]>
Commit | Line | Data |
---|---|---|
197e01b6 | 1 | /* Ada language support routines for GDB, the GNU debugger. Copyright (C) |
10a2c479 | 2 | |
ae6a3a4c TJB |
3 | 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008, |
4 | 2009 Free Software Foundation, Inc. | |
14f9c5c9 | 5 | |
a9762ec7 | 6 | This file is part of GDB. |
14f9c5c9 | 7 | |
a9762ec7 JB |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 3 of the License, or | |
11 | (at your option) any later version. | |
14f9c5c9 | 12 | |
a9762ec7 JB |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
14f9c5c9 | 17 | |
a9762ec7 JB |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 20 | |
96d887e8 | 21 | |
4c4b4cd2 | 22 | #include "defs.h" |
14f9c5c9 | 23 | #include <stdio.h> |
0c30c098 | 24 | #include "gdb_string.h" |
14f9c5c9 AS |
25 | #include <ctype.h> |
26 | #include <stdarg.h> | |
27 | #include "demangle.h" | |
4c4b4cd2 PH |
28 | #include "gdb_regex.h" |
29 | #include "frame.h" | |
14f9c5c9 AS |
30 | #include "symtab.h" |
31 | #include "gdbtypes.h" | |
32 | #include "gdbcmd.h" | |
33 | #include "expression.h" | |
34 | #include "parser-defs.h" | |
35 | #include "language.h" | |
36 | #include "c-lang.h" | |
37 | #include "inferior.h" | |
38 | #include "symfile.h" | |
39 | #include "objfiles.h" | |
40 | #include "breakpoint.h" | |
41 | #include "gdbcore.h" | |
4c4b4cd2 PH |
42 | #include "hashtab.h" |
43 | #include "gdb_obstack.h" | |
14f9c5c9 | 44 | #include "ada-lang.h" |
4c4b4cd2 PH |
45 | #include "completer.h" |
46 | #include "gdb_stat.h" | |
47 | #ifdef UI_OUT | |
14f9c5c9 | 48 | #include "ui-out.h" |
4c4b4cd2 | 49 | #endif |
fe898f56 | 50 | #include "block.h" |
04714b91 | 51 | #include "infcall.h" |
de4f826b | 52 | #include "dictionary.h" |
60250e8b | 53 | #include "exceptions.h" |
f7f9143b JB |
54 | #include "annotate.h" |
55 | #include "valprint.h" | |
9bbc9174 | 56 | #include "source.h" |
0259addd | 57 | #include "observer.h" |
2ba95b9b | 58 | #include "vec.h" |
692465f1 | 59 | #include "stack.h" |
14f9c5c9 | 60 | |
ccefe4c4 | 61 | #include "psymtab.h" |
40bc484c | 62 | #include "value.h" |
956a9fb9 | 63 | #include "mi/mi-common.h" |
9ac4176b | 64 | #include "arch-utils.h" |
28010a5d | 65 | #include "exceptions.h" |
ccefe4c4 | 66 | |
4c4b4cd2 | 67 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 68 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
69 | Copied from valarith.c. */ |
70 | ||
71 | #ifndef TRUNCATION_TOWARDS_ZERO | |
72 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
73 | #endif | |
74 | ||
d2e4a39e | 75 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 76 | |
d2e4a39e | 77 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 78 | |
d2e4a39e | 79 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 80 | |
d2e4a39e | 81 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 82 | |
d2e4a39e | 83 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 84 | |
556bdfd4 | 85 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 86 | |
d2e4a39e | 87 | static struct value *desc_data (struct value *); |
14f9c5c9 | 88 | |
d2e4a39e | 89 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 90 | |
d2e4a39e | 91 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 92 | |
d2e4a39e | 93 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 94 | |
d2e4a39e | 95 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 96 | |
d2e4a39e | 97 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 98 | |
d2e4a39e | 99 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 100 | |
d2e4a39e | 101 | static int desc_arity (struct type *); |
14f9c5c9 | 102 | |
d2e4a39e | 103 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 104 | |
d2e4a39e | 105 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 106 | |
40658b94 PH |
107 | static int full_match (const char *, const char *); |
108 | ||
40bc484c | 109 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 110 | |
4c4b4cd2 | 111 | static void ada_add_block_symbols (struct obstack *, |
76a01679 | 112 | struct block *, const char *, |
2570f2b7 | 113 | domain_enum, struct objfile *, int); |
14f9c5c9 | 114 | |
4c4b4cd2 | 115 | static int is_nonfunction (struct ada_symbol_info *, int); |
14f9c5c9 | 116 | |
76a01679 | 117 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
2570f2b7 | 118 | struct block *); |
14f9c5c9 | 119 | |
4c4b4cd2 PH |
120 | static int num_defns_collected (struct obstack *); |
121 | ||
122 | static struct ada_symbol_info *defns_collected (struct obstack *, int); | |
14f9c5c9 | 123 | |
4c4b4cd2 | 124 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 125 | struct type *); |
14f9c5c9 | 126 | |
d2e4a39e | 127 | static void replace_operator_with_call (struct expression **, int, int, int, |
4c4b4cd2 | 128 | struct symbol *, struct block *); |
14f9c5c9 | 129 | |
d2e4a39e | 130 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 131 | |
4c4b4cd2 PH |
132 | static char *ada_op_name (enum exp_opcode); |
133 | ||
134 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 135 | |
d2e4a39e | 136 | static int numeric_type_p (struct type *); |
14f9c5c9 | 137 | |
d2e4a39e | 138 | static int integer_type_p (struct type *); |
14f9c5c9 | 139 | |
d2e4a39e | 140 | static int scalar_type_p (struct type *); |
14f9c5c9 | 141 | |
d2e4a39e | 142 | static int discrete_type_p (struct type *); |
14f9c5c9 | 143 | |
aeb5907d JB |
144 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
145 | const char **, | |
146 | int *, | |
147 | const char **); | |
148 | ||
149 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
150 | struct block *); | |
151 | ||
4c4b4cd2 | 152 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 153 | int, int, int *); |
4c4b4cd2 | 154 | |
d2e4a39e | 155 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 156 | |
b4ba55a1 JB |
157 | static struct type *ada_find_parallel_type_with_name (struct type *, |
158 | const char *); | |
159 | ||
d2e4a39e | 160 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 161 | |
10a2c479 | 162 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 163 | const gdb_byte *, |
4c4b4cd2 PH |
164 | CORE_ADDR, struct value *); |
165 | ||
166 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 167 | |
28c85d6c | 168 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 169 | |
d2e4a39e | 170 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 171 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 172 | |
d2e4a39e | 173 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 174 | |
ad82864c | 175 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 176 | |
ad82864c | 177 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 178 | |
ad82864c JB |
179 | static long decode_packed_array_bitsize (struct type *); |
180 | ||
181 | static struct value *decode_constrained_packed_array (struct value *); | |
182 | ||
183 | static int ada_is_packed_array_type (struct type *); | |
184 | ||
185 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 186 | |
d2e4a39e | 187 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 188 | struct value **); |
14f9c5c9 | 189 | |
50810684 | 190 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); |
52ce6436 | 191 | |
4c4b4cd2 PH |
192 | static struct value *coerce_unspec_val_to_type (struct value *, |
193 | struct type *); | |
14f9c5c9 | 194 | |
d2e4a39e | 195 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 196 | |
d2e4a39e | 197 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 198 | |
d2e4a39e | 199 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 200 | |
d2e4a39e | 201 | static int is_name_suffix (const char *); |
14f9c5c9 | 202 | |
73589123 PH |
203 | static int advance_wild_match (const char **, const char *, int); |
204 | ||
205 | static int wild_match (const char *, const char *); | |
14f9c5c9 | 206 | |
d2e4a39e | 207 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 208 | |
4c4b4cd2 PH |
209 | static LONGEST pos_atr (struct value *); |
210 | ||
3cb382c9 | 211 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 212 | |
d2e4a39e | 213 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 214 | |
4c4b4cd2 PH |
215 | static struct symbol *standard_lookup (const char *, const struct block *, |
216 | domain_enum); | |
14f9c5c9 | 217 | |
4c4b4cd2 PH |
218 | static struct value *ada_search_struct_field (char *, struct value *, int, |
219 | struct type *); | |
220 | ||
221 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
222 | struct type *); | |
223 | ||
76a01679 | 224 | static int find_struct_field (char *, struct type *, int, |
52ce6436 | 225 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
226 | |
227 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
228 | struct value *); | |
229 | ||
4c4b4cd2 PH |
230 | static int ada_resolve_function (struct ada_symbol_info *, int, |
231 | struct value **, int, const char *, | |
232 | struct type *); | |
233 | ||
4c4b4cd2 PH |
234 | static int ada_is_direct_array_type (struct type *); |
235 | ||
72d5681a PH |
236 | static void ada_language_arch_info (struct gdbarch *, |
237 | struct language_arch_info *); | |
714e53ab PH |
238 | |
239 | static void check_size (const struct type *); | |
52ce6436 PH |
240 | |
241 | static struct value *ada_index_struct_field (int, struct value *, int, | |
242 | struct type *); | |
243 | ||
244 | static struct value *assign_aggregate (struct value *, struct value *, | |
0963b4bd MS |
245 | struct expression *, |
246 | int *, enum noside); | |
52ce6436 PH |
247 | |
248 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
249 | struct expression *, | |
250 | int *, LONGEST *, int *, | |
251 | int, LONGEST, LONGEST); | |
252 | ||
253 | static void aggregate_assign_positional (struct value *, struct value *, | |
254 | struct expression *, | |
255 | int *, LONGEST *, int *, int, | |
256 | LONGEST, LONGEST); | |
257 | ||
258 | ||
259 | static void aggregate_assign_others (struct value *, struct value *, | |
260 | struct expression *, | |
261 | int *, LONGEST *, int, LONGEST, LONGEST); | |
262 | ||
263 | ||
264 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
265 | ||
266 | ||
267 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
268 | int *, enum noside); | |
269 | ||
270 | static void ada_forward_operator_length (struct expression *, int, int *, | |
271 | int *); | |
4c4b4cd2 PH |
272 | \f |
273 | ||
76a01679 | 274 | |
4c4b4cd2 | 275 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
276 | static unsigned int varsize_limit; |
277 | ||
4c4b4cd2 PH |
278 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
279 | returned by a function that does not return a const char *. */ | |
280 | static char *ada_completer_word_break_characters = | |
281 | #ifdef VMS | |
282 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
283 | #else | |
14f9c5c9 | 284 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 285 | #endif |
14f9c5c9 | 286 | |
4c4b4cd2 | 287 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 288 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 289 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 290 | |
4c4b4cd2 PH |
291 | /* Limit on the number of warnings to raise per expression evaluation. */ |
292 | static int warning_limit = 2; | |
293 | ||
294 | /* Number of warning messages issued; reset to 0 by cleanups after | |
295 | expression evaluation. */ | |
296 | static int warnings_issued = 0; | |
297 | ||
298 | static const char *known_runtime_file_name_patterns[] = { | |
299 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
300 | }; | |
301 | ||
302 | static const char *known_auxiliary_function_name_patterns[] = { | |
303 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
304 | }; | |
305 | ||
306 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
307 | static struct obstack symbol_list_obstack; | |
308 | ||
e802dbe0 JB |
309 | /* Inferior-specific data. */ |
310 | ||
311 | /* Per-inferior data for this module. */ | |
312 | ||
313 | struct ada_inferior_data | |
314 | { | |
315 | /* The ada__tags__type_specific_data type, which is used when decoding | |
316 | tagged types. With older versions of GNAT, this type was directly | |
317 | accessible through a component ("tsd") in the object tag. But this | |
318 | is no longer the case, so we cache it for each inferior. */ | |
319 | struct type *tsd_type; | |
3eecfa55 JB |
320 | |
321 | /* The exception_support_info data. This data is used to determine | |
322 | how to implement support for Ada exception catchpoints in a given | |
323 | inferior. */ | |
324 | const struct exception_support_info *exception_info; | |
e802dbe0 JB |
325 | }; |
326 | ||
327 | /* Our key to this module's inferior data. */ | |
328 | static const struct inferior_data *ada_inferior_data; | |
329 | ||
330 | /* A cleanup routine for our inferior data. */ | |
331 | static void | |
332 | ada_inferior_data_cleanup (struct inferior *inf, void *arg) | |
333 | { | |
334 | struct ada_inferior_data *data; | |
335 | ||
336 | data = inferior_data (inf, ada_inferior_data); | |
337 | if (data != NULL) | |
338 | xfree (data); | |
339 | } | |
340 | ||
341 | /* Return our inferior data for the given inferior (INF). | |
342 | ||
343 | This function always returns a valid pointer to an allocated | |
344 | ada_inferior_data structure. If INF's inferior data has not | |
345 | been previously set, this functions creates a new one with all | |
346 | fields set to zero, sets INF's inferior to it, and then returns | |
347 | a pointer to that newly allocated ada_inferior_data. */ | |
348 | ||
349 | static struct ada_inferior_data * | |
350 | get_ada_inferior_data (struct inferior *inf) | |
351 | { | |
352 | struct ada_inferior_data *data; | |
353 | ||
354 | data = inferior_data (inf, ada_inferior_data); | |
355 | if (data == NULL) | |
356 | { | |
357 | data = XZALLOC (struct ada_inferior_data); | |
358 | set_inferior_data (inf, ada_inferior_data, data); | |
359 | } | |
360 | ||
361 | return data; | |
362 | } | |
363 | ||
364 | /* Perform all necessary cleanups regarding our module's inferior data | |
365 | that is required after the inferior INF just exited. */ | |
366 | ||
367 | static void | |
368 | ada_inferior_exit (struct inferior *inf) | |
369 | { | |
370 | ada_inferior_data_cleanup (inf, NULL); | |
371 | set_inferior_data (inf, ada_inferior_data, NULL); | |
372 | } | |
373 | ||
4c4b4cd2 PH |
374 | /* Utilities */ |
375 | ||
720d1a40 | 376 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 377 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
378 | |
379 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
380 | In other words, we really expect the target type of a typedef type to be | |
381 | a non-typedef type. This is particularly true for Ada units, because | |
382 | the language does not have a typedef vs not-typedef distinction. | |
383 | In that respect, the Ada compiler has been trying to eliminate as many | |
384 | typedef definitions in the debugging information, since they generally | |
385 | do not bring any extra information (we still use typedef under certain | |
386 | circumstances related mostly to the GNAT encoding). | |
387 | ||
388 | Unfortunately, we have seen situations where the debugging information | |
