : Boolean := True) is record
10104 case Empty is
10105 when True => null;
10106 when False => Value : Integer;
10107 end case;
10108 end record;
10109 Yes : Rec := (Empty => False, Value => 1);
10110 No : Rec := (empty => True);
10111
10112 The size and contents of that record depends on the value of the
10113 descriminant (Rec.Empty). At this point, neither the debugging
10114 information nor the associated type structure in GDB are able to
10115 express such dynamic types. So what the debugger does is to create
10116 "fixed" versions of the type that applies to the specific object.
10117 We also informally refer to this opperation as "fixing" an object,
10118 which means creating its associated fixed type.
10119
10120 Example: when printing the value of variable "Yes" above, its fixed
10121 type would look like this:
10122
10123 type Rec is record
10124 Empty : Boolean;
10125 Value : Integer;
10126 end record;
10127
10128 On the other hand, if we printed the value of "No", its fixed type
10129 would become:
10130
10131 type Rec is record
10132 Empty : Boolean;
10133 end record;
10134
10135 Things become a little more complicated when trying to fix an entity
10136 with a dynamic type that directly contains another dynamic type,
10137 such as an array of variant records, for instance. There are
10138 two possible cases: Arrays, and records.
10139
21649b50
JB
10140 3. ``Fixing'' Arrays:
10141 ---------------------
10142
10143 The type structure in GDB describes an array in terms of its bounds,
10144 and the type of its elements. By design, all elements in the array
10145 have the same type and we cannot represent an array of variant elements
10146 using the current type structure in GDB. When fixing an array,
10147 we cannot fix the array element, as we would potentially need one
10148 fixed type per element of the array. As a result, the best we can do
10149 when fixing an array is to produce an array whose bounds and size
10150 are correct (allowing us to read it from memory), but without having
10151 touched its element type. Fixing each element will be done later,
10152 when (if) necessary.
10153
10154 Arrays are a little simpler to handle than records, because the same
10155 amount of memory is allocated for each element of the array, even if
1b536f04 10156 the amount of space actually used by each element differs from element
21649b50 10157 to element. Consider for instance the following array of type Rec:
284614f0
JB
10158
10159 type Rec_Array is array (1 .. 2) of Rec;
10160
1b536f04
JB
10161 The actual amount of memory occupied by each element might be different
10162 from element to element, depending on the value of their discriminant.
21649b50 10163 But the amount of space reserved for each element in the array remains
1b536f04 10164 fixed regardless. So we simply need to compute that size using
21649b50
JB
10165 the debugging information available, from which we can then determine
10166 the array size (we multiply the number of elements of the array by
10167 the size of each element).
10168
10169 The simplest case is when we have an array of a constrained element
10170 type. For instance, consider the following type declarations:
10171
10172 type Bounded_String (Max_Size : Integer) is
10173 Length : Integer;
10174 Buffer : String (1 .. Max_Size);
10175 end record;
10176 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10177
10178 In this case, the compiler describes the array as an array of
10179 variable-size elements (identified by its XVS suffix) for which
10180 the size can be read in the parallel XVZ variable.
10181
10182 In the case of an array of an unconstrained element type, the compiler
10183 wraps the array element inside a private PAD type. This type should not
10184 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10185 that we also use the adjective "aligner" in our code to designate
10186 these wrapper types.
10187
1b536f04 10188 In some cases, the size allocated for each element is statically
21649b50
JB
10189 known. In that case, the PAD type already has the correct size,
10190 and the array element should remain unfixed.
10191
10192 But there are cases when this size is not statically known.
10193 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10194
10195 type Dynamic is array (1 .. Five) of Integer;
10196 type Wrapper (Has_Length : Boolean := False) is record
10197 Data : Dynamic;
10198 case Has_Length is
10199 when True => Length : Integer;
10200 when False => null;
10201 end case;
10202 end record;
10203 type Wrapper_Array is array (1 .. 2) of Wrapper;
10204
10205 Hello : Wrapper_Array := (others => (Has_Length => True,
10206 Data => (others => 17),
10207 Length => 1));
10208
10209
10210 The debugging info would describe variable Hello as being an
10211 array of a PAD type. The size of that PAD type is not statically
10212 known, but can be determined using a parallel XVZ variable.
10213 In that case, a copy of the PAD type with the correct size should
10214 be used for the fixed array.
10215
21649b50
JB
10216 3. ``Fixing'' record type objects:
10217 ----------------------------------
10218
10219 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10220 record types. In this case, in order to compute the associated
10221 fixed type, we need to determine the size and offset of each of
10222 its components. This, in turn, requires us to compute the fixed
10223 type of each of these components.
10224
10225 Consider for instance the example:
10226
10227 type Bounded_String (Max_Size : Natural) is record
10228 Str : String (1 .. Max_Size);
10229 Length : Natural;
10230 end record;
10231 My_String : Bounded_String (Max_Size => 10);
10232
10233 In that case, the position of field "Length" depends on the size
10234 of field Str, which itself depends on the value of the Max_Size
21649b50 10235 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10236 we need to fix the type of field Str. Therefore, fixing a variant
10237 record requires us to fix each of its components.
10238
10239 However, if a component does not have a dynamic size, the component
10240 should not be fixed. In particular, fields that use a PAD type
10241 should not fixed. Here is an example where this might happen
10242 (assuming type Rec above):
10243
10244 type Container (Big : Boolean) is record
10245 First : Rec;
10246 After : Integer;
10247 case Big is
10248 when True => Another : Integer;
10249 when False => null;
10250 end case;
10251 end record;
10252 My_Container : Container := (Big => False,
10253 First => (Empty => True),
10254 After => 42);
10255
10256 In that example, the compiler creates a PAD type for component First,
10257 whose size is constant, and then positions the component After just
10258 right after it. The offset of component After is therefore constant
10259 in this case.
10260
10261 The debugger computes the position of each field based on an algorithm
10262 that uses, among other things, the actual position and size of the field
21649b50
JB
10263 preceding it. Let's now imagine that the user is trying to print
10264 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10265 end up computing the offset of field After based on the size of the
10266 fixed version of field First. And since in our example First has
10267 only one actual field, the size of the fixed type is actually smaller
10268 than the amount of space allocated to that field, and thus we would
10269 compute the wrong offset of field After.
10270
21649b50
JB
10271 To make things more complicated, we need to watch out for dynamic
10272 components of variant records (identified by the ___XVL suffix in
10273 the component name). Even if the target type is a PAD type, the size
10274 of that type might not be statically known. So the PAD type needs
10275 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10276 we might end up with the wrong size for our component. This can be
10277 observed with the following type declarations:
284614f0
JB
10278
10279 type Octal is new Integer range 0 .. 7;
10280 type Octal_Array is array (Positive range <>) of Octal;
10281 pragma Pack (Octal_Array);
10282
10283 type Octal_Buffer (Size : Positive) is record
10284 Buffer : Octal_Array (1 .. Size);
10285 Length : Integer;
10286 end record;
10287
10288 In that case, Buffer is a PAD type whose size is unset and needs
10289 to be computed by fixing the unwrapped type.
10290
21649b50
JB
10291 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10292 ----------------------------------------------------------
10293
10294 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10295 thus far, be actually fixed?
10296
10297 The answer is: Only when referencing that element. For instance
10298 when selecting one component of a record, this specific component
10299 should be fixed at that point in time. Or when printing the value
10300 of a record, each component should be fixed before its value gets
10301 printed. Similarly for arrays, the element of the array should be
10302 fixed when printing each element of the array, or when extracting
10303 one element out of that array. On the other hand, fixing should
10304 not be performed on the elements when taking a slice of an array!
10305
31432a67 10306 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10307 size of each field is that we end up also miscomputing the size
10308 of the containing type. This can have adverse results when computing
10309 the value of an entity. GDB fetches the value of an entity based
10310 on the size of its type, and thus a wrong size causes GDB to fetch
10311 the wrong amount of memory. In the case where the computed size is
10312 too small, GDB fetches too little data to print the value of our
31432a67 10313 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10314 past the buffer containing the data =:-o. */
10315
10316/* Implement the evaluate_exp routine in the exp_descriptor structure
10317 for the Ada language. */
10318
52ce6436 10319static struct value *
ebf56fd3 10320ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10321 int *pos, enum noside noside)
14f9c5c9
AS
10322{
10323 enum exp_opcode op;
b5385fc0 10324 int tem;
14f9c5c9 10325 int pc;
5ec18f2b 10326 int preeval_pos;
14f9c5c9
AS
10327 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10328 struct type *type;
52ce6436 10329 int nargs, oplen;
d2e4a39e 10330 struct value **argvec;
14f9c5c9 10331
d2e4a39e
AS
10332 pc = *pos;
10333 *pos += 1;
14f9c5c9
AS
10334 op = exp->elts[pc].opcode;
10335
d2e4a39e 10336 switch (op)
14f9c5c9
AS
10337 {
10338 default:
10339 *pos -= 1;
6e48bd2c 10340 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10341
10342 if (noside == EVAL_NORMAL)
10343 arg1 = unwrap_value (arg1);
6e48bd2c 10344
edd079d9 10345 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10346 then we need to perform the conversion manually, because
10347 evaluate_subexp_standard doesn't do it. This conversion is
10348 necessary in Ada because the different kinds of float/fixed
10349 types in Ada have different representations.
10350
10351 Similarly, we need to perform the conversion from OP_LONG
10352 ourselves. */
edd079d9 10353 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10354 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10355
10356 return arg1;
4c4b4cd2
PH
10357
10358 case OP_STRING:
10359 {
76a01679 10360 struct value *result;
5b4ee69b 10361
76a01679
JB
10362 *pos -= 1;
10363 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10364 /* The result type will have code OP_STRING, bashed there from
10365 OP_ARRAY. Bash it back. */
df407dfe
AC
10366 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10367 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10368 return result;
4c4b4cd2 10369 }
14f9c5c9
AS
10370
10371 case UNOP_CAST:
10372 (*pos) += 2;
10373 type = exp->elts[pc + 1].type;
10374 arg1 = evaluate_subexp (type, exp, pos, noside);
10375 if (noside == EVAL_SKIP)
4c4b4cd2 10376 goto nosideret;
b7e22850 10377 arg1 = ada_value_cast (type, arg1);
14f9c5c9
AS
10378 return arg1;
10379
4c4b4cd2
PH
10380 case UNOP_QUAL:
10381 (*pos) += 2;
10382 type = exp->elts[pc + 1].type;
10383 return ada_evaluate_subexp (type, exp, pos, noside);
10384
14f9c5c9
AS
10385 case BINOP_ASSIGN:
10386 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10387 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10388 {
10389 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10390 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10391 return arg1;
10392 return ada_value_assign (arg1, arg1);
10393 }
003f3813
JB
10394 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10395 except if the lhs of our assignment is a convenience variable.
10396 In the case of assigning to a convenience variable, the lhs
10397 should be exactly the result of the evaluation of the rhs. */
10398 type = value_type (arg1);
10399 if (VALUE_LVAL (arg1) == lval_internalvar)
10400 type = NULL;
10401 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10402 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10403 return arg1;
df407dfe
AC
10404 if (ada_is_fixed_point_type (value_type (arg1)))
10405 arg2 = cast_to_fixed (value_type (arg1), arg2);
10406 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10407 error
323e0a4a 10408 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10409 else
df407dfe 10410 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10411 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10412
10413 case BINOP_ADD:
10414 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10415 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10416 if (noside == EVAL_SKIP)
4c4b4cd2 10417 goto nosideret;
2ac8a782
JB
10418 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10419 return (value_from_longest
10420 (value_type (arg1),
10421 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10422 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10423 return (value_from_longest
10424 (value_type (arg2),
10425 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10426 if ((ada_is_fixed_point_type (value_type (arg1))
10427 || ada_is_fixed_point_type (value_type (arg2)))
10428 && value_type (arg1) != value_type (arg2))
323e0a4a 10429 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10430 /* Do the addition, and cast the result to the type of the first
10431 argument. We cannot cast the result to a reference type, so if
10432 ARG1 is a reference type, find its underlying type. */
10433 type = value_type (arg1);
10434 while (TYPE_CODE (type) == TYPE_CODE_REF)
10435 type = TYPE_TARGET_TYPE (type);
f44316fa 10436 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10437 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10438
10439 case BINOP_SUB:
10440 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10441 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10442 if (noside == EVAL_SKIP)
4c4b4cd2 10443 goto nosideret;
2ac8a782
JB
10444 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10445 return (value_from_longest
10446 (value_type (arg1),
10447 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10448 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10449 return (value_from_longest
10450 (value_type (arg2),
10451 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10452 if ((ada_is_fixed_point_type (value_type (arg1))
10453 || ada_is_fixed_point_type (value_type (arg2)))
10454 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10455 error (_("Operands of fixed-point subtraction "
10456 "must have the same type"));
b7789565
JB
10457 /* Do the substraction, and cast the result to the type of the first
10458 argument. We cannot cast the result to a reference type, so if
10459 ARG1 is a reference type, find its underlying type. */
10460 type = value_type (arg1);
10461 while (TYPE_CODE (type) == TYPE_CODE_REF)
10462 type = TYPE_TARGET_TYPE (type);
f44316fa 10463 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10464 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10465
10466 case BINOP_MUL:
10467 case BINOP_DIV:
e1578042
JB
10468 case BINOP_REM:
10469 case BINOP_MOD:
14f9c5c9
AS
10470 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10471 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10472 if (noside == EVAL_SKIP)
4c4b4cd2 10473 goto nosideret;
e1578042 10474 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10475 {
10476 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10477 return value_zero (value_type (arg1), not_lval);
10478 }
14f9c5c9 10479 else
4c4b4cd2 10480 {
a53b7a21 10481 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10482 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10483 arg1 = cast_from_fixed (type, arg1);
df407dfe 10484 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10485 arg2 = cast_from_fixed (type, arg2);
f44316fa 10486 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10487 return ada_value_binop (arg1, arg2, op);
10488 }
10489
4c4b4cd2
PH
10490 case BINOP_EQUAL:
10491 case BINOP_NOTEQUAL:
14f9c5c9 10492 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10493 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10494 if (noside == EVAL_SKIP)
76a01679 10495 goto nosideret;
4c4b4cd2 10496 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10497 tem = 0;
4c4b4cd2 10498 else
f44316fa
UW
10499 {
10500 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10501 tem = ada_value_equal (arg1, arg2);
10502 }
4c4b4cd2 10503 if (op == BINOP_NOTEQUAL)
76a01679 10504 tem = !tem;
fbb06eb1
UW
10505 type = language_bool_type (exp->language_defn, exp->gdbarch);
10506 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10507
10508 case UNOP_NEG:
10509 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10510 if (noside == EVAL_SKIP)
10511 goto nosideret;
df407dfe
AC
10512 else if (ada_is_fixed_point_type (value_type (arg1)))
10513 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10514 else
f44316fa
UW
10515 {
10516 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10517 return value_neg (arg1);
10518 }
4c4b4cd2 10519
2330c6c6
JB
10520 case BINOP_LOGICAL_AND:
10521 case BINOP_LOGICAL_OR:
10522 case UNOP_LOGICAL_NOT:
000d5124
JB
10523 {
10524 struct value *val;
10525
10526 *pos -= 1;
10527 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10528 type = language_bool_type (exp->language_defn, exp->gdbarch);
10529 return value_cast (type, val);
000d5124 10530 }
2330c6c6
JB
10531
10532 case BINOP_BITWISE_AND:
10533 case BINOP_BITWISE_IOR:
10534 case BINOP_BITWISE_XOR:
000d5124
JB
10535 {
10536 struct value *val;
10537
10538 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10539 *pos = pc;
10540 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10541
10542 return value_cast (value_type (arg1), val);
10543 }
2330c6c6 10544
14f9c5c9
AS
10545 case OP_VAR_VALUE:
10546 *pos -= 1;
6799def4 10547
14f9c5c9 10548 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10549 {
10550 *pos += 4;
10551 goto nosideret;
10552 }
da5c522f
JB
10553
10554 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10555 /* Only encountered when an unresolved symbol occurs in a
10556 context other than a function call, in which case, it is
52ce6436 10557 invalid. */
323e0a4a 10558 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10559 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10560
10561 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10562 {
0c1f74cf 10563 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10564 /* Check to see if this is a tagged type. We also need to handle
10565 the case where the type is a reference to a tagged type, but
10566 we have to be careful to exclude pointers to tagged types.
