]>
Commit | Line | Data |
---|---|---|
6e681866 | 1 | /* Ada language support routines for GDB, the GNU debugger. |
10a2c479 | 2 | |
42a4f53d | 3 | Copyright (C) 1992-2019 Free Software Foundation, Inc. |
14f9c5c9 | 4 | |
a9762ec7 | 5 | This file is part of GDB. |
14f9c5c9 | 6 | |
a9762ec7 JB |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
14f9c5c9 | 11 | |
a9762ec7 JB |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
14f9c5c9 | 16 | |
a9762ec7 JB |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 19 | |
96d887e8 | 20 | |
4c4b4cd2 | 21 | #include "defs.h" |
14f9c5c9 | 22 | #include <ctype.h> |
14f9c5c9 | 23 | #include "demangle.h" |
d55e5aa6 | 24 | #include "gdb_regex.h" |
4de283e4 TT |
25 | #include "frame.h" |
26 | #include "symtab.h" | |
27 | #include "gdbtypes.h" | |
14f9c5c9 | 28 | #include "gdbcmd.h" |
4de283e4 TT |
29 | #include "expression.h" |
30 | #include "parser-defs.h" | |
31 | #include "language.h" | |
32 | #include "varobj.h" | |
33 | #include "c-lang.h" | |
34 | #include "inferior.h" | |
35 | #include "symfile.h" | |
36 | #include "objfiles.h" | |
37 | #include "breakpoint.h" | |
14f9c5c9 | 38 | #include "gdbcore.h" |
4c4b4cd2 | 39 | #include "hashtab.h" |
4de283e4 TT |
40 | #include "gdb_obstack.h" |
41 | #include "ada-lang.h" | |
42 | #include "completer.h" | |
43 | #include <sys/stat.h> | |
44 | #include "ui-out.h" | |
45 | #include "block.h" | |
04714b91 | 46 | #include "infcall.h" |
4de283e4 TT |
47 | #include "dictionary.h" |
48 | #include "annotate.h" | |
49 | #include "valprint.h" | |
d55e5aa6 | 50 | #include "source.h" |
4de283e4 TT |
51 | #include "observable.h" |
52 | #include "common/vec.h" | |
692465f1 | 53 | #include "stack.h" |
4de283e4 | 54 | #include "common/gdb_vecs.h" |
79d43c61 | 55 | #include "typeprint.h" |
4de283e4 TT |
56 | #include "namespace.h" |
57 | ||
58 | #include "psymtab.h" | |
40bc484c | 59 | #include "value.h" |
4de283e4 TT |
60 | #include "mi/mi-common.h" |
61 | #include "arch-utils.h" | |
62 | #include "cli/cli-utils.h" | |
63 | #include "common/function-view.h" | |
64 | #include "common/byte-vector.h" | |
65 | #include <algorithm> | |
ccefe4c4 | 66 | |
4c4b4cd2 | 67 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 68 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
69 | Copied from valarith.c. */ |
70 | ||
71 | #ifndef TRUNCATION_TOWARDS_ZERO | |
72 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
73 | #endif | |
74 | ||
d2e4a39e | 75 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 76 | |
d2e4a39e | 77 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 78 | |
d2e4a39e | 79 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 80 | |
d2e4a39e | 81 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 82 | |
d2e4a39e | 83 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 84 | |
556bdfd4 | 85 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 86 | |
d2e4a39e | 87 | static struct value *desc_data (struct value *); |
14f9c5c9 | 88 | |
d2e4a39e | 89 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 90 | |
d2e4a39e | 91 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 92 | |
d2e4a39e | 93 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 94 | |
d2e4a39e | 95 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 96 | |
d2e4a39e | 97 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 98 | |
d2e4a39e | 99 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 100 | |
d2e4a39e | 101 | static int desc_arity (struct type *); |
14f9c5c9 | 102 | |
d2e4a39e | 103 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 104 | |
d2e4a39e | 105 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 106 | |
40bc484c | 107 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 108 | |
4c4b4cd2 | 109 | static void ada_add_block_symbols (struct obstack *, |
b5ec771e PA |
110 | const struct block *, |
111 | const lookup_name_info &lookup_name, | |
112 | domain_enum, struct objfile *); | |
14f9c5c9 | 113 | |
22cee43f | 114 | static void ada_add_all_symbols (struct obstack *, const struct block *, |
b5ec771e PA |
115 | const lookup_name_info &lookup_name, |
116 | domain_enum, int, int *); | |
22cee43f | 117 | |
d12307c1 | 118 | static int is_nonfunction (struct block_symbol *, int); |
14f9c5c9 | 119 | |
76a01679 | 120 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
f0c5f9b2 | 121 | const struct block *); |
14f9c5c9 | 122 | |
4c4b4cd2 PH |
123 | static int num_defns_collected (struct obstack *); |
124 | ||
d12307c1 | 125 | static struct block_symbol *defns_collected (struct obstack *, int); |
14f9c5c9 | 126 | |
e9d9f57e | 127 | static struct value *resolve_subexp (expression_up *, int *, int, |
699bd4cf TT |
128 | struct type *, int, |
129 | innermost_block_tracker *); | |
14f9c5c9 | 130 | |
e9d9f57e | 131 | static void replace_operator_with_call (expression_up *, int, int, int, |
270140bd | 132 | struct symbol *, const struct block *); |
14f9c5c9 | 133 | |
d2e4a39e | 134 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 135 | |
a121b7c1 | 136 | static const char *ada_op_name (enum exp_opcode); |
4c4b4cd2 PH |
137 | |
138 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 139 | |
d2e4a39e | 140 | static int numeric_type_p (struct type *); |
14f9c5c9 | 141 | |
d2e4a39e | 142 | static int integer_type_p (struct type *); |
14f9c5c9 | 143 | |
d2e4a39e | 144 | static int scalar_type_p (struct type *); |
14f9c5c9 | 145 | |
d2e4a39e | 146 | static int discrete_type_p (struct type *); |
14f9c5c9 | 147 | |
aeb5907d JB |
148 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
149 | const char **, | |
150 | int *, | |
151 | const char **); | |
152 | ||
153 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
270140bd | 154 | const struct block *); |
aeb5907d | 155 | |
a121b7c1 | 156 | static struct type *ada_lookup_struct_elt_type (struct type *, const char *, |
988f6b3d | 157 | int, int); |
4c4b4cd2 | 158 | |
d2e4a39e | 159 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 160 | |
b4ba55a1 JB |
161 | static struct type *ada_find_parallel_type_with_name (struct type *, |
162 | const char *); | |
163 | ||
d2e4a39e | 164 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 165 | |
10a2c479 | 166 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 167 | const gdb_byte *, |
4c4b4cd2 PH |
168 | CORE_ADDR, struct value *); |
169 | ||
170 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 171 | |
28c85d6c | 172 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 173 | |
d2e4a39e | 174 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 175 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 176 | |
d2e4a39e | 177 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 178 | |
ad82864c | 179 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 180 | |
ad82864c | 181 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 182 | |
ad82864c JB |
183 | static long decode_packed_array_bitsize (struct type *); |
184 | ||
185 | static struct value *decode_constrained_packed_array (struct value *); | |
186 | ||
187 | static int ada_is_packed_array_type (struct type *); | |
188 | ||
189 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 190 | |
d2e4a39e | 191 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 192 | struct value **); |
14f9c5c9 | 193 | |
4c4b4cd2 PH |
194 | static struct value *coerce_unspec_val_to_type (struct value *, |
195 | struct type *); | |
14f9c5c9 | 196 | |
d2e4a39e | 197 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 198 | |
d2e4a39e | 199 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 200 | |
d2e4a39e | 201 | static int is_name_suffix (const char *); |
14f9c5c9 | 202 | |
73589123 PH |
203 | static int advance_wild_match (const char **, const char *, int); |
204 | ||
b5ec771e | 205 | static bool wild_match (const char *name, const char *patn); |
14f9c5c9 | 206 | |
d2e4a39e | 207 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 208 | |
4c4b4cd2 PH |
209 | static LONGEST pos_atr (struct value *); |
210 | ||
3cb382c9 | 211 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 212 | |
d2e4a39e | 213 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 214 | |
4c4b4cd2 PH |
215 | static struct symbol *standard_lookup (const char *, const struct block *, |
216 | domain_enum); | |
14f9c5c9 | 217 | |
108d56a4 | 218 | static struct value *ada_search_struct_field (const char *, struct value *, int, |
4c4b4cd2 PH |
219 | struct type *); |
220 | ||
221 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
222 | struct type *); | |
223 | ||
0d5cff50 | 224 | static int find_struct_field (const char *, struct type *, int, |
52ce6436 | 225 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 | 226 | |
d12307c1 | 227 | static int ada_resolve_function (struct block_symbol *, int, |
4c4b4cd2 | 228 | struct value **, int, const char *, |
2a612529 | 229 | struct type *, int); |
4c4b4cd2 | 230 | |
4c4b4cd2 PH |
231 | static int ada_is_direct_array_type (struct type *); |
232 | ||
72d5681a PH |
233 | static void ada_language_arch_info (struct gdbarch *, |
234 | struct language_arch_info *); | |
714e53ab | 235 | |
52ce6436 PH |
236 | static struct value *ada_index_struct_field (int, struct value *, int, |
237 | struct type *); | |
238 | ||
239 | static struct value *assign_aggregate (struct value *, struct value *, | |
0963b4bd MS |
240 | struct expression *, |
241 | int *, enum noside); | |
52ce6436 PH |
242 | |
243 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
244 | struct expression *, | |
245 | int *, LONGEST *, int *, | |
246 | int, LONGEST, LONGEST); | |
247 | ||
248 | static void aggregate_assign_positional (struct value *, struct value *, | |
249 | struct expression *, | |
250 | int *, LONGEST *, int *, int, | |
251 | LONGEST, LONGEST); | |
252 | ||
253 | ||
254 | static void aggregate_assign_others (struct value *, struct value *, | |
255 | struct expression *, | |
256 | int *, LONGEST *, int, LONGEST, LONGEST); | |
257 | ||
258 | ||
259 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
260 | ||
261 | ||
262 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
263 | int *, enum noside); | |
264 | ||
265 | static void ada_forward_operator_length (struct expression *, int, int *, | |
266 | int *); | |
852dff6c JB |
267 | |
268 | static struct type *ada_find_any_type (const char *name); | |
b5ec771e PA |
269 | |
270 | static symbol_name_matcher_ftype *ada_get_symbol_name_matcher | |
271 | (const lookup_name_info &lookup_name); | |
272 | ||
4c4b4cd2 PH |
273 | \f |
274 | ||
ee01b665 JB |
275 | /* The result of a symbol lookup to be stored in our symbol cache. */ |
276 | ||
277 | struct cache_entry | |
278 | { | |
279 | /* The name used to perform the lookup. */ | |
280 | const char *name; | |
281 | /* The namespace used during the lookup. */ | |
fe978cb0 | 282 | domain_enum domain; |
ee01b665 JB |
283 | /* The symbol returned by the lookup, or NULL if no matching symbol |
284 | was found. */ | |
285 | struct symbol *sym; | |
286 | /* The block where the symbol was found, or NULL if no matching | |
287 | symbol was found. */ | |
288 | const struct block *block; | |
289 | /* A pointer to the next entry with the same hash. */ | |
290 | struct cache_entry *next; | |
291 | }; | |
292 | ||
293 | /* The Ada symbol cache, used to store the result of Ada-mode symbol | |
294 | lookups in the course of executing the user's commands. | |
295 | ||
296 | The cache is implemented using a simple, fixed-sized hash. | |
297 | The size is fixed on the grounds that there are not likely to be | |
298 | all that many symbols looked up during any given session, regardless | |
299 | of the size of the symbol table. If we decide to go to a resizable | |
300 | table, let's just use the stuff from libiberty instead. */ | |
301 | ||
302 | #define HASH_SIZE 1009 | |
303 | ||
304 | struct ada_symbol_cache | |
305 | { | |
306 | /* An obstack used to store the entries in our cache. */ | |
307 | struct obstack cache_space; | |
308 | ||
309 | /* The root of the hash table used to implement our symbol cache. */ | |
310 | struct cache_entry *root[HASH_SIZE]; | |
311 | }; | |
312 | ||
313 | static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache); | |
76a01679 | 314 | |
4c4b4cd2 | 315 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
316 | static unsigned int varsize_limit; |
317 | ||
67cb5b2d | 318 | static const char ada_completer_word_break_characters[] = |
4c4b4cd2 PH |
319 | #ifdef VMS |
320 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
321 | #else | |
14f9c5c9 | 322 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 323 | #endif |
14f9c5c9 | 324 | |
4c4b4cd2 | 325 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 326 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 327 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 328 | |
4c4b4cd2 PH |
329 | /* Limit on the number of warnings to raise per expression evaluation. */ |
330 | static int warning_limit = 2; | |
331 | ||
332 | /* Number of warning messages issued; reset to 0 by cleanups after | |
333 | expression evaluation. */ | |
334 | static int warnings_issued = 0; | |
335 | ||
336 | static const char *known_runtime_file_name_patterns[] = { | |
337 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
338 | }; | |
339 | ||
340 | static const char *known_auxiliary_function_name_patterns[] = { | |
341 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
342 | }; | |
343 | ||
c6044dd1 JB |
344 | /* Maintenance-related settings for this module. */ |
345 | ||
346 | static struct cmd_list_element *maint_set_ada_cmdlist; | |
347 | static struct cmd_list_element *maint_show_ada_cmdlist; | |
348 | ||
349 | /* Implement the "maintenance set ada" (prefix) command. */ | |
350 | ||
351 | static void | |
981a3fb3 | 352 | maint_set_ada_cmd (const char *args, int from_tty) |
c6044dd1 | 353 | { |
635c7e8a TT |
354 | help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands, |
355 | gdb_stdout); | |
c6044dd1 JB |
356 | } |
357 | ||
358 | /* Implement the "maintenance show ada" (prefix) command. */ | |
359 | ||
360 | static void | |
981a3fb3 | 361 | maint_show_ada_cmd (const char *args, int from_tty) |
c6044dd1 JB |
362 | { |
363 | cmd_show_list (maint_show_ada_cmdlist, from_tty, ""); | |
364 | } | |
365 | ||
366 | /* The "maintenance ada set/show ignore-descriptive-type" value. */ | |
367 | ||
368 | static int ada_ignore_descriptive_types_p = 0; | |
369 | ||
e802dbe0 JB |
370 | /* Inferior-specific data. */ |
371 | ||
372 | /* Per-inferior data for this module. */ | |
373 | ||
374 | struct ada_inferior_data | |
375 | { | |
376 | /* The ada__tags__type_specific_data type, which is used when decoding | |
377 | tagged types. With older versions of GNAT, this type was directly | |
378 | accessible through a component ("tsd") in the object tag. But this | |
379 | is no longer the case, so we cache it for each inferior. */ | |
380 | struct type *tsd_type; | |
3eecfa55 JB |
381 | |
382 | /* The exception_support_info data. This data is used to determine | |
383 | how to implement support for Ada exception catchpoints in a given | |
384 | inferior. */ | |
385 | const struct exception_support_info *exception_info; | |
e802dbe0 JB |
386 | }; |
387 | ||
388 | /* Our key to this module's inferior data. */ | |
389 | static const struct inferior_data *ada_inferior_data; | |
390 | ||
391 | /* A cleanup routine for our inferior data. */ | |
392 | static void | |
393 | ada_inferior_data_cleanup (struct inferior *inf, void *arg) | |
394 | { | |
395 | struct ada_inferior_data *data; | |
396 | ||
9a3c8263 | 397 | data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data); |
e802dbe0 JB |
398 | if (data != NULL) |
399 | xfree (data); | |
400 | } | |
401 | ||
402 | /* Return our inferior data for the given inferior (INF). | |
403 | ||
404 | This function always returns a valid pointer to an allocated | |
405 | ada_inferior_data structure. If INF's inferior data has not | |
406 | been previously set, this functions creates a new one with all | |
407 | fields set to zero, sets INF's inferior to it, and then returns | |
408 | a pointer to that newly allocated ada_inferior_data. */ | |
409 | ||
410 | static struct ada_inferior_data * | |
411 | get_ada_inferior_data (struct inferior *inf) | |
412 | { | |
413 | struct ada_inferior_data *data; | |
414 | ||
9a3c8263 | 415 | data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data); |
e802dbe0 JB |
416 | if (data == NULL) |
417 | { | |
41bf6aca | 418 | data = XCNEW (struct ada_inferior_data); |
e802dbe0 JB |
419 | set_inferior_data (inf, ada_inferior_data, data); |
420 | } | |
421 | ||
422 | return data; | |
423 | } | |
424 | ||
425 | /* Perform all necessary cleanups regarding our module's inferior data | |
426 | that is required after the inferior INF just exited. */ | |
427 | ||
428 | static void | |
429 | ada_inferior_exit (struct inferior *inf) | |
430 | { | |
431 | ada_inferior_data_cleanup (inf, NULL); | |
432 | set_inferior_data (inf, ada_inferior_data, NULL); | |
433 | } | |
434 | ||
ee01b665 JB |
435 | |
436 | /* program-space-specific data. */ | |
437 | ||
438 | /* This module's per-program-space data. */ | |
439 | struct ada_pspace_data | |
440 | { | |
441 | /* The Ada symbol cache. */ | |
442 | struct ada_symbol_cache *sym_cache; | |
443 | }; | |
444 | ||
445 | /* Key to our per-program-space data. */ | |
446 | static const struct program_space_data *ada_pspace_data_handle; | |
447 | ||
448 | /* Return this module's data for the given program space (PSPACE). | |
449 | If not is found, add a zero'ed one now. | |
450 | ||
451 | This function always returns a valid object. */ | |
452 | ||
453 | static struct ada_pspace_data * | |
454 | get_ada_pspace_data (struct program_space *pspace) | |
455 | { | |
456 | struct ada_pspace_data *data; | |
457 | ||
9a3c8263 SM |
458 | data = ((struct ada_pspace_data *) |
459 | program_space_data (pspace, ada_pspace_data_handle)); | |
ee01b665 JB |
460 | if (data == NULL) |
461 | { | |
462 | data = XCNEW (struct ada_pspace_data); | |
463 | set_program_space_data (pspace, ada_pspace_data_handle, data); | |
464 | } | |
465 | ||
466 | return data; | |
467 | } | |
468 | ||
469 | /* The cleanup callback for this module's per-program-space data. */ | |
470 | ||
471 | static void | |
472 | ada_pspace_data_cleanup (struct program_space *pspace, void *data) | |
473 | { | |
9a3c8263 | 474 | struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data; |
ee01b665 JB |
475 | |
476 | if (pspace_data->sym_cache != NULL) | |
477 | ada_free_symbol_cache (pspace_data->sym_cache); | |
478 | xfree (pspace_data); | |
479 | } | |
480 | ||
4c4b4cd2 PH |
481 | /* Utilities */ |
482 | ||
720d1a40 | 483 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 484 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
485 | |
486 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
487 | In other words, we really expect the target type of a typedef type to be | |
488 | a non-typedef type. This is particularly true for Ada units, because | |
489 | the language does not have a typedef vs not-typedef distinction. | |
490 | In that respect, the Ada compiler has been trying to eliminate as many | |
491 | typedef definitions in the debugging information, since they generally | |
492 | do not bring any extra information (we still use typedef under certain | |
493 | circumstances related mostly to the GNAT encoding). | |
494 | ||
495 | Unfortunately, we have seen situations where the debugging information | |
496 | generated by the compiler leads to such multiple typedef layers. For | |
497 | instance, consider the following example with stabs: | |
498 | ||
499 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
500 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
501 | ||
502 | This is an error in the debugging information which causes type | |
503 | pck__float_array___XUP to be defined twice, and the second time, | |
504 | it is defined as a typedef of a typedef. | |
505 | ||
506 | This is on the fringe of legality as far as debugging information is | |
507 | concerned, and certainly unexpected. But it is easy to handle these | |
508 | situations correctly, so we can afford to be lenient in this case. */ | |
509 | ||
510 | static struct type * | |
511 | ada_typedef_target_type (struct type *type) | |
512 | { | |
513 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
514 | type = TYPE_TARGET_TYPE (type); | |
515 | return type; | |
516 | } | |
517 | ||
41d27058 JB |
518 | /* Given DECODED_NAME a string holding a symbol name in its |
519 | decoded form (ie using the Ada dotted notation), returns | |
520 | its unqualified name. */ | |
521 | ||
522 | static const char * | |
523 | ada_unqualified_name (const char *decoded_name) | |
524 | { | |
2b0f535a JB |
525 | const char *result; |
526 | ||
527 | /* If the decoded name starts with '<', it means that the encoded | |
528 | name does not follow standard naming conventions, and thus that | |
529 | it is not your typical Ada symbol name. Trying to unqualify it | |
530 | is therefore pointless and possibly erroneous. */ | |
531 | if (decoded_name[0] == '<') | |
532 | return decoded_name; | |
533 | ||
534 | result = strrchr (decoded_name, '.'); | |
41d27058 JB |
535 | if (result != NULL) |
536 | result++; /* Skip the dot... */ | |
537 | else | |
538 | result = decoded_name; | |
539 | ||
540 | return result; | |
541 | } | |
542 | ||
39e7af3e | 543 | /* Return a string starting with '<', followed by STR, and '>'. */ |
41d27058 | 544 | |
39e7af3e | 545 | static std::string |
41d27058 JB |
546 | add_angle_brackets (const char *str) |
547 | { | |
39e7af3e | 548 | return string_printf ("<%s>", str); |
41d27058 | 549 | } |
96d887e8 | 550 | |
67cb5b2d | 551 | static const char * |
4c4b4cd2 PH |
552 | ada_get_gdb_completer_word_break_characters (void) |
553 | { | |
554 | return ada_completer_word_break_characters; | |
555 | } | |
556 | ||
e79af960 JB |
557 | /* Print an array element index using the Ada syntax. */ |
558 | ||
559 | static void | |
560 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 561 | const struct value_print_options *options) |
e79af960 | 562 | { |
79a45b7d | 563 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
564 | fprintf_filtered (stream, " => "); |
565 | } | |
566 | ||
e2b7af72 JB |
567 | /* la_watch_location_expression for Ada. */ |
568 | ||
569 | gdb::unique_xmalloc_ptr<char> | |
570 | ada_watch_location_expression (struct type *type, CORE_ADDR addr) | |
571 | { | |
572 | type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type))); | |
573 | std::string name = type_to_string (type); | |
574 | return gdb::unique_xmalloc_ptr<char> | |
575 | (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr))); | |
576 | } | |
577 | ||
f27cf670 | 578 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 579 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 580 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 581 | |
f27cf670 AS |
582 | void * |
583 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 584 | { |
d2e4a39e AS |
585 | if (*size < min_size) |
586 | { | |
587 | *size *= 2; | |
588 | if (*size < min_size) | |
4c4b4cd2 | 589 | *size = min_size; |
f27cf670 | 590 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 591 | } |
f27cf670 | 592 | return vect; |
14f9c5c9 AS |
593 | } |
594 | ||
595 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 596 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
597 | |
598 | static int | |
ebf56fd3 | 599 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
600 | { |
601 | int len = strlen (target); | |
5b4ee69b | 602 | |
d2e4a39e | 603 | return |
4c4b4cd2 PH |
604 | (strncmp (field_name, target, len) == 0 |
605 | && (field_name[len] == '\0' | |
61012eef | 606 | || (startswith (field_name + len, "___") |
76a01679 JB |
607 | && strcmp (field_name + strlen (field_name) - 6, |
608 | "___XVN") != 0))); | |
14f9c5c9 AS |
609 | } |
610 | ||
611 | ||
872c8b51 JB |
612 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
613 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
614 | and return its index. This function also handles fields whose name | |
615 | have ___ suffixes because the compiler sometimes alters their name | |
616 | by adding such a suffix to represent fields with certain constraints. | |
617 | If the field could not be found, return a negative number if | |
618 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
619 | |
620 | int | |
621 | ada_get_field_index (const struct type *type, const char *field_name, | |
622 | int maybe_missing) | |
623 | { | |
624 | int fieldno; | |
872c8b51 JB |
625 | struct type *struct_type = check_typedef ((struct type *) type); |
626 | ||
627 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
628 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
629 | return fieldno; |
630 | ||
631 | if (!maybe_missing) | |
323e0a4a | 632 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 633 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
634 | |
635 | return -1; | |
636 | } | |
637 | ||
638 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
639 | |
640 | int | |
d2e4a39e | 641 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
642 | { |
643 | if (name == NULL) | |
644 | return 0; | |
d2e4a39e | 645 | else |
14f9c5c9 | 646 | { |
d2e4a39e | 647 | const char *p = strstr (name, "___"); |
5b4ee69b | 648 | |
14f9c5c9 | 649 | if (p == NULL) |
4c4b4cd2 | 650 | return strlen (name); |
14f9c5c9 | 651 | else |
4c4b4cd2 | 652 | return p - name; |
14f9c5c9 AS |
653 | } |
654 | } | |
655 | ||
4c4b4cd2 PH |
656 | /* Return non-zero if SUFFIX is a suffix of STR. |
657 | Return zero if STR is null. */ | |
658 | ||
14f9c5c9 | 659 | static int |
d2e4a39e | 660 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
661 | { |
662 | int len1, len2; | |
5b4ee69b | 663 | |
14f9c5c9 AS |
664 | if (str == NULL) |
665 | return 0; | |
666 | len1 = strlen (str); | |
667 | len2 = strlen (suffix); | |
4c4b4cd2 | 668 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
669 | } |
670 | ||
4c4b4cd2 PH |
671 | /* The contents of value VAL, treated as a value of type TYPE. The |
672 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 673 | |
d2e4a39e | 674 | static struct value * |
4c4b4cd2 | 675 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 676 | { |
61ee279c | 677 | type = ada_check_typedef (type); |
df407dfe | 678 | if (value_type (val) == type) |
4c4b4cd2 | 679 | return val; |
d2e4a39e | 680 | else |
14f9c5c9 | 681 | { |
4c4b4cd2 PH |
682 | struct value *result; |
683 | ||
684 | /* Make sure that the object size is not unreasonable before | |
685 | trying to allocate some memory for it. */ | |
c1b5a1a6 | 686 | ada_ensure_varsize_limit (type); |
4c4b4cd2 | 687 | |
41e8491f JK |
688 | if (value_lazy (val) |
689 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) | |
690 | result = allocate_value_lazy (type); | |
691 | else | |
692 | { | |
693 | result = allocate_value (type); | |
9a0dc9e3 | 694 | value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type)); |
41e8491f | 695 | } |
74bcbdf3 | 696 | set_value_component_location (result, val); |
9bbda503 AC |
697 | set_value_bitsize (result, value_bitsize (val)); |
698 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 699 | set_value_address (result, value_address (val)); |
14f9c5c9 AS |
700 | return result; |
701 | } | |
702 | } | |
703 | ||
fc1a4b47 AC |
704 | static const gdb_byte * |
705 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
706 | { |
707 | if (valaddr == NULL) | |
708 | return NULL; | |
709 | else | |
710 | return valaddr + offset; | |
711 | } | |
712 | ||
713 | static CORE_ADDR | |
ebf56fd3 | 714 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
715 | { |
716 | if (address == 0) | |
717 | return 0; | |
d2e4a39e | 718 | else |
14f9c5c9 AS |
719 | return address + offset; |
720 | } | |
721 | ||
4c4b4cd2 PH |
722 | /* Issue a warning (as for the definition of warning in utils.c, but |
723 | with exactly one argument rather than ...), unless the limit on the | |
724 | number of warnings has passed during the evaluation of the current | |
725 | expression. */ | |
a2249542 | 726 | |
77109804 AC |
727 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
728 | provided by "complaint". */ | |
a0b31db1 | 729 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 730 | |
14f9c5c9 | 731 | static void |
a2249542 | 732 | lim_warning (const char *format, ...) |
14f9c5c9 | 733 | { |
a2249542 | 734 | va_list args; |
a2249542 | 735 | |
5b4ee69b | 736 | va_start (args, format); |
4c4b4cd2 PH |
737 | warnings_issued += 1; |
738 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
739 | vwarning (format, args); |
740 | ||
741 | va_end (args); | |
4c4b4cd2 PH |
742 | } |
743 | ||
714e53ab PH |
744 | /* Issue an error if the size of an object of type T is unreasonable, |
745 | i.e. if it would be a bad idea to allocate a value of this type in | |
746 | GDB. */ | |
747 | ||
c1b5a1a6 JB |
748 | void |
749 | ada_ensure_varsize_limit (const struct type *type) | |
714e53ab PH |
750 | { |
751 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 752 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
753 | } |
754 | ||
0963b4bd | 755 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 756 | static LONGEST |
c3e5cd34 | 757 | max_of_size (int size) |
4c4b4cd2 | 758 | { |
76a01679 | 759 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 760 | |
76a01679 | 761 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
762 | } |
763 | ||
0963b4bd | 764 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 765 | static LONGEST |
c3e5cd34 | 766 | min_of_size (int size) |
4c4b4cd2 | 767 | { |
c3e5cd34 | 768 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
769 | } |
770 | ||
0963b4bd | 771 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 772 | static ULONGEST |
c3e5cd34 | 773 | umax_of_size (int size) |
4c4b4cd2 | 774 | { |
76a01679 | 775 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 776 | |
76a01679 | 777 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
778 | } |
779 | ||
0963b4bd | 780 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
781 | static LONGEST |
782 | max_of_type (struct type *t) | |
4c4b4cd2 | 783 | { |
c3e5cd34 PH |
784 | if (TYPE_UNSIGNED (t)) |
785 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
786 | else | |
787 | return max_of_size (TYPE_LENGTH (t)); | |
788 | } | |
789 | ||
0963b4bd | 790 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
791 | static LONGEST |
792 | min_of_type (struct type *t) | |
793 | { | |
794 | if (TYPE_UNSIGNED (t)) | |
795 | return 0; | |
796 | else | |
797 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
798 | } |
799 | ||
800 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
801 | LONGEST |
802 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 803 | { |
c3345124 | 804 | type = resolve_dynamic_type (type, NULL, 0); |
76a01679 | 805 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
806 | { |
807 | case TYPE_CODE_RANGE: | |
690cc4eb | 808 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 809 | case TYPE_CODE_ENUM: |
14e75d8e | 810 | return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1); |
690cc4eb PH |
811 | case TYPE_CODE_BOOL: |
812 | return 1; | |
813 | case TYPE_CODE_CHAR: | |
76a01679 | 814 | case TYPE_CODE_INT: |
690cc4eb | 815 | return max_of_type (type); |
4c4b4cd2 | 816 | default: |
43bbcdc2 | 817 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
818 | } |
819 | } | |
820 | ||
14e75d8e | 821 | /* The smallest value in the domain of TYPE, a discrete type, as an integer. */ |
43bbcdc2 PH |
822 | LONGEST |
823 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 824 | { |
c3345124 | 825 | type = resolve_dynamic_type (type, NULL, 0); |
76a01679 | 826 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
827 | { |
828 | case TYPE_CODE_RANGE: | |
690cc4eb | 829 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 830 | case TYPE_CODE_ENUM: |
14e75d8e | 831 | return TYPE_FIELD_ENUMVAL (type, 0); |
690cc4eb PH |
832 | case TYPE_CODE_BOOL: |
833 | return 0; | |
834 | case TYPE_CODE_CHAR: | |
76a01679 | 835 | case TYPE_CODE_INT: |
690cc4eb | 836 | return min_of_type (type); |
4c4b4cd2 | 837 | default: |
43bbcdc2 | 838 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
839 | } |
840 | } | |
841 | ||
842 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 843 | non-range scalar type. */ |
4c4b4cd2 PH |
844 | |
845 | static struct type * | |
18af8284 | 846 | get_base_type (struct type *type) |
4c4b4cd2 PH |
847 | { |
848 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
849 | { | |
76a01679 JB |
850 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
851 | return type; | |
4c4b4cd2 PH |
852 | type = TYPE_TARGET_TYPE (type); |
853 | } | |
854 | return type; | |
14f9c5c9 | 855 | } |
41246937 JB |
856 | |
857 | /* Return a decoded version of the given VALUE. This means returning | |
858 | a value whose type is obtained by applying all the GNAT-specific | |
859 | encondings, making the resulting type a static but standard description | |
860 | of the initial type. */ | |
861 | ||
862 | struct value * | |
863 | ada_get_decoded_value (struct value *value) | |
864 | { | |
865 | struct type *type = ada_check_typedef (value_type (value)); | |
866 | ||
867 | if (ada_is_array_descriptor_type (type) | |
868 | || (ada_is_constrained_packed_array_type (type) | |
869 | && TYPE_CODE (type) != TYPE_CODE_PTR)) | |
870 | { | |
871 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */ | |
872 | value = ada_coerce_to_simple_array_ptr (value); | |
873 | else | |
874 | value = ada_coerce_to_simple_array (value); | |
875 | } | |
876 | else | |
877 | value = ada_to_fixed_value (value); | |
878 | ||
879 | return value; | |
880 | } | |
881 | ||
882 | /* Same as ada_get_decoded_value, but with the given TYPE. | |
883 | Because there is no associated actual value for this type, | |
884 | the resulting type might be a best-effort approximation in | |
885 | the case of dynamic types. */ | |
886 | ||
887 | struct type * | |
888 | ada_get_decoded_type (struct type *type) | |
889 | { | |
890 | type = to_static_fixed_type (type); | |
891 | if (ada_is_constrained_packed_array_type (type)) | |
892 | type = ada_coerce_to_simple_array_type (type); | |
893 | return type; | |
894 | } | |
895 | ||
4c4b4cd2 | 896 | \f |
76a01679 | 897 | |
4c4b4cd2 | 898 | /* Language Selection */ |
14f9c5c9 AS |
899 | |
900 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 901 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 902 | |
14f9c5c9 | 903 | enum language |
ccefe4c4 | 904 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 905 | { |
d2e4a39e | 906 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
3b7344d5 | 907 | (struct objfile *) NULL).minsym != NULL) |
4c4b4cd2 | 908 | return language_ada; |
14f9c5c9 AS |
909 | |
910 | return lang; | |
911 | } | |
96d887e8 PH |
912 | |
913 | /* If the main procedure is written in Ada, then return its name. | |
914 | The result is good until the next call. Return NULL if the main | |
915 | procedure doesn't appear to be in Ada. */ | |
916 | ||
917 | char * | |
918 | ada_main_name (void) | |
919 | { | |
3b7344d5 | 920 | struct bound_minimal_symbol msym; |
e83e4e24 | 921 | static gdb::unique_xmalloc_ptr<char> main_program_name; |
6c038f32 | 922 | |
96d887e8 PH |
923 | /* For Ada, the name of the main procedure is stored in a specific |
924 | string constant, generated by the binder. Look for that symbol, | |
925 | extract its address, and then read that string. If we didn't find | |
926 | that string, then most probably the main procedure is not written | |
927 | in Ada. */ | |
928 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
929 | ||
3b7344d5 | 930 | if (msym.minsym != NULL) |
96d887e8 | 931 | { |
f9bc20b9 JB |
932 | CORE_ADDR main_program_name_addr; |
933 | int err_code; | |
934 | ||
77e371c0 | 935 | main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym); |
96d887e8 | 936 | if (main_program_name_addr == 0) |
323e0a4a | 937 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 938 | |
f9bc20b9 JB |
939 | target_read_string (main_program_name_addr, &main_program_name, |
940 | 1024, &err_code); | |
941 | ||
942 | if (err_code != 0) | |
943 | return NULL; | |
e83e4e24 | 944 | return main_program_name.get (); |
96d887e8 PH |
945 | } |
946 | ||
947 | /* The main procedure doesn't seem to be in Ada. */ | |
948 | return NULL; | |
949 | } | |
14f9c5c9 | 950 | \f |
4c4b4cd2 | 951 | /* Symbols */ |
d2e4a39e | 952 | |
4c4b4cd2 PH |
953 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
954 | of NULLs. */ | |
14f9c5c9 | 955 | |
d2e4a39e AS |
956 | const struct ada_opname_map ada_opname_table[] = { |
957 | {"Oadd", "\"+\"", BINOP_ADD}, | |
958 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
959 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
960 | {"Odivide", "\"/\"", BINOP_DIV}, | |
961 | {"Omod", "\"mod\"", BINOP_MOD}, | |
962 | {"Orem", "\"rem\"", BINOP_REM}, | |
963 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
964 | {"Olt", "\"<\"", BINOP_LESS}, | |
965 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
966 | {"Ogt", "\">\"", BINOP_GTR}, | |
967 | {"Oge", "\">=\"", BINOP_GEQ}, | |
968 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
969 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
970 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
971 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
972 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
973 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
974 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
975 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
976 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
977 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
978 | {NULL, NULL} | |
14f9c5c9 AS |
979 | }; |
980 | ||
b5ec771e PA |
981 | /* The "encoded" form of DECODED, according to GNAT conventions. The |
982 | result is valid until the next call to ada_encode. If | |
983 | THROW_ERRORS, throw an error if invalid operator name is found. | |
984 | Otherwise, return NULL in that case. */ | |
4c4b4cd2 | 985 | |
b5ec771e PA |
986 | static char * |
987 | ada_encode_1 (const char *decoded, bool throw_errors) | |
14f9c5c9 | 988 | { |
4c4b4cd2 PH |
989 | static char *encoding_buffer = NULL; |
990 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 991 | const char *p; |
14f9c5c9 | 992 | int k; |
d2e4a39e | 993 | |
4c4b4cd2 | 994 | if (decoded == NULL) |
14f9c5c9 AS |
995 | return NULL; |
996 | ||
4c4b4cd2 PH |
997 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
998 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
999 | |
1000 | k = 0; | |
4c4b4cd2 | 1001 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 1002 | { |
cdc7bb92 | 1003 | if (*p == '.') |
4c4b4cd2 PH |
1004 | { |
1005 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
1006 | k += 2; | |
1007 | } | |
14f9c5c9 | 1008 | else if (*p == '"') |
4c4b4cd2 PH |
1009 | { |
1010 | const struct ada_opname_map *mapping; | |
1011 | ||
1012 | for (mapping = ada_opname_table; | |
1265e4aa | 1013 | mapping->encoded != NULL |
61012eef | 1014 | && !startswith (p, mapping->decoded); mapping += 1) |
4c4b4cd2 PH |
1015 | ; |
1016 | if (mapping->encoded == NULL) | |
b5ec771e PA |
1017 | { |
1018 | if (throw_errors) | |
1019 | error (_("invalid Ada operator name: %s"), p); | |
1020 | else | |
1021 | return NULL; | |
1022 | } | |
4c4b4cd2 PH |
1023 | strcpy (encoding_buffer + k, mapping->encoded); |
1024 | k += strlen (mapping->encoded); | |
1025 | break; | |
1026 | } | |
d2e4a39e | 1027 | else |
4c4b4cd2 PH |
1028 | { |
1029 | encoding_buffer[k] = *p; | |
1030 | k += 1; | |
1031 | } | |
14f9c5c9 AS |
1032 | } |
1033 | ||
4c4b4cd2 PH |
1034 | encoding_buffer[k] = '\0'; |
1035 | return encoding_buffer; | |
14f9c5c9 AS |
1036 | } |
1037 | ||
b5ec771e PA |
1038 | /* The "encoded" form of DECODED, according to GNAT conventions. |
1039 | The result is valid until the next call to ada_encode. */ | |
1040 | ||
1041 | char * | |
1042 | ada_encode (const char *decoded) | |
1043 | { | |
1044 | return ada_encode_1 (decoded, true); | |
1045 | } | |
1046 | ||
14f9c5c9 | 1047 | /* Return NAME folded to lower case, or, if surrounded by single |
4c4b4cd2 PH |
1048 | quotes, unfolded, but with the quotes stripped away. Result good |
1049 | to next call. */ | |
1050 | ||
d2e4a39e AS |
1051 | char * |
1052 | ada_fold_name (const char *name) | |
14f9c5c9 | 1053 | { |
d2e4a39e | 1054 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
1055 | static size_t fold_buffer_size = 0; |
1056 | ||
1057 | int len = strlen (name); | |
d2e4a39e | 1058 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
1059 | |
1060 | if (name[0] == '\'') | |
1061 | { | |
d2e4a39e AS |
1062 | strncpy (fold_buffer, name + 1, len - 2); |
1063 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
1064 | } |
1065 | else | |
1066 | { | |
1067 | int i; | |
5b4ee69b | 1068 | |
14f9c5c9 | 1069 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 1070 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
1071 | } |
1072 | ||
1073 | return fold_buffer; | |
1074 | } | |
1075 | ||
529cad9c PH |
1076 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
1077 | ||
1078 | static int | |
1079 | is_lower_alphanum (const char c) | |
1080 | { | |
1081 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
1082 | } | |
1083 | ||
c90092fe JB |
1084 | /* ENCODED is the linkage name of a symbol and LEN contains its length. |
1085 | This function saves in LEN the length of that same symbol name but | |
1086 | without either of these suffixes: | |
29480c32 JB |
1087 | . .{DIGIT}+ |
1088 | . ${DIGIT}+ | |
1089 | . ___{DIGIT}+ | |
1090 | . __{DIGIT}+. | |
c90092fe | 1091 | |
29480c32 JB |
1092 | These are suffixes introduced by the compiler for entities such as |
1093 | nested subprogram for instance, in order to avoid name clashes. | |
1094 | They do not serve any purpose for the debugger. */ | |
1095 | ||
1096 | static void | |
1097 | ada_remove_trailing_digits (const char *encoded, int *len) | |
1098 | { | |
1099 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
1100 | { | |
1101 | int i = *len - 2; | |
5b4ee69b | 1102 | |
29480c32 JB |
1103 | while (i > 0 && isdigit (encoded[i])) |
1104 | i--; | |
1105 | if (i >= 0 && encoded[i] == '.') | |
1106 | *len = i; | |
1107 | else if (i >= 0 && encoded[i] == '$') | |
1108 | *len = i; | |
61012eef | 1109 | else if (i >= 2 && startswith (encoded + i - 2, "___")) |
29480c32 | 1110 | *len = i - 2; |
61012eef | 1111 | else if (i >= 1 && startswith (encoded + i - 1, "__")) |
29480c32 JB |
1112 | *len = i - 1; |
1113 | } | |
1114 | } | |
1115 | ||
1116 | /* Remove the suffix introduced by the compiler for protected object | |
1117 | subprograms. */ | |
1118 | ||
1119 | static void | |
1120 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
1121 | { | |
1122 | /* Remove trailing N. */ | |
1123 | ||
1124 | /* Protected entry subprograms are broken into two | |
1125 | separate subprograms: The first one is unprotected, and has | |
1126 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 1127 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
1128 | the protection. Since the P subprograms are internally generated, |
1129 | we leave these names undecoded, giving the user a clue that this | |
1130 | entity is internal. */ | |
1131 | ||
1132 | if (*len > 1 | |
1133 | && encoded[*len - 1] == 'N' | |
1134 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
1135 | *len = *len - 1; | |
1136 | } | |
1137 | ||
69fadcdf JB |
1138 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
1139 | ||
1140 | static void | |
1141 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
1142 | { | |
1143 | int i = *len - 1; | |
1144 | ||
1145 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
1146 | i--; | |
1147 | ||
1148 | if (encoded[i] != 'X') | |
1149 | return; | |
1150 | ||
1151 | if (i == 0) | |
1152 | return; | |
1153 | ||
1154 | if (isalnum (encoded[i-1])) | |
1155 | *len = i; | |
1156 | } | |
1157 | ||
29480c32 JB |
1158 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
1159 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
1160 | replaced by ENCODED. | |
14f9c5c9 | 1161 | |
4c4b4cd2 | 1162 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 1163 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
1164 | is returned. */ |
1165 | ||
1166 | const char * | |
1167 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
1168 | { |
1169 | int i, j; | |
1170 | int len0; | |
d2e4a39e | 1171 | const char *p; |
4c4b4cd2 | 1172 | char *decoded; |
14f9c5c9 | 1173 | int at_start_name; |
4c4b4cd2 PH |
1174 | static char *decoding_buffer = NULL; |
1175 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 1176 | |
0d81f350 JG |
1177 | /* With function descriptors on PPC64, the value of a symbol named |
1178 | ".FN", if it exists, is the entry point of the function "FN". */ | |
1179 | if (encoded[0] == '.') | |
1180 | encoded += 1; | |
1181 | ||
29480c32 JB |
1182 | /* The name of the Ada main procedure starts with "_ada_". |
1183 | This prefix is not part of the decoded name, so skip this part | |
1184 | if we see this prefix. */ | |
61012eef | 1185 | if (startswith (encoded, "_ada_")) |
4c4b4cd2 | 1186 | encoded += 5; |
14f9c5c9 | 1187 | |
29480c32 JB |
1188 | /* If the name starts with '_', then it is not a properly encoded |
1189 | name, so do not attempt to decode it. Similarly, if the name | |
1190 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 1191 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1192 | goto Suppress; |
1193 | ||
4c4b4cd2 | 1194 | len0 = strlen (encoded); |
4c4b4cd2 | 1195 | |
29480c32 JB |
1196 | ada_remove_trailing_digits (encoded, &len0); |
1197 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1198 | |
4c4b4cd2 PH |
1199 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1200 | the suffix is located before the current "end" of ENCODED. We want | |
1201 | to avoid re-matching parts of ENCODED that have previously been | |
1202 | marked as discarded (by decrementing LEN0). */ | |
1203 | p = strstr (encoded, "___"); | |
1204 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1205 | { |
1206 | if (p[3] == 'X') | |
4c4b4cd2 | 1207 | len0 = p - encoded; |
14f9c5c9 | 1208 | else |
4c4b4cd2 | 1209 | goto Suppress; |
14f9c5c9 | 1210 | } |
4c4b4cd2 | 1211 | |
29480c32 JB |
1212 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1213 | is for the body of a task, but that information does not actually | |
1214 | appear in the decoded name. */ | |
1215 | ||
61012eef | 1216 | if (len0 > 3 && startswith (encoded + len0 - 3, "TKB")) |
14f9c5c9 | 1217 | len0 -= 3; |
76a01679 | 1218 | |
a10967fa JB |
1219 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1220 | from the TKB suffix because it is used for non-anonymous task | |
1221 | bodies. */ | |
1222 | ||
61012eef | 1223 | if (len0 > 2 && startswith (encoded + len0 - 2, "TB")) |
a10967fa JB |
1224 | len0 -= 2; |
1225 | ||
29480c32 JB |
1226 | /* Remove trailing "B" suffixes. */ |
1227 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1228 | ||
61012eef | 1229 | if (len0 > 1 && startswith (encoded + len0 - 1, "B")) |
14f9c5c9 AS |
1230 | len0 -= 1; |
1231 | ||
4c4b4cd2 | 1232 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1233 | |
4c4b4cd2 PH |
1234 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
1235 | decoded = decoding_buffer; | |
14f9c5c9 | 1236 | |
29480c32 JB |
1237 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1238 | ||
4c4b4cd2 | 1239 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1240 | { |
4c4b4cd2 PH |
1241 | i = len0 - 2; |
1242 | while ((i >= 0 && isdigit (encoded[i])) | |
1243 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1244 | i -= 1; | |
1245 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1246 | len0 = i - 1; | |
1247 | else if (encoded[i] == '$') | |
1248 | len0 = i; | |
d2e4a39e | 1249 | } |
14f9c5c9 | 1250 | |
29480c32 JB |
1251 | /* The first few characters that are not alphabetic are not part |
1252 | of any encoding we use, so we can copy them over verbatim. */ | |
1253 | ||
4c4b4cd2 PH |
1254 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1255 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1256 | |
1257 | at_start_name = 1; | |
1258 | while (i < len0) | |
1259 | { | |
29480c32 | 1260 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1261 | if (at_start_name && encoded[i] == 'O') |
1262 | { | |
1263 | int k; | |
5b4ee69b | 1264 | |
4c4b4cd2 PH |
1265 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1266 | { | |
1267 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1268 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1269 | op_len - 1) == 0) | |
1270 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1271 | { |
1272 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1273 | at_start_name = 0; | |
1274 | i += op_len; | |
1275 | j += strlen (ada_opname_table[k].decoded); | |
1276 | break; | |
1277 | } | |
1278 | } | |
1279 | if (ada_opname_table[k].encoded != NULL) | |
1280 | continue; | |
1281 | } | |
14f9c5c9 AS |
1282 | at_start_name = 0; |
1283 | ||
529cad9c PH |
1284 | /* Replace "TK__" with "__", which will eventually be translated |
1285 | into "." (just below). */ | |
1286 | ||
61012eef | 1287 | if (i < len0 - 4 && startswith (encoded + i, "TK__")) |
4c4b4cd2 | 1288 | i += 2; |
529cad9c | 1289 | |
29480c32 JB |
1290 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1291 | be translated into "." (just below). These are internal names | |
1292 | generated for anonymous blocks inside which our symbol is nested. */ | |
1293 | ||
1294 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1295 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1296 | && isdigit (encoded [i+4])) | |
1297 | { | |
1298 | int k = i + 5; | |
1299 | ||
1300 | while (k < len0 && isdigit (encoded[k])) | |
1301 | k++; /* Skip any extra digit. */ | |
1302 | ||
1303 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1304 | is indeed followed by "__". */ | |
1305 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1306 | i = k; | |
1307 | } | |
1308 | ||
529cad9c PH |
1309 | /* Remove _E{DIGITS}+[sb] */ |
1310 | ||
1311 | /* Just as for protected object subprograms, there are 2 categories | |
0963b4bd | 1312 | of subprograms created by the compiler for each entry. The first |
529cad9c PH |
1313 | one implements the actual entry code, and has a suffix following |
1314 | the convention above; the second one implements the barrier and | |
1315 | uses the same convention as above, except that the 'E' is replaced | |
1316 | by a 'B'. | |
1317 | ||
1318 | Just as above, we do not decode the name of barrier functions | |
1319 | to give the user a clue that the code he is debugging has been | |
1320 | internally generated. */ | |
1321 | ||
1322 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1323 | && isdigit (encoded[i+2])) | |
1324 | { | |
1325 | int k = i + 3; | |
1326 | ||
1327 | while (k < len0 && isdigit (encoded[k])) | |
1328 | k++; | |
1329 | ||
1330 | if (k < len0 | |
1331 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1332 | { | |
1333 | k++; | |
1334 | /* Just as an extra precaution, make sure that if this | |
1335 | suffix is followed by anything else, it is a '_'. | |
1336 | Otherwise, we matched this sequence by accident. */ | |
1337 | if (k == len0 | |
1338 | || (k < len0 && encoded[k] == '_')) | |
1339 | i = k; | |
1340 | } | |
1341 | } | |
1342 | ||
1343 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1344 | the GNAT front-end in protected object subprograms. */ | |
1345 | ||
1346 | if (i < len0 + 3 | |
1347 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1348 | { | |
1349 | /* Backtrack a bit up until we reach either the begining of | |
1350 | the encoded name, or "__". Make sure that we only find | |
1351 | digits or lowercase characters. */ | |
1352 | const char *ptr = encoded + i - 1; | |
1353 | ||
1354 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1355 | ptr--; | |
1356 | if (ptr < encoded | |
1357 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1358 | i++; | |
1359 | } | |
1360 | ||
4c4b4cd2 PH |
1361 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1362 | { | |
29480c32 JB |
1363 | /* This is a X[bn]* sequence not separated from the previous |
1364 | part of the name with a non-alpha-numeric character (in other | |
1365 | words, immediately following an alpha-numeric character), then | |
1366 | verify that it is placed at the end of the encoded name. If | |
1367 | not, then the encoding is not valid and we should abort the | |
1368 | decoding. Otherwise, just skip it, it is used in body-nested | |
1369 | package names. */ | |
4c4b4cd2 PH |
1370 | do |
1371 | i += 1; | |
1372 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1373 | if (i < len0) | |
1374 | goto Suppress; | |
1375 | } | |
cdc7bb92 | 1376 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1377 | { |
29480c32 | 1378 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1379 | decoded[j] = '.'; |
1380 | at_start_name = 1; | |
1381 | i += 2; | |
1382 | j += 1; | |
1383 | } | |
14f9c5c9 | 1384 | else |
4c4b4cd2 | 1385 | { |
29480c32 JB |
1386 | /* It's a character part of the decoded name, so just copy it |
1387 | over. */ | |
4c4b4cd2 PH |
1388 | decoded[j] = encoded[i]; |
1389 | i += 1; | |
1390 | j += 1; | |
1391 | } | |
14f9c5c9 | 1392 | } |
4c4b4cd2 | 1393 | decoded[j] = '\000'; |
14f9c5c9 | 1394 | |
29480c32 JB |
1395 | /* Decoded names should never contain any uppercase character. |
1396 | Double-check this, and abort the decoding if we find one. */ | |
1397 | ||
4c4b4cd2 PH |
1398 | for (i = 0; decoded[i] != '\0'; i += 1) |
1399 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1400 | goto Suppress; |
1401 | ||
4c4b4cd2 PH |
1402 | if (strcmp (decoded, encoded) == 0) |
1403 | return encoded; | |
1404 | else | |
1405 | return decoded; | |
14f9c5c9 AS |
1406 | |
1407 | Suppress: | |
4c4b4cd2 PH |
1408 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1409 | decoded = decoding_buffer; | |
1410 | if (encoded[0] == '<') | |
1411 | strcpy (decoded, encoded); | |
14f9c5c9 | 1412 | else |
88c15c34 | 1413 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1414 | return decoded; |
1415 | ||
1416 | } | |
1417 | ||
1418 | /* Table for keeping permanent unique copies of decoded names. Once | |
1419 | allocated, names in this table are never released. While this is a | |
1420 | storage leak, it should not be significant unless there are massive | |
1421 | changes in the set of decoded names in successive versions of a | |
1422 | symbol table loaded during a single session. */ | |
1423 | static struct htab *decoded_names_store; | |
1424 | ||
1425 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1426 | in the language-specific part of GSYMBOL, if it has not been | |
1427 | previously computed. Tries to save the decoded name in the same | |
1428 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1429 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1430 | GSYMBOL). |
4c4b4cd2 PH |
1431 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1432 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1433 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1434 | |
45e6c716 | 1435 | const char * |
f85f34ed | 1436 | ada_decode_symbol (const struct general_symbol_info *arg) |
4c4b4cd2 | 1437 | { |
f85f34ed TT |
1438 | struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg; |
1439 | const char **resultp = | |
615b3f62 | 1440 | &gsymbol->language_specific.demangled_name; |
5b4ee69b | 1441 | |
f85f34ed | 1442 | if (!gsymbol->ada_mangled) |
4c4b4cd2 PH |
1443 | { |
1444 | const char *decoded = ada_decode (gsymbol->name); | |
f85f34ed | 1445 | struct obstack *obstack = gsymbol->language_specific.obstack; |
5b4ee69b | 1446 | |
f85f34ed | 1447 | gsymbol->ada_mangled = 1; |
5b4ee69b | 1448 | |
f85f34ed | 1449 | if (obstack != NULL) |
224c3ddb SM |
1450 | *resultp |
1451 | = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded)); | |
f85f34ed | 1452 | else |
76a01679 | 1453 | { |
f85f34ed TT |
1454 | /* Sometimes, we can't find a corresponding objfile, in |
1455 | which case, we put the result on the heap. Since we only | |
1456 | decode when needed, we hope this usually does not cause a | |
1457 | significant memory leak (FIXME). */ | |
1458 | ||
76a01679 JB |
1459 | char **slot = (char **) htab_find_slot (decoded_names_store, |
1460 | decoded, INSERT); | |
5b4ee69b | 1461 | |
76a01679 JB |
1462 | if (*slot == NULL) |
1463 | *slot = xstrdup (decoded); | |
1464 | *resultp = *slot; | |
1465 | } | |
4c4b4cd2 | 1466 | } |
14f9c5c9 | 1467 | |
4c4b4cd2 PH |
1468 | return *resultp; |
1469 | } | |
76a01679 | 1470 | |
2c0b251b | 1471 | static char * |
76a01679 | 1472 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1473 | { |
1474 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1475 | } |
1476 | ||
8b302db8 TT |
1477 | /* Implement la_sniff_from_mangled_name for Ada. */ |
1478 | ||
1479 | static int | |
1480 | ada_sniff_from_mangled_name (const char *mangled, char **out) | |
1481 | { | |
1482 | const char *demangled = ada_decode (mangled); | |
1483 | ||
1484 | *out = NULL; | |
1485 | ||
1486 | if (demangled != mangled && demangled != NULL && demangled[0] != '<') | |
1487 | { | |
1488 | /* Set the gsymbol language to Ada, but still return 0. | |
1489 | Two reasons for that: | |
1490 | ||
1491 | 1. For Ada, we prefer computing the symbol's decoded name | |
1492 | on the fly rather than pre-compute it, in order to save | |
1493 | memory (Ada projects are typically very large). | |
1494 | ||
1495 | 2. There are some areas in the definition of the GNAT | |
1496 | encoding where, with a bit of bad luck, we might be able | |
1497 | to decode a non-Ada symbol, generating an incorrect | |
1498 | demangled name (Eg: names ending with "TB" for instance | |
1499 | are identified as task bodies and so stripped from | |
1500 | the decoded name returned). | |
1501 | ||
1502 | Returning 1, here, but not setting *DEMANGLED, helps us get a | |
1503 | little bit of the best of both worlds. Because we're last, | |
1504 | we should not affect any of the other languages that were | |
1505 | able to demangle the symbol before us; we get to correctly | |
1506 | tag Ada symbols as such; and even if we incorrectly tagged a | |
1507 | non-Ada symbol, which should be rare, any routing through the | |
1508 | Ada language should be transparent (Ada tries to behave much | |
1509 | like C/C++ with non-Ada symbols). */ | |
1510 | return 1; | |
1511 | } | |
1512 | ||
1513 | return 0; | |
1514 | } | |
1515 | ||
14f9c5c9 | 1516 | \f |
d2e4a39e | 1517 | |
4c4b4cd2 | 1518 | /* Arrays */ |
14f9c5c9 | 1519 | |
28c85d6c JB |
1520 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1521 | generated by the GNAT compiler to describe the index type used | |
1522 | for each dimension of an array, check whether it follows the latest | |
1523 | known encoding. If not, fix it up to conform to the latest encoding. | |
1524 | Otherwise, do nothing. This function also does nothing if | |
1525 | INDEX_DESC_TYPE is NULL. | |
1526 | ||
1527 | The GNAT encoding used to describle the array index type evolved a bit. | |
1528 | Initially, the information would be provided through the name of each | |
1529 | field of the structure type only, while the type of these fields was | |
1530 | described as unspecified and irrelevant. The debugger was then expected | |
1531 | to perform a global type lookup using the name of that field in order | |
1532 | to get access to the full index type description. Because these global | |
1533 | lookups can be very expensive, the encoding was later enhanced to make | |
1534 | the global lookup unnecessary by defining the field type as being | |
1535 | the full index type description. | |
1536 | ||
1537 | The purpose of this routine is to allow us to support older versions | |
1538 | of the compiler by detecting the use of the older encoding, and by | |
1539 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1540 | we essentially replace each field's meaningless type by the associated | |
1541 | index subtype). */ | |
1542 | ||
1543 | void | |
1544 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1545 | { | |
1546 | int i; | |
1547 | ||
1548 | if (index_desc_type == NULL) | |
1549 | return; | |
1550 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1551 | ||
1552 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1553 | to check one field only, no need to check them all). If not, return | |
1554 | now. | |
1555 | ||
1556 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1557 | the field type should be a meaningless integer type whose name | |
1558 | is not equal to the field name. */ | |
1559 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1560 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1561 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1562 | return; | |
1563 | ||
1564 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1565 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1566 | { | |
0d5cff50 | 1567 | const char *name = TYPE_FIELD_NAME (index_desc_type, i); |
28c85d6c JB |
1568 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); |
1569 | ||
1570 | if (raw_type) | |
1571 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1572 | } | |
1573 | } | |
1574 | ||
4c4b4cd2 | 1575 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1576 | |
a121b7c1 | 1577 | static const char *bound_name[] = { |
d2e4a39e | 1578 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", |
14f9c5c9 AS |
1579 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1580 | }; | |
1581 | ||
1582 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1583 | ||
4c4b4cd2 | 1584 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1585 | |
14f9c5c9 | 1586 | |
4c4b4cd2 PH |
1587 | /* The desc_* routines return primitive portions of array descriptors |
1588 | (fat pointers). */ | |
14f9c5c9 AS |
1589 | |
1590 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1591 | level of indirection, if needed. */ |
1592 | ||
d2e4a39e AS |
1593 | static struct type * |
1594 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1595 | { |
1596 | if (type == NULL) | |
1597 | return NULL; | |
61ee279c | 1598 | type = ada_check_typedef (type); |
720d1a40 JB |
1599 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1600 | type = ada_typedef_target_type (type); | |
1601 | ||
1265e4aa JB |
1602 | if (type != NULL |
1603 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1604 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1605 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1606 | else |
1607 | return type; | |
1608 | } | |
1609 | ||
4c4b4cd2 PH |
1610 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1611 | ||
14f9c5c9 | 1612 | static int |
d2e4a39e | 1613 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1614 | { |
d2e4a39e | 1615 | return |
14f9c5c9 AS |
1616 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1617 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1618 | } | |
1619 | ||
4c4b4cd2 PH |
1620 | /* The descriptor type for thin pointer type TYPE. */ |
1621 | ||
d2e4a39e AS |
1622 | static struct type * |
1623 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1624 | { |
d2e4a39e | 1625 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1626 | |
14f9c5c9 AS |
1627 | if (base_type == NULL) |
1628 | return NULL; | |
1629 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1630 | return base_type; | |
d2e4a39e | 1631 | else |
14f9c5c9 | 1632 | { |
d2e4a39e | 1633 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1634 | |
14f9c5c9 | 1635 | if (alt_type == NULL) |
4c4b4cd2 | 1636 | return base_type; |
14f9c5c9 | 1637 | else |
4c4b4cd2 | 1638 | return alt_type; |
14f9c5c9 AS |
1639 | } |
1640 | } | |
1641 | ||
4c4b4cd2 PH |
1642 | /* A pointer to the array data for thin-pointer value VAL. */ |
1643 | ||
d2e4a39e AS |
1644 | static struct value * |
1645 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1646 | { |
828292f2 | 1647 | struct type *type = ada_check_typedef (value_type (val)); |
556bdfd4 | 1648 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1649 | |
556bdfd4 UW |
1650 | data_type = lookup_pointer_type (data_type); |
1651 | ||
14f9c5c9 | 1652 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1653 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1654 | else |
42ae5230 | 1655 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1656 | } |
1657 | ||
4c4b4cd2 PH |
1658 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1659 | ||
14f9c5c9 | 1660 | static int |
d2e4a39e | 1661 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1662 | { |
1663 | type = desc_base_type (type); | |
1664 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1665 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1666 | } |
1667 | ||
4c4b4cd2 PH |
1668 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1669 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1670 | |
d2e4a39e AS |
1671 | static struct type * |
1672 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1673 | { |
d2e4a39e | 1674 | struct type *r; |
14f9c5c9 AS |
1675 | |
1676 | type = desc_base_type (type); | |
1677 | ||
1678 | if (type == NULL) | |
1679 | return NULL; | |
1680 | else if (is_thin_pntr (type)) | |
1681 | { | |
1682 | type = thin_descriptor_type (type); | |
1683 | if (type == NULL) | |
4c4b4cd2 | 1684 | return NULL; |
14f9c5c9 AS |
1685 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1686 | if (r != NULL) | |
61ee279c | 1687 | return ada_check_typedef (r); |
14f9c5c9 AS |
1688 | } |
1689 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1690 | { | |
1691 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1692 | if (r != NULL) | |
61ee279c | 1693 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1694 | } |
1695 | return NULL; | |
1696 | } | |
1697 | ||
1698 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1699 | one, a pointer to its bounds data. Otherwise NULL. */ |
1700 | ||
d2e4a39e AS |
1701 | static struct value * |
1702 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1703 | { |
df407dfe | 1704 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1705 | |
d2e4a39e | 1706 | if (is_thin_pntr (type)) |
14f9c5c9 | 1707 | { |
d2e4a39e | 1708 | struct type *bounds_type = |
4c4b4cd2 | 1709 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1710 | LONGEST addr; |
1711 | ||
4cdfadb1 | 1712 | if (bounds_type == NULL) |
323e0a4a | 1713 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1714 | |
1715 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1716 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1717 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1718 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1719 | addr = value_as_long (arr); |
d2e4a39e | 1720 | else |
42ae5230 | 1721 | addr = value_address (arr); |
14f9c5c9 | 1722 | |
d2e4a39e | 1723 | return |
4c4b4cd2 PH |
1724 | value_from_longest (lookup_pointer_type (bounds_type), |
1725 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1726 | } |
1727 | ||
1728 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1729 | { |
1730 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1731 | _("Bad GNAT array descriptor")); | |
1732 | struct type *p_bounds_type = value_type (p_bounds); | |
1733 | ||
1734 | if (p_bounds_type | |
1735 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1736 | { | |
1737 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1738 | ||
1739 | if (TYPE_STUB (target_type)) | |
1740 | p_bounds = value_cast (lookup_pointer_type | |
1741 | (ada_check_typedef (target_type)), | |
1742 | p_bounds); | |
1743 | } | |
1744 | else | |
1745 | error (_("Bad GNAT array descriptor")); | |
1746 | ||
1747 | return p_bounds; | |
1748 | } | |
14f9c5c9 AS |
1749 | else |
1750 | return NULL; | |
1751 | } | |
1752 | ||
4c4b4cd2 PH |
1753 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1754 | position of the field containing the address of the bounds data. */ | |
1755 | ||
14f9c5c9 | 1756 | static int |
d2e4a39e | 1757 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1758 | { |
1759 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1760 | } | |
1761 | ||
1762 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1763 | size of the field containing the address of the bounds data. */ |
1764 | ||
14f9c5c9 | 1765 | static int |
d2e4a39e | 1766 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1767 | { |
1768 | type = desc_base_type (type); | |
1769 | ||
d2e4a39e | 1770 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1771 | return TYPE_FIELD_BITSIZE (type, 1); |
1772 | else | |
61ee279c | 1773 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1774 | } |
1775 | ||
4c4b4cd2 | 1776 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1777 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1778 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1779 | data. */ | |
4c4b4cd2 | 1780 | |
d2e4a39e | 1781 | static struct type * |
556bdfd4 | 1782 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1783 | { |
1784 | type = desc_base_type (type); | |
1785 | ||
4c4b4cd2 | 1786 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1787 | if (is_thin_pntr (type)) |
556bdfd4 | 1788 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1789 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1790 | { |
1791 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1792 | ||
1793 | if (data_type | |
1794 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1795 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1796 | } |
1797 | ||
1798 | return NULL; | |
14f9c5c9 AS |
1799 | } |
1800 | ||
1801 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1802 | its array data. */ | |
4c4b4cd2 | 1803 | |
d2e4a39e AS |
1804 | static struct value * |
1805 | desc_data (struct value *arr) | |
14f9c5c9 | 1806 | { |
df407dfe | 1807 | struct type *type = value_type (arr); |
5b4ee69b | 1808 | |
14f9c5c9 AS |
1809 | if (is_thin_pntr (type)) |
1810 | return thin_data_pntr (arr); | |
1811 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1812 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1813 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1814 | else |
1815 | return NULL; | |
1816 | } | |
1817 | ||
1818 | ||
1819 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1820 | position of the field containing the address of the data. */ |
1821 | ||
14f9c5c9 | 1822 | static int |
d2e4a39e | 1823 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1824 | { |
1825 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1826 | } | |
1827 | ||
1828 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1829 | size of the field containing the address of the data. */ |
1830 | ||
14f9c5c9 | 1831 | static int |
d2e4a39e | 1832 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1833 | { |
1834 | type = desc_base_type (type); | |
1835 | ||
1836 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1837 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1838 | else |
14f9c5c9 AS |
1839 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1840 | } | |
1841 | ||
4c4b4cd2 | 1842 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1843 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1844 | bound, if WHICH is 1. The first bound is I=1. */ |
1845 | ||
d2e4a39e AS |
1846 | static struct value * |
1847 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1848 | { |
d2e4a39e | 1849 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1850 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1851 | } |
1852 | ||
1853 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1854 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1855 | bound, if WHICH is 1. The first bound is I=1. */ |
1856 | ||
14f9c5c9 | 1857 | static int |
d2e4a39e | 1858 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1859 | { |
d2e4a39e | 1860 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1861 | } |
1862 | ||
1863 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1864 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1865 | bound, if WHICH is 1. The first bound is I=1. */ |
1866 | ||
76a01679 | 1867 | static int |
d2e4a39e | 1868 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1869 | { |
1870 | type = desc_base_type (type); | |
1871 | ||
d2e4a39e AS |
1872 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1873 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1874 | else | |
1875 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1876 | } |
1877 | ||
1878 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1879 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1880 | ||
d2e4a39e AS |
1881 | static struct type * |
1882 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1883 | { |
1884 | type = desc_base_type (type); | |
1885 | ||
1886 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1887 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1888 | else | |
14f9c5c9 AS |
1889 | return NULL; |
1890 | } | |
1891 | ||
4c4b4cd2 PH |
1892 | /* The number of index positions in the array-bounds type TYPE. |
1893 | Return 0 if TYPE is NULL. */ | |
1894 | ||
14f9c5c9 | 1895 | static int |
d2e4a39e | 1896 | desc_arity (struct type *type) |
14f9c5c9 AS |
1897 | { |
1898 | type = desc_base_type (type); | |
1899 | ||
1900 | if (type != NULL) | |
1901 | return TYPE_NFIELDS (type) / 2; | |
1902 | return 0; | |
1903 | } | |
1904 | ||
4c4b4cd2 PH |
1905 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1906 | an array descriptor type (representing an unconstrained array | |
1907 | type). */ | |
1908 | ||
76a01679 JB |
1909 | static int |
1910 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1911 | { |
1912 | if (type == NULL) | |
1913 | return 0; | |
61ee279c | 1914 | type = ada_check_typedef (type); |
4c4b4cd2 | 1915 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1916 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1917 | } |
1918 | ||
52ce6436 | 1919 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1920 | * to one. */ |
52ce6436 | 1921 | |
2c0b251b | 1922 | static int |
52ce6436 PH |
1923 | ada_is_array_type (struct type *type) |
1924 | { | |
1925 | while (type != NULL | |
1926 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1927 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1928 | type = TYPE_TARGET_TYPE (type); | |
1929 | return ada_is_direct_array_type (type); | |
1930 | } | |
1931 | ||