389 | generated by the compiler leads to such multiple typedef layers. For | |
390 | instance, consider the following example with stabs: | |
391 | ||
392 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
393 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
394 | ||
395 | This is an error in the debugging information which causes type | |
396 | pck__float_array___XUP to be defined twice, and the second time, | |
397 | it is defined as a typedef of a typedef. | |
398 | ||
399 | This is on the fringe of legality as far as debugging information is | |
400 | concerned, and certainly unexpected. But it is easy to handle these | |
401 | situations correctly, so we can afford to be lenient in this case. */ | |
402 | ||
403 | static struct type * | |
404 | ada_typedef_target_type (struct type *type) | |
405 | { | |
406 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
407 | type = TYPE_TARGET_TYPE (type); | |
408 | return type; | |
409 | } | |
410 | ||
41d27058 JB |
411 | /* Given DECODED_NAME a string holding a symbol name in its |
412 | decoded form (ie using the Ada dotted notation), returns | |
413 | its unqualified name. */ | |
414 | ||
415 | static const char * | |
416 | ada_unqualified_name (const char *decoded_name) | |
417 | { | |
418 | const char *result = strrchr (decoded_name, '.'); | |
419 | ||
420 | if (result != NULL) | |
421 | result++; /* Skip the dot... */ | |
422 | else | |
423 | result = decoded_name; | |
424 | ||
425 | return result; | |
426 | } | |
427 | ||
428 | /* Return a string starting with '<', followed by STR, and '>'. | |
429 | The result is good until the next call. */ | |
430 | ||
431 | static char * | |
432 | add_angle_brackets (const char *str) | |
433 | { | |
434 | static char *result = NULL; | |
435 | ||
436 | xfree (result); | |
88c15c34 | 437 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
438 | return result; |
439 | } | |
96d887e8 | 440 | |
4c4b4cd2 PH |
441 | static char * |
442 | ada_get_gdb_completer_word_break_characters (void) | |
443 | { | |
444 | return ada_completer_word_break_characters; | |
445 | } | |
446 | ||
e79af960 JB |
447 | /* Print an array element index using the Ada syntax. */ |
448 | ||
449 | static void | |
450 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 451 | const struct value_print_options *options) |
e79af960 | 452 | { |
79a45b7d | 453 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
454 | fprintf_filtered (stream, " => "); |
455 | } | |
456 | ||
f27cf670 | 457 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 458 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 459 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 460 | |
f27cf670 AS |
461 | void * |
462 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 463 | { |
d2e4a39e AS |
464 | if (*size < min_size) |
465 | { | |
466 | *size *= 2; | |
467 | if (*size < min_size) | |
4c4b4cd2 | 468 | *size = min_size; |
f27cf670 | 469 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 470 | } |
f27cf670 | 471 | return vect; |
14f9c5c9 AS |
472 | } |
473 | ||
474 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 475 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
476 | |
477 | static int | |
ebf56fd3 | 478 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
479 | { |
480 | int len = strlen (target); | |
5b4ee69b | 481 | |
d2e4a39e | 482 | return |
4c4b4cd2 PH |
483 | (strncmp (field_name, target, len) == 0 |
484 | && (field_name[len] == '\0' | |
485 | || (strncmp (field_name + len, "___", 3) == 0 | |
76a01679 JB |
486 | && strcmp (field_name + strlen (field_name) - 6, |
487 | "___XVN") != 0))); | |
14f9c5c9 AS |
488 | } |
489 | ||
490 | ||
872c8b51 JB |
491 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
492 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
493 | and return its index. This function also handles fields whose name | |
494 | have ___ suffixes because the compiler sometimes alters their name | |
495 | by adding such a suffix to represent fields with certain constraints. | |
496 | If the field could not be found, return a negative number if | |
497 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
498 | |
499 | int | |
500 | ada_get_field_index (const struct type *type, const char *field_name, | |
501 | int maybe_missing) | |
502 | { | |
503 | int fieldno; | |
872c8b51 JB |
504 | struct type *struct_type = check_typedef ((struct type *) type); |
505 | ||
506 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
507 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
508 | return fieldno; |
509 | ||
510 | if (!maybe_missing) | |
323e0a4a | 511 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 512 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
513 | |
514 | return -1; | |
515 | } | |
516 | ||
517 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
518 | |
519 | int | |
d2e4a39e | 520 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
521 | { |
522 | if (name == NULL) | |
523 | return 0; | |
d2e4a39e | 524 | else |
14f9c5c9 | 525 | { |
d2e4a39e | 526 | const char *p = strstr (name, "___"); |
5b4ee69b | 527 | |
14f9c5c9 | 528 | if (p == NULL) |
4c4b4cd2 | 529 | return strlen (name); |
14f9c5c9 | 530 | else |
4c4b4cd2 | 531 | return p - name; |
14f9c5c9 AS |
532 | } |
533 | } | |
534 | ||
4c4b4cd2 PH |
535 | /* Return non-zero if SUFFIX is a suffix of STR. |
536 | Return zero if STR is null. */ | |
537 | ||
14f9c5c9 | 538 | static int |
d2e4a39e | 539 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
540 | { |
541 | int len1, len2; | |
5b4ee69b | 542 | |
14f9c5c9 AS |
543 | if (str == NULL) |
544 | return 0; | |
545 | len1 = strlen (str); | |
546 | len2 = strlen (suffix); | |
4c4b4cd2 | 547 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
548 | } |
549 | ||
4c4b4cd2 PH |
550 | /* The contents of value VAL, treated as a value of type TYPE. The |
551 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 552 | |
d2e4a39e | 553 | static struct value * |
4c4b4cd2 | 554 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 555 | { |
61ee279c | 556 | type = ada_check_typedef (type); |
df407dfe | 557 | if (value_type (val) == type) |
4c4b4cd2 | 558 | return val; |
d2e4a39e | 559 | else |
14f9c5c9 | 560 | { |
4c4b4cd2 PH |
561 | struct value *result; |
562 | ||
563 | /* Make sure that the object size is not unreasonable before | |
564 | trying to allocate some memory for it. */ | |
714e53ab | 565 | check_size (type); |
4c4b4cd2 | 566 | |
41e8491f JK |
567 | if (value_lazy (val) |
568 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) | |
569 | result = allocate_value_lazy (type); | |
570 | else | |
571 | { | |
572 | result = allocate_value (type); | |
573 | memcpy (value_contents_raw (result), value_contents (val), | |
574 | TYPE_LENGTH (type)); | |
575 | } | |
74bcbdf3 | 576 | set_value_component_location (result, val); |
9bbda503 AC |
577 | set_value_bitsize (result, value_bitsize (val)); |
578 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 579 | set_value_address (result, value_address (val)); |
14f9c5c9 AS |
580 | return result; |
581 | } | |
582 | } | |
583 | ||
fc1a4b47 AC |
584 | static const gdb_byte * |
585 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
586 | { |
587 | if (valaddr == NULL) | |
588 | return NULL; | |
589 | else | |
590 | return valaddr + offset; | |
591 | } | |
592 | ||
593 | static CORE_ADDR | |
ebf56fd3 | 594 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
595 | { |
596 | if (address == 0) | |
597 | return 0; | |
d2e4a39e | 598 | else |
14f9c5c9 AS |
599 | return address + offset; |
600 | } | |
601 | ||
4c4b4cd2 PH |
602 | /* Issue a warning (as for the definition of warning in utils.c, but |
603 | with exactly one argument rather than ...), unless the limit on the | |
604 | number of warnings has passed during the evaluation of the current | |
605 | expression. */ | |
a2249542 | 606 | |
77109804 AC |
607 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
608 | provided by "complaint". */ | |
a0b31db1 | 609 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 610 | |
14f9c5c9 | 611 | static void |
a2249542 | 612 | lim_warning (const char *format, ...) |
14f9c5c9 | 613 | { |
a2249542 | 614 | va_list args; |
a2249542 | 615 | |
5b4ee69b | 616 | va_start (args, format); |
4c4b4cd2 PH |
617 | warnings_issued += 1; |
618 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
619 | vwarning (format, args); |
620 | ||
621 | va_end (args); | |
4c4b4cd2 PH |
622 | } |
623 | ||
714e53ab PH |
624 | /* Issue an error if the size of an object of type T is unreasonable, |
625 | i.e. if it would be a bad idea to allocate a value of this type in | |
626 | GDB. */ | |
627 | ||
628 | static void | |
629 | check_size (const struct type *type) | |
630 | { | |
631 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 632 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
633 | } |
634 | ||
0963b4bd | 635 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 636 | static LONGEST |
c3e5cd34 | 637 | max_of_size (int size) |
4c4b4cd2 | 638 | { |
76a01679 | 639 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 640 | |
76a01679 | 641 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
642 | } |
643 | ||
0963b4bd | 644 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 645 | static LONGEST |
c3e5cd34 | 646 | min_of_size (int size) |
4c4b4cd2 | 647 | { |
c3e5cd34 | 648 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
649 | } |
650 | ||
0963b4bd | 651 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 652 | static ULONGEST |
c3e5cd34 | 653 | umax_of_size (int size) |
4c4b4cd2 | 654 | { |
76a01679 | 655 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 656 | |
76a01679 | 657 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
658 | } |
659 | ||
0963b4bd | 660 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
661 | static LONGEST |
662 | max_of_type (struct type *t) | |
4c4b4cd2 | 663 | { |
c3e5cd34 PH |
664 | if (TYPE_UNSIGNED (t)) |
665 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
666 | else | |
667 | return max_of_size (TYPE_LENGTH (t)); | |
668 | } | |
669 | ||
0963b4bd | 670 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
671 | static LONGEST |
672 | min_of_type (struct type *t) | |
673 | { | |
674 | if (TYPE_UNSIGNED (t)) | |
675 | return 0; | |
676 | else | |
677 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
678 | } |
679 | ||
680 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
681 | LONGEST |
682 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 683 | { |
76a01679 | 684 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
685 | { |
686 | case TYPE_CODE_RANGE: | |
690cc4eb | 687 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 688 | case TYPE_CODE_ENUM: |
690cc4eb PH |
689 | return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1); |
690 | case TYPE_CODE_BOOL: | |
691 | return 1; | |
692 | case TYPE_CODE_CHAR: | |
76a01679 | 693 | case TYPE_CODE_INT: |
690cc4eb | 694 | return max_of_type (type); |
4c4b4cd2 | 695 | default: |
43bbcdc2 | 696 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
697 | } |
698 | } | |
699 | ||
700 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
701 | LONGEST |
702 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 703 | { |
76a01679 | 704 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
705 | { |
706 | case TYPE_CODE_RANGE: | |
690cc4eb | 707 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 708 | case TYPE_CODE_ENUM: |
690cc4eb PH |
709 | return TYPE_FIELD_BITPOS (type, 0); |
710 | case TYPE_CODE_BOOL: | |
711 | return 0; | |
712 | case TYPE_CODE_CHAR: | |
76a01679 | 713 | case TYPE_CODE_INT: |
690cc4eb | 714 | return min_of_type (type); |
4c4b4cd2 | 715 | default: |
43bbcdc2 | 716 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
717 | } |
718 | } | |
719 | ||
720 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 721 | non-range scalar type. */ |
4c4b4cd2 PH |
722 | |
723 | static struct type * | |
18af8284 | 724 | get_base_type (struct type *type) |
4c4b4cd2 PH |
725 | { |
726 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
727 | { | |
76a01679 JB |
728 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
729 | return type; | |
4c4b4cd2 PH |
730 | type = TYPE_TARGET_TYPE (type); |
731 | } | |
732 | return type; | |
14f9c5c9 | 733 | } |
4c4b4cd2 | 734 | \f |
76a01679 | 735 | |
4c4b4cd2 | 736 | /* Language Selection */ |
14f9c5c9 AS |
737 | |
738 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 739 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 740 | |
14f9c5c9 | 741 | enum language |
ccefe4c4 | 742 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 743 | { |
d2e4a39e | 744 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
4c4b4cd2 PH |
745 | (struct objfile *) NULL) != NULL) |
746 | return language_ada; | |
14f9c5c9 AS |
747 | |
748 | return lang; | |
749 | } | |
96d887e8 PH |
750 | |
751 | /* If the main procedure is written in Ada, then return its name. | |
752 | The result is good until the next call. Return NULL if the main | |
753 | procedure doesn't appear to be in Ada. */ | |
754 | ||
755 | char * | |
756 | ada_main_name (void) | |
757 | { | |
758 | struct minimal_symbol *msym; | |
f9bc20b9 | 759 | static char *main_program_name = NULL; |
6c038f32 | 760 | |
96d887e8 PH |
761 | /* For Ada, the name of the main procedure is stored in a specific |
762 | string constant, generated by the binder. Look for that symbol, | |
763 | extract its address, and then read that string. If we didn't find | |
764 | that string, then most probably the main procedure is not written | |
765 | in Ada. */ | |
766 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
767 | ||
768 | if (msym != NULL) | |
769 | { | |
f9bc20b9 JB |
770 | CORE_ADDR main_program_name_addr; |
771 | int err_code; | |
772 | ||
96d887e8 PH |
773 | main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym); |
774 | if (main_program_name_addr == 0) | |
323e0a4a | 775 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 776 | |
f9bc20b9 JB |
777 | xfree (main_program_name); |
778 | target_read_string (main_program_name_addr, &main_program_name, | |
779 | 1024, &err_code); | |
780 | ||
781 | if (err_code != 0) | |
782 | return NULL; | |
96d887e8 PH |
783 | return main_program_name; |
784 | } | |
785 | ||
786 | /* The main procedure doesn't seem to be in Ada. */ | |
787 | return NULL; | |
788 | } | |
14f9c5c9 | 789 | \f |
4c4b4cd2 | 790 | /* Symbols */ |
d2e4a39e | 791 | |
4c4b4cd2 PH |
792 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
793 | of NULLs. */ | |
14f9c5c9 | 794 | |
d2e4a39e AS |
795 | const struct ada_opname_map ada_opname_table[] = { |
796 | {"Oadd", "\"+\"", BINOP_ADD}, | |
797 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
798 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
799 | {"Odivide", "\"/\"", BINOP_DIV}, | |
800 | {"Omod", "\"mod\"", BINOP_MOD}, | |
801 | {"Orem", "\"rem\"", BINOP_REM}, | |
802 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
803 | {"Olt", "\"<\"", BINOP_LESS}, | |
804 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
805 | {"Ogt", "\">\"", BINOP_GTR}, | |
806 | {"Oge", "\">=\"", BINOP_GEQ}, | |