10567 The latter should be shown as usual (as a pointer), whereas
10568 a reference should mostly be transparent to the user. */
10569 if (ada_is_tagged_type (type, 0)
023db19c 10570 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10571 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10572 {
10573 /* Tagged types are a little special in the fact that the real
10574 type is dynamic and can only be determined by inspecting the
10575 object's tag. This means that we need to get the object's
10576 value first (EVAL_NORMAL) and then extract the actual object
10577 type from its tag.
10578
10579 Note that we cannot skip the final step where we extract
10580 the object type from its tag, because the EVAL_NORMAL phase
10581 results in dynamic components being resolved into fixed ones.
10582 This can cause problems when trying to print the type
10583 description of tagged types whose parent has a dynamic size:
10584 We use the type name of the "_parent" component in order
10585 to print the name of the ancestor type in the type description.
10586 If that component had a dynamic size, the resolution into
10587 a fixed type would result in the loss of that type name,
10588 thus preventing us from printing the name of the ancestor
10589 type in the type description. */
10590 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10591
10592 if (TYPE_CODE (type) != TYPE_CODE_REF)
10593 {
10594 struct type *actual_type;
10595
10596 actual_type = type_from_tag (ada_value_tag (arg1));
10597 if (actual_type == NULL)
10598 /* If, for some reason, we were unable to determine
10599 the actual type from the tag, then use the static
10600 approximation that we just computed as a fallback.
10601 This can happen if the debugging information is
10602 incomplete, for instance. */
10603 actual_type = type;
10604 return value_zero (actual_type, not_lval);
10605 }
10606 else
10607 {
10608 /* In the case of a ref, ada_coerce_ref takes care
10609 of determining the actual type. But the evaluation
10610 should return a ref as it should be valid to ask
10611 for its address; so rebuild a ref after coerce. */
10612 arg1 = ada_coerce_ref (arg1);
a65cfae5 10613 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10614 }
10615 }
0c1f74cf 10616
84754697
JB
10617 /* Records and unions for which GNAT encodings have been
10618 generated need to be statically fixed as well.
10619 Otherwise, non-static fixing produces a type where
10620 all dynamic properties are removed, which prevents "ptype"
10621 from being able to completely describe the type.
10622 For instance, a case statement in a variant record would be
10623 replaced by the relevant components based on the actual
10624 value of the discriminants. */
10625 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10626 && dynamic_template_type (type) != NULL)
10627 || (TYPE_CODE (type) == TYPE_CODE_UNION
10628 && ada_find_parallel_type (type, "___XVU") != NULL))
10629 {
10630 *pos += 4;
10631 return value_zero (to_static_fixed_type (type), not_lval);
10632 }
4c4b4cd2 10633 }
da5c522f
JB
10634
10635 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10636 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10637
10638 case OP_FUNCALL:
10639 (*pos) += 2;
10640
10641 /* Allocate arg vector, including space for the function to be
10642 called in argvec[0] and a terminating NULL. */
10643 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10644 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10645
10646 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10647 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10648 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10649 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10650 else
10651 {
10652 for (tem = 0; tem <= nargs; tem += 1)
10653 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10654 argvec[tem] = 0;
10655
10656 if (noside == EVAL_SKIP)
10657 goto nosideret;
10658 }
10659
ad82864c
JB
10660 if (ada_is_constrained_packed_array_type
10661 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10662 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10663 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10664 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10665 /* This is a packed array that has already been fixed, and
10666 therefore already coerced to a simple array. Nothing further
10667 to do. */
10668 ;
e6c2c623
PMR
10669 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10670 {
10671 /* Make sure we dereference references so that all the code below
10672 feels like it's really handling the referenced value. Wrapping
10673 types (for alignment) may be there, so make sure we strip them as
10674 well. */
10675 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10676 }
10677 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10678 && VALUE_LVAL (argvec[0]) == lval_memory)
10679 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10680
df407dfe 10681 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10682
10683 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10684 them. So, if this is an array typedef (encoding use for array
10685 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10686 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10687 type = ada_typedef_target_type (type);
10688
4c4b4cd2
PH
10689 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10690 {
61ee279c 10691 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10692 {
10693 case TYPE_CODE_FUNC:
61ee279c 10694 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10695 break;
10696 case TYPE_CODE_ARRAY:
10697 break;
10698 case TYPE_CODE_STRUCT:
10699 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10700 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10701 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10702 break;
10703 default:
323e0a4a 10704 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10705 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10706 break;
10707 }
10708 }
10709
10710 switch (TYPE_CODE (type))
10711 {
10712 case TYPE_CODE_FUNC:
10713 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10714 {
7022349d
PA
10715 if (TYPE_TARGET_TYPE (type) == NULL)
10716 error_call_unknown_return_type (NULL);
10717 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10718 }
7022349d 10719 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
c8ea1972
PH
10720 case TYPE_CODE_INTERNAL_FUNCTION:
10721 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10722 /* We don't know anything about what the internal
10723 function might return, but we have to return
10724 something. */
10725 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10726 not_lval);
10727 else
10728 return call_internal_function (exp->gdbarch, exp->language_defn,
10729 argvec[0], nargs, argvec + 1);
10730
4c4b4cd2
PH
10731 case TYPE_CODE_STRUCT:
10732 {
10733 int arity;
10734
4c4b4cd2
PH
10735 arity = ada_array_arity (type);
10736 type = ada_array_element_type (type, nargs);
10737 if (type == NULL)
323e0a4a 10738 error (_("cannot subscript or call a record"));
4c4b4cd2 10739 if (arity != nargs)
323e0a4a 10740 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10741 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10742 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10743 return
10744 unwrap_value (ada_value_subscript
10745 (argvec[0], nargs, argvec + 1));
10746 }
10747 case TYPE_CODE_ARRAY:
10748 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10749 {
10750 type = ada_array_element_type (type, nargs);
10751 if (type == NULL)
323e0a4a 10752 error (_("element type of array unknown"));
4c4b4cd2 10753 else
0a07e705 10754 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10755 }
10756 return
10757 unwrap_value (ada_value_subscript
10758 (ada_coerce_to_simple_array (argvec[0]),
10759 nargs, argvec + 1));
10760 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10761 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10762 {
deede10c 10763 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10764 type = ada_array_element_type (type, nargs);
10765 if (type == NULL)
323e0a4a 10766 error (_("element type of array unknown"));
4c4b4cd2 10767 else
0a07e705 10768 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10769 }
10770 return
deede10c
JB
10771 unwrap_value (ada_value_ptr_subscript (argvec[0],
10772 nargs, argvec + 1));
4c4b4cd2
PH
10773
10774 default:
e1d5a0d2
PH
10775 error (_("Attempt to index or call something other than an "
10776 "array or function"));
4c4b4cd2
PH
10777 }
10778
10779 case TERNOP_SLICE:
10780 {
10781 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10782 struct value *low_bound_val =
10783 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10784 struct value *high_bound_val =
10785 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10786 LONGEST low_bound;
10787 LONGEST high_bound;
5b4ee69b 10788
994b9211
AC
10789 low_bound_val = coerce_ref (low_bound_val);
10790 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10791 low_bound = value_as_long (low_bound_val);
10792 high_bound = value_as_long (high_bound_val);
963a6417 10793
4c4b4cd2
PH
10794 if (noside == EVAL_SKIP)
10795 goto nosideret;
10796
4c4b4cd2
PH
10797 /* If this is a reference to an aligner type, then remove all
10798 the aligners. */
df407dfe
AC
10799 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10800 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10801 TYPE_TARGET_TYPE (value_type (array)) =
10802 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10803
ad82864c 10804 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10805 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10806
10807 /* If this is a reference to an array or an array lvalue,
10808 convert to a pointer. */
df407dfe
AC
10809 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10810 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10811 && VALUE_LVAL (array) == lval_memory))
10812 array = value_addr (array);
10813
1265e4aa 10814 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10815 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10816 (value_type (array))))
0b5d8877 10817 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10818
10819 array = ada_coerce_to_simple_array_ptr (array);
10820
714e53ab
PH
10821 /* If we have more than one level of pointer indirection,
10822 dereference the value until we get only one level. */
df407dfe
AC
10823 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10824 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10825 == TYPE_CODE_PTR))
10826 array = value_ind (array);
10827
10828 /* Make sure we really do have an array type before going further,
10829 to avoid a SEGV when trying to get the index type or the target
10830 type later down the road if the debug info generated by
10831 the compiler is incorrect or incomplete. */
df407dfe 10832 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10833 error (_("cannot take slice of non-array"));
714e53ab 10834
828292f2
JB
10835 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10836 == TYPE_CODE_PTR)
4c4b4cd2 10837 {
828292f2
JB
10838 struct type *type0 = ada_check_typedef (value_type (array));
10839
0b5d8877 10840 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10841 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10842 else
10843 {
10844 struct type *arr_type0 =
828292f2 10845 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10846
f5938064
JG
10847 return ada_value_slice_from_ptr (array, arr_type0,
10848 longest_to_int (low_bound),
10849 longest_to_int (high_bound));
4c4b4cd2
PH
10850 }
10851 }
10852 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10853 return array;
10854 else if (high_bound < low_bound)
df407dfe 10855 return empty_array (value_type (array), low_bound);
4c4b4cd2 10856 else
529cad9c
PH
10857 return ada_value_slice (array, longest_to_int (low_bound),
10858 longest_to_int (high_bound));
4c4b4cd2 10859 }
14f9c5c9 10860
4c4b4cd2
PH
10861 case UNOP_IN_RANGE:
10862 (*pos) += 2;
10863 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10864 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10865
14f9c5c9 10866 if (noside == EVAL_SKIP)
4c4b4cd2 10867 goto nosideret;
14f9c5c9 10868
4c4b4cd2
PH
10869 switch (TYPE_CODE (type))
10870 {
10871 default:
e1d5a0d2
PH
10872 lim_warning (_("Membership test incompletely implemented; "
10873 "always returns true"));
fbb06eb1
UW
10874 type = language_bool_type (exp->language_defn, exp->gdbarch);
10875 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10876
10877 case TYPE_CODE_RANGE:
030b4912
UW
10878 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10879 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10880 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10881 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10882 type = language_bool_type (exp->language_defn, exp->gdbarch);
10883 return
10884 value_from_longest (type,
4c4b4cd2
PH
10885 (value_less (arg1, arg3)
10886 || value_equal (arg1, arg3))
10887 && (value_less (arg2, arg1)
10888 || value_equal (arg2, arg1)));
10889 }
10890
10891 case BINOP_IN_BOUNDS:
14f9c5c9 10892 (*pos) += 2;
4c4b4cd2
PH
10893 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10894 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10895
4c4b4cd2
PH
10896 if (noside == EVAL_SKIP)
10897 goto nosideret;
14f9c5c9 10898
4c4b4cd2 10899 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10900 {
10901 type = language_bool_type (exp->language_defn, exp->gdbarch);
10902 return value_zero (type, not_lval);
10903 }
14f9c5c9 10904
4c4b4cd2 10905 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10906
1eea4ebd
UW
10907 type = ada_index_type (value_type (arg2), tem, "range");
10908 if (!type)
10909 type = value_type (arg1);
14f9c5c9 10910
1eea4ebd
UW
10911 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10912 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10913
f44316fa
UW
10914 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10915 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10916 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10917 return
fbb06eb1 10918 value_from_longest (type,
4c4b4cd2
PH
10919 (value_less (arg1, arg3)
10920 || value_equal (arg1, arg3))
10921 && (value_less (arg2, arg1)
10922 || value_equal (arg2, arg1)));
10923
10924 case TERNOP_IN_RANGE:
10925 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10926 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10927 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10928
10929 if (noside == EVAL_SKIP)
10930 goto nosideret;
10931
f44316fa
UW
10932 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10933 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10934 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10935 return
fbb06eb1 10936 value_from_longest (type,
4c4b4cd2
PH
10937 (value_less (arg1, arg3)
10938 || value_equal (arg1, arg3))
10939 && (value_less (arg2, arg1)
10940 || value_equal (arg2, arg1)));
10941
10942 case OP_ATR_FIRST:
10943 case OP_ATR_LAST:
10944 case OP_ATR_LENGTH:
10945 {
76a01679 10946 struct type *type_arg;
5b4ee69b 10947
76a01679
JB
10948 if (exp->elts[*pos].opcode == OP_TYPE)
10949 {
10950 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10951 arg1 = NULL;
5bc23cb3 10952 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10953 }
10954 else
10955 {
10956 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10957 type_arg = NULL;
10958 }
10959
10960 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10961 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10962 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10963 *pos += 4;
10964
10965 if (noside == EVAL_SKIP)
10966 goto nosideret;
10967
10968 if (type_arg == NULL)
10969 {
10970 arg1 = ada_coerce_ref (arg1);
10971
ad82864c 10972 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10973 arg1 = ada_coerce_to_simple_array (arg1);
10974
aa4fb036 10975 if (op == OP_ATR_LENGTH)
1eea4ebd 10976 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10977 else
10978 {
10979 type = ada_index_type (value_type (arg1), tem,
10980 ada_attribute_name (op));
10981 if (type == NULL)
10982 type = builtin_type (exp->gdbarch)->builtin_int;
10983 }
76a01679
JB
10984
10985 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10986 return allocate_value (type);
76a01679
JB
10987
10988 switch (op)
10989 {
10990 default: /* Should never happen. */
323e0a4a 10991 error (_("unexpected attribute encountered"));
76a01679 10992 case OP_ATR_FIRST:
1eea4ebd
UW
10993 return value_from_longest
10994 (type, ada_array_bound (arg1, tem, 0));
76a01679 10995 case OP_ATR_LAST:
1eea4ebd
UW
10996 return value_from_longest
10997 (type, ada_array_bound (arg1, tem, 1));
76a01679 10998 case OP_ATR_LENGTH:
1eea4ebd
UW
10999 return value_from_longest
11000 (type, ada_array_length (arg1, tem));
76a01679
JB
11001 }
11002 }
11003 else if (discrete_type_p (type_arg))
11004 {
11005 struct type *range_type;
0d5cff50 11006 const char *name = ada_type_name (type_arg);
5b4ee69b 11007
76a01679
JB
11008 range_type = NULL;
11009 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11010 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11011 if (range_type == NULL)
11012 range_type = type_arg;
11013 switch (op)
11014 {
11015 default:
323e0a4a 11016 error (_("unexpected attribute encountered"));
76a01679 11017 case OP_ATR_FIRST:
690cc4eb 11018 return value_from_longest
43bbcdc2 11019 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11020 case OP_ATR_LAST:
690cc4eb 11021 return value_from_longest
43bbcdc2 11022 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11023 case OP_ATR_LENGTH:
323e0a4a 11024 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11025 }
11026 }
11027 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11028 error (_("unimplemented type attribute"));
76a01679
JB
11029 else
11030 {
11031 LONGEST low, high;
11032
ad82864c
JB
11033 if (ada_is_constrained_packed_array_type (type_arg))
11034 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11035
aa4fb036 11036 if (op == OP_ATR_LENGTH)
1eea4ebd 11037 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11038 else
11039 {
11040 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11041 if (type == NULL)
11042 type = builtin_type (exp->gdbarch)->builtin_int;
11043 }
1eea4ebd 11044
76a01679
JB
11045 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11046 return allocate_value (type);
11047
11048 switch (op)
11049 {
11050 default:
323e0a4a 11051 error (_("unexpected attribute encountered"));
76a01679 11052 case OP_ATR_FIRST:
1eea4ebd 11053 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11054 return value_from_longest (type, low);
11055 case OP_ATR_LAST:
1eea4ebd 11056 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11057 return value_from_longest (type, high);
11058 case OP_ATR_LENGTH:
1eea4ebd
UW
11059 low = ada_array_bound_from_type (type_arg, tem, 0);
11060 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11061 return value_from_longest (type, high - low + 1);
11062 }
11063 }
14f9c5c9
AS
11064 }
11065
4c4b4cd2
PH
11066 case OP_ATR_TAG:
11067 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11068 if (noside == EVAL_SKIP)
76a01679 11069 goto nosideret;
4c4b4cd2
PH
11070
11071 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11072 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11073
11074 return ada_value_tag (arg1);
11075
11076 case OP_ATR_MIN:
11077 case OP_ATR_MAX:
11078 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11079 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11080 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11081 if (noside == EVAL_SKIP)
76a01679 11082 goto nosideret;
d2e4a39e 11083 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11084 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11085 else
f44316fa
UW
11086 {
11087 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11088 return value_binop (arg1, arg2,
11089 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11090 }
14f9c5c9 11091
4c4b4cd2
PH
11092 case OP_ATR_MODULUS:
11093 {
31dedfee 11094 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11095
5b4ee69b 11096 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11097 if (noside == EVAL_SKIP)
11098 goto nosideret;
4c4b4cd2 11099
76a01679 11100 if (!ada_is_modular_type (type_arg))
323e0a4a 11101 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11102
76a01679
JB
11103 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11104 ada_modulus (type_arg));
4c4b4cd2
PH
11105 }
11106
11107
11108 case OP_ATR_POS:
11109 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11110 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11111 if (noside == EVAL_SKIP)
76a01679 11112 goto nosideret;
3cb382c9
UW
11113 type = builtin_type (exp->gdbarch)->builtin_int;
11114 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11115 return value_zero (type, not_lval);
14f9c5c9 11116 else
3cb382c9 11117 return value_pos_atr (type, arg1);
14f9c5c9 11118
4c4b4cd2
PH
11119 case OP_ATR_SIZE:
11120 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11121 type = value_type (arg1);
11122
11123 /* If the argument is a reference, then dereference its type, since
11124 the user is really asking for the size of the actual object,
11125 not the size of the pointer. */
11126 if (TYPE_CODE (type) == TYPE_CODE_REF)
11127 type = TYPE_TARGET_TYPE (type);
11128
4c4b4cd2 11129 if (noside == EVAL_SKIP)
76a01679 11130 goto nosideret;
4c4b4cd2 11131 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11132 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11133 else
22601c15 11134 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11135 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11136
11137 case OP_ATR_VAL:
11138 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11139 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11140 type = exp->elts[pc + 2].type;
14f9c5c9 11141 if (noside == EVAL_SKIP)
76a01679 11142 goto nosideret;
4c4b4cd2 11143 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11144 return value_zero (type, not_lval);
4c4b4cd2 11145 else
76a01679 11146 return value_val_atr (type, arg1);
4c4b4cd2
PH
11147
11148 case BINOP_EXP:
11149 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11150 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11151 if (noside == EVAL_SKIP)
11152 goto nosideret;
11153 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11154 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11155 else
f44316fa
UW
11156 {
11157 /* For integer exponentiation operations,
11158 only promote the first argument. */
11159 if (is_integral_type (value_type (arg2)))
11160 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11161 else
11162 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11163
11164 return value_binop (arg1, arg2, op);
11165 }
4c4b4cd2
PH
11166
11167 case UNOP_PLUS:
11168 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11169 if (noside == EVAL_SKIP)
11170 goto nosideret;
11171 else
11172 return arg1;
11173
11174 case UNOP_ABS:
11175 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11176 if (noside == EVAL_SKIP)
11177 goto nosideret;
f44316fa 11178 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11179 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11180 return value_neg (arg1);
14f9c5c9 11181 else
4c4b4cd2 11182 return arg1;
14f9c5c9
AS
11183
11184 case UNOP_IND:
5ec18f2b 11185 preeval_pos = *pos;
6b0d7253 11186 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11187 if (noside == EVAL_SKIP)
4c4b4cd2 11188 goto nosideret;
df407dfe 11189 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11190 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11191 {
11192 if (ada_is_array_descriptor_type (type))
11193 /* GDB allows dereferencing GNAT array descriptors. */
11194 {
11195 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11196
4c4b4cd2 11197 if (arrType == NULL)
323e0a4a 11198 error (_("Attempt to dereference null array pointer."));
00a4c844 11199 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11200 }
11201 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11202 || TYPE_CODE (type) == TYPE_CODE_REF
11203 /* In C you can dereference an array to get the 1st elt. */
11204 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11205 {
5ec18f2b
JG
11206 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11207 only be determined by inspecting the object's tag.