4c4b4cd2 | 1932 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1933 | |
14f9c5c9 | 1934 | int |
4c4b4cd2 | 1935 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1936 | { |
1937 | if (type == NULL) | |
1938 | return 0; | |
61ee279c | 1939 | type = ada_check_typedef (type); |
14f9c5c9 | 1940 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 | 1941 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
b0dd7688 JB |
1942 | && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))) |
1943 | == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1944 | } |
1945 | ||
4c4b4cd2 PH |
1946 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1947 | ||
14f9c5c9 | 1948 | int |
4c4b4cd2 | 1949 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1950 | { |
556bdfd4 | 1951 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1952 | |
1953 | if (type == NULL) | |
1954 | return 0; | |
61ee279c | 1955 | type = ada_check_typedef (type); |
556bdfd4 UW |
1956 | return (data_type != NULL |
1957 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1958 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1959 | } |
1960 | ||
1961 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1962 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1963 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1964 | is still needed. */ |
1965 | ||
14f9c5c9 | 1966 | int |
ebf56fd3 | 1967 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1968 | { |
d2e4a39e | 1969 | return |
14f9c5c9 AS |
1970 | type != NULL |
1971 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1972 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1973 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1974 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1975 | } |
1976 | ||
1977 | ||
4c4b4cd2 | 1978 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1979 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1980 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1981 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1982 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1983 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1984 | a descriptor. */ |
d2e4a39e AS |
1985 | struct type * |
1986 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1987 | { |
ad82864c JB |
1988 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1989 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1990 | |
df407dfe AC |
1991 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1992 | return value_type (arr); | |
d2e4a39e AS |
1993 | |
1994 | if (!bounds) | |
ad82864c JB |
1995 | { |
1996 | struct type *array_type = | |
1997 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1998 | ||
1999 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
2000 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
2001 | decode_packed_array_bitsize (value_type (arr)); | |
2002 | ||
2003 | return array_type; | |
2004 | } | |
14f9c5c9 AS |
2005 | else |
2006 | { | |
d2e4a39e | 2007 | struct type *elt_type; |
14f9c5c9 | 2008 | int arity; |
d2e4a39e | 2009 | struct value *descriptor; |
14f9c5c9 | 2010 | |
df407dfe AC |
2011 | elt_type = ada_array_element_type (value_type (arr), -1); |
2012 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 2013 | |
d2e4a39e | 2014 | if (elt_type == NULL || arity == 0) |
df407dfe | 2015 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
2016 | |
2017 | descriptor = desc_bounds (arr); | |
d2e4a39e | 2018 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 2019 | return NULL; |
d2e4a39e | 2020 | while (arity > 0) |
4c4b4cd2 | 2021 | { |
e9bb382b UW |
2022 | struct type *range_type = alloc_type_copy (value_type (arr)); |
2023 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
2024 | struct value *low = desc_one_bound (descriptor, arity, 0); |
2025 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 2026 | |
5b4ee69b | 2027 | arity -= 1; |
0c9c3474 SA |
2028 | create_static_range_type (range_type, value_type (low), |
2029 | longest_to_int (value_as_long (low)), | |
2030 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 2031 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
2032 | |
2033 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
2034 | { |
2035 | /* We need to store the element packed bitsize, as well as | |
2036 | recompute the array size, because it was previously | |
2037 | computed based on the unpacked element size. */ | |
2038 | LONGEST lo = value_as_long (low); | |
2039 | LONGEST hi = value_as_long (high); | |
2040 | ||
2041 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
2042 | decode_packed_array_bitsize (value_type (arr)); | |
2043 | /* If the array has no element, then the size is already | |
2044 | zero, and does not need to be recomputed. */ | |
2045 | if (lo < hi) | |
2046 | { | |
2047 | int array_bitsize = | |
2048 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); | |
2049 | ||
2050 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
2051 | } | |
2052 | } | |
4c4b4cd2 | 2053 | } |
14f9c5c9 AS |
2054 | |
2055 | return lookup_pointer_type (elt_type); | |
2056 | } | |
2057 | } | |
2058 | ||
2059 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
2060 | Otherwise, returns either a standard GDB array with bounds set |
2061 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
2062 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
2063 | ||
d2e4a39e AS |
2064 | struct value * |
2065 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 2066 | { |
df407dfe | 2067 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2068 | { |
d2e4a39e | 2069 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 2070 | |
14f9c5c9 | 2071 | if (arrType == NULL) |
4c4b4cd2 | 2072 | return NULL; |
14f9c5c9 AS |
2073 | return value_cast (arrType, value_copy (desc_data (arr))); |
2074 | } | |
ad82864c JB |
2075 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2076 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
2077 | else |
2078 | return arr; | |
2079 | } | |
2080 | ||
2081 | /* If ARR does not represent an array, returns ARR unchanged. | |
2082 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
2083 | be ARR itself if it already is in the proper form). */ |
2084 | ||
720d1a40 | 2085 | struct value * |
d2e4a39e | 2086 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 2087 | { |
df407dfe | 2088 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2089 | { |
d2e4a39e | 2090 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 2091 | |
14f9c5c9 | 2092 | if (arrVal == NULL) |
323e0a4a | 2093 | error (_("Bounds unavailable for null array pointer.")); |
c1b5a1a6 | 2094 | ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
2095 | return value_ind (arrVal); |
2096 | } | |
ad82864c JB |
2097 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2098 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 2099 | else |
14f9c5c9 AS |
2100 | return arr; |
2101 | } | |
2102 | ||
2103 | /* If TYPE represents a GNAT array type, return it translated to an | |
2104 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
2105 | packing). For other types, is the identity. */ |
2106 | ||
d2e4a39e AS |
2107 | struct type * |
2108 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 2109 | { |
ad82864c JB |
2110 | if (ada_is_constrained_packed_array_type (type)) |
2111 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
2112 | |
2113 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 2114 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
2115 | |
2116 | return type; | |
14f9c5c9 AS |
2117 | } |
2118 | ||
4c4b4cd2 PH |
2119 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
2120 | ||
ad82864c JB |
2121 | static int |
2122 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
2123 | { |
2124 | if (type == NULL) | |
2125 | return 0; | |
4c4b4cd2 | 2126 | type = desc_base_type (type); |
61ee279c | 2127 | type = ada_check_typedef (type); |
d2e4a39e | 2128 | return |
14f9c5c9 AS |
2129 | ada_type_name (type) != NULL |
2130 | && strstr (ada_type_name (type), "___XP") != NULL; | |
2131 | } | |
2132 | ||
ad82864c JB |
2133 | /* Non-zero iff TYPE represents a standard GNAT constrained |
2134 | packed-array type. */ | |
2135 | ||
2136 | int | |
2137 | ada_is_constrained_packed_array_type (struct type *type) | |
2138 | { | |
2139 | return ada_is_packed_array_type (type) | |
2140 | && !ada_is_array_descriptor_type (type); | |
2141 | } | |
2142 | ||
2143 | /* Non-zero iff TYPE represents an array descriptor for a | |
2144 | unconstrained packed-array type. */ | |
2145 | ||
2146 | static int | |
2147 | ada_is_unconstrained_packed_array_type (struct type *type) | |
2148 | { | |
2149 | return ada_is_packed_array_type (type) | |
2150 | && ada_is_array_descriptor_type (type); | |
2151 | } | |
2152 | ||
2153 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
2154 | return the size of its elements in bits. */ | |
2155 | ||
2156 | static long | |
2157 | decode_packed_array_bitsize (struct type *type) | |
2158 | { | |
0d5cff50 DE |
2159 | const char *raw_name; |
2160 | const char *tail; | |
ad82864c JB |
2161 | long bits; |
2162 | ||
720d1a40 JB |
2163 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
2164 | of the fat pointer type. We need the name of the fat pointer type | |
2165 | to do the decoding, so strip the typedef layer. */ | |
2166 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
2167 | type = ada_typedef_target_type (type); | |
2168 | ||
2169 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
2170 | if (!raw_name) |
2171 | raw_name = ada_type_name (desc_base_type (type)); | |
2172 | ||
2173 | if (!raw_name) | |
2174 | return 0; | |
2175 | ||
2176 | tail = strstr (raw_name, "___XP"); | |
720d1a40 | 2177 | gdb_assert (tail != NULL); |
ad82864c JB |
2178 | |
2179 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
2180 | { | |
2181 | lim_warning | |
2182 | (_("could not understand bit size information on packed array")); | |
2183 | return 0; | |
2184 | } | |
2185 | ||
2186 | return bits; | |
2187 | } | |
2188 | ||
14f9c5c9 AS |
2189 | /* Given that TYPE is a standard GDB array type with all bounds filled |
2190 | in, and that the element size of its ultimate scalar constituents | |
2191 | (that is, either its elements, or, if it is an array of arrays, its | |
2192 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
2193 | but with the bit sizes of its elements (and those of any | |
2194 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 | 2195 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
4a46959e JB |
2196 | in bits. |
2197 | ||
2198 | Note that, for arrays whose index type has an XA encoding where | |
2199 | a bound references a record discriminant, getting that discriminant, | |
2200 | and therefore the actual value of that bound, is not possible | |
2201 | because none of the given parameters gives us access to the record. | |
2202 | This function assumes that it is OK in the context where it is being | |
2203 | used to return an array whose bounds are still dynamic and where | |
2204 | the length is arbitrary. */ | |
4c4b4cd2 | 2205 | |
d2e4a39e | 2206 | static struct type * |
ad82864c | 2207 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 2208 | { |
d2e4a39e AS |
2209 | struct type *new_elt_type; |
2210 | struct type *new_type; | |
99b1c762 JB |
2211 | struct type *index_type_desc; |
2212 | struct type *index_type; | |
14f9c5c9 AS |
2213 | LONGEST low_bound, high_bound; |
2214 | ||
61ee279c | 2215 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2216 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
2217 | return type; | |
2218 | ||
99b1c762 JB |
2219 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
2220 | if (index_type_desc) | |
2221 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0), | |
2222 | NULL); | |
2223 | else | |
2224 | index_type = TYPE_INDEX_TYPE (type); | |
2225 | ||
e9bb382b | 2226 | new_type = alloc_type_copy (type); |
ad82864c JB |
2227 | new_elt_type = |
2228 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2229 | elt_bits); | |
99b1c762 | 2230 | create_array_type (new_type, new_elt_type, index_type); |
14f9c5c9 AS |
2231 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
2232 | TYPE_NAME (new_type) = ada_type_name (type); | |
2233 | ||
4a46959e JB |
2234 | if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE |
2235 | && is_dynamic_type (check_typedef (index_type))) | |
2236 | || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0) | |
14f9c5c9 AS |
2237 | low_bound = high_bound = 0; |
2238 | if (high_bound < low_bound) | |
2239 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2240 | else |
14f9c5c9 AS |
2241 | { |
2242 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2243 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 2244 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2245 | } |
2246 | ||
876cecd0 | 2247 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
2248 | return new_type; |
2249 | } | |
2250 | ||
ad82864c JB |
2251 | /* The array type encoded by TYPE, where |
2252 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2253 | |
d2e4a39e | 2254 | static struct type * |
ad82864c | 2255 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2256 | { |
0d5cff50 | 2257 | const char *raw_name = ada_type_name (ada_check_typedef (type)); |
727e3d2e | 2258 | char *name; |
0d5cff50 | 2259 | const char *tail; |
d2e4a39e | 2260 | struct type *shadow_type; |
14f9c5c9 | 2261 | long bits; |
14f9c5c9 | 2262 | |
727e3d2e JB |
2263 | if (!raw_name) |
2264 | raw_name = ada_type_name (desc_base_type (type)); | |
2265 | ||
2266 | if (!raw_name) | |
2267 | return NULL; | |
2268 | ||
2269 | name = (char *) alloca (strlen (raw_name) + 1); | |
2270 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2271 | type = desc_base_type (type); |
2272 | ||
14f9c5c9 AS |
2273 | memcpy (name, raw_name, tail - raw_name); |
2274 | name[tail - raw_name] = '\000'; | |
2275 | ||
b4ba55a1 JB |
2276 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2277 | ||
2278 | if (shadow_type == NULL) | |
14f9c5c9 | 2279 | { |
323e0a4a | 2280 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2281 | return NULL; |
2282 | } | |
f168693b | 2283 | shadow_type = check_typedef (shadow_type); |
14f9c5c9 AS |
2284 | |
2285 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2286 | { | |
0963b4bd MS |
2287 | lim_warning (_("could not understand bounds " |
2288 | "information on packed array")); | |
14f9c5c9 AS |
2289 | return NULL; |
2290 | } | |
d2e4a39e | 2291 | |
ad82864c JB |
2292 | bits = decode_packed_array_bitsize (type); |
2293 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2294 | } |
2295 | ||
ad82864c JB |
2296 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2297 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2298 | standard GDB array type except that the BITSIZEs of the array |
2299 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2300 | type length is set appropriately. */ |
14f9c5c9 | 2301 | |
d2e4a39e | 2302 | static struct value * |
ad82864c | 2303 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2304 | { |
4c4b4cd2 | 2305 | struct type *type; |
14f9c5c9 | 2306 | |
11aa919a PMR |
2307 | /* If our value is a pointer, then dereference it. Likewise if |
2308 | the value is a reference. Make sure that this operation does not | |
2309 | cause the target type to be fixed, as this would indirectly cause | |
2310 | this array to be decoded. The rest of the routine assumes that | |
2311 | the array hasn't been decoded yet, so we use the basic "coerce_ref" | |
2312 | and "value_ind" routines to perform the dereferencing, as opposed | |
2313 | to using "ada_coerce_ref" or "ada_value_ind". */ | |
2314 | arr = coerce_ref (arr); | |
828292f2 | 2315 | if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR) |
284614f0 | 2316 | arr = value_ind (arr); |
4c4b4cd2 | 2317 | |
ad82864c | 2318 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2319 | if (type == NULL) |
2320 | { | |
323e0a4a | 2321 | error (_("can't unpack array")); |
14f9c5c9 AS |
2322 | return NULL; |
2323 | } | |
61ee279c | 2324 | |
50810684 | 2325 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 2326 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2327 | { |
2328 | /* This is a (right-justified) modular type representing a packed | |
2329 | array with no wrapper. In order to interpret the value through | |
2330 | the (left-justified) packed array type we just built, we must | |
2331 | first left-justify it. */ | |
2332 | int bit_size, bit_pos; | |
2333 | ULONGEST mod; | |
2334 | ||
df407dfe | 2335 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2336 | bit_size = 0; |
2337 | while (mod > 0) | |
2338 | { | |
2339 | bit_size += 1; | |
2340 | mod >>= 1; | |
2341 | } | |
df407dfe | 2342 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2343 | arr = ada_value_primitive_packed_val (arr, NULL, |
2344 | bit_pos / HOST_CHAR_BIT, | |
2345 | bit_pos % HOST_CHAR_BIT, | |
2346 | bit_size, | |
2347 | type); | |
2348 | } | |
2349 | ||
4c4b4cd2 | 2350 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2351 | } |
2352 | ||
2353 | ||
2354 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2355 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2356 | |
d2e4a39e AS |
2357 | static struct value * |
2358 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2359 | { |
2360 | int i; | |
2361 | int bits, elt_off, bit_off; | |
2362 | long elt_total_bit_offset; | |
d2e4a39e AS |
2363 | struct type *elt_type; |
2364 | struct value *v; | |
14f9c5c9 AS |
2365 | |
2366 | bits = 0; | |
2367 | elt_total_bit_offset = 0; | |
df407dfe | 2368 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2369 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2370 | { |
d2e4a39e | 2371 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2372 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2373 | error | |
0963b4bd MS |
2374 | (_("attempt to do packed indexing of " |
2375 | "something other than a packed array")); | |
14f9c5c9 | 2376 | else |
4c4b4cd2 PH |
2377 | { |
2378 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2379 | LONGEST lowerbound, upperbound; | |
2380 | LONGEST idx; | |
2381 | ||
2382 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2383 | { | |
323e0a4a | 2384 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2385 | lowerbound = upperbound = 0; |
2386 | } | |
2387 | ||
3cb382c9 | 2388 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2389 | if (idx < lowerbound || idx > upperbound) |
0963b4bd MS |
2390 | lim_warning (_("packed array index %ld out of bounds"), |
2391 | (long) idx); | |
4c4b4cd2 PH |
2392 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2393 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2394 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2395 | } |
14f9c5c9 AS |
2396 | } |
2397 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2398 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2399 | |
2400 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2401 | bits, elt_type); |
14f9c5c9 AS |
2402 | return v; |
2403 | } | |
2404 | ||
4c4b4cd2 | 2405 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2406 | |
2407 | static int | |
d2e4a39e | 2408 | has_negatives (struct type *type) |
14f9c5c9 | 2409 | { |
d2e4a39e AS |
2410 | switch (TYPE_CODE (type)) |
2411 | { | |
2412 | default: | |
2413 | return 0; | |
2414 | case TYPE_CODE_INT: | |
2415 | return !TYPE_UNSIGNED (type); | |
2416 | case TYPE_CODE_RANGE: | |
2417 | return TYPE_LOW_BOUND (type) < 0; | |
2418 | } | |
14f9c5c9 | 2419 | } |
d2e4a39e | 2420 | |
f93fca70 | 2421 | /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET, |
5b639dea | 2422 | unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of |
f93fca70 | 2423 | the unpacked buffer. |
14f9c5c9 | 2424 | |
5b639dea JB |
2425 | The size of the unpacked buffer (UNPACKED_LEN) is expected to be large |
2426 | enough to contain at least BIT_OFFSET bits. If not, an error is raised. | |
2427 | ||
f93fca70 JB |
2428 | IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode, |
2429 | zero otherwise. | |
14f9c5c9 | 2430 | |
f93fca70 | 2431 | IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type. |
a1c95e6b | 2432 | |
f93fca70 JB |
2433 | IS_SCALAR is nonzero if the data corresponds to a signed type. */ |
2434 | ||
2435 | static void | |
2436 | ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size, | |
2437 | gdb_byte *unpacked, int unpacked_len, | |
2438 | int is_big_endian, int is_signed_type, | |
2439 | int is_scalar) | |
2440 | { | |
a1c95e6b JB |
2441 | int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; |
2442 | int src_idx; /* Index into the source area */ | |
2443 | int src_bytes_left; /* Number of source bytes left to process. */ | |
2444 | int srcBitsLeft; /* Number of source bits left to move */ | |
2445 | int unusedLS; /* Number of bits in next significant | |
2446 | byte of source that are unused */ | |
2447 | ||
a1c95e6b JB |
2448 | int unpacked_idx; /* Index into the unpacked buffer */ |
2449 | int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */ | |
2450 | ||
4c4b4cd2 | 2451 | unsigned long accum; /* Staging area for bits being transferred */ |
a1c95e6b | 2452 | int accumSize; /* Number of meaningful bits in accum */ |
14f9c5c9 | 2453 | unsigned char sign; |
a1c95e6b | 2454 | |
4c4b4cd2 PH |
2455 | /* Transmit bytes from least to most significant; delta is the direction |
2456 | the indices move. */ | |
f93fca70 | 2457 | int delta = is_big_endian ? -1 : 1; |
14f9c5c9 | 2458 | |
5b639dea JB |
2459 | /* Make sure that unpacked is large enough to receive the BIT_SIZE |
2460 | bits from SRC. .*/ | |
2461 | if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len) | |
2462 | error (_("Cannot unpack %d bits into buffer of %d bytes"), | |
2463 | bit_size, unpacked_len); | |
2464 | ||
14f9c5c9 | 2465 | srcBitsLeft = bit_size; |
086ca51f | 2466 | src_bytes_left = src_len; |
f93fca70 | 2467 | unpacked_bytes_left = unpacked_len; |
14f9c5c9 | 2468 | sign = 0; |
f93fca70 JB |
2469 | |
2470 | if (is_big_endian) | |
14f9c5c9 | 2471 | { |
086ca51f | 2472 | src_idx = src_len - 1; |
f93fca70 JB |
2473 | if (is_signed_type |
2474 | && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2475 | sign = ~0; |
d2e4a39e AS |
2476 | |
2477 | unusedLS = | |
4c4b4cd2 PH |
2478 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2479 | % HOST_CHAR_BIT; | |
14f9c5c9 | 2480 | |
f93fca70 JB |
2481 | if (is_scalar) |
2482 | { | |
2483 | accumSize = 0; | |
2484 | unpacked_idx = unpacked_len - 1; | |
2485 | } | |
2486 | else | |
2487 | { | |
4c4b4cd2 PH |
2488 | /* Non-scalar values must be aligned at a byte boundary... */ |
2489 | accumSize = | |
2490 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2491 | /* ... And are placed at the beginning (most-significant) bytes | |
2492 | of the target. */ | |
086ca51f JB |
2493 | unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
2494 | unpacked_bytes_left = unpacked_idx + 1; | |
f93fca70 | 2495 | } |
14f9c5c9 | 2496 | } |
d2e4a39e | 2497 | else |
14f9c5c9 AS |
2498 | { |
2499 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2500 | ||
086ca51f | 2501 | src_idx = unpacked_idx = 0; |
14f9c5c9 AS |
2502 | unusedLS = bit_offset; |
2503 | accumSize = 0; | |
2504 | ||
f93fca70 | 2505 | if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2506 | sign = ~0; |
14f9c5c9 | 2507 | } |
d2e4a39e | 2508 | |
14f9c5c9 | 2509 | accum = 0; |
086ca51f | 2510 | while (src_bytes_left > 0) |
14f9c5c9 AS |
2511 | { |
2512 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2513 | part of the value. */ |
d2e4a39e | 2514 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2515 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2516 | 1; | |
2517 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2518 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2519 | |
d2e4a39e | 2520 | accum |= |
086ca51f | 2521 | (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2522 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2523 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 | 2524 | { |
db297a65 | 2525 | unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT); |
4c4b4cd2 PH |
2526 | accumSize -= HOST_CHAR_BIT; |
2527 | accum >>= HOST_CHAR_BIT; | |
086ca51f JB |
2528 | unpacked_bytes_left -= 1; |
2529 | unpacked_idx += delta; | |
4c4b4cd2 | 2530 | } |
14f9c5c9 AS |
2531 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2532 | unusedLS = 0; | |
086ca51f JB |
2533 | src_bytes_left -= 1; |
2534 | src_idx += delta; | |
14f9c5c9 | 2535 | } |
086ca51f | 2536 | while (unpacked_bytes_left > 0) |
14f9c5c9 AS |
2537 | { |
2538 | accum |= sign << accumSize; | |
db297a65 | 2539 | unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT); |
14f9c5c9 | 2540 | accumSize -= HOST_CHAR_BIT; |
9cd4d857 JB |
2541 | if (accumSize < 0) |
2542 | accumSize = 0; | |
14f9c5c9 | 2543 | accum >>= HOST_CHAR_BIT; |
086ca51f JB |
2544 | unpacked_bytes_left -= 1; |
2545 | unpacked_idx += delta; | |
14f9c5c9 | 2546 | } |
f93fca70 JB |
2547 | } |
2548 | ||
2549 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2550 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2551 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
2552 | assigning through the result will set the field fetched from. | |
2553 | VALADDR is ignored unless OBJ is NULL, in which case, | |
2554 | VALADDR+OFFSET must address the start of storage containing the | |
2555 | packed value. The value returned in this case is never an lval. | |
2556 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
2557 | ||
2558 | struct value * | |
2559 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, | |
2560 | long offset, int bit_offset, int bit_size, | |
2561 | struct type *type) | |
2562 | { | |
2563 | struct value *v; | |
bfb1c796 | 2564 | const gdb_byte *src; /* First byte containing data to unpack */ |
f93fca70 | 2565 | gdb_byte *unpacked; |
220475ed | 2566 | const int is_scalar = is_scalar_type (type); |
d0a9e810 | 2567 | const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type)); |
d5722aa2 | 2568 | gdb::byte_vector staging; |
f93fca70 JB |
2569 | |
2570 | type = ada_check_typedef (type); | |
2571 | ||
d0a9e810 | 2572 | if (obj == NULL) |
bfb1c796 | 2573 | src = valaddr + offset; |
d0a9e810 | 2574 | else |
bfb1c796 | 2575 | src = value_contents (obj) + offset; |
d0a9e810 JB |
2576 | |
2577 | if (is_dynamic_type (type)) | |
2578 | { | |
2579 | /* The length of TYPE might by dynamic, so we need to resolve | |
2580 | TYPE in order to know its actual size, which we then use | |
2581 | to create the contents buffer of the value we return. | |
2582 | The difficulty is that the data containing our object is | |
2583 | packed, and therefore maybe not at a byte boundary. So, what | |
2584 | we do, is unpack the data into a byte-aligned buffer, and then | |
2585 | use that buffer as our object's value for resolving the type. */ | |
d5722aa2 PA |
2586 | int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
2587 | staging.resize (staging_len); | |
d0a9e810 JB |
2588 | |
2589 | ada_unpack_from_contents (src, bit_offset, bit_size, | |
d5722aa2 | 2590 | staging.data (), staging.size (), |
d0a9e810 JB |
2591 | is_big_endian, has_negatives (type), |
2592 | is_scalar); | |
d5722aa2 | 2593 | type = resolve_dynamic_type (type, staging.data (), 0); |
0cafa88c JB |
2594 | if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT) |
2595 | { | |
2596 | /* This happens when the length of the object is dynamic, | |
2597 | and is actually smaller than the space reserved for it. | |
2598 | For instance, in an array of variant records, the bit_size | |
2599 | we're given is the array stride, which is constant and | |
2600 | normally equal to the maximum size of its element. | |
2601 | But, in reality, each element only actually spans a portion | |
2602 | of that stride. */ | |
2603 | bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT; | |
2604 | } | |
d0a9e810 JB |
2605 | } |
2606 | ||
f93fca70 JB |
2607 | if (obj == NULL) |
2608 | { | |
2609 | v = allocate_value (type); | |
bfb1c796 | 2610 | src = valaddr + offset; |
f93fca70 JB |
2611 | } |
2612 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) | |
2613 | { | |
0cafa88c | 2614 | int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; |
bfb1c796 | 2615 | gdb_byte *buf; |
0cafa88c | 2616 | |
f93fca70 | 2617 | v = value_at (type, value_address (obj) + offset); |
bfb1c796 PA |
2618 | buf = (gdb_byte *) alloca (src_len); |
2619 | read_memory (value_address (v), buf, src_len); | |
2620 | src = buf; | |
f93fca70 JB |
2621 | } |
2622 | else | |
2623 | { | |
2624 | v = allocate_value (type); | |
bfb1c796 | 2625 | src = value_contents (obj) + offset; |
f93fca70 JB |
2626 | } |
2627 | ||
2628 | if (obj != NULL) | |
2629 | { | |
2630 | long new_offset = offset; | |
2631 | ||
2632 | set_value_component_location (v, obj); | |
2633 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); | |
2634 | set_value_bitsize (v, bit_size); | |
2635 | if (value_bitpos (v) >= HOST_CHAR_BIT) | |
2636 | { | |
2637 | ++new_offset; | |
2638 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); | |
2639 | } | |
2640 | set_value_offset (v, new_offset); | |
2641 | ||
2642 | /* Also set the parent value. This is needed when trying to | |
2643 | assign a new value (in inferior memory). */ | |
2644 | set_value_parent (v, obj); | |
2645 | } | |
2646 | else | |
2647 | set_value_bitsize (v, bit_size); | |
bfb1c796 | 2648 | unpacked = value_contents_writeable (v); |
f93fca70 JB |
2649 | |
2650 | if (bit_size == 0) | |
2651 | { | |
2652 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2653 | return v; | |
2654 | } | |
2655 | ||
d5722aa2 | 2656 | if (staging.size () == TYPE_LENGTH (type)) |
f93fca70 | 2657 | { |
d0a9e810 JB |
2658 | /* Small short-cut: If we've unpacked the data into a buffer |
2659 | of the same size as TYPE's length, then we can reuse that, | |
2660 | instead of doing the unpacking again. */ | |
d5722aa2 | 2661 | memcpy (unpacked, staging.data (), staging.size ()); |
f93fca70 | 2662 | } |
d0a9e810 JB |
2663 | else |
2664 | ada_unpack_from_contents (src, bit_offset, bit_size, | |
2665 | unpacked, TYPE_LENGTH (type), | |
2666 | is_big_endian, has_negatives (type), is_scalar); | |
f93fca70 | 2667 | |
14f9c5c9 AS |
2668 | return v; |
2669 | } | |
d2e4a39e | 2670 | |
14f9c5c9 AS |
2671 | /* Store the contents of FROMVAL into the location of TOVAL. |
2672 | Return a new value with the location of TOVAL and contents of | |
2673 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2674 | floating-point or non-scalar types. */ |
14f9c5c9 | 2675 | |
d2e4a39e AS |
2676 | static struct value * |
2677 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2678 | { |
df407dfe AC |
2679 | struct type *type = value_type (toval); |
2680 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2681 | |
52ce6436 PH |
2682 | toval = ada_coerce_ref (toval); |
2683 | fromval = ada_coerce_ref (fromval); | |
2684 | ||
2685 | if (ada_is_direct_array_type (value_type (toval))) | |
2686 | toval = ada_coerce_to_simple_array (toval); | |
2687 | if (ada_is_direct_array_type (value_type (fromval))) | |
2688 | fromval = ada_coerce_to_simple_array (fromval); | |
2689 | ||
88e3b34b | 2690 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2691 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2692 | |
d2e4a39e | 2693 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2694 | && bits > 0 |
d2e4a39e | 2695 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2696 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2697 | { |
df407dfe AC |
2698 | int len = (value_bitpos (toval) |
2699 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2700 | int from_size; |
224c3ddb | 2701 | gdb_byte *buffer = (gdb_byte *) alloca (len); |
d2e4a39e | 2702 | struct value *val; |
42ae5230 | 2703 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2704 | |
2705 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2706 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2707 | |
52ce6436 | 2708 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2709 | from_size = value_bitsize (fromval); |
2710 | if (from_size == 0) | |
2711 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2712 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
a99bc3d2 JB |
2713 | copy_bitwise (buffer, value_bitpos (toval), |
2714 | value_contents (fromval), from_size - bits, bits, 1); | |
14f9c5c9 | 2715 | else |
a99bc3d2 JB |
2716 | copy_bitwise (buffer, value_bitpos (toval), |
2717 | value_contents (fromval), 0, bits, 0); | |
972daa01 | 2718 | write_memory_with_notification (to_addr, buffer, len); |
8cebebb9 | 2719 | |
14f9c5c9 | 2720 | val = value_copy (toval); |
0fd88904 | 2721 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2722 | TYPE_LENGTH (type)); |
04624583 | 2723 | deprecated_set_value_type (val, type); |
d2e4a39e | 2724 | |
14f9c5c9 AS |
2725 | return val; |
2726 | } | |
2727 | ||
2728 | return value_assign (toval, fromval); | |
2729 | } | |
2730 | ||
2731 | ||
7c512744 JB |
2732 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2733 | CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2734 | CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2735 | COMPONENT, and not the inferior's memory. The current contents | |
2736 | of COMPONENT are ignored. | |
2737 | ||
2738 | Although not part of the initial design, this function also works | |
2739 | when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER | |
2740 | had a null address, and COMPONENT had an address which is equal to | |
2741 | its offset inside CONTAINER. */ | |
2742 | ||
52ce6436 PH |
2743 | static void |
2744 | value_assign_to_component (struct value *container, struct value *component, | |
2745 | struct value *val) | |
2746 | { | |
2747 | LONGEST offset_in_container = | |
42ae5230 | 2748 | (LONGEST) (value_address (component) - value_address (container)); |
7c512744 | 2749 | int bit_offset_in_container = |
52ce6436 PH |
2750 | value_bitpos (component) - value_bitpos (container); |
2751 | int bits; | |
7c512744 | 2752 | |
52ce6436 PH |
2753 | val = value_cast (value_type (component), val); |
2754 | ||
2755 | if (value_bitsize (component) == 0) | |
2756 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2757 | else | |
2758 | bits = value_bitsize (component); | |
2759 | ||
50810684 | 2760 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
2a62dfa9 JB |
2761 | { |
2762 | int src_offset; | |
2763 | ||
2764 | if (is_scalar_type (check_typedef (value_type (component)))) | |
2765 | src_offset | |
2766 | = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits; | |
2767 | else | |
2768 | src_offset = 0; | |
a99bc3d2 JB |
2769 | copy_bitwise (value_contents_writeable (container) + offset_in_container, |
2770 | value_bitpos (container) + bit_offset_in_container, | |
2771 | value_contents (val), src_offset, bits, 1); | |
2a62dfa9 | 2772 | } |
52ce6436 | 2773 | else |
a99bc3d2 JB |
2774 | copy_bitwise (value_contents_writeable (container) + offset_in_container, |
2775 | value_bitpos (container) + bit_offset_in_container, | |
2776 | value_contents (val), 0, bits, 0); | |
7c512744 JB |
2777 | } |
2778 | ||
736ade86 XR |
2779 | /* Determine if TYPE is an access to an unconstrained array. */ |
2780 | ||
d91e9ea8 | 2781 | bool |
736ade86 XR |
2782 | ada_is_access_to_unconstrained_array (struct type *type) |
2783 | { | |
2784 | return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
2785 | && is_thick_pntr (ada_typedef_target_type (type))); | |
2786 | } | |
2787 | ||
4c4b4cd2 PH |
2788 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2789 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2790 | thereto. */ |
2791 | ||
d2e4a39e AS |
2792 | struct value * |
2793 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2794 | { |
2795 | int k; | |
d2e4a39e AS |
2796 | struct value *elt; |
2797 | struct type *elt_type; | |
14f9c5c9 AS |
2798 | |
2799 | elt = ada_coerce_to_simple_array (arr); | |
2800 | ||
df407dfe | 2801 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2802 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2803 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2804 | return value_subscript_packed (elt, arity, ind); | |
2805 | ||
2806 | for (k = 0; k < arity; k += 1) | |
2807 | { | |
b9c50e9a XR |
2808 | struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type); |
2809 | ||
14f9c5c9 | 2810 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) |
323e0a4a | 2811 | error (_("too many subscripts (%d expected)"), k); |
b9c50e9a | 2812 | |
2497b498 | 2813 | elt = value_subscript (elt, pos_atr (ind[k])); |
b9c50e9a XR |
2814 | |
2815 | if (ada_is_access_to_unconstrained_array (saved_elt_type) | |
2816 | && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF) | |
2817 | { | |
2818 | /* The element is a typedef to an unconstrained array, | |
2819 | except that the value_subscript call stripped the | |
2820 | typedef layer. The typedef layer is GNAT's way to | |
2821 | specify that the element is, at the source level, an | |
2822 | access to the unconstrained array, rather than the | |
2823 | unconstrained array. So, we need to restore that | |
2824 | typedef layer, which we can do by forcing the element's | |
2825 | type back to its original type. Otherwise, the returned | |
2826 | value is going to be printed as the array, rather | |
2827 | than as an access. Another symptom of the same issue | |
2828 | would be that an expression trying to dereference the | |
2829 | element would also be improperly rejected. */ | |
2830 | deprecated_set_value_type (elt, saved_elt_type); | |
2831 | } | |
2832 | ||
2833 | elt_type = ada_check_typedef (value_type (elt)); | |
14f9c5c9 | 2834 | } |
b9c50e9a | 2835 | |
14f9c5c9 AS |
2836 | return elt; |
2837 | } | |
2838 | ||
deede10c JB |
2839 | /* Assuming ARR is a pointer to a GDB array, the value of the element |
2840 | of *ARR at the ARITY indices given in IND. | |
919e6dbe PMR |
2841 | Does not read the entire array into memory. |
2842 | ||
2843 | Note: Unlike what one would expect, this function is used instead of | |
2844 | ada_value_subscript for basically all non-packed array types. The reason | |
2845 | for this is that a side effect of doing our own pointer arithmetics instead | |
2846 | of relying on value_subscript is that there is no implicit typedef peeling. | |
2847 | This is important for arrays of array accesses, where it allows us to | |
2848 | preserve the fact that the array's element is an array access, where the | |
2849 | access part os encoded in a typedef layer. */ | |
14f9c5c9 | 2850 | |
2c0b251b | 2851 | static struct value * |
deede10c | 2852 | ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind) |
14f9c5c9 AS |
2853 | { |
2854 | int k; | |
919e6dbe | 2855 | struct value *array_ind = ada_value_ind (arr); |
deede10c | 2856 | struct type *type |
919e6dbe PMR |
2857 | = check_typedef (value_enclosing_type (array_ind)); |
2858 | ||
2859 | if (TYPE_CODE (type) == TYPE_CODE_ARRAY | |
2860 | && TYPE_FIELD_BITSIZE (type, 0) > 0) | |
2861 | return value_subscript_packed (array_ind, arity, ind); | |
14f9c5c9 AS |
2862 | |
2863 | for (k = 0; k < arity; k += 1) | |
2864 | { | |
2865 | LONGEST lwb, upb; | |
aa715135 | 2866 | struct value *lwb_value; |
14f9c5c9 AS |
2867 | |
2868 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2869 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2870 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2871 | value_copy (arr)); |
14f9c5c9 | 2872 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
aa715135 JG |
2873 | lwb_value = value_from_longest (value_type(ind[k]), lwb); |
2874 | arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value)); | |
14f9c5c9 AS |
2875 | type = TYPE_TARGET_TYPE (type); |
2876 | } | |
2877 | ||
2878 | return value_ind (arr); | |
2879 | } | |
2880 | ||
0b5d8877 | 2881 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
aa715135 JG |
2882 | actual type of ARRAY_PTR is ignored), returns the Ada slice of |
2883 | HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of | |
2884 | this array is LOW, as per Ada rules. */ | |
0b5d8877 | 2885 | static struct value * |
f5938064 JG |
2886 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2887 | int low, int high) | |
0b5d8877 | 2888 | { |
b0dd7688 | 2889 | struct type *type0 = ada_check_typedef (type); |
aa715135 | 2890 | struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)); |
0c9c3474 | 2891 | struct type *index_type |
aa715135 | 2892 | = create_static_range_type (NULL, base_index_type, low, high); |
9fe561ab JB |
2893 | struct type *slice_type = create_array_type_with_stride |
2894 | (NULL, TYPE_TARGET_TYPE (type0), index_type, | |
2895 | get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0), | |
2896 | TYPE_FIELD_BITSIZE (type0, 0)); | |
aa715135 JG |
2897 | int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)); |
2898 | LONGEST base_low_pos, low_pos; | |
2899 | CORE_ADDR base; | |
2900 | ||
2901 | if (!discrete_position (base_index_type, low, &low_pos) | |
2902 | || !discrete_position (base_index_type, base_low, &base_low_pos)) | |
2903 | { | |
2904 | warning (_("unable to get positions in slice, use bounds instead")); | |
2905 | low_pos = low; | |
2906 | base_low_pos = base_low; | |
2907 | } | |
5b4ee69b | 2908 | |
aa715135 JG |
2909 | base = value_as_address (array_ptr) |
2910 | + ((low_pos - base_low_pos) | |
2911 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type0))); | |
f5938064 | 2912 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2913 | } |
2914 | ||
2915 | ||
2916 | static struct value * | |
2917 | ada_value_slice (struct value *array, int low, int high) | |
2918 | { | |
b0dd7688 | 2919 | struct type *type = ada_check_typedef (value_type (array)); |
aa715135 | 2920 | struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
0c9c3474 SA |
2921 | struct type *index_type |
2922 | = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); | |
9fe561ab JB |
2923 | struct type *slice_type = create_array_type_with_stride |
2924 | (NULL, TYPE_TARGET_TYPE (type), index_type, | |
2925 | get_dyn_prop (DYN_PROP_BYTE_STRIDE, type), | |
2926 | TYPE_FIELD_BITSIZE (type, 0)); | |
aa715135 | 2927 | LONGEST low_pos, high_pos; |
5b4ee69b | 2928 | |
aa715135 JG |
2929 | if (!discrete_position (base_index_type, low, &low_pos) |
2930 | || !discrete_position (base_index_type, high, &high_pos)) | |
2931 | { | |
2932 | warning (_("unable to get positions in slice, use bounds instead")); | |
2933 | low_pos = low; | |
2934 | high_pos = high; | |
2935 | } | |
2936 | ||
2937 | return value_cast (slice_type, | |
2938 | value_slice (array, low, high_pos - low_pos + 1)); | |
0b5d8877 PH |
2939 | } |
2940 | ||
14f9c5c9 AS |
2941 | /* If type is a record type in the form of a standard GNAT array |
2942 | descriptor, returns the number of dimensions for type. If arr is a | |
2943 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2944 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2945 | |
2946 | int | |
d2e4a39e | 2947 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2948 | { |
2949 | int arity; | |
2950 | ||
2951 | if (type == NULL) | |
2952 | return 0; | |
2953 | ||
2954 | type = desc_base_type (type); | |
2955 | ||
2956 | arity = 0; | |
d2e4a39e | 2957 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2958 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2959 | else |
2960 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2961 | { |
4c4b4cd2 | 2962 | arity += 1; |
61ee279c | 2963 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2964 | } |
d2e4a39e | 2965 | |
14f9c5c9 AS |
2966 | return arity; |
2967 | } | |
2968 | ||
2969 | /* If TYPE is a record type in the form of a standard GNAT array | |
2970 | descriptor or a simple array type, returns the element type for | |
2971 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2972 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2973 | |
d2e4a39e AS |
2974 | struct type * |
2975 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2976 | { |
2977 | type = desc_base_type (type); | |
2978 | ||
d2e4a39e | 2979 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2980 | { |
2981 | int k; | |
d2e4a39e | 2982 | struct type *p_array_type; |
14f9c5c9 | 2983 | |
556bdfd4 | 2984 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2985 | |
2986 | k = ada_array_arity (type); | |
2987 | if (k == 0) | |
4c4b4cd2 | 2988 | return NULL; |
d2e4a39e | 2989 | |
4c4b4cd2 | 2990 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2991 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2992 | k = nindices; |
d2e4a39e | 2993 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2994 | { |
61ee279c | 2995 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2996 | k -= 1; |
2997 | } | |
14f9c5c9 AS |
2998 | return p_array_type; |
2999 | } | |
3000 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
3001 | { | |
3002 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
3003 | { |
3004 | type = TYPE_TARGET_TYPE (type); | |
3005 | nindices -= 1; | |
3006 | } | |
14f9c5c9 AS |
3007 | return type; |
3008 | } | |
3009 | ||
3010 | return NULL; | |
3011 | } | |
3012 | ||
4c4b4cd2 | 3013 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
3014 | Does not examine memory. Throws an error if N is invalid or TYPE |
3015 | is not an array type. NAME is the name of the Ada attribute being | |
3016 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
3017 | the error message. */ | |
14f9c5c9 | 3018 | |
1eea4ebd UW |
3019 | static struct type * |
3020 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 3021 | { |
4c4b4cd2 PH |
3022 | struct type *result_type; |
3023 | ||
14f9c5c9 AS |
3024 | type = desc_base_type (type); |
3025 | ||
1eea4ebd UW |
3026 | if (n < 0 || n > ada_array_arity (type)) |
3027 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 3028 | |
4c4b4cd2 | 3029 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
3030 | { |
3031 | int i; | |
3032 | ||
3033 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 3034 | type = TYPE_TARGET_TYPE (type); |
262452ec | 3035 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
3036 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
3037 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 3038 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
3039 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
3040 | result_type = NULL; | |
14f9c5c9 | 3041 | } |
d2e4a39e | 3042 | else |
1eea4ebd UW |
3043 | { |
3044 | result_type = desc_index_type (desc_bounds_type (type), n); | |
3045 | if (result_type == NULL) | |
3046 | error (_("attempt to take bound of something that is not an array")); | |
3047 | } | |
3048 | ||
3049 | return result_type; | |
14f9c5c9 AS |
3050 | } |
3051 | ||
3052 | /* Given that arr is an array type, returns the lower bound of the | |
3053 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 3054 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
3055 | array-descriptor type. It works for other arrays with bounds supplied |
3056 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 3057 | |
abb68b3e | 3058 | static LONGEST |
fb5e3d5c | 3059 | ada_array_bound_from_type (struct type *arr_type, int n, int which) |
14f9c5c9 | 3060 | { |
8a48ac95 | 3061 | struct type *type, *index_type_desc, *index_type; |
1ce677a4 | 3062 | int i; |
262452ec JK |
3063 | |
3064 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 3065 | |
ad82864c JB |
3066 | if (ada_is_constrained_packed_array_type (arr_type)) |
3067 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 3068 | |
4c4b4cd2 | 3069 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 3070 | return (LONGEST) - which; |
14f9c5c9 AS |
3071 | |
3072 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
3073 | type = TYPE_TARGET_TYPE (arr_type); | |
3074 | else | |
3075 | type = arr_type; | |
3076 | ||
bafffb51 JB |
3077 | if (TYPE_FIXED_INSTANCE (type)) |
3078 | { | |
3079 | /* The array has already been fixed, so we do not need to | |
3080 | check the parallel ___XA type again. That encoding has | |
3081 | already been applied, so ignore it now. */ | |
3082 | index_type_desc = NULL; | |
3083 | } | |
3084 | else | |
3085 | { | |
3086 | index_type_desc = ada_find_parallel_type (type, "___XA"); | |
3087 | ada_fixup_array_indexes_type (index_type_desc); | |
3088 | } | |
3089 | ||
262452ec | 3090 | if (index_type_desc != NULL) |
28c85d6c JB |
3091 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
3092 | NULL); | |
262452ec | 3093 | else |
8a48ac95 JB |
3094 | { |
3095 | struct type *elt_type = check_typedef (type); | |
3096 | ||
3097 | for (i = 1; i < n; i++) | |
3098 | elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type)); | |
3099 | ||
3100 | index_type = TYPE_INDEX_TYPE (elt_type); | |
3101 | } | |
262452ec | 3102 | |
43bbcdc2 PH |
3103 | return |
3104 | (LONGEST) (which == 0 | |
3105 | ? ada_discrete_type_low_bound (index_type) | |
3106 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
3107 | } |
3108 | ||
3109 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
3110 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
3111 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 3112 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 3113 | |
1eea4ebd | 3114 | static LONGEST |
4dc81987 | 3115 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 3116 | { |
eb479039 JB |
3117 | struct type *arr_type; |
3118 | ||
3119 | if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR) | |
3120 | arr = value_ind (arr); | |
3121 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 3122 | |
ad82864c JB |
3123 | if (ada_is_constrained_packed_array_type (arr_type)) |
3124 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 3125 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 3126 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 3127 | else |
1eea4ebd | 3128 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
3129 | } |
3130 | ||
3131 | /* Given that arr is an array value, returns the length of the | |
3132 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
3133 | supplied by run-time quantities other than discriminants. |
3134 | Does not work for arrays indexed by enumeration types with representation | |
3135 | clauses at the moment. */ | |
14f9c5c9 | 3136 | |
1eea4ebd | 3137 | static LONGEST |
d2e4a39e | 3138 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 3139 | { |
aa715135 JG |
3140 | struct type *arr_type, *index_type; |
3141 | int low, high; | |
eb479039 JB |
3142 | |
3143 | if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR) | |
3144 | arr = value_ind (arr); | |
3145 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 3146 | |
ad82864c JB |
3147 | if (ada_is_constrained_packed_array_type (arr_type)) |
3148 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 3149 | |
4c4b4cd2 | 3150 | if (ada_is_simple_array_type (arr_type)) |
aa715135 JG |
3151 | { |
3152 | low = ada_array_bound_from_type (arr_type, n, 0); | |
3153 | high = ada_array_bound_from_type (arr_type, n, 1); | |
3154 | } | |
14f9c5c9 | 3155 | else |
aa715135 JG |
3156 | { |
3157 | low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0)); | |
3158 | high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1)); | |
3159 | } | |
3160 | ||
f168693b | 3161 | arr_type = check_typedef (arr_type); |
7150d33c | 3162 | index_type = ada_index_type (arr_type, n, "length"); |
aa715135 JG |
3163 | if (index_type != NULL) |
3164 | { | |
3165 | struct type *base_type; | |
3166 | if (TYPE_CODE (index_type) == TYPE_CODE_RANGE) | |
3167 | base_type = TYPE_TARGET_TYPE (index_type); | |
3168 | else | |
3169 | base_type = index_type; | |
3170 | ||
3171 | low = pos_atr (value_from_longest (base_type, low)); | |
3172 | high = pos_atr (value_from_longest (base_type, high)); | |
3173 | } | |
3174 | return high - low + 1; | |
4c4b4cd2 PH |
3175 | } |
3176 | ||
bff8c71f TT |
3177 | /* An array whose type is that of ARR_TYPE (an array type), with |
3178 | bounds LOW to HIGH, but whose contents are unimportant. If HIGH is | |
3179 | less than LOW, then LOW-1 is used. */ | |
4c4b4cd2 PH |
3180 | |
3181 | static struct value * | |
bff8c71f | 3182 | empty_array (struct type *arr_type, int low, int high) |
4c4b4cd2 | 3183 | { |
b0dd7688 | 3184 | struct type *arr_type0 = ada_check_typedef (arr_type); |
0c9c3474 SA |
3185 | struct type *index_type |
3186 | = create_static_range_type | |
bff8c71f TT |
3187 | (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, |
3188 | high < low ? low - 1 : high); | |
b0dd7688 | 3189 | struct type *elt_type = ada_array_element_type (arr_type0, 1); |
5b4ee69b | 3190 | |
0b5d8877 | 3191 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 3192 | } |
14f9c5c9 | 3193 | \f |
d2e4a39e | 3194 | |
4c4b4cd2 | 3195 | /* Name resolution */ |
14f9c5c9 | 3196 | |
4c4b4cd2 PH |
3197 | /* The "decoded" name for the user-definable Ada operator corresponding |
3198 | to OP. */ | |
14f9c5c9 | 3199 | |
d2e4a39e | 3200 | static const char * |
4c4b4cd2 | 3201 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
3202 | { |
3203 | int i; | |
3204 | ||
4c4b4cd2 | 3205 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
3206 | { |
3207 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 3208 | return ada_opname_table[i].decoded; |
14f9c5c9 | 3209 | } |
323e0a4a | 3210 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
3211 | } |
3212 | ||
3213 | ||
4c4b4cd2 PH |
3214 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
3215 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
3216 | undefined namespace) and converts operators that are | |
3217 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
3218 | non-null, it provides a preferred result type [at the moment, only |
3219 | type void has any effect---causing procedures to be preferred over | |
3220 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 3221 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 3222 | |
4c4b4cd2 | 3223 | static void |
699bd4cf TT |
3224 | resolve (expression_up *expp, int void_context_p, int parse_completion, |
3225 | innermost_block_tracker *tracker) | |
14f9c5c9 | 3226 | { |
30b15541 UW |
3227 | struct type *context_type = NULL; |
3228 | int pc = 0; | |
3229 | ||
3230 | if (void_context_p) | |
3231 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
3232 | ||
699bd4cf | 3233 | resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker); |
14f9c5c9 AS |
3234 | } |
3235 | ||
4c4b4cd2 PH |
3236 | /* Resolve the operator of the subexpression beginning at |
3237 | position *POS of *EXPP. "Resolving" consists of replacing | |
3238 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
3239 | with their resolutions, replacing built-in operators with | |
3240 | function calls to user-defined operators, where appropriate, and, | |
3241 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
3242 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
3243 | are as in ada_resolve, above. */ | |
14f9c5c9 | 3244 | |
d2e4a39e | 3245 | static struct value * |
e9d9f57e | 3246 | resolve_subexp (expression_up *expp, int *pos, int deprocedure_p, |
699bd4cf TT |
3247 | struct type *context_type, int parse_completion, |
3248 | innermost_block_tracker *tracker) | |
14f9c5c9 AS |
3249 | { |
3250 | int pc = *pos; | |
3251 | int i; | |
4c4b4cd2 | 3252 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 3253 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
3254 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
3255 | int nargs; /* Number of operands. */ | |
52ce6436 | 3256 | int oplen; |
14f9c5c9 AS |
3257 | |
3258 | argvec = NULL; | |
3259 | nargs = 0; | |
e9d9f57e | 3260 | exp = expp->get (); |
14f9c5c9 | 3261 | |
52ce6436 PH |
3262 | /* Pass one: resolve operands, saving their types and updating *pos, |
3263 | if needed. */ | |
14f9c5c9 AS |
3264 | switch (op) |
3265 | { | |
4c4b4cd2 PH |
3266 | case OP_FUNCALL: |
3267 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
3268 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
3269 | *pos += 7; | |
4c4b4cd2 PH |
3270 | else |
3271 | { | |
3272 | *pos += 3; | |
699bd4cf | 3273 | resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker); |
4c4b4cd2 PH |
3274 | } |
3275 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
3276 | break; |
3277 | ||
14f9c5c9 | 3278 | case UNOP_ADDR: |
4c4b4cd2 | 3279 | *pos += 1; |
699bd4cf | 3280 | resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker); |
4c4b4cd2 PH |
3281 | break; |
3282 | ||
52ce6436 PH |
3283 | case UNOP_QUAL: |
3284 | *pos += 3; | |
2a612529 | 3285 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type), |
699bd4cf | 3286 | parse_completion, tracker); |
4c4b4cd2 PH |
3287 | break; |
3288 | ||
52ce6436 | 3289 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
3290 | case OP_ATR_SIZE: |
3291 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
3292 | case OP_ATR_FIRST: |
3293 | case OP_ATR_LAST: | |
3294 | case OP_ATR_LENGTH: | |
3295 | case OP_ATR_POS: | |
3296 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
3297 | case OP_ATR_MIN: |
3298 | case OP_ATR_MAX: | |
52ce6436 PH |
3299 | case TERNOP_IN_RANGE: |
3300 | case BINOP_IN_BOUNDS: | |
3301 | case UNOP_IN_RANGE: | |
3302 | case OP_AGGREGATE: | |
3303 | case OP_OTHERS: | |
3304 | case OP_CHOICES: | |
3305 | case OP_POSITIONAL: | |
3306 | case OP_DISCRETE_RANGE: | |
3307 | case OP_NAME: | |
3308 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
3309 | *pos += oplen; | |
14f9c5c9 AS |
3310 | break; |
3311 | ||
3312 | case BINOP_ASSIGN: | |
3313 | { | |
4c4b4cd2 PH |
3314 | struct value *arg1; |
3315 | ||
3316 | *pos += 1; | |
699bd4cf | 3317 | arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker); |
4c4b4cd2 | 3318 | if (arg1 == NULL) |
699bd4cf | 3319 | resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker); |
4c4b4cd2 | 3320 | else |
699bd4cf TT |
3321 | resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion, |
3322 | tracker); | |
4c4b4cd2 | 3323 | break; |
14f9c5c9 AS |
3324 | } |
3325 | ||
4c4b4cd2 | 3326 | case UNOP_CAST: |
4c4b4cd2 PH |
3327 | *pos += 3; |
3328 | nargs = 1; | |
3329 | break; | |
14f9c5c9 | 3330 | |
4c4b4cd2 PH |
3331 | case BINOP_ADD: |
3332 | case BINOP_SUB: | |
3333 | case BINOP_MUL: | |
3334 | case BINOP_DIV: | |
3335 | case BINOP_REM: | |
3336 | case BINOP_MOD: | |
3337 | case BINOP_EXP: | |
3338 | case BINOP_CONCAT: | |
3339 | case BINOP_LOGICAL_AND: | |
3340 | case BINOP_LOGICAL_OR: | |
3341 | case BINOP_BITWISE_AND: | |
3342 | case BINOP_BITWISE_IOR: | |
3343 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 3344 | |
4c4b4cd2 PH |
3345 | case BINOP_EQUAL: |
3346 | case BINOP_NOTEQUAL: | |
3347 | case BINOP_LESS: | |
3348 | case BINOP_GTR: | |
3349 | case BINOP_LEQ: | |
3350 | case BINOP_GEQ: | |
14f9c5c9 | 3351 | |
4c4b4cd2 PH |
3352 | case BINOP_REPEAT: |
3353 | case BINOP_SUBSCRIPT: | |
3354 | case BINOP_COMMA: | |
40c8aaa9 JB |
3355 | *pos += 1; |
3356 | nargs = 2; | |
3357 | break; | |
14f9c5c9 | 3358 | |
4c4b4cd2 PH |
3359 | case UNOP_NEG: |
3360 | case UNOP_PLUS: | |
3361 | case UNOP_LOGICAL_NOT: | |
3362 | case UNOP_ABS: | |
3363 | case UNOP_IND: | |
3364 | *pos += 1; | |
3365 | nargs = 1; | |
3366 | break; | |
14f9c5c9 | 3367 | |
4c4b4cd2 | 3368 | case OP_LONG: |
edd079d9 | 3369 | case OP_FLOAT: |
4c4b4cd2 | 3370 | case OP_VAR_VALUE: |
74ea4be4 | 3371 | case OP_VAR_MSYM_VALUE: |
4c4b4cd2 PH |
3372 | *pos += 4; |
3373 | break; | |
14f9c5c9 | 3374 | |
4c4b4cd2 PH |
3375 | case OP_TYPE: |
3376 | case OP_BOOL: | |
3377 | case OP_LAST: | |
4c4b4cd2 PH |
3378 | case OP_INTERNALVAR: |
3379 | *pos += 3; | |
3380 | break; | |
14f9c5c9 | 3381 | |
4c4b4cd2 PH |
3382 | case UNOP_MEMVAL: |
3383 | *pos += 3; | |
3384 | nargs = 1; | |
3385 | break; | |
3386 | ||
67f3407f DJ |
3387 | case OP_REGISTER: |
3388 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3389 | break; | |
3390 | ||
4c4b4cd2 PH |
3391 | case STRUCTOP_STRUCT: |
3392 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3393 | nargs = 1; | |
3394 | break; | |
3395 | ||
4c4b4cd2 | 3396 | case TERNOP_SLICE: |
4c4b4cd2 PH |
3397 | *pos += 1; |
3398 | nargs = 3; | |
3399 | break; | |
3400 | ||
52ce6436 | 3401 | case OP_STRING: |
14f9c5c9 | 3402 | break; |
4c4b4cd2 PH |
3403 | |
3404 | default: | |
323e0a4a | 3405 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
3406 | } |
3407 | ||
8d749320 | 3408 | argvec = XALLOCAVEC (struct value *, nargs + 1); |
4c4b4cd2 | 3409 | for (i = 0; i < nargs; i += 1) |
699bd4cf TT |
3410 | argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion, |
3411 | tracker); | |
4c4b4cd2 | 3412 | argvec[i] = NULL; |
e9d9f57e | 3413 | exp = expp->get (); |
4c4b4cd2 PH |
3414 | |
3415 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
3416 | switch (op) |
3417 | { | |
3418 | default: | |
3419 | break; | |
3420 | ||
14f9c5c9 | 3421 | case OP_VAR_VALUE: |
4c4b4cd2 | 3422 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 | 3423 | { |
54d343a2 | 3424 | std::vector<struct block_symbol> candidates; |
76a01679 JB |
3425 | int n_candidates; |
3426 | ||
3427 | n_candidates = | |
3428 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
3429 | (exp->elts[pc + 2].symbol), | |
3430 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
4eeaa230 | 3431 | &candidates); |
76a01679 JB |
3432 | |
3433 | if (n_candidates > 1) | |
3434 | { | |
3435 | /* Types tend to get re-introduced locally, so if there | |
3436 | are any local symbols that are not types, first filter | |
3437 | out all types. */ | |
3438 | int j; | |
3439 | for (j = 0; j < n_candidates; j += 1) | |
d12307c1 | 3440 | switch (SYMBOL_CLASS (candidates[j].symbol)) |
76a01679 JB |
3441 | { |
3442 | case LOC_REGISTER: | |
3443 | case LOC_ARG: | |
3444 | case LOC_REF_ARG: | |
76a01679 JB |
3445 | case LOC_REGPARM_ADDR: |
3446 | case LOC_LOCAL: | |
76a01679 | 3447 | case LOC_COMPUTED: |
76a01679 JB |
3448 | goto FoundNonType; |
3449 | default: | |
3450 | break; | |
3451 | } | |
3452 | FoundNonType: | |
3453 | if (j < n_candidates) | |
3454 | { | |
3455 | j = 0; | |
3456 | while (j < n_candidates) | |
3457 | { | |
d12307c1 | 3458 | if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF) |
76a01679 JB |
3459 | { |
3460 | candidates[j] = candidates[n_candidates - 1]; | |
3461 | n_candidates -= 1; | |
3462 | } | |
3463 | else | |
3464 | j += 1; | |
3465 | } | |
3466 | } | |
3467 | } | |
3468 | ||
3469 | if (n_candidates == 0) | |
323e0a4a | 3470 | error (_("No definition found for %s"), |
76a01679 JB |
3471 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3472 | else if (n_candidates == 1) | |
3473 | i = 0; | |
3474 | else if (deprocedure_p | |
54d343a2 | 3475 | && !is_nonfunction (candidates.data (), n_candidates)) |
76a01679 | 3476 | { |
06d5cf63 | 3477 | i = ada_resolve_function |
54d343a2 | 3478 | (candidates.data (), n_candidates, NULL, 0, |
06d5cf63 | 3479 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), |
2a612529 | 3480 | context_type, parse_completion); |
76a01679 | 3481 | if (i < 0) |
323e0a4a | 3482 | error (_("Could not find a match for %s"), |
76a01679 JB |
3483 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3484 | } | |
3485 | else | |
3486 | { | |
323e0a4a | 3487 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 | 3488 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
54d343a2 | 3489 | user_select_syms (candidates.data (), n_candidates, 1); |
76a01679 JB |
3490 | i = 0; |
3491 | } | |
3492 | ||
3493 | exp->elts[pc + 1].block = candidates[i].block; | |
d12307c1 | 3494 | exp->elts[pc + 2].symbol = candidates[i].symbol; |
699bd4cf | 3495 | tracker->update (candidates[i]); |
76a01679 JB |
3496 | } |
3497 | ||
3498 | if (deprocedure_p | |
3499 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3500 | == TYPE_CODE_FUNC)) | |
3501 | { | |
424da6cf | 3502 | replace_operator_with_call (expp, pc, 0, 4, |
76a01679 JB |
3503 | exp->elts[pc + 2].symbol, |
3504 | exp->elts[pc + 1].block); | |
e9d9f57e | 3505 | exp = expp->get (); |
76a01679 | 3506 | } |
14f9c5c9 AS |
3507 | break; |
3508 | ||
3509 | case OP_FUNCALL: | |
3510 | { | |
4c4b4cd2 | 3511 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 3512 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 | 3513 | { |
54d343a2 | 3514 | std::vector<struct block_symbol> candidates; |
4c4b4cd2 PH |
3515 | int n_candidates; |
3516 | ||
3517 | n_candidates = | |
76a01679 JB |
3518 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
3519 | (exp->elts[pc + 5].symbol), | |
3520 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
4eeaa230 | 3521 | &candidates); |
ec6a20c2 | 3522 | |
4c4b4cd2 PH |
3523 | if (n_candidates == 1) |
3524 | i = 0; | |
3525 | else | |
3526 | { | |
06d5cf63 | 3527 | i = ada_resolve_function |
54d343a2 | 3528 | (candidates.data (), n_candidates, |
06d5cf63 JB |
3529 | argvec, nargs, |
3530 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
2a612529 | 3531 | context_type, parse_completion); |
4c4b4cd2 | 3532 | if (i < 0) |
323e0a4a | 3533 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
3534 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
3535 | } | |
3536 | ||
3537 | exp->elts[pc + 4].block = candidates[i].block; | |
d12307c1 | 3538 | exp->elts[pc + 5].symbol = candidates[i].symbol; |
699bd4cf | 3539 | tracker->update (candidates[i]); |
4c4b4cd2 | 3540 | } |
14f9c5c9 AS |
3541 | } |
3542 | break; | |
3543 | case BINOP_ADD: | |
3544 | case BINOP_SUB: | |
3545 | case BINOP_MUL: | |
3546 | case BINOP_DIV: | |
3547 | case BINOP_REM: | |
3548 | case BINOP_MOD: | |
3549 | case BINOP_CONCAT: | |
3550 | case BINOP_BITWISE_AND: | |
3551 | case BINOP_BITWISE_IOR: | |
3552 | case BINOP_BITWISE_XOR: | |
3553 | case BINOP_EQUAL: | |
3554 | case BINOP_NOTEQUAL: | |
3555 | case BINOP_LESS: | |
3556 | case BINOP_GTR: | |
3557 | case BINOP_LEQ: | |
3558 | case BINOP_GEQ: | |
3559 | case BINOP_EXP: | |
3560 | case UNOP_NEG: | |
3561 | case UNOP_PLUS: | |
3562 | case UNOP_LOGICAL_NOT: | |
3563 | case UNOP_ABS: | |
3564 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 | 3565 | { |
54d343a2 | 3566 | std::vector<struct block_symbol> candidates; |
4c4b4cd2 PH |
3567 | int n_candidates; |
3568 | ||
3569 | n_candidates = | |
b5ec771e | 3570 | ada_lookup_symbol_list (ada_decoded_op_name (op), |
582942f4 | 3571 | NULL, VAR_DOMAIN, |
4eeaa230 | 3572 | &candidates); |
ec6a20c2 | 3573 | |
54d343a2 | 3574 | i = ada_resolve_function (candidates.data (), n_candidates, argvec, |
2a612529 TT |
3575 | nargs, ada_decoded_op_name (op), NULL, |
3576 | parse_completion); | |
4c4b4cd2 PH |
3577 | if (i < 0) |
3578 | break; | |
3579 | ||
d12307c1 PMR |
3580 | replace_operator_with_call (expp, pc, nargs, 1, |
3581 | candidates[i].symbol, | |
3582 | candidates[i].block); | |
e9d9f57e | 3583 | exp = expp->get (); |
4c4b4cd2 | 3584 | } |
14f9c5c9 | 3585 | break; |
4c4b4cd2 PH |
3586 | |
3587 | case OP_TYPE: | |
b3dbf008 | 3588 | case OP_REGISTER: |
4c4b4cd2 | 3589 | return NULL; |
14f9c5c9 AS |
3590 | } |
3591 | ||
3592 | *pos = pc; | |
ced9779b JB |
3593 | if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE) |
3594 | return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS, | |
3595 | exp->elts[pc + 1].objfile, | |
3596 | exp->elts[pc + 2].msymbol); | |
3597 | else | |
3598 | return evaluate_subexp_type (exp, pos); | |
14f9c5c9 AS |
3599 | } |
3600 | ||
3601 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3602 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3603 | a non-pointer. */ |
14f9c5c9 | 3604 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3605 | liberal. */ |
14f9c5c9 AS |
3606 | |
3607 | static int | |
4dc81987 | 3608 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3609 | { |
61ee279c PH |
3610 | ftype = ada_check_typedef (ftype); |
3611 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3612 | |
3613 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3614 | ftype = TYPE_TARGET_TYPE (ftype); | |
3615 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3616 | atype = TYPE_TARGET_TYPE (atype); | |
3617 | ||
d2e4a39e | 3618 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3619 | { |
3620 | default: | |
5b3d5b7d | 3621 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3622 | case TYPE_CODE_PTR: |
3623 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3624 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3625 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3626 | else |
1265e4aa JB |
3627 | return (may_deref |
3628 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3629 | case TYPE_CODE_INT: |
3630 | case TYPE_CODE_ENUM: | |
3631 | case TYPE_CODE_RANGE: | |
3632 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3633 | { |
3634 | case TYPE_CODE_INT: | |
3635 | case TYPE_CODE_ENUM: | |
3636 | case TYPE_CODE_RANGE: | |
3637 | return 1; | |
3638 | default: | |
3639 | return 0; | |
3640 | } | |
14f9c5c9 AS |
3641 | |
3642 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3643 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3644 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3645 | |
3646 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3647 | if (ada_is_array_descriptor_type (ftype)) |
3648 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3649 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3650 | else |
4c4b4cd2 PH |
3651 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3652 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3653 | |
3654 | case TYPE_CODE_UNION: | |
3655 | case TYPE_CODE_FLT: | |
3656 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3657 | } | |
3658 | } | |
3659 | ||
3660 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3661 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3662 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3663 | argument function. */ |
14f9c5c9 AS |
3664 | |
3665 | static int | |
d2e4a39e | 3666 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3667 | { |
3668 | int i; | |
d2e4a39e | 3669 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3670 | |
1265e4aa JB |
3671 | if (SYMBOL_CLASS (func) == LOC_CONST |
3672 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3673 | return (n_actuals == 0); |
3674 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3675 | return 0; | |
3676 | ||
3677 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3678 | return 0; | |
3679 | ||
3680 | for (i = 0; i < n_actuals; i += 1) | |
3681 | { | |
4c4b4cd2 | 3682 | if (actuals[i] == NULL) |
76a01679 JB |
3683 | return 0; |
3684 | else | |
3685 | { | |
5b4ee69b MS |
3686 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, |
3687 | i)); | |
df407dfe | 3688 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3689 | |
76a01679 JB |
3690 | if (!ada_type_match (ftype, atype, 1)) |
3691 | return 0; | |
3692 | } | |
14f9c5c9 AS |
3693 | } |
3694 | return 1; | |
3695 | } | |
3696 | ||
3697 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3698 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3699 | FUNC_TYPE is not a valid function type with a non-null return type | |
3700 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3701 | ||
3702 | static int | |
d2e4a39e | 3703 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3704 | { |
d2e4a39e | 3705 | struct type *return_type; |
14f9c5c9 AS |
3706 | |
3707 | if (func_type == NULL) | |
3708 | return 1; | |
3709 | ||
4c4b4cd2 | 3710 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
18af8284 | 3711 | return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); |
4c4b4cd2 | 3712 | else |
18af8284 | 3713 | return_type = get_base_type (func_type); |
14f9c5c9 AS |
3714 | if (return_type == NULL) |
3715 | return 1; | |
3716 | ||
18af8284 | 3717 | context_type = get_base_type (context_type); |
14f9c5c9 AS |
3718 | |
3719 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3720 | return context_type == NULL || return_type == context_type; | |
3721 | else if (context_type == NULL) | |
3722 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3723 | else | |
3724 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3725 | } | |
3726 | ||
3727 | ||
4c4b4cd2 | 3728 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3729 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3730 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3731 | that returns that type, then eliminate matches that don't. If | |
3732 | CONTEXT_TYPE is void and there is at least one match that does not | |
3733 | return void, eliminate all matches that do. | |
3734 | ||
14f9c5c9 AS |
3735 | Asks the user if there is more than one match remaining. Returns -1 |
3736 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3737 | solely for messages. May re-arrange and modify SYMS in |
3738 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3739 | |
4c4b4cd2 | 3740 | static int |
d12307c1 | 3741 | ada_resolve_function (struct block_symbol syms[], |
4c4b4cd2 | 3742 | int nsyms, struct value **args, int nargs, |
2a612529 TT |
3743 | const char *name, struct type *context_type, |
3744 | int parse_completion) | |
14f9c5c9 | 3745 | { |
30b15541 | 3746 | int fallback; |
14f9c5c9 | 3747 | int k; |
4c4b4cd2 | 3748 | int m; /* Number of hits */ |
14f9c5c9 | 3749 | |
d2e4a39e | 3750 | m = 0; |
30b15541 UW |
3751 | /* In the first pass of the loop, we only accept functions matching |
3752 | context_type. If none are found, we add a second pass of the loop | |
3753 | where every function is accepted. */ | |
3754 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3755 | { |
3756 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3757 | { |
d12307c1 | 3758 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol)); |
4c4b4cd2 | 3759 | |
d12307c1 | 3760 | if (ada_args_match (syms[k].symbol, args, nargs) |
30b15541 | 3761 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3762 | { |
3763 | syms[m] = syms[k]; | |
3764 | m += 1; | |
3765 | } | |
3766 | } | |
14f9c5c9 AS |
3767 | } |
3768 | ||
dc5c8746 PMR |
3769 | /* If we got multiple matches, ask the user which one to use. Don't do this |
3770 | interactive thing during completion, though, as the purpose of the | |
3771 | completion is providing a list of all possible matches. Prompting the | |
3772 | user to filter it down would be completely unexpected in this case. */ | |
14f9c5c9 AS |
3773 | if (m == 0) |
3774 | return -1; | |
dc5c8746 | 3775 | else if (m > 1 && !parse_completion) |
14f9c5c9 | 3776 | { |
323e0a4a | 3777 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3778 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3779 | return 0; |
3780 | } | |
3781 | return 0; | |
3782 | } | |
3783 | ||