807 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
808 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
809 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
810 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
811 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
812 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
813 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
814 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
815 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
816 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
817 | {NULL, NULL} | |
14f9c5c9 AS |
818 | }; |
819 | ||
4c4b4cd2 PH |
820 | /* The "encoded" form of DECODED, according to GNAT conventions. |
821 | The result is valid until the next call to ada_encode. */ | |
822 | ||
14f9c5c9 | 823 | char * |
4c4b4cd2 | 824 | ada_encode (const char *decoded) |
14f9c5c9 | 825 | { |
4c4b4cd2 PH |
826 | static char *encoding_buffer = NULL; |
827 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 828 | const char *p; |
14f9c5c9 | 829 | int k; |
d2e4a39e | 830 | |
4c4b4cd2 | 831 | if (decoded == NULL) |
14f9c5c9 AS |
832 | return NULL; |
833 | ||
4c4b4cd2 PH |
834 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
835 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
836 | |
837 | k = 0; | |
4c4b4cd2 | 838 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 839 | { |
cdc7bb92 | 840 | if (*p == '.') |
4c4b4cd2 PH |
841 | { |
842 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
843 | k += 2; | |
844 | } | |
14f9c5c9 | 845 | else if (*p == '"') |
4c4b4cd2 PH |
846 | { |
847 | const struct ada_opname_map *mapping; | |
848 | ||
849 | for (mapping = ada_opname_table; | |
1265e4aa JB |
850 | mapping->encoded != NULL |
851 | && strncmp (mapping->decoded, p, | |
852 | strlen (mapping->decoded)) != 0; mapping += 1) | |
4c4b4cd2 PH |
853 | ; |
854 | if (mapping->encoded == NULL) | |
323e0a4a | 855 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
856 | strcpy (encoding_buffer + k, mapping->encoded); |
857 | k += strlen (mapping->encoded); | |
858 | break; | |
859 | } | |
d2e4a39e | 860 | else |
4c4b4cd2 PH |
861 | { |
862 | encoding_buffer[k] = *p; | |
863 | k += 1; | |
864 | } | |
14f9c5c9 AS |
865 | } |
866 | ||
4c4b4cd2 PH |
867 | encoding_buffer[k] = '\0'; |
868 | return encoding_buffer; | |
14f9c5c9 AS |
869 | } |
870 | ||
871 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
872 | quotes, unfolded, but with the quotes stripped away. Result good |
873 | to next call. */ | |
874 | ||
d2e4a39e AS |
875 | char * |
876 | ada_fold_name (const char *name) | |
14f9c5c9 | 877 | { |
d2e4a39e | 878 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
879 | static size_t fold_buffer_size = 0; |
880 | ||
881 | int len = strlen (name); | |
d2e4a39e | 882 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
883 | |
884 | if (name[0] == '\'') | |
885 | { | |
d2e4a39e AS |
886 | strncpy (fold_buffer, name + 1, len - 2); |
887 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
888 | } |
889 | else | |
890 | { | |
891 | int i; | |
5b4ee69b | 892 | |
14f9c5c9 | 893 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 894 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
895 | } |
896 | ||
897 | return fold_buffer; | |
898 | } | |
899 | ||
529cad9c PH |
900 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
901 | ||
902 | static int | |
903 | is_lower_alphanum (const char c) | |
904 | { | |
905 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
906 | } | |
907 | ||
c90092fe JB |
908 | /* ENCODED is the linkage name of a symbol and LEN contains its length. |
909 | This function saves in LEN the length of that same symbol name but | |
910 | without either of these suffixes: | |
29480c32 JB |
911 | . .{DIGIT}+ |
912 | . ${DIGIT}+ | |
913 | . ___{DIGIT}+ | |
914 | . __{DIGIT}+. | |
c90092fe | 915 | |
29480c32 JB |
916 | These are suffixes introduced by the compiler for entities such as |
917 | nested subprogram for instance, in order to avoid name clashes. | |
918 | They do not serve any purpose for the debugger. */ | |
919 | ||
920 | static void | |
921 | ada_remove_trailing_digits (const char *encoded, int *len) | |
922 | { | |
923 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
924 | { | |
925 | int i = *len - 2; | |
5b4ee69b | 926 | |
29480c32 JB |
927 | while (i > 0 && isdigit (encoded[i])) |
928 | i--; | |
929 | if (i >= 0 && encoded[i] == '.') | |
930 | *len = i; | |
931 | else if (i >= 0 && encoded[i] == '$') | |
932 | *len = i; | |
933 | else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) | |
934 | *len = i - 2; | |
935 | else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) | |
936 | *len = i - 1; | |
937 | } | |
938 | } | |
939 | ||
940 | /* Remove the suffix introduced by the compiler for protected object | |
941 | subprograms. */ | |
942 | ||
943 | static void | |
944 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
945 | { | |
946 | /* Remove trailing N. */ | |
947 | ||
948 | /* Protected entry subprograms are broken into two | |
949 | separate subprograms: The first one is unprotected, and has | |
950 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 951 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
952 | the protection. Since the P subprograms are internally generated, |
953 | we leave these names undecoded, giving the user a clue that this | |
954 | entity is internal. */ | |
955 | ||
956 | if (*len > 1 | |
957 | && encoded[*len - 1] == 'N' | |
958 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
959 | *len = *len - 1; | |
960 | } | |
961 | ||
69fadcdf JB |
962 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
963 | ||
964 | static void | |
965 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
966 | { | |
967 | int i = *len - 1; | |
968 | ||
969 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
970 | i--; | |
971 | ||
972 | if (encoded[i] != 'X') | |
973 | return; | |
974 | ||
975 | if (i == 0) | |
976 | return; | |
977 | ||
978 | if (isalnum (encoded[i-1])) | |
979 | *len = i; | |
980 | } | |
981 | ||
29480c32 JB |
982 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
983 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
984 | replaced by ENCODED. | |
14f9c5c9 | 985 | |
4c4b4cd2 | 986 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 987 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
988 | is returned. */ |
989 | ||
990 | const char * | |
991 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
992 | { |
993 | int i, j; | |
994 | int len0; | |
d2e4a39e | 995 | const char *p; |
4c4b4cd2 | 996 | char *decoded; |
14f9c5c9 | 997 | int at_start_name; |
4c4b4cd2 PH |
998 | static char *decoding_buffer = NULL; |
999 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 1000 | |
29480c32 JB |
1001 | /* The name of the Ada main procedure starts with "_ada_". |
1002 | This prefix is not part of the decoded name, so skip this part | |
1003 | if we see this prefix. */ | |
4c4b4cd2 PH |
1004 | if (strncmp (encoded, "_ada_", 5) == 0) |
1005 | encoded += 5; | |
14f9c5c9 | 1006 | |
29480c32 JB |
1007 | /* If the name starts with '_', then it is not a properly encoded |
1008 | name, so do not attempt to decode it. Similarly, if the name | |
1009 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 1010 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1011 | goto Suppress; |
1012 | ||
4c4b4cd2 | 1013 | len0 = strlen (encoded); |
4c4b4cd2 | 1014 | |
29480c32 JB |
1015 | ada_remove_trailing_digits (encoded, &len0); |
1016 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1017 | |
4c4b4cd2 PH |
1018 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1019 | the suffix is located before the current "end" of ENCODED. We want | |
1020 | to avoid re-matching parts of ENCODED that have previously been | |
1021 | marked as discarded (by decrementing LEN0). */ | |
1022 | p = strstr (encoded, "___"); | |
1023 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1024 | { |
1025 | if (p[3] == 'X') | |
4c4b4cd2 | 1026 | len0 = p - encoded; |
14f9c5c9 | 1027 | else |
4c4b4cd2 | 1028 | goto Suppress; |
14f9c5c9 | 1029 | } |
4c4b4cd2 | 1030 | |
29480c32 JB |
1031 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1032 | is for the body of a task, but that information does not actually | |
1033 | appear in the decoded name. */ | |
1034 | ||
4c4b4cd2 | 1035 | if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) |
14f9c5c9 | 1036 | len0 -= 3; |
76a01679 | 1037 | |
a10967fa JB |
1038 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1039 | from the TKB suffix because it is used for non-anonymous task | |
1040 | bodies. */ | |
1041 | ||
1042 | if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0) | |
1043 | len0 -= 2; | |
1044 | ||
29480c32 JB |
1045 | /* Remove trailing "B" suffixes. */ |
1046 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1047 | ||
4c4b4cd2 | 1048 | if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) |
14f9c5c9 AS |
1049 | len0 -= 1; |
1050 | ||
4c4b4cd2 | 1051 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1052 | |
4c4b4cd2 PH |
1053 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
1054 | decoded = decoding_buffer; | |
14f9c5c9 | 1055 | |
29480c32 JB |
1056 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1057 | ||
4c4b4cd2 | 1058 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1059 | { |
4c4b4cd2 PH |
1060 | i = len0 - 2; |
1061 | while ((i >= 0 && isdigit (encoded[i])) | |
1062 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1063 | i -= 1; | |
1064 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1065 | len0 = i - 1; | |
1066 | else if (encoded[i] == '$') | |
1067 | len0 = i; | |
d2e4a39e | 1068 | } |
14f9c5c9 | 1069 | |
29480c32 JB |
1070 | /* The first few characters that are not alphabetic are not part |
1071 | of any encoding we use, so we can copy them over verbatim. */ | |
1072 | ||
4c4b4cd2 PH |
1073 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1074 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1075 | |
1076 | at_start_name = 1; | |
1077 | while (i < len0) | |
1078 | { | |
29480c32 | 1079 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1080 | if (at_start_name && encoded[i] == 'O') |
1081 | { | |
1082 | int k; | |
5b4ee69b | 1083 | |
4c4b4cd2 PH |
1084 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1085 | { | |
1086 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1087 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1088 | op_len - 1) == 0) | |
1089 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1090 | { |
1091 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1092 | at_start_name = 0; | |
1093 | i += op_len; | |
1094 | j += strlen (ada_opname_table[k].decoded); | |
1095 | break; | |
1096 | } | |
1097 | } | |
1098 | if (ada_opname_table[k].encoded != NULL) | |
1099 | continue; | |
1100 | } | |
14f9c5c9 AS |
1101 | at_start_name = 0; |
1102 | ||
529cad9c PH |
1103 | /* Replace "TK__" with "__", which will eventually be translated |
1104 | into "." (just below). */ | |
1105 | ||
4c4b4cd2 PH |
1106 | if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) |
1107 | i += 2; | |
529cad9c | 1108 | |
29480c32 JB |
1109 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1110 | be translated into "." (just below). These are internal names | |
1111 | generated for anonymous blocks inside which our symbol is nested. */ | |
1112 | ||
1113 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1114 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1115 | && isdigit (encoded [i+4])) | |
1116 | { | |
1117 | int k = i + 5; | |
1118 | ||
1119 | while (k < len0 && isdigit (encoded[k])) | |
1120 | k++; /* Skip any extra digit. */ | |
1121 | ||
1122 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1123 | is indeed followed by "__". */ | |
1124 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1125 | i = k; | |
1126 | } | |
1127 | ||
529cad9c PH |
1128 | /* Remove _E{DIGITS}+[sb] */ |
1129 | ||
1130 | /* Just as for protected object subprograms, there are 2 categories | |
0963b4bd | 1131 | of subprograms created by the compiler for each entry. The first |
529cad9c PH |
1132 | one implements the actual entry code, and has a suffix following |
1133 | the convention above; the second one implements the barrier and | |
1134 | uses the same convention as above, except that the 'E' is replaced | |
1135 | by a 'B'. | |
1136 | ||
1137 | Just as above, we do not decode the name of barrier functions | |
1138 | to give the user a clue that the code he is debugging has been | |
1139 | internally generated. */ | |
1140 | ||
1141 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1142 | && isdigit (encoded[i+2])) | |
1143 | { | |
1144 | int k = i + 3; | |
1145 | ||
1146 | while (k < len0 && isdigit (encoded[k])) | |
1147 | k++; | |
1148 | ||
1149 | if (k < len0 | |
1150 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1151 | { | |
1152 | k++; | |
1153 | /* Just as an extra precaution, make sure that if this | |
1154 | suffix is followed by anything else, it is a '_'. | |
1155 | Otherwise, we matched this sequence by accident. */ | |
1156 | if (k == len0 | |
1157 | || (k < len0 && encoded[k] == '_')) | |
1158 | i = k; | |
1159 | } | |
1160 | } | |
1161 | ||
1162 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1163 | the GNAT front-end in protected object subprograms. */ | |
1164 | ||
1165 | if (i < len0 + 3 | |
1166 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1167 | { | |
1168 | /* Backtrack a bit up until we reach either the begining of | |
1169 | the encoded name, or "__". Make sure that we only find | |
1170 | digits or lowercase characters. */ | |
1171 | const char *ptr = encoded + i - 1; | |
1172 | ||
1173 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1174 | ptr--; | |
1175 | if (ptr < encoded | |
1176 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1177 | i++; | |
1178 | } | |
1179 | ||
4c4b4cd2 PH |
1180 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1181 | { | |
29480c32 JB |
1182 | /* This is a X[bn]* sequence not separated from the previous |
1183 | part of the name with a non-alpha-numeric character (in other | |
1184 | words, immediately following an alpha-numeric character), then | |
1185 | verify that it is placed at the end of the encoded name. If | |
1186 | not, then the encoding is not valid and we should abort the | |
1187 | decoding. Otherwise, just skip it, it is used in body-nested | |
1188 | package names. */ | |
4c4b4cd2 PH |
1189 | do |
1190 | i += 1; | |
1191 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1192 | if (i < len0) | |
1193 | goto Suppress; | |
1194 | } | |
cdc7bb92 | 1195 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1196 | { |
29480c32 | 1197 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1198 | decoded[j] = '.'; |
1199 | at_start_name = 1; | |
1200 | i += 2; | |
1201 | j += 1; | |
1202 | } | |
14f9c5c9 | 1203 | else |
4c4b4cd2 | 1204 | { |
29480c32 JB |
1205 | /* It's a character part of the decoded name, so just copy it |
1206 | over. */ | |
4c4b4cd2 PH |
1207 | decoded[j] = encoded[i]; |
1208 | i += 1; | |
1209 | j += 1; | |
