]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Fix setting-breakpoints regression on PPC64 (function descriptors)
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
61baf725 3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
14bc53a8 63#include "common/function-view.h"
d5722aa2 64#include "common/byte-vector.h"
ab816a27 65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
14f9c5c9 113
22cee43f 114static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
22cee43f 117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
4c4b4cd2 127static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
d2e4a39e 130static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
a121b7c1 135static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
a121b7c1 155static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 156 int, int);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
73589123
PH
204static int advance_wild_match (const char **, const char *, int);
205
b5ec771e 206static bool wild_match (const char *name, const char *patn);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
108d56a4 219static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
0d5cff50 225static int find_struct_field (const char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
227
228static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
d12307c1 231static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
232 struct value **, int, const char *,
233 struct type *);
234
4c4b4cd2
PH
235static int ada_is_direct_array_type (struct type *);
236
72d5681a
PH
237static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
714e53ab 239
52ce6436
PH
240static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
244 struct expression *,
245 int *, enum noside);
52ce6436
PH
246
247static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
852dff6c
JB
271
272static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
273
274static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
276
4c4b4cd2
PH
277\f
278
ee01b665
JB
279/* The result of a symbol lookup to be stored in our symbol cache. */
280
281struct cache_entry
282{
283 /* The name used to perform the lookup. */
284 const char *name;
285 /* The namespace used during the lookup. */
fe978cb0 286 domain_enum domain;
ee01b665
JB
287 /* The symbol returned by the lookup, or NULL if no matching symbol
288 was found. */
289 struct symbol *sym;
290 /* The block where the symbol was found, or NULL if no matching
291 symbol was found. */
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
295};
296
297/* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
299
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
305
306#define HASH_SIZE 1009
307
308struct ada_symbol_cache
309{
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
312
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
315};
316
317static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 318
4c4b4cd2 319/* Maximum-sized dynamic type. */
14f9c5c9
AS
320static unsigned int varsize_limit;
321
67cb5b2d 322static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
323#ifdef VMS
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
325#else
14f9c5c9 326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 327#endif
14f9c5c9 328
4c4b4cd2 329/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 330static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 331 = "__gnat_ada_main_program_name";
14f9c5c9 332
4c4b4cd2
PH
333/* Limit on the number of warnings to raise per expression evaluation. */
334static int warning_limit = 2;
335
336/* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338static int warnings_issued = 0;
339
340static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
342};
343
344static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
346};
347
348/* Space for allocating results of ada_lookup_symbol_list. */
349static struct obstack symbol_list_obstack;
350
c6044dd1
JB
351/* Maintenance-related settings for this module. */
352
353static struct cmd_list_element *maint_set_ada_cmdlist;
354static struct cmd_list_element *maint_show_ada_cmdlist;
355
356/* Implement the "maintenance set ada" (prefix) command. */
357
358static void
981a3fb3 359maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 360{
635c7e8a
TT
361 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
362 gdb_stdout);
c6044dd1
JB
363}
364
365/* Implement the "maintenance show ada" (prefix) command. */
366
367static void
981a3fb3 368maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
369{
370 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
371}
372
373/* The "maintenance ada set/show ignore-descriptive-type" value. */
374
375static int ada_ignore_descriptive_types_p = 0;
376
e802dbe0
JB
377 /* Inferior-specific data. */
378
379/* Per-inferior data for this module. */
380
381struct ada_inferior_data
382{
383 /* The ada__tags__type_specific_data type, which is used when decoding
384 tagged types. With older versions of GNAT, this type was directly
385 accessible through a component ("tsd") in the object tag. But this
386 is no longer the case, so we cache it for each inferior. */
387 struct type *tsd_type;
3eecfa55
JB
388
389 /* The exception_support_info data. This data is used to determine
390 how to implement support for Ada exception catchpoints in a given
391 inferior. */
392 const struct exception_support_info *exception_info;
e802dbe0
JB
393};
394
395/* Our key to this module's inferior data. */
396static const struct inferior_data *ada_inferior_data;
397
398/* A cleanup routine for our inferior data. */
399static void
400ada_inferior_data_cleanup (struct inferior *inf, void *arg)
401{
402 struct ada_inferior_data *data;
403
9a3c8263 404 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
405 if (data != NULL)
406 xfree (data);
407}
408
409/* Return our inferior data for the given inferior (INF).
410
411 This function always returns a valid pointer to an allocated
412 ada_inferior_data structure. If INF's inferior data has not
413 been previously set, this functions creates a new one with all
414 fields set to zero, sets INF's inferior to it, and then returns
415 a pointer to that newly allocated ada_inferior_data. */
416
417static struct ada_inferior_data *
418get_ada_inferior_data (struct inferior *inf)
419{
420 struct ada_inferior_data *data;
421
9a3c8263 422 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
423 if (data == NULL)
424 {
41bf6aca 425 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
426 set_inferior_data (inf, ada_inferior_data, data);
427 }
428
429 return data;
430}
431
432/* Perform all necessary cleanups regarding our module's inferior data
433 that is required after the inferior INF just exited. */
434
435static void
436ada_inferior_exit (struct inferior *inf)
437{
438 ada_inferior_data_cleanup (inf, NULL);
439 set_inferior_data (inf, ada_inferior_data, NULL);
440}
441
ee01b665
JB
442
443 /* program-space-specific data. */
444
445/* This module's per-program-space data. */
446struct ada_pspace_data
447{
448 /* The Ada symbol cache. */
449 struct ada_symbol_cache *sym_cache;
450};
451
452/* Key to our per-program-space data. */
453static const struct program_space_data *ada_pspace_data_handle;
454
455/* Return this module's data for the given program space (PSPACE).
456 If not is found, add a zero'ed one now.
457
458 This function always returns a valid object. */
459
460static struct ada_pspace_data *
461get_ada_pspace_data (struct program_space *pspace)
462{
463 struct ada_pspace_data *data;
464
9a3c8263
SM
465 data = ((struct ada_pspace_data *)
466 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
467 if (data == NULL)
468 {
469 data = XCNEW (struct ada_pspace_data);
470 set_program_space_data (pspace, ada_pspace_data_handle, data);
471 }
472
473 return data;
474}
475
476/* The cleanup callback for this module's per-program-space data. */
477
478static void
479ada_pspace_data_cleanup (struct program_space *pspace, void *data)
480{
9a3c8263 481 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
482
483 if (pspace_data->sym_cache != NULL)
484 ada_free_symbol_cache (pspace_data->sym_cache);
485 xfree (pspace_data);
486}
487
4c4b4cd2
PH
488 /* Utilities */
489
720d1a40 490/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 491 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
492
493 Normally, we really expect a typedef type to only have 1 typedef layer.
494 In other words, we really expect the target type of a typedef type to be
495 a non-typedef type. This is particularly true for Ada units, because
496 the language does not have a typedef vs not-typedef distinction.
497 In that respect, the Ada compiler has been trying to eliminate as many
498 typedef definitions in the debugging information, since they generally
499 do not bring any extra information (we still use typedef under certain
500 circumstances related mostly to the GNAT encoding).
501
502 Unfortunately, we have seen situations where the debugging information
503 generated by the compiler leads to such multiple typedef layers. For
504 instance, consider the following example with stabs:
505
506 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
507 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
508
509 This is an error in the debugging information which causes type
510 pck__float_array___XUP to be defined twice, and the second time,
511 it is defined as a typedef of a typedef.
512
513 This is on the fringe of legality as far as debugging information is
514 concerned, and certainly unexpected. But it is easy to handle these
515 situations correctly, so we can afford to be lenient in this case. */
516
517static struct type *
518ada_typedef_target_type (struct type *type)
519{
520 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
521 type = TYPE_TARGET_TYPE (type);
522 return type;
523}
524
41d27058
JB
525/* Given DECODED_NAME a string holding a symbol name in its
526 decoded form (ie using the Ada dotted notation), returns
527 its unqualified name. */
528
529static const char *
530ada_unqualified_name (const char *decoded_name)
531{
2b0f535a
JB
532 const char *result;
533
534 /* If the decoded name starts with '<', it means that the encoded
535 name does not follow standard naming conventions, and thus that
536 it is not your typical Ada symbol name. Trying to unqualify it
537 is therefore pointless and possibly erroneous. */
538 if (decoded_name[0] == '<')
539 return decoded_name;
540
541 result = strrchr (decoded_name, '.');
41d27058
JB
542 if (result != NULL)
543 result++; /* Skip the dot... */
544 else
545 result = decoded_name;
546
547 return result;
548}
549
550/* Return a string starting with '<', followed by STR, and '>'.
551 The result is good until the next call. */
552
553static char *
554add_angle_brackets (const char *str)
555{
556 static char *result = NULL;
557
558 xfree (result);
88c15c34 559 result = xstrprintf ("<%s>", str);
41d27058
JB
560 return result;
561}
96d887e8 562
67cb5b2d 563static const char *
4c4b4cd2
PH
564ada_get_gdb_completer_word_break_characters (void)
565{
566 return ada_completer_word_break_characters;
567}
568
e79af960
JB
569/* Print an array element index using the Ada syntax. */
570
571static void
572ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 573 const struct value_print_options *options)
e79af960 574{
79a45b7d 575 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
576 fprintf_filtered (stream, " => ");
577}
578
f27cf670 579/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 580 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 581 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 582
f27cf670
AS
583void *
584grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 585{
d2e4a39e
AS
586 if (*size < min_size)
587 {
588 *size *= 2;
589 if (*size < min_size)
4c4b4cd2 590 *size = min_size;
f27cf670 591 vect = xrealloc (vect, *size * element_size);
d2e4a39e 592 }
f27cf670 593 return vect;
14f9c5c9
AS
594}
595
596/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 597 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
598
599static int
ebf56fd3 600field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
601{
602 int len = strlen (target);
5b4ee69b 603
d2e4a39e 604 return
4c4b4cd2
PH
605 (strncmp (field_name, target, len) == 0
606 && (field_name[len] == '\0'
61012eef 607 || (startswith (field_name + len, "___")
76a01679
JB
608 && strcmp (field_name + strlen (field_name) - 6,
609 "___XVN") != 0)));
14f9c5c9
AS
610}
611
612
872c8b51
JB
613/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
614 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
615 and return its index. This function also handles fields whose name
616 have ___ suffixes because the compiler sometimes alters their name
617 by adding such a suffix to represent fields with certain constraints.
618 If the field could not be found, return a negative number if
619 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
620
621int
622ada_get_field_index (const struct type *type, const char *field_name,
623 int maybe_missing)
624{
625 int fieldno;
872c8b51
JB
626 struct type *struct_type = check_typedef ((struct type *) type);
627
628 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
629 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
630 return fieldno;
631
632 if (!maybe_missing)
323e0a4a 633 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 634 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
635
636 return -1;
637}
638
639/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
640
641int
d2e4a39e 642ada_name_prefix_len (const char *name)
14f9c5c9
AS
643{
644 if (name == NULL)
645 return 0;
d2e4a39e 646 else
14f9c5c9 647 {
d2e4a39e 648 const char *p = strstr (name, "___");
5b4ee69b 649
14f9c5c9 650 if (p == NULL)
4c4b4cd2 651 return strlen (name);
14f9c5c9 652 else
4c4b4cd2 653 return p - name;
14f9c5c9
AS
654 }
655}
656
4c4b4cd2
PH
657/* Return non-zero if SUFFIX is a suffix of STR.
658 Return zero if STR is null. */
659
14f9c5c9 660static int
d2e4a39e 661is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
662{
663 int len1, len2;
5b4ee69b 664
14f9c5c9
AS
665 if (str == NULL)
666 return 0;
667 len1 = strlen (str);
668 len2 = strlen (suffix);
4c4b4cd2 669 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
670}
671
4c4b4cd2
PH
672/* The contents of value VAL, treated as a value of type TYPE. The
673 result is an lval in memory if VAL is. */
14f9c5c9 674
d2e4a39e 675static struct value *
4c4b4cd2 676coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 677{
61ee279c 678 type = ada_check_typedef (type);
df407dfe 679 if (value_type (val) == type)
4c4b4cd2 680 return val;
d2e4a39e 681 else
14f9c5c9 682 {
4c4b4cd2
PH
683 struct value *result;
684
685 /* Make sure that the object size is not unreasonable before
686 trying to allocate some memory for it. */
c1b5a1a6 687 ada_ensure_varsize_limit (type);
4c4b4cd2 688
41e8491f
JK
689 if (value_lazy (val)
690 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
691 result = allocate_value_lazy (type);
692 else
693 {
694 result = allocate_value (type);
9a0dc9e3 695 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 696 }
74bcbdf3 697 set_value_component_location (result, val);
9bbda503
AC
698 set_value_bitsize (result, value_bitsize (val));
699 set_value_bitpos (result, value_bitpos (val));
42ae5230 700 set_value_address (result, value_address (val));
14f9c5c9
AS
701 return result;
702 }
703}
704
fc1a4b47
AC
705static const gdb_byte *
706cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
707{
708 if (valaddr == NULL)
709 return NULL;
710 else
711 return valaddr + offset;
712}
713
714static CORE_ADDR
ebf56fd3 715cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
716{
717 if (address == 0)
718 return 0;
d2e4a39e 719 else
14f9c5c9
AS
720 return address + offset;
721}
722
4c4b4cd2
PH
723/* Issue a warning (as for the definition of warning in utils.c, but
724 with exactly one argument rather than ...), unless the limit on the
725 number of warnings has passed during the evaluation of the current
726 expression. */
a2249542 727
77109804
AC
728/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
729 provided by "complaint". */
a0b31db1 730static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 731
14f9c5c9 732static void
a2249542 733lim_warning (const char *format, ...)
14f9c5c9 734{
a2249542 735 va_list args;
a2249542 736
5b4ee69b 737 va_start (args, format);
4c4b4cd2
PH
738 warnings_issued += 1;
739 if (warnings_issued <= warning_limit)
a2249542
MK
740 vwarning (format, args);
741
742 va_end (args);
4c4b4cd2
PH
743}
744
714e53ab
PH
745/* Issue an error if the size of an object of type T is unreasonable,
746 i.e. if it would be a bad idea to allocate a value of this type in
747 GDB. */
748
c1b5a1a6
JB
749void
750ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
751{
752 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 753 error (_("object size is larger than varsize-limit"));
714e53ab
PH
754}
755
0963b4bd 756/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 757static LONGEST
c3e5cd34 758max_of_size (int size)
4c4b4cd2 759{
76a01679 760 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 761
76a01679 762 return top_bit | (top_bit - 1);
4c4b4cd2
PH
763}
764
0963b4bd 765/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 766static LONGEST
c3e5cd34 767min_of_size (int size)
4c4b4cd2 768{
c3e5cd34 769 return -max_of_size (size) - 1;
4c4b4cd2
PH
770}
771
0963b4bd 772/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 773static ULONGEST
c3e5cd34 774umax_of_size (int size)
4c4b4cd2 775{
76a01679 776 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 777
76a01679 778 return top_bit | (top_bit - 1);
4c4b4cd2
PH
779}
780
0963b4bd 781/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
782static LONGEST
783max_of_type (struct type *t)
4c4b4cd2 784{
c3e5cd34
PH
785 if (TYPE_UNSIGNED (t))
786 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
787 else
788 return max_of_size (TYPE_LENGTH (t));
789}
790
0963b4bd 791/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
792static LONGEST
793min_of_type (struct type *t)
794{
795 if (TYPE_UNSIGNED (t))
796 return 0;
797 else
798 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
799}
800
801/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
802LONGEST
803ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 804{
c3345124 805 type = resolve_dynamic_type (type, NULL, 0);
76a01679 806 switch (TYPE_CODE (type))
4c4b4cd2
PH
807 {
808 case TYPE_CODE_RANGE:
690cc4eb 809 return TYPE_HIGH_BOUND (type);
4c4b4cd2 810 case TYPE_CODE_ENUM:
14e75d8e 811 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
812 case TYPE_CODE_BOOL:
813 return 1;
814 case TYPE_CODE_CHAR:
76a01679 815 case TYPE_CODE_INT:
690cc4eb 816 return max_of_type (type);
4c4b4cd2 817 default:
43bbcdc2 818 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
819 }
820}
821
14e75d8e 822/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
823LONGEST
824ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 825{
c3345124 826 type = resolve_dynamic_type (type, NULL, 0);
76a01679 827 switch (TYPE_CODE (type))
4c4b4cd2
PH
828 {
829 case TYPE_CODE_RANGE:
690cc4eb 830 return TYPE_LOW_BOUND (type);
4c4b4cd2 831 case TYPE_CODE_ENUM:
14e75d8e 832 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
833 case TYPE_CODE_BOOL:
834 return 0;
835 case TYPE_CODE_CHAR:
76a01679 836 case TYPE_CODE_INT:
690cc4eb 837 return min_of_type (type);
4c4b4cd2 838 default:
43bbcdc2 839 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
840 }
841}
842
843/* The identity on non-range types. For range types, the underlying
76a01679 844 non-range scalar type. */
4c4b4cd2
PH
845
846static struct type *
18af8284 847get_base_type (struct type *type)
4c4b4cd2
PH
848{
849 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
850 {
76a01679
JB
851 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
852 return type;
4c4b4cd2
PH
853 type = TYPE_TARGET_TYPE (type);
854 }
855 return type;
14f9c5c9 856}
41246937
JB
857
858/* Return a decoded version of the given VALUE. This means returning
859 a value whose type is obtained by applying all the GNAT-specific
860 encondings, making the resulting type a static but standard description
861 of the initial type. */
862
863struct value *
864ada_get_decoded_value (struct value *value)
865{
866 struct type *type = ada_check_typedef (value_type (value));
867
868 if (ada_is_array_descriptor_type (type)
869 || (ada_is_constrained_packed_array_type (type)
870 && TYPE_CODE (type) != TYPE_CODE_PTR))
871 {
872 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
873 value = ada_coerce_to_simple_array_ptr (value);
874 else
875 value = ada_coerce_to_simple_array (value);
876 }
877 else
878 value = ada_to_fixed_value (value);
879
880 return value;
881}
882
883/* Same as ada_get_decoded_value, but with the given TYPE.
884 Because there is no associated actual value for this type,
885 the resulting type might be a best-effort approximation in
886 the case of dynamic types. */
887
888struct type *
889ada_get_decoded_type (struct type *type)
890{
891 type = to_static_fixed_type (type);
892 if (ada_is_constrained_packed_array_type (type))
893 type = ada_coerce_to_simple_array_type (type);
894 return type;
895}
896
4c4b4cd2 897\f
76a01679 898
4c4b4cd2 899 /* Language Selection */
14f9c5c9
AS
900
901/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 902 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 903
14f9c5c9 904enum language
ccefe4c4 905ada_update_initial_language (enum language lang)
14f9c5c9 906{
d2e4a39e 907 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 908 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 909 return language_ada;
14f9c5c9
AS
910
911 return lang;
912}
96d887e8
PH
913
914/* If the main procedure is written in Ada, then return its name.
915 The result is good until the next call. Return NULL if the main
916 procedure doesn't appear to be in Ada. */
917
918char *
919ada_main_name (void)
920{
3b7344d5 921 struct bound_minimal_symbol msym;
f9bc20b9 922 static char *main_program_name = NULL;
6c038f32 923
96d887e8
PH
924 /* For Ada, the name of the main procedure is stored in a specific
925 string constant, generated by the binder. Look for that symbol,
926 extract its address, and then read that string. If we didn't find
927 that string, then most probably the main procedure is not written
928 in Ada. */
929 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
930
3b7344d5 931 if (msym.minsym != NULL)
96d887e8 932 {
f9bc20b9
JB
933 CORE_ADDR main_program_name_addr;
934 int err_code;
935
77e371c0 936 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 937 if (main_program_name_addr == 0)
323e0a4a 938 error (_("Invalid address for Ada main program name."));
96d887e8 939
f9bc20b9
JB
940 xfree (main_program_name);
941 target_read_string (main_program_name_addr, &main_program_name,
942 1024, &err_code);
943
944 if (err_code != 0)
945 return NULL;
96d887e8
PH
946 return main_program_name;
947 }
948
949 /* The main procedure doesn't seem to be in Ada. */
950 return NULL;
951}
14f9c5c9 952\f
4c4b4cd2 953 /* Symbols */
d2e4a39e 954
4c4b4cd2
PH
955/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
956 of NULLs. */
14f9c5c9 957
d2e4a39e
AS
958const struct ada_opname_map ada_opname_table[] = {
959 {"Oadd", "\"+\"", BINOP_ADD},
960 {"Osubtract", "\"-\"", BINOP_SUB},
961 {"Omultiply", "\"*\"", BINOP_MUL},
962 {"Odivide", "\"/\"", BINOP_DIV},
963 {"Omod", "\"mod\"", BINOP_MOD},
964 {"Orem", "\"rem\"", BINOP_REM},
965 {"Oexpon", "\"**\"", BINOP_EXP},
966 {"Olt", "\"<\"", BINOP_LESS},
967 {"Ole", "\"<=\"", BINOP_LEQ},
968 {"Ogt", "\">\"", BINOP_GTR},
969 {"Oge", "\">=\"", BINOP_GEQ},
970 {"Oeq", "\"=\"", BINOP_EQUAL},
971 {"One", "\"/=\"", BINOP_NOTEQUAL},
972 {"Oand", "\"and\"", BINOP_BITWISE_AND},
973 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
974 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
975 {"Oconcat", "\"&\"", BINOP_CONCAT},
976 {"Oabs", "\"abs\"", UNOP_ABS},
977 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
978 {"Oadd", "\"+\"", UNOP_PLUS},
979 {"Osubtract", "\"-\"", UNOP_NEG},
980 {NULL, NULL}
14f9c5c9
AS
981};
982
b5ec771e
PA
983/* The "encoded" form of DECODED, according to GNAT conventions. The
984 result is valid until the next call to ada_encode. If
985 THROW_ERRORS, throw an error if invalid operator name is found.
986 Otherwise, return NULL in that case. */
4c4b4cd2 987
b5ec771e
PA
988static char *
989ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 990{
4c4b4cd2
PH
991 static char *encoding_buffer = NULL;
992 static size_t encoding_buffer_size = 0;
d2e4a39e 993 const char *p;
14f9c5c9 994 int k;
d2e4a39e 995
4c4b4cd2 996 if (decoded == NULL)
14f9c5c9
AS
997 return NULL;
998
4c4b4cd2
PH
999 GROW_VECT (encoding_buffer, encoding_buffer_size,
1000 2 * strlen (decoded) + 10);
14f9c5c9
AS
1001
1002 k = 0;
4c4b4cd2 1003 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 1004 {
cdc7bb92 1005 if (*p == '.')
4c4b4cd2
PH
1006 {
1007 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1008 k += 2;
1009 }
14f9c5c9 1010 else if (*p == '"')
4c4b4cd2
PH
1011 {
1012 const struct ada_opname_map *mapping;
1013
1014 for (mapping = ada_opname_table;
1265e4aa 1015 mapping->encoded != NULL
61012eef 1016 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1017 ;
1018 if (mapping->encoded == NULL)
b5ec771e
PA
1019 {
1020 if (throw_errors)
1021 error (_("invalid Ada operator name: %s"), p);
1022 else
1023 return NULL;
1024 }
4c4b4cd2
PH
1025 strcpy (encoding_buffer + k, mapping->encoded);
1026 k += strlen (mapping->encoded);
1027 break;
1028 }
d2e4a39e 1029 else
4c4b4cd2
PH
1030 {
1031 encoding_buffer[k] = *p;
1032 k += 1;
1033 }
14f9c5c9
AS
1034 }
1035
4c4b4cd2
PH
1036 encoding_buffer[k] = '\0';
1037 return encoding_buffer;
14f9c5c9
AS
1038}
1039
b5ec771e
PA
1040/* The "encoded" form of DECODED, according to GNAT conventions.
1041 The result is valid until the next call to ada_encode. */
1042
1043char *
1044ada_encode (const char *decoded)
1045{
1046 return ada_encode_1 (decoded, true);
1047}
1048
14f9c5c9 1049/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1050 quotes, unfolded, but with the quotes stripped away. Result good
1051 to next call. */
1052
d2e4a39e
AS
1053char *
1054ada_fold_name (const char *name)
14f9c5c9 1055{
d2e4a39e 1056 static char *fold_buffer = NULL;
14f9c5c9
AS
1057 static size_t fold_buffer_size = 0;
1058
1059 int len = strlen (name);
d2e4a39e 1060 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1061
1062 if (name[0] == '\'')
1063 {
d2e4a39e
AS
1064 strncpy (fold_buffer, name + 1, len - 2);
1065 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1066 }
1067 else
1068 {
1069 int i;
5b4ee69b 1070
14f9c5c9 1071 for (i = 0; i <= len; i += 1)
4c4b4cd2 1072 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1073 }
1074
1075 return fold_buffer;
1076}
1077
529cad9c
PH
1078/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1079
1080static int
1081is_lower_alphanum (const char c)
1082{
1083 return (isdigit (c) || (isalpha (c) && islower (c)));
1084}
1085
c90092fe
JB
1086/* ENCODED is the linkage name of a symbol and LEN contains its length.
1087 This function saves in LEN the length of that same symbol name but
1088 without either of these suffixes:
29480c32
JB
1089 . .{DIGIT}+
1090 . ${DIGIT}+
1091 . ___{DIGIT}+
1092 . __{DIGIT}+.
c90092fe 1093
29480c32
JB
1094 These are suffixes introduced by the compiler for entities such as
1095 nested subprogram for instance, in order to avoid name clashes.
1096 They do not serve any purpose for the debugger. */
1097
1098static void
1099ada_remove_trailing_digits (const char *encoded, int *len)
1100{
1101 if (*len > 1 && isdigit (encoded[*len - 1]))
1102 {
1103 int i = *len - 2;
5b4ee69b 1104
29480c32
JB
1105 while (i > 0 && isdigit (encoded[i]))
1106 i--;
1107 if (i >= 0 && encoded[i] == '.')
1108 *len = i;
1109 else if (i >= 0 && encoded[i] == '$')
1110 *len = i;
61012eef 1111 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1112 *len = i - 2;
61012eef 1113 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1114 *len = i - 1;
1115 }
1116}
1117
1118/* Remove the suffix introduced by the compiler for protected object
1119 subprograms. */
1120
1121static void
1122ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1123{
1124 /* Remove trailing N. */
1125
1126 /* Protected entry subprograms are broken into two
1127 separate subprograms: The first one is unprotected, and has
1128 a 'N' suffix; the second is the protected version, and has
0963b4bd 1129 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1130 the protection. Since the P subprograms are internally generated,
1131 we leave these names undecoded, giving the user a clue that this
1132 entity is internal. */
1133
1134 if (*len > 1
1135 && encoded[*len - 1] == 'N'
1136 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1137 *len = *len - 1;
1138}
1139
69fadcdf
JB
1140/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1141
1142static void
1143ada_remove_Xbn_suffix (const char *encoded, int *len)
1144{
1145 int i = *len - 1;
1146
1147 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1148 i--;
1149
1150 if (encoded[i] != 'X')
1151 return;
1152
1153 if (i == 0)
1154 return;
1155
1156 if (isalnum (encoded[i-1]))
1157 *len = i;
1158}
1159
29480c32
JB
1160/* If ENCODED follows the GNAT entity encoding conventions, then return
1161 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1162 replaced by ENCODED.
14f9c5c9 1163
4c4b4cd2 1164 The resulting string is valid until the next call of ada_decode.
29480c32 1165 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1166 is returned. */
1167
1168const char *
1169ada_decode (const char *encoded)
14f9c5c9
AS
1170{
1171 int i, j;
1172 int len0;
d2e4a39e 1173 const char *p;
4c4b4cd2 1174 char *decoded;
14f9c5c9 1175 int at_start_name;
4c4b4cd2
PH
1176 static char *decoding_buffer = NULL;
1177 static size_t decoding_buffer_size = 0;
d2e4a39e 1178
29480c32
JB
1179 /* The name of the Ada main procedure starts with "_ada_".
1180 This prefix is not part of the decoded name, so skip this part
1181 if we see this prefix. */
61012eef 1182 if (startswith (encoded, "_ada_"))
4c4b4cd2 1183 encoded += 5;
14f9c5c9 1184
29480c32
JB
1185 /* If the name starts with '_', then it is not a properly encoded
1186 name, so do not attempt to decode it. Similarly, if the name
1187 starts with '<', the name should not be decoded. */
4c4b4cd2 1188 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1189 goto Suppress;
1190
4c4b4cd2 1191 len0 = strlen (encoded);
4c4b4cd2 1192
29480c32
JB
1193 ada_remove_trailing_digits (encoded, &len0);
1194 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1195
4c4b4cd2
PH
1196 /* Remove the ___X.* suffix if present. Do not forget to verify that
1197 the suffix is located before the current "end" of ENCODED. We want
1198 to avoid re-matching parts of ENCODED that have previously been
1199 marked as discarded (by decrementing LEN0). */
1200 p = strstr (encoded, "___");
1201 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1202 {
1203 if (p[3] == 'X')
4c4b4cd2 1204 len0 = p - encoded;
14f9c5c9 1205 else
4c4b4cd2 1206 goto Suppress;
14f9c5c9 1207 }
4c4b4cd2 1208
29480c32
JB
1209 /* Remove any trailing TKB suffix. It tells us that this symbol
1210 is for the body of a task, but that information does not actually
1211 appear in the decoded name. */
1212
61012eef 1213 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1214 len0 -= 3;
76a01679 1215
a10967fa
JB
1216 /* Remove any trailing TB suffix. The TB suffix is slightly different
1217 from the TKB suffix because it is used for non-anonymous task
1218 bodies. */
1219
61012eef 1220 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1221 len0 -= 2;
1222
29480c32
JB
1223 /* Remove trailing "B" suffixes. */
1224 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1225
61012eef 1226 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1227 len0 -= 1;
1228
4c4b4cd2 1229 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1230
4c4b4cd2
PH
1231 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1232 decoded = decoding_buffer;
14f9c5c9 1233
29480c32
JB
1234 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1235
4c4b4cd2 1236 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1237 {
4c4b4cd2
PH
1238 i = len0 - 2;
1239 while ((i >= 0 && isdigit (encoded[i]))
1240 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1241 i -= 1;
1242 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1243 len0 = i - 1;
1244 else if (encoded[i] == '$')
1245 len0 = i;
d2e4a39e 1246 }
14f9c5c9 1247
29480c32
JB
1248 /* The first few characters that are not alphabetic are not part
1249 of any encoding we use, so we can copy them over verbatim. */
1250
4c4b4cd2
PH
1251 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1252 decoded[j] = encoded[i];
14f9c5c9
AS
1253
1254 at_start_name = 1;
1255 while (i < len0)
1256 {
29480c32 1257 /* Is this a symbol function? */
4c4b4cd2
PH
1258 if (at_start_name && encoded[i] == 'O')
1259 {
1260 int k;
5b4ee69b 1261
4c4b4cd2
PH
1262 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1263 {
1264 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1265 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1266 op_len - 1) == 0)
1267 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1268 {
1269 strcpy (decoded + j, ada_opname_table[k].decoded);
1270 at_start_name = 0;
1271 i += op_len;
1272 j += strlen (ada_opname_table[k].decoded);
1273 break;
1274 }
1275 }
1276 if (ada_opname_table[k].encoded != NULL)
1277 continue;
1278 }
14f9c5c9
AS
1279 at_start_name = 0;
1280
529cad9c
PH
1281 /* Replace "TK__" with "__", which will eventually be translated
1282 into "." (just below). */
1283
61012eef 1284 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1285 i += 2;
529cad9c 1286
29480c32
JB
1287 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1288 be translated into "." (just below). These are internal names
1289 generated for anonymous blocks inside which our symbol is nested. */
1290
1291 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1292 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1293 && isdigit (encoded [i+4]))
1294 {
1295 int k = i + 5;
1296
1297 while (k < len0 && isdigit (encoded[k]))
1298 k++; /* Skip any extra digit. */
1299
1300 /* Double-check that the "__B_{DIGITS}+" sequence we found
1301 is indeed followed by "__". */
1302 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1303 i = k;
1304 }
1305
529cad9c
PH
1306 /* Remove _E{DIGITS}+[sb] */
1307
1308 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1309 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1310 one implements the actual entry code, and has a suffix following
1311 the convention above; the second one implements the barrier and
1312 uses the same convention as above, except that the 'E' is replaced
1313 by a 'B'.
1314
1315 Just as above, we do not decode the name of barrier functions
1316 to give the user a clue that the code he is debugging has been
1317 internally generated. */
1318
1319 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1320 && isdigit (encoded[i+2]))
1321 {
1322 int k = i + 3;
1323
1324 while (k < len0 && isdigit (encoded[k]))
1325 k++;
1326
1327 if (k < len0
1328 && (encoded[k] == 'b' || encoded[k] == 's'))
1329 {
1330 k++;
1331 /* Just as an extra precaution, make sure that if this
1332 suffix is followed by anything else, it is a '_'.
1333 Otherwise, we matched this sequence by accident. */
1334 if (k == len0
1335 || (k < len0 && encoded[k] == '_'))
1336 i = k;
1337 }
1338 }
1339
1340 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1341 the GNAT front-end in protected object subprograms. */
1342
1343 if (i < len0 + 3
1344 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1345 {
1346 /* Backtrack a bit up until we reach either the begining of
1347 the encoded name, or "__". Make sure that we only find
1348 digits or lowercase characters. */
1349 const char *ptr = encoded + i - 1;
1350
1351 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1352 ptr--;
1353 if (ptr < encoded
1354 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1355 i++;
1356 }
1357
4c4b4cd2
PH
1358 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1359 {
29480c32
JB
1360 /* This is a X[bn]* sequence not separated from the previous
1361 part of the name with a non-alpha-numeric character (in other
1362 words, immediately following an alpha-numeric character), then
1363 verify that it is placed at the end of the encoded name. If
1364 not, then the encoding is not valid and we should abort the
1365 decoding. Otherwise, just skip it, it is used in body-nested
1366 package names. */
4c4b4cd2
PH
1367 do
1368 i += 1;
1369 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1370 if (i < len0)
1371 goto Suppress;
1372 }
cdc7bb92 1373 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1374 {
29480c32 1375 /* Replace '__' by '.'. */
4c4b4cd2
PH
1376 decoded[j] = '.';
1377 at_start_name = 1;
1378 i += 2;
1379 j += 1;
1380 }
14f9c5c9 1381 else
4c4b4cd2 1382 {
29480c32
JB
1383 /* It's a character part of the decoded name, so just copy it
1384 over. */
4c4b4cd2
PH
1385 decoded[j] = encoded[i];
1386 i += 1;
1387 j += 1;
1388 }
14f9c5c9 1389 }
4c4b4cd2 1390 decoded[j] = '\000';
14f9c5c9 1391
29480c32
JB
1392 /* Decoded names should never contain any uppercase character.
1393 Double-check this, and abort the decoding if we find one. */
1394
4c4b4cd2
PH
1395 for (i = 0; decoded[i] != '\0'; i += 1)
1396 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1397 goto Suppress;
1398
4c4b4cd2
PH
1399 if (strcmp (decoded, encoded) == 0)
1400 return encoded;
1401 else
1402 return decoded;
14f9c5c9
AS
1403
1404Suppress:
4c4b4cd2
PH
1405 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1406 decoded = decoding_buffer;
1407 if (encoded[0] == '<')
1408 strcpy (decoded, encoded);
14f9c5c9 1409 else
88c15c34 1410 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1411 return decoded;
1412
1413}
1414
1415/* Table for keeping permanent unique copies of decoded names. Once
1416 allocated, names in this table are never released. While this is a
1417 storage leak, it should not be significant unless there are massive
1418 changes in the set of decoded names in successive versions of a
1419 symbol table loaded during a single session. */
1420static struct htab *decoded_names_store;
1421
1422/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1423 in the language-specific part of GSYMBOL, if it has not been
1424 previously computed. Tries to save the decoded name in the same
1425 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1426 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1427 GSYMBOL).
4c4b4cd2
PH
1428 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1429 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1430 when a decoded name is cached in it. */
4c4b4cd2 1431
45e6c716 1432const char *
f85f34ed 1433ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1434{
f85f34ed
TT
1435 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1436 const char **resultp =
615b3f62 1437 &gsymbol->language_specific.demangled_name;
5b4ee69b 1438
f85f34ed 1439 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1440 {
1441 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1442 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1443
f85f34ed 1444 gsymbol->ada_mangled = 1;
5b4ee69b 1445
f85f34ed 1446 if (obstack != NULL)
224c3ddb
SM
1447 *resultp
1448 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1449 else
76a01679 1450 {
f85f34ed
TT
1451 /* Sometimes, we can't find a corresponding objfile, in
1452 which case, we put the result on the heap. Since we only
1453 decode when needed, we hope this usually does not cause a
1454 significant memory leak (FIXME). */
1455
76a01679
JB
1456 char **slot = (char **) htab_find_slot (decoded_names_store,
1457 decoded, INSERT);
5b4ee69b 1458
76a01679
JB
1459 if (*slot == NULL)
1460 *slot = xstrdup (decoded);
1461 *resultp = *slot;
1462 }
4c4b4cd2 1463 }
14f9c5c9 1464
4c4b4cd2
PH
1465 return *resultp;
1466}
76a01679 1467
2c0b251b 1468static char *
76a01679 1469ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1470{
1471 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1472}
1473
8b302db8
TT
1474/* Implement la_sniff_from_mangled_name for Ada. */
1475
1476static int
1477ada_sniff_from_mangled_name (const char *mangled, char **out)
1478{
1479 const char *demangled = ada_decode (mangled);
1480
1481 *out = NULL;
1482
1483 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1484 {
1485 /* Set the gsymbol language to Ada, but still return 0.
1486 Two reasons for that:
1487
1488 1. For Ada, we prefer computing the symbol's decoded name
1489 on the fly rather than pre-compute it, in order to save
1490 memory (Ada projects are typically very large).
1491
1492 2. There are some areas in the definition of the GNAT
1493 encoding where, with a bit of bad luck, we might be able
1494 to decode a non-Ada symbol, generating an incorrect
1495 demangled name (Eg: names ending with "TB" for instance
1496 are identified as task bodies and so stripped from
1497 the decoded name returned).
1498
1499 Returning 1, here, but not setting *DEMANGLED, helps us get a
1500 little bit of the best of both worlds. Because we're last,
1501 we should not affect any of the other languages that were
1502 able to demangle the symbol before us; we get to correctly
1503 tag Ada symbols as such; and even if we incorrectly tagged a
1504 non-Ada symbol, which should be rare, any routing through the
1505 Ada language should be transparent (Ada tries to behave much
1506 like C/C++ with non-Ada symbols). */
1507 return 1;
1508 }
1509
1510 return 0;
1511}
1512
14f9c5c9 1513\f
d2e4a39e 1514
4c4b4cd2 1515 /* Arrays */
14f9c5c9 1516
28c85d6c
JB
1517/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1518 generated by the GNAT compiler to describe the index type used
1519 for each dimension of an array, check whether it follows the latest
1520 known encoding. If not, fix it up to conform to the latest encoding.
1521 Otherwise, do nothing. This function also does nothing if
1522 INDEX_DESC_TYPE is NULL.
1523
1524 The GNAT encoding used to describle the array index type evolved a bit.
1525 Initially, the information would be provided through the name of each
1526 field of the structure type only, while the type of these fields was
1527 described as unspecified and irrelevant. The debugger was then expected
1528 to perform a global type lookup using the name of that field in order
1529 to get access to the full index type description. Because these global
1530 lookups can be very expensive, the encoding was later enhanced to make
1531 the global lookup unnecessary by defining the field type as being
1532 the full index type description.
1533
1534 The purpose of this routine is to allow us to support older versions
1535 of the compiler by detecting the use of the older encoding, and by
1536 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1537 we essentially replace each field's meaningless type by the associated
1538 index subtype). */
1539
1540void
1541ada_fixup_array_indexes_type (struct type *index_desc_type)
1542{
1543 int i;
1544
1545 if (index_desc_type == NULL)
1546 return;
1547 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1548
1549 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1550 to check one field only, no need to check them all). If not, return
1551 now.
1552
1553 If our INDEX_DESC_TYPE was generated using the older encoding,
1554 the field type should be a meaningless integer type whose name
1555 is not equal to the field name. */
1556 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1557 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1558 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1559 return;
1560
1561 /* Fixup each field of INDEX_DESC_TYPE. */
1562 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1563 {
0d5cff50 1564 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1565 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1566
1567 if (raw_type)
1568 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1569 }
1570}
1571
4c4b4cd2 1572/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1573
a121b7c1 1574static const char *bound_name[] = {
d2e4a39e 1575 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1576 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1577};
1578
1579/* Maximum number of array dimensions we are prepared to handle. */
1580
4c4b4cd2 1581#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1582
14f9c5c9 1583
4c4b4cd2
PH
1584/* The desc_* routines return primitive portions of array descriptors
1585 (fat pointers). */
14f9c5c9
AS
1586
1587/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1588 level of indirection, if needed. */
1589
d2e4a39e
AS
1590static struct type *
1591desc_base_type (struct type *type)
14f9c5c9
AS
1592{
1593 if (type == NULL)
1594 return NULL;
61ee279c 1595 type = ada_check_typedef (type);
720d1a40
JB
1596 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1597 type = ada_typedef_target_type (type);
1598
1265e4aa
JB
1599 if (type != NULL
1600 && (TYPE_CODE (type) == TYPE_CODE_PTR
1601 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1602 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1603 else
1604 return type;
1605}
1606
4c4b4cd2
PH
1607/* True iff TYPE indicates a "thin" array pointer type. */
1608
14f9c5c9 1609static int
d2e4a39e 1610is_thin_pntr (struct type *type)
14f9c5c9 1611{
d2e4a39e 1612 return
14f9c5c9
AS
1613 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1614 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1615}
1616
4c4b4cd2
PH
1617/* The descriptor type for thin pointer type TYPE. */
1618
d2e4a39e
AS
1619static struct type *
1620thin_descriptor_type (struct type *type)
14f9c5c9 1621{
d2e4a39e 1622 struct type *base_type = desc_base_type (type);
5b4ee69b 1623
14f9c5c9
AS
1624 if (base_type == NULL)
1625 return NULL;
1626 if (is_suffix (ada_type_name (base_type), "___XVE"))
1627 return base_type;
d2e4a39e 1628 else
14f9c5c9 1629 {
d2e4a39e 1630 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1631
14f9c5c9 1632 if (alt_type == NULL)
4c4b4cd2 1633 return base_type;
14f9c5c9 1634 else
4c4b4cd2 1635 return alt_type;
14f9c5c9
AS
1636 }
1637}
1638
4c4b4cd2
PH
1639/* A pointer to the array data for thin-pointer value VAL. */
1640
d2e4a39e
AS
1641static struct value *
1642thin_data_pntr (struct value *val)
14f9c5c9 1643{
828292f2 1644 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1645 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1646
556bdfd4
UW
1647 data_type = lookup_pointer_type (data_type);
1648
14f9c5c9 1649 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1650 return value_cast (data_type, value_copy (val));
d2e4a39e 1651 else
42ae5230 1652 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1653}
1654
4c4b4cd2
PH
1655/* True iff TYPE indicates a "thick" array pointer type. */
1656
14f9c5c9 1657static int
d2e4a39e 1658is_thick_pntr (struct type *type)
14f9c5c9
AS
1659{
1660 type = desc_base_type (type);
1661 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1662 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1663}
1664
4c4b4cd2
PH
1665/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1666 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1667
d2e4a39e
AS
1668static struct type *
1669desc_bounds_type (struct type *type)
14f9c5c9 1670{
d2e4a39e 1671 struct type *r;
14f9c5c9
AS
1672
1673 type = desc_base_type (type);
1674
1675 if (type == NULL)
1676 return NULL;
1677 else if (is_thin_pntr (type))
1678 {
1679 type = thin_descriptor_type (type);
1680 if (type == NULL)
4c4b4cd2 1681 return NULL;
14f9c5c9
AS
1682 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1683 if (r != NULL)
61ee279c 1684 return ada_check_typedef (r);
14f9c5c9
AS
1685 }
1686 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1687 {
1688 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1689 if (r != NULL)
61ee279c 1690 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1691 }
1692 return NULL;
1693}
1694
1695/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1696 one, a pointer to its bounds data. Otherwise NULL. */
1697
d2e4a39e
AS
1698static struct value *
1699desc_bounds (struct value *arr)
14f9c5c9 1700{
df407dfe 1701 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1702
d2e4a39e 1703 if (is_thin_pntr (type))
14f9c5c9 1704 {
d2e4a39e 1705 struct type *bounds_type =
4c4b4cd2 1706 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1707 LONGEST addr;
1708
4cdfadb1 1709 if (bounds_type == NULL)
323e0a4a 1710 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1711
1712 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1713 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1714 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1715 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1716 addr = value_as_long (arr);
d2e4a39e 1717 else
42ae5230 1718 addr = value_address (arr);
14f9c5c9 1719
d2e4a39e 1720 return
4c4b4cd2
PH
1721 value_from_longest (lookup_pointer_type (bounds_type),
1722 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1723 }
1724
1725 else if (is_thick_pntr (type))
05e522ef
JB
1726 {
1727 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1728 _("Bad GNAT array descriptor"));
1729 struct type *p_bounds_type = value_type (p_bounds);
1730
1731 if (p_bounds_type
1732 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1733 {
1734 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1735
1736 if (TYPE_STUB (target_type))
1737 p_bounds = value_cast (lookup_pointer_type
1738 (ada_check_typedef (target_type)),
1739 p_bounds);
1740 }
1741 else
1742 error (_("Bad GNAT array descriptor"));
1743
1744 return p_bounds;
1745 }
14f9c5c9
AS
1746 else
1747 return NULL;
1748}
1749
4c4b4cd2
PH
1750/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1751 position of the field containing the address of the bounds data. */
1752
14f9c5c9 1753static int
d2e4a39e 1754fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1755{
1756 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1757}
1758
1759/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1760 size of the field containing the address of the bounds data. */
1761
14f9c5c9 1762static int
d2e4a39e 1763fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1764{
1765 type = desc_base_type (type);
1766
d2e4a39e 1767 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1768 return TYPE_FIELD_BITSIZE (type, 1);
1769 else
61ee279c 1770 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1771}
1772
4c4b4cd2 1773/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1774 pointer to one, the type of its array data (a array-with-no-bounds type);
1775 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1776 data. */
4c4b4cd2 1777
d2e4a39e 1778static struct type *
556bdfd4 1779desc_data_target_type (struct type *type)
14f9c5c9
AS
1780{
1781 type = desc_base_type (type);
1782
4c4b4cd2 1783 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1784 if (is_thin_pntr (type))
556bdfd4 1785 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1786 else if (is_thick_pntr (type))
556bdfd4
UW
1787 {
1788 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1789
1790 if (data_type
1791 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1792 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1793 }
1794
1795 return NULL;
14f9c5c9
AS
1796}
1797
1798/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1799 its array data. */
4c4b4cd2 1800
d2e4a39e
AS
1801static struct value *
1802desc_data (struct value *arr)
14f9c5c9 1803{
df407dfe 1804 struct type *type = value_type (arr);
5b4ee69b 1805
14f9c5c9
AS
1806 if (is_thin_pntr (type))
1807 return thin_data_pntr (arr);
1808 else if (is_thick_pntr (type))
d2e4a39e 1809 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1810 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1811 else
1812 return NULL;
1813}
1814
1815
1816/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1817 position of the field containing the address of the data. */
1818
14f9c5c9 1819static int
d2e4a39e 1820fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1821{
1822 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1823}
1824
1825/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1826 size of the field containing the address of the data. */
1827
14f9c5c9 1828static int
d2e4a39e 1829fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1830{
1831 type = desc_base_type (type);
1832
1833 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1834 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1835 else
14f9c5c9
AS
1836 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1837}
1838
4c4b4cd2 1839/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1840 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1841 bound, if WHICH is 1. The first bound is I=1. */
1842
d2e4a39e
AS
1843static struct value *
1844desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1845{
d2e4a39e 1846 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1847 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1848}
1849
1850/* If BOUNDS is an array-bounds structure type, return the bit position
1851 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1852 bound, if WHICH is 1. The first bound is I=1. */
1853
14f9c5c9 1854static int
d2e4a39e 1855desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1856{
d2e4a39e 1857 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1858}
1859
1860/* If BOUNDS is an array-bounds structure type, return the bit field size
1861 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1862 bound, if WHICH is 1. The first bound is I=1. */
1863
76a01679 1864static int
d2e4a39e 1865desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1866{
1867 type = desc_base_type (type);
1868
d2e4a39e
AS
1869 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1870 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1871 else
1872 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1873}
1874
1875/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1876 Ith bound (numbering from 1). Otherwise, NULL. */
1877
d2e4a39e
AS
1878static struct type *
1879desc_index_type (struct type *type, int i)
14f9c5c9
AS
1880{
1881 type = desc_base_type (type);
1882
1883 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1884 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1885 else
14f9c5c9
AS
1886 return NULL;
1887}
1888
4c4b4cd2
PH
1889/* The number of index positions in the array-bounds type TYPE.
1890 Return 0 if TYPE is NULL. */
1891
14f9c5c9 1892static int
d2e4a39e 1893desc_arity (struct type *type)
14f9c5c9
AS
1894{
1895 type = desc_base_type (type);
1896
1897 if (type != NULL)
1898 return TYPE_NFIELDS (type) / 2;
1899 return 0;
1900}
1901
4c4b4cd2
PH
1902/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1903 an array descriptor type (representing an unconstrained array
1904 type). */
1905
76a01679
JB
1906static int
1907ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1908{
1909 if (type == NULL)
1910 return 0;
61ee279c 1911 type = ada_check_typedef (type);
4c4b4cd2 1912 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1913 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1914}
1915
52ce6436 1916/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1917 * to one. */
52ce6436 1918
2c0b251b 1919static int
52ce6436
PH
1920ada_is_array_type (struct type *type)
1921{
1922 while (type != NULL
1923 && (TYPE_CODE (type) == TYPE_CODE_PTR
1924 || TYPE_CODE (type) == TYPE_CODE_REF))
1925 type = TYPE_TARGET_TYPE (type);
1926 return ada_is_direct_array_type (type);
1927}
1928
4c4b4cd2 1929/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1930
14f9c5c9 1931int
4c4b4cd2 1932ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1933{
1934 if (type == NULL)
1935 return 0;
61ee279c 1936 type = ada_check_typedef (type);
14f9c5c9 1937 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1938 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1939 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1940 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1941}
1942
4c4b4cd2
PH
1943/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1944
14f9c5c9 1945int
4c4b4cd2 1946ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1947{
556bdfd4 1948 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1949
1950 if (type == NULL)
1951 return 0;
61ee279c 1952 type = ada_check_typedef (type);
556bdfd4
UW
1953 return (data_type != NULL
1954 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1955 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1956}
1957
1958/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1959 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1960 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1961 is still needed. */
1962
14f9c5c9 1963int
ebf56fd3 1964ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1965{
d2e4a39e 1966 return
14f9c5c9
AS
1967 type != NULL
1968 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1969 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1970 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1971 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1972}
1973
1974
4c4b4cd2 1975/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1976 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1977 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1978 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1979 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1980 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1981 a descriptor. */
d2e4a39e
AS
1982struct type *
1983ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1984{
ad82864c
JB
1985 if (ada_is_constrained_packed_array_type (value_type (arr)))
1986 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1987
df407dfe
AC
1988 if (!ada_is_array_descriptor_type (value_type (arr)))
1989 return value_type (arr);
d2e4a39e
AS
1990
1991 if (!bounds)
ad82864c
JB
1992 {
1993 struct type *array_type =
1994 ada_check_typedef (desc_data_target_type (value_type (arr)));
1995
1996 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1997 TYPE_FIELD_BITSIZE (array_type, 0) =
1998 decode_packed_array_bitsize (value_type (arr));
1999
2000 return array_type;
2001 }
14f9c5c9
AS
2002 else
2003 {
d2e4a39e 2004 struct type *elt_type;
14f9c5c9 2005 int arity;
d2e4a39e 2006 struct value *descriptor;
14f9c5c9 2007
df407dfe
AC
2008 elt_type = ada_array_element_type (value_type (arr), -1);
2009 arity = ada_array_arity (value_type (arr));
14f9c5c9 2010
d2e4a39e 2011 if (elt_type == NULL || arity == 0)
df407dfe 2012 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2013
2014 descriptor = desc_bounds (arr);
d2e4a39e 2015 if (value_as_long (descriptor) == 0)
4c4b4cd2 2016 return NULL;
d2e4a39e 2017 while (arity > 0)
4c4b4cd2 2018 {
e9bb382b
UW
2019 struct type *range_type = alloc_type_copy (value_type (arr));
2020 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2021 struct value *low = desc_one_bound (descriptor, arity, 0);
2022 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2023
5b4ee69b 2024 arity -= 1;
0c9c3474
SA
2025 create_static_range_type (range_type, value_type (low),
2026 longest_to_int (value_as_long (low)),
2027 longest_to_int (value_as_long (high)));
4c4b4cd2 2028 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2029
2030 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2031 {
2032 /* We need to store the element packed bitsize, as well as
2033 recompute the array size, because it was previously
2034 computed based on the unpacked element size. */
2035 LONGEST lo = value_as_long (low);
2036 LONGEST hi = value_as_long (high);
2037
2038 TYPE_FIELD_BITSIZE (elt_type, 0) =
2039 decode_packed_array_bitsize (value_type (arr));
2040 /* If the array has no element, then the size is already
2041 zero, and does not need to be recomputed. */
2042 if (lo < hi)
2043 {
2044 int array_bitsize =
2045 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2046
2047 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2048 }
2049 }
4c4b4cd2 2050 }
14f9c5c9
AS
2051
2052 return lookup_pointer_type (elt_type);
2053 }
2054}
2055
2056/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2057 Otherwise, returns either a standard GDB array with bounds set
2058 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2059 GDB array. Returns NULL if ARR is a null fat pointer. */
2060
d2e4a39e
AS
2061struct value *
2062ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2063{
df407dfe 2064 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2065 {
d2e4a39e 2066 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2067
14f9c5c9 2068 if (arrType == NULL)
4c4b4cd2 2069 return NULL;
14f9c5c9
AS
2070 return value_cast (arrType, value_copy (desc_data (arr)));
2071 }
ad82864c
JB
2072 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2073 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2074 else
2075 return arr;
2076}
2077
2078/* If ARR does not represent an array, returns ARR unchanged.