11208 This means that we need to evaluate completely the
11209 expression in order to get its type. */
11210
023db19c
JB
11211 if ((TYPE_CODE (type) == TYPE_CODE_REF
11212 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11213 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11214 {
11215 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11216 EVAL_NORMAL);
11217 type = value_type (ada_value_ind (arg1));
11218 }
11219 else
11220 {
11221 type = to_static_fixed_type
11222 (ada_aligned_type
11223 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11224 }
c1b5a1a6 11225 ada_ensure_varsize_limit (type);
714e53ab
PH
11226 return value_zero (type, lval_memory);
11227 }
4c4b4cd2 11228 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11229 {
11230 /* GDB allows dereferencing an int. */
11231 if (expect_type == NULL)
11232 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11233 lval_memory);
11234 else
11235 {
11236 expect_type =
11237 to_static_fixed_type (ada_aligned_type (expect_type));
11238 return value_zero (expect_type, lval_memory);
11239 }
11240 }
4c4b4cd2 11241 else
323e0a4a 11242 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11243 }
0963b4bd 11244 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11245 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11246
96967637
JB
11247 if (TYPE_CODE (type) == TYPE_CODE_INT)
11248 /* GDB allows dereferencing an int. If we were given
11249 the expect_type, then use that as the target type.
11250 Otherwise, assume that the target type is an int. */
11251 {
11252 if (expect_type != NULL)
11253 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11254 arg1));
11255 else
11256 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11257 (CORE_ADDR) value_as_address (arg1));
11258 }
6b0d7253 11259
4c4b4cd2
PH
11260 if (ada_is_array_descriptor_type (type))
11261 /* GDB allows dereferencing GNAT array descriptors. */
11262 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11263 else
4c4b4cd2 11264 return ada_value_ind (arg1);
14f9c5c9
AS
11265
11266 case STRUCTOP_STRUCT:
11267 tem = longest_to_int (exp->elts[pc + 1].longconst);
11268 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11269 preeval_pos = *pos;
14f9c5c9
AS
11270 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11271 if (noside == EVAL_SKIP)
4c4b4cd2 11272 goto nosideret;
14f9c5c9 11273 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11274 {
df407dfe 11275 struct type *type1 = value_type (arg1);
5b4ee69b 11276
76a01679
JB
11277 if (ada_is_tagged_type (type1, 1))
11278 {
11279 type = ada_lookup_struct_elt_type (type1,
11280 &exp->elts[pc + 2].string,
988f6b3d 11281 1, 1);
5ec18f2b
JG
11282
11283 /* If the field is not found, check if it exists in the
11284 extension of this object's type. This means that we
11285 need to evaluate completely the expression. */
11286
76a01679 11287 if (type == NULL)
5ec18f2b
JG
11288 {
11289 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11290 EVAL_NORMAL);
11291 arg1 = ada_value_struct_elt (arg1,
11292 &exp->elts[pc + 2].string,
11293 0);
11294 arg1 = unwrap_value (arg1);
11295 type = value_type (ada_to_fixed_value (arg1));
11296 }
76a01679
JB
11297 }
11298 else
11299 type =
11300 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11301 0);
76a01679
JB
11302
11303 return value_zero (ada_aligned_type (type), lval_memory);
11304 }
14f9c5c9 11305 else
a579cd9a
MW
11306 {
11307 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11308 arg1 = unwrap_value (arg1);
11309 return ada_to_fixed_value (arg1);
11310 }
284614f0 11311
14f9c5c9 11312 case OP_TYPE:
4c4b4cd2
PH
11313 /* The value is not supposed to be used. This is here to make it
11314 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11315 (*pos) += 2;
11316 if (noside == EVAL_SKIP)
4c4b4cd2 11317 goto nosideret;
14f9c5c9 11318 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11319 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11320 else
323e0a4a 11321 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11322
11323 case OP_AGGREGATE:
11324 case OP_CHOICES:
11325 case OP_OTHERS:
11326 case OP_DISCRETE_RANGE:
11327 case OP_POSITIONAL:
11328 case OP_NAME:
11329 if (noside == EVAL_NORMAL)
11330 switch (op)
11331 {
11332 case OP_NAME:
11333 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11334 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11335 case OP_AGGREGATE:
11336 error (_("Aggregates only allowed on the right of an assignment"));
11337 default:
0963b4bd
MS
11338 internal_error (__FILE__, __LINE__,
11339 _("aggregate apparently mangled"));
52ce6436
PH
11340 }
11341
11342 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11343 *pos += oplen - 1;
11344 for (tem = 0; tem < nargs; tem += 1)
11345 ada_evaluate_subexp (NULL, exp, pos, noside);
11346 goto nosideret;
14f9c5c9
AS
11347 }
11348
11349nosideret:
22601c15 11350 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 11351}
14f9c5c9 11352\f
d2e4a39e 11353
4c4b4cd2 11354 /* Fixed point */
14f9c5c9
AS
11355
11356/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11357 type name that encodes the 'small and 'delta information.
4c4b4cd2 11358 Otherwise, return NULL. */
14f9c5c9 11359
d2e4a39e 11360static const char *
ebf56fd3 11361fixed_type_info (struct type *type)
14f9c5c9 11362{
d2e4a39e 11363 const char *name = ada_type_name (type);
14f9c5c9
AS
11364 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11365
d2e4a39e
AS
11366 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11367 {
14f9c5c9 11368 const char *tail = strstr (name, "___XF_");
5b4ee69b 11369
14f9c5c9 11370 if (tail == NULL)
4c4b4cd2 11371 return NULL;
d2e4a39e 11372 else
4c4b4cd2 11373 return tail + 5;
14f9c5c9
AS
11374 }
11375 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11376 return fixed_type_info (TYPE_TARGET_TYPE (type));
11377 else
11378 return NULL;
11379}
11380
4c4b4cd2 11381/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11382
11383int
ebf56fd3 11384ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11385{
11386 return fixed_type_info (type) != NULL;
11387}
11388
4c4b4cd2
PH
11389/* Return non-zero iff TYPE represents a System.Address type. */
11390
11391int
11392ada_is_system_address_type (struct type *type)
11393{
11394 return (TYPE_NAME (type)
11395 && strcmp (TYPE_NAME (type), "system__address") == 0);
11396}
11397
14f9c5c9 11398/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11399 type, return the target floating-point type to be used to represent
11400 of this type during internal computation. */
11401
11402static struct type *
11403ada_scaling_type (struct type *type)
11404{
11405 return builtin_type (get_type_arch (type))->builtin_long_double;
11406}
11407
11408/* Assuming that TYPE is the representation of an Ada fixed-point
11409 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11410 delta cannot be determined. */
14f9c5c9 11411
50eff16b 11412struct value *
ebf56fd3 11413ada_delta (struct type *type)
14f9c5c9
AS
11414{
11415 const char *encoding = fixed_type_info (type);
50eff16b
UW
11416 struct type *scale_type = ada_scaling_type (type);
11417
11418 long long num, den;
11419
11420 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11421 return nullptr;
d2e4a39e 11422 else
50eff16b
UW
11423 return value_binop (value_from_longest (scale_type, num),
11424 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11425}
11426
11427/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11428 factor ('SMALL value) associated with the type. */
14f9c5c9 11429
50eff16b
UW
11430struct value *
11431ada_scaling_factor (struct type *type)
14f9c5c9
AS
11432{
11433 const char *encoding = fixed_type_info (type);
50eff16b
UW
11434 struct type *scale_type = ada_scaling_type (type);
11435
11436 long long num0, den0, num1, den1;
14f9c5c9 11437 int n;
d2e4a39e 11438
50eff16b 11439 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11440 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11441
11442 if (n < 2)
50eff16b 11443 return value_from_longest (scale_type, 1);
14f9c5c9 11444 else if (n == 4)
50eff16b
UW
11445 return value_binop (value_from_longest (scale_type, num1),
11446 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11447 else
50eff16b
UW
11448 return value_binop (value_from_longest (scale_type, num0),
11449 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11450}
11451
14f9c5c9 11452\f
d2e4a39e 11453
4c4b4cd2 11454 /* Range types */
14f9c5c9
AS
11455
11456/* Scan STR beginning at position K for a discriminant name, and
11457 return the value of that discriminant field of DVAL in *PX. If
11458 PNEW_K is not null, put the position of the character beyond the
11459 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11460 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11461
11462static int
108d56a4 11463scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11464 int *pnew_k)
14f9c5c9
AS
11465{
11466 static char *bound_buffer = NULL;
11467 static size_t bound_buffer_len = 0;
5da1a4d3 11468 const char *pstart, *pend, *bound;
d2e4a39e 11469 struct value *bound_val;
14f9c5c9
AS
11470
11471 if (dval == NULL || str == NULL || str[k] == '\0')
11472 return 0;
11473
5da1a4d3
SM
11474 pstart = str + k;
11475 pend = strstr (pstart, "__");
14f9c5c9
AS
11476 if (pend == NULL)
11477 {
5da1a4d3 11478 bound = pstart;
14f9c5c9
AS
11479 k += strlen (bound);
11480 }
d2e4a39e 11481 else
14f9c5c9 11482 {
5da1a4d3
SM
11483 int len = pend - pstart;
11484
11485 /* Strip __ and beyond. */
11486 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11487 strncpy (bound_buffer, pstart, len);
11488 bound_buffer[len] = '\0';
11489
14f9c5c9 11490 bound = bound_buffer;
d2e4a39e 11491 k = pend - str;
14f9c5c9 11492 }
d2e4a39e 11493
df407dfe 11494 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11495 if (bound_val == NULL)
11496 return 0;
11497
11498 *px = value_as_long (bound_val);
11499 if (pnew_k != NULL)
11500 *pnew_k = k;
11501 return 1;
11502}
11503
11504/* Value of variable named NAME in the current environment. If
11505 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11506 otherwise causes an error with message ERR_MSG. */
11507
d2e4a39e 11508static struct value *
edb0c9cb 11509get_var_value (const char *name, const char *err_msg)
14f9c5c9 11510{
b5ec771e 11511 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11512
b5ec771e
PA
11513 struct block_symbol *syms;
11514 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11515 get_selected_block (0),
11516 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11517
11518 if (nsyms != 1)
11519 {
11520 if (err_msg == NULL)
4c4b4cd2 11521 return 0;
14f9c5c9 11522 else
8a3fe4f8 11523 error (("%s"), err_msg);
14f9c5c9
AS
11524 }
11525
d12307c1 11526 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11527}
d2e4a39e 11528
edb0c9cb
PA
11529/* Value of integer variable named NAME in the current environment.