1210 | } | |
14f9c5c9 | 1211 | } |
4c4b4cd2 | 1212 | decoded[j] = '\000'; |
14f9c5c9 | 1213 | |
29480c32 JB |
1214 | /* Decoded names should never contain any uppercase character. |
1215 | Double-check this, and abort the decoding if we find one. */ | |
1216 | ||
4c4b4cd2 PH |
1217 | for (i = 0; decoded[i] != '\0'; i += 1) |
1218 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1219 | goto Suppress; |
1220 | ||
4c4b4cd2 PH |
1221 | if (strcmp (decoded, encoded) == 0) |
1222 | return encoded; | |
1223 | else | |
1224 | return decoded; | |
14f9c5c9 AS |
1225 | |
1226 | Suppress: | |
4c4b4cd2 PH |
1227 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1228 | decoded = decoding_buffer; | |
1229 | if (encoded[0] == '<') | |
1230 | strcpy (decoded, encoded); | |
14f9c5c9 | 1231 | else |
88c15c34 | 1232 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1233 | return decoded; |
1234 | ||
1235 | } | |
1236 | ||
1237 | /* Table for keeping permanent unique copies of decoded names. Once | |
1238 | allocated, names in this table are never released. While this is a | |
1239 | storage leak, it should not be significant unless there are massive | |
1240 | changes in the set of decoded names in successive versions of a | |
1241 | symbol table loaded during a single session. */ | |
1242 | static struct htab *decoded_names_store; | |
1243 | ||
1244 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1245 | in the language-specific part of GSYMBOL, if it has not been | |
1246 | previously computed. Tries to save the decoded name in the same | |
1247 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1248 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1249 | GSYMBOL). |
4c4b4cd2 PH |
1250 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1251 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1252 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1253 | |
76a01679 JB |
1254 | char * |
1255 | ada_decode_symbol (const struct general_symbol_info *gsymbol) | |
4c4b4cd2 | 1256 | { |
76a01679 | 1257 | char **resultp = |
afa16725 | 1258 | (char **) &gsymbol->language_specific.mangled_lang.demangled_name; |
5b4ee69b | 1259 | |
4c4b4cd2 PH |
1260 | if (*resultp == NULL) |
1261 | { | |
1262 | const char *decoded = ada_decode (gsymbol->name); | |
5b4ee69b | 1263 | |
714835d5 | 1264 | if (gsymbol->obj_section != NULL) |
76a01679 | 1265 | { |
714835d5 | 1266 | struct objfile *objf = gsymbol->obj_section->objfile; |
5b4ee69b | 1267 | |
714835d5 UW |
1268 | *resultp = obsavestring (decoded, strlen (decoded), |
1269 | &objf->objfile_obstack); | |
76a01679 | 1270 | } |
4c4b4cd2 | 1271 | /* Sometimes, we can't find a corresponding objfile, in which |
76a01679 JB |
1272 | case, we put the result on the heap. Since we only decode |
1273 | when needed, we hope this usually does not cause a | |
1274 | significant memory leak (FIXME). */ | |
4c4b4cd2 | 1275 | if (*resultp == NULL) |
76a01679 JB |
1276 | { |
1277 | char **slot = (char **) htab_find_slot (decoded_names_store, | |
1278 | decoded, INSERT); | |
5b4ee69b | 1279 | |
76a01679 JB |
1280 | if (*slot == NULL) |
1281 | *slot = xstrdup (decoded); | |
1282 | *resultp = *slot; | |
1283 | } | |
4c4b4cd2 | 1284 | } |
14f9c5c9 | 1285 | |
4c4b4cd2 PH |
1286 | return *resultp; |
1287 | } | |
76a01679 | 1288 | |
2c0b251b | 1289 | static char * |
76a01679 | 1290 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1291 | { |
1292 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1293 | } |
1294 | ||
1295 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1296 | suffixes that encode debugging information or leading _ada_ on |
1297 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1298 | information that is ignored). If WILD, then NAME need only match a | |
1299 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1300 | either argument is NULL. */ | |
14f9c5c9 | 1301 | |
2c0b251b | 1302 | static int |
40658b94 | 1303 | match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1304 | { |
1305 | if (sym_name == NULL || name == NULL) | |
1306 | return 0; | |
1307 | else if (wild) | |
73589123 | 1308 | return wild_match (sym_name, name) == 0; |
d2e4a39e AS |
1309 | else |
1310 | { | |
1311 | int len_name = strlen (name); | |
5b4ee69b | 1312 | |
4c4b4cd2 PH |
1313 | return (strncmp (sym_name, name, len_name) == 0 |
1314 | && is_name_suffix (sym_name + len_name)) | |
1315 | || (strncmp (sym_name, "_ada_", 5) == 0 | |
1316 | && strncmp (sym_name + 5, name, len_name) == 0 | |
1317 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1318 | } |
14f9c5c9 | 1319 | } |
14f9c5c9 | 1320 | \f |
d2e4a39e | 1321 | |
4c4b4cd2 | 1322 | /* Arrays */ |
14f9c5c9 | 1323 | |
28c85d6c JB |
1324 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1325 | generated by the GNAT compiler to describe the index type used | |
1326 | for each dimension of an array, check whether it follows the latest | |
1327 | known encoding. If not, fix it up to conform to the latest encoding. | |
1328 | Otherwise, do nothing. This function also does nothing if | |
1329 | INDEX_DESC_TYPE is NULL. | |
1330 | ||
1331 | The GNAT encoding used to describle the array index type evolved a bit. | |
1332 | Initially, the information would be provided through the name of each | |
1333 | field of the structure type only, while the type of these fields was | |
1334 | described as unspecified and irrelevant. The debugger was then expected | |
1335 | to perform a global type lookup using the name of that field in order | |
1336 | to get access to the full index type description. Because these global | |
1337 | lookups can be very expensive, the encoding was later enhanced to make | |
1338 | the global lookup unnecessary by defining the field type as being | |
1339 | the full index type description. | |
1340 | ||
1341 | The purpose of this routine is to allow us to support older versions | |
1342 | of the compiler by detecting the use of the older encoding, and by | |
1343 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1344 | we essentially replace each field's meaningless type by the associated | |
1345 | index subtype). */ | |
1346 | ||
1347 | void | |
1348 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1349 | { | |
1350 | int i; | |
1351 | ||
1352 | if (index_desc_type == NULL) | |
1353 | return; | |
1354 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1355 | ||
1356 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1357 | to check one field only, no need to check them all). If not, return | |
1358 | now. | |
1359 | ||
1360 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1361 | the field type should be a meaningless integer type whose name | |
1362 | is not equal to the field name. */ | |
1363 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1364 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1365 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1366 | return; | |
1367 | ||
1368 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1369 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1370 | { | |
1371 | char *name = TYPE_FIELD_NAME (index_desc_type, i); | |
1372 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); | |
1373 | ||
1374 | if (raw_type) | |
1375 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1376 | } | |
1377 | } | |
1378 | ||
4c4b4cd2 | 1379 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1380 | |
d2e4a39e AS |
1381 | static char *bound_name[] = { |
1382 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1383 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1384 | }; | |
1385 | ||
1386 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1387 | ||
4c4b4cd2 | 1388 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1389 | |
14f9c5c9 | 1390 | |
4c4b4cd2 PH |
1391 | /* The desc_* routines return primitive portions of array descriptors |
1392 | (fat pointers). */ | |
14f9c5c9 AS |
1393 | |
1394 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1395 | level of indirection, if needed. */ |
1396 | ||
d2e4a39e AS |
1397 | static struct type * |
1398 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1399 | { |
1400 | if (type == NULL) | |
1401 | return NULL; | |
61ee279c | 1402 | type = ada_check_typedef (type); |
720d1a40 JB |
1403 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1404 | type = ada_typedef_target_type (type); | |
1405 | ||
1265e4aa JB |
1406 | if (type != NULL |
1407 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1408 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1409 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1410 | else |
1411 | return type; | |
1412 | } | |
1413 | ||
4c4b4cd2 PH |
1414 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1415 | ||
14f9c5c9 | 1416 | static int |
d2e4a39e | 1417 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1418 | { |
d2e4a39e | 1419 | return |
14f9c5c9 AS |
1420 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1421 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1422 | } | |
1423 | ||
4c4b4cd2 PH |
1424 | /* The descriptor type for thin pointer type TYPE. */ |
1425 | ||
d2e4a39e AS |
1426 | static struct type * |
1427 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1428 | { |
d2e4a39e | 1429 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1430 | |
14f9c5c9 AS |
1431 | if (base_type == NULL) |
1432 | return NULL; | |
1433 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1434 | return base_type; | |
d2e4a39e | 1435 | else |
14f9c5c9 | 1436 | { |
d2e4a39e | 1437 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1438 | |
14f9c5c9 | 1439 | if (alt_type == NULL) |
4c4b4cd2 | 1440 | return base_type; |
14f9c5c9 | 1441 | else |
4c4b4cd2 | 1442 | return alt_type; |
14f9c5c9 AS |
1443 | } |
1444 | } | |
1445 | ||
4c4b4cd2 PH |
1446 | /* A pointer to the array data for thin-pointer value VAL. */ |
1447 | ||
d2e4a39e AS |
1448 | static struct value * |
1449 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1450 | { |
828292f2 | 1451 | struct type *type = ada_check_typedef (value_type (val)); |
556bdfd4 | 1452 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1453 | |
556bdfd4 UW |
1454 | data_type = lookup_pointer_type (data_type); |
1455 | ||
14f9c5c9 | 1456 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1457 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1458 | else |
42ae5230 | 1459 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1460 | } |
1461 | ||
4c4b4cd2 PH |
1462 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1463 | ||
14f9c5c9 | 1464 | static int |
d2e4a39e | 1465 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1466 | { |
1467 | type = desc_base_type (type); | |
1468 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1469 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1470 | } |
1471 | ||
4c4b4cd2 PH |
1472 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1473 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1474 | |
d2e4a39e AS |
1475 | static struct type * |
1476 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1477 | { |
d2e4a39e | 1478 | struct type *r; |
14f9c5c9 AS |
1479 | |
1480 | type = desc_base_type (type); | |
1481 | ||
1482 | if (type == NULL) | |
1483 | return NULL; | |
1484 | else if (is_thin_pntr (type)) | |
1485 | { | |
1486 | type = thin_descriptor_type (type); | |
1487 | if (type == NULL) | |
4c4b4cd2 | 1488 | return NULL; |
14f9c5c9 AS |
1489 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1490 | if (r != NULL) | |
61ee279c | 1491 | return ada_check_typedef (r); |
14f9c5c9 AS |
1492 | } |
1493 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1494 | { | |
1495 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1496 | if (r != NULL) | |
61ee279c | 1497 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1498 | } |
1499 | return NULL; | |
1500 | } | |
1501 | ||
1502 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1503 | one, a pointer to its bounds data. Otherwise NULL. */ |
1504 | ||
d2e4a39e AS |
1505 | static struct value * |
1506 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1507 | { |
df407dfe | 1508 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1509 | |
d2e4a39e | 1510 | if (is_thin_pntr (type)) |
14f9c5c9 | 1511 | { |
d2e4a39e | 1512 | struct type *bounds_type = |
4c4b4cd2 | 1513 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1514 | LONGEST addr; |
1515 | ||
4cdfadb1 | 1516 | if (bounds_type == NULL) |
323e0a4a | 1517 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1518 | |
1519 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1520 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1521 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1522 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1523 | addr = value_as_long (arr); |
d2e4a39e | 1524 | else |
42ae5230 | 1525 | addr = value_address (arr); |
14f9c5c9 | 1526 | |
d2e4a39e | 1527 | return |
4c4b4cd2 PH |
1528 | value_from_longest (lookup_pointer_type (bounds_type), |
1529 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1530 | } |
1531 | ||
1532 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1533 | { |
1534 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1535 | _("Bad GNAT array descriptor")); | |
1536 | struct type *p_bounds_type = value_type (p_bounds); | |
1537 | ||
1538 | if (p_bounds_type | |
1539 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1540 | { | |
1541 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1542 | ||
1543 | if (TYPE_STUB (target_type)) | |
1544 | p_bounds = value_cast (lookup_pointer_type | |
1545 | (ada_check_typedef (target_type)), | |
1546 | p_bounds); | |
1547 | } | |
1548 | else | |
1549 | error (_("Bad GNAT array descriptor")); | |
1550 | ||
1551 | return p_bounds; | |
1552 | } | |
14f9c5c9 AS |
1553 | else |
1554 | return NULL; | |
1555 | } | |
1556 | ||
4c4b4cd2 PH |
1557 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1558 | position of the field containing the address of the bounds data. */ | |
1559 | ||
14f9c5c9 | 1560 | static int |
d2e4a39e | 1561 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1562 | { |
1563 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1564 | } | |
1565 | ||
1566 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1567 | size of the field containing the address of the bounds data. */ |
1568 | ||
14f9c5c9 | 1569 | static int |
d2e4a39e | 1570 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1571 | { |
1572 | type = desc_base_type (type); | |
1573 | ||
d2e4a39e | 1574 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1575 | return TYPE_FIELD_BITSIZE (type, 1); |
1576 | else | |
61ee279c | 1577 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1578 | } |
1579 | ||
4c4b4cd2 | 1580 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1581 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1582 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1583 | data. */ | |
4c4b4cd2 | 1584 | |
d2e4a39e | 1585 | static struct type * |
556bdfd4 | 1586 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1587 | { |
1588 | type = desc_base_type (type); | |
1589 | ||
4c4b4cd2 | 1590 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1591 | if (is_thin_pntr (type)) |