4c4b4cd2 PH |
3784 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3785 | in a listing of choices during disambiguation (see sort_choices, below). | |
3786 | The idea is that overloadings of a subprogram name from the | |
3787 | same package should sort in their source order. We settle for ordering | |
3788 | such symbols by their trailing number (__N or $N). */ | |
3789 | ||
14f9c5c9 | 3790 | static int |
0d5cff50 | 3791 | encoded_ordered_before (const char *N0, const char *N1) |
14f9c5c9 AS |
3792 | { |
3793 | if (N1 == NULL) | |
3794 | return 0; | |
3795 | else if (N0 == NULL) | |
3796 | return 1; | |
3797 | else | |
3798 | { | |
3799 | int k0, k1; | |
5b4ee69b | 3800 | |
d2e4a39e | 3801 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3802 | ; |
d2e4a39e | 3803 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3804 | ; |
d2e4a39e | 3805 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3806 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3807 | { | |
3808 | int n0, n1; | |
5b4ee69b | 3809 | |
4c4b4cd2 PH |
3810 | n0 = k0; |
3811 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3812 | n0 -= 1; | |
3813 | n1 = k1; | |
3814 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3815 | n1 -= 1; | |
3816 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3817 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3818 | } | |
14f9c5c9 AS |
3819 | return (strcmp (N0, N1) < 0); |
3820 | } | |
3821 | } | |
d2e4a39e | 3822 | |
4c4b4cd2 PH |
3823 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3824 | encoded names. */ | |
3825 | ||
d2e4a39e | 3826 | static void |
d12307c1 | 3827 | sort_choices (struct block_symbol syms[], int nsyms) |
14f9c5c9 | 3828 | { |
4c4b4cd2 | 3829 | int i; |
5b4ee69b | 3830 | |
d2e4a39e | 3831 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3832 | { |
d12307c1 | 3833 | struct block_symbol sym = syms[i]; |
14f9c5c9 AS |
3834 | int j; |
3835 | ||
d2e4a39e | 3836 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 | 3837 | { |
d12307c1 PMR |
3838 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol), |
3839 | SYMBOL_LINKAGE_NAME (sym.symbol))) | |
4c4b4cd2 PH |
3840 | break; |
3841 | syms[j + 1] = syms[j]; | |
3842 | } | |
d2e4a39e | 3843 | syms[j + 1] = sym; |
14f9c5c9 AS |
3844 | } |
3845 | } | |
3846 | ||
d72413e6 PMR |
3847 | /* Whether GDB should display formals and return types for functions in the |
3848 | overloads selection menu. */ | |
3849 | static int print_signatures = 1; | |
3850 | ||
3851 | /* Print the signature for SYM on STREAM according to the FLAGS options. For | |
3852 | all but functions, the signature is just the name of the symbol. For | |
3853 | functions, this is the name of the function, the list of types for formals | |
3854 | and the return type (if any). */ | |
3855 | ||
3856 | static void | |
3857 | ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym, | |
3858 | const struct type_print_options *flags) | |
3859 | { | |
3860 | struct type *type = SYMBOL_TYPE (sym); | |
3861 | ||
3862 | fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym)); | |
3863 | if (!print_signatures | |
3864 | || type == NULL | |
3865 | || TYPE_CODE (type) != TYPE_CODE_FUNC) | |
3866 | return; | |
3867 | ||
3868 | if (TYPE_NFIELDS (type) > 0) | |
3869 | { | |
3870 | int i; | |
3871 | ||
3872 | fprintf_filtered (stream, " ("); | |
3873 | for (i = 0; i < TYPE_NFIELDS (type); ++i) | |
3874 | { | |
3875 | if (i > 0) | |
3876 | fprintf_filtered (stream, "; "); | |
3877 | ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0, | |
3878 | flags); | |
3879 | } | |
3880 | fprintf_filtered (stream, ")"); | |
3881 | } | |
3882 | if (TYPE_TARGET_TYPE (type) != NULL | |
3883 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID) | |
3884 | { | |
3885 | fprintf_filtered (stream, " return "); | |
3886 | ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags); | |
3887 | } | |
3888 | } | |
3889 | ||
4c4b4cd2 PH |
3890 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3891 | by asking the user (if necessary), returning the number selected, | |
3892 | and setting the first elements of SYMS items. Error if no symbols | |
3893 | selected. */ | |
14f9c5c9 AS |
3894 | |
3895 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3896 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3897 | |
3898 | int | |
d12307c1 | 3899 | user_select_syms (struct block_symbol *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3900 | { |
3901 | int i; | |
8d749320 | 3902 | int *chosen = XALLOCAVEC (int , nsyms); |
14f9c5c9 AS |
3903 | int n_chosen; |
3904 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3905 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3906 | |
3907 | if (max_results < 1) | |
323e0a4a | 3908 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3909 | if (nsyms <= 1) |
3910 | return nsyms; | |
3911 | ||
717d2f5a JB |
3912 | if (select_mode == multiple_symbols_cancel) |
3913 | error (_("\ | |
3914 | canceled because the command is ambiguous\n\ | |
3915 | See set/show multiple-symbol.")); | |
a0087920 | 3916 | |
717d2f5a JB |
3917 | /* If select_mode is "all", then return all possible symbols. |
3918 | Only do that if more than one symbol can be selected, of course. | |
3919 | Otherwise, display the menu as usual. */ | |
3920 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3921 | return nsyms; | |
3922 | ||
a0087920 | 3923 | printf_filtered (_("[0] cancel\n")); |
14f9c5c9 | 3924 | if (max_results > 1) |
a0087920 | 3925 | printf_filtered (_("[1] all\n")); |
14f9c5c9 | 3926 | |
4c4b4cd2 | 3927 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3928 | |
3929 | for (i = 0; i < nsyms; i += 1) | |
3930 | { | |
d12307c1 | 3931 | if (syms[i].symbol == NULL) |
4c4b4cd2 PH |
3932 | continue; |
3933 | ||
d12307c1 | 3934 | if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK) |
4c4b4cd2 | 3935 | { |
76a01679 | 3936 | struct symtab_and_line sal = |
d12307c1 | 3937 | find_function_start_sal (syms[i].symbol, 1); |
5b4ee69b | 3938 | |
a0087920 | 3939 | printf_filtered ("[%d] ", i + first_choice); |
d72413e6 PMR |
3940 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, |
3941 | &type_print_raw_options); | |
323e0a4a | 3942 | if (sal.symtab == NULL) |
a0087920 TT |
3943 | printf_filtered (_(" at <no source file available>:%d\n"), |
3944 | sal.line); | |
323e0a4a | 3945 | else |
a0087920 TT |
3946 | printf_filtered (_(" at %s:%d\n"), |
3947 | symtab_to_filename_for_display (sal.symtab), | |
3948 | sal.line); | |
4c4b4cd2 PH |
3949 | continue; |
3950 | } | |
d2e4a39e | 3951 | else |
4c4b4cd2 PH |
3952 | { |
3953 | int is_enumeral = | |
d12307c1 PMR |
3954 | (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST |
3955 | && SYMBOL_TYPE (syms[i].symbol) != NULL | |
3956 | && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM); | |
1994afbf DE |
3957 | struct symtab *symtab = NULL; |
3958 | ||
d12307c1 PMR |
3959 | if (SYMBOL_OBJFILE_OWNED (syms[i].symbol)) |
3960 | symtab = symbol_symtab (syms[i].symbol); | |
4c4b4cd2 | 3961 | |
d12307c1 | 3962 | if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL) |
d72413e6 | 3963 | { |
a0087920 | 3964 | printf_filtered ("[%d] ", i + first_choice); |
d72413e6 PMR |
3965 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, |
3966 | &type_print_raw_options); | |
a0087920 TT |
3967 | printf_filtered (_(" at %s:%d\n"), |
3968 | symtab_to_filename_for_display (symtab), | |
3969 | SYMBOL_LINE (syms[i].symbol)); | |
d72413e6 | 3970 | } |
76a01679 | 3971 | else if (is_enumeral |
d12307c1 | 3972 | && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL) |
4c4b4cd2 | 3973 | { |
a0087920 | 3974 | printf_filtered (("[%d] "), i + first_choice); |
d12307c1 | 3975 | ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL, |
79d43c61 | 3976 | gdb_stdout, -1, 0, &type_print_raw_options); |
a0087920 TT |
3977 | printf_filtered (_("'(%s) (enumeral)\n"), |
3978 | SYMBOL_PRINT_NAME (syms[i].symbol)); | |
4c4b4cd2 | 3979 | } |
d72413e6 PMR |
3980 | else |
3981 | { | |
a0087920 | 3982 | printf_filtered ("[%d] ", i + first_choice); |
d72413e6 PMR |
3983 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, |
3984 | &type_print_raw_options); | |
3985 | ||
3986 | if (symtab != NULL) | |
a0087920 TT |
3987 | printf_filtered (is_enumeral |
3988 | ? _(" in %s (enumeral)\n") | |
3989 | : _(" at %s:?\n"), | |
3990 | symtab_to_filename_for_display (symtab)); | |
d72413e6 | 3991 | else |
a0087920 TT |
3992 | printf_filtered (is_enumeral |
3993 | ? _(" (enumeral)\n") | |
3994 | : _(" at ?\n")); | |
d72413e6 | 3995 | } |
4c4b4cd2 | 3996 | } |
14f9c5c9 | 3997 | } |
d2e4a39e | 3998 | |
14f9c5c9 | 3999 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 4000 | "overload-choice"); |
14f9c5c9 AS |
4001 | |
4002 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 4003 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
4004 | |
4005 | return n_chosen; | |
4006 | } | |
4007 | ||
4008 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 4009 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
4010 | order in CHOICES[0 .. N-1], and return N. |
4011 | ||
4012 | The user types choices as a sequence of numbers on one line | |
4013 | separated by blanks, encoding them as follows: | |
4014 | ||
4c4b4cd2 | 4015 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
4016 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
4017 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
4018 | ||
4c4b4cd2 | 4019 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
4020 | |
4021 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 4022 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
4023 | |
4024 | int | |
d2e4a39e | 4025 | get_selections (int *choices, int n_choices, int max_results, |
a121b7c1 | 4026 | int is_all_choice, const char *annotation_suffix) |
14f9c5c9 | 4027 | { |
d2e4a39e | 4028 | char *args; |
a121b7c1 | 4029 | const char *prompt; |
14f9c5c9 AS |
4030 | int n_chosen; |
4031 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 4032 | |
14f9c5c9 AS |
4033 | prompt = getenv ("PS2"); |
4034 | if (prompt == NULL) | |
0bcd0149 | 4035 | prompt = "> "; |
14f9c5c9 | 4036 | |
89fbedf3 | 4037 | args = command_line_input (prompt, annotation_suffix); |
d2e4a39e | 4038 | |
14f9c5c9 | 4039 | if (args == NULL) |
323e0a4a | 4040 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
4041 | |
4042 | n_chosen = 0; | |
76a01679 | 4043 | |
4c4b4cd2 PH |
4044 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
4045 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
4046 | while (1) |
4047 | { | |
d2e4a39e | 4048 | char *args2; |
14f9c5c9 AS |
4049 | int choice, j; |
4050 | ||
0fcd72ba | 4051 | args = skip_spaces (args); |
14f9c5c9 | 4052 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 4053 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 4054 | else if (*args == '\0') |
4c4b4cd2 | 4055 | break; |
14f9c5c9 AS |
4056 | |
4057 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 4058 | if (args == args2 || choice < 0 |
4c4b4cd2 | 4059 | || choice > n_choices + first_choice - 1) |
323e0a4a | 4060 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
4061 | args = args2; |
4062 | ||
d2e4a39e | 4063 | if (choice == 0) |
323e0a4a | 4064 | error (_("cancelled")); |
14f9c5c9 AS |
4065 | |
4066 | if (choice < first_choice) | |
4c4b4cd2 PH |
4067 | { |
4068 | n_chosen = n_choices; | |
4069 | for (j = 0; j < n_choices; j += 1) | |
4070 | choices[j] = j; | |
4071 | break; | |
4072 | } | |
14f9c5c9 AS |
4073 | choice -= first_choice; |
4074 | ||
d2e4a39e | 4075 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
4076 | { |
4077 | } | |
14f9c5c9 AS |
4078 | |
4079 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
4080 | { |
4081 | int k; | |
5b4ee69b | 4082 | |
4c4b4cd2 PH |
4083 | for (k = n_chosen - 1; k > j; k -= 1) |
4084 | choices[k + 1] = choices[k]; | |
4085 | choices[j + 1] = choice; | |
4086 | n_chosen += 1; | |
4087 | } | |
14f9c5c9 AS |
4088 | } |
4089 | ||
4090 | if (n_chosen > max_results) | |
323e0a4a | 4091 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 4092 | |
14f9c5c9 AS |
4093 | return n_chosen; |
4094 | } | |
4095 | ||
4c4b4cd2 PH |
4096 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
4097 | on the function identified by SYM and BLOCK, and taking NARGS | |
4098 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
4099 | |
4100 | static void | |
e9d9f57e | 4101 | replace_operator_with_call (expression_up *expp, int pc, int nargs, |
4c4b4cd2 | 4102 | int oplen, struct symbol *sym, |
270140bd | 4103 | const struct block *block) |
14f9c5c9 AS |
4104 | { |
4105 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 4106 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 4107 | struct expression *newexp = (struct expression *) |
8c1a34e7 | 4108 | xzalloc (sizeof (struct expression) |
4c4b4cd2 | 4109 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
e9d9f57e | 4110 | struct expression *exp = expp->get (); |
14f9c5c9 AS |
4111 | |
4112 | newexp->nelts = exp->nelts + 7 - oplen; | |
4113 | newexp->language_defn = exp->language_defn; | |
3489610d | 4114 | newexp->gdbarch = exp->gdbarch; |
14f9c5c9 | 4115 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); |
d2e4a39e | 4116 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 4117 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
4118 | |
4119 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
4120 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
4121 | ||
4122 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
4123 | newexp->elts[pc + 4].block = block; | |
4124 | newexp->elts[pc + 5].symbol = sym; | |
4125 | ||
e9d9f57e | 4126 | expp->reset (newexp); |
d2e4a39e | 4127 | } |
14f9c5c9 AS |
4128 | |
4129 | /* Type-class predicates */ | |
4130 | ||
4c4b4cd2 PH |
4131 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
4132 | or FLOAT). */ | |
14f9c5c9 AS |
4133 | |
4134 | static int | |
d2e4a39e | 4135 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
4136 | { |
4137 | if (type == NULL) | |
4138 | return 0; | |
d2e4a39e AS |
4139 | else |
4140 | { | |
4141 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4142 | { |
4143 | case TYPE_CODE_INT: | |
4144 | case TYPE_CODE_FLT: | |
4145 | return 1; | |
4146 | case TYPE_CODE_RANGE: | |
4147 | return (type == TYPE_TARGET_TYPE (type) | |
4148 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
4149 | default: | |
4150 | return 0; | |
4151 | } | |
d2e4a39e | 4152 | } |
14f9c5c9 AS |
4153 | } |
4154 | ||
4c4b4cd2 | 4155 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
4156 | |
4157 | static int | |
d2e4a39e | 4158 | integer_type_p (struct type *type) |
14f9c5c9 AS |
4159 | { |
4160 | if (type == NULL) | |
4161 | return 0; | |
d2e4a39e AS |
4162 | else |
4163 | { | |
4164 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4165 | { |
4166 | case TYPE_CODE_INT: | |
4167 | return 1; | |
4168 | case TYPE_CODE_RANGE: | |
4169 | return (type == TYPE_TARGET_TYPE (type) | |
4170 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
4171 | default: | |
4172 | return 0; | |
4173 | } | |
d2e4a39e | 4174 | } |
14f9c5c9 AS |
4175 | } |
4176 | ||
4c4b4cd2 | 4177 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
4178 | |
4179 | static int | |
d2e4a39e | 4180 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
4181 | { |
4182 | if (type == NULL) | |
4183 | return 0; | |
d2e4a39e AS |
4184 | else |
4185 | { | |
4186 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4187 | { |
4188 | case TYPE_CODE_INT: | |
4189 | case TYPE_CODE_RANGE: | |
4190 | case TYPE_CODE_ENUM: | |
4191 | case TYPE_CODE_FLT: | |
4192 | return 1; | |
4193 | default: | |
4194 | return 0; | |
4195 | } | |
d2e4a39e | 4196 | } |
14f9c5c9 AS |
4197 | } |
4198 | ||
4c4b4cd2 | 4199 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
4200 | |
4201 | static int | |
d2e4a39e | 4202 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
4203 | { |
4204 | if (type == NULL) | |
4205 | return 0; | |
d2e4a39e AS |
4206 | else |
4207 | { | |
4208 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4209 | { |
4210 | case TYPE_CODE_INT: | |
4211 | case TYPE_CODE_RANGE: | |
4212 | case TYPE_CODE_ENUM: | |
872f0337 | 4213 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
4214 | return 1; |
4215 | default: | |
4216 | return 0; | |
4217 | } | |
d2e4a39e | 4218 | } |
14f9c5c9 AS |
4219 | } |
4220 | ||
4c4b4cd2 PH |
4221 | /* Returns non-zero if OP with operands in the vector ARGS could be |
4222 | a user-defined function. Errs on the side of pre-defined operators | |
4223 | (i.e., result 0). */ | |
14f9c5c9 AS |
4224 | |
4225 | static int | |
d2e4a39e | 4226 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 4227 | { |
76a01679 | 4228 | struct type *type0 = |
df407dfe | 4229 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 4230 | struct type *type1 = |
df407dfe | 4231 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 4232 | |
4c4b4cd2 PH |
4233 | if (type0 == NULL) |
4234 | return 0; | |
4235 | ||
14f9c5c9 AS |
4236 | switch (op) |
4237 | { | |
4238 | default: | |
4239 | return 0; | |
4240 | ||
4241 | case BINOP_ADD: | |
4242 | case BINOP_SUB: | |
4243 | case BINOP_MUL: | |
4244 | case BINOP_DIV: | |
d2e4a39e | 4245 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
4246 | |
4247 | case BINOP_REM: | |
4248 | case BINOP_MOD: | |
4249 | case BINOP_BITWISE_AND: | |
4250 | case BINOP_BITWISE_IOR: | |
4251 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 4252 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
4253 | |
4254 | case BINOP_EQUAL: | |
4255 | case BINOP_NOTEQUAL: | |
4256 | case BINOP_LESS: | |
4257 | case BINOP_GTR: | |
4258 | case BINOP_LEQ: | |
4259 | case BINOP_GEQ: | |
d2e4a39e | 4260 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
4261 | |
4262 | case BINOP_CONCAT: | |
ee90b9ab | 4263 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
4264 | |
4265 | case BINOP_EXP: | |
d2e4a39e | 4266 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
4267 | |
4268 | case UNOP_NEG: | |
4269 | case UNOP_PLUS: | |
4270 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
4271 | case UNOP_ABS: |
4272 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
4273 | |
4274 | } | |
4275 | } | |
4276 | \f | |
4c4b4cd2 | 4277 | /* Renaming */ |
14f9c5c9 | 4278 | |
aeb5907d JB |
4279 | /* NOTES: |
4280 | ||
4281 | 1. In the following, we assume that a renaming type's name may | |
4282 | have an ___XD suffix. It would be nice if this went away at some | |
4283 | point. | |
4284 | 2. We handle both the (old) purely type-based representation of | |
4285 | renamings and the (new) variable-based encoding. At some point, | |
4286 | it is devoutly to be hoped that the former goes away | |
4287 | (FIXME: hilfinger-2007-07-09). | |
4288 | 3. Subprogram renamings are not implemented, although the XRS | |
4289 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
4290 | ||
4291 | /* If SYM encodes a renaming, | |
4292 | ||
4293 | <renaming> renames <renamed entity>, | |
4294 | ||
4295 | sets *LEN to the length of the renamed entity's name, | |
4296 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
4297 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 4298 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
4299 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
4300 | are undefined). Otherwise, returns a value indicating the category | |
4301 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
4302 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
4303 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
4304 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
4305 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
4306 | may be NULL, in which case they are not assigned. | |
4307 | ||
4308 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
4309 | ||
4310 | enum ada_renaming_category | |
4311 | ada_parse_renaming (struct symbol *sym, | |
4312 | const char **renamed_entity, int *len, | |
4313 | const char **renaming_expr) | |
4314 | { | |
4315 | enum ada_renaming_category kind; | |
4316 | const char *info; | |
4317 | const char *suffix; | |
4318 | ||
4319 | if (sym == NULL) | |
4320 | return ADA_NOT_RENAMING; | |
4321 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 4322 | { |
aeb5907d JB |
4323 | default: |
4324 | return ADA_NOT_RENAMING; | |
4325 | case LOC_TYPEDEF: | |
4326 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
4327 | renamed_entity, len, renaming_expr); | |
4328 | case LOC_LOCAL: | |
4329 | case LOC_STATIC: | |
4330 | case LOC_COMPUTED: | |
4331 | case LOC_OPTIMIZED_OUT: | |
4332 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
4333 | if (info == NULL) | |
4334 | return ADA_NOT_RENAMING; | |
4335 | switch (info[5]) | |
4336 | { | |
4337 | case '_': | |
4338 | kind = ADA_OBJECT_RENAMING; | |
4339 | info += 6; | |
4340 | break; | |
4341 | case 'E': | |
4342 | kind = ADA_EXCEPTION_RENAMING; | |
4343 | info += 7; | |
4344 | break; | |
4345 | case 'P': | |
4346 | kind = ADA_PACKAGE_RENAMING; | |
4347 | info += 7; | |
4348 | break; | |
4349 | case 'S': | |
4350 | kind = ADA_SUBPROGRAM_RENAMING; | |
4351 | info += 7; | |
4352 | break; | |
4353 | default: | |
4354 | return ADA_NOT_RENAMING; | |
4355 | } | |
14f9c5c9 | 4356 | } |
4c4b4cd2 | 4357 | |
aeb5907d JB |
4358 | if (renamed_entity != NULL) |
4359 | *renamed_entity = info; | |
4360 | suffix = strstr (info, "___XE"); | |
4361 | if (suffix == NULL || suffix == info) | |
4362 | return ADA_NOT_RENAMING; | |
4363 | if (len != NULL) | |
4364 | *len = strlen (info) - strlen (suffix); | |
4365 | suffix += 5; | |
4366 | if (renaming_expr != NULL) | |
4367 | *renaming_expr = suffix; | |
4368 | return kind; | |
4369 | } | |
4370 | ||
4371 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
4372 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
4373 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
4374 | ADA_NOT_RENAMING otherwise. */ | |
4375 | static enum ada_renaming_category | |
4376 | parse_old_style_renaming (struct type *type, | |
4377 | const char **renamed_entity, int *len, | |
4378 | const char **renaming_expr) | |
4379 | { | |
4380 | enum ada_renaming_category kind; | |
4381 | const char *name; | |
4382 | const char *info; | |
4383 | const char *suffix; | |
14f9c5c9 | 4384 | |
aeb5907d JB |
4385 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
4386 | || TYPE_NFIELDS (type) != 1) | |
4387 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 4388 | |
a737d952 | 4389 | name = TYPE_NAME (type); |
aeb5907d JB |
4390 | if (name == NULL) |
4391 | return ADA_NOT_RENAMING; | |
4392 | ||
4393 | name = strstr (name, "___XR"); | |
4394 | if (name == NULL) | |
4395 | return ADA_NOT_RENAMING; | |
4396 | switch (name[5]) | |
4397 | { | |
4398 | case '\0': | |
4399 | case '_': | |
4400 | kind = ADA_OBJECT_RENAMING; | |
4401 | break; | |
4402 | case 'E': | |
4403 | kind = ADA_EXCEPTION_RENAMING; | |
4404 | break; | |
4405 | case 'P': | |
4406 | kind = ADA_PACKAGE_RENAMING; | |
4407 | break; | |
4408 | case 'S': | |
4409 | kind = ADA_SUBPROGRAM_RENAMING; | |
4410 | break; | |
4411 | default: | |
4412 | return ADA_NOT_RENAMING; | |
4413 | } | |
14f9c5c9 | 4414 | |
aeb5907d JB |
4415 | info = TYPE_FIELD_NAME (type, 0); |
4416 | if (info == NULL) | |
4417 | return ADA_NOT_RENAMING; | |
4418 | if (renamed_entity != NULL) | |
4419 | *renamed_entity = info; | |
4420 | suffix = strstr (info, "___XE"); | |
4421 | if (renaming_expr != NULL) | |
4422 | *renaming_expr = suffix + 5; | |
4423 | if (suffix == NULL || suffix == info) | |
4424 | return ADA_NOT_RENAMING; | |
4425 | if (len != NULL) | |
4426 | *len = suffix - info; | |
4427 | return kind; | |
a5ee536b JB |
4428 | } |
4429 | ||
4430 | /* Compute the value of the given RENAMING_SYM, which is expected to | |
4431 | be a symbol encoding a renaming expression. BLOCK is the block | |
4432 | used to evaluate the renaming. */ | |
52ce6436 | 4433 | |
a5ee536b JB |
4434 | static struct value * |
4435 | ada_read_renaming_var_value (struct symbol *renaming_sym, | |
3977b71f | 4436 | const struct block *block) |
a5ee536b | 4437 | { |
bbc13ae3 | 4438 | const char *sym_name; |
a5ee536b | 4439 | |
bbc13ae3 | 4440 | sym_name = SYMBOL_LINKAGE_NAME (renaming_sym); |
4d01a485 PA |
4441 | expression_up expr = parse_exp_1 (&sym_name, 0, block, 0); |
4442 | return evaluate_expression (expr.get ()); | |
a5ee536b | 4443 | } |
14f9c5c9 | 4444 | \f |
d2e4a39e | 4445 | |
4c4b4cd2 | 4446 | /* Evaluation: Function Calls */ |
14f9c5c9 | 4447 | |
4c4b4cd2 | 4448 | /* Return an lvalue containing the value VAL. This is the identity on |
40bc484c JB |
4449 | lvalues, and otherwise has the side-effect of allocating memory |
4450 | in the inferior where a copy of the value contents is copied. */ | |
14f9c5c9 | 4451 | |
d2e4a39e | 4452 | static struct value * |
40bc484c | 4453 | ensure_lval (struct value *val) |
14f9c5c9 | 4454 | { |
40bc484c JB |
4455 | if (VALUE_LVAL (val) == not_lval |
4456 | || VALUE_LVAL (val) == lval_internalvar) | |
c3e5cd34 | 4457 | { |
df407dfe | 4458 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
40bc484c JB |
4459 | const CORE_ADDR addr = |
4460 | value_as_long (value_allocate_space_in_inferior (len)); | |
c3e5cd34 | 4461 | |
a84a8a0d | 4462 | VALUE_LVAL (val) = lval_memory; |
1a088441 | 4463 | set_value_address (val, addr); |
40bc484c | 4464 | write_memory (addr, value_contents (val), len); |
c3e5cd34 | 4465 | } |
14f9c5c9 AS |
4466 | |
4467 | return val; | |
4468 | } | |
4469 | ||
4470 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4471 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4472 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4473 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4474 | |
a93c0eb6 | 4475 | struct value * |
40bc484c | 4476 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4477 | { |
df407dfe | 4478 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4479 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
4480 | struct type *formal_target = |
4481 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 4482 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
4483 | struct type *actual_target = |
4484 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 4485 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4486 | |
4c4b4cd2 | 4487 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 4488 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 4489 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
4490 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
4491 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 4492 | { |
a84a8a0d | 4493 | struct value *result; |
5b4ee69b | 4494 | |
14f9c5c9 | 4495 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 4496 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4497 | result = desc_data (actual); |
cb923fcc | 4498 | else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
4499 | { |
4500 | if (VALUE_LVAL (actual) != lval_memory) | |
4501 | { | |
4502 | struct value *val; | |
5b4ee69b | 4503 | |
df407dfe | 4504 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 4505 | val = allocate_value (actual_type); |
990a07ab | 4506 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 4507 | (char *) value_contents (actual), |
4c4b4cd2 | 4508 | TYPE_LENGTH (actual_type)); |
40bc484c | 4509 | actual = ensure_lval (val); |
4c4b4cd2 | 4510 | } |
a84a8a0d | 4511 | result = value_addr (actual); |
4c4b4cd2 | 4512 | } |
a84a8a0d JB |
4513 | else |
4514 | return actual; | |
b1af9e97 | 4515 | return value_cast_pointers (formal_type, result, 0); |
14f9c5c9 AS |
4516 | } |
4517 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
4518 | return ada_value_ind (actual); | |
8344af1e JB |
4519 | else if (ada_is_aligner_type (formal_type)) |
4520 | { | |
4521 | /* We need to turn this parameter into an aligner type | |
4522 | as well. */ | |
4523 | struct value *aligner = allocate_value (formal_type); | |
4524 | struct value *component = ada_value_struct_elt (aligner, "F", 0); | |
4525 | ||
4526 | value_assign_to_component (aligner, component, actual); | |
4527 | return aligner; | |
4528 | } | |
14f9c5c9 AS |
4529 | |
4530 | return actual; | |
4531 | } | |
4532 | ||
438c98a1 JB |
4533 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4534 | type TYPE. This is usually an inefficient no-op except on some targets | |
4535 | (such as AVR) where the representation of a pointer and an address | |
4536 | differs. */ | |
4537 | ||
4538 | static CORE_ADDR | |
4539 | value_pointer (struct value *value, struct type *type) | |
4540 | { | |
4541 | struct gdbarch *gdbarch = get_type_arch (type); | |
4542 | unsigned len = TYPE_LENGTH (type); | |
224c3ddb | 4543 | gdb_byte *buf = (gdb_byte *) alloca (len); |
438c98a1 JB |
4544 | CORE_ADDR addr; |
4545 | ||
4546 | addr = value_address (value); | |
4547 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
4548 | addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); | |
4549 | return addr; | |
4550 | } | |
4551 | ||
14f9c5c9 | 4552 | |
4c4b4cd2 PH |
4553 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4554 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4555 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4556 | to-descriptor type rather than a descriptor type), a struct value * |
4557 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4558 | |
d2e4a39e | 4559 | static struct value * |
40bc484c | 4560 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4561 | { |
d2e4a39e AS |
4562 | struct type *bounds_type = desc_bounds_type (type); |
4563 | struct type *desc_type = desc_base_type (type); | |
4564 | struct value *descriptor = allocate_value (desc_type); | |
4565 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4566 | int i; |
d2e4a39e | 4567 | |
0963b4bd MS |
4568 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4569 | i > 0; i -= 1) | |
14f9c5c9 | 4570 | { |
19f220c3 JK |
4571 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4572 | ada_array_bound (arr, i, 0), | |
4573 | desc_bound_bitpos (bounds_type, i, 0), | |
4574 | desc_bound_bitsize (bounds_type, i, 0)); | |
4575 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4576 | ada_array_bound (arr, i, 1), | |
4577 | desc_bound_bitpos (bounds_type, i, 1), | |
4578 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4579 | } |
d2e4a39e | 4580 | |
40bc484c | 4581 | bounds = ensure_lval (bounds); |
d2e4a39e | 4582 | |
19f220c3 JK |
4583 | modify_field (value_type (descriptor), |
4584 | value_contents_writeable (descriptor), | |
4585 | value_pointer (ensure_lval (arr), | |
4586 | TYPE_FIELD_TYPE (desc_type, 0)), | |
4587 | fat_pntr_data_bitpos (desc_type), | |
4588 | fat_pntr_data_bitsize (desc_type)); | |
4589 | ||
4590 | modify_field (value_type (descriptor), | |
4591 | value_contents_writeable (descriptor), | |
4592 | value_pointer (bounds, | |
4593 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4594 | fat_pntr_bounds_bitpos (desc_type), | |
4595 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4596 | |
40bc484c | 4597 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4598 | |
4599 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4600 | return value_addr (descriptor); | |
4601 | else | |
4602 | return descriptor; | |
4603 | } | |
14f9c5c9 | 4604 | \f |
3d9434b5 JB |
4605 | /* Symbol Cache Module */ |
4606 | ||
3d9434b5 | 4607 | /* Performance measurements made as of 2010-01-15 indicate that |
ee01b665 | 4608 | this cache does bring some noticeable improvements. Depending |
3d9434b5 JB |
4609 | on the type of entity being printed, the cache can make it as much |
4610 | as an order of magnitude faster than without it. | |
4611 | ||
4612 | The descriptive type DWARF extension has significantly reduced | |
4613 | the need for this cache, at least when DWARF is being used. However, | |
4614 | even in this case, some expensive name-based symbol searches are still | |
4615 | sometimes necessary - to find an XVZ variable, mostly. */ | |
4616 | ||
ee01b665 | 4617 | /* Initialize the contents of SYM_CACHE. */ |
3d9434b5 | 4618 | |
ee01b665 JB |
4619 | static void |
4620 | ada_init_symbol_cache (struct ada_symbol_cache *sym_cache) | |
4621 | { | |
4622 | obstack_init (&sym_cache->cache_space); | |
4623 | memset (sym_cache->root, '\000', sizeof (sym_cache->root)); | |
4624 | } | |
3d9434b5 | 4625 | |
ee01b665 JB |
4626 | /* Free the memory used by SYM_CACHE. */ |
4627 | ||
4628 | static void | |
4629 | ada_free_symbol_cache (struct ada_symbol_cache *sym_cache) | |
3d9434b5 | 4630 | { |
ee01b665 JB |
4631 | obstack_free (&sym_cache->cache_space, NULL); |
4632 | xfree (sym_cache); | |
4633 | } | |
3d9434b5 | 4634 | |
ee01b665 JB |
4635 | /* Return the symbol cache associated to the given program space PSPACE. |
4636 | If not allocated for this PSPACE yet, allocate and initialize one. */ | |
3d9434b5 | 4637 | |
ee01b665 JB |
4638 | static struct ada_symbol_cache * |
4639 | ada_get_symbol_cache (struct program_space *pspace) | |
4640 | { | |
4641 | struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace); | |
ee01b665 | 4642 | |
66c168ae | 4643 | if (pspace_data->sym_cache == NULL) |
ee01b665 | 4644 | { |
66c168ae JB |
4645 | pspace_data->sym_cache = XCNEW (struct ada_symbol_cache); |
4646 | ada_init_symbol_cache (pspace_data->sym_cache); | |
ee01b665 JB |
4647 | } |
4648 | ||
66c168ae | 4649 | return pspace_data->sym_cache; |
ee01b665 | 4650 | } |
3d9434b5 JB |
4651 | |
4652 | /* Clear all entries from the symbol cache. */ | |
4653 | ||
4654 | static void | |
4655 | ada_clear_symbol_cache (void) | |
4656 | { | |
ee01b665 JB |
4657 | struct ada_symbol_cache *sym_cache |
4658 | = ada_get_symbol_cache (current_program_space); | |
4659 | ||
4660 | obstack_free (&sym_cache->cache_space, NULL); | |
4661 | ada_init_symbol_cache (sym_cache); | |
3d9434b5 JB |
4662 | } |
4663 | ||
fe978cb0 | 4664 | /* Search our cache for an entry matching NAME and DOMAIN. |
3d9434b5 JB |
4665 | Return it if found, or NULL otherwise. */ |
4666 | ||
4667 | static struct cache_entry ** | |
fe978cb0 | 4668 | find_entry (const char *name, domain_enum domain) |
3d9434b5 | 4669 | { |
ee01b665 JB |
4670 | struct ada_symbol_cache *sym_cache |
4671 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4672 | int h = msymbol_hash (name) % HASH_SIZE; |
4673 | struct cache_entry **e; | |
4674 | ||
ee01b665 | 4675 | for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next) |
3d9434b5 | 4676 | { |
fe978cb0 | 4677 | if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0) |
3d9434b5 JB |
4678 | return e; |
4679 | } | |
4680 | return NULL; | |
4681 | } | |
4682 | ||
fe978cb0 | 4683 | /* Search the symbol cache for an entry matching NAME and DOMAIN. |
3d9434b5 JB |
4684 | Return 1 if found, 0 otherwise. |
4685 | ||
4686 | If an entry was found and SYM is not NULL, set *SYM to the entry's | |
4687 | SYM. Same principle for BLOCK if not NULL. */ | |
96d887e8 | 4688 | |
96d887e8 | 4689 | static int |
fe978cb0 | 4690 | lookup_cached_symbol (const char *name, domain_enum domain, |
f0c5f9b2 | 4691 | struct symbol **sym, const struct block **block) |
96d887e8 | 4692 | { |
fe978cb0 | 4693 | struct cache_entry **e = find_entry (name, domain); |
3d9434b5 JB |
4694 | |
4695 | if (e == NULL) | |
4696 | return 0; | |
4697 | if (sym != NULL) | |
4698 | *sym = (*e)->sym; | |
4699 | if (block != NULL) | |
4700 | *block = (*e)->block; | |
4701 | return 1; | |
96d887e8 PH |
4702 | } |
4703 | ||
3d9434b5 | 4704 | /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME |
fe978cb0 | 4705 | in domain DOMAIN, save this result in our symbol cache. */ |
3d9434b5 | 4706 | |
96d887e8 | 4707 | static void |
fe978cb0 | 4708 | cache_symbol (const char *name, domain_enum domain, struct symbol *sym, |
270140bd | 4709 | const struct block *block) |
96d887e8 | 4710 | { |
ee01b665 JB |
4711 | struct ada_symbol_cache *sym_cache |
4712 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4713 | int h; |
4714 | char *copy; | |
4715 | struct cache_entry *e; | |
4716 | ||
1994afbf DE |
4717 | /* Symbols for builtin types don't have a block. |
4718 | For now don't cache such symbols. */ | |
4719 | if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym)) | |
4720 | return; | |
4721 | ||
3d9434b5 JB |
4722 | /* If the symbol is a local symbol, then do not cache it, as a search |
4723 | for that symbol depends on the context. To determine whether | |
4724 | the symbol is local or not, we check the block where we found it | |
4725 | against the global and static blocks of its associated symtab. */ | |
4726 | if (sym | |
08be3fe3 | 4727 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)), |
439247b6 | 4728 | GLOBAL_BLOCK) != block |
08be3fe3 | 4729 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)), |
439247b6 | 4730 | STATIC_BLOCK) != block) |
3d9434b5 JB |
4731 | return; |
4732 | ||
4733 | h = msymbol_hash (name) % HASH_SIZE; | |
e39db4db | 4734 | e = XOBNEW (&sym_cache->cache_space, cache_entry); |
ee01b665 JB |
4735 | e->next = sym_cache->root[h]; |
4736 | sym_cache->root[h] = e; | |
224c3ddb SM |
4737 | e->name = copy |
4738 | = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1); | |
3d9434b5 JB |
4739 | strcpy (copy, name); |
4740 | e->sym = sym; | |
fe978cb0 | 4741 | e->domain = domain; |
3d9434b5 | 4742 | e->block = block; |
96d887e8 | 4743 | } |
4c4b4cd2 PH |
4744 | \f |
4745 | /* Symbol Lookup */ | |
4746 | ||
b5ec771e PA |
4747 | /* Return the symbol name match type that should be used used when |
4748 | searching for all symbols matching LOOKUP_NAME. | |
c0431670 JB |
4749 | |
4750 | LOOKUP_NAME is expected to be a symbol name after transformation | |
f98b2e33 | 4751 | for Ada lookups. */ |
c0431670 | 4752 | |
b5ec771e PA |
4753 | static symbol_name_match_type |
4754 | name_match_type_from_name (const char *lookup_name) | |
c0431670 | 4755 | { |
b5ec771e PA |
4756 | return (strstr (lookup_name, "__") == NULL |
4757 | ? symbol_name_match_type::WILD | |
4758 | : symbol_name_match_type::FULL); | |
c0431670 JB |
4759 | } |
4760 | ||
4c4b4cd2 PH |
4761 | /* Return the result of a standard (literal, C-like) lookup of NAME in |
4762 | given DOMAIN, visible from lexical block BLOCK. */ | |
4763 | ||
4764 | static struct symbol * | |
4765 | standard_lookup (const char *name, const struct block *block, | |
4766 | domain_enum domain) | |
4767 | { | |
acbd605d | 4768 | /* Initialize it just to avoid a GCC false warning. */ |
6640a367 | 4769 | struct block_symbol sym = {}; |
4c4b4cd2 | 4770 | |
d12307c1 PMR |
4771 | if (lookup_cached_symbol (name, domain, &sym.symbol, NULL)) |
4772 | return sym.symbol; | |
a2cd4f14 | 4773 | ada_lookup_encoded_symbol (name, block, domain, &sym); |
d12307c1 PMR |
4774 | cache_symbol (name, domain, sym.symbol, sym.block); |
4775 | return sym.symbol; | |
4c4b4cd2 PH |
4776 | } |
4777 | ||
4778 | ||
4779 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4780 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4781 | since they contend in overloading in the same way. */ | |
4782 | static int | |
d12307c1 | 4783 | is_nonfunction (struct block_symbol syms[], int n) |
4c4b4cd2 PH |
4784 | { |
4785 | int i; | |
4786 | ||
4787 | for (i = 0; i < n; i += 1) | |
d12307c1 PMR |
4788 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC |
4789 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM | |
4790 | || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST)) | |
14f9c5c9 AS |
4791 | return 1; |
4792 | ||
4793 | return 0; | |
4794 | } | |
4795 | ||
4796 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4797 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4798 | |
4799 | static int | |
d2e4a39e | 4800 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4801 | { |
d2e4a39e | 4802 | if (type0 == type1) |
14f9c5c9 | 4803 | return 1; |
d2e4a39e | 4804 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4805 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4806 | return 0; | |
d2e4a39e | 4807 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4808 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4809 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4810 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4811 | return 1; |
d2e4a39e | 4812 | |
14f9c5c9 AS |
4813 | return 0; |
4814 | } | |
4815 | ||
4816 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4817 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4818 | |
4819 | static int | |
d2e4a39e | 4820 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4821 | { |
4822 | if (sym0 == sym1) | |
4823 | return 1; | |
176620f1 | 4824 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4825 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4826 | return 0; | |
4827 | ||
d2e4a39e | 4828 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4829 | { |
4830 | case LOC_UNDEF: | |
4831 | return 1; | |
4832 | case LOC_TYPEDEF: | |
4833 | { | |
4c4b4cd2 PH |
4834 | struct type *type0 = SYMBOL_TYPE (sym0); |
4835 | struct type *type1 = SYMBOL_TYPE (sym1); | |
0d5cff50 DE |
4836 | const char *name0 = SYMBOL_LINKAGE_NAME (sym0); |
4837 | const char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4c4b4cd2 | 4838 | int len0 = strlen (name0); |
5b4ee69b | 4839 | |
4c4b4cd2 PH |
4840 | return |
4841 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4842 | && (equiv_types (type0, type1) | |
4843 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
61012eef | 4844 | && startswith (name1 + len0, "___XV"))); |
14f9c5c9 AS |
4845 | } |
4846 | case LOC_CONST: | |
4847 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4848 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4849 | default: |
4850 | return 0; | |
14f9c5c9 AS |
4851 | } |
4852 | } | |
4853 | ||
d12307c1 | 4854 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol |
4c4b4cd2 | 4855 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ |
14f9c5c9 AS |
4856 | |
4857 | static void | |
76a01679 JB |
4858 | add_defn_to_vec (struct obstack *obstackp, |
4859 | struct symbol *sym, | |
f0c5f9b2 | 4860 | const struct block *block) |
14f9c5c9 AS |
4861 | { |
4862 | int i; | |
d12307c1 | 4863 | struct block_symbol *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4864 | |
529cad9c PH |
4865 | /* Do not try to complete stub types, as the debugger is probably |
4866 | already scanning all symbols matching a certain name at the | |
4867 | time when this function is called. Trying to replace the stub | |
4868 | type by its associated full type will cause us to restart a scan | |
4869 | which may lead to an infinite recursion. Instead, the client | |
4870 | collecting the matching symbols will end up collecting several | |
4871 | matches, with at least one of them complete. It can then filter | |
4872 | out the stub ones if needed. */ | |
4873 | ||
4c4b4cd2 PH |
4874 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4875 | { | |
d12307c1 | 4876 | if (lesseq_defined_than (sym, prevDefns[i].symbol)) |
4c4b4cd2 | 4877 | return; |
d12307c1 | 4878 | else if (lesseq_defined_than (prevDefns[i].symbol, sym)) |
4c4b4cd2 | 4879 | { |
d12307c1 | 4880 | prevDefns[i].symbol = sym; |
4c4b4cd2 | 4881 | prevDefns[i].block = block; |
4c4b4cd2 | 4882 | return; |
76a01679 | 4883 | } |
4c4b4cd2 PH |
4884 | } |
4885 | ||
4886 | { | |
d12307c1 | 4887 | struct block_symbol info; |
4c4b4cd2 | 4888 | |
d12307c1 | 4889 | info.symbol = sym; |
4c4b4cd2 | 4890 | info.block = block; |
d12307c1 | 4891 | obstack_grow (obstackp, &info, sizeof (struct block_symbol)); |
4c4b4cd2 PH |
4892 | } |
4893 | } | |
4894 | ||
d12307c1 PMR |
4895 | /* Number of block_symbol structures currently collected in current vector in |
4896 | OBSTACKP. */ | |
4c4b4cd2 | 4897 | |
76a01679 JB |
4898 | static int |
4899 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 | 4900 | { |
d12307c1 | 4901 | return obstack_object_size (obstackp) / sizeof (struct block_symbol); |
4c4b4cd2 PH |
4902 | } |
4903 | ||
d12307c1 PMR |
4904 | /* Vector of block_symbol structures currently collected in current vector in |
4905 | OBSTACKP. If FINISH, close off the vector and return its final address. */ | |
4c4b4cd2 | 4906 | |
d12307c1 | 4907 | static struct block_symbol * |
4c4b4cd2 PH |
4908 | defns_collected (struct obstack *obstackp, int finish) |
4909 | { | |
4910 | if (finish) | |
224c3ddb | 4911 | return (struct block_symbol *) obstack_finish (obstackp); |
4c4b4cd2 | 4912 | else |
d12307c1 | 4913 | return (struct block_symbol *) obstack_base (obstackp); |
4c4b4cd2 PH |
4914 | } |
4915 | ||
7c7b6655 TT |
4916 | /* Return a bound minimal symbol matching NAME according to Ada |
4917 | decoding rules. Returns an invalid symbol if there is no such | |
4918 | minimal symbol. Names prefixed with "standard__" are handled | |
4919 | specially: "standard__" is first stripped off, and only static and | |
4920 | global symbols are searched. */ | |
4c4b4cd2 | 4921 | |
7c7b6655 | 4922 | struct bound_minimal_symbol |
96d887e8 | 4923 | ada_lookup_simple_minsym (const char *name) |
4c4b4cd2 | 4924 | { |
7c7b6655 | 4925 | struct bound_minimal_symbol result; |
4c4b4cd2 | 4926 | |
7c7b6655 TT |
4927 | memset (&result, 0, sizeof (result)); |
4928 | ||
b5ec771e PA |
4929 | symbol_name_match_type match_type = name_match_type_from_name (name); |
4930 | lookup_name_info lookup_name (name, match_type); | |
4931 | ||
4932 | symbol_name_matcher_ftype *match_name | |
4933 | = ada_get_symbol_name_matcher (lookup_name); | |
4c4b4cd2 | 4934 | |
2030c079 | 4935 | for (objfile *objfile : current_program_space->objfiles ()) |
5325b9bf | 4936 | { |
7932255d | 4937 | for (minimal_symbol *msymbol : objfile->msymbols ()) |
5325b9bf TT |
4938 | { |
4939 | if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL) | |
4940 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) | |
4941 | { | |
4942 | result.minsym = msymbol; | |
4943 | result.objfile = objfile; | |
4944 | break; | |
4945 | } | |
4946 | } | |
4947 | } | |
4c4b4cd2 | 4948 | |
7c7b6655 | 4949 | return result; |
96d887e8 | 4950 | } |
4c4b4cd2 | 4951 | |
96d887e8 PH |
4952 | /* For all subprograms that statically enclose the subprogram of the |
4953 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4954 | and their blocks to the list of data in OBSTACKP, as for | |
48b78332 JB |
4955 | ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME |
4956 | with a wildcard prefix. */ | |
4c4b4cd2 | 4957 | |
96d887e8 PH |
4958 | static void |
4959 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
b5ec771e PA |
4960 | const lookup_name_info &lookup_name, |
4961 | domain_enum domain) | |
96d887e8 | 4962 | { |
96d887e8 | 4963 | } |
14f9c5c9 | 4964 | |
96d887e8 PH |
4965 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4966 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4967 | |
96d887e8 PH |
4968 | static int |
4969 | is_nondebugging_type (struct type *type) | |
4970 | { | |
0d5cff50 | 4971 | const char *name = ada_type_name (type); |
5b4ee69b | 4972 | |
96d887e8 PH |
4973 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4974 | } | |
4c4b4cd2 | 4975 | |
8f17729f JB |
4976 | /* Return nonzero if TYPE1 and TYPE2 are two enumeration types |
4977 | that are deemed "identical" for practical purposes. | |
4978 | ||
4979 | This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM | |
4980 | types and that their number of enumerals is identical (in other | |
4981 | words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */ | |
4982 | ||
4983 | static int | |
4984 | ada_identical_enum_types_p (struct type *type1, struct type *type2) | |
4985 | { | |
4986 | int i; | |
4987 | ||
4988 | /* The heuristic we use here is fairly conservative. We consider | |
4989 | that 2 enumerate types are identical if they have the same | |
4990 | number of enumerals and that all enumerals have the same | |
4991 | underlying value and name. */ | |
4992 | ||
4993 | /* All enums in the type should have an identical underlying value. */ | |
4994 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
14e75d8e | 4995 | if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i)) |
8f17729f JB |
4996 | return 0; |
4997 | ||
4998 | /* All enumerals should also have the same name (modulo any numerical | |
4999 | suffix). */ | |
5000 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
5001 | { | |
0d5cff50 DE |
5002 | const char *name_1 = TYPE_FIELD_NAME (type1, i); |
5003 | const char *name_2 = TYPE_FIELD_NAME (type2, i); | |
8f17729f JB |
5004 | int len_1 = strlen (name_1); |
5005 | int len_2 = strlen (name_2); | |
5006 | ||
5007 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1); | |
5008 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2); | |
5009 | if (len_1 != len_2 | |
5010 | || strncmp (TYPE_FIELD_NAME (type1, i), | |
5011 | TYPE_FIELD_NAME (type2, i), | |
5012 | len_1) != 0) | |
5013 | return 0; | |
5014 | } | |
5015 | ||
5016 | return 1; | |
5017 | } | |
5018 | ||
5019 | /* Return nonzero if all the symbols in SYMS are all enumeral symbols | |
5020 | that are deemed "identical" for practical purposes. Sometimes, | |
5021 | enumerals are not strictly identical, but their types are so similar | |
5022 | that they can be considered identical. | |
5023 | ||
5024 | For instance, consider the following code: | |
5025 | ||
5026 | type Color is (Black, Red, Green, Blue, White); | |
5027 | type RGB_Color is new Color range Red .. Blue; | |
5028 | ||
5029 | Type RGB_Color is a subrange of an implicit type which is a copy | |
5030 | of type Color. If we call that implicit type RGB_ColorB ("B" is | |
5031 | for "Base Type"), then type RGB_ColorB is a copy of type Color. | |
5032 | As a result, when an expression references any of the enumeral | |
5033 | by name (Eg. "print green"), the expression is technically | |
5034 | ambiguous and the user should be asked to disambiguate. But | |
5035 | doing so would only hinder the user, since it wouldn't matter | |
5036 | what choice he makes, the outcome would always be the same. | |
5037 | So, for practical purposes, we consider them as the same. */ | |
5038 | ||
5039 | static int | |
54d343a2 | 5040 | symbols_are_identical_enums (const std::vector<struct block_symbol> &syms) |
8f17729f JB |
5041 | { |
5042 | int i; | |
5043 | ||
5044 | /* Before performing a thorough comparison check of each type, | |
5045 | we perform a series of inexpensive checks. We expect that these | |
5046 | checks will quickly fail in the vast majority of cases, and thus | |
5047 | help prevent the unnecessary use of a more expensive comparison. | |
5048 | Said comparison also expects us to make some of these checks | |
5049 | (see ada_identical_enum_types_p). */ | |
5050 | ||
5051 | /* Quick check: All symbols should have an enum type. */ | |
54d343a2 | 5052 | for (i = 0; i < syms.size (); i++) |
d12307c1 | 5053 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM) |
8f17729f JB |
5054 | return 0; |
5055 | ||
5056 | /* Quick check: They should all have the same value. */ | |
54d343a2 | 5057 | for (i = 1; i < syms.size (); i++) |
d12307c1 | 5058 | if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol)) |
8f17729f JB |
5059 | return 0; |
5060 | ||
5061 | /* Quick check: They should all have the same number of enumerals. */ | |
54d343a2 | 5062 | for (i = 1; i < syms.size (); i++) |
d12307c1 PMR |
5063 | if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol)) |
5064 | != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol))) | |
8f17729f JB |
5065 | return 0; |
5066 | ||
5067 | /* All the sanity checks passed, so we might have a set of | |
5068 | identical enumeration types. Perform a more complete | |
5069 | comparison of the type of each symbol. */ | |
54d343a2 | 5070 | for (i = 1; i < syms.size (); i++) |
d12307c1 PMR |
5071 | if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol), |
5072 | SYMBOL_TYPE (syms[0].symbol))) | |
8f17729f JB |
5073 | return 0; |
5074 | ||
5075 | return 1; | |
5076 | } | |
5077 | ||
54d343a2 | 5078 | /* Remove any non-debugging symbols in SYMS that definitely |
96d887e8 PH |
5079 | duplicate other symbols in the list (The only case I know of where |
5080 | this happens is when object files containing stabs-in-ecoff are | |
5081 | linked with files containing ordinary ecoff debugging symbols (or no | |
5082 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
5083 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 5084 | |
96d887e8 | 5085 | static int |
54d343a2 | 5086 | remove_extra_symbols (std::vector<struct block_symbol> *syms) |
96d887e8 PH |
5087 | { |
5088 | int i, j; | |
4c4b4cd2 | 5089 | |
8f17729f JB |
5090 | /* We should never be called with less than 2 symbols, as there |
5091 | cannot be any extra symbol in that case. But it's easy to | |
5092 | handle, since we have nothing to do in that case. */ | |
54d343a2 TT |
5093 | if (syms->size () < 2) |
5094 | return syms->size (); | |
8f17729f | 5095 | |
96d887e8 | 5096 | i = 0; |
54d343a2 | 5097 | while (i < syms->size ()) |
96d887e8 | 5098 | { |
a35ddb44 | 5099 | int remove_p = 0; |
339c13b6 JB |
5100 | |
5101 | /* If two symbols have the same name and one of them is a stub type, | |
5102 | the get rid of the stub. */ | |
5103 | ||
54d343a2 TT |
5104 | if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol)) |
5105 | && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL) | |
339c13b6 | 5106 | { |
54d343a2 | 5107 | for (j = 0; j < syms->size (); j++) |
339c13b6 JB |
5108 | { |
5109 | if (j != i | |
54d343a2 TT |
5110 | && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol)) |
5111 | && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL | |
5112 | && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol), | |
5113 | SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0) | |
a35ddb44 | 5114 | remove_p = 1; |
339c13b6 JB |
5115 | } |
5116 | } | |
5117 | ||
5118 | /* Two symbols with the same name, same class and same address | |
5119 | should be identical. */ | |
5120 | ||
54d343a2 TT |
5121 | else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL |
5122 | && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC | |
5123 | && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol))) | |
96d887e8 | 5124 | { |
54d343a2 | 5125 | for (j = 0; j < syms->size (); j += 1) |
96d887e8 PH |
5126 | { |
5127 | if (i != j | |
54d343a2 TT |
5128 | && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL |
5129 | && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol), | |
5130 | SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0 | |
5131 | && SYMBOL_CLASS ((*syms)[i].symbol) | |
5132 | == SYMBOL_CLASS ((*syms)[j].symbol) | |
5133 | && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol) | |
5134 | == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol)) | |
a35ddb44 | 5135 | remove_p = 1; |
4c4b4cd2 | 5136 | } |
4c4b4cd2 | 5137 | } |
339c13b6 | 5138 | |
a35ddb44 | 5139 | if (remove_p) |
54d343a2 | 5140 | syms->erase (syms->begin () + i); |
339c13b6 | 5141 | |
96d887e8 | 5142 | i += 1; |
14f9c5c9 | 5143 | } |
8f17729f JB |
5144 | |
5145 | /* If all the remaining symbols are identical enumerals, then | |
5146 | just keep the first one and discard the rest. | |
5147 | ||
5148 | Unlike what we did previously, we do not discard any entry | |
5149 | unless they are ALL identical. This is because the symbol | |
5150 | comparison is not a strict comparison, but rather a practical | |
5151 | comparison. If all symbols are considered identical, then | |
5152 | we can just go ahead and use the first one and discard the rest. | |
5153 | But if we cannot reduce the list to a single element, we have | |
5154 | to ask the user to disambiguate anyways. And if we have to | |
5155 | present a multiple-choice menu, it's less confusing if the list | |
5156 | isn't missing some choices that were identical and yet distinct. */ | |
54d343a2 TT |
5157 | if (symbols_are_identical_enums (*syms)) |
5158 | syms->resize (1); | |
8f17729f | 5159 | |
54d343a2 | 5160 | return syms->size (); |
14f9c5c9 AS |
5161 | } |
5162 | ||
96d887e8 PH |
5163 | /* Given a type that corresponds to a renaming entity, use the type name |
5164 | to extract the scope (package name or function name, fully qualified, | |
5165 | and following the GNAT encoding convention) where this renaming has been | |
49d83361 | 5166 | defined. */ |
4c4b4cd2 | 5167 | |
49d83361 | 5168 | static std::string |
96d887e8 | 5169 | xget_renaming_scope (struct type *renaming_type) |
14f9c5c9 | 5170 | { |
96d887e8 | 5171 | /* The renaming types adhere to the following convention: |
0963b4bd | 5172 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
5173 | So, to extract the scope, we search for the "___XR" extension, |
5174 | and then backtrack until we find the first "__". */ | |
76a01679 | 5175 | |
a737d952 | 5176 | const char *name = TYPE_NAME (renaming_type); |
108d56a4 SM |
5177 | const char *suffix = strstr (name, "___XR"); |
5178 | const char *last; | |
14f9c5c9 | 5179 | |
96d887e8 PH |
5180 | /* Now, backtrack a bit until we find the first "__". Start looking |
5181 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 5182 | |
96d887e8 PH |
5183 | for (last = suffix - 3; last > name; last--) |
5184 | if (last[0] == '_' && last[1] == '_') | |
5185 | break; | |
76a01679 | 5186 | |
96d887e8 | 5187 | /* Make a copy of scope and return it. */ |
49d83361 | 5188 | return std::string (name, last); |
4c4b4cd2 PH |
5189 | } |
5190 | ||
96d887e8 | 5191 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 5192 | |
96d887e8 PH |
5193 | static int |
5194 | is_package_name (const char *name) | |
4c4b4cd2 | 5195 | { |
96d887e8 PH |
5196 | /* Here, We take advantage of the fact that no symbols are generated |
5197 | for packages, while symbols are generated for each function. | |
5198 | So the condition for NAME represent a package becomes equivalent | |
5199 | to NAME not existing in our list of symbols. There is only one | |
5200 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 5201 | |
96d887e8 PH |
5202 | /* If it is a function that has not been defined at library level, |
5203 | then we should be able to look it up in the symbols. */ | |
5204 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
5205 | return 0; | |
14f9c5c9 | 5206 | |
96d887e8 PH |
5207 | /* Library-level function names start with "_ada_". See if function |
5208 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 5209 | |
96d887e8 | 5210 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 5211 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
5212 | if (strstr (name, "__") != NULL) |
5213 | return 0; | |
4c4b4cd2 | 5214 | |
528e1572 | 5215 | std::string fun_name = string_printf ("_ada_%s", name); |
14f9c5c9 | 5216 | |
528e1572 | 5217 | return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL); |
96d887e8 | 5218 | } |
14f9c5c9 | 5219 | |
96d887e8 | 5220 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 5221 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 5222 | |
96d887e8 | 5223 | static int |
0d5cff50 | 5224 | old_renaming_is_invisible (const struct symbol *sym, const char *function_name) |
96d887e8 | 5225 | { |
aeb5907d JB |
5226 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) |
5227 | return 0; | |
5228 | ||
49d83361 | 5229 | std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym)); |
14f9c5c9 | 5230 | |
96d887e8 | 5231 | /* If the rename has been defined in a package, then it is visible. */ |
49d83361 TT |
5232 | if (is_package_name (scope.c_str ())) |
5233 | return 0; | |
14f9c5c9 | 5234 | |
96d887e8 PH |
5235 | /* Check that the rename is in the current function scope by checking |
5236 | that its name starts with SCOPE. */ | |
76a01679 | 5237 | |
96d887e8 PH |
5238 | /* If the function name starts with "_ada_", it means that it is |
5239 | a library-level function. Strip this prefix before doing the | |
5240 | comparison, as the encoding for the renaming does not contain | |
5241 | this prefix. */ | |
61012eef | 5242 | if (startswith (function_name, "_ada_")) |
96d887e8 | 5243 | function_name += 5; |
f26caa11 | 5244 | |
49d83361 | 5245 | return !startswith (function_name, scope.c_str ()); |
f26caa11 PH |
5246 | } |
5247 | ||
aeb5907d JB |
5248 | /* Remove entries from SYMS that corresponds to a renaming entity that |
5249 | is not visible from the function associated with CURRENT_BLOCK or | |
5250 | that is superfluous due to the presence of more specific renaming | |
5251 | information. Places surviving symbols in the initial entries of | |
5252 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
5253 | |
5254 | Rationale: | |
aeb5907d JB |
5255 | First, in cases where an object renaming is implemented as a |
5256 | reference variable, GNAT may produce both the actual reference | |
5257 | variable and the renaming encoding. In this case, we discard the | |
5258 | latter. | |
5259 | ||
5260 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
5261 | entity. Unfortunately, STABS currently does not support the definition |
5262 | of types that are local to a given lexical block, so all renamings types | |
5263 | are emitted at library level. As a consequence, if an application | |
5264 | contains two renaming entities using the same name, and a user tries to | |
5265 | print the value of one of these entities, the result of the ada symbol | |
5266 | lookup will also contain the wrong renaming type. | |
f26caa11 | 5267 | |
96d887e8 PH |
5268 | This function partially covers for this limitation by attempting to |
5269 | remove from the SYMS list renaming symbols that should be visible | |
5270 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
5271 | method with the current information available. The implementation | |
5272 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
5273 | ||
5274 | - When the user tries to print a rename in a function while there | |
5275 | is another rename entity defined in a package: Normally, the | |
5276 | rename in the function has precedence over the rename in the | |
5277 | package, so the latter should be removed from the list. This is | |
5278 | currently not the case. | |
5279 | ||
5280 | - This function will incorrectly remove valid renames if | |
5281 | the CURRENT_BLOCK corresponds to a function which symbol name | |
5282 | has been changed by an "Export" pragma. As a consequence, | |
5283 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 5284 | |
14f9c5c9 | 5285 | static int |
54d343a2 TT |
5286 | remove_irrelevant_renamings (std::vector<struct block_symbol> *syms, |
5287 | const struct block *current_block) | |
4c4b4cd2 PH |
5288 | { |
5289 | struct symbol *current_function; | |
0d5cff50 | 5290 | const char *current_function_name; |
4c4b4cd2 | 5291 | int i; |
aeb5907d JB |
5292 | int is_new_style_renaming; |
5293 | ||
5294 | /* If there is both a renaming foo___XR... encoded as a variable and | |
5295 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 5296 | First, zero out such symbols, then compress. */ |
aeb5907d | 5297 | is_new_style_renaming = 0; |
54d343a2 | 5298 | for (i = 0; i < syms->size (); i += 1) |
aeb5907d | 5299 | { |
54d343a2 TT |
5300 | struct symbol *sym = (*syms)[i].symbol; |
5301 | const struct block *block = (*syms)[i].block; | |
aeb5907d JB |
5302 | const char *name; |
5303 | const char *suffix; | |
5304 | ||
5305 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
5306 | continue; | |
5307 | name = SYMBOL_LINKAGE_NAME (sym); | |
5308 | suffix = strstr (name, "___XR"); | |
5309 | ||
5310 | if (suffix != NULL) | |
5311 | { | |
5312 | int name_len = suffix - name; | |
5313 | int j; | |
5b4ee69b | 5314 | |
aeb5907d | 5315 | is_new_style_renaming = 1; |
54d343a2 TT |
5316 | for (j = 0; j < syms->size (); j += 1) |
5317 | if (i != j && (*syms)[j].symbol != NULL | |
5318 | && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol), | |
aeb5907d | 5319 | name_len) == 0 |
54d343a2 TT |
5320 | && block == (*syms)[j].block) |
5321 | (*syms)[j].symbol = NULL; | |
aeb5907d JB |
5322 | } |
5323 | } | |
5324 | if (is_new_style_renaming) | |
5325 | { | |
5326 | int j, k; | |
5327 | ||
54d343a2 TT |
5328 | for (j = k = 0; j < syms->size (); j += 1) |
5329 | if ((*syms)[j].symbol != NULL) | |
aeb5907d | 5330 | { |
54d343a2 | 5331 | (*syms)[k] = (*syms)[j]; |
aeb5907d JB |
5332 | k += 1; |
5333 | } | |
5334 | return k; | |
5335 | } | |
4c4b4cd2 PH |
5336 | |
5337 | /* Extract the function name associated to CURRENT_BLOCK. | |
5338 | Abort if unable to do so. */ | |
76a01679 | 5339 | |
4c4b4cd2 | 5340 | if (current_block == NULL) |
54d343a2 | 5341 | return syms->size (); |
76a01679 | 5342 | |
7f0df278 | 5343 | current_function = block_linkage_function (current_block); |
4c4b4cd2 | 5344 | if (current_function == NULL) |
54d343a2 | 5345 | return syms->size (); |
4c4b4cd2 PH |
5346 | |
5347 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
5348 | if (current_function_name == NULL) | |
54d343a2 | 5349 | return syms->size (); |
4c4b4cd2 PH |
5350 | |
5351 | /* Check each of the symbols, and remove it from the list if it is | |
5352 | a type corresponding to a renaming that is out of the scope of | |
5353 | the current block. */ | |
5354 | ||
5355 | i = 0; | |
54d343a2 | 5356 | while (i < syms->size ()) |
4c4b4cd2 | 5357 | { |
54d343a2 | 5358 | if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL) |
aeb5907d | 5359 | == ADA_OBJECT_RENAMING |
54d343a2 TT |
5360 | && old_renaming_is_invisible ((*syms)[i].symbol, |
5361 | current_function_name)) | |
5362 | syms->erase (syms->begin () + i); | |
4c4b4cd2 PH |
5363 | else |
5364 | i += 1; | |
5365 | } | |
5366 | ||
54d343a2 | 5367 | return syms->size (); |
4c4b4cd2 PH |
5368 | } |
5369 | ||
339c13b6 JB |
5370 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
5371 | whose name and domain match NAME and DOMAIN respectively. | |
5372 | If no match was found, then extend the search to "enclosing" | |
5373 | routines (in other words, if we're inside a nested function, | |
5374 | search the symbols defined inside the enclosing functions). | |
d0a8ab18 JB |
5375 | If WILD_MATCH_P is nonzero, perform the naming matching in |
5376 | "wild" mode (see function "wild_match" for more info). | |
339c13b6 JB |
5377 | |
5378 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
5379 | ||
5380 | static void | |
b5ec771e PA |
5381 | ada_add_local_symbols (struct obstack *obstackp, |
5382 | const lookup_name_info &lookup_name, | |
5383 | const struct block *block, domain_enum domain) | |
339c13b6 JB |
5384 | { |
5385 | int block_depth = 0; | |
5386 | ||
5387 | while (block != NULL) | |
5388 | { | |
5389 | block_depth += 1; | |
b5ec771e | 5390 | ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL); |
339c13b6 JB |
5391 | |
5392 | /* If we found a non-function match, assume that's the one. */ | |
5393 | if (is_nonfunction (defns_collected (obstackp, 0), | |
5394 | num_defns_collected (obstackp))) | |
5395 | return; | |
5396 | ||
5397 | block = BLOCK_SUPERBLOCK (block); | |
5398 | } | |
5399 | ||
5400 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
5401 | enclosing subprogram. */ | |
5402 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
b5ec771e | 5403 | add_symbols_from_enclosing_procs (obstackp, lookup_name, domain); |
339c13b6 JB |
5404 | } |
5405 | ||
ccefe4c4 | 5406 | /* An object of this type is used as the user_data argument when |
40658b94 | 5407 | calling the map_matching_symbols method. */ |
ccefe4c4 | 5408 | |
40658b94 | 5409 | struct match_data |
ccefe4c4 | 5410 | { |
40658b94 | 5411 | struct objfile *objfile; |
ccefe4c4 | 5412 | struct obstack *obstackp; |
40658b94 PH |
5413 | struct symbol *arg_sym; |
5414 | int found_sym; | |
ccefe4c4 TT |
5415 | }; |
5416 | ||
22cee43f | 5417 | /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK, |
40658b94 PH |
5418 | to a list of symbols. DATA0 is a pointer to a struct match_data * |
5419 | containing the obstack that collects the symbol list, the file that SYM | |
5420 | must come from, a flag indicating whether a non-argument symbol has | |
5421 | been found in the current block, and the last argument symbol | |
5422 | passed in SYM within the current block (if any). When SYM is null, | |
5423 | marking the end of a block, the argument symbol is added if no | |
5424 | other has been found. */ | |
ccefe4c4 | 5425 | |
40658b94 | 5426 | static int |
582942f4 TT |
5427 | aux_add_nonlocal_symbols (const struct block *block, struct symbol *sym, |
5428 | void *data0) | |
ccefe4c4 | 5429 | { |
40658b94 PH |
5430 | struct match_data *data = (struct match_data *) data0; |
5431 | ||
5432 | if (sym == NULL) | |
5433 | { | |
5434 | if (!data->found_sym && data->arg_sym != NULL) | |
5435 | add_defn_to_vec (data->obstackp, | |
5436 | fixup_symbol_section (data->arg_sym, data->objfile), | |
5437 | block); | |
5438 | data->found_sym = 0; | |
5439 | data->arg_sym = NULL; | |
5440 | } | |
5441 | else | |
5442 | { | |
5443 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
5444 | return 0; | |
5445 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5446 | data->arg_sym = sym; | |
5447 | else | |
5448 | { | |
5449 | data->found_sym = 1; | |
5450 | add_defn_to_vec (data->obstackp, | |
5451 | fixup_symbol_section (sym, data->objfile), | |
5452 | block); | |
5453 | } | |
5454 | } | |
5455 | return 0; | |
5456 | } | |
5457 | ||
b5ec771e PA |
5458 | /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are |
5459 | targeted by renamings matching LOOKUP_NAME in BLOCK. Add these | |
5460 | symbols to OBSTACKP. Return whether we found such symbols. */ | |
22cee43f PMR |
5461 | |
5462 | static int | |
5463 | ada_add_block_renamings (struct obstack *obstackp, | |
5464 | const struct block *block, | |
b5ec771e PA |
5465 | const lookup_name_info &lookup_name, |
5466 | domain_enum domain) | |
22cee43f PMR |
5467 | { |
5468 | struct using_direct *renaming; | |
5469 | int defns_mark = num_defns_collected (obstackp); | |
5470 | ||
b5ec771e PA |
5471 | symbol_name_matcher_ftype *name_match |
5472 | = ada_get_symbol_name_matcher (lookup_name); | |
5473 | ||
22cee43f PMR |
5474 | for (renaming = block_using (block); |
5475 | renaming != NULL; | |
5476 | renaming = renaming->next) | |
5477 | { | |
5478 | const char *r_name; | |
22cee43f PMR |
5479 | |
5480 | /* Avoid infinite recursions: skip this renaming if we are actually | |
5481 | already traversing it. | |
5482 | ||
5483 | Currently, symbol lookup in Ada don't use the namespace machinery from | |
5484 | C++/Fortran support: skip namespace imports that use them. */ | |
5485 | if (renaming->searched | |
5486 | || (renaming->import_src != NULL | |
5487 | && renaming->import_src[0] != '\0') | |
5488 | || (renaming->import_dest != NULL | |
5489 | && renaming->import_dest[0] != '\0')) | |
5490 | continue; | |
5491 | renaming->searched = 1; | |
5492 | ||
5493 | /* TODO: here, we perform another name-based symbol lookup, which can | |
5494 | pull its own multiple overloads. In theory, we should be able to do | |
5495 | better in this case since, in DWARF, DW_AT_import is a DIE reference, | |
5496 | not a simple name. But in order to do this, we would need to enhance | |
5497 | the DWARF reader to associate a symbol to this renaming, instead of a | |
5498 | name. So, for now, we do something simpler: re-use the C++/Fortran | |
5499 | namespace machinery. */ | |
5500 | r_name = (renaming->alias != NULL | |
5501 | ? renaming->alias | |
5502 | : renaming->declaration); | |
b5ec771e PA |
5503 | if (name_match (r_name, lookup_name, NULL)) |
5504 | { | |
5505 | lookup_name_info decl_lookup_name (renaming->declaration, | |
5506 | lookup_name.match_type ()); | |
5507 | ada_add_all_symbols (obstackp, block, decl_lookup_name, domain, | |
5508 | 1, NULL); | |
5509 | } | |
22cee43f PMR |
5510 | renaming->searched = 0; |
5511 | } | |
5512 | return num_defns_collected (obstackp) != defns_mark; | |
5513 | } | |
5514 | ||
db230ce3 JB |
5515 | /* Implements compare_names, but only applying the comparision using |
5516 | the given CASING. */ | |
5b4ee69b | 5517 | |
40658b94 | 5518 | static int |
db230ce3 JB |
5519 | compare_names_with_case (const char *string1, const char *string2, |
5520 | enum case_sensitivity casing) | |
40658b94 PH |
5521 | { |
5522 | while (*string1 != '\0' && *string2 != '\0') | |
5523 | { | |
db230ce3 JB |
5524 | char c1, c2; |
5525 | ||
40658b94 PH |
5526 | if (isspace (*string1) || isspace (*string2)) |
5527 | return strcmp_iw_ordered (string1, string2); | |
db230ce3 JB |
5528 | |
5529 | if (casing == case_sensitive_off) | |
5530 | { | |
5531 | c1 = tolower (*string1); | |
5532 | c2 = tolower (*string2); | |
5533 | } | |
5534 | else | |
5535 | { | |
5536 | c1 = *string1; | |
5537 | c2 = *string2; | |
5538 | } | |
5539 | if (c1 != c2) | |
40658b94 | 5540 | break; |
db230ce3 | 5541 | |
40658b94 PH |
5542 | string1 += 1; |
5543 | string2 += 1; | |
5544 | } | |
db230ce3 | 5545 | |
40658b94 PH |
5546 | switch (*string1) |
5547 | { | |
5548 | case '(': | |
5549 | return strcmp_iw_ordered (string1, string2); | |
5550 | case '_': | |
5551 | if (*string2 == '\0') | |
5552 | { | |
052874e8 | 5553 | if (is_name_suffix (string1)) |
40658b94 PH |
5554 | return 0; |
5555 | else | |
1a1d5513 | 5556 | return 1; |
40658b94 | 5557 | } |
dbb8534f | 5558 | /* FALLTHROUGH */ |
40658b94 PH |
5559 | default: |
5560 | if (*string2 == '(') | |
5561 | return strcmp_iw_ordered (string1, string2); | |
5562 | else | |
db230ce3 JB |
5563 | { |
5564 | if (casing == case_sensitive_off) | |
5565 | return tolower (*string1) - tolower (*string2); | |
5566 | else | |
5567 | return *string1 - *string2; | |
5568 | } | |
40658b94 | 5569 | } |
ccefe4c4 TT |
5570 | } |
5571 | ||
db230ce3 JB |
5572 | /* Compare STRING1 to STRING2, with results as for strcmp. |
5573 | Compatible with strcmp_iw_ordered in that... | |
5574 | ||
5575 | strcmp_iw_ordered (STRING1, STRING2) <= 0 | |
5576 | ||
5577 | ... implies... | |
5578 | ||
5579 | compare_names (STRING1, STRING2) <= 0 | |
5580 | ||
5581 | (they may differ as to what symbols compare equal). */ | |
5582 | ||
5583 | static int | |
5584 | compare_names (const char *string1, const char *string2) | |
5585 | { | |
5586 | int result; | |
5587 | ||
5588 | /* Similar to what strcmp_iw_ordered does, we need to perform | |
5589 | a case-insensitive comparison first, and only resort to | |
5590 | a second, case-sensitive, comparison if the first one was | |
5591 | not sufficient to differentiate the two strings. */ | |
5592 | ||
5593 | result = compare_names_with_case (string1, string2, case_sensitive_off); | |
5594 | if (result == 0) | |
5595 | result = compare_names_with_case (string1, string2, case_sensitive_on); | |
5596 | ||
5597 | return result; | |
5598 | } | |
5599 | ||
b5ec771e PA |