11530 If no such variable is found, returns false. Otherwise, sets VALUE
11531 to the variable's value and returns true. */
4c4b4cd2 11532
edb0c9cb
PA
11533bool
11534get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11535{
4c4b4cd2 11536 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11537
14f9c5c9 11538 if (var_val == 0)
edb0c9cb
PA
11539 return false;
11540
11541 value = value_as_long (var_val);
11542 return true;
14f9c5c9 11543}
d2e4a39e 11544
14f9c5c9
AS
11545
11546/* Return a range type whose base type is that of the range type named
11547 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11548 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11549 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11550 corresponding range type from debug information; fall back to using it
11551 if symbol lookup fails. If a new type must be created, allocate it
11552 like ORIG_TYPE was. The bounds information, in general, is encoded
11553 in NAME, the base type given in the named range type. */
14f9c5c9 11554
d2e4a39e 11555static struct type *
28c85d6c 11556to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11557{
0d5cff50 11558 const char *name;
14f9c5c9 11559 struct type *base_type;
108d56a4 11560 const char *subtype_info;
14f9c5c9 11561
28c85d6c
JB
11562 gdb_assert (raw_type != NULL);
11563 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11564
1ce677a4 11565 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11566 base_type = TYPE_TARGET_TYPE (raw_type);
11567 else
11568 base_type = raw_type;
11569
28c85d6c 11570 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11571 subtype_info = strstr (name, "___XD");
11572 if (subtype_info == NULL)
690cc4eb 11573 {
43bbcdc2
PH
11574 LONGEST L = ada_discrete_type_low_bound (raw_type);
11575 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11576
690cc4eb
PH
11577 if (L < INT_MIN || U > INT_MAX)
11578 return raw_type;
11579 else
0c9c3474
SA
11580 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11581 L, U);
690cc4eb 11582 }
14f9c5c9
AS
11583 else
11584 {
11585 static char *name_buf = NULL;
11586 static size_t name_len = 0;
11587 int prefix_len = subtype_info - name;
11588 LONGEST L, U;
11589 struct type *type;
108d56a4 11590 const char *bounds_str;
14f9c5c9
AS
11591 int n;
11592
11593 GROW_VECT (name_buf, name_len, prefix_len + 5);
11594 strncpy (name_buf, name, prefix_len);
11595 name_buf[prefix_len] = '\0';
11596
11597 subtype_info += 5;
11598 bounds_str = strchr (subtype_info, '_');
11599 n = 1;
11600
d2e4a39e 11601 if (*subtype_info == 'L')
4c4b4cd2
PH
11602 {
11603 if (!ada_scan_number (bounds_str, n, &L, &n)
11604 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11605 return raw_type;
11606 if (bounds_str[n] == '_')
11607 n += 2;
0963b4bd 11608 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11609 n += 1;
11610 subtype_info += 1;
11611 }
d2e4a39e 11612 else
4c4b4cd2 11613 {
4c4b4cd2 11614 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11615 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11616 {
323e0a4a 11617 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11618 L = 1;
11619 }
11620 }
14f9c5c9 11621
d2e4a39e 11622 if (*subtype_info == 'U')
4c4b4cd2
PH
11623 {
11624 if (!ada_scan_number (bounds_str, n, &U, &n)
11625 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11626 return raw_type;
11627 }
d2e4a39e 11628 else
4c4b4cd2 11629 {
4c4b4cd2 11630 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11631 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11632 {
323e0a4a 11633 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11634 U = L;
11635 }
11636 }
14f9c5c9 11637
0c9c3474
SA
11638 type = create_static_range_type (alloc_type_copy (raw_type),
11639 base_type, L, U);
d2e4a39e 11640 TYPE_NAME (type) = name;
14f9c5c9
AS
11641 return type;
11642 }
11643}
11644
4c4b4cd2
PH
11645/* True iff NAME is the name of a range type. */
11646
14f9c5c9 11647int
d2e4a39e 11648ada_is_range_type_name (const char *name)
14f9c5c9
AS
11649{
11650 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11651}
14f9c5c9 11652\f
d2e4a39e 11653
4c4b4cd2
PH
11654 /* Modular types */
11655
11656/* True iff TYPE is an Ada modular type. */
14f9c5c9 11657
14f9c5c9 11658int
d2e4a39e 11659ada_is_modular_type (struct type *type)
14f9c5c9 11660{
18af8284 11661 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11662
11663 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11664 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11665 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11666}
11667
4c4b4cd2
PH
11668/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11669
61ee279c 11670ULONGEST
0056e4d5 11671ada_modulus (struct type *type)
14f9c5c9 11672{
43bbcdc2 11673 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11674}
d2e4a39e 11675\f
f7f9143b
JB
11676
11677/* Ada exception catchpoint support:
11678 ---------------------------------
11679
11680 We support 3 kinds of exception catchpoints:
11681 . catchpoints on Ada exceptions
11682 . catchpoints on unhandled Ada exceptions
11683 . catchpoints on failed assertions
11684
11685 Exceptions raised during failed assertions, or unhandled exceptions
11686 could perfectly be caught with the general catchpoint on Ada exceptions.
11687 However, we can easily differentiate these two special cases, and having
11688 the option to distinguish these two cases from the rest can be useful
11689 to zero-in on certain situations.
11690
11691 Exception catchpoints are a specialized form of breakpoint,
11692 since they rely on inserting breakpoints inside known routines
11693 of the GNAT runtime. The implementation therefore uses a standard
11694 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11695 of breakpoint_ops.
11696
0259addd
JB
11697 Support in the runtime for exception catchpoints have been changed
11698 a few times already, and these changes affect the implementation
11699 of these catchpoints. In order to be able to support several
11700 variants of the runtime, we use a sniffer that will determine
28010a5d 11701 the runtime variant used by the program being debugged. */
f7f9143b 11702
82eacd52
JB
11703/* Ada's standard exceptions.
11704
11705 The Ada 83 standard also defined Numeric_Error. But there so many
11706 situations where it was unclear from the Ada 83 Reference Manual
11707 (RM) whether Constraint_Error or Numeric_Error should be raised,
11708 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11709 Interpretation saying that anytime the RM says that Numeric_Error
11710 should be raised, the implementation may raise Constraint_Error.
11711 Ada 95 went one step further and pretty much removed Numeric_Error
11712 from the list of standard exceptions (it made it a renaming of
11713 Constraint_Error, to help preserve compatibility when compiling
11714 an Ada83 compiler). As such, we do not include Numeric_Error from
11715 this list of standard exceptions. */
3d0b0fa3 11716
a121b7c1 11717static const char *standard_exc[] = {
3d0b0fa3
JB
11718 "constraint_error",
11719 "program_error",
11720 "storage_error",
11721 "tasking_error"
11722};
11723
0259addd
JB
11724typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11725
11726/* A structure that describes how to support exception catchpoints
11727 for a given executable. */
11728
11729struct exception_support_info
11730{
11731 /* The name of the symbol to break on in order to insert
11732 a catchpoint on exceptions. */
11733 const char *catch_exception_sym;
11734
11735 /* The name of the symbol to break on in order to insert
11736 a catchpoint on unhandled exceptions. */
11737 const char *catch_exception_unhandled_sym;
11738
11739 /* The name of the symbol to break on in order to insert
11740 a catchpoint on failed assertions. */
11741 const char *catch_assert_sym;
11742
11743 /* Assuming that the inferior just triggered an unhandled exception
11744 catchpoint, this function is responsible for returning the address
11745 in inferior memory where the name of that exception is stored.
11746 Return zero if the address could not be computed. */
11747 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11748};
11749
11750static CORE_ADDR ada_unhandled_exception_name_addr (void);
11751static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11752
11753/* The following exception support info structure describes how to
11754 implement exception catchpoints with the latest version of the
11755 Ada runtime (as of 2007-03-06). */
11756
11757static const struct exception_support_info default_exception_support_info =
11758{
11759 "__gnat_debug_raise_exception", /* catch_exception_sym */
11760 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11761 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11762 ada_unhandled_exception_name_addr
11763};
11764
11765/* The following exception support info structure describes how to
11766 implement exception catchpoints with a slightly older version
11767 of the Ada runtime. */
11768
11769static const struct exception_support_info exception_support_info_fallback =
11770{
11771 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11772 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11773 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11774 ada_unhandled_exception_name_addr_from_raise
11775};
11776
f17011e0
JB
11777/* Return nonzero if we can detect the exception support routines
11778 described in EINFO.
11779
11780 This function errors out if an abnormal situation is detected
11781 (for instance, if we find the exception support routines, but
11782 that support is found to be incomplete). */
11783
11784static int
11785ada_has_this_exception_support (const struct exception_support_info *einfo)
11786{
11787 struct symbol *sym;
11788
11789 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11790 that should be compiled with debugging information. As a result, we
11791 expect to find that symbol in the symtabs. */
11792
11793 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11794 if (sym == NULL)
a6af7abe
JB
11795 {
11796 /* Perhaps we did not find our symbol because the Ada runtime was
11797 compiled without debugging info, or simply stripped of it.
11798 It happens on some GNU/Linux distributions for instance, where
11799 users have to install a separate debug package in order to get
11800 the runtime's debugging info. In that situation, let the user
11801 know why we cannot insert an Ada exception catchpoint.
11802
11803 Note: Just for the purpose of inserting our Ada exception
11804 catchpoint, we could rely purely on the associated minimal symbol.
11805 But we would be operating in degraded mode anyway, since we are
11806 still lacking the debugging info needed later on to extract
11807 the name of the exception being raised (this name is printed in
11808 the catchpoint message, and is also used when trying to catch
11809 a specific exception). We do not handle this case for now. */
3b7344d5 11810 struct bound_minimal_symbol msym
1c8e84b0
JB
11811 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11812
3b7344d5 11813 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11814 error (_("Your Ada runtime appears to be missing some debugging "
11815 "information.\nCannot insert Ada exception catchpoint "
11816 "in this configuration."));
11817
11818 return 0;
11819 }
f17011e0
JB
11820
11821 /* Make sure that the symbol we found corresponds to a function. */
11822
11823 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11824 error (_("Symbol \"%s\" is not a function (class = %d)"),
11825 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11826
11827 return 1;
11828}
11829
0259addd
JB
11830/* Inspect the Ada runtime and determine which exception info structure
11831 should be used to provide support for exception catchpoints.
11832
3eecfa55
JB
11833 This function will always set the per-inferior exception_info,
11834 or raise an error. */
0259addd
JB
11835
11836static void
11837ada_exception_support_info_sniffer (void)
11838{
3eecfa55 11839 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11840
11841 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11842 if (data->exception_info != NULL)
0259addd
JB
11843 return;
11844
11845 /* Check the latest (default) exception support info. */
f17011e0 11846 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11847 {
3eecfa55 11848 data->exception_info = &default_exception_support_info;
0259addd
JB
11849 return;
11850 }
11851
11852 /* Try our fallback exception suport info. */
f17011e0 11853 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11854 {
3eecfa55 11855 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11856 return;
11857 }
11858
11859 /* Sometimes, it is normal for us to not be able to find the routine
11860 we are looking for. This happens when the program is linked with
11861 the shared version of the GNAT runtime, and the program has not been
11862 started yet. Inform the user of these two possible causes if
11863 applicable. */
11864
ccefe4c4 11865 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11866 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11867
11868 /* If the symbol does not exist, then check that the program is
11869 already started, to make sure that shared libraries have been
11870 loaded. If it is not started, this may mean that the symbol is
11871 in a shared library. */
11872
11873 if (ptid_get_pid (inferior_ptid) == 0)
11874 error (_("Unable to insert catchpoint. Try to start the program first."));
11875
11876 /* At this point, we know that we are debugging an Ada program and
11877 that the inferior has been started, but we still are not able to
0963b4bd 11878 find the run-time symbols. That can mean that we are in
0259addd
JB
11879 configurable run time mode, or that a-except as been optimized
11880 out by the linker... In any case, at this point it is not worth
11881 supporting this feature. */
11882
7dda8cff 11883 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11884}
11885
f7f9143b
JB
11886/* True iff FRAME is very likely to be that of a function that is
11887 part of the runtime system. This is all very heuristic, but is
11888 intended to be used as advice as to what frames are uninteresting
11889 to most users. */
11890
11891static int
11892is_known_support_routine (struct frame_info *frame)
11893{
692465f1 11894 enum language func_lang;
f7f9143b 11895 int i;
f35a17b5 11896 const char *fullname;
f7f9143b 11897
4ed6b5be
JB
11898 /* If this code does not have any debugging information (no symtab),
11899 This cannot be any user code. */
f7f9143b 11900
51abb421 11901 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11902 if (sal.symtab == NULL)
11903 return 1;
11904
4ed6b5be
JB
11905 /* If there is a symtab, but the associated source file cannot be
11906 located, then assume this is not user code: Selecting a frame
11907 for which we cannot display the code would not be very helpful
11908 for the user. This should also take care of case such as VxWorks
11909 where the kernel has some debugging info provided for a few units. */
f7f9143b 11910
f35a17b5
JK
11911 fullname = symtab_to_fullname (sal.symtab);
11912 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11913 return 1;
11914
4ed6b5be
JB
11915 /* Check the unit filename againt the Ada runtime file naming.
11916 We also check the name of the objfile against the name of some
11917 known system libraries that sometimes come with debugging info
11918 too. */
11919
f7f9143b
JB
11920 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11921 {
11922 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11923 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11924 return 1;
eb822aa6
DE
11925 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11926 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 11927 return 1;
f7f9143b
JB
11928 }
11929
4ed6b5be 11930 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11931
c6dc63a1
TT
11932 gdb::unique_xmalloc_ptr<char> func_name
11933 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
11934 if (func_name == NULL)
11935 return 1;
11936
11937 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11938 {
11939 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
11940 if (re_exec (func_name.get ()))
11941 return 1;
f7f9143b
JB
11942 }
11943
11944 return 0;
11945}
11946
11947/* Find the first frame that contains debugging information and that is not
11948 part of the Ada run-time, starting from FI and moving upward. */
11949
0ef643c8 11950void
f7f9143b
JB
11951ada_find_printable_frame (struct frame_info *fi)
11952{
11953 for (; fi != NULL; fi = get_prev_frame (fi))
11954 {
11955 if (!is_known_support_routine (fi))
11956 {
11957 select_frame (fi);
11958 break;
11959 }
11960 }
11961
11962}
11963
11964/* Assuming that the inferior just triggered an unhandled exception
11965 catchpoint, return the address in inferior memory where the name
11966 of the exception is stored.
11967
11968 Return zero if the address could not be computed. */
11969
11970static CORE_ADDR
11971ada_unhandled_exception_name_addr (void)
0259addd
JB
11972{
11973 return parse_and_eval_address ("e.full_name");
11974}
11975
11976/* Same as ada_unhandled_exception_name_addr, except that this function
11977 should be used when the inferior uses an older version of the runtime,
11978 where the exception name needs to be extracted from a specific frame
11979 several frames up in the callstack. */
11980
11981static CORE_ADDR
11982ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11983{
11984 int frame_level;
11985 struct frame_info *fi;
3eecfa55 11986 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11987
11988 /* To determine the name of this exception, we need to select
11989 the frame corresponding to RAISE_SYM_NAME. This frame is
11990 at least 3 levels up, so we simply skip the first 3 frames
11991 without checking the name of their associated function. */
11992 fi = get_current_frame ();
11993 for (frame_level = 0; frame_level < 3; frame_level += 1)
11994 if (fi != NULL)
11995 fi = get_prev_frame (fi);
11996
11997 while (fi != NULL)
11998 {
692465f1
JB
11999 enum language func_lang;
12000
c6dc63a1
TT
12001 gdb::unique_xmalloc_ptr<char> func_name
12002 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12003 if (func_name != NULL)
12004 {
c6dc63a1 12005 if (strcmp (func_name.get (),
55b87a52
KS
12006 data->exception_info->catch_exception_sym) == 0)
12007 break; /* We found the frame we were looking for... */
12008 fi = get_prev_frame (fi);
12009 }
f7f9143b
JB
12010 }
12011
12012 if (fi == NULL)
12013 return 0;
12014
12015 select_frame (fi);
12016 return parse_and_eval_address ("id.full_name");
12017}
12018
12019/* Assuming the inferior just triggered an Ada exception catchpoint
12020 (of any type), return the address in inferior memory where the name
12021 of the exception is stored, if applicable.
12022
45db7c09
PA
12023 Assumes the selected frame is the current frame.
12024
f7f9143b
JB
12025 Return zero if the address could not be computed, or if not relevant. */
12026
12027static CORE_ADDR
761269c8 12028ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12029 struct breakpoint *b)
12030{
3eecfa55
JB
12031 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12032
f7f9143b
JB
12033 switch (ex)
12034 {
761269c8 12035 case ada_catch_exception:
f7f9143b
JB
12036 return (parse_and_eval_address ("e.full_name"));
12037 break;
12038
761269c8 12039 case ada_catch_exception_unhandled:
3eecfa55 12040 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
12041 break;
12042
761269c8 12043 case ada_catch_assert:
f7f9143b
JB
12044 return 0; /* Exception name is not relevant in this case. */
12045 break;
12046
12047 default:
12048 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12049 break;
12050 }
12051
12052 return 0; /* Should never be reached. */
12053}
12054
12055/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12056 any error that ada_exception_name_addr_1 might cause to be thrown.
12057 When an error is intercepted, a warning with the error message is printed,
12058 and zero is returned. */
12059
12060static CORE_ADDR
761269c8 12061ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12062 struct breakpoint *b)
12063{
f7f9143b
JB
12064 CORE_ADDR result = 0;
12065
492d29ea 12066 TRY
f7f9143b
JB
12067 {
12068 result = ada_exception_name_addr_1 (ex, b);
12069 }
12070
492d29ea 12071 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12072 {
12073 warning (_("failed to get exception name: %s"), e.message);
12074 return 0;
12075 }
492d29ea 12076 END_CATCH
f7f9143b
JB
12077
12078 return result;
12079}
12080
28010a5d
PA
12081static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12082
12083/* Ada catchpoints.
12084
12085 In the case of catchpoints on Ada exceptions, the catchpoint will
12086 stop the target on every exception the program throws. When a user
12087 specifies the name of a specific exception, we translate this
12088 request into a condition expression (in text form), and then parse
12089 it into an expression stored in each of the catchpoint's locations.