556bdfd4 | 1592 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1593 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1594 | { |
1595 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1596 | ||
1597 | if (data_type | |
1598 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1599 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1600 | } |
1601 | ||
1602 | return NULL; | |
14f9c5c9 AS |
1603 | } |
1604 | ||
1605 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1606 | its array data. */ | |
4c4b4cd2 | 1607 | |
d2e4a39e AS |
1608 | static struct value * |
1609 | desc_data (struct value *arr) | |
14f9c5c9 | 1610 | { |
df407dfe | 1611 | struct type *type = value_type (arr); |
5b4ee69b | 1612 | |
14f9c5c9 AS |
1613 | if (is_thin_pntr (type)) |
1614 | return thin_data_pntr (arr); | |
1615 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1616 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1617 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1618 | else |
1619 | return NULL; | |
1620 | } | |
1621 | ||
1622 | ||
1623 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1624 | position of the field containing the address of the data. */ |
1625 | ||
14f9c5c9 | 1626 | static int |
d2e4a39e | 1627 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1628 | { |
1629 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1630 | } | |
1631 | ||
1632 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1633 | size of the field containing the address of the data. */ |
1634 | ||
14f9c5c9 | 1635 | static int |
d2e4a39e | 1636 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1637 | { |
1638 | type = desc_base_type (type); | |
1639 | ||
1640 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1641 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1642 | else |
14f9c5c9 AS |
1643 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1644 | } | |
1645 | ||
4c4b4cd2 | 1646 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1647 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1648 | bound, if WHICH is 1. The first bound is I=1. */ |
1649 | ||
d2e4a39e AS |
1650 | static struct value * |
1651 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1652 | { |
d2e4a39e | 1653 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1654 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1655 | } |
1656 | ||
1657 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1658 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1659 | bound, if WHICH is 1. The first bound is I=1. */ |
1660 | ||
14f9c5c9 | 1661 | static int |
d2e4a39e | 1662 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1663 | { |
d2e4a39e | 1664 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1665 | } |
1666 | ||
1667 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1668 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1669 | bound, if WHICH is 1. The first bound is I=1. */ |
1670 | ||
76a01679 | 1671 | static int |
d2e4a39e | 1672 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1673 | { |
1674 | type = desc_base_type (type); | |
1675 | ||
d2e4a39e AS |
1676 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1677 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1678 | else | |
1679 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1680 | } |
1681 | ||
1682 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1683 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1684 | ||
d2e4a39e AS |
1685 | static struct type * |
1686 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1687 | { |
1688 | type = desc_base_type (type); | |
1689 | ||
1690 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1691 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1692 | else | |
14f9c5c9 AS |
1693 | return NULL; |
1694 | } | |
1695 | ||
4c4b4cd2 PH |
1696 | /* The number of index positions in the array-bounds type TYPE. |
1697 | Return 0 if TYPE is NULL. */ | |
1698 | ||
14f9c5c9 | 1699 | static int |
d2e4a39e | 1700 | desc_arity (struct type *type) |
14f9c5c9 AS |
1701 | { |
1702 | type = desc_base_type (type); | |
1703 | ||
1704 | if (type != NULL) | |
1705 | return TYPE_NFIELDS (type) / 2; | |
1706 | return 0; | |
1707 | } | |
1708 | ||
4c4b4cd2 PH |
1709 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1710 | an array descriptor type (representing an unconstrained array | |
1711 | type). */ | |
1712 | ||
76a01679 JB |
1713 | static int |
1714 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1715 | { |
1716 | if (type == NULL) | |
1717 | return 0; | |
61ee279c | 1718 | type = ada_check_typedef (type); |
4c4b4cd2 | 1719 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1720 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1721 | } |
1722 | ||
52ce6436 | 1723 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1724 | * to one. */ |
52ce6436 | 1725 | |
2c0b251b | 1726 | static int |
52ce6436 PH |
1727 | ada_is_array_type (struct type *type) |
1728 | { | |
1729 | while (type != NULL | |
1730 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1731 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1732 | type = TYPE_TARGET_TYPE (type); | |
1733 | return ada_is_direct_array_type (type); | |
1734 | } | |
1735 | ||
4c4b4cd2 | 1736 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1737 | |
14f9c5c9 | 1738 | int |
4c4b4cd2 | 1739 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1740 | { |
1741 | if (type == NULL) | |
1742 | return 0; | |
61ee279c | 1743 | type = ada_check_typedef (type); |
14f9c5c9 | 1744 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 | 1745 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
b0dd7688 JB |
1746 | && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))) |
1747 | == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1748 | } |
1749 | ||
4c4b4cd2 PH |
1750 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1751 | ||
14f9c5c9 | 1752 | int |
4c4b4cd2 | 1753 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1754 | { |
556bdfd4 | 1755 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1756 | |
1757 | if (type == NULL) | |
1758 | return 0; | |
61ee279c | 1759 | type = ada_check_typedef (type); |
556bdfd4 UW |
1760 | return (data_type != NULL |
1761 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1762 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1763 | } |
1764 | ||
1765 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1766 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1767 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1768 | is still needed. */ |
1769 | ||
14f9c5c9 | 1770 | int |
ebf56fd3 | 1771 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1772 | { |
d2e4a39e | 1773 | return |
14f9c5c9 AS |
1774 | type != NULL |
1775 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1776 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1777 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1778 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1779 | } |
1780 | ||
1781 | ||
4c4b4cd2 | 1782 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1783 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1784 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1785 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1786 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1787 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1788 | a descriptor. */ |
d2e4a39e AS |
1789 | struct type * |
1790 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1791 | { |
ad82864c JB |
1792 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1793 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1794 | |
df407dfe AC |
1795 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1796 | return value_type (arr); | |
d2e4a39e AS |
1797 | |
1798 | if (!bounds) | |
ad82864c JB |
1799 | { |
1800 | struct type *array_type = | |
1801 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1802 | ||
1803 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1804 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
1805 | decode_packed_array_bitsize (value_type (arr)); | |
1806 | ||
1807 | return array_type; | |
1808 | } | |
14f9c5c9 AS |
1809 | else |
1810 | { | |
d2e4a39e | 1811 | struct type *elt_type; |
14f9c5c9 | 1812 | int arity; |
d2e4a39e | 1813 | struct value *descriptor; |
14f9c5c9 | 1814 | |
df407dfe AC |
1815 | elt_type = ada_array_element_type (value_type (arr), -1); |
1816 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1817 | |
d2e4a39e | 1818 | if (elt_type == NULL || arity == 0) |
df407dfe | 1819 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1820 | |
1821 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1822 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1823 | return NULL; |
d2e4a39e | 1824 | while (arity > 0) |
4c4b4cd2 | 1825 | { |
e9bb382b UW |
1826 | struct type *range_type = alloc_type_copy (value_type (arr)); |
1827 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
1828 | struct value *low = desc_one_bound (descriptor, arity, 0); |
1829 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 1830 | |
5b4ee69b | 1831 | arity -= 1; |
df407dfe | 1832 | create_range_type (range_type, value_type (low), |
529cad9c PH |
1833 | longest_to_int (value_as_long (low)), |
1834 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 1835 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
1836 | |
1837 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
1838 | { |
1839 | /* We need to store the element packed bitsize, as well as | |
1840 | recompute the array size, because it was previously | |
1841 | computed based on the unpacked element size. */ | |
1842 | LONGEST lo = value_as_long (low); | |
1843 | LONGEST hi = value_as_long (high); | |
1844 | ||
1845 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
1846 | decode_packed_array_bitsize (value_type (arr)); | |
1847 | /* If the array has no element, then the size is already | |
1848 | zero, and does not need to be recomputed. */ | |
1849 | if (lo < hi) | |
1850 | { | |
1851 | int array_bitsize = | |
1852 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); | |
1853 | ||
1854 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
1855 | } | |
1856 | } | |
4c4b4cd2 | 1857 | } |
14f9c5c9 AS |
1858 | |
1859 | return lookup_pointer_type (elt_type); | |
1860 | } | |
1861 | } | |
1862 | ||
1863 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
1864 | Otherwise, returns either a standard GDB array with bounds set |
1865 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
1866 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
1867 | ||
d2e4a39e AS |
1868 | struct value * |
1869 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 1870 | { |
df407dfe | 1871 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1872 | { |
d2e4a39e | 1873 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 1874 | |
14f9c5c9 | 1875 | if (arrType == NULL) |
4c4b4cd2 | 1876 | return NULL; |
14f9c5c9 AS |
1877 | return value_cast (arrType, value_copy (desc_data (arr))); |
1878 | } | |
ad82864c JB |
1879 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1880 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
1881 | else |
1882 | return arr; | |
1883 | } | |
1884 | ||
1885 | /* If ARR does not represent an array, returns ARR unchanged. | |
1886 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
1887 | be ARR itself if it already is in the proper form). */ |
1888 | ||
720d1a40 | 1889 | struct value * |
d2e4a39e | 1890 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 1891 | { |
df407dfe | 1892 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1893 | { |
d2e4a39e | 1894 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 1895 | |
14f9c5c9 | 1896 | if (arrVal == NULL) |
323e0a4a | 1897 | error (_("Bounds unavailable for null array pointer.")); |
529cad9c | 1898 | check_size (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
1899 | return value_ind (arrVal); |
1900 | } | |
ad82864c JB |
1901 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1902 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 1903 | else |
14f9c5c9 AS |
1904 | return arr; |
1905 | } | |
1906 | ||
1907 | /* If TYPE represents a GNAT array type, return it translated to an | |
1908 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
1909 | packing). For other types, is the identity. */ |
1910 | ||
d2e4a39e AS |
1911 | struct type * |
1912 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 1913 | { |
ad82864c JB |
1914 | if (ada_is_constrained_packed_array_type (type)) |
1915 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
1916 | |
1917 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 1918 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
1919 | |
1920 | return type; | |
14f9c5c9 AS |
1921 | } |
1922 | ||
4c4b4cd2 PH |
1923 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
1924 | ||
ad82864c JB |
1925 | static int |
1926 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
1927 | { |
1928 | if (type == NULL) | |
1929 | return 0; | |
4c4b4cd2 | 1930 | type = desc_base_type (type); |
61ee279c | 1931 | type = ada_check_typedef (type); |
d2e4a39e | 1932 | return |
14f9c5c9 AS |
1933 | ada_type_name (type) != NULL |
1934 | && strstr (ada_type_name (type), "___XP") != NULL; | |
1935 | } | |
1936 | ||
ad82864c JB |
1937 | /* Non-zero iff TYPE represents a standard GNAT constrained |
1938 | packed-array type. */ | |
1939 | ||
1940 | int | |
1941 | ada_is_constrained_packed_array_type (struct type *type) | |
1942 | { | |
1943 | return ada_is_packed_array_type (type) | |
1944 | && !ada_is_array_descriptor_type (type); | |
1945 | } | |
1946 | ||
1947 | /* Non-zero iff TYPE represents an array descriptor for a | |
1948 | unconstrained packed-array type. */ | |
1949 | ||
1950 | static int | |
1951 | ada_is_unconstrained_packed_array_type (struct type *type) | |
1952 | { | |
1953 | return ada_is_packed_array_type (type) | |
1954 | && ada_is_array_descriptor_type (type); | |
1955 | } | |
1956 | ||
1957 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
1958 | return the size of its elements in bits. */ | |
1959 | ||
1960 | static long | |
1961 | decode_packed_array_bitsize (struct type *type) | |
1962 | { | |
720d1a40 | 1963 | char *raw_name; |
ad82864c JB |
1964 | char *tail; |
1965 | long bits; | |
1966 | ||
720d1a40 JB |
1967 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
1968 | of the fat pointer type. We need the name of the fat pointer type | |
1969 | to do the decoding, so strip the typedef layer. */ | |
1970 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
1971 | type = ada_typedef_target_type (type); | |
1972 | ||
1973 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
1974 | if (!raw_name) |
1975 | raw_name = ada_type_name (desc_base_type (type)); | |
1976 | ||
1977 | if (!raw_name) | |
1978 | return 0; | |
1979 | ||
1980 | tail = strstr (raw_name, "___XP"); | |
720d1a40 | 1981 | gdb_assert (tail != NULL); |
ad82864c JB |
1982 | |
1983 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
1984 | { | |
1985 | lim_warning | |
1986 | (_("could not understand bit size information on packed array")); | |
1987 | return 0; | |