5600 | /* Convenience function to get at the Ada encoded lookup name for |
5601 | LOOKUP_NAME, as a C string. */ | |
5602 | ||
5603 | static const char * | |
5604 | ada_lookup_name (const lookup_name_info &lookup_name) | |
5605 | { | |
5606 | return lookup_name.ada ().lookup_name ().c_str (); | |
5607 | } | |
5608 | ||
339c13b6 | 5609 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
b5ec771e PA |
5610 | LOOKUP_NAME and DOMAIN respectively. The search is performed on |
5611 | GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK | |
5612 | symbols otherwise. */ | |
339c13b6 JB |
5613 | |
5614 | static void | |
b5ec771e PA |
5615 | add_nonlocal_symbols (struct obstack *obstackp, |
5616 | const lookup_name_info &lookup_name, | |
5617 | domain_enum domain, int global) | |
339c13b6 | 5618 | { |
40658b94 | 5619 | struct match_data data; |
339c13b6 | 5620 | |
6475f2fe | 5621 | memset (&data, 0, sizeof data); |
ccefe4c4 | 5622 | data.obstackp = obstackp; |
339c13b6 | 5623 | |
b5ec771e PA |
5624 | bool is_wild_match = lookup_name.ada ().wild_match_p (); |
5625 | ||
2030c079 | 5626 | for (objfile *objfile : current_program_space->objfiles ()) |
40658b94 PH |
5627 | { |
5628 | data.objfile = objfile; | |
5629 | ||
5630 | if (is_wild_match) | |
b5ec771e PA |
5631 | objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (), |
5632 | domain, global, | |
4186eb54 | 5633 | aux_add_nonlocal_symbols, &data, |
b5ec771e PA |
5634 | symbol_name_match_type::WILD, |
5635 | NULL); | |
40658b94 | 5636 | else |
b5ec771e PA |
5637 | objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (), |
5638 | domain, global, | |
4186eb54 | 5639 | aux_add_nonlocal_symbols, &data, |
b5ec771e PA |
5640 | symbol_name_match_type::FULL, |
5641 | compare_names); | |
22cee43f | 5642 | |
b669c953 | 5643 | for (compunit_symtab *cu : objfile->compunits ()) |
22cee43f PMR |
5644 | { |
5645 | const struct block *global_block | |
5646 | = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK); | |
5647 | ||
b5ec771e PA |
5648 | if (ada_add_block_renamings (obstackp, global_block, lookup_name, |
5649 | domain)) | |
22cee43f PMR |
5650 | data.found_sym = 1; |
5651 | } | |
40658b94 PH |
5652 | } |
5653 | ||
5654 | if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) | |
5655 | { | |
b5ec771e PA |
5656 | const char *name = ada_lookup_name (lookup_name); |
5657 | std::string name1 = std::string ("<_ada_") + name + '>'; | |
5658 | ||
2030c079 | 5659 | for (objfile *objfile : current_program_space->objfiles ()) |
40658b94 | 5660 | { |
40658b94 | 5661 | data.objfile = objfile; |
b5ec771e PA |
5662 | objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (), |
5663 | domain, global, | |
0963b4bd MS |
5664 | aux_add_nonlocal_symbols, |
5665 | &data, | |
b5ec771e PA |
5666 | symbol_name_match_type::FULL, |
5667 | compare_names); | |
40658b94 PH |
5668 | } |
5669 | } | |
339c13b6 JB |
5670 | } |
5671 | ||
b5ec771e PA |
5672 | /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if |
5673 | FULL_SEARCH is non-zero, enclosing scope and in global scopes, | |
5674 | returning the number of matches. Add these to OBSTACKP. | |
4eeaa230 | 5675 | |
22cee43f PMR |
5676 | When FULL_SEARCH is non-zero, any non-function/non-enumeral |
5677 | symbol match within the nest of blocks whose innermost member is BLOCK, | |
4c4b4cd2 | 5678 | is the one match returned (no other matches in that or |
d9680e73 | 5679 | enclosing blocks is returned). If there are any matches in or |
22cee43f | 5680 | surrounding BLOCK, then these alone are returned. |
4eeaa230 | 5681 | |
b5ec771e PA |
5682 | Names prefixed with "standard__" are handled specially: |
5683 | "standard__" is first stripped off (by the lookup_name | |
5684 | constructor), and only static and global symbols are searched. | |
14f9c5c9 | 5685 | |
22cee43f PMR |
5686 | If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had |
5687 | to lookup global symbols. */ | |
5688 | ||
5689 | static void | |
5690 | ada_add_all_symbols (struct obstack *obstackp, | |
5691 | const struct block *block, | |
b5ec771e | 5692 | const lookup_name_info &lookup_name, |
22cee43f PMR |
5693 | domain_enum domain, |
5694 | int full_search, | |
5695 | int *made_global_lookup_p) | |
14f9c5c9 AS |
5696 | { |
5697 | struct symbol *sym; | |
14f9c5c9 | 5698 | |
22cee43f PMR |
5699 | if (made_global_lookup_p) |
5700 | *made_global_lookup_p = 0; | |
339c13b6 JB |
5701 | |
5702 | /* Special case: If the user specifies a symbol name inside package | |
5703 | Standard, do a non-wild matching of the symbol name without | |
5704 | the "standard__" prefix. This was primarily introduced in order | |
5705 | to allow the user to specifically access the standard exceptions | |
5706 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
5707 | is ambiguous (due to the user defining its own Constraint_Error | |
5708 | entity inside its program). */ | |
b5ec771e PA |
5709 | if (lookup_name.ada ().standard_p ()) |
5710 | block = NULL; | |
4c4b4cd2 | 5711 | |
339c13b6 | 5712 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 5713 | |
4eeaa230 DE |
5714 | if (block != NULL) |
5715 | { | |
5716 | if (full_search) | |
b5ec771e | 5717 | ada_add_local_symbols (obstackp, lookup_name, block, domain); |
4eeaa230 DE |
5718 | else |
5719 | { | |
5720 | /* In the !full_search case we're are being called by | |
5721 | ada_iterate_over_symbols, and we don't want to search | |
5722 | superblocks. */ | |
b5ec771e | 5723 | ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL); |
4eeaa230 | 5724 | } |
22cee43f PMR |
5725 | if (num_defns_collected (obstackp) > 0 || !full_search) |
5726 | return; | |
4eeaa230 | 5727 | } |
d2e4a39e | 5728 | |
339c13b6 JB |
5729 | /* No non-global symbols found. Check our cache to see if we have |
5730 | already performed this search before. If we have, then return | |
5731 | the same result. */ | |
5732 | ||
b5ec771e PA |
5733 | if (lookup_cached_symbol (ada_lookup_name (lookup_name), |
5734 | domain, &sym, &block)) | |
4c4b4cd2 PH |
5735 | { |
5736 | if (sym != NULL) | |
b5ec771e | 5737 | add_defn_to_vec (obstackp, sym, block); |
22cee43f | 5738 | return; |
4c4b4cd2 | 5739 | } |
14f9c5c9 | 5740 | |
22cee43f PMR |
5741 | if (made_global_lookup_p) |
5742 | *made_global_lookup_p = 1; | |
b1eedac9 | 5743 | |
339c13b6 JB |
5744 | /* Search symbols from all global blocks. */ |
5745 | ||
b5ec771e | 5746 | add_nonlocal_symbols (obstackp, lookup_name, domain, 1); |
d2e4a39e | 5747 | |
4c4b4cd2 | 5748 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 5749 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 5750 | |
22cee43f | 5751 | if (num_defns_collected (obstackp) == 0) |
b5ec771e | 5752 | add_nonlocal_symbols (obstackp, lookup_name, domain, 0); |
22cee43f PMR |
5753 | } |
5754 | ||
b5ec771e PA |
5755 | /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH |
5756 | is non-zero, enclosing scope and in global scopes, returning the number of | |
22cee43f | 5757 | matches. |
54d343a2 TT |
5758 | Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols |
5759 | found and the blocks and symbol tables (if any) in which they were | |
5760 | found. | |
22cee43f PMR |
5761 | |
5762 | When full_search is non-zero, any non-function/non-enumeral | |
5763 | symbol match within the nest of blocks whose innermost member is BLOCK, | |
5764 | is the one match returned (no other matches in that or | |
5765 | enclosing blocks is returned). If there are any matches in or | |
5766 | surrounding BLOCK, then these alone are returned. | |
5767 | ||
5768 | Names prefixed with "standard__" are handled specially: "standard__" | |
5769 | is first stripped off, and only static and global symbols are searched. */ | |
5770 | ||
5771 | static int | |
b5ec771e PA |
5772 | ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name, |
5773 | const struct block *block, | |
22cee43f | 5774 | domain_enum domain, |
54d343a2 | 5775 | std::vector<struct block_symbol> *results, |
22cee43f PMR |
5776 | int full_search) |
5777 | { | |
22cee43f PMR |
5778 | int syms_from_global_search; |
5779 | int ndefns; | |
ec6a20c2 | 5780 | auto_obstack obstack; |
22cee43f | 5781 | |
ec6a20c2 | 5782 | ada_add_all_symbols (&obstack, block, lookup_name, |
b5ec771e | 5783 | domain, full_search, &syms_from_global_search); |
14f9c5c9 | 5784 | |
ec6a20c2 JB |
5785 | ndefns = num_defns_collected (&obstack); |
5786 | ||
54d343a2 TT |
5787 | struct block_symbol *base = defns_collected (&obstack, 1); |
5788 | for (int i = 0; i < ndefns; ++i) | |
5789 | results->push_back (base[i]); | |
4c4b4cd2 | 5790 | |
54d343a2 | 5791 | ndefns = remove_extra_symbols (results); |
4c4b4cd2 | 5792 | |
b1eedac9 | 5793 | if (ndefns == 0 && full_search && syms_from_global_search) |
b5ec771e | 5794 | cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL); |
14f9c5c9 | 5795 | |
b1eedac9 | 5796 | if (ndefns == 1 && full_search && syms_from_global_search) |
b5ec771e PA |
5797 | cache_symbol (ada_lookup_name (lookup_name), domain, |
5798 | (*results)[0].symbol, (*results)[0].block); | |
14f9c5c9 | 5799 | |
54d343a2 | 5800 | ndefns = remove_irrelevant_renamings (results, block); |
ec6a20c2 | 5801 | |
14f9c5c9 AS |
5802 | return ndefns; |
5803 | } | |
5804 | ||
b5ec771e | 5805 | /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and |
54d343a2 TT |
5806 | in global scopes, returning the number of matches, and filling *RESULTS |
5807 | with (SYM,BLOCK) tuples. | |
ec6a20c2 | 5808 | |
4eeaa230 DE |
5809 | See ada_lookup_symbol_list_worker for further details. */ |
5810 | ||
5811 | int | |
b5ec771e | 5812 | ada_lookup_symbol_list (const char *name, const struct block *block, |
54d343a2 TT |
5813 | domain_enum domain, |
5814 | std::vector<struct block_symbol> *results) | |
4eeaa230 | 5815 | { |
b5ec771e PA |
5816 | symbol_name_match_type name_match_type = name_match_type_from_name (name); |
5817 | lookup_name_info lookup_name (name, name_match_type); | |
5818 | ||
5819 | return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1); | |
4eeaa230 DE |
5820 | } |
5821 | ||
5822 | /* Implementation of the la_iterate_over_symbols method. */ | |
5823 | ||
5824 | static void | |
14bc53a8 | 5825 | ada_iterate_over_symbols |
b5ec771e PA |
5826 | (const struct block *block, const lookup_name_info &name, |
5827 | domain_enum domain, | |
14bc53a8 | 5828 | gdb::function_view<symbol_found_callback_ftype> callback) |
4eeaa230 DE |
5829 | { |
5830 | int ndefs, i; | |
54d343a2 | 5831 | std::vector<struct block_symbol> results; |
4eeaa230 DE |
5832 | |
5833 | ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0); | |
ec6a20c2 | 5834 | |
4eeaa230 DE |
5835 | for (i = 0; i < ndefs; ++i) |
5836 | { | |
7e41c8db | 5837 | if (!callback (&results[i])) |
4eeaa230 DE |
5838 | break; |
5839 | } | |
5840 | } | |
5841 | ||
4e5c77fe JB |
5842 | /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set |
5843 | to 1, but choosing the first symbol found if there are multiple | |
5844 | choices. | |
5845 | ||
5e2336be JB |
5846 | The result is stored in *INFO, which must be non-NULL. |
5847 | If no match is found, INFO->SYM is set to NULL. */ | |
4e5c77fe JB |
5848 | |
5849 | void | |
5850 | ada_lookup_encoded_symbol (const char *name, const struct block *block, | |
fe978cb0 | 5851 | domain_enum domain, |
d12307c1 | 5852 | struct block_symbol *info) |
14f9c5c9 | 5853 | { |
b5ec771e PA |
5854 | /* Since we already have an encoded name, wrap it in '<>' to force a |
5855 | verbatim match. Otherwise, if the name happens to not look like | |
5856 | an encoded name (because it doesn't include a "__"), | |
5857 | ada_lookup_name_info would re-encode/fold it again, and that | |
5858 | would e.g., incorrectly lowercase object renaming names like | |
5859 | "R28b" -> "r28b". */ | |
5860 | std::string verbatim = std::string ("<") + name + '>'; | |
5861 | ||
5e2336be | 5862 | gdb_assert (info != NULL); |
f98fc17b | 5863 | *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL); |
4e5c77fe | 5864 | } |
aeb5907d JB |
5865 | |
5866 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
5867 | scope and in global scopes, or NULL if none. NAME is folded and | |
5868 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
0963b4bd | 5869 | choosing the first symbol if there are multiple choices. |
4e5c77fe JB |
5870 | If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */ |
5871 | ||
d12307c1 | 5872 | struct block_symbol |
aeb5907d | 5873 | ada_lookup_symbol (const char *name, const struct block *block0, |
fe978cb0 | 5874 | domain_enum domain, int *is_a_field_of_this) |
aeb5907d JB |
5875 | { |
5876 | if (is_a_field_of_this != NULL) | |
5877 | *is_a_field_of_this = 0; | |
5878 | ||
54d343a2 | 5879 | std::vector<struct block_symbol> candidates; |
f98fc17b | 5880 | int n_candidates; |
f98fc17b PA |
5881 | |
5882 | n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates); | |
f98fc17b PA |
5883 | |
5884 | if (n_candidates == 0) | |
54d343a2 | 5885 | return {}; |
f98fc17b PA |
5886 | |
5887 | block_symbol info = candidates[0]; | |
5888 | info.symbol = fixup_symbol_section (info.symbol, NULL); | |
d12307c1 | 5889 | return info; |
4c4b4cd2 | 5890 | } |
14f9c5c9 | 5891 | |
d12307c1 | 5892 | static struct block_symbol |
f606139a DE |
5893 | ada_lookup_symbol_nonlocal (const struct language_defn *langdef, |
5894 | const char *name, | |
76a01679 | 5895 | const struct block *block, |
21b556f4 | 5896 | const domain_enum domain) |
4c4b4cd2 | 5897 | { |
d12307c1 | 5898 | struct block_symbol sym; |
04dccad0 JB |
5899 | |
5900 | sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL); | |
d12307c1 | 5901 | if (sym.symbol != NULL) |
04dccad0 JB |
5902 | return sym; |
5903 | ||
5904 | /* If we haven't found a match at this point, try the primitive | |
5905 | types. In other languages, this search is performed before | |
5906 | searching for global symbols in order to short-circuit that | |
5907 | global-symbol search if it happens that the name corresponds | |
5908 | to a primitive type. But we cannot do the same in Ada, because | |
5909 | it is perfectly legitimate for a program to declare a type which | |
5910 | has the same name as a standard type. If looking up a type in | |
5911 | that situation, we have traditionally ignored the primitive type | |
5912 | in favor of user-defined types. This is why, unlike most other | |
5913 | languages, we search the primitive types this late and only after | |
5914 | having searched the global symbols without success. */ | |
5915 | ||
5916 | if (domain == VAR_DOMAIN) | |
5917 | { | |
5918 | struct gdbarch *gdbarch; | |
5919 | ||
5920 | if (block == NULL) | |
5921 | gdbarch = target_gdbarch (); | |
5922 | else | |
5923 | gdbarch = block_gdbarch (block); | |
d12307c1 PMR |
5924 | sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name); |
5925 | if (sym.symbol != NULL) | |
04dccad0 JB |
5926 | return sym; |
5927 | } | |
5928 | ||
6640a367 | 5929 | return {}; |
14f9c5c9 AS |
5930 | } |
5931 | ||
5932 | ||
4c4b4cd2 PH |
5933 | /* True iff STR is a possible encoded suffix of a normal Ada name |
5934 | that is to be ignored for matching purposes. Suffixes of parallel | |
5935 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 5936 | are given by any of the regular expressions: |
4c4b4cd2 | 5937 | |
babe1480 JB |
5938 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
5939 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
9ac7f98e | 5940 | TKB [subprogram suffix for task bodies] |
babe1480 | 5941 | _E[0-9]+[bs]$ [protected object entry suffixes] |
61ee279c | 5942 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
5943 | |
5944 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
5945 | match is performed. This sequence is used to differentiate homonyms, | |
5946 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 5947 | |
14f9c5c9 | 5948 | static int |
d2e4a39e | 5949 | is_name_suffix (const char *str) |
14f9c5c9 AS |
5950 | { |
5951 | int k; | |
4c4b4cd2 PH |
5952 | const char *matching; |
5953 | const int len = strlen (str); | |
5954 | ||
babe1480 JB |
5955 | /* Skip optional leading __[0-9]+. */ |
5956 | ||
4c4b4cd2 PH |
5957 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
5958 | { | |
babe1480 JB |
5959 | str += 3; |
5960 | while (isdigit (str[0])) | |
5961 | str += 1; | |
4c4b4cd2 | 5962 | } |
babe1480 JB |
5963 | |
5964 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 5965 | |
babe1480 | 5966 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 5967 | { |
babe1480 | 5968 | matching = str + 1; |
4c4b4cd2 PH |
5969 | while (isdigit (matching[0])) |
5970 | matching += 1; | |
5971 | if (matching[0] == '\0') | |
5972 | return 1; | |
5973 | } | |
5974 | ||
5975 | /* ___[0-9]+ */ | |
babe1480 | 5976 | |
4c4b4cd2 PH |
5977 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
5978 | { | |
5979 | matching = str + 3; | |
5980 | while (isdigit (matching[0])) | |
5981 | matching += 1; | |
5982 | if (matching[0] == '\0') | |
5983 | return 1; | |
5984 | } | |
5985 | ||
9ac7f98e JB |
5986 | /* "TKB" suffixes are used for subprograms implementing task bodies. */ |
5987 | ||
5988 | if (strcmp (str, "TKB") == 0) | |
5989 | return 1; | |
5990 | ||
529cad9c PH |
5991 | #if 0 |
5992 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
5993 | with a N at the end. Unfortunately, the compiler uses the same |
5994 | convention for other internal types it creates. So treating | |
529cad9c | 5995 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
5996 | some regressions. For instance, consider the case of an enumerated |
5997 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
5998 | name ends with N. |
5999 | Having a single character like this as a suffix carrying some | |
0963b4bd | 6000 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
6001 | to be something like "_N" instead. In the meantime, do not do |
6002 | the following check. */ | |
6003 | /* Protected Object Subprograms */ | |
6004 | if (len == 1 && str [0] == 'N') | |
6005 | return 1; | |
6006 | #endif | |
6007 | ||
6008 | /* _E[0-9]+[bs]$ */ | |
6009 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
6010 | { | |
6011 | matching = str + 3; | |
6012 | while (isdigit (matching[0])) | |
6013 | matching += 1; | |
6014 | if ((matching[0] == 'b' || matching[0] == 's') | |
6015 | && matching [1] == '\0') | |
6016 | return 1; | |
6017 | } | |
6018 | ||
4c4b4cd2 PH |
6019 | /* ??? We should not modify STR directly, as we are doing below. This |
6020 | is fine in this case, but may become problematic later if we find | |
6021 | that this alternative did not work, and want to try matching | |
6022 | another one from the begining of STR. Since we modified it, we | |
6023 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
6024 | if (str[0] == 'X') |
6025 | { | |
6026 | str += 1; | |
d2e4a39e | 6027 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
6028 | { |
6029 | if (str[0] != 'n' && str[0] != 'b') | |
6030 | return 0; | |
6031 | str += 1; | |
6032 | } | |
14f9c5c9 | 6033 | } |
babe1480 | 6034 | |
14f9c5c9 AS |
6035 | if (str[0] == '\000') |
6036 | return 1; | |
babe1480 | 6037 | |
d2e4a39e | 6038 | if (str[0] == '_') |
14f9c5c9 AS |
6039 | { |
6040 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 6041 | return 0; |
d2e4a39e | 6042 | if (str[2] == '_') |
4c4b4cd2 | 6043 | { |
61ee279c PH |
6044 | if (strcmp (str + 3, "JM") == 0) |
6045 | return 1; | |
6046 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
6047 | the LJM suffix in favor of the JM one. But we will | |
6048 | still accept LJM as a valid suffix for a reasonable | |
6049 | amount of time, just to allow ourselves to debug programs | |
6050 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
6051 | if (strcmp (str + 3, "LJM") == 0) |
6052 | return 1; | |
6053 | if (str[3] != 'X') | |
6054 | return 0; | |
1265e4aa JB |
6055 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
6056 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
6057 | return 1; |
6058 | if (str[4] == 'R' && str[5] != 'T') | |
6059 | return 1; | |
6060 | return 0; | |
6061 | } | |
6062 | if (!isdigit (str[2])) | |
6063 | return 0; | |
6064 | for (k = 3; str[k] != '\0'; k += 1) | |
6065 | if (!isdigit (str[k]) && str[k] != '_') | |
6066 | return 0; | |
14f9c5c9 AS |
6067 | return 1; |
6068 | } | |
4c4b4cd2 | 6069 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 6070 | { |
4c4b4cd2 PH |
6071 | for (k = 2; str[k] != '\0'; k += 1) |
6072 | if (!isdigit (str[k]) && str[k] != '_') | |
6073 | return 0; | |
14f9c5c9 AS |
6074 | return 1; |
6075 | } | |
6076 | return 0; | |
6077 | } | |
d2e4a39e | 6078 | |
aeb5907d JB |
6079 | /* Return non-zero if the string starting at NAME and ending before |
6080 | NAME_END contains no capital letters. */ | |
529cad9c PH |
6081 | |
6082 | static int | |
6083 | is_valid_name_for_wild_match (const char *name0) | |
6084 | { | |
6085 | const char *decoded_name = ada_decode (name0); | |
6086 | int i; | |
6087 | ||
5823c3ef JB |
6088 | /* If the decoded name starts with an angle bracket, it means that |
6089 | NAME0 does not follow the GNAT encoding format. It should then | |
6090 | not be allowed as a possible wild match. */ | |
6091 | if (decoded_name[0] == '<') | |
6092 | return 0; | |
6093 | ||
529cad9c PH |
6094 | for (i=0; decoded_name[i] != '\0'; i++) |
6095 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
6096 | return 0; | |
6097 | ||
6098 | return 1; | |
6099 | } | |
6100 | ||
73589123 PH |
6101 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
6102 | that could start a simple name. Assumes that *NAMEP points into | |
6103 | the string beginning at NAME0. */ | |
4c4b4cd2 | 6104 | |
14f9c5c9 | 6105 | static int |
73589123 | 6106 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 6107 | { |
73589123 | 6108 | const char *name = *namep; |
5b4ee69b | 6109 | |
5823c3ef | 6110 | while (1) |
14f9c5c9 | 6111 | { |
aa27d0b3 | 6112 | int t0, t1; |
73589123 PH |
6113 | |
6114 | t0 = *name; | |
6115 | if (t0 == '_') | |
6116 | { | |
6117 | t1 = name[1]; | |
6118 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
6119 | { | |
6120 | name += 1; | |
61012eef | 6121 | if (name == name0 + 5 && startswith (name0, "_ada")) |
73589123 PH |
6122 | break; |
6123 | else | |
6124 | name += 1; | |
6125 | } | |
aa27d0b3 JB |
6126 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
6127 | || name[2] == target0)) | |
73589123 PH |
6128 | { |
6129 | name += 2; | |
6130 | break; | |
6131 | } | |
6132 | else | |
6133 | return 0; | |
6134 | } | |
6135 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
6136 | name += 1; | |
6137 | else | |
5823c3ef | 6138 | return 0; |
73589123 PH |
6139 | } |
6140 | ||
6141 | *namep = name; | |
6142 | return 1; | |
6143 | } | |
6144 | ||
b5ec771e PA |
6145 | /* Return true iff NAME encodes a name of the form prefix.PATN. |
6146 | Ignores any informational suffixes of NAME (i.e., for which | |
6147 | is_name_suffix is true). Assumes that PATN is a lower-cased Ada | |
6148 | simple name. */ | |
73589123 | 6149 | |
b5ec771e | 6150 | static bool |
73589123 PH |
6151 | wild_match (const char *name, const char *patn) |
6152 | { | |
22e048c9 | 6153 | const char *p; |
73589123 PH |
6154 | const char *name0 = name; |
6155 | ||
6156 | while (1) | |
6157 | { | |
6158 | const char *match = name; | |
6159 | ||
6160 | if (*name == *patn) | |
6161 | { | |
6162 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
6163 | if (*p != *name) | |
6164 | break; | |
6165 | if (*p == '\0' && is_name_suffix (name)) | |
b5ec771e | 6166 | return match == name0 || is_valid_name_for_wild_match (name0); |
73589123 PH |
6167 | |
6168 | if (name[-1] == '_') | |
6169 | name -= 1; | |
6170 | } | |
6171 | if (!advance_wild_match (&name, name0, *patn)) | |
b5ec771e | 6172 | return false; |
96d887e8 | 6173 | } |
96d887e8 PH |
6174 | } |
6175 | ||
b5ec771e PA |
6176 | /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring |
6177 | any trailing suffixes that encode debugging information or leading | |
6178 | _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging | |
6179 | information that is ignored). */ | |
40658b94 | 6180 | |
b5ec771e | 6181 | static bool |
c4d840bd PH |
6182 | full_match (const char *sym_name, const char *search_name) |
6183 | { | |
b5ec771e PA |
6184 | size_t search_name_len = strlen (search_name); |
6185 | ||
6186 | if (strncmp (sym_name, search_name, search_name_len) == 0 | |
6187 | && is_name_suffix (sym_name + search_name_len)) | |
6188 | return true; | |
6189 | ||
6190 | if (startswith (sym_name, "_ada_") | |
6191 | && strncmp (sym_name + 5, search_name, search_name_len) == 0 | |
6192 | && is_name_suffix (sym_name + search_name_len + 5)) | |
6193 | return true; | |
c4d840bd | 6194 | |
b5ec771e PA |
6195 | return false; |
6196 | } | |
c4d840bd | 6197 | |
b5ec771e PA |
6198 | /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector |
6199 | *defn_symbols, updating the list of symbols in OBSTACKP (if | |
6200 | necessary). OBJFILE is the section containing BLOCK. */ | |
96d887e8 PH |
6201 | |
6202 | static void | |
6203 | ada_add_block_symbols (struct obstack *obstackp, | |
b5ec771e PA |
6204 | const struct block *block, |
6205 | const lookup_name_info &lookup_name, | |
6206 | domain_enum domain, struct objfile *objfile) | |
96d887e8 | 6207 | { |
8157b174 | 6208 | struct block_iterator iter; |
96d887e8 PH |
6209 | /* A matching argument symbol, if any. */ |
6210 | struct symbol *arg_sym; | |
6211 | /* Set true when we find a matching non-argument symbol. */ | |
6212 | int found_sym; | |
6213 | struct symbol *sym; | |
6214 | ||
6215 | arg_sym = NULL; | |
6216 | found_sym = 0; | |
b5ec771e PA |
6217 | for (sym = block_iter_match_first (block, lookup_name, &iter); |
6218 | sym != NULL; | |
6219 | sym = block_iter_match_next (lookup_name, &iter)) | |
96d887e8 | 6220 | { |
b5ec771e PA |
6221 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
6222 | SYMBOL_DOMAIN (sym), domain)) | |
6223 | { | |
6224 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) | |
6225 | { | |
6226 | if (SYMBOL_IS_ARGUMENT (sym)) | |
6227 | arg_sym = sym; | |
6228 | else | |
6229 | { | |
6230 | found_sym = 1; | |
6231 | add_defn_to_vec (obstackp, | |
6232 | fixup_symbol_section (sym, objfile), | |
6233 | block); | |
6234 | } | |
6235 | } | |
6236 | } | |
96d887e8 PH |
6237 | } |
6238 | ||
22cee43f PMR |
6239 | /* Handle renamings. */ |
6240 | ||
b5ec771e | 6241 | if (ada_add_block_renamings (obstackp, block, lookup_name, domain)) |
22cee43f PMR |
6242 | found_sym = 1; |
6243 | ||
96d887e8 PH |
6244 | if (!found_sym && arg_sym != NULL) |
6245 | { | |
76a01679 JB |
6246 | add_defn_to_vec (obstackp, |
6247 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 6248 | block); |
96d887e8 PH |
6249 | } |
6250 | ||
b5ec771e | 6251 | if (!lookup_name.ada ().wild_match_p ()) |
96d887e8 PH |
6252 | { |
6253 | arg_sym = NULL; | |
6254 | found_sym = 0; | |
b5ec771e PA |
6255 | const std::string &ada_lookup_name = lookup_name.ada ().lookup_name (); |
6256 | const char *name = ada_lookup_name.c_str (); | |
6257 | size_t name_len = ada_lookup_name.size (); | |
96d887e8 PH |
6258 | |
6259 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 6260 | { |
4186eb54 KS |
6261 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
6262 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
6263 | { |
6264 | int cmp; | |
6265 | ||
6266 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
6267 | if (cmp == 0) | |
6268 | { | |
61012eef | 6269 | cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_"); |
76a01679 JB |
6270 | if (cmp == 0) |
6271 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
6272 | name_len); | |
6273 | } | |
6274 | ||
6275 | if (cmp == 0 | |
6276 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
6277 | { | |
2a2d4dc3 AS |
6278 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
6279 | { | |
6280 | if (SYMBOL_IS_ARGUMENT (sym)) | |
6281 | arg_sym = sym; | |
6282 | else | |
6283 | { | |
6284 | found_sym = 1; | |
6285 | add_defn_to_vec (obstackp, | |
6286 | fixup_symbol_section (sym, objfile), | |
6287 | block); | |
6288 | } | |
6289 | } | |
76a01679 JB |
6290 | } |
6291 | } | |
76a01679 | 6292 | } |
96d887e8 PH |
6293 | |
6294 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
6295 | They aren't parameters, right? */ | |
6296 | if (!found_sym && arg_sym != NULL) | |
6297 | { | |
6298 | add_defn_to_vec (obstackp, | |
76a01679 | 6299 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 6300 | block); |
96d887e8 PH |
6301 | } |
6302 | } | |
6303 | } | |
6304 | \f | |
41d27058 JB |
6305 | |
6306 | /* Symbol Completion */ | |
6307 | ||
b5ec771e | 6308 | /* See symtab.h. */ |
41d27058 | 6309 | |
b5ec771e PA |
6310 | bool |
6311 | ada_lookup_name_info::matches | |
6312 | (const char *sym_name, | |
6313 | symbol_name_match_type match_type, | |
a207cff2 | 6314 | completion_match_result *comp_match_res) const |
41d27058 | 6315 | { |
b5ec771e PA |
6316 | bool match = false; |
6317 | const char *text = m_encoded_name.c_str (); | |
6318 | size_t text_len = m_encoded_name.size (); | |
41d27058 JB |
6319 | |
6320 | /* First, test against the fully qualified name of the symbol. */ | |
6321 | ||
6322 | if (strncmp (sym_name, text, text_len) == 0) | |
b5ec771e | 6323 | match = true; |
41d27058 | 6324 | |
b5ec771e | 6325 | if (match && !m_encoded_p) |
41d27058 JB |
6326 | { |
6327 | /* One needed check before declaring a positive match is to verify | |
6328 | that iff we are doing a verbatim match, the decoded version | |
6329 | of the symbol name starts with '<'. Otherwise, this symbol name | |
6330 | is not a suitable completion. */ | |
6331 | const char *sym_name_copy = sym_name; | |
b5ec771e | 6332 | bool has_angle_bracket; |
41d27058 JB |
6333 | |
6334 | sym_name = ada_decode (sym_name); | |
6335 | has_angle_bracket = (sym_name[0] == '<'); | |
b5ec771e | 6336 | match = (has_angle_bracket == m_verbatim_p); |
41d27058 JB |
6337 | sym_name = sym_name_copy; |
6338 | } | |
6339 | ||
b5ec771e | 6340 | if (match && !m_verbatim_p) |
41d27058 JB |
6341 | { |
6342 | /* When doing non-verbatim match, another check that needs to | |
6343 | be done is to verify that the potentially matching symbol name | |
6344 | does not include capital letters, because the ada-mode would | |
6345 | not be able to understand these symbol names without the | |
6346 | angle bracket notation. */ | |
6347 | const char *tmp; | |
6348 | ||
6349 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
6350 | if (*tmp != '\0') | |
b5ec771e | 6351 | match = false; |
41d27058 JB |
6352 | } |
6353 | ||
6354 | /* Second: Try wild matching... */ | |
6355 | ||
b5ec771e | 6356 | if (!match && m_wild_match_p) |
41d27058 JB |
6357 | { |
6358 | /* Since we are doing wild matching, this means that TEXT | |
6359 | may represent an unqualified symbol name. We therefore must | |
6360 | also compare TEXT against the unqualified name of the symbol. */ | |
6361 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
6362 | ||
6363 | if (strncmp (sym_name, text, text_len) == 0) | |
b5ec771e | 6364 | match = true; |
41d27058 JB |
6365 | } |
6366 | ||
b5ec771e | 6367 | /* Finally: If we found a match, prepare the result to return. */ |
41d27058 JB |
6368 | |
6369 | if (!match) | |
b5ec771e | 6370 | return false; |
41d27058 | 6371 | |
a207cff2 | 6372 | if (comp_match_res != NULL) |
b5ec771e | 6373 | { |
a207cff2 | 6374 | std::string &match_str = comp_match_res->match.storage (); |
41d27058 | 6375 | |
b5ec771e | 6376 | if (!m_encoded_p) |
a207cff2 | 6377 | match_str = ada_decode (sym_name); |
b5ec771e PA |
6378 | else |
6379 | { | |
6380 | if (m_verbatim_p) | |
6381 | match_str = add_angle_brackets (sym_name); | |
6382 | else | |
6383 | match_str = sym_name; | |
41d27058 | 6384 | |
b5ec771e | 6385 | } |
a207cff2 PA |
6386 | |
6387 | comp_match_res->set_match (match_str.c_str ()); | |
41d27058 JB |
6388 | } |
6389 | ||
b5ec771e | 6390 | return true; |
41d27058 JB |
6391 | } |
6392 | ||
b5ec771e | 6393 | /* Add the list of possible symbol names completing TEXT to TRACKER. |
eb3ff9a5 | 6394 | WORD is the entire command on which completion is made. */ |
41d27058 | 6395 | |
eb3ff9a5 PA |
6396 | static void |
6397 | ada_collect_symbol_completion_matches (completion_tracker &tracker, | |
c6756f62 | 6398 | complete_symbol_mode mode, |
b5ec771e PA |
6399 | symbol_name_match_type name_match_type, |
6400 | const char *text, const char *word, | |
eb3ff9a5 | 6401 | enum type_code code) |
41d27058 | 6402 | { |
41d27058 | 6403 | struct symbol *sym; |
3977b71f | 6404 | const struct block *b, *surrounding_static_block = 0; |
8157b174 | 6405 | struct block_iterator iter; |
41d27058 | 6406 | |
2f68a895 TT |
6407 | gdb_assert (code == TYPE_CODE_UNDEF); |
6408 | ||
1b026119 | 6409 | lookup_name_info lookup_name (text, name_match_type, true); |
41d27058 JB |
6410 | |
6411 | /* First, look at the partial symtab symbols. */ | |
14bc53a8 | 6412 | expand_symtabs_matching (NULL, |
b5ec771e PA |
6413 | lookup_name, |
6414 | NULL, | |
14bc53a8 PA |
6415 | NULL, |
6416 | ALL_DOMAIN); | |
41d27058 JB |
6417 | |
6418 | /* At this point scan through the misc symbol vectors and add each | |
6419 | symbol you find to the list. Eventually we want to ignore | |
6420 | anything that isn't a text symbol (everything else will be | |
6421 | handled by the psymtab code above). */ | |
6422 | ||
2030c079 | 6423 | for (objfile *objfile : current_program_space->objfiles ()) |
5325b9bf | 6424 | { |
7932255d | 6425 | for (minimal_symbol *msymbol : objfile->msymbols ()) |
5325b9bf TT |
6426 | { |
6427 | QUIT; | |
6428 | ||
6429 | if (completion_skip_symbol (mode, msymbol)) | |
6430 | continue; | |
6431 | ||
6432 | language symbol_language = MSYMBOL_LANGUAGE (msymbol); | |
6433 | ||
6434 | /* Ada minimal symbols won't have their language set to Ada. If | |
6435 | we let completion_list_add_name compare using the | |
6436 | default/C-like matcher, then when completing e.g., symbols in a | |
6437 | package named "pck", we'd match internal Ada symbols like | |
6438 | "pckS", which are invalid in an Ada expression, unless you wrap | |
6439 | them in '<' '>' to request a verbatim match. | |
6440 | ||
6441 | Unfortunately, some Ada encoded names successfully demangle as | |
6442 | C++ symbols (using an old mangling scheme), such as "name__2Xn" | |
6443 | -> "Xn::name(void)" and thus some Ada minimal symbols end up | |
6444 | with the wrong language set. Paper over that issue here. */ | |
6445 | if (symbol_language == language_auto | |
6446 | || symbol_language == language_cplus) | |
6447 | symbol_language = language_ada; | |
6448 | ||
6449 | completion_list_add_name (tracker, | |
6450 | symbol_language, | |
6451 | MSYMBOL_LINKAGE_NAME (msymbol), | |
6452 | lookup_name, text, word); | |
6453 | } | |
6454 | } | |
41d27058 JB |
6455 | |
6456 | /* Search upwards from currently selected frame (so that we can | |
6457 | complete on local vars. */ | |
6458 | ||
6459 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
6460 | { | |
6461 | if (!BLOCK_SUPERBLOCK (b)) | |
6462 | surrounding_static_block = b; /* For elmin of dups */ | |
6463 | ||
6464 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6465 | { | |
f9d67a22 PA |
6466 | if (completion_skip_symbol (mode, sym)) |
6467 | continue; | |
6468 | ||
b5ec771e PA |
6469 | completion_list_add_name (tracker, |
6470 | SYMBOL_LANGUAGE (sym), | |
6471 | SYMBOL_LINKAGE_NAME (sym), | |
1b026119 | 6472 | lookup_name, text, word); |
41d27058 JB |
6473 | } |
6474 | } | |
6475 | ||
6476 | /* Go through the symtabs and check the externs and statics for | |
43f3e411 | 6477 | symbols which match. */ |
41d27058 | 6478 | |
2030c079 | 6479 | for (objfile *objfile : current_program_space->objfiles ()) |
41d27058 | 6480 | { |
b669c953 | 6481 | for (compunit_symtab *s : objfile->compunits ()) |
d8aeb77f TT |
6482 | { |
6483 | QUIT; | |
6484 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK); | |
6485 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6486 | { | |
6487 | if (completion_skip_symbol (mode, sym)) | |
6488 | continue; | |
f9d67a22 | 6489 | |
d8aeb77f TT |
6490 | completion_list_add_name (tracker, |
6491 | SYMBOL_LANGUAGE (sym), | |
6492 | SYMBOL_LINKAGE_NAME (sym), | |
6493 | lookup_name, text, word); | |
6494 | } | |
6495 | } | |
41d27058 | 6496 | } |
41d27058 | 6497 | |
2030c079 | 6498 | for (objfile *objfile : current_program_space->objfiles ()) |
d8aeb77f | 6499 | { |
b669c953 | 6500 | for (compunit_symtab *s : objfile->compunits ()) |
d8aeb77f TT |
6501 | { |
6502 | QUIT; | |
6503 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK); | |
6504 | /* Don't do this block twice. */ | |
6505 | if (b == surrounding_static_block) | |
6506 | continue; | |
6507 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6508 | { | |
6509 | if (completion_skip_symbol (mode, sym)) | |
6510 | continue; | |
f9d67a22 | 6511 | |
d8aeb77f TT |
6512 | completion_list_add_name (tracker, |
6513 | SYMBOL_LANGUAGE (sym), | |
6514 | SYMBOL_LINKAGE_NAME (sym), | |
6515 | lookup_name, text, word); | |
6516 | } | |
6517 | } | |
41d27058 | 6518 | } |
41d27058 JB |
6519 | } |
6520 | ||
963a6417 | 6521 | /* Field Access */ |
96d887e8 | 6522 | |
73fb9985 JB |
6523 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
6524 | for tagged types. */ | |
6525 | ||
6526 | static int | |
6527 | ada_is_dispatch_table_ptr_type (struct type *type) | |
6528 | { | |
0d5cff50 | 6529 | const char *name; |
73fb9985 JB |
6530 | |
6531 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
6532 | return 0; | |
6533 | ||
6534 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
6535 | if (name == NULL) | |
6536 | return 0; | |
6537 | ||
6538 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
6539 | } | |
6540 | ||
ac4a2da4 JG |
6541 | /* Return non-zero if TYPE is an interface tag. */ |
6542 | ||
6543 | static int | |
6544 | ada_is_interface_tag (struct type *type) | |
6545 | { | |
6546 | const char *name = TYPE_NAME (type); | |
6547 | ||
6548 | if (name == NULL) | |
6549 | return 0; | |
6550 | ||
6551 | return (strcmp (name, "ada__tags__interface_tag") == 0); | |
6552 | } | |
6553 | ||
963a6417 PH |
6554 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
6555 | to be invisible to users. */ | |
96d887e8 | 6556 | |
963a6417 PH |
6557 | int |
6558 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 6559 | { |
963a6417 PH |
6560 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
6561 | return 1; | |
ffde82bf | 6562 | |
73fb9985 JB |
6563 | /* Check the name of that field. */ |
6564 | { | |
6565 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
6566 | ||
6567 | /* Anonymous field names should not be printed. | |
6568 | brobecker/2007-02-20: I don't think this can actually happen | |
6569 | but we don't want to print the value of annonymous fields anyway. */ | |
6570 | if (name == NULL) | |
6571 | return 1; | |
6572 | ||
ffde82bf JB |
6573 | /* Normally, fields whose name start with an underscore ("_") |
6574 | are fields that have been internally generated by the compiler, | |
6575 | and thus should not be printed. The "_parent" field is special, | |
6576 | however: This is a field internally generated by the compiler | |
6577 | for tagged types, and it contains the components inherited from | |
6578 | the parent type. This field should not be printed as is, but | |
6579 | should not be ignored either. */ | |
61012eef | 6580 | if (name[0] == '_' && !startswith (name, "_parent")) |
73fb9985 JB |
6581 | return 1; |
6582 | } | |
6583 | ||
ac4a2da4 JG |
6584 | /* If this is the dispatch table of a tagged type or an interface tag, |
6585 | then ignore. */ | |
73fb9985 | 6586 | if (ada_is_tagged_type (type, 1) |
ac4a2da4 JG |
6587 | && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)) |
6588 | || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num)))) | |
73fb9985 JB |
6589 | return 1; |
6590 | ||
6591 | /* Not a special field, so it should not be ignored. */ | |
6592 | return 0; | |
963a6417 | 6593 | } |
96d887e8 | 6594 | |
963a6417 | 6595 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 6596 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 6597 | |
963a6417 PH |
6598 | int |
6599 | ada_is_tagged_type (struct type *type, int refok) | |
6600 | { | |
988f6b3d | 6601 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL); |
963a6417 | 6602 | } |
96d887e8 | 6603 | |
963a6417 | 6604 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 6605 | |
963a6417 PH |
6606 | int |
6607 | ada_is_tag_type (struct type *type) | |
6608 | { | |
460efde1 JB |
6609 | type = ada_check_typedef (type); |
6610 | ||
963a6417 PH |
6611 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) |
6612 | return 0; | |
6613 | else | |
96d887e8 | 6614 | { |
963a6417 | 6615 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 6616 | |
963a6417 PH |
6617 | return (name != NULL |
6618 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 6619 | } |
96d887e8 PH |
6620 | } |
6621 | ||
963a6417 | 6622 | /* The type of the tag on VAL. */ |
76a01679 | 6623 | |
963a6417 PH |
6624 | struct type * |
6625 | ada_tag_type (struct value *val) | |
96d887e8 | 6626 | { |
988f6b3d | 6627 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0); |
963a6417 | 6628 | } |
96d887e8 | 6629 | |
b50d69b5 JG |
6630 | /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95, |
6631 | retired at Ada 05). */ | |
6632 | ||
6633 | static int | |
6634 | is_ada95_tag (struct value *tag) | |
6635 | { | |
6636 | return ada_value_struct_elt (tag, "tsd", 1) != NULL; | |
6637 | } | |
6638 | ||
963a6417 | 6639 | /* The value of the tag on VAL. */ |
96d887e8 | 6640 | |
963a6417 PH |
6641 | struct value * |
6642 | ada_value_tag (struct value *val) | |
6643 | { | |
03ee6b2e | 6644 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
6645 | } |
6646 | ||
963a6417 PH |
6647 | /* The value of the tag on the object of type TYPE whose contents are |
6648 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 6649 | ADDRESS. */ |
96d887e8 | 6650 | |
963a6417 | 6651 | static struct value * |
10a2c479 | 6652 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 6653 | const gdb_byte *valaddr, |
963a6417 | 6654 | CORE_ADDR address) |
96d887e8 | 6655 | { |
b5385fc0 | 6656 | int tag_byte_offset; |
963a6417 | 6657 | struct type *tag_type; |
5b4ee69b | 6658 | |
963a6417 | 6659 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 6660 | NULL, NULL, NULL)) |
96d887e8 | 6661 | { |
fc1a4b47 | 6662 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
6663 | ? NULL |
6664 | : valaddr + tag_byte_offset); | |
963a6417 | 6665 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 6666 | |
963a6417 | 6667 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 6668 | } |
963a6417 PH |
6669 | return NULL; |
6670 | } | |
96d887e8 | 6671 | |
963a6417 PH |
6672 | static struct type * |
6673 | type_from_tag (struct value *tag) | |
6674 | { | |
6675 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 6676 | |
963a6417 PH |
6677 | if (type_name != NULL) |
6678 | return ada_find_any_type (ada_encode (type_name)); | |
6679 | return NULL; | |
6680 | } | |
96d887e8 | 6681 | |
b50d69b5 JG |
6682 | /* Given a value OBJ of a tagged type, return a value of this |
6683 | type at the base address of the object. The base address, as | |
6684 | defined in Ada.Tags, it is the address of the primary tag of | |
6685 | the object, and therefore where the field values of its full | |
6686 | view can be fetched. */ | |
6687 | ||
6688 | struct value * | |
6689 | ada_tag_value_at_base_address (struct value *obj) | |
6690 | { | |
b50d69b5 JG |
6691 | struct value *val; |
6692 | LONGEST offset_to_top = 0; | |
6693 | struct type *ptr_type, *obj_type; | |
6694 | struct value *tag; | |
6695 | CORE_ADDR base_address; | |
6696 | ||
6697 | obj_type = value_type (obj); | |
6698 | ||
6699 | /* It is the responsability of the caller to deref pointers. */ | |
6700 | ||
6701 | if (TYPE_CODE (obj_type) == TYPE_CODE_PTR | |
6702 | || TYPE_CODE (obj_type) == TYPE_CODE_REF) | |
6703 | return obj; | |
6704 | ||
6705 | tag = ada_value_tag (obj); | |
6706 | if (!tag) | |
6707 | return obj; | |
6708 | ||
6709 | /* Base addresses only appeared with Ada 05 and multiple inheritance. */ | |
6710 | ||
6711 | if (is_ada95_tag (tag)) | |
6712 | return obj; | |
6713 | ||
08f49010 XR |
6714 | ptr_type = language_lookup_primitive_type |
6715 | (language_def (language_ada), target_gdbarch(), "storage_offset"); | |
b50d69b5 JG |
6716 | ptr_type = lookup_pointer_type (ptr_type); |
6717 | val = value_cast (ptr_type, tag); | |
6718 | if (!val) | |
6719 | return obj; | |
6720 | ||
6721 | /* It is perfectly possible that an exception be raised while | |
6722 | trying to determine the base address, just like for the tag; | |
6723 | see ada_tag_name for more details. We do not print the error | |
6724 | message for the same reason. */ | |
6725 | ||
492d29ea | 6726 | TRY |
b50d69b5 JG |
6727 | { |
6728 | offset_to_top = value_as_long (value_ind (value_ptradd (val, -2))); | |
6729 | } | |
6730 | ||
492d29ea PA |
6731 | CATCH (e, RETURN_MASK_ERROR) |
6732 | { | |
6733 | return obj; | |
6734 | } | |
6735 | END_CATCH | |
b50d69b5 JG |
6736 | |
6737 | /* If offset is null, nothing to do. */ | |
6738 | ||
6739 | if (offset_to_top == 0) | |
6740 | return obj; | |
6741 | ||
6742 | /* -1 is a special case in Ada.Tags; however, what should be done | |
6743 | is not quite clear from the documentation. So do nothing for | |
6744 | now. */ | |
6745 | ||
6746 | if (offset_to_top == -1) | |
6747 | return obj; | |
6748 | ||
08f49010 XR |
6749 | /* OFFSET_TO_TOP used to be a positive value to be subtracted |
6750 | from the base address. This was however incompatible with | |
6751 | C++ dispatch table: C++ uses a *negative* value to *add* | |
6752 | to the base address. Ada's convention has therefore been | |
6753 | changed in GNAT 19.0w 20171023: since then, C++ and Ada | |
6754 | use the same convention. Here, we support both cases by | |
6755 | checking the sign of OFFSET_TO_TOP. */ | |
6756 | ||
6757 | if (offset_to_top > 0) | |
6758 | offset_to_top = -offset_to_top; | |
6759 | ||
6760 | base_address = value_address (obj) + offset_to_top; | |
b50d69b5 JG |
6761 | tag = value_tag_from_contents_and_address (obj_type, NULL, base_address); |
6762 | ||
6763 | /* Make sure that we have a proper tag at the new address. | |
6764 | Otherwise, offset_to_top is bogus (which can happen when | |
6765 | the object is not initialized yet). */ | |
6766 | ||
6767 | if (!tag) | |
6768 | return obj; | |
6769 | ||
6770 | obj_type = type_from_tag (tag); | |
6771 | ||
6772 | if (!obj_type) | |
6773 | return obj; | |
6774 | ||
6775 | return value_from_contents_and_address (obj_type, NULL, base_address); | |
6776 | } | |
6777 | ||
1b611343 JB |
6778 | /* Return the "ada__tags__type_specific_data" type. */ |
6779 | ||
6780 | static struct type * | |
6781 | ada_get_tsd_type (struct inferior *inf) | |
963a6417 | 6782 | { |
1b611343 | 6783 | struct ada_inferior_data *data = get_ada_inferior_data (inf); |
4c4b4cd2 | 6784 | |
1b611343 JB |
6785 | if (data->tsd_type == 0) |
6786 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
6787 | return data->tsd_type; | |
6788 | } | |
529cad9c | 6789 | |
1b611343 JB |
6790 | /* Return the TSD (type-specific data) associated to the given TAG. |
6791 | TAG is assumed to be the tag of a tagged-type entity. | |
529cad9c | 6792 | |
1b611343 | 6793 | May return NULL if we are unable to get the TSD. */ |
4c4b4cd2 | 6794 | |
1b611343 JB |
6795 | static struct value * |
6796 | ada_get_tsd_from_tag (struct value *tag) | |
4c4b4cd2 | 6797 | { |
4c4b4cd2 | 6798 | struct value *val; |
1b611343 | 6799 | struct type *type; |
5b4ee69b | 6800 | |
1b611343 JB |
6801 | /* First option: The TSD is simply stored as a field of our TAG. |
6802 | Only older versions of GNAT would use this format, but we have | |
6803 | to test it first, because there are no visible markers for | |
6804 | the current approach except the absence of that field. */ | |
529cad9c | 6805 | |
1b611343 JB |
6806 | val = ada_value_struct_elt (tag, "tsd", 1); |
6807 | if (val) | |
6808 | return val; | |
e802dbe0 | 6809 | |
1b611343 JB |
6810 | /* Try the second representation for the dispatch table (in which |
6811 | there is no explicit 'tsd' field in the referent of the tag pointer, | |
6812 | and instead the tsd pointer is stored just before the dispatch | |
6813 | table. */ | |
e802dbe0 | 6814 | |
1b611343 JB |
6815 | type = ada_get_tsd_type (current_inferior()); |
6816 | if (type == NULL) | |
6817 | return NULL; | |
6818 | type = lookup_pointer_type (lookup_pointer_type (type)); | |
6819 | val = value_cast (type, tag); | |
6820 | if (val == NULL) | |
6821 | return NULL; | |
6822 | return value_ind (value_ptradd (val, -1)); | |
e802dbe0 JB |
6823 | } |
6824 | ||
1b611343 JB |
6825 | /* Given the TSD of a tag (type-specific data), return a string |
6826 | containing the name of the associated type. | |
6827 | ||
6828 | The returned value is good until the next call. May return NULL | |
6829 | if we are unable to determine the tag name. */ | |
6830 | ||
6831 | static char * | |
6832 | ada_tag_name_from_tsd (struct value *tsd) | |
529cad9c | 6833 | { |
529cad9c PH |
6834 | static char name[1024]; |
6835 | char *p; | |
1b611343 | 6836 | struct value *val; |
529cad9c | 6837 | |
1b611343 | 6838 | val = ada_value_struct_elt (tsd, "expanded_name", 1); |
4c4b4cd2 | 6839 | if (val == NULL) |
1b611343 | 6840 | return NULL; |
4c4b4cd2 PH |
6841 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); |
6842 | for (p = name; *p != '\0'; p += 1) | |
6843 | if (isalpha (*p)) | |
6844 | *p = tolower (*p); | |
1b611343 | 6845 | return name; |
4c4b4cd2 PH |
6846 | } |
6847 | ||
6848 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
1b611343 JB |
6849 | a C string. |
6850 | ||
6851 | Return NULL if the TAG is not an Ada tag, or if we were unable to | |
6852 | determine the name of that tag. The result is good until the next | |
6853 | call. */ | |
4c4b4cd2 PH |
6854 | |
6855 | const char * | |
6856 | ada_tag_name (struct value *tag) | |
6857 | { | |
1b611343 | 6858 | char *name = NULL; |
5b4ee69b | 6859 | |
df407dfe | 6860 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 6861 | return NULL; |
1b611343 JB |
6862 | |
6863 | /* It is perfectly possible that an exception be raised while trying | |
6864 | to determine the TAG's name, even under normal circumstances: | |
6865 | The associated variable may be uninitialized or corrupted, for | |
6866 | instance. We do not let any exception propagate past this point. | |
6867 | instead we return NULL. | |
6868 | ||
6869 | We also do not print the error message either (which often is very | |
6870 | low-level (Eg: "Cannot read memory at 0x[...]"), but instead let | |
6871 | the caller print a more meaningful message if necessary. */ | |
492d29ea | 6872 | TRY |
1b611343 JB |
6873 | { |
6874 | struct value *tsd = ada_get_tsd_from_tag (tag); | |
6875 | ||
6876 | if (tsd != NULL) | |
6877 | name = ada_tag_name_from_tsd (tsd); | |
6878 | } | |
492d29ea PA |
6879 | CATCH (e, RETURN_MASK_ERROR) |
6880 | { | |
6881 | } | |
6882 | END_CATCH | |
1b611343 JB |
6883 | |
6884 | return name; | |
4c4b4cd2 PH |
6885 | } |
6886 | ||
6887 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 6888 | |
d2e4a39e | 6889 | struct type * |
ebf56fd3 | 6890 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
6891 | { |
6892 | int i; | |
6893 | ||
61ee279c | 6894 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6895 | |
6896 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
6897 | return NULL; | |
6898 | ||
6899 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6900 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
6901 | { |
6902 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
6903 | ||
6904 | /* If the _parent field is a pointer, then dereference it. */ | |
6905 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
6906 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
6907 | /* If there is a parallel XVS type, get the actual base type. */ | |
6908 | parent_type = ada_get_base_type (parent_type); | |
6909 | ||
6910 | return ada_check_typedef (parent_type); | |
6911 | } | |
14f9c5c9 AS |
6912 | |
6913 | return NULL; | |
6914 | } | |
6915 | ||
4c4b4cd2 PH |
6916 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
6917 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
6918 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6919 | |
6920 | int | |
ebf56fd3 | 6921 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 6922 | { |
61ee279c | 6923 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 6924 | |
4c4b4cd2 | 6925 | return (name != NULL |
61012eef GB |
6926 | && (startswith (name, "PARENT") |
6927 | || startswith (name, "_parent"))); | |
14f9c5c9 AS |
6928 | } |
6929 | ||
4c4b4cd2 | 6930 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 6931 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 6932 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 6933 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 6934 | structures. */ |
14f9c5c9 AS |
6935 | |
6936 | int | |
ebf56fd3 | 6937 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 6938 | { |
d2e4a39e | 6939 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6940 | |
dddc0e16 JB |
6941 | if (name != NULL && strcmp (name, "RETVAL") == 0) |
6942 | { | |
6943 | /* This happens in functions with "out" or "in out" parameters | |
6944 | which are passed by copy. For such functions, GNAT describes | |
6945 | the function's return type as being a struct where the return | |
6946 | value is in a field called RETVAL, and where the other "out" | |
6947 | or "in out" parameters are fields of that struct. This is not | |
6948 | a wrapper. */ | |
6949 | return 0; | |
6950 | } | |
6951 | ||
d2e4a39e | 6952 | return (name != NULL |
61012eef | 6953 | && (startswith (name, "PARENT") |
4c4b4cd2 | 6954 | || strcmp (name, "REP") == 0 |
61012eef | 6955 | || startswith (name, "_parent") |
4c4b4cd2 | 6956 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); |
14f9c5c9 AS |
6957 | } |
6958 | ||
4c4b4cd2 PH |
6959 | /* True iff field number FIELD_NUM of structure or union type TYPE |
6960 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
6961 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6962 | |
6963 | int | |
ebf56fd3 | 6964 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 6965 | { |
d2e4a39e | 6966 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 6967 | |
14f9c5c9 | 6968 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 6969 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
6970 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
6971 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
6972 | } |
6973 | ||
6974 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 6975 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
6976 | returns the type of the controlling discriminant for the variant. |
6977 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 6978 | |
d2e4a39e | 6979 | struct type * |
ebf56fd3 | 6980 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 6981 | { |
a121b7c1 | 6982 | const char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 6983 | |
988f6b3d | 6984 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1); |
14f9c5c9 AS |
6985 | } |
6986 | ||
4c4b4cd2 | 6987 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 6988 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 6989 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
6990 | |
6991 | int | |
ebf56fd3 | 6992 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 6993 | { |
d2e4a39e | 6994 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6995 | |
14f9c5c9 AS |
6996 | return (name != NULL && name[0] == 'O'); |
6997 | } | |
6998 | ||
6999 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
7000 | returns the name of the discriminant controlling the variant. |
7001 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 7002 | |
a121b7c1 | 7003 | const char * |
ebf56fd3 | 7004 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 7005 | { |
d2e4a39e | 7006 | static char *result = NULL; |
14f9c5c9 | 7007 | static size_t result_len = 0; |
d2e4a39e AS |
7008 | struct type *type; |
7009 | const char *name; | |
7010 | const char *discrim_end; | |
7011 | const char *discrim_start; | |
14f9c5c9 AS |
7012 | |
7013 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
7014 | type = TYPE_TARGET_TYPE (type0); | |
7015 | else | |
7016 | type = type0; | |
7017 | ||
7018 | name = ada_type_name (type); | |
7019 | ||
7020 | if (name == NULL || name[0] == '\000') | |
7021 | return ""; | |
7022 | ||
7023 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
7024 | discrim_end -= 1) | |
7025 | { | |
61012eef | 7026 | if (startswith (discrim_end, "___XVN")) |
4c4b4cd2 | 7027 | break; |
14f9c5c9 AS |
7028 | } |
7029 | if (discrim_end == name) | |
7030 | return ""; | |
7031 | ||
d2e4a39e | 7032 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
7033 | discrim_start -= 1) |
7034 | { | |
d2e4a39e | 7035 | if (discrim_start == name + 1) |
4c4b4cd2 | 7036 | return ""; |
76a01679 | 7037 | if ((discrim_start > name + 3 |
61012eef | 7038 | && startswith (discrim_start - 3, "___")) |
4c4b4cd2 PH |
7039 | || discrim_start[-1] == '.') |
7040 | break; | |
14f9c5c9 AS |
7041 | } |
7042 | ||
7043 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
7044 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 7045 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
7046 | return result; |
7047 | } | |
7048 | ||
4c4b4cd2 PH |
7049 | /* Scan STR for a subtype-encoded number, beginning at position K. |
7050 | Put the position of the character just past the number scanned in | |
7051 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
7052 | Return 1 if there was a valid number at the given position, and 0 | |
7053 | otherwise. A "subtype-encoded" number consists of the absolute value | |
7054 | in decimal, followed by the letter 'm' to indicate a negative number. | |
7055 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
7056 | |
7057 | int | |
d2e4a39e | 7058 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
7059 | { |
7060 | ULONGEST RU; | |
7061 | ||
d2e4a39e | 7062 | if (!isdigit (str[k])) |
14f9c5c9 AS |
7063 | return 0; |
7064 | ||
4c4b4cd2 | 7065 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 7066 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 7067 | LONGEST. */ |
14f9c5c9 AS |
7068 | RU = 0; |
7069 | while (isdigit (str[k])) | |
7070 | { | |
d2e4a39e | 7071 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
7072 | k += 1; |
7073 | } | |
7074 | ||
d2e4a39e | 7075 | if (str[k] == 'm') |
14f9c5c9 AS |
7076 | { |
7077 | if (R != NULL) | |
4c4b4cd2 | 7078 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
7079 | k += 1; |
7080 | } | |
7081 | else if (R != NULL) | |
7082 | *R = (LONGEST) RU; | |
7083 | ||
4c4b4cd2 | 7084 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
7085 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
7086 | number representable as a LONGEST (although either would probably work | |
7087 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 7088 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
7089 | |
7090 | if (new_k != NULL) | |
7091 | *new_k = k; | |
7092 | return 1; | |
7093 | } | |
7094 | ||
4c4b4cd2 PH |
7095 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
7096 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
7097 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 7098 | |
d2e4a39e | 7099 | int |
ebf56fd3 | 7100 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 7101 | { |
d2e4a39e | 7102 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
7103 | int p; |
7104 | ||
7105 | p = 0; | |
7106 | while (1) | |
7107 | { | |
d2e4a39e | 7108 | switch (name[p]) |
4c4b4cd2 PH |
7109 | { |
7110 | case '\0': | |
7111 | return 0; | |
7112 | case 'S': | |
7113 | { | |
7114 | LONGEST W; | |
5b4ee69b | 7115 | |
4c4b4cd2 PH |
7116 | if (!ada_scan_number (name, p + 1, &W, &p)) |
7117 | return 0; | |
7118 | if (val == W) | |
7119 | return 1; | |
7120 | break; | |
7121 | } | |
7122 | case 'R': | |
7123 | { | |
7124 | LONGEST L, U; | |
5b4ee69b | 7125 | |
4c4b4cd2 PH |
7126 | if (!ada_scan_number (name, p + 1, &L, &p) |
7127 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
7128 | return 0; | |
7129 | if (val >= L && val <= U) | |
7130 | return 1; | |
7131 | break; | |
7132 | } | |
7133 | case 'O': | |
7134 | return 1; | |
7135 | default: | |
7136 | return 0; | |
7137 | } | |
7138 | } | |
7139 | } | |
7140 | ||
0963b4bd | 7141 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
7142 | |
7143 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
7144 | ARG_TYPE, extract and return the value of one of its (non-static) | |
7145 | fields. FIELDNO says which field. Differs from value_primitive_field | |
7146 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 7147 | |
4c4b4cd2 | 7148 | static struct value * |
d2e4a39e | 7149 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 7150 | struct type *arg_type) |
14f9c5c9 | 7151 | { |
14f9c5c9 AS |
7152 | struct type *type; |
7153 | ||
61ee279c | 7154 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
7155 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
7156 | ||
4c4b4cd2 | 7157 | /* Handle packed fields. */ |
14f9c5c9 AS |
7158 | |
7159 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
7160 | { | |
7161 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
7162 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 7163 | |
0fd88904 | 7164 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
7165 | offset + bit_pos / 8, |
7166 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
7167 | } |
7168 | else | |
7169 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
7170 | } | |
7171 | ||
52ce6436 PH |
7172 | /* Find field with name NAME in object of type TYPE. If found, |
7173 | set the following for each argument that is non-null: | |
7174 | - *FIELD_TYPE_P to the field's type; | |
7175 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
7176 | an object of that type; | |
7177 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
7178 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
7179 | 0 otherwise; | |
7180 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
7181 | fields up to but not including the desired field, or by the total | |
7182 | number of fields if not found. A NULL value of NAME never | |
7183 | matches; the function just counts visible fields in this case. | |
7184 | ||
828d5846 XR |
7185 | Notice that we need to handle when a tagged record hierarchy |
7186 | has some components with the same name, like in this scenario: | |
7187 | ||
7188 | type Top_T is tagged record | |
7189 | N : Integer := 1; | |
7190 | U : Integer := 974; | |
7191 | A : Integer := 48; | |
7192 | end record; | |
7193 | ||
7194 | type Middle_T is new Top.Top_T with record | |
7195 | N : Character := 'a'; | |
7196 | C : Integer := 3; | |
7197 | end record; | |
7198 | ||
7199 | type Bottom_T is new Middle.Middle_T with record | |
7200 | N : Float := 4.0; | |
7201 | C : Character := '5'; | |
7202 | X : Integer := 6; | |
7203 | A : Character := 'J'; | |
7204 | end record; | |
7205 | ||
7206 | Let's say we now have a variable declared and initialized as follow: | |
7207 | ||
7208 | TC : Top_A := new Bottom_T; | |
7209 | ||
7210 | And then we use this variable to call this function | |
7211 | ||
7212 | procedure Assign (Obj: in out Top_T; TV : Integer); | |
7213 | ||
7214 | as follow: | |
7215 | ||
7216 | Assign (Top_T (B), 12); | |
7217 | ||
7218 | Now, we're in the debugger, and we're inside that procedure | |
7219 | then and we want to print the value of obj.c: | |
7220 | ||
7221 | Usually, the tagged record or one of the parent type owns the | |
7222 | component to print and there's no issue but in this particular | |
7223 | case, what does it mean to ask for Obj.C? Since the actual | |
7224 | type for object is type Bottom_T, it could mean two things: type | |
7225 | component C from the Middle_T view, but also component C from | |
7226 | Bottom_T. So in that "undefined" case, when the component is | |
7227 | not found in the non-resolved type (which includes all the | |
7228 | components of the parent type), then resolve it and see if we | |
7229 | get better luck once expanded. | |
7230 | ||
7231 | In the case of homonyms in the derived tagged type, we don't | |
7232 | guaranty anything, and pick the one that's easiest for us | |
7233 | to program. | |
7234 | ||
0963b4bd | 7235 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 7236 | |
4c4b4cd2 | 7237 | static int |
0d5cff50 | 7238 | find_struct_field (const char *name, struct type *type, int offset, |
76a01679 | 7239 | struct type **field_type_p, |
52ce6436 PH |
7240 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
7241 | int *index_p) | |
4c4b4cd2 PH |
7242 | { |
7243 | int i; | |
828d5846 | 7244 | int parent_offset = -1; |
4c4b4cd2 | 7245 | |
61ee279c | 7246 | type = ada_check_typedef (type); |
76a01679 | 7247 | |
52ce6436 PH |
7248 | if (field_type_p != NULL) |
7249 | *field_type_p = NULL; | |
7250 | if (byte_offset_p != NULL) | |
d5d6fca5 | 7251 | *byte_offset_p = 0; |
52ce6436 PH |
7252 | if (bit_offset_p != NULL) |
7253 | *bit_offset_p = 0; | |
7254 | if (bit_size_p != NULL) | |
7255 | *bit_size_p = 0; | |
7256 | ||
7257 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
7258 | { |
7259 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
7260 | int fld_offset = offset + bit_pos / 8; | |
0d5cff50 | 7261 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
76a01679 | 7262 | |
4c4b4cd2 PH |
7263 | if (t_field_name == NULL) |
7264 | continue; | |
7265 | ||
828d5846 XR |
7266 | else if (ada_is_parent_field (type, i)) |
7267 | { | |
7268 | /* This is a field pointing us to the parent type of a tagged | |
7269 | type. As hinted in this function's documentation, we give | |
7270 | preference to fields in the current record first, so what | |
7271 | we do here is just record the index of this field before | |
7272 | we skip it. If it turns out we couldn't find our field | |
7273 | in the current record, then we'll get back to it and search | |
7274 | inside it whether the field might exist in the parent. */ | |
7275 | ||
7276 | parent_offset = i; | |
7277 | continue; | |
7278 | } | |
7279 | ||
52ce6436 | 7280 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
7281 | { |
7282 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 7283 | |
52ce6436 PH |
7284 | if (field_type_p != NULL) |
7285 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
7286 | if (byte_offset_p != NULL) | |
7287 | *byte_offset_p = fld_offset; | |
7288 | if (bit_offset_p != NULL) | |
7289 | *bit_offset_p = bit_pos % 8; | |
7290 | if (bit_size_p != NULL) | |
7291 | *bit_size_p = bit_size; | |
76a01679 JB |
7292 | return 1; |
7293 | } | |
4c4b4cd2 PH |
7294 | else if (ada_is_wrapper_field (type, i)) |
7295 | { | |
52ce6436 PH |
7296 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
7297 | field_type_p, byte_offset_p, bit_offset_p, | |
7298 | bit_size_p, index_p)) | |
76a01679 JB |
7299 | return 1; |
7300 | } | |
4c4b4cd2 PH |
7301 | else if (ada_is_variant_part (type, i)) |
7302 | { | |
52ce6436 PH |
7303 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
7304 | fixed type?? */ | |
4c4b4cd2 | 7305 | int j; |
52ce6436 PH |
7306 | struct type *field_type |
7307 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 7308 | |
52ce6436 | 7309 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 7310 | { |
76a01679 JB |
7311 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
7312 | fld_offset | |
7313 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
7314 | field_type_p, byte_offset_p, | |
52ce6436 | 7315 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 7316 | return 1; |
4c4b4cd2 PH |
7317 | } |
7318 | } | |
52ce6436 PH |
7319 | else if (index_p != NULL) |
7320 | *index_p += 1; | |
4c4b4cd2 | 7321 | } |
828d5846 XR |
7322 | |
7323 | /* Field not found so far. If this is a tagged type which | |
7324 | has a parent, try finding that field in the parent now. */ | |
7325 | ||
7326 | if (parent_offset != -1) | |
7327 | { | |
7328 | int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset); | |
7329 | int fld_offset = offset + bit_pos / 8; | |
7330 | ||
7331 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset), | |
7332 | fld_offset, field_type_p, byte_offset_p, | |
7333 | bit_offset_p, bit_size_p, index_p)) | |
7334 | return 1; | |
7335 | } | |
7336 | ||
4c4b4cd2 PH |
7337 | return 0; |
7338 | } | |
7339 | ||
0963b4bd | 7340 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 7341 | |
52ce6436 PH |
7342 | static int |
7343 | num_visible_fields (struct type *type) | |
7344 | { | |
7345 | int n; | |
5b4ee69b | 7346 | |
52ce6436 PH |
7347 | n = 0; |
7348 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
7349 | return n; | |
7350 | } | |
14f9c5c9 | 7351 | |
4c4b4cd2 | 7352 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
7353 | and search in it assuming it has (class) type TYPE. |
7354 | If found, return value, else return NULL. | |
7355 | ||
828d5846 XR |
7356 | Searches recursively through wrapper fields (e.g., '_parent'). |
7357 | ||
7358 | In the case of homonyms in the tagged types, please refer to the | |
7359 | long explanation in find_struct_field's function documentation. */ | |
14f9c5c9 | 7360 | |
4c4b4cd2 | 7361 | static struct value * |
108d56a4 | 7362 | ada_search_struct_field (const char *name, struct value *arg, int offset, |
4c4b4cd2 | 7363 | struct type *type) |
14f9c5c9 AS |
7364 | { |
7365 | int i; | |
828d5846 | 7366 | int parent_offset = -1; |
14f9c5c9 | 7367 | |
5b4ee69b | 7368 | type = ada_check_typedef (type); |
52ce6436 | 7369 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 | 7370 | { |
0d5cff50 | 7371 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
7372 | |
7373 | if (t_field_name == NULL) | |
4c4b4cd2 | 7374 | continue; |
14f9c5c9 | 7375 | |
828d5846 XR |
7376 | else if (ada_is_parent_field (type, i)) |
7377 | { | |
7378 | /* This is a field pointing us to the parent type of a tagged | |
7379 | type. As hinted in this function's documentation, we give | |
7380 | preference to fields in the current record first, so what | |
7381 | we do here is just record the index of this field before | |
7382 | we skip it. If it turns out we couldn't find our field | |
7383 | in the current record, then we'll get back to it and search | |
7384 | inside it whether the field might exist in the parent. */ | |
7385 | ||
7386 | parent_offset = i; | |
7387 | continue; | |
7388 | } | |
7389 | ||
14f9c5c9 | 7390 | else if (field_name_match (t_field_name, name)) |
4c4b4cd2 | 7391 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
7392 | |
7393 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 7394 | { |
0963b4bd | 7395 | struct value *v = /* Do not let indent join lines here. */ |
06d5cf63 JB |
7396 | ada_search_struct_field (name, arg, |
7397 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7398 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7399 | |
4c4b4cd2 PH |
7400 | if (v != NULL) |
7401 | return v; | |
7402 | } | |
14f9c5c9 AS |
7403 | |
7404 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 7405 | { |
0963b4bd | 7406 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 7407 | int j; |
5b4ee69b MS |
7408 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7409 | i)); | |
4c4b4cd2 PH |
7410 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
7411 | ||
52ce6436 | 7412 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 7413 | { |
0963b4bd MS |
7414 | struct value *v = ada_search_struct_field /* Force line |
7415 | break. */ | |
06d5cf63 JB |
7416 | (name, arg, |
7417 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
7418 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 7419 | |
4c4b4cd2 PH |
7420 | if (v != NULL) |
7421 | return v; | |
7422 | } | |
7423 | } | |
14f9c5c9 | 7424 | } |
828d5846 XR |
7425 | |
7426 | /* Field not found so far. If this is a tagged type which | |
7427 | has a parent, try finding that field in the parent now. */ | |
7428 | ||
7429 | if (parent_offset != -1) | |
7430 | { | |
7431 | struct value *v = ada_search_struct_field ( | |
7432 | name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8, | |
7433 | TYPE_FIELD_TYPE (type, parent_offset)); | |
7434 | ||
7435 | if (v != NULL) | |
7436 | return v; | |
7437 | } | |
7438 | ||
14f9c5c9 AS |
7439 | return NULL; |
7440 | } | |
d2e4a39e | 7441 | |
52ce6436 PH |
7442 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
7443 | int, struct type *); | |
7444 | ||
7445 | ||
7446 | /* Return field #INDEX in ARG, where the index is that returned by | |
7447 | * find_struct_field through its INDEX_P argument. Adjust the address | |
7448 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 7449 | * If found, return value, else return NULL. */ |
52ce6436 PH |
7450 | |
7451 | static struct value * | |
7452 | ada_index_struct_field (int index, struct value *arg, int offset, | |
7453 | struct type *type) | |
7454 | { | |
7455 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
7456 | } | |
7457 | ||
7458 | ||
7459 | /* Auxiliary function for ada_index_struct_field. Like | |
7460 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 7461 | * *INDEX_P. */ |
52ce6436 PH |
7462 | |
7463 | static struct value * | |
7464 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
7465 | struct type *type) | |
7466 | { | |
7467 | int i; | |
7468 | type = ada_check_typedef (type); | |
7469 | ||
7470 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7471 | { | |
7472 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
7473 | continue; | |
7474 | else if (ada_is_wrapper_field (type, i)) | |
7475 | { | |
0963b4bd | 7476 | struct value *v = /* Do not let indent join lines here. */ |
52ce6436 PH |
7477 | ada_index_struct_field_1 (index_p, arg, |
7478 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7479 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7480 | |
52ce6436 PH |
7481 | if (v != NULL) |
7482 | return v; | |
7483 | } | |
7484 | ||
7485 | else if (ada_is_variant_part (type, i)) | |
7486 | { | |
7487 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
0963b4bd | 7488 | find_struct_field. */ |
52ce6436 PH |
7489 | error (_("Cannot assign this kind of variant record")); |
7490 | } | |
7491 | else if (*index_p == 0) | |
7492 | return ada_value_primitive_field (arg, offset, i, type); | |
7493 | else | |
7494 | *index_p -= 1; | |
7495 | } | |
7496 | return NULL; | |