2079 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2080 be ARR itself if it already is in the proper form). */
2081
720d1a40 2082struct value *
d2e4a39e 2083ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2084{
df407dfe 2085 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2086 {
d2e4a39e 2087 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2088
14f9c5c9 2089 if (arrVal == NULL)
323e0a4a 2090 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2091 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2092 return value_ind (arrVal);
2093 }
ad82864c
JB
2094 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2095 return decode_constrained_packed_array (arr);
d2e4a39e 2096 else
14f9c5c9
AS
2097 return arr;
2098}
2099
2100/* If TYPE represents a GNAT array type, return it translated to an
2101 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2102 packing). For other types, is the identity. */
2103
d2e4a39e
AS
2104struct type *
2105ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2106{
ad82864c
JB
2107 if (ada_is_constrained_packed_array_type (type))
2108 return decode_constrained_packed_array_type (type);
17280b9f
UW
2109
2110 if (ada_is_array_descriptor_type (type))
556bdfd4 2111 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2112
2113 return type;
14f9c5c9
AS
2114}
2115
4c4b4cd2
PH
2116/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2117
ad82864c
JB
2118static int
2119ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2120{
2121 if (type == NULL)
2122 return 0;
4c4b4cd2 2123 type = desc_base_type (type);
61ee279c 2124 type = ada_check_typedef (type);
d2e4a39e 2125 return
14f9c5c9
AS
2126 ada_type_name (type) != NULL
2127 && strstr (ada_type_name (type), "___XP") != NULL;
2128}
2129
ad82864c
JB
2130/* Non-zero iff TYPE represents a standard GNAT constrained
2131 packed-array type. */
2132
2133int
2134ada_is_constrained_packed_array_type (struct type *type)
2135{
2136 return ada_is_packed_array_type (type)
2137 && !ada_is_array_descriptor_type (type);
2138}
2139
2140/* Non-zero iff TYPE represents an array descriptor for a
2141 unconstrained packed-array type. */
2142
2143static int
2144ada_is_unconstrained_packed_array_type (struct type *type)
2145{
2146 return ada_is_packed_array_type (type)
2147 && ada_is_array_descriptor_type (type);
2148}
2149
2150/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2151 return the size of its elements in bits. */
2152
2153static long
2154decode_packed_array_bitsize (struct type *type)
2155{
0d5cff50
DE
2156 const char *raw_name;
2157 const char *tail;
ad82864c
JB
2158 long bits;
2159
720d1a40
JB
2160 /* Access to arrays implemented as fat pointers are encoded as a typedef
2161 of the fat pointer type. We need the name of the fat pointer type
2162 to do the decoding, so strip the typedef layer. */
2163 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2164 type = ada_typedef_target_type (type);
2165
2166 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2167 if (!raw_name)
2168 raw_name = ada_type_name (desc_base_type (type));
2169
2170 if (!raw_name)
2171 return 0;
2172
2173 tail = strstr (raw_name, "___XP");
720d1a40 2174 gdb_assert (tail != NULL);
ad82864c
JB
2175
2176 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2177 {
2178 lim_warning
2179 (_("could not understand bit size information on packed array"));
2180 return 0;
2181 }
2182
2183 return bits;
2184}
2185
14f9c5c9
AS
2186/* Given that TYPE is a standard GDB array type with all bounds filled
2187 in, and that the element size of its ultimate scalar constituents
2188 (that is, either its elements, or, if it is an array of arrays, its
2189 elements' elements, etc.) is *ELT_BITS, return an identical type,
2190 but with the bit sizes of its elements (and those of any
2191 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2192 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2193 in bits.
2194
2195 Note that, for arrays whose index type has an XA encoding where
2196 a bound references a record discriminant, getting that discriminant,
2197 and therefore the actual value of that bound, is not possible
2198 because none of the given parameters gives us access to the record.
2199 This function assumes that it is OK in the context where it is being
2200 used to return an array whose bounds are still dynamic and where
2201 the length is arbitrary. */
4c4b4cd2 2202
d2e4a39e 2203static struct type *
ad82864c 2204constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2205{
d2e4a39e
AS
2206 struct type *new_elt_type;
2207 struct type *new_type;
99b1c762
JB
2208 struct type *index_type_desc;
2209 struct type *index_type;
14f9c5c9
AS
2210 LONGEST low_bound, high_bound;
2211
61ee279c 2212 type = ada_check_typedef (type);
14f9c5c9
AS
2213 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2214 return type;
2215
99b1c762
JB
2216 index_type_desc = ada_find_parallel_type (type, "___XA");
2217 if (index_type_desc)
2218 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2219 NULL);
2220 else
2221 index_type = TYPE_INDEX_TYPE (type);
2222
e9bb382b 2223 new_type = alloc_type_copy (type);
ad82864c
JB
2224 new_elt_type =
2225 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2226 elt_bits);
99b1c762 2227 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2228 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2229 TYPE_NAME (new_type) = ada_type_name (type);
2230
4a46959e
JB
2231 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2232 && is_dynamic_type (check_typedef (index_type)))
2233 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2234 low_bound = high_bound = 0;
2235 if (high_bound < low_bound)
2236 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2237 else
14f9c5c9
AS
2238 {
2239 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2240 TYPE_LENGTH (new_type) =
4c4b4cd2 2241 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2242 }
2243
876cecd0 2244 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2245 return new_type;
2246}
2247
ad82864c
JB
2248/* The array type encoded by TYPE, where
2249 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2250
d2e4a39e 2251static struct type *
ad82864c 2252decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2253{
0d5cff50 2254 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2255 char *name;
0d5cff50 2256 const char *tail;
d2e4a39e 2257 struct type *shadow_type;
14f9c5c9 2258 long bits;
14f9c5c9 2259
727e3d2e
JB
2260 if (!raw_name)
2261 raw_name = ada_type_name (desc_base_type (type));
2262
2263 if (!raw_name)
2264 return NULL;
2265
2266 name = (char *) alloca (strlen (raw_name) + 1);
2267 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2268 type = desc_base_type (type);
2269
14f9c5c9
AS
2270 memcpy (name, raw_name, tail - raw_name);
2271 name[tail - raw_name] = '\000';
2272
b4ba55a1
JB
2273 shadow_type = ada_find_parallel_type_with_name (type, name);
2274
2275 if (shadow_type == NULL)
14f9c5c9 2276 {
323e0a4a 2277 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2278 return NULL;
2279 }
f168693b 2280 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2281
2282 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2283 {
0963b4bd
MS
2284 lim_warning (_("could not understand bounds "
2285 "information on packed array"));
14f9c5c9
AS
2286 return NULL;
2287 }
d2e4a39e 2288
ad82864c
JB
2289 bits = decode_packed_array_bitsize (type);
2290 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2291}
2292
ad82864c
JB
2293/* Given that ARR is a struct value *indicating a GNAT constrained packed
2294 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2295 standard GDB array type except that the BITSIZEs of the array
2296 target types are set to the number of bits in each element, and the
4c4b4cd2 2297 type length is set appropriately. */
14f9c5c9 2298
d2e4a39e 2299static struct value *
ad82864c 2300decode_constrained_packed_array (struct value *arr)
14f9c5c9 2301{
4c4b4cd2 2302 struct type *type;
14f9c5c9 2303
11aa919a
PMR
2304 /* If our value is a pointer, then dereference it. Likewise if
2305 the value is a reference. Make sure that this operation does not
2306 cause the target type to be fixed, as this would indirectly cause
2307 this array to be decoded. The rest of the routine assumes that
2308 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2309 and "value_ind" routines to perform the dereferencing, as opposed
2310 to using "ada_coerce_ref" or "ada_value_ind". */
2311 arr = coerce_ref (arr);
828292f2 2312 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2313 arr = value_ind (arr);
4c4b4cd2 2314
ad82864c 2315 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2316 if (type == NULL)
2317 {
323e0a4a 2318 error (_("can't unpack array"));
14f9c5c9
AS
2319 return NULL;
2320 }
61ee279c 2321
50810684 2322 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2323 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2324 {
2325 /* This is a (right-justified) modular type representing a packed
2326 array with no wrapper. In order to interpret the value through
2327 the (left-justified) packed array type we just built, we must
2328 first left-justify it. */
2329 int bit_size, bit_pos;
2330 ULONGEST mod;
2331
df407dfe 2332 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2333 bit_size = 0;
2334 while (mod > 0)
2335 {
2336 bit_size += 1;
2337 mod >>= 1;
2338 }
df407dfe 2339 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2340 arr = ada_value_primitive_packed_val (arr, NULL,
2341 bit_pos / HOST_CHAR_BIT,
2342 bit_pos % HOST_CHAR_BIT,
2343 bit_size,
2344 type);
2345 }
2346
4c4b4cd2 2347 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2348}
2349
2350
2351/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2352 given in IND. ARR must be a simple array. */
14f9c5c9 2353
d2e4a39e
AS
2354static struct value *
2355value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2356{
2357 int i;
2358 int bits, elt_off, bit_off;
2359 long elt_total_bit_offset;
d2e4a39e
AS
2360 struct type *elt_type;
2361 struct value *v;
14f9c5c9
AS
2362
2363 bits = 0;
2364 elt_total_bit_offset = 0;
df407dfe 2365 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2366 for (i = 0; i < arity; i += 1)
14f9c5c9 2367 {
d2e4a39e 2368 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2369 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2370 error
0963b4bd
MS
2371 (_("attempt to do packed indexing of "
2372 "something other than a packed array"));
14f9c5c9 2373 else
4c4b4cd2
PH
2374 {
2375 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2376 LONGEST lowerbound, upperbound;
2377 LONGEST idx;
2378
2379 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2380 {
323e0a4a 2381 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2382 lowerbound = upperbound = 0;
2383 }
2384
3cb382c9 2385 idx = pos_atr (ind[i]);
4c4b4cd2 2386 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2387 lim_warning (_("packed array index %ld out of bounds"),
2388 (long) idx);
4c4b4cd2
PH
2389 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2390 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2391 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2392 }
14f9c5c9
AS
2393 }
2394 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2395 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2396
2397 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2398 bits, elt_type);
14f9c5c9
AS
2399 return v;
2400}
2401
4c4b4cd2 2402/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2403
2404static int
d2e4a39e 2405has_negatives (struct type *type)
14f9c5c9 2406{
d2e4a39e
AS
2407 switch (TYPE_CODE (type))
2408 {
2409 default:
2410 return 0;
2411 case TYPE_CODE_INT:
2412 return !TYPE_UNSIGNED (type);
2413 case TYPE_CODE_RANGE:
2414 return TYPE_LOW_BOUND (type) < 0;
2415 }
14f9c5c9 2416}
d2e4a39e 2417
f93fca70 2418/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2419 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2420 the unpacked buffer.
14f9c5c9 2421
5b639dea
JB
2422 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2423 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2424
f93fca70
JB
2425 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2426 zero otherwise.
14f9c5c9 2427
f93fca70 2428 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2429
f93fca70
JB
2430 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2431
2432static void
2433ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2434 gdb_byte *unpacked, int unpacked_len,
2435 int is_big_endian, int is_signed_type,
2436 int is_scalar)
2437{
a1c95e6b
JB
2438 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2439 int src_idx; /* Index into the source area */
2440 int src_bytes_left; /* Number of source bytes left to process. */
2441 int srcBitsLeft; /* Number of source bits left to move */
2442 int unusedLS; /* Number of bits in next significant
2443 byte of source that are unused */
2444
a1c95e6b
JB
2445 int unpacked_idx; /* Index into the unpacked buffer */
2446 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2447
4c4b4cd2 2448 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2449 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2450 unsigned char sign;
a1c95e6b 2451
4c4b4cd2
PH
2452 /* Transmit bytes from least to most significant; delta is the direction
2453 the indices move. */
f93fca70 2454 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2455
5b639dea
JB
2456 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2457 bits from SRC. .*/
2458 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2459 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2460 bit_size, unpacked_len);
2461
14f9c5c9 2462 srcBitsLeft = bit_size;
086ca51f 2463 src_bytes_left = src_len;
f93fca70 2464 unpacked_bytes_left = unpacked_len;
14f9c5c9 2465 sign = 0;
f93fca70
JB
2466
2467 if (is_big_endian)
14f9c5c9 2468 {
086ca51f 2469 src_idx = src_len - 1;
f93fca70
JB
2470 if (is_signed_type
2471 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2472 sign = ~0;
d2e4a39e
AS
2473
2474 unusedLS =
4c4b4cd2
PH
2475 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2476 % HOST_CHAR_BIT;
14f9c5c9 2477
f93fca70
JB
2478 if (is_scalar)
2479 {
2480 accumSize = 0;
2481 unpacked_idx = unpacked_len - 1;
2482 }
2483 else
2484 {
4c4b4cd2
PH
2485 /* Non-scalar values must be aligned at a byte boundary... */
2486 accumSize =
2487 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2488 /* ... And are placed at the beginning (most-significant) bytes
2489 of the target. */
086ca51f
JB
2490 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2491 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2492 }
14f9c5c9 2493 }
d2e4a39e 2494 else
14f9c5c9
AS
2495 {
2496 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2497
086ca51f 2498 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2499 unusedLS = bit_offset;
2500 accumSize = 0;
2501
f93fca70 2502 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2503 sign = ~0;
14f9c5c9 2504 }
d2e4a39e 2505
14f9c5c9 2506 accum = 0;
086ca51f 2507 while (src_bytes_left > 0)
14f9c5c9
AS
2508 {
2509 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2510 part of the value. */
d2e4a39e 2511 unsigned int unusedMSMask =
4c4b4cd2
PH
2512 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2513 1;
2514 /* Sign-extend bits for this byte. */
14f9c5c9 2515 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2516
d2e4a39e 2517 accum |=
086ca51f 2518 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2519 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2520 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2521 {
db297a65 2522 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2523 accumSize -= HOST_CHAR_BIT;
2524 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2525 unpacked_bytes_left -= 1;
2526 unpacked_idx += delta;
4c4b4cd2 2527 }
14f9c5c9
AS
2528 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2529 unusedLS = 0;
086ca51f
JB
2530 src_bytes_left -= 1;
2531 src_idx += delta;
14f9c5c9 2532 }
086ca51f 2533 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2534 {
2535 accum |= sign << accumSize;
db297a65 2536 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2537 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2538 if (accumSize < 0)
2539 accumSize = 0;
14f9c5c9 2540 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2541 unpacked_bytes_left -= 1;
2542 unpacked_idx += delta;
14f9c5c9 2543 }
f93fca70
JB
2544}
2545
2546/* Create a new value of type TYPE from the contents of OBJ starting
2547 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2548 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2549 assigning through the result will set the field fetched from.
2550 VALADDR is ignored unless OBJ is NULL, in which case,
2551 VALADDR+OFFSET must address the start of storage containing the
2552 packed value. The value returned in this case is never an lval.
2553 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2554
2555struct value *
2556ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2557 long offset, int bit_offset, int bit_size,
2558 struct type *type)
2559{
2560 struct value *v;
bfb1c796 2561 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2562 gdb_byte *unpacked;
220475ed 2563 const int is_scalar = is_scalar_type (type);
d0a9e810 2564 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2565 gdb::byte_vector staging;
f93fca70
JB
2566
2567 type = ada_check_typedef (type);
2568
d0a9e810 2569 if (obj == NULL)
bfb1c796 2570 src = valaddr + offset;
d0a9e810 2571 else
bfb1c796 2572 src = value_contents (obj) + offset;
d0a9e810
JB
2573
2574 if (is_dynamic_type (type))
2575 {
2576 /* The length of TYPE might by dynamic, so we need to resolve
2577 TYPE in order to know its actual size, which we then use
2578 to create the contents buffer of the value we return.
2579 The difficulty is that the data containing our object is
2580 packed, and therefore maybe not at a byte boundary. So, what
2581 we do, is unpack the data into a byte-aligned buffer, and then
2582 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2583 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2584 staging.resize (staging_len);
d0a9e810
JB
2585
2586 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2587 staging.data (), staging.size (),
d0a9e810
JB
2588 is_big_endian, has_negatives (type),
2589 is_scalar);
d5722aa2 2590 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2591 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2592 {
2593 /* This happens when the length of the object is dynamic,
2594 and is actually smaller than the space reserved for it.
2595 For instance, in an array of variant records, the bit_size
2596 we're given is the array stride, which is constant and
2597 normally equal to the maximum size of its element.
2598 But, in reality, each element only actually spans a portion
2599 of that stride. */
2600 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2601 }
d0a9e810
JB
2602 }
2603
f93fca70
JB
2604 if (obj == NULL)
2605 {
2606 v = allocate_value (type);
bfb1c796 2607 src = valaddr + offset;
f93fca70
JB
2608 }
2609 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2610 {
0cafa88c 2611 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2612 gdb_byte *buf;
0cafa88c 2613
f93fca70 2614 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2615 buf = (gdb_byte *) alloca (src_len);
2616 read_memory (value_address (v), buf, src_len);
2617 src = buf;
f93fca70
JB
2618 }
2619 else
2620 {
2621 v = allocate_value (type);
bfb1c796 2622 src = value_contents (obj) + offset;
f93fca70
JB
2623 }
2624
2625 if (obj != NULL)
2626 {
2627 long new_offset = offset;
2628
2629 set_value_component_location (v, obj);
2630 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2631 set_value_bitsize (v, bit_size);
2632 if (value_bitpos (v) >= HOST_CHAR_BIT)
2633 {
2634 ++new_offset;
2635 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2636 }
2637 set_value_offset (v, new_offset);
2638
2639 /* Also set the parent value. This is needed when trying to
2640 assign a new value (in inferior memory). */
2641 set_value_parent (v, obj);
2642 }
2643 else
2644 set_value_bitsize (v, bit_size);
bfb1c796 2645 unpacked = value_contents_writeable (v);
f93fca70
JB
2646
2647 if (bit_size == 0)
2648 {
2649 memset (unpacked, 0, TYPE_LENGTH (type));
2650 return v;
2651 }
2652
d5722aa2 2653 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2654 {
d0a9e810
JB
2655 /* Small short-cut: If we've unpacked the data into a buffer
2656 of the same size as TYPE's length, then we can reuse that,
2657 instead of doing the unpacking again. */
d5722aa2 2658 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2659 }
d0a9e810
JB
2660 else
2661 ada_unpack_from_contents (src, bit_offset, bit_size,
2662 unpacked, TYPE_LENGTH (type),
2663 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2664
14f9c5c9
AS
2665 return v;
2666}
d2e4a39e 2667
14f9c5c9
AS
2668/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2669 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2670 not overlap. */
14f9c5c9 2671static void
fc1a4b47 2672move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2673 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2674{
2675 unsigned int accum, mask;
2676 int accum_bits, chunk_size;
2677
2678 target += targ_offset / HOST_CHAR_BIT;
2679 targ_offset %= HOST_CHAR_BIT;
2680 source += src_offset / HOST_CHAR_BIT;
2681 src_offset %= HOST_CHAR_BIT;
50810684 2682 if (bits_big_endian_p)
14f9c5c9
AS
2683 {
2684 accum = (unsigned char) *source;
2685 source += 1;
2686 accum_bits = HOST_CHAR_BIT - src_offset;
2687
d2e4a39e 2688 while (n > 0)
4c4b4cd2
PH
2689 {
2690 int unused_right;
5b4ee69b 2691
4c4b4cd2
PH
2692 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2693 accum_bits += HOST_CHAR_BIT;
2694 source += 1;
2695 chunk_size = HOST_CHAR_BIT - targ_offset;
2696 if (chunk_size > n)
2697 chunk_size = n;
2698 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2699 mask = ((1 << chunk_size) - 1) << unused_right;
2700 *target =
2701 (*target & ~mask)
2702 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2703 n -= chunk_size;
2704 accum_bits -= chunk_size;
2705 target += 1;
2706 targ_offset = 0;
2707 }
14f9c5c9
AS
2708 }
2709 else
2710 {
2711 accum = (unsigned char) *source >> src_offset;
2712 source += 1;
2713 accum_bits = HOST_CHAR_BIT - src_offset;
2714
d2e4a39e 2715 while (n > 0)
4c4b4cd2
PH
2716 {
2717 accum = accum + ((unsigned char) *source << accum_bits);
2718 accum_bits += HOST_CHAR_BIT;
2719 source += 1;
2720 chunk_size = HOST_CHAR_BIT - targ_offset;
2721 if (chunk_size > n)
2722 chunk_size = n;
2723 mask = ((1 << chunk_size) - 1) << targ_offset;
2724 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2725 n -= chunk_size;
2726 accum_bits -= chunk_size;
2727 accum >>= chunk_size;
2728 target += 1;
2729 targ_offset = 0;
2730 }
14f9c5c9
AS
2731 }
2732}
2733
14f9c5c9
AS
2734/* Store the contents of FROMVAL into the location of TOVAL.
2735 Return a new value with the location of TOVAL and contents of
2736 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2737 floating-point or non-scalar types. */
14f9c5c9 2738
d2e4a39e
AS
2739static struct value *
2740ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2741{
df407dfe
AC
2742 struct type *type = value_type (toval);
2743 int bits = value_bitsize (toval);
14f9c5c9 2744
52ce6436
PH
2745 toval = ada_coerce_ref (toval);
2746 fromval = ada_coerce_ref (fromval);
2747
2748 if (ada_is_direct_array_type (value_type (toval)))
2749 toval = ada_coerce_to_simple_array (toval);
2750 if (ada_is_direct_array_type (value_type (fromval)))
2751 fromval = ada_coerce_to_simple_array (fromval);
2752
88e3b34b 2753 if (!deprecated_value_modifiable (toval))
323e0a4a 2754 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2755
d2e4a39e 2756 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2757 && bits > 0
d2e4a39e 2758 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2759 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2760 {
df407dfe
AC
2761 int len = (value_bitpos (toval)
2762 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2763 int from_size;
224c3ddb 2764 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2765 struct value *val;
42ae5230 2766 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2767
2768 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2769 fromval = value_cast (type, fromval);
14f9c5c9 2770
52ce6436 2771 read_memory (to_addr, buffer, len);
aced2898
PH
2772 from_size = value_bitsize (fromval);
2773 if (from_size == 0)
2774 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2775 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2776 move_bits (buffer, value_bitpos (toval),
50810684 2777 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2778 else
50810684
UW
2779 move_bits (buffer, value_bitpos (toval),
2780 value_contents (fromval), 0, bits, 0);
972daa01 2781 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2782
14f9c5c9 2783 val = value_copy (toval);
0fd88904 2784 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2785 TYPE_LENGTH (type));
04624583 2786 deprecated_set_value_type (val, type);
d2e4a39e 2787
14f9c5c9
AS
2788 return val;
2789 }
2790
2791 return value_assign (toval, fromval);
2792}
2793
2794
7c512744
JB
2795/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2796 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2797 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2798 COMPONENT, and not the inferior's memory. The current contents
2799 of COMPONENT are ignored.
2800
2801 Although not part of the initial design, this function also works
2802 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2803 had a null address, and COMPONENT had an address which is equal to
2804 its offset inside CONTAINER. */
2805
52ce6436
PH
2806static void
2807value_assign_to_component (struct value *container, struct value *component,
2808 struct value *val)
2809{
2810 LONGEST offset_in_container =
42ae5230 2811 (LONGEST) (value_address (component) - value_address (container));
7c512744 2812 int bit_offset_in_container =
52ce6436
PH
2813 value_bitpos (component) - value_bitpos (container);
2814 int bits;
7c512744 2815
52ce6436
PH
2816 val = value_cast (value_type (component), val);
2817
2818 if (value_bitsize (component) == 0)
2819 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2820 else
2821 bits = value_bitsize (component);
2822
50810684 2823 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2824 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2825 value_bitpos (container) + bit_offset_in_container,
2826 value_contents (val),
2827 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2828 bits, 1);
52ce6436 2829 else
7c512744 2830 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2831 value_bitpos (container) + bit_offset_in_container,
50810684 2832 value_contents (val), 0, bits, 0);
7c512744
JB
2833}
2834
4c4b4cd2
PH
2835/* The value of the element of array ARR at the ARITY indices given in IND.
2836 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2837 thereto. */
2838
d2e4a39e
AS
2839struct value *
2840ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2841{
2842 int k;
d2e4a39e
AS
2843 struct value *elt;
2844 struct type *elt_type;
14f9c5c9
AS
2845
2846 elt = ada_coerce_to_simple_array (arr);
2847
df407dfe 2848 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2849 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2850 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2851 return value_subscript_packed (elt, arity, ind);
2852
2853 for (k = 0; k < arity; k += 1)
2854 {
2855 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2856 error (_("too many subscripts (%d expected)"), k);
2497b498 2857 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2858 }
2859 return elt;
2860}
2861
deede10c
JB
2862/* Assuming ARR is a pointer to a GDB array, the value of the element
2863 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2864 Does not read the entire array into memory.
2865
2866 Note: Unlike what one would expect, this function is used instead of
2867 ada_value_subscript for basically all non-packed array types. The reason
2868 for this is that a side effect of doing our own pointer arithmetics instead
2869 of relying on value_subscript is that there is no implicit typedef peeling.
2870 This is important for arrays of array accesses, where it allows us to
2871 preserve the fact that the array's element is an array access, where the
2872 access part os encoded in a typedef layer. */
14f9c5c9 2873
2c0b251b 2874static struct value *
deede10c 2875ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2876{
2877 int k;
919e6dbe 2878 struct value *array_ind = ada_value_ind (arr);
deede10c 2879 struct type *type
919e6dbe
PMR
2880 = check_typedef (value_enclosing_type (array_ind));
2881
2882 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2883 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2884 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2885
2886 for (k = 0; k < arity; k += 1)
2887 {
2888 LONGEST lwb, upb;
aa715135 2889 struct value *lwb_value;
14f9c5c9
AS
2890
2891 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2892 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2893 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2894 value_copy (arr));
14f9c5c9 2895 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2896 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2897 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2898 type = TYPE_TARGET_TYPE (type);
2899 }
2900
2901 return value_ind (arr);
2902}
2903
0b5d8877 2904/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2905 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2906 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2907 this array is LOW, as per Ada rules. */
0b5d8877 2908static struct value *
f5938064
JG
2909ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2910 int low, int high)
0b5d8877 2911{
b0dd7688 2912 struct type *type0 = ada_check_typedef (type);
aa715135 2913 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2914 struct type *index_type
aa715135 2915 = create_static_range_type (NULL, base_index_type, low, high);
6c038f32 2916 struct type *slice_type =
b0dd7688 2917 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
aa715135
JG
2918 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2919 LONGEST base_low_pos, low_pos;
2920 CORE_ADDR base;
2921
2922 if (!discrete_position (base_index_type, low, &low_pos)
2923 || !discrete_position (base_index_type, base_low, &base_low_pos))
2924 {
2925 warning (_("unable to get positions in slice, use bounds instead"));
2926 low_pos = low;
2927 base_low_pos = base_low;
2928 }
5b4ee69b 2929
aa715135
JG
2930 base = value_as_address (array_ptr)
2931 + ((low_pos - base_low_pos)
2932 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2933 return value_at_lazy (slice_type, base);
0b5d8877
PH
2934}
2935
2936
2937static struct value *
2938ada_value_slice (struct value *array, int low, int high)
2939{
b0dd7688 2940 struct type *type = ada_check_typedef (value_type (array));
aa715135 2941 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2942 struct type *index_type
2943 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2944 struct type *slice_type =
0b5d8877 2945 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
aa715135 2946 LONGEST low_pos, high_pos;
5b4ee69b 2947
aa715135
JG
2948 if (!discrete_position (base_index_type, low, &low_pos)
2949 || !discrete_position (base_index_type, high, &high_pos))
2950 {
2951 warning (_("unable to get positions in slice, use bounds instead"));
2952 low_pos = low;
2953 high_pos = high;
2954 }
2955
2956 return value_cast (slice_type,
2957 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2958}
2959
14f9c5c9
AS
2960/* If type is a record type in the form of a standard GNAT array
2961 descriptor, returns the number of dimensions for type. If arr is a
2962 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2963 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2964
2965int
d2e4a39e 2966ada_array_arity (struct type *type)
14f9c5c9
AS
2967{
2968 int arity;
2969
2970 if (type == NULL)
2971 return 0;
2972
2973 type = desc_base_type (type);
2974
2975 arity = 0;
d2e4a39e 2976 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2977 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2978 else
2979 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2980 {
4c4b4cd2 2981 arity += 1;
61ee279c 2982 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2983 }
d2e4a39e 2984
14f9c5c9
AS
2985 return arity;
2986}
2987
2988/* If TYPE is a record type in the form of a standard GNAT array
2989 descriptor or a simple array type, returns the element type for
2990 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2991 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2992
d2e4a39e
AS
2993struct type *
2994ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2995{
2996 type = desc_base_type (type);
2997
d2e4a39e 2998 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2999 {
3000 int k;
d2e4a39e 3001 struct type *p_array_type;
14f9c5c9 3002
556bdfd4 3003 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3004
3005 k = ada_array_arity (type);
3006 if (k == 0)
4c4b4cd2 3007 return NULL;
d2e4a39e 3008
4c4b4cd2 3009 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3010 if (nindices >= 0 && k > nindices)
4c4b4cd2 3011 k = nindices;
d2e4a39e 3012 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3013 {
61ee279c 3014 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3015 k -= 1;
3016 }
14f9c5c9
AS
3017 return p_array_type;
3018 }
3019 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3020 {
3021 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3022 {
3023 type = TYPE_TARGET_TYPE (type);
3024 nindices -= 1;
3025 }
14f9c5c9
AS
3026 return type;
3027 }
3028
3029 return NULL;
3030}
3031
4c4b4cd2 3032/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3033 Does not examine memory. Throws an error if N is invalid or TYPE
3034 is not an array type. NAME is the name of the Ada attribute being
3035 evaluated ('range, 'first, 'last, or 'length); it is used in building
3036 the error message. */
14f9c5c9 3037
1eea4ebd
UW
3038static struct type *
3039ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3040{
4c4b4cd2
PH
3041 struct type *result_type;
3042
14f9c5c9
AS
3043 type = desc_base_type (type);
3044
1eea4ebd
UW
3045 if (n < 0 || n > ada_array_arity (type))
3046 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3047
4c4b4cd2 3048 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3049 {
3050 int i;
3051
3052 for (i = 1; i < n; i += 1)
4c4b4cd2 3053 type = TYPE_TARGET_TYPE (type);
262452ec 3054 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3055 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3056 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3057 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3058 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3059 result_type = NULL;
14f9c5c9 3060 }
d2e4a39e 3061 else
1eea4ebd
UW
3062 {
3063 result_type = desc_index_type (desc_bounds_type (type), n);
3064 if (result_type == NULL)
3065 error (_("attempt to take bound of something that is not an array"));
3066 }
3067
3068 return result_type;
14f9c5c9
AS
3069}
3070
3071/* Given that arr is an array type, returns the lower bound of the
3072 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3073 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3074 array-descriptor type. It works for other arrays with bounds supplied
3075 by run-time quantities other than discriminants. */
14f9c5c9 3076
abb68b3e 3077static LONGEST
fb5e3d5c 3078ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3079{
8a48ac95 3080 struct type *type, *index_type_desc, *index_type;
1ce677a4 3081 int i;
262452ec
JK
3082
3083 gdb_assert (which == 0 || which == 1);
14f9c5c9 3084
ad82864c
JB
3085 if (ada_is_constrained_packed_array_type (arr_type))
3086 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3087
4c4b4cd2 3088 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3089 return (LONGEST) - which;
14f9c5c9
AS
3090
3091 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3092 type = TYPE_TARGET_TYPE (arr_type);
3093 else
3094 type = arr_type;
3095
bafffb51
JB
3096 if (TYPE_FIXED_INSTANCE (type))
3097 {
3098 /* The array has already been fixed, so we do not need to
3099 check the parallel ___XA type again. That encoding has
3100 already been applied, so ignore it now. */
3101 index_type_desc = NULL;
3102 }
3103 else
3104 {
3105 index_type_desc = ada_find_parallel_type (type, "___XA");
3106 ada_fixup_array_indexes_type (index_type_desc);
3107 }
3108
262452ec 3109 if (index_type_desc != NULL)
28c85d6c
JB
3110 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3111 NULL);
262452ec 3112 else
8a48ac95
JB
3113 {
3114 struct type *elt_type = check_typedef (type);
3115
3116 for (i = 1; i < n; i++)
3117 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3118
3119 index_type = TYPE_INDEX_TYPE (elt_type);
3120 }
262452ec 3121
43bbcdc2
PH
3122 return
3123 (LONGEST) (which == 0
3124 ? ada_discrete_type_low_bound (index_type)
3125 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3126}
3127
3128/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3129 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3130 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3131 supplied by run-time quantities other than discriminants. */
14f9c5c9 3132
1eea4ebd 3133static LONGEST
4dc81987 3134ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3135{
eb479039
JB
3136 struct type *arr_type;
3137
3138 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3139 arr = value_ind (arr);
3140 arr_type = value_enclosing_type (arr);
14f9c5c9 3141
ad82864c
JB
3142 if (ada_is_constrained_packed_array_type (arr_type))
3143 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3144 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3145 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3146 else
1eea4ebd 3147 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3148}
3149
3150/* Given that arr is an array value, returns the length of the
3151 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3152 supplied by run-time quantities other than discriminants.
3153 Does not work for arrays indexed by enumeration types with representation
3154 clauses at the moment. */
14f9c5c9 3155
1eea4ebd 3156static LONGEST
d2e4a39e 3157ada_array_length (struct value *arr, int n)
14f9c5c9 3158{
aa715135
JG
3159 struct type *arr_type, *index_type;
3160 int low, high;
eb479039
JB
3161
3162 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3163 arr = value_ind (arr);
3164 arr_type = value_enclosing_type (arr);
14f9c5c9 3165
ad82864c
JB
3166 if (ada_is_constrained_packed_array_type (arr_type))
3167 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3168
4c4b4cd2 3169 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3170 {
3171 low = ada_array_bound_from_type (arr_type, n, 0);
3172 high = ada_array_bound_from_type (arr_type, n, 1);
3173 }
14f9c5c9 3174 else
aa715135
JG
3175 {
3176 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3177 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3178 }
3179
f168693b 3180 arr_type = check_typedef (arr_type);
aa715135
JG
3181 index_type = TYPE_INDEX_TYPE (arr_type);
3182 if (index_type != NULL)
3183 {
3184 struct type *base_type;
3185 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3186 base_type = TYPE_TARGET_TYPE (index_type);
3187 else
3188 base_type = index_type;
3189
3190 low = pos_atr (value_from_longest (base_type, low));
3191 high = pos_atr (value_from_longest (base_type, high));
3192 }
3193 return high - low + 1;
4c4b4cd2
PH
3194}
3195
3196/* An empty array whose type is that of ARR_TYPE (an array type),
3197 with bounds LOW to LOW-1. */
3198
3199static struct value *
3200empty_array (struct type *arr_type, int low)
3201{
b0dd7688 3202 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3203 struct type *index_type
3204 = create_static_range_type
3205 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3206 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3207
0b5d8877 3208 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3209}
14f9c5c9 3210\f
d2e4a39e 3211
4c4b4cd2 3212 /* Name resolution */
14f9c5c9 3213
4c4b4cd2
PH
3214/* The "decoded" name for the user-definable Ada operator corresponding
3215 to OP. */
14f9c5c9 3216
d2e4a39e 3217static const char *
4c4b4cd2 3218ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3219{
3220 int i;
3221
4c4b4cd2 3222 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3223 {
3224 if (ada_opname_table[i].op == op)
4c4b4cd2 3225 return ada_opname_table[i].decoded;
14f9c5c9 3226 }
323e0a4a 3227 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3228}
3229
3230
4c4b4cd2
PH
3231/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3232 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3233 undefined namespace) and converts operators that are
3234 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3235 non-null, it provides a preferred result type [at the moment, only
3236 type void has any effect---causing procedures to be preferred over
3237 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3238 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3239
4c4b4cd2
PH
3240static void
3241resolve (struct expression **expp, int void_context_p)
14f9c5c9 3242{
30b15541
UW
3243 struct type *context_type = NULL;
3244 int pc = 0;
3245
3246 if (void_context_p)
3247 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3248
3249 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3250}
3251
4c4b4cd2
PH
3252/* Resolve the operator of the subexpression beginning at
3253 position *POS of *EXPP. "Resolving" consists of replacing
3254 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3255 with their resolutions, replacing built-in operators with
3256 function calls to user-defined operators, where appropriate, and,
3257 when DEPROCEDURE_P is non-zero, converting function-valued variables
3258 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3259 are as in ada_resolve, above. */
14f9c5c9 3260
d2e4a39e 3261static struct value *
4c4b4cd2 3262resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3263 struct type *context_type)
14f9c5c9
AS
3264{
3265 int pc = *pos;
3266 int i;
4c4b4cd2 3267 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3268 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3269 struct value **argvec; /* Vector of operand types (alloca'ed). */
3270 int nargs; /* Number of operands. */
52ce6436 3271 int oplen;
14f9c5c9
AS
3272
3273 argvec = NULL;
3274 nargs = 0;
3275 exp = *expp;
3276
52ce6436
PH
3277 /* Pass one: resolve operands, saving their types and updating *pos,
3278 if needed. */
14f9c5c9
AS
3279 switch (op)
3280 {
4c4b4cd2
PH
3281 case OP_FUNCALL:
3282 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3283 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3284 *pos += 7;
4c4b4cd2
PH
3285 else
3286 {
3287 *pos += 3;
3288 resolve_subexp (expp, pos, 0, NULL);
3289 }
3290 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3291 break;
3292
14f9c5c9 3293 case UNOP_ADDR:
4c4b4cd2
PH
3294 *pos += 1;
3295 resolve_subexp (expp, pos, 0, NULL);
3296 break;
3297
52ce6436
PH
3298 case UNOP_QUAL:
3299 *pos += 3;
17466c1a 3300 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3301 break;
3302
52ce6436 3303 case OP_ATR_MODULUS:
4c4b4cd2
PH
3304 case OP_ATR_SIZE:
3305 case OP_ATR_TAG:
4c4b4cd2
PH
3306 case OP_ATR_FIRST:
3307 case OP_ATR_LAST:
3308 case OP_ATR_LENGTH:
3309 case OP_ATR_POS:
3310 case OP_ATR_VAL:
4c4b4cd2
PH
3311 case OP_ATR_MIN:
3312 case OP_ATR_MAX:
52ce6436
PH
3313 case TERNOP_IN_RANGE:
3314 case BINOP_IN_BOUNDS:
3315 case UNOP_IN_RANGE:
3316 case OP_AGGREGATE:
3317 case OP_OTHERS:
3318 case OP_CHOICES:
3319 case OP_POSITIONAL:
3320 case OP_DISCRETE_RANGE:
3321 case OP_NAME:
3322 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3323 *pos += oplen;
14f9c5c9
AS
3324 break;
3325
3326 case BINOP_ASSIGN:
3327 {
4c4b4cd2
PH
3328 struct value *arg1;
3329
3330 *pos += 1;
3331 arg1 = resolve_subexp (expp, pos, 0, NULL);
3332 if (arg1 == NULL)
3333 resolve_subexp (expp, pos, 1, NULL);
3334 else
df407dfe 3335 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3336 break;
14f9c5c9
AS
3337 }
3338
4c4b4cd2 3339 case UNOP_CAST:
4c4b4cd2
PH
3340 *pos += 3;
3341 nargs = 1;
3342 break;
14f9c5c9 3343
4c4b4cd2
PH
3344 case BINOP_ADD:
3345 case BINOP_SUB:
3346 case BINOP_MUL:
3347 case BINOP_DIV:
3348 case BINOP_REM:
3349 case BINOP_MOD:
3350 case BINOP_EXP:
3351 case BINOP_CONCAT:
3352 case BINOP_LOGICAL_AND:
3353 case BINOP_LOGICAL_OR:
3354 case BINOP_BITWISE_AND:
3355 case BINOP_BITWISE_IOR:
3356 case BINOP_BITWISE_XOR:
14f9c5c9 3357
4c4b4cd2
PH
3358 case BINOP_EQUAL:
3359 case BINOP_NOTEQUAL:
3360 case BINOP_LESS:
3361 case BINOP_GTR:
3362 case BINOP_LEQ:
3363 case BINOP_GEQ:
14f9c5c9 3364
4c4b4cd2
PH
3365 case BINOP_REPEAT:
3366 case BINOP_SUBSCRIPT:
3367 case BINOP_COMMA:
40c8aaa9
JB
3368 *pos += 1;
3369 nargs = 2;
3370 break;
14f9c5c9 3371
4c4b4cd2
PH
3372 case UNOP_NEG:
3373 case UNOP_PLUS:
3374 case UNOP_LOGICAL_NOT:
3375 case UNOP_ABS:
3376 case UNOP_IND:
3377 *pos += 1;
3378 nargs = 1;
3379 break;
14f9c5c9 3380
4c4b4cd2 3381 case OP_LONG:
edd079d9 3382 case OP_FLOAT:
4c4b4cd2 3383 case OP_VAR_VALUE:
74ea4be4 3384 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3385 *pos += 4;
3386 break;
14f9c5c9 3387
4c4b4cd2
PH
3388 case OP_TYPE:
3389 case OP_BOOL:
3390 case OP_LAST:
4c4b4cd2
PH
3391 case OP_INTERNALVAR:
3392 *pos += 3;
3393 break;
14f9c5c9 3394
4c4b4cd2
PH
3395 case UNOP_MEMVAL:
3396 *pos += 3;
3397 nargs = 1;
3398 break;
3399
67f3407f
DJ
3400 case OP_REGISTER:
3401 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3402 break;
3403
4c4b4cd2
PH
3404 case STRUCTOP_STRUCT:
3405 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3406 nargs = 1;
3407 break;
3408
4c4b4cd2 3409 case TERNOP_SLICE:
4c4b4cd2
PH
3410 *pos += 1;
3411 nargs = 3;
3412 break;
3413
52ce6436 3414 case OP_STRING:
14f9c5c9 3415 break;
4c4b4cd2
PH
3416
3417 default:
323e0a4a 3418 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3419 }
3420
8d749320 3421 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3422 for (i = 0; i < nargs; i += 1)
3423 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3424 argvec[i] = NULL;
3425 exp = *expp;
3426
3427 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3428 switch (op)
3429 {
3430 default:
3431 break;
3432
14f9c5c9 3433 case OP_VAR_VALUE:
4c4b4cd2 3434 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3435 {
d12307c1 3436 struct block_symbol *candidates;
76a01679
JB
3437 int n_candidates;
3438
3439 n_candidates =
3440 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3441 (exp->elts[pc + 2].symbol),
3442 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3443 &candidates);
76a01679
JB
3444
3445 if (n_candidates > 1)
3446 {
3447 /* Types tend to get re-introduced locally, so if there
3448 are any local symbols that are not types, first filter
3449 out all types. */
3450 int j;
3451 for (j = 0; j < n_candidates; j += 1)
d12307c1 3452 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3453 {
3454 case LOC_REGISTER:
3455 case LOC_ARG:
3456 case LOC_REF_ARG:
76a01679
JB
3457 case LOC_REGPARM_ADDR:
3458 case LOC_LOCAL:
76a01679 3459 case LOC_COMPUTED:
76a01679
JB
3460 goto FoundNonType;
3461 default:
3462 break;
3463 }
3464 FoundNonType:
3465 if (j < n_candidates)
3466 {
3467 j = 0;
3468 while (j < n_candidates)
3469 {
d12307c1 3470 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3471 {
3472 candidates[j] = candidates[n_candidates - 1];
3473 n_candidates -= 1;
3474 }
3475 else
3476 j += 1;
3477 }
3478 }
3479 }
3480
3481 if (n_candidates == 0)
323e0a4a 3482 error (_("No definition found for %s"),
76a01679
JB
3483 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3484 else if (n_candidates == 1)
3485 i = 0;
3486 else if (deprocedure_p
3487 && !is_nonfunction (candidates, n_candidates))
3488 {
06d5cf63
JB
3489 i = ada_resolve_function
3490 (candidates, n_candidates, NULL, 0,
3491 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3492 context_type);
76a01679 3493 if (i < 0)
323e0a4a 3494 error (_("Could not find a match for %s"),
76a01679
JB
3495 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3496 }
3497 else
3498 {
323e0a4a 3499 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3500 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3501 user_select_syms (candidates, n_candidates, 1);
3502 i = 0;
3503 }
3504
3505 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3506 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3507 if (innermost_block == NULL
3508 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3509 innermost_block = candidates[i].block;
3510 }
3511
3512 if (deprocedure_p
3513 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3514 == TYPE_CODE_FUNC))
3515 {
3516 replace_operator_with_call (expp, pc, 0, 0,
3517 exp->elts[pc + 2].symbol,
3518 exp->elts[pc + 1].block);
3519 exp = *expp;
3520 }
14f9c5c9
AS
3521 break;
3522
3523 case OP_FUNCALL:
3524 {
4c4b4cd2 3525 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3526 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3527 {
d12307c1 3528 struct block_symbol *candidates;
4c4b4cd2
PH
3529 int n_candidates;
3530
3531 n_candidates =
76a01679
JB
3532 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3533 (exp->elts[pc + 5].symbol),
3534 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3535 &candidates);
4c4b4cd2
PH
3536 if (n_candidates == 1)
3537 i = 0;
3538 else
3539 {
06d5cf63
JB
3540 i = ada_resolve_function
3541 (candidates, n_candidates,
3542 argvec, nargs,
3543 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3544 context_type);
4c4b4cd2 3545 if (i < 0)
323e0a4a 3546 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3547 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3548 }
3549
3550 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3551 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3552 if (innermost_block == NULL
3553 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3554 innermost_block = candidates[i].block;
3555 }
14f9c5c9
AS
3556 }
3557 break;
3558 case BINOP_ADD:
3559 case BINOP_SUB:
3560 case BINOP_MUL:
3561 case BINOP_DIV:
3562 case BINOP_REM:
3563 case BINOP_MOD:
3564 case BINOP_CONCAT:
3565 case BINOP_BITWISE_AND:
3566 case BINOP_BITWISE_IOR:
3567 case BINOP_BITWISE_XOR:
3568 case BINOP_EQUAL:
3569 case BINOP_NOTEQUAL:
3570 case BINOP_LESS:
3571 case BINOP_GTR:
3572 case BINOP_LEQ:
3573 case BINOP_GEQ:
3574 case BINOP_EXP:
3575 case UNOP_NEG:
3576 case UNOP_PLUS:
3577 case UNOP_LOGICAL_NOT:
3578 case UNOP_ABS:
3579 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3580 {
d12307c1 3581 struct block_symbol *candidates;
4c4b4cd2
PH
3582 int n_candidates;
3583
3584 n_candidates =
b5ec771e 3585 ada_lookup_symbol_list (ada_decoded_op_name (op),
4c4b4cd2 3586 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3587 &candidates);
4c4b4cd2 3588 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3589 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3590 if (i < 0)
3591 break;
3592
d12307c1
PMR
3593 replace_operator_with_call (expp, pc, nargs, 1,
3594 candidates[i].symbol,
3595 candidates[i].block);
4c4b4cd2
PH
3596 exp = *expp;
3597 }
14f9c5c9 3598 break;
4c4b4cd2
PH
3599
3600 case OP_TYPE:
b3dbf008 3601 case OP_REGISTER:
4c4b4cd2 3602 return NULL;
14f9c5c9
AS
3603 }
3604
3605 *pos = pc;
ced9779b
JB
3606 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3607 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3608 exp->elts[pc + 1].objfile,
3609 exp->elts[pc + 2].msymbol);
3610 else
3611 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3612}
3613
3614/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3615 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3616 a non-pointer. */
14f9c5c9 3617/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3618 liberal. */
14f9c5c9
AS
3619
3620static int
4dc81987 3621ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3622{
61ee279c
PH
3623 ftype = ada_check_typedef (ftype);
3624 atype = ada_check_typedef (atype);
14f9c5c9
AS
3625
3626 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3627 ftype = TYPE_TARGET_TYPE (ftype);
3628 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3629 atype = TYPE_TARGET_TYPE (atype);
3630
d2e4a39e 3631 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3632 {
3633 default:
5b3d5b7d 3634 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3635 case TYPE_CODE_PTR:
3636 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3637 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3638 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3639 else
1265e4aa
JB
3640 return (may_deref
3641 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3642 case TYPE_CODE_INT:
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_RANGE:
3645 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3646 {
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 return 1;
3651 default:
3652 return 0;
3653 }
14f9c5c9
AS
3654
3655 case TYPE_CODE_ARRAY:
d2e4a39e 3656 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3657 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3658
3659 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3660 if (ada_is_array_descriptor_type (ftype))
3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662 || ada_is_array_descriptor_type (atype));
14f9c5c9 3663 else
4c4b4cd2
PH
3664 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3665 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3666
3667 case TYPE_CODE_UNION:
3668 case TYPE_CODE_FLT:
3669 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3670 }
3671}
3672
3673/* Return non-zero if the formals of FUNC "sufficiently match" the
3674 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3675 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3676 argument function. */
14f9c5c9
AS
3677
3678static int
d2e4a39e 3679ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3680{
3681 int i;
d2e4a39e 3682 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3683
1265e4aa
JB
3684 if (SYMBOL_CLASS (func) == LOC_CONST
3685 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3686 return (n_actuals == 0);
3687 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3688 return 0;
3689
3690 if (TYPE_NFIELDS (func_type) != n_actuals)
3691 return 0;
3692
3693 for (i = 0; i < n_actuals; i += 1)
3694 {
4c4b4cd2 3695 if (actuals[i] == NULL)
76a01679
JB
3696 return 0;
3697 else
3698 {
5b4ee69b
MS
3699 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3700 i));
df407dfe 3701 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3702
76a01679
JB
3703 if (!ada_type_match (ftype, atype, 1))
3704 return 0;
3705 }
14f9c5c9
AS
3706 }
3707 return 1;
3708}
3709
3710/* False iff function type FUNC_TYPE definitely does not produce a value
3711 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3712 FUNC_TYPE is not a valid function type with a non-null return type
3713 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3714
3715static int
d2e4a39e 3716return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3717{
d2e4a39e 3718 struct type *return_type;
14f9c5c9
AS
3719
3720 if (func_type == NULL)
3721 return 1;
3722
4c4b4cd2 3723 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3724 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3725 else
18af8284 3726 return_type = get_base_type (func_type);
14f9c5c9
AS
3727 if (return_type == NULL)
3728 return 1;
3729
18af8284 3730 context_type = get_base_type (context_type);
14f9c5c9
AS
3731
3732 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3733 return context_type == NULL || return_type == context_type;
3734 else if (context_type == NULL)
3735 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3736 else
3737 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3738}
3739
3740
4c4b4cd2 3741/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3742 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3743 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3744 that returns that type, then eliminate matches that don't. If
3745 CONTEXT_TYPE is void and there is at least one match that does not
3746 return void, eliminate all matches that do.
3747
14f9c5c9
AS
3748 Asks the user if there is more than one match remaining. Returns -1
3749 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3750 solely for messages. May re-arrange and modify SYMS in
3751 the process; the index returned is for the modified vector. */
14f9c5c9 3752
4c4b4cd2 3753static int
d12307c1 3754ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3755 int nsyms, struct value **args, int nargs,
3756 const char *name, struct type *context_type)
14f9c5c9 3757{
30b15541 3758 int fallback;
14f9c5c9 3759 int k;
4c4b4cd2 3760 int m; /* Number of hits */
14f9c5c9 3761
d2e4a39e 3762 m = 0;
30b15541
UW
3763 /* In the first pass of the loop, we only accept functions matching
3764 context_type. If none are found, we add a second pass of the loop
3765 where every function is accepted. */
3766 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3767 {
3768 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3769 {
d12307c1 3770 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3771
d12307c1 3772 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3773 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3774 {
3775 syms[m] = syms[k];
3776 m += 1;
3777 }
3778 }
14f9c5c9
AS
3779 }
3780
dc5c8746
PMR
3781 /* If we got multiple matches, ask the user which one to use. Don't do this
3782 interactive thing during completion, though, as the purpose of the
3783 completion is providing a list of all possible matches. Prompting the
3784 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3785 if (m == 0)
3786 return -1;
dc5c8746 3787 else if (m > 1 && !parse_completion)
14f9c5c9 3788 {
323e0a4a 3789 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3790 user_select_syms (syms, m, 1);
14f9c5c9
AS
3791 return 0;
3792 }
3793 return 0;
3794}
3795
4c4b4cd2
PH
3796/* Returns true (non-zero) iff decoded name N0 should appear before N1
3797 in a listing of choices during disambiguation (see sort_choices, below).
3798 The idea is that overloadings of a subprogram name from the
3799 same package should sort in their source order. We settle for ordering
3800 such symbols by their trailing number (__N or $N). */
3801
14f9c5c9 3802static int
0d5cff50 3803encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3804{
3805 if (N1 == NULL)
3806 return 0;
3807 else if (N0 == NULL)
3808 return 1;
3809 else
3810 {
3811 int k0, k1;
5b4ee69b 3812
d2e4a39e 3813 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3814 ;
d2e4a39e 3815 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3816 ;
d2e4a39e 3817 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3818 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3819 {
3820 int n0, n1;
5b4ee69b 3821
4c4b4cd2
PH
3822 n0 = k0;
3823 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3824 n0 -= 1;
3825 n1 = k1;
3826 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3827 n1 -= 1;
3828 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3829 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3830 }
14f9c5c9
AS
3831 return (strcmp (N0, N1) < 0);
3832 }
3833}
d2e4a39e 3834
4c4b4cd2
PH
3835/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3836 encoded names. */
3837
d2e4a39e 3838static void
d12307c1 3839sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3840{
4c4b4cd2 3841 int i;
5b4ee69b 3842
d2e4a39e 3843 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3844 {
d12307c1 3845 struct block_symbol sym = syms[i];
14f9c5c9
AS
3846 int j;
3847
d2e4a39e 3848 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3849 {
d12307c1
PMR
3850 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3851 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3852 break;
3853 syms[j + 1] = syms[j];
3854 }
d2e4a39e 3855 syms[j + 1] = sym;
14f9c5c9
AS
3856 }
3857}
3858
d72413e6
PMR
3859/* Whether GDB should display formals and return types for functions in the
3860 overloads selection menu. */
3861static int print_signatures = 1;
3862
3863/* Print the signature for SYM on STREAM according to the FLAGS options. For
3864 all but functions, the signature is just the name of the symbol. For
3865 functions, this is the name of the function, the list of types for formals
3866 and the return type (if any). */
3867
3868static void
3869ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3870 const struct type_print_options *flags)
3871{
3872 struct type *type = SYMBOL_TYPE (sym);
3873
3874 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3875 if (!print_signatures
3876 || type == NULL
3877 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3878 return;
3879
3880 if (TYPE_NFIELDS (type) > 0)
3881 {
3882 int i;
3883
3884 fprintf_filtered (stream, " (");
3885 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3886 {
3887 if (i > 0)
3888 fprintf_filtered (stream, "; ");
3889 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3890 flags);
3891 }
3892 fprintf_filtered (stream, ")");
3893 }
3894 if (TYPE_TARGET_TYPE (type) != NULL
3895 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3896 {
3897 fprintf_filtered (stream, " return ");
3898 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3899 }
3900}
3901
4c4b4cd2
PH
3902/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3903 by asking the user (if necessary), returning the number selected,
3904 and setting the first elements of SYMS items. Error if no symbols
3905 selected. */
14f9c5c9
AS
3906
3907/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3908 to be re-integrated one of these days. */
14f9c5c9
AS
3909
3910int
d12307c1 3911user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3912{
3913 int i;
8d749320 3914 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3915 int n_chosen;
3916 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3917 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3918
3919 if (max_results < 1)
323e0a4a 3920 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3921 if (nsyms <= 1)
3922 return nsyms;
3923
717d2f5a
JB
3924 if (select_mode == multiple_symbols_cancel)
3925 error (_("\
3926canceled because the command is ambiguous\n\
3927See set/show multiple-symbol."));
3928
3929 /* If select_mode is "all", then return all possible symbols.