1988 | } | |
1989 | ||
1990 | return bits; | |
1991 | } | |
1992 | ||
14f9c5c9 AS |
1993 | /* Given that TYPE is a standard GDB array type with all bounds filled |
1994 | in, and that the element size of its ultimate scalar constituents | |
1995 | (that is, either its elements, or, if it is an array of arrays, its | |
1996 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
1997 | but with the bit sizes of its elements (and those of any | |
1998 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 PH |
1999 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
2000 | in bits. */ | |
2001 | ||
d2e4a39e | 2002 | static struct type * |
ad82864c | 2003 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 2004 | { |
d2e4a39e AS |
2005 | struct type *new_elt_type; |
2006 | struct type *new_type; | |
14f9c5c9 AS |
2007 | LONGEST low_bound, high_bound; |
2008 | ||
61ee279c | 2009 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2010 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
2011 | return type; | |
2012 | ||
e9bb382b | 2013 | new_type = alloc_type_copy (type); |
ad82864c JB |
2014 | new_elt_type = |
2015 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2016 | elt_bits); | |
262452ec | 2017 | create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type)); |
14f9c5c9 AS |
2018 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
2019 | TYPE_NAME (new_type) = ada_type_name (type); | |
2020 | ||
262452ec | 2021 | if (get_discrete_bounds (TYPE_INDEX_TYPE (type), |
4c4b4cd2 | 2022 | &low_bound, &high_bound) < 0) |
14f9c5c9 AS |
2023 | low_bound = high_bound = 0; |
2024 | if (high_bound < low_bound) | |
2025 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2026 | else |
14f9c5c9 AS |
2027 | { |
2028 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2029 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 2030 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2031 | } |
2032 | ||
876cecd0 | 2033 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
2034 | return new_type; |
2035 | } | |
2036 | ||
ad82864c JB |
2037 | /* The array type encoded by TYPE, where |
2038 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2039 | |
d2e4a39e | 2040 | static struct type * |
ad82864c | 2041 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2042 | { |
727e3d2e JB |
2043 | char *raw_name = ada_type_name (ada_check_typedef (type)); |
2044 | char *name; | |
2045 | char *tail; | |
d2e4a39e | 2046 | struct type *shadow_type; |
14f9c5c9 | 2047 | long bits; |
14f9c5c9 | 2048 | |
727e3d2e JB |
2049 | if (!raw_name) |
2050 | raw_name = ada_type_name (desc_base_type (type)); | |
2051 | ||
2052 | if (!raw_name) | |
2053 | return NULL; | |
2054 | ||
2055 | name = (char *) alloca (strlen (raw_name) + 1); | |
2056 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2057 | type = desc_base_type (type); |
2058 | ||
14f9c5c9 AS |
2059 | memcpy (name, raw_name, tail - raw_name); |
2060 | name[tail - raw_name] = '\000'; | |
2061 | ||
b4ba55a1 JB |
2062 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2063 | ||
2064 | if (shadow_type == NULL) | |
14f9c5c9 | 2065 | { |
323e0a4a | 2066 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2067 | return NULL; |
2068 | } | |
cb249c71 | 2069 | CHECK_TYPEDEF (shadow_type); |
14f9c5c9 AS |
2070 | |
2071 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2072 | { | |
0963b4bd MS |
2073 | lim_warning (_("could not understand bounds " |
2074 | "information on packed array")); | |
14f9c5c9 AS |
2075 | return NULL; |
2076 | } | |
d2e4a39e | 2077 | |
ad82864c JB |
2078 | bits = decode_packed_array_bitsize (type); |
2079 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2080 | } |
2081 | ||
ad82864c JB |
2082 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2083 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2084 | standard GDB array type except that the BITSIZEs of the array |
2085 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2086 | type length is set appropriately. */ |
14f9c5c9 | 2087 | |
d2e4a39e | 2088 | static struct value * |
ad82864c | 2089 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2090 | { |
4c4b4cd2 | 2091 | struct type *type; |
14f9c5c9 | 2092 | |
4c4b4cd2 | 2093 | arr = ada_coerce_ref (arr); |
284614f0 JB |
2094 | |
2095 | /* If our value is a pointer, then dererence it. Make sure that | |
2096 | this operation does not cause the target type to be fixed, as | |
2097 | this would indirectly cause this array to be decoded. The rest | |
2098 | of the routine assumes that the array hasn't been decoded yet, | |
2099 | so we use the basic "value_ind" routine to perform the dereferencing, | |
2100 | as opposed to using "ada_value_ind". */ | |
828292f2 | 2101 | if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR) |
284614f0 | 2102 | arr = value_ind (arr); |
4c4b4cd2 | 2103 | |
ad82864c | 2104 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2105 | if (type == NULL) |
2106 | { | |
323e0a4a | 2107 | error (_("can't unpack array")); |
14f9c5c9 AS |
2108 | return NULL; |
2109 | } | |
61ee279c | 2110 | |
50810684 | 2111 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 2112 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2113 | { |
2114 | /* This is a (right-justified) modular type representing a packed | |
2115 | array with no wrapper. In order to interpret the value through | |
2116 | the (left-justified) packed array type we just built, we must | |
2117 | first left-justify it. */ | |
2118 | int bit_size, bit_pos; | |
2119 | ULONGEST mod; | |
2120 | ||
df407dfe | 2121 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2122 | bit_size = 0; |
2123 | while (mod > 0) | |
2124 | { | |
2125 | bit_size += 1; | |
2126 | mod >>= 1; | |
2127 | } | |
df407dfe | 2128 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2129 | arr = ada_value_primitive_packed_val (arr, NULL, |
2130 | bit_pos / HOST_CHAR_BIT, | |
2131 | bit_pos % HOST_CHAR_BIT, | |
2132 | bit_size, | |
2133 | type); | |
2134 | } | |
2135 | ||
4c4b4cd2 | 2136 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2137 | } |
2138 | ||
2139 | ||
2140 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2141 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2142 | |
d2e4a39e AS |
2143 | static struct value * |
2144 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2145 | { |
2146 | int i; | |
2147 | int bits, elt_off, bit_off; | |
2148 | long elt_total_bit_offset; | |
d2e4a39e AS |
2149 | struct type *elt_type; |
2150 | struct value *v; | |
14f9c5c9 AS |
2151 | |
2152 | bits = 0; | |
2153 | elt_total_bit_offset = 0; | |
df407dfe | 2154 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2155 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2156 | { |
d2e4a39e | 2157 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2158 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2159 | error | |
0963b4bd MS |
2160 | (_("attempt to do packed indexing of " |
2161 | "something other than a packed array")); | |
14f9c5c9 | 2162 | else |
4c4b4cd2 PH |
2163 | { |
2164 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2165 | LONGEST lowerbound, upperbound; | |
2166 | LONGEST idx; | |
2167 | ||
2168 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2169 | { | |
323e0a4a | 2170 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2171 | lowerbound = upperbound = 0; |
2172 | } | |
2173 | ||
3cb382c9 | 2174 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2175 | if (idx < lowerbound || idx > upperbound) |
0963b4bd MS |
2176 | lim_warning (_("packed array index %ld out of bounds"), |
2177 | (long) idx); | |
4c4b4cd2 PH |
2178 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2179 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2180 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2181 | } |
14f9c5c9 AS |
2182 | } |
2183 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2184 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2185 | |
2186 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2187 | bits, elt_type); |
14f9c5c9 AS |
2188 | return v; |
2189 | } | |
2190 | ||
4c4b4cd2 | 2191 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2192 | |
2193 | static int | |
d2e4a39e | 2194 | has_negatives (struct type *type) |
14f9c5c9 | 2195 | { |
d2e4a39e AS |
2196 | switch (TYPE_CODE (type)) |
2197 | { | |
2198 | default: | |
2199 | return 0; | |
2200 | case TYPE_CODE_INT: | |
2201 | return !TYPE_UNSIGNED (type); | |
2202 | case TYPE_CODE_RANGE: | |
2203 | return TYPE_LOW_BOUND (type) < 0; | |
2204 | } | |
14f9c5c9 | 2205 | } |
d2e4a39e | 2206 | |
14f9c5c9 AS |
2207 | |
2208 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2209 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2210 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
0963b4bd | 2211 | assigning through the result will set the field fetched from. |
4c4b4cd2 PH |
2212 | VALADDR is ignored unless OBJ is NULL, in which case, |
2213 | VALADDR+OFFSET must address the start of storage containing the | |
2214 | packed value. The value returned in this case is never an lval. | |
2215 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 2216 | |
d2e4a39e | 2217 | struct value * |
fc1a4b47 | 2218 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 2219 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 2220 | struct type *type) |
14f9c5c9 | 2221 | { |
d2e4a39e | 2222 | struct value *v; |
4c4b4cd2 PH |
2223 | int src, /* Index into the source area */ |
2224 | targ, /* Index into the target area */ | |
2225 | srcBitsLeft, /* Number of source bits left to move */ | |
2226 | nsrc, ntarg, /* Number of source and target bytes */ | |
2227 | unusedLS, /* Number of bits in next significant | |
2228 | byte of source that are unused */ | |
2229 | accumSize; /* Number of meaningful bits in accum */ | |
2230 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 2231 | unsigned char *unpacked; |
4c4b4cd2 | 2232 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
2233 | unsigned char sign; |
2234 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
2235 | /* Transmit bytes from least to most significant; delta is the direction |
2236 | the indices move. */ | |
50810684 | 2237 | int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1; |
14f9c5c9 | 2238 | |
61ee279c | 2239 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2240 | |
2241 | if (obj == NULL) | |
2242 | { | |
2243 | v = allocate_value (type); | |
d2e4a39e | 2244 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 2245 | } |
9214ee5f | 2246 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 AS |
2247 | { |
2248 | v = value_at (type, | |
42ae5230 | 2249 | value_address (obj) + offset); |
d2e4a39e | 2250 | bytes = (unsigned char *) alloca (len); |
42ae5230 | 2251 | read_memory (value_address (v), bytes, len); |
14f9c5c9 | 2252 | } |
d2e4a39e | 2253 | else |
14f9c5c9 AS |
2254 | { |
2255 | v = allocate_value (type); | |
0fd88904 | 2256 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 2257 | } |
d2e4a39e AS |
2258 | |
2259 | if (obj != NULL) | |
14f9c5c9 | 2260 | { |
42ae5230 | 2261 | CORE_ADDR new_addr; |
5b4ee69b | 2262 | |
74bcbdf3 | 2263 | set_value_component_location (v, obj); |
42ae5230 | 2264 | new_addr = value_address (obj) + offset; |
9bbda503 AC |
2265 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
2266 | set_value_bitsize (v, bit_size); | |
df407dfe | 2267 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 | 2268 | { |
42ae5230 | 2269 | ++new_addr; |
9bbda503 | 2270 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 2271 | } |
42ae5230 | 2272 | set_value_address (v, new_addr); |
14f9c5c9 AS |
2273 | } |
2274 | else | |
9bbda503 | 2275 | set_value_bitsize (v, bit_size); |
0fd88904 | 2276 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2277 | |
2278 | srcBitsLeft = bit_size; | |
2279 | nsrc = len; | |
2280 | ntarg = TYPE_LENGTH (type); | |
2281 | sign = 0; | |
2282 | if (bit_size == 0) | |
2283 | { | |
2284 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2285 | return v; | |
2286 | } | |
50810684 | 2287 | else if (gdbarch_bits_big_endian (get_type_arch (type))) |
14f9c5c9 | 2288 | { |
d2e4a39e | 2289 | src = len - 1; |
1265e4aa JB |
2290 | if (has_negatives (type) |
2291 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2292 | sign = ~0; |
d2e4a39e AS |
2293 | |
2294 | unusedLS = | |
4c4b4cd2 PH |
2295 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2296 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2297 | |
2298 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2299 | { |
2300 | case TYPE_CODE_ARRAY: | |
2301 | case TYPE_CODE_UNION: | |
2302 | case TYPE_CODE_STRUCT: | |
2303 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2304 | accumSize = | |
2305 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2306 | /* ... And are placed at the beginning (most-significant) bytes | |
2307 | of the target. */ | |
529cad9c | 2308 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
0056e4d5 | 2309 | ntarg = targ + 1; |
4c4b4cd2 PH |
2310 | break; |
2311 | default: | |
2312 | accumSize = 0; | |
2313 | targ = TYPE_LENGTH (type) - 1; | |
2314 | break; | |
2315 | } | |
14f9c5c9 | 2316 | } |
d2e4a39e | 2317 | else |
14f9c5c9 AS |
2318 | { |
2319 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2320 | ||
2321 | src = targ = 0; | |
2322 | unusedLS = bit_offset; | |
2323 | accumSize = 0; | |
2324 | ||
d2e4a39e | 2325 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2326 | sign = ~0; |
14f9c5c9 | 2327 | } |
d2e4a39e | 2328 | |
14f9c5c9 AS |
2329 | accum = 0; |
2330 | while (nsrc > 0) | |
2331 | { | |
2332 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2333 | part of the value. */ |
d2e4a39e | 2334 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2335 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2336 | 1; | |
2337 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2338 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2339 | |
d2e4a39e | 2340 | accum |= |
4c4b4cd2 | 2341 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2342 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2343 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2344 | { |
2345 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2346 | accumSize -= HOST_CHAR_BIT; | |
2347 | accum >>= HOST_CHAR_BIT; | |
2348 | ntarg -= 1; | |
2349 | targ += delta; | |
2350 | } | |
14f9c5c9 AS |
2351 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2352 | unusedLS = 0; | |
2353 | nsrc -= 1; | |
2354 | src += delta; | |
2355 | } | |
2356 | while (ntarg > 0) | |
2357 | { | |
2358 | accum |= sign << accumSize; | |
2359 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2360 | accumSize -= HOST_CHAR_BIT; | |
2361 | accum >>= HOST_CHAR_BIT; | |
2362 | ntarg -= 1; | |
2363 | targ += delta; | |
2364 | } | |
2365 | ||
2366 | return v; | |
2367 | } | |
d2e4a39e | 2368 | |
14f9c5c9 AS |
2369 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2370 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2371 | not overlap. */ |
14f9c5c9 | 2372 | static void |
fc1a4b47 | 2373 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
50810684 | 2374 | int src_offset, int n, int bits_big_endian_p) |