12090 We then use this condition to check whether the exception that was
12091 raised is the one the user is interested in. If not, then the
12092 target is resumed again. We store the name of the requested
12093 exception, in order to be able to re-set the condition expression
12094 when symbols change. */
12095
12096/* An instance of this type is used to represent an Ada catchpoint
5625a286 12097 breakpoint location. */
28010a5d 12098
5625a286 12099class ada_catchpoint_location : public bp_location
28010a5d 12100{
5625a286
PA
12101public:
12102 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12103 : bp_location (ops, owner)
12104 {}
28010a5d
PA
12105
12106 /* The condition that checks whether the exception that was raised
12107 is the specific exception the user specified on catchpoint
12108 creation. */
4d01a485 12109 expression_up excep_cond_expr;
28010a5d
PA
12110};
12111
12112/* Implement the DTOR method in the bp_location_ops structure for all
12113 Ada exception catchpoint kinds. */
12114
12115static void
12116ada_catchpoint_location_dtor (struct bp_location *bl)
12117{
12118 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12119
4d01a485 12120 al->excep_cond_expr.reset ();
28010a5d
PA
12121}
12122
12123/* The vtable to be used in Ada catchpoint locations. */
12124
12125static const struct bp_location_ops ada_catchpoint_location_ops =
12126{
12127 ada_catchpoint_location_dtor
12128};
12129
c1fc2657 12130/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12131
c1fc2657 12132struct ada_catchpoint : public breakpoint
28010a5d 12133{
c1fc2657 12134 ~ada_catchpoint () override;
28010a5d
PA
12135
12136 /* The name of the specific exception the user specified. */
12137 char *excep_string;
12138};
12139
12140/* Parse the exception condition string in the context of each of the
12141 catchpoint's locations, and store them for later evaluation. */
12142
12143static void
12144create_excep_cond_exprs (struct ada_catchpoint *c)
12145{
12146 struct cleanup *old_chain;
12147 struct bp_location *bl;
12148 char *cond_string;
12149
12150 /* Nothing to do if there's no specific exception to catch. */
12151 if (c->excep_string == NULL)
12152 return;
12153
12154 /* Same if there are no locations... */
c1fc2657 12155 if (c->loc == NULL)
28010a5d
PA
12156 return;
12157
12158 /* Compute the condition expression in text form, from the specific
12159 expection we want to catch. */
12160 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12161 old_chain = make_cleanup (xfree, cond_string);
12162
12163 /* Iterate over all the catchpoint's locations, and parse an
12164 expression for each. */
c1fc2657 12165 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12166 {
12167 struct ada_catchpoint_location *ada_loc
12168 = (struct ada_catchpoint_location *) bl;
4d01a485 12169 expression_up exp;
28010a5d
PA
12170
12171 if (!bl->shlib_disabled)
12172 {
bbc13ae3 12173 const char *s;
28010a5d
PA
12174
12175 s = cond_string;
492d29ea 12176 TRY
28010a5d 12177 {
036e657b
JB
12178 exp = parse_exp_1 (&s, bl->address,
12179 block_for_pc (bl->address),
12180 0);
28010a5d 12181 }
492d29ea 12182 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12183 {
12184 warning (_("failed to reevaluate internal exception condition "
12185 "for catchpoint %d: %s"),
c1fc2657 12186 c->number, e.message);
849f2b52 12187 }
492d29ea 12188 END_CATCH
28010a5d
PA
12189 }
12190
b22e99fd 12191 ada_loc->excep_cond_expr = std::move (exp);
28010a5d
PA
12192 }
12193
12194 do_cleanups (old_chain);
12195}
12196
c1fc2657 12197/* ada_catchpoint destructor. */
28010a5d 12198
c1fc2657 12199ada_catchpoint::~ada_catchpoint ()
28010a5d 12200{
c1fc2657 12201 xfree (this->excep_string);
28010a5d
PA
12202}
12203
12204/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12205 structure for all exception catchpoint kinds. */
12206
12207static struct bp_location *
761269c8 12208allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12209 struct breakpoint *self)
12210{
5625a286 12211 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
28010a5d
PA
12212}
12213
12214/* Implement the RE_SET method in the breakpoint_ops structure for all
12215 exception catchpoint kinds. */
12216
12217static void
761269c8 12218re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12219{
12220 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12221
12222 /* Call the base class's method. This updates the catchpoint's
12223 locations. */
2060206e 12224 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12225
12226 /* Reparse the exception conditional expressions. One for each
12227 location. */
12228 create_excep_cond_exprs (c);
12229}
12230
12231/* Returns true if we should stop for this breakpoint hit. If the
12232 user specified a specific exception, we only want to cause a stop
12233 if the program thrown that exception. */
12234
12235static int
12236should_stop_exception (const struct bp_location *bl)
12237{
12238 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12239 const struct ada_catchpoint_location *ada_loc
12240 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12241 int stop;
12242
12243 /* With no specific exception, should always stop. */
12244 if (c->excep_string == NULL)
12245 return 1;
12246
12247 if (ada_loc->excep_cond_expr == NULL)
12248 {
12249 /* We will have a NULL expression if back when we were creating
12250 the expressions, this location's had failed to parse. */
12251 return 1;
12252 }
12253
12254 stop = 1;
492d29ea 12255 TRY
28010a5d
PA
12256 {
12257 struct value *mark;
12258
12259 mark = value_mark ();
4d01a485 12260 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12261 value_free_to_mark (mark);
12262 }
492d29ea
PA
12263 CATCH (ex, RETURN_MASK_ALL)
12264 {
12265 exception_fprintf (gdb_stderr, ex,
12266 _("Error in testing exception condition:\n"));
12267 }
12268 END_CATCH
12269
28010a5d
PA
12270 return stop;
12271}
12272
12273/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12274 for all exception catchpoint kinds. */
12275
12276static void
761269c8 12277check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12278{
12279 bs->stop = should_stop_exception (bs->bp_location_at);
12280}
12281
f7f9143b
JB
12282/* Implement the PRINT_IT method in the breakpoint_ops structure
12283 for all exception catchpoint kinds. */
12284
12285static enum print_stop_action
761269c8 12286print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12287{
79a45e25 12288 struct ui_out *uiout = current_uiout;
348d480f
PA
12289 struct breakpoint *b = bs->breakpoint_at;
12290
956a9fb9 12291 annotate_catchpoint (b->number);
f7f9143b 12292
112e8700 12293 if (uiout->is_mi_like_p ())
f7f9143b 12294 {
112e8700 12295 uiout->field_string ("reason",
956a9fb9 12296 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12297 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12298 }
12299
112e8700
SM
12300 uiout->text (b->disposition == disp_del
12301 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12302 uiout->field_int ("bkptno", b->number);
12303 uiout->text (", ");
f7f9143b 12304
45db7c09
PA
12305 /* ada_exception_name_addr relies on the selected frame being the
12306 current frame. Need to do this here because this function may be
12307 called more than once when printing a stop, and below, we'll
12308 select the first frame past the Ada run-time (see
12309 ada_find_printable_frame). */
12310 select_frame (get_current_frame ());
12311
f7f9143b
JB
12312 switch (ex)
12313 {
761269c8
JB
12314 case ada_catch_exception:
12315 case ada_catch_exception_unhandled:
956a9fb9
JB
12316 {
12317 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12318 char exception_name[256];
12319
12320 if (addr != 0)
12321 {
c714b426
PA
12322 read_memory (addr, (gdb_byte *) exception_name,
12323 sizeof (exception_name) - 1);
956a9fb9
JB
12324 exception_name [sizeof (exception_name) - 1] = '\0';
12325 }
12326 else
12327 {
12328 /* For some reason, we were unable to read the exception
12329 name. This could happen if the Runtime was compiled
12330 without debugging info, for instance. In that case,
12331 just replace the exception name by the generic string
12332 "exception" - it will read as "an exception" in the
12333 notification we are about to print. */
967cff16 12334 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12335 }
12336 /* In the case of unhandled exception breakpoints, we print
12337 the exception name as "unhandled EXCEPTION_NAME", to make
12338 it clearer to the user which kind of catchpoint just got
12339 hit. We used ui_out_text to make sure that this extra
12340 info does not pollute the exception name in the MI case. */
761269c8 12341 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12342 uiout->text ("unhandled ");
12343 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12344 }
12345 break;
761269c8 12346 case ada_catch_assert:
956a9fb9
JB
12347 /* In this case, the name of the exception is not really
12348 important. Just print "failed assertion" to make it clearer
12349 that his program just hit an assertion-failure catchpoint.
12350 We used ui_out_text because this info does not belong in
12351 the MI output. */
112e8700 12352 uiout->text ("failed assertion");
956a9fb9 12353 break;
f7f9143b 12354 }
112e8700 12355 uiout->text (" at ");
956a9fb9 12356 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12357
12358 return PRINT_SRC_AND_LOC;
12359}
12360
12361/* Implement the PRINT_ONE method in the breakpoint_ops structure
12362 for all exception catchpoint kinds. */
12363
12364static void
761269c8 12365print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12366 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12367{
79a45e25 12368 struct ui_out *uiout = current_uiout;
28010a5d 12369 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12370 struct value_print_options opts;
12371
12372 get_user_print_options (&opts);
12373 if (opts.addressprint)
f7f9143b
JB
12374 {
12375 annotate_field (4);
112e8700 12376 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12377 }
12378
12379 annotate_field (5);
a6d9a66e 12380 *last_loc = b->loc;
f7f9143b
JB
12381 switch (ex)
12382 {
761269c8 12383 case ada_catch_exception:
28010a5d 12384 if (c->excep_string != NULL)
f7f9143b 12385 {
28010a5d
PA
12386 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12387
112e8700 12388 uiout->field_string ("what", msg);
f7f9143b
JB
12389 xfree (msg);
12390 }
12391 else
112e8700 12392 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12393
12394 break;
12395
761269c8 12396 case ada_catch_exception_unhandled:
112e8700 12397 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12398 break;
12399
761269c8 12400 case ada_catch_assert:
112e8700 12401 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12402 break;
12403
12404 default:
12405 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12406 break;
12407 }
12408}
12409
12410/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12411 for all exception catchpoint kinds. */
12412
12413static void
761269c8 12414print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12415 struct breakpoint *b)
12416{
28010a5d 12417 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12418 struct ui_out *uiout = current_uiout;
28010a5d 12419
112e8700 12420 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12421 : _("Catchpoint "));
112e8700
SM
12422 uiout->field_int ("bkptno", b->number);
12423 uiout->text (": ");
00eb2c4a 12424
f7f9143b
JB
12425 switch (ex)
12426 {
761269c8 12427 case ada_catch_exception:
28010a5d 12428 if (c->excep_string != NULL)
00eb2c4a
JB
12429 {
12430 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12431 struct cleanup *old_chain = make_cleanup (xfree, info);
12432
112e8700 12433 uiout->text (info);
00eb2c4a
JB
12434 do_cleanups (old_chain);
12435 }
f7f9143b 12436 else
112e8700 12437 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12438 break;
12439
761269c8 12440 case ada_catch_exception_unhandled:
112e8700 12441 uiout->text (_("unhandled Ada exceptions"));
f7f9143b
JB
12442 break;
12443
761269c8 12444 case ada_catch_assert:
112e8700 12445 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12446 break;
12447
12448 default:
12449 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12450 break;
12451 }
12452}
12453
6149aea9
PA
12454/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12455 for all exception catchpoint kinds. */
12456
12457static void
761269c8 12458print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12459 struct breakpoint *b, struct ui_file *fp)
12460{
28010a5d
PA
12461 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12462
6149aea9
PA
12463 switch (ex)
12464 {
761269c8 12465 case ada_catch_exception:
6149aea9 12466 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12467 if (c->excep_string != NULL)
12468 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12469 break;
12470
761269c8 12471 case ada_catch_exception_unhandled:
78076abc 12472 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12473 break;
12474
761269c8 12475 case ada_catch_assert:
6149aea9
PA
12476 fprintf_filtered (fp, "catch assert");
12477 break;
12478
12479 default:
12480 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12481 }
d9b3f62e 12482 print_recreate_thread (b, fp);
6149aea9
PA
12483}
12484
f7f9143b
JB
12485/* Virtual table for "catch exception" breakpoints. */
12486
28010a5d
PA
12487static struct bp_location *
12488allocate_location_catch_exception (struct breakpoint *self)
12489{
761269c8 12490 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12491}
12492
12493static void
12494re_set_catch_exception (struct breakpoint *b)
12495{
761269c8 12496 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12497}
12498
12499static void
12500check_status_catch_exception (bpstat bs)
12501{
761269c8 12502 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12503}
12504
f7f9143b 12505static enum print_stop_action
348d480f 12506print_it_catch_exception (bpstat bs)
f7f9143b 12507{
761269c8 12508 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12509}
12510
12511static void
a6d9a66e 12512print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12513{
761269c8 12514 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12515}
12516
12517static void
12518print_mention_catch_exception (struct breakpoint *b)
12519{
761269c8 12520 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12521}
12522
6149aea9
PA
12523static void
12524print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12525{
761269c8 12526 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12527}
12528
2060206e 12529static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12530
12531/* Virtual table for "catch exception unhandled" breakpoints. */
12532
28010a5d
PA
12533static struct bp_location *
12534allocate_location_catch_exception_unhandled (struct breakpoint *self)
12535{
761269c8 12536 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12537}
12538
12539static void
12540re_set_catch_exception_unhandled (struct breakpoint *b)
12541{
761269c8 12542 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12543}
12544
12545static void
12546check_status_catch_exception_unhandled (bpstat bs)
12547{
761269c8 12548 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12549}
12550
f7f9143b 12551static enum print_stop_action
348d480f 12552print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12553{
761269c8 12554 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12555}
12556
12557static void
a6d9a66e
UW
12558print_one_catch_exception_unhandled (struct breakpoint *b,
12559 struct bp_location **last_loc)
f7f9143b 12560{
761269c8 12561 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12562}
12563
12564static void
12565print_mention_catch_exception_unhandled (struct breakpoint *b)
12566{
761269c8 12567 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12568}
12569
6149aea9
PA
12570static void
12571print_recreate_catch_exception_unhandled (struct breakpoint *b,
12572 struct ui_file *fp)
12573{
761269c8 12574 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12575}
12576
2060206e 12577static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12578
12579/* Virtual table for "catch assert" breakpoints. */
12580
28010a5d
PA
12581static struct bp_location *
12582allocate_location_catch_assert (struct breakpoint *self)
12583{
761269c8 12584 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12585}
12586
12587static void
12588re_set_catch_assert (struct breakpoint *b)
12589{
761269c8 12590 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12591}
12592
12593static void
12594check_status_catch_assert (bpstat bs)
12595{
761269c8 12596 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12597}
12598
f7f9143b 12599static enum print_stop_action
348d480f 12600print_it_catch_assert (bpstat bs)
f7f9143b 12601{
761269c8 12602 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12603}
12604
12605static void
a6d9a66e 12606print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12607{
761269c8 12608 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12609}
12610
12611static void
12612print_mention_catch_assert (struct breakpoint *b)
12613{
761269c8 12614 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12615}
12616
6149aea9
PA
12617static void
12618print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12619{
761269c8 12620 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12621}
12622
2060206e 12623static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12624
f7f9143b
JB
12625/* Return a newly allocated copy of the first space-separated token
12626 in ARGSP, and then adjust ARGSP to point immediately after that
12627 token.
12628
12629 Return NULL if ARGPS does not contain any more tokens. */
12630
12631static char *
a121b7c1 12632ada_get_next_arg (const char **argsp)
f7f9143b 12633{
a121b7c1
PA
12634 const char *args = *argsp;
12635 const char *end;
f7f9143b
JB
12636 char *result;
12637
f1735a53 12638 args = skip_spaces (args);
f7f9143b
JB
12639 if (args[0] == '\0')
12640 return NULL; /* No more arguments. */
12641
12642 /* Find the end of the current argument. */
12643
f1735a53 12644 end = skip_to_space (args);
f7f9143b
JB
12645
12646 /* Adjust ARGSP to point to the start of the next argument. */
12647
12648 *argsp = end;
12649
12650 /* Make a copy of the current argument and return it. */
12651
224c3ddb 12652 result = (char *) xmalloc (end - args + 1);
f7f9143b
JB
12653 strncpy (result, args, end - args);
12654 result[end - args] = '\0';
12655
12656 return result;
12657}
12658
12659/* Split the arguments specified in a "catch exception" command.
12660 Set EX to the appropriate catchpoint type.
28010a5d 12661 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12662 specified by the user.