3930 Only do that if more than one symbol can be selected, of course.
3931 Otherwise, display the menu as usual. */
3932 if (select_mode == multiple_symbols_all && max_results > 1)
3933 return nsyms;
3934
323e0a4a 3935 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3936 if (max_results > 1)
323e0a4a 3937 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3938
4c4b4cd2 3939 sort_choices (syms, nsyms);
14f9c5c9
AS
3940
3941 for (i = 0; i < nsyms; i += 1)
3942 {
d12307c1 3943 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3944 continue;
3945
d12307c1 3946 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3947 {
76a01679 3948 struct symtab_and_line sal =
d12307c1 3949 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3950
d72413e6
PMR
3951 printf_unfiltered ("[%d] ", i + first_choice);
3952 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3953 &type_print_raw_options);
323e0a4a 3954 if (sal.symtab == NULL)
d72413e6 3955 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3956 sal.line);
3957 else
d72413e6 3958 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3959 symtab_to_filename_for_display (sal.symtab),
3960 sal.line);
4c4b4cd2
PH
3961 continue;
3962 }
d2e4a39e 3963 else
4c4b4cd2
PH
3964 {
3965 int is_enumeral =
d12307c1
PMR
3966 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3967 && SYMBOL_TYPE (syms[i].symbol) != NULL
3968 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3969 struct symtab *symtab = NULL;
3970
d12307c1
PMR
3971 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3972 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3973
d12307c1 3974 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3975 {
3976 printf_unfiltered ("[%d] ", i + first_choice);
3977 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3978 &type_print_raw_options);
3979 printf_unfiltered (_(" at %s:%d\n"),
3980 symtab_to_filename_for_display (symtab),
3981 SYMBOL_LINE (syms[i].symbol));
3982 }
76a01679 3983 else if (is_enumeral
d12307c1 3984 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3985 {
a3f17187 3986 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3987 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3988 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3989 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3990 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3991 }
d72413e6
PMR
3992 else
3993 {
3994 printf_unfiltered ("[%d] ", i + first_choice);
3995 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3996 &type_print_raw_options);
3997
3998 if (symtab != NULL)
3999 printf_unfiltered (is_enumeral
4000 ? _(" in %s (enumeral)\n")
4001 : _(" at %s:?\n"),
4002 symtab_to_filename_for_display (symtab));
4003 else
4004 printf_unfiltered (is_enumeral
4005 ? _(" (enumeral)\n")
4006 : _(" at ?\n"));
4007 }
4c4b4cd2 4008 }
14f9c5c9 4009 }
d2e4a39e 4010
14f9c5c9 4011 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4012 "overload-choice");
14f9c5c9
AS
4013
4014 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4015 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4016
4017 return n_chosen;
4018}
4019
4020/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4021 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4022 order in CHOICES[0 .. N-1], and return N.
4023
4024 The user types choices as a sequence of numbers on one line
4025 separated by blanks, encoding them as follows:
4026
4c4b4cd2 4027 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4028 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4029 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4030
4c4b4cd2 4031 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4032
4033 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4034 prompts (for use with the -f switch). */
14f9c5c9
AS
4035
4036int
d2e4a39e 4037get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4038 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4039{
d2e4a39e 4040 char *args;
a121b7c1 4041 const char *prompt;
14f9c5c9
AS
4042 int n_chosen;
4043 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4044
14f9c5c9
AS
4045 prompt = getenv ("PS2");
4046 if (prompt == NULL)
0bcd0149 4047 prompt = "> ";
14f9c5c9 4048
0bcd0149 4049 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 4050
14f9c5c9 4051 if (args == NULL)
323e0a4a 4052 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4053
4054 n_chosen = 0;
76a01679 4055
4c4b4cd2
PH
4056 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4057 order, as given in args. Choices are validated. */
14f9c5c9
AS
4058 while (1)
4059 {
d2e4a39e 4060 char *args2;
14f9c5c9
AS
4061 int choice, j;
4062
0fcd72ba 4063 args = skip_spaces (args);
14f9c5c9 4064 if (*args == '\0' && n_chosen == 0)
323e0a4a 4065 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4066 else if (*args == '\0')
4c4b4cd2 4067 break;
14f9c5c9
AS
4068
4069 choice = strtol (args, &args2, 10);
d2e4a39e 4070 if (args == args2 || choice < 0
4c4b4cd2 4071 || choice > n_choices + first_choice - 1)
323e0a4a 4072 error (_("Argument must be choice number"));
14f9c5c9
AS
4073 args = args2;
4074
d2e4a39e 4075 if (choice == 0)
323e0a4a 4076 error (_("cancelled"));
14f9c5c9
AS
4077
4078 if (choice < first_choice)
4c4b4cd2
PH
4079 {
4080 n_chosen = n_choices;
4081 for (j = 0; j < n_choices; j += 1)
4082 choices[j] = j;
4083 break;
4084 }
14f9c5c9
AS
4085 choice -= first_choice;
4086
d2e4a39e 4087 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4088 {
4089 }
14f9c5c9
AS
4090
4091 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4092 {
4093 int k;
5b4ee69b 4094
4c4b4cd2
PH
4095 for (k = n_chosen - 1; k > j; k -= 1)
4096 choices[k + 1] = choices[k];
4097 choices[j + 1] = choice;
4098 n_chosen += 1;
4099 }
14f9c5c9
AS
4100 }
4101
4102 if (n_chosen > max_results)
323e0a4a 4103 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4104
14f9c5c9
AS
4105 return n_chosen;
4106}
4107
4c4b4cd2
PH
4108/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4109 on the function identified by SYM and BLOCK, and taking NARGS
4110 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4111
4112static void
d2e4a39e 4113replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 4114 int oplen, struct symbol *sym,
270140bd 4115 const struct block *block)
14f9c5c9
AS
4116{
4117 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4118 symbol, -oplen for operator being replaced). */
d2e4a39e 4119 struct expression *newexp = (struct expression *)
8c1a34e7 4120 xzalloc (sizeof (struct expression)
4c4b4cd2 4121 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 4122 struct expression *exp = *expp;
14f9c5c9
AS
4123
4124 newexp->nelts = exp->nelts + 7 - oplen;
4125 newexp->language_defn = exp->language_defn;
3489610d 4126 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4127 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4128 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4129 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4130
4131 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4132 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4133
4134 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4135 newexp->elts[pc + 4].block = block;
4136 newexp->elts[pc + 5].symbol = sym;
4137
4138 *expp = newexp;
aacb1f0a 4139 xfree (exp);
d2e4a39e 4140}
14f9c5c9
AS
4141
4142/* Type-class predicates */
4143
4c4b4cd2
PH
4144/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4145 or FLOAT). */
14f9c5c9
AS
4146
4147static int
d2e4a39e 4148numeric_type_p (struct type *type)
14f9c5c9
AS
4149{
4150 if (type == NULL)
4151 return 0;
d2e4a39e
AS
4152 else
4153 {
4154 switch (TYPE_CODE (type))
4c4b4cd2
PH
4155 {
4156 case TYPE_CODE_INT:
4157 case TYPE_CODE_FLT:
4158 return 1;
4159 case TYPE_CODE_RANGE:
4160 return (type == TYPE_TARGET_TYPE (type)
4161 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4162 default:
4163 return 0;
4164 }
d2e4a39e 4165 }
14f9c5c9
AS
4166}
4167
4c4b4cd2 4168/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4169
4170static int
d2e4a39e 4171integer_type_p (struct type *type)
14f9c5c9
AS
4172{
4173 if (type == NULL)
4174 return 0;
d2e4a39e
AS
4175 else
4176 {
4177 switch (TYPE_CODE (type))
4c4b4cd2
PH
4178 {
4179 case TYPE_CODE_INT:
4180 return 1;
4181 case TYPE_CODE_RANGE:
4182 return (type == TYPE_TARGET_TYPE (type)
4183 || integer_type_p (TYPE_TARGET_TYPE (type)));
4184 default:
4185 return 0;
4186 }
d2e4a39e 4187 }
14f9c5c9
AS
4188}
4189
4c4b4cd2 4190/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4191
4192static int
d2e4a39e 4193scalar_type_p (struct type *type)
14f9c5c9
AS
4194{
4195 if (type == NULL)
4196 return 0;
d2e4a39e
AS
4197 else
4198 {
4199 switch (TYPE_CODE (type))
4c4b4cd2
PH
4200 {
4201 case TYPE_CODE_INT:
4202 case TYPE_CODE_RANGE:
4203 case TYPE_CODE_ENUM:
4204 case TYPE_CODE_FLT:
4205 return 1;
4206 default:
4207 return 0;
4208 }
d2e4a39e 4209 }
14f9c5c9
AS
4210}
4211
4c4b4cd2 4212/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4213
4214static int
d2e4a39e 4215discrete_type_p (struct type *type)
14f9c5c9
AS
4216{
4217 if (type == NULL)
4218 return 0;
d2e4a39e
AS
4219 else
4220 {
4221 switch (TYPE_CODE (type))
4c4b4cd2
PH
4222 {
4223 case TYPE_CODE_INT:
4224 case TYPE_CODE_RANGE:
4225 case TYPE_CODE_ENUM:
872f0337 4226 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4227 return 1;
4228 default:
4229 return 0;
4230 }
d2e4a39e 4231 }
14f9c5c9
AS
4232}
4233
4c4b4cd2
PH
4234/* Returns non-zero if OP with operands in the vector ARGS could be
4235 a user-defined function. Errs on the side of pre-defined operators
4236 (i.e., result 0). */
14f9c5c9
AS
4237
4238static int
d2e4a39e 4239possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4240{
76a01679 4241 struct type *type0 =
df407dfe 4242 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4243 struct type *type1 =
df407dfe 4244 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4245
4c4b4cd2
PH
4246 if (type0 == NULL)
4247 return 0;
4248
14f9c5c9
AS
4249 switch (op)
4250 {
4251 default:
4252 return 0;
4253
4254 case BINOP_ADD:
4255 case BINOP_SUB:
4256 case BINOP_MUL:
4257 case BINOP_DIV:
d2e4a39e 4258 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4259
4260 case BINOP_REM:
4261 case BINOP_MOD:
4262 case BINOP_BITWISE_AND:
4263 case BINOP_BITWISE_IOR:
4264 case BINOP_BITWISE_XOR:
d2e4a39e 4265 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4266
4267 case BINOP_EQUAL:
4268 case BINOP_NOTEQUAL:
4269 case BINOP_LESS:
4270 case BINOP_GTR:
4271 case BINOP_LEQ:
4272 case BINOP_GEQ:
d2e4a39e 4273 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4274
4275 case BINOP_CONCAT:
ee90b9ab 4276 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4277
4278 case BINOP_EXP:
d2e4a39e 4279 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4280
4281 case UNOP_NEG:
4282 case UNOP_PLUS:
4283 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4284 case UNOP_ABS:
4285 return (!numeric_type_p (type0));
14f9c5c9
AS
4286
4287 }
4288}
4289\f
4c4b4cd2 4290 /* Renaming */
14f9c5c9 4291
aeb5907d
JB
4292/* NOTES:
4293
4294 1. In the following, we assume that a renaming type's name may
4295 have an ___XD suffix. It would be nice if this went away at some
4296 point.
4297 2. We handle both the (old) purely type-based representation of
4298 renamings and the (new) variable-based encoding. At some point,
4299 it is devoutly to be hoped that the former goes away
4300 (FIXME: hilfinger-2007-07-09).
4301 3. Subprogram renamings are not implemented, although the XRS
4302 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4303
4304/* If SYM encodes a renaming,
4305
4306 <renaming> renames <renamed entity>,
4307
4308 sets *LEN to the length of the renamed entity's name,
4309 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4310 the string describing the subcomponent selected from the renamed
0963b4bd 4311 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4312 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4313 are undefined). Otherwise, returns a value indicating the category
4314 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4315 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4316 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4317 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4318 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4319 may be NULL, in which case they are not assigned.
4320
4321 [Currently, however, GCC does not generate subprogram renamings.] */
4322
4323enum ada_renaming_category
4324ada_parse_renaming (struct symbol *sym,
4325 const char **renamed_entity, int *len,
4326 const char **renaming_expr)
4327{
4328 enum ada_renaming_category kind;
4329 const char *info;
4330 const char *suffix;
4331
4332 if (sym == NULL)
4333 return ADA_NOT_RENAMING;
4334 switch (SYMBOL_CLASS (sym))
14f9c5c9 4335 {
aeb5907d
JB
4336 default:
4337 return ADA_NOT_RENAMING;
4338 case LOC_TYPEDEF:
4339 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4340 renamed_entity, len, renaming_expr);
4341 case LOC_LOCAL:
4342 case LOC_STATIC:
4343 case LOC_COMPUTED:
4344 case LOC_OPTIMIZED_OUT:
4345 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4346 if (info == NULL)
4347 return ADA_NOT_RENAMING;
4348 switch (info[5])
4349 {
4350 case '_':
4351 kind = ADA_OBJECT_RENAMING;
4352 info += 6;
4353 break;
4354 case 'E':
4355 kind = ADA_EXCEPTION_RENAMING;
4356 info += 7;
4357 break;
4358 case 'P':
4359 kind = ADA_PACKAGE_RENAMING;
4360 info += 7;
4361 break;
4362 case 'S':
4363 kind = ADA_SUBPROGRAM_RENAMING;
4364 info += 7;
4365 break;
4366 default:
4367 return ADA_NOT_RENAMING;
4368 }
14f9c5c9 4369 }
4c4b4cd2 4370
aeb5907d
JB
4371 if (renamed_entity != NULL)
4372 *renamed_entity = info;
4373 suffix = strstr (info, "___XE");
4374 if (suffix == NULL || suffix == info)
4375 return ADA_NOT_RENAMING;
4376 if (len != NULL)
4377 *len = strlen (info) - strlen (suffix);
4378 suffix += 5;
4379 if (renaming_expr != NULL)
4380 *renaming_expr = suffix;
4381 return kind;
4382}
4383
4384/* Assuming TYPE encodes a renaming according to the old encoding in
4385 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4386 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4387 ADA_NOT_RENAMING otherwise. */
4388static enum ada_renaming_category
4389parse_old_style_renaming (struct type *type,
4390 const char **renamed_entity, int *len,
4391 const char **renaming_expr)
4392{
4393 enum ada_renaming_category kind;
4394 const char *name;
4395 const char *info;
4396 const char *suffix;
14f9c5c9 4397
aeb5907d
JB
4398 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4399 || TYPE_NFIELDS (type) != 1)
4400 return ADA_NOT_RENAMING;
14f9c5c9 4401
aeb5907d
JB
4402 name = type_name_no_tag (type);
4403 if (name == NULL)
4404 return ADA_NOT_RENAMING;
4405
4406 name = strstr (name, "___XR");
4407 if (name == NULL)
4408 return ADA_NOT_RENAMING;
4409 switch (name[5])
4410 {
4411 case '\0':
4412 case '_':
4413 kind = ADA_OBJECT_RENAMING;
4414 break;
4415 case 'E':
4416 kind = ADA_EXCEPTION_RENAMING;
4417 break;
4418 case 'P':
4419 kind = ADA_PACKAGE_RENAMING;
4420 break;
4421 case 'S':
4422 kind = ADA_SUBPROGRAM_RENAMING;
4423 break;
4424 default:
4425 return ADA_NOT_RENAMING;
4426 }
14f9c5c9 4427
aeb5907d
JB
4428 info = TYPE_FIELD_NAME (type, 0);
4429 if (info == NULL)
4430 return ADA_NOT_RENAMING;
4431 if (renamed_entity != NULL)
4432 *renamed_entity = info;
4433 suffix = strstr (info, "___XE");
4434 if (renaming_expr != NULL)
4435 *renaming_expr = suffix + 5;
4436 if (suffix == NULL || suffix == info)
4437 return ADA_NOT_RENAMING;
4438 if (len != NULL)
4439 *len = suffix - info;
4440 return kind;
a5ee536b
JB
4441}
4442
4443/* Compute the value of the given RENAMING_SYM, which is expected to
4444 be a symbol encoding a renaming expression. BLOCK is the block
4445 used to evaluate the renaming. */
52ce6436 4446
a5ee536b
JB
4447static struct value *
4448ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4449 const struct block *block)
a5ee536b 4450{
bbc13ae3 4451 const char *sym_name;
a5ee536b 4452
bbc13ae3 4453 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4454 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4455 return evaluate_expression (expr.get ());
a5ee536b 4456}
14f9c5c9 4457\f
d2e4a39e 4458
4c4b4cd2 4459 /* Evaluation: Function Calls */
14f9c5c9 4460
4c4b4cd2 4461/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4462 lvalues, and otherwise has the side-effect of allocating memory
4463 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4464
d2e4a39e 4465static struct value *
40bc484c 4466ensure_lval (struct value *val)
14f9c5c9 4467{
40bc484c
JB
4468 if (VALUE_LVAL (val) == not_lval
4469 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4470 {
df407dfe 4471 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4472 const CORE_ADDR addr =
4473 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4474
a84a8a0d 4475 VALUE_LVAL (val) = lval_memory;
1a088441 4476 set_value_address (val, addr);
40bc484c 4477 write_memory (addr, value_contents (val), len);
c3e5cd34 4478 }
14f9c5c9
AS
4479
4480 return val;
4481}
4482
4483/* Return the value ACTUAL, converted to be an appropriate value for a
4484 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4485 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4486 values not residing in memory, updating it as needed. */
14f9c5c9 4487
a93c0eb6 4488struct value *
40bc484c 4489ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4490{
df407dfe 4491 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4492 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4493 struct type *formal_target =
4494 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4495 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4496 struct type *actual_target =
4497 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4498 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4499
4c4b4cd2 4500 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4501 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4502 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4503 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4504 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4505 {
a84a8a0d 4506 struct value *result;
5b4ee69b 4507
14f9c5c9 4508 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4509 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4510 result = desc_data (actual);
14f9c5c9 4511 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4512 {
4513 if (VALUE_LVAL (actual) != lval_memory)
4514 {
4515 struct value *val;
5b4ee69b 4516
df407dfe 4517 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4518 val = allocate_value (actual_type);
990a07ab 4519 memcpy ((char *) value_contents_raw (val),
0fd88904 4520 (char *) value_contents (actual),
4c4b4cd2 4521 TYPE_LENGTH (actual_type));
40bc484c 4522 actual = ensure_lval (val);
4c4b4cd2 4523 }
a84a8a0d 4524 result = value_addr (actual);
4c4b4cd2 4525 }
a84a8a0d
JB
4526 else
4527 return actual;
b1af9e97 4528 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4529 }
4530 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4531 return ada_value_ind (actual);
8344af1e
JB
4532 else if (ada_is_aligner_type (formal_type))
4533 {
4534 /* We need to turn this parameter into an aligner type
4535 as well. */
4536 struct value *aligner = allocate_value (formal_type);
4537 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4538
4539 value_assign_to_component (aligner, component, actual);
4540 return aligner;
4541 }
14f9c5c9
AS
4542
4543 return actual;
4544}
4545
438c98a1
JB
4546/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4547 type TYPE. This is usually an inefficient no-op except on some targets
4548 (such as AVR) where the representation of a pointer and an address
4549 differs. */
4550
4551static CORE_ADDR
4552value_pointer (struct value *value, struct type *type)
4553{
4554 struct gdbarch *gdbarch = get_type_arch (type);
4555 unsigned len = TYPE_LENGTH (type);
224c3ddb 4556 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4557 CORE_ADDR addr;
4558
4559 addr = value_address (value);
4560 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4561 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4562 return addr;
4563}
4564
14f9c5c9 4565
4c4b4cd2
PH
4566/* Push a descriptor of type TYPE for array value ARR on the stack at
4567 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4568 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4569 to-descriptor type rather than a descriptor type), a struct value *
4570 representing a pointer to this descriptor. */
14f9c5c9 4571
d2e4a39e 4572static struct value *
40bc484c 4573make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4574{
d2e4a39e
AS
4575 struct type *bounds_type = desc_bounds_type (type);
4576 struct type *desc_type = desc_base_type (type);
4577 struct value *descriptor = allocate_value (desc_type);
4578 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4579 int i;
d2e4a39e 4580
0963b4bd
MS
4581 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4582 i > 0; i -= 1)
14f9c5c9 4583 {
19f220c3
JK
4584 modify_field (value_type (bounds), value_contents_writeable (bounds),
4585 ada_array_bound (arr, i, 0),
4586 desc_bound_bitpos (bounds_type, i, 0),
4587 desc_bound_bitsize (bounds_type, i, 0));
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 1),
4590 desc_bound_bitpos (bounds_type, i, 1),
4591 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4592 }
d2e4a39e 4593
40bc484c 4594 bounds = ensure_lval (bounds);
d2e4a39e 4595
19f220c3
JK
4596 modify_field (value_type (descriptor),
4597 value_contents_writeable (descriptor),
4598 value_pointer (ensure_lval (arr),
4599 TYPE_FIELD_TYPE (desc_type, 0)),
4600 fat_pntr_data_bitpos (desc_type),
4601 fat_pntr_data_bitsize (desc_type));
4602
4603 modify_field (value_type (descriptor),
4604 value_contents_writeable (descriptor),
4605 value_pointer (bounds,
4606 TYPE_FIELD_TYPE (desc_type, 1)),
4607 fat_pntr_bounds_bitpos (desc_type),
4608 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4609
40bc484c 4610 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4611
4612 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4613 return value_addr (descriptor);
4614 else
4615 return descriptor;
4616}
14f9c5c9 4617\f
3d9434b5
JB
4618 /* Symbol Cache Module */
4619
3d9434b5 4620/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4621 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4622 on the type of entity being printed, the cache can make it as much
4623 as an order of magnitude faster than without it.
4624
4625 The descriptive type DWARF extension has significantly reduced
4626 the need for this cache, at least when DWARF is being used. However,
4627 even in this case, some expensive name-based symbol searches are still
4628 sometimes necessary - to find an XVZ variable, mostly. */
4629
ee01b665 4630/* Initialize the contents of SYM_CACHE. */
3d9434b5 4631
ee01b665
JB
4632static void
4633ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4634{
4635 obstack_init (&sym_cache->cache_space);
4636 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4637}
3d9434b5 4638
ee01b665
JB
4639/* Free the memory used by SYM_CACHE. */
4640
4641static void
4642ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4643{
ee01b665
JB
4644 obstack_free (&sym_cache->cache_space, NULL);
4645 xfree (sym_cache);
4646}
3d9434b5 4647
ee01b665
JB
4648/* Return the symbol cache associated to the given program space PSPACE.
4649 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4650
ee01b665
JB
4651static struct ada_symbol_cache *
4652ada_get_symbol_cache (struct program_space *pspace)
4653{
4654 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4655
66c168ae 4656 if (pspace_data->sym_cache == NULL)
ee01b665 4657 {
66c168ae
JB
4658 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4659 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4660 }
4661
66c168ae 4662 return pspace_data->sym_cache;
ee01b665 4663}
3d9434b5
JB
4664
4665/* Clear all entries from the symbol cache. */
4666
4667static void
4668ada_clear_symbol_cache (void)
4669{
ee01b665
JB
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
4672
4673 obstack_free (&sym_cache->cache_space, NULL);
4674 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4675}
4676
fe978cb0 4677/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4678 Return it if found, or NULL otherwise. */
4679
4680static struct cache_entry **
fe978cb0 4681find_entry (const char *name, domain_enum domain)
3d9434b5 4682{
ee01b665
JB
4683 struct ada_symbol_cache *sym_cache
4684 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4685 int h = msymbol_hash (name) % HASH_SIZE;
4686 struct cache_entry **e;
4687
ee01b665 4688 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4689 {
fe978cb0 4690 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4691 return e;
4692 }
4693 return NULL;
4694}
4695
fe978cb0 4696/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4697 Return 1 if found, 0 otherwise.
4698
4699 If an entry was found and SYM is not NULL, set *SYM to the entry's
4700 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4701
96d887e8 4702static int
fe978cb0 4703lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4704 struct symbol **sym, const struct block **block)
96d887e8 4705{
fe978cb0 4706 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4707
4708 if (e == NULL)
4709 return 0;
4710 if (sym != NULL)
4711 *sym = (*e)->sym;
4712 if (block != NULL)
4713 *block = (*e)->block;
4714 return 1;
96d887e8
PH
4715}
4716
3d9434b5 4717/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4718 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4719
96d887e8 4720static void
fe978cb0 4721cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4722 const struct block *block)
96d887e8 4723{
ee01b665
JB
4724 struct ada_symbol_cache *sym_cache
4725 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4726 int h;
4727 char *copy;
4728 struct cache_entry *e;
4729
1994afbf
DE
4730 /* Symbols for builtin types don't have a block.
4731 For now don't cache such symbols. */
4732 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4733 return;
4734
3d9434b5
JB
4735 /* If the symbol is a local symbol, then do not cache it, as a search
4736 for that symbol depends on the context. To determine whether
4737 the symbol is local or not, we check the block where we found it
4738 against the global and static blocks of its associated symtab. */
4739 if (sym
08be3fe3 4740 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4741 GLOBAL_BLOCK) != block
08be3fe3 4742 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4743 STATIC_BLOCK) != block)
3d9434b5
JB
4744 return;
4745
4746 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4747 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4748 sizeof (*e));
4749 e->next = sym_cache->root[h];
4750 sym_cache->root[h] = e;
224c3ddb
SM
4751 e->name = copy
4752 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4753 strcpy (copy, name);
4754 e->sym = sym;
fe978cb0 4755 e->domain = domain;
3d9434b5 4756 e->block = block;
96d887e8 4757}
4c4b4cd2
PH
4758\f
4759 /* Symbol Lookup */
4760
b5ec771e
PA
4761/* Return the symbol name match type that should be used used when
4762 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4763
4764 LOOKUP_NAME is expected to be a symbol name after transformation
4765 for Ada lookups (see ada_name_for_lookup). */
4766
b5ec771e
PA
4767static symbol_name_match_type
4768name_match_type_from_name (const char *lookup_name)
c0431670 4769{
b5ec771e
PA
4770 return (strstr (lookup_name, "__") == NULL
4771 ? symbol_name_match_type::WILD
4772 : symbol_name_match_type::FULL);
c0431670
JB
4773}
4774
4c4b4cd2
PH
4775/* Return the result of a standard (literal, C-like) lookup of NAME in
4776 given DOMAIN, visible from lexical block BLOCK. */
4777
4778static struct symbol *
4779standard_lookup (const char *name, const struct block *block,
4780 domain_enum domain)
4781{
acbd605d 4782 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4783 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4784
d12307c1
PMR
4785 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4786 return sym.symbol;
2570f2b7 4787 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4788 cache_symbol (name, domain, sym.symbol, sym.block);
4789 return sym.symbol;
4c4b4cd2
PH
4790}
4791
4792
4793/* Non-zero iff there is at least one non-function/non-enumeral symbol
4794 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4795 since they contend in overloading in the same way. */
4796static int
d12307c1 4797is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4798{
4799 int i;
4800
4801 for (i = 0; i < n; i += 1)
d12307c1
PMR
4802 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4803 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4804 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4805 return 1;
4806
4807 return 0;
4808}
4809
4810/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4811 struct types. Otherwise, they may not. */
14f9c5c9
AS
4812
4813static int
d2e4a39e 4814equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4815{
d2e4a39e 4816 if (type0 == type1)
14f9c5c9 4817 return 1;
d2e4a39e 4818 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4819 || TYPE_CODE (type0) != TYPE_CODE (type1))
4820 return 0;
d2e4a39e 4821 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4822 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4823 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4824 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4825 return 1;
d2e4a39e 4826
14f9c5c9
AS
4827 return 0;
4828}
4829
4830/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4831 no more defined than that of SYM1. */
14f9c5c9
AS
4832
4833static int
d2e4a39e 4834lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4835{
4836 if (sym0 == sym1)
4837 return 1;
176620f1 4838 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4839 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4840 return 0;
4841
d2e4a39e 4842 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4843 {
4844 case LOC_UNDEF:
4845 return 1;
4846 case LOC_TYPEDEF:
4847 {
4c4b4cd2
PH
4848 struct type *type0 = SYMBOL_TYPE (sym0);
4849 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4850 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4851 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4852 int len0 = strlen (name0);
5b4ee69b 4853
4c4b4cd2
PH
4854 return
4855 TYPE_CODE (type0) == TYPE_CODE (type1)
4856 && (equiv_types (type0, type1)
4857 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4858 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4859 }
4860 case LOC_CONST:
4861 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4862 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4863 default:
4864 return 0;
14f9c5c9
AS
4865 }
4866}
4867
d12307c1 4868/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4869 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4870
4871static void
76a01679
JB
4872add_defn_to_vec (struct obstack *obstackp,
4873 struct symbol *sym,
f0c5f9b2 4874 const struct block *block)
14f9c5c9
AS
4875{
4876 int i;
d12307c1 4877 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4878
529cad9c
PH
4879 /* Do not try to complete stub types, as the debugger is probably
4880 already scanning all symbols matching a certain name at the
4881 time when this function is called. Trying to replace the stub
4882 type by its associated full type will cause us to restart a scan
4883 which may lead to an infinite recursion. Instead, the client
4884 collecting the matching symbols will end up collecting several
4885 matches, with at least one of them complete. It can then filter
4886 out the stub ones if needed. */
4887
4c4b4cd2
PH
4888 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4889 {
d12307c1 4890 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4891 return;
d12307c1 4892 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4893 {
d12307c1 4894 prevDefns[i].symbol = sym;
4c4b4cd2 4895 prevDefns[i].block = block;
4c4b4cd2 4896 return;
76a01679 4897 }
4c4b4cd2
PH
4898 }
4899
4900 {
d12307c1 4901 struct block_symbol info;
4c4b4cd2 4902
d12307c1 4903 info.symbol = sym;
4c4b4cd2 4904 info.block = block;
d12307c1 4905 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4906 }
4907}
4908
d12307c1
PMR
4909/* Number of block_symbol structures currently collected in current vector in
4910 OBSTACKP. */
4c4b4cd2 4911
76a01679
JB
4912static int
4913num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4914{
d12307c1 4915 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4916}
4917
d12307c1
PMR
4918/* Vector of block_symbol structures currently collected in current vector in
4919 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4920
d12307c1 4921static struct block_symbol *
4c4b4cd2
PH
4922defns_collected (struct obstack *obstackp, int finish)
4923{
4924 if (finish)
224c3ddb 4925 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4926 else
d12307c1 4927 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4928}
4929
7c7b6655
TT
4930/* Return a bound minimal symbol matching NAME according to Ada
4931 decoding rules. Returns an invalid symbol if there is no such
4932 minimal symbol. Names prefixed with "standard__" are handled
4933 specially: "standard__" is first stripped off, and only static and
4934 global symbols are searched. */
4c4b4cd2 4935
7c7b6655 4936struct bound_minimal_symbol
96d887e8 4937ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4938{
7c7b6655 4939 struct bound_minimal_symbol result;
4c4b4cd2 4940 struct objfile *objfile;
96d887e8 4941 struct minimal_symbol *msymbol;
4c4b4cd2 4942
7c7b6655
TT
4943 memset (&result, 0, sizeof (result));
4944
b5ec771e
PA
4945 symbol_name_match_type match_type = name_match_type_from_name (name);
4946 lookup_name_info lookup_name (name, match_type);
4947
4948 symbol_name_matcher_ftype *match_name
4949 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4950
96d887e8
PH
4951 ALL_MSYMBOLS (objfile, msymbol)
4952 {
b5ec771e 4953 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
96d887e8 4954 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4955 {
4956 result.minsym = msymbol;
4957 result.objfile = objfile;
4958 break;
4959 }
96d887e8 4960 }
4c4b4cd2 4961
7c7b6655 4962 return result;
96d887e8 4963}
4c4b4cd2 4964
96d887e8
PH
4965/* For all subprograms that statically enclose the subprogram of the
4966 selected frame, add symbols matching identifier NAME in DOMAIN
4967 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4968 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4969 with a wildcard prefix. */
4c4b4cd2 4970
96d887e8
PH
4971static void
4972add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4973 const lookup_name_info &lookup_name,
4974 domain_enum domain)
96d887e8 4975{
96d887e8 4976}
14f9c5c9 4977
96d887e8
PH
4978/* True if TYPE is definitely an artificial type supplied to a symbol
4979 for which no debugging information was given in the symbol file. */
14f9c5c9 4980
96d887e8
PH
4981static int
4982is_nondebugging_type (struct type *type)
4983{
0d5cff50 4984 const char *name = ada_type_name (type);
5b4ee69b 4985
96d887e8
PH
4986 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4987}
4c4b4cd2 4988
8f17729f
JB
4989/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4990 that are deemed "identical" for practical purposes.
4991
4992 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4993 types and that their number of enumerals is identical (in other
4994 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4995
4996static int
4997ada_identical_enum_types_p (struct type *type1, struct type *type2)
4998{
4999 int i;
5000
5001 /* The heuristic we use here is fairly conservative. We consider
5002 that 2 enumerate types are identical if they have the same
5003 number of enumerals and that all enumerals have the same
5004 underlying value and name. */
5005
5006 /* All enums in the type should have an identical underlying value. */
5007 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5008 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5009 return 0;
5010
5011 /* All enumerals should also have the same name (modulo any numerical
5012 suffix). */
5013 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5014 {
0d5cff50
DE
5015 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5016 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5017 int len_1 = strlen (name_1);
5018 int len_2 = strlen (name_2);
5019
5020 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5021 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5022 if (len_1 != len_2
5023 || strncmp (TYPE_FIELD_NAME (type1, i),
5024 TYPE_FIELD_NAME (type2, i),
5025 len_1) != 0)
5026 return 0;
5027 }
5028
5029 return 1;
5030}
5031
5032/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5033 that are deemed "identical" for practical purposes. Sometimes,
5034 enumerals are not strictly identical, but their types are so similar
5035 that they can be considered identical.
5036
5037 For instance, consider the following code:
5038
5039 type Color is (Black, Red, Green, Blue, White);
5040 type RGB_Color is new Color range Red .. Blue;
5041
5042 Type RGB_Color is a subrange of an implicit type which is a copy
5043 of type Color. If we call that implicit type RGB_ColorB ("B" is
5044 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5045 As a result, when an expression references any of the enumeral
5046 by name (Eg. "print green"), the expression is technically
5047 ambiguous and the user should be asked to disambiguate. But
5048 doing so would only hinder the user, since it wouldn't matter
5049 what choice he makes, the outcome would always be the same.
5050 So, for practical purposes, we consider them as the same. */
5051
5052static int
d12307c1 5053symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
5054{
5055 int i;
5056
5057 /* Before performing a thorough comparison check of each type,
5058 we perform a series of inexpensive checks. We expect that these
5059 checks will quickly fail in the vast majority of cases, and thus
5060 help prevent the unnecessary use of a more expensive comparison.
5061 Said comparison also expects us to make some of these checks
5062 (see ada_identical_enum_types_p). */
5063
5064 /* Quick check: All symbols should have an enum type. */
5065 for (i = 0; i < nsyms; i++)
d12307c1 5066 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5067 return 0;
5068
5069 /* Quick check: They should all have the same value. */
5070 for (i = 1; i < nsyms; i++)
d12307c1 5071 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5072 return 0;
5073
5074 /* Quick check: They should all have the same number of enumerals. */
5075 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5076 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5077 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5078 return 0;
5079
5080 /* All the sanity checks passed, so we might have a set of
5081 identical enumeration types. Perform a more complete
5082 comparison of the type of each symbol. */
5083 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5084 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5085 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5086 return 0;
5087
5088 return 1;
5089}
5090
96d887e8
PH
5091/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5092 duplicate other symbols in the list (The only case I know of where
5093 this happens is when object files containing stabs-in-ecoff are
5094 linked with files containing ordinary ecoff debugging symbols (or no
5095 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5096 Returns the number of items in the modified list. */
4c4b4cd2 5097
96d887e8 5098static int
d12307c1 5099remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5100{
5101 int i, j;
4c4b4cd2 5102
8f17729f
JB
5103 /* We should never be called with less than 2 symbols, as there
5104 cannot be any extra symbol in that case. But it's easy to
5105 handle, since we have nothing to do in that case. */
5106 if (nsyms < 2)
5107 return nsyms;
5108
96d887e8
PH
5109 i = 0;
5110 while (i < nsyms)
5111 {
a35ddb44 5112 int remove_p = 0;
339c13b6
JB
5113
5114 /* If two symbols have the same name and one of them is a stub type,
5115 the get rid of the stub. */
5116
d12307c1
PMR
5117 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5118 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5119 {
5120 for (j = 0; j < nsyms; j++)
5121 {
5122 if (j != i
d12307c1
PMR
5123 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5124 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5125 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5126 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5127 remove_p = 1;
339c13b6
JB
5128 }
5129 }
5130
5131 /* Two symbols with the same name, same class and same address
5132 should be identical. */
5133
d12307c1
PMR
5134 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5135 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5136 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5137 {
5138 for (j = 0; j < nsyms; j += 1)
5139 {
5140 if (i != j
d12307c1
PMR
5141 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5142 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5143 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5144 && SYMBOL_CLASS (syms[i].symbol)
5145 == SYMBOL_CLASS (syms[j].symbol)
5146 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5147 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5148 remove_p = 1;
4c4b4cd2 5149 }
4c4b4cd2 5150 }
339c13b6 5151
a35ddb44 5152 if (remove_p)
339c13b6
JB
5153 {
5154 for (j = i + 1; j < nsyms; j += 1)
5155 syms[j - 1] = syms[j];
5156 nsyms -= 1;
5157 }
5158
96d887e8 5159 i += 1;
14f9c5c9 5160 }
8f17729f
JB
5161
5162 /* If all the remaining symbols are identical enumerals, then
5163 just keep the first one and discard the rest.
5164
5165 Unlike what we did previously, we do not discard any entry
5166 unless they are ALL identical. This is because the symbol
5167 comparison is not a strict comparison, but rather a practical
5168 comparison. If all symbols are considered identical, then
5169 we can just go ahead and use the first one and discard the rest.
5170 But if we cannot reduce the list to a single element, we have
5171 to ask the user to disambiguate anyways. And if we have to
5172 present a multiple-choice menu, it's less confusing if the list
5173 isn't missing some choices that were identical and yet distinct. */
5174 if (symbols_are_identical_enums (syms, nsyms))
5175 nsyms = 1;
5176
96d887e8 5177 return nsyms;
14f9c5c9
AS
5178}
5179
96d887e8
PH
5180/* Given a type that corresponds to a renaming entity, use the type name
5181 to extract the scope (package name or function name, fully qualified,
5182 and following the GNAT encoding convention) where this renaming has been
5183 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5184
96d887e8
PH
5185static char *
5186xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5187{
96d887e8 5188 /* The renaming types adhere to the following convention:
0963b4bd 5189 <scope>__<rename>___<XR extension>.
96d887e8
PH
5190 So, to extract the scope, we search for the "___XR" extension,
5191 and then backtrack until we find the first "__". */
76a01679 5192
96d887e8 5193 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5194 const char *suffix = strstr (name, "___XR");
5195 const char *last;
96d887e8
PH
5196 int scope_len;
5197 char *scope;
14f9c5c9 5198
96d887e8
PH
5199 /* Now, backtrack a bit until we find the first "__". Start looking
5200 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5201
96d887e8
PH
5202 for (last = suffix - 3; last > name; last--)
5203 if (last[0] == '_' && last[1] == '_')
5204 break;
76a01679 5205
96d887e8 5206 /* Make a copy of scope and return it. */
14f9c5c9 5207
96d887e8
PH
5208 scope_len = last - name;
5209 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5210
96d887e8
PH
5211 strncpy (scope, name, scope_len);
5212 scope[scope_len] = '\0';
4c4b4cd2 5213
96d887e8 5214 return scope;
4c4b4cd2
PH
5215}
5216
96d887e8 5217/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5218
96d887e8
PH
5219static int
5220is_package_name (const char *name)
4c4b4cd2 5221{
96d887e8
PH
5222 /* Here, We take advantage of the fact that no symbols are generated
5223 for packages, while symbols are generated for each function.
5224 So the condition for NAME represent a package becomes equivalent
5225 to NAME not existing in our list of symbols. There is only one
5226 small complication with library-level functions (see below). */
4c4b4cd2 5227
96d887e8 5228 char *fun_name;
76a01679 5229
96d887e8
PH
5230 /* If it is a function that has not been defined at library level,
5231 then we should be able to look it up in the symbols. */
5232 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5233 return 0;
14f9c5c9 5234
96d887e8
PH
5235 /* Library-level function names start with "_ada_". See if function
5236 "_ada_" followed by NAME can be found. */
14f9c5c9 5237
96d887e8 5238 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5239 functions names cannot contain "__" in them. */
96d887e8
PH
5240 if (strstr (name, "__") != NULL)
5241 return 0;
4c4b4cd2 5242
b435e160 5243 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5244
96d887e8
PH
5245 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5246}
14f9c5c9 5247
96d887e8 5248/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5249 not visible from FUNCTION_NAME. */
14f9c5c9 5250
96d887e8 5251static int
0d5cff50 5252old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5253{
aeb5907d 5254 char *scope;
1509e573 5255 struct cleanup *old_chain;
aeb5907d
JB
5256
5257 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5258 return 0;
5259
5260 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5261 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5262
96d887e8
PH
5263 /* If the rename has been defined in a package, then it is visible. */
5264 if (is_package_name (scope))
1509e573
JB
5265 {
5266 do_cleanups (old_chain);
5267 return 0;
5268 }
14f9c5c9 5269
96d887e8
PH
5270 /* Check that the rename is in the current function scope by checking
5271 that its name starts with SCOPE. */
76a01679 5272
96d887e8
PH
5273 /* If the function name starts with "_ada_", it means that it is
5274 a library-level function. Strip this prefix before doing the
5275 comparison, as the encoding for the renaming does not contain
5276 this prefix. */
61012eef 5277 if (startswith (function_name, "_ada_"))
96d887e8 5278 function_name += 5;
f26caa11 5279
1509e573 5280 {
61012eef 5281 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5282
5283 do_cleanups (old_chain);
5284 return is_invisible;
5285 }
f26caa11
PH
5286}
5287
aeb5907d
JB
5288/* Remove entries from SYMS that corresponds to a renaming entity that
5289 is not visible from the function associated with CURRENT_BLOCK or
5290 that is superfluous due to the presence of more specific renaming
5291 information. Places surviving symbols in the initial entries of
5292 SYMS and returns the number of surviving symbols.
96d887e8
PH
5293
5294 Rationale:
aeb5907d
JB
5295 First, in cases where an object renaming is implemented as a
5296 reference variable, GNAT may produce both the actual reference
5297 variable and the renaming encoding. In this case, we discard the
5298 latter.
5299
5300 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5301 entity. Unfortunately, STABS currently does not support the definition
5302 of types that are local to a given lexical block, so all renamings types
5303 are emitted at library level. As a consequence, if an application
5304 contains two renaming entities using the same name, and a user tries to
5305 print the value of one of these entities, the result of the ada symbol
5306 lookup will also contain the wrong renaming type.
f26caa11 5307
96d887e8
PH
5308 This function partially covers for this limitation by attempting to
5309 remove from the SYMS list renaming symbols that should be visible
5310 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5311 method with the current information available. The implementation
5312 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5313
5314 - When the user tries to print a rename in a function while there
5315 is another rename entity defined in a package: Normally, the
5316 rename in the function has precedence over the rename in the
5317 package, so the latter should be removed from the list. This is
5318 currently not the case.
5319
5320 - This function will incorrectly remove valid renames if
5321 the CURRENT_BLOCK corresponds to a function which symbol name
5322 has been changed by an "Export" pragma. As a consequence,
5323 the user will be unable to print such rename entities. */
4c4b4cd2 5324
14f9c5c9 5325static int
d12307c1 5326remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5327 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5328{
5329 struct symbol *current_function;
0d5cff50 5330 const char *current_function_name;
4c4b4cd2 5331 int i;
aeb5907d
JB
5332 int is_new_style_renaming;
5333
5334 /* If there is both a renaming foo___XR... encoded as a variable and
5335 a simple variable foo in the same block, discard the latter.
0963b4bd 5336 First, zero out such symbols, then compress. */
aeb5907d
JB
5337 is_new_style_renaming = 0;
5338 for (i = 0; i < nsyms; i += 1)
5339 {
d12307c1 5340 struct symbol *sym = syms[i].symbol;
270140bd 5341 const struct block *block = syms[i].block;
aeb5907d
JB
5342 const char *name;
5343 const char *suffix;
5344
5345 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5346 continue;
5347 name = SYMBOL_LINKAGE_NAME (sym);
5348 suffix = strstr (name, "___XR");
5349
5350 if (suffix != NULL)
5351 {
5352 int name_len = suffix - name;
5353 int j;
5b4ee69b 5354
aeb5907d
JB
5355 is_new_style_renaming = 1;
5356 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5357 if (i != j && syms[j].symbol != NULL
5358 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5359 name_len) == 0
5360 && block == syms[j].block)
d12307c1 5361 syms[j].symbol = NULL;
aeb5907d
JB
5362 }
5363 }
5364 if (is_new_style_renaming)
5365 {
5366 int j, k;
5367
5368 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5369 if (syms[j].symbol != NULL)
aeb5907d
JB
5370 {
5371 syms[k] = syms[j];
5372 k += 1;
5373 }
5374 return k;
5375 }
4c4b4cd2
PH
5376
5377 /* Extract the function name associated to CURRENT_BLOCK.
5378 Abort if unable to do so. */
76a01679 5379
4c4b4cd2
PH
5380 if (current_block == NULL)
5381 return nsyms;
76a01679 5382
7f0df278 5383 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5384 if (current_function == NULL)
5385 return nsyms;
5386
5387 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5388 if (current_function_name == NULL)
5389 return nsyms;
5390
5391 /* Check each of the symbols, and remove it from the list if it is
5392 a type corresponding to a renaming that is out of the scope of
5393 the current block. */
5394
5395 i = 0;
5396 while (i < nsyms)
5397 {
d12307c1 5398 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5399 == ADA_OBJECT_RENAMING
d12307c1 5400 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5401 {
5402 int j;
5b4ee69b 5403
aeb5907d 5404 for (j = i + 1; j < nsyms; j += 1)
76a01679 5405 syms[j - 1] = syms[j];
4c4b4cd2
PH
5406 nsyms -= 1;
5407 }
5408 else
5409 i += 1;
5410 }
5411
5412 return nsyms;
5413}
5414
339c13b6
JB
5415/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5416 whose name and domain match NAME and DOMAIN respectively.
5417 If no match was found, then extend the search to "enclosing"
5418 routines (in other words, if we're inside a nested function,
5419 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5420 If WILD_MATCH_P is nonzero, perform the naming matching in
5421 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5422
5423 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5424
5425static void
b5ec771e
PA
5426ada_add_local_symbols (struct obstack *obstackp,
5427 const lookup_name_info &lookup_name,
5428 const struct block *block, domain_enum domain)
339c13b6
JB
5429{
5430 int block_depth = 0;
5431
5432 while (block != NULL)
5433 {
5434 block_depth += 1;
b5ec771e 5435 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5436
5437 /* If we found a non-function match, assume that's the one. */
5438 if (is_nonfunction (defns_collected (obstackp, 0),
5439 num_defns_collected (obstackp)))
5440 return;
5441
5442 block = BLOCK_SUPERBLOCK (block);
5443 }
5444
5445 /* If no luck so far, try to find NAME as a local symbol in some lexically
5446 enclosing subprogram. */
5447 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5448 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5449}
5450
ccefe4c4 5451/* An object of this type is used as the user_data argument when
40658b94 5452 calling the map_matching_symbols method. */
ccefe4c4 5453
40658b94 5454struct match_data
ccefe4c4 5455{
40658b94 5456 struct objfile *objfile;
ccefe4c4 5457 struct obstack *obstackp;
40658b94
PH
5458 struct symbol *arg_sym;
5459 int found_sym;
ccefe4c4
TT
5460};
5461
22cee43f 5462/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5463 to a list of symbols. DATA0 is a pointer to a struct match_data *
5464 containing the obstack that collects the symbol list, the file that SYM
5465 must come from, a flag indicating whether a non-argument symbol has
5466 been found in the current block, and the last argument symbol
5467 passed in SYM within the current block (if any). When SYM is null,
5468 marking the end of a block, the argument symbol is added if no
5469 other has been found. */
ccefe4c4 5470
40658b94
PH
5471static int
5472aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5473{
40658b94
PH
5474 struct match_data *data = (struct match_data *) data0;
5475
5476 if (sym == NULL)
5477 {
5478 if (!data->found_sym && data->arg_sym != NULL)
5479 add_defn_to_vec (data->obstackp,
5480 fixup_symbol_section (data->arg_sym, data->objfile),
5481 block);
5482 data->found_sym = 0;
5483 data->arg_sym = NULL;
5484 }
5485 else
5486 {
5487 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5488 return 0;
5489 else if (SYMBOL_IS_ARGUMENT (sym))
5490 data->arg_sym = sym;
5491 else
5492 {
5493 data->found_sym = 1;
5494 add_defn_to_vec (data->obstackp,
5495 fixup_symbol_section (sym, data->objfile),
5496 block);
5497 }
5498 }
5499 return 0;
5500}
5501
b5ec771e
PA
5502/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5503 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5504 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5505
5506static int
5507ada_add_block_renamings (struct obstack *obstackp,
5508 const struct block *block,
b5ec771e
PA
5509 const lookup_name_info &lookup_name,
5510 domain_enum domain)
22cee43f
PMR
5511{
5512 struct using_direct *renaming;
5513 int defns_mark = num_defns_collected (obstackp);
5514
b5ec771e
PA
5515 symbol_name_matcher_ftype *name_match
5516 = ada_get_symbol_name_matcher (lookup_name);
5517
22cee43f
PMR
5518 for (renaming = block_using (block);
5519 renaming != NULL;
5520 renaming = renaming->next)
5521 {
5522 const char *r_name;
22cee43f
PMR
5523
5524 /* Avoid infinite recursions: skip this renaming if we are actually
5525 already traversing it.
5526
5527 Currently, symbol lookup in Ada don't use the namespace machinery from
5528 C++/Fortran support: skip namespace imports that use them. */
5529 if (renaming->searched
5530 || (renaming->import_src != NULL
5531 && renaming->import_src[0] != '\0')
5532 || (renaming->import_dest != NULL
5533 && renaming->import_dest[0] != '\0'))
5534 continue;
5535 renaming->searched = 1;
5536
5537 /* TODO: here, we perform another name-based symbol lookup, which can
5538 pull its own multiple overloads. In theory, we should be able to do
5539 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5540 not a simple name. But in order to do this, we would need to enhance
5541 the DWARF reader to associate a symbol to this renaming, instead of a
5542 name. So, for now, we do something simpler: re-use the C++/Fortran
5543 namespace machinery. */
5544 r_name = (renaming->alias != NULL
5545 ? renaming->alias
5546 : renaming->declaration);
b5ec771e
PA
5547 if (name_match (r_name, lookup_name, NULL))
5548 {
5549 lookup_name_info decl_lookup_name (renaming->declaration,
5550 lookup_name.match_type ());
5551 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5552 1, NULL);
5553 }
22cee43f
PMR
5554 renaming->searched = 0;
5555 }
5556 return num_defns_collected (obstackp) != defns_mark;
5557}
5558
db230ce3
JB
5559/* Implements compare_names, but only applying the comparision using
5560 the given CASING. */
5b4ee69b 5561
40658b94 5562static int
db230ce3
JB
5563compare_names_with_case (const char *string1, const char *string2,
5564 enum case_sensitivity casing)
40658b94
PH
5565{
5566 while (*string1 != '\0' && *string2 != '\0')
5567 {
db230ce3
JB
5568 char c1, c2;
5569
40658b94
PH
5570 if (isspace (*string1) || isspace (*string2))
5571 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5572
5573 if (casing == case_sensitive_off)
5574 {
5575 c1 = tolower (*string1);
5576 c2 = tolower (*string2);
5577 }
5578 else
5579 {
5580 c1 = *string1;
5581 c2 = *string2;
5582 }
5583 if (c1 != c2)
40658b94 5584 break;
db230ce3 5585
40658b94
PH
5586 string1 += 1;
5587 string2 += 1;
5588 }
db230ce3 5589
40658b94
PH
5590 switch (*string1)
5591 {
5592 case '(':
5593 return strcmp_iw_ordered (string1, string2);
5594 case '_':
5595 if (*string2 == '\0')
5596 {
052874e8 5597 if (is_name_suffix (string1))
40658b94
PH
5598 return 0;
5599 else
1a1d5513 5600 return 1;
40658b94 5601 }
dbb8534f 5602 /* FALLTHROUGH */
40658b94
PH
5603 default:
5604 if (*string2 == '(')
5605 return strcmp_iw_ordered (string1, string2);
5606 else
db230ce3
JB
5607 {
5608 if (casing == case_sensitive_off)
5609 return tolower (*string1) - tolower (*string2);
5610 else
5611 return *string1 - *string2;
5612 }
40658b94 5613 }
ccefe4c4
TT
5614}
5615
db230ce3
JB
5616/* Compare STRING1 to STRING2, with results as for strcmp.
5617 Compatible with strcmp_iw_ordered in that...
5618
5619 strcmp_iw_ordered (STRING1, STRING2) <= 0
5620
5621 ... implies...