7497 | } | |
7498 | ||
4c4b4cd2 PH |
7499 | /* Given ARG, a value of type (pointer or reference to a)* |
7500 | structure/union, extract the component named NAME from the ultimate | |
7501 | target structure/union and return it as a value with its | |
f5938064 | 7502 | appropriate type. |
14f9c5c9 | 7503 | |
4c4b4cd2 PH |
7504 | The routine searches for NAME among all members of the structure itself |
7505 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
7506 | (e.g., '_parent'). |
7507 | ||
03ee6b2e PH |
7508 | If NO_ERR, then simply return NULL in case of error, rather than |
7509 | calling error. */ | |
14f9c5c9 | 7510 | |
d2e4a39e | 7511 | struct value * |
a121b7c1 | 7512 | ada_value_struct_elt (struct value *arg, const char *name, int no_err) |
14f9c5c9 | 7513 | { |
4c4b4cd2 | 7514 | struct type *t, *t1; |
d2e4a39e | 7515 | struct value *v; |
1f5d1570 | 7516 | int check_tag; |
14f9c5c9 | 7517 | |
4c4b4cd2 | 7518 | v = NULL; |
df407dfe | 7519 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
7520 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
7521 | { | |
7522 | t1 = TYPE_TARGET_TYPE (t); | |
7523 | if (t1 == NULL) | |
03ee6b2e | 7524 | goto BadValue; |
61ee279c | 7525 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 7526 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 7527 | { |
994b9211 | 7528 | arg = coerce_ref (arg); |
76a01679 JB |
7529 | t = t1; |
7530 | } | |
4c4b4cd2 | 7531 | } |
14f9c5c9 | 7532 | |
4c4b4cd2 PH |
7533 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
7534 | { | |
7535 | t1 = TYPE_TARGET_TYPE (t); | |
7536 | if (t1 == NULL) | |
03ee6b2e | 7537 | goto BadValue; |
61ee279c | 7538 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 7539 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
7540 | { |
7541 | arg = value_ind (arg); | |
7542 | t = t1; | |
7543 | } | |
4c4b4cd2 | 7544 | else |
76a01679 | 7545 | break; |
4c4b4cd2 | 7546 | } |
14f9c5c9 | 7547 | |
4c4b4cd2 | 7548 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 7549 | goto BadValue; |
14f9c5c9 | 7550 | |
4c4b4cd2 PH |
7551 | if (t1 == t) |
7552 | v = ada_search_struct_field (name, arg, 0, t); | |
7553 | else | |
7554 | { | |
7555 | int bit_offset, bit_size, byte_offset; | |
7556 | struct type *field_type; | |
7557 | CORE_ADDR address; | |
7558 | ||
76a01679 | 7559 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
b50d69b5 | 7560 | address = value_address (ada_value_ind (arg)); |
4c4b4cd2 | 7561 | else |
b50d69b5 | 7562 | address = value_address (ada_coerce_ref (arg)); |
14f9c5c9 | 7563 | |
828d5846 XR |
7564 | /* Check to see if this is a tagged type. We also need to handle |
7565 | the case where the type is a reference to a tagged type, but | |
7566 | we have to be careful to exclude pointers to tagged types. | |
7567 | The latter should be shown as usual (as a pointer), whereas | |
7568 | a reference should mostly be transparent to the user. */ | |
7569 | ||
7570 | if (ada_is_tagged_type (t1, 0) | |
7571 | || (TYPE_CODE (t1) == TYPE_CODE_REF | |
7572 | && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0))) | |
7573 | { | |
7574 | /* We first try to find the searched field in the current type. | |
7575 | If not found then let's look in the fixed type. */ | |
7576 | ||
7577 | if (!find_struct_field (name, t1, 0, | |
7578 | &field_type, &byte_offset, &bit_offset, | |
7579 | &bit_size, NULL)) | |
1f5d1570 JG |
7580 | check_tag = 1; |
7581 | else | |
7582 | check_tag = 0; | |
828d5846 XR |
7583 | } |
7584 | else | |
1f5d1570 JG |
7585 | check_tag = 0; |
7586 | ||
7587 | /* Convert to fixed type in all cases, so that we have proper | |
7588 | offsets to each field in unconstrained record types. */ | |
7589 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, | |
7590 | address, NULL, check_tag); | |
828d5846 | 7591 | |
76a01679 JB |
7592 | if (find_struct_field (name, t1, 0, |
7593 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 7594 | &bit_size, NULL)) |
76a01679 JB |
7595 | { |
7596 | if (bit_size != 0) | |
7597 | { | |
714e53ab PH |
7598 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
7599 | arg = ada_coerce_ref (arg); | |
7600 | else | |
7601 | arg = ada_value_ind (arg); | |
76a01679 JB |
7602 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
7603 | bit_offset, bit_size, | |
7604 | field_type); | |
7605 | } | |
7606 | else | |
f5938064 | 7607 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
7608 | } |
7609 | } | |
7610 | ||
03ee6b2e PH |
7611 | if (v != NULL || no_err) |
7612 | return v; | |
7613 | else | |
323e0a4a | 7614 | error (_("There is no member named %s."), name); |
14f9c5c9 | 7615 | |
03ee6b2e PH |
7616 | BadValue: |
7617 | if (no_err) | |
7618 | return NULL; | |
7619 | else | |
0963b4bd MS |
7620 | error (_("Attempt to extract a component of " |
7621 | "a value that is not a record.")); | |
14f9c5c9 AS |
7622 | } |
7623 | ||
3b4de39c | 7624 | /* Return a string representation of type TYPE. */ |
99bbb428 | 7625 | |
3b4de39c | 7626 | static std::string |
99bbb428 PA |
7627 | type_as_string (struct type *type) |
7628 | { | |
d7e74731 | 7629 | string_file tmp_stream; |
99bbb428 | 7630 | |
d7e74731 | 7631 | type_print (type, "", &tmp_stream, -1); |
99bbb428 | 7632 | |
d7e74731 | 7633 | return std::move (tmp_stream.string ()); |
99bbb428 PA |
7634 | } |
7635 | ||
14f9c5c9 | 7636 | /* Given a type TYPE, look up the type of the component of type named NAME. |
4c4b4cd2 PH |
7637 | If DISPP is non-null, add its byte displacement from the beginning of a |
7638 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
7639 | work for packed fields). |
7640 | ||
7641 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 7642 | followed by "___". |
14f9c5c9 | 7643 | |
0963b4bd | 7644 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
7645 | be a (pointer or reference)+ to a struct or union, and the |
7646 | ultimate target type will be searched. | |
14f9c5c9 AS |
7647 | |
7648 | Looks recursively into variant clauses and parent types. | |
7649 | ||
828d5846 XR |
7650 | In the case of homonyms in the tagged types, please refer to the |
7651 | long explanation in find_struct_field's function documentation. | |
7652 | ||
4c4b4cd2 PH |
7653 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
7654 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 7655 | |
4c4b4cd2 | 7656 | static struct type * |
a121b7c1 | 7657 | ada_lookup_struct_elt_type (struct type *type, const char *name, int refok, |
988f6b3d | 7658 | int noerr) |
14f9c5c9 AS |
7659 | { |
7660 | int i; | |
828d5846 | 7661 | int parent_offset = -1; |
14f9c5c9 AS |
7662 | |
7663 | if (name == NULL) | |
7664 | goto BadName; | |
7665 | ||
76a01679 | 7666 | if (refok && type != NULL) |
4c4b4cd2 PH |
7667 | while (1) |
7668 | { | |
61ee279c | 7669 | type = ada_check_typedef (type); |
76a01679 JB |
7670 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
7671 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
7672 | break; | |
7673 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 7674 | } |
14f9c5c9 | 7675 | |
76a01679 | 7676 | if (type == NULL |
1265e4aa JB |
7677 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
7678 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 7679 | { |
4c4b4cd2 | 7680 | if (noerr) |
76a01679 | 7681 | return NULL; |
99bbb428 | 7682 | |
3b4de39c PA |
7683 | error (_("Type %s is not a structure or union type"), |
7684 | type != NULL ? type_as_string (type).c_str () : _("(null)")); | |
14f9c5c9 AS |
7685 | } |
7686 | ||
7687 | type = to_static_fixed_type (type); | |
7688 | ||
7689 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7690 | { | |
0d5cff50 | 7691 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 | 7692 | struct type *t; |
d2e4a39e | 7693 | |
14f9c5c9 | 7694 | if (t_field_name == NULL) |
4c4b4cd2 | 7695 | continue; |
14f9c5c9 | 7696 | |
828d5846 XR |
7697 | else if (ada_is_parent_field (type, i)) |
7698 | { | |
7699 | /* This is a field pointing us to the parent type of a tagged | |
7700 | type. As hinted in this function's documentation, we give | |
7701 | preference to fields in the current record first, so what | |
7702 | we do here is just record the index of this field before | |
7703 | we skip it. If it turns out we couldn't find our field | |
7704 | in the current record, then we'll get back to it and search | |
7705 | inside it whether the field might exist in the parent. */ | |
7706 | ||
7707 | parent_offset = i; | |
7708 | continue; | |
7709 | } | |
7710 | ||
14f9c5c9 | 7711 | else if (field_name_match (t_field_name, name)) |
988f6b3d | 7712 | return TYPE_FIELD_TYPE (type, i); |
14f9c5c9 AS |
7713 | |
7714 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 7715 | { |
4c4b4cd2 | 7716 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, |
988f6b3d | 7717 | 0, 1); |
4c4b4cd2 | 7718 | if (t != NULL) |
988f6b3d | 7719 | return t; |
4c4b4cd2 | 7720 | } |
14f9c5c9 AS |
7721 | |
7722 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
7723 | { |
7724 | int j; | |
5b4ee69b MS |
7725 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7726 | i)); | |
4c4b4cd2 PH |
7727 | |
7728 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
7729 | { | |
b1f33ddd JB |
7730 | /* FIXME pnh 2008/01/26: We check for a field that is |
7731 | NOT wrapped in a struct, since the compiler sometimes | |
7732 | generates these for unchecked variant types. Revisit | |
0963b4bd | 7733 | if the compiler changes this practice. */ |
0d5cff50 | 7734 | const char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
988f6b3d | 7735 | |
b1f33ddd JB |
7736 | if (v_field_name != NULL |
7737 | && field_name_match (v_field_name, name)) | |
460efde1 | 7738 | t = TYPE_FIELD_TYPE (field_type, j); |
b1f33ddd | 7739 | else |
0963b4bd MS |
7740 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, |
7741 | j), | |
988f6b3d | 7742 | name, 0, 1); |
b1f33ddd | 7743 | |
4c4b4cd2 | 7744 | if (t != NULL) |
988f6b3d | 7745 | return t; |
4c4b4cd2 PH |
7746 | } |
7747 | } | |
14f9c5c9 AS |
7748 | |
7749 | } | |
7750 | ||
828d5846 XR |
7751 | /* Field not found so far. If this is a tagged type which |
7752 | has a parent, try finding that field in the parent now. */ | |
7753 | ||
7754 | if (parent_offset != -1) | |
7755 | { | |
7756 | struct type *t; | |
7757 | ||
7758 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset), | |
7759 | name, 0, 1); | |
7760 | if (t != NULL) | |
7761 | return t; | |
7762 | } | |
7763 | ||
14f9c5c9 | 7764 | BadName: |
d2e4a39e | 7765 | if (!noerr) |
14f9c5c9 | 7766 | { |
2b2798cc | 7767 | const char *name_str = name != NULL ? name : _("<null>"); |
99bbb428 PA |
7768 | |
7769 | error (_("Type %s has no component named %s"), | |
3b4de39c | 7770 | type_as_string (type).c_str (), name_str); |
14f9c5c9 AS |
7771 | } |
7772 | ||
7773 | return NULL; | |
7774 | } | |
7775 | ||
b1f33ddd JB |
7776 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7777 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
7778 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 7779 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
7780 | |
7781 | static int | |
7782 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
7783 | { | |
a121b7c1 | 7784 | const char *discrim_name = ada_variant_discrim_name (var_type); |
5b4ee69b | 7785 | |
988f6b3d | 7786 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL); |
b1f33ddd JB |
7787 | } |
7788 | ||
7789 | ||
14f9c5c9 AS |
7790 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7791 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
7792 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
7793 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 7794 | |
d2e4a39e | 7795 | int |
ebf56fd3 | 7796 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 7797 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
7798 | { |
7799 | int others_clause; | |
7800 | int i; | |
a121b7c1 | 7801 | const char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
7802 | struct value *outer; |
7803 | struct value *discrim; | |
14f9c5c9 AS |
7804 | LONGEST discrim_val; |
7805 | ||
012370f6 TT |
7806 | /* Using plain value_from_contents_and_address here causes problems |
7807 | because we will end up trying to resolve a type that is currently | |
7808 | being constructed. */ | |
7809 | outer = value_from_contents_and_address_unresolved (outer_type, | |
7810 | outer_valaddr, 0); | |
0c281816 JB |
7811 | discrim = ada_value_struct_elt (outer, discrim_name, 1); |
7812 | if (discrim == NULL) | |
14f9c5c9 | 7813 | return -1; |
0c281816 | 7814 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
7815 | |
7816 | others_clause = -1; | |
7817 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
7818 | { | |
7819 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 7820 | others_clause = i; |
14f9c5c9 | 7821 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 7822 | return i; |
14f9c5c9 AS |
7823 | } |
7824 | ||
7825 | return others_clause; | |
7826 | } | |
d2e4a39e | 7827 | \f |
14f9c5c9 AS |
7828 | |
7829 | ||
4c4b4cd2 | 7830 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
7831 | |
7832 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
7833 | (i.e., a size that is not statically recorded in the debugging | |
7834 | data) does not accurately reflect the size or layout of the value. | |
7835 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 7836 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
7837 | |
7838 | /* There is a subtle and tricky problem here. In general, we cannot | |
7839 | determine the size of dynamic records without its data. However, | |
7840 | the 'struct value' data structure, which GDB uses to represent | |
7841 | quantities in the inferior process (the target), requires the size | |
7842 | of the type at the time of its allocation in order to reserve space | |
7843 | for GDB's internal copy of the data. That's why the | |
7844 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 7845 | rather than struct value*s. |
14f9c5c9 AS |
7846 | |
7847 | However, GDB's internal history variables ($1, $2, etc.) are | |
7848 | struct value*s containing internal copies of the data that are not, in | |
7849 | general, the same as the data at their corresponding addresses in | |
7850 | the target. Fortunately, the types we give to these values are all | |
7851 | conventional, fixed-size types (as per the strategy described | |
7852 | above), so that we don't usually have to perform the | |
7853 | 'to_fixed_xxx_type' conversions to look at their values. | |
7854 | Unfortunately, there is one exception: if one of the internal | |
7855 | history variables is an array whose elements are unconstrained | |
7856 | records, then we will need to create distinct fixed types for each | |
7857 | element selected. */ | |
7858 | ||
7859 | /* The upshot of all of this is that many routines take a (type, host | |
7860 | address, target address) triple as arguments to represent a value. | |
7861 | The host address, if non-null, is supposed to contain an internal | |
7862 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 7863 | target at the target address. */ |
14f9c5c9 AS |
7864 | |
7865 | /* Assuming that VAL0 represents a pointer value, the result of | |
7866 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 7867 | dynamic-sized types. */ |
14f9c5c9 | 7868 | |
d2e4a39e AS |
7869 | struct value * |
7870 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 7871 | { |
c48db5ca | 7872 | struct value *val = value_ind (val0); |
5b4ee69b | 7873 | |
b50d69b5 JG |
7874 | if (ada_is_tagged_type (value_type (val), 0)) |
7875 | val = ada_tag_value_at_base_address (val); | |
7876 | ||
4c4b4cd2 | 7877 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
7878 | } |
7879 | ||
7880 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
7881 | qualifiers on VAL0. */ |
7882 | ||
d2e4a39e AS |
7883 | static struct value * |
7884 | ada_coerce_ref (struct value *val0) | |
7885 | { | |
df407dfe | 7886 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
7887 | { |
7888 | struct value *val = val0; | |
5b4ee69b | 7889 | |
994b9211 | 7890 | val = coerce_ref (val); |
b50d69b5 JG |
7891 | |
7892 | if (ada_is_tagged_type (value_type (val), 0)) | |
7893 | val = ada_tag_value_at_base_address (val); | |
7894 | ||
4c4b4cd2 | 7895 | return ada_to_fixed_value (val); |
d2e4a39e AS |
7896 | } |
7897 | else | |
14f9c5c9 AS |
7898 | return val0; |
7899 | } | |
7900 | ||
7901 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 7902 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
7903 | |
7904 | static unsigned int | |
ebf56fd3 | 7905 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
7906 | { |
7907 | return (off + alignment - 1) & ~(alignment - 1); | |
7908 | } | |
7909 | ||
4c4b4cd2 | 7910 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
7911 | |
7912 | static unsigned int | |
ebf56fd3 | 7913 | field_alignment (struct type *type, int f) |
14f9c5c9 | 7914 | { |
d2e4a39e | 7915 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 7916 | int len; |
14f9c5c9 AS |
7917 | int align_offset; |
7918 | ||
64a1bf19 JB |
7919 | /* The field name should never be null, unless the debugging information |
7920 | is somehow malformed. In this case, we assume the field does not | |
7921 | require any alignment. */ | |
7922 | if (name == NULL) | |
7923 | return 1; | |
7924 | ||
7925 | len = strlen (name); | |
7926 | ||
4c4b4cd2 PH |
7927 | if (!isdigit (name[len - 1])) |
7928 | return 1; | |
14f9c5c9 | 7929 | |
d2e4a39e | 7930 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
7931 | align_offset = len - 2; |
7932 | else | |
7933 | align_offset = len - 1; | |
7934 | ||
61012eef | 7935 | if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV")) |
14f9c5c9 AS |
7936 | return TARGET_CHAR_BIT; |
7937 | ||
4c4b4cd2 PH |
7938 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
7939 | } | |
7940 | ||
852dff6c | 7941 | /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */ |
4c4b4cd2 | 7942 | |
852dff6c JB |
7943 | static struct symbol * |
7944 | ada_find_any_type_symbol (const char *name) | |
4c4b4cd2 PH |
7945 | { |
7946 | struct symbol *sym; | |
7947 | ||
7948 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
4186eb54 | 7949 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) |
4c4b4cd2 PH |
7950 | return sym; |
7951 | ||
4186eb54 KS |
7952 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); |
7953 | return sym; | |
14f9c5c9 AS |
7954 | } |
7955 | ||
dddfab26 UW |
7956 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
7957 | solely for types defined by debug info, it will not search the GDB | |
7958 | primitive types. */ | |
4c4b4cd2 | 7959 | |
852dff6c | 7960 | static struct type * |
ebf56fd3 | 7961 | ada_find_any_type (const char *name) |
14f9c5c9 | 7962 | { |
852dff6c | 7963 | struct symbol *sym = ada_find_any_type_symbol (name); |
14f9c5c9 | 7964 | |
14f9c5c9 | 7965 | if (sym != NULL) |
dddfab26 | 7966 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 7967 | |
dddfab26 | 7968 | return NULL; |
14f9c5c9 AS |
7969 | } |
7970 | ||
739593e0 JB |
7971 | /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol |
7972 | associated with NAME_SYM's name. NAME_SYM may itself be a renaming | |
7973 | symbol, in which case it is returned. Otherwise, this looks for | |
7974 | symbols whose name is that of NAME_SYM suffixed with "___XR". | |
7975 | Return symbol if found, and NULL otherwise. */ | |
4c4b4cd2 PH |
7976 | |
7977 | struct symbol * | |
270140bd | 7978 | ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block) |
aeb5907d | 7979 | { |
739593e0 | 7980 | const char *name = SYMBOL_LINKAGE_NAME (name_sym); |
aeb5907d JB |
7981 | struct symbol *sym; |
7982 | ||
739593e0 JB |
7983 | if (strstr (name, "___XR") != NULL) |
7984 | return name_sym; | |
7985 | ||
aeb5907d JB |
7986 | sym = find_old_style_renaming_symbol (name, block); |
7987 | ||
7988 | if (sym != NULL) | |
7989 | return sym; | |
7990 | ||
0963b4bd | 7991 | /* Not right yet. FIXME pnh 7/20/2007. */ |
852dff6c | 7992 | sym = ada_find_any_type_symbol (name); |
aeb5907d JB |
7993 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) |
7994 | return sym; | |
7995 | else | |
7996 | return NULL; | |
7997 | } | |
7998 | ||
7999 | static struct symbol * | |
270140bd | 8000 | find_old_style_renaming_symbol (const char *name, const struct block *block) |
4c4b4cd2 | 8001 | { |
7f0df278 | 8002 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
8003 | char *rename; |
8004 | ||
8005 | if (function_sym != NULL) | |
8006 | { | |
8007 | /* If the symbol is defined inside a function, NAME is not fully | |
8008 | qualified. This means we need to prepend the function name | |
8009 | as well as adding the ``___XR'' suffix to build the name of | |
8010 | the associated renaming symbol. */ | |
0d5cff50 | 8011 | const char *function_name = SYMBOL_LINKAGE_NAME (function_sym); |
529cad9c PH |
8012 | /* Function names sometimes contain suffixes used |
8013 | for instance to qualify nested subprograms. When building | |
8014 | the XR type name, we need to make sure that this suffix is | |
8015 | not included. So do not include any suffix in the function | |
8016 | name length below. */ | |
69fadcdf | 8017 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
8018 | const int rename_len = function_name_len + 2 /* "__" */ |
8019 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 8020 | |
529cad9c | 8021 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
8022 | ada_remove_trailing_digits (function_name, &function_name_len); |
8023 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
8024 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 8025 | |
4c4b4cd2 PH |
8026 | /* Library-level functions are a special case, as GNAT adds |
8027 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 8028 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
8029 | have this prefix, so we need to skip this prefix if present. */ |
8030 | if (function_name_len > 5 /* "_ada_" */ | |
8031 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
8032 | { |
8033 | function_name += 5; | |
8034 | function_name_len -= 5; | |
8035 | } | |
4c4b4cd2 PH |
8036 | |
8037 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
8038 | strncpy (rename, function_name, function_name_len); |
8039 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
8040 | "__%s___XR", name); | |
4c4b4cd2 PH |
8041 | } |
8042 | else | |
8043 | { | |
8044 | const int rename_len = strlen (name) + 6; | |
5b4ee69b | 8045 | |
4c4b4cd2 | 8046 | rename = (char *) alloca (rename_len * sizeof (char)); |
88c15c34 | 8047 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
8048 | } |
8049 | ||
852dff6c | 8050 | return ada_find_any_type_symbol (rename); |
4c4b4cd2 PH |
8051 | } |
8052 | ||
14f9c5c9 | 8053 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 8054 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 8055 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
8056 | otherwise return 0. */ |
8057 | ||
14f9c5c9 | 8058 | int |
d2e4a39e | 8059 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
8060 | { |
8061 | if (type1 == NULL) | |
8062 | return 1; | |
8063 | else if (type0 == NULL) | |
8064 | return 0; | |
8065 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
8066 | return 1; | |
8067 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
8068 | return 0; | |
4c4b4cd2 PH |
8069 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
8070 | return 1; | |
ad82864c | 8071 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 8072 | return 1; |
4c4b4cd2 PH |
8073 | else if (ada_is_array_descriptor_type (type0) |
8074 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 8075 | return 1; |
aeb5907d JB |
8076 | else |
8077 | { | |
a737d952 TT |
8078 | const char *type0_name = TYPE_NAME (type0); |
8079 | const char *type1_name = TYPE_NAME (type1); | |
aeb5907d JB |
8080 | |
8081 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
8082 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
8083 | return 1; | |
8084 | } | |
14f9c5c9 AS |
8085 | return 0; |
8086 | } | |
8087 | ||
e86ca25f TT |
8088 | /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is |
8089 | null. */ | |
4c4b4cd2 | 8090 | |
0d5cff50 | 8091 | const char * |
d2e4a39e | 8092 | ada_type_name (struct type *type) |
14f9c5c9 | 8093 | { |
d2e4a39e | 8094 | if (type == NULL) |
14f9c5c9 | 8095 | return NULL; |
e86ca25f | 8096 | return TYPE_NAME (type); |
14f9c5c9 AS |
8097 | } |
8098 | ||
b4ba55a1 JB |
8099 | /* Search the list of "descriptive" types associated to TYPE for a type |
8100 | whose name is NAME. */ | |
8101 | ||
8102 | static struct type * | |
8103 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
8104 | { | |
931e5bc3 | 8105 | struct type *result, *tmp; |
b4ba55a1 | 8106 | |
c6044dd1 JB |
8107 | if (ada_ignore_descriptive_types_p) |
8108 | return NULL; | |
8109 | ||
b4ba55a1 JB |
8110 | /* If there no descriptive-type info, then there is no parallel type |
8111 | to be found. */ | |
8112 | if (!HAVE_GNAT_AUX_INFO (type)) | |
8113 | return NULL; | |
8114 | ||
8115 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
8116 | while (result != NULL) | |
8117 | { | |
0d5cff50 | 8118 | const char *result_name = ada_type_name (result); |
b4ba55a1 JB |
8119 | |
8120 | if (result_name == NULL) | |
8121 | { | |
8122 | warning (_("unexpected null name on descriptive type")); | |
8123 | return NULL; | |
8124 | } | |
8125 | ||
8126 | /* If the names match, stop. */ | |
8127 | if (strcmp (result_name, name) == 0) | |
8128 | break; | |
8129 | ||
8130 | /* Otherwise, look at the next item on the list, if any. */ | |
8131 | if (HAVE_GNAT_AUX_INFO (result)) | |
931e5bc3 JG |
8132 | tmp = TYPE_DESCRIPTIVE_TYPE (result); |
8133 | else | |
8134 | tmp = NULL; | |
8135 | ||
8136 | /* If not found either, try after having resolved the typedef. */ | |
8137 | if (tmp != NULL) | |
8138 | result = tmp; | |
b4ba55a1 | 8139 | else |
931e5bc3 | 8140 | { |
f168693b | 8141 | result = check_typedef (result); |
931e5bc3 JG |
8142 | if (HAVE_GNAT_AUX_INFO (result)) |
8143 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
8144 | else | |
8145 | result = NULL; | |
8146 | } | |
b4ba55a1 JB |
8147 | } |
8148 | ||
8149 | /* If we didn't find a match, see whether this is a packed array. With | |
8150 | older compilers, the descriptive type information is either absent or | |
8151 | irrelevant when it comes to packed arrays so the above lookup fails. | |
8152 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 8153 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
8154 | return ada_find_any_type (name); |
8155 | ||
8156 | return result; | |
8157 | } | |
8158 | ||
8159 | /* Find a parallel type to TYPE with the specified NAME, using the | |
8160 | descriptive type taken from the debugging information, if available, | |
8161 | and otherwise using the (slower) name-based method. */ | |
8162 | ||
8163 | static struct type * | |
8164 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
8165 | { | |
8166 | struct type *result = NULL; | |
8167 | ||
8168 | if (HAVE_GNAT_AUX_INFO (type)) | |
8169 | result = find_parallel_type_by_descriptive_type (type, name); | |
8170 | else | |
8171 | result = ada_find_any_type (name); | |
8172 | ||
8173 | return result; | |
8174 | } | |
8175 | ||
8176 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 8177 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 8178 | |
d2e4a39e | 8179 | struct type * |
ebf56fd3 | 8180 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 8181 | { |
0d5cff50 | 8182 | char *name; |
fe978cb0 | 8183 | const char *type_name = ada_type_name (type); |
14f9c5c9 | 8184 | int len; |
d2e4a39e | 8185 | |
fe978cb0 | 8186 | if (type_name == NULL) |
14f9c5c9 AS |
8187 | return NULL; |
8188 | ||
fe978cb0 | 8189 | len = strlen (type_name); |
14f9c5c9 | 8190 | |
b4ba55a1 | 8191 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 | 8192 | |
fe978cb0 | 8193 | strcpy (name, type_name); |
14f9c5c9 AS |
8194 | strcpy (name + len, suffix); |
8195 | ||
b4ba55a1 | 8196 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
8197 | } |
8198 | ||
14f9c5c9 | 8199 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 8200 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 8201 | |
d2e4a39e AS |
8202 | static struct type * |
8203 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 8204 | { |
61ee279c | 8205 | type = ada_check_typedef (type); |
14f9c5c9 AS |
8206 | |
8207 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 8208 | || ada_type_name (type) == NULL) |
14f9c5c9 | 8209 | return NULL; |
d2e4a39e | 8210 | else |
14f9c5c9 AS |
8211 | { |
8212 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 8213 | |
4c4b4cd2 PH |
8214 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
8215 | return type; | |
14f9c5c9 | 8216 | else |
4c4b4cd2 | 8217 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
8218 | } |
8219 | } | |
8220 | ||
8221 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 8222 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 8223 | |
d2e4a39e AS |
8224 | static int |
8225 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
8226 | { |
8227 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 8228 | |
d2e4a39e | 8229 | return name != NULL |
14f9c5c9 AS |
8230 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
8231 | && strstr (name, "___XVL") != NULL; | |
8232 | } | |
8233 | ||
4c4b4cd2 PH |
8234 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
8235 | represent a variant record type. */ | |
14f9c5c9 | 8236 | |
d2e4a39e | 8237 | static int |
4c4b4cd2 | 8238 | variant_field_index (struct type *type) |
14f9c5c9 AS |
8239 | { |
8240 | int f; | |
8241 | ||
4c4b4cd2 PH |
8242 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
8243 | return -1; | |
8244 | ||
8245 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
8246 | { | |
8247 | if (ada_is_variant_part (type, f)) | |
8248 | return f; | |
8249 | } | |
8250 | return -1; | |
14f9c5c9 AS |
8251 | } |
8252 | ||
4c4b4cd2 PH |
8253 | /* A record type with no fields. */ |
8254 | ||
d2e4a39e | 8255 | static struct type * |
fe978cb0 | 8256 | empty_record (struct type *templ) |
14f9c5c9 | 8257 | { |
fe978cb0 | 8258 | struct type *type = alloc_type_copy (templ); |
5b4ee69b | 8259 | |
14f9c5c9 AS |
8260 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
8261 | TYPE_NFIELDS (type) = 0; | |
8262 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 8263 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 | 8264 | TYPE_NAME (type) = "<empty>"; |
14f9c5c9 AS |
8265 | TYPE_LENGTH (type) = 0; |
8266 | return type; | |
8267 | } | |
8268 | ||
8269 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
8270 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
8271 | the beginning of this section) VAL according to GNAT conventions. | |
8272 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 8273 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
8274 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
8275 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 8276 | of the variant. |
14f9c5c9 | 8277 | |
4c4b4cd2 PH |
8278 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
8279 | length are not statically known are discarded. As a consequence, | |
8280 | VALADDR, ADDRESS and DVAL0 are ignored. | |
8281 | ||
8282 | NOTE: Limitations: For now, we assume that dynamic fields and | |
8283 | variants occupy whole numbers of bytes. However, they need not be | |
8284 | byte-aligned. */ | |
8285 | ||
8286 | struct type * | |
10a2c479 | 8287 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 8288 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
8289 | CORE_ADDR address, struct value *dval0, |
8290 | int keep_dynamic_fields) | |
14f9c5c9 | 8291 | { |
d2e4a39e AS |
8292 | struct value *mark = value_mark (); |
8293 | struct value *dval; | |
8294 | struct type *rtype; | |
14f9c5c9 | 8295 | int nfields, bit_len; |
4c4b4cd2 | 8296 | int variant_field; |
14f9c5c9 | 8297 | long off; |
d94e4f4f | 8298 | int fld_bit_len; |
14f9c5c9 AS |
8299 | int f; |
8300 | ||
4c4b4cd2 PH |
8301 | /* Compute the number of fields in this record type that are going |
8302 | to be processed: unless keep_dynamic_fields, this includes only | |
8303 | fields whose position and length are static will be processed. */ | |
8304 | if (keep_dynamic_fields) | |
8305 | nfields = TYPE_NFIELDS (type); | |
8306 | else | |
8307 | { | |
8308 | nfields = 0; | |
76a01679 | 8309 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
8310 | && !ada_is_variant_part (type, nfields) |
8311 | && !is_dynamic_field (type, nfields)) | |
8312 | nfields++; | |
8313 | } | |
8314 | ||
e9bb382b | 8315 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
8316 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
8317 | INIT_CPLUS_SPECIFIC (rtype); | |
8318 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 8319 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
8320 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
8321 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
8322 | TYPE_NAME (rtype) = ada_type_name (type); | |
876cecd0 | 8323 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 8324 | |
d2e4a39e AS |
8325 | off = 0; |
8326 | bit_len = 0; | |
4c4b4cd2 PH |
8327 | variant_field = -1; |
8328 | ||
14f9c5c9 AS |
8329 | for (f = 0; f < nfields; f += 1) |
8330 | { | |
6c038f32 PH |
8331 | off = align_value (off, field_alignment (type, f)) |
8332 | + TYPE_FIELD_BITPOS (type, f); | |
945b3a32 | 8333 | SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off); |
d2e4a39e | 8334 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 8335 | |
d2e4a39e | 8336 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
8337 | { |
8338 | variant_field = f; | |
d94e4f4f | 8339 | fld_bit_len = 0; |
4c4b4cd2 | 8340 | } |
14f9c5c9 | 8341 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 8342 | { |
284614f0 JB |
8343 | const gdb_byte *field_valaddr = valaddr; |
8344 | CORE_ADDR field_address = address; | |
8345 | struct type *field_type = | |
8346 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
8347 | ||
4c4b4cd2 | 8348 | if (dval0 == NULL) |
b5304971 JG |
8349 | { |
8350 | /* rtype's length is computed based on the run-time | |
8351 | value of discriminants. If the discriminants are not | |
8352 | initialized, the type size may be completely bogus and | |
0963b4bd | 8353 | GDB may fail to allocate a value for it. So check the |
b5304971 | 8354 | size first before creating the value. */ |
c1b5a1a6 | 8355 | ada_ensure_varsize_limit (rtype); |
012370f6 TT |
8356 | /* Using plain value_from_contents_and_address here |
8357 | causes problems because we will end up trying to | |
8358 | resolve a type that is currently being | |
8359 | constructed. */ | |
8360 | dval = value_from_contents_and_address_unresolved (rtype, | |
8361 | valaddr, | |
8362 | address); | |
9f1f738a | 8363 | rtype = value_type (dval); |
b5304971 | 8364 | } |
4c4b4cd2 PH |
8365 | else |
8366 | dval = dval0; | |
8367 | ||
284614f0 JB |
8368 | /* If the type referenced by this field is an aligner type, we need |
8369 | to unwrap that aligner type, because its size might not be set. | |
8370 | Keeping the aligner type would cause us to compute the wrong | |
8371 | size for this field, impacting the offset of the all the fields | |
8372 | that follow this one. */ | |
8373 | if (ada_is_aligner_type (field_type)) | |
8374 | { | |
8375 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
8376 | ||
8377 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
8378 | field_address = cond_offset_target (field_address, field_offset); | |
8379 | field_type = ada_aligned_type (field_type); | |
8380 | } | |
8381 | ||
8382 | field_valaddr = cond_offset_host (field_valaddr, | |
8383 | off / TARGET_CHAR_BIT); | |
8384 | field_address = cond_offset_target (field_address, | |
8385 | off / TARGET_CHAR_BIT); | |
8386 | ||
8387 | /* Get the fixed type of the field. Note that, in this case, | |
8388 | we do not want to get the real type out of the tag: if | |
8389 | the current field is the parent part of a tagged record, | |
8390 | we will get the tag of the object. Clearly wrong: the real | |
8391 | type of the parent is not the real type of the child. We | |
8392 | would end up in an infinite loop. */ | |
8393 | field_type = ada_get_base_type (field_type); | |
8394 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
8395 | field_address, dval, 0); | |
27f2a97b JB |
8396 | /* If the field size is already larger than the maximum |
8397 | object size, then the record itself will necessarily | |
8398 | be larger than the maximum object size. We need to make | |
8399 | this check now, because the size might be so ridiculously | |
8400 | large (due to an uninitialized variable in the inferior) | |
8401 | that it would cause an overflow when adding it to the | |
8402 | record size. */ | |
c1b5a1a6 | 8403 | ada_ensure_varsize_limit (field_type); |
284614f0 JB |
8404 | |
8405 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 | 8406 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
8407 | /* The multiplication can potentially overflow. But because |
8408 | the field length has been size-checked just above, and | |
8409 | assuming that the maximum size is a reasonable value, | |
8410 | an overflow should not happen in practice. So rather than | |
8411 | adding overflow recovery code to this already complex code, | |
8412 | we just assume that it's not going to happen. */ | |
d94e4f4f | 8413 | fld_bit_len = |
4c4b4cd2 PH |
8414 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; |
8415 | } | |
14f9c5c9 | 8416 | else |
4c4b4cd2 | 8417 | { |
5ded5331 JB |
8418 | /* Note: If this field's type is a typedef, it is important |
8419 | to preserve the typedef layer. | |
8420 | ||
8421 | Otherwise, we might be transforming a typedef to a fat | |
8422 | pointer (encoding a pointer to an unconstrained array), | |
8423 | into a basic fat pointer (encoding an unconstrained | |
8424 | array). As both types are implemented using the same | |
8425 | structure, the typedef is the only clue which allows us | |
8426 | to distinguish between the two options. Stripping it | |
8427 | would prevent us from printing this field appropriately. */ | |
8428 | TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); | |
4c4b4cd2 PH |
8429 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
8430 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
d94e4f4f | 8431 | fld_bit_len = |
4c4b4cd2 PH |
8432 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
8433 | else | |
5ded5331 JB |
8434 | { |
8435 | struct type *field_type = TYPE_FIELD_TYPE (type, f); | |
8436 | ||
8437 | /* We need to be careful of typedefs when computing | |
8438 | the length of our field. If this is a typedef, | |
8439 | get the length of the target type, not the length | |
8440 | of the typedef. */ | |
8441 | if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) | |
8442 | field_type = ada_typedef_target_type (field_type); | |
8443 | ||
8444 | fld_bit_len = | |
8445 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; | |
8446 | } | |
4c4b4cd2 | 8447 | } |
14f9c5c9 | 8448 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 8449 | bit_len = off + fld_bit_len; |
d94e4f4f | 8450 | off += fld_bit_len; |
4c4b4cd2 PH |
8451 | TYPE_LENGTH (rtype) = |
8452 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 8453 | } |
4c4b4cd2 PH |
8454 | |
8455 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 8456 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
8457 | the record. This can happen in the presence of representation |
8458 | clauses. */ | |
8459 | if (variant_field >= 0) | |
8460 | { | |
8461 | struct type *branch_type; | |
8462 | ||
8463 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
8464 | ||
8465 | if (dval0 == NULL) | |
9f1f738a | 8466 | { |
012370f6 TT |
8467 | /* Using plain value_from_contents_and_address here causes |
8468 | problems because we will end up trying to resolve a type | |
8469 | that is currently being constructed. */ | |
8470 | dval = value_from_contents_and_address_unresolved (rtype, valaddr, | |
8471 | address); | |
9f1f738a SA |
8472 | rtype = value_type (dval); |
8473 | } | |
4c4b4cd2 PH |
8474 | else |
8475 | dval = dval0; | |
8476 | ||
8477 | branch_type = | |
8478 | to_fixed_variant_branch_type | |
8479 | (TYPE_FIELD_TYPE (type, variant_field), | |
8480 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
8481 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
8482 | if (branch_type == NULL) | |
8483 | { | |
8484 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
8485 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
8486 | TYPE_NFIELDS (rtype) -= 1; | |
8487 | } | |
8488 | else | |
8489 | { | |
8490 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
8491 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8492 | fld_bit_len = | |
8493 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
8494 | TARGET_CHAR_BIT; | |
8495 | if (off + fld_bit_len > bit_len) | |
8496 | bit_len = off + fld_bit_len; | |
8497 | TYPE_LENGTH (rtype) = | |
8498 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
8499 | } | |
8500 | } | |
8501 | ||
714e53ab PH |
8502 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
8503 | should contain the alignment of that record, which should be a strictly | |
8504 | positive value. If null or negative, then something is wrong, most | |
8505 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 8506 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
8507 | the current RTYPE length might be good enough for our purposes. */ |
8508 | if (TYPE_LENGTH (type) <= 0) | |
8509 | { | |
323e0a4a | 8510 | if (TYPE_NAME (rtype)) |
cc1defb1 KS |
8511 | warning (_("Invalid type size for `%s' detected: %s."), |
8512 | TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type))); | |
323e0a4a | 8513 | else |
cc1defb1 KS |
8514 | warning (_("Invalid type size for <unnamed> detected: %s."), |
8515 | pulongest (TYPE_LENGTH (type))); | |
714e53ab PH |
8516 | } |
8517 | else | |
8518 | { | |
8519 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
8520 | TYPE_LENGTH (type)); | |
8521 | } | |
14f9c5c9 AS |
8522 | |
8523 | value_free_to_mark (mark); | |
d2e4a39e | 8524 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 8525 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8526 | return rtype; |
8527 | } | |
8528 | ||
4c4b4cd2 PH |
8529 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
8530 | of 1. */ | |
14f9c5c9 | 8531 | |
d2e4a39e | 8532 | static struct type * |
fc1a4b47 | 8533 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
8534 | CORE_ADDR address, struct value *dval0) |
8535 | { | |
8536 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
8537 | address, dval0, 1); | |
8538 | } | |
8539 | ||
8540 | /* An ordinary record type in which ___XVL-convention fields and | |
8541 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
8542 | static approximations, containing all possible fields. Uses | |
8543 | no runtime values. Useless for use in values, but that's OK, | |
8544 | since the results are used only for type determinations. Works on both | |
8545 | structs and unions. Representation note: to save space, we memorize | |
8546 | the result of this function in the TYPE_TARGET_TYPE of the | |
8547 | template type. */ | |
8548 | ||
8549 | static struct type * | |
8550 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
8551 | { |
8552 | struct type *type; | |
8553 | int nfields; | |
8554 | int f; | |
8555 | ||
9e195661 PMR |
8556 | /* No need no do anything if the input type is already fixed. */ |
8557 | if (TYPE_FIXED_INSTANCE (type0)) | |
8558 | return type0; | |
8559 | ||
8560 | /* Likewise if we already have computed the static approximation. */ | |
4c4b4cd2 PH |
8561 | if (TYPE_TARGET_TYPE (type0) != NULL) |
8562 | return TYPE_TARGET_TYPE (type0); | |
8563 | ||
9e195661 | 8564 | /* Don't clone TYPE0 until we are sure we are going to need a copy. */ |
4c4b4cd2 | 8565 | type = type0; |
9e195661 PMR |
8566 | nfields = TYPE_NFIELDS (type0); |
8567 | ||
8568 | /* Whether or not we cloned TYPE0, cache the result so that we don't do | |
8569 | recompute all over next time. */ | |
8570 | TYPE_TARGET_TYPE (type0) = type; | |
14f9c5c9 AS |
8571 | |
8572 | for (f = 0; f < nfields; f += 1) | |
8573 | { | |
460efde1 | 8574 | struct type *field_type = TYPE_FIELD_TYPE (type0, f); |
4c4b4cd2 | 8575 | struct type *new_type; |
14f9c5c9 | 8576 | |
4c4b4cd2 | 8577 | if (is_dynamic_field (type0, f)) |
460efde1 JB |
8578 | { |
8579 | field_type = ada_check_typedef (field_type); | |
8580 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
8581 | } | |
14f9c5c9 | 8582 | else |
f192137b | 8583 | new_type = static_unwrap_type (field_type); |
9e195661 PMR |
8584 | |
8585 | if (new_type != field_type) | |
8586 | { | |
8587 | /* Clone TYPE0 only the first time we get a new field type. */ | |
8588 | if (type == type0) | |
8589 | { | |
8590 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); | |
8591 | TYPE_CODE (type) = TYPE_CODE (type0); | |
8592 | INIT_CPLUS_SPECIFIC (type); | |
8593 | TYPE_NFIELDS (type) = nfields; | |
8594 | TYPE_FIELDS (type) = (struct field *) | |
8595 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
8596 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
8597 | sizeof (struct field) * nfields); | |
8598 | TYPE_NAME (type) = ada_type_name (type0); | |
9e195661 PMR |
8599 | TYPE_FIXED_INSTANCE (type) = 1; |
8600 | TYPE_LENGTH (type) = 0; | |
8601 | } | |
8602 | TYPE_FIELD_TYPE (type, f) = new_type; | |
8603 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
8604 | } | |
14f9c5c9 | 8605 | } |
9e195661 | 8606 | |
14f9c5c9 AS |
8607 | return type; |
8608 | } | |
8609 | ||
4c4b4cd2 | 8610 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
8611 | whose address in memory is ADDRESS, returns a revision of TYPE, |
8612 | which should be a non-dynamic-sized record, in which the variant | |
8613 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
8614 | for discriminant values in DVAL0, which can be NULL if the record |
8615 | contains the necessary discriminant values. */ | |
8616 | ||
d2e4a39e | 8617 | static struct type * |
fc1a4b47 | 8618 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 8619 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 8620 | { |
d2e4a39e | 8621 | struct value *mark = value_mark (); |
4c4b4cd2 | 8622 | struct value *dval; |
d2e4a39e | 8623 | struct type *rtype; |
14f9c5c9 AS |
8624 | struct type *branch_type; |
8625 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 8626 | int variant_field = variant_field_index (type); |
14f9c5c9 | 8627 | |
4c4b4cd2 | 8628 | if (variant_field == -1) |
14f9c5c9 AS |
8629 | return type; |
8630 | ||
4c4b4cd2 | 8631 | if (dval0 == NULL) |
9f1f738a SA |
8632 | { |
8633 | dval = value_from_contents_and_address (type, valaddr, address); | |
8634 | type = value_type (dval); | |
8635 | } | |
4c4b4cd2 PH |
8636 | else |
8637 | dval = dval0; | |
8638 | ||
e9bb382b | 8639 | rtype = alloc_type_copy (type); |
14f9c5c9 | 8640 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
8641 | INIT_CPLUS_SPECIFIC (rtype); |
8642 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
8643 | TYPE_FIELDS (rtype) = |
8644 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
8645 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 8646 | sizeof (struct field) * nfields); |
14f9c5c9 | 8647 | TYPE_NAME (rtype) = ada_type_name (type); |
876cecd0 | 8648 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
8649 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
8650 | ||
4c4b4cd2 PH |
8651 | branch_type = to_fixed_variant_branch_type |
8652 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 8653 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
8654 | TYPE_FIELD_BITPOS (type, variant_field) |
8655 | / TARGET_CHAR_BIT), | |
d2e4a39e | 8656 | cond_offset_target (address, |
4c4b4cd2 PH |
8657 | TYPE_FIELD_BITPOS (type, variant_field) |
8658 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 8659 | if (branch_type == NULL) |
14f9c5c9 | 8660 | { |
4c4b4cd2 | 8661 | int f; |
5b4ee69b | 8662 | |
4c4b4cd2 PH |
8663 | for (f = variant_field + 1; f < nfields; f += 1) |
8664 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 8665 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
8666 | } |
8667 | else | |
8668 | { | |
4c4b4cd2 PH |
8669 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
8670 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8671 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 8672 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 8673 | } |
4c4b4cd2 | 8674 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 8675 | |
4c4b4cd2 | 8676 | value_free_to_mark (mark); |
14f9c5c9 AS |
8677 | return rtype; |
8678 | } | |
8679 | ||
8680 | /* An ordinary record type (with fixed-length fields) that describes | |
8681 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
8682 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
8683 | should be in DVAL, a record value; it may be NULL if the object |
8684 | at ADDR itself contains any necessary discriminant values. | |
8685 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
8686 | values from the record are needed. Except in the case that DVAL, | |
8687 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
8688 | unchecked) is replaced by a particular branch of the variant. | |
8689 | ||
8690 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
8691 | is questionable and may be removed. It can arise during the | |
8692 | processing of an unconstrained-array-of-record type where all the | |
8693 | variant branches have exactly the same size. This is because in | |
8694 | such cases, the compiler does not bother to use the XVS convention | |
8695 | when encoding the record. I am currently dubious of this | |
8696 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 8697 | |
d2e4a39e | 8698 | static struct type * |
fc1a4b47 | 8699 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8700 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 8701 | { |
d2e4a39e | 8702 | struct type *templ_type; |
14f9c5c9 | 8703 | |
876cecd0 | 8704 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8705 | return type0; |
8706 | ||
d2e4a39e | 8707 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
8708 | |
8709 | if (templ_type != NULL) | |
8710 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
8711 | else if (variant_field_index (type0) >= 0) |
8712 | { | |
8713 | if (dval == NULL && valaddr == NULL && address == 0) | |
8714 | return type0; | |
8715 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
8716 | dval); | |
8717 | } | |
14f9c5c9 AS |
8718 | else |
8719 | { | |
876cecd0 | 8720 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
8721 | return type0; |
8722 | } | |
8723 | ||
8724 | } | |
8725 | ||
8726 | /* An ordinary record type (with fixed-length fields) that describes | |
8727 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
8728 | union type. Any necessary discriminants' values should be in DVAL, | |
8729 | a record value. That is, this routine selects the appropriate | |
8730 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 8731 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 8732 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 8733 | |
d2e4a39e | 8734 | static struct type * |
fc1a4b47 | 8735 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8736 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
8737 | { |
8738 | int which; | |
d2e4a39e AS |
8739 | struct type *templ_type; |
8740 | struct type *var_type; | |
14f9c5c9 AS |
8741 | |
8742 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
8743 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 8744 | else |
14f9c5c9 AS |
8745 | var_type = var_type0; |
8746 | ||
8747 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
8748 | ||
8749 | if (templ_type != NULL) | |
8750 | var_type = templ_type; | |
8751 | ||
b1f33ddd JB |
8752 | if (is_unchecked_variant (var_type, value_type (dval))) |
8753 | return var_type0; | |
d2e4a39e AS |
8754 | which = |
8755 | ada_which_variant_applies (var_type, | |
0fd88904 | 8756 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
8757 | |
8758 | if (which < 0) | |
e9bb382b | 8759 | return empty_record (var_type); |
14f9c5c9 | 8760 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 8761 | return to_fixed_record_type |
d2e4a39e AS |
8762 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
8763 | valaddr, address, dval); | |
4c4b4cd2 | 8764 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
8765 | return |
8766 | to_fixed_record_type | |
8767 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
8768 | else |
8769 | return TYPE_FIELD_TYPE (var_type, which); | |
8770 | } | |
8771 | ||
8908fca5 JB |
8772 | /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if |
8773 | ENCODING_TYPE, a type following the GNAT conventions for discrete | |
8774 | type encodings, only carries redundant information. */ | |
8775 | ||
8776 | static int | |
8777 | ada_is_redundant_range_encoding (struct type *range_type, | |
8778 | struct type *encoding_type) | |
8779 | { | |
108d56a4 | 8780 | const char *bounds_str; |
8908fca5 JB |
8781 | int n; |
8782 | LONGEST lo, hi; | |
8783 | ||
8784 | gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE); | |
8785 | ||
005e2509 JB |
8786 | if (TYPE_CODE (get_base_type (range_type)) |
8787 | != TYPE_CODE (get_base_type (encoding_type))) | |
8788 | { | |
8789 | /* The compiler probably used a simple base type to describe | |
8790 | the range type instead of the range's actual base type, | |
8791 | expecting us to get the real base type from the encoding | |
8792 | anyway. In this situation, the encoding cannot be ignored | |
8793 | as redundant. */ | |
8794 | return 0; | |
8795 | } | |
8796 | ||
8908fca5 JB |
8797 | if (is_dynamic_type (range_type)) |
8798 | return 0; | |
8799 | ||
8800 | if (TYPE_NAME (encoding_type) == NULL) | |
8801 | return 0; | |
8802 | ||
8803 | bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_"); | |
8804 | if (bounds_str == NULL) | |
8805 | return 0; | |
8806 | ||
8807 | n = 8; /* Skip "___XDLU_". */ | |
8808 | if (!ada_scan_number (bounds_str, n, &lo, &n)) | |
8809 | return 0; | |
8810 | if (TYPE_LOW_BOUND (range_type) != lo) | |
8811 | return 0; | |
8812 | ||
8813 | n += 2; /* Skip the "__" separator between the two bounds. */ | |
8814 | if (!ada_scan_number (bounds_str, n, &hi, &n)) | |
8815 | return 0; | |
8816 | if (TYPE_HIGH_BOUND (range_type) != hi) | |
8817 | return 0; | |
8818 | ||
8819 | return 1; | |
8820 | } | |
8821 | ||
8822 | /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE, | |
8823 | a type following the GNAT encoding for describing array type | |
8824 | indices, only carries redundant information. */ | |
8825 | ||
8826 | static int | |
8827 | ada_is_redundant_index_type_desc (struct type *array_type, | |
8828 | struct type *desc_type) | |
8829 | { | |
8830 | struct type *this_layer = check_typedef (array_type); | |
8831 | int i; | |
8832 | ||
8833 | for (i = 0; i < TYPE_NFIELDS (desc_type); i++) | |
8834 | { | |
8835 | if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer), | |
8836 | TYPE_FIELD_TYPE (desc_type, i))) | |
8837 | return 0; | |
8838 | this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer)); | |
8839 | } | |
8840 | ||
8841 | return 1; | |
8842 | } | |
8843 | ||
14f9c5c9 AS |
8844 | /* Assuming that TYPE0 is an array type describing the type of a value |
8845 | at ADDR, and that DVAL describes a record containing any | |
8846 | discriminants used in TYPE0, returns a type for the value that | |
8847 | contains no dynamic components (that is, no components whose sizes | |
8848 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
8849 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 8850 | varsize_limit. */ |
14f9c5c9 | 8851 | |
d2e4a39e AS |
8852 | static struct type * |
8853 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 8854 | int ignore_too_big) |
14f9c5c9 | 8855 | { |
d2e4a39e AS |
8856 | struct type *index_type_desc; |
8857 | struct type *result; | |
ad82864c | 8858 | int constrained_packed_array_p; |
931e5bc3 | 8859 | static const char *xa_suffix = "___XA"; |
14f9c5c9 | 8860 | |
b0dd7688 | 8861 | type0 = ada_check_typedef (type0); |
284614f0 | 8862 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 8863 | return type0; |
14f9c5c9 | 8864 | |
ad82864c JB |
8865 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
8866 | if (constrained_packed_array_p) | |
8867 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 8868 | |
931e5bc3 JG |
8869 | index_type_desc = ada_find_parallel_type (type0, xa_suffix); |
8870 | ||
8871 | /* As mentioned in exp_dbug.ads, for non bit-packed arrays an | |
8872 | encoding suffixed with 'P' may still be generated. If so, | |
8873 | it should be used to find the XA type. */ | |
8874 | ||
8875 | if (index_type_desc == NULL) | |
8876 | { | |
1da0522e | 8877 | const char *type_name = ada_type_name (type0); |
931e5bc3 | 8878 | |
1da0522e | 8879 | if (type_name != NULL) |
931e5bc3 | 8880 | { |
1da0522e | 8881 | const int len = strlen (type_name); |
931e5bc3 JG |
8882 | char *name = (char *) alloca (len + strlen (xa_suffix)); |
8883 | ||
1da0522e | 8884 | if (type_name[len - 1] == 'P') |
931e5bc3 | 8885 | { |
1da0522e | 8886 | strcpy (name, type_name); |
931e5bc3 JG |
8887 | strcpy (name + len - 1, xa_suffix); |
8888 | index_type_desc = ada_find_parallel_type_with_name (type0, name); | |
8889 | } | |
8890 | } | |
8891 | } | |
8892 | ||
28c85d6c | 8893 | ada_fixup_array_indexes_type (index_type_desc); |
8908fca5 JB |
8894 | if (index_type_desc != NULL |
8895 | && ada_is_redundant_index_type_desc (type0, index_type_desc)) | |
8896 | { | |
8897 | /* Ignore this ___XA parallel type, as it does not bring any | |
8898 | useful information. This allows us to avoid creating fixed | |
8899 | versions of the array's index types, which would be identical | |
8900 | to the original ones. This, in turn, can also help avoid | |
8901 | the creation of fixed versions of the array itself. */ | |
8902 | index_type_desc = NULL; | |
8903 | } | |
8904 | ||
14f9c5c9 AS |
8905 | if (index_type_desc == NULL) |
8906 | { | |
61ee279c | 8907 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 8908 | |
14f9c5c9 | 8909 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
8910 | depend on the contents of the array in properly constructed |
8911 | debugging data. */ | |
529cad9c PH |
8912 | /* Create a fixed version of the array element type. |
8913 | We're not providing the address of an element here, | |
e1d5a0d2 | 8914 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8915 | the conversion. This should not be a problem, since arrays of |
8916 | unconstrained objects are not allowed. In particular, all | |
8917 | the elements of an array of a tagged type should all be of | |
8918 | the same type specified in the debugging info. No need to | |
8919 | consult the object tag. */ | |
1ed6ede0 | 8920 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 8921 | |
284614f0 JB |
8922 | /* Make sure we always create a new array type when dealing with |
8923 | packed array types, since we're going to fix-up the array | |
8924 | type length and element bitsize a little further down. */ | |
ad82864c | 8925 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 8926 | result = type0; |
14f9c5c9 | 8927 | else |
e9bb382b | 8928 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 8929 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
8930 | } |
8931 | else | |
8932 | { | |
8933 | int i; | |
8934 | struct type *elt_type0; | |
8935 | ||
8936 | elt_type0 = type0; | |
8937 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 8938 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
8939 | |
8940 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
8941 | depend on the contents of the array in properly constructed |
8942 | debugging data. */ | |
529cad9c PH |
8943 | /* Create a fixed version of the array element type. |
8944 | We're not providing the address of an element here, | |
e1d5a0d2 | 8945 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8946 | the conversion. This should not be a problem, since arrays of |
8947 | unconstrained objects are not allowed. In particular, all | |
8948 | the elements of an array of a tagged type should all be of | |
8949 | the same type specified in the debugging info. No need to | |
8950 | consult the object tag. */ | |
1ed6ede0 JB |
8951 | result = |
8952 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
8953 | |
8954 | elt_type0 = type0; | |
14f9c5c9 | 8955 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
8956 | { |
8957 | struct type *range_type = | |
28c85d6c | 8958 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 8959 | |
e9bb382b | 8960 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 8961 | result, range_type); |
1ce677a4 | 8962 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 8963 | } |
d2e4a39e | 8964 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 8965 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8966 | } |
8967 | ||
2e6fda7d JB |
8968 | /* We want to preserve the type name. This can be useful when |
8969 | trying to get the type name of a value that has already been | |
8970 | printed (for instance, if the user did "print VAR; whatis $". */ | |
8971 | TYPE_NAME (result) = TYPE_NAME (type0); | |
8972 | ||
ad82864c | 8973 | if (constrained_packed_array_p) |
284614f0 JB |
8974 | { |
8975 | /* So far, the resulting type has been created as if the original | |
8976 | type was a regular (non-packed) array type. As a result, the | |
8977 | bitsize of the array elements needs to be set again, and the array | |
8978 | length needs to be recomputed based on that bitsize. */ | |
8979 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
8980 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
8981 | ||
8982 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
8983 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
8984 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
8985 | TYPE_LENGTH (result)++; | |
8986 | } | |
8987 | ||
876cecd0 | 8988 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 8989 | return result; |
d2e4a39e | 8990 | } |
14f9c5c9 AS |
8991 | |
8992 | ||
8993 | /* A standard type (containing no dynamically sized components) | |
8994 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
8995 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 8996 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
8997 | ADDRESS or in VALADDR contains these discriminants. |
8998 | ||
1ed6ede0 JB |
8999 | If CHECK_TAG is not null, in the case of tagged types, this function |
9000 | attempts to locate the object's tag and use it to compute the actual | |
9001 | type. However, when ADDRESS is null, we cannot use it to determine the | |
9002 | location of the tag, and therefore compute the tagged type's actual type. | |
9003 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 9004 | |
f192137b JB |
9005 | static struct type * |
9006 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 9007 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 9008 | { |
61ee279c | 9009 | type = ada_check_typedef (type); |
d2e4a39e AS |
9010 | switch (TYPE_CODE (type)) |
9011 | { | |
9012 | default: | |
14f9c5c9 | 9013 | return type; |
d2e4a39e | 9014 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 9015 | { |
76a01679 | 9016 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
9017 | struct type *fixed_record_type = |
9018 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 9019 | |
529cad9c PH |
9020 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
9021 | then we can determine its tag, and compute the object's actual | |
0963b4bd | 9022 | type from there. Note that we have to use the fixed record |
1ed6ede0 JB |
9023 | type (the parent part of the record may have dynamic fields |
9024 | and the way the location of _tag is expressed may depend on | |
9025 | them). */ | |
529cad9c | 9026 | |
1ed6ede0 | 9027 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 | 9028 | { |
b50d69b5 JG |
9029 | struct value *tag = |
9030 | value_tag_from_contents_and_address | |
9031 | (fixed_record_type, | |
9032 | valaddr, | |
9033 | address); | |
9034 | struct type *real_type = type_from_tag (tag); | |
9035 | struct value *obj = | |
9036 | value_from_contents_and_address (fixed_record_type, | |
9037 | valaddr, | |
9038 | address); | |
9f1f738a | 9039 | fixed_record_type = value_type (obj); |
76a01679 | 9040 | if (real_type != NULL) |
b50d69b5 JG |
9041 | return to_fixed_record_type |
9042 | (real_type, NULL, | |
9043 | value_address (ada_tag_value_at_base_address (obj)), NULL); | |
76a01679 | 9044 | } |
4af88198 JB |
9045 | |
9046 | /* Check to see if there is a parallel ___XVZ variable. | |
9047 | If there is, then it provides the actual size of our type. */ | |
9048 | else if (ada_type_name (fixed_record_type) != NULL) | |
9049 | { | |
0d5cff50 | 9050 | const char *name = ada_type_name (fixed_record_type); |
224c3ddb SM |
9051 | char *xvz_name |
9052 | = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */); | |
eccab96d | 9053 | bool xvz_found = false; |
4af88198 JB |
9054 | LONGEST size; |
9055 | ||
88c15c34 | 9056 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
eccab96d JB |
9057 | TRY |
9058 | { | |
9059 | xvz_found = get_int_var_value (xvz_name, size); | |
9060 | } | |
9061 | CATCH (except, RETURN_MASK_ERROR) | |
9062 | { | |
9063 | /* We found the variable, but somehow failed to read | |
9064 | its value. Rethrow the same error, but with a little | |
9065 | bit more information, to help the user understand | |
9066 | what went wrong (Eg: the variable might have been | |
9067 | optimized out). */ | |
9068 | throw_error (except.error, | |
9069 | _("unable to read value of %s (%s)"), | |
3d6e9d23 | 9070 | xvz_name, except.what ()); |
eccab96d JB |
9071 | } |
9072 | END_CATCH | |
9073 | ||
9074 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
4af88198 JB |
9075 | { |
9076 | fixed_record_type = copy_type (fixed_record_type); | |
9077 | TYPE_LENGTH (fixed_record_type) = size; | |
9078 | ||
9079 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
9080 | observed this when the debugging info is STABS, and | |
9081 | apparently it is something that is hard to fix. | |
9082 | ||
9083 | In practice, we don't need the actual type definition | |
9084 | at all, because the presence of the XVZ variable allows us | |
9085 | to assume that there must be a XVS type as well, which we | |
9086 | should be able to use later, when we need the actual type | |
9087 | definition. | |
9088 | ||
9089 | In the meantime, pretend that the "fixed" type we are | |
9090 | returning is NOT a stub, because this can cause trouble | |
9091 | when using this type to create new types targeting it. | |
9092 | Indeed, the associated creation routines often check | |
9093 | whether the target type is a stub and will try to replace | |
0963b4bd | 9094 | it, thus using a type with the wrong size. This, in turn, |
4af88198 JB |
9095 | might cause the new type to have the wrong size too. |
9096 | Consider the case of an array, for instance, where the size | |
9097 | of the array is computed from the number of elements in | |
9098 | our array multiplied by the size of its element. */ | |
9099 | TYPE_STUB (fixed_record_type) = 0; | |
9100 | } | |
9101 | } | |
1ed6ede0 | 9102 | return fixed_record_type; |
4c4b4cd2 | 9103 | } |
d2e4a39e | 9104 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 9105 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
9106 | case TYPE_CODE_UNION: |
9107 | if (dval == NULL) | |
4c4b4cd2 | 9108 | return type; |
d2e4a39e | 9109 | else |
4c4b4cd2 | 9110 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 9111 | } |
14f9c5c9 AS |
9112 | } |
9113 | ||
f192137b JB |
9114 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
9115 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
9116 | |
9117 | The typedef layer needs be preserved in order to differentiate between | |
9118 | arrays and array pointers when both types are implemented using the same | |
9119 | fat pointer. In the array pointer case, the pointer is encoded as | |
9120 | a typedef of the pointer type. For instance, considering: | |
9121 | ||
9122 | type String_Access is access String; | |
9123 | S1 : String_Access := null; | |
9124 | ||
9125 | To the debugger, S1 is defined as a typedef of type String. But | |
9126 | to the user, it is a pointer. So if the user tries to print S1, | |
9127 | we should not dereference the array, but print the array address | |
9128 | instead. | |
9129 | ||
9130 | If we didn't preserve the typedef layer, we would lose the fact that | |
9131 | the type is to be presented as a pointer (needs de-reference before | |
9132 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
9133 | |
9134 | struct type * | |
9135 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
9136 | CORE_ADDR address, struct value *dval, int check_tag) | |
9137 | ||
9138 | { | |
9139 | struct type *fixed_type = | |
9140 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
9141 | ||
96dbd2c1 JB |
9142 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
9143 | then preserve the typedef layer. | |
9144 | ||
9145 | Implementation note: We can only check the main-type portion of | |
9146 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
9147 | from TYPE now returns a type that has the same instance flags | |
9148 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
9149 | target type is a "struct", then the typedef elimination will return | |
9150 | a "const" version of the target type. See check_typedef for more | |
9151 | details about how the typedef layer elimination is done. | |
9152 | ||
9153 | brobecker/2010-11-19: It seems to me that the only case where it is | |
9154 | useful to preserve the typedef layer is when dealing with fat pointers. | |
9155 | Perhaps, we could add a check for that and preserve the typedef layer | |
9156 | only in that situation. But this seems unecessary so far, probably | |
9157 | because we call check_typedef/ada_check_typedef pretty much everywhere. | |
9158 | */ | |
f192137b | 9159 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF |
720d1a40 | 9160 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 9161 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
9162 | return type; |
9163 | ||
9164 | return fixed_type; | |
9165 | } | |
9166 | ||
14f9c5c9 | 9167 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 9168 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 9169 | |
d2e4a39e AS |
9170 | static struct type * |
9171 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 9172 | { |
d2e4a39e | 9173 | struct type *type; |
14f9c5c9 AS |
9174 | |
9175 | if (type0 == NULL) | |
9176 | return NULL; | |
9177 | ||
876cecd0 | 9178 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
9179 | return type0; |
9180 | ||
61ee279c | 9181 | type0 = ada_check_typedef (type0); |
d2e4a39e | 9182 | |
14f9c5c9 AS |
9183 | switch (TYPE_CODE (type0)) |
9184 | { | |
9185 | default: | |
9186 | return type0; | |
9187 | case TYPE_CODE_STRUCT: | |
9188 | type = dynamic_template_type (type0); | |
d2e4a39e | 9189 | if (type != NULL) |
4c4b4cd2 PH |
9190 | return template_to_static_fixed_type (type); |
9191 | else | |
9192 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
9193 | case TYPE_CODE_UNION: |
9194 | type = ada_find_parallel_type (type0, "___XVU"); | |
9195 | if (type != NULL) | |
4c4b4cd2 PH |
9196 | return template_to_static_fixed_type (type); |
9197 | else | |
9198 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
9199 | } |
9200 | } | |
9201 | ||
4c4b4cd2 PH |
9202 | /* A static approximation of TYPE with all type wrappers removed. */ |
9203 | ||
d2e4a39e AS |
9204 | static struct type * |
9205 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
9206 | { |
9207 | if (ada_is_aligner_type (type)) | |
9208 | { | |
61ee279c | 9209 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 9210 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 9211 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
9212 | |
9213 | return static_unwrap_type (type1); | |
9214 | } | |
d2e4a39e | 9215 | else |
14f9c5c9 | 9216 | { |
d2e4a39e | 9217 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 9218 | |
d2e4a39e | 9219 | if (raw_real_type == type) |
4c4b4cd2 | 9220 | return type; |
14f9c5c9 | 9221 | else |
4c4b4cd2 | 9222 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
9223 | } |
9224 | } | |
9225 | ||
9226 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 9227 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
9228 | type Foo; |
9229 | type FooP is access Foo; | |
9230 | V: FooP; | |
9231 | type Foo is array ...; | |
4c4b4cd2 | 9232 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
9233 | cross-references to such types, we instead substitute for FooP a |
9234 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 9235 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
9236 | |
9237 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
9238 | exists, otherwise TYPE. */ |
9239 | ||
d2e4a39e | 9240 | struct type * |
61ee279c | 9241 | ada_check_typedef (struct type *type) |
14f9c5c9 | 9242 | { |
727e3d2e JB |
9243 | if (type == NULL) |
9244 | return NULL; | |
9245 | ||
736ade86 XR |
9246 | /* If our type is an access to an unconstrained array, which is encoded |
9247 | as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done. | |
720d1a40 JB |
9248 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is |
9249 | what allows us to distinguish between fat pointers that represent | |
9250 | array types, and fat pointers that represent array access types | |
9251 | (in both cases, the compiler implements them as fat pointers). */ | |
736ade86 | 9252 | if (ada_is_access_to_unconstrained_array (type)) |
720d1a40 JB |
9253 | return type; |
9254 | ||
f168693b | 9255 | type = check_typedef (type); |
14f9c5c9 | 9256 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
529cad9c | 9257 | || !TYPE_STUB (type) |
e86ca25f | 9258 | || TYPE_NAME (type) == NULL) |
14f9c5c9 | 9259 | return type; |
d2e4a39e | 9260 | else |
14f9c5c9 | 9261 | { |
e86ca25f | 9262 | const char *name = TYPE_NAME (type); |
d2e4a39e | 9263 | struct type *type1 = ada_find_any_type (name); |
5b4ee69b | 9264 | |
05e522ef JB |
9265 | if (type1 == NULL) |
9266 | return type; | |