14f9c5c9 AS |
2375 | { |
2376 | unsigned int accum, mask; | |
2377 | int accum_bits, chunk_size; | |
2378 | ||
2379 | target += targ_offset / HOST_CHAR_BIT; | |
2380 | targ_offset %= HOST_CHAR_BIT; | |
2381 | source += src_offset / HOST_CHAR_BIT; | |
2382 | src_offset %= HOST_CHAR_BIT; | |
50810684 | 2383 | if (bits_big_endian_p) |
14f9c5c9 AS |
2384 | { |
2385 | accum = (unsigned char) *source; | |
2386 | source += 1; | |
2387 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2388 | ||
d2e4a39e | 2389 | while (n > 0) |
4c4b4cd2 PH |
2390 | { |
2391 | int unused_right; | |
5b4ee69b | 2392 | |
4c4b4cd2 PH |
2393 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; |
2394 | accum_bits += HOST_CHAR_BIT; | |
2395 | source += 1; | |
2396 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2397 | if (chunk_size > n) | |
2398 | chunk_size = n; | |
2399 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2400 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2401 | *target = | |
2402 | (*target & ~mask) | |
2403 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2404 | n -= chunk_size; | |
2405 | accum_bits -= chunk_size; | |
2406 | target += 1; | |
2407 | targ_offset = 0; | |
2408 | } | |
14f9c5c9 AS |
2409 | } |
2410 | else | |
2411 | { | |
2412 | accum = (unsigned char) *source >> src_offset; | |
2413 | source += 1; | |
2414 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2415 | ||
d2e4a39e | 2416 | while (n > 0) |
4c4b4cd2 PH |
2417 | { |
2418 | accum = accum + ((unsigned char) *source << accum_bits); | |
2419 | accum_bits += HOST_CHAR_BIT; | |
2420 | source += 1; | |
2421 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2422 | if (chunk_size > n) | |
2423 | chunk_size = n; | |
2424 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2425 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2426 | n -= chunk_size; | |
2427 | accum_bits -= chunk_size; | |
2428 | accum >>= chunk_size; | |
2429 | target += 1; | |
2430 | targ_offset = 0; | |
2431 | } | |
14f9c5c9 AS |
2432 | } |
2433 | } | |
2434 | ||
14f9c5c9 AS |
2435 | /* Store the contents of FROMVAL into the location of TOVAL. |
2436 | Return a new value with the location of TOVAL and contents of | |
2437 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2438 | floating-point or non-scalar types. */ |
14f9c5c9 | 2439 | |
d2e4a39e AS |
2440 | static struct value * |
2441 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2442 | { |
df407dfe AC |
2443 | struct type *type = value_type (toval); |
2444 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2445 | |
52ce6436 PH |
2446 | toval = ada_coerce_ref (toval); |
2447 | fromval = ada_coerce_ref (fromval); | |
2448 | ||
2449 | if (ada_is_direct_array_type (value_type (toval))) | |
2450 | toval = ada_coerce_to_simple_array (toval); | |
2451 | if (ada_is_direct_array_type (value_type (fromval))) | |
2452 | fromval = ada_coerce_to_simple_array (fromval); | |
2453 | ||
88e3b34b | 2454 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2455 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2456 | |
d2e4a39e | 2457 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2458 | && bits > 0 |
d2e4a39e | 2459 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2460 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2461 | { |
df407dfe AC |
2462 | int len = (value_bitpos (toval) |
2463 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2464 | int from_size; |
d2e4a39e AS |
2465 | char *buffer = (char *) alloca (len); |
2466 | struct value *val; | |
42ae5230 | 2467 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2468 | |
2469 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2470 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2471 | |
52ce6436 | 2472 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2473 | from_size = value_bitsize (fromval); |
2474 | if (from_size == 0) | |
2475 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2476 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
df407dfe | 2477 | move_bits (buffer, value_bitpos (toval), |
50810684 | 2478 | value_contents (fromval), from_size - bits, bits, 1); |
14f9c5c9 | 2479 | else |
50810684 UW |
2480 | move_bits (buffer, value_bitpos (toval), |
2481 | value_contents (fromval), 0, bits, 0); | |
52ce6436 | 2482 | write_memory (to_addr, buffer, len); |
8cebebb9 PP |
2483 | observer_notify_memory_changed (to_addr, len, buffer); |
2484 | ||
14f9c5c9 | 2485 | val = value_copy (toval); |
0fd88904 | 2486 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2487 | TYPE_LENGTH (type)); |
04624583 | 2488 | deprecated_set_value_type (val, type); |
d2e4a39e | 2489 | |
14f9c5c9 AS |
2490 | return val; |
2491 | } | |
2492 | ||
2493 | return value_assign (toval, fromval); | |
2494 | } | |
2495 | ||
2496 | ||
52ce6436 PH |
2497 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2498 | * CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2499 | * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2500 | * COMPONENT, and not the inferior's memory. The current contents | |
2501 | * of COMPONENT are ignored. */ | |
2502 | static void | |
2503 | value_assign_to_component (struct value *container, struct value *component, | |
2504 | struct value *val) | |
2505 | { | |
2506 | LONGEST offset_in_container = | |
42ae5230 | 2507 | (LONGEST) (value_address (component) - value_address (container)); |
52ce6436 PH |
2508 | int bit_offset_in_container = |
2509 | value_bitpos (component) - value_bitpos (container); | |
2510 | int bits; | |
2511 | ||
2512 | val = value_cast (value_type (component), val); | |
2513 | ||
2514 | if (value_bitsize (component) == 0) | |
2515 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2516 | else | |
2517 | bits = value_bitsize (component); | |
2518 | ||
50810684 | 2519 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
52ce6436 PH |
2520 | move_bits (value_contents_writeable (container) + offset_in_container, |
2521 | value_bitpos (container) + bit_offset_in_container, | |
2522 | value_contents (val), | |
2523 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
50810684 | 2524 | bits, 1); |
52ce6436 PH |
2525 | else |
2526 | move_bits (value_contents_writeable (container) + offset_in_container, | |
2527 | value_bitpos (container) + bit_offset_in_container, | |
50810684 | 2528 | value_contents (val), 0, bits, 0); |
52ce6436 PH |
2529 | } |
2530 | ||
4c4b4cd2 PH |
2531 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2532 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2533 | thereto. */ |
2534 | ||
d2e4a39e AS |
2535 | struct value * |
2536 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2537 | { |
2538 | int k; | |
d2e4a39e AS |
2539 | struct value *elt; |
2540 | struct type *elt_type; | |
14f9c5c9 AS |
2541 | |
2542 | elt = ada_coerce_to_simple_array (arr); | |
2543 | ||
df407dfe | 2544 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2545 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2546 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2547 | return value_subscript_packed (elt, arity, ind); | |
2548 | ||
2549 | for (k = 0; k < arity; k += 1) | |
2550 | { | |
2551 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2552 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2553 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2554 | } |
2555 | return elt; | |
2556 | } | |
2557 | ||
2558 | /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the | |
2559 | value of the element of *ARR at the ARITY indices given in | |
4c4b4cd2 | 2560 | IND. Does not read the entire array into memory. */ |
14f9c5c9 | 2561 | |
2c0b251b | 2562 | static struct value * |
d2e4a39e | 2563 | ada_value_ptr_subscript (struct value *arr, struct type *type, int arity, |
4c4b4cd2 | 2564 | struct value **ind) |
14f9c5c9 AS |
2565 | { |
2566 | int k; | |
2567 | ||
2568 | for (k = 0; k < arity; k += 1) | |
2569 | { | |
2570 | LONGEST lwb, upb; | |
14f9c5c9 AS |
2571 | |
2572 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2573 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2574 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2575 | value_copy (arr)); |
14f9c5c9 | 2576 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
2497b498 | 2577 | arr = value_ptradd (arr, pos_atr (ind[k]) - lwb); |
14f9c5c9 AS |
2578 | type = TYPE_TARGET_TYPE (type); |
2579 | } | |
2580 | ||
2581 | return value_ind (arr); | |
2582 | } | |
2583 | ||
0b5d8877 | 2584 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
f5938064 JG |
2585 | actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1 |
2586 | elements starting at index LOW. The lower bound of this array is LOW, as | |
0963b4bd | 2587 | per Ada rules. */ |
0b5d8877 | 2588 | static struct value * |
f5938064 JG |
2589 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2590 | int low, int high) | |
0b5d8877 | 2591 | { |
b0dd7688 | 2592 | struct type *type0 = ada_check_typedef (type); |
6c038f32 | 2593 | CORE_ADDR base = value_as_address (array_ptr) |
b0dd7688 JB |
2594 | + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0))) |
2595 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type0))); | |
6c038f32 | 2596 | struct type *index_type = |
b0dd7688 | 2597 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)), |
0b5d8877 | 2598 | low, high); |
6c038f32 | 2599 | struct type *slice_type = |
b0dd7688 | 2600 | create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type); |
5b4ee69b | 2601 | |
f5938064 | 2602 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2603 | } |
2604 | ||
2605 | ||
2606 | static struct value * | |
2607 | ada_value_slice (struct value *array, int low, int high) | |
2608 | { | |
b0dd7688 | 2609 | struct type *type = ada_check_typedef (value_type (array)); |
6c038f32 | 2610 | struct type *index_type = |
0b5d8877 | 2611 | create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); |
6c038f32 | 2612 | struct type *slice_type = |
0b5d8877 | 2613 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
5b4ee69b | 2614 | |
6c038f32 | 2615 | return value_cast (slice_type, value_slice (array, low, high - low + 1)); |
0b5d8877 PH |
2616 | } |
2617 | ||
14f9c5c9 AS |
2618 | /* If type is a record type in the form of a standard GNAT array |
2619 | descriptor, returns the number of dimensions for type. If arr is a | |
2620 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2621 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2622 | |
2623 | int | |
d2e4a39e | 2624 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2625 | { |
2626 | int arity; | |
2627 | ||
2628 | if (type == NULL) | |
2629 | return 0; | |
2630 | ||
2631 | type = desc_base_type (type); | |
2632 | ||
2633 | arity = 0; | |
d2e4a39e | 2634 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2635 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2636 | else |
2637 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2638 | { |
4c4b4cd2 | 2639 | arity += 1; |
61ee279c | 2640 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2641 | } |
d2e4a39e | 2642 | |
14f9c5c9 AS |
2643 | return arity; |
2644 | } | |
2645 | ||
2646 | /* If TYPE is a record type in the form of a standard GNAT array | |
2647 | descriptor or a simple array type, returns the element type for | |
2648 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2649 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2650 | |
d2e4a39e AS |
2651 | struct type * |
2652 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2653 | { |
2654 | type = desc_base_type (type); | |
2655 | ||
d2e4a39e | 2656 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2657 | { |
2658 | int k; | |
d2e4a39e | 2659 | struct type *p_array_type; |
14f9c5c9 | 2660 | |
556bdfd4 | 2661 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2662 | |
2663 | k = ada_array_arity (type); | |
2664 | if (k == 0) | |
4c4b4cd2 | 2665 | return NULL; |
d2e4a39e | 2666 | |
4c4b4cd2 | 2667 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2668 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2669 | k = nindices; |
d2e4a39e | 2670 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2671 | { |
61ee279c | 2672 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2673 | k -= 1; |
2674 | } | |
14f9c5c9 AS |
2675 | return p_array_type; |
2676 | } | |
2677 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2678 | { | |
2679 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2680 | { |
2681 | type = TYPE_TARGET_TYPE (type); | |
2682 | nindices -= 1; | |
2683 | } | |
14f9c5c9 AS |
2684 | return type; |
2685 | } | |
2686 | ||
2687 | return NULL; | |
2688 | } | |
2689 | ||
4c4b4cd2 | 2690 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
2691 | Does not examine memory. Throws an error if N is invalid or TYPE |
2692 | is not an array type. NAME is the name of the Ada attribute being | |
2693 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
2694 | the error message. */ | |
14f9c5c9 | 2695 | |
1eea4ebd UW |
2696 | static struct type * |
2697 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 2698 | { |
4c4b4cd2 PH |
2699 | struct type *result_type; |
2700 | ||
14f9c5c9 AS |
2701 | type = desc_base_type (type); |
2702 | ||
1eea4ebd UW |
2703 | if (n < 0 || n > ada_array_arity (type)) |
2704 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 2705 | |
4c4b4cd2 | 2706 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2707 | { |
2708 | int i; | |
2709 | ||
2710 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 2711 | type = TYPE_TARGET_TYPE (type); |
262452ec | 2712 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
2713 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
2714 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 2715 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
2716 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
2717 | result_type = NULL; | |
14f9c5c9 | 2718 | } |
d2e4a39e | 2719 | else |
1eea4ebd UW |
2720 | { |
2721 | result_type = desc_index_type (desc_bounds_type (type), n); | |
2722 | if (result_type == NULL) | |
2723 | error (_("attempt to take bound of something that is not an array")); | |
2724 | } | |
2725 | ||
2726 | return result_type; | |
14f9c5c9 AS |
2727 | } |
2728 | ||
2729 | /* Given that arr is an array type, returns the lower bound of the | |
2730 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 2731 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
2732 | array-descriptor type. It works for other arrays with bounds supplied |
2733 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 2734 | |
abb68b3e | 2735 | static LONGEST |
1eea4ebd | 2736 | ada_array_bound_from_type (struct type * arr_type, int n, int which) |
14f9c5c9 | 2737 | { |
1ce677a4 | 2738 | struct type *type, *elt_type, *index_type_desc, *index_type; |
1ce677a4 | 2739 | int i; |
262452ec JK |
2740 | |
2741 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 2742 | |
ad82864c JB |
2743 | if (ada_is_constrained_packed_array_type (arr_type)) |
2744 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 2745 | |
4c4b4cd2 | 2746 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2747 | return (LONGEST) - which; |
14f9c5c9 AS |
2748 | |