5622
5623 compare_names (STRING1, STRING2) <= 0
5624
5625 (they may differ as to what symbols compare equal). */
5626
5627static int
5628compare_names (const char *string1, const char *string2)
5629{
5630 int result;
5631
5632 /* Similar to what strcmp_iw_ordered does, we need to perform
5633 a case-insensitive comparison first, and only resort to
5634 a second, case-sensitive, comparison if the first one was
5635 not sufficient to differentiate the two strings. */
5636
5637 result = compare_names_with_case (string1, string2, case_sensitive_off);
5638 if (result == 0)
5639 result = compare_names_with_case (string1, string2, case_sensitive_on);
5640
5641 return result;
5642}
5643
b5ec771e
PA
5644/* Convenience function to get at the Ada encoded lookup name for
5645 LOOKUP_NAME, as a C string. */
5646
5647static const char *
5648ada_lookup_name (const lookup_name_info &lookup_name)
5649{
5650 return lookup_name.ada ().lookup_name ().c_str ();
5651}
5652
339c13b6 5653/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5654 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5655 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5656 symbols otherwise. */
339c13b6
JB
5657
5658static void
b5ec771e
PA
5659add_nonlocal_symbols (struct obstack *obstackp,
5660 const lookup_name_info &lookup_name,
5661 domain_enum domain, int global)
339c13b6
JB
5662{
5663 struct objfile *objfile;
22cee43f 5664 struct compunit_symtab *cu;
40658b94 5665 struct match_data data;
339c13b6 5666
6475f2fe 5667 memset (&data, 0, sizeof data);
ccefe4c4 5668 data.obstackp = obstackp;
339c13b6 5669
b5ec771e
PA
5670 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5671
ccefe4c4 5672 ALL_OBJFILES (objfile)
40658b94
PH
5673 {
5674 data.objfile = objfile;
5675
5676 if (is_wild_match)
b5ec771e
PA
5677 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5678 domain, global,
4186eb54 5679 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5680 symbol_name_match_type::WILD,
5681 NULL);
40658b94 5682 else
b5ec771e
PA
5683 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5684 domain, global,
4186eb54 5685 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5686 symbol_name_match_type::FULL,
5687 compare_names);
22cee43f
PMR
5688
5689 ALL_OBJFILE_COMPUNITS (objfile, cu)
5690 {
5691 const struct block *global_block
5692 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5693
b5ec771e
PA
5694 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5695 domain))
22cee43f
PMR
5696 data.found_sym = 1;
5697 }
40658b94
PH
5698 }
5699
5700 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5701 {
b5ec771e
PA
5702 const char *name = ada_lookup_name (lookup_name);
5703 std::string name1 = std::string ("<_ada_") + name + '>';
5704
40658b94
PH
5705 ALL_OBJFILES (objfile)
5706 {
40658b94 5707 data.objfile = objfile;
b5ec771e
PA
5708 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5709 domain, global,
0963b4bd
MS
5710 aux_add_nonlocal_symbols,
5711 &data,
b5ec771e
PA
5712 symbol_name_match_type::FULL,
5713 compare_names);
40658b94
PH
5714 }
5715 }
339c13b6
JB
5716}
5717
b5ec771e
PA
5718/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5719 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5720 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5721
22cee43f
PMR
5722 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5723 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5724 is the one match returned (no other matches in that or
d9680e73 5725 enclosing blocks is returned). If there are any matches in or
22cee43f 5726 surrounding BLOCK, then these alone are returned.
4eeaa230 5727
b5ec771e
PA
5728 Names prefixed with "standard__" are handled specially:
5729 "standard__" is first stripped off (by the lookup_name
5730 constructor), and only static and global symbols are searched.
14f9c5c9 5731
22cee43f
PMR
5732 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5733 to lookup global symbols. */
5734
5735static void
5736ada_add_all_symbols (struct obstack *obstackp,
5737 const struct block *block,
b5ec771e 5738 const lookup_name_info &lookup_name,
22cee43f
PMR
5739 domain_enum domain,
5740 int full_search,
5741 int *made_global_lookup_p)
14f9c5c9
AS
5742{
5743 struct symbol *sym;
14f9c5c9 5744
22cee43f
PMR
5745 if (made_global_lookup_p)
5746 *made_global_lookup_p = 0;
339c13b6
JB
5747
5748 /* Special case: If the user specifies a symbol name inside package
5749 Standard, do a non-wild matching of the symbol name without
5750 the "standard__" prefix. This was primarily introduced in order
5751 to allow the user to specifically access the standard exceptions
5752 using, for instance, Standard.Constraint_Error when Constraint_Error
5753 is ambiguous (due to the user defining its own Constraint_Error
5754 entity inside its program). */
b5ec771e
PA
5755 if (lookup_name.ada ().standard_p ())
5756 block = NULL;
4c4b4cd2 5757
339c13b6 5758 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5759
4eeaa230
DE
5760 if (block != NULL)
5761 {
5762 if (full_search)
b5ec771e 5763 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5764 else
5765 {
5766 /* In the !full_search case we're are being called by
5767 ada_iterate_over_symbols, and we don't want to search
5768 superblocks. */
b5ec771e 5769 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5770 }
22cee43f
PMR
5771 if (num_defns_collected (obstackp) > 0 || !full_search)
5772 return;
4eeaa230 5773 }
d2e4a39e 5774
339c13b6
JB
5775 /* No non-global symbols found. Check our cache to see if we have
5776 already performed this search before. If we have, then return
5777 the same result. */
5778
b5ec771e
PA
5779 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5780 domain, &sym, &block))
4c4b4cd2
PH
5781 {
5782 if (sym != NULL)
b5ec771e 5783 add_defn_to_vec (obstackp, sym, block);
22cee43f 5784 return;
4c4b4cd2 5785 }
14f9c5c9 5786
22cee43f
PMR
5787 if (made_global_lookup_p)
5788 *made_global_lookup_p = 1;
b1eedac9 5789
339c13b6
JB
5790 /* Search symbols from all global blocks. */
5791
b5ec771e 5792 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5793
4c4b4cd2 5794 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5795 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5796
22cee43f 5797 if (num_defns_collected (obstackp) == 0)
b5ec771e 5798 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5799}
5800
b5ec771e
PA
5801/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5802 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f
PMR
5803 matches.
5804 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5805 indicating the symbols found and the blocks and symbol tables (if
5806 any) in which they were found. This vector is transient---good only to
5807 the next call of ada_lookup_symbol_list.
5808
5809 When full_search is non-zero, any non-function/non-enumeral
5810 symbol match within the nest of blocks whose innermost member is BLOCK,
5811 is the one match returned (no other matches in that or
5812 enclosing blocks is returned). If there are any matches in or
5813 surrounding BLOCK, then these alone are returned.
5814
5815 Names prefixed with "standard__" are handled specially: "standard__"
5816 is first stripped off, and only static and global symbols are searched. */
5817
5818static int
b5ec771e
PA
5819ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5820 const struct block *block,
22cee43f
PMR
5821 domain_enum domain,
5822 struct block_symbol **results,
5823 int full_search)
5824{
22cee43f
PMR
5825 int syms_from_global_search;
5826 int ndefns;
5827
5828 obstack_free (&symbol_list_obstack, NULL);
5829 obstack_init (&symbol_list_obstack);
b5ec771e
PA
5830 ada_add_all_symbols (&symbol_list_obstack, block, lookup_name,
5831 domain, full_search, &syms_from_global_search);
14f9c5c9 5832
4c4b4cd2
PH
5833 ndefns = num_defns_collected (&symbol_list_obstack);
5834 *results = defns_collected (&symbol_list_obstack, 1);
5835
5836 ndefns = remove_extra_symbols (*results, ndefns);
5837
b1eedac9 5838 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5839 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5840
b1eedac9 5841 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5842 cache_symbol (ada_lookup_name (lookup_name), domain,
5843 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5844
22cee43f 5845 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
14f9c5c9
AS
5846 return ndefns;
5847}
5848
b5ec771e 5849/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
4eeaa230
DE
5850 in global scopes, returning the number of matches, and setting *RESULTS
5851 to a vector of (SYM,BLOCK) tuples.
5852 See ada_lookup_symbol_list_worker for further details. */
5853
5854int
b5ec771e 5855ada_lookup_symbol_list (const char *name, const struct block *block,
d12307c1 5856 domain_enum domain, struct block_symbol **results)
4eeaa230 5857{
b5ec771e
PA
5858 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5859 lookup_name_info lookup_name (name, name_match_type);
5860
5861 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5862}
5863
5864/* Implementation of the la_iterate_over_symbols method. */
5865
5866static void
14bc53a8 5867ada_iterate_over_symbols
b5ec771e
PA
5868 (const struct block *block, const lookup_name_info &name,
5869 domain_enum domain,
14bc53a8 5870 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5871{
5872 int ndefs, i;
d12307c1 5873 struct block_symbol *results;
4eeaa230
DE
5874
5875 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5876 for (i = 0; i < ndefs; ++i)
5877 {
14bc53a8 5878 if (!callback (results[i].symbol))
4eeaa230
DE
5879 break;
5880 }
5881}
5882
4e5c77fe
JB
5883/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5884 to 1, but choosing the first symbol found if there are multiple
5885 choices.
5886
5e2336be
JB
5887 The result is stored in *INFO, which must be non-NULL.
5888 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5889
5890void
5891ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5892 domain_enum domain,
d12307c1 5893 struct block_symbol *info)
14f9c5c9 5894{
d12307c1 5895 struct block_symbol *candidates;
14f9c5c9
AS
5896 int n_candidates;
5897
b5ec771e
PA
5898 /* Since we already have an encoded name, wrap it in '<>' to force a
5899 verbatim match. Otherwise, if the name happens to not look like
5900 an encoded name (because it doesn't include a "__"),
5901 ada_lookup_name_info would re-encode/fold it again, and that
5902 would e.g., incorrectly lowercase object renaming names like
5903 "R28b" -> "r28b". */
5904 std::string verbatim = std::string ("<") + name + '>';
5905
5e2336be 5906 gdb_assert (info != NULL);
d12307c1 5907 memset (info, 0, sizeof (struct block_symbol));
4e5c77fe 5908
b5ec771e
PA
5909 n_candidates = ada_lookup_symbol_list (verbatim.c_str (), block,
5910 domain, &candidates);
14f9c5c9 5911 if (n_candidates == 0)
4e5c77fe 5912 return;
4c4b4cd2 5913
5e2336be 5914 *info = candidates[0];
d12307c1 5915 info->symbol = fixup_symbol_section (info->symbol, NULL);
4e5c77fe 5916}
aeb5907d
JB
5917
5918/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5919 scope and in global scopes, or NULL if none. NAME is folded and
5920 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5921 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5922 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5923
d12307c1 5924struct block_symbol
aeb5907d 5925ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5926 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5927{
d12307c1 5928 struct block_symbol info;
4e5c77fe 5929
aeb5907d
JB
5930 if (is_a_field_of_this != NULL)
5931 *is_a_field_of_this = 0;
5932
4e5c77fe 5933 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5934 block0, domain, &info);
d12307c1 5935 return info;
4c4b4cd2 5936}
14f9c5c9 5937
d12307c1 5938static struct block_symbol
f606139a
DE
5939ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5940 const char *name,
76a01679 5941 const struct block *block,
21b556f4 5942 const domain_enum domain)
4c4b4cd2 5943{
d12307c1 5944 struct block_symbol sym;
04dccad0
JB
5945
5946 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5947 if (sym.symbol != NULL)
04dccad0
JB
5948 return sym;
5949
5950 /* If we haven't found a match at this point, try the primitive
5951 types. In other languages, this search is performed before
5952 searching for global symbols in order to short-circuit that
5953 global-symbol search if it happens that the name corresponds
5954 to a primitive type. But we cannot do the same in Ada, because
5955 it is perfectly legitimate for a program to declare a type which
5956 has the same name as a standard type. If looking up a type in
5957 that situation, we have traditionally ignored the primitive type
5958 in favor of user-defined types. This is why, unlike most other
5959 languages, we search the primitive types this late and only after
5960 having searched the global symbols without success. */
5961
5962 if (domain == VAR_DOMAIN)
5963 {
5964 struct gdbarch *gdbarch;
5965
5966 if (block == NULL)
5967 gdbarch = target_gdbarch ();
5968 else
5969 gdbarch = block_gdbarch (block);
d12307c1
PMR
5970 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5971 if (sym.symbol != NULL)
04dccad0
JB
5972 return sym;
5973 }
5974
d12307c1 5975 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5976}
5977
5978
4c4b4cd2
PH
5979/* True iff STR is a possible encoded suffix of a normal Ada name
5980 that is to be ignored for matching purposes. Suffixes of parallel
5981 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5982 are given by any of the regular expressions:
4c4b4cd2 5983
babe1480
JB
5984 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5985 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5986 TKB [subprogram suffix for task bodies]
babe1480 5987 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5988 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5989
5990 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5991 match is performed. This sequence is used to differentiate homonyms,
5992 is an optional part of a valid name suffix. */
4c4b4cd2 5993
14f9c5c9 5994static int
d2e4a39e 5995is_name_suffix (const char *str)
14f9c5c9
AS
5996{
5997 int k;
4c4b4cd2
PH
5998 const char *matching;
5999 const int len = strlen (str);
6000
babe1480
JB
6001 /* Skip optional leading __[0-9]+. */
6002
4c4b4cd2
PH
6003 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6004 {
babe1480
JB
6005 str += 3;
6006 while (isdigit (str[0]))
6007 str += 1;
4c4b4cd2 6008 }
babe1480
JB
6009
6010 /* [.$][0-9]+ */
4c4b4cd2 6011
babe1480 6012 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 6013 {
babe1480 6014 matching = str + 1;
4c4b4cd2
PH
6015 while (isdigit (matching[0]))
6016 matching += 1;
6017 if (matching[0] == '\0')
6018 return 1;
6019 }
6020
6021 /* ___[0-9]+ */
babe1480 6022
4c4b4cd2
PH
6023 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6024 {
6025 matching = str + 3;
6026 while (isdigit (matching[0]))
6027 matching += 1;
6028 if (matching[0] == '\0')
6029 return 1;
6030 }
6031
9ac7f98e
JB
6032 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6033
6034 if (strcmp (str, "TKB") == 0)
6035 return 1;
6036
529cad9c
PH
6037#if 0
6038 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6039 with a N at the end. Unfortunately, the compiler uses the same
6040 convention for other internal types it creates. So treating
529cad9c 6041 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6042 some regressions. For instance, consider the case of an enumerated
6043 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6044 name ends with N.
6045 Having a single character like this as a suffix carrying some
0963b4bd 6046 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6047 to be something like "_N" instead. In the meantime, do not do
6048 the following check. */
6049 /* Protected Object Subprograms */
6050 if (len == 1 && str [0] == 'N')
6051 return 1;
6052#endif
6053
6054 /* _E[0-9]+[bs]$ */
6055 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6056 {
6057 matching = str + 3;
6058 while (isdigit (matching[0]))
6059 matching += 1;
6060 if ((matching[0] == 'b' || matching[0] == 's')
6061 && matching [1] == '\0')
6062 return 1;
6063 }
6064
4c4b4cd2
PH
6065 /* ??? We should not modify STR directly, as we are doing below. This
6066 is fine in this case, but may become problematic later if we find
6067 that this alternative did not work, and want to try matching
6068 another one from the begining of STR. Since we modified it, we
6069 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6070 if (str[0] == 'X')
6071 {
6072 str += 1;
d2e4a39e 6073 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6074 {
6075 if (str[0] != 'n' && str[0] != 'b')
6076 return 0;
6077 str += 1;
6078 }
14f9c5c9 6079 }
babe1480 6080
14f9c5c9
AS
6081 if (str[0] == '\000')
6082 return 1;
babe1480 6083
d2e4a39e 6084 if (str[0] == '_')
14f9c5c9
AS
6085 {
6086 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6087 return 0;
d2e4a39e 6088 if (str[2] == '_')
4c4b4cd2 6089 {
61ee279c
PH
6090 if (strcmp (str + 3, "JM") == 0)
6091 return 1;
6092 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6093 the LJM suffix in favor of the JM one. But we will
6094 still accept LJM as a valid suffix for a reasonable
6095 amount of time, just to allow ourselves to debug programs
6096 compiled using an older version of GNAT. */
4c4b4cd2
PH
6097 if (strcmp (str + 3, "LJM") == 0)
6098 return 1;
6099 if (str[3] != 'X')
6100 return 0;
1265e4aa
JB
6101 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6102 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6103 return 1;
6104 if (str[4] == 'R' && str[5] != 'T')
6105 return 1;
6106 return 0;
6107 }
6108 if (!isdigit (str[2]))
6109 return 0;
6110 for (k = 3; str[k] != '\0'; k += 1)
6111 if (!isdigit (str[k]) && str[k] != '_')
6112 return 0;
14f9c5c9
AS
6113 return 1;
6114 }
4c4b4cd2 6115 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6116 {
4c4b4cd2
PH
6117 for (k = 2; str[k] != '\0'; k += 1)
6118 if (!isdigit (str[k]) && str[k] != '_')
6119 return 0;
14f9c5c9
AS
6120 return 1;
6121 }
6122 return 0;
6123}
d2e4a39e 6124
aeb5907d
JB
6125/* Return non-zero if the string starting at NAME and ending before
6126 NAME_END contains no capital letters. */
529cad9c
PH
6127
6128static int
6129is_valid_name_for_wild_match (const char *name0)
6130{
6131 const char *decoded_name = ada_decode (name0);
6132 int i;
6133
5823c3ef
JB
6134 /* If the decoded name starts with an angle bracket, it means that
6135 NAME0 does not follow the GNAT encoding format. It should then
6136 not be allowed as a possible wild match. */
6137 if (decoded_name[0] == '<')
6138 return 0;
6139
529cad9c
PH
6140 for (i=0; decoded_name[i] != '\0'; i++)
6141 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6142 return 0;
6143
6144 return 1;
6145}
6146
73589123
PH
6147/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6148 that could start a simple name. Assumes that *NAMEP points into
6149 the string beginning at NAME0. */
4c4b4cd2 6150
14f9c5c9 6151static int
73589123 6152advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6153{
73589123 6154 const char *name = *namep;
5b4ee69b 6155
5823c3ef 6156 while (1)
14f9c5c9 6157 {
aa27d0b3 6158 int t0, t1;
73589123
PH
6159
6160 t0 = *name;
6161 if (t0 == '_')
6162 {
6163 t1 = name[1];
6164 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6165 {
6166 name += 1;
61012eef 6167 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6168 break;
6169 else
6170 name += 1;
6171 }
aa27d0b3
JB
6172 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6173 || name[2] == target0))
73589123
PH
6174 {
6175 name += 2;
6176 break;
6177 }
6178 else
6179 return 0;
6180 }
6181 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6182 name += 1;
6183 else
5823c3ef 6184 return 0;
73589123
PH
6185 }
6186
6187 *namep = name;
6188 return 1;
6189}
6190
b5ec771e
PA
6191/* Return true iff NAME encodes a name of the form prefix.PATN.
6192 Ignores any informational suffixes of NAME (i.e., for which
6193 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6194 simple name. */
73589123 6195
b5ec771e 6196static bool
73589123
PH
6197wild_match (const char *name, const char *patn)
6198{
22e048c9 6199 const char *p;
73589123
PH
6200 const char *name0 = name;
6201
6202 while (1)
6203 {
6204 const char *match = name;
6205
6206 if (*name == *patn)
6207 {
6208 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6209 if (*p != *name)
6210 break;
6211 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6212 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6213
6214 if (name[-1] == '_')
6215 name -= 1;
6216 }
6217 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6218 return false;
96d887e8 6219 }
96d887e8
PH
6220}
6221
b5ec771e
PA
6222/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6223 any trailing suffixes that encode debugging information or leading
6224 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6225 information that is ignored). */
40658b94 6226
b5ec771e 6227static bool
c4d840bd
PH
6228full_match (const char *sym_name, const char *search_name)
6229{
b5ec771e
PA
6230 size_t search_name_len = strlen (search_name);
6231
6232 if (strncmp (sym_name, search_name, search_name_len) == 0
6233 && is_name_suffix (sym_name + search_name_len))
6234 return true;
6235
6236 if (startswith (sym_name, "_ada_")
6237 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6238 && is_name_suffix (sym_name + search_name_len + 5))
6239 return true;
c4d840bd 6240
b5ec771e
PA
6241 return false;
6242}
c4d840bd 6243
b5ec771e
PA
6244/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6245 *defn_symbols, updating the list of symbols in OBSTACKP (if
6246 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6247
6248static void
6249ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6250 const struct block *block,
6251 const lookup_name_info &lookup_name,
6252 domain_enum domain, struct objfile *objfile)
96d887e8 6253{
8157b174 6254 struct block_iterator iter;
96d887e8
PH
6255 /* A matching argument symbol, if any. */
6256 struct symbol *arg_sym;
6257 /* Set true when we find a matching non-argument symbol. */
6258 int found_sym;
6259 struct symbol *sym;
6260
6261 arg_sym = NULL;
6262 found_sym = 0;
b5ec771e
PA
6263 for (sym = block_iter_match_first (block, lookup_name, &iter);
6264 sym != NULL;
6265 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6266 {
b5ec771e
PA
6267 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6268 SYMBOL_DOMAIN (sym), domain))
6269 {
6270 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6271 {
6272 if (SYMBOL_IS_ARGUMENT (sym))
6273 arg_sym = sym;
6274 else
6275 {
6276 found_sym = 1;
6277 add_defn_to_vec (obstackp,
6278 fixup_symbol_section (sym, objfile),
6279 block);
6280 }
6281 }
6282 }
96d887e8
PH
6283 }
6284
22cee43f
PMR
6285 /* Handle renamings. */
6286
b5ec771e 6287 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6288 found_sym = 1;
6289
96d887e8
PH
6290 if (!found_sym && arg_sym != NULL)
6291 {
76a01679
JB
6292 add_defn_to_vec (obstackp,
6293 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6294 block);
96d887e8
PH
6295 }
6296
b5ec771e 6297 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6298 {
6299 arg_sym = NULL;
6300 found_sym = 0;
b5ec771e
PA
6301 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6302 const char *name = ada_lookup_name.c_str ();
6303 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6304
6305 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6306 {
4186eb54
KS
6307 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6308 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6309 {
6310 int cmp;
6311
6312 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6313 if (cmp == 0)
6314 {
61012eef 6315 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6316 if (cmp == 0)
6317 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6318 name_len);
6319 }
6320
6321 if (cmp == 0
6322 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6323 {
2a2d4dc3
AS
6324 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6325 {
6326 if (SYMBOL_IS_ARGUMENT (sym))
6327 arg_sym = sym;
6328 else
6329 {
6330 found_sym = 1;
6331 add_defn_to_vec (obstackp,
6332 fixup_symbol_section (sym, objfile),
6333 block);
6334 }
6335 }
76a01679
JB
6336 }
6337 }
76a01679 6338 }
96d887e8
PH
6339
6340 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6341 They aren't parameters, right? */
6342 if (!found_sym && arg_sym != NULL)
6343 {
6344 add_defn_to_vec (obstackp,
76a01679 6345 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6346 block);
96d887e8
PH
6347 }
6348 }
6349}
6350\f
41d27058
JB
6351
6352 /* Symbol Completion */
6353
b5ec771e 6354/* See symtab.h. */
41d27058 6355
b5ec771e
PA
6356bool
6357ada_lookup_name_info::matches
6358 (const char *sym_name,
6359 symbol_name_match_type match_type,
6360 completion_match *comp_match) const
41d27058 6361{
b5ec771e
PA
6362 bool match = false;
6363 const char *text = m_encoded_name.c_str ();
6364 size_t text_len = m_encoded_name.size ();
41d27058
JB
6365
6366 /* First, test against the fully qualified name of the symbol. */
6367
6368 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6369 match = true;
41d27058 6370
b5ec771e 6371 if (match && !m_encoded_p)
41d27058
JB
6372 {
6373 /* One needed check before declaring a positive match is to verify
6374 that iff we are doing a verbatim match, the decoded version
6375 of the symbol name starts with '<'. Otherwise, this symbol name
6376 is not a suitable completion. */
6377 const char *sym_name_copy = sym_name;
b5ec771e 6378 bool has_angle_bracket;
41d27058
JB
6379
6380 sym_name = ada_decode (sym_name);
6381 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6382 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6383 sym_name = sym_name_copy;
6384 }
6385
b5ec771e 6386 if (match && !m_verbatim_p)
41d27058
JB
6387 {
6388 /* When doing non-verbatim match, another check that needs to
6389 be done is to verify that the potentially matching symbol name
6390 does not include capital letters, because the ada-mode would
6391 not be able to understand these symbol names without the
6392 angle bracket notation. */
6393 const char *tmp;
6394
6395 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6396 if (*tmp != '\0')
b5ec771e 6397 match = false;
41d27058
JB
6398 }
6399
6400 /* Second: Try wild matching... */
6401
b5ec771e 6402 if (!match && m_wild_match_p)
41d27058
JB
6403 {
6404 /* Since we are doing wild matching, this means that TEXT
6405 may represent an unqualified symbol name. We therefore must
6406 also compare TEXT against the unqualified name of the symbol. */
6407 sym_name = ada_unqualified_name (ada_decode (sym_name));
6408
6409 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6410 match = true;
41d27058
JB
6411 }
6412
b5ec771e 6413 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6414
6415 if (!match)
b5ec771e 6416 return false;
41d27058 6417
b5ec771e
PA
6418 if (comp_match != NULL)
6419 {
6420 std::string &match_str = comp_match->storage ();
41d27058 6421
b5ec771e
PA
6422 if (!m_encoded_p)
6423 {
6424 match_str = ada_decode (sym_name);
6425 comp_match->set_match (match_str.c_str ());
6426 }
6427 else
6428 {
6429 if (m_verbatim_p)
6430 match_str = add_angle_brackets (sym_name);
6431 else
6432 match_str = sym_name;
41d27058 6433
b5ec771e
PA
6434 comp_match->set_match (match_str.c_str ());
6435 }
41d27058
JB
6436 }
6437
b5ec771e 6438 return true;
41d27058
JB
6439}
6440
b5ec771e 6441/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6442 WORD is the entire command on which completion is made. */
41d27058 6443
eb3ff9a5
PA
6444static void
6445ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6446 complete_symbol_mode mode,
b5ec771e
PA
6447 symbol_name_match_type name_match_type,
6448 const char *text, const char *word,
eb3ff9a5 6449 enum type_code code)
41d27058 6450{
41d27058 6451 struct symbol *sym;
43f3e411 6452 struct compunit_symtab *s;
41d27058
JB
6453 struct minimal_symbol *msymbol;
6454 struct objfile *objfile;
3977b71f 6455 const struct block *b, *surrounding_static_block = 0;
41d27058 6456 int i;
8157b174 6457 struct block_iterator iter;
b8fea896 6458 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6459
2f68a895
TT
6460 gdb_assert (code == TYPE_CODE_UNDEF);
6461
1b026119 6462 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6463
6464 /* First, look at the partial symtab symbols. */
14bc53a8 6465 expand_symtabs_matching (NULL,
b5ec771e
PA
6466 lookup_name,
6467 NULL,
14bc53a8
PA
6468 NULL,
6469 ALL_DOMAIN);
41d27058
JB
6470
6471 /* At this point scan through the misc symbol vectors and add each
6472 symbol you find to the list. Eventually we want to ignore
6473 anything that isn't a text symbol (everything else will be
6474 handled by the psymtab code above). */
6475
6476 ALL_MSYMBOLS (objfile, msymbol)
6477 {
6478 QUIT;
b5ec771e 6479
f9d67a22
PA
6480 if (completion_skip_symbol (mode, msymbol))
6481 continue;
6482
b5ec771e
PA
6483 completion_list_add_name (tracker,
6484 MSYMBOL_LANGUAGE (msymbol),
6485 MSYMBOL_LINKAGE_NAME (msymbol),
1b026119 6486 lookup_name, text, word);
41d27058
JB
6487 }
6488
6489 /* Search upwards from currently selected frame (so that we can
6490 complete on local vars. */
6491
6492 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6493 {
6494 if (!BLOCK_SUPERBLOCK (b))
6495 surrounding_static_block = b; /* For elmin of dups */
6496
6497 ALL_BLOCK_SYMBOLS (b, iter, sym)
6498 {
f9d67a22
PA
6499 if (completion_skip_symbol (mode, sym))
6500 continue;
6501
b5ec771e
PA
6502 completion_list_add_name (tracker,
6503 SYMBOL_LANGUAGE (sym),
6504 SYMBOL_LINKAGE_NAME (sym),
1b026119 6505 lookup_name, text, word);
41d27058
JB
6506 }
6507 }
6508
6509 /* Go through the symtabs and check the externs and statics for
43f3e411 6510 symbols which match. */
41d27058 6511
43f3e411 6512 ALL_COMPUNITS (objfile, s)
41d27058
JB
6513 {
6514 QUIT;
43f3e411 6515 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6516 ALL_BLOCK_SYMBOLS (b, iter, sym)
6517 {
f9d67a22
PA
6518 if (completion_skip_symbol (mode, sym))
6519 continue;
6520
b5ec771e
PA
6521 completion_list_add_name (tracker,
6522 SYMBOL_LANGUAGE (sym),
6523 SYMBOL_LINKAGE_NAME (sym),
1b026119 6524 lookup_name, text, word);
41d27058
JB
6525 }
6526 }
6527
43f3e411 6528 ALL_COMPUNITS (objfile, s)
41d27058
JB
6529 {
6530 QUIT;
43f3e411 6531 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6532 /* Don't do this block twice. */
6533 if (b == surrounding_static_block)
6534 continue;
6535 ALL_BLOCK_SYMBOLS (b, iter, sym)
6536 {
f9d67a22
PA
6537 if (completion_skip_symbol (mode, sym))
6538 continue;
6539
b5ec771e
PA
6540 completion_list_add_name (tracker,
6541 SYMBOL_LANGUAGE (sym),
6542 SYMBOL_LINKAGE_NAME (sym),
1b026119 6543 lookup_name, text, word);
41d27058
JB
6544 }
6545 }
6546
b8fea896 6547 do_cleanups (old_chain);
41d27058
JB
6548}
6549
963a6417 6550 /* Field Access */
96d887e8 6551
73fb9985
JB
6552/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6553 for tagged types. */
6554
6555static int
6556ada_is_dispatch_table_ptr_type (struct type *type)
6557{
0d5cff50 6558 const char *name;
73fb9985
JB
6559
6560 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6561 return 0;
6562
6563 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6564 if (name == NULL)
6565 return 0;
6566
6567 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6568}
6569
ac4a2da4
JG
6570/* Return non-zero if TYPE is an interface tag. */
6571
6572static int
6573ada_is_interface_tag (struct type *type)
6574{
6575 const char *name = TYPE_NAME (type);
6576
6577 if (name == NULL)
6578 return 0;
6579
6580 return (strcmp (name, "ada__tags__interface_tag") == 0);
6581}
6582
963a6417
PH
6583/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6584 to be invisible to users. */
96d887e8 6585
963a6417
PH
6586int
6587ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6588{
963a6417
PH
6589 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6590 return 1;
ffde82bf 6591
73fb9985
JB
6592 /* Check the name of that field. */
6593 {
6594 const char *name = TYPE_FIELD_NAME (type, field_num);
6595
6596 /* Anonymous field names should not be printed.
6597 brobecker/2007-02-20: I don't think this can actually happen
6598 but we don't want to print the value of annonymous fields anyway. */
6599 if (name == NULL)
6600 return 1;
6601
ffde82bf
JB
6602 /* Normally, fields whose name start with an underscore ("_")
6603 are fields that have been internally generated by the compiler,
6604 and thus should not be printed. The "_parent" field is special,
6605 however: This is a field internally generated by the compiler
6606 for tagged types, and it contains the components inherited from
6607 the parent type. This field should not be printed as is, but
6608 should not be ignored either. */
61012eef 6609 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6610 return 1;
6611 }
6612
ac4a2da4
JG
6613 /* If this is the dispatch table of a tagged type or an interface tag,
6614 then ignore. */
73fb9985 6615 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6616 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6617 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6618 return 1;
6619
6620 /* Not a special field, so it should not be ignored. */
6621 return 0;
963a6417 6622}
96d887e8 6623
963a6417 6624/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6625 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6626
963a6417
PH
6627int
6628ada_is_tagged_type (struct type *type, int refok)
6629{
988f6b3d 6630 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6631}
96d887e8 6632
963a6417 6633/* True iff TYPE represents the type of X'Tag */
96d887e8 6634
963a6417
PH
6635int
6636ada_is_tag_type (struct type *type)
6637{
460efde1
JB
6638 type = ada_check_typedef (type);
6639
963a6417
PH
6640 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6641 return 0;
6642 else
96d887e8 6643 {
963a6417 6644 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6645
963a6417
PH
6646 return (name != NULL
6647 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6648 }
96d887e8
PH
6649}
6650
963a6417 6651/* The type of the tag on VAL. */
76a01679 6652
963a6417
PH
6653struct type *
6654ada_tag_type (struct value *val)
96d887e8 6655{
988f6b3d 6656 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6657}
96d887e8 6658
b50d69b5
JG
6659/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6660 retired at Ada 05). */
6661
6662static int
6663is_ada95_tag (struct value *tag)
6664{
6665 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6666}
6667
963a6417 6668/* The value of the tag on VAL. */
96d887e8 6669
963a6417
PH
6670struct value *
6671ada_value_tag (struct value *val)
6672{
03ee6b2e 6673 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6674}
6675
963a6417
PH
6676/* The value of the tag on the object of type TYPE whose contents are
6677 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6678 ADDRESS. */
96d887e8 6679
963a6417 6680static struct value *
10a2c479 6681value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6682 const gdb_byte *valaddr,
963a6417 6683 CORE_ADDR address)
96d887e8 6684{
b5385fc0 6685 int tag_byte_offset;
963a6417 6686 struct type *tag_type;
5b4ee69b 6687
963a6417 6688 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6689 NULL, NULL, NULL))
96d887e8 6690 {
fc1a4b47 6691 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6692 ? NULL
6693 : valaddr + tag_byte_offset);
963a6417 6694 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6695
963a6417 6696 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6697 }
963a6417
PH
6698 return NULL;
6699}
96d887e8 6700
963a6417
PH
6701static struct type *
6702type_from_tag (struct value *tag)
6703{
6704 const char *type_name = ada_tag_name (tag);
5b4ee69b 6705
963a6417
PH
6706 if (type_name != NULL)
6707 return ada_find_any_type (ada_encode (type_name));
6708 return NULL;
6709}
96d887e8 6710
b50d69b5
JG
6711/* Given a value OBJ of a tagged type, return a value of this
6712 type at the base address of the object. The base address, as
6713 defined in Ada.Tags, it is the address of the primary tag of
6714 the object, and therefore where the field values of its full
6715 view can be fetched. */
6716
6717struct value *
6718ada_tag_value_at_base_address (struct value *obj)
6719{
b50d69b5
JG
6720 struct value *val;
6721 LONGEST offset_to_top = 0;
6722 struct type *ptr_type, *obj_type;
6723 struct value *tag;
6724 CORE_ADDR base_address;
6725
6726 obj_type = value_type (obj);
6727
6728 /* It is the responsability of the caller to deref pointers. */
6729
6730 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6731 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6732 return obj;
6733
6734 tag = ada_value_tag (obj);
6735 if (!tag)
6736 return obj;
6737
6738 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6739
6740 if (is_ada95_tag (tag))
6741 return obj;
6742
6743 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6744 ptr_type = lookup_pointer_type (ptr_type);
6745 val = value_cast (ptr_type, tag);
6746 if (!val)
6747 return obj;
6748
6749 /* It is perfectly possible that an exception be raised while
6750 trying to determine the base address, just like for the tag;
6751 see ada_tag_name for more details. We do not print the error
6752 message for the same reason. */
6753
492d29ea 6754 TRY
b50d69b5
JG
6755 {
6756 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6757 }
6758
492d29ea
PA
6759 CATCH (e, RETURN_MASK_ERROR)
6760 {
6761 return obj;
6762 }
6763 END_CATCH
b50d69b5
JG
6764
6765 /* If offset is null, nothing to do. */
6766
6767 if (offset_to_top == 0)
6768 return obj;
6769
6770 /* -1 is a special case in Ada.Tags; however, what should be done
6771 is not quite clear from the documentation. So do nothing for
6772 now. */
6773
6774 if (offset_to_top == -1)
6775 return obj;
6776
6777 base_address = value_address (obj) - offset_to_top;
6778 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6779
6780 /* Make sure that we have a proper tag at the new address.
6781 Otherwise, offset_to_top is bogus (which can happen when
6782 the object is not initialized yet). */
6783
6784 if (!tag)
6785 return obj;
6786
6787 obj_type = type_from_tag (tag);
6788
6789 if (!obj_type)
6790 return obj;
6791
6792 return value_from_contents_and_address (obj_type, NULL, base_address);
6793}
6794
1b611343
JB
6795/* Return the "ada__tags__type_specific_data" type. */
6796
6797static struct type *
6798ada_get_tsd_type (struct inferior *inf)
963a6417 6799{
1b611343 6800 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6801
1b611343
JB
6802 if (data->tsd_type == 0)
6803 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6804 return data->tsd_type;
6805}
529cad9c 6806
1b611343
JB
6807/* Return the TSD (type-specific data) associated to the given TAG.
6808 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6809
1b611343 6810 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6811
1b611343
JB
6812static struct value *
6813ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6814{
4c4b4cd2 6815 struct value *val;
1b611343 6816 struct type *type;
5b4ee69b 6817
1b611343
JB
6818 /* First option: The TSD is simply stored as a field of our TAG.
6819 Only older versions of GNAT would use this format, but we have
6820 to test it first, because there are no visible markers for
6821 the current approach except the absence of that field. */
529cad9c 6822
1b611343
JB
6823 val = ada_value_struct_elt (tag, "tsd", 1);
6824 if (val)
6825 return val;
e802dbe0 6826
1b611343
JB
6827 /* Try the second representation for the dispatch table (in which
6828 there is no explicit 'tsd' field in the referent of the tag pointer,
6829 and instead the tsd pointer is stored just before the dispatch
6830 table. */
e802dbe0 6831
1b611343
JB
6832 type = ada_get_tsd_type (current_inferior());
6833 if (type == NULL)
6834 return NULL;
6835 type = lookup_pointer_type (lookup_pointer_type (type));
6836 val = value_cast (type, tag);
6837 if (val == NULL)
6838 return NULL;
6839 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6840}
6841
1b611343
JB
6842/* Given the TSD of a tag (type-specific data), return a string
6843 containing the name of the associated type.
6844
6845 The returned value is good until the next call. May return NULL
6846 if we are unable to determine the tag name. */
6847
6848static char *
6849ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6850{
529cad9c
PH
6851 static char name[1024];
6852 char *p;
1b611343 6853 struct value *val;
529cad9c 6854
1b611343 6855 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6856 if (val == NULL)
1b611343 6857 return NULL;
4c4b4cd2
PH
6858 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6859 for (p = name; *p != '\0'; p += 1)
6860 if (isalpha (*p))
6861 *p = tolower (*p);
1b611343 6862 return name;
4c4b4cd2
PH
6863}
6864
6865/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6866 a C string.
6867
6868 Return NULL if the TAG is not an Ada tag, or if we were unable to
6869 determine the name of that tag. The result is good until the next
6870 call. */
4c4b4cd2
PH
6871
6872const char *
6873ada_tag_name (struct value *tag)
6874{
1b611343 6875 char *name = NULL;
5b4ee69b 6876
df407dfe 6877 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6878 return NULL;
1b611343
JB
6879
6880 /* It is perfectly possible that an exception be raised while trying
6881 to determine the TAG's name, even under normal circumstances:
6882 The associated variable may be uninitialized or corrupted, for
6883 instance. We do not let any exception propagate past this point.
6884 instead we return NULL.
6885
6886 We also do not print the error message either (which often is very
6887 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6888 the caller print a more meaningful message if necessary. */
492d29ea 6889 TRY
1b611343
JB
6890 {
6891 struct value *tsd = ada_get_tsd_from_tag (tag);
6892
6893 if (tsd != NULL)
6894 name = ada_tag_name_from_tsd (tsd);
6895 }
492d29ea
PA
6896 CATCH (e, RETURN_MASK_ERROR)
6897 {
6898 }
6899 END_CATCH
1b611343
JB
6900
6901 return name;
4c4b4cd2
PH
6902}
6903
6904/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6905
d2e4a39e 6906struct type *
ebf56fd3 6907ada_parent_type (struct type *type)
14f9c5c9
AS
6908{
6909 int i;
6910
61ee279c 6911 type = ada_check_typedef (type);
14f9c5c9
AS
6912
6913 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6914 return NULL;
6915
6916 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6917 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6918 {
6919 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6920
6921 /* If the _parent field is a pointer, then dereference it. */
6922 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6923 parent_type = TYPE_TARGET_TYPE (parent_type);
6924 /* If there is a parallel XVS type, get the actual base type. */
6925 parent_type = ada_get_base_type (parent_type);
6926
6927 return ada_check_typedef (parent_type);
6928 }
14f9c5c9
AS
6929
6930 return NULL;
6931}
6932
4c4b4cd2
PH
6933/* True iff field number FIELD_NUM of structure type TYPE contains the
6934 parent-type (inherited) fields of a derived type. Assumes TYPE is
6935 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6936
6937int
ebf56fd3 6938ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6939{
61ee279c 6940 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6941
4c4b4cd2 6942 return (name != NULL
61012eef
GB
6943 && (startswith (name, "PARENT")
6944 || startswith (name, "_parent")));
14f9c5c9
AS
6945}
6946
4c4b4cd2 6947/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6948 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6949 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6950 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6951 structures. */
14f9c5c9
AS
6952
6953int
ebf56fd3 6954ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6955{
d2e4a39e 6956 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6957
dddc0e16
JB
6958 if (name != NULL && strcmp (name, "RETVAL") == 0)
6959 {
6960 /* This happens in functions with "out" or "in out" parameters
6961 which are passed by copy. For such functions, GNAT describes
6962 the function's return type as being a struct where the return
6963 value is in a field called RETVAL, and where the other "out"
6964 or "in out" parameters are fields of that struct. This is not
6965 a wrapper. */
6966 return 0;
6967 }
6968
d2e4a39e 6969 return (name != NULL
61012eef 6970 && (startswith (name, "PARENT")
4c4b4cd2 6971 || strcmp (name, "REP") == 0
61012eef 6972 || startswith (name, "_parent")
4c4b4cd2 6973 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6974}
6975
4c4b4cd2
PH
6976/* True iff field number FIELD_NUM of structure or union type TYPE
6977 is a variant wrapper. Assumes TYPE is a structure type with at least
6978 FIELD_NUM+1 fields. */
14f9c5c9
AS
6979
6980int
ebf56fd3 6981ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6982{
d2e4a39e 6983 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6984
14f9c5c9 6985 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6986 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6987 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6988 == TYPE_CODE_UNION)));
14f9c5c9
AS
6989}
6990
6991/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6992 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6993 returns the type of the controlling discriminant for the variant.
6994 May return NULL if the type could not be found. */
14f9c5c9 6995
d2e4a39e 6996struct type *
ebf56fd3 6997ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6998{
a121b7c1 6999 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7000
988f6b3d 7001 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
7002}
7003
4c4b4cd2 7004/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7005 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7006 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7007
7008int
ebf56fd3 7009ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7010{
d2e4a39e 7011 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7012
14f9c5c9
AS
7013 return (name != NULL && name[0] == 'O');
7014}
7015
7016/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7017 returns the name of the discriminant controlling the variant.
7018 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7019
a121b7c1 7020const char *
ebf56fd3 7021ada_variant_discrim_name (struct type *type0)
14f9c5c9 7022{
d2e4a39e 7023 static char *result = NULL;
14f9c5c9 7024 static size_t result_len = 0;
d2e4a39e
AS
7025 struct type *type;
7026 const char *name;
7027 const char *discrim_end;
7028 const char *discrim_start;
14f9c5c9
AS
7029
7030 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7031 type = TYPE_TARGET_TYPE (type0);
7032 else
7033 type = type0;
7034
7035 name = ada_type_name (type);
7036
7037 if (name == NULL || name[0] == '\000')
7038 return "";
7039
7040 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7041 discrim_end -= 1)
7042 {
61012eef 7043 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7044 break;
14f9c5c9
AS
7045 }
7046 if (discrim_end == name)
7047 return "";
7048
d2e4a39e 7049 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7050 discrim_start -= 1)
7051 {
d2e4a39e 7052 if (discrim_start == name + 1)
4c4b4cd2 7053 return "";
76a01679 7054 if ((discrim_start > name + 3
61012eef 7055 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7056 || discrim_start[-1] == '.')
7057 break;
14f9c5c9
AS
7058 }
7059
7060 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7061 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7062 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7063 return result;
7064}
7065
4c4b4cd2
PH
7066/* Scan STR for a subtype-encoded number, beginning at position K.
7067 Put the position of the character just past the number scanned in
7068 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7069 Return 1 if there was a valid number at the given position, and 0
7070 otherwise. A "subtype-encoded" number consists of the absolute value
7071 in decimal, followed by the letter 'm' to indicate a negative number.
7072 Assumes 0m does not occur. */
14f9c5c9
AS
7073
7074int
d2e4a39e 7075ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7076{
7077 ULONGEST RU;
7078
d2e4a39e 7079 if (!isdigit (str[k]))
14f9c5c9
AS
7080 return 0;
7081
4c4b4cd2 7082 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7083 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7084 LONGEST. */
14f9c5c9
AS
7085 RU = 0;
7086 while (isdigit (str[k]))
7087 {
d2e4a39e 7088 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7089 k += 1;
7090 }
7091
d2e4a39e 7092 if (str[k] == 'm')
14f9c5c9
AS
7093 {
7094 if (R != NULL)
4c4b4cd2 7095 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7096 k += 1;
7097 }
7098 else if (R != NULL)
7099 *R = (LONGEST) RU;
7100
4c4b4cd2 7101 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7102 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7103 number representable as a LONGEST (although either would probably work
7104 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7105 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7106
7107 if (new_k != NULL)
7108 *new_k = k;
7109 return 1;
7110}
7111
4c4b4cd2
PH
7112/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7113 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7114 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7115
d2e4a39e 7116int
ebf56fd3 7117ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7118{
d2e4a39e 7119 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7120 int p;
7121
7122 p = 0;
7123 while (1)
7124 {
d2e4a39e 7125 switch (name[p])
4c4b4cd2
PH
7126 {
7127 case '\0':
7128 return 0;
7129 case 'S':
7130 {
7131 LONGEST W;
5b4ee69b 7132
4c4b4cd2
PH
7133 if (!ada_scan_number (name, p + 1, &W, &p))
7134 return 0;
7135 if (val == W)
7136 return 1;
7137 break;
7138 }
7139 case 'R':
7140 {
7141 LONGEST L, U;
5b4ee69b 7142
4c4b4cd2
PH
7143 if (!ada_scan_number (name, p + 1, &L, &p)
7144 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7145 return 0;
7146 if (val >= L && val <= U)
7147 return 1;
7148 break;
7149 }
7150 case 'O':
7151 return 1;
7152 default:
7153 return 0;
7154 }
7155 }
7156}
7157
0963b4bd 7158/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7159
7160/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7161 ARG_TYPE, extract and return the value of one of its (non-static)
7162 fields. FIELDNO says which field. Differs from value_primitive_field
7163 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7164
4c4b4cd2 7165static struct value *
d2e4a39e 7166ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7167 struct type *arg_type)
14f9c5c9 7168{
14f9c5c9
AS
7169 struct type *type;
7170
61ee279c 7171 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7172 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7173
4c4b4cd2 7174 /* Handle packed fields. */
14f9c5c9
AS
7175
7176 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7177 {
7178 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7179 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7180
0fd88904 7181 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7182 offset + bit_pos / 8,
7183 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7184 }
7185 else
7186 return value_primitive_field (arg1, offset, fieldno, arg_type);
7187}
7188
52ce6436
PH
7189/* Find field with name NAME in object of type TYPE. If found,
7190 set the following for each argument that is non-null:
7191 - *FIELD_TYPE_P to the field's type;
7192 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7193 an object of that type;
7194 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7195 - *BIT_SIZE_P to its size in bits if the field is packed, and
7196 0 otherwise;
7197 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7198 fields up to but not including the desired field, or by the total
7199 number of fields if not found. A NULL value of NAME never
7200 matches; the function just counts visible fields in this case.
7201
0963b4bd 7202 Returns 1 if found, 0 otherwise. */
52ce6436 7203
4c4b4cd2 7204static int
0d5cff50 7205find_struct_field (const char *name, struct type *type, int offset,
76a01679 7206 struct type **field_type_p,
52ce6436
PH
7207 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7208 int *index_p)
4c4b4cd2
PH
7209{
7210 int i;
7211
61ee279c 7212 type = ada_check_typedef (type);
76a01679 7213
52ce6436
PH
7214 if (field_type_p != NULL)
7215 *field_type_p = NULL;
7216 if (byte_offset_p != NULL)
d5d6fca5 7217 *byte_offset_p = 0;
52ce6436
PH
7218 if (bit_offset_p != NULL)
7219 *bit_offset_p = 0;
7220 if (bit_size_p != NULL)
7221 *bit_size_p = 0;
7222
7223 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7224 {
7225 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7226 int fld_offset = offset + bit_pos / 8;
0d5cff50 7227 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7228
4c4b4cd2
PH
7229 if (t_field_name == NULL)
7230 continue;
7231
52ce6436 7232 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7233 {
7234 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7235
52ce6436
PH
7236 if (field_type_p != NULL)
7237 *field_type_p = TYPE_FIELD_TYPE (type, i);
7238 if (byte_offset_p != NULL)
7239 *byte_offset_p = fld_offset;
7240 if (bit_offset_p != NULL)
7241 *bit_offset_p = bit_pos % 8;
7242 if (bit_size_p != NULL)
7243 *bit_size_p = bit_size;
76a01679
JB
7244 return 1;
7245 }
4c4b4cd2
PH
7246 else if (ada_is_wrapper_field (type, i))
7247 {
52ce6436
PH
7248 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7249 field_type_p, byte_offset_p, bit_offset_p,
7250 bit_size_p, index_p))
76a01679
JB
7251 return 1;
7252 }
4c4b4cd2
PH
7253 else if (ada_is_variant_part (type, i))
7254 {
52ce6436
PH
7255 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7256 fixed type?? */
4c4b4cd2 7257 int j;
52ce6436
PH
7258 struct type *field_type
7259 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7260
52ce6436 7261 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7262 {
76a01679
JB
7263 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7264 fld_offset
7265 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7266 field_type_p, byte_offset_p,
52ce6436 7267 bit_offset_p, bit_size_p, index_p))
76a01679 7268 return 1;
4c4b4cd2
PH
7269 }
7270 }
52ce6436
PH
7271 else if (index_p != NULL)
7272 *index_p += 1;
4c4b4cd2
PH
7273 }
7274 return 0;
7275}
7276
0963b4bd 7277/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7278
52ce6436
PH
7279static int
7280num_visible_fields (struct type *type)
7281{
7282 int n;
5b4ee69b 7283
52ce6436
PH
7284 n = 0;
7285 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7286 return n;
7287}
14f9c5c9 7288
4c4b4cd2 7289/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7290 and search in it assuming it has (class) type TYPE.
7291 If found, return value, else return NULL.
7292
4c4b4cd2 7293 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7294
4c4b4cd2 7295static struct value *
108d56a4 7296ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7297 struct type *type)
14f9c5c9
AS
7298{
7299 int i;
14f9c5c9 7300
5b4ee69b 7301 type = ada_check_typedef (type);
52ce6436 7302 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7303 {
0d5cff50 7304 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7305
7306 if (t_field_name == NULL)
4c4b4cd2 7307 continue;
14f9c5c9
AS
7308
7309 else if (field_name_match (t_field_name, name))
4c4b4cd2 7310 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7311
7312 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7313 {
0963b4bd 7314 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7315 ada_search_struct_field (name, arg,
7316 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7317 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7318
4c4b4cd2
PH
7319 if (v != NULL)
7320 return v;
7321 }
14f9c5c9
AS
7322
7323 else if (ada_is_variant_part (type, i))
4c4b4cd2 7324 {
0963b4bd 7325 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7326 int j;
5b4ee69b
MS
7327 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7328 i));
4c4b4cd2
PH
7329 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7330
52ce6436 7331 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7332 {
0963b4bd
MS
7333 struct value *v = ada_search_struct_field /* Force line
7334 break. */
06d5cf63
JB
7335 (name, arg,
7336 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7337 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7338
4c4b4cd2
PH
7339 if (v != NULL)
7340 return v;
7341 }
7342 }
14f9c5c9
AS
7343 }
7344 return NULL;
7345}
d2e4a39e 7346
52ce6436
PH
7347static struct value *ada_index_struct_field_1 (int *, struct value *,
7348 int, struct type *);
7349
7350
7351/* Return field #INDEX in ARG, where the index is that returned by
7352 * find_struct_field through its INDEX_P argument. Adjust the address
7353 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7354 * If found, return value, else return NULL. */
52ce6436
PH
7355
7356static struct value *
7357ada_index_struct_field (int index, struct value *arg, int offset,
7358 struct type *type)
7359{
7360 return ada_index_struct_field_1 (&index, arg, offset, type);
7361}
7362
7363
7364/* Auxiliary function for ada_index_struct_field. Like
7365 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7366 * *INDEX_P. */
52ce6436
PH
7367
7368static struct value *
7369ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7370 struct type *type)
7371{
7372 int i;
7373 type = ada_check_typedef (type);
7374
7375 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7376 {
7377 if (TYPE_FIELD_NAME (type, i) == NULL)
7378 continue;
7379 else if (ada_is_wrapper_field (type, i))
7380 {
0963b4bd 7381 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7382 ada_index_struct_field_1 (index_p, arg,
7383 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7384 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7385
52ce6436
PH
7386 if (v != NULL)
7387 return v;
7388 }
7389
7390 else if (ada_is_variant_part (type, i))
7391 {
7392 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7393 find_struct_field. */
52ce6436
PH
7394 error (_("Cannot assign this kind of variant record"));
7395 }
7396 else if (*index_p == 0)
7397 return ada_value_primitive_field (arg, offset, i, type);
7398 else
7399 *index_p -= 1;
7400 }
7401 return NULL;
7402}
7403
4c4b4cd2
PH
7404/* Given ARG, a value of type (pointer or reference to a)*
7405 structure/union, extract the component named NAME from the ultimate
7406 target structure/union and return it as a value with its
f5938064 7407 appropriate type.
14f9c5c9 7408
4c4b4cd2
PH
7409 The routine searches for NAME among all members of the structure itself
7410 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7411 (e.g., '_parent').