12663 If a condition is found at the end of the arguments, the condition
12664 expression is stored in COND_STRING (memory must be deallocated
12665 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12666
12667static void
a121b7c1 12668catch_ada_exception_command_split (const char *args,
761269c8 12669 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12670 char **excep_string,
12671 char **cond_string)
f7f9143b
JB
12672{
12673 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12674 char *exception_name;
5845583d 12675 char *cond = NULL;
f7f9143b
JB
12676
12677 exception_name = ada_get_next_arg (&args);
5845583d
JB
12678 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12679 {
12680 /* This is not an exception name; this is the start of a condition
12681 expression for a catchpoint on all exceptions. So, "un-get"
12682 this token, and set exception_name to NULL. */
12683 xfree (exception_name);
12684 exception_name = NULL;
12685 args -= 2;
12686 }
f7f9143b
JB
12687 make_cleanup (xfree, exception_name);
12688
5845583d 12689 /* Check to see if we have a condition. */
f7f9143b 12690
f1735a53 12691 args = skip_spaces (args);
61012eef 12692 if (startswith (args, "if")
5845583d
JB
12693 && (isspace (args[2]) || args[2] == '\0'))
12694 {
12695 args += 2;
f1735a53 12696 args = skip_spaces (args);
5845583d
JB
12697
12698 if (args[0] == '\0')
12699 error (_("Condition missing after `if' keyword"));
12700 cond = xstrdup (args);
12701 make_cleanup (xfree, cond);
12702
12703 args += strlen (args);
12704 }
12705
12706 /* Check that we do not have any more arguments. Anything else
12707 is unexpected. */
f7f9143b
JB
12708
12709 if (args[0] != '\0')
12710 error (_("Junk at end of expression"));
12711
12712 discard_cleanups (old_chain);
12713
12714 if (exception_name == NULL)
12715 {
12716 /* Catch all exceptions. */
761269c8 12717 *ex = ada_catch_exception;
28010a5d 12718 *excep_string = NULL;
f7f9143b
JB
12719 }
12720 else if (strcmp (exception_name, "unhandled") == 0)
12721 {
12722 /* Catch unhandled exceptions. */
761269c8 12723 *ex = ada_catch_exception_unhandled;
28010a5d 12724 *excep_string = NULL;
f7f9143b
JB
12725 }
12726 else
12727 {
12728 /* Catch a specific exception. */
761269c8 12729 *ex = ada_catch_exception;
28010a5d 12730 *excep_string = exception_name;
f7f9143b 12731 }
5845583d 12732 *cond_string = cond;
f7f9143b
JB
12733}
12734
12735/* Return the name of the symbol on which we should break in order to
12736 implement a catchpoint of the EX kind. */
12737
12738static const char *
761269c8 12739ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12740{
3eecfa55
JB
12741 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12742
12743 gdb_assert (data->exception_info != NULL);
0259addd 12744
f7f9143b
JB
12745 switch (ex)
12746 {
761269c8 12747 case ada_catch_exception:
3eecfa55 12748 return (data->exception_info->catch_exception_sym);
f7f9143b 12749 break;
761269c8 12750 case ada_catch_exception_unhandled:
3eecfa55 12751 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12752 break;
761269c8 12753 case ada_catch_assert:
3eecfa55 12754 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12755 break;
12756 default:
12757 internal_error (__FILE__, __LINE__,
12758 _("unexpected catchpoint kind (%d)"), ex);
12759 }
12760}
12761
12762/* Return the breakpoint ops "virtual table" used for catchpoints
12763 of the EX kind. */
12764
c0a91b2b 12765static const struct breakpoint_ops *
761269c8 12766ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12767{
12768 switch (ex)
12769 {
761269c8 12770 case ada_catch_exception:
f7f9143b
JB
12771 return (&catch_exception_breakpoint_ops);
12772 break;
761269c8 12773 case ada_catch_exception_unhandled:
f7f9143b
JB
12774 return (&catch_exception_unhandled_breakpoint_ops);
12775 break;
761269c8 12776 case ada_catch_assert:
f7f9143b
JB
12777 return (&catch_assert_breakpoint_ops);
12778 break;
12779 default:
12780 internal_error (__FILE__, __LINE__,
12781 _("unexpected catchpoint kind (%d)"), ex);
12782 }
12783}
12784
12785/* Return the condition that will be used to match the current exception
12786 being raised with the exception that the user wants to catch. This
12787 assumes that this condition is used when the inferior just triggered
12788 an exception catchpoint.
12789
12790 The string returned is a newly allocated string that needs to be
12791 deallocated later. */
12792
12793static char *
28010a5d 12794ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12795{
3d0b0fa3
JB
12796 int i;
12797
0963b4bd 12798 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12799 runtime units that have been compiled without debugging info; if
28010a5d 12800 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12801 exception (e.g. "constraint_error") then, during the evaluation
12802 of the condition expression, the symbol lookup on this name would
0963b4bd 12803 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12804 may then be set only on user-defined exceptions which have the
12805 same not-fully-qualified name (e.g. my_package.constraint_error).
12806
12807 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12808 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12809 exception constraint_error" is rewritten into "catch exception
12810 standard.constraint_error".
12811
12812 If an exception named contraint_error is defined in another package of
12813 the inferior program, then the only way to specify this exception as a
12814 breakpoint condition is to use its fully-qualified named:
12815 e.g. my_package.constraint_error. */
12816
12817 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12818 {
28010a5d 12819 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12820 {
12821 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12822 excep_string);
3d0b0fa3
JB
12823 }
12824 }
28010a5d 12825 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12826}
12827
12828/* Return the symtab_and_line that should be used to insert an exception
12829 catchpoint of the TYPE kind.
12830
28010a5d
PA
12831 EXCEP_STRING should contain the name of a specific exception that
12832 the catchpoint should catch, or NULL otherwise.
f7f9143b 12833
28010a5d
PA
12834 ADDR_STRING returns the name of the function where the real
12835 breakpoint that implements the catchpoints is set, depending on the
12836 type of catchpoint we need to create. */
f7f9143b
JB
12837
12838static struct symtab_and_line
761269c8 12839ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
f2fc3015 12840 const char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12841{
12842 const char *sym_name;
12843 struct symbol *sym;
f7f9143b 12844
0259addd
JB
12845 /* First, find out which exception support info to use. */
12846 ada_exception_support_info_sniffer ();
12847
12848 /* Then lookup the function on which we will break in order to catch
f7f9143b 12849 the Ada exceptions requested by the user. */
f7f9143b
JB
12850 sym_name = ada_exception_sym_name (ex);
12851 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12852
f17011e0
JB
12853 /* We can assume that SYM is not NULL at this stage. If the symbol
12854 did not exist, ada_exception_support_info_sniffer would have
12855 raised an exception.
f7f9143b 12856
f17011e0
JB
12857 Also, ada_exception_support_info_sniffer should have already
12858 verified that SYM is a function symbol. */
12859 gdb_assert (sym != NULL);
12860 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12861
12862 /* Set ADDR_STRING. */
f7f9143b
JB
12863 *addr_string = xstrdup (sym_name);
12864
f7f9143b 12865 /* Set OPS. */
4b9eee8c 12866 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12867
f17011e0 12868 return find_function_start_sal (sym, 1);
f7f9143b
JB
12869}
12870
b4a5b78b 12871/* Create an Ada exception catchpoint.
f7f9143b 12872
b4a5b78b 12873 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12874
2df4d1d5
JB
12875 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12876 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12877 of the exception to which this catchpoint applies. When not NULL,
12878 the string must be allocated on the heap, and its deallocation
12879 is no longer the responsibility of the caller.
12880
12881 COND_STRING, if not NULL, is the catchpoint condition. This string
12882 must be allocated on the heap, and its deallocation is no longer
12883 the responsibility of the caller.
f7f9143b 12884
b4a5b78b
JB
12885 TEMPFLAG, if nonzero, means that the underlying breakpoint
12886 should be temporary.
28010a5d 12887
b4a5b78b 12888 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12889
349774ef 12890void
28010a5d 12891create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12892 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12893 char *excep_string,
5845583d 12894 char *cond_string,
28010a5d 12895 int tempflag,
349774ef 12896 int disabled,
28010a5d
PA
12897 int from_tty)
12898{
f2fc3015 12899 const char *addr_string = NULL;
b4a5b78b
JB
12900 const struct breakpoint_ops *ops = NULL;
12901 struct symtab_and_line sal
12902 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d 12903
b270e6f9
TT
12904 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
12905 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
349774ef 12906 ops, tempflag, disabled, from_tty);
28010a5d 12907 c->excep_string = excep_string;
b270e6f9 12908 create_excep_cond_exprs (c.get ());
5845583d 12909 if (cond_string != NULL)
b270e6f9
TT
12910 set_breakpoint_condition (c.get (), cond_string, from_tty);
12911 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12912}
12913
9ac4176b
PA
12914/* Implement the "catch exception" command. */
12915
12916static void
eb4c3f4a 12917catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12918 struct cmd_list_element *command)
12919{
a121b7c1 12920 const char *arg = arg_entry;
9ac4176b
PA
12921 struct gdbarch *gdbarch = get_current_arch ();
12922 int tempflag;
761269c8 12923 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12924 char *excep_string = NULL;
5845583d 12925 char *cond_string = NULL;
9ac4176b
PA
12926
12927 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12928
12929 if (!arg)
12930 arg = "";
b4a5b78b
JB
12931 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12932 &cond_string);
12933 create_ada_exception_catchpoint (gdbarch, ex_kind,
12934 excep_string, cond_string,
349774ef
JB
12935 tempflag, 1 /* enabled */,
12936 from_tty);
9ac4176b
PA
12937}
12938
b4a5b78b 12939/* Split the arguments specified in a "catch assert" command.
5845583d 12940
b4a5b78b
JB
12941 ARGS contains the command's arguments (or the empty string if
12942 no arguments were passed).
5845583d
JB
12943
12944 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12945 (the memory needs to be deallocated after use). */
5845583d 12946
b4a5b78b 12947static void
a121b7c1 12948catch_ada_assert_command_split (const char *args, char **cond_string)
f7f9143b 12949{
f1735a53 12950 args = skip_spaces (args);
f7f9143b 12951
5845583d 12952 /* Check whether a condition was provided. */
61012eef 12953 if (startswith (args, "if")
5845583d 12954 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12955 {
5845583d 12956 args += 2;
f1735a53 12957 args = skip_spaces (args);
5845583d
JB
12958 if (args[0] == '\0')
12959 error (_("condition missing after `if' keyword"));
12960 *cond_string = xstrdup (args);
f7f9143b
JB
12961 }
12962
5845583d
JB
12963 /* Otherwise, there should be no other argument at the end of
12964 the command. */
12965 else if (args[0] != '\0')
12966 error (_("Junk at end of arguments."));
f7f9143b
JB
12967}
12968
9ac4176b
PA
12969/* Implement the "catch assert" command. */
12970
12971static void
eb4c3f4a 12972catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12973 struct cmd_list_element *command)
12974{
a121b7c1 12975 const char *arg = arg_entry;
9ac4176b
PA
12976 struct gdbarch *gdbarch = get_current_arch ();
12977 int tempflag;
5845583d 12978 char *cond_string = NULL;
9ac4176b
PA
12979
12980 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12981
12982 if (!arg)
12983 arg = "";
b4a5b78b 12984 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12985 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12986 NULL, cond_string,
349774ef
JB
12987 tempflag, 1 /* enabled */,
12988 from_tty);
9ac4176b 12989}
778865d3
JB
12990
12991/* Return non-zero if the symbol SYM is an Ada exception object. */
12992
12993static int
12994ada_is_exception_sym (struct symbol *sym)
12995{
12996 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12997
12998 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12999 && SYMBOL_CLASS (sym) != LOC_BLOCK
13000 && SYMBOL_CLASS (sym) != LOC_CONST
13001 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13002 && type_name != NULL && strcmp (type_name, "exception") == 0);
13003}
13004
13005/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13006 Ada exception object. This matches all exceptions except the ones
13007 defined by the Ada language. */
13008
13009static int
13010ada_is_non_standard_exception_sym (struct symbol *sym)
13011{
13012 int i;
13013
13014 if (!ada_is_exception_sym (sym))
13015 return 0;
13016
13017 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13018 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13019 return 0; /* A standard exception. */
13020
13021 /* Numeric_Error is also a standard exception, so exclude it.
13022 See the STANDARD_EXC description for more details as to why
13023 this exception is not listed in that array. */
13024 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13025 return 0;
13026
13027 return 1;
13028}
13029
ab816a27 13030/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13031 objects.
13032
13033 The comparison is determined first by exception name, and then
13034 by exception address. */
13035
ab816a27 13036bool
cc536b21 13037ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13038{
778865d3
JB
13039 int result;
13040
ab816a27
TT
13041 result = strcmp (name, other.name);
13042 if (result < 0)
13043 return true;
13044 if (result == 0 && addr < other.addr)
13045 return true;
13046 return false;
13047}
778865d3 13048
ab816a27 13049bool
cc536b21 13050ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13051{
13052 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13053}
13054
13055/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13056 routine, but keeping the first SKIP elements untouched.
13057
13058 All duplicates are also removed. */
13059
13060static void
ab816a27 13061sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13062 int skip)
13063{
ab816a27
TT
13064 std::sort (exceptions->begin () + skip, exceptions->end ());
13065 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13066 exceptions->end ());
778865d3
JB
13067}
13068
778865d3
JB
13069/* Add all exceptions defined by the Ada standard whose name match
13070 a regular expression.
13071
13072 If PREG is not NULL, then this regexp_t object is used to
13073 perform the symbol name matching. Otherwise, no name-based
13074 filtering is performed.
13075
13076 EXCEPTIONS is a vector of exceptions to which matching exceptions
13077 gets pushed. */
13078
13079static void
2d7cc5c7 13080ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13081 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13082{
13083 int i;
13084
13085 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13086 {
13087 if (preg == NULL
2d7cc5c7 13088 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13089 {
13090 struct bound_minimal_symbol msymbol
13091 = ada_lookup_simple_minsym (standard_exc[i]);
13092
13093 if (msymbol.minsym != NULL)
13094 {
13095 struct ada_exc_info info
77e371c0 13096 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13097
ab816a27 13098 exceptions->push_back (info);
778865d3
JB
13099 }
13100 }
13101 }
13102}
13103
13104/* Add all Ada exceptions defined locally and accessible from the given
13105 FRAME.
13106
13107 If PREG is not NULL, then this regexp_t object is used to
13108 perform the symbol name matching. Otherwise, no name-based
13109 filtering is performed.
13110
13111 EXCEPTIONS is a vector of exceptions to which matching exceptions
13112 gets pushed. */
13113
13114static void
2d7cc5c7
PA
13115ada_add_exceptions_from_frame (compiled_regex *preg,
13116 struct frame_info *frame,
ab816a27 13117 std::vector<ada_exc_info> *exceptions)
778865d3 13118{
3977b71f 13119 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13120
13121 while (block != 0)
13122 {
13123 struct block_iterator iter;
13124 struct symbol *sym;
13125
13126 ALL_BLOCK_SYMBOLS (block, iter, sym)
13127 {
13128 switch (SYMBOL_CLASS (sym))
13129 {
13130 case LOC_TYPEDEF:
13131 case LOC_BLOCK:
13132 case LOC_CONST:
13133 break;
13134 default:
13135 if (ada_is_exception_sym (sym))
13136 {
13137 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13138 SYMBOL_VALUE_ADDRESS (sym)};
13139
ab816a27 13140 exceptions->push_back (info);
778865d3
JB
13141 }
13142 }
13143 }
13144 if (BLOCK_FUNCTION (block) != NULL)
13145 break;
13146 block = BLOCK_SUPERBLOCK (block);
13147 }
13148}
13149
14bc53a8
PA
13150/* Return true if NAME matches PREG or if PREG is NULL. */
13151
13152static bool
2d7cc5c7 13153name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13154{
13155 return (preg == NULL
2d7cc5c7 13156 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13157}
13158
778865d3
JB
13159/* Add all exceptions defined globally whose name name match
13160 a regular expression, excluding standard exceptions.
13161
13162 The reason we exclude standard exceptions is that they need
13163 to be handled separately: Standard exceptions are defined inside
13164 a runtime unit which is normally not compiled with debugging info,
13165 and thus usually do not show up in our symbol search. However,
13166 if the unit was in fact built with debugging info, we need to
13167 exclude them because they would duplicate the entry we found
13168 during the special loop that specifically searches for those
13169 standard exceptions.