9267 | ||
9268 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
9269 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
9270 | types, only for the typedef-to-array types). If that's the case, |
9271 | strip the typedef layer. */ | |
9272 | if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) | |
9273 | type1 = ada_check_typedef (type1); | |
9274 | ||
9275 | return type1; | |
14f9c5c9 AS |
9276 | } |
9277 | } | |
9278 | ||
9279 | /* A value representing the data at VALADDR/ADDRESS as described by | |
9280 | type TYPE0, but with a standard (static-sized) type that correctly | |
9281 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
9282 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 9283 | creation of struct values]. */ |
14f9c5c9 | 9284 | |
4c4b4cd2 PH |
9285 | static struct value * |
9286 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
9287 | struct value *val0) | |
14f9c5c9 | 9288 | { |
1ed6ede0 | 9289 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 9290 | |
14f9c5c9 AS |
9291 | if (type == type0 && val0 != NULL) |
9292 | return val0; | |
cc0e770c JB |
9293 | |
9294 | if (VALUE_LVAL (val0) != lval_memory) | |
9295 | { | |
9296 | /* Our value does not live in memory; it could be a convenience | |
9297 | variable, for instance. Create a not_lval value using val0's | |
9298 | contents. */ | |
9299 | return value_from_contents (type, value_contents (val0)); | |
9300 | } | |
9301 | ||
9302 | return value_from_contents_and_address (type, 0, address); | |
4c4b4cd2 PH |
9303 | } |
9304 | ||
9305 | /* A value representing VAL, but with a standard (static-sized) type | |
9306 | that correctly describes it. Does not necessarily create a new | |
9307 | value. */ | |
9308 | ||
0c3acc09 | 9309 | struct value * |
4c4b4cd2 PH |
9310 | ada_to_fixed_value (struct value *val) |
9311 | { | |
c48db5ca | 9312 | val = unwrap_value (val); |
d8ce9127 | 9313 | val = ada_to_fixed_value_create (value_type (val), value_address (val), val); |
c48db5ca | 9314 | return val; |
14f9c5c9 | 9315 | } |
d2e4a39e | 9316 | \f |
14f9c5c9 | 9317 | |
14f9c5c9 AS |
9318 | /* Attributes */ |
9319 | ||
4c4b4cd2 PH |
9320 | /* Table mapping attribute numbers to names. |
9321 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 9322 | |
d2e4a39e | 9323 | static const char *attribute_names[] = { |
14f9c5c9 AS |
9324 | "<?>", |
9325 | ||
d2e4a39e | 9326 | "first", |
14f9c5c9 AS |
9327 | "last", |
9328 | "length", | |
9329 | "image", | |
14f9c5c9 AS |
9330 | "max", |
9331 | "min", | |
4c4b4cd2 PH |
9332 | "modulus", |
9333 | "pos", | |
9334 | "size", | |
9335 | "tag", | |
14f9c5c9 | 9336 | "val", |
14f9c5c9 AS |
9337 | 0 |
9338 | }; | |
9339 | ||
d2e4a39e | 9340 | const char * |
4c4b4cd2 | 9341 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 9342 | { |
4c4b4cd2 PH |
9343 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
9344 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
9345 | else |
9346 | return attribute_names[0]; | |
9347 | } | |
9348 | ||
4c4b4cd2 | 9349 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 9350 | |
4c4b4cd2 PH |
9351 | static LONGEST |
9352 | pos_atr (struct value *arg) | |
14f9c5c9 | 9353 | { |
24209737 PH |
9354 | struct value *val = coerce_ref (arg); |
9355 | struct type *type = value_type (val); | |
aa715135 | 9356 | LONGEST result; |
14f9c5c9 | 9357 | |
d2e4a39e | 9358 | if (!discrete_type_p (type)) |
323e0a4a | 9359 | error (_("'POS only defined on discrete types")); |
14f9c5c9 | 9360 | |
aa715135 JG |
9361 | if (!discrete_position (type, value_as_long (val), &result)) |
9362 | error (_("enumeration value is invalid: can't find 'POS")); | |
14f9c5c9 | 9363 | |
aa715135 | 9364 | return result; |
4c4b4cd2 PH |
9365 | } |
9366 | ||
9367 | static struct value * | |
3cb382c9 | 9368 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 9369 | { |
3cb382c9 | 9370 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
9371 | } |
9372 | ||
4c4b4cd2 | 9373 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 9374 | |
d2e4a39e AS |
9375 | static struct value * |
9376 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 9377 | { |
d2e4a39e | 9378 | if (!discrete_type_p (type)) |
323e0a4a | 9379 | error (_("'VAL only defined on discrete types")); |
df407dfe | 9380 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 9381 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
9382 | |
9383 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
9384 | { | |
9385 | long pos = value_as_long (arg); | |
5b4ee69b | 9386 | |
14f9c5c9 | 9387 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 9388 | error (_("argument to 'VAL out of range")); |
14e75d8e | 9389 | return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos)); |
14f9c5c9 AS |
9390 | } |
9391 | else | |
9392 | return value_from_longest (type, value_as_long (arg)); | |
9393 | } | |
14f9c5c9 | 9394 | \f |
d2e4a39e | 9395 | |
4c4b4cd2 | 9396 | /* Evaluation */ |
14f9c5c9 | 9397 | |
4c4b4cd2 PH |
9398 | /* True if TYPE appears to be an Ada character type. |
9399 | [At the moment, this is true only for Character and Wide_Character; | |
9400 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 9401 | |
d2e4a39e AS |
9402 | int |
9403 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 9404 | { |
7b9f71f2 JB |
9405 | const char *name; |
9406 | ||
9407 | /* If the type code says it's a character, then assume it really is, | |
9408 | and don't check any further. */ | |
9409 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
9410 | return 1; | |
9411 | ||
9412 | /* Otherwise, assume it's a character type iff it is a discrete type | |
9413 | with a known character type name. */ | |
9414 | name = ada_type_name (type); | |
9415 | return (name != NULL | |
9416 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
9417 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
9418 | && (strcmp (name, "character") == 0 | |
9419 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 9420 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 9421 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
9422 | } |
9423 | ||
4c4b4cd2 | 9424 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
9425 | |
9426 | int | |
ebf56fd3 | 9427 | ada_is_string_type (struct type *type) |
14f9c5c9 | 9428 | { |
61ee279c | 9429 | type = ada_check_typedef (type); |
d2e4a39e | 9430 | if (type != NULL |
14f9c5c9 | 9431 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
9432 | && (ada_is_simple_array_type (type) |
9433 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
9434 | && ada_array_arity (type) == 1) |
9435 | { | |
9436 | struct type *elttype = ada_array_element_type (type, 1); | |
9437 | ||
9438 | return ada_is_character_type (elttype); | |
9439 | } | |
d2e4a39e | 9440 | else |
14f9c5c9 AS |
9441 | return 0; |
9442 | } | |
9443 | ||
5bf03f13 JB |
9444 | /* The compiler sometimes provides a parallel XVS type for a given |
9445 | PAD type. Normally, it is safe to follow the PAD type directly, | |
9446 | but older versions of the compiler have a bug that causes the offset | |
9447 | of its "F" field to be wrong. Following that field in that case | |
9448 | would lead to incorrect results, but this can be worked around | |
9449 | by ignoring the PAD type and using the associated XVS type instead. | |
9450 | ||
9451 | Set to True if the debugger should trust the contents of PAD types. | |
9452 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
9453 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
9454 | |
9455 | /* True if TYPE is a struct type introduced by the compiler to force the | |
9456 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 9457 | distinctive name. */ |
14f9c5c9 AS |
9458 | |
9459 | int | |
ebf56fd3 | 9460 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 9461 | { |
61ee279c | 9462 | type = ada_check_typedef (type); |
714e53ab | 9463 | |
5bf03f13 | 9464 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
9465 | return 0; |
9466 | ||
14f9c5c9 | 9467 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
9468 | && TYPE_NFIELDS (type) == 1 |
9469 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
9470 | } |
9471 | ||
9472 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 9473 | the parallel type. */ |
14f9c5c9 | 9474 | |
d2e4a39e AS |
9475 | struct type * |
9476 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 9477 | { |
d2e4a39e AS |
9478 | struct type *real_type_namer; |
9479 | struct type *raw_real_type; | |
14f9c5c9 AS |
9480 | |
9481 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
9482 | return raw_type; | |
9483 | ||
284614f0 JB |
9484 | if (ada_is_aligner_type (raw_type)) |
9485 | /* The encoding specifies that we should always use the aligner type. | |
9486 | So, even if this aligner type has an associated XVS type, we should | |
9487 | simply ignore it. | |
9488 | ||
9489 | According to the compiler gurus, an XVS type parallel to an aligner | |
9490 | type may exist because of a stabs limitation. In stabs, aligner | |
9491 | types are empty because the field has a variable-sized type, and | |
9492 | thus cannot actually be used as an aligner type. As a result, | |
9493 | we need the associated parallel XVS type to decode the type. | |
9494 | Since the policy in the compiler is to not change the internal | |
9495 | representation based on the debugging info format, we sometimes | |
9496 | end up having a redundant XVS type parallel to the aligner type. */ | |
9497 | return raw_type; | |
9498 | ||
14f9c5c9 | 9499 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 9500 | if (real_type_namer == NULL |
14f9c5c9 AS |
9501 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
9502 | || TYPE_NFIELDS (real_type_namer) != 1) | |
9503 | return raw_type; | |
9504 | ||
f80d3ff2 JB |
9505 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
9506 | { | |
9507 | /* This is an older encoding form where the base type needs to be | |
9508 | looked up by name. We prefer the newer enconding because it is | |
9509 | more efficient. */ | |
9510 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
9511 | if (raw_real_type == NULL) | |
9512 | return raw_type; | |
9513 | else | |
9514 | return raw_real_type; | |
9515 | } | |
9516 | ||
9517 | /* The field in our XVS type is a reference to the base type. */ | |
9518 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 9519 | } |
14f9c5c9 | 9520 | |
4c4b4cd2 | 9521 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 9522 | |
d2e4a39e AS |
9523 | struct type * |
9524 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
9525 | { |
9526 | if (ada_is_aligner_type (type)) | |
9527 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
9528 | else | |
9529 | return ada_get_base_type (type); | |
9530 | } | |
9531 | ||
9532 | ||
9533 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 9534 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 9535 | |
fc1a4b47 AC |
9536 | const gdb_byte * |
9537 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 9538 | { |
d2e4a39e | 9539 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 9540 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
9541 | valaddr + |
9542 | TYPE_FIELD_BITPOS (type, | |
9543 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
9544 | else |
9545 | return valaddr; | |
9546 | } | |
9547 | ||
4c4b4cd2 PH |
9548 | |
9549 | ||
14f9c5c9 | 9550 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 9551 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
9552 | const char * |
9553 | ada_enum_name (const char *name) | |
14f9c5c9 | 9554 | { |
4c4b4cd2 PH |
9555 | static char *result; |
9556 | static size_t result_len = 0; | |
e6a959d6 | 9557 | const char *tmp; |
14f9c5c9 | 9558 | |
4c4b4cd2 PH |
9559 | /* First, unqualify the enumeration name: |
9560 | 1. Search for the last '.' character. If we find one, then skip | |
177b42fe | 9561 | all the preceding characters, the unqualified name starts |
76a01679 | 9562 | right after that dot. |
4c4b4cd2 | 9563 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
9564 | translates dots into "__". Search forward for double underscores, |
9565 | but stop searching when we hit an overloading suffix, which is | |
9566 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 9567 | |
c3e5cd34 PH |
9568 | tmp = strrchr (name, '.'); |
9569 | if (tmp != NULL) | |
4c4b4cd2 PH |
9570 | name = tmp + 1; |
9571 | else | |
14f9c5c9 | 9572 | { |
4c4b4cd2 PH |
9573 | while ((tmp = strstr (name, "__")) != NULL) |
9574 | { | |
9575 | if (isdigit (tmp[2])) | |
9576 | break; | |
9577 | else | |
9578 | name = tmp + 2; | |
9579 | } | |
14f9c5c9 AS |
9580 | } |
9581 | ||
9582 | if (name[0] == 'Q') | |
9583 | { | |
14f9c5c9 | 9584 | int v; |
5b4ee69b | 9585 | |
14f9c5c9 | 9586 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
9587 | { |
9588 | if (sscanf (name + 2, "%x", &v) != 1) | |
9589 | return name; | |
9590 | } | |
14f9c5c9 | 9591 | else |
4c4b4cd2 | 9592 | return name; |
14f9c5c9 | 9593 | |
4c4b4cd2 | 9594 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 9595 | if (isascii (v) && isprint (v)) |
88c15c34 | 9596 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 9597 | else if (name[1] == 'U') |
88c15c34 | 9598 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 9599 | else |
88c15c34 | 9600 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
9601 | |
9602 | return result; | |
9603 | } | |
d2e4a39e | 9604 | else |
4c4b4cd2 | 9605 | { |
c3e5cd34 PH |
9606 | tmp = strstr (name, "__"); |
9607 | if (tmp == NULL) | |
9608 | tmp = strstr (name, "$"); | |
9609 | if (tmp != NULL) | |
4c4b4cd2 PH |
9610 | { |
9611 | GROW_VECT (result, result_len, tmp - name + 1); | |
9612 | strncpy (result, name, tmp - name); | |
9613 | result[tmp - name] = '\0'; | |
9614 | return result; | |
9615 | } | |
9616 | ||
9617 | return name; | |
9618 | } | |
14f9c5c9 AS |
9619 | } |
9620 | ||
14f9c5c9 AS |
9621 | /* Evaluate the subexpression of EXP starting at *POS as for |
9622 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 9623 | expression. */ |
14f9c5c9 | 9624 | |
d2e4a39e AS |
9625 | static struct value * |
9626 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 9627 | { |
4b27a620 | 9628 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
9629 | } |
9630 | ||
9631 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 9632 | value it wraps. */ |
14f9c5c9 | 9633 | |
d2e4a39e AS |
9634 | static struct value * |
9635 | unwrap_value (struct value *val) | |
14f9c5c9 | 9636 | { |
df407dfe | 9637 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 9638 | |
14f9c5c9 AS |
9639 | if (ada_is_aligner_type (type)) |
9640 | { | |
de4d072f | 9641 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 9642 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 9643 | |
14f9c5c9 | 9644 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 9645 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
9646 | |
9647 | return unwrap_value (v); | |
9648 | } | |
d2e4a39e | 9649 | else |
14f9c5c9 | 9650 | { |
d2e4a39e | 9651 | struct type *raw_real_type = |
61ee279c | 9652 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 9653 | |
5bf03f13 JB |
9654 | /* If there is no parallel XVS or XVE type, then the value is |
9655 | already unwrapped. Return it without further modification. */ | |
9656 | if ((type == raw_real_type) | |
9657 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
9658 | return val; | |
14f9c5c9 | 9659 | |
d2e4a39e | 9660 | return |
4c4b4cd2 PH |
9661 | coerce_unspec_val_to_type |
9662 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 9663 | value_address (val), |
1ed6ede0 | 9664 | NULL, 1)); |
14f9c5c9 AS |
9665 | } |
9666 | } | |
d2e4a39e AS |
9667 | |
9668 | static struct value * | |
50eff16b | 9669 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 9670 | { |
50eff16b UW |
9671 | struct value *scale = ada_scaling_factor (value_type (arg)); |
9672 | arg = value_cast (value_type (scale), arg); | |
14f9c5c9 | 9673 | |
50eff16b UW |
9674 | arg = value_binop (arg, scale, BINOP_MUL); |
9675 | return value_cast (type, arg); | |
14f9c5c9 AS |
9676 | } |
9677 | ||
d2e4a39e | 9678 | static struct value * |
50eff16b | 9679 | cast_to_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 9680 | { |
50eff16b UW |
9681 | if (type == value_type (arg)) |
9682 | return arg; | |
5b4ee69b | 9683 | |
50eff16b UW |
9684 | struct value *scale = ada_scaling_factor (type); |
9685 | if (ada_is_fixed_point_type (value_type (arg))) | |
9686 | arg = cast_from_fixed (value_type (scale), arg); | |
9687 | else | |
9688 | arg = value_cast (value_type (scale), arg); | |
9689 | ||
9690 | arg = value_binop (arg, scale, BINOP_DIV); | |
9691 | return value_cast (type, arg); | |
14f9c5c9 AS |
9692 | } |
9693 | ||
d99dcf51 JB |
9694 | /* Given two array types T1 and T2, return nonzero iff both arrays |
9695 | contain the same number of elements. */ | |
9696 | ||
9697 | static int | |
9698 | ada_same_array_size_p (struct type *t1, struct type *t2) | |
9699 | { | |
9700 | LONGEST lo1, hi1, lo2, hi2; | |
9701 | ||
9702 | /* Get the array bounds in order to verify that the size of | |
9703 | the two arrays match. */ | |
9704 | if (!get_array_bounds (t1, &lo1, &hi1) | |
9705 | || !get_array_bounds (t2, &lo2, &hi2)) | |
9706 | error (_("unable to determine array bounds")); | |
9707 | ||
9708 | /* To make things easier for size comparison, normalize a bit | |
9709 | the case of empty arrays by making sure that the difference | |
9710 | between upper bound and lower bound is always -1. */ | |
9711 | if (lo1 > hi1) | |
9712 | hi1 = lo1 - 1; | |
9713 | if (lo2 > hi2) | |
9714 | hi2 = lo2 - 1; | |
9715 | ||
9716 | return (hi1 - lo1 == hi2 - lo2); | |
9717 | } | |
9718 | ||
9719 | /* Assuming that VAL is an array of integrals, and TYPE represents | |
9720 | an array with the same number of elements, but with wider integral | |
9721 | elements, return an array "casted" to TYPE. In practice, this | |
9722 | means that the returned array is built by casting each element | |
9723 | of the original array into TYPE's (wider) element type. */ | |
9724 | ||
9725 | static struct value * | |
9726 | ada_promote_array_of_integrals (struct type *type, struct value *val) | |
9727 | { | |
9728 | struct type *elt_type = TYPE_TARGET_TYPE (type); | |
9729 | LONGEST lo, hi; | |
9730 | struct value *res; | |
9731 | LONGEST i; | |
9732 | ||
9733 | /* Verify that both val and type are arrays of scalars, and | |
9734 | that the size of val's elements is smaller than the size | |
9735 | of type's element. */ | |
9736 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY); | |
9737 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type))); | |
9738 | gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY); | |
9739 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val)))); | |
9740 | gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type)) | |
9741 | > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val)))); | |
9742 | ||
9743 | if (!get_array_bounds (type, &lo, &hi)) | |
9744 | error (_("unable to determine array bounds")); | |
9745 | ||
9746 | res = allocate_value (type); | |
9747 | ||
9748 | /* Promote each array element. */ | |
9749 | for (i = 0; i < hi - lo + 1; i++) | |
9750 | { | |
9751 | struct value *elt = value_cast (elt_type, value_subscript (val, lo + i)); | |
9752 | ||
9753 | memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)), | |
9754 | value_contents_all (elt), TYPE_LENGTH (elt_type)); | |
9755 | } | |
9756 | ||
9757 | return res; | |
9758 | } | |
9759 | ||
4c4b4cd2 PH |
9760 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
9761 | return the converted value. */ | |
9762 | ||
d2e4a39e AS |
9763 | static struct value * |
9764 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 9765 | { |
df407dfe | 9766 | struct type *type2 = value_type (val); |
5b4ee69b | 9767 | |
14f9c5c9 AS |
9768 | if (type == type2) |
9769 | return val; | |
9770 | ||
61ee279c PH |
9771 | type2 = ada_check_typedef (type2); |
9772 | type = ada_check_typedef (type); | |
14f9c5c9 | 9773 | |
d2e4a39e AS |
9774 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
9775 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
9776 | { |
9777 | val = ada_value_ind (val); | |
df407dfe | 9778 | type2 = value_type (val); |
14f9c5c9 AS |
9779 | } |
9780 | ||
d2e4a39e | 9781 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
9782 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
9783 | { | |
d99dcf51 JB |
9784 | if (!ada_same_array_size_p (type, type2)) |
9785 | error (_("cannot assign arrays of different length")); | |
9786 | ||
9787 | if (is_integral_type (TYPE_TARGET_TYPE (type)) | |
9788 | && is_integral_type (TYPE_TARGET_TYPE (type2)) | |
9789 | && TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9790 | < TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
9791 | { | |
9792 | /* Allow implicit promotion of the array elements to | |
9793 | a wider type. */ | |
9794 | return ada_promote_array_of_integrals (type, val); | |
9795 | } | |
9796 | ||
9797 | if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9798 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
323e0a4a | 9799 | error (_("Incompatible types in assignment")); |
04624583 | 9800 | deprecated_set_value_type (val, type); |
14f9c5c9 | 9801 | } |
d2e4a39e | 9802 | return val; |
14f9c5c9 AS |
9803 | } |
9804 | ||
4c4b4cd2 PH |
9805 | static struct value * |
9806 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
9807 | { | |
9808 | struct value *val; | |
9809 | struct type *type1, *type2; | |
9810 | LONGEST v, v1, v2; | |
9811 | ||
994b9211 AC |
9812 | arg1 = coerce_ref (arg1); |
9813 | arg2 = coerce_ref (arg2); | |
18af8284 JB |
9814 | type1 = get_base_type (ada_check_typedef (value_type (arg1))); |
9815 | type2 = get_base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 9816 | |
76a01679 JB |
9817 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
9818 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
9819 | return value_binop (arg1, arg2, op); |
9820 | ||
76a01679 | 9821 | switch (op) |
4c4b4cd2 PH |
9822 | { |
9823 | case BINOP_MOD: | |
9824 | case BINOP_DIV: | |
9825 | case BINOP_REM: | |
9826 | break; | |
9827 | default: | |
9828 | return value_binop (arg1, arg2, op); | |
9829 | } | |
9830 | ||
9831 | v2 = value_as_long (arg2); | |
9832 | if (v2 == 0) | |
323e0a4a | 9833 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
9834 | |
9835 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
9836 | return value_binop (arg1, arg2, op); | |
9837 | ||
9838 | v1 = value_as_long (arg1); | |
9839 | switch (op) | |
9840 | { | |
9841 | case BINOP_DIV: | |
9842 | v = v1 / v2; | |
76a01679 JB |
9843 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
9844 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
9845 | break; |
9846 | case BINOP_REM: | |
9847 | v = v1 % v2; | |
76a01679 JB |
9848 | if (v * v1 < 0) |
9849 | v -= v2; | |
4c4b4cd2 PH |
9850 | break; |
9851 | default: | |
9852 | /* Should not reach this point. */ | |
9853 | v = 0; | |
9854 | } | |
9855 | ||
9856 | val = allocate_value (type1); | |
990a07ab | 9857 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
9858 | TYPE_LENGTH (value_type (val)), |
9859 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
9860 | return val; |
9861 | } | |
9862 | ||
9863 | static int | |
9864 | ada_value_equal (struct value *arg1, struct value *arg2) | |
9865 | { | |
df407dfe AC |
9866 | if (ada_is_direct_array_type (value_type (arg1)) |
9867 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 9868 | { |
79e8fcaa JB |
9869 | struct type *arg1_type, *arg2_type; |
9870 | ||
f58b38bf JB |
9871 | /* Automatically dereference any array reference before |
9872 | we attempt to perform the comparison. */ | |
9873 | arg1 = ada_coerce_ref (arg1); | |
9874 | arg2 = ada_coerce_ref (arg2); | |
79e8fcaa | 9875 | |
4c4b4cd2 PH |
9876 | arg1 = ada_coerce_to_simple_array (arg1); |
9877 | arg2 = ada_coerce_to_simple_array (arg2); | |
79e8fcaa JB |
9878 | |
9879 | arg1_type = ada_check_typedef (value_type (arg1)); | |
9880 | arg2_type = ada_check_typedef (value_type (arg2)); | |
9881 | ||
9882 | if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY | |
9883 | || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 9884 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 9885 | /* FIXME: The following works only for types whose |
76a01679 JB |
9886 | representations use all bits (no padding or undefined bits) |
9887 | and do not have user-defined equality. */ | |
79e8fcaa JB |
9888 | return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type) |
9889 | && memcmp (value_contents (arg1), value_contents (arg2), | |
9890 | TYPE_LENGTH (arg1_type)) == 0); | |
4c4b4cd2 PH |
9891 | } |
9892 | return value_equal (arg1, arg2); | |
9893 | } | |
9894 | ||
52ce6436 PH |
9895 | /* Total number of component associations in the aggregate starting at |
9896 | index PC in EXP. Assumes that index PC is the start of an | |
0963b4bd | 9897 | OP_AGGREGATE. */ |
52ce6436 PH |
9898 | |
9899 | static int | |
9900 | num_component_specs (struct expression *exp, int pc) | |
9901 | { | |
9902 | int n, m, i; | |
5b4ee69b | 9903 | |
52ce6436 PH |
9904 | m = exp->elts[pc + 1].longconst; |
9905 | pc += 3; | |
9906 | n = 0; | |
9907 | for (i = 0; i < m; i += 1) | |
9908 | { | |
9909 | switch (exp->elts[pc].opcode) | |
9910 | { | |
9911 | default: | |
9912 | n += 1; | |
9913 | break; | |
9914 | case OP_CHOICES: | |
9915 | n += exp->elts[pc + 1].longconst; | |
9916 | break; | |
9917 | } | |
9918 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
9919 | } | |
9920 | return n; | |
9921 | } | |
9922 | ||
9923 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
9924 | component of LHS (a simple array or a record), updating *POS past | |
9925 | the expression, assuming that LHS is contained in CONTAINER. Does | |
9926 | not modify the inferior's memory, nor does it modify LHS (unless | |
9927 | LHS == CONTAINER). */ | |
9928 | ||
9929 | static void | |
9930 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
9931 | struct expression *exp, int *pos) | |
9932 | { | |
9933 | struct value *mark = value_mark (); | |
9934 | struct value *elt; | |
0e2da9f0 | 9935 | struct type *lhs_type = check_typedef (value_type (lhs)); |
5b4ee69b | 9936 | |
0e2da9f0 | 9937 | if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY) |
52ce6436 | 9938 | { |
22601c15 UW |
9939 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
9940 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 9941 | |
52ce6436 PH |
9942 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
9943 | } | |
9944 | else | |
9945 | { | |
9946 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
c48db5ca | 9947 | elt = ada_to_fixed_value (elt); |
52ce6436 PH |
9948 | } |
9949 | ||
9950 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
9951 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
9952 | else | |
9953 | value_assign_to_component (container, elt, | |
9954 | ada_evaluate_subexp (NULL, exp, pos, | |
9955 | EVAL_NORMAL)); | |
9956 | ||
9957 | value_free_to_mark (mark); | |
9958 | } | |
9959 | ||
9960 | /* Assuming that LHS represents an lvalue having a record or array | |
9961 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
9962 | of that aggregate's value to LHS, advancing *POS past the | |
9963 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
9964 | lvalue containing LHS (possibly LHS itself). Does not modify | |
9965 | the inferior's memory, nor does it modify the contents of | |
0963b4bd | 9966 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ |
52ce6436 PH |
9967 | |
9968 | static struct value * | |
9969 | assign_aggregate (struct value *container, | |
9970 | struct value *lhs, struct expression *exp, | |
9971 | int *pos, enum noside noside) | |
9972 | { | |
9973 | struct type *lhs_type; | |
9974 | int n = exp->elts[*pos+1].longconst; | |
9975 | LONGEST low_index, high_index; | |
9976 | int num_specs; | |
9977 | LONGEST *indices; | |
9978 | int max_indices, num_indices; | |
52ce6436 | 9979 | int i; |
52ce6436 PH |
9980 | |
9981 | *pos += 3; | |
9982 | if (noside != EVAL_NORMAL) | |
9983 | { | |
52ce6436 PH |
9984 | for (i = 0; i < n; i += 1) |
9985 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9986 | return container; | |
9987 | } | |
9988 | ||
9989 | container = ada_coerce_ref (container); | |
9990 | if (ada_is_direct_array_type (value_type (container))) | |
9991 | container = ada_coerce_to_simple_array (container); | |
9992 | lhs = ada_coerce_ref (lhs); | |
9993 | if (!deprecated_value_modifiable (lhs)) | |
9994 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
9995 | ||
0e2da9f0 | 9996 | lhs_type = check_typedef (value_type (lhs)); |
52ce6436 PH |
9997 | if (ada_is_direct_array_type (lhs_type)) |
9998 | { | |
9999 | lhs = ada_coerce_to_simple_array (lhs); | |
0e2da9f0 | 10000 | lhs_type = check_typedef (value_type (lhs)); |
52ce6436 PH |
10001 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); |
10002 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
52ce6436 PH |
10003 | } |
10004 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
10005 | { | |
10006 | low_index = 0; | |
10007 | high_index = num_visible_fields (lhs_type) - 1; | |
52ce6436 PH |
10008 | } |
10009 | else | |
10010 | error (_("Left-hand side must be array or record.")); | |
10011 | ||
10012 | num_specs = num_component_specs (exp, *pos - 3); | |
10013 | max_indices = 4 * num_specs + 4; | |
8d749320 | 10014 | indices = XALLOCAVEC (LONGEST, max_indices); |
52ce6436 PH |
10015 | indices[0] = indices[1] = low_index - 1; |
10016 | indices[2] = indices[3] = high_index + 1; | |
10017 | num_indices = 4; | |
10018 | ||
10019 | for (i = 0; i < n; i += 1) | |
10020 | { | |
10021 | switch (exp->elts[*pos].opcode) | |
10022 | { | |
1fbf5ada JB |
10023 | case OP_CHOICES: |
10024 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
10025 | &num_indices, max_indices, | |
10026 | low_index, high_index); | |
10027 | break; | |
10028 | case OP_POSITIONAL: | |
10029 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
52ce6436 PH |
10030 | &num_indices, max_indices, |
10031 | low_index, high_index); | |
1fbf5ada JB |
10032 | break; |
10033 | case OP_OTHERS: | |
10034 | if (i != n-1) | |
10035 | error (_("Misplaced 'others' clause")); | |
10036 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
10037 | num_indices, low_index, high_index); | |
10038 | break; | |
10039 | default: | |
10040 | error (_("Internal error: bad aggregate clause")); | |
52ce6436 PH |
10041 | } |
10042 | } | |
10043 | ||
10044 | return container; | |
10045 | } | |
10046 | ||
10047 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
10048 | construct at *POS, updating *POS past the construct, given that | |
10049 | the positions are relative to lower bound LOW, where HIGH is the | |
10050 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
10051 | updating *NUM_INDICES as needed. CONTAINER is as for | |
0963b4bd | 10052 | assign_aggregate. */ |
52ce6436 PH |
10053 | static void |
10054 | aggregate_assign_positional (struct value *container, | |
10055 | struct value *lhs, struct expression *exp, | |
10056 | int *pos, LONGEST *indices, int *num_indices, | |
10057 | int max_indices, LONGEST low, LONGEST high) | |
10058 | { | |
10059 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
10060 | ||
10061 | if (ind - 1 == high) | |
e1d5a0d2 | 10062 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
10063 | if (ind <= high) |
10064 | { | |
10065 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
10066 | *pos += 3; | |
10067 | assign_component (container, lhs, ind, exp, pos); | |
10068 | } | |
10069 | else | |
10070 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
10071 | } | |
10072 | ||
10073 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
10074 | construct at *POS, updating *POS past the construct, given that | |
10075 | the allowable indices are LOW..HIGH. Record the indices assigned | |
10076 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
0963b4bd | 10077 | needed. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
10078 | static void |
10079 | aggregate_assign_from_choices (struct value *container, | |
10080 | struct value *lhs, struct expression *exp, | |
10081 | int *pos, LONGEST *indices, int *num_indices, | |
10082 | int max_indices, LONGEST low, LONGEST high) | |
10083 | { | |
10084 | int j; | |
10085 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
10086 | int choice_pos, expr_pc; | |
10087 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
10088 | ||
10089 | choice_pos = *pos += 3; | |
10090 | ||
10091 | for (j = 0; j < n_choices; j += 1) | |
10092 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
10093 | expr_pc = *pos; | |
10094 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
10095 | ||
10096 | for (j = 0; j < n_choices; j += 1) | |
10097 | { | |
10098 | LONGEST lower, upper; | |
10099 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 10100 | |
52ce6436 PH |
10101 | if (op == OP_DISCRETE_RANGE) |
10102 | { | |
10103 | choice_pos += 1; | |
10104 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
10105 | EVAL_NORMAL)); | |
10106 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
10107 | EVAL_NORMAL)); | |
10108 | } | |
10109 | else if (is_array) | |
10110 | { | |
10111 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
10112 | EVAL_NORMAL)); | |
10113 | upper = lower; | |
10114 | } | |
10115 | else | |
10116 | { | |
10117 | int ind; | |
0d5cff50 | 10118 | const char *name; |
5b4ee69b | 10119 | |
52ce6436 PH |
10120 | switch (op) |
10121 | { | |
10122 | case OP_NAME: | |
10123 | name = &exp->elts[choice_pos + 2].string; | |
10124 | break; | |
10125 | case OP_VAR_VALUE: | |
10126 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
10127 | break; | |
10128 | default: | |
10129 | error (_("Invalid record component association.")); | |
10130 | } | |
10131 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
10132 | ind = 0; | |
10133 | if (! find_struct_field (name, value_type (lhs), 0, | |
10134 | NULL, NULL, NULL, NULL, &ind)) | |
10135 | error (_("Unknown component name: %s."), name); | |
10136 | lower = upper = ind; | |
10137 | } | |
10138 | ||
10139 | if (lower <= upper && (lower < low || upper > high)) | |
10140 | error (_("Index in component association out of bounds.")); | |
10141 | ||
10142 | add_component_interval (lower, upper, indices, num_indices, | |
10143 | max_indices); | |
10144 | while (lower <= upper) | |
10145 | { | |
10146 | int pos1; | |
5b4ee69b | 10147 | |
52ce6436 PH |
10148 | pos1 = expr_pc; |
10149 | assign_component (container, lhs, lower, exp, &pos1); | |
10150 | lower += 1; | |
10151 | } | |
10152 | } | |
10153 | } | |
10154 | ||
10155 | /* Assign the value of the expression in the OP_OTHERS construct in | |
10156 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
10157 | have not been previously assigned. The index intervals already assigned | |
10158 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
0963b4bd | 10159 | OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
10160 | static void |
10161 | aggregate_assign_others (struct value *container, | |
10162 | struct value *lhs, struct expression *exp, | |
10163 | int *pos, LONGEST *indices, int num_indices, | |
10164 | LONGEST low, LONGEST high) | |
10165 | { | |
10166 | int i; | |
5ce64950 | 10167 | int expr_pc = *pos + 1; |
52ce6436 PH |
10168 | |
10169 | for (i = 0; i < num_indices - 2; i += 2) | |
10170 | { | |
10171 | LONGEST ind; | |
5b4ee69b | 10172 | |
52ce6436 PH |
10173 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
10174 | { | |
5ce64950 | 10175 | int localpos; |
5b4ee69b | 10176 | |
5ce64950 MS |
10177 | localpos = expr_pc; |
10178 | assign_component (container, lhs, ind, exp, &localpos); | |
52ce6436 PH |
10179 | } |
10180 | } | |
10181 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
10182 | } | |
10183 | ||
10184 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
10185 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
10186 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
10187 | MAX_SIZE. The resulting intervals do not overlap. */ | |
10188 | static void | |
10189 | add_component_interval (LONGEST low, LONGEST high, | |
10190 | LONGEST* indices, int *size, int max_size) | |
10191 | { | |
10192 | int i, j; | |
5b4ee69b | 10193 | |
52ce6436 PH |
10194 | for (i = 0; i < *size; i += 2) { |
10195 | if (high >= indices[i] && low <= indices[i + 1]) | |
10196 | { | |
10197 | int kh; | |
5b4ee69b | 10198 | |
52ce6436 PH |
10199 | for (kh = i + 2; kh < *size; kh += 2) |
10200 | if (high < indices[kh]) | |
10201 | break; | |
10202 | if (low < indices[i]) | |
10203 | indices[i] = low; | |
10204 | indices[i + 1] = indices[kh - 1]; | |
10205 | if (high > indices[i + 1]) | |
10206 | indices[i + 1] = high; | |
10207 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
10208 | *size -= kh - i - 2; | |
10209 | return; | |
10210 | } | |
10211 | else if (high < indices[i]) | |
10212 | break; | |
10213 | } | |
10214 | ||
10215 | if (*size == max_size) | |
10216 | error (_("Internal error: miscounted aggregate components.")); | |
10217 | *size += 2; | |
10218 | for (j = *size-1; j >= i+2; j -= 1) | |
10219 | indices[j] = indices[j - 2]; | |
10220 | indices[i] = low; | |
10221 | indices[i + 1] = high; | |
10222 | } | |
10223 | ||
6e48bd2c JB |
10224 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
10225 | is different. */ | |
10226 | ||
10227 | static struct value * | |
b7e22850 | 10228 | ada_value_cast (struct type *type, struct value *arg2) |
6e48bd2c JB |
10229 | { |
10230 | if (type == ada_check_typedef (value_type (arg2))) | |
10231 | return arg2; | |
10232 | ||
10233 | if (ada_is_fixed_point_type (type)) | |
95f39a5b | 10234 | return cast_to_fixed (type, arg2); |
6e48bd2c JB |
10235 | |
10236 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 10237 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
10238 | |
10239 | return value_cast (type, arg2); | |
10240 | } | |
10241 | ||
284614f0 JB |
10242 | /* Evaluating Ada expressions, and printing their result. |
10243 | ------------------------------------------------------ | |
10244 | ||
21649b50 JB |
10245 | 1. Introduction: |
10246 | ---------------- | |
10247 | ||
284614f0 JB |
10248 | We usually evaluate an Ada expression in order to print its value. |
10249 | We also evaluate an expression in order to print its type, which | |
10250 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
10251 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
10252 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
10253 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
10254 | similar. | |
10255 | ||
10256 | Evaluating expressions is a little more complicated for Ada entities | |
10257 | than it is for entities in languages such as C. The main reason for | |
10258 | this is that Ada provides types whose definition might be dynamic. | |
10259 | One example of such types is variant records. Or another example | |
10260 | would be an array whose bounds can only be known at run time. | |
10261 | ||
10262 | The following description is a general guide as to what should be | |
10263 | done (and what should NOT be done) in order to evaluate an expression | |
10264 | involving such types, and when. This does not cover how the semantic | |
10265 | information is encoded by GNAT as this is covered separatly. For the | |
10266 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
10267 | in the GNAT sources. | |
10268 | ||
10269 | Ideally, we should embed each part of this description next to its | |
10270 | associated code. Unfortunately, the amount of code is so vast right | |
10271 | now that it's hard to see whether the code handling a particular | |
10272 | situation might be duplicated or not. One day, when the code is | |
10273 | cleaned up, this guide might become redundant with the comments | |
10274 | inserted in the code, and we might want to remove it. | |
10275 | ||
21649b50 JB |
10276 | 2. ``Fixing'' an Entity, the Simple Case: |
10277 | ----------------------------------------- | |
10278 | ||
284614f0 JB |
10279 | When evaluating Ada expressions, the tricky issue is that they may |
10280 | reference entities whose type contents and size are not statically | |
10281 | known. Consider for instance a variant record: | |
10282 | ||
10283 | type Rec (Empty : Boolean := True) is record | |
10284 | case Empty is | |
10285 | when True => null; | |
10286 | when False => Value : Integer; | |
10287 | end case; | |
10288 | end record; | |
10289 | Yes : Rec := (Empty => False, Value => 1); | |
10290 | No : Rec := (empty => True); | |
10291 | ||
10292 | The size and contents of that record depends on the value of the | |
10293 | descriminant (Rec.Empty). At this point, neither the debugging | |
10294 | information nor the associated type structure in GDB are able to | |
10295 | express such dynamic types. So what the debugger does is to create | |
10296 | "fixed" versions of the type that applies to the specific object. | |
10297 | We also informally refer to this opperation as "fixing" an object, | |
10298 | which means creating its associated fixed type. | |
10299 | ||
10300 | Example: when printing the value of variable "Yes" above, its fixed | |
10301 | type would look like this: | |
10302 | ||
10303 | type Rec is record | |
10304 | Empty : Boolean; | |
10305 | Value : Integer; | |
10306 | end record; | |
10307 | ||
10308 | On the other hand, if we printed the value of "No", its fixed type | |
10309 | would become: | |
10310 | ||
10311 | type Rec is record | |
10312 | Empty : Boolean; | |
10313 | end record; | |
10314 | ||
10315 | Things become a little more complicated when trying to fix an entity | |
10316 | with a dynamic type that directly contains another dynamic type, | |
10317 | such as an array of variant records, for instance. There are | |
10318 | two possible cases: Arrays, and records. | |
10319 | ||
21649b50 JB |
10320 | 3. ``Fixing'' Arrays: |
10321 | --------------------- | |
10322 | ||
10323 | The type structure in GDB describes an array in terms of its bounds, | |
10324 | and the type of its elements. By design, all elements in the array | |
10325 | have the same type and we cannot represent an array of variant elements | |
10326 | using the current type structure in GDB. When fixing an array, | |
10327 | we cannot fix the array element, as we would potentially need one | |
10328 | fixed type per element of the array. As a result, the best we can do | |
10329 | when fixing an array is to produce an array whose bounds and size | |
10330 | are correct (allowing us to read it from memory), but without having | |
10331 | touched its element type. Fixing each element will be done later, | |
10332 | when (if) necessary. | |
10333 | ||
10334 | Arrays are a little simpler to handle than records, because the same | |
10335 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 10336 | the amount of space actually used by each element differs from element |
21649b50 | 10337 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
10338 | |
10339 | type Rec_Array is array (1 .. 2) of Rec; | |
10340 | ||
1b536f04 JB |
10341 | The actual amount of memory occupied by each element might be different |
10342 | from element to element, depending on the value of their discriminant. | |
21649b50 | 10343 | But the amount of space reserved for each element in the array remains |
1b536f04 | 10344 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
10345 | the debugging information available, from which we can then determine |
10346 | the array size (we multiply the number of elements of the array by | |
10347 | the size of each element). | |
10348 | ||
10349 | The simplest case is when we have an array of a constrained element | |
10350 | type. For instance, consider the following type declarations: | |
10351 | ||
10352 | type Bounded_String (Max_Size : Integer) is | |
10353 | Length : Integer; | |
10354 | Buffer : String (1 .. Max_Size); | |
10355 | end record; | |
10356 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
10357 | ||
10358 | In this case, the compiler describes the array as an array of | |
10359 | variable-size elements (identified by its XVS suffix) for which | |
10360 | the size can be read in the parallel XVZ variable. | |
10361 | ||
10362 | In the case of an array of an unconstrained element type, the compiler | |
10363 | wraps the array element inside a private PAD type. This type should not | |
10364 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
10365 | that we also use the adjective "aligner" in our code to designate |
10366 | these wrapper types. | |
10367 | ||
1b536f04 | 10368 | In some cases, the size allocated for each element is statically |
21649b50 JB |
10369 | known. In that case, the PAD type already has the correct size, |
10370 | and the array element should remain unfixed. | |
10371 | ||
10372 | But there are cases when this size is not statically known. | |
10373 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
10374 | |
10375 | type Dynamic is array (1 .. Five) of Integer; | |
10376 | type Wrapper (Has_Length : Boolean := False) is record | |
10377 | Data : Dynamic; | |
10378 | case Has_Length is | |
10379 | when True => Length : Integer; | |
10380 | when False => null; | |
10381 | end case; | |
10382 | end record; | |
10383 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
10384 | ||
10385 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
10386 | Data => (others => 17), | |
10387 | Length => 1)); | |
10388 | ||
10389 | ||
10390 | The debugging info would describe variable Hello as being an | |
10391 | array of a PAD type. The size of that PAD type is not statically | |
10392 | known, but can be determined using a parallel XVZ variable. | |
10393 | In that case, a copy of the PAD type with the correct size should | |
10394 | be used for the fixed array. | |
10395 | ||
21649b50 JB |
10396 | 3. ``Fixing'' record type objects: |
10397 | ---------------------------------- | |
10398 | ||
10399 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
10400 | record types. In this case, in order to compute the associated |
10401 | fixed type, we need to determine the size and offset of each of | |
10402 | its components. This, in turn, requires us to compute the fixed | |
10403 | type of each of these components. | |
10404 | ||
10405 | Consider for instance the example: | |
10406 | ||
10407 | type Bounded_String (Max_Size : Natural) is record | |
10408 | Str : String (1 .. Max_Size); | |
10409 | Length : Natural; | |
10410 | end record; | |
10411 | My_String : Bounded_String (Max_Size => 10); | |
10412 | ||
10413 | In that case, the position of field "Length" depends on the size | |
10414 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 10415 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
10416 | we need to fix the type of field Str. Therefore, fixing a variant |
10417 | record requires us to fix each of its components. | |
10418 | ||
10419 | However, if a component does not have a dynamic size, the component | |
10420 | should not be fixed. In particular, fields that use a PAD type | |
10421 | should not fixed. Here is an example where this might happen | |
10422 | (assuming type Rec above): | |
10423 | ||
10424 | type Container (Big : Boolean) is record | |
10425 | First : Rec; | |
10426 | After : Integer; | |
10427 | case Big is | |
10428 | when True => Another : Integer; | |
10429 | when False => null; | |
10430 | end case; | |
10431 | end record; | |
10432 | My_Container : Container := (Big => False, | |
10433 | First => (Empty => True), | |
10434 | After => 42); | |
10435 | ||
10436 | In that example, the compiler creates a PAD type for component First, | |
10437 | whose size is constant, and then positions the component After just | |
10438 | right after it. The offset of component After is therefore constant | |
10439 | in this case. | |
10440 | ||
10441 | The debugger computes the position of each field based on an algorithm | |
10442 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
10443 | preceding it. Let's now imagine that the user is trying to print |
10444 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
10445 | end up computing the offset of field After based on the size of the |
10446 | fixed version of field First. And since in our example First has | |
10447 | only one actual field, the size of the fixed type is actually smaller | |
10448 | than the amount of space allocated to that field, and thus we would | |
10449 | compute the wrong offset of field After. | |
10450 | ||
21649b50 JB |
10451 | To make things more complicated, we need to watch out for dynamic |
10452 | components of variant records (identified by the ___XVL suffix in | |
10453 | the component name). Even if the target type is a PAD type, the size | |
10454 | of that type might not be statically known. So the PAD type needs | |
10455 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
10456 | we might end up with the wrong size for our component. This can be | |
10457 | observed with the following type declarations: | |
284614f0 JB |
10458 | |
10459 | type Octal is new Integer range 0 .. 7; | |
10460 | type Octal_Array is array (Positive range <>) of Octal; | |
10461 | pragma Pack (Octal_Array); | |
10462 | ||
10463 | type Octal_Buffer (Size : Positive) is record | |
10464 | Buffer : Octal_Array (1 .. Size); | |
10465 | Length : Integer; | |
10466 | end record; | |
10467 | ||
10468 | In that case, Buffer is a PAD type whose size is unset and needs | |
10469 | to be computed by fixing the unwrapped type. | |
10470 | ||
21649b50 JB |
10471 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
10472 | ---------------------------------------------------------- | |
10473 | ||
10474 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
10475 | thus far, be actually fixed? |
10476 | ||
10477 | The answer is: Only when referencing that element. For instance | |
10478 | when selecting one component of a record, this specific component | |
10479 | should be fixed at that point in time. Or when printing the value | |
10480 | of a record, each component should be fixed before its value gets | |
10481 | printed. Similarly for arrays, the element of the array should be | |
10482 | fixed when printing each element of the array, or when extracting | |
10483 | one element out of that array. On the other hand, fixing should | |
10484 | not be performed on the elements when taking a slice of an array! | |
10485 | ||
31432a67 | 10486 | Note that one of the side effects of miscomputing the offset and |
284614f0 JB |
10487 | size of each field is that we end up also miscomputing the size |
10488 | of the containing type. This can have adverse results when computing | |
10489 | the value of an entity. GDB fetches the value of an entity based | |
10490 | on the size of its type, and thus a wrong size causes GDB to fetch | |
10491 | the wrong amount of memory. In the case where the computed size is | |
10492 | too small, GDB fetches too little data to print the value of our | |
31432a67 | 10493 | entity. Results in this case are unpredictable, as we usually read |
284614f0 JB |
10494 | past the buffer containing the data =:-o. */ |
10495 | ||
ced9779b JB |
10496 | /* Evaluate a subexpression of EXP, at index *POS, and return a value |
10497 | for that subexpression cast to TO_TYPE. Advance *POS over the | |
10498 | subexpression. */ | |
10499 | ||
10500 | static value * | |
10501 | ada_evaluate_subexp_for_cast (expression *exp, int *pos, | |
10502 | enum noside noside, struct type *to_type) | |
10503 | { | |
10504 | int pc = *pos; | |
10505 | ||
10506 | if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE | |
10507 | || exp->elts[pc].opcode == OP_VAR_VALUE) | |
10508 | { | |
10509 | (*pos) += 4; | |
10510 | ||
10511 | value *val; | |
10512 | if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE) | |
10513 | { | |
10514 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10515 | return value_zero (to_type, not_lval); | |
10516 | ||
10517 | val = evaluate_var_msym_value (noside, | |
10518 | exp->elts[pc + 1].objfile, | |
10519 | exp->elts[pc + 2].msymbol); | |
10520 | } | |
10521 | else | |
10522 | val = evaluate_var_value (noside, | |
10523 | exp->elts[pc + 1].block, | |
10524 | exp->elts[pc + 2].symbol); | |
10525 | ||
10526 | if (noside == EVAL_SKIP) | |
10527 | return eval_skip_value (exp); | |
10528 | ||
10529 | val = ada_value_cast (to_type, val); | |
10530 | ||
10531 | /* Follow the Ada language semantics that do not allow taking | |
10532 | an address of the result of a cast (view conversion in Ada). */ | |
10533 | if (VALUE_LVAL (val) == lval_memory) | |
10534 | { | |
10535 | if (value_lazy (val)) | |
10536 | value_fetch_lazy (val); | |
10537 | VALUE_LVAL (val) = not_lval; | |
10538 | } | |
10539 | return val; | |
10540 | } | |
10541 | ||
10542 | value *val = evaluate_subexp (to_type, exp, pos, noside); | |
10543 | if (noside == EVAL_SKIP) | |
10544 | return eval_skip_value (exp); | |
10545 | return ada_value_cast (to_type, val); | |
10546 | } | |
10547 | ||
284614f0 JB |
10548 | /* Implement the evaluate_exp routine in the exp_descriptor structure |
10549 | for the Ada language. */ | |
10550 | ||
52ce6436 | 10551 | static struct value * |
ebf56fd3 | 10552 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 10553 | int *pos, enum noside noside) |
14f9c5c9 AS |
10554 | { |
10555 | enum exp_opcode op; | |
b5385fc0 | 10556 | int tem; |
14f9c5c9 | 10557 | int pc; |
5ec18f2b | 10558 | int preeval_pos; |
14f9c5c9 AS |
10559 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; |
10560 | struct type *type; | |
52ce6436 | 10561 | int nargs, oplen; |
d2e4a39e | 10562 | struct value **argvec; |
14f9c5c9 | 10563 | |
d2e4a39e AS |
10564 | pc = *pos; |
10565 | *pos += 1; | |
14f9c5c9 AS |
10566 | op = exp->elts[pc].opcode; |
10567 | ||
d2e4a39e | 10568 | switch (op) |
14f9c5c9 AS |
10569 | { |
10570 | default: | |
10571 | *pos -= 1; | |
6e48bd2c | 10572 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
ca1f964d JG |
10573 | |
10574 | if (noside == EVAL_NORMAL) | |
10575 | arg1 = unwrap_value (arg1); | |
6e48bd2c | 10576 | |
edd079d9 | 10577 | /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided, |
6e48bd2c JB |
10578 | then we need to perform the conversion manually, because |
10579 | evaluate_subexp_standard doesn't do it. This conversion is | |
10580 | necessary in Ada because the different kinds of float/fixed | |
10581 | types in Ada have different representations. | |
10582 | ||
10583 | Similarly, we need to perform the conversion from OP_LONG | |
10584 | ourselves. */ | |
edd079d9 | 10585 | if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL) |
b7e22850 | 10586 | arg1 = ada_value_cast (expect_type, arg1); |
6e48bd2c JB |
10587 | |
10588 | return arg1; | |
4c4b4cd2 PH |
10589 | |
10590 | case OP_STRING: | |
10591 | { | |
76a01679 | 10592 | struct value *result; |
5b4ee69b | 10593 | |
76a01679 JB |
10594 | *pos -= 1; |
10595 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10596 | /* The result type will have code OP_STRING, bashed there from | |
10597 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
10598 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
10599 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 10600 | return result; |
4c4b4cd2 | 10601 | } |
14f9c5c9 AS |
10602 | |
10603 | case UNOP_CAST: | |
10604 | (*pos) += 2; | |
10605 | type = exp->elts[pc + 1].type; | |
ced9779b | 10606 | return ada_evaluate_subexp_for_cast (exp, pos, noside, type); |
14f9c5c9 | 10607 | |
4c4b4cd2 PH |
10608 | case UNOP_QUAL: |
10609 | (*pos) += 2; | |
10610 | type = exp->elts[pc + 1].type; | |
10611 | return ada_evaluate_subexp (type, exp, pos, noside); | |
10612 | ||
14f9c5c9 AS |
10613 | case BINOP_ASSIGN: |
10614 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
10615 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
10616 | { | |
10617 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
10618 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
10619 | return arg1; | |
10620 | return ada_value_assign (arg1, arg1); | |
10621 | } | |
003f3813 JB |
10622 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
10623 | except if the lhs of our assignment is a convenience variable. | |
10624 | In the case of assigning to a convenience variable, the lhs | |
10625 | should be exactly the result of the evaluation of the rhs. */ | |
10626 | type = value_type (arg1); | |
10627 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
10628 | type = NULL; | |
10629 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 10630 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 10631 | return arg1; |
df407dfe AC |
10632 | if (ada_is_fixed_point_type (value_type (arg1))) |
10633 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
10634 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 10635 | error |
323e0a4a | 10636 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 10637 | else |
df407dfe | 10638 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 10639 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
10640 | |
10641 | case BINOP_ADD: | |
10642 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10643 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10644 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10645 | goto nosideret; |
2ac8a782 JB |
10646 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10647 | return (value_from_longest | |
10648 | (value_type (arg1), | |
10649 | value_as_long (arg1) + value_as_long (arg2))); | |
c40cc657 JB |
10650 | if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR) |
10651 | return (value_from_longest | |
10652 | (value_type (arg2), | |
10653 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
10654 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10655 | || ada_is_fixed_point_type (value_type (arg2))) | |
10656 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 10657 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
10658 | /* Do the addition, and cast the result to the type of the first |
10659 | argument. We cannot cast the result to a reference type, so if | |
10660 | ARG1 is a reference type, find its underlying type. */ | |
10661 | type = value_type (arg1); | |
10662 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10663 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10664 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10665 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
10666 | |
10667 | case BINOP_SUB: | |
10668 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10669 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10670 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10671 | goto nosideret; |
2ac8a782 JB |
10672 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10673 | return (value_from_longest | |
10674 | (value_type (arg1), | |
10675 | value_as_long (arg1) - value_as_long (arg2))); | |
c40cc657 JB |
10676 | if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR) |
10677 | return (value_from_longest | |
10678 | (value_type (arg2), | |
10679 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
10680 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10681 | || ada_is_fixed_point_type (value_type (arg2))) | |
10682 | && value_type (arg1) != value_type (arg2)) | |
0963b4bd MS |
10683 | error (_("Operands of fixed-point subtraction " |
10684 | "must have the same type")); | |
b7789565 JB |
10685 | /* Do the substraction, and cast the result to the type of the first |
10686 | argument. We cannot cast the result to a reference type, so if | |
10687 | ARG1 is a reference type, find its underlying type. */ | |
10688 | type = value_type (arg1); | |
10689 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10690 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10691 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10692 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
10693 | |
10694 | case BINOP_MUL: | |
10695 | case BINOP_DIV: | |
e1578042 JB |
10696 | case BINOP_REM: |
10697 | case BINOP_MOD: | |
14f9c5c9 AS |
10698 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10699 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10700 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10701 | goto nosideret; |
e1578042 | 10702 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
10703 | { |
10704 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10705 | return value_zero (value_type (arg1), not_lval); | |
10706 | } | |
14f9c5c9 | 10707 | else |
4c4b4cd2 | 10708 | { |
a53b7a21 | 10709 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 10710 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 10711 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 10712 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 10713 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 10714 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
10715 | return ada_value_binop (arg1, arg2, op); |
10716 | } | |
10717 | ||
4c4b4cd2 PH |
10718 | case BINOP_EQUAL: |
10719 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 10720 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 10721 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 10722 | if (noside == EVAL_SKIP) |
76a01679 | 10723 | goto nosideret; |
4c4b4cd2 | 10724 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10725 | tem = 0; |
4c4b4cd2 | 10726 | else |
f44316fa UW |
10727 | { |
10728 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10729 | tem = ada_value_equal (arg1, arg2); | |
10730 | } | |
4c4b4cd2 | 10731 | if (op == BINOP_NOTEQUAL) |
76a01679 | 10732 | tem = !tem; |
fbb06eb1 UW |
10733 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10734 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
10735 | |
10736 | case UNOP_NEG: | |
10737 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10738 | if (noside == EVAL_SKIP) | |
10739 | goto nosideret; | |
df407dfe AC |
10740 | else if (ada_is_fixed_point_type (value_type (arg1))) |
10741 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 10742 | else |
f44316fa UW |
10743 | { |
10744 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10745 | return value_neg (arg1); | |
10746 | } | |
4c4b4cd2 | 10747 | |
2330c6c6 JB |
10748 | case BINOP_LOGICAL_AND: |
10749 | case BINOP_LOGICAL_OR: | |
10750 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
10751 | { |
10752 | struct value *val; | |
10753 | ||
10754 | *pos -= 1; | |
10755 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
10756 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10757 | return value_cast (type, val); | |
000d5124 | 10758 | } |
2330c6c6 JB |
10759 | |
10760 | case BINOP_BITWISE_AND: | |
10761 | case BINOP_BITWISE_IOR: | |
10762 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
10763 | { |
10764 | struct value *val; | |
10765 | ||
10766 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
10767 | *pos = pc; | |
10768 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10769 | ||
10770 | return value_cast (value_type (arg1), val); | |
10771 | } | |
2330c6c6 | 10772 | |
14f9c5c9 AS |
10773 | case OP_VAR_VALUE: |
10774 | *pos -= 1; | |
6799def4 | 10775 | |
14f9c5c9 | 10776 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
10777 | { |
10778 | *pos += 4; | |
10779 | goto nosideret; | |
10780 | } | |
da5c522f JB |
10781 | |
10782 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
10783 | /* Only encountered when an unresolved symbol occurs in a |
10784 | context other than a function call, in which case, it is | |
52ce6436 | 10785 | invalid. */ |
323e0a4a | 10786 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 10787 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
da5c522f JB |
10788 | |
10789 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
4c4b4cd2 | 10790 | { |
0c1f74cf | 10791 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
10792 | /* Check to see if this is a tagged type. We also need to handle |
10793 | the case where the type is a reference to a tagged type, but | |
10794 | we have to be careful to exclude pointers to tagged types. | |
10795 | The latter should be shown as usual (as a pointer), whereas | |
10796 | a reference should mostly be transparent to the user. */ | |
10797 | if (ada_is_tagged_type (type, 0) | |
023db19c | 10798 | || (TYPE_CODE (type) == TYPE_CODE_REF |
31dbc1c5 | 10799 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) |
0d72a7c3 JB |
10800 | { |
10801 | /* Tagged types are a little special in the fact that the real | |
10802 | type is dynamic and can only be determined by inspecting the | |
10803 | object's tag. This means that we need to get the object's | |
10804 | value first (EVAL_NORMAL) and then extract the actual object | |
10805 | type from its tag. | |
10806 | ||
10807 | Note that we cannot skip the final step where we extract | |
10808 | the object type from its tag, because the EVAL_NORMAL phase | |
10809 | results in dynamic components being resolved into fixed ones. | |
10810 | This can cause problems when trying to print the type | |
10811 | description of tagged types whose parent has a dynamic size: | |
10812 | We use the type name of the "_parent" component in order | |
10813 | to print the name of the ancestor type in the type description. | |
10814 | If that component had a dynamic size, the resolution into | |
10815 | a fixed type would result in the loss of that type name, | |
10816 | thus preventing us from printing the name of the ancestor | |
10817 | type in the type description. */ | |
10818 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); | |
10819 | ||
10820 | if (TYPE_CODE (type) != TYPE_CODE_REF) | |
10821 | { | |
10822 | struct type *actual_type; | |
10823 | ||
10824 | actual_type = type_from_tag (ada_value_tag (arg1)); | |
10825 | if (actual_type == NULL) | |
10826 | /* If, for some reason, we were unable to determine | |
10827 | the actual type from the tag, then use the static | |
10828 | approximation that we just computed as a fallback. | |
10829 | This can happen if the debugging information is | |
10830 | incomplete, for instance. */ | |
10831 | actual_type = type; | |
10832 | return value_zero (actual_type, not_lval); | |
10833 | } | |
10834 | else | |
10835 | { | |
10836 | /* In the case of a ref, ada_coerce_ref takes care | |
10837 | of determining the actual type. But the evaluation | |
10838 | should return a ref as it should be valid to ask | |
10839 | for its address; so rebuild a ref after coerce. */ | |
10840 | arg1 = ada_coerce_ref (arg1); | |
a65cfae5 | 10841 | return value_ref (arg1, TYPE_CODE_REF); |
0d72a7c3 JB |
10842 | } |
10843 | } | |
0c1f74cf | 10844 | |
84754697 JB |
10845 | /* Records and unions for which GNAT encodings have been |
10846 | generated need to be statically fixed as well. | |
10847 | Otherwise, non-static fixing produces a type where | |
10848 | all dynamic properties are removed, which prevents "ptype" | |
10849 | from being able to completely describe the type. | |
10850 | For instance, a case statement in a variant record would be | |
10851 | replaced by the relevant components based on the actual | |
10852 | value of the discriminants. */ | |
10853 | if ((TYPE_CODE (type) == TYPE_CODE_STRUCT | |
10854 | && dynamic_template_type (type) != NULL) | |
10855 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
10856 | && ada_find_parallel_type (type, "___XVU") != NULL)) | |
10857 | { | |
10858 | *pos += 4; | |
10859 | return value_zero (to_static_fixed_type (type), not_lval); | |
10860 | } | |
4c4b4cd2 | 10861 | } |
da5c522f JB |
10862 | |
10863 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10864 | return ada_to_fixed_value (arg1); | |
4c4b4cd2 PH |
10865 | |
10866 | case OP_FUNCALL: | |
10867 | (*pos) += 2; | |
10868 | ||
10869 | /* Allocate arg vector, including space for the function to be | |
10870 | called in argvec[0] and a terminating NULL. */ | |
10871 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
8d749320 | 10872 | argvec = XALLOCAVEC (struct value *, nargs + 2); |
4c4b4cd2 PH |
10873 | |
10874 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 10875 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 10876 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
10877 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
10878 | else | |
10879 | { | |
10880 | for (tem = 0; tem <= nargs; tem += 1) | |
10881 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10882 | argvec[tem] = 0; | |
10883 | ||
10884 | if (noside == EVAL_SKIP) | |
10885 | goto nosideret; | |
10886 | } | |
10887 | ||
ad82864c JB |
10888 | if (ada_is_constrained_packed_array_type |
10889 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 10890 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
10891 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
10892 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
10893 | /* This is a packed array that has already been fixed, and | |
10894 | therefore already coerced to a simple array. Nothing further | |
10895 | to do. */ | |
10896 | ; | |
e6c2c623 PMR |
10897 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF) |
10898 | { | |
10899 | /* Make sure we dereference references so that all the code below | |
10900 | feels like it's really handling the referenced value. Wrapping | |
10901 | types (for alignment) may be there, so make sure we strip them as | |
10902 | well. */ | |
10903 | argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0])); | |
10904 | } | |
10905 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
10906 | && VALUE_LVAL (argvec[0]) == lval_memory) | |
10907 | argvec[0] = value_addr (argvec[0]); | |
4c4b4cd2 | 10908 | |
df407dfe | 10909 | type = ada_check_typedef (value_type (argvec[0])); |
720d1a40 JB |
10910 | |
10911 | /* Ada allows us to implicitly dereference arrays when subscripting | |
8f465ea7 JB |
10912 | them. So, if this is an array typedef (encoding use for array |
10913 | access types encoded as fat pointers), strip it now. */ | |
720d1a40 JB |
10914 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
10915 | type = ada_typedef_target_type (type); | |
10916 | ||
4c4b4cd2 PH |
10917 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
10918 | { | |
61ee279c | 10919 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
10920 | { |
10921 | case TYPE_CODE_FUNC: | |
61ee279c | 10922 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10923 | break; |
10924 | case TYPE_CODE_ARRAY: | |
10925 | break; | |
10926 | case TYPE_CODE_STRUCT: | |
10927 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
10928 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 10929 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10930 | break; |
10931 | default: | |
323e0a4a | 10932 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 10933 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
10934 | break; |
10935 | } | |
10936 | } | |
10937 | ||
10938 | switch (TYPE_CODE (type)) | |
10939 | { | |
10940 | case TYPE_CODE_FUNC: | |
10941 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
c8ea1972 | 10942 | { |
7022349d PA |
10943 | if (TYPE_TARGET_TYPE (type) == NULL) |
10944 | error_call_unknown_return_type (NULL); | |
10945 | return allocate_value (TYPE_TARGET_TYPE (type)); | |
c8ea1972 | 10946 | } |
e71585ff PA |
10947 | return call_function_by_hand (argvec[0], NULL, |
10948 | gdb::make_array_view (argvec + 1, | |
10949 | nargs)); | |
c8ea1972 PH |
10950 | case TYPE_CODE_INTERNAL_FUNCTION: |
10951 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10952 | /* We don't know anything about what the internal | |
10953 | function might return, but we have to return | |
10954 | something. */ | |
10955 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10956 | not_lval); | |
10957 | else | |
10958 | return call_internal_function (exp->gdbarch, exp->language_defn, | |
10959 | argvec[0], nargs, argvec + 1); | |
10960 | ||
4c4b4cd2 PH |
10961 | case TYPE_CODE_STRUCT: |
10962 | { | |
10963 | int arity; | |
10964 | ||
4c4b4cd2 PH |
10965 | arity = ada_array_arity (type); |
10966 | type = ada_array_element_type (type, nargs); | |
10967 | if (type == NULL) | |
323e0a4a | 10968 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 10969 | if (arity != nargs) |
323e0a4a | 10970 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 10971 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 10972 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10973 | return |
10974 | unwrap_value (ada_value_subscript | |
10975 | (argvec[0], nargs, argvec + 1)); | |
10976 | } | |
10977 | case TYPE_CODE_ARRAY: | |
10978 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10979 | { | |
10980 | type = ada_array_element_type (type, nargs); | |
10981 | if (type == NULL) | |
323e0a4a | 10982 | error (_("element type of array unknown")); |
4c4b4cd2 | 10983 | else |
0a07e705 | 10984 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10985 | } |
10986 | return | |
10987 | unwrap_value (ada_value_subscript | |
10988 | (ada_coerce_to_simple_array (argvec[0]), | |
10989 | nargs, argvec + 1)); | |
10990 | case TYPE_CODE_PTR: /* Pointer to array */ | |
4c4b4cd2 PH |
10991 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
10992 | { | |
deede10c | 10993 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); |
4c4b4cd2 PH |
10994 | type = ada_array_element_type (type, nargs); |
10995 | if (type == NULL) | |
323e0a4a | 10996 | error (_("element type of array unknown")); |
4c4b4cd2 | 10997 | else |
0a07e705 | 10998 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10999 | } |
11000 | return | |
deede10c JB |
11001 | unwrap_value (ada_value_ptr_subscript (argvec[0], |
11002 | nargs, argvec + 1)); | |
4c4b4cd2 PH |
11003 | |
11004 | default: | |
e1d5a0d2 PH |
11005 | error (_("Attempt to index or call something other than an " |
11006 | "array or function")); | |
4c4b4cd2 PH |
11007 | } |
11008 | ||
11009 | case TERNOP_SLICE: | |
11010 | { | |
11011 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11012 | struct value *low_bound_val = | |
11013 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
11014 | struct value *high_bound_val = |
11015 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11016 | LONGEST low_bound; | |
11017 | LONGEST high_bound; | |
5b4ee69b | 11018 | |
994b9211 AC |
11019 | low_bound_val = coerce_ref (low_bound_val); |
11020 | high_bound_val = coerce_ref (high_bound_val); | |
aa715135 JG |