7412
03ee6b2e
PH
7413 If NO_ERR, then simply return NULL in case of error, rather than
7414 calling error. */
14f9c5c9 7415
d2e4a39e 7416struct value *
a121b7c1 7417ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7418{
4c4b4cd2 7419 struct type *t, *t1;
d2e4a39e 7420 struct value *v;
14f9c5c9 7421
4c4b4cd2 7422 v = NULL;
df407dfe 7423 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7424 if (TYPE_CODE (t) == TYPE_CODE_REF)
7425 {
7426 t1 = TYPE_TARGET_TYPE (t);
7427 if (t1 == NULL)
03ee6b2e 7428 goto BadValue;
61ee279c 7429 t1 = ada_check_typedef (t1);
4c4b4cd2 7430 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7431 {
994b9211 7432 arg = coerce_ref (arg);
76a01679
JB
7433 t = t1;
7434 }
4c4b4cd2 7435 }
14f9c5c9 7436
4c4b4cd2
PH
7437 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7438 {
7439 t1 = TYPE_TARGET_TYPE (t);
7440 if (t1 == NULL)
03ee6b2e 7441 goto BadValue;
61ee279c 7442 t1 = ada_check_typedef (t1);
4c4b4cd2 7443 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7444 {
7445 arg = value_ind (arg);
7446 t = t1;
7447 }
4c4b4cd2 7448 else
76a01679 7449 break;
4c4b4cd2 7450 }
14f9c5c9 7451
4c4b4cd2 7452 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7453 goto BadValue;
14f9c5c9 7454
4c4b4cd2
PH
7455 if (t1 == t)
7456 v = ada_search_struct_field (name, arg, 0, t);
7457 else
7458 {
7459 int bit_offset, bit_size, byte_offset;
7460 struct type *field_type;
7461 CORE_ADDR address;
7462
76a01679 7463 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7464 address = value_address (ada_value_ind (arg));
4c4b4cd2 7465 else
b50d69b5 7466 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7467
1ed6ede0 7468 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7469 if (find_struct_field (name, t1, 0,
7470 &field_type, &byte_offset, &bit_offset,
52ce6436 7471 &bit_size, NULL))
76a01679
JB
7472 {
7473 if (bit_size != 0)
7474 {
714e53ab
PH
7475 if (TYPE_CODE (t) == TYPE_CODE_REF)
7476 arg = ada_coerce_ref (arg);
7477 else
7478 arg = ada_value_ind (arg);
76a01679
JB
7479 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7480 bit_offset, bit_size,
7481 field_type);
7482 }
7483 else
f5938064 7484 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7485 }
7486 }
7487
03ee6b2e
PH
7488 if (v != NULL || no_err)
7489 return v;
7490 else
323e0a4a 7491 error (_("There is no member named %s."), name);
14f9c5c9 7492
03ee6b2e
PH
7493 BadValue:
7494 if (no_err)
7495 return NULL;
7496 else
0963b4bd
MS
7497 error (_("Attempt to extract a component of "
7498 "a value that is not a record."));
14f9c5c9
AS
7499}
7500
3b4de39c 7501/* Return a string representation of type TYPE. */
99bbb428 7502
3b4de39c 7503static std::string
99bbb428
PA
7504type_as_string (struct type *type)
7505{
d7e74731 7506 string_file tmp_stream;
99bbb428 7507
d7e74731 7508 type_print (type, "", &tmp_stream, -1);
99bbb428 7509
d7e74731 7510 return std::move (tmp_stream.string ());
99bbb428
PA
7511}
7512
14f9c5c9 7513/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7514 If DISPP is non-null, add its byte displacement from the beginning of a
7515 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7516 work for packed fields).
7517
7518 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7519 followed by "___".
14f9c5c9 7520
0963b4bd 7521 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7522 be a (pointer or reference)+ to a struct or union, and the
7523 ultimate target type will be searched.
14f9c5c9
AS
7524
7525 Looks recursively into variant clauses and parent types.
7526
4c4b4cd2
PH
7527 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7528 TYPE is not a type of the right kind. */
14f9c5c9 7529
4c4b4cd2 7530static struct type *
a121b7c1 7531ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7532 int noerr)
14f9c5c9
AS
7533{
7534 int i;
7535
7536 if (name == NULL)
7537 goto BadName;
7538
76a01679 7539 if (refok && type != NULL)
4c4b4cd2
PH
7540 while (1)
7541 {
61ee279c 7542 type = ada_check_typedef (type);
76a01679
JB
7543 if (TYPE_CODE (type) != TYPE_CODE_PTR
7544 && TYPE_CODE (type) != TYPE_CODE_REF)
7545 break;
7546 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7547 }
14f9c5c9 7548
76a01679 7549 if (type == NULL
1265e4aa
JB
7550 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7551 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7552 {
4c4b4cd2 7553 if (noerr)
76a01679 7554 return NULL;
99bbb428 7555
3b4de39c
PA
7556 error (_("Type %s is not a structure or union type"),
7557 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7558 }
7559
7560 type = to_static_fixed_type (type);
7561
7562 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7563 {
0d5cff50 7564 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7565 struct type *t;
d2e4a39e 7566
14f9c5c9 7567 if (t_field_name == NULL)
4c4b4cd2 7568 continue;
14f9c5c9
AS
7569
7570 else if (field_name_match (t_field_name, name))
988f6b3d 7571 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7572
7573 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7574 {
4c4b4cd2 7575 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7576 0, 1);
4c4b4cd2 7577 if (t != NULL)
988f6b3d 7578 return t;
4c4b4cd2 7579 }
14f9c5c9
AS
7580
7581 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7582 {
7583 int j;
5b4ee69b
MS
7584 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7585 i));
4c4b4cd2
PH
7586
7587 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7588 {
b1f33ddd
JB
7589 /* FIXME pnh 2008/01/26: We check for a field that is
7590 NOT wrapped in a struct, since the compiler sometimes
7591 generates these for unchecked variant types. Revisit
0963b4bd 7592 if the compiler changes this practice. */
0d5cff50 7593 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7594
b1f33ddd
JB
7595 if (v_field_name != NULL
7596 && field_name_match (v_field_name, name))
460efde1 7597 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7598 else
0963b4bd
MS
7599 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7600 j),
988f6b3d 7601 name, 0, 1);
b1f33ddd 7602
4c4b4cd2 7603 if (t != NULL)
988f6b3d 7604 return t;
4c4b4cd2
PH
7605 }
7606 }
14f9c5c9
AS
7607
7608 }
7609
7610BadName:
d2e4a39e 7611 if (!noerr)
14f9c5c9 7612 {
2b2798cc 7613 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7614
7615 error (_("Type %s has no component named %s"),
3b4de39c 7616 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7617 }
7618
7619 return NULL;
7620}
7621
b1f33ddd
JB
7622/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7623 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7624 represents an unchecked union (that is, the variant part of a
0963b4bd 7625 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7626
7627static int
7628is_unchecked_variant (struct type *var_type, struct type *outer_type)
7629{
a121b7c1 7630 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7631
988f6b3d 7632 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7633}
7634
7635
14f9c5c9
AS
7636/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7637 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7638 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7639 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7640
d2e4a39e 7641int
ebf56fd3 7642ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7643 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7644{
7645 int others_clause;
7646 int i;
a121b7c1 7647 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7648 struct value *outer;
7649 struct value *discrim;
14f9c5c9
AS
7650 LONGEST discrim_val;
7651
012370f6
TT
7652 /* Using plain value_from_contents_and_address here causes problems
7653 because we will end up trying to resolve a type that is currently
7654 being constructed. */
7655 outer = value_from_contents_and_address_unresolved (outer_type,
7656 outer_valaddr, 0);
0c281816
JB
7657 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7658 if (discrim == NULL)
14f9c5c9 7659 return -1;
0c281816 7660 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7661
7662 others_clause = -1;
7663 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7664 {
7665 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7666 others_clause = i;
14f9c5c9 7667 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7668 return i;
14f9c5c9
AS
7669 }
7670
7671 return others_clause;
7672}
d2e4a39e 7673\f
14f9c5c9
AS
7674
7675
4c4b4cd2 7676 /* Dynamic-Sized Records */
14f9c5c9
AS
7677
7678/* Strategy: The type ostensibly attached to a value with dynamic size
7679 (i.e., a size that is not statically recorded in the debugging
7680 data) does not accurately reflect the size or layout of the value.
7681 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7682 conventional types that are constructed on the fly. */
14f9c5c9
AS
7683
7684/* There is a subtle and tricky problem here. In general, we cannot
7685 determine the size of dynamic records without its data. However,
7686 the 'struct value' data structure, which GDB uses to represent
7687 quantities in the inferior process (the target), requires the size
7688 of the type at the time of its allocation in order to reserve space
7689 for GDB's internal copy of the data. That's why the
7690 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7691 rather than struct value*s.
14f9c5c9
AS
7692
7693 However, GDB's internal history variables ($1, $2, etc.) are
7694 struct value*s containing internal copies of the data that are not, in
7695 general, the same as the data at their corresponding addresses in
7696 the target. Fortunately, the types we give to these values are all
7697 conventional, fixed-size types (as per the strategy described
7698 above), so that we don't usually have to perform the
7699 'to_fixed_xxx_type' conversions to look at their values.
7700 Unfortunately, there is one exception: if one of the internal
7701 history variables is an array whose elements are unconstrained
7702 records, then we will need to create distinct fixed types for each
7703 element selected. */
7704
7705/* The upshot of all of this is that many routines take a (type, host
7706 address, target address) triple as arguments to represent a value.
7707 The host address, if non-null, is supposed to contain an internal
7708 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7709 target at the target address. */
14f9c5c9
AS
7710
7711/* Assuming that VAL0 represents a pointer value, the result of
7712 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7713 dynamic-sized types. */
14f9c5c9 7714
d2e4a39e
AS
7715struct value *
7716ada_value_ind (struct value *val0)
14f9c5c9 7717{
c48db5ca 7718 struct value *val = value_ind (val0);
5b4ee69b 7719
b50d69b5
JG
7720 if (ada_is_tagged_type (value_type (val), 0))
7721 val = ada_tag_value_at_base_address (val);
7722
4c4b4cd2 7723 return ada_to_fixed_value (val);
14f9c5c9
AS
7724}
7725
7726/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7727 qualifiers on VAL0. */
7728
d2e4a39e
AS
7729static struct value *
7730ada_coerce_ref (struct value *val0)
7731{
df407dfe 7732 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7733 {
7734 struct value *val = val0;
5b4ee69b 7735
994b9211 7736 val = coerce_ref (val);
b50d69b5
JG
7737
7738 if (ada_is_tagged_type (value_type (val), 0))
7739 val = ada_tag_value_at_base_address (val);
7740
4c4b4cd2 7741 return ada_to_fixed_value (val);
d2e4a39e
AS
7742 }
7743 else
14f9c5c9
AS
7744 return val0;
7745}
7746
7747/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7748 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7749
7750static unsigned int
ebf56fd3 7751align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7752{
7753 return (off + alignment - 1) & ~(alignment - 1);
7754}
7755
4c4b4cd2 7756/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7757
7758static unsigned int
ebf56fd3 7759field_alignment (struct type *type, int f)
14f9c5c9 7760{
d2e4a39e 7761 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7762 int len;
14f9c5c9
AS
7763 int align_offset;
7764
64a1bf19
JB
7765 /* The field name should never be null, unless the debugging information
7766 is somehow malformed. In this case, we assume the field does not
7767 require any alignment. */
7768 if (name == NULL)
7769 return 1;
7770
7771 len = strlen (name);
7772
4c4b4cd2
PH
7773 if (!isdigit (name[len - 1]))
7774 return 1;
14f9c5c9 7775
d2e4a39e 7776 if (isdigit (name[len - 2]))
14f9c5c9
AS
7777 align_offset = len - 2;
7778 else
7779 align_offset = len - 1;
7780
61012eef 7781 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7782 return TARGET_CHAR_BIT;
7783
4c4b4cd2
PH
7784 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7785}
7786
852dff6c 7787/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7788
852dff6c
JB
7789static struct symbol *
7790ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7791{
7792 struct symbol *sym;
7793
7794 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7795 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7796 return sym;
7797
4186eb54
KS
7798 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7799 return sym;
14f9c5c9
AS
7800}
7801
dddfab26
UW
7802/* Find a type named NAME. Ignores ambiguity. This routine will look
7803 solely for types defined by debug info, it will not search the GDB
7804 primitive types. */
4c4b4cd2 7805
852dff6c 7806static struct type *
ebf56fd3 7807ada_find_any_type (const char *name)
14f9c5c9 7808{
852dff6c 7809 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7810
14f9c5c9 7811 if (sym != NULL)
dddfab26 7812 return SYMBOL_TYPE (sym);
14f9c5c9 7813
dddfab26 7814 return NULL;
14f9c5c9
AS
7815}
7816
739593e0
JB
7817/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7818 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7819 symbol, in which case it is returned. Otherwise, this looks for
7820 symbols whose name is that of NAME_SYM suffixed with "___XR".
7821 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7822
7823struct symbol *
270140bd 7824ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7825{
739593e0 7826 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7827 struct symbol *sym;
7828
739593e0
JB
7829 if (strstr (name, "___XR") != NULL)
7830 return name_sym;
7831
aeb5907d
JB
7832 sym = find_old_style_renaming_symbol (name, block);
7833
7834 if (sym != NULL)
7835 return sym;
7836
0963b4bd 7837 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7838 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7839 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7840 return sym;
7841 else
7842 return NULL;
7843}
7844
7845static struct symbol *
270140bd 7846find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7847{
7f0df278 7848 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7849 char *rename;
7850
7851 if (function_sym != NULL)
7852 {
7853 /* If the symbol is defined inside a function, NAME is not fully
7854 qualified. This means we need to prepend the function name
7855 as well as adding the ``___XR'' suffix to build the name of
7856 the associated renaming symbol. */
0d5cff50 7857 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7858 /* Function names sometimes contain suffixes used
7859 for instance to qualify nested subprograms. When building
7860 the XR type name, we need to make sure that this suffix is
7861 not included. So do not include any suffix in the function
7862 name length below. */
69fadcdf 7863 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7864 const int rename_len = function_name_len + 2 /* "__" */
7865 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7866
529cad9c 7867 /* Strip the suffix if necessary. */
69fadcdf
JB
7868 ada_remove_trailing_digits (function_name, &function_name_len);
7869 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7870 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7871
4c4b4cd2
PH
7872 /* Library-level functions are a special case, as GNAT adds
7873 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7874 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7875 have this prefix, so we need to skip this prefix if present. */
7876 if (function_name_len > 5 /* "_ada_" */
7877 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7878 {
7879 function_name += 5;
7880 function_name_len -= 5;
7881 }
4c4b4cd2
PH
7882
7883 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7884 strncpy (rename, function_name, function_name_len);
7885 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7886 "__%s___XR", name);
4c4b4cd2
PH
7887 }
7888 else
7889 {
7890 const int rename_len = strlen (name) + 6;
5b4ee69b 7891
4c4b4cd2 7892 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7893 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7894 }
7895
852dff6c 7896 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7897}
7898
14f9c5c9 7899/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7900 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7901 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7902 otherwise return 0. */
7903
14f9c5c9 7904int
d2e4a39e 7905ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7906{
7907 if (type1 == NULL)
7908 return 1;
7909 else if (type0 == NULL)
7910 return 0;
7911 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7912 return 1;
7913 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7914 return 0;
4c4b4cd2
PH
7915 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7916 return 1;
ad82864c 7917 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7918 return 1;
4c4b4cd2
PH
7919 else if (ada_is_array_descriptor_type (type0)
7920 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7921 return 1;
aeb5907d
JB
7922 else
7923 {
7924 const char *type0_name = type_name_no_tag (type0);
7925 const char *type1_name = type_name_no_tag (type1);
7926
7927 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7928 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7929 return 1;
7930 }
14f9c5c9
AS
7931 return 0;
7932}
7933
7934/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7935 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7936
0d5cff50 7937const char *
d2e4a39e 7938ada_type_name (struct type *type)
14f9c5c9 7939{
d2e4a39e 7940 if (type == NULL)
14f9c5c9
AS
7941 return NULL;
7942 else if (TYPE_NAME (type) != NULL)
7943 return TYPE_NAME (type);
7944 else
7945 return TYPE_TAG_NAME (type);
7946}
7947
b4ba55a1
JB
7948/* Search the list of "descriptive" types associated to TYPE for a type
7949 whose name is NAME. */
7950
7951static struct type *
7952find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7953{
931e5bc3 7954 struct type *result, *tmp;
b4ba55a1 7955
c6044dd1
JB
7956 if (ada_ignore_descriptive_types_p)
7957 return NULL;
7958
b4ba55a1
JB
7959 /* If there no descriptive-type info, then there is no parallel type
7960 to be found. */
7961 if (!HAVE_GNAT_AUX_INFO (type))
7962 return NULL;
7963
7964 result = TYPE_DESCRIPTIVE_TYPE (type);
7965 while (result != NULL)
7966 {
0d5cff50 7967 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7968
7969 if (result_name == NULL)
7970 {
7971 warning (_("unexpected null name on descriptive type"));
7972 return NULL;
7973 }
7974
7975 /* If the names match, stop. */
7976 if (strcmp (result_name, name) == 0)
7977 break;
7978
7979 /* Otherwise, look at the next item on the list, if any. */
7980 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7981 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7982 else
7983 tmp = NULL;
7984
7985 /* If not found either, try after having resolved the typedef. */
7986 if (tmp != NULL)
7987 result = tmp;
b4ba55a1 7988 else
931e5bc3 7989 {
f168693b 7990 result = check_typedef (result);
931e5bc3
JG
7991 if (HAVE_GNAT_AUX_INFO (result))
7992 result = TYPE_DESCRIPTIVE_TYPE (result);
7993 else
7994 result = NULL;
7995 }
b4ba55a1
JB
7996 }
7997
7998 /* If we didn't find a match, see whether this is a packed array. With
7999 older compilers, the descriptive type information is either absent or
8000 irrelevant when it comes to packed arrays so the above lookup fails.
8001 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8002 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8003 return ada_find_any_type (name);
8004
8005 return result;
8006}
8007
8008/* Find a parallel type to TYPE with the specified NAME, using the
8009 descriptive type taken from the debugging information, if available,
8010 and otherwise using the (slower) name-based method. */
8011
8012static struct type *
8013ada_find_parallel_type_with_name (struct type *type, const char *name)
8014{
8015 struct type *result = NULL;
8016
8017 if (HAVE_GNAT_AUX_INFO (type))
8018 result = find_parallel_type_by_descriptive_type (type, name);
8019 else
8020 result = ada_find_any_type (name);
8021
8022 return result;
8023}
8024
8025/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8026 SUFFIX to the name of TYPE. */
14f9c5c9 8027
d2e4a39e 8028struct type *
ebf56fd3 8029ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8030{
0d5cff50 8031 char *name;
fe978cb0 8032 const char *type_name = ada_type_name (type);
14f9c5c9 8033 int len;
d2e4a39e 8034
fe978cb0 8035 if (type_name == NULL)
14f9c5c9
AS
8036 return NULL;
8037
fe978cb0 8038 len = strlen (type_name);
14f9c5c9 8039
b4ba55a1 8040 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8041
fe978cb0 8042 strcpy (name, type_name);
14f9c5c9
AS
8043 strcpy (name + len, suffix);
8044
b4ba55a1 8045 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8046}
8047
14f9c5c9 8048/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8049 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8050
d2e4a39e
AS
8051static struct type *
8052dynamic_template_type (struct type *type)
14f9c5c9 8053{
61ee279c 8054 type = ada_check_typedef (type);
14f9c5c9
AS
8055
8056 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8057 || ada_type_name (type) == NULL)
14f9c5c9 8058 return NULL;
d2e4a39e 8059 else
14f9c5c9
AS
8060 {
8061 int len = strlen (ada_type_name (type));
5b4ee69b 8062
4c4b4cd2
PH
8063 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8064 return type;
14f9c5c9 8065 else
4c4b4cd2 8066 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8067 }
8068}
8069
8070/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8071 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8072
d2e4a39e
AS
8073static int
8074is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8075{
8076 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8077
d2e4a39e 8078 return name != NULL
14f9c5c9
AS
8079 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8080 && strstr (name, "___XVL") != NULL;
8081}
8082
4c4b4cd2
PH
8083/* The index of the variant field of TYPE, or -1 if TYPE does not
8084 represent a variant record type. */
14f9c5c9 8085
d2e4a39e 8086static int
4c4b4cd2 8087variant_field_index (struct type *type)
14f9c5c9
AS
8088{
8089 int f;
8090
4c4b4cd2
PH
8091 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8092 return -1;
8093
8094 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8095 {
8096 if (ada_is_variant_part (type, f))
8097 return f;
8098 }
8099 return -1;
14f9c5c9
AS
8100}
8101
4c4b4cd2
PH
8102/* A record type with no fields. */
8103
d2e4a39e 8104static struct type *
fe978cb0 8105empty_record (struct type *templ)
14f9c5c9 8106{
fe978cb0 8107 struct type *type = alloc_type_copy (templ);
5b4ee69b 8108
14f9c5c9
AS
8109 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8110 TYPE_NFIELDS (type) = 0;
8111 TYPE_FIELDS (type) = NULL;
b1f33ddd 8112 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8113 TYPE_NAME (type) = "<empty>";
8114 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8115 TYPE_LENGTH (type) = 0;
8116 return type;
8117}
8118
8119/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8120 the value of type TYPE at VALADDR or ADDRESS (see comments at
8121 the beginning of this section) VAL according to GNAT conventions.
8122 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8123 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8124 an outer-level type (i.e., as opposed to a branch of a variant.) A
8125 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8126 of the variant.
14f9c5c9 8127
4c4b4cd2
PH
8128 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8129 length are not statically known are discarded. As a consequence,
8130 VALADDR, ADDRESS and DVAL0 are ignored.
8131
8132 NOTE: Limitations: For now, we assume that dynamic fields and
8133 variants occupy whole numbers of bytes. However, they need not be
8134 byte-aligned. */
8135
8136struct type *
10a2c479 8137ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8138 const gdb_byte *valaddr,
4c4b4cd2
PH
8139 CORE_ADDR address, struct value *dval0,
8140 int keep_dynamic_fields)
14f9c5c9 8141{
d2e4a39e
AS
8142 struct value *mark = value_mark ();
8143 struct value *dval;
8144 struct type *rtype;
14f9c5c9 8145 int nfields, bit_len;
4c4b4cd2 8146 int variant_field;
14f9c5c9 8147 long off;
d94e4f4f 8148 int fld_bit_len;
14f9c5c9
AS
8149 int f;
8150
4c4b4cd2
PH
8151 /* Compute the number of fields in this record type that are going
8152 to be processed: unless keep_dynamic_fields, this includes only
8153 fields whose position and length are static will be processed. */
8154 if (keep_dynamic_fields)
8155 nfields = TYPE_NFIELDS (type);
8156 else
8157 {
8158 nfields = 0;
76a01679 8159 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8160 && !ada_is_variant_part (type, nfields)
8161 && !is_dynamic_field (type, nfields))
8162 nfields++;
8163 }
8164
e9bb382b 8165 rtype = alloc_type_copy (type);
14f9c5c9
AS
8166 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8167 INIT_CPLUS_SPECIFIC (rtype);
8168 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8169 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8170 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8171 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8172 TYPE_NAME (rtype) = ada_type_name (type);
8173 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8174 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8175
d2e4a39e
AS
8176 off = 0;
8177 bit_len = 0;
4c4b4cd2
PH
8178 variant_field = -1;
8179
14f9c5c9
AS
8180 for (f = 0; f < nfields; f += 1)
8181 {
6c038f32
PH
8182 off = align_value (off, field_alignment (type, f))
8183 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8184 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8185 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8186
d2e4a39e 8187 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8188 {
8189 variant_field = f;
d94e4f4f 8190 fld_bit_len = 0;
4c4b4cd2 8191 }
14f9c5c9 8192 else if (is_dynamic_field (type, f))
4c4b4cd2 8193 {
284614f0
JB
8194 const gdb_byte *field_valaddr = valaddr;
8195 CORE_ADDR field_address = address;
8196 struct type *field_type =
8197 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8198
4c4b4cd2 8199 if (dval0 == NULL)
b5304971
JG
8200 {
8201 /* rtype's length is computed based on the run-time
8202 value of discriminants. If the discriminants are not
8203 initialized, the type size may be completely bogus and
0963b4bd 8204 GDB may fail to allocate a value for it. So check the
b5304971 8205 size first before creating the value. */
c1b5a1a6 8206 ada_ensure_varsize_limit (rtype);
012370f6
TT
8207 /* Using plain value_from_contents_and_address here
8208 causes problems because we will end up trying to
8209 resolve a type that is currently being
8210 constructed. */
8211 dval = value_from_contents_and_address_unresolved (rtype,
8212 valaddr,
8213 address);
9f1f738a 8214 rtype = value_type (dval);
b5304971 8215 }
4c4b4cd2
PH
8216 else
8217 dval = dval0;
8218
284614f0
JB
8219 /* If the type referenced by this field is an aligner type, we need
8220 to unwrap that aligner type, because its size might not be set.
8221 Keeping the aligner type would cause us to compute the wrong
8222 size for this field, impacting the offset of the all the fields
8223 that follow this one. */
8224 if (ada_is_aligner_type (field_type))
8225 {
8226 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8227
8228 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8229 field_address = cond_offset_target (field_address, field_offset);
8230 field_type = ada_aligned_type (field_type);
8231 }
8232
8233 field_valaddr = cond_offset_host (field_valaddr,
8234 off / TARGET_CHAR_BIT);
8235 field_address = cond_offset_target (field_address,
8236 off / TARGET_CHAR_BIT);
8237
8238 /* Get the fixed type of the field. Note that, in this case,
8239 we do not want to get the real type out of the tag: if
8240 the current field is the parent part of a tagged record,
8241 we will get the tag of the object. Clearly wrong: the real
8242 type of the parent is not the real type of the child. We
8243 would end up in an infinite loop. */
8244 field_type = ada_get_base_type (field_type);
8245 field_type = ada_to_fixed_type (field_type, field_valaddr,
8246 field_address, dval, 0);
27f2a97b
JB
8247 /* If the field size is already larger than the maximum
8248 object size, then the record itself will necessarily
8249 be larger than the maximum object size. We need to make
8250 this check now, because the size might be so ridiculously
8251 large (due to an uninitialized variable in the inferior)
8252 that it would cause an overflow when adding it to the
8253 record size. */
c1b5a1a6 8254 ada_ensure_varsize_limit (field_type);
284614f0
JB
8255
8256 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8257 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8258 /* The multiplication can potentially overflow. But because
8259 the field length has been size-checked just above, and
8260 assuming that the maximum size is a reasonable value,
8261 an overflow should not happen in practice. So rather than
8262 adding overflow recovery code to this already complex code,
8263 we just assume that it's not going to happen. */
d94e4f4f 8264 fld_bit_len =
4c4b4cd2
PH
8265 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8266 }
14f9c5c9 8267 else
4c4b4cd2 8268 {
5ded5331
JB
8269 /* Note: If this field's type is a typedef, it is important
8270 to preserve the typedef layer.
8271
8272 Otherwise, we might be transforming a typedef to a fat
8273 pointer (encoding a pointer to an unconstrained array),
8274 into a basic fat pointer (encoding an unconstrained
8275 array). As both types are implemented using the same
8276 structure, the typedef is the only clue which allows us
8277 to distinguish between the two options. Stripping it
8278 would prevent us from printing this field appropriately. */
8279 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8280 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8281 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8282 fld_bit_len =
4c4b4cd2
PH
8283 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8284 else
5ded5331
JB
8285 {
8286 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8287
8288 /* We need to be careful of typedefs when computing
8289 the length of our field. If this is a typedef,
8290 get the length of the target type, not the length
8291 of the typedef. */
8292 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8293 field_type = ada_typedef_target_type (field_type);
8294
8295 fld_bit_len =
8296 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8297 }
4c4b4cd2 8298 }
14f9c5c9 8299 if (off + fld_bit_len > bit_len)
4c4b4cd2 8300 bit_len = off + fld_bit_len;
d94e4f4f 8301 off += fld_bit_len;
4c4b4cd2
PH
8302 TYPE_LENGTH (rtype) =
8303 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8304 }
4c4b4cd2
PH
8305
8306 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8307 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8308 the record. This can happen in the presence of representation
8309 clauses. */
8310 if (variant_field >= 0)
8311 {
8312 struct type *branch_type;
8313
8314 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8315
8316 if (dval0 == NULL)
9f1f738a 8317 {
012370f6
TT
8318 /* Using plain value_from_contents_and_address here causes
8319 problems because we will end up trying to resolve a type
8320 that is currently being constructed. */
8321 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8322 address);
9f1f738a
SA
8323 rtype = value_type (dval);
8324 }
4c4b4cd2
PH
8325 else
8326 dval = dval0;
8327
8328 branch_type =
8329 to_fixed_variant_branch_type
8330 (TYPE_FIELD_TYPE (type, variant_field),
8331 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8332 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8333 if (branch_type == NULL)
8334 {
8335 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8336 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8337 TYPE_NFIELDS (rtype) -= 1;
8338 }
8339 else
8340 {
8341 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8342 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8343 fld_bit_len =
8344 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8345 TARGET_CHAR_BIT;
8346 if (off + fld_bit_len > bit_len)
8347 bit_len = off + fld_bit_len;
8348 TYPE_LENGTH (rtype) =
8349 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8350 }
8351 }
8352
714e53ab
PH
8353 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8354 should contain the alignment of that record, which should be a strictly
8355 positive value. If null or negative, then something is wrong, most
8356 probably in the debug info. In that case, we don't round up the size
0963b4bd 8357 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8358 the current RTYPE length might be good enough for our purposes. */
8359 if (TYPE_LENGTH (type) <= 0)
8360 {
323e0a4a
AC
8361 if (TYPE_NAME (rtype))
8362 warning (_("Invalid type size for `%s' detected: %d."),
8363 TYPE_NAME (rtype), TYPE_LENGTH (type));
8364 else
8365 warning (_("Invalid type size for <unnamed> detected: %d."),
8366 TYPE_LENGTH (type));
714e53ab
PH
8367 }
8368 else
8369 {
8370 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8371 TYPE_LENGTH (type));
8372 }
14f9c5c9
AS
8373
8374 value_free_to_mark (mark);
d2e4a39e 8375 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8376 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8377 return rtype;
8378}
8379
4c4b4cd2
PH
8380/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8381 of 1. */
14f9c5c9 8382
d2e4a39e 8383static struct type *
fc1a4b47 8384template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8385 CORE_ADDR address, struct value *dval0)
8386{
8387 return ada_template_to_fixed_record_type_1 (type, valaddr,
8388 address, dval0, 1);
8389}
8390
8391/* An ordinary record type in which ___XVL-convention fields and
8392 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8393 static approximations, containing all possible fields. Uses
8394 no runtime values. Useless for use in values, but that's OK,
8395 since the results are used only for type determinations. Works on both
8396 structs and unions. Representation note: to save space, we memorize
8397 the result of this function in the TYPE_TARGET_TYPE of the
8398 template type. */
8399
8400static struct type *
8401template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8402{
8403 struct type *type;
8404 int nfields;
8405 int f;
8406
9e195661
PMR
8407 /* No need no do anything if the input type is already fixed. */
8408 if (TYPE_FIXED_INSTANCE (type0))
8409 return type0;
8410
8411 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8412 if (TYPE_TARGET_TYPE (type0) != NULL)
8413 return TYPE_TARGET_TYPE (type0);
8414
9e195661 8415 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8416 type = type0;
9e195661
PMR
8417 nfields = TYPE_NFIELDS (type0);
8418
8419 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8420 recompute all over next time. */
8421 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8422
8423 for (f = 0; f < nfields; f += 1)
8424 {
460efde1 8425 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8426 struct type *new_type;
14f9c5c9 8427
4c4b4cd2 8428 if (is_dynamic_field (type0, f))
460efde1
JB
8429 {
8430 field_type = ada_check_typedef (field_type);
8431 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8432 }
14f9c5c9 8433 else
f192137b 8434 new_type = static_unwrap_type (field_type);
9e195661
PMR
8435
8436 if (new_type != field_type)
8437 {
8438 /* Clone TYPE0 only the first time we get a new field type. */
8439 if (type == type0)
8440 {
8441 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8442 TYPE_CODE (type) = TYPE_CODE (type0);
8443 INIT_CPLUS_SPECIFIC (type);
8444 TYPE_NFIELDS (type) = nfields;
8445 TYPE_FIELDS (type) = (struct field *)
8446 TYPE_ALLOC (type, nfields * sizeof (struct field));
8447 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8448 sizeof (struct field) * nfields);
8449 TYPE_NAME (type) = ada_type_name (type0);
8450 TYPE_TAG_NAME (type) = NULL;
8451 TYPE_FIXED_INSTANCE (type) = 1;
8452 TYPE_LENGTH (type) = 0;
8453 }
8454 TYPE_FIELD_TYPE (type, f) = new_type;
8455 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8456 }
14f9c5c9 8457 }
9e195661 8458
14f9c5c9
AS
8459 return type;
8460}
8461
4c4b4cd2 8462/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8463 whose address in memory is ADDRESS, returns a revision of TYPE,
8464 which should be a non-dynamic-sized record, in which the variant
8465 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8466 for discriminant values in DVAL0, which can be NULL if the record
8467 contains the necessary discriminant values. */
8468
d2e4a39e 8469static struct type *
fc1a4b47 8470to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8471 CORE_ADDR address, struct value *dval0)
14f9c5c9 8472{
d2e4a39e 8473 struct value *mark = value_mark ();
4c4b4cd2 8474 struct value *dval;
d2e4a39e 8475 struct type *rtype;
14f9c5c9
AS
8476 struct type *branch_type;
8477 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8478 int variant_field = variant_field_index (type);
14f9c5c9 8479
4c4b4cd2 8480 if (variant_field == -1)
14f9c5c9
AS
8481 return type;
8482
4c4b4cd2 8483 if (dval0 == NULL)
9f1f738a
SA
8484 {
8485 dval = value_from_contents_and_address (type, valaddr, address);
8486 type = value_type (dval);
8487 }
4c4b4cd2
PH
8488 else
8489 dval = dval0;
8490
e9bb382b 8491 rtype = alloc_type_copy (type);
14f9c5c9 8492 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8493 INIT_CPLUS_SPECIFIC (rtype);
8494 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8495 TYPE_FIELDS (rtype) =
8496 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8497 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8498 sizeof (struct field) * nfields);
14f9c5c9
AS
8499 TYPE_NAME (rtype) = ada_type_name (type);
8500 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8501 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8502 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8503
4c4b4cd2
PH
8504 branch_type = to_fixed_variant_branch_type
8505 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8506 cond_offset_host (valaddr,
4c4b4cd2
PH
8507 TYPE_FIELD_BITPOS (type, variant_field)
8508 / TARGET_CHAR_BIT),
d2e4a39e 8509 cond_offset_target (address,
4c4b4cd2
PH
8510 TYPE_FIELD_BITPOS (type, variant_field)
8511 / TARGET_CHAR_BIT), dval);
d2e4a39e 8512 if (branch_type == NULL)
14f9c5c9 8513 {
4c4b4cd2 8514 int f;
5b4ee69b 8515
4c4b4cd2
PH
8516 for (f = variant_field + 1; f < nfields; f += 1)
8517 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8518 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8519 }
8520 else
8521 {
4c4b4cd2
PH
8522 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8523 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8524 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8525 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8526 }
4c4b4cd2 8527 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8528
4c4b4cd2 8529 value_free_to_mark (mark);
14f9c5c9
AS
8530 return rtype;
8531}
8532
8533/* An ordinary record type (with fixed-length fields) that describes
8534 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8535 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8536 should be in DVAL, a record value; it may be NULL if the object
8537 at ADDR itself contains any necessary discriminant values.
8538 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8539 values from the record are needed. Except in the case that DVAL,
8540 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8541 unchecked) is replaced by a particular branch of the variant.
8542
8543 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8544 is questionable and may be removed. It can arise during the
8545 processing of an unconstrained-array-of-record type where all the
8546 variant branches have exactly the same size. This is because in
8547 such cases, the compiler does not bother to use the XVS convention
8548 when encoding the record. I am currently dubious of this
8549 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8550
d2e4a39e 8551static struct type *
fc1a4b47 8552to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8553 CORE_ADDR address, struct value *dval)
14f9c5c9 8554{
d2e4a39e 8555 struct type *templ_type;
14f9c5c9 8556
876cecd0 8557 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8558 return type0;
8559
d2e4a39e 8560 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8561
8562 if (templ_type != NULL)
8563 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8564 else if (variant_field_index (type0) >= 0)
8565 {
8566 if (dval == NULL && valaddr == NULL && address == 0)
8567 return type0;
8568 return to_record_with_fixed_variant_part (type0, valaddr, address,
8569 dval);
8570 }
14f9c5c9
AS
8571 else
8572 {
876cecd0 8573 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8574 return type0;
8575 }
8576
8577}
8578
8579/* An ordinary record type (with fixed-length fields) that describes
8580 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8581 union type. Any necessary discriminants' values should be in DVAL,
8582 a record value. That is, this routine selects the appropriate
8583 branch of the union at ADDR according to the discriminant value
b1f33ddd 8584 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8585 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8586
d2e4a39e 8587static struct type *
fc1a4b47 8588to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8589 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8590{
8591 int which;
d2e4a39e
AS
8592 struct type *templ_type;
8593 struct type *var_type;
14f9c5c9
AS
8594
8595 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8596 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8597 else
14f9c5c9
AS
8598 var_type = var_type0;
8599
8600 templ_type = ada_find_parallel_type (var_type, "___XVU");
8601
8602 if (templ_type != NULL)
8603 var_type = templ_type;
8604
b1f33ddd
JB
8605 if (is_unchecked_variant (var_type, value_type (dval)))
8606 return var_type0;
d2e4a39e
AS
8607 which =
8608 ada_which_variant_applies (var_type,
0fd88904 8609 value_type (dval), value_contents (dval));
14f9c5c9
AS
8610
8611 if (which < 0)
e9bb382b 8612 return empty_record (var_type);
14f9c5c9 8613 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8614 return to_fixed_record_type
d2e4a39e
AS
8615 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8616 valaddr, address, dval);
4c4b4cd2 8617 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8618 return
8619 to_fixed_record_type
8620 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8621 else
8622 return TYPE_FIELD_TYPE (var_type, which);
8623}
8624
8908fca5
JB
8625/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8626 ENCODING_TYPE, a type following the GNAT conventions for discrete
8627 type encodings, only carries redundant information. */
8628
8629static int
8630ada_is_redundant_range_encoding (struct type *range_type,
8631 struct type *encoding_type)
8632{
8633 struct type *fixed_range_type;
108d56a4 8634 const char *bounds_str;
8908fca5
JB
8635 int n;
8636 LONGEST lo, hi;
8637
8638 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8639
005e2509
JB
8640 if (TYPE_CODE (get_base_type (range_type))
8641 != TYPE_CODE (get_base_type (encoding_type)))
8642 {
8643 /* The compiler probably used a simple base type to describe
8644 the range type instead of the range's actual base type,
8645 expecting us to get the real base type from the encoding
8646 anyway. In this situation, the encoding cannot be ignored
8647 as redundant. */
8648 return 0;
8649 }
8650
8908fca5
JB
8651 if (is_dynamic_type (range_type))
8652 return 0;
8653
8654 if (TYPE_NAME (encoding_type) == NULL)
8655 return 0;
8656
8657 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8658 if (bounds_str == NULL)
8659 return 0;
8660
8661 n = 8; /* Skip "___XDLU_". */
8662 if (!ada_scan_number (bounds_str, n, &lo, &n))
8663 return 0;
8664 if (TYPE_LOW_BOUND (range_type) != lo)
8665 return 0;
8666
8667 n += 2; /* Skip the "__" separator between the two bounds. */
8668 if (!ada_scan_number (bounds_str, n, &hi, &n))
8669 return 0;
8670 if (TYPE_HIGH_BOUND (range_type) != hi)
8671 return 0;
8672
8673 return 1;
8674}
8675
8676/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8677 a type following the GNAT encoding for describing array type
8678 indices, only carries redundant information. */
8679
8680static int
8681ada_is_redundant_index_type_desc (struct type *array_type,
8682 struct type *desc_type)
8683{
8684 struct type *this_layer = check_typedef (array_type);
8685 int i;
8686
8687 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8688 {
8689 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8690 TYPE_FIELD_TYPE (desc_type, i)))
8691 return 0;
8692 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8693 }
8694
8695 return 1;
8696}
8697
14f9c5c9
AS
8698/* Assuming that TYPE0 is an array type describing the type of a value
8699 at ADDR, and that DVAL describes a record containing any
8700 discriminants used in TYPE0, returns a type for the value that
8701 contains no dynamic components (that is, no components whose sizes
8702 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8703 true, gives an error message if the resulting type's size is over
4c4b4cd2 8704 varsize_limit. */
14f9c5c9 8705
d2e4a39e
AS
8706static struct type *
8707to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8708 int ignore_too_big)
14f9c5c9 8709{
d2e4a39e
AS
8710 struct type *index_type_desc;
8711 struct type *result;
ad82864c 8712 int constrained_packed_array_p;
931e5bc3 8713 static const char *xa_suffix = "___XA";
14f9c5c9 8714
b0dd7688 8715 type0 = ada_check_typedef (type0);
284614f0 8716 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8717 return type0;
14f9c5c9 8718
ad82864c
JB
8719 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8720 if (constrained_packed_array_p)
8721 type0 = decode_constrained_packed_array_type (type0);
284614f0 8722
931e5bc3
JG
8723 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8724
8725 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8726 encoding suffixed with 'P' may still be generated. If so,
8727 it should be used to find the XA type. */
8728
8729 if (index_type_desc == NULL)
8730 {
1da0522e 8731 const char *type_name = ada_type_name (type0);
931e5bc3 8732
1da0522e 8733 if (type_name != NULL)
931e5bc3 8734 {
1da0522e 8735 const int len = strlen (type_name);
931e5bc3
JG
8736 char *name = (char *) alloca (len + strlen (xa_suffix));
8737
1da0522e 8738 if (type_name[len - 1] == 'P')
931e5bc3 8739 {
1da0522e 8740 strcpy (name, type_name);
931e5bc3
JG
8741 strcpy (name + len - 1, xa_suffix);
8742 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8743 }
8744 }
8745 }
8746
28c85d6c 8747 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8748 if (index_type_desc != NULL
8749 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8750 {
8751 /* Ignore this ___XA parallel type, as it does not bring any
8752 useful information. This allows us to avoid creating fixed
8753 versions of the array's index types, which would be identical
8754 to the original ones. This, in turn, can also help avoid
8755 the creation of fixed versions of the array itself. */
8756 index_type_desc = NULL;
8757 }
8758
14f9c5c9
AS
8759 if (index_type_desc == NULL)
8760 {
61ee279c 8761 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8762
14f9c5c9 8763 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8764 depend on the contents of the array in properly constructed
8765 debugging data. */
529cad9c
PH
8766 /* Create a fixed version of the array element type.
8767 We're not providing the address of an element here,
e1d5a0d2 8768 and thus the actual object value cannot be inspected to do
529cad9c
PH
8769 the conversion. This should not be a problem, since arrays of
8770 unconstrained objects are not allowed. In particular, all
8771 the elements of an array of a tagged type should all be of
8772 the same type specified in the debugging info. No need to
8773 consult the object tag. */
1ed6ede0 8774 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8775
284614f0
JB
8776 /* Make sure we always create a new array type when dealing with
8777 packed array types, since we're going to fix-up the array
8778 type length and element bitsize a little further down. */
ad82864c 8779 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8780 result = type0;
14f9c5c9 8781 else
e9bb382b 8782 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8783 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8784 }
8785 else
8786 {
8787 int i;
8788 struct type *elt_type0;
8789
8790 elt_type0 = type0;
8791 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8792 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8793
8794 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8795 depend on the contents of the array in properly constructed
8796 debugging data. */
529cad9c
PH
8797 /* Create a fixed version of the array element type.
8798 We're not providing the address of an element here,
e1d5a0d2 8799 and thus the actual object value cannot be inspected to do
529cad9c
PH
8800 the conversion. This should not be a problem, since arrays of
8801 unconstrained objects are not allowed. In particular, all
8802 the elements of an array of a tagged type should all be of
8803 the same type specified in the debugging info. No need to
8804 consult the object tag. */
1ed6ede0
JB
8805 result =
8806 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8807
8808 elt_type0 = type0;
14f9c5c9 8809 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8810 {
8811 struct type *range_type =
28c85d6c 8812 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8813
e9bb382b 8814 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8815 result, range_type);
1ce677a4 8816 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8817 }
d2e4a39e 8818 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8819 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8820 }
8821
2e6fda7d
JB
8822 /* We want to preserve the type name. This can be useful when
8823 trying to get the type name of a value that has already been
8824 printed (for instance, if the user did "print VAR; whatis $". */
8825 TYPE_NAME (result) = TYPE_NAME (type0);
8826
ad82864c 8827 if (constrained_packed_array_p)
284614f0
JB
8828 {
8829 /* So far, the resulting type has been created as if the original
8830 type was a regular (non-packed) array type. As a result, the
8831 bitsize of the array elements needs to be set again, and the array
8832 length needs to be recomputed based on that bitsize. */
8833 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8834 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8835
8836 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8837 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8838 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8839 TYPE_LENGTH (result)++;
8840 }
8841
876cecd0 8842 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8843 return result;
d2e4a39e 8844}
14f9c5c9
AS
8845
8846
8847/* A standard type (containing no dynamically sized components)
8848 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8849 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8850 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8851 ADDRESS or in VALADDR contains these discriminants.
8852
1ed6ede0
JB
8853 If CHECK_TAG is not null, in the case of tagged types, this function
8854 attempts to locate the object's tag and use it to compute the actual
8855 type. However, when ADDRESS is null, we cannot use it to determine the
8856 location of the tag, and therefore compute the tagged type's actual type.
8857 So we return the tagged type without consulting the tag. */
529cad9c 8858
f192137b
JB
8859static struct type *
8860ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8861 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8862{
61ee279c 8863 type = ada_check_typedef (type);
d2e4a39e
AS
8864 switch (TYPE_CODE (type))
8865 {
8866 default:
14f9c5c9 8867 return type;
d2e4a39e 8868 case TYPE_CODE_STRUCT:
4c4b4cd2 8869 {
76a01679 8870 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8871 struct type *fixed_record_type =
8872 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8873
529cad9c
PH
8874 /* If STATIC_TYPE is a tagged type and we know the object's address,
8875 then we can determine its tag, and compute the object's actual
0963b4bd 8876 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8877 type (the parent part of the record may have dynamic fields
8878 and the way the location of _tag is expressed may depend on
8879 them). */
529cad9c 8880
1ed6ede0 8881 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8882 {
b50d69b5
JG
8883 struct value *tag =
8884 value_tag_from_contents_and_address
8885 (fixed_record_type,
8886 valaddr,
8887 address);
8888 struct type *real_type = type_from_tag (tag);
8889 struct value *obj =
8890 value_from_contents_and_address (fixed_record_type,
8891 valaddr,
8892 address);
9f1f738a 8893 fixed_record_type = value_type (obj);
76a01679 8894 if (real_type != NULL)
b50d69b5
JG
8895 return to_fixed_record_type
8896 (real_type, NULL,
8897 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8898 }
4af88198
JB
8899
8900 /* Check to see if there is a parallel ___XVZ variable.
8901 If there is, then it provides the actual size of our type. */
8902 else if (ada_type_name (fixed_record_type) != NULL)
8903 {
0d5cff50 8904 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8905 char *xvz_name
8906 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
4af88198
JB
8907 LONGEST size;
8908
88c15c34 8909 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
edb0c9cb
PA
8910 if (get_int_var_value (xvz_name, size)
8911 && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8912 {
8913 fixed_record_type = copy_type (fixed_record_type);
8914 TYPE_LENGTH (fixed_record_type) = size;
8915
8916 /* The FIXED_RECORD_TYPE may have be a stub. We have
8917 observed this when the debugging info is STABS, and
8918 apparently it is something that is hard to fix.
8919
8920 In practice, we don't need the actual type definition
8921 at all, because the presence of the XVZ variable allows us
8922 to assume that there must be a XVS type as well, which we
8923 should be able to use later, when we need the actual type
8924 definition.
8925
8926 In the meantime, pretend that the "fixed" type we are
8927 returning is NOT a stub, because this can cause trouble
8928 when using this type to create new types targeting it.
8929 Indeed, the associated creation routines often check
8930 whether the target type is a stub and will try to replace
0963b4bd 8931 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8932 might cause the new type to have the wrong size too.
8933 Consider the case of an array, for instance, where the size
8934 of the array is computed from the number of elements in
8935 our array multiplied by the size of its element. */
8936 TYPE_STUB (fixed_record_type) = 0;
8937 }
8938 }
1ed6ede0 8939 return fixed_record_type;
4c4b4cd2 8940 }
d2e4a39e 8941 case TYPE_CODE_ARRAY:
4c4b4cd2 8942 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8943 case TYPE_CODE_UNION:
8944 if (dval == NULL)
4c4b4cd2 8945 return type;
d2e4a39e 8946 else
4c4b4cd2 8947 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8948 }
14f9c5c9
AS
8949}
8950
f192137b
JB
8951/* The same as ada_to_fixed_type_1, except that it preserves the type
8952 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8953
8954 The typedef layer needs be preserved in order to differentiate between
8955 arrays and array pointers when both types are implemented using the same
8956 fat pointer. In the array pointer case, the pointer is encoded as
8957 a typedef of the pointer type. For instance, considering:
8958
8959 type String_Access is access String;
8960 S1 : String_Access := null;
8961
8962 To the debugger, S1 is defined as a typedef of type String. But
8963 to the user, it is a pointer. So if the user tries to print S1,
8964 we should not dereference the array, but print the array address
8965 instead.
8966
8967 If we didn't preserve the typedef layer, we would lose the fact that
8968 the type is to be presented as a pointer (needs de-reference before
8969 being printed). And we would also use the source-level type name. */
f192137b
JB
8970
8971struct type *
8972ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8973 CORE_ADDR address, struct value *dval, int check_tag)
8974
8975{
8976 struct type *fixed_type =
8977 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8978
96dbd2c1
JB
8979 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8980 then preserve the typedef layer.
8981
8982 Implementation note: We can only check the main-type portion of
8983 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8984 from TYPE now returns a type that has the same instance flags
8985 as TYPE. For instance, if TYPE is a "typedef const", and its
8986 target type is a "struct", then the typedef elimination will return
8987 a "const" version of the target type. See check_typedef for more
8988 details about how the typedef layer elimination is done.
8989
8990 brobecker/2010-11-19: It seems to me that the only case where it is
8991 useful to preserve the typedef layer is when dealing with fat pointers.
8992 Perhaps, we could add a check for that and preserve the typedef layer
8993 only in that situation. But this seems unecessary so far, probably
8994 because we call check_typedef/ada_check_typedef pretty much everywhere.
8995 */
f192137b 8996 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8997 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8998 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8999 return type;
9000
9001 return fixed_type;
9002}
9003
14f9c5c9 9004/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9005 TYPE0, but based on no runtime data. */
14f9c5c9 9006
d2e4a39e
AS
9007static struct type *
9008to_static_fixed_type (struct type *type0)
14f9c5c9 9009{
d2e4a39e 9010 struct type *type;
14f9c5c9
AS
9011
9012 if (type0 == NULL)
9013 return NULL;
9014
876cecd0 9015 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9016 return type0;
9017
61ee279c 9018 type0 = ada_check_typedef (type0);
d2e4a39e 9019
14f9c5c9
AS
9020 switch (TYPE_CODE (type0))
9021 {
9022 default:
9023 return type0;
9024 case TYPE_CODE_STRUCT:
9025 type = dynamic_template_type (type0);
d2e4a39e 9026 if (type != NULL)
4c4b4cd2
PH
9027 return template_to_static_fixed_type (type);
9028 else
9029 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9030 case TYPE_CODE_UNION:
9031 type = ada_find_parallel_type (type0, "___XVU");
9032 if (type != NULL)
4c4b4cd2
PH
9033 return template_to_static_fixed_type (type);
9034 else
9035 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9036 }
9037}
9038
4c4b4cd2
PH
9039/* A static approximation of TYPE with all type wrappers removed. */
9040
d2e4a39e
AS
9041static struct type *
9042static_unwrap_type (struct type *type)
14f9c5c9
AS
9043{
9044 if (ada_is_aligner_type (type))
9045 {
61ee279c 9046 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9047 if (ada_type_name (type1) == NULL)
4c4b4cd2 9048 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9049
9050 return static_unwrap_type (type1);
9051 }
d2e4a39e 9052 else
14f9c5c9 9053 {
d2e4a39e 9054 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9055
d2e4a39e 9056 if (raw_real_type == type)
4c4b4cd2 9057 return type;
14f9c5c9 9058 else
4c4b4cd2 9059 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9060 }
9061}
9062
9063/* In some cases, incomplete and private types require
4c4b4cd2 9064 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9065 type Foo;
9066 type FooP is access Foo;
9067 V: FooP;
9068 type Foo is array ...;
4c4b4cd2 9069 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9070 cross-references to such types, we instead substitute for FooP a
9071 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9072 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9073
9074/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9075 exists, otherwise TYPE. */
9076
d2e4a39e 9077struct type *
61ee279c 9078ada_check_typedef (struct type *type)
14f9c5c9 9079{
727e3d2e
JB
9080 if (type == NULL)
9081 return NULL;
9082
720d1a40
JB
9083 /* If our type is a typedef type of a fat pointer, then we're done.
9084 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9085 what allows us to distinguish between fat pointers that represent
9086 array types, and fat pointers that represent array access types
9087 (in both cases, the compiler implements them as fat pointers). */
9088 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9089 && is_thick_pntr (ada_typedef_target_type (type)))
9090 return type;
9091
f168693b 9092 type = check_typedef (type);
14f9c5c9 9093 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9094 || !TYPE_STUB (type)
14f9c5c9
AS
9095 || TYPE_TAG_NAME (type) == NULL)
9096 return type;
d2e4a39e 9097 else
14f9c5c9 9098 {
0d5cff50 9099 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9100 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9101
05e522ef
JB
9102 if (type1 == NULL)
9103 return type;
9104
9105 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9106 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9107 types, only for the typedef-to-array types). If that's the case,
9108 strip the typedef layer. */
9109 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9110 type1 = ada_check_typedef (type1);
9111
9112 return type1;
14f9c5c9
AS
9113 }
9114}
9115
9116/* A value representing the data at VALADDR/ADDRESS as described by
9117 type TYPE0, but with a standard (static-sized) type that correctly
9118 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9119 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9120 creation of struct values]. */
14f9c5c9 9121
4c4b4cd2
PH
9122static struct value *
9123ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9124 struct value *val0)
14f9c5c9 9125{
1ed6ede0 9126 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9127
14f9c5c9
AS
9128 if (type == type0 && val0 != NULL)
9129 return val0;
d2e4a39e 9130 else
4c4b4cd2
PH
9131 return value_from_contents_and_address (type, 0, address);
9132}
9133
9134/* A value representing VAL, but with a standard (static-sized) type
9135 that correctly describes it. Does not necessarily create a new
9136 value. */
9137
0c3acc09 9138struct value *
4c4b4cd2
PH
9139ada_to_fixed_value (struct value *val)
9140{
c48db5ca
JB
9141 val = unwrap_value (val);
9142 val = ada_to_fixed_value_create (value_type (val),
9143 value_address (val),
9144 val);
9145 return val;
14f9c5c9 9146}
d2e4a39e 9147\f
14f9c5c9 9148
14f9c5c9
AS
9149/* Attributes */
9150
4c4b4cd2
PH
9151/* Table mapping attribute numbers to names.