13170
13171 If PREG is not NULL, then this regexp_t object is used to
13172 perform the symbol name matching. Otherwise, no name-based
13173 filtering is performed.
13174
13175 EXCEPTIONS is a vector of exceptions to which matching exceptions
13176 gets pushed. */
13177
13178static void
2d7cc5c7 13179ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13180 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13181{
13182 struct objfile *objfile;
43f3e411 13183 struct compunit_symtab *s;
778865d3 13184
14bc53a8
PA
13185 /* In Ada, the symbol "search name" is a linkage name, whereas the
13186 regular expression used to do the matching refers to the natural
13187 name. So match against the decoded name. */
13188 expand_symtabs_matching (NULL,
b5ec771e 13189 lookup_name_info::match_any (),
14bc53a8
PA
13190 [&] (const char *search_name)
13191 {
13192 const char *decoded = ada_decode (search_name);
13193 return name_matches_regex (decoded, preg);
13194 },
13195 NULL,
13196 VARIABLES_DOMAIN);
778865d3 13197
43f3e411 13198 ALL_COMPUNITS (objfile, s)
778865d3 13199 {
43f3e411 13200 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13201 int i;
13202
13203 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13204 {
13205 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13206 struct block_iterator iter;
13207 struct symbol *sym;
13208
13209 ALL_BLOCK_SYMBOLS (b, iter, sym)
13210 if (ada_is_non_standard_exception_sym (sym)
14bc53a8 13211 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
778865d3
JB
13212 {
13213 struct ada_exc_info info
13214 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13215
ab816a27 13216 exceptions->push_back (info);
778865d3
JB
13217 }
13218 }
13219 }
13220}
13221
13222/* Implements ada_exceptions_list with the regular expression passed
13223 as a regex_t, rather than a string.
13224
13225 If not NULL, PREG is used to filter out exceptions whose names
13226 do not match. Otherwise, all exceptions are listed. */
13227
ab816a27 13228static std::vector<ada_exc_info>
2d7cc5c7 13229ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13230{
ab816a27 13231 std::vector<ada_exc_info> result;
778865d3
JB
13232 int prev_len;
13233
13234 /* First, list the known standard exceptions. These exceptions
13235 need to be handled separately, as they are usually defined in
13236 runtime units that have been compiled without debugging info. */
13237
13238 ada_add_standard_exceptions (preg, &result);
13239
13240 /* Next, find all exceptions whose scope is local and accessible
13241 from the currently selected frame. */
13242
13243 if (has_stack_frames ())
13244 {
ab816a27 13245 prev_len = result.size ();
778865d3
JB
13246 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13247 &result);
ab816a27 13248 if (result.size () > prev_len)
778865d3
JB
13249 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13250 }
13251
13252 /* Add all exceptions whose scope is global. */
13253
ab816a27 13254 prev_len = result.size ();
778865d3 13255 ada_add_global_exceptions (preg, &result);
ab816a27 13256 if (result.size () > prev_len)
778865d3
JB
13257 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13258
778865d3
JB
13259 return result;
13260}
13261
13262/* Return a vector of ada_exc_info.
13263
13264 If REGEXP is NULL, all exceptions are included in the result.
13265 Otherwise, it should contain a valid regular expression,
13266 and only the exceptions whose names match that regular expression
13267 are included in the result.
13268
13269 The exceptions are sorted in the following order:
13270 - Standard exceptions (defined by the Ada language), in
13271 alphabetical order;
13272 - Exceptions only visible from the current frame, in
13273 alphabetical order;
13274 - Exceptions whose scope is global, in alphabetical order. */
13275
ab816a27 13276std::vector<ada_exc_info>
778865d3
JB
13277ada_exceptions_list (const char *regexp)
13278{
2d7cc5c7
PA
13279 if (regexp == NULL)
13280 return ada_exceptions_list_1 (NULL);
778865d3 13281
2d7cc5c7
PA
13282 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13283 return ada_exceptions_list_1 (&reg);
778865d3
JB
13284}
13285
13286/* Implement the "info exceptions" command. */
13287
13288static void
1d12d88f 13289info_exceptions_command (const char *regexp, int from_tty)
778865d3 13290{
778865d3 13291 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13292
ab816a27 13293 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13294
13295 if (regexp != NULL)
13296 printf_filtered
13297 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13298 else
13299 printf_filtered (_("All defined Ada exceptions:\n"));
13300
ab816a27
TT
13301 for (const ada_exc_info &info : exceptions)
13302 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13303}
13304
4c4b4cd2
PH
13305 /* Operators */
13306/* Information about operators given special treatment in functions
13307 below. */
13308/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13309
13310#define ADA_OPERATORS \
13311 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13312 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13313 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13314 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13315 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13316 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13317 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13318 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13319 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13320 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13321 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13322 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13323 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13324 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13325 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13326 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13327 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13328 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13329 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13330
13331static void
554794dc
SDJ
13332ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13333 int *argsp)
4c4b4cd2
PH
13334{
13335 switch (exp->elts[pc - 1].opcode)
13336 {
76a01679 13337 default:
4c4b4cd2
PH
13338 operator_length_standard (exp, pc, oplenp, argsp);
13339 break;
13340
13341#define OP_DEFN(op, len, args, binop) \
13342 case op: *oplenp = len; *argsp = args; break;
13343 ADA_OPERATORS;
13344#undef OP_DEFN
52ce6436
PH
13345
13346 case OP_AGGREGATE:
13347 *oplenp = 3;
13348 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13349 break;
13350
13351 case OP_CHOICES:
13352 *oplenp = 3;
13353 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13354 break;
4c4b4cd2
PH
13355 }
13356}
13357
c0201579
JK
13358/* Implementation of the exp_descriptor method operator_check. */
13359
13360static int
13361ada_operator_check (struct expression *exp, int pos,
13362 int (*objfile_func) (struct objfile *objfile, void *data),
13363 void *data)
13364{
13365 const union exp_element *const elts = exp->elts;
13366 struct type *type = NULL;
13367
13368 switch (elts[pos].opcode)
13369 {
13370 case UNOP_IN_RANGE:
13371 case UNOP_QUAL:
13372 type = elts[pos + 1].type;
13373 break;
13374
13375 default:
13376 return operator_check_standard (exp, pos, objfile_func, data);
13377 }
13378
13379 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13380
13381 if (type && TYPE_OBJFILE (type)
13382 && (*objfile_func) (TYPE_OBJFILE (type), data))
13383 return 1;
13384
13385 return 0;
13386}
13387
a121b7c1 13388static const char *
4c4b4cd2
PH
13389ada_op_name (enum exp_opcode opcode)
13390{
13391 switch (opcode)
13392 {
76a01679 13393 default:
4c4b4cd2 13394 return op_name_standard (opcode);
52ce6436 13395
4c4b4cd2
PH
13396#define OP_DEFN(op, len, args, binop) case op: return #op;
13397 ADA_OPERATORS;
13398#undef OP_DEFN
52ce6436
PH
13399
13400 case OP_AGGREGATE:
13401 return "OP_AGGREGATE";
13402 case OP_CHOICES:
13403 return "OP_CHOICES";
13404 case OP_NAME:
13405 return "OP_NAME";
4c4b4cd2
PH
13406 }
13407}
13408
13409/* As for operator_length, but assumes PC is pointing at the first
13410 element of the operator, and gives meaningful results only for the
52ce6436 13411 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13412
13413static void
76a01679
JB
13414ada_forward_operator_length (struct expression *exp, int pc,
13415 int *oplenp, int *argsp)
4c4b4cd2 13416{
76a01679 13417 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13418 {
13419 default:
13420 *oplenp = *argsp = 0;
13421 break;
52ce6436 13422
4c4b4cd2
PH
13423#define OP_DEFN(op, len, args, binop) \
13424 case op: *oplenp = len; *argsp = args; break;
13425 ADA_OPERATORS;
13426#undef OP_DEFN
52ce6436
PH
13427
13428 case OP_AGGREGATE:
13429 *oplenp = 3;
13430 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13431 break;
13432
13433 case OP_CHOICES:
13434 *oplenp = 3;
13435 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13436 break;
13437
13438 case OP_STRING:
13439 case OP_NAME:
13440 {
13441 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13442
52ce6436
PH
13443 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13444 *argsp = 0;
13445 break;
13446 }
4c4b4cd2
PH
13447 }
13448}
13449
13450static int
13451ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13452{
13453 enum exp_opcode op = exp->elts[elt].opcode;
13454 int oplen, nargs;
13455 int pc = elt;
13456 int i;
76a01679 13457
4c4b4cd2
PH
13458 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13459
76a01679 13460 switch (op)
4c4b4cd2 13461 {
76a01679 13462 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13463 case OP_ATR_FIRST:
13464 case OP_ATR_LAST:
13465 case OP_ATR_LENGTH:
13466 case OP_ATR_IMAGE:
13467 case OP_ATR_MAX:
13468 case OP_ATR_MIN:
13469 case OP_ATR_MODULUS:
13470 case OP_ATR_POS:
13471 case OP_ATR_SIZE:
13472 case OP_ATR_TAG:
13473 case OP_ATR_VAL:
13474 break;
13475
13476 case UNOP_IN_RANGE:
13477 case UNOP_QUAL:
323e0a4a
AC
13478 /* XXX: gdb_sprint_host_address, type_sprint */
13479 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13480 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13481 fprintf_filtered (stream, " (");
13482 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13483 fprintf_filtered (stream, ")");
13484 break;
13485 case BINOP_IN_BOUNDS:
52ce6436
PH
13486 fprintf_filtered (stream, " (%d)",
13487 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13488 break;
13489 case TERNOP_IN_RANGE:
13490 break;
13491
52ce6436
PH
13492 case OP_AGGREGATE:
13493 case OP_OTHERS:
13494 case OP_DISCRETE_RANGE:
13495 case OP_POSITIONAL:
13496 case OP_CHOICES:
13497 break;
13498
13499 case OP_NAME:
13500 case OP_STRING:
13501 {
13502 char *name = &exp->elts[elt + 2].string;
13503 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13504
52ce6436
PH
13505 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13506 break;
13507 }
13508
4c4b4cd2
PH
13509 default:
13510 return dump_subexp_body_standard (exp, stream, elt);
13511 }
13512
13513 elt += oplen;
13514 for (i = 0; i < nargs; i += 1)
13515 elt = dump_subexp (exp, stream, elt);
13516
13517 return elt;
13518}
13519
13520/* The Ada extension of print_subexp (q.v.). */
13521
76a01679
JB
13522static void
13523ada_print_subexp (struct expression *exp, int *pos,
13524 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13525{
52ce6436 13526 int oplen, nargs, i;
4c4b4cd2
PH
13527 int pc = *pos;
13528 enum exp_opcode op = exp->elts[pc].opcode;
13529
13530 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13531
52ce6436 13532 *pos += oplen;
4c4b4cd2
PH
13533 switch (op)
13534 {
13535 default:
52ce6436 13536 *pos -= oplen;
4c4b4cd2
PH
13537 print_subexp_standard (exp, pos, stream, prec);
13538 return;
13539
13540 case OP_VAR_VALUE:
4c4b4cd2
PH
13541 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13542 return;
13543
13544 case BINOP_IN_BOUNDS:
323e0a4a 13545 /* XXX: sprint_subexp */
4c4b4cd2 13546 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13547 fputs_filtered (" in ", stream);
4c4b4cd2 13548 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13549 fputs_filtered ("'range", stream);
4c4b4cd2 13550 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13551 fprintf_filtered (stream, "(%ld)",
13552 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13553 return;
13554
13555 case TERNOP_IN_RANGE:
4c4b4cd2 13556 if (prec >= PREC_EQUAL)
76a01679 13557 fputs_filtered ("(", stream);
323e0a4a 13558 /* XXX: sprint_subexp */
4c4b4cd2 13559 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13560 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13561 print_subexp (exp, pos, stream, PREC_EQUAL);
13562 fputs_filtered (" .. ", stream);
13563 print_subexp (exp, pos, stream, PREC_EQUAL);
13564 if (prec >= PREC_EQUAL)
76a01679
JB
13565 fputs_filtered (")", stream);
13566 return;
4c4b4cd2
PH
13567
13568 case OP_ATR_FIRST:
13569 case OP_ATR_LAST:
13570 case OP_ATR_LENGTH:
13571 case OP_ATR_IMAGE:
13572 case OP_ATR_MAX:
13573 case OP_ATR_MIN:
13574 case OP_ATR_MODULUS:
13575 case OP_ATR_POS:
13576 case OP_ATR_SIZE:
13577 case OP_ATR_TAG:
13578 case OP_ATR_VAL:
4c4b4cd2 13579 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13580 {
13581 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13582 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13583 &type_print_raw_options);
76a01679
JB
13584 *pos += 3;
13585 }
4c4b4cd2 13586 else
76a01679 13587 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13588 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13589 if (nargs > 1)
76a01679
JB
13590 {
13591 int tem;
5b4ee69b 13592
76a01679
JB
13593 for (tem = 1; tem < nargs; tem += 1)
13594 {
13595 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13596 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13597 }
13598 fputs_filtered (")", stream);
13599 }
4c4b4cd2 13600 return;
14f9c5c9 13601
4c4b4cd2 13602 case UNOP_QUAL:
4c4b4cd2
PH
13603 type_print (exp->elts[pc + 1].type, "", stream, 0);
13604 fputs_filtered ("'(", stream);
13605 print_subexp (exp, pos, stream, PREC_PREFIX);
13606 fputs_filtered (")", stream);
13607 return;
14f9c5c9 13608
4c4b4cd2 13609 case UNOP_IN_RANGE:
323e0a4a 13610 /* XXX: sprint_subexp */
4c4b4cd2 13611 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13612 fputs_filtered (" in ", stream);
79d43c61
TT
13613 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13614 &type_print_raw_options);
4c4b4cd2 13615 return;
52ce6436
PH
13616
13617 case OP_DISCRETE_RANGE:
13618 print_subexp (exp, pos, stream, PREC_SUFFIX);
13619 fputs_filtered ("..", stream);
13620 print_subexp (exp, pos, stream, PREC_SUFFIX);
13621 return;
13622
13623 case OP_OTHERS:
13624 fputs_filtered ("others => ", stream);
13625 print_subexp (exp, pos, stream, PREC_SUFFIX);
13626 return;
13627
13628 case OP_CHOICES:
13629 for (i = 0; i < nargs-1; i += 1)
13630 {
13631 if (i > 0)
13632 fputs_filtered ("|", stream);
13633 print_subexp (exp, pos, stream, PREC_SUFFIX);
13634 }
13635 fputs_filtered (" => ", stream);
13636 print_subexp (exp, pos, stream, PREC_SUFFIX);
13637 return;
13638
13639 case OP_POSITIONAL:
13640 print_subexp (exp, pos, stream, PREC_SUFFIX);
13641 return;
13642
13643 case OP_AGGREGATE:
13644 fputs_filtered ("(", stream);
13645 for (i = 0; i < nargs; i += 1)
13646 {
13647 if (i > 0)
13648 fputs_filtered (", ", stream);
13649 print_subexp (exp, pos, stream, PREC_SUFFIX);
13650 }
13651 fputs_filtered (")", stream);
13652 return;
4c4b4cd2
PH
13653 }
13654}
14f9c5c9
AS
13655
13656/* Table mapping opcodes into strings for printing operators
13657 and precedences of the operators. */
13658
d2e4a39e
AS
13659static const struct op_print ada_op_print_tab[] = {
13660 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13661 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13662 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13663 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13664 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13665 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13666 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13667 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13668 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13669 {">=", BINOP_GEQ, PREC_ORDER, 0},
13670 {">", BINOP_GTR, PREC_ORDER, 0},
13671 {"<", BINOP_LESS, PREC_ORDER, 0},
13672 {">>", BINOP_RSH, PREC_SHIFT, 0},
13673 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13674 {"+", BINOP_ADD, PREC_ADD, 0},
13675 {"-", BINOP_SUB, PREC_ADD, 0},
13676 {"&", BINOP_CONCAT, PREC_ADD, 0},
13677 {"*", BINOP_MUL, PREC_MUL, 0},
13678 {"/", BINOP_DIV, PREC_MUL, 0},
13679 {"rem", BINOP_REM, PREC_MUL, 0},
13680 {"mod", BINOP_MOD, PREC_MUL, 0},
13681 {"**", BINOP_EXP, PREC_REPEAT, 0},
13682 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13683 {"-", UNOP_NEG, PREC_PREFIX, 0},
13684 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13685 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13686 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13687 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13688 {".all", UNOP_IND, PREC_SUFFIX, 1},