2749 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2750 | type = TYPE_TARGET_TYPE (arr_type); | |
2751 | else | |
2752 | type = arr_type; | |
2753 | ||
1ce677a4 UW |
2754 | elt_type = type; |
2755 | for (i = n; i > 1; i--) | |
2756 | elt_type = TYPE_TARGET_TYPE (type); | |
2757 | ||
14f9c5c9 | 2758 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
28c85d6c | 2759 | ada_fixup_array_indexes_type (index_type_desc); |
262452ec | 2760 | if (index_type_desc != NULL) |
28c85d6c JB |
2761 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
2762 | NULL); | |
262452ec | 2763 | else |
1ce677a4 | 2764 | index_type = TYPE_INDEX_TYPE (elt_type); |
262452ec | 2765 | |
43bbcdc2 PH |
2766 | return |
2767 | (LONGEST) (which == 0 | |
2768 | ? ada_discrete_type_low_bound (index_type) | |
2769 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
2770 | } |
2771 | ||
2772 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
2773 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
2774 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 2775 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 2776 | |
1eea4ebd | 2777 | static LONGEST |
4dc81987 | 2778 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 2779 | { |
df407dfe | 2780 | struct type *arr_type = value_type (arr); |
14f9c5c9 | 2781 | |
ad82864c JB |
2782 | if (ada_is_constrained_packed_array_type (arr_type)) |
2783 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 2784 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2785 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 2786 | else |
1eea4ebd | 2787 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
2788 | } |
2789 | ||
2790 | /* Given that arr is an array value, returns the length of the | |
2791 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
2792 | supplied by run-time quantities other than discriminants. |
2793 | Does not work for arrays indexed by enumeration types with representation | |
2794 | clauses at the moment. */ | |
14f9c5c9 | 2795 | |
1eea4ebd | 2796 | static LONGEST |
d2e4a39e | 2797 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 2798 | { |
df407dfe | 2799 | struct type *arr_type = ada_check_typedef (value_type (arr)); |
14f9c5c9 | 2800 | |
ad82864c JB |
2801 | if (ada_is_constrained_packed_array_type (arr_type)) |
2802 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 2803 | |
4c4b4cd2 | 2804 | if (ada_is_simple_array_type (arr_type)) |
1eea4ebd UW |
2805 | return (ada_array_bound_from_type (arr_type, n, 1) |
2806 | - ada_array_bound_from_type (arr_type, n, 0) + 1); | |
14f9c5c9 | 2807 | else |
1eea4ebd UW |
2808 | return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1)) |
2809 | - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1); | |
4c4b4cd2 PH |
2810 | } |
2811 | ||
2812 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
2813 | with bounds LOW to LOW-1. */ | |
2814 | ||
2815 | static struct value * | |
2816 | empty_array (struct type *arr_type, int low) | |
2817 | { | |
b0dd7688 | 2818 | struct type *arr_type0 = ada_check_typedef (arr_type); |
6c038f32 | 2819 | struct type *index_type = |
b0dd7688 | 2820 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), |
0b5d8877 | 2821 | low, low - 1); |
b0dd7688 | 2822 | struct type *elt_type = ada_array_element_type (arr_type0, 1); |
5b4ee69b | 2823 | |
0b5d8877 | 2824 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 2825 | } |
14f9c5c9 | 2826 | \f |
d2e4a39e | 2827 | |
4c4b4cd2 | 2828 | /* Name resolution */ |
14f9c5c9 | 2829 | |
4c4b4cd2 PH |
2830 | /* The "decoded" name for the user-definable Ada operator corresponding |
2831 | to OP. */ | |
14f9c5c9 | 2832 | |
d2e4a39e | 2833 | static const char * |
4c4b4cd2 | 2834 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
2835 | { |
2836 | int i; | |
2837 | ||
4c4b4cd2 | 2838 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
2839 | { |
2840 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 2841 | return ada_opname_table[i].decoded; |
14f9c5c9 | 2842 | } |
323e0a4a | 2843 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
2844 | } |
2845 | ||
2846 | ||
4c4b4cd2 PH |
2847 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
2848 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
2849 | undefined namespace) and converts operators that are | |
2850 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
2851 | non-null, it provides a preferred result type [at the moment, only |
2852 | type void has any effect---causing procedures to be preferred over | |
2853 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 2854 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 2855 | |
4c4b4cd2 PH |
2856 | static void |
2857 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 | 2858 | { |
30b15541 UW |
2859 | struct type *context_type = NULL; |
2860 | int pc = 0; | |
2861 | ||
2862 | if (void_context_p) | |
2863 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
2864 | ||
2865 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
2866 | } |
2867 | ||
4c4b4cd2 PH |
2868 | /* Resolve the operator of the subexpression beginning at |
2869 | position *POS of *EXPP. "Resolving" consists of replacing | |
2870 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
2871 | with their resolutions, replacing built-in operators with | |
2872 | function calls to user-defined operators, where appropriate, and, | |
2873 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
2874 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
2875 | are as in ada_resolve, above. */ | |
14f9c5c9 | 2876 | |
d2e4a39e | 2877 | static struct value * |
4c4b4cd2 | 2878 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 2879 | struct type *context_type) |
14f9c5c9 AS |
2880 | { |
2881 | int pc = *pos; | |
2882 | int i; | |
4c4b4cd2 | 2883 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 2884 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
2885 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
2886 | int nargs; /* Number of operands. */ | |
52ce6436 | 2887 | int oplen; |
14f9c5c9 AS |
2888 | |
2889 | argvec = NULL; | |
2890 | nargs = 0; | |
2891 | exp = *expp; | |
2892 | ||
52ce6436 PH |
2893 | /* Pass one: resolve operands, saving their types and updating *pos, |
2894 | if needed. */ | |
14f9c5c9 AS |
2895 | switch (op) |
2896 | { | |
4c4b4cd2 PH |
2897 | case OP_FUNCALL: |
2898 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
2899 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
2900 | *pos += 7; | |
4c4b4cd2 PH |
2901 | else |
2902 | { | |
2903 | *pos += 3; | |
2904 | resolve_subexp (expp, pos, 0, NULL); | |
2905 | } | |
2906 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
2907 | break; |
2908 | ||
14f9c5c9 | 2909 | case UNOP_ADDR: |
4c4b4cd2 PH |
2910 | *pos += 1; |
2911 | resolve_subexp (expp, pos, 0, NULL); | |
2912 | break; | |
2913 | ||
52ce6436 PH |
2914 | case UNOP_QUAL: |
2915 | *pos += 3; | |
17466c1a | 2916 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
2917 | break; |
2918 | ||
52ce6436 | 2919 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
2920 | case OP_ATR_SIZE: |
2921 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
2922 | case OP_ATR_FIRST: |
2923 | case OP_ATR_LAST: | |
2924 | case OP_ATR_LENGTH: | |
2925 | case OP_ATR_POS: | |
2926 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
2927 | case OP_ATR_MIN: |
2928 | case OP_ATR_MAX: | |
52ce6436 PH |
2929 | case TERNOP_IN_RANGE: |
2930 | case BINOP_IN_BOUNDS: | |
2931 | case UNOP_IN_RANGE: | |
2932 | case OP_AGGREGATE: | |
2933 | case OP_OTHERS: | |
2934 | case OP_CHOICES: | |
2935 | case OP_POSITIONAL: | |
2936 | case OP_DISCRETE_RANGE: | |
2937 | case OP_NAME: | |
2938 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
2939 | *pos += oplen; | |
14f9c5c9 AS |
2940 | break; |
2941 | ||
2942 | case BINOP_ASSIGN: | |
2943 | { | |
4c4b4cd2 PH |
2944 | struct value *arg1; |
2945 | ||
2946 | *pos += 1; | |
2947 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
2948 | if (arg1 == NULL) | |
2949 | resolve_subexp (expp, pos, 1, NULL); | |
2950 | else | |
df407dfe | 2951 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 2952 | break; |
14f9c5c9 AS |
2953 | } |
2954 | ||
4c4b4cd2 | 2955 | case UNOP_CAST: |
4c4b4cd2 PH |
2956 | *pos += 3; |
2957 | nargs = 1; | |
2958 | break; | |
14f9c5c9 | 2959 | |
4c4b4cd2 PH |
2960 | case BINOP_ADD: |
2961 | case BINOP_SUB: | |
2962 | case BINOP_MUL: | |
2963 | case BINOP_DIV: | |
2964 | case BINOP_REM: | |
2965 | case BINOP_MOD: | |
2966 | case BINOP_EXP: | |
2967 | case BINOP_CONCAT: | |
2968 | case BINOP_LOGICAL_AND: | |
2969 | case BINOP_LOGICAL_OR: | |
2970 | case BINOP_BITWISE_AND: | |
2971 | case BINOP_BITWISE_IOR: | |
2972 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 2973 | |
4c4b4cd2 PH |
2974 | case BINOP_EQUAL: |
2975 | case BINOP_NOTEQUAL: | |
2976 | case BINOP_LESS: | |
2977 | case BINOP_GTR: | |
2978 | case BINOP_LEQ: | |
2979 | case BINOP_GEQ: | |
14f9c5c9 | 2980 | |
4c4b4cd2 PH |
2981 | case BINOP_REPEAT: |
2982 | case BINOP_SUBSCRIPT: | |
2983 | case BINOP_COMMA: | |
40c8aaa9 JB |
2984 | *pos += 1; |
2985 | nargs = 2; | |
2986 | break; | |
14f9c5c9 | 2987 | |
4c4b4cd2 PH |
2988 | case UNOP_NEG: |
2989 | case UNOP_PLUS: | |
2990 | case UNOP_LOGICAL_NOT: | |
2991 | case UNOP_ABS: | |
2992 | case UNOP_IND: | |
2993 | *pos += 1; | |
2994 | nargs = 1; | |
2995 | break; | |
14f9c5c9 | 2996 | |
4c4b4cd2 PH |
2997 | case OP_LONG: |
2998 | case OP_DOUBLE: | |
2999 | case OP_VAR_VALUE: | |
3000 | *pos += 4; | |
3001 | break; | |
14f9c5c9 | 3002 | |
4c4b4cd2 PH |
3003 | case OP_TYPE: |
3004 | case OP_BOOL: | |
3005 | case OP_LAST: | |
4c4b4cd2 PH |
3006 | case OP_INTERNALVAR: |
3007 | *pos += 3; | |
3008 | break; | |
14f9c5c9 | 3009 | |
4c4b4cd2 PH |
3010 | case UNOP_MEMVAL: |
3011 | *pos += 3; | |
3012 | nargs = 1; | |
3013 | break; | |
3014 | ||
67f3407f DJ |
3015 | case OP_REGISTER: |
3016 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3017 | break; | |
3018 | ||
4c4b4cd2 PH |
3019 | case STRUCTOP_STRUCT: |
3020 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3021 | nargs = 1; | |
3022 | break; | |
3023 | ||
4c4b4cd2 | 3024 | case TERNOP_SLICE: |
4c4b4cd2 PH |
3025 | *pos += 1; |
3026 | nargs = 3; | |
3027 | break; | |
3028 | ||
52ce6436 | 3029 | case OP_STRING: |
14f9c5c9 | 3030 | break; |
4c4b4cd2 PH |
3031 | |
3032 | default: | |
323e0a4a | 3033 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
3034 | } |
3035 | ||
76a01679 | 3036 | argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); |
4c4b4cd2 PH |
3037 | for (i = 0; i < nargs; i += 1) |
3038 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
3039 | argvec[i] = NULL; | |
3040 | exp = *expp; | |
3041 | ||
3042 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
3043 | switch (op) |
3044 | { | |
3045 | default: | |
3046 | break; | |
3047 | ||
14f9c5c9 | 3048 | case OP_VAR_VALUE: |
4c4b4cd2 | 3049 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 JB |
3050 | { |
3051 | struct ada_symbol_info *candidates; | |
3052 | int n_candidates; | |
3053 | ||
3054 | n_candidates = | |
3055 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
3056 | (exp->elts[pc + 2].symbol), | |
3057 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
3058 | &candidates); | |
3059 | ||
3060 | if (n_candidates > 1) | |
3061 | { | |
3062 | /* Types tend to get re-introduced locally, so if there | |
3063 | are any local symbols that are not types, first filter | |
3064 | out all types. */ | |
3065 | int j; | |
3066 | for (j = 0; j < n_candidates; j += 1) | |
3067 | switch (SYMBOL_CLASS (candidates[j].sym)) | |
3068 | { | |
3069 | case LOC_REGISTER: | |
3070 | case LOC_ARG: | |
3071 | case LOC_REF_ARG: | |
76a01679 JB |
3072 | case LOC_REGPARM_ADDR: |
3073 | case LOC_LOCAL: | |
76a01679 | 3074 | case LOC_COMPUTED: |
76a01679 JB |
3075 | goto FoundNonType; |
3076 | default: | |
3077 | break; | |
3078 | } | |
3079 | FoundNonType: | |
3080 | if (j < n_candidates) | |
3081 | { | |
3082 | j = 0; | |
3083 | while (j < n_candidates) | |
3084 | { | |
3085 | if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) | |
3086 | { | |
3087 | candidates[j] = candidates[n_candidates - 1]; | |
3088 | n_candidates -= 1; | |
3089 | } | |
3090 | else | |
3091 | j += 1; | |
3092 | } | |
3093 | } | |
3094 | } | |
3095 | ||
3096 | if (n_candidates == 0) | |
323e0a4a | 3097 | error (_("No definition found for %s"), |
76a01679 JB |
3098 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3099 | else if (n_candidates == 1) | |
3100 | i = 0; | |
3101 | else if (deprocedure_p | |
3102 | && !is_nonfunction (candidates, n_candidates)) | |
3103 | { | |
06d5cf63 JB |
3104 | i = ada_resolve_function |
3105 | (candidates, n_candidates, NULL, 0, | |
3106 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
3107 | context_type); | |
76a01679 | 3108 | if (i < 0) |
323e0a4a | 3109 | error (_("Could not find a match for %s"), |
76a01679 JB |
3110 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3111 | } | |
3112 | else | |
3113 | { | |
323e0a4a | 3114 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
3115 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3116 | user_select_syms (candidates, n_candidates, 1); | |
3117 | i = 0; | |
3118 | } | |
3119 | ||
3120 | exp->elts[pc + 1].block = candidates[i].block; | |
3121 | exp->elts[pc + 2].symbol = candidates[i].sym; | |
1265e4aa JB |
3122 | if (innermost_block == NULL |
3123 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
3124 | innermost_block = candidates[i].block; |
3125 | } | |
3126 | ||
3127 | if (deprocedure_p | |
3128 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3129 | == TYPE_CODE_FUNC)) | |
3130 | { | |
3131 | replace_operator_with_call (expp, pc, 0, 0, | |
3132 | exp->elts[pc + 2].symbol, | |
3133 | exp->elts[pc + 1].block); | |
3134 | exp = *expp; | |
3135 | } | |
14f9c5c9 AS |
3136 | break; |
3137 | ||
3138 | case OP_FUNCALL: | |
3139 | { | |
4c4b4cd2 | 3140 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 3141 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 PH |
3142 | { |
3143 | struct ada_symbol_info *candidates; | |
3144 | int n_candidates; | |
3145 | ||
3146 | n_candidates = | |
76a01679 JB |
3147 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
3148 | (exp->elts[pc + 5].symbol), | |
3149 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
3150 | &candidates); | |
4c4b4cd2 PH |
3151 | if (n_candidates == 1) |
3152 | i = 0; | |
3153 | else | |
3154 | { | |
06d5cf63 JB |
3155 | i = ada_resolve_function |
3156 | (candidates, n_candidates, | |
3157 | argvec, nargs, | |
3158 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
3159 | context_type); | |
4c4b4cd2 | 3160 | if (i < 0) |
323e0a4a | 3161 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
3162 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
3163 | } | |
3164 | ||
3165 | exp->elts[pc + 4].block = candidates[i].block; | |
3166 | exp->elts[pc + 5].symbol = candidates[i].sym; | |
1265e4aa JB |
3167 | if (innermost_block == NULL |
3168 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
3169 | innermost_block = candidates[i].block; |
3170 | } | |
14f9c5c9 AS |
3171 | } |
3172 | break; | |
3173 | case BINOP_ADD: | |
3174 | case BINOP