9152 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9153
d2e4a39e 9154static const char *attribute_names[] = {
14f9c5c9
AS
9155 "<?>",
9156
d2e4a39e 9157 "first",
14f9c5c9
AS
9158 "last",
9159 "length",
9160 "image",
14f9c5c9
AS
9161 "max",
9162 "min",
4c4b4cd2
PH
9163 "modulus",
9164 "pos",
9165 "size",
9166 "tag",
14f9c5c9 9167 "val",
14f9c5c9
AS
9168 0
9169};
9170
d2e4a39e 9171const char *
4c4b4cd2 9172ada_attribute_name (enum exp_opcode n)
14f9c5c9 9173{
4c4b4cd2
PH
9174 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9175 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9176 else
9177 return attribute_names[0];
9178}
9179
4c4b4cd2 9180/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9181
4c4b4cd2
PH
9182static LONGEST
9183pos_atr (struct value *arg)
14f9c5c9 9184{
24209737
PH
9185 struct value *val = coerce_ref (arg);
9186 struct type *type = value_type (val);
aa715135 9187 LONGEST result;
14f9c5c9 9188
d2e4a39e 9189 if (!discrete_type_p (type))
323e0a4a 9190 error (_("'POS only defined on discrete types"));
14f9c5c9 9191
aa715135
JG
9192 if (!discrete_position (type, value_as_long (val), &result))
9193 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9194
aa715135 9195 return result;
4c4b4cd2
PH
9196}
9197
9198static struct value *
3cb382c9 9199value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9200{
3cb382c9 9201 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9202}
9203
4c4b4cd2 9204/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9205
d2e4a39e
AS
9206static struct value *
9207value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9208{
d2e4a39e 9209 if (!discrete_type_p (type))
323e0a4a 9210 error (_("'VAL only defined on discrete types"));
df407dfe 9211 if (!integer_type_p (value_type (arg)))
323e0a4a 9212 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9213
9214 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9215 {
9216 long pos = value_as_long (arg);
5b4ee69b 9217
14f9c5c9 9218 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9219 error (_("argument to 'VAL out of range"));
14e75d8e 9220 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9221 }
9222 else
9223 return value_from_longest (type, value_as_long (arg));
9224}
14f9c5c9 9225\f
d2e4a39e 9226
4c4b4cd2 9227 /* Evaluation */
14f9c5c9 9228
4c4b4cd2
PH
9229/* True if TYPE appears to be an Ada character type.
9230 [At the moment, this is true only for Character and Wide_Character;
9231 It is a heuristic test that could stand improvement]. */
14f9c5c9 9232
d2e4a39e
AS
9233int
9234ada_is_character_type (struct type *type)
14f9c5c9 9235{
7b9f71f2
JB
9236 const char *name;
9237
9238 /* If the type code says it's a character, then assume it really is,
9239 and don't check any further. */
9240 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9241 return 1;
9242
9243 /* Otherwise, assume it's a character type iff it is a discrete type
9244 with a known character type name. */
9245 name = ada_type_name (type);
9246 return (name != NULL
9247 && (TYPE_CODE (type) == TYPE_CODE_INT
9248 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9249 && (strcmp (name, "character") == 0
9250 || strcmp (name, "wide_character") == 0
5a517ebd 9251 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9252 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9253}
9254
4c4b4cd2 9255/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9256
9257int
ebf56fd3 9258ada_is_string_type (struct type *type)
14f9c5c9 9259{
61ee279c 9260 type = ada_check_typedef (type);
d2e4a39e 9261 if (type != NULL
14f9c5c9 9262 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9263 && (ada_is_simple_array_type (type)
9264 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9265 && ada_array_arity (type) == 1)
9266 {
9267 struct type *elttype = ada_array_element_type (type, 1);
9268
9269 return ada_is_character_type (elttype);
9270 }
d2e4a39e 9271 else
14f9c5c9
AS
9272 return 0;
9273}
9274
5bf03f13
JB
9275/* The compiler sometimes provides a parallel XVS type for a given
9276 PAD type. Normally, it is safe to follow the PAD type directly,
9277 but older versions of the compiler have a bug that causes the offset
9278 of its "F" field to be wrong. Following that field in that case
9279 would lead to incorrect results, but this can be worked around
9280 by ignoring the PAD type and using the associated XVS type instead.
9281
9282 Set to True if the debugger should trust the contents of PAD types.
9283 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9284static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9285
9286/* True if TYPE is a struct type introduced by the compiler to force the
9287 alignment of a value. Such types have a single field with a
4c4b4cd2 9288 distinctive name. */
14f9c5c9
AS
9289
9290int
ebf56fd3 9291ada_is_aligner_type (struct type *type)
14f9c5c9 9292{
61ee279c 9293 type = ada_check_typedef (type);
714e53ab 9294
5bf03f13 9295 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9296 return 0;
9297
14f9c5c9 9298 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9299 && TYPE_NFIELDS (type) == 1
9300 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9301}
9302
9303/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9304 the parallel type. */
14f9c5c9 9305
d2e4a39e
AS
9306struct type *
9307ada_get_base_type (struct type *raw_type)
14f9c5c9 9308{
d2e4a39e
AS
9309 struct type *real_type_namer;
9310 struct type *raw_real_type;
14f9c5c9
AS
9311
9312 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9313 return raw_type;
9314
284614f0
JB
9315 if (ada_is_aligner_type (raw_type))
9316 /* The encoding specifies that we should always use the aligner type.
9317 So, even if this aligner type has an associated XVS type, we should
9318 simply ignore it.
9319
9320 According to the compiler gurus, an XVS type parallel to an aligner
9321 type may exist because of a stabs limitation. In stabs, aligner
9322 types are empty because the field has a variable-sized type, and
9323 thus cannot actually be used as an aligner type. As a result,
9324 we need the associated parallel XVS type to decode the type.
9325 Since the policy in the compiler is to not change the internal
9326 representation based on the debugging info format, we sometimes
9327 end up having a redundant XVS type parallel to the aligner type. */
9328 return raw_type;
9329
14f9c5c9 9330 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9331 if (real_type_namer == NULL
14f9c5c9
AS
9332 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9333 || TYPE_NFIELDS (real_type_namer) != 1)
9334 return raw_type;
9335
f80d3ff2
JB
9336 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9337 {
9338 /* This is an older encoding form where the base type needs to be
9339 looked up by name. We prefer the newer enconding because it is
9340 more efficient. */
9341 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9342 if (raw_real_type == NULL)
9343 return raw_type;
9344 else
9345 return raw_real_type;
9346 }
9347
9348 /* The field in our XVS type is a reference to the base type. */
9349 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9350}
14f9c5c9 9351
4c4b4cd2 9352/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9353
d2e4a39e
AS
9354struct type *
9355ada_aligned_type (struct type *type)
14f9c5c9
AS
9356{
9357 if (ada_is_aligner_type (type))
9358 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9359 else
9360 return ada_get_base_type (type);
9361}
9362
9363
9364/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9365 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9366
fc1a4b47
AC
9367const gdb_byte *
9368ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9369{
d2e4a39e 9370 if (ada_is_aligner_type (type))
14f9c5c9 9371 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9372 valaddr +
9373 TYPE_FIELD_BITPOS (type,
9374 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9375 else
9376 return valaddr;
9377}
9378
4c4b4cd2
PH
9379
9380
14f9c5c9 9381/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9382 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9383const char *
9384ada_enum_name (const char *name)
14f9c5c9 9385{
4c4b4cd2
PH
9386 static char *result;
9387 static size_t result_len = 0;
e6a959d6 9388 const char *tmp;
14f9c5c9 9389
4c4b4cd2
PH
9390 /* First, unqualify the enumeration name:
9391 1. Search for the last '.' character. If we find one, then skip
177b42fe 9392 all the preceding characters, the unqualified name starts
76a01679 9393 right after that dot.
4c4b4cd2 9394 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9395 translates dots into "__". Search forward for double underscores,
9396 but stop searching when we hit an overloading suffix, which is
9397 of the form "__" followed by digits. */
4c4b4cd2 9398
c3e5cd34
PH
9399 tmp = strrchr (name, '.');
9400 if (tmp != NULL)
4c4b4cd2
PH
9401 name = tmp + 1;
9402 else
14f9c5c9 9403 {
4c4b4cd2
PH
9404 while ((tmp = strstr (name, "__")) != NULL)
9405 {
9406 if (isdigit (tmp[2]))
9407 break;
9408 else
9409 name = tmp + 2;
9410 }
14f9c5c9
AS
9411 }
9412
9413 if (name[0] == 'Q')
9414 {
14f9c5c9 9415 int v;
5b4ee69b 9416
14f9c5c9 9417 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9418 {
9419 if (sscanf (name + 2, "%x", &v) != 1)
9420 return name;
9421 }
14f9c5c9 9422 else
4c4b4cd2 9423 return name;
14f9c5c9 9424
4c4b4cd2 9425 GROW_VECT (result, result_len, 16);
14f9c5c9 9426 if (isascii (v) && isprint (v))
88c15c34 9427 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9428 else if (name[1] == 'U')
88c15c34 9429 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9430 else
88c15c34 9431 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9432
9433 return result;
9434 }
d2e4a39e 9435 else
4c4b4cd2 9436 {
c3e5cd34
PH
9437 tmp = strstr (name, "__");
9438 if (tmp == NULL)
9439 tmp = strstr (name, "$");
9440 if (tmp != NULL)
4c4b4cd2
PH
9441 {
9442 GROW_VECT (result, result_len, tmp - name + 1);
9443 strncpy (result, name, tmp - name);
9444 result[tmp - name] = '\0';
9445 return result;
9446 }
9447
9448 return name;
9449 }
14f9c5c9
AS
9450}
9451
14f9c5c9
AS
9452/* Evaluate the subexpression of EXP starting at *POS as for
9453 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9454 expression. */
14f9c5c9 9455
d2e4a39e
AS
9456static struct value *
9457evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9458{
4b27a620 9459 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9460}
9461
9462/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9463 value it wraps. */
14f9c5c9 9464
d2e4a39e
AS
9465static struct value *
9466unwrap_value (struct value *val)
14f9c5c9 9467{
df407dfe 9468 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9469
14f9c5c9
AS
9470 if (ada_is_aligner_type (type))
9471 {
de4d072f 9472 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9473 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9474
14f9c5c9 9475 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9476 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9477
9478 return unwrap_value (v);
9479 }
d2e4a39e 9480 else
14f9c5c9 9481 {
d2e4a39e 9482 struct type *raw_real_type =
61ee279c 9483 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9484
5bf03f13
JB
9485 /* If there is no parallel XVS or XVE type, then the value is
9486 already unwrapped. Return it without further modification. */
9487 if ((type == raw_real_type)
9488 && ada_find_parallel_type (type, "___XVE") == NULL)
9489 return val;
14f9c5c9 9490
d2e4a39e 9491 return
4c4b4cd2
PH
9492 coerce_unspec_val_to_type
9493 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9494 value_address (val),
1ed6ede0 9495 NULL, 1));
14f9c5c9
AS
9496 }
9497}
d2e4a39e
AS
9498
9499static struct value *
50eff16b 9500cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9501{
50eff16b
UW
9502 struct value *scale = ada_scaling_factor (value_type (arg));
9503 arg = value_cast (value_type (scale), arg);
14f9c5c9 9504
50eff16b
UW
9505 arg = value_binop (arg, scale, BINOP_MUL);
9506 return value_cast (type, arg);
14f9c5c9
AS
9507}
9508
d2e4a39e 9509static struct value *
50eff16b 9510cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9511{
50eff16b
UW
9512 if (type == value_type (arg))
9513 return arg;
5b4ee69b 9514
50eff16b
UW
9515 struct value *scale = ada_scaling_factor (type);
9516 if (ada_is_fixed_point_type (value_type (arg)))
9517 arg = cast_from_fixed (value_type (scale), arg);
9518 else
9519 arg = value_cast (value_type (scale), arg);
9520
9521 arg = value_binop (arg, scale, BINOP_DIV);
9522 return value_cast (type, arg);
14f9c5c9
AS
9523}
9524
d99dcf51
JB
9525/* Given two array types T1 and T2, return nonzero iff both arrays
9526 contain the same number of elements. */
9527
9528static int
9529ada_same_array_size_p (struct type *t1, struct type *t2)
9530{
9531 LONGEST lo1, hi1, lo2, hi2;
9532
9533 /* Get the array bounds in order to verify that the size of
9534 the two arrays match. */
9535 if (!get_array_bounds (t1, &lo1, &hi1)
9536 || !get_array_bounds (t2, &lo2, &hi2))
9537 error (_("unable to determine array bounds"));
9538
9539 /* To make things easier for size comparison, normalize a bit
9540 the case of empty arrays by making sure that the difference
9541 between upper bound and lower bound is always -1. */
9542 if (lo1 > hi1)
9543 hi1 = lo1 - 1;
9544 if (lo2 > hi2)
9545 hi2 = lo2 - 1;
9546
9547 return (hi1 - lo1 == hi2 - lo2);
9548}
9549
9550/* Assuming that VAL is an array of integrals, and TYPE represents
9551 an array with the same number of elements, but with wider integral
9552 elements, return an array "casted" to TYPE. In practice, this
9553 means that the returned array is built by casting each element
9554 of the original array into TYPE's (wider) element type. */
9555
9556static struct value *
9557ada_promote_array_of_integrals (struct type *type, struct value *val)
9558{
9559 struct type *elt_type = TYPE_TARGET_TYPE (type);
9560 LONGEST lo, hi;
9561 struct value *res;
9562 LONGEST i;
9563
9564 /* Verify that both val and type are arrays of scalars, and
9565 that the size of val's elements is smaller than the size
9566 of type's element. */
9567 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9568 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9569 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9570 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9571 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9572 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9573
9574 if (!get_array_bounds (type, &lo, &hi))
9575 error (_("unable to determine array bounds"));
9576
9577 res = allocate_value (type);
9578
9579 /* Promote each array element. */
9580 for (i = 0; i < hi - lo + 1; i++)
9581 {
9582 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9583
9584 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9585 value_contents_all (elt), TYPE_LENGTH (elt_type));
9586 }
9587
9588 return res;
9589}
9590
4c4b4cd2
PH
9591/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9592 return the converted value. */
9593
d2e4a39e
AS
9594static struct value *
9595coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9596{
df407dfe 9597 struct type *type2 = value_type (val);
5b4ee69b 9598
14f9c5c9
AS
9599 if (type == type2)
9600 return val;
9601
61ee279c
PH
9602 type2 = ada_check_typedef (type2);
9603 type = ada_check_typedef (type);
14f9c5c9 9604
d2e4a39e
AS
9605 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9606 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9607 {
9608 val = ada_value_ind (val);
df407dfe 9609 type2 = value_type (val);
14f9c5c9
AS
9610 }
9611
d2e4a39e 9612 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9613 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9614 {
d99dcf51
JB
9615 if (!ada_same_array_size_p (type, type2))
9616 error (_("cannot assign arrays of different length"));
9617
9618 if (is_integral_type (TYPE_TARGET_TYPE (type))
9619 && is_integral_type (TYPE_TARGET_TYPE (type2))
9620 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9621 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9622 {
9623 /* Allow implicit promotion of the array elements to
9624 a wider type. */
9625 return ada_promote_array_of_integrals (type, val);
9626 }
9627
9628 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9629 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9630 error (_("Incompatible types in assignment"));
04624583 9631 deprecated_set_value_type (val, type);
14f9c5c9 9632 }
d2e4a39e 9633 return val;
14f9c5c9
AS
9634}
9635
4c4b4cd2
PH
9636static struct value *
9637ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9638{
9639 struct value *val;
9640 struct type *type1, *type2;
9641 LONGEST v, v1, v2;
9642
994b9211
AC
9643 arg1 = coerce_ref (arg1);
9644 arg2 = coerce_ref (arg2);
18af8284
JB
9645 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9646 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9647
76a01679
JB
9648 if (TYPE_CODE (type1) != TYPE_CODE_INT
9649 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9650 return value_binop (arg1, arg2, op);
9651
76a01679 9652 switch (op)
4c4b4cd2
PH
9653 {
9654 case BINOP_MOD:
9655 case BINOP_DIV:
9656 case BINOP_REM:
9657 break;
9658 default:
9659 return value_binop (arg1, arg2, op);
9660 }
9661
9662 v2 = value_as_long (arg2);
9663 if (v2 == 0)
323e0a4a 9664 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9665
9666 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9667 return value_binop (arg1, arg2, op);
9668
9669 v1 = value_as_long (arg1);
9670 switch (op)
9671 {
9672 case BINOP_DIV:
9673 v = v1 / v2;
76a01679
JB
9674 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9675 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9676 break;
9677 case BINOP_REM:
9678 v = v1 % v2;
76a01679
JB
9679 if (v * v1 < 0)
9680 v -= v2;
4c4b4cd2
PH
9681 break;
9682 default:
9683 /* Should not reach this point. */
9684 v = 0;
9685 }
9686
9687 val = allocate_value (type1);
990a07ab 9688 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9689 TYPE_LENGTH (value_type (val)),
9690 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9691 return val;
9692}
9693
9694static int
9695ada_value_equal (struct value *arg1, struct value *arg2)
9696{
df407dfe
AC
9697 if (ada_is_direct_array_type (value_type (arg1))
9698 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9699 {
f58b38bf
JB
9700 /* Automatically dereference any array reference before
9701 we attempt to perform the comparison. */
9702 arg1 = ada_coerce_ref (arg1);
9703 arg2 = ada_coerce_ref (arg2);
9704
4c4b4cd2
PH
9705 arg1 = ada_coerce_to_simple_array (arg1);
9706 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9707 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9708 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9709 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9710 /* FIXME: The following works only for types whose
76a01679
JB
9711 representations use all bits (no padding or undefined bits)
9712 and do not have user-defined equality. */
9713 return
df407dfe 9714 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9715 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9716 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9717 }
9718 return value_equal (arg1, arg2);
9719}
9720
52ce6436
PH
9721/* Total number of component associations in the aggregate starting at
9722 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9723 OP_AGGREGATE. */
52ce6436
PH
9724
9725static int
9726num_component_specs (struct expression *exp, int pc)
9727{
9728 int n, m, i;
5b4ee69b 9729
52ce6436
PH
9730 m = exp->elts[pc + 1].longconst;
9731 pc += 3;
9732 n = 0;
9733 for (i = 0; i < m; i += 1)
9734 {
9735 switch (exp->elts[pc].opcode)
9736 {
9737 default:
9738 n += 1;
9739 break;
9740 case OP_CHOICES:
9741 n += exp->elts[pc + 1].longconst;
9742 break;
9743 }
9744 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9745 }
9746 return n;
9747}
9748
9749/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9750 component of LHS (a simple array or a record), updating *POS past
9751 the expression, assuming that LHS is contained in CONTAINER. Does
9752 not modify the inferior's memory, nor does it modify LHS (unless
9753 LHS == CONTAINER). */
9754
9755static void
9756assign_component (struct value *container, struct value *lhs, LONGEST index,
9757 struct expression *exp, int *pos)
9758{
9759 struct value *mark = value_mark ();
9760 struct value *elt;
5b4ee69b 9761
52ce6436
PH
9762 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9763 {
22601c15
UW
9764 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9765 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9766
52ce6436
PH
9767 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9768 }
9769 else
9770 {
9771 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9772 elt = ada_to_fixed_value (elt);
52ce6436
PH
9773 }
9774
9775 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9776 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9777 else
9778 value_assign_to_component (container, elt,
9779 ada_evaluate_subexp (NULL, exp, pos,
9780 EVAL_NORMAL));
9781
9782 value_free_to_mark (mark);
9783}
9784
9785/* Assuming that LHS represents an lvalue having a record or array
9786 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9787 of that aggregate's value to LHS, advancing *POS past the
9788 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9789 lvalue containing LHS (possibly LHS itself). Does not modify
9790 the inferior's memory, nor does it modify the contents of
0963b4bd 9791 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9792
9793static struct value *
9794assign_aggregate (struct value *container,
9795 struct value *lhs, struct expression *exp,
9796 int *pos, enum noside noside)
9797{
9798 struct type *lhs_type;
9799 int n = exp->elts[*pos+1].longconst;
9800 LONGEST low_index, high_index;
9801 int num_specs;
9802 LONGEST *indices;
9803 int max_indices, num_indices;
52ce6436 9804 int i;
52ce6436
PH
9805
9806 *pos += 3;
9807 if (noside != EVAL_NORMAL)
9808 {
52ce6436
PH
9809 for (i = 0; i < n; i += 1)
9810 ada_evaluate_subexp (NULL, exp, pos, noside);
9811 return container;
9812 }
9813
9814 container = ada_coerce_ref (container);
9815 if (ada_is_direct_array_type (value_type (container)))
9816 container = ada_coerce_to_simple_array (container);
9817 lhs = ada_coerce_ref (lhs);
9818 if (!deprecated_value_modifiable (lhs))
9819 error (_("Left operand of assignment is not a modifiable lvalue."));
9820
9821 lhs_type = value_type (lhs);
9822 if (ada_is_direct_array_type (lhs_type))
9823 {
9824 lhs = ada_coerce_to_simple_array (lhs);
9825 lhs_type = value_type (lhs);
9826 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9827 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9828 }
9829 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9830 {
9831 low_index = 0;
9832 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9833 }
9834 else
9835 error (_("Left-hand side must be array or record."));
9836
9837 num_specs = num_component_specs (exp, *pos - 3);
9838 max_indices = 4 * num_specs + 4;
8d749320 9839 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9840 indices[0] = indices[1] = low_index - 1;
9841 indices[2] = indices[3] = high_index + 1;
9842 num_indices = 4;
9843
9844 for (i = 0; i < n; i += 1)
9845 {
9846 switch (exp->elts[*pos].opcode)
9847 {
1fbf5ada
JB
9848 case OP_CHOICES:
9849 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9850 &num_indices, max_indices,
9851 low_index, high_index);
9852 break;
9853 case OP_POSITIONAL:
9854 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9855 &num_indices, max_indices,
9856 low_index, high_index);
1fbf5ada
JB
9857 break;
9858 case OP_OTHERS:
9859 if (i != n-1)
9860 error (_("Misplaced 'others' clause"));
9861 aggregate_assign_others (container, lhs, exp, pos, indices,
9862 num_indices, low_index, high_index);
9863 break;
9864 default:
9865 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9866 }
9867 }
9868
9869 return container;
9870}
9871
9872/* Assign into the component of LHS indexed by the OP_POSITIONAL
9873 construct at *POS, updating *POS past the construct, given that
9874 the positions are relative to lower bound LOW, where HIGH is the
9875 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9876 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9877 assign_aggregate. */
52ce6436
PH
9878static void
9879aggregate_assign_positional (struct value *container,
9880 struct value *lhs, struct expression *exp,
9881 int *pos, LONGEST *indices, int *num_indices,
9882 int max_indices, LONGEST low, LONGEST high)
9883{
9884 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9885
9886 if (ind - 1 == high)
e1d5a0d2 9887 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9888 if (ind <= high)
9889 {
9890 add_component_interval (ind, ind, indices, num_indices, max_indices);
9891 *pos += 3;
9892 assign_component (container, lhs, ind, exp, pos);
9893 }
9894 else
9895 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9896}
9897
9898/* Assign into the components of LHS indexed by the OP_CHOICES
9899 construct at *POS, updating *POS past the construct, given that
9900 the allowable indices are LOW..HIGH. Record the indices assigned
9901 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9902 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9903static void
9904aggregate_assign_from_choices (struct value *container,
9905 struct value *lhs, struct expression *exp,
9906 int *pos, LONGEST *indices, int *num_indices,
9907 int max_indices, LONGEST low, LONGEST high)
9908{
9909 int j;
9910 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9911 int choice_pos, expr_pc;
9912 int is_array = ada_is_direct_array_type (value_type (lhs));
9913
9914 choice_pos = *pos += 3;
9915
9916 for (j = 0; j < n_choices; j += 1)
9917 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9918 expr_pc = *pos;
9919 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9920
9921 for (j = 0; j < n_choices; j += 1)
9922 {
9923 LONGEST lower, upper;
9924 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9925
52ce6436
PH
9926 if (op == OP_DISCRETE_RANGE)
9927 {
9928 choice_pos += 1;
9929 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9930 EVAL_NORMAL));
9931 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9932 EVAL_NORMAL));
9933 }
9934 else if (is_array)
9935 {
9936 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9937 EVAL_NORMAL));
9938 upper = lower;
9939 }
9940 else
9941 {
9942 int ind;
0d5cff50 9943 const char *name;
5b4ee69b 9944
52ce6436
PH
9945 switch (op)
9946 {
9947 case OP_NAME:
9948 name = &exp->elts[choice_pos + 2].string;
9949 break;
9950 case OP_VAR_VALUE:
9951 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9952 break;
9953 default:
9954 error (_("Invalid record component association."));
9955 }
9956 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9957 ind = 0;
9958 if (! find_struct_field (name, value_type (lhs), 0,
9959 NULL, NULL, NULL, NULL, &ind))
9960 error (_("Unknown component name: %s."), name);
9961 lower = upper = ind;
9962 }
9963
9964 if (lower <= upper && (lower < low || upper > high))
9965 error (_("Index in component association out of bounds."));
9966
9967 add_component_interval (lower, upper, indices, num_indices,
9968 max_indices);
9969 while (lower <= upper)
9970 {
9971 int pos1;
5b4ee69b 9972
52ce6436
PH
9973 pos1 = expr_pc;
9974 assign_component (container, lhs, lower, exp, &pos1);
9975 lower += 1;
9976 }
9977 }
9978}
9979
9980/* Assign the value of the expression in the OP_OTHERS construct in
9981 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9982 have not been previously assigned. The index intervals already assigned
9983 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9984 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9985static void
9986aggregate_assign_others (struct value *container,
9987 struct value *lhs, struct expression *exp,
9988 int *pos, LONGEST *indices, int num_indices,
9989 LONGEST low, LONGEST high)
9990{
9991 int i;
5ce64950 9992 int expr_pc = *pos + 1;
52ce6436
PH
9993
9994 for (i = 0; i < num_indices - 2; i += 2)
9995 {
9996 LONGEST ind;
5b4ee69b 9997
52ce6436
PH
9998 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9999 {
5ce64950 10000 int localpos;
5b4ee69b 10001
5ce64950
MS
10002 localpos = expr_pc;
10003 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10004 }
10005 }
10006 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10007}
10008
10009/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10010 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10011 modifying *SIZE as needed. It is an error if *SIZE exceeds
10012 MAX_SIZE. The resulting intervals do not overlap. */
10013static void
10014add_component_interval (LONGEST low, LONGEST high,
10015 LONGEST* indices, int *size, int max_size)
10016{
10017 int i, j;
5b4ee69b 10018
52ce6436
PH
10019 for (i = 0; i < *size; i += 2) {
10020 if (high >= indices[i] && low <= indices[i + 1])
10021 {
10022 int kh;
5b4ee69b 10023
52ce6436
PH
10024 for (kh = i + 2; kh < *size; kh += 2)
10025 if (high < indices[kh])
10026 break;
10027 if (low < indices[i])
10028 indices[i] = low;
10029 indices[i + 1] = indices[kh - 1];
10030 if (high > indices[i + 1])
10031 indices[i + 1] = high;
10032 memcpy (indices + i + 2, indices + kh, *size - kh);
10033 *size -= kh - i - 2;
10034 return;
10035 }
10036 else if (high < indices[i])
10037 break;
10038 }
10039
10040 if (*size == max_size)
10041 error (_("Internal error: miscounted aggregate components."));
10042 *size += 2;
10043 for (j = *size-1; j >= i+2; j -= 1)
10044 indices[j] = indices[j - 2];
10045 indices[i] = low;
10046 indices[i + 1] = high;
10047}
10048
6e48bd2c
JB
10049/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10050 is different. */
10051
10052static struct value *
b7e22850 10053ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10054{
10055 if (type == ada_check_typedef (value_type (arg2)))
10056 return arg2;
10057
10058 if (ada_is_fixed_point_type (type))
10059 return (cast_to_fixed (type, arg2));
10060
10061 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10062 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10063
10064 return value_cast (type, arg2);
10065}
10066
284614f0
JB
10067/* Evaluating Ada expressions, and printing their result.
10068 ------------------------------------------------------
10069
21649b50
JB
10070 1. Introduction:
10071 ----------------
10072
284614f0
JB
10073 We usually evaluate an Ada expression in order to print its value.
10074 We also evaluate an expression in order to print its type, which
10075 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10076 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10077 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10078 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10079 similar.
10080
10081 Evaluating expressions is a little more complicated for Ada entities
10082 than it is for entities in languages such as C. The main reason for
10083 this is that Ada provides types whose definition might be dynamic.
10084 One example of such types is variant records. Or another example
10085 would be an array whose bounds can only be known at run time.
10086
10087 The following description is a general guide as to what should be
10088 done (and what should NOT be done) in order to evaluate an expression
10089 involving such types, and when. This does not cover how the semantic
10090 information is encoded by GNAT as this is covered separatly. For the
10091 document used as the reference for the GNAT encoding, see exp_dbug.ads
10092 in the GNAT sources.
10093
10094 Ideally, we should embed each part of this description next to its
10095 associated code. Unfortunately, the amount of code is so vast right
10096 now that it's hard to see whether the code handling a particular
10097 situation might be duplicated or not. One day, when the code is
10098 cleaned up, this guide might become redundant with the comments
10099 inserted in the code, and we might want to remove it.
10100
21649b50
JB
10101 2. ``Fixing'' an Entity, the Simple Case:
10102 -----------------------------------------
10103
284614f0
JB
10104 When evaluating Ada expressions, the tricky issue is that they may
10105 reference entities whose type contents and size are not statically
10106 known. Consider for instance a variant record:
10107
10108 type Rec (Empty : Boolean := True) is record
10109 case Empty is
10110 when True => null;
10111 when False => Value : Integer;
10112 end case;
10113 end record;
10114 Yes : Rec := (Empty => False, Value => 1);
10115 No : Rec := (empty => True);
10116
10117 The size and contents of that record depends on the value of the
10118 descriminant (Rec.Empty). At this point, neither the debugging
10119 information nor the associated type structure in GDB are able to
10120 express such dynamic types. So what the debugger does is to create
10121 "fixed" versions of the type that applies to the specific object.
10122 We also informally refer to this opperation as "fixing" an object,
10123 which means creating its associated fixed type.
10124
10125 Example: when printing the value of variable "Yes" above, its fixed
10126 type would look like this:
10127
10128 type Rec is record
10129 Empty : Boolean;
10130 Value : Integer;
10131 end record;
10132
10133 On the other hand, if we printed the value of "No", its fixed type
10134 would become:
10135
10136 type Rec is record
10137 Empty : Boolean;
10138 end record;
10139
10140 Things become a little more complicated when trying to fix an entity
10141 with a dynamic type that directly contains another dynamic type,
10142 such as an array of variant records, for instance. There are
10143 two possible cases: Arrays, and records.
10144
21649b50
JB
10145 3. ``Fixing'' Arrays:
10146 ---------------------
10147
10148 The type structure in GDB describes an array in terms of its bounds,
10149 and the type of its elements. By design, all elements in the array
10150 have the same type and we cannot represent an array of variant elements
10151 using the current type structure in GDB. When fixing an array,
10152 we cannot fix the array element, as we would potentially need one
10153 fixed type per element of the array. As a result, the best we can do
10154 when fixing an array is to produce an array whose bounds and size
10155 are correct (allowing us to read it from memory), but without having
10156 touched its element type. Fixing each element will be done later,
10157 when (if) necessary.
10158
10159 Arrays are a little simpler to handle than records, because the same
10160 amount of memory is allocated for each element of the array, even if
1b536f04 10161 the amount of space actually used by each element differs from element
21649b50 10162 to element. Consider for instance the following array of type Rec:
284614f0
JB
10163
10164 type Rec_Array is array (1 .. 2) of Rec;
10165
1b536f04
JB
10166 The actual amount of memory occupied by each element might be different
10167 from element to element, depending on the value of their discriminant.
21649b50 10168 But the amount of space reserved for each element in the array remains
1b536f04 10169 fixed regardless. So we simply need to compute that size using
21649b50
JB
10170 the debugging information available, from which we can then determine
10171 the array size (we multiply the number of elements of the array by
10172 the size of each element).
10173
10174 The simplest case is when we have an array of a constrained element
10175 type. For instance, consider the following type declarations:
10176
10177 type Bounded_String (Max_Size : Integer) is
10178 Length : Integer;
10179 Buffer : String (1 .. Max_Size);
10180 end record;
10181 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10182
10183 In this case, the compiler describes the array as an array of
10184 variable-size elements (identified by its XVS suffix) for which
10185 the size can be read in the parallel XVZ variable.
10186
10187 In the case of an array of an unconstrained element type, the compiler
10188 wraps the array element inside a private PAD type. This type should not
10189 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10190 that we also use the adjective "aligner" in our code to designate
10191 these wrapper types.
10192
1b536f04 10193 In some cases, the size allocated for each element is statically
21649b50
JB
10194 known. In that case, the PAD type already has the correct size,
10195 and the array element should remain unfixed.
10196
10197 But there are cases when this size is not statically known.
10198 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10199
10200 type Dynamic is array (1 .. Five) of Integer;
10201 type Wrapper (Has_Length : Boolean := False) is record
10202 Data : Dynamic;
10203 case Has_Length is
10204 when True => Length : Integer;
10205 when False => null;
10206 end case;
10207 end record;
10208 type Wrapper_Array is array (1 .. 2) of Wrapper;
10209
10210 Hello : Wrapper_Array := (others => (Has_Length => True,
10211 Data => (others => 17),
10212 Length => 1));
10213
10214
10215 The debugging info would describe variable Hello as being an
10216 array of a PAD type. The size of that PAD type is not statically
10217 known, but can be determined using a parallel XVZ variable.
10218 In that case, a copy of the PAD type with the correct size should
10219 be used for the fixed array.
10220
21649b50
JB
10221 3. ``Fixing'' record type objects:
10222 ----------------------------------
10223
10224 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10225 record types. In this case, in order to compute the associated
10226 fixed type, we need to determine the size and offset of each of
10227 its components. This, in turn, requires us to compute the fixed
10228 type of each of these components.
10229
10230 Consider for instance the example:
10231
10232 type Bounded_String (Max_Size : Natural) is record
10233 Str : String (1 .. Max_Size);
10234 Length : Natural;
10235 end record;
10236 My_String : Bounded_String (Max_Size => 10);
10237
10238 In that case, the position of field "Length" depends on the size
10239 of field Str, which itself depends on the value of the Max_Size
21649b50 10240 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10241 we need to fix the type of field Str. Therefore, fixing a variant
10242 record requires us to fix each of its components.
10243
10244 However, if a component does not have a dynamic size, the component
10245 should not be fixed. In particular, fields that use a PAD type
10246 should not fixed. Here is an example where this might happen
10247 (assuming type Rec above):
10248
10249 type Container (Big : Boolean) is record
10250 First : Rec;
10251 After : Integer;
10252 case Big is
10253 when True => Another : Integer;
10254 when False => null;
10255 end case;
10256 end record;
10257 My_Container : Container := (Big => False,
10258 First => (Empty => True),
10259 After => 42);
10260
10261 In that example, the compiler creates a PAD type for component First,
10262 whose size is constant, and then positions the component After just
10263 right after it. The offset of component After is therefore constant
10264 in this case.
10265
10266 The debugger computes the position of each field based on an algorithm
10267 that uses, among other things, the actual position and size of the field
21649b50
JB
10268 preceding it. Let's now imagine that the user is trying to print
10269 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10270 end up computing the offset of field After based on the size of the
10271 fixed version of field First. And since in our example First has
10272 only one actual field, the size of the fixed type is actually smaller
10273 than the amount of space allocated to that field, and thus we would
10274 compute the wrong offset of field After.
10275
21649b50
JB
10276 To make things more complicated, we need to watch out for dynamic
10277 components of variant records (identified by the ___XVL suffix in
10278 the component name). Even if the target type is a PAD type, the size
10279 of that type might not be statically known. So the PAD type needs
10280 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10281 we might end up with the wrong size for our component. This can be
10282 observed with the following type declarations:
284614f0
JB
10283
10284 type Octal is new Integer range 0 .. 7;
10285 type Octal_Array is array (Positive range <>) of Octal;
10286 pragma Pack (Octal_Array);
10287
10288 type Octal_Buffer (Size : Positive) is record
10289 Buffer : Octal_Array (1 .. Size);
10290 Length : Integer;
10291 end record;
10292
10293 In that case, Buffer is a PAD type whose size is unset and needs
10294 to be computed by fixing the unwrapped type.
10295
21649b50
JB
10296 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10297 ----------------------------------------------------------
10298
10299 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10300 thus far, be actually fixed?
10301
10302 The answer is: Only when referencing that element. For instance
10303 when selecting one component of a record, this specific component
10304 should be fixed at that point in time. Or when printing the value
10305 of a record, each component should be fixed before its value gets
10306 printed. Similarly for arrays, the element of the array should be
10307 fixed when printing each element of the array, or when extracting
10308 one element out of that array. On the other hand, fixing should
10309 not be performed on the elements when taking a slice of an array!
10310
31432a67 10311 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10312 size of each field is that we end up also miscomputing the size
10313 of the containing type. This can have adverse results when computing
10314 the value of an entity. GDB fetches the value of an entity based
10315 on the size of its type, and thus a wrong size causes GDB to fetch
10316 the wrong amount of memory. In the case where the computed size is
10317 too small, GDB fetches too little data to print the value of our
31432a67 10318 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10319 past the buffer containing the data =:-o. */
10320
ced9779b
JB
10321/* Evaluate a subexpression of EXP, at index *POS, and return a value
10322 for that subexpression cast to TO_TYPE. Advance *POS over the
10323 subexpression. */
10324
10325static value *
10326ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10327 enum noside noside, struct type *to_type)
10328{
10329 int pc = *pos;
10330
10331 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10332 || exp->elts[pc].opcode == OP_VAR_VALUE)
10333 {
10334 (*pos) += 4;
10335
10336 value *val;
10337 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10338 {
10339 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10340 return value_zero (to_type, not_lval);
10341
10342 val = evaluate_var_msym_value (noside,
10343 exp->elts[pc + 1].objfile,
10344 exp->elts[pc + 2].msymbol);
10345 }
10346 else
10347 val = evaluate_var_value (noside,
10348 exp->elts[pc + 1].block,
10349 exp->elts[pc + 2].symbol);
10350
10351 if (noside == EVAL_SKIP)
10352 return eval_skip_value (exp);
10353
10354 val = ada_value_cast (to_type, val);
10355
10356 /* Follow the Ada language semantics that do not allow taking
10357 an address of the result of a cast (view conversion in Ada). */
10358 if (VALUE_LVAL (val) == lval_memory)
10359 {
10360 if (value_lazy (val))
10361 value_fetch_lazy (val);
10362 VALUE_LVAL (val) = not_lval;
10363 }
10364 return val;
10365 }
10366
10367 value *val = evaluate_subexp (to_type, exp, pos, noside);
10368 if (noside == EVAL_SKIP)
10369 return eval_skip_value (exp);
10370 return ada_value_cast (to_type, val);
10371}
10372
284614f0
JB
10373/* Implement the evaluate_exp routine in the exp_descriptor structure
10374 for the Ada language. */
10375
52ce6436 10376static struct value *
ebf56fd3 10377ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10378 int *pos, enum noside noside)
14f9c5c9
AS
10379{
10380 enum exp_opcode op;
b5385fc0 10381 int tem;
14f9c5c9 10382 int pc;
5ec18f2b 10383 int preeval_pos;
14f9c5c9
AS
10384 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10385 struct type *type;
52ce6436 10386 int nargs, oplen;
d2e4a39e 10387 struct value **argvec;
14f9c5c9 10388
d2e4a39e
AS
10389 pc = *pos;
10390 *pos += 1;
14f9c5c9
AS
10391 op = exp->elts[pc].opcode;
10392
d2e4a39e 10393 switch (op)
14f9c5c9
AS
10394 {
10395 default:
10396 *pos -= 1;
6e48bd2c 10397 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10398
10399 if (noside == EVAL_NORMAL)
10400 arg1 = unwrap_value (arg1);
6e48bd2c 10401
edd079d9 10402 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10403 then we need to perform the conversion manually, because
10404 evaluate_subexp_standard doesn't do it. This conversion is
10405 necessary in Ada because the different kinds of float/fixed
10406 types in Ada have different representations.
10407
10408 Similarly, we need to perform the conversion from OP_LONG
10409 ourselves. */
edd079d9 10410 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10411 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10412
10413 return arg1;
4c4b4cd2
PH
10414
10415 case OP_STRING:
10416 {
76a01679 10417 struct value *result;
5b4ee69b 10418
76a01679
JB
10419 *pos -= 1;
10420 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10421 /* The result type will have code OP_STRING, bashed there from
10422 OP_ARRAY. Bash it back. */
df407dfe
AC
10423 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10424 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10425 return result;
4c4b4cd2 10426 }
14f9c5c9
AS
10427
10428 case UNOP_CAST:
10429 (*pos) += 2;
10430 type = exp->elts[pc + 1].type;
ced9779b 10431 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10432
4c4b4cd2
PH
10433 case UNOP_QUAL:
10434 (*pos) += 2;
10435 type = exp->elts[pc + 1].type;
10436 return ada_evaluate_subexp (type, exp, pos, noside);
10437
14f9c5c9
AS
10438 case BINOP_ASSIGN:
10439 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10440 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10441 {
10442 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10443 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10444 return arg1;
10445 return ada_value_assign (arg1, arg1);
10446 }
003f3813
JB
10447 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10448 except if the lhs of our assignment is a convenience variable.
10449 In the case of assigning to a convenience variable, the lhs
10450 should be exactly the result of the evaluation of the rhs. */
10451 type = value_type (arg1);
10452 if (VALUE_LVAL (arg1) == lval_internalvar)
10453 type = NULL;
10454 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10455 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10456 return arg1;
df407dfe
AC
10457 if (ada_is_fixed_point_type (value_type (arg1)))
10458 arg2 = cast_to_fixed (value_type (arg1), arg2);
10459 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10460 error
323e0a4a 10461 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10462 else
df407dfe 10463 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10464 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10465
10466 case BINOP_ADD:
10467 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10468 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10469 if (noside == EVAL_SKIP)
4c4b4cd2 10470 goto nosideret;
2ac8a782
JB
10471 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10472 return (value_from_longest
10473 (value_type (arg1),
10474 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10475 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10476 return (value_from_longest
10477 (value_type (arg2),
10478 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10479 if ((ada_is_fixed_point_type (value_type (arg1))
10480 || ada_is_fixed_point_type (value_type (arg2)))
10481 && value_type (arg1) != value_type (arg2))
323e0a4a 10482 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10483 /* Do the addition, and cast the result to the type of the first
10484 argument. We cannot cast the result to a reference type, so if
10485 ARG1 is a reference type, find its underlying type. */
10486 type = value_type (arg1);
10487 while (TYPE_CODE (type) == TYPE_CODE_REF)
10488 type = TYPE_TARGET_TYPE (type);
f44316fa 10489 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10490 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10491
10492 case BINOP_SUB:
10493 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10494 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10495 if (noside == EVAL_SKIP)
4c4b4cd2 10496 goto nosideret;
2ac8a782
JB
10497 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10498 return (value_from_longest
10499 (value_type (arg1),
10500 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10501 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10502 return (value_from_longest
10503 (value_type (arg2),
10504 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10505 if ((ada_is_fixed_point_type (value_type (arg1))
10506 || ada_is_fixed_point_type (value_type (arg2)))
10507 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10508 error (_("Operands of fixed-point subtraction "
10509 "must have the same type"));
b7789565
JB
10510 /* Do the substraction, and cast the result to the type of the first
10511 argument. We cannot cast the result to a reference type, so if
10512 ARG1 is a reference type, find its underlying type. */
10513 type = value_type (arg1);
10514 while (TYPE_CODE (type) == TYPE_CODE_REF)
10515 type = TYPE_TARGET_TYPE (type);
f44316fa 10516 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10517 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10518
10519 case BINOP_MUL:
10520 case BINOP_DIV:
e1578042
JB
10521 case BINOP_REM:
10522 case BINOP_MOD:
14f9c5c9
AS
10523 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10524 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10525 if (noside == EVAL_SKIP)
4c4b4cd2 10526 goto nosideret;
e1578042 10527 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10528 {
10529 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10530 return value_zero (value_type (arg1), not_lval);
10531 }
14f9c5c9 10532 else
4c4b4cd2 10533 {
a53b7a21 10534 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10535 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10536 arg1 = cast_from_fixed (type, arg1);
df407dfe 10537 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10538 arg2 = cast_from_fixed (type, arg2);
f44316fa 10539 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10540 return ada_value_binop (arg1, arg2, op);
10541 }
10542
4c4b4cd2
PH
10543 case BINOP_EQUAL:
10544 case BINOP_NOTEQUAL:
14f9c5c9 10545 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10546 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10547 if (noside == EVAL_SKIP)
76a01679 10548 goto nosideret;
4c4b4cd2 10549 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10550 tem = 0;
4c4b4cd2 10551 else
f44316fa
UW
10552 {
10553 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10554 tem = ada_value_equal (arg1, arg2);
10555 }
4c4b4cd2 10556 if (op == BINOP_NOTEQUAL)
76a01679 10557 tem = !tem;
fbb06eb1
UW
10558 type = language_bool_type (exp->language_defn, exp->gdbarch);
10559 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10560
10561 case UNOP_NEG:
10562 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10563 if (noside == EVAL_SKIP)
10564 goto nosideret;
df407dfe
AC
10565 else if (ada_is_fixed_point_type (value_type (arg1)))
10566 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10567 else
f44316fa
UW
10568 {
10569 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10570 return value_neg (arg1);
10571 }
4c4b4cd2 10572
2330c6c6
JB
10573 case BINOP_LOGICAL_AND:
10574 case BINOP_LOGICAL_OR:
10575 case UNOP_LOGICAL_NOT:
000d5124
JB
10576 {
10577 struct value *val;
10578
10579 *pos -= 1;
10580 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10581 type = language_bool_type (exp->language_defn, exp->gdbarch);
10582 return value_cast (type, val);
000d5124 10583 }
2330c6c6
JB
10584
10585 case BINOP_BITWISE_AND:
10586 case BINOP_BITWISE_IOR:
10587 case BINOP_BITWISE_XOR:
000d5124
JB
10588 {
10589 struct value *val;
10590
10591 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10592 *pos = pc;
10593 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10594
10595 return value_cast (value_type (arg1), val);
10596 }
2330c6c6 10597
14f9c5c9
AS
10598 case OP_VAR_VALUE:
10599 *pos -= 1;
6799def4 10600
14f9c5c9 10601 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10602 {
10603 *pos += 4;
10604 goto nosideret;
10605 }
da5c522f
JB
10606
10607 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10608 /* Only encountered when an unresolved symbol occurs in a
10609 context other than a function call, in which case, it is
52ce6436 10610 invalid. */
323e0a4a 10611 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10612 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10613
10614 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10615 {
0c1f74cf 10616 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10617 /* Check to see if this is a tagged type. We also need to handle
10618 the case where the type is a reference to a tagged type, but
10619 we have to be careful to exclude pointers to tagged types.
10620 The latter should be shown as usual (as a pointer), whereas
10621 a reference should mostly be transparent to the user. */
10622 if (ada_is_tagged_type (type, 0)
023db19c 10623 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10624 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10625 {
10626 /* Tagged types are a little special in the fact that the real
10627 type is dynamic and can only be determined by inspecting the
10628 object's tag. This means that we need to get the object's
10629 value first (EVAL_NORMAL) and then extract the actual object
10630 type from its tag.
10631
10632 Note that we cannot skip the final step where we extract
10633 the object type from its tag, because the EVAL_NORMAL phase
10634 results in dynamic components being resolved into fixed ones.
10635 This can cause problems when trying to print the type
10636 description of tagged types whose parent has a dynamic size:
10637 We use the type name of the "_parent" component in order
10638 to print the name of the ancestor type in the type description.
10639 If that component had a dynamic size, the resolution into
10640 a fixed type would result in the loss of that type name,
10641 thus preventing us from printing the name of the ancestor
10642 type in the type description. */
10643 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10644
10645 if (TYPE_CODE (type) != TYPE_CODE_REF)
10646 {
10647 struct type *actual_type;
10648
10649 actual_type = type_from_tag (ada_value_tag (arg1));
10650 if (actual_type == NULL)
10651 /* If, for some reason, we were unable to determine
10652 the actual type from the tag, then use the static
10653 approximation that we just computed as a fallback.
10654 This can happen if the debugging information is
10655 incomplete, for instance. */
10656 actual_type = type;
10657 return value_zero (actual_type, not_lval);
10658 }
10659 else
10660 {
10661 /* In the case of a ref, ada_coerce_ref takes care
10662 of determining the actual type. But the evaluation
10663 should return a ref as it should be valid to ask
10664 for its address; so rebuild a ref after coerce. */
10665 arg1 = ada_coerce_ref (arg1);
a65cfae5 10666 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10667 }
10668 }
0c1f74cf 10669
84754697
JB
10670 /* Records and unions for which GNAT encodings have been
10671 generated need to be statically fixed as well.
10672 Otherwise, non-static fixing produces a type where
10673 all dynamic properties are removed, which prevents "ptype"
10674 from being able to completely describe the type.