13689 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13690 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13691 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13692};
13693\f
72d5681a
PH
13694enum ada_primitive_types {
13695 ada_primitive_type_int,
13696 ada_primitive_type_long,
13697 ada_primitive_type_short,
13698 ada_primitive_type_char,
13699 ada_primitive_type_float,
13700 ada_primitive_type_double,
13701 ada_primitive_type_void,
13702 ada_primitive_type_long_long,
13703 ada_primitive_type_long_double,
13704 ada_primitive_type_natural,
13705 ada_primitive_type_positive,
13706 ada_primitive_type_system_address,
13707 nr_ada_primitive_types
13708};
6c038f32
PH
13709
13710static void
d4a9a881 13711ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13712 struct language_arch_info *lai)
13713{
d4a9a881 13714 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13715
72d5681a 13716 lai->primitive_type_vector
d4a9a881 13717 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13718 struct type *);
e9bb382b
UW
13719
13720 lai->primitive_type_vector [ada_primitive_type_int]
13721 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13722 0, "integer");
13723 lai->primitive_type_vector [ada_primitive_type_long]
13724 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13725 0, "long_integer");
13726 lai->primitive_type_vector [ada_primitive_type_short]
13727 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13728 0, "short_integer");
13729 lai->string_char_type
13730 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13731 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13732 lai->primitive_type_vector [ada_primitive_type_float]
13733 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 13734 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
13735 lai->primitive_type_vector [ada_primitive_type_double]
13736 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 13737 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
13738 lai->primitive_type_vector [ada_primitive_type_long_long]
13739 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13740 0, "long_long_integer");
13741 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 13742 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 13743 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
13744 lai->primitive_type_vector [ada_primitive_type_natural]
13745 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13746 0, "natural");
13747 lai->primitive_type_vector [ada_primitive_type_positive]
13748 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13749 0, "positive");
13750 lai->primitive_type_vector [ada_primitive_type_void]
13751 = builtin->builtin_void;
13752
13753 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
13754 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13755 "void"));
72d5681a
PH
13756 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13757 = "system__address";
fbb06eb1 13758
47e729a8 13759 lai->bool_type_symbol = NULL;
fbb06eb1 13760 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13761}
6c038f32
PH
13762\f
13763 /* Language vector */
13764
13765/* Not really used, but needed in the ada_language_defn. */
13766
13767static void
6c7a06a3 13768emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13769{
6c7a06a3 13770 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13771}
13772
13773static int
410a0ff2 13774parse (struct parser_state *ps)
6c038f32
PH
13775{
13776 warnings_issued = 0;
410a0ff2 13777 return ada_parse (ps);
6c038f32
PH
13778}
13779
13780static const struct exp_descriptor ada_exp_descriptor = {
13781 ada_print_subexp,
13782 ada_operator_length,
c0201579 13783 ada_operator_check,
6c038f32
PH
13784 ada_op_name,
13785 ada_dump_subexp_body,
13786 ada_evaluate_subexp
13787};
13788
b5ec771e
PA
13789/* symbol_name_matcher_ftype adapter for wild_match. */
13790
13791static bool
13792do_wild_match (const char *symbol_search_name,
13793 const lookup_name_info &lookup_name,
13794 completion_match *match)
13795{
13796 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13797}
13798
13799/* symbol_name_matcher_ftype adapter for full_match. */
13800
13801static bool
13802do_full_match (const char *symbol_search_name,
13803 const lookup_name_info &lookup_name,
13804 completion_match *match)
13805{
13806 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13807}
13808
13809/* Build the Ada lookup name for LOOKUP_NAME. */
13810
13811ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13812{
13813 const std::string &user_name = lookup_name.name ();
13814
13815 if (user_name[0] == '<')
13816 {
13817 if (user_name.back () == '>')
13818 m_encoded_name = user_name.substr (1, user_name.size () - 2);
13819 else
13820 m_encoded_name = user_name.substr (1, user_name.size () - 1);
13821 m_encoded_p = true;
13822 m_verbatim_p = true;
13823 m_wild_match_p = false;
13824 m_standard_p = false;
13825 }
13826 else
13827 {
13828 m_verbatim_p = false;
13829
13830 m_encoded_p = user_name.find ("__") != std::string::npos;
13831
13832 if (!m_encoded_p)
13833 {
13834 const char *folded = ada_fold_name (user_name.c_str ());
13835 const char *encoded = ada_encode_1 (folded, false);
13836 if (encoded != NULL)
13837 m_encoded_name = encoded;
13838 else
13839 m_encoded_name = user_name;
13840 }
13841 else
13842 m_encoded_name = user_name;
13843
13844 /* Handle the 'package Standard' special case. See description
13845 of m_standard_p. */
13846 if (startswith (m_encoded_name.c_str (), "standard__"))
13847 {
13848 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13849 m_standard_p = true;
13850 }
13851 else
13852 m_standard_p = false;
74ccd7f5 13853
b5ec771e
PA
13854 /* If the name contains a ".", then the user is entering a fully
13855 qualified entity name, and the match must not be done in wild
13856 mode. Similarly, if the user wants to complete what looks
13857 like an encoded name, the match must not be done in wild
13858 mode. Also, in the standard__ special case always do
13859 non-wild matching. */
13860 m_wild_match_p
13861 = (lookup_name.match_type () != symbol_name_match_type::FULL
13862 && !m_encoded_p
13863 && !m_standard_p
13864 && user_name.find ('.') == std::string::npos);
13865 }
13866}
13867
13868/* symbol_name_matcher_ftype method for Ada. This only handles
13869 completion mode. */
13870
13871static bool
13872ada_symbol_name_matches (const char *symbol_search_name,
13873 const lookup_name_info &lookup_name,
13874 completion_match *match)
74ccd7f5 13875{
b5ec771e
PA
13876 return lookup_name.ada ().matches (symbol_search_name,
13877 lookup_name.match_type (),
13878 match);
13879}
13880
13881/* Implement the "la_get_symbol_name_matcher" language_defn method for
13882 Ada. */
13883
13884static symbol_name_matcher_ftype *
13885ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13886{
13887 if (lookup_name.completion_mode ())
13888 return ada_symbol_name_matches;
74ccd7f5 13889 else
b5ec771e
PA
13890 {
13891 if (lookup_name.ada ().wild_match_p ())
13892 return do_wild_match;
13893 else
13894 return do_full_match;
13895 }
74ccd7f5
JB
13896}
13897
a5ee536b
JB
13898/* Implement the "la_read_var_value" language_defn method for Ada. */
13899
13900static struct value *
63e43d3a
PMR
13901ada_read_var_value (struct symbol *var, const struct block *var_block,
13902 struct frame_info *frame)
a5ee536b 13903{
3977b71f 13904 const struct block *frame_block = NULL;
a5ee536b
JB
13905 struct symbol *renaming_sym = NULL;
13906
13907 /* The only case where default_read_var_value is not sufficient
13908 is when VAR is a renaming... */
13909 if (frame)
13910 frame_block = get_frame_block (frame, NULL);
13911 if (frame_block)
13912 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13913 if (renaming_sym != NULL)
13914 return ada_read_renaming_var_value (renaming_sym, frame_block);
13915
13916 /* This is a typical case where we expect the default_read_var_value
13917 function to work. */
63e43d3a 13918 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
13919}
13920
56618e20
TT
13921static const char *ada_extensions[] =
13922{
13923 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13924};
13925
47e77640 13926extern const struct language_defn ada_language_defn = {
6c038f32 13927 "ada", /* Language name */
6abde28f 13928 "Ada",
6c038f32 13929 language_ada,
6c038f32 13930 range_check_off,
6c038f32
PH
13931 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13932 that's not quite what this means. */
6c038f32 13933 array_row_major,
9a044a89 13934 macro_expansion_no,
56618e20 13935 ada_extensions,
6c038f32
PH
13936 &ada_exp_descriptor,
13937 parse,
b3f11165 13938 ada_yyerror,
6c038f32
PH
13939 resolve,
13940 ada_printchar, /* Print a character constant */
13941 ada_printstr, /* Function to print string constant */
13942 emit_char, /* Function to print single char (not used) */
6c038f32 13943 ada_print_type, /* Print a type using appropriate syntax */
be942545 13944 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13945 ada_val_print, /* Print a value using appropriate syntax */
13946 ada_value_print, /* Print a top-level value */
a5ee536b 13947 ada_read_var_value, /* la_read_var_value */
6c038f32 13948 NULL, /* Language specific skip_trampoline */
2b2d9e11 13949 NULL, /* name_of_this */
6c038f32
PH
13950 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13951 basic_lookup_transparent_type, /* lookup_transparent_type */
13952 ada_la_decode, /* Language specific symbol demangler */
8b302db8 13953 ada_sniff_from_mangled_name,
0963b4bd
MS
13954 NULL, /* Language specific
13955 class_name_from_physname */
6c038f32
PH
13956 ada_op_print_tab, /* expression operators for printing */
13957 0, /* c-style arrays */
13958 1, /* String lower bound */
6c038f32 13959 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 13960 ada_collect_symbol_completion_matches,
72d5681a 13961 ada_language_arch_info,
e79af960 13962 ada_print_array_index,
41f1b697 13963 default_pass_by_reference,
ae6a3a4c 13964 c_get_string,
43cc5389 13965 c_watch_location_expression,
b5ec771e 13966 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 13967 ada_iterate_over_symbols,
5ffa0793 13968 default_search_name_hash,
a53b64ea 13969 &ada_varobj_ops,
bb2ec1b3
TT
13970 NULL,
13971 NULL,
6c038f32
PH
13972 LANG_MAGIC
13973};
13974
5bf03f13
JB
13975/* Command-list for the "set/show ada" prefix command. */
13976static struct cmd_list_element *set_ada_list;
13977static struct cmd_list_element *show_ada_list;
13978
13979/* Implement the "set ada" prefix command. */
13980
13981static void
981a3fb3 13982set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
13983{
13984 printf_unfiltered (_(\
13985"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 13986 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
13987}
13988
13989/* Implement the "show ada" prefix command. */
13990
13991static void
981a3fb3 13992show_ada_command (const char *args, int from_tty)
5bf03f13
JB
13993{
13994 cmd_show_list (show_ada_list, from_tty, "");
13995}
13996
2060206e
PA
13997static void
13998initialize_ada_catchpoint_ops (void)
13999{
14000 struct breakpoint_ops *ops;
14001
14002 initialize_breakpoint_ops ();
14003
14004 ops = &catch_exception_breakpoint_ops;
14005 *ops = bkpt_breakpoint_ops;
2060206e
PA
14006 ops->allocate_location = allocate_location_catch_exception;
14007 ops->re_set = re_set_catch_exception;
14008 ops->check_status = check_status_catch_exception;
14009 ops->print_it = print_it_catch_exception;
14010 ops->print_one = print_one_catch_exception;
14011 ops->print_mention = print_mention_catch_exception;
14012 ops->print_recreate = print_recreate_catch_exception;
14013
14014 ops = &catch_exception_unhandled_breakpoint_ops;
14015 *ops = bkpt_breakpoint_ops;
2060206e
PA
14016 ops->allocate_location = allocate_location_catch_exception_unhandled;
14017 ops->re_set = re_set_catch_exception_unhandled;
14018 ops->check_status = check_status_catch_exception_unhandled;
14019 ops->print_it = print_it_catch_exception_unhandled;
14020 ops->print_one = print_one_catch_exception_unhandled;
14021 ops->print_mention = print_mention_catch_exception_unhandled;
14022 ops->print_recreate = print_recreate_catch_exception_unhandled;
14023
14024 ops = &catch_assert_breakpoint_ops;
14025 *ops = bkpt_breakpoint_ops;
2060206e
PA
14026 ops->allocate_location = allocate_location_catch_assert;
14027 ops->re_set = re_set_catch_assert;
14028 ops->check_status = check_status_catch_assert;
14029 ops->print_it = print_it_catch_assert;
14030 ops->print_one = print_one_catch_assert;
14031 ops->print_mention = print_mention_catch_assert;
14032 ops->print_recreate = print_recreate_catch_assert;
14033}
14034
3d9434b5
JB
14035/* This module's 'new_objfile' observer. */
14036
14037static void
14038ada_new_objfile_observer (struct objfile *objfile)
14039{
14040 ada_clear_symbol_cache ();
14041}
14042
14043/* This module's 'free_objfile' observer. */
14044
14045static void
14046ada_free_objfile_observer (struct objfile *objfile)
14047{
14048 ada_clear_symbol_cache ();
14049}
14050
d2e4a39e 14051void
6c038f32 14052_initialize_ada_language (void)
14f9c5c9 14053{
2060206e
PA
14054 initialize_ada_catchpoint_ops ();
14055
5bf03f13
JB
14056 add_prefix_cmd ("ada", no_class, set_ada_command,
14057 _("Prefix command for changing Ada-specfic settings"),
14058 &set_ada_list, "set ada ", 0, &setlist);
14059
14060 add_prefix_cmd ("ada", no_class, show_ada_command,
14061 _("Generic command for showing Ada-specific settings."),
14062 &show_ada_list, "show ada ", 0, &showlist);
14063
14064 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14065 &trust_pad_over_xvs, _("\
14066Enable or disable an optimization trusting PAD types over XVS types"), _("\
14067Show whether an optimization trusting PAD types over XVS types is activated"),
14068 _("\
14069This is related to the encoding used by the GNAT compiler. The debugger\n\
14070should normally trust the contents of PAD types, but certain older versions\n\
14071of GNAT have a bug that sometimes causes the information in the PAD type\n\
14072to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14073work around this bug. It is always safe to turn this option \"off\", but\n\
14074this incurs a slight performance penalty, so it is recommended to NOT change\n\
14075this option to \"off\" unless necessary."),
14076 NULL, NULL, &set_ada_list, &show_ada_list);
14077
d72413e6
PMR
14078 add_setshow_boolean_cmd ("print-signatures", class_vars,
14079 &print_signatures, _("\
14080Enable or disable the output of formal and return types for functions in the \
14081overloads selection menu"), _("\
14082Show whether the output of formal and return types for functions in the \
14083overloads selection menu is activated"),
14084 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14085
9ac4176b
PA
14086 add_catch_command ("exception", _("\
14087Catch Ada exceptions, when raised.\n\
14088With an argument, catch only exceptions with the given name."),
14089 catch_ada_exception_command,
14090 NULL,
14091 CATCH_PERMANENT,
14092 CATCH_TEMPORARY);
14093 add_catch_command ("assert", _("\
14094Catch failed Ada assertions, when raised.\n\
14095With an argument, catch only exceptions with the given name."),
14096 catch_assert_command,
14097 NULL,
14098 CATCH_PERMANENT,
14099 CATCH_TEMPORARY);
14100
6c038f32 14101 varsize_limit = 65536;
6c038f32 14102
778865d3
JB
14103 add_info ("exceptions", info_exceptions_command,
14104 _("\
14105List all Ada exception names.\n\
14106If a regular expression is passed as an argument, only those matching\n\
14107the regular expression are listed."));
14108
c6044dd1
JB
14109 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14110 _("Set Ada maintenance-related variables."),
14111 &maint_set_ada_cmdlist, "maintenance set ada ",
14112 0/*allow-unknown*/, &maintenance_set_cmdlist);
14113
14114 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14115 _("Show Ada maintenance-related variables"),
14116 &maint_show_ada_cmdlist, "maintenance show ada ",
14117 0/*allow-unknown*/, &maintenance_show_cmdlist);
14118
14119 add_setshow_boolean_cmd
14120 ("ignore-descriptive-types", class_maintenance,
14121 &ada_ignore_descriptive_types_p,
14122 _("Set whether descriptive types generated by GNAT should be ignored."),
14123 _("Show whether descriptive types generated by GNAT should be ignored."),
14124 _("\
14125When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14126DWARF attribute."),
14127 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14128
6c038f32
PH
14129 obstack_init (&symbol_list_obstack);
14130
14131 decoded_names_store = htab_create_alloc
14132 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14133 NULL, xcalloc, xfree);
6b69afc4 14134
3d9434b5
JB
14135 /* The ada-lang observers. */
14136 observer_attach_new_objfile (ada_new_objfile_observer);
14137 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14138 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14139
14140 /* Setup various context-specific data. */
e802dbe0 14141 ada_inferior_data
8e260fc0 14142 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14143 ada_pspace_data_handle
14144 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14145}