11021 | low_bound = value_as_long (low_bound_val); |
11022 | high_bound = value_as_long (high_bound_val); | |
963a6417 | 11023 | |
4c4b4cd2 PH |
11024 | if (noside == EVAL_SKIP) |
11025 | goto nosideret; | |
11026 | ||
4c4b4cd2 PH |
11027 | /* If this is a reference to an aligner type, then remove all |
11028 | the aligners. */ | |
df407dfe AC |
11029 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
11030 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
11031 | TYPE_TARGET_TYPE (value_type (array)) = | |
11032 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 11033 | |
ad82864c | 11034 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 11035 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
11036 | |
11037 | /* If this is a reference to an array or an array lvalue, | |
11038 | convert to a pointer. */ | |
df407dfe AC |
11039 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
11040 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
11041 | && VALUE_LVAL (array) == lval_memory)) |
11042 | array = value_addr (array); | |
11043 | ||
1265e4aa | 11044 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 11045 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 11046 | (value_type (array)))) |
bff8c71f TT |
11047 | return empty_array (ada_type_of_array (array, 0), low_bound, |
11048 | high_bound); | |
4c4b4cd2 PH |
11049 | |
11050 | array = ada_coerce_to_simple_array_ptr (array); | |
11051 | ||
714e53ab PH |
11052 | /* If we have more than one level of pointer indirection, |
11053 | dereference the value until we get only one level. */ | |
df407dfe AC |
11054 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
11055 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
11056 | == TYPE_CODE_PTR)) |
11057 | array = value_ind (array); | |
11058 | ||
11059 | /* Make sure we really do have an array type before going further, | |
11060 | to avoid a SEGV when trying to get the index type or the target | |
11061 | type later down the road if the debug info generated by | |
11062 | the compiler is incorrect or incomplete. */ | |
df407dfe | 11063 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 11064 | error (_("cannot take slice of non-array")); |
714e53ab | 11065 | |
828292f2 JB |
11066 | if (TYPE_CODE (ada_check_typedef (value_type (array))) |
11067 | == TYPE_CODE_PTR) | |
4c4b4cd2 | 11068 | { |
828292f2 JB |
11069 | struct type *type0 = ada_check_typedef (value_type (array)); |
11070 | ||
0b5d8877 | 11071 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
bff8c71f | 11072 | return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound); |
4c4b4cd2 PH |
11073 | else |
11074 | { | |
11075 | struct type *arr_type0 = | |
828292f2 | 11076 | to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); |
5b4ee69b | 11077 | |
f5938064 JG |
11078 | return ada_value_slice_from_ptr (array, arr_type0, |
11079 | longest_to_int (low_bound), | |
11080 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
11081 | } |
11082 | } | |
11083 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
11084 | return array; | |
11085 | else if (high_bound < low_bound) | |
bff8c71f | 11086 | return empty_array (value_type (array), low_bound, high_bound); |
4c4b4cd2 | 11087 | else |
529cad9c PH |
11088 | return ada_value_slice (array, longest_to_int (low_bound), |
11089 | longest_to_int (high_bound)); | |
4c4b4cd2 | 11090 | } |
14f9c5c9 | 11091 | |
4c4b4cd2 PH |
11092 | case UNOP_IN_RANGE: |
11093 | (*pos) += 2; | |
11094 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 11095 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 11096 | |
14f9c5c9 | 11097 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 11098 | goto nosideret; |
14f9c5c9 | 11099 | |
4c4b4cd2 PH |
11100 | switch (TYPE_CODE (type)) |
11101 | { | |
11102 | default: | |
e1d5a0d2 PH |
11103 | lim_warning (_("Membership test incompletely implemented; " |
11104 | "always returns true")); | |
fbb06eb1 UW |
11105 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
11106 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
11107 | |
11108 | case TYPE_CODE_RANGE: | |
030b4912 UW |
11109 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
11110 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
11111 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
11112 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
11113 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
11114 | return | |
11115 | value_from_longest (type, | |
4c4b4cd2 PH |
11116 | (value_less (arg1, arg3) |
11117 | || value_equal (arg1, arg3)) | |
11118 | && (value_less (arg2, arg1) | |
11119 | || value_equal (arg2, arg1))); | |
11120 | } | |
11121 | ||
11122 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 11123 | (*pos) += 2; |
4c4b4cd2 PH |
11124 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11125 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 11126 | |
4c4b4cd2 PH |
11127 | if (noside == EVAL_SKIP) |
11128 | goto nosideret; | |
14f9c5c9 | 11129 | |
4c4b4cd2 | 11130 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
11131 | { |
11132 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
11133 | return value_zero (type, not_lval); | |
11134 | } | |
14f9c5c9 | 11135 | |
4c4b4cd2 | 11136 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 11137 | |
1eea4ebd UW |
11138 | type = ada_index_type (value_type (arg2), tem, "range"); |
11139 | if (!type) | |
11140 | type = value_type (arg1); | |
14f9c5c9 | 11141 | |
1eea4ebd UW |
11142 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
11143 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 11144 | |
f44316fa UW |
11145 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
11146 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 11147 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 11148 | return |
fbb06eb1 | 11149 | value_from_longest (type, |
4c4b4cd2 PH |
11150 | (value_less (arg1, arg3) |
11151 | || value_equal (arg1, arg3)) | |
11152 | && (value_less (arg2, arg1) | |
11153 | || value_equal (arg2, arg1))); | |
11154 | ||
11155 | case TERNOP_IN_RANGE: | |
11156 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11157 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11158 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11159 | ||
11160 | if (noside == EVAL_SKIP) | |
11161 | goto nosideret; | |
11162 | ||
f44316fa UW |
11163 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
11164 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 11165 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 11166 | return |
fbb06eb1 | 11167 | value_from_longest (type, |
4c4b4cd2 PH |
11168 | (value_less (arg1, arg3) |
11169 | || value_equal (arg1, arg3)) | |
11170 | && (value_less (arg2, arg1) | |
11171 | || value_equal (arg2, arg1))); | |
11172 | ||
11173 | case OP_ATR_FIRST: | |
11174 | case OP_ATR_LAST: | |
11175 | case OP_ATR_LENGTH: | |
11176 | { | |
76a01679 | 11177 | struct type *type_arg; |
5b4ee69b | 11178 | |
76a01679 JB |
11179 | if (exp->elts[*pos].opcode == OP_TYPE) |
11180 | { | |
11181 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
11182 | arg1 = NULL; | |
5bc23cb3 | 11183 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
11184 | } |
11185 | else | |
11186 | { | |
11187 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11188 | type_arg = NULL; | |
11189 | } | |
11190 | ||
11191 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 11192 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
11193 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
11194 | *pos += 4; | |
11195 | ||
11196 | if (noside == EVAL_SKIP) | |
11197 | goto nosideret; | |
11198 | ||
11199 | if (type_arg == NULL) | |
11200 | { | |
11201 | arg1 = ada_coerce_ref (arg1); | |
11202 | ||
ad82864c | 11203 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
11204 | arg1 = ada_coerce_to_simple_array (arg1); |
11205 | ||
aa4fb036 | 11206 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 11207 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
11208 | else |
11209 | { | |
11210 | type = ada_index_type (value_type (arg1), tem, | |
11211 | ada_attribute_name (op)); | |
11212 | if (type == NULL) | |
11213 | type = builtin_type (exp->gdbarch)->builtin_int; | |
11214 | } | |
76a01679 JB |
11215 | |
11216 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 11217 | return allocate_value (type); |
76a01679 JB |
11218 | |
11219 | switch (op) | |
11220 | { | |
11221 | default: /* Should never happen. */ | |
323e0a4a | 11222 | error (_("unexpected attribute encountered")); |
76a01679 | 11223 | case OP_ATR_FIRST: |
1eea4ebd UW |
11224 | return value_from_longest |
11225 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 11226 | case OP_ATR_LAST: |
1eea4ebd UW |
11227 | return value_from_longest |
11228 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 11229 | case OP_ATR_LENGTH: |
1eea4ebd UW |
11230 | return value_from_longest |
11231 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
11232 | } |
11233 | } | |
11234 | else if (discrete_type_p (type_arg)) | |
11235 | { | |
11236 | struct type *range_type; | |
0d5cff50 | 11237 | const char *name = ada_type_name (type_arg); |
5b4ee69b | 11238 | |
76a01679 JB |
11239 | range_type = NULL; |
11240 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 11241 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
11242 | if (range_type == NULL) |
11243 | range_type = type_arg; | |
11244 | switch (op) | |
11245 | { | |
11246 | default: | |
323e0a4a | 11247 | error (_("unexpected attribute encountered")); |
76a01679 | 11248 | case OP_ATR_FIRST: |
690cc4eb | 11249 | return value_from_longest |
43bbcdc2 | 11250 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 11251 | case OP_ATR_LAST: |
690cc4eb | 11252 | return value_from_longest |
43bbcdc2 | 11253 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 11254 | case OP_ATR_LENGTH: |
323e0a4a | 11255 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
11256 | } |
11257 | } | |
11258 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 11259 | error (_("unimplemented type attribute")); |
76a01679 JB |
11260 | else |
11261 | { | |
11262 | LONGEST low, high; | |
11263 | ||
ad82864c JB |
11264 | if (ada_is_constrained_packed_array_type (type_arg)) |
11265 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 11266 | |
aa4fb036 | 11267 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 11268 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
11269 | else |
11270 | { | |
11271 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); | |
11272 | if (type == NULL) | |
11273 | type = builtin_type (exp->gdbarch)->builtin_int; | |
11274 | } | |
1eea4ebd | 11275 | |
76a01679 JB |
11276 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
11277 | return allocate_value (type); | |
11278 | ||
11279 | switch (op) | |
11280 | { | |
11281 | default: | |
323e0a4a | 11282 | error (_("unexpected attribute encountered")); |
76a01679 | 11283 | case OP_ATR_FIRST: |
1eea4ebd | 11284 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
11285 | return value_from_longest (type, low); |
11286 | case OP_ATR_LAST: | |
1eea4ebd | 11287 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
11288 | return value_from_longest (type, high); |
11289 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
11290 | low = ada_array_bound_from_type (type_arg, tem, 0); |
11291 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
11292 | return value_from_longest (type, high - low + 1); |
11293 | } | |
11294 | } | |
14f9c5c9 AS |
11295 | } |
11296 | ||
4c4b4cd2 PH |
11297 | case OP_ATR_TAG: |
11298 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11299 | if (noside == EVAL_SKIP) | |
76a01679 | 11300 | goto nosideret; |
4c4b4cd2 PH |
11301 | |
11302 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 11303 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
11304 | |
11305 | return ada_value_tag (arg1); | |
11306 | ||
11307 | case OP_ATR_MIN: | |
11308 | case OP_ATR_MAX: | |
11309 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
11310 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11311 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11312 | if (noside == EVAL_SKIP) | |
76a01679 | 11313 | goto nosideret; |
d2e4a39e | 11314 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 11315 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 11316 | else |
f44316fa UW |
11317 | { |
11318 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
11319 | return value_binop (arg1, arg2, | |
11320 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
11321 | } | |
14f9c5c9 | 11322 | |
4c4b4cd2 PH |
11323 | case OP_ATR_MODULUS: |
11324 | { | |
31dedfee | 11325 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 11326 | |
5b4ee69b | 11327 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
11328 | if (noside == EVAL_SKIP) |
11329 | goto nosideret; | |
4c4b4cd2 | 11330 | |
76a01679 | 11331 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 11332 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 11333 | |
76a01679 JB |
11334 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
11335 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
11336 | } |
11337 | ||
11338 | ||
11339 | case OP_ATR_POS: | |
11340 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
11341 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11342 | if (noside == EVAL_SKIP) | |
76a01679 | 11343 | goto nosideret; |
3cb382c9 UW |
11344 | type = builtin_type (exp->gdbarch)->builtin_int; |
11345 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
11346 | return value_zero (type, not_lval); | |
14f9c5c9 | 11347 | else |
3cb382c9 | 11348 | return value_pos_atr (type, arg1); |
14f9c5c9 | 11349 | |
4c4b4cd2 PH |
11350 | case OP_ATR_SIZE: |
11351 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
11352 | type = value_type (arg1); |
11353 | ||
11354 | /* If the argument is a reference, then dereference its type, since | |
11355 | the user is really asking for the size of the actual object, | |
11356 | not the size of the pointer. */ | |
11357 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
11358 | type = TYPE_TARGET_TYPE (type); | |
11359 | ||
4c4b4cd2 | 11360 | if (noside == EVAL_SKIP) |
76a01679 | 11361 | goto nosideret; |
4c4b4cd2 | 11362 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 11363 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 11364 | else |
22601c15 | 11365 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 11366 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
11367 | |
11368 | case OP_ATR_VAL: | |
11369 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 11370 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 11371 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 11372 | if (noside == EVAL_SKIP) |
76a01679 | 11373 | goto nosideret; |
4c4b4cd2 | 11374 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 11375 | return value_zero (type, not_lval); |
4c4b4cd2 | 11376 | else |
76a01679 | 11377 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
11378 | |
11379 | case BINOP_EXP: | |
11380 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11381 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11382 | if (noside == EVAL_SKIP) | |
11383 | goto nosideret; | |
11384 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 11385 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 11386 | else |
f44316fa UW |
11387 | { |
11388 | /* For integer exponentiation operations, | |
11389 | only promote the first argument. */ | |
11390 | if (is_integral_type (value_type (arg2))) | |
11391 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
11392 | else | |
11393 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
11394 | ||
11395 | return value_binop (arg1, arg2, op); | |
11396 | } | |
4c4b4cd2 PH |
11397 | |
11398 | case UNOP_PLUS: | |
11399 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11400 | if (noside == EVAL_SKIP) | |
11401 | goto nosideret; | |
11402 | else | |
11403 | return arg1; | |
11404 | ||
11405 | case UNOP_ABS: | |
11406 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11407 | if (noside == EVAL_SKIP) | |
11408 | goto nosideret; | |
f44316fa | 11409 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 11410 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 11411 | return value_neg (arg1); |
14f9c5c9 | 11412 | else |
4c4b4cd2 | 11413 | return arg1; |
14f9c5c9 AS |
11414 | |
11415 | case UNOP_IND: | |
5ec18f2b | 11416 | preeval_pos = *pos; |
6b0d7253 | 11417 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 11418 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 11419 | goto nosideret; |
df407dfe | 11420 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 11421 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
11422 | { |
11423 | if (ada_is_array_descriptor_type (type)) | |
11424 | /* GDB allows dereferencing GNAT array descriptors. */ | |
11425 | { | |
11426 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 11427 | |
4c4b4cd2 | 11428 | if (arrType == NULL) |
323e0a4a | 11429 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 11430 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
11431 | } |
11432 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
11433 | || TYPE_CODE (type) == TYPE_CODE_REF | |
11434 | /* In C you can dereference an array to get the 1st elt. */ | |
11435 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab | 11436 | { |
5ec18f2b JG |
11437 | /* As mentioned in the OP_VAR_VALUE case, tagged types can |
11438 | only be determined by inspecting the object's tag. | |
11439 | This means that we need to evaluate completely the | |
11440 | expression in order to get its type. */ | |
11441 | ||
023db19c JB |
11442 | if ((TYPE_CODE (type) == TYPE_CODE_REF |
11443 | || TYPE_CODE (type) == TYPE_CODE_PTR) | |
5ec18f2b JG |
11444 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)) |
11445 | { | |
11446 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
11447 | EVAL_NORMAL); | |
11448 | type = value_type (ada_value_ind (arg1)); | |
11449 | } | |
11450 | else | |
11451 | { | |
11452 | type = to_static_fixed_type | |
11453 | (ada_aligned_type | |
11454 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
11455 | } | |
c1b5a1a6 | 11456 | ada_ensure_varsize_limit (type); |
714e53ab PH |
11457 | return value_zero (type, lval_memory); |
11458 | } | |
4c4b4cd2 | 11459 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
11460 | { |
11461 | /* GDB allows dereferencing an int. */ | |
11462 | if (expect_type == NULL) | |
11463 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
11464 | lval_memory); | |
11465 | else | |
11466 | { | |
11467 | expect_type = | |
11468 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
11469 | return value_zero (expect_type, lval_memory); | |
11470 | } | |
11471 | } | |
4c4b4cd2 | 11472 | else |
323e0a4a | 11473 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 11474 | } |
0963b4bd | 11475 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 11476 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 11477 | |
96967637 JB |
11478 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
11479 | /* GDB allows dereferencing an int. If we were given | |
11480 | the expect_type, then use that as the target type. | |
11481 | Otherwise, assume that the target type is an int. */ | |
11482 | { | |
11483 | if (expect_type != NULL) | |
11484 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
11485 | arg1)); | |
11486 | else | |
11487 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
11488 | (CORE_ADDR) value_as_address (arg1)); | |
11489 | } | |
6b0d7253 | 11490 | |
4c4b4cd2 PH |
11491 | if (ada_is_array_descriptor_type (type)) |
11492 | /* GDB allows dereferencing GNAT array descriptors. */ | |
11493 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 11494 | else |
4c4b4cd2 | 11495 | return ada_value_ind (arg1); |
14f9c5c9 AS |
11496 | |
11497 | case STRUCTOP_STRUCT: | |
11498 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
11499 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
5ec18f2b | 11500 | preeval_pos = *pos; |
14f9c5c9 AS |
11501 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11502 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 11503 | goto nosideret; |
14f9c5c9 | 11504 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 11505 | { |
df407dfe | 11506 | struct type *type1 = value_type (arg1); |
5b4ee69b | 11507 | |
76a01679 JB |
11508 | if (ada_is_tagged_type (type1, 1)) |
11509 | { | |
11510 | type = ada_lookup_struct_elt_type (type1, | |
11511 | &exp->elts[pc + 2].string, | |
988f6b3d | 11512 | 1, 1); |
5ec18f2b JG |
11513 | |
11514 | /* If the field is not found, check if it exists in the | |
11515 | extension of this object's type. This means that we | |
11516 | need to evaluate completely the expression. */ | |
11517 | ||
76a01679 | 11518 | if (type == NULL) |
5ec18f2b JG |
11519 | { |
11520 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
11521 | EVAL_NORMAL); | |
11522 | arg1 = ada_value_struct_elt (arg1, | |
11523 | &exp->elts[pc + 2].string, | |
11524 | 0); | |
11525 | arg1 = unwrap_value (arg1); | |
11526 | type = value_type (ada_to_fixed_value (arg1)); | |
11527 | } | |
76a01679 JB |
11528 | } |
11529 | else | |
11530 | type = | |
11531 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
988f6b3d | 11532 | 0); |
76a01679 JB |
11533 | |
11534 | return value_zero (ada_aligned_type (type), lval_memory); | |
11535 | } | |
14f9c5c9 | 11536 | else |
a579cd9a MW |
11537 | { |
11538 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); | |
11539 | arg1 = unwrap_value (arg1); | |
11540 | return ada_to_fixed_value (arg1); | |
11541 | } | |
284614f0 | 11542 | |
14f9c5c9 | 11543 | case OP_TYPE: |
4c4b4cd2 PH |
11544 | /* The value is not supposed to be used. This is here to make it |
11545 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
11546 | (*pos) += 2; |
11547 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 11548 | goto nosideret; |
14f9c5c9 | 11549 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 11550 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 11551 | else |
323e0a4a | 11552 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
11553 | |
11554 | case OP_AGGREGATE: | |
11555 | case OP_CHOICES: | |
11556 | case OP_OTHERS: | |
11557 | case OP_DISCRETE_RANGE: | |
11558 | case OP_POSITIONAL: | |
11559 | case OP_NAME: | |
11560 | if (noside == EVAL_NORMAL) | |
11561 | switch (op) | |
11562 | { | |
11563 | case OP_NAME: | |
11564 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 11565 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
11566 | case OP_AGGREGATE: |
11567 | error (_("Aggregates only allowed on the right of an assignment")); | |
11568 | default: | |
0963b4bd MS |
11569 | internal_error (__FILE__, __LINE__, |
11570 | _("aggregate apparently mangled")); | |
52ce6436 PH |
11571 | } |
11572 | ||
11573 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
11574 | *pos += oplen - 1; | |
11575 | for (tem = 0; tem < nargs; tem += 1) | |
11576 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
11577 | goto nosideret; | |
14f9c5c9 AS |
11578 | } |
11579 | ||
11580 | nosideret: | |
ced9779b | 11581 | return eval_skip_value (exp); |
14f9c5c9 | 11582 | } |
14f9c5c9 | 11583 | \f |
d2e4a39e | 11584 | |
4c4b4cd2 | 11585 | /* Fixed point */ |
14f9c5c9 AS |
11586 | |
11587 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
11588 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 11589 | Otherwise, return NULL. */ |
14f9c5c9 | 11590 | |
d2e4a39e | 11591 | static const char * |
ebf56fd3 | 11592 | fixed_type_info (struct type *type) |
14f9c5c9 | 11593 | { |
d2e4a39e | 11594 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
11595 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
11596 | ||
d2e4a39e AS |
11597 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
11598 | { | |
14f9c5c9 | 11599 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 11600 | |
14f9c5c9 | 11601 | if (tail == NULL) |
4c4b4cd2 | 11602 | return NULL; |
d2e4a39e | 11603 | else |
4c4b4cd2 | 11604 | return tail + 5; |
14f9c5c9 AS |
11605 | } |
11606 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
11607 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
11608 | else | |
11609 | return NULL; | |
11610 | } | |
11611 | ||
4c4b4cd2 | 11612 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
11613 | |
11614 | int | |
ebf56fd3 | 11615 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
11616 | { |
11617 | return fixed_type_info (type) != NULL; | |
11618 | } | |
11619 | ||
4c4b4cd2 PH |
11620 | /* Return non-zero iff TYPE represents a System.Address type. */ |
11621 | ||
11622 | int | |
11623 | ada_is_system_address_type (struct type *type) | |
11624 | { | |
11625 | return (TYPE_NAME (type) | |
11626 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
11627 | } | |
11628 | ||
14f9c5c9 | 11629 | /* Assuming that TYPE is the representation of an Ada fixed-point |
50eff16b UW |
11630 | type, return the target floating-point type to be used to represent |
11631 | of this type during internal computation. */ | |
11632 | ||
11633 | static struct type * | |
11634 | ada_scaling_type (struct type *type) | |
11635 | { | |
11636 | return builtin_type (get_type_arch (type))->builtin_long_double; | |
11637 | } | |
11638 | ||
11639 | /* Assuming that TYPE is the representation of an Ada fixed-point | |
11640 | type, return its delta, or NULL if the type is malformed and the | |
4c4b4cd2 | 11641 | delta cannot be determined. */ |
14f9c5c9 | 11642 | |
50eff16b | 11643 | struct value * |
ebf56fd3 | 11644 | ada_delta (struct type *type) |
14f9c5c9 AS |
11645 | { |
11646 | const char *encoding = fixed_type_info (type); | |
50eff16b UW |
11647 | struct type *scale_type = ada_scaling_type (type); |
11648 | ||
11649 | long long num, den; | |
11650 | ||
11651 | if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2) | |
11652 | return nullptr; | |
d2e4a39e | 11653 | else |
50eff16b UW |
11654 | return value_binop (value_from_longest (scale_type, num), |
11655 | value_from_longest (scale_type, den), BINOP_DIV); | |
14f9c5c9 AS |
11656 | } |
11657 | ||
11658 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 11659 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 | 11660 | |
50eff16b UW |
11661 | struct value * |
11662 | ada_scaling_factor (struct type *type) | |
14f9c5c9 AS |
11663 | { |
11664 | const char *encoding = fixed_type_info (type); | |
50eff16b UW |
11665 | struct type *scale_type = ada_scaling_type (type); |
11666 | ||
11667 | long long num0, den0, num1, den1; | |
14f9c5c9 | 11668 | int n; |
d2e4a39e | 11669 | |
50eff16b | 11670 | n = sscanf (encoding, "_%lld_%lld_%lld_%lld", |
facc390f | 11671 | &num0, &den0, &num1, &den1); |
14f9c5c9 AS |
11672 | |
11673 | if (n < 2) | |
50eff16b | 11674 | return value_from_longest (scale_type, 1); |
14f9c5c9 | 11675 | else if (n == 4) |
50eff16b UW |
11676 | return value_binop (value_from_longest (scale_type, num1), |
11677 | value_from_longest (scale_type, den1), BINOP_DIV); | |
d2e4a39e | 11678 | else |
50eff16b UW |
11679 | return value_binop (value_from_longest (scale_type, num0), |
11680 | value_from_longest (scale_type, den0), BINOP_DIV); | |
14f9c5c9 AS |
11681 | } |
11682 | ||
14f9c5c9 | 11683 | \f |
d2e4a39e | 11684 | |
4c4b4cd2 | 11685 | /* Range types */ |
14f9c5c9 AS |
11686 | |
11687 | /* Scan STR beginning at position K for a discriminant name, and | |
11688 | return the value of that discriminant field of DVAL in *PX. If | |
11689 | PNEW_K is not null, put the position of the character beyond the | |
11690 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 11691 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
11692 | |
11693 | static int | |
108d56a4 | 11694 | scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 11695 | int *pnew_k) |
14f9c5c9 AS |
11696 | { |
11697 | static char *bound_buffer = NULL; | |
11698 | static size_t bound_buffer_len = 0; | |
5da1a4d3 | 11699 | const char *pstart, *pend, *bound; |
d2e4a39e | 11700 | struct value *bound_val; |
14f9c5c9 AS |
11701 | |
11702 | if (dval == NULL || str == NULL || str[k] == '\0') | |
11703 | return 0; | |
11704 | ||
5da1a4d3 SM |
11705 | pstart = str + k; |
11706 | pend = strstr (pstart, "__"); | |
14f9c5c9 AS |
11707 | if (pend == NULL) |
11708 | { | |
5da1a4d3 | 11709 | bound = pstart; |
14f9c5c9 AS |
11710 | k += strlen (bound); |
11711 | } | |
d2e4a39e | 11712 | else |
14f9c5c9 | 11713 | { |
5da1a4d3 SM |
11714 | int len = pend - pstart; |
11715 | ||
11716 | /* Strip __ and beyond. */ | |
11717 | GROW_VECT (bound_buffer, bound_buffer_len, len + 1); | |
11718 | strncpy (bound_buffer, pstart, len); | |
11719 | bound_buffer[len] = '\0'; | |
11720 | ||
14f9c5c9 | 11721 | bound = bound_buffer; |
d2e4a39e | 11722 | k = pend - str; |
14f9c5c9 | 11723 | } |
d2e4a39e | 11724 | |
df407dfe | 11725 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
11726 | if (bound_val == NULL) |
11727 | return 0; | |
11728 | ||
11729 | *px = value_as_long (bound_val); | |
11730 | if (pnew_k != NULL) | |
11731 | *pnew_k = k; | |
11732 | return 1; | |
11733 | } | |
11734 | ||
11735 | /* Value of variable named NAME in the current environment. If | |
11736 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
11737 | otherwise causes an error with message ERR_MSG. */ |
11738 | ||
d2e4a39e | 11739 | static struct value * |
edb0c9cb | 11740 | get_var_value (const char *name, const char *err_msg) |
14f9c5c9 | 11741 | { |
b5ec771e | 11742 | lookup_name_info lookup_name (name, symbol_name_match_type::FULL); |
14f9c5c9 | 11743 | |
54d343a2 | 11744 | std::vector<struct block_symbol> syms; |
b5ec771e PA |
11745 | int nsyms = ada_lookup_symbol_list_worker (lookup_name, |
11746 | get_selected_block (0), | |
11747 | VAR_DOMAIN, &syms, 1); | |
14f9c5c9 AS |
11748 | |
11749 | if (nsyms != 1) | |
11750 | { | |
11751 | if (err_msg == NULL) | |
4c4b4cd2 | 11752 | return 0; |
14f9c5c9 | 11753 | else |
8a3fe4f8 | 11754 | error (("%s"), err_msg); |
14f9c5c9 AS |
11755 | } |
11756 | ||
54d343a2 | 11757 | return value_of_variable (syms[0].symbol, syms[0].block); |
14f9c5c9 | 11758 | } |
d2e4a39e | 11759 | |
edb0c9cb PA |
11760 | /* Value of integer variable named NAME in the current environment. |
11761 | If no such variable is found, returns false. Otherwise, sets VALUE | |
11762 | to the variable's value and returns true. */ | |
4c4b4cd2 | 11763 | |
edb0c9cb PA |
11764 | bool |
11765 | get_int_var_value (const char *name, LONGEST &value) | |
14f9c5c9 | 11766 | { |
4c4b4cd2 | 11767 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 11768 | |
14f9c5c9 | 11769 | if (var_val == 0) |
edb0c9cb PA |
11770 | return false; |
11771 | ||
11772 | value = value_as_long (var_val); | |
11773 | return true; | |
14f9c5c9 | 11774 | } |
d2e4a39e | 11775 | |
14f9c5c9 AS |
11776 | |
11777 | /* Return a range type whose base type is that of the range type named | |
11778 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 11779 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
11780 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
11781 | corresponding range type from debug information; fall back to using it | |
11782 | if symbol lookup fails. If a new type must be created, allocate it | |
11783 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
11784 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 11785 | |
d2e4a39e | 11786 | static struct type * |
28c85d6c | 11787 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 11788 | { |
0d5cff50 | 11789 | const char *name; |
14f9c5c9 | 11790 | struct type *base_type; |
108d56a4 | 11791 | const char *subtype_info; |
14f9c5c9 | 11792 | |
28c85d6c JB |
11793 | gdb_assert (raw_type != NULL); |
11794 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 11795 | |
1ce677a4 | 11796 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
11797 | base_type = TYPE_TARGET_TYPE (raw_type); |
11798 | else | |
11799 | base_type = raw_type; | |
11800 | ||
28c85d6c | 11801 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
11802 | subtype_info = strstr (name, "___XD"); |
11803 | if (subtype_info == NULL) | |
690cc4eb | 11804 | { |
43bbcdc2 PH |
11805 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
11806 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 11807 | |
690cc4eb PH |
11808 | if (L < INT_MIN || U > INT_MAX) |
11809 | return raw_type; | |
11810 | else | |
0c9c3474 SA |
11811 | return create_static_range_type (alloc_type_copy (raw_type), raw_type, |
11812 | L, U); | |
690cc4eb | 11813 | } |
14f9c5c9 AS |
11814 | else |
11815 | { | |
11816 | static char *name_buf = NULL; | |
11817 | static size_t name_len = 0; | |
11818 | int prefix_len = subtype_info - name; | |
11819 | LONGEST L, U; | |
11820 | struct type *type; | |
108d56a4 | 11821 | const char *bounds_str; |
14f9c5c9 AS |
11822 | int n; |
11823 | ||
11824 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
11825 | strncpy (name_buf, name, prefix_len); | |
11826 | name_buf[prefix_len] = '\0'; | |
11827 | ||
11828 | subtype_info += 5; | |
11829 | bounds_str = strchr (subtype_info, '_'); | |
11830 | n = 1; | |
11831 | ||
d2e4a39e | 11832 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
11833 | { |
11834 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
11835 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
11836 | return raw_type; | |
11837 | if (bounds_str[n] == '_') | |
11838 | n += 2; | |
0963b4bd | 11839 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
4c4b4cd2 PH |
11840 | n += 1; |
11841 | subtype_info += 1; | |
11842 | } | |
d2e4a39e | 11843 | else |
4c4b4cd2 | 11844 | { |
4c4b4cd2 | 11845 | strcpy (name_buf + prefix_len, "___L"); |
edb0c9cb | 11846 | if (!get_int_var_value (name_buf, L)) |
4c4b4cd2 | 11847 | { |
323e0a4a | 11848 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
11849 | L = 1; |
11850 | } | |
11851 | } | |
14f9c5c9 | 11852 | |
d2e4a39e | 11853 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
11854 | { |
11855 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
11856 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
11857 | return raw_type; | |
11858 | } | |
d2e4a39e | 11859 | else |
4c4b4cd2 | 11860 | { |
4c4b4cd2 | 11861 | strcpy (name_buf + prefix_len, "___U"); |
edb0c9cb | 11862 | if (!get_int_var_value (name_buf, U)) |
4c4b4cd2 | 11863 | { |
323e0a4a | 11864 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
11865 | U = L; |
11866 | } | |
11867 | } | |
14f9c5c9 | 11868 | |
0c9c3474 SA |
11869 | type = create_static_range_type (alloc_type_copy (raw_type), |
11870 | base_type, L, U); | |
f5a91472 JB |
11871 | /* create_static_range_type alters the resulting type's length |
11872 | to match the size of the base_type, which is not what we want. | |
11873 | Set it back to the original range type's length. */ | |
11874 | TYPE_LENGTH (type) = TYPE_LENGTH (raw_type); | |
d2e4a39e | 11875 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
11876 | return type; |
11877 | } | |
11878 | } | |
11879 | ||
4c4b4cd2 PH |
11880 | /* True iff NAME is the name of a range type. */ |
11881 | ||
14f9c5c9 | 11882 | int |
d2e4a39e | 11883 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
11884 | { |
11885 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 11886 | } |
14f9c5c9 | 11887 | \f |
d2e4a39e | 11888 | |
4c4b4cd2 PH |
11889 | /* Modular types */ |
11890 | ||
11891 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 11892 | |
14f9c5c9 | 11893 | int |
d2e4a39e | 11894 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 11895 | { |
18af8284 | 11896 | struct type *subranged_type = get_base_type (type); |
14f9c5c9 AS |
11897 | |
11898 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 11899 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 11900 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
11901 | } |
11902 | ||
4c4b4cd2 PH |
11903 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
11904 | ||
61ee279c | 11905 | ULONGEST |
0056e4d5 | 11906 | ada_modulus (struct type *type) |
14f9c5c9 | 11907 | { |
43bbcdc2 | 11908 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 11909 | } |
d2e4a39e | 11910 | \f |
f7f9143b JB |
11911 | |
11912 | /* Ada exception catchpoint support: | |
11913 | --------------------------------- | |
11914 | ||
11915 | We support 3 kinds of exception catchpoints: | |
11916 | . catchpoints on Ada exceptions | |
11917 | . catchpoints on unhandled Ada exceptions | |
11918 | . catchpoints on failed assertions | |
11919 | ||
11920 | Exceptions raised during failed assertions, or unhandled exceptions | |
11921 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
11922 | However, we can easily differentiate these two special cases, and having | |
11923 | the option to distinguish these two cases from the rest can be useful | |
11924 | to zero-in on certain situations. | |
11925 | ||
11926 | Exception catchpoints are a specialized form of breakpoint, | |
11927 | since they rely on inserting breakpoints inside known routines | |
11928 | of the GNAT runtime. The implementation therefore uses a standard | |
11929 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
11930 | of breakpoint_ops. | |
11931 | ||
0259addd JB |
11932 | Support in the runtime for exception catchpoints have been changed |
11933 | a few times already, and these changes affect the implementation | |
11934 | of these catchpoints. In order to be able to support several | |
11935 | variants of the runtime, we use a sniffer that will determine | |
28010a5d | 11936 | the runtime variant used by the program being debugged. */ |
f7f9143b | 11937 | |
82eacd52 JB |
11938 | /* Ada's standard exceptions. |
11939 | ||
11940 | The Ada 83 standard also defined Numeric_Error. But there so many | |
11941 | situations where it was unclear from the Ada 83 Reference Manual | |
11942 | (RM) whether Constraint_Error or Numeric_Error should be raised, | |
11943 | that the ARG (Ada Rapporteur Group) eventually issued a Binding | |
11944 | Interpretation saying that anytime the RM says that Numeric_Error | |
11945 | should be raised, the implementation may raise Constraint_Error. | |
11946 | Ada 95 went one step further and pretty much removed Numeric_Error | |
11947 | from the list of standard exceptions (it made it a renaming of | |
11948 | Constraint_Error, to help preserve compatibility when compiling | |
11949 | an Ada83 compiler). As such, we do not include Numeric_Error from | |
11950 | this list of standard exceptions. */ | |
3d0b0fa3 | 11951 | |
a121b7c1 | 11952 | static const char *standard_exc[] = { |
3d0b0fa3 JB |
11953 | "constraint_error", |
11954 | "program_error", | |
11955 | "storage_error", | |
11956 | "tasking_error" | |
11957 | }; | |
11958 | ||
0259addd JB |
11959 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
11960 | ||
11961 | /* A structure that describes how to support exception catchpoints | |
11962 | for a given executable. */ | |
11963 | ||
11964 | struct exception_support_info | |
11965 | { | |
11966 | /* The name of the symbol to break on in order to insert | |
11967 | a catchpoint on exceptions. */ | |
11968 | const char *catch_exception_sym; | |
11969 | ||
11970 | /* The name of the symbol to break on in order to insert | |
11971 | a catchpoint on unhandled exceptions. */ | |
11972 | const char *catch_exception_unhandled_sym; | |
11973 | ||
11974 | /* The name of the symbol to break on in order to insert | |
11975 | a catchpoint on failed assertions. */ | |
11976 | const char *catch_assert_sym; | |
11977 | ||
9f757bf7 XR |
11978 | /* The name of the symbol to break on in order to insert |
11979 | a catchpoint on exception handling. */ | |
11980 | const char *catch_handlers_sym; | |
11981 | ||
0259addd JB |
11982 | /* Assuming that the inferior just triggered an unhandled exception |
11983 | catchpoint, this function is responsible for returning the address | |
11984 | in inferior memory where the name of that exception is stored. | |
11985 | Return zero if the address could not be computed. */ | |
11986 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
11987 | }; | |
11988 | ||
11989 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
11990 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
11991 | ||
11992 | /* The following exception support info structure describes how to | |
11993 | implement exception catchpoints with the latest version of the | |
11994 | Ada runtime (as of 2007-03-06). */ | |
11995 | ||
11996 | static const struct exception_support_info default_exception_support_info = | |
11997 | { | |
11998 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
11999 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
12000 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
9f757bf7 | 12001 | "__gnat_begin_handler", /* catch_handlers_sym */ |
0259addd JB |
12002 | ada_unhandled_exception_name_addr |
12003 | }; | |
12004 | ||
12005 | /* The following exception support info structure describes how to | |
12006 | implement exception catchpoints with a slightly older version | |
12007 | of the Ada runtime. */ | |
12008 | ||
12009 | static const struct exception_support_info exception_support_info_fallback = | |
12010 | { | |
12011 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
12012 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
12013 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
9f757bf7 | 12014 | "__gnat_begin_handler", /* catch_handlers_sym */ |
0259addd JB |
12015 | ada_unhandled_exception_name_addr_from_raise |
12016 | }; | |
12017 | ||
f17011e0 JB |
12018 | /* Return nonzero if we can detect the exception support routines |
12019 | described in EINFO. | |
12020 | ||
12021 | This function errors out if an abnormal situation is detected | |
12022 | (for instance, if we find the exception support routines, but | |
12023 | that support is found to be incomplete). */ | |
12024 | ||
12025 | static int | |
12026 | ada_has_this_exception_support (const struct exception_support_info *einfo) | |
12027 | { | |
12028 | struct symbol *sym; | |
12029 | ||
12030 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
12031 | that should be compiled with debugging information. As a result, we | |
12032 | expect to find that symbol in the symtabs. */ | |
12033 | ||
12034 | sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN); | |
12035 | if (sym == NULL) | |
a6af7abe JB |
12036 | { |
12037 | /* Perhaps we did not find our symbol because the Ada runtime was | |
12038 | compiled without debugging info, or simply stripped of it. | |
12039 | It happens on some GNU/Linux distributions for instance, where | |
12040 | users have to install a separate debug package in order to get | |
12041 | the runtime's debugging info. In that situation, let the user | |
12042 | know why we cannot insert an Ada exception catchpoint. | |
12043 | ||
12044 | Note: Just for the purpose of inserting our Ada exception | |
12045 | catchpoint, we could rely purely on the associated minimal symbol. | |
12046 | But we would be operating in degraded mode anyway, since we are | |
12047 | still lacking the debugging info needed later on to extract | |
12048 | the name of the exception being raised (this name is printed in | |
12049 | the catchpoint message, and is also used when trying to catch | |
12050 | a specific exception). We do not handle this case for now. */ | |
3b7344d5 | 12051 | struct bound_minimal_symbol msym |
1c8e84b0 JB |
12052 | = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL); |
12053 | ||
3b7344d5 | 12054 | if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline) |
a6af7abe JB |
12055 | error (_("Your Ada runtime appears to be missing some debugging " |
12056 | "information.\nCannot insert Ada exception catchpoint " | |
12057 | "in this configuration.")); | |
12058 | ||
12059 | return 0; | |
12060 | } | |
f17011e0 JB |
12061 | |
12062 | /* Make sure that the symbol we found corresponds to a function. */ | |
12063 | ||
12064 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
12065 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
12066 | SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym)); | |
12067 | ||
12068 | return 1; | |
12069 | } | |
12070 | ||
0259addd JB |
12071 | /* Inspect the Ada runtime and determine which exception info structure |
12072 | should be used to provide support for exception catchpoints. | |
12073 | ||
3eecfa55 JB |
12074 | This function will always set the per-inferior exception_info, |
12075 | or raise an error. */ | |
0259addd JB |
12076 | |
12077 | static void | |
12078 | ada_exception_support_info_sniffer (void) | |
12079 | { | |
3eecfa55 | 12080 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
0259addd JB |
12081 | |
12082 | /* If the exception info is already known, then no need to recompute it. */ | |
3eecfa55 | 12083 | if (data->exception_info != NULL) |
0259addd JB |
12084 | return; |
12085 | ||
12086 | /* Check the latest (default) exception support info. */ | |
f17011e0 | 12087 | if (ada_has_this_exception_support (&default_exception_support_info)) |
0259addd | 12088 | { |
3eecfa55 | 12089 | data->exception_info = &default_exception_support_info; |
0259addd JB |
12090 | return; |
12091 | } | |
12092 | ||
12093 | /* Try our fallback exception suport info. */ | |
f17011e0 | 12094 | if (ada_has_this_exception_support (&exception_support_info_fallback)) |
0259addd | 12095 | { |
3eecfa55 | 12096 | data->exception_info = &exception_support_info_fallback; |
0259addd JB |
12097 | return; |
12098 | } | |
12099 | ||
12100 | /* Sometimes, it is normal for us to not be able to find the routine | |
12101 | we are looking for. This happens when the program is linked with | |
12102 | the shared version of the GNAT runtime, and the program has not been | |
12103 | started yet. Inform the user of these two possible causes if | |
12104 | applicable. */ | |
12105 | ||
ccefe4c4 | 12106 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
12107 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
12108 | ||
12109 | /* If the symbol does not exist, then check that the program is | |
12110 | already started, to make sure that shared libraries have been | |
12111 | loaded. If it is not started, this may mean that the symbol is | |
12112 | in a shared library. */ | |
12113 | ||
e99b03dc | 12114 | if (inferior_ptid.pid () == 0) |
0259addd JB |
12115 | error (_("Unable to insert catchpoint. Try to start the program first.")); |
12116 | ||
12117 | /* At this point, we know that we are debugging an Ada program and | |
12118 | that the inferior has been started, but we still are not able to | |
0963b4bd | 12119 | find the run-time symbols. That can mean that we are in |
0259addd JB |
12120 | configurable run time mode, or that a-except as been optimized |
12121 | out by the linker... In any case, at this point it is not worth | |
12122 | supporting this feature. */ | |
12123 | ||
7dda8cff | 12124 | error (_("Cannot insert Ada exception catchpoints in this configuration.")); |
0259addd JB |
12125 | } |
12126 | ||
f7f9143b JB |
12127 | /* True iff FRAME is very likely to be that of a function that is |
12128 | part of the runtime system. This is all very heuristic, but is | |
12129 | intended to be used as advice as to what frames are uninteresting | |
12130 | to most users. */ | |
12131 | ||
12132 | static int | |
12133 | is_known_support_routine (struct frame_info *frame) | |
12134 | { | |
692465f1 | 12135 | enum language func_lang; |
f7f9143b | 12136 | int i; |
f35a17b5 | 12137 | const char *fullname; |
f7f9143b | 12138 | |
4ed6b5be JB |
12139 | /* If this code does not have any debugging information (no symtab), |
12140 | This cannot be any user code. */ | |
f7f9143b | 12141 | |
51abb421 | 12142 | symtab_and_line sal = find_frame_sal (frame); |
f7f9143b JB |
12143 | if (sal.symtab == NULL) |
12144 | return 1; | |
12145 | ||
4ed6b5be JB |
12146 | /* If there is a symtab, but the associated source file cannot be |
12147 | located, then assume this is not user code: Selecting a frame | |
12148 | for which we cannot display the code would not be very helpful | |
12149 | for the user. This should also take care of case such as VxWorks | |
12150 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 12151 | |
f35a17b5 JK |
12152 | fullname = symtab_to_fullname (sal.symtab); |
12153 | if (access (fullname, R_OK) != 0) | |
f7f9143b JB |
12154 | return 1; |
12155 | ||
4ed6b5be JB |
12156 | /* Check the unit filename againt the Ada runtime file naming. |
12157 | We also check the name of the objfile against the name of some | |
12158 | known system libraries that sometimes come with debugging info | |
12159 | too. */ | |
12160 | ||
f7f9143b JB |
12161 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
12162 | { | |
12163 | re_comp (known_runtime_file_name_patterns[i]); | |
f69c91ad | 12164 | if (re_exec (lbasename (sal.symtab->filename))) |
f7f9143b | 12165 | return 1; |
eb822aa6 DE |
12166 | if (SYMTAB_OBJFILE (sal.symtab) != NULL |
12167 | && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab)))) | |
4ed6b5be | 12168 | return 1; |
f7f9143b JB |
12169 | } |
12170 | ||
4ed6b5be | 12171 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 12172 | |
c6dc63a1 TT |
12173 | gdb::unique_xmalloc_ptr<char> func_name |
12174 | = find_frame_funname (frame, &func_lang, NULL); | |
f7f9143b JB |
12175 | if (func_name == NULL) |
12176 | return 1; | |
12177 | ||
12178 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
12179 | { | |
12180 | re_comp (known_auxiliary_function_name_patterns[i]); | |
c6dc63a1 TT |
12181 | if (re_exec (func_name.get ())) |
12182 | return 1; | |
f7f9143b JB |
12183 | } |
12184 | ||
12185 | return 0; | |
12186 | } | |
12187 | ||
12188 | /* Find the first frame that contains debugging information and that is not | |
12189 | part of the Ada run-time, starting from FI and moving upward. */ | |
12190 | ||
0ef643c8 | 12191 | void |
f7f9143b JB |
12192 | ada_find_printable_frame (struct frame_info *fi) |
12193 | { | |
12194 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
12195 | { | |
12196 | if (!is_known_support_routine (fi)) | |
12197 | { | |
12198 | select_frame (fi); | |
12199 | break; | |
12200 | } | |
12201 | } | |
12202 | ||
12203 | } | |
12204 | ||
12205 | /* Assuming that the inferior just triggered an unhandled exception | |
12206 | catchpoint, return the address in inferior memory where the name | |
12207 | of the exception is stored. | |
12208 | ||
12209 | Return zero if the address could not be computed. */ | |
12210 | ||
12211 | static CORE_ADDR | |
12212 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
12213 | { |
12214 | return parse_and_eval_address ("e.full_name"); | |
12215 | } | |
12216 | ||
12217 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
12218 | should be used when the inferior uses an older version of the runtime, | |
12219 | where the exception name needs to be extracted from a specific frame | |
12220 | several frames up in the callstack. */ | |
12221 | ||
12222 | static CORE_ADDR | |
12223 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
12224 | { |
12225 | int frame_level; | |
12226 | struct frame_info *fi; | |
3eecfa55 | 12227 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
f7f9143b JB |
12228 | |
12229 | /* To determine the name of this exception, we need to select | |
12230 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
12231 | at least 3 levels up, so we simply skip the first 3 frames | |
12232 | without checking the name of their associated function. */ | |
12233 | fi = get_current_frame (); | |
12234 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
12235 | if (fi != NULL) | |
12236 | fi = get_prev_frame (fi); | |
12237 | ||
12238 | while (fi != NULL) | |
12239 | { | |
692465f1 JB |
12240 | enum language func_lang; |
12241 | ||
c6dc63a1 TT |
12242 | gdb::unique_xmalloc_ptr<char> func_name |
12243 | = find_frame_funname (fi, &func_lang, NULL); | |
55b87a52 KS |
12244 | if (func_name != NULL) |
12245 | { | |
c6dc63a1 | 12246 | if (strcmp (func_name.get (), |
55b87a52 KS |
12247 | data->exception_info->catch_exception_sym) == 0) |
12248 | break; /* We found the frame we were looking for... */ | |
55b87a52 | 12249 | } |
fb44b1a7 | 12250 | fi = get_prev_frame (fi); |
f7f9143b JB |
12251 | } |
12252 | ||
12253 | if (fi == NULL) | |
12254 | return 0; | |
12255 | ||
12256 | select_frame (fi); | |
12257 | return parse_and_eval_address ("id.full_name"); | |
12258 | } | |
12259 | ||
12260 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
12261 | (of any type), return the address in inferior memory where the name | |
12262 | of the exception is stored, if applicable. | |
12263 | ||
45db7c09 PA |
12264 | Assumes the selected frame is the current frame. |
12265 | ||
f7f9143b JB |
12266 | Return zero if the address could not be computed, or if not relevant. */ |
12267 | ||
12268 | static CORE_ADDR | |
761269c8 | 12269 | ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12270 | struct breakpoint *b) |
12271 | { | |
3eecfa55 JB |
12272 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
12273 | ||
f7f9143b JB |
12274 | switch (ex) |
12275 | { | |
761269c8 | 12276 | case ada_catch_exception: |
f7f9143b JB |
12277 | return (parse_and_eval_address ("e.full_name")); |
12278 | break; | |
12279 | ||
761269c8 | 12280 | case ada_catch_exception_unhandled: |
3eecfa55 | 12281 | return data->exception_info->unhandled_exception_name_addr (); |
f7f9143b | 12282 | break; |
9f757bf7 XR |
12283 | |
12284 | case ada_catch_handlers: | |
12285 | return 0; /* The runtimes does not provide access to the exception | |
12286 | name. */ | |
12287 | break; | |
12288 | ||
761269c8 | 12289 | case ada_catch_assert: |
f7f9143b JB |
12290 | return 0; /* Exception name is not relevant in this case. */ |
12291 | break; | |
12292 | ||
12293 | default: | |
12294 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12295 | break; | |
12296 | } | |
12297 | ||
12298 | return 0; /* Should never be reached. */ | |
12299 | } | |
12300 | ||
e547c119 JB |
12301 | /* Assuming the inferior is stopped at an exception catchpoint, |
12302 | return the message which was associated to the exception, if | |
12303 | available. Return NULL if the message could not be retrieved. | |
12304 | ||
e547c119 JB |
12305 | Note: The exception message can be associated to an exception |
12306 | either through the use of the Raise_Exception function, or | |
12307 | more simply (Ada 2005 and later), via: | |
12308 | ||
12309 | raise Exception_Name with "exception message"; | |
12310 | ||
12311 | */ | |
12312 | ||
6f46ac85 | 12313 | static gdb::unique_xmalloc_ptr<char> |
e547c119 JB |
12314 | ada_exception_message_1 (void) |
12315 | { | |
12316 | struct value *e_msg_val; | |
e547c119 | 12317 | int e_msg_len; |
e547c119 JB |
12318 | |
12319 | /* For runtimes that support this feature, the exception message | |
12320 | is passed as an unbounded string argument called "message". */ | |
12321 | e_msg_val = parse_and_eval ("message"); | |
12322 | if (e_msg_val == NULL) | |
12323 | return NULL; /* Exception message not supported. */ | |
12324 | ||
12325 | e_msg_val = ada_coerce_to_simple_array (e_msg_val); | |
12326 | gdb_assert (e_msg_val != NULL); | |
12327 | e_msg_len = TYPE_LENGTH (value_type (e_msg_val)); | |
12328 | ||
12329 | /* If the message string is empty, then treat it as if there was | |
12330 | no exception message. */ | |
12331 | if (e_msg_len <= 0) | |
12332 | return NULL; | |
12333 | ||
6f46ac85 TT |
12334 | gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1)); |
12335 | read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1); | |
12336 | e_msg.get ()[e_msg_len] = '\0'; | |
e547c119 | 12337 | |
e547c119 JB |
12338 | return e_msg; |
12339 | } | |
12340 | ||
12341 | /* Same as ada_exception_message_1, except that all exceptions are | |
12342 | contained here (returning NULL instead). */ | |
12343 | ||
6f46ac85 | 12344 | static gdb::unique_xmalloc_ptr<char> |
e547c119 JB |
12345 | ada_exception_message (void) |
12346 | { | |
6f46ac85 | 12347 | gdb::unique_xmalloc_ptr<char> e_msg; |
e547c119 JB |
12348 | |
12349 | TRY | |
12350 | { | |
12351 | e_msg = ada_exception_message_1 (); | |
12352 | } | |
12353 | CATCH (e, RETURN_MASK_ERROR) | |
12354 | { | |
6f46ac85 | 12355 | e_msg.reset (nullptr); |
e547c119 JB |
12356 | } |
12357 | END_CATCH | |
12358 | ||
12359 | return e_msg; | |
12360 | } | |
12361 | ||
f7f9143b JB |
12362 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains |
12363 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
12364 | When an error is intercepted, a warning with the error message is printed, | |
12365 | and zero is returned. */ | |
12366 | ||
12367 | static CORE_ADDR | |
761269c8 | 12368 | ada_exception_name_addr (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12369 | struct breakpoint *b) |
12370 | { | |
f7f9143b JB |
12371 | CORE_ADDR result = 0; |
12372 | ||
492d29ea | 12373 | TRY |
f7f9143b JB |
12374 | { |
12375 | result = ada_exception_name_addr_1 (ex, b); | |
12376 | } | |
12377 | ||
492d29ea | 12378 | CATCH (e, RETURN_MASK_ERROR) |
f7f9143b | 12379 | { |
3d6e9d23 | 12380 | warning (_("failed to get exception name: %s"), e.what ()); |
f7f9143b JB |
12381 | return 0; |
12382 | } | |
492d29ea | 12383 | END_CATCH |
f7f9143b JB |
12384 | |
12385 | return result; | |
12386 | } | |
12387 | ||
cb7de75e | 12388 | static std::string ada_exception_catchpoint_cond_string |
9f757bf7 XR |
12389 | (const char *excep_string, |
12390 | enum ada_exception_catchpoint_kind ex); | |
28010a5d PA |
12391 | |
12392 | /* Ada catchpoints. | |
12393 | ||
12394 | In the case of catchpoints on Ada exceptions, the catchpoint will | |
12395 | stop the target on every exception the program throws. When a user | |
12396 | specifies the name of a specific exception, we translate this | |
12397 | request into a condition expression (in text form), and then parse | |
12398 | it into an expression stored in each of the catchpoint's locations. | |
12399 | We then use this condition to check whether the exception that was | |
12400 | raised is the one the user is interested in. If not, then the | |
12401 | target is resumed again. We store the name of the requested | |
12402 | exception, in order to be able to re-set the condition expression | |
12403 | when symbols change. */ | |
12404 | ||
12405 | /* An instance of this type is used to represent an Ada catchpoint | |
5625a286 | 12406 | breakpoint location. */ |
28010a5d | 12407 | |
5625a286 | 12408 | class ada_catchpoint_location : public bp_location |
28010a5d | 12409 | { |
5625a286 | 12410 | public: |
5f486660 TT |
12411 | ada_catchpoint_location (breakpoint *owner) |
12412 | : bp_location (owner) | |
5625a286 | 12413 | {} |
28010a5d PA |
12414 | |
12415 | /* The condition that checks whether the exception that was raised | |
12416 | is the specific exception the user specified on catchpoint | |
12417 | creation. */ | |
4d01a485 | 12418 | expression_up excep_cond_expr; |
28010a5d PA |
12419 | }; |
12420 | ||
c1fc2657 | 12421 | /* An instance of this type is used to represent an Ada catchpoint. */ |
28010a5d | 12422 | |
c1fc2657 | 12423 | struct ada_catchpoint : public breakpoint |
28010a5d | 12424 | { |
28010a5d | 12425 | /* The name of the specific exception the user specified. */ |
bc18fbb5 | 12426 | std::string excep_string; |
28010a5d PA |
12427 | }; |
12428 | ||
12429 | /* Parse the exception condition string in the context of each of the | |
12430 | catchpoint's locations, and store them for later evaluation. */ | |
12431 | ||
12432 | static void | |
9f757bf7 XR |
12433 | create_excep_cond_exprs (struct ada_catchpoint *c, |
12434 | enum ada_exception_catchpoint_kind ex) | |
28010a5d | 12435 | { |
28010a5d | 12436 | struct bp_location *bl; |
28010a5d PA |
12437 | |
12438 | /* Nothing to do if there's no specific exception to catch. */ | |
bc18fbb5 | 12439 | if (c->excep_string.empty ()) |
28010a5d PA |
12440 | return; |
12441 | ||
12442 | /* Same if there are no locations... */ | |
c1fc2657 | 12443 | if (c->loc == NULL) |
28010a5d PA |
12444 | return; |
12445 | ||
12446 | /* Compute the condition expression in text form, from the specific | |
12447 | expection we want to catch. */ | |
cb7de75e | 12448 | std::string cond_string |
bc18fbb5 | 12449 | = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex); |
28010a5d PA |
12450 | |
12451 | /* Iterate over all the catchpoint's locations, and parse an | |
12452 | expression for each. */ | |
c1fc2657 | 12453 | for (bl = c->loc; bl != NULL; bl = bl->next) |
28010a5d PA |
12454 | { |
12455 | struct ada_catchpoint_location *ada_loc | |
12456 | = (struct ada_catchpoint_location *) bl; | |
4d01a485 | 12457 | expression_up exp; |
28010a5d PA |
12458 | |
12459 | if (!bl->shlib_disabled) | |
12460 | { | |
bbc13ae3 | 12461 | const char *s; |
28010a5d | 12462 | |
cb7de75e | 12463 | s = cond_string.c_str (); |
492d29ea | 12464 | TRY |
28010a5d | 12465 | { |
036e657b JB |
12466 | exp = parse_exp_1 (&s, bl->address, |
12467 | block_for_pc (bl->address), | |
12468 | 0); | |
28010a5d | 12469 | } |
492d29ea | 12470 | CATCH (e, RETURN_MASK_ERROR) |
849f2b52 JB |
12471 | { |
12472 | warning (_("failed to reevaluate internal exception condition " | |
12473 | "for catchpoint %d: %s"), | |
3d6e9d23 | 12474 | c->number, e.what ()); |
849f2b52 | 12475 | } |
492d29ea | 12476 | END_CATCH |
28010a5d PA |
12477 | } |
12478 | ||
b22e99fd | 12479 | ada_loc->excep_cond_expr = std::move (exp); |
28010a5d | 12480 | } |
28010a5d PA |
12481 | } |
12482 | ||
28010a5d PA |
12483 | /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops |
12484 | structure for all exception catchpoint kinds. */ | |
12485 | ||
12486 | static struct bp_location * | |
761269c8 | 12487 | allocate_location_exception (enum ada_exception_catchpoint_kind ex, |
28010a5d PA |
12488 | struct breakpoint *self) |
12489 | { | |
5f486660 | 12490 | return new ada_catchpoint_location (self); |
28010a5d PA |
12491 | } |
12492 | ||
12493 | /* Implement the RE_SET method in the breakpoint_ops structure for all | |
12494 | exception catchpoint kinds. */ | |
12495 | ||
12496 | static void | |
761269c8 | 12497 | re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b) |
28010a5d PA |
12498 | { |
12499 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
12500 | ||
12501 | /* Call the base class's method. This updates the catchpoint's | |
12502 | locations. */ | |
2060206e | 12503 | bkpt_breakpoint_ops.re_set (b); |
28010a5d PA |
12504 | |
12505 | /* Reparse the exception conditional expressions. One for each | |
12506 | location. */ | |
9f757bf7 | 12507 | create_excep_cond_exprs (c, ex); |
28010a5d PA |
12508 | } |
12509 | ||
12510 | /* Returns true if we should stop for this breakpoint hit. If the | |
12511 | user specified a specific exception, we only want to cause a stop | |
12512 | if the program thrown that exception. */ | |
12513 | ||
12514 | static int | |
12515 | should_stop_exception (const struct bp_location *bl) | |
12516 | { | |
12517 | struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; | |
12518 | const struct ada_catchpoint_location *ada_loc | |
12519 | = (const struct ada_catchpoint_location *) bl; | |
28010a5d PA |
12520 | int stop; |
12521 | ||
12522 | /* With no specific exception, should always stop. */ | |
bc18fbb5 | 12523 | if (c->excep_string.empty ()) |
28010a5d PA |
12524 | return 1; |
12525 | ||
12526 | if (ada_loc->excep_cond_expr == NULL) | |
12527 | { | |
12528 | /* We will have a NULL expression if back when we were creating | |
12529 | the expressions, this location's had failed to parse. */ | |
12530 | return 1; | |
12531 | } | |
12532 | ||
12533 | stop = 1; | |
492d29ea | 12534 | TRY |
28010a5d PA |
12535 | { |
12536 | struct value *mark; | |
12537 | ||
12538 | mark = value_mark (); | |
4d01a485 | 12539 | stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ())); |
28010a5d PA |
12540 | value_free_to_mark (mark); |
12541 | } | |
492d29ea PA |
12542 | CATCH (ex, RETURN_MASK_ALL) |
12543 | { | |
12544 | exception_fprintf (gdb_stderr, ex, | |
12545 | _("Error in testing exception condition:\n")); | |
12546 | } | |
12547 | END_CATCH | |
12548 | ||
28010a5d PA |
12549 | return stop; |
12550 | } | |
12551 | ||
12552 | /* Implement the CHECK_STATUS method in the breakpoint_ops structure | |
12553 | for all exception catchpoint kinds. */ | |
12554 | ||
12555 | static void | |
761269c8 | 12556 | check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
28010a5d PA |
12557 | { |
12558 | bs->stop = should_stop_exception (bs->bp_location_at); | |
12559 | } | |
12560 | ||
f7f9143b JB |
12561 | /* Implement the PRINT_IT method in the breakpoint_ops structure |
12562 | for all exception catchpoint kinds. */ | |
12563 | ||
12564 | static enum print_stop_action | |
761269c8 | 12565 | print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
f7f9143b | 12566 | { |
79a45e25 | 12567 | struct ui_out *uiout = current_uiout; |
348d480f PA |
12568 | struct breakpoint *b = bs->breakpoint_at; |
12569 | ||
956a9fb9 | 12570 | annotate_catchpoint (b->number); |
f7f9143b | 12571 | |
112e8700 | 12572 | if (uiout->is_mi_like_p ()) |
f7f9143b | 12573 | { |
112e8700 | 12574 | uiout->field_string ("reason", |
956a9fb9 | 12575 | async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); |
112e8700 | 12576 | uiout->field_string ("disp", bpdisp_text (b->disposition)); |
f7f9143b JB |
12577 | } |
12578 | ||
112e8700 SM |
12579 | uiout->text (b->disposition == disp_del |
12580 | ? "\nTemporary catchpoint " : "\nCatchpoint "); | |
12581 | uiout->field_int ("bkptno", b->number); | |
12582 | uiout->text (", "); | |
f7f9143b | 12583 | |
45db7c09 PA |
12584 | /* ada_exception_name_addr relies on the selected frame being the |
12585 | current frame. Need to do this here because this function may be | |
12586 | called more than once when printing a stop, and below, we'll | |
12587 | select the first frame past the Ada run-time (see | |
12588 | ada_find_printable_frame). */ | |
12589 | select_frame (get_current_frame ()); | |
12590 | ||
f7f9143b JB |
12591 | switch (ex) |
12592 | { | |
761269c8 JB |
12593 | case ada_catch_exception: |
12594 | case ada_catch_exception_unhandled: | |
9f757bf7 | 12595 | case ada_catch_handlers: |
956a9fb9 JB |
12596 | { |
12597 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
12598 | char exception_name[256]; | |
12599 | ||
12600 | if (addr != 0) | |
12601 | { | |
c714b426 PA |
12602 | read_memory (addr, (gdb_byte *) exception_name, |
12603 | sizeof (exception_name) - 1); | |
956a9fb9 JB |
12604 | exception_name [sizeof (exception_name) - 1] = '\0'; |
12605 | } | |
12606 | else | |
12607 | { | |
12608 | /* For some reason, we were unable to read the exception | |
12609 | name. This could happen if the Runtime was compiled | |
12610 | without debugging info, for instance. In that case, | |
12611 | just replace the exception name by the generic string | |
12612 | "exception" - it will read as "an exception" in the | |
12613 | notification we are about to print. */ | |
967cff16 | 12614 | memcpy (exception_name, "exception", sizeof ("exception")); |
956a9fb9 JB |
12615 | } |
12616 | /* In the case of unhandled exception breakpoints, we print | |
12617 | the exception name as "unhandled EXCEPTION_NAME", to make | |
12618 | it clearer to the user which kind of catchpoint just got | |
12619 | hit. We used ui_out_text to make sure that this extra | |
12620 | info does not pollute the exception name in the MI case. */ | |
761269c8 | 12621 | if (ex == ada_catch_exception_unhandled) |
112e8700 SM |
12622 | uiout->text ("unhandled "); |
12623 | uiout->field_string ("exception-name", exception_name); | |
956a9fb9 JB |
12624 | } |
12625 | break; | |
761269c8 | 12626 | case ada_catch_assert: |
956a9fb9 JB |
12627 | /* In this case, the name of the exception is not really |
12628 | important. Just print "failed assertion" to make it clearer | |
12629 | that his program just hit an assertion-failure catchpoint. | |
12630 | We used ui_out_text because this info does not belong in | |
12631 | the MI output. */ | |
112e8700 | 12632 | uiout->text ("failed assertion"); |
956a9fb9 | 12633 | break; |
f7f9143b | 12634 | } |
e547c119 | 12635 | |
6f46ac85 | 12636 | gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message (); |
e547c119 JB |
12637 | if (exception_message != NULL) |
12638 | { | |
e547c119 | 12639 | uiout->text (" ("); |
6f46ac85 | 12640 | uiout->field_string ("exception-message", exception_message.get ()); |
e547c119 | 12641 | uiout->text (")"); |
e547c119 JB |
12642 | } |
12643 | ||
112e8700 | 12644 | uiout->text (" at "); |
956a9fb9 | 12645 | ada_find_printable_frame (get_current_frame ()); |
f7f9143b JB |
12646 | |
12647 | return PRINT_SRC_AND_LOC; | |
12648 | } | |
12649 | ||
12650 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
12651 | for all exception catchpoint kinds. */ | |
12652 | ||
12653 | static void | |
761269c8 | 12654 | print_one_exception (enum ada_exception_catchpoint_kind ex, |
a6d9a66e | 12655 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12656 | { |
79a45e25 | 12657 | struct ui_out *uiout = current_uiout; |
28010a5d | 12658 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45b7d TT |
12659 | struct value_print_options opts; |
12660 | ||
12661 | get_user_print_options (&opts); | |
12662 | if (opts.addressprint) | |
f7f9143b JB |
12663 | { |
12664 | annotate_field (4); | |
112e8700 | 12665 | uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
12666 | } |
12667 | ||
12668 | annotate_field (5); | |
a6d9a66e | 12669 | *last_loc = b->loc; |
f7f9143b JB |
12670 | switch (ex) |
12671 | { | |
761269c8 | 12672 | case ada_catch_exception: |
bc18fbb5 | 12673 | if (!c->excep_string.empty ()) |
f7f9143b | 12674 | { |
bc18fbb5 TT |
12675 | std::string msg = string_printf (_("`%s' Ada exception"), |
12676 | c->excep_string.c_str ()); | |
28010a5d | 12677 | |
112e8700 | 12678 | uiout->field_string ("what", msg); |
f7f9143b JB |
12679 | } |
12680 | else | |
112e8700 | 12681 | uiout->field_string ("what", "all Ada exceptions"); |
f7f9143b JB |
12682 | |
12683 | break; | |
12684 | ||
761269c8 | 12685 | case ada_catch_exception_unhandled: |
112e8700 | 12686 | uiout->field_string ("what", "unhandled Ada exceptions"); |
f7f9143b JB |
12687 | break; |
12688 | ||
9f757bf7 | 12689 | case ada_catch_handlers: |
bc18fbb5 | 12690 | if (!c->excep_string.empty ()) |
9f757bf7 XR |
12691 | { |
12692 | uiout->field_fmt ("what", | |
12693 | _("`%s' Ada exception handlers"), | |
bc18fbb5 | 12694 | c->excep_string.c_str ()); |
9f757bf7 XR |
12695 | } |
12696 | else | |
12697 | uiout->field_string ("what", "all Ada exceptions handlers"); | |
12698 | break; | |
12699 | ||
761269c8 | 12700 | case ada_catch_assert: |
112e8700 | 12701 | uiout->field_string ("what", "failed Ada assertions"); |
f7f9143b JB |
12702 | break; |
12703 | ||
12704 | default: | |
12705 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12706 | break; | |
12707 | } | |
12708 | } | |
12709 | ||
12710 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
12711 | for all exception catchpoint kinds. */ | |
12712 | ||
12713 | static void | |
761269c8 | 12714 | print_mention_exception (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12715 | struct breakpoint *b) |
12716 | { | |
28010a5d | 12717 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45e25 | 12718 | struct ui_out *uiout = current_uiout; |
28010a5d | 12719 | |
112e8700 | 12720 | uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ") |
00eb2c4a | 12721 | : _("Catchpoint ")); |
112e8700 SM |
12722 | uiout->field_int ("bkptno", b->number); |
12723 | uiout->text (": "); | |
00eb2c4a | 12724 | |
f7f9143b JB |
12725 | switch (ex) |
12726 | { | |
761269c8 | 12727 | case ada_catch_exception: |
bc18fbb5 | 12728 | if (!c->excep_string.empty ()) |
00eb2c4a | 12729 | { |
862d101a | 12730 | std::string info = string_printf (_("`%s' Ada exception"), |
bc18fbb5 | 12731 | c->excep_string.c_str ()); |
862d101a | 12732 | uiout->text (info.c_str ()); |
00eb2c4a | 12733 | } |
f7f9143b | 12734 | else |
112e8700 | 12735 | uiout->text (_("all Ada exceptions")); |
f7f9143b JB |
12736 | break; |
12737 | ||
761269c8 | 12738 | case ada_catch_exception_unhandled: |
112e8700 | 12739 | uiout->text (_("unhandled Ada exceptions")); |
f7f9143b | 12740 | break; |
9f757bf7 XR |
12741 | |
12742 | case ada_catch_handlers: | |
bc18fbb5 | 12743 | if (!c->excep_string.empty ()) |
9f757bf7 XR |
12744 | { |
12745 | std::string info | |
12746 | = string_printf (_("`%s' Ada exception handlers"), | |
bc18fbb5 | 12747 | c->excep_string.c_str ()); |
9f757bf7 XR |
12748 | uiout->text (info.c_str ()); |
12749 | } | |
12750 | else | |
12751 | uiout->text (_("all Ada exceptions handlers")); | |
12752 | break; | |
12753 | ||
761269c8 | 12754 | case ada_catch_assert: |
112e8700 | 12755 | uiout->text (_("failed Ada assertions")); |
f7f9143b JB |
12756 | break; |
12757 | ||
12758 | default: | |
12759 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12760 | break; | |
12761 | } | |
12762 | } | |
12763 | ||
6149aea9 PA |
12764 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
12765 | for all exception catchpoint kinds. */ | |
12766 | ||
12767 | static void | |
761269c8 | 12768 | print_recreate_exception (enum ada_exception_catchpoint_kind ex, |
6149aea9 PA |
12769 | struct breakpoint *b, struct ui_file *fp) |
12770 | { | |
28010a5d PA |
12771 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
12772 | ||
6149aea9 PA |
12773 | switch (ex) |
12774 | { | |
761269c8 | 12775 | case ada_catch_exception: |
6149aea9 | 12776 | fprintf_filtered (fp, "catch exception"); |
bc18fbb5 TT |
12777 | if (!c->excep_string.empty ()) |
12778 | fprintf_filtered (fp, " %s", c->excep_string.c_str ()); | |
6149aea9 PA |
12779 | break; |
12780 | ||
761269c8 | 12781 | case ada_catch_exception_unhandled: |
78076abc | 12782 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
12783 | break; |
12784 | ||
9f757bf7 XR |
12785 | case ada_catch_handlers: |
12786 | fprintf_filtered (fp, "catch handlers"); | |
12787 | break; | |
12788 | ||
761269c8 | 12789 | case ada_catch_assert: |
6149aea9 PA |
12790 | fprintf_filtered (fp, "catch assert"); |
12791 | break; | |
12792 | ||
12793 | default: | |
12794 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12795 | } | |
d9b3f62e | 12796 | print_recreate_thread (b, fp); |
6149aea9 PA |
12797 | } |
12798 | ||
f7f9143b JB |
12799 | /* Virtual table for "catch exception" breakpoints. */ |
12800 | ||
28010a5d PA |
12801 | static struct bp_location * |