10675 For instance, a case statement in a variant record would be
10676 replaced by the relevant components based on the actual
10677 value of the discriminants. */
10678 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10679 && dynamic_template_type (type) != NULL)
10680 || (TYPE_CODE (type) == TYPE_CODE_UNION
10681 && ada_find_parallel_type (type, "___XVU") != NULL))
10682 {
10683 *pos += 4;
10684 return value_zero (to_static_fixed_type (type), not_lval);
10685 }
4c4b4cd2 10686 }
da5c522f
JB
10687
10688 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10689 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10690
10691 case OP_FUNCALL:
10692 (*pos) += 2;
10693
10694 /* Allocate arg vector, including space for the function to be
10695 called in argvec[0] and a terminating NULL. */
10696 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10697 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10698
10699 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10700 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10701 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10702 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10703 else
10704 {
10705 for (tem = 0; tem <= nargs; tem += 1)
10706 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10707 argvec[tem] = 0;
10708
10709 if (noside == EVAL_SKIP)
10710 goto nosideret;
10711 }
10712
ad82864c
JB
10713 if (ada_is_constrained_packed_array_type
10714 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10715 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10716 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10717 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10718 /* This is a packed array that has already been fixed, and
10719 therefore already coerced to a simple array. Nothing further
10720 to do. */
10721 ;
e6c2c623
PMR
10722 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10723 {
10724 /* Make sure we dereference references so that all the code below
10725 feels like it's really handling the referenced value. Wrapping
10726 types (for alignment) may be there, so make sure we strip them as
10727 well. */
10728 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10729 }
10730 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10731 && VALUE_LVAL (argvec[0]) == lval_memory)
10732 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10733
df407dfe 10734 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10735
10736 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10737 them. So, if this is an array typedef (encoding use for array
10738 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10739 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10740 type = ada_typedef_target_type (type);
10741
4c4b4cd2
PH
10742 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10743 {
61ee279c 10744 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10745 {
10746 case TYPE_CODE_FUNC:
61ee279c 10747 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10748 break;
10749 case TYPE_CODE_ARRAY:
10750 break;
10751 case TYPE_CODE_STRUCT:
10752 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10753 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10754 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10755 break;
10756 default:
323e0a4a 10757 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10758 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10759 break;
10760 }
10761 }
10762
10763 switch (TYPE_CODE (type))
10764 {
10765 case TYPE_CODE_FUNC:
10766 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10767 {
7022349d
PA
10768 if (TYPE_TARGET_TYPE (type) == NULL)
10769 error_call_unknown_return_type (NULL);
10770 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10771 }
7022349d 10772 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
c8ea1972
PH
10773 case TYPE_CODE_INTERNAL_FUNCTION:
10774 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10775 /* We don't know anything about what the internal
10776 function might return, but we have to return
10777 something. */
10778 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10779 not_lval);
10780 else
10781 return call_internal_function (exp->gdbarch, exp->language_defn,
10782 argvec[0], nargs, argvec + 1);
10783
4c4b4cd2
PH
10784 case TYPE_CODE_STRUCT:
10785 {
10786 int arity;
10787
4c4b4cd2
PH
10788 arity = ada_array_arity (type);
10789 type = ada_array_element_type (type, nargs);
10790 if (type == NULL)
323e0a4a 10791 error (_("cannot subscript or call a record"));
4c4b4cd2 10792 if (arity != nargs)
323e0a4a 10793 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10794 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10795 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10796 return
10797 unwrap_value (ada_value_subscript
10798 (argvec[0], nargs, argvec + 1));
10799 }
10800 case TYPE_CODE_ARRAY:
10801 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10802 {
10803 type = ada_array_element_type (type, nargs);
10804 if (type == NULL)
323e0a4a 10805 error (_("element type of array unknown"));
4c4b4cd2 10806 else
0a07e705 10807 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10808 }
10809 return
10810 unwrap_value (ada_value_subscript
10811 (ada_coerce_to_simple_array (argvec[0]),
10812 nargs, argvec + 1));
10813 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10814 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10815 {
deede10c 10816 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10817 type = ada_array_element_type (type, nargs);
10818 if (type == NULL)
323e0a4a 10819 error (_("element type of array unknown"));
4c4b4cd2 10820 else
0a07e705 10821 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10822 }
10823 return
deede10c
JB
10824 unwrap_value (ada_value_ptr_subscript (argvec[0],
10825 nargs, argvec + 1));
4c4b4cd2
PH
10826
10827 default:
e1d5a0d2
PH
10828 error (_("Attempt to index or call something other than an "
10829 "array or function"));
4c4b4cd2
PH
10830 }
10831
10832 case TERNOP_SLICE:
10833 {
10834 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10835 struct value *low_bound_val =
10836 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10837 struct value *high_bound_val =
10838 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10839 LONGEST low_bound;
10840 LONGEST high_bound;
5b4ee69b 10841
994b9211
AC
10842 low_bound_val = coerce_ref (low_bound_val);
10843 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10844 low_bound = value_as_long (low_bound_val);
10845 high_bound = value_as_long (high_bound_val);
963a6417 10846
4c4b4cd2
PH
10847 if (noside == EVAL_SKIP)
10848 goto nosideret;
10849
4c4b4cd2
PH
10850 /* If this is a reference to an aligner type, then remove all
10851 the aligners. */
df407dfe
AC
10852 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10853 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10854 TYPE_TARGET_TYPE (value_type (array)) =
10855 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10856
ad82864c 10857 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10858 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10859
10860 /* If this is a reference to an array or an array lvalue,
10861 convert to a pointer. */
df407dfe
AC
10862 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10863 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10864 && VALUE_LVAL (array) == lval_memory))
10865 array = value_addr (array);
10866
1265e4aa 10867 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10868 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10869 (value_type (array))))
0b5d8877 10870 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10871
10872 array = ada_coerce_to_simple_array_ptr (array);
10873
714e53ab
PH
10874 /* If we have more than one level of pointer indirection,
10875 dereference the value until we get only one level. */
df407dfe
AC
10876 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10877 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10878 == TYPE_CODE_PTR))
10879 array = value_ind (array);
10880
10881 /* Make sure we really do have an array type before going further,
10882 to avoid a SEGV when trying to get the index type or the target
10883 type later down the road if the debug info generated by
10884 the compiler is incorrect or incomplete. */
df407dfe 10885 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10886 error (_("cannot take slice of non-array"));
714e53ab 10887
828292f2
JB
10888 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10889 == TYPE_CODE_PTR)
4c4b4cd2 10890 {
828292f2
JB
10891 struct type *type0 = ada_check_typedef (value_type (array));
10892
0b5d8877 10893 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10894 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10895 else
10896 {
10897 struct type *arr_type0 =
828292f2 10898 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10899
f5938064
JG
10900 return ada_value_slice_from_ptr (array, arr_type0,
10901 longest_to_int (low_bound),
10902 longest_to_int (high_bound));
4c4b4cd2
PH
10903 }
10904 }
10905 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10906 return array;
10907 else if (high_bound < low_bound)
df407dfe 10908 return empty_array (value_type (array), low_bound);
4c4b4cd2 10909 else
529cad9c
PH
10910 return ada_value_slice (array, longest_to_int (low_bound),
10911 longest_to_int (high_bound));
4c4b4cd2 10912 }
14f9c5c9 10913
4c4b4cd2
PH
10914 case UNOP_IN_RANGE:
10915 (*pos) += 2;
10916 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10917 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10918
14f9c5c9 10919 if (noside == EVAL_SKIP)
4c4b4cd2 10920 goto nosideret;
14f9c5c9 10921
4c4b4cd2
PH
10922 switch (TYPE_CODE (type))
10923 {
10924 default:
e1d5a0d2
PH
10925 lim_warning (_("Membership test incompletely implemented; "
10926 "always returns true"));
fbb06eb1
UW
10927 type = language_bool_type (exp->language_defn, exp->gdbarch);
10928 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10929
10930 case TYPE_CODE_RANGE:
030b4912
UW
10931 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10932 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10933 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10934 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10935 type = language_bool_type (exp->language_defn, exp->gdbarch);
10936 return
10937 value_from_longest (type,
4c4b4cd2
PH
10938 (value_less (arg1, arg3)
10939 || value_equal (arg1, arg3))
10940 && (value_less (arg2, arg1)
10941 || value_equal (arg2, arg1)));
10942 }
10943
10944 case BINOP_IN_BOUNDS:
14f9c5c9 10945 (*pos) += 2;
4c4b4cd2
PH
10946 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10947 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10948
4c4b4cd2
PH
10949 if (noside == EVAL_SKIP)
10950 goto nosideret;
14f9c5c9 10951
4c4b4cd2 10952 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10953 {
10954 type = language_bool_type (exp->language_defn, exp->gdbarch);
10955 return value_zero (type, not_lval);
10956 }
14f9c5c9 10957
4c4b4cd2 10958 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10959
1eea4ebd
UW
10960 type = ada_index_type (value_type (arg2), tem, "range");
10961 if (!type)
10962 type = value_type (arg1);
14f9c5c9 10963
1eea4ebd
UW
10964 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10965 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10966
f44316fa
UW
10967 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10968 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10969 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10970 return
fbb06eb1 10971 value_from_longest (type,
4c4b4cd2
PH
10972 (value_less (arg1, arg3)
10973 || value_equal (arg1, arg3))
10974 && (value_less (arg2, arg1)
10975 || value_equal (arg2, arg1)));
10976
10977 case TERNOP_IN_RANGE:
10978 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10979 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10980 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10981
10982 if (noside == EVAL_SKIP)
10983 goto nosideret;
10984
f44316fa
UW
10985 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10986 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10987 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10988 return
fbb06eb1 10989 value_from_longest (type,
4c4b4cd2
PH
10990 (value_less (arg1, arg3)
10991 || value_equal (arg1, arg3))
10992 && (value_less (arg2, arg1)
10993 || value_equal (arg2, arg1)));
10994
10995 case OP_ATR_FIRST:
10996 case OP_ATR_LAST:
10997 case OP_ATR_LENGTH:
10998 {
76a01679 10999 struct type *type_arg;
5b4ee69b 11000
76a01679
JB
11001 if (exp->elts[*pos].opcode == OP_TYPE)
11002 {
11003 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11004 arg1 = NULL;
5bc23cb3 11005 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11006 }
11007 else
11008 {
11009 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11010 type_arg = NULL;
11011 }
11012
11013 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11014 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11015 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11016 *pos += 4;
11017
11018 if (noside == EVAL_SKIP)
11019 goto nosideret;
11020
11021 if (type_arg == NULL)
11022 {
11023 arg1 = ada_coerce_ref (arg1);
11024
ad82864c 11025 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11026 arg1 = ada_coerce_to_simple_array (arg1);
11027
aa4fb036 11028 if (op == OP_ATR_LENGTH)
1eea4ebd 11029 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11030 else
11031 {
11032 type = ada_index_type (value_type (arg1), tem,
11033 ada_attribute_name (op));
11034 if (type == NULL)
11035 type = builtin_type (exp->gdbarch)->builtin_int;
11036 }
76a01679
JB
11037
11038 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11039 return allocate_value (type);
76a01679
JB
11040
11041 switch (op)
11042 {
11043 default: /* Should never happen. */
323e0a4a 11044 error (_("unexpected attribute encountered"));
76a01679 11045 case OP_ATR_FIRST:
1eea4ebd
UW
11046 return value_from_longest
11047 (type, ada_array_bound (arg1, tem, 0));
76a01679 11048 case OP_ATR_LAST:
1eea4ebd
UW
11049 return value_from_longest
11050 (type, ada_array_bound (arg1, tem, 1));
76a01679 11051 case OP_ATR_LENGTH:
1eea4ebd
UW
11052 return value_from_longest
11053 (type, ada_array_length (arg1, tem));
76a01679
JB
11054 }
11055 }
11056 else if (discrete_type_p (type_arg))
11057 {
11058 struct type *range_type;
0d5cff50 11059 const char *name = ada_type_name (type_arg);
5b4ee69b 11060
76a01679
JB
11061 range_type = NULL;
11062 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11063 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11064 if (range_type == NULL)
11065 range_type = type_arg;
11066 switch (op)
11067 {
11068 default:
323e0a4a 11069 error (_("unexpected attribute encountered"));
76a01679 11070 case OP_ATR_FIRST:
690cc4eb 11071 return value_from_longest
43bbcdc2 11072 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11073 case OP_ATR_LAST:
690cc4eb 11074 return value_from_longest
43bbcdc2 11075 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11076 case OP_ATR_LENGTH:
323e0a4a 11077 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11078 }
11079 }
11080 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11081 error (_("unimplemented type attribute"));
76a01679
JB
11082 else
11083 {
11084 LONGEST low, high;
11085
ad82864c
JB
11086 if (ada_is_constrained_packed_array_type (type_arg))
11087 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11088
aa4fb036 11089 if (op == OP_ATR_LENGTH)
1eea4ebd 11090 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11091 else
11092 {
11093 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11094 if (type == NULL)
11095 type = builtin_type (exp->gdbarch)->builtin_int;
11096 }
1eea4ebd 11097
76a01679
JB
11098 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11099 return allocate_value (type);
11100
11101 switch (op)
11102 {
11103 default:
323e0a4a 11104 error (_("unexpected attribute encountered"));
76a01679 11105 case OP_ATR_FIRST:
1eea4ebd 11106 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11107 return value_from_longest (type, low);
11108 case OP_ATR_LAST:
1eea4ebd 11109 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11110 return value_from_longest (type, high);
11111 case OP_ATR_LENGTH:
1eea4ebd
UW
11112 low = ada_array_bound_from_type (type_arg, tem, 0);
11113 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11114 return value_from_longest (type, high - low + 1);
11115 }
11116 }
14f9c5c9
AS
11117 }
11118
4c4b4cd2
PH
11119 case OP_ATR_TAG:
11120 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11121 if (noside == EVAL_SKIP)
76a01679 11122 goto nosideret;
4c4b4cd2
PH
11123
11124 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11125 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11126
11127 return ada_value_tag (arg1);
11128
11129 case OP_ATR_MIN:
11130 case OP_ATR_MAX:
11131 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11132 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11133 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11134 if (noside == EVAL_SKIP)
76a01679 11135 goto nosideret;
d2e4a39e 11136 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11137 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11138 else
f44316fa
UW
11139 {
11140 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11141 return value_binop (arg1, arg2,
11142 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11143 }
14f9c5c9 11144
4c4b4cd2
PH
11145 case OP_ATR_MODULUS:
11146 {
31dedfee 11147 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11148
5b4ee69b 11149 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11150 if (noside == EVAL_SKIP)
11151 goto nosideret;
4c4b4cd2 11152
76a01679 11153 if (!ada_is_modular_type (type_arg))
323e0a4a 11154 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11155
76a01679
JB
11156 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11157 ada_modulus (type_arg));
4c4b4cd2
PH
11158 }
11159
11160
11161 case OP_ATR_POS:
11162 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11163 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11164 if (noside == EVAL_SKIP)
76a01679 11165 goto nosideret;
3cb382c9
UW
11166 type = builtin_type (exp->gdbarch)->builtin_int;
11167 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11168 return value_zero (type, not_lval);
14f9c5c9 11169 else
3cb382c9 11170 return value_pos_atr (type, arg1);
14f9c5c9 11171
4c4b4cd2
PH
11172 case OP_ATR_SIZE:
11173 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11174 type = value_type (arg1);
11175
11176 /* If the argument is a reference, then dereference its type, since
11177 the user is really asking for the size of the actual object,
11178 not the size of the pointer. */
11179 if (TYPE_CODE (type) == TYPE_CODE_REF)
11180 type = TYPE_TARGET_TYPE (type);
11181
4c4b4cd2 11182 if (noside == EVAL_SKIP)
76a01679 11183 goto nosideret;
4c4b4cd2 11184 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11185 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11186 else
22601c15 11187 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11188 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11189
11190 case OP_ATR_VAL:
11191 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11192 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11193 type = exp->elts[pc + 2].type;
14f9c5c9 11194 if (noside == EVAL_SKIP)
76a01679 11195 goto nosideret;
4c4b4cd2 11196 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11197 return value_zero (type, not_lval);
4c4b4cd2 11198 else
76a01679 11199 return value_val_atr (type, arg1);
4c4b4cd2
PH
11200
11201 case BINOP_EXP:
11202 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11203 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11204 if (noside == EVAL_SKIP)
11205 goto nosideret;
11206 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11207 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11208 else
f44316fa
UW
11209 {
11210 /* For integer exponentiation operations,
11211 only promote the first argument. */
11212 if (is_integral_type (value_type (arg2)))
11213 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11214 else
11215 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11216
11217 return value_binop (arg1, arg2, op);
11218 }
4c4b4cd2
PH
11219
11220 case UNOP_PLUS:
11221 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11222 if (noside == EVAL_SKIP)
11223 goto nosideret;
11224 else
11225 return arg1;
11226
11227 case UNOP_ABS:
11228 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11229 if (noside == EVAL_SKIP)
11230 goto nosideret;
f44316fa 11231 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11232 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11233 return value_neg (arg1);
14f9c5c9 11234 else
4c4b4cd2 11235 return arg1;
14f9c5c9
AS
11236
11237 case UNOP_IND:
5ec18f2b 11238 preeval_pos = *pos;
6b0d7253 11239 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11240 if (noside == EVAL_SKIP)
4c4b4cd2 11241 goto nosideret;
df407dfe 11242 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11243 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11244 {
11245 if (ada_is_array_descriptor_type (type))
11246 /* GDB allows dereferencing GNAT array descriptors. */
11247 {
11248 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11249
4c4b4cd2 11250 if (arrType == NULL)
323e0a4a 11251 error (_("Attempt to dereference null array pointer."));
00a4c844 11252 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11253 }
11254 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11255 || TYPE_CODE (type) == TYPE_CODE_REF
11256 /* In C you can dereference an array to get the 1st elt. */
11257 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11258 {
5ec18f2b
JG
11259 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11260 only be determined by inspecting the object's tag.
11261 This means that we need to evaluate completely the
11262 expression in order to get its type. */
11263
023db19c
JB
11264 if ((TYPE_CODE (type) == TYPE_CODE_REF
11265 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11266 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11267 {
11268 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11269 EVAL_NORMAL);
11270 type = value_type (ada_value_ind (arg1));
11271 }
11272 else
11273 {
11274 type = to_static_fixed_type
11275 (ada_aligned_type
11276 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11277 }
c1b5a1a6 11278 ada_ensure_varsize_limit (type);
714e53ab
PH
11279 return value_zero (type, lval_memory);
11280 }
4c4b4cd2 11281 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11282 {
11283 /* GDB allows dereferencing an int. */
11284 if (expect_type == NULL)
11285 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11286 lval_memory);
11287 else
11288 {
11289 expect_type =
11290 to_static_fixed_type (ada_aligned_type (expect_type));
11291 return value_zero (expect_type, lval_memory);
11292 }
11293 }
4c4b4cd2 11294 else
323e0a4a 11295 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11296 }
0963b4bd 11297 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11298 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11299
96967637
JB
11300 if (TYPE_CODE (type) == TYPE_CODE_INT)
11301 /* GDB allows dereferencing an int. If we were given
11302 the expect_type, then use that as the target type.
11303 Otherwise, assume that the target type is an int. */
11304 {
11305 if (expect_type != NULL)
11306 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11307 arg1));
11308 else
11309 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11310 (CORE_ADDR) value_as_address (arg1));
11311 }
6b0d7253 11312
4c4b4cd2
PH
11313 if (ada_is_array_descriptor_type (type))
11314 /* GDB allows dereferencing GNAT array descriptors. */
11315 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11316 else
4c4b4cd2 11317 return ada_value_ind (arg1);
14f9c5c9
AS
11318
11319 case STRUCTOP_STRUCT:
11320 tem = longest_to_int (exp->elts[pc + 1].longconst);
11321 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11322 preeval_pos = *pos;
14f9c5c9
AS
11323 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11324 if (noside == EVAL_SKIP)
4c4b4cd2 11325 goto nosideret;
14f9c5c9 11326 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11327 {
df407dfe 11328 struct type *type1 = value_type (arg1);
5b4ee69b 11329
76a01679
JB
11330 if (ada_is_tagged_type (type1, 1))
11331 {
11332 type = ada_lookup_struct_elt_type (type1,
11333 &exp->elts[pc + 2].string,
988f6b3d 11334 1, 1);
5ec18f2b
JG
11335
11336 /* If the field is not found, check if it exists in the
11337 extension of this object's type. This means that we
11338 need to evaluate completely the expression. */
11339
76a01679 11340 if (type == NULL)
5ec18f2b
JG
11341 {
11342 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11343 EVAL_NORMAL);
11344 arg1 = ada_value_struct_elt (arg1,
11345 &exp->elts[pc + 2].string,
11346 0);
11347 arg1 = unwrap_value (arg1);
11348 type = value_type (ada_to_fixed_value (arg1));
11349 }
76a01679
JB
11350 }
11351 else
11352 type =
11353 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11354 0);
76a01679
JB
11355
11356 return value_zero (ada_aligned_type (type), lval_memory);
11357 }
14f9c5c9 11358 else
a579cd9a
MW
11359 {
11360 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11361 arg1 = unwrap_value (arg1);
11362 return ada_to_fixed_value (arg1);
11363 }
284614f0 11364
14f9c5c9 11365 case OP_TYPE:
4c4b4cd2
PH
11366 /* The value is not supposed to be used. This is here to make it
11367 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11368 (*pos) += 2;
11369 if (noside == EVAL_SKIP)
4c4b4cd2 11370 goto nosideret;
14f9c5c9 11371 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11372 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11373 else
323e0a4a 11374 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11375
11376 case OP_AGGREGATE:
11377 case OP_CHOICES:
11378 case OP_OTHERS:
11379 case OP_DISCRETE_RANGE:
11380 case OP_POSITIONAL:
11381 case OP_NAME:
11382 if (noside == EVAL_NORMAL)
11383 switch (op)
11384 {
11385 case OP_NAME:
11386 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11387 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11388 case OP_AGGREGATE:
11389 error (_("Aggregates only allowed on the right of an assignment"));
11390 default:
0963b4bd
MS
11391 internal_error (__FILE__, __LINE__,
11392 _("aggregate apparently mangled"));
52ce6436
PH
11393 }
11394
11395 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11396 *pos += oplen - 1;
11397 for (tem = 0; tem < nargs; tem += 1)
11398 ada_evaluate_subexp (NULL, exp, pos, noside);
11399 goto nosideret;
14f9c5c9
AS
11400 }
11401
11402nosideret:
ced9779b 11403 return eval_skip_value (exp);
14f9c5c9 11404}
14f9c5c9 11405\f
d2e4a39e 11406
4c4b4cd2 11407 /* Fixed point */
14f9c5c9
AS
11408
11409/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11410 type name that encodes the 'small and 'delta information.
4c4b4cd2 11411 Otherwise, return NULL. */
14f9c5c9 11412
d2e4a39e 11413static const char *
ebf56fd3 11414fixed_type_info (struct type *type)
14f9c5c9 11415{
d2e4a39e 11416 const char *name = ada_type_name (type);
14f9c5c9
AS
11417 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11418
d2e4a39e
AS
11419 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11420 {
14f9c5c9 11421 const char *tail = strstr (name, "___XF_");
5b4ee69b 11422
14f9c5c9 11423 if (tail == NULL)
4c4b4cd2 11424 return NULL;
d2e4a39e 11425 else
4c4b4cd2 11426 return tail + 5;
14f9c5c9
AS
11427 }
11428 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11429 return fixed_type_info (TYPE_TARGET_TYPE (type));
11430 else
11431 return NULL;
11432}
11433
4c4b4cd2 11434/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11435
11436int
ebf56fd3 11437ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11438{
11439 return fixed_type_info (type) != NULL;
11440}
11441
4c4b4cd2
PH
11442/* Return non-zero iff TYPE represents a System.Address type. */
11443
11444int
11445ada_is_system_address_type (struct type *type)
11446{
11447 return (TYPE_NAME (type)
11448 && strcmp (TYPE_NAME (type), "system__address") == 0);
11449}
11450
14f9c5c9 11451/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11452 type, return the target floating-point type to be used to represent
11453 of this type during internal computation. */
11454
11455static struct type *
11456ada_scaling_type (struct type *type)
11457{
11458 return builtin_type (get_type_arch (type))->builtin_long_double;
11459}
11460
11461/* Assuming that TYPE is the representation of an Ada fixed-point
11462 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11463 delta cannot be determined. */
14f9c5c9 11464
50eff16b 11465struct value *
ebf56fd3 11466ada_delta (struct type *type)
14f9c5c9
AS
11467{
11468 const char *encoding = fixed_type_info (type);
50eff16b
UW
11469 struct type *scale_type = ada_scaling_type (type);
11470
11471 long long num, den;
11472
11473 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11474 return nullptr;
d2e4a39e 11475 else
50eff16b
UW
11476 return value_binop (value_from_longest (scale_type, num),
11477 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11478}
11479
11480/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11481 factor ('SMALL value) associated with the type. */
14f9c5c9 11482
50eff16b
UW
11483struct value *
11484ada_scaling_factor (struct type *type)
14f9c5c9
AS
11485{
11486 const char *encoding = fixed_type_info (type);
50eff16b
UW
11487 struct type *scale_type = ada_scaling_type (type);
11488
11489 long long num0, den0, num1, den1;
14f9c5c9 11490 int n;
d2e4a39e 11491
50eff16b 11492 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11493 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11494
11495 if (n < 2)
50eff16b 11496 return value_from_longest (scale_type, 1);
14f9c5c9 11497 else if (n == 4)
50eff16b
UW
11498 return value_binop (value_from_longest (scale_type, num1),
11499 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11500 else
50eff16b
UW
11501 return value_binop (value_from_longest (scale_type, num0),
11502 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11503}
11504
14f9c5c9 11505\f
d2e4a39e 11506
4c4b4cd2 11507 /* Range types */
14f9c5c9
AS
11508
11509/* Scan STR beginning at position K for a discriminant name, and
11510 return the value of that discriminant field of DVAL in *PX. If
11511 PNEW_K is not null, put the position of the character beyond the
11512 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11513 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11514
11515static int
108d56a4 11516scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11517 int *pnew_k)
14f9c5c9
AS
11518{
11519 static char *bound_buffer = NULL;
11520 static size_t bound_buffer_len = 0;
5da1a4d3 11521 const char *pstart, *pend, *bound;
d2e4a39e 11522 struct value *bound_val;
14f9c5c9
AS
11523
11524 if (dval == NULL || str == NULL || str[k] == '\0')
11525 return 0;
11526
5da1a4d3
SM
11527 pstart = str + k;
11528 pend = strstr (pstart, "__");
14f9c5c9
AS
11529 if (pend == NULL)
11530 {
5da1a4d3 11531 bound = pstart;
14f9c5c9
AS
11532 k += strlen (bound);
11533 }
d2e4a39e 11534 else
14f9c5c9 11535 {
5da1a4d3
SM
11536 int len = pend - pstart;
11537
11538 /* Strip __ and beyond. */
11539 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11540 strncpy (bound_buffer, pstart, len);
11541 bound_buffer[len] = '\0';
11542
14f9c5c9 11543 bound = bound_buffer;
d2e4a39e 11544 k = pend - str;
14f9c5c9 11545 }
d2e4a39e 11546
df407dfe 11547 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11548 if (bound_val == NULL)
11549 return 0;
11550
11551 *px = value_as_long (bound_val);
11552 if (pnew_k != NULL)
11553 *pnew_k = k;
11554 return 1;
11555}
11556
11557/* Value of variable named NAME in the current environment. If
11558 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11559 otherwise causes an error with message ERR_MSG. */
11560
d2e4a39e 11561static struct value *
edb0c9cb 11562get_var_value (const char *name, const char *err_msg)
14f9c5c9 11563{
b5ec771e 11564 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11565
b5ec771e
PA
11566 struct block_symbol *syms;
11567 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11568 get_selected_block (0),
11569 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11570
11571 if (nsyms != 1)
11572 {
11573 if (err_msg == NULL)
4c4b4cd2 11574 return 0;
14f9c5c9 11575 else
8a3fe4f8 11576 error (("%s"), err_msg);
14f9c5c9
AS
11577 }
11578
d12307c1 11579 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11580}
d2e4a39e 11581
edb0c9cb
PA
11582/* Value of integer variable named NAME in the current environment.
11583 If no such variable is found, returns false. Otherwise, sets VALUE
11584 to the variable's value and returns true. */
4c4b4cd2 11585
edb0c9cb
PA
11586bool
11587get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11588{
4c4b4cd2 11589 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11590
14f9c5c9 11591 if (var_val == 0)
edb0c9cb
PA
11592 return false;
11593
11594 value = value_as_long (var_val);
11595 return true;
14f9c5c9 11596}
d2e4a39e 11597
14f9c5c9
AS
11598
11599/* Return a range type whose base type is that of the range type named
11600 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11601 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11602 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11603 corresponding range type from debug information; fall back to using it
11604 if symbol lookup fails. If a new type must be created, allocate it
11605 like ORIG_TYPE was. The bounds information, in general, is encoded
11606 in NAME, the base type given in the named range type. */
14f9c5c9 11607
d2e4a39e 11608static struct type *
28c85d6c 11609to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11610{
0d5cff50 11611 const char *name;
14f9c5c9 11612 struct type *base_type;
108d56a4 11613 const char *subtype_info;
14f9c5c9 11614
28c85d6c
JB
11615 gdb_assert (raw_type != NULL);
11616 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11617
1ce677a4 11618 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11619 base_type = TYPE_TARGET_TYPE (raw_type);
11620 else
11621 base_type = raw_type;
11622
28c85d6c 11623 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11624 subtype_info = strstr (name, "___XD");
11625 if (subtype_info == NULL)
690cc4eb 11626 {
43bbcdc2
PH
11627 LONGEST L = ada_discrete_type_low_bound (raw_type);
11628 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11629
690cc4eb
PH
11630 if (L < INT_MIN || U > INT_MAX)
11631 return raw_type;
11632 else
0c9c3474
SA
11633 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11634 L, U);
690cc4eb 11635 }
14f9c5c9
AS
11636 else
11637 {
11638 static char *name_buf = NULL;
11639 static size_t name_len = 0;
11640 int prefix_len = subtype_info - name;
11641 LONGEST L, U;
11642 struct type *type;
108d56a4 11643 const char *bounds_str;
14f9c5c9
AS
11644 int n;
11645
11646 GROW_VECT (name_buf, name_len, prefix_len + 5);
11647 strncpy (name_buf, name, prefix_len);
11648 name_buf[prefix_len] = '\0';
11649
11650 subtype_info += 5;
11651 bounds_str = strchr (subtype_info, '_');
11652 n = 1;
11653
d2e4a39e 11654 if (*subtype_info == 'L')
4c4b4cd2
PH
11655 {
11656 if (!ada_scan_number (bounds_str, n, &L, &n)
11657 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11658 return raw_type;
11659 if (bounds_str[n] == '_')
11660 n += 2;
0963b4bd 11661 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11662 n += 1;
11663 subtype_info += 1;
11664 }
d2e4a39e 11665 else
4c4b4cd2 11666 {
4c4b4cd2 11667 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11668 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11669 {
323e0a4a 11670 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11671 L = 1;
11672 }
11673 }
14f9c5c9 11674
d2e4a39e 11675 if (*subtype_info == 'U')
4c4b4cd2
PH
11676 {
11677 if (!ada_scan_number (bounds_str, n, &U, &n)
11678 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11679 return raw_type;
11680 }
d2e4a39e 11681 else
4c4b4cd2 11682 {
4c4b4cd2 11683 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11684 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11685 {
323e0a4a 11686 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11687 U = L;
11688 }
11689 }
14f9c5c9 11690
0c9c3474
SA
11691 type = create_static_range_type (alloc_type_copy (raw_type),
11692 base_type, L, U);
d2e4a39e 11693 TYPE_NAME (type) = name;
14f9c5c9
AS
11694 return type;
11695 }
11696}
11697
4c4b4cd2
PH
11698/* True iff NAME is the name of a range type. */
11699
14f9c5c9 11700int
d2e4a39e 11701ada_is_range_type_name (const char *name)
14f9c5c9
AS
11702{
11703 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11704}
14f9c5c9 11705\f
d2e4a39e 11706
4c4b4cd2
PH
11707 /* Modular types */
11708
11709/* True iff TYPE is an Ada modular type. */
14f9c5c9 11710
14f9c5c9 11711int
d2e4a39e 11712ada_is_modular_type (struct type *type)
14f9c5c9 11713{
18af8284 11714 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11715
11716 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11717 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11718 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11719}
11720
4c4b4cd2
PH
11721/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11722
61ee279c 11723ULONGEST
0056e4d5 11724ada_modulus (struct type *type)
14f9c5c9 11725{
43bbcdc2 11726 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11727}
d2e4a39e 11728\f
f7f9143b
JB
11729
11730/* Ada exception catchpoint support:
11731 ---------------------------------
11732
11733 We support 3 kinds of exception catchpoints:
11734 . catchpoints on Ada exceptions
11735 . catchpoints on unhandled Ada exceptions
11736 . catchpoints on failed assertions
11737
11738 Exceptions raised during failed assertions, or unhandled exceptions
11739 could perfectly be caught with the general catchpoint on Ada exceptions.
11740 However, we can easily differentiate these two special cases, and having
11741 the option to distinguish these two cases from the rest can be useful
11742 to zero-in on certain situations.
11743
11744 Exception catchpoints are a specialized form of breakpoint,
11745 since they rely on inserting breakpoints inside known routines
11746 of the GNAT runtime. The implementation therefore uses a standard
11747 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11748 of breakpoint_ops.
11749
0259addd
JB
11750 Support in the runtime for exception catchpoints have been changed
11751 a few times already, and these changes affect the implementation
11752 of these catchpoints. In order to be able to support several
11753 variants of the runtime, we use a sniffer that will determine
28010a5d 11754 the runtime variant used by the program being debugged. */
f7f9143b 11755
82eacd52
JB
11756/* Ada's standard exceptions.
11757
11758 The Ada 83 standard also defined Numeric_Error. But there so many
11759 situations where it was unclear from the Ada 83 Reference Manual
11760 (RM) whether Constraint_Error or Numeric_Error should be raised,
11761 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11762 Interpretation saying that anytime the RM says that Numeric_Error
11763 should be raised, the implementation may raise Constraint_Error.
11764 Ada 95 went one step further and pretty much removed Numeric_Error
11765 from the list of standard exceptions (it made it a renaming of
11766 Constraint_Error, to help preserve compatibility when compiling
11767 an Ada83 compiler). As such, we do not include Numeric_Error from
11768 this list of standard exceptions. */
3d0b0fa3 11769
a121b7c1 11770static const char *standard_exc[] = {
3d0b0fa3
JB
11771 "constraint_error",
11772 "program_error",
11773 "storage_error",
11774 "tasking_error"
11775};
11776
0259addd
JB
11777typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11778
11779/* A structure that describes how to support exception catchpoints
11780 for a given executable. */
11781
11782struct exception_support_info
11783{
11784 /* The name of the symbol to break on in order to insert
11785 a catchpoint on exceptions. */
11786 const char *catch_exception_sym;
11787
11788 /* The name of the symbol to break on in order to insert
11789 a catchpoint on unhandled exceptions. */
11790 const char *catch_exception_unhandled_sym;
11791
11792 /* The name of the symbol to break on in order to insert
11793 a catchpoint on failed assertions. */
11794 const char *catch_assert_sym;
11795
11796 /* Assuming that the inferior just triggered an unhandled exception
11797 catchpoint, this function is responsible for returning the address
11798 in inferior memory where the name of that exception is stored.
11799 Return zero if the address could not be computed. */
11800 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11801};
11802
11803static CORE_ADDR ada_unhandled_exception_name_addr (void);
11804static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11805
11806/* The following exception support info structure describes how to
11807 implement exception catchpoints with the latest version of the
11808 Ada runtime (as of 2007-03-06). */
11809
11810static const struct exception_support_info default_exception_support_info =
11811{
11812 "__gnat_debug_raise_exception", /* catch_exception_sym */
11813 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11814 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11815 ada_unhandled_exception_name_addr
11816};
11817
11818/* The following exception support info structure describes how to
11819 implement exception catchpoints with a slightly older version
11820 of the Ada runtime. */
11821
11822static const struct exception_support_info exception_support_info_fallback =
11823{
11824 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11825 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11826 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11827 ada_unhandled_exception_name_addr_from_raise
11828};
11829
f17011e0
JB
11830/* Return nonzero if we can detect the exception support routines
11831 described in EINFO.
11832
11833 This function errors out if an abnormal situation is detected
11834 (for instance, if we find the exception support routines, but
11835 that support is found to be incomplete). */
11836
11837static int
11838ada_has_this_exception_support (const struct exception_support_info *einfo)
11839{
11840 struct symbol *sym;
11841
11842 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11843 that should be compiled with debugging information. As a result, we
11844 expect to find that symbol in the symtabs. */
11845
11846 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11847 if (sym == NULL)
a6af7abe
JB
11848 {
11849 /* Perhaps we did not find our symbol because the Ada runtime was
11850 compiled without debugging info, or simply stripped of it.
11851 It happens on some GNU/Linux distributions for instance, where
11852 users have to install a separate debug package in order to get
11853 the runtime's debugging info. In that situation, let the user
11854 know why we cannot insert an Ada exception catchpoint.
11855
11856 Note: Just for the purpose of inserting our Ada exception
11857 catchpoint, we could rely purely on the associated minimal symbol.
11858 But we would be operating in degraded mode anyway, since we are
11859 still lacking the debugging info needed later on to extract
11860 the name of the exception being raised (this name is printed in
11861 the catchpoint message, and is also used when trying to catch
11862 a specific exception). We do not handle this case for now. */
3b7344d5 11863 struct bound_minimal_symbol msym
1c8e84b0
JB
11864 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11865
3b7344d5 11866 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11867 error (_("Your Ada runtime appears to be missing some debugging "
11868 "information.\nCannot insert Ada exception catchpoint "
11869 "in this configuration."));
11870
11871 return 0;
11872 }
f17011e0
JB
11873
11874 /* Make sure that the symbol we found corresponds to a function. */
11875
11876 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11877 error (_("Symbol \"%s\" is not a function (class = %d)"),
11878 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11879
11880 return 1;
11881}
11882
0259addd
JB
11883/* Inspect the Ada runtime and determine which exception info structure
11884 should be used to provide support for exception catchpoints.
11885
3eecfa55
JB
11886 This function will always set the per-inferior exception_info,
11887 or raise an error. */
0259addd
JB
11888
11889static void
11890ada_exception_support_info_sniffer (void)
11891{
3eecfa55 11892 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11893
11894 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11895 if (data->exception_info != NULL)
0259addd
JB
11896 return;
11897
11898 /* Check the latest (default) exception support info. */
f17011e0 11899 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11900 {
3eecfa55 11901 data->exception_info = &default_exception_support_info;
0259addd
JB
11902 return;
11903 }
11904
11905 /* Try our fallback exception suport info. */
f17011e0 11906 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11907 {
3eecfa55 11908 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11909 return;
11910 }
11911
11912 /* Sometimes, it is normal for us to not be able to find the routine
11913 we are looking for. This happens when the program is linked with
11914 the shared version of the GNAT runtime, and the program has not been
11915 started yet. Inform the user of these two possible causes if
11916 applicable. */
11917
ccefe4c4 11918 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11919 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11920
11921 /* If the symbol does not exist, then check that the program is
11922 already started, to make sure that shared libraries have been
11923 loaded. If it is not started, this may mean that the symbol is
11924 in a shared library. */
11925
11926 if (ptid_get_pid (inferior_ptid) == 0)
11927 error (_("Unable to insert catchpoint. Try to start the program first."));
11928
11929 /* At this point, we know that we are debugging an Ada program and
11930 that the inferior has been started, but we still are not able to
0963b4bd 11931 find the run-time symbols. That can mean that we are in
0259addd
JB
11932 configurable run time mode, or that a-except as been optimized
11933 out by the linker... In any case, at this point it is not worth
11934 supporting this feature. */
11935
7dda8cff 11936 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11937}
11938
f7f9143b
JB
11939/* True iff FRAME is very likely to be that of a function that is
11940 part of the runtime system. This is all very heuristic, but is
11941 intended to be used as advice as to what frames are uninteresting
11942 to most users. */
11943
11944static int
11945is_known_support_routine (struct frame_info *frame)
11946{
692465f1 11947 enum language func_lang;
f7f9143b 11948 int i;
f35a17b5 11949 const char *fullname;
f7f9143b 11950
4ed6b5be
JB
11951 /* If this code does not have any debugging information (no symtab),
11952 This cannot be any user code. */
f7f9143b 11953
51abb421 11954 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11955 if (sal.symtab == NULL)
11956 return 1;
11957
4ed6b5be
JB
11958 /* If there is a symtab, but the associated source file cannot be
11959 located, then assume this is not user code: Selecting a frame
11960 for which we cannot display the code would not be very helpful
11961 for the user. This should also take care of case such as VxWorks
11962 where the kernel has some debugging info provided for a few units. */
f7f9143b 11963
f35a17b5
JK
11964 fullname = symtab_to_fullname (sal.symtab);
11965 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11966 return 1;
11967
4ed6b5be
JB
11968 /* Check the unit filename againt the Ada runtime file naming.
11969 We also check the name of the objfile against the name of some
11970 known system libraries that sometimes come with debugging info
11971 too. */
11972
f7f9143b
JB
11973 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11974 {
11975 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11976 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11977 return 1;
eb822aa6
DE
11978 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11979 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 11980 return 1;
f7f9143b
JB
11981 }
11982
4ed6b5be 11983 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11984
c6dc63a1
TT
11985 gdb::unique_xmalloc_ptr<char> func_name
11986 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
11987 if (func_name == NULL)
11988 return 1;
11989
11990 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11991 {
11992 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
11993 if (re_exec (func_name.get ()))
11994 return 1;
f7f9143b
JB
11995 }
11996
11997 return 0;
11998}
11999
12000/* Find the first frame that contains debugging information and that is not
12001 part of the Ada run-time, starting from FI and moving upward. */
12002
0ef643c8 12003void
f7f9143b
JB
12004ada_find_printable_frame (struct frame_info *fi)
12005{
12006 for (; fi != NULL; fi = get_prev_frame (fi))
12007 {
12008 if (!is_known_support_routine (fi))
12009 {
12010 select_frame (fi);
12011 break;
12012 }
12013 }
12014
12015}
12016
12017/* Assuming that the inferior just triggered an unhandled exception
12018 catchpoint, return the address in inferior memory where the name
12019 of the exception is stored.
12020
12021 Return zero if the address could not be computed. */
12022
12023static CORE_ADDR
12024ada_unhandled_exception_name_addr (void)
0259addd
JB
12025{
12026 return parse_and_eval_address ("e.full_name");
12027}
12028
12029/* Same as ada_unhandled_exception_name_addr, except that this function
12030 should be used when the inferior uses an older version of the runtime,
12031 where the exception name needs to be extracted from a specific frame
12032 several frames up in the callstack. */
12033
12034static CORE_ADDR
12035ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12036{
12037 int frame_level;
12038 struct frame_info *fi;
3eecfa55 12039 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12040
12041 /* To determine the name of this exception, we need to select
12042 the frame corresponding to RAISE_SYM_NAME. This frame is
12043 at least 3 levels up, so we simply skip the first 3 frames
12044 without checking the name of their associated function. */
12045 fi = get_current_frame ();
12046 for (frame_level = 0; frame_level < 3; frame_level += 1)
12047 if (fi != NULL)
12048 fi = get_prev_frame (fi);
12049
12050 while (fi != NULL)
12051 {
692465f1
JB
12052 enum language func_lang;
12053
c6dc63a1
TT
12054 gdb::unique_xmalloc_ptr<char> func_name
12055 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12056 if (func_name != NULL)
12057 {
c6dc63a1 12058 if (strcmp (func_name.get (),
55b87a52
KS
12059 data->exception_info->catch_exception_sym) == 0)
12060 break; /* We found the frame we were looking for... */
12061 fi = get_prev_frame (fi);
12062 }
f7f9143b
JB
12063 }
12064
12065 if (fi == NULL)
12066 return 0;
12067
12068 select_frame (fi);
12069 return parse_and_eval_address ("id.full_name");
12070}
12071
12072/* Assuming the inferior just triggered an Ada exception catchpoint
12073 (of any type), return the address in inferior memory where the name
12074 of the exception is stored, if applicable.
12075
45db7c09
PA
12076 Assumes the selected frame is the current frame.
12077
f7f9143b
JB
12078 Return zero if the address could not be computed, or if not relevant. */
12079
12080static CORE_ADDR
761269c8 12081ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12082 struct breakpoint *b)
12083{
3eecfa55
JB
12084 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12085
f7f9143b
JB
12086 switch (ex)
12087 {
761269c8 12088 case ada_catch_exception:
f7f9143b
JB
12089 return (parse_and_eval_address ("e.full_name"));
12090 break;
12091
761269c8 12092 case ada_catch_exception_unhandled:
3eecfa55 12093 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
12094 break;
12095
761269c8 12096 case ada_catch_assert:
f7f9143b
JB
12097 return 0; /* Exception name is not relevant in this case. */
12098 break;
12099
12100 default:
12101 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12102 break;
12103 }
12104
12105 return 0; /* Should never be reached. */
12106}
12107
e547c119
JB
12108/* Assuming the inferior is stopped at an exception catchpoint,
12109 return the message which was associated to the exception, if
12110 available. Return NULL if the message could not be retrieved.
12111
12112 The caller must xfree the string after use.
12113
12114 Note: The exception message can be associated to an exception
12115 either through the use of the Raise_Exception function, or
12116 more simply (Ada 2005 and later), via:
12117
12118 raise Exception_Name with "exception message";
12119
12120 */
12121
12122static char *
12123ada_exception_message_1 (void)
12124{
12125 struct value *e_msg_val;
12126 char *e_msg = NULL;
12127 int e_msg_len;
12128 struct cleanup *cleanups;
12129
12130 /* For runtimes that support this feature, the exception message
12131 is passed as an unbounded string argument called "message". */
12132 e_msg_val = parse_and_eval ("message");
12133 if (e_msg_val == NULL)
12134 return NULL; /* Exception message not supported. */
12135
12136 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12137 gdb_assert (e_msg_val != NULL);
12138 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12139
12140 /* If the message string is empty, then treat it as if there was
12141 no exception message. */
12142 if (e_msg_len <= 0)
12143 return NULL;
12144
12145 e_msg = (char *) xmalloc (e_msg_len + 1);
12146 cleanups = make_cleanup (xfree, e_msg);
12147 read_memory_string (value_address (e_msg_val), e_msg, e_msg_len + 1);
12148 e_msg[e_msg_len] = '\0';
12149
12150 discard_cleanups (cleanups);
12151 return e_msg;
12152}
12153
12154/* Same as ada_exception_message_1, except that all exceptions are
12155 contained here (returning NULL instead). */
12156
12157static char *
12158ada_exception_message (void)
12159{
12160 char *e_msg = NULL; /* Avoid a spurious uninitialized warning. */
12161
12162 TRY
12163 {
12164 e_msg = ada_exception_message_1 ();
12165 }
12166 CATCH (e, RETURN_MASK_ERROR)
12167 {
12168 e_msg = NULL;
12169 }
12170 END_CATCH
12171
12172 return e_msg;
12173}
12174
f7f9143b
JB
12175/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12176 any error that ada_exception_name_addr_1 might cause to be thrown.
12177 When an error is intercepted, a warning with the error message is printed,
12178 and zero is returned. */
12179
12180static CORE_ADDR
761269c8 12181ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12182 struct breakpoint *b)
12183{
f7f9143b
JB
12184 CORE_ADDR result = 0;
12185
492d29ea 12186 TRY
f7f9143b
JB
12187 {
12188 result = ada_exception_name_addr_1 (ex, b);
12189 }
12190
492d29ea 12191 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12192 {
12193 warning (_("failed to get exception name: %s"), e.message);
12194 return 0;
12195 }
492d29ea 12196 END_CATCH
f7f9143b
JB
12197
12198 return result;
12199}
12200
28010a5d
PA
12201static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12202
12203/* Ada catchpoints.
12204
12205 In the case of catchpoints on Ada exceptions, the catchpoint will
12206 stop the target on every exception the program throws. When a user
12207 specifies the name of a specific exception, we translate this
12208 request into a condition expression (in text form), and then parse
12209 it into an expression stored in each of the catchpoint's locations.
12210 We then use this condition to check whether the exception that was
12211 raised is the one the user is interested in. If not, then the
12212 target is resumed again. We store the name of the requested
12213 exception, in order to be able to re-set the condition expression
12214 when symbols change. */
12215
12216/* An instance of this type is used to represent an Ada catchpoint
5625a286 12217 breakpoint location. */
28010a5d 12218
5625a286 12219class ada_catchpoint_location : public bp_location
28010a5d 12220{
5625a286
PA
12221public:
12222 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12223 : bp_location (ops, owner)
12224 {}
28010a5d
PA
12225
12226 /* The condition that checks whether the exception that was raised
12227 is the specific exception the user specified on catchpoint
12228 creation. */
4d01a485 12229 expression_up excep_cond_expr;
28010a5d
PA
12230};
12231
12232/* Implement the DTOR method in the bp_location_ops structure for all
12233 Ada exception catchpoint kinds. */
12234
12235static void
12236ada_catchpoint_location_dtor (struct bp_location *bl)
12237{
12238 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12239
4d01a485 12240 al->excep_cond_expr.reset ();
28010a5d
PA
12241}
12242
12243/* The vtable to be used in Ada catchpoint locations. */
12244
12245static const struct bp_location_ops ada_catchpoint_location_ops =
12246{
12247 ada_catchpoint_location_dtor
12248};
12249
c1fc2657 12250/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12251
c1fc2657 12252struct ada_catchpoint : public breakpoint
28010a5d 12253{
c1fc2657 12254 ~ada_catchpoint () override;
28010a5d
PA
12255
12256 /* The name of the specific exception the user specified. */
12257 char *excep_string;
12258};
12259
12260/* Parse the exception condition string in the context of each of the
12261 catchpoint's locations, and store them for later evaluation. */
12262
12263static void
12264create_excep_cond_exprs (struct ada_catchpoint *c)
12265{
12266 struct cleanup *old_chain;
12267 struct bp_location *bl;
12268 char *cond_string;
12269
12270 /* Nothing to do if there's no specific exception to catch. */
12271 if (c->excep_string == NULL)
12272 return;
12273
12274 /* Same if there are no locations... */
c1fc2657 12275 if (c->loc == NULL)
28010a5d
PA
12276 return;
12277
12278 /* Compute the condition expression in text form, from the specific
12279 expection we want to catch. */
12280 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12281 old_chain = make_cleanup (xfree, cond_string);
12282
12283 /* Iterate over all the catchpoint's locations, and parse an
12284 expression for each. */
c1fc2657 12285 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12286 {
12287 struct ada_catchpoint_location *ada_loc
12288 = (struct ada_catchpoint_location *) bl;
4d01a485 12289 expression_up exp;
28010a5d
PA
12290
12291 if (!bl->shlib_disabled)
12292 {
bbc13ae3 12293 const char *s;
28010a5d
PA
12294
12295 s = cond_string;
492d29ea 12296 TRY
28010a5d 12297 {
036e657b
JB
12298 exp = parse_exp_1 (&s, bl->address,
12299 block_for_pc (bl->address),
12300 0);
28010a5d 12301 }
492d29ea 12302 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12303 {
12304 warning (_("failed to reevaluate internal exception condition "
12305 "for catchpoint %d: %s"),
c1fc2657 12306 c->number, e.message);
849f2b52 12307 }
492d29ea 12308 END_CATCH
28010a5d
PA
12309 }
12310
b22e99fd 12311 ada_loc->excep_cond_expr = std::move (exp);
28010a5d
PA
12312 }
12313
12314 do_cleanups (old_chain);
12315}
12316
c1fc2657 12317/* ada_catchpoint destructor. */
28010a5d 12318
c1fc2657 12319ada_catchpoint::~ada_catchpoint ()
28010a5d 12320{
c1fc2657 12321 xfree (this->excep_string);
28010a5d
PA
12322}
12323
12324/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12325 structure for all exception catchpoint kinds. */
12326
12327static struct bp_location *
761269c8 12328allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12329 struct breakpoint *self)
12330{
5625a286 12331 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
28010a5d
PA
12332}
12333
12334/* Implement the RE_SET method in the breakpoint_ops structure for all
12335 exception catchpoint kinds. */
12336
12337static void
761269c8 12338re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12339{
12340 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12341
12342 /* Call the base class's method. This updates the catchpoint's
12343 locations. */
2060206e 12344 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12345
12346 /* Reparse the exception conditional expressions. One for each
12347 location. */
12348 create_excep_cond_exprs (c);
12349}
12350
12351/* Returns true if we should stop for this breakpoint hit. If the
12352 user specified a specific exception, we only want to cause a stop
12353 if the program thrown that exception. */
12354
12355static int
12356should_stop_exception (const struct bp_location *bl)
12357{
12358 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12359 const struct ada_catchpoint_location *ada_loc
12360 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12361 int stop;
12362
12363 /* With no specific exception, should always stop. */
12364 if (c->excep_string == NULL)
12365 return 1;
12366
12367 if (ada_loc->excep_cond_expr == NULL)
12368 {
12369 /* We will have a NULL expression if back when we were creating
12370 the expressions, this location's had failed to parse. */
12371 return 1;
12372 }
12373
12374 stop = 1;
492d29ea 12375 TRY
28010a5d
PA
12376 {
12377 struct value *mark;
12378
12379 mark = value_mark ();
4d01a485 12380 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12381 value_free_to_mark (mark);
12382 }
492d29ea
PA
12383 CATCH (ex, RETURN_MASK_ALL)
12384 {
12385 exception_fprintf (gdb_stderr, ex,
12386 _("Error in testing exception condition:\n"));
12387 }
12388 END_CATCH
12389
28010a5d
PA
12390 return stop;
12391}
12392
12393/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12394 for all exception catchpoint kinds. */
12395
12396static void
761269c8 12397check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12398{
12399 bs->stop = should_stop_exception (bs->bp_location_at);
12400}
12401
f7f9143b
JB
12402/* Implement the PRINT_IT method in the breakpoint_ops structure
12403 for all exception catchpoint kinds. */
12404
12405static enum print_stop_action
761269c8 12406print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12407{
79a45e25 12408 struct ui_out *uiout = current_uiout;
348d480f 12409 struct breakpoint *b = bs->breakpoint_at;
e547c119 12410 char *exception_message;
348d480f 12411
956a9fb9 12412 annotate_catchpoint (b->number);
f7f9143b 12413
112e8700 12414 if (uiout->is_mi_like_p ())
f7f9143b 12415 {
112e8700 12416 uiout->field_string ("reason",
956a9fb9 12417 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12418 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12419 }
12420
112e8700
SM
12421 uiout->text (b->disposition == disp_del
12422 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12423 uiout->field_int ("bkptno", b->number);
12424 uiout->text (", ");
f7f9143b 12425
45db7c09
PA
12426 /* ada_exception_name_addr relies on the selected frame being the
12427 current frame. Need to do this here because this function may be
12428 called more than once when printing a stop, and below, we'll
12429 select the first frame past the Ada run-time (see
12430 ada_find_printable_frame). */
12431 select_frame (get_current_frame ());
12432
f7f9143b
JB
12433 switch (ex)
12434 {
761269c8
JB
12435 case ada_catch_exception:
12436 case ada_catch_exception_unhandled:
956a9fb9
JB
12437 {
12438 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12439 char exception_name[256];
12440
12441 if (addr != 0)
12442 {
c714b426
PA
12443 read_memory (addr, (gdb_byte *) exception_name,
12444 sizeof (exception_name) - 1);
956a9fb9
JB
12445 exception_name [sizeof (exception_name) - 1] = '\0';
12446 }
12447 else
12448 {
12449 /* For some reason, we were unable to read the exception
12450 name. This could happen if the Runtime was compiled
12451 without debugging info, for instance. In that case,
12452 just replace the exception name by the generic string
12453 "exception" - it will read as "an exception" in the
12454 notification we are about to print. */
967cff16 12455 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12456 }
12457 /* In the case of unhandled exception breakpoints, we print
12458 the exception name as "unhandled EXCEPTION_NAME", to make
12459 it clearer to the user which kind of catchpoint just got
12460 hit. We used ui_out_text to make sure that this extra
12461 info does not pollute the exception name in the MI case. */
761269c8 12462 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12463 uiout->text ("unhandled ");
12464 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12465 }
12466 break;
761269c8 12467 case ada_catch_assert:
956a9fb9
JB
12468 /* In this case, the name of the exception is not really
12469 important. Just print "failed assertion" to make it clearer
12470 that his program just hit an assertion-failure catchpoint.