12802 | allocate_location_catch_exception (struct breakpoint *self) | |
12803 | { | |
761269c8 | 12804 | return allocate_location_exception (ada_catch_exception, self); |
28010a5d PA |
12805 | } |
12806 | ||
12807 | static void | |
12808 | re_set_catch_exception (struct breakpoint *b) | |
12809 | { | |
761269c8 | 12810 | re_set_exception (ada_catch_exception, b); |
28010a5d PA |
12811 | } |
12812 | ||
12813 | static void | |
12814 | check_status_catch_exception (bpstat bs) | |
12815 | { | |
761269c8 | 12816 | check_status_exception (ada_catch_exception, bs); |
28010a5d PA |
12817 | } |
12818 | ||
f7f9143b | 12819 | static enum print_stop_action |
348d480f | 12820 | print_it_catch_exception (bpstat bs) |
f7f9143b | 12821 | { |
761269c8 | 12822 | return print_it_exception (ada_catch_exception, bs); |
f7f9143b JB |
12823 | } |
12824 | ||
12825 | static void | |
a6d9a66e | 12826 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12827 | { |
761269c8 | 12828 | print_one_exception (ada_catch_exception, b, last_loc); |
f7f9143b JB |
12829 | } |
12830 | ||
12831 | static void | |
12832 | print_mention_catch_exception (struct breakpoint *b) | |
12833 | { | |
761269c8 | 12834 | print_mention_exception (ada_catch_exception, b); |
f7f9143b JB |
12835 | } |
12836 | ||
6149aea9 PA |
12837 | static void |
12838 | print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) | |
12839 | { | |
761269c8 | 12840 | print_recreate_exception (ada_catch_exception, b, fp); |
6149aea9 PA |
12841 | } |
12842 | ||
2060206e | 12843 | static struct breakpoint_ops catch_exception_breakpoint_ops; |
f7f9143b JB |
12844 | |
12845 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
12846 | ||
28010a5d PA |
12847 | static struct bp_location * |
12848 | allocate_location_catch_exception_unhandled (struct breakpoint *self) | |
12849 | { | |
761269c8 | 12850 | return allocate_location_exception (ada_catch_exception_unhandled, self); |
28010a5d PA |
12851 | } |
12852 | ||
12853 | static void | |
12854 | re_set_catch_exception_unhandled (struct breakpoint *b) | |
12855 | { | |
761269c8 | 12856 | re_set_exception (ada_catch_exception_unhandled, b); |
28010a5d PA |
12857 | } |
12858 | ||
12859 | static void | |
12860 | check_status_catch_exception_unhandled (bpstat bs) | |
12861 | { | |
761269c8 | 12862 | check_status_exception (ada_catch_exception_unhandled, bs); |
28010a5d PA |
12863 | } |
12864 | ||
f7f9143b | 12865 | static enum print_stop_action |
348d480f | 12866 | print_it_catch_exception_unhandled (bpstat bs) |
f7f9143b | 12867 | { |
761269c8 | 12868 | return print_it_exception (ada_catch_exception_unhandled, bs); |
f7f9143b JB |
12869 | } |
12870 | ||
12871 | static void | |
a6d9a66e UW |
12872 | print_one_catch_exception_unhandled (struct breakpoint *b, |
12873 | struct bp_location **last_loc) | |
f7f9143b | 12874 | { |
761269c8 | 12875 | print_one_exception (ada_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
12876 | } |
12877 | ||
12878 | static void | |
12879 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
12880 | { | |
761269c8 | 12881 | print_mention_exception (ada_catch_exception_unhandled, b); |
f7f9143b JB |
12882 | } |
12883 | ||
6149aea9 PA |
12884 | static void |
12885 | print_recreate_catch_exception_unhandled (struct breakpoint *b, | |
12886 | struct ui_file *fp) | |
12887 | { | |
761269c8 | 12888 | print_recreate_exception (ada_catch_exception_unhandled, b, fp); |
6149aea9 PA |
12889 | } |
12890 | ||
2060206e | 12891 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops; |
f7f9143b JB |
12892 | |
12893 | /* Virtual table for "catch assert" breakpoints. */ | |
12894 | ||
28010a5d PA |
12895 | static struct bp_location * |
12896 | allocate_location_catch_assert (struct breakpoint *self) | |
12897 | { | |
761269c8 | 12898 | return allocate_location_exception (ada_catch_assert, self); |
28010a5d PA |
12899 | } |
12900 | ||
12901 | static void | |
12902 | re_set_catch_assert (struct breakpoint *b) | |
12903 | { | |
761269c8 | 12904 | re_set_exception (ada_catch_assert, b); |
28010a5d PA |
12905 | } |
12906 | ||
12907 | static void | |
12908 | check_status_catch_assert (bpstat bs) | |
12909 | { | |
761269c8 | 12910 | check_status_exception (ada_catch_assert, bs); |
28010a5d PA |
12911 | } |
12912 | ||
f7f9143b | 12913 | static enum print_stop_action |
348d480f | 12914 | print_it_catch_assert (bpstat bs) |
f7f9143b | 12915 | { |
761269c8 | 12916 | return print_it_exception (ada_catch_assert, bs); |
f7f9143b JB |
12917 | } |
12918 | ||
12919 | static void | |
a6d9a66e | 12920 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12921 | { |
761269c8 | 12922 | print_one_exception (ada_catch_assert, b, last_loc); |
f7f9143b JB |
12923 | } |
12924 | ||
12925 | static void | |
12926 | print_mention_catch_assert (struct breakpoint *b) | |
12927 | { | |
761269c8 | 12928 | print_mention_exception (ada_catch_assert, b); |
f7f9143b JB |
12929 | } |
12930 | ||
6149aea9 PA |
12931 | static void |
12932 | print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) | |
12933 | { | |
761269c8 | 12934 | print_recreate_exception (ada_catch_assert, b, fp); |
6149aea9 PA |
12935 | } |
12936 | ||
2060206e | 12937 | static struct breakpoint_ops catch_assert_breakpoint_ops; |
f7f9143b | 12938 | |
9f757bf7 XR |
12939 | /* Virtual table for "catch handlers" breakpoints. */ |
12940 | ||
12941 | static struct bp_location * | |
12942 | allocate_location_catch_handlers (struct breakpoint *self) | |
12943 | { | |
12944 | return allocate_location_exception (ada_catch_handlers, self); | |
12945 | } | |
12946 | ||
12947 | static void | |
12948 | re_set_catch_handlers (struct breakpoint *b) | |
12949 | { | |
12950 | re_set_exception (ada_catch_handlers, b); | |
12951 | } | |
12952 | ||
12953 | static void | |
12954 | check_status_catch_handlers (bpstat bs) | |
12955 | { | |
12956 | check_status_exception (ada_catch_handlers, bs); | |
12957 | } | |
12958 | ||
12959 | static enum print_stop_action | |
12960 | print_it_catch_handlers (bpstat bs) | |
12961 | { | |
12962 | return print_it_exception (ada_catch_handlers, bs); | |
12963 | } | |
12964 | ||
12965 | static void | |
12966 | print_one_catch_handlers (struct breakpoint *b, | |
12967 | struct bp_location **last_loc) | |
12968 | { | |
12969 | print_one_exception (ada_catch_handlers, b, last_loc); | |
12970 | } | |
12971 | ||
12972 | static void | |
12973 | print_mention_catch_handlers (struct breakpoint *b) | |
12974 | { | |
12975 | print_mention_exception (ada_catch_handlers, b); | |
12976 | } | |
12977 | ||
12978 | static void | |
12979 | print_recreate_catch_handlers (struct breakpoint *b, | |
12980 | struct ui_file *fp) | |
12981 | { | |
12982 | print_recreate_exception (ada_catch_handlers, b, fp); | |
12983 | } | |
12984 | ||
12985 | static struct breakpoint_ops catch_handlers_breakpoint_ops; | |
12986 | ||
f7f9143b JB |
12987 | /* Split the arguments specified in a "catch exception" command. |
12988 | Set EX to the appropriate catchpoint type. | |
28010a5d | 12989 | Set EXCEP_STRING to the name of the specific exception if |
5845583d | 12990 | specified by the user. |
9f757bf7 XR |
12991 | IS_CATCH_HANDLERS_CMD: True if the arguments are for a |
12992 | "catch handlers" command. False otherwise. | |
5845583d JB |
12993 | If a condition is found at the end of the arguments, the condition |
12994 | expression is stored in COND_STRING (memory must be deallocated | |
12995 | after use). Otherwise COND_STRING is set to NULL. */ | |
f7f9143b JB |
12996 | |
12997 | static void | |
a121b7c1 | 12998 | catch_ada_exception_command_split (const char *args, |
9f757bf7 | 12999 | bool is_catch_handlers_cmd, |
761269c8 | 13000 | enum ada_exception_catchpoint_kind *ex, |
bc18fbb5 TT |
13001 | std::string *excep_string, |
13002 | std::string *cond_string) | |
f7f9143b | 13003 | { |
bc18fbb5 | 13004 | std::string exception_name; |
f7f9143b | 13005 | |
bc18fbb5 TT |
13006 | exception_name = extract_arg (&args); |
13007 | if (exception_name == "if") | |
5845583d JB |
13008 | { |
13009 | /* This is not an exception name; this is the start of a condition | |
13010 | expression for a catchpoint on all exceptions. So, "un-get" | |
13011 | this token, and set exception_name to NULL. */ | |
bc18fbb5 | 13012 | exception_name.clear (); |
5845583d JB |
13013 | args -= 2; |
13014 | } | |
f7f9143b | 13015 | |
5845583d | 13016 | /* Check to see if we have a condition. */ |
f7f9143b | 13017 | |
f1735a53 | 13018 | args = skip_spaces (args); |
61012eef | 13019 | if (startswith (args, "if") |
5845583d JB |
13020 | && (isspace (args[2]) || args[2] == '\0')) |
13021 | { | |
13022 | args += 2; | |
f1735a53 | 13023 | args = skip_spaces (args); |
5845583d JB |
13024 | |
13025 | if (args[0] == '\0') | |
13026 | error (_("Condition missing after `if' keyword")); | |
bc18fbb5 | 13027 | *cond_string = args; |
5845583d JB |
13028 | |
13029 | args += strlen (args); | |
13030 | } | |
13031 | ||
13032 | /* Check that we do not have any more arguments. Anything else | |
13033 | is unexpected. */ | |
f7f9143b JB |
13034 | |
13035 | if (args[0] != '\0') | |
13036 | error (_("Junk at end of expression")); | |
13037 | ||
9f757bf7 XR |
13038 | if (is_catch_handlers_cmd) |
13039 | { | |
13040 | /* Catch handling of exceptions. */ | |
13041 | *ex = ada_catch_handlers; | |
13042 | *excep_string = exception_name; | |
13043 | } | |
bc18fbb5 | 13044 | else if (exception_name.empty ()) |
f7f9143b JB |
13045 | { |
13046 | /* Catch all exceptions. */ | |
761269c8 | 13047 | *ex = ada_catch_exception; |
bc18fbb5 | 13048 | excep_string->clear (); |
f7f9143b | 13049 | } |
bc18fbb5 | 13050 | else if (exception_name == "unhandled") |
f7f9143b JB |
13051 | { |
13052 | /* Catch unhandled exceptions. */ | |
761269c8 | 13053 | *ex = ada_catch_exception_unhandled; |
bc18fbb5 | 13054 | excep_string->clear (); |
f7f9143b JB |
13055 | } |
13056 | else | |
13057 | { | |
13058 | /* Catch a specific exception. */ | |
761269c8 | 13059 | *ex = ada_catch_exception; |
28010a5d | 13060 | *excep_string = exception_name; |
f7f9143b JB |
13061 | } |
13062 | } | |
13063 | ||
13064 | /* Return the name of the symbol on which we should break in order to | |
13065 | implement a catchpoint of the EX kind. */ | |
13066 | ||
13067 | static const char * | |
761269c8 | 13068 | ada_exception_sym_name (enum ada_exception_catchpoint_kind ex) |
f7f9143b | 13069 | { |
3eecfa55 JB |
13070 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
13071 | ||
13072 | gdb_assert (data->exception_info != NULL); | |
0259addd | 13073 | |
f7f9143b JB |
13074 | switch (ex) |
13075 | { | |
761269c8 | 13076 | case ada_catch_exception: |
3eecfa55 | 13077 | return (data->exception_info->catch_exception_sym); |
f7f9143b | 13078 | break; |
761269c8 | 13079 | case ada_catch_exception_unhandled: |
3eecfa55 | 13080 | return (data->exception_info->catch_exception_unhandled_sym); |
f7f9143b | 13081 | break; |
761269c8 | 13082 | case ada_catch_assert: |
3eecfa55 | 13083 | return (data->exception_info->catch_assert_sym); |
f7f9143b | 13084 | break; |
9f757bf7 XR |
13085 | case ada_catch_handlers: |
13086 | return (data->exception_info->catch_handlers_sym); | |
13087 | break; | |
f7f9143b JB |
13088 | default: |
13089 | internal_error (__FILE__, __LINE__, | |
13090 | _("unexpected catchpoint kind (%d)"), ex); | |
13091 | } | |
13092 | } | |
13093 | ||
13094 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
13095 | of the EX kind. */ | |
13096 | ||
c0a91b2b | 13097 | static const struct breakpoint_ops * |
761269c8 | 13098 | ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex) |
f7f9143b JB |
13099 | { |
13100 | switch (ex) | |
13101 | { | |
761269c8 | 13102 | case ada_catch_exception: |
f7f9143b JB |
13103 | return (&catch_exception_breakpoint_ops); |
13104 | break; | |
761269c8 | 13105 | case ada_catch_exception_unhandled: |
f7f9143b JB |
13106 | return (&catch_exception_unhandled_breakpoint_ops); |
13107 | break; | |
761269c8 | 13108 | case ada_catch_assert: |
f7f9143b JB |
13109 | return (&catch_assert_breakpoint_ops); |
13110 | break; | |
9f757bf7 XR |
13111 | case ada_catch_handlers: |
13112 | return (&catch_handlers_breakpoint_ops); | |
13113 | break; | |
f7f9143b JB |
13114 | default: |
13115 | internal_error (__FILE__, __LINE__, | |
13116 | _("unexpected catchpoint kind (%d)"), ex); | |
13117 | } | |
13118 | } | |
13119 | ||
13120 | /* Return the condition that will be used to match the current exception | |
13121 | being raised with the exception that the user wants to catch. This | |
13122 | assumes that this condition is used when the inferior just triggered | |
13123 | an exception catchpoint. | |
cb7de75e | 13124 | EX: the type of catchpoints used for catching Ada exceptions. */ |
f7f9143b | 13125 | |
cb7de75e | 13126 | static std::string |
9f757bf7 XR |
13127 | ada_exception_catchpoint_cond_string (const char *excep_string, |
13128 | enum ada_exception_catchpoint_kind ex) | |
f7f9143b | 13129 | { |
3d0b0fa3 | 13130 | int i; |
9f757bf7 | 13131 | bool is_standard_exc = false; |
cb7de75e | 13132 | std::string result; |
9f757bf7 XR |
13133 | |
13134 | if (ex == ada_catch_handlers) | |
13135 | { | |
13136 | /* For exception handlers catchpoints, the condition string does | |
13137 | not use the same parameter as for the other exceptions. */ | |
cb7de75e TT |
13138 | result = ("long_integer (GNAT_GCC_exception_Access" |
13139 | "(gcc_exception).all.occurrence.id)"); | |
9f757bf7 XR |
13140 | } |
13141 | else | |
cb7de75e | 13142 | result = "long_integer (e)"; |
3d0b0fa3 | 13143 | |
0963b4bd | 13144 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 | 13145 | runtime units that have been compiled without debugging info; if |
28010a5d | 13146 | EXCEP_STRING is the not-fully-qualified name of a standard |
3d0b0fa3 JB |
13147 | exception (e.g. "constraint_error") then, during the evaluation |
13148 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 13149 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
13150 | may then be set only on user-defined exceptions which have the |
13151 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
13152 | ||
13153 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 13154 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
13155 | exception constraint_error" is rewritten into "catch exception |
13156 | standard.constraint_error". | |
13157 | ||
13158 | If an exception named contraint_error is defined in another package of | |
13159 | the inferior program, then the only way to specify this exception as a | |
13160 | breakpoint condition is to use its fully-qualified named: | |
13161 | e.g. my_package.constraint_error. */ | |
13162 | ||
13163 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
13164 | { | |
28010a5d | 13165 | if (strcmp (standard_exc [i], excep_string) == 0) |
3d0b0fa3 | 13166 | { |
9f757bf7 XR |
13167 | is_standard_exc = true; |
13168 | break; | |
3d0b0fa3 JB |
13169 | } |
13170 | } | |
9f757bf7 | 13171 | |
cb7de75e TT |
13172 | result += " = "; |
13173 | ||
9f757bf7 | 13174 | if (is_standard_exc) |
cb7de75e | 13175 | string_appendf (result, "long_integer (&standard.%s)", excep_string); |
9f757bf7 | 13176 | else |
cb7de75e | 13177 | string_appendf (result, "long_integer (&%s)", excep_string); |
9f757bf7 | 13178 | |
9f757bf7 | 13179 | return result; |
f7f9143b JB |
13180 | } |
13181 | ||
13182 | /* Return the symtab_and_line that should be used to insert an exception | |
13183 | catchpoint of the TYPE kind. | |
13184 | ||
28010a5d PA |
13185 | ADDR_STRING returns the name of the function where the real |
13186 | breakpoint that implements the catchpoints is set, depending on the | |
13187 | type of catchpoint we need to create. */ | |
f7f9143b JB |
13188 | |
13189 | static struct symtab_and_line | |
bc18fbb5 | 13190 | ada_exception_sal (enum ada_exception_catchpoint_kind ex, |
cc12f4a8 | 13191 | std::string *addr_string, const struct breakpoint_ops **ops) |
f7f9143b JB |
13192 | { |
13193 | const char *sym_name; | |
13194 | struct symbol *sym; | |
f7f9143b | 13195 | |
0259addd JB |
13196 | /* First, find out which exception support info to use. */ |
13197 | ada_exception_support_info_sniffer (); | |
13198 | ||
13199 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b | 13200 | the Ada exceptions requested by the user. */ |
f7f9143b JB |
13201 | sym_name = ada_exception_sym_name (ex); |
13202 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
13203 | ||
57aff202 JB |
13204 | if (sym == NULL) |
13205 | error (_("Catchpoint symbol not found: %s"), sym_name); | |
13206 | ||
13207 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
13208 | error (_("Unable to insert catchpoint. %s is not a function."), sym_name); | |
f7f9143b JB |
13209 | |
13210 | /* Set ADDR_STRING. */ | |
cc12f4a8 | 13211 | *addr_string = sym_name; |
f7f9143b | 13212 | |
f7f9143b | 13213 | /* Set OPS. */ |
4b9eee8c | 13214 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b | 13215 | |
f17011e0 | 13216 | return find_function_start_sal (sym, 1); |
f7f9143b JB |
13217 | } |
13218 | ||
b4a5b78b | 13219 | /* Create an Ada exception catchpoint. |
f7f9143b | 13220 | |
b4a5b78b | 13221 | EX_KIND is the kind of exception catchpoint to be created. |
5845583d | 13222 | |
bc18fbb5 | 13223 | If EXCEPT_STRING is empty, this catchpoint is expected to trigger |
2df4d1d5 | 13224 | for all exceptions. Otherwise, EXCEPT_STRING indicates the name |
bc18fbb5 | 13225 | of the exception to which this catchpoint applies. |
2df4d1d5 | 13226 | |
bc18fbb5 | 13227 | COND_STRING, if not empty, is the catchpoint condition. |
f7f9143b | 13228 | |
b4a5b78b JB |
13229 | TEMPFLAG, if nonzero, means that the underlying breakpoint |
13230 | should be temporary. | |
28010a5d | 13231 | |
b4a5b78b | 13232 | FROM_TTY is the usual argument passed to all commands implementations. */ |
28010a5d | 13233 | |
349774ef | 13234 | void |
28010a5d | 13235 | create_ada_exception_catchpoint (struct gdbarch *gdbarch, |
761269c8 | 13236 | enum ada_exception_catchpoint_kind ex_kind, |
bc18fbb5 | 13237 | const std::string &excep_string, |
56ecd069 | 13238 | const std::string &cond_string, |
28010a5d | 13239 | int tempflag, |
349774ef | 13240 | int disabled, |
28010a5d PA |
13241 | int from_tty) |
13242 | { | |
cc12f4a8 | 13243 | std::string addr_string; |
b4a5b78b | 13244 | const struct breakpoint_ops *ops = NULL; |
bc18fbb5 | 13245 | struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops); |
28010a5d | 13246 | |
b270e6f9 | 13247 | std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ()); |
cc12f4a8 | 13248 | init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (), |
349774ef | 13249 | ops, tempflag, disabled, from_tty); |
28010a5d | 13250 | c->excep_string = excep_string; |
9f757bf7 | 13251 | create_excep_cond_exprs (c.get (), ex_kind); |
56ecd069 XR |
13252 | if (!cond_string.empty ()) |
13253 | set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty); | |
b270e6f9 | 13254 | install_breakpoint (0, std::move (c), 1); |
f7f9143b JB |
13255 | } |
13256 | ||
9ac4176b PA |
13257 | /* Implement the "catch exception" command. */ |
13258 | ||
13259 | static void | |
eb4c3f4a | 13260 | catch_ada_exception_command (const char *arg_entry, int from_tty, |
9ac4176b PA |
13261 | struct cmd_list_element *command) |
13262 | { | |
a121b7c1 | 13263 | const char *arg = arg_entry; |
9ac4176b PA |
13264 | struct gdbarch *gdbarch = get_current_arch (); |
13265 | int tempflag; | |
761269c8 | 13266 | enum ada_exception_catchpoint_kind ex_kind; |
bc18fbb5 | 13267 | std::string excep_string; |
56ecd069 | 13268 | std::string cond_string; |
9ac4176b PA |
13269 | |
13270 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
13271 | ||
13272 | if (!arg) | |
13273 | arg = ""; | |
9f757bf7 | 13274 | catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string, |
bc18fbb5 | 13275 | &cond_string); |
9f757bf7 XR |
13276 | create_ada_exception_catchpoint (gdbarch, ex_kind, |
13277 | excep_string, cond_string, | |
13278 | tempflag, 1 /* enabled */, | |
13279 | from_tty); | |
13280 | } | |
13281 | ||
13282 | /* Implement the "catch handlers" command. */ | |
13283 | ||
13284 | static void | |
13285 | catch_ada_handlers_command (const char *arg_entry, int from_tty, | |
13286 | struct cmd_list_element *command) | |
13287 | { | |
13288 | const char *arg = arg_entry; | |
13289 | struct gdbarch *gdbarch = get_current_arch (); | |
13290 | int tempflag; | |
13291 | enum ada_exception_catchpoint_kind ex_kind; | |
bc18fbb5 | 13292 | std::string excep_string; |
56ecd069 | 13293 | std::string cond_string; |
9f757bf7 XR |
13294 | |
13295 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
13296 | ||
13297 | if (!arg) | |
13298 | arg = ""; | |
13299 | catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string, | |
bc18fbb5 | 13300 | &cond_string); |
b4a5b78b JB |
13301 | create_ada_exception_catchpoint (gdbarch, ex_kind, |
13302 | excep_string, cond_string, | |
349774ef JB |
13303 | tempflag, 1 /* enabled */, |
13304 | from_tty); | |
9ac4176b PA |
13305 | } |
13306 | ||
b4a5b78b | 13307 | /* Split the arguments specified in a "catch assert" command. |
5845583d | 13308 | |
b4a5b78b JB |
13309 | ARGS contains the command's arguments (or the empty string if |
13310 | no arguments were passed). | |
5845583d JB |
13311 | |
13312 | If ARGS contains a condition, set COND_STRING to that condition | |
b4a5b78b | 13313 | (the memory needs to be deallocated after use). */ |
5845583d | 13314 | |
b4a5b78b | 13315 | static void |
56ecd069 | 13316 | catch_ada_assert_command_split (const char *args, std::string &cond_string) |
f7f9143b | 13317 | { |
f1735a53 | 13318 | args = skip_spaces (args); |
f7f9143b | 13319 | |
5845583d | 13320 | /* Check whether a condition was provided. */ |
61012eef | 13321 | if (startswith (args, "if") |
5845583d | 13322 | && (isspace (args[2]) || args[2] == '\0')) |
f7f9143b | 13323 | { |
5845583d | 13324 | args += 2; |
f1735a53 | 13325 | args = skip_spaces (args); |
5845583d JB |
13326 | if (args[0] == '\0') |
13327 | error (_("condition missing after `if' keyword")); | |
56ecd069 | 13328 | cond_string.assign (args); |
f7f9143b JB |
13329 | } |
13330 | ||
5845583d JB |
13331 | /* Otherwise, there should be no other argument at the end of |
13332 | the command. */ | |
13333 | else if (args[0] != '\0') | |
13334 | error (_("Junk at end of arguments.")); | |
f7f9143b JB |
13335 | } |
13336 | ||
9ac4176b PA |
13337 | /* Implement the "catch assert" command. */ |
13338 | ||
13339 | static void | |
eb4c3f4a | 13340 | catch_assert_command (const char *arg_entry, int from_tty, |
9ac4176b PA |
13341 | struct cmd_list_element *command) |
13342 | { | |
a121b7c1 | 13343 | const char *arg = arg_entry; |
9ac4176b PA |
13344 | struct gdbarch *gdbarch = get_current_arch (); |
13345 | int tempflag; | |
56ecd069 | 13346 | std::string cond_string; |
9ac4176b PA |
13347 | |
13348 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
13349 | ||
13350 | if (!arg) | |
13351 | arg = ""; | |
56ecd069 | 13352 | catch_ada_assert_command_split (arg, cond_string); |
761269c8 | 13353 | create_ada_exception_catchpoint (gdbarch, ada_catch_assert, |
241db429 | 13354 | "", cond_string, |
349774ef JB |
13355 | tempflag, 1 /* enabled */, |
13356 | from_tty); | |
9ac4176b | 13357 | } |
778865d3 JB |
13358 | |
13359 | /* Return non-zero if the symbol SYM is an Ada exception object. */ | |
13360 | ||
13361 | static int | |
13362 | ada_is_exception_sym (struct symbol *sym) | |
13363 | { | |
a737d952 | 13364 | const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym)); |
778865d3 JB |
13365 | |
13366 | return (SYMBOL_CLASS (sym) != LOC_TYPEDEF | |
13367 | && SYMBOL_CLASS (sym) != LOC_BLOCK | |
13368 | && SYMBOL_CLASS (sym) != LOC_CONST | |
13369 | && SYMBOL_CLASS (sym) != LOC_UNRESOLVED | |
13370 | && type_name != NULL && strcmp (type_name, "exception") == 0); | |
13371 | } | |
13372 | ||
13373 | /* Given a global symbol SYM, return non-zero iff SYM is a non-standard | |
13374 | Ada exception object. This matches all exceptions except the ones | |
13375 | defined by the Ada language. */ | |
13376 | ||
13377 | static int | |
13378 | ada_is_non_standard_exception_sym (struct symbol *sym) | |
13379 | { | |
13380 | int i; | |
13381 | ||
13382 | if (!ada_is_exception_sym (sym)) | |
13383 | return 0; | |
13384 | ||
13385 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
13386 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0) | |
13387 | return 0; /* A standard exception. */ | |
13388 | ||
13389 | /* Numeric_Error is also a standard exception, so exclude it. | |
13390 | See the STANDARD_EXC description for more details as to why | |
13391 | this exception is not listed in that array. */ | |
13392 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0) | |
13393 | return 0; | |
13394 | ||
13395 | return 1; | |
13396 | } | |
13397 | ||
ab816a27 | 13398 | /* A helper function for std::sort, comparing two struct ada_exc_info |
778865d3 JB |
13399 | objects. |
13400 | ||
13401 | The comparison is determined first by exception name, and then | |
13402 | by exception address. */ | |
13403 | ||
ab816a27 | 13404 | bool |
cc536b21 | 13405 | ada_exc_info::operator< (const ada_exc_info &other) const |
778865d3 | 13406 | { |
778865d3 JB |
13407 | int result; |
13408 | ||
ab816a27 TT |
13409 | result = strcmp (name, other.name); |
13410 | if (result < 0) | |
13411 | return true; | |
13412 | if (result == 0 && addr < other.addr) | |
13413 | return true; | |
13414 | return false; | |
13415 | } | |
778865d3 | 13416 | |
ab816a27 | 13417 | bool |
cc536b21 | 13418 | ada_exc_info::operator== (const ada_exc_info &other) const |
ab816a27 TT |
13419 | { |
13420 | return addr == other.addr && strcmp (name, other.name) == 0; | |
778865d3 JB |
13421 | } |
13422 | ||
13423 | /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison | |
13424 | routine, but keeping the first SKIP elements untouched. | |
13425 | ||
13426 | All duplicates are also removed. */ | |
13427 | ||
13428 | static void | |
ab816a27 | 13429 | sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions, |
778865d3 JB |
13430 | int skip) |
13431 | { | |
ab816a27 TT |
13432 | std::sort (exceptions->begin () + skip, exceptions->end ()); |
13433 | exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()), | |
13434 | exceptions->end ()); | |
778865d3 JB |
13435 | } |
13436 | ||
778865d3 JB |
13437 | /* Add all exceptions defined by the Ada standard whose name match |
13438 | a regular expression. | |
13439 | ||
13440 | If PREG is not NULL, then this regexp_t object is used to | |
13441 | perform the symbol name matching. Otherwise, no name-based | |
13442 | filtering is performed. | |
13443 | ||
13444 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13445 | gets pushed. */ | |
13446 | ||
13447 | static void | |
2d7cc5c7 | 13448 | ada_add_standard_exceptions (compiled_regex *preg, |
ab816a27 | 13449 | std::vector<ada_exc_info> *exceptions) |
778865d3 JB |
13450 | { |
13451 | int i; | |
13452 | ||
13453 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
13454 | { | |
13455 | if (preg == NULL | |
2d7cc5c7 | 13456 | || preg->exec (standard_exc[i], 0, NULL, 0) == 0) |
778865d3 JB |
13457 | { |
13458 | struct bound_minimal_symbol msymbol | |
13459 | = ada_lookup_simple_minsym (standard_exc[i]); | |
13460 | ||
13461 | if (msymbol.minsym != NULL) | |
13462 | { | |
13463 | struct ada_exc_info info | |
77e371c0 | 13464 | = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)}; |
778865d3 | 13465 | |
ab816a27 | 13466 | exceptions->push_back (info); |
778865d3 JB |
13467 | } |
13468 | } | |
13469 | } | |
13470 | } | |
13471 | ||
13472 | /* Add all Ada exceptions defined locally and accessible from the given | |
13473 | FRAME. | |
13474 | ||
13475 | If PREG is not NULL, then this regexp_t object is used to | |
13476 | perform the symbol name matching. Otherwise, no name-based | |
13477 | filtering is performed. | |
13478 | ||
13479 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13480 | gets pushed. */ | |
13481 | ||
13482 | static void | |
2d7cc5c7 PA |
13483 | ada_add_exceptions_from_frame (compiled_regex *preg, |
13484 | struct frame_info *frame, | |
ab816a27 | 13485 | std::vector<ada_exc_info> *exceptions) |
778865d3 | 13486 | { |
3977b71f | 13487 | const struct block *block = get_frame_block (frame, 0); |
778865d3 JB |
13488 | |
13489 | while (block != 0) | |
13490 | { | |
13491 | struct block_iterator iter; | |
13492 | struct symbol *sym; | |
13493 | ||
13494 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
13495 | { | |
13496 | switch (SYMBOL_CLASS (sym)) | |
13497 | { | |
13498 | case LOC_TYPEDEF: | |
13499 | case LOC_BLOCK: | |
13500 | case LOC_CONST: | |
13501 | break; | |
13502 | default: | |
13503 | if (ada_is_exception_sym (sym)) | |
13504 | { | |
13505 | struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym), | |
13506 | SYMBOL_VALUE_ADDRESS (sym)}; | |
13507 | ||
ab816a27 | 13508 | exceptions->push_back (info); |
778865d3 JB |
13509 | } |
13510 | } | |
13511 | } | |
13512 | if (BLOCK_FUNCTION (block) != NULL) | |
13513 | break; | |
13514 | block = BLOCK_SUPERBLOCK (block); | |
13515 | } | |
13516 | } | |
13517 | ||
14bc53a8 PA |
13518 | /* Return true if NAME matches PREG or if PREG is NULL. */ |
13519 | ||
13520 | static bool | |
2d7cc5c7 | 13521 | name_matches_regex (const char *name, compiled_regex *preg) |
14bc53a8 PA |
13522 | { |
13523 | return (preg == NULL | |
2d7cc5c7 | 13524 | || preg->exec (ada_decode (name), 0, NULL, 0) == 0); |
14bc53a8 PA |
13525 | } |
13526 | ||
778865d3 JB |
13527 | /* Add all exceptions defined globally whose name name match |
13528 | a regular expression, excluding standard exceptions. | |
13529 | ||
13530 | The reason we exclude standard exceptions is that they need | |
13531 | to be handled separately: Standard exceptions are defined inside | |
13532 | a runtime unit which is normally not compiled with debugging info, | |
13533 | and thus usually do not show up in our symbol search. However, | |
13534 | if the unit was in fact built with debugging info, we need to | |
13535 | exclude them because they would duplicate the entry we found | |
13536 | during the special loop that specifically searches for those | |
13537 | standard exceptions. | |
13538 | ||
13539 | If PREG is not NULL, then this regexp_t object is used to | |
13540 | perform the symbol name matching. Otherwise, no name-based | |
13541 | filtering is performed. | |
13542 | ||
13543 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13544 | gets pushed. */ | |
13545 | ||
13546 | static void | |
2d7cc5c7 | 13547 | ada_add_global_exceptions (compiled_regex *preg, |
ab816a27 | 13548 | std::vector<ada_exc_info> *exceptions) |
778865d3 | 13549 | { |
14bc53a8 PA |
13550 | /* In Ada, the symbol "search name" is a linkage name, whereas the |
13551 | regular expression used to do the matching refers to the natural | |
13552 | name. So match against the decoded name. */ | |
13553 | expand_symtabs_matching (NULL, | |
b5ec771e | 13554 | lookup_name_info::match_any (), |
14bc53a8 PA |
13555 | [&] (const char *search_name) |
13556 | { | |
13557 | const char *decoded = ada_decode (search_name); | |
13558 | return name_matches_regex (decoded, preg); | |
13559 | }, | |
13560 | NULL, | |
13561 | VARIABLES_DOMAIN); | |
778865d3 | 13562 | |
2030c079 | 13563 | for (objfile *objfile : current_program_space->objfiles ()) |
778865d3 | 13564 | { |
b669c953 | 13565 | for (compunit_symtab *s : objfile->compunits ()) |
778865d3 | 13566 | { |
d8aeb77f TT |
13567 | const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s); |
13568 | int i; | |
778865d3 | 13569 | |
d8aeb77f TT |
13570 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) |
13571 | { | |
582942f4 | 13572 | const struct block *b = BLOCKVECTOR_BLOCK (bv, i); |
d8aeb77f TT |
13573 | struct block_iterator iter; |
13574 | struct symbol *sym; | |
778865d3 | 13575 | |
d8aeb77f TT |
13576 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
13577 | if (ada_is_non_standard_exception_sym (sym) | |
13578 | && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg)) | |
13579 | { | |
13580 | struct ada_exc_info info | |
13581 | = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)}; | |
13582 | ||
13583 | exceptions->push_back (info); | |
13584 | } | |
13585 | } | |
778865d3 JB |
13586 | } |
13587 | } | |
13588 | } | |
13589 | ||
13590 | /* Implements ada_exceptions_list with the regular expression passed | |
13591 | as a regex_t, rather than a string. | |
13592 | ||
13593 | If not NULL, PREG is used to filter out exceptions whose names | |
13594 | do not match. Otherwise, all exceptions are listed. */ | |
13595 | ||
ab816a27 | 13596 | static std::vector<ada_exc_info> |
2d7cc5c7 | 13597 | ada_exceptions_list_1 (compiled_regex *preg) |
778865d3 | 13598 | { |
ab816a27 | 13599 | std::vector<ada_exc_info> result; |
778865d3 JB |
13600 | int prev_len; |
13601 | ||
13602 | /* First, list the known standard exceptions. These exceptions | |
13603 | need to be handled separately, as they are usually defined in | |
13604 | runtime units that have been compiled without debugging info. */ | |
13605 | ||
13606 | ada_add_standard_exceptions (preg, &result); | |
13607 | ||
13608 | /* Next, find all exceptions whose scope is local and accessible | |
13609 | from the currently selected frame. */ | |
13610 | ||
13611 | if (has_stack_frames ()) | |
13612 | { | |
ab816a27 | 13613 | prev_len = result.size (); |
778865d3 JB |
13614 | ada_add_exceptions_from_frame (preg, get_selected_frame (NULL), |
13615 | &result); | |
ab816a27 | 13616 | if (result.size () > prev_len) |
778865d3 JB |
13617 | sort_remove_dups_ada_exceptions_list (&result, prev_len); |
13618 | } | |
13619 | ||
13620 | /* Add all exceptions whose scope is global. */ | |
13621 | ||
ab816a27 | 13622 | prev_len = result.size (); |
778865d3 | 13623 | ada_add_global_exceptions (preg, &result); |
ab816a27 | 13624 | if (result.size () > prev_len) |
778865d3 JB |
13625 | sort_remove_dups_ada_exceptions_list (&result, prev_len); |
13626 | ||
778865d3 JB |
13627 | return result; |
13628 | } | |
13629 | ||
13630 | /* Return a vector of ada_exc_info. | |
13631 | ||
13632 | If REGEXP is NULL, all exceptions are included in the result. | |
13633 | Otherwise, it should contain a valid regular expression, | |
13634 | and only the exceptions whose names match that regular expression | |
13635 | are included in the result. | |
13636 | ||
13637 | The exceptions are sorted in the following order: | |
13638 | - Standard exceptions (defined by the Ada language), in | |
13639 | alphabetical order; | |
13640 | - Exceptions only visible from the current frame, in | |
13641 | alphabetical order; | |
13642 | - Exceptions whose scope is global, in alphabetical order. */ | |
13643 | ||
ab816a27 | 13644 | std::vector<ada_exc_info> |
778865d3 JB |
13645 | ada_exceptions_list (const char *regexp) |
13646 | { | |
2d7cc5c7 PA |
13647 | if (regexp == NULL) |
13648 | return ada_exceptions_list_1 (NULL); | |
778865d3 | 13649 | |
2d7cc5c7 PA |
13650 | compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression")); |
13651 | return ada_exceptions_list_1 (®); | |
778865d3 JB |
13652 | } |
13653 | ||
13654 | /* Implement the "info exceptions" command. */ | |
13655 | ||
13656 | static void | |
1d12d88f | 13657 | info_exceptions_command (const char *regexp, int from_tty) |
778865d3 | 13658 | { |
778865d3 | 13659 | struct gdbarch *gdbarch = get_current_arch (); |
778865d3 | 13660 | |
ab816a27 | 13661 | std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp); |
778865d3 JB |
13662 | |
13663 | if (regexp != NULL) | |
13664 | printf_filtered | |
13665 | (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp); | |
13666 | else | |
13667 | printf_filtered (_("All defined Ada exceptions:\n")); | |
13668 | ||
ab816a27 TT |
13669 | for (const ada_exc_info &info : exceptions) |
13670 | printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr)); | |
778865d3 JB |
13671 | } |
13672 | ||
4c4b4cd2 PH |
13673 | /* Operators */ |
13674 | /* Information about operators given special treatment in functions | |
13675 | below. */ | |
13676 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
13677 | ||
13678 | #define ADA_OPERATORS \ | |
13679 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
13680 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
13681 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
13682 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
13683 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
13684 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
13685 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
13686 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
13687 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
13688 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
13689 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
13690 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
13691 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
13692 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
13693 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
13694 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
13695 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
13696 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
13697 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
13698 | |
13699 | static void | |
554794dc SDJ |
13700 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
13701 | int *argsp) | |
4c4b4cd2 PH |
13702 | { |
13703 | switch (exp->elts[pc - 1].opcode) | |
13704 | { | |
76a01679 | 13705 | default: |
4c4b4cd2 PH |
13706 | operator_length_standard (exp, pc, oplenp, argsp); |
13707 | break; | |
13708 | ||
13709 | #define OP_DEFN(op, len, args, binop) \ | |
13710 | case op: *oplenp = len; *argsp = args; break; | |
13711 | ADA_OPERATORS; | |
13712 | #undef OP_DEFN | |
52ce6436 PH |
13713 | |
13714 | case OP_AGGREGATE: | |
13715 | *oplenp = 3; | |
13716 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
13717 | break; | |
13718 | ||
13719 | case OP_CHOICES: | |
13720 | *oplenp = 3; | |
13721 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
13722 | break; | |
4c4b4cd2 PH |
13723 | } |
13724 | } | |
13725 | ||
c0201579 JK |
13726 | /* Implementation of the exp_descriptor method operator_check. */ |
13727 | ||
13728 | static int | |
13729 | ada_operator_check (struct expression *exp, int pos, | |
13730 | int (*objfile_func) (struct objfile *objfile, void *data), | |
13731 | void *data) | |
13732 | { | |
13733 | const union exp_element *const elts = exp->elts; | |
13734 | struct type *type = NULL; | |
13735 | ||
13736 | switch (elts[pos].opcode) | |
13737 | { | |
13738 | case UNOP_IN_RANGE: | |
13739 | case UNOP_QUAL: | |
13740 | type = elts[pos + 1].type; | |
13741 | break; | |
13742 | ||
13743 | default: | |
13744 | return operator_check_standard (exp, pos, objfile_func, data); | |
13745 | } | |
13746 | ||
13747 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
13748 | ||
13749 | if (type && TYPE_OBJFILE (type) | |
13750 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
13751 | return 1; | |
13752 | ||
13753 | return 0; | |
13754 | } | |
13755 | ||
a121b7c1 | 13756 | static const char * |
4c4b4cd2 PH |
13757 | ada_op_name (enum exp_opcode opcode) |
13758 | { | |
13759 | switch (opcode) | |
13760 | { | |
76a01679 | 13761 | default: |
4c4b4cd2 | 13762 | return op_name_standard (opcode); |
52ce6436 | 13763 | |
4c4b4cd2 PH |
13764 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
13765 | ADA_OPERATORS; | |
13766 | #undef OP_DEFN | |
52ce6436 PH |
13767 | |
13768 | case OP_AGGREGATE: | |
13769 | return "OP_AGGREGATE"; | |
13770 | case OP_CHOICES: | |
13771 | return "OP_CHOICES"; | |
13772 | case OP_NAME: | |
13773 | return "OP_NAME"; | |
4c4b4cd2 PH |
13774 | } |
13775 | } | |
13776 | ||
13777 | /* As for operator_length, but assumes PC is pointing at the first | |
13778 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 13779 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
13780 | |
13781 | static void | |
76a01679 JB |
13782 | ada_forward_operator_length (struct expression *exp, int pc, |
13783 | int *oplenp, int *argsp) | |
4c4b4cd2 | 13784 | { |
76a01679 | 13785 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
13786 | { |
13787 | default: | |
13788 | *oplenp = *argsp = 0; | |
13789 | break; | |
52ce6436 | 13790 | |
4c4b4cd2 PH |
13791 | #define OP_DEFN(op, len, args, binop) \ |
13792 | case op: *oplenp = len; *argsp = args; break; | |
13793 | ADA_OPERATORS; | |
13794 | #undef OP_DEFN | |
52ce6436 PH |
13795 | |
13796 | case OP_AGGREGATE: | |
13797 | *oplenp = 3; | |
13798 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
13799 | break; | |
13800 | ||
13801 | case OP_CHOICES: | |
13802 | *oplenp = 3; | |
13803 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
13804 | break; | |
13805 | ||
13806 | case OP_STRING: | |
13807 | case OP_NAME: | |
13808 | { | |
13809 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 13810 | |
52ce6436 PH |
13811 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
13812 | *argsp = 0; | |
13813 | break; | |
13814 | } | |
4c4b4cd2 PH |
13815 | } |
13816 | } | |
13817 | ||
13818 | static int | |
13819 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
13820 | { | |
13821 | enum exp_opcode op = exp->elts[elt].opcode; | |
13822 | int oplen, nargs; | |
13823 | int pc = elt; | |
13824 | int i; | |
76a01679 | 13825 | |
4c4b4cd2 PH |
13826 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
13827 | ||
76a01679 | 13828 | switch (op) |
4c4b4cd2 | 13829 | { |
76a01679 | 13830 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
13831 | case OP_ATR_FIRST: |
13832 | case OP_ATR_LAST: | |
13833 | case OP_ATR_LENGTH: | |
13834 | case OP_ATR_IMAGE: | |
13835 | case OP_ATR_MAX: | |
13836 | case OP_ATR_MIN: | |
13837 | case OP_ATR_MODULUS: | |
13838 | case OP_ATR_POS: | |
13839 | case OP_ATR_SIZE: | |
13840 | case OP_ATR_TAG: | |
13841 | case OP_ATR_VAL: | |
13842 | break; | |
13843 | ||
13844 | case UNOP_IN_RANGE: | |
13845 | case UNOP_QUAL: | |
323e0a4a AC |
13846 | /* XXX: gdb_sprint_host_address, type_sprint */ |
13847 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
13848 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
13849 | fprintf_filtered (stream, " ("); | |
13850 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
13851 | fprintf_filtered (stream, ")"); | |
13852 | break; | |
13853 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
13854 | fprintf_filtered (stream, " (%d)", |
13855 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
13856 | break; |
13857 | case TERNOP_IN_RANGE: | |
13858 | break; | |
13859 | ||
52ce6436 PH |
13860 | case OP_AGGREGATE: |
13861 | case OP_OTHERS: | |
13862 | case OP_DISCRETE_RANGE: | |
13863 | case OP_POSITIONAL: | |
13864 | case OP_CHOICES: | |
13865 | break; | |
13866 | ||
13867 | case OP_NAME: | |
13868 | case OP_STRING: | |
13869 | { | |
13870 | char *name = &exp->elts[elt + 2].string; | |
13871 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 13872 | |
52ce6436 PH |
13873 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
13874 | break; | |
13875 | } | |
13876 | ||
4c4b4cd2 PH |
13877 | default: |
13878 | return dump_subexp_body_standard (exp, stream, elt); | |
13879 | } | |
13880 | ||
13881 | elt += oplen; | |
13882 | for (i = 0; i < nargs; i += 1) | |
13883 | elt = dump_subexp (exp, stream, elt); | |
13884 | ||
13885 | return elt; | |
13886 | } | |
13887 | ||
13888 | /* The Ada extension of print_subexp (q.v.). */ | |
13889 | ||
76a01679 JB |
13890 | static void |
13891 | ada_print_subexp (struct expression *exp, int *pos, | |
13892 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 13893 | { |
52ce6436 | 13894 | int oplen, nargs, i; |
4c4b4cd2 PH |
13895 | int pc = *pos; |
13896 | enum exp_opcode op = exp->elts[pc].opcode; | |
13897 | ||
13898 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
13899 | ||
52ce6436 | 13900 | *pos += oplen; |
4c4b4cd2 PH |
13901 | switch (op) |
13902 | { | |
13903 | default: | |
52ce6436 | 13904 | *pos -= oplen; |
4c4b4cd2 PH |
13905 | print_subexp_standard (exp, pos, stream, prec); |
13906 | return; | |
13907 | ||
13908 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
13909 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
13910 | return; | |
13911 | ||
13912 | case BINOP_IN_BOUNDS: | |
323e0a4a | 13913 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13914 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13915 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 13916 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13917 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 13918 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
13919 | fprintf_filtered (stream, "(%ld)", |
13920 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
13921 | return; |
13922 | ||
13923 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 13924 | if (prec >= PREC_EQUAL) |
76a01679 | 13925 | fputs_filtered ("(", stream); |
323e0a4a | 13926 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13927 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13928 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
13929 | print_subexp (exp, pos, stream, PREC_EQUAL); |
13930 | fputs_filtered (" .. ", stream); | |
13931 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
13932 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
13933 | fputs_filtered (")", stream); |
13934 | return; | |
4c4b4cd2 PH |
13935 | |
13936 | case OP_ATR_FIRST: | |
13937 | case OP_ATR_LAST: | |
13938 | case OP_ATR_LENGTH: | |
13939 | case OP_ATR_IMAGE: | |
13940 | case OP_ATR_MAX: | |
13941 | case OP_ATR_MIN: | |
13942 | case OP_ATR_MODULUS: | |
13943 | case OP_ATR_POS: | |
13944 | case OP_ATR_SIZE: | |
13945 | case OP_ATR_TAG: | |
13946 | case OP_ATR_VAL: | |
4c4b4cd2 | 13947 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
13948 | { |
13949 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
79d43c61 TT |
13950 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0, |
13951 | &type_print_raw_options); | |
76a01679 JB |
13952 | *pos += 3; |
13953 | } | |
4c4b4cd2 | 13954 | else |
76a01679 | 13955 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
13956 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
13957 | if (nargs > 1) | |
76a01679 JB |
13958 | { |
13959 | int tem; | |
5b4ee69b | 13960 | |
76a01679 JB |
13961 | for (tem = 1; tem < nargs; tem += 1) |
13962 | { | |
13963 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
13964 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
13965 | } | |
13966 | fputs_filtered (")", stream); | |
13967 | } | |
4c4b4cd2 | 13968 | return; |
14f9c5c9 | 13969 | |
4c4b4cd2 | 13970 | case UNOP_QUAL: |
4c4b4cd2 PH |
13971 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
13972 | fputs_filtered ("'(", stream); | |
13973 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
13974 | fputs_filtered (")", stream); | |
13975 | return; | |
14f9c5c9 | 13976 | |
4c4b4cd2 | 13977 | case UNOP_IN_RANGE: |
323e0a4a | 13978 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13979 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13980 | fputs_filtered (" in ", stream); |
79d43c61 TT |
13981 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0, |
13982 | &type_print_raw_options); | |
4c4b4cd2 | 13983 | return; |
52ce6436 PH |
13984 | |
13985 | case OP_DISCRETE_RANGE: | |
13986 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13987 | fputs_filtered ("..", stream); | |
13988 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13989 | return; | |
13990 | ||
13991 | case OP_OTHERS: | |
13992 | fputs_filtered ("others => ", stream); | |
13993 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13994 | return; | |
13995 | ||
13996 | case OP_CHOICES: | |
13997 | for (i = 0; i < nargs-1; i += 1) | |
13998 | { | |
13999 | if (i > 0) | |
14000 | fputs_filtered ("|", stream); | |
14001 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
14002 | } | |
14003 | fputs_filtered (" => ", stream); | |
14004 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
14005 | return; | |
14006 | ||
14007 | case OP_POSITIONAL: | |
14008 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
14009 | return; | |
14010 | ||
14011 | case OP_AGGREGATE: | |
14012 | fputs_filtered ("(", stream); | |
14013 | for (i = 0; i < nargs; i += 1) | |
14014 | { | |
14015 | if (i > 0) | |
14016 | fputs_filtered (", ", stream); | |
14017 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
14018 | } | |
14019 | fputs_filtered (")", stream); | |
14020 | return; | |
4c4b4cd2 PH |
14021 | } |
14022 | } | |
14f9c5c9 AS |
14023 | |
14024 | /* Table mapping opcodes into strings for printing operators | |
14025 | and precedences of the operators. */ | |
14026 | ||
d2e4a39e AS |
14027 | static const struct op_print ada_op_print_tab[] = { |
14028 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
14029 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
14030 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
14031 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
14032 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
14033 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
14034 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
14035 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
14036 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
14037 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
14038 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
14039 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
14040 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
14041 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
14042 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
14043 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
14044 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
14045 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
14046 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
14047 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
14048 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
14049 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
14050 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
14051 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
14052 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
14053 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
14054 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
14055 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
14056 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
14057 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
14058 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
f486487f | 14059 | {NULL, OP_NULL, PREC_SUFFIX, 0} |
14f9c5c9 AS |
14060 | }; |
14061 | \f | |
72d5681a PH |
14062 | enum ada_primitive_types { |
14063 | ada_primitive_type_int, | |
14064 | ada_primitive_type_long, | |
14065 | ada_primitive_type_short, | |
14066 | ada_primitive_type_char, | |
14067 | ada_primitive_type_float, | |
14068 | ada_primitive_type_double, | |
14069 | ada_primitive_type_void, | |
14070 | ada_primitive_type_long_long, | |
14071 | ada_primitive_type_long_double, | |
14072 | ada_primitive_type_natural, | |
14073 | ada_primitive_type_positive, | |
14074 | ada_primitive_type_system_address, | |
08f49010 | 14075 | ada_primitive_type_storage_offset, |
72d5681a PH |
14076 | nr_ada_primitive_types |
14077 | }; | |
6c038f32 PH |
14078 | |
14079 | static void | |
d4a9a881 | 14080 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
14081 | struct language_arch_info *lai) |
14082 | { | |
d4a9a881 | 14083 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 14084 | |
72d5681a | 14085 | lai->primitive_type_vector |
d4a9a881 | 14086 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 14087 | struct type *); |
e9bb382b UW |
14088 | |
14089 | lai->primitive_type_vector [ada_primitive_type_int] | |
14090 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
14091 | 0, "integer"); | |
14092 | lai->primitive_type_vector [ada_primitive_type_long] | |
14093 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
14094 | 0, "long_integer"); | |
14095 | lai->primitive_type_vector [ada_primitive_type_short] | |
14096 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
14097 | 0, "short_integer"); | |
14098 | lai->string_char_type | |
14099 | = lai->primitive_type_vector [ada_primitive_type_char] | |
cd7c1778 | 14100 | = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); |
e9bb382b UW |
14101 | lai->primitive_type_vector [ada_primitive_type_float] |
14102 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
49f190bc | 14103 | "float", gdbarch_float_format (gdbarch)); |
e9bb382b UW |
14104 | lai->primitive_type_vector [ada_primitive_type_double] |
14105 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
49f190bc | 14106 | "long_float", gdbarch_double_format (gdbarch)); |
e9bb382b UW |
14107 | lai->primitive_type_vector [ada_primitive_type_long_long] |
14108 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
14109 | 0, "long_long_integer"); | |
14110 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
5f3bceb6 | 14111 | = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch), |
49f190bc | 14112 | "long_long_float", gdbarch_long_double_format (gdbarch)); |
e9bb382b UW |
14113 | lai->primitive_type_vector [ada_primitive_type_natural] |
14114 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
14115 | 0, "natural"); | |
14116 | lai->primitive_type_vector [ada_primitive_type_positive] | |
14117 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
14118 | 0, "positive"); | |
14119 | lai->primitive_type_vector [ada_primitive_type_void] | |
14120 | = builtin->builtin_void; | |
14121 | ||
14122 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
77b7c781 UW |
14123 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, |
14124 | "void")); | |
72d5681a PH |
14125 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
14126 | = "system__address"; | |
fbb06eb1 | 14127 | |
08f49010 XR |
14128 | /* Create the equivalent of the System.Storage_Elements.Storage_Offset |
14129 | type. This is a signed integral type whose size is the same as | |
14130 | the size of addresses. */ | |
14131 | { | |
14132 | unsigned int addr_length = TYPE_LENGTH | |
14133 | (lai->primitive_type_vector [ada_primitive_type_system_address]); | |
14134 | ||
14135 | lai->primitive_type_vector [ada_primitive_type_storage_offset] | |
14136 | = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0, | |
14137 | "storage_offset"); | |
14138 | } | |
14139 | ||
47e729a8 | 14140 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 14141 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 14142 | } |
6c038f32 PH |
14143 | \f |
14144 | /* Language vector */ | |
14145 | ||
14146 | /* Not really used, but needed in the ada_language_defn. */ | |
14147 | ||
14148 | static void | |
6c7a06a3 | 14149 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 14150 | { |
6c7a06a3 | 14151 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
14152 | } |
14153 | ||
14154 | static int | |
410a0ff2 | 14155 | parse (struct parser_state *ps) |
6c038f32 PH |
14156 | { |
14157 | warnings_issued = 0; | |
410a0ff2 | 14158 | return ada_parse (ps); |
6c038f32 PH |
14159 | } |
14160 | ||
14161 | static const struct exp_descriptor ada_exp_descriptor = { | |
14162 | ada_print_subexp, | |
14163 | ada_operator_length, | |
c0201579 | 14164 | ada_operator_check, |
6c038f32 PH |
14165 | ada_op_name, |
14166 | ada_dump_subexp_body, | |
14167 | ada_evaluate_subexp | |
14168 | }; | |
14169 | ||
b5ec771e PA |
14170 | /* symbol_name_matcher_ftype adapter for wild_match. */ |
14171 | ||
14172 | static bool | |
14173 | do_wild_match (const char *symbol_search_name, | |
14174 | const lookup_name_info &lookup_name, | |
a207cff2 | 14175 | completion_match_result *comp_match_res) |
b5ec771e PA |
14176 | { |
14177 | return wild_match (symbol_search_name, ada_lookup_name (lookup_name)); | |
14178 | } | |
14179 | ||
14180 | /* symbol_name_matcher_ftype adapter for full_match. */ | |
14181 | ||
14182 | static bool | |
14183 | do_full_match (const char *symbol_search_name, | |
14184 | const lookup_name_info &lookup_name, | |
a207cff2 | 14185 | completion_match_result *comp_match_res) |
b5ec771e PA |
14186 | { |
14187 | return full_match (symbol_search_name, ada_lookup_name (lookup_name)); | |
14188 | } | |
14189 | ||
a2cd4f14 JB |
14190 | /* symbol_name_matcher_ftype for exact (verbatim) matches. */ |
14191 | ||
14192 | static bool | |
14193 | do_exact_match (const char *symbol_search_name, | |
14194 | const lookup_name_info &lookup_name, | |
14195 | completion_match_result *comp_match_res) | |
14196 | { | |
14197 | return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0; | |
14198 | } | |
14199 | ||
b5ec771e PA |
14200 | /* Build the Ada lookup name for LOOKUP_NAME. */ |
14201 | ||
14202 | ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name) | |
14203 | { | |
14204 | const std::string &user_name = lookup_name.name (); | |
14205 | ||
14206 | if (user_name[0] == '<') | |
14207 | { | |
14208 | if (user_name.back () == '>') | |
14209 | m_encoded_name = user_name.substr (1, user_name.size () - 2); | |
14210 | else | |
14211 | m_encoded_name = user_name.substr (1, user_name.size () - 1); | |
14212 | m_encoded_p = true; | |
14213 | m_verbatim_p = true; | |
14214 | m_wild_match_p = false; | |
14215 | m_standard_p = false; | |
14216 | } | |
14217 | else | |
14218 | { | |
14219 | m_verbatim_p = false; | |
14220 | ||
14221 | m_encoded_p = user_name.find ("__") != std::string::npos; | |
14222 | ||
14223 | if (!m_encoded_p) | |
14224 | { | |
14225 | const char *folded = ada_fold_name (user_name.c_str ()); | |
14226 | const char *encoded = ada_encode_1 (folded, false); | |
14227 | if (encoded != NULL) | |
14228 | m_encoded_name = encoded; | |
14229 | else | |
14230 | m_encoded_name = user_name; | |
14231 | } | |
14232 | else | |
14233 | m_encoded_name = user_name; | |
14234 | ||
14235 | /* Handle the 'package Standard' special case. See description | |
14236 | of m_standard_p. */ | |
14237 | if (startswith (m_encoded_name.c_str (), "standard__")) | |
14238 | { | |
14239 | m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1); | |
14240 | m_standard_p = true; | |
14241 | } | |
14242 | else | |
14243 | m_standard_p = false; | |
74ccd7f5 | 14244 | |
b5ec771e PA |
14245 | /* If the name contains a ".", then the user is entering a fully |
14246 | qualified entity name, and the match must not be done in wild | |
14247 | mode. Similarly, if the user wants to complete what looks | |
14248 | like an encoded name, the match must not be done in wild | |
14249 | mode. Also, in the standard__ special case always do | |
14250 | non-wild matching. */ | |
14251 | m_wild_match_p | |
14252 | = (lookup_name.match_type () != symbol_name_match_type::FULL | |
14253 | && !m_encoded_p | |
14254 | && !m_standard_p | |
14255 | && user_name.find ('.') == std::string::npos); | |
14256 | } | |
14257 | } | |
14258 | ||
14259 | /* symbol_name_matcher_ftype method for Ada. This only handles | |
14260 | completion mode. */ | |
14261 | ||
14262 | static bool | |
14263 | ada_symbol_name_matches (const char *symbol_search_name, | |
14264 | const lookup_name_info &lookup_name, | |
a207cff2 | 14265 | completion_match_result *comp_match_res) |
74ccd7f5 | 14266 | { |
b5ec771e PA |
14267 | return lookup_name.ada ().matches (symbol_search_name, |
14268 | lookup_name.match_type (), | |
a207cff2 | 14269 | comp_match_res); |
b5ec771e PA |
14270 | } |
14271 | ||
de63c46b PA |
14272 | /* A name matcher that matches the symbol name exactly, with |
14273 | strcmp. */ | |
14274 | ||
14275 | static bool | |
14276 | literal_symbol_name_matcher (const char *symbol_search_name, | |
14277 | const lookup_name_info &lookup_name, | |
14278 | completion_match_result *comp_match_res) | |
14279 | { | |
14280 | const std::string &name = lookup_name.name (); | |
14281 | ||
14282 | int cmp = (lookup_name.completion_mode () | |
14283 | ? strncmp (symbol_search_name, name.c_str (), name.size ()) | |
14284 | : strcmp (symbol_search_name, name.c_str ())); | |
14285 | if (cmp == 0) | |
14286 | { | |
14287 | if (comp_match_res != NULL) | |
14288 | comp_match_res->set_match (symbol_search_name); | |
14289 | return true; | |
14290 | } | |
14291 | else | |
14292 | return false; | |
14293 | } | |
14294 | ||
b5ec771e PA |
14295 | /* Implement the "la_get_symbol_name_matcher" language_defn method for |
14296 | Ada. */ | |
14297 | ||
14298 | static symbol_name_matcher_ftype * | |
14299 | ada_get_symbol_name_matcher (const lookup_name_info &lookup_name) | |
14300 | { | |
de63c46b PA |
14301 | if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME) |
14302 | return literal_symbol_name_matcher; | |
14303 | ||
b5ec771e PA |
14304 | if (lookup_name.completion_mode ()) |
14305 | return ada_symbol_name_matches; | |
74ccd7f5 | 14306 | else |
b5ec771e PA |
14307 | { |
14308 | if (lookup_name.ada ().wild_match_p ()) | |
14309 | return do_wild_match; | |
a2cd4f14 JB |
14310 | else if (lookup_name.ada ().verbatim_p ()) |
14311 | return do_exact_match; | |
b5ec771e PA |
14312 | else |
14313 | return do_full_match; | |
14314 | } | |
74ccd7f5 JB |
14315 | } |
14316 | ||
a5ee536b JB |
14317 | /* Implement the "la_read_var_value" language_defn method for Ada. */ |
14318 | ||
14319 | static struct value * | |
63e43d3a PMR |
14320 | ada_read_var_value (struct symbol *var, const struct block *var_block, |
14321 | struct frame_info *frame) | |
a5ee536b | 14322 | { |
3977b71f | 14323 | const struct block *frame_block = NULL; |
a5ee536b JB |
14324 | struct symbol *renaming_sym = NULL; |
14325 | ||
14326 | /* The only case where default_read_var_value is not sufficient | |
14327 | is when VAR is a renaming... */ | |
14328 | if (frame) | |
14329 | frame_block = get_frame_block (frame, NULL); | |
14330 | if (frame_block) | |
14331 | renaming_sym = ada_find_renaming_symbol (var, frame_block); | |
14332 | if (renaming_sym != NULL) | |
14333 | return ada_read_renaming_var_value (renaming_sym, frame_block); | |
14334 | ||
14335 | /* This is a typical case where we expect the default_read_var_value | |
14336 | function to work. */ | |
63e43d3a | 14337 | return default_read_var_value (var, var_block, frame); |
a5ee536b JB |
14338 | } |
14339 | ||
56618e20 TT |
14340 | static const char *ada_extensions[] = |
14341 | { | |
14342 | ".adb", ".ads", ".a", ".ada", ".dg", NULL | |
14343 | }; | |
14344 | ||
47e77640 | 14345 | extern const struct language_defn ada_language_defn = { |
6c038f32 | 14346 | "ada", /* Language name */ |
6abde28f | 14347 | "Ada", |
6c038f32 | 14348 | language_ada, |
6c038f32 | 14349 | range_check_off, |
6c038f32 PH |
14350 | case_sensitive_on, /* Yes, Ada is case-insensitive, but |
14351 | that's not quite what this means. */ | |
6c038f32 | 14352 | array_row_major, |
9a044a89 | 14353 | macro_expansion_no, |
56618e20 | 14354 | ada_extensions, |
6c038f32 PH |
14355 | &ada_exp_descriptor, |
14356 | parse, | |
6c038f32 PH |
14357 | resolve, |
14358 | ada_printchar, /* Print a character constant */ | |
14359 | ada_printstr, /* Function to print string constant */ | |
14360 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 14361 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 14362 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
14363 | ada_val_print, /* Print a value using appropriate syntax */ |
14364 | ada_value_print, /* Print a top-level value */ | |
a5ee536b | 14365 | ada_read_var_value, /* la_read_var_value */ |
6c038f32 | 14366 | NULL, /* Language specific skip_trampoline */ |
2b2d9e11 | 14367 | NULL, /* name_of_this */ |
59cc4834 | 14368 | true, /* la_store_sym_names_in_linkage_form_p */ |
6c038f32 PH |
14369 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
14370 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
14371 | ada_la_decode, /* Language specific symbol demangler */ | |
8b302db8 | 14372 | ada_sniff_from_mangled_name, |
0963b4bd MS |
14373 | NULL, /* Language specific |
14374 | class_name_from_physname */ | |
6c038f32 PH |
14375 | ada_op_print_tab, /* expression operators for printing */ |
14376 | 0, /* c-style arrays */ | |
14377 | 1, /* String lower bound */ | |
6c038f32 | 14378 | ada_get_gdb_completer_word_break_characters, |
eb3ff9a5 | 14379 | ada_collect_symbol_completion_matches, |
72d5681a | 14380 | ada_language_arch_info, |
e79af960 | 14381 | ada_print_array_index, |
41f1b697 | 14382 | default_pass_by_reference, |
ae6a3a4c | 14383 | c_get_string, |
e2b7af72 | 14384 | ada_watch_location_expression, |
b5ec771e | 14385 | ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */ |
f8eba3c6 | 14386 | ada_iterate_over_symbols, |
5ffa0793 | 14387 | default_search_name_hash, |
a53b64ea | 14388 | &ada_varobj_ops, |
bb2ec1b3 TT |
14389 | NULL, |
14390 | NULL, | |
6c038f32 PH |
14391 | LANG_MAGIC |
14392 | }; | |
14393 | ||
5bf03f13 JB |
14394 | /* Command-list for the "set/show ada" prefix command. */ |
14395 | static struct cmd_list_element *set_ada_list; | |
14396 | static struct cmd_list_element *show_ada_list; | |
14397 | ||
14398 | /* Implement the "set ada" prefix command. */ | |
14399 | ||
14400 | static void | |
981a3fb3 | 14401 | set_ada_command (const char *arg, int from_tty) |
5bf03f13 JB |
14402 | { |
14403 | printf_unfiltered (_(\ | |
14404 | "\"set ada\" must be followed by the name of a setting.\n")); | |
635c7e8a | 14405 | help_list (set_ada_list, "set ada ", all_commands, gdb_stdout); |
5bf03f13 JB |
14406 | } |
14407 | ||
14408 | /* Implement the "show ada" prefix command. */ | |
14409 | ||
14410 | static void | |
981a3fb3 | 14411 | show_ada_command (const char *args, int from_tty) |
5bf03f13 JB |
14412 | { |
14413 | cmd_show_list (show_ada_list, from_tty, ""); | |
14414 | } | |
14415 | ||
2060206e PA |
14416 | static void |
14417 | initialize_ada_catchpoint_ops (void) | |
14418 | { | |
14419 | struct breakpoint_ops *ops; | |
14420 | ||
14421 | initialize_breakpoint_ops (); | |
14422 | ||
14423 | ops = &catch_exception_breakpoint_ops; | |
14424 | *ops = bkpt_breakpoint_ops; | |
2060206e PA |
14425 | ops->allocate_location = allocate_location_catch_exception; |
14426 | ops->re_set = re_set_catch_exception; | |
14427 | ops->check_status = check_status_catch_exception; | |
14428 | ops->print_it = print_it_catch_exception; | |
14429 | ops->print_one = print_one_catch_exception; | |
14430 | ops->print_mention = print_mention_catch_exception; | |
14431 | ops->print_recreate = print_recreate_catch_exception; | |
14432 | ||
14433 | ops = &catch_exception_unhandled_breakpoint_ops; | |
14434 | *ops = bkpt_breakpoint_ops; | |
2060206e PA |
14435 | ops->allocate_location = allocate_location_catch_exception_unhandled; |
14436 | ops->re_set = re_set_catch_exception_unhandled; | |
14437 | ops->check_status = check_status_catch_exception_unhandled; | |
14438 | ops->print_it = print_it_catch_exception_unhandled; | |
14439 | ops->print_one = print_one_catch_exception_unhandled; | |
14440 | ops->print_mention = print_mention_catch_exception_unhandled; | |
14441 | ops->print_recreate = print_recreate_catch_exception_unhandled; | |
14442 | ||
14443 | ops = &catch_assert_breakpoint_ops; | |
14444 | *ops = bkpt_breakpoint_ops; | |
2060206e PA |
14445 | ops->allocate_location = allocate_location_catch_assert; |
14446 | ops->re_set = re_set_catch_assert; | |
14447 | ops->check_status = check_status_catch_assert; | |
14448 | ops->print_it = print_it_catch_assert; | |
14449 | ops->print_one = print_one_catch_assert; | |
14450 | ops->print_mention = print_mention_catch_assert; | |
14451 | ops->print_recreate = print_recreate_catch_assert; | |
9f757bf7 XR |
14452 | |
14453 | ops = &catch_handlers_breakpoint_ops; | |
14454 | *ops = bkpt_breakpoint_ops; | |
14455 | ops->allocate_location = allocate_location_catch_handlers; | |
14456 | ops->re_set = re_set_catch_handlers; | |
14457 | ops->check_status = check_status_catch_handlers; | |
14458 | ops->print_it = print_it_catch_handlers; | |
14459 | ops->print_one = print_one_catch_handlers; | |
14460 | ops->print_mention = print_mention_catch_handlers; | |
14461 | ops->print_recreate = print_recreate_catch_handlers; | |
2060206e PA |
14462 | } |
14463 | ||
3d9434b5 JB |
14464 | /* This module's 'new_objfile' observer. */ |
14465 | ||
14466 | static void | |
14467 | ada_new_objfile_observer (struct objfile *objfile) | |
14468 | { | |
14469 | ada_clear_symbol_cache (); | |
14470 | } | |
14471 | ||
14472 | /* This module's 'free_objfile' observer. */ | |
14473 | ||
14474 | static void | |
14475 | ada_free_objfile_observer (struct objfile *objfile) | |
14476 | { | |
14477 | ada_clear_symbol_cache (); | |
14478 | } | |
14479 | ||
d2e4a39e | 14480 | void |
6c038f32 | 14481 | _initialize_ada_language (void) |
14f9c5c9 | 14482 | { |
2060206e PA |
14483 | initialize_ada_catchpoint_ops (); |
14484 | ||
5bf03f13 | 14485 | add_prefix_cmd ("ada", no_class, set_ada_command, |
470678d7 | 14486 | _("Prefix command for changing Ada-specific settings"), |
5bf03f13 JB |
14487 | &set_ada_list, "set ada ", 0, &setlist); |
14488 | ||
14489 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
14490 | _("Generic command for showing Ada-specific settings."), | |
14491 | &show_ada_list, "show ada ", 0, &showlist); | |
14492 | ||
14493 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
14494 | &trust_pad_over_xvs, _("\ | |
14495 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
14496 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
14497 | _("\ | |
14498 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
14499 | should normally trust the contents of PAD types, but certain older versions\n\ | |
14500 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
14501 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
14502 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
14503 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
14504 | this option to \"off\" unless necessary."), | |
14505 | NULL, NULL, &set_ada_list, &show_ada_list); | |
14506 | ||
d72413e6 PMR |
14507 | add_setshow_boolean_cmd ("print-signatures", class_vars, |
14508 | &print_signatures, _("\ | |
14509 | Enable or disable the output of formal and return types for functions in the \ | |
14510 | overloads selection menu"), _("\ | |
14511 | Show whether the output of formal and return types for functions in the \ | |
14512 | overloads selection menu is activated"), | |
14513 | NULL, NULL, NULL, &set_ada_list, &show_ada_list); | |
14514 | ||
9ac4176b PA |
14515 | add_catch_command ("exception", _("\ |
14516 | Catch Ada exceptions, when raised.\n\ | |
60a90376 JB |
14517 | Usage: catch exception [ ARG ]\n\ |
14518 | \n\ | |
14519 | Without any argument, stop when any Ada exception is raised.\n\ | |
14520 | If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\ | |
14521 | being raised does not have a handler (and will therefore lead to the task's\n\ | |
14522 | termination).\n\ | |
14523 | Otherwise, the catchpoint only stops when the name of the exception being\n\ | |
14524 | raised is the same as ARG."), | |
9ac4176b PA |
14525 | catch_ada_exception_command, |
14526 | NULL, | |
14527 | CATCH_PERMANENT, | |
14528 | CATCH_TEMPORARY); | |
9f757bf7 XR |
14529 | |
14530 | add_catch_command ("handlers", _("\ | |
14531 | Catch Ada exceptions, when handled.\n\ | |
14532 | With an argument, catch only exceptions with the given name."), | |
14533 | catch_ada_handlers_command, | |
14534 | NULL, | |
14535 | CATCH_PERMANENT, | |
14536 | CATCH_TEMPORARY); | |
9ac4176b PA |
14537 | add_catch_command ("assert", _("\ |
14538 | Catch failed Ada assertions, when raised.\n\ | |
14539 | With an argument, catch only exceptions with the given name."), | |
14540 | catch_assert_command, | |
14541 | NULL, | |
14542 | CATCH_PERMANENT, | |
14543 | CATCH_TEMPORARY); | |
14544 | ||
6c038f32 | 14545 | varsize_limit = 65536; |
3fcded8f JB |
14546 | add_setshow_uinteger_cmd ("varsize-limit", class_support, |
14547 | &varsize_limit, _("\ | |
14548 | Set the maximum number of bytes allowed in a variable-size object."), _("\ | |
14549 | Show the maximum number of bytes allowed in a variable-size object."), _("\ | |
14550 | Attempts to access an object whose size is not a compile-time constant\n\ | |
14551 | and exceeds this limit will cause an error."), | |
14552 | NULL, NULL, &setlist, &showlist); | |
6c038f32 | 14553 | |
778865d3 JB |
14554 | add_info ("exceptions", info_exceptions_command, |
14555 | _("\ | |
14556 | List all Ada exception names.\n\ | |
14557 | If a regular expression is passed as an argument, only those matching\n\ | |
14558 | the regular expression are listed.")); | |
14559 | ||
c6044dd1 JB |
14560 | add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd, |
14561 | _("Set Ada maintenance-related variables."), | |
14562 | &maint_set_ada_cmdlist, "maintenance set ada ", | |
14563 | 0/*allow-unknown*/, &maintenance_set_cmdlist); | |
14564 | ||
14565 | add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd, | |
14566 | _("Show Ada maintenance-related variables"), | |
14567 | &maint_show_ada_cmdlist, "maintenance show ada ", | |
14568 | 0/*allow-unknown*/, &maintenance_show_cmdlist); | |
14569 | ||
14570 | add_setshow_boolean_cmd | |
14571 | ("ignore-descriptive-types", class_maintenance, | |
14572 | &ada_ignore_descriptive_types_p, | |
14573 | _("Set whether descriptive types generated by GNAT should be ignored."), | |
14574 | _("Show whether descriptive types generated by GNAT should be ignored."), | |
14575 | _("\ | |
14576 | When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\ | |
14577 | DWARF attribute."), | |
14578 | NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist); | |
14579 | ||
459a2e4c TT |
14580 | decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash, |
14581 | NULL, xcalloc, xfree); | |
6b69afc4 | 14582 | |
3d9434b5 | 14583 | /* The ada-lang observers. */ |
76727919 TT |
14584 | gdb::observers::new_objfile.attach (ada_new_objfile_observer); |
14585 | gdb::observers::free_objfile.attach (ada_free_objfile_observer); | |
14586 | gdb::observers::inferior_exit.attach (ada_inferior_exit); | |
ee01b665 JB |
14587 | |
14588 | /* Setup various context-specific data. */ | |
e802dbe0 | 14589 | ada_inferior_data |
8e260fc0 | 14590 | = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup); |
ee01b665 JB |
14591 | ada_pspace_data_handle |
14592 | = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup); | |
14f9c5c9 | 14593 | } |