12471 We used ui_out_text because this info does not belong in
12472 the MI output. */
112e8700 12473 uiout->text ("failed assertion");
956a9fb9 12474 break;
f7f9143b 12475 }
e547c119
JB
12476
12477 exception_message = ada_exception_message ();
12478 if (exception_message != NULL)
12479 {
12480 struct cleanup *cleanups = make_cleanup (xfree, exception_message);
12481
12482 uiout->text (" (");
12483 uiout->field_string ("exception-message", exception_message);
12484 uiout->text (")");
12485
12486 do_cleanups (cleanups);
12487 }
12488
112e8700 12489 uiout->text (" at ");
956a9fb9 12490 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12491
12492 return PRINT_SRC_AND_LOC;
12493}
12494
12495/* Implement the PRINT_ONE method in the breakpoint_ops structure
12496 for all exception catchpoint kinds. */
12497
12498static void
761269c8 12499print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12500 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12501{
79a45e25 12502 struct ui_out *uiout = current_uiout;
28010a5d 12503 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12504 struct value_print_options opts;
12505
12506 get_user_print_options (&opts);
12507 if (opts.addressprint)
f7f9143b
JB
12508 {
12509 annotate_field (4);
112e8700 12510 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12511 }
12512
12513 annotate_field (5);
a6d9a66e 12514 *last_loc = b->loc;
f7f9143b
JB
12515 switch (ex)
12516 {
761269c8 12517 case ada_catch_exception:
28010a5d 12518 if (c->excep_string != NULL)
f7f9143b 12519 {
28010a5d
PA
12520 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12521
112e8700 12522 uiout->field_string ("what", msg);
f7f9143b
JB
12523 xfree (msg);
12524 }
12525 else
112e8700 12526 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12527
12528 break;
12529
761269c8 12530 case ada_catch_exception_unhandled:
112e8700 12531 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12532 break;
12533
761269c8 12534 case ada_catch_assert:
112e8700 12535 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12536 break;
12537
12538 default:
12539 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12540 break;
12541 }
12542}
12543
12544/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12545 for all exception catchpoint kinds. */
12546
12547static void
761269c8 12548print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12549 struct breakpoint *b)
12550{
28010a5d 12551 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12552 struct ui_out *uiout = current_uiout;
28010a5d 12553
112e8700 12554 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12555 : _("Catchpoint "));
112e8700
SM
12556 uiout->field_int ("bkptno", b->number);
12557 uiout->text (": ");
00eb2c4a 12558
f7f9143b
JB
12559 switch (ex)
12560 {
761269c8 12561 case ada_catch_exception:
28010a5d 12562 if (c->excep_string != NULL)
00eb2c4a
JB
12563 {
12564 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12565 struct cleanup *old_chain = make_cleanup (xfree, info);
12566
112e8700 12567 uiout->text (info);
00eb2c4a
JB
12568 do_cleanups (old_chain);
12569 }
f7f9143b 12570 else
112e8700 12571 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12572 break;
12573
761269c8 12574 case ada_catch_exception_unhandled:
112e8700 12575 uiout->text (_("unhandled Ada exceptions"));
f7f9143b
JB
12576 break;
12577
761269c8 12578 case ada_catch_assert:
112e8700 12579 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12580 break;
12581
12582 default:
12583 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12584 break;
12585 }
12586}
12587
6149aea9
PA
12588/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12589 for all exception catchpoint kinds. */
12590
12591static void
761269c8 12592print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12593 struct breakpoint *b, struct ui_file *fp)
12594{
28010a5d
PA
12595 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12596
6149aea9
PA
12597 switch (ex)
12598 {
761269c8 12599 case ada_catch_exception:
6149aea9 12600 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12601 if (c->excep_string != NULL)
12602 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12603 break;
12604
761269c8 12605 case ada_catch_exception_unhandled:
78076abc 12606 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12607 break;
12608
761269c8 12609 case ada_catch_assert:
6149aea9
PA
12610 fprintf_filtered (fp, "catch assert");
12611 break;
12612
12613 default:
12614 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12615 }
d9b3f62e 12616 print_recreate_thread (b, fp);
6149aea9
PA
12617}
12618
f7f9143b
JB
12619/* Virtual table for "catch exception" breakpoints. */
12620
28010a5d
PA
12621static struct bp_location *
12622allocate_location_catch_exception (struct breakpoint *self)
12623{
761269c8 12624 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12625}
12626
12627static void
12628re_set_catch_exception (struct breakpoint *b)
12629{
761269c8 12630 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12631}
12632
12633static void
12634check_status_catch_exception (bpstat bs)
12635{
761269c8 12636 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12637}
12638
f7f9143b 12639static enum print_stop_action
348d480f 12640print_it_catch_exception (bpstat bs)
f7f9143b 12641{
761269c8 12642 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12643}
12644
12645static void
a6d9a66e 12646print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12647{
761269c8 12648 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12649}
12650
12651static void
12652print_mention_catch_exception (struct breakpoint *b)
12653{
761269c8 12654 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12655}
12656
6149aea9
PA
12657static void
12658print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12659{
761269c8 12660 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12661}
12662
2060206e 12663static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12664
12665/* Virtual table for "catch exception unhandled" breakpoints. */
12666
28010a5d
PA
12667static struct bp_location *
12668allocate_location_catch_exception_unhandled (struct breakpoint *self)
12669{
761269c8 12670 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12671}
12672
12673static void
12674re_set_catch_exception_unhandled (struct breakpoint *b)
12675{
761269c8 12676 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12677}
12678
12679static void
12680check_status_catch_exception_unhandled (bpstat bs)
12681{
761269c8 12682 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12683}
12684
f7f9143b 12685static enum print_stop_action
348d480f 12686print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12687{
761269c8 12688 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12689}
12690
12691static void
a6d9a66e
UW
12692print_one_catch_exception_unhandled (struct breakpoint *b,
12693 struct bp_location **last_loc)
f7f9143b 12694{
761269c8 12695 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12696}
12697
12698static void
12699print_mention_catch_exception_unhandled (struct breakpoint *b)
12700{
761269c8 12701 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12702}
12703
6149aea9
PA
12704static void
12705print_recreate_catch_exception_unhandled (struct breakpoint *b,
12706 struct ui_file *fp)
12707{
761269c8 12708 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12709}
12710
2060206e 12711static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12712
12713/* Virtual table for "catch assert" breakpoints. */
12714
28010a5d
PA
12715static struct bp_location *
12716allocate_location_catch_assert (struct breakpoint *self)
12717{
761269c8 12718 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12719}
12720
12721static void
12722re_set_catch_assert (struct breakpoint *b)
12723{
761269c8 12724 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12725}
12726
12727static void
12728check_status_catch_assert (bpstat bs)
12729{
761269c8 12730 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12731}
12732
f7f9143b 12733static enum print_stop_action
348d480f 12734print_it_catch_assert (bpstat bs)
f7f9143b 12735{
761269c8 12736 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12737}
12738
12739static void
a6d9a66e 12740print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12741{
761269c8 12742 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12743}
12744
12745static void
12746print_mention_catch_assert (struct breakpoint *b)
12747{
761269c8 12748 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12749}
12750
6149aea9
PA
12751static void
12752print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12753{
761269c8 12754 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12755}
12756
2060206e 12757static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12758
f7f9143b
JB
12759/* Return a newly allocated copy of the first space-separated token
12760 in ARGSP, and then adjust ARGSP to point immediately after that
12761 token.
12762
12763 Return NULL if ARGPS does not contain any more tokens. */
12764
12765static char *
a121b7c1 12766ada_get_next_arg (const char **argsp)
f7f9143b 12767{
a121b7c1
PA
12768 const char *args = *argsp;
12769 const char *end;
f7f9143b
JB
12770 char *result;
12771
f1735a53 12772 args = skip_spaces (args);
f7f9143b
JB
12773 if (args[0] == '\0')
12774 return NULL; /* No more arguments. */
12775
12776 /* Find the end of the current argument. */
12777
f1735a53 12778 end = skip_to_space (args);
f7f9143b
JB
12779
12780 /* Adjust ARGSP to point to the start of the next argument. */
12781
12782 *argsp = end;
12783
12784 /* Make a copy of the current argument and return it. */
12785
224c3ddb 12786 result = (char *) xmalloc (end - args + 1);
f7f9143b
JB
12787 strncpy (result, args, end - args);
12788 result[end - args] = '\0';
12789
12790 return result;
12791}
12792
12793/* Split the arguments specified in a "catch exception" command.
12794 Set EX to the appropriate catchpoint type.
28010a5d 12795 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12796 specified by the user.
12797 If a condition is found at the end of the arguments, the condition
12798 expression is stored in COND_STRING (memory must be deallocated
12799 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12800
12801static void
a121b7c1 12802catch_ada_exception_command_split (const char *args,
761269c8 12803 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12804 char **excep_string,
12805 char **cond_string)
f7f9143b
JB
12806{
12807 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12808 char *exception_name;
5845583d 12809 char *cond = NULL;
f7f9143b
JB
12810
12811 exception_name = ada_get_next_arg (&args);
5845583d
JB
12812 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12813 {
12814 /* This is not an exception name; this is the start of a condition
12815 expression for a catchpoint on all exceptions. So, "un-get"
12816 this token, and set exception_name to NULL. */
12817 xfree (exception_name);
12818 exception_name = NULL;
12819 args -= 2;
12820 }
f7f9143b
JB
12821 make_cleanup (xfree, exception_name);
12822
5845583d 12823 /* Check to see if we have a condition. */
f7f9143b 12824
f1735a53 12825 args = skip_spaces (args);
61012eef 12826 if (startswith (args, "if")
5845583d
JB
12827 && (isspace (args[2]) || args[2] == '\0'))
12828 {
12829 args += 2;
f1735a53 12830 args = skip_spaces (args);
5845583d
JB
12831
12832 if (args[0] == '\0')
12833 error (_("Condition missing after `if' keyword"));
12834 cond = xstrdup (args);
12835 make_cleanup (xfree, cond);
12836
12837 args += strlen (args);
12838 }
12839
12840 /* Check that we do not have any more arguments. Anything else
12841 is unexpected. */
f7f9143b
JB
12842
12843 if (args[0] != '\0')
12844 error (_("Junk at end of expression"));
12845
12846 discard_cleanups (old_chain);
12847
12848 if (exception_name == NULL)
12849 {
12850 /* Catch all exceptions. */
761269c8 12851 *ex = ada_catch_exception;
28010a5d 12852 *excep_string = NULL;
f7f9143b
JB
12853 }
12854 else if (strcmp (exception_name, "unhandled") == 0)
12855 {
12856 /* Catch unhandled exceptions. */
761269c8 12857 *ex = ada_catch_exception_unhandled;
28010a5d 12858 *excep_string = NULL;
f7f9143b
JB
12859 }
12860 else
12861 {
12862 /* Catch a specific exception. */
761269c8 12863 *ex = ada_catch_exception;
28010a5d 12864 *excep_string = exception_name;
f7f9143b 12865 }
5845583d 12866 *cond_string = cond;
f7f9143b
JB
12867}
12868
12869/* Return the name of the symbol on which we should break in order to
12870 implement a catchpoint of the EX kind. */
12871
12872static const char *
761269c8 12873ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12874{
3eecfa55
JB
12875 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12876
12877 gdb_assert (data->exception_info != NULL);
0259addd 12878
f7f9143b
JB
12879 switch (ex)
12880 {
761269c8 12881 case ada_catch_exception:
3eecfa55 12882 return (data->exception_info->catch_exception_sym);
f7f9143b 12883 break;
761269c8 12884 case ada_catch_exception_unhandled:
3eecfa55 12885 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12886 break;
761269c8 12887 case ada_catch_assert:
3eecfa55 12888 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12889 break;
12890 default:
12891 internal_error (__FILE__, __LINE__,
12892 _("unexpected catchpoint kind (%d)"), ex);
12893 }
12894}
12895
12896/* Return the breakpoint ops "virtual table" used for catchpoints
12897 of the EX kind. */
12898
c0a91b2b 12899static const struct breakpoint_ops *
761269c8 12900ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12901{
12902 switch (ex)
12903 {
761269c8 12904 case ada_catch_exception:
f7f9143b
JB
12905 return (&catch_exception_breakpoint_ops);
12906 break;
761269c8 12907 case ada_catch_exception_unhandled:
f7f9143b
JB
12908 return (&catch_exception_unhandled_breakpoint_ops);
12909 break;
761269c8 12910 case ada_catch_assert:
f7f9143b
JB
12911 return (&catch_assert_breakpoint_ops);
12912 break;
12913 default:
12914 internal_error (__FILE__, __LINE__,
12915 _("unexpected catchpoint kind (%d)"), ex);
12916 }
12917}
12918
12919/* Return the condition that will be used to match the current exception
12920 being raised with the exception that the user wants to catch. This
12921 assumes that this condition is used when the inferior just triggered
12922 an exception catchpoint.
12923
12924 The string returned is a newly allocated string that needs to be
12925 deallocated later. */
12926
12927static char *
28010a5d 12928ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12929{
3d0b0fa3
JB
12930 int i;
12931
0963b4bd 12932 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12933 runtime units that have been compiled without debugging info; if
28010a5d 12934 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12935 exception (e.g. "constraint_error") then, during the evaluation
12936 of the condition expression, the symbol lookup on this name would
0963b4bd 12937 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12938 may then be set only on user-defined exceptions which have the
12939 same not-fully-qualified name (e.g. my_package.constraint_error).
12940
12941 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12942 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12943 exception constraint_error" is rewritten into "catch exception
12944 standard.constraint_error".
12945
12946 If an exception named contraint_error is defined in another package of
12947 the inferior program, then the only way to specify this exception as a
12948 breakpoint condition is to use its fully-qualified named:
12949 e.g. my_package.constraint_error. */
12950
12951 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12952 {
28010a5d 12953 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12954 {
12955 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12956 excep_string);
3d0b0fa3
JB
12957 }
12958 }
28010a5d 12959 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12960}
12961
12962/* Return the symtab_and_line that should be used to insert an exception
12963 catchpoint of the TYPE kind.
12964
28010a5d
PA
12965 EXCEP_STRING should contain the name of a specific exception that
12966 the catchpoint should catch, or NULL otherwise.
f7f9143b 12967
28010a5d
PA
12968 ADDR_STRING returns the name of the function where the real
12969 breakpoint that implements the catchpoints is set, depending on the
12970 type of catchpoint we need to create. */
f7f9143b
JB
12971
12972static struct symtab_and_line
761269c8 12973ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
f2fc3015 12974 const char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12975{
12976 const char *sym_name;
12977 struct symbol *sym;
f7f9143b 12978
0259addd
JB
12979 /* First, find out which exception support info to use. */
12980 ada_exception_support_info_sniffer ();
12981
12982 /* Then lookup the function on which we will break in order to catch
f7f9143b 12983 the Ada exceptions requested by the user. */
f7f9143b
JB
12984 sym_name = ada_exception_sym_name (ex);
12985 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12986
f17011e0
JB
12987 /* We can assume that SYM is not NULL at this stage. If the symbol
12988 did not exist, ada_exception_support_info_sniffer would have
12989 raised an exception.
f7f9143b 12990
f17011e0
JB
12991 Also, ada_exception_support_info_sniffer should have already
12992 verified that SYM is a function symbol. */
12993 gdb_assert (sym != NULL);
12994 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12995
12996 /* Set ADDR_STRING. */
f7f9143b
JB
12997 *addr_string = xstrdup (sym_name);
12998
f7f9143b 12999 /* Set OPS. */
4b9eee8c 13000 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13001
f17011e0 13002 return find_function_start_sal (sym, 1);
f7f9143b
JB
13003}
13004
b4a5b78b 13005/* Create an Ada exception catchpoint.
f7f9143b 13006
b4a5b78b 13007 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13008
2df4d1d5
JB
13009 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13010 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13011 of the exception to which this catchpoint applies. When not NULL,
13012 the string must be allocated on the heap, and its deallocation
13013 is no longer the responsibility of the caller.
13014
13015 COND_STRING, if not NULL, is the catchpoint condition. This string
13016 must be allocated on the heap, and its deallocation is no longer
13017 the responsibility of the caller.
f7f9143b 13018
b4a5b78b
JB
13019 TEMPFLAG, if nonzero, means that the underlying breakpoint
13020 should be temporary.
28010a5d 13021
b4a5b78b 13022 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13023
349774ef 13024void
28010a5d 13025create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13026 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 13027 char *excep_string,
5845583d 13028 char *cond_string,
28010a5d 13029 int tempflag,
349774ef 13030 int disabled,
28010a5d
PA
13031 int from_tty)
13032{
f2fc3015 13033 const char *addr_string = NULL;
b4a5b78b
JB
13034 const struct breakpoint_ops *ops = NULL;
13035 struct symtab_and_line sal
13036 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d 13037
b270e6f9
TT
13038 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13039 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
349774ef 13040 ops, tempflag, disabled, from_tty);
28010a5d 13041 c->excep_string = excep_string;
b270e6f9 13042 create_excep_cond_exprs (c.get ());
5845583d 13043 if (cond_string != NULL)
b270e6f9
TT
13044 set_breakpoint_condition (c.get (), cond_string, from_tty);
13045 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13046}
13047
9ac4176b
PA
13048/* Implement the "catch exception" command. */
13049
13050static void
eb4c3f4a 13051catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13052 struct cmd_list_element *command)
13053{
a121b7c1 13054 const char *arg = arg_entry;
9ac4176b
PA
13055 struct gdbarch *gdbarch = get_current_arch ();
13056 int tempflag;
761269c8 13057 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 13058 char *excep_string = NULL;
5845583d 13059 char *cond_string = NULL;
9ac4176b
PA
13060
13061 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13062
13063 if (!arg)
13064 arg = "";
b4a5b78b
JB
13065 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13066 &cond_string);
13067 create_ada_exception_catchpoint (gdbarch, ex_kind,
13068 excep_string, cond_string,
349774ef
JB
13069 tempflag, 1 /* enabled */,
13070 from_tty);
9ac4176b
PA
13071}
13072
b4a5b78b 13073/* Split the arguments specified in a "catch assert" command.
5845583d 13074
b4a5b78b
JB
13075 ARGS contains the command's arguments (or the empty string if
13076 no arguments were passed).
5845583d
JB
13077
13078 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13079 (the memory needs to be deallocated after use). */
5845583d 13080
b4a5b78b 13081static void
a121b7c1 13082catch_ada_assert_command_split (const char *args, char **cond_string)
f7f9143b 13083{
f1735a53 13084 args = skip_spaces (args);
f7f9143b 13085
5845583d 13086 /* Check whether a condition was provided. */
61012eef 13087 if (startswith (args, "if")
5845583d 13088 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13089 {
5845583d 13090 args += 2;
f1735a53 13091 args = skip_spaces (args);
5845583d
JB
13092 if (args[0] == '\0')
13093 error (_("condition missing after `if' keyword"));
13094 *cond_string = xstrdup (args);
f7f9143b
JB
13095 }
13096
5845583d
JB
13097 /* Otherwise, there should be no other argument at the end of
13098 the command. */
13099 else if (args[0] != '\0')
13100 error (_("Junk at end of arguments."));
f7f9143b
JB
13101}
13102
9ac4176b
PA
13103/* Implement the "catch assert" command. */
13104
13105static void
eb4c3f4a 13106catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13107 struct cmd_list_element *command)
13108{
a121b7c1 13109 const char *arg = arg_entry;
9ac4176b
PA
13110 struct gdbarch *gdbarch = get_current_arch ();
13111 int tempflag;
5845583d 13112 char *cond_string = NULL;
9ac4176b
PA
13113
13114 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13115
13116 if (!arg)
13117 arg = "";
b4a5b78b 13118 catch_ada_assert_command_split (arg, &cond_string);
761269c8 13119 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 13120 NULL, cond_string,
349774ef
JB
13121 tempflag, 1 /* enabled */,
13122 from_tty);
9ac4176b 13123}
778865d3
JB
13124
13125/* Return non-zero if the symbol SYM is an Ada exception object. */
13126
13127static int
13128ada_is_exception_sym (struct symbol *sym)
13129{
13130 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13131
13132 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13133 && SYMBOL_CLASS (sym) != LOC_BLOCK
13134 && SYMBOL_CLASS (sym) != LOC_CONST
13135 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13136 && type_name != NULL && strcmp (type_name, "exception") == 0);
13137}
13138
13139/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13140 Ada exception object. This matches all exceptions except the ones
13141 defined by the Ada language. */
13142
13143static int
13144ada_is_non_standard_exception_sym (struct symbol *sym)
13145{
13146 int i;
13147
13148 if (!ada_is_exception_sym (sym))
13149 return 0;
13150
13151 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13152 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13153 return 0; /* A standard exception. */
13154
13155 /* Numeric_Error is also a standard exception, so exclude it.
13156 See the STANDARD_EXC description for more details as to why
13157 this exception is not listed in that array. */
13158 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13159 return 0;
13160
13161 return 1;
13162}
13163
ab816a27 13164/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13165 objects.
13166
13167 The comparison is determined first by exception name, and then
13168 by exception address. */
13169
ab816a27 13170bool
cc536b21 13171ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13172{
778865d3
JB
13173 int result;
13174
ab816a27
TT
13175 result = strcmp (name, other.name);
13176 if (result < 0)
13177 return true;
13178 if (result == 0 && addr < other.addr)
13179 return true;
13180 return false;
13181}
778865d3 13182
ab816a27 13183bool
cc536b21 13184ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13185{
13186 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13187}
13188
13189/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13190 routine, but keeping the first SKIP elements untouched.
13191
13192 All duplicates are also removed. */
13193
13194static void
ab816a27 13195sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13196 int skip)
13197{
ab816a27
TT
13198 std::sort (exceptions->begin () + skip, exceptions->end ());
13199 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13200 exceptions->end ());
778865d3
JB
13201}
13202
778865d3
JB
13203/* Add all exceptions defined by the Ada standard whose name match
13204 a regular expression.
13205
13206 If PREG is not NULL, then this regexp_t object is used to
13207 perform the symbol name matching. Otherwise, no name-based
13208 filtering is performed.
13209
13210 EXCEPTIONS is a vector of exceptions to which matching exceptions
13211 gets pushed. */
13212
13213static void
2d7cc5c7 13214ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13215 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13216{
13217 int i;
13218
13219 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13220 {
13221 if (preg == NULL
2d7cc5c7 13222 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13223 {
13224 struct bound_minimal_symbol msymbol
13225 = ada_lookup_simple_minsym (standard_exc[i]);
13226
13227 if (msymbol.minsym != NULL)
13228 {
13229 struct ada_exc_info info
77e371c0 13230 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13231
ab816a27 13232 exceptions->push_back (info);
778865d3
JB
13233 }
13234 }
13235 }
13236}
13237
13238/* Add all Ada exceptions defined locally and accessible from the given
13239 FRAME.
13240
13241 If PREG is not NULL, then this regexp_t object is used to
13242 perform the symbol name matching. Otherwise, no name-based
13243 filtering is performed.
13244
13245 EXCEPTIONS is a vector of exceptions to which matching exceptions
13246 gets pushed. */
13247
13248static void
2d7cc5c7
PA
13249ada_add_exceptions_from_frame (compiled_regex *preg,
13250 struct frame_info *frame,
ab816a27 13251 std::vector<ada_exc_info> *exceptions)
778865d3 13252{
3977b71f 13253 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13254
13255 while (block != 0)
13256 {
13257 struct block_iterator iter;
13258 struct symbol *sym;
13259
13260 ALL_BLOCK_SYMBOLS (block, iter, sym)
13261 {
13262 switch (SYMBOL_CLASS (sym))
13263 {
13264 case LOC_TYPEDEF:
13265 case LOC_BLOCK:
13266 case LOC_CONST:
13267 break;
13268 default:
13269 if (ada_is_exception_sym (sym))
13270 {
13271 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13272 SYMBOL_VALUE_ADDRESS (sym)};
13273
ab816a27 13274 exceptions->push_back (info);
778865d3
JB
13275 }
13276 }
13277 }
13278 if (BLOCK_FUNCTION (block) != NULL)
13279 break;
13280 block = BLOCK_SUPERBLOCK (block);
13281 }
13282}
13283
14bc53a8
PA
13284/* Return true if NAME matches PREG or if PREG is NULL. */
13285
13286static bool
2d7cc5c7 13287name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13288{
13289 return (preg == NULL
2d7cc5c7 13290 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13291}
13292
778865d3
JB
13293/* Add all exceptions defined globally whose name name match
13294 a regular expression, excluding standard exceptions.
13295
13296 The reason we exclude standard exceptions is that they need
13297 to be handled separately: Standard exceptions are defined inside
13298 a runtime unit which is normally not compiled with debugging info,
13299 and thus usually do not show up in our symbol search. However,
13300 if the unit was in fact built with debugging info, we need to
13301 exclude them because they would duplicate the entry we found
13302 during the special loop that specifically searches for those
13303 standard exceptions.
13304
13305 If PREG is not NULL, then this regexp_t object is used to
13306 perform the symbol name matching. Otherwise, no name-based
13307 filtering is performed.
13308
13309 EXCEPTIONS is a vector of exceptions to which matching exceptions
13310 gets pushed. */
13311
13312static void
2d7cc5c7 13313ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13314 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13315{
13316 struct objfile *objfile;
43f3e411 13317 struct compunit_symtab *s;
778865d3 13318
14bc53a8
PA
13319 /* In Ada, the symbol "search name" is a linkage name, whereas the
13320 regular expression used to do the matching refers to the natural
13321 name. So match against the decoded name. */
13322 expand_symtabs_matching (NULL,
b5ec771e 13323 lookup_name_info::match_any (),
14bc53a8
PA
13324 [&] (const char *search_name)
13325 {
13326 const char *decoded = ada_decode (search_name);
13327 return name_matches_regex (decoded, preg);
13328 },
13329 NULL,
13330 VARIABLES_DOMAIN);
778865d3 13331
43f3e411 13332 ALL_COMPUNITS (objfile, s)
778865d3 13333 {
43f3e411 13334 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13335 int i;
13336
13337 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13338 {
13339 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13340 struct block_iterator iter;
13341 struct symbol *sym;
13342
13343 ALL_BLOCK_SYMBOLS (b, iter, sym)
13344 if (ada_is_non_standard_exception_sym (sym)
14bc53a8 13345 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
778865d3
JB
13346 {
13347 struct ada_exc_info info
13348 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13349
ab816a27 13350 exceptions->push_back (info);
778865d3
JB
13351 }
13352 }
13353 }
13354}
13355
13356/* Implements ada_exceptions_list with the regular expression passed
13357 as a regex_t, rather than a string.
13358
13359 If not NULL, PREG is used to filter out exceptions whose names
13360 do not match. Otherwise, all exceptions are listed. */
13361
ab816a27 13362static std::vector<ada_exc_info>
2d7cc5c7 13363ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13364{
ab816a27 13365 std::vector<ada_exc_info> result;
778865d3
JB
13366 int prev_len;
13367
13368 /* First, list the known standard exceptions. These exceptions
13369 need to be handled separately, as they are usually defined in
13370 runtime units that have been compiled without debugging info. */
13371
13372 ada_add_standard_exceptions (preg, &result);
13373
13374 /* Next, find all exceptions whose scope is local and accessible
13375 from the currently selected frame. */
13376
13377 if (has_stack_frames ())
13378 {
ab816a27 13379 prev_len = result.size ();
778865d3
JB
13380 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13381 &result);
ab816a27 13382 if (result.size () > prev_len)
778865d3
JB
13383 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13384 }
13385
13386 /* Add all exceptions whose scope is global. */
13387
ab816a27 13388 prev_len = result.size ();
778865d3 13389 ada_add_global_exceptions (preg, &result);
ab816a27 13390 if (result.size () > prev_len)
778865d3
JB
13391 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13392
778865d3
JB
13393 return result;
13394}
13395
13396/* Return a vector of ada_exc_info.
13397
13398 If REGEXP is NULL, all exceptions are included in the result.
13399 Otherwise, it should contain a valid regular expression,
13400 and only the exceptions whose names match that regular expression
13401 are included in the result.
13402
13403 The exceptions are sorted in the following order:
13404 - Standard exceptions (defined by the Ada language), in
13405 alphabetical order;
13406 - Exceptions only visible from the current frame, in
13407 alphabetical order;
13408 - Exceptions whose scope is global, in alphabetical order. */
13409
ab816a27 13410std::vector<ada_exc_info>
778865d3
JB
13411ada_exceptions_list (const char *regexp)
13412{
2d7cc5c7
PA
13413 if (regexp == NULL)
13414 return ada_exceptions_list_1 (NULL);
778865d3 13415
2d7cc5c7
PA
13416 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13417 return ada_exceptions_list_1 (&reg);
778865d3
JB
13418}
13419
13420/* Implement the "info exceptions" command. */
13421
13422static void
1d12d88f 13423info_exceptions_command (const char *regexp, int from_tty)
778865d3 13424{
778865d3 13425 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13426
ab816a27 13427 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13428
13429 if (regexp != NULL)
13430 printf_filtered
13431 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13432 else
13433 printf_filtered (_("All defined Ada exceptions:\n"));
13434
ab816a27
TT
13435 for (const ada_exc_info &info : exceptions)
13436 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13437}
13438
4c4b4cd2
PH
13439 /* Operators */
13440/* Information about operators given special treatment in functions
13441 below. */
13442/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13443
13444#define ADA_OPERATORS \
13445 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13446 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13447 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13448 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13449 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13450 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13451 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13452 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13453 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13454 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13455 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13456 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13457 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13458 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13459 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13460 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13461 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13462 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13463 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13464
13465static void
554794dc
SDJ
13466ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13467 int *argsp)
4c4b4cd2
PH
13468{
13469 switch (exp->elts[pc - 1].opcode)
13470 {
76a01679 13471 default:
4c4b4cd2
PH
13472 operator_length_standard (exp, pc, oplenp, argsp);
13473 break;
13474
13475#define OP_DEFN(op, len, args, binop) \
13476 case op: *oplenp = len; *argsp = args; break;
13477 ADA_OPERATORS;
13478#undef OP_DEFN
52ce6436
PH
13479
13480 case OP_AGGREGATE:
13481 *oplenp = 3;
13482 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13483 break;
13484
13485 case OP_CHOICES:
13486 *oplenp = 3;
13487 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13488 break;
4c4b4cd2
PH
13489 }
13490}
13491
c0201579
JK
13492/* Implementation of the exp_descriptor method operator_check. */
13493
13494static int
13495ada_operator_check (struct expression *exp, int pos,
13496 int (*objfile_func) (struct objfile *objfile, void *data),
13497 void *data)
13498{
13499 const union exp_element *const elts = exp->elts;
13500 struct type *type = NULL;
13501
13502 switch (elts[pos].opcode)
13503 {
13504 case UNOP_IN_RANGE:
13505 case UNOP_QUAL:
13506 type = elts[pos + 1].type;
13507 break;
13508
13509 default:
13510 return operator_check_standard (exp, pos, objfile_func, data);
13511 }
13512
13513 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13514
13515 if (type && TYPE_OBJFILE (type)
13516 && (*objfile_func) (TYPE_OBJFILE (type), data))
13517 return 1;
13518
13519 return 0;
13520}
13521
a121b7c1 13522static const char *
4c4b4cd2
PH
13523ada_op_name (enum exp_opcode opcode)
13524{
13525 switch (opcode)
13526 {
76a01679 13527 default:
4c4b4cd2 13528 return op_name_standard (opcode);
52ce6436 13529
4c4b4cd2
PH
13530#define OP_DEFN(op, len, args, binop) case op: return #op;
13531 ADA_OPERATORS;
13532#undef OP_DEFN
52ce6436
PH
13533
13534 case OP_AGGREGATE:
13535 return "OP_AGGREGATE";
13536 case OP_CHOICES:
13537 return "OP_CHOICES";
13538 case OP_NAME:
13539 return "OP_NAME";
4c4b4cd2
PH
13540 }
13541}
13542
13543/* As for operator_length, but assumes PC is pointing at the first
13544 element of the operator, and gives meaningful results only for the
52ce6436 13545 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13546
13547static void
76a01679
JB
13548ada_forward_operator_length (struct expression *exp, int pc,
13549 int *oplenp, int *argsp)
4c4b4cd2 13550{
76a01679 13551 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13552 {
13553 default:
13554 *oplenp = *argsp = 0;
13555 break;
52ce6436 13556
4c4b4cd2
PH
13557#define OP_DEFN(op, len, args, binop) \
13558 case op: *oplenp = len; *argsp = args; break;
13559 ADA_OPERATORS;
13560#undef OP_DEFN
52ce6436
PH
13561
13562 case OP_AGGREGATE:
13563 *oplenp = 3;
13564 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13565 break;
13566
13567 case OP_CHOICES:
13568 *oplenp = 3;
13569 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13570 break;
13571
13572 case OP_STRING:
13573 case OP_NAME:
13574 {
13575 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13576
52ce6436
PH
13577 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13578 *argsp = 0;
13579 break;
13580 }
4c4b4cd2
PH
13581 }
13582}
13583
13584static int
13585ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13586{
13587 enum exp_opcode op = exp->elts[elt].opcode;
13588 int oplen, nargs;
13589 int pc = elt;
13590 int i;
76a01679 13591
4c4b4cd2
PH
13592 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13593
76a01679 13594 switch (op)
4c4b4cd2 13595 {
76a01679 13596 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13597 case OP_ATR_FIRST:
13598 case OP_ATR_LAST:
13599 case OP_ATR_LENGTH:
13600 case OP_ATR_IMAGE:
13601 case OP_ATR_MAX:
13602 case OP_ATR_MIN:
13603 case OP_ATR_MODULUS:
13604 case OP_ATR_POS:
13605 case OP_ATR_SIZE:
13606 case OP_ATR_TAG:
13607 case OP_ATR_VAL:
13608 break;
13609
13610 case UNOP_IN_RANGE:
13611 case UNOP_QUAL:
323e0a4a
AC
13612 /* XXX: gdb_sprint_host_address, type_sprint */
13613 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13614 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13615 fprintf_filtered (stream, " (");
13616 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13617 fprintf_filtered (stream, ")");
13618 break;
13619 case BINOP_IN_BOUNDS:
52ce6436
PH
13620 fprintf_filtered (stream, " (%d)",
13621 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13622 break;
13623 case TERNOP_IN_RANGE:
13624 break;
13625
52ce6436
PH
13626 case OP_AGGREGATE:
13627 case OP_OTHERS:
13628 case OP_DISCRETE_RANGE:
13629 case OP_POSITIONAL:
13630 case OP_CHOICES:
13631 break;
13632
13633 case OP_NAME:
13634 case OP_STRING:
13635 {
13636 char *name = &exp->elts[elt + 2].string;
13637 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13638
52ce6436
PH
13639 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13640 break;
13641 }
13642
4c4b4cd2
PH
13643 default:
13644 return dump_subexp_body_standard (exp, stream, elt);
13645 }
13646
13647 elt += oplen;
13648 for (i = 0; i < nargs; i += 1)
13649 elt = dump_subexp (exp, stream, elt);
13650
13651 return elt;
13652}
13653
13654/* The Ada extension of print_subexp (q.v.). */
13655
76a01679
JB
13656static void
13657ada_print_subexp (struct expression *exp, int *pos,
13658 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13659{
52ce6436 13660 int oplen, nargs, i;
4c4b4cd2
PH
13661 int pc = *pos;
13662 enum exp_opcode op = exp->elts[pc].opcode;
13663
13664 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13665
52ce6436 13666 *pos += oplen;
4c4b4cd2
PH
13667 switch (op)
13668 {
13669 default:
52ce6436 13670 *pos -= oplen;
4c4b4cd2
PH
13671 print_subexp_standard (exp, pos, stream, prec);
13672 return;
13673
13674 case OP_VAR_VALUE:
4c4b4cd2
PH
13675 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13676 return;
13677
13678 case BINOP_IN_BOUNDS:
323e0a4a 13679 /* XXX: sprint_subexp */
4c4b4cd2 13680 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13681 fputs_filtered (" in ", stream);
4c4b4cd2 13682 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13683 fputs_filtered ("'range", stream);
4c4b4cd2 13684 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13685 fprintf_filtered (stream, "(%ld)",
13686 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13687 return;
13688
13689 case TERNOP_IN_RANGE:
4c4b4cd2 13690 if (prec >= PREC_EQUAL)
76a01679 13691 fputs_filtered ("(", stream);
323e0a4a 13692 /* XXX: sprint_subexp */
4c4b4cd2 13693 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13694 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13695 print_subexp (exp, pos, stream, PREC_EQUAL);
13696 fputs_filtered (" .. ", stream);
13697 print_subexp (exp, pos, stream, PREC_EQUAL);
13698 if (prec >= PREC_EQUAL)
76a01679
JB
13699 fputs_filtered (")", stream);
13700 return;
4c4b4cd2
PH
13701
13702 case OP_ATR_FIRST:
13703 case OP_ATR_LAST:
13704 case OP_ATR_LENGTH:
13705 case OP_ATR_IMAGE:
13706 case OP_ATR_MAX:
13707 case OP_ATR_MIN:
13708 case OP_ATR_MODULUS:
13709 case OP_ATR_POS:
13710 case OP_ATR_SIZE:
13711 case OP_ATR_TAG:
13712 case OP_ATR_VAL:
4c4b4cd2 13713 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13714 {
13715 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13716 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13717 &type_print_raw_options);
76a01679
JB
13718 *pos += 3;
13719 }
4c4b4cd2 13720 else
76a01679 13721 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13722 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13723 if (nargs > 1)
76a01679
JB
13724 {
13725 int tem;
5b4ee69b 13726
76a01679
JB
13727 for (tem = 1; tem < nargs; tem += 1)
13728 {
13729 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13730 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13731 }
13732 fputs_filtered (")", stream);
13733 }
4c4b4cd2 13734 return;
14f9c5c9 13735
4c4b4cd2 13736 case UNOP_QUAL:
4c4b4cd2
PH
13737 type_print (exp->elts[pc + 1].type, "", stream, 0);
13738 fputs_filtered ("'(", stream);
13739 print_subexp (exp, pos, stream, PREC_PREFIX);
13740 fputs_filtered (")", stream);
13741 return;
14f9c5c9 13742
4c4b4cd2 13743 case UNOP_IN_RANGE:
323e0a4a 13744 /* XXX: sprint_subexp */
4c4b4cd2 13745 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13746 fputs_filtered (" in ", stream);
79d43c61
TT
13747 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13748 &type_print_raw_options);
4c4b4cd2 13749 return;
52ce6436
PH
13750
13751 case OP_DISCRETE_RANGE:
13752 print_subexp (exp, pos, stream, PREC_SUFFIX);
13753 fputs_filtered ("..", stream);
13754 print_subexp (exp, pos, stream, PREC_SUFFIX);
13755 return;
13756
13757 case OP_OTHERS:
13758 fputs_filtered ("others => ", stream);
13759 print_subexp (exp, pos, stream, PREC_SUFFIX);
13760 return;
13761
13762 case OP_CHOICES:
13763 for (i = 0; i < nargs-1; i += 1)
13764 {
13765 if (i > 0)
13766 fputs_filtered ("|", stream);
13767 print_subexp (exp, pos, stream, PREC_SUFFIX);
13768 }
13769 fputs_filtered (" => ", stream);
13770 print_subexp (exp, pos, stream, PREC_SUFFIX);
13771 return;
13772
13773 case OP_POSITIONAL:
13774 print_subexp (exp, pos, stream, PREC_SUFFIX);
13775 return;
13776
13777 case OP_AGGREGATE:
13778 fputs_filtered ("(", stream);
13779 for (i = 0; i < nargs; i += 1)
13780 {
13781 if (i > 0)
13782 fputs_filtered (", ", stream);
13783 print_subexp (exp, pos, stream, PREC_SUFFIX);
13784 }
13785 fputs_filtered (")", stream);
13786 return;
4c4b4cd2
PH
13787 }
13788}
14f9c5c9
AS
13789
13790/* Table mapping opcodes into strings for printing operators
13791 and precedences of the operators. */
13792
d2e4a39e
AS
13793static const struct op_print ada_op_print_tab[] = {
13794 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13795 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13796 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13797 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13798 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13799 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13800 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13801 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13802 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13803 {">=", BINOP_GEQ, PREC_ORDER, 0},
13804 {">", BINOP_GTR, PREC_ORDER, 0},
13805 {"<", BINOP_LESS, PREC_ORDER, 0},
13806 {">>", BINOP_RSH, PREC_SHIFT, 0},
13807 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13808 {"+", BINOP_ADD, PREC_ADD, 0},
13809 {"-", BINOP_SUB, PREC_ADD, 0},
13810 {"&", BINOP_CONCAT, PREC_ADD, 0},
13811 {"*", BINOP_MUL, PREC_MUL, 0},
13812 {"/", BINOP_DIV, PREC_MUL, 0},
13813 {"rem", BINOP_REM, PREC_MUL, 0},
13814 {"mod", BINOP_MOD, PREC_MUL, 0},
13815 {"**", BINOP_EXP, PREC_REPEAT, 0},
13816 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13817 {"-", UNOP_NEG, PREC_PREFIX, 0},
13818 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13819 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13820 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13821 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13822 {".all", UNOP_IND, PREC_SUFFIX, 1},
13823 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13824 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13825 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13826};
13827\f
72d5681a
PH
13828enum ada_primitive_types {
13829 ada_primitive_type_int,
13830 ada_primitive_type_long,
13831 ada_primitive_type_short,
13832 ada_primitive_type_char,
13833 ada_primitive_type_float,
13834 ada_primitive_type_double,
13835 ada_primitive_type_void,
13836 ada_primitive_type_long_long,
13837 ada_primitive_type_long_double,
13838 ada_primitive_type_natural,
13839 ada_primitive_type_positive,
13840 ada_primitive_type_system_address,
13841 nr_ada_primitive_types
13842};
6c038f32
PH
13843
13844static void
d4a9a881 13845ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13846 struct language_arch_info *lai)
13847{
d4a9a881 13848 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13849
72d5681a 13850 lai->primitive_type_vector
d4a9a881 13851 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13852 struct type *);
e9bb382b
UW
13853
13854 lai->primitive_type_vector [ada_primitive_type_int]
13855 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13856 0, "integer");
13857 lai->primitive_type_vector [ada_primitive_type_long]
13858 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13859 0, "long_integer");
13860 lai->primitive_type_vector [ada_primitive_type_short]
13861 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13862 0, "short_integer");
13863 lai->string_char_type
13864 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13865 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13866 lai->primitive_type_vector [ada_primitive_type_float]
13867 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 13868 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
13869 lai->primitive_type_vector [ada_primitive_type_double]
13870 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 13871 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
13872 lai->primitive_type_vector [ada_primitive_type_long_long]
13873 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13874 0, "long_long_integer");
13875 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 13876 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 13877 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
13878 lai->primitive_type_vector [ada_primitive_type_natural]
13879 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13880 0, "natural");
13881 lai->primitive_type_vector [ada_primitive_type_positive]
13882 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13883 0, "positive");
13884 lai->primitive_type_vector [ada_primitive_type_void]
13885 = builtin->builtin_void;
13886
13887 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
13888 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13889 "void"));
72d5681a
PH
13890 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13891 = "system__address";
fbb06eb1 13892
47e729a8 13893 lai->bool_type_symbol = NULL;
fbb06eb1 13894 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13895}
6c038f32
PH
13896\f
13897 /* Language vector */
13898
13899/* Not really used, but needed in the ada_language_defn. */
13900
13901static void
6c7a06a3 13902emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13903{
6c7a06a3 13904 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13905}
13906
13907static int
410a0ff2 13908parse (struct parser_state *ps)
6c038f32
PH
13909{
13910 warnings_issued = 0;
410a0ff2 13911 return ada_parse (ps);
6c038f32
PH
13912}
13913
13914static const struct exp_descriptor ada_exp_descriptor = {
13915 ada_print_subexp,
13916 ada_operator_length,
c0201579 13917 ada_operator_check,
6c038f32
PH
13918 ada_op_name,
13919 ada_dump_subexp_body,
13920 ada_evaluate_subexp
13921};
13922
b5ec771e
PA
13923/* symbol_name_matcher_ftype adapter for wild_match. */
13924
13925static bool
13926do_wild_match (const char *symbol_search_name,
13927 const lookup_name_info &lookup_name,
13928 completion_match *match)
13929{
13930 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13931}
13932
13933/* symbol_name_matcher_ftype adapter for full_match. */
13934
13935static bool
13936do_full_match (const char *symbol_search_name,
13937 const lookup_name_info &lookup_name,
13938 completion_match *match)
13939{
13940 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13941}
13942
13943/* Build the Ada lookup name for LOOKUP_NAME. */
13944
13945ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13946{
13947 const std::string &user_name = lookup_name.name ();
13948
13949 if (user_name[0] == '<')
13950 {
13951 if (user_name.back () == '>')
13952 m_encoded_name = user_name.substr (1, user_name.size () - 2);
13953 else
13954 m_encoded_name = user_name.substr (1, user_name.size () - 1);
13955 m_encoded_p = true;
13956 m_verbatim_p = true;
13957 m_wild_match_p = false;
13958 m_standard_p = false;
13959 }
13960 else
13961 {
13962 m_verbatim_p = false;
13963
13964 m_encoded_p = user_name.find ("__") != std::string::npos;
13965
13966 if (!m_encoded_p)
13967 {
13968 const char *folded = ada_fold_name (user_name.c_str ());
13969 const char *encoded = ada_encode_1 (folded, false);
13970 if (encoded != NULL)
13971 m_encoded_name = encoded;
13972 else
13973 m_encoded_name = user_name;
13974 }
13975 else
13976 m_encoded_name = user_name;
13977
13978 /* Handle the 'package Standard' special case. See description
13979 of m_standard_p. */
13980 if (startswith (m_encoded_name.c_str (), "standard__"))
13981 {
13982 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13983 m_standard_p = true;
13984 }
13985 else
13986 m_standard_p = false;
74ccd7f5 13987
b5ec771e
PA
13988 /* If the name contains a ".", then the user is entering a fully
13989 qualified entity name, and the match must not be done in wild
13990 mode. Similarly, if the user wants to complete what looks
13991 like an encoded name, the match must not be done in wild
13992 mode. Also, in the standard__ special case always do
13993 non-wild matching. */
13994 m_wild_match_p
13995 = (lookup_name.match_type () != symbol_name_match_type::FULL
13996 && !m_encoded_p
13997 && !m_standard_p
13998 && user_name.find ('.') == std::string::npos);
13999 }
14000}
14001
14002/* symbol_name_matcher_ftype method for Ada. This only handles
14003 completion mode. */
14004
14005static bool
14006ada_symbol_name_matches (const char *symbol_search_name,
14007 const lookup_name_info &lookup_name,
14008 completion_match *match)
74ccd7f5 14009{
b5ec771e
PA
14010 return lookup_name.ada ().matches (symbol_search_name,
14011 lookup_name.match_type (),
14012 match);
14013}
14014
14015/* Implement the "la_get_symbol_name_matcher" language_defn method for
14016 Ada. */
14017
14018static symbol_name_matcher_ftype *
14019ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14020{
14021 if (lookup_name.completion_mode ())
14022 return ada_symbol_name_matches;
74ccd7f5 14023 else
b5ec771e
PA
14024 {
14025 if (lookup_name.ada ().wild_match_p ())
14026 return do_wild_match;
14027 else
14028 return do_full_match;
14029 }
74ccd7f5
JB
14030}
14031
a5ee536b
JB
14032/* Implement the "la_read_var_value" language_defn method for Ada. */
14033
14034static struct value *
63e43d3a
PMR
14035ada_read_var_value (struct symbol *var, const struct block *var_block,
14036 struct frame_info *frame)
a5ee536b 14037{
3977b71f 14038 const struct block *frame_block = NULL;
a5ee536b
JB
14039 struct symbol *renaming_sym = NULL;
14040
14041 /* The only case where default_read_var_value is not sufficient
14042 is when VAR is a renaming... */
14043 if (frame)
14044 frame_block = get_frame_block (frame, NULL);
14045 if (frame_block)
14046 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14047 if (renaming_sym != NULL)
14048 return ada_read_renaming_var_value (renaming_sym, frame_block);
14049
14050 /* This is a typical case where we expect the default_read_var_value
14051 function to work. */
63e43d3a 14052 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14053}
14054
56618e20
TT
14055static const char *ada_extensions[] =
14056{
14057 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14058};
14059
47e77640 14060extern const struct language_defn ada_language_defn = {
6c038f32 14061 "ada", /* Language name */
6abde28f 14062 "Ada",
6c038f32 14063 language_ada,
6c038f32 14064 range_check_off,
6c038f32
PH
14065 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14066 that's not quite what this means. */
6c038f32 14067 array_row_major,
9a044a89 14068 macro_expansion_no,
56618e20 14069 ada_extensions,
6c038f32
PH
14070 &ada_exp_descriptor,
14071 parse,
b3f11165 14072 ada_yyerror,
6c038f32
PH
14073 resolve,
14074 ada_printchar, /* Print a character constant */
14075 ada_printstr, /* Function to print string constant */
14076 emit_char, /* Function to print single char (not used) */
6c038f32 14077 ada_print_type, /* Print a type using appropriate syntax */
be942545 14078 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14079 ada_val_print, /* Print a value using appropriate syntax */
14080 ada_value_print, /* Print a top-level value */
a5ee536b 14081 ada_read_var_value, /* la_read_var_value */
6c038f32 14082 NULL, /* Language specific skip_trampoline */
2b2d9e11 14083 NULL, /* name_of_this */
6c038f32
PH
14084 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14085 basic_lookup_transparent_type, /* lookup_transparent_type */
14086 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14087 ada_sniff_from_mangled_name,
0963b4bd
MS
14088 NULL, /* Language specific
14089 class_name_from_physname */
6c038f32
PH
14090 ada_op_print_tab, /* expression operators for printing */
14091 0, /* c-style arrays */
14092 1, /* String lower bound */
6c038f32 14093 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14094 ada_collect_symbol_completion_matches,
72d5681a 14095 ada_language_arch_info,
e79af960 14096 ada_print_array_index,
41f1b697 14097 default_pass_by_reference,
ae6a3a4c 14098 c_get_string,
43cc5389 14099 c_watch_location_expression,
b5ec771e 14100 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14101 ada_iterate_over_symbols,
5ffa0793 14102 default_search_name_hash,
a53b64ea 14103 &ada_varobj_ops,
bb2ec1b3
TT
14104 NULL,
14105 NULL,
6c038f32
PH
14106 LANG_MAGIC
14107};
14108
5bf03f13
JB
14109/* Command-list for the "set/show ada" prefix command. */
14110static struct cmd_list_element *set_ada_list;
14111static struct cmd_list_element *show_ada_list;
14112
14113/* Implement the "set ada" prefix command. */
14114
14115static void
981a3fb3 14116set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14117{
14118 printf_unfiltered (_(\
14119"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14120 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14121}
14122
14123/* Implement the "show ada" prefix command. */
14124
14125static void
981a3fb3 14126show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14127{
14128 cmd_show_list (show_ada_list, from_tty, "");
14129}
14130
2060206e
PA
14131static void
14132initialize_ada_catchpoint_ops (void)
14133{
14134 struct breakpoint_ops *ops;
14135
14136 initialize_breakpoint_ops ();
14137
14138 ops = &catch_exception_breakpoint_ops;
14139 *ops = bkpt_breakpoint_ops;
2060206e
PA
14140 ops->allocate_location = allocate_location_catch_exception;
14141 ops->re_set = re_set_catch_exception;
14142 ops->check_status = check_status_catch_exception;
14143 ops->print_it = print_it_catch_exception;
14144 ops->print_one = print_one_catch_exception;
14145 ops->print_mention = print_mention_catch_exception;
14146 ops->print_recreate = print_recreate_catch_exception;
14147
14148 ops = &catch_exception_unhandled_breakpoint_ops;
14149 *ops = bkpt_breakpoint_ops;
2060206e
PA
14150 ops->allocate_location = allocate_location_catch_exception_unhandled;
14151 ops->re_set = re_set_catch_exception_unhandled;
14152 ops->check_status = check_status_catch_exception_unhandled;
14153 ops->print_it = print_it_catch_exception_unhandled;
14154 ops->print_one = print_one_catch_exception_unhandled;
14155 ops->print_mention = print_mention_catch_exception_unhandled;
14156 ops->print_recreate = print_recreate_catch_exception_unhandled;
14157
14158 ops = &catch_assert_breakpoint_ops;
14159 *ops = bkpt_breakpoint_ops;
2060206e
PA
14160 ops->allocate_location = allocate_location_catch_assert;
14161 ops->re_set = re_set_catch_assert;
14162 ops->check_status = check_status_catch_assert;
14163 ops->print_it = print_it_catch_assert;
14164 ops->print_one = print_one_catch_assert;
14165 ops->print_mention = print_mention_catch_assert;
14166 ops->print_recreate = print_recreate_catch_assert;
14167}
14168
3d9434b5
JB
14169/* This module's 'new_objfile' observer. */
14170
14171static void
14172ada_new_objfile_observer (struct objfile *objfile)
14173{
14174 ada_clear_symbol_cache ();
14175}
14176
14177/* This module's 'free_objfile' observer. */
14178
14179static void
14180ada_free_objfile_observer (struct objfile *objfile)
14181{
14182 ada_clear_symbol_cache ();
14183}
14184
d2e4a39e 14185void
6c038f32 14186_initialize_ada_language (void)
14f9c5c9 14187{
2060206e
PA
14188 initialize_ada_catchpoint_ops ();
14189
5bf03f13
JB
14190 add_prefix_cmd ("ada", no_class, set_ada_command,
14191 _("Prefix command for changing Ada-specfic settings"),
14192 &set_ada_list, "set ada ", 0, &setlist);
14193
14194 add_prefix_cmd ("ada", no_class, show_ada_command,
14195 _("Generic command for showing Ada-specific settings."),
14196 &show_ada_list, "show ada ", 0, &showlist);
14197
14198 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14199 &trust_pad_over_xvs, _("\
14200Enable or disable an optimization trusting PAD types over XVS types"), _("\
14201Show whether an optimization trusting PAD types over XVS types is activated"),
14202 _("\
14203This is related to the encoding used by the GNAT compiler. The debugger\n\
14204should normally trust the contents of PAD types, but certain older versions\n\
14205of GNAT have a bug that sometimes causes the information in the PAD type\n\
14206to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14207work around this bug. It is always safe to turn this option \"off\", but\n\
14208this incurs a slight performance penalty, so it is recommended to NOT change\n\
14209this option to \"off\" unless necessary."),
14210 NULL, NULL, &set_ada_list, &show_ada_list);
14211
d72413e6
PMR
14212 add_setshow_boolean_cmd ("print-signatures", class_vars,
14213 &print_signatures, _("\
14214Enable or disable the output of formal and return types for functions in the \
14215overloads selection menu"), _("\
14216Show whether the output of formal and return types for functions in the \
14217overloads selection menu is activated"),
14218 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14219
9ac4176b
PA
14220 add_catch_command ("exception", _("\
14221Catch Ada exceptions, when raised.\n\
14222With an argument, catch only exceptions with the given name."),
14223 catch_ada_exception_command,
14224 NULL,
14225 CATCH_PERMANENT,
14226 CATCH_TEMPORARY);
14227 add_catch_command ("assert", _("\
14228Catch failed Ada assertions, when raised.\n\
14229With an argument, catch only exceptions with the given name."),
14230 catch_assert_command,
14231 NULL,
14232 CATCH_PERMANENT,
14233 CATCH_TEMPORARY);
14234
6c038f32 14235 varsize_limit = 65536;
6c038f32 14236
778865d3
JB
14237 add_info ("exceptions", info_exceptions_command,
14238 _("\
14239List all Ada exception names.\n\
14240If a regular expression is passed as an argument, only those matching\n\
14241the regular expression are listed."));
14242
c6044dd1
JB
14243 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14244 _("Set Ada maintenance-related variables."),
14245 &maint_set_ada_cmdlist, "maintenance set ada ",
14246 0/*allow-unknown*/, &maintenance_set_cmdlist);
14247
14248 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14249 _("Show Ada maintenance-related variables"),
14250 &maint_show_ada_cmdlist, "maintenance show ada ",
14251 0/*allow-unknown*/, &maintenance_show_cmdlist);
14252
14253 add_setshow_boolean_cmd
14254 ("ignore-descriptive-types", class_maintenance,
14255 &ada_ignore_descriptive_types_p,
14256 _("Set whether descriptive types generated by GNAT should be ignored."),
14257 _("Show whether descriptive types generated by GNAT should be ignored."),
14258 _("\
14259When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14260DWARF attribute."),
14261 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14262
6c038f32
PH
14263 obstack_init (&symbol_list_obstack);
14264
14265 decoded_names_store = htab_create_alloc
14266 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14267 NULL, xcalloc, xfree);
6b69afc4 14268
3d9434b5
JB
14269 /* The ada-lang observers. */
14270 observer_attach_new_objfile (ada_new_objfile_observer);
14271 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14272 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14273
14274 /* Setup various context-specific data. */
e802dbe0 14275 ada_inferior_data
8e260fc0 14276 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14277 ada_pspace_data_handle
14278 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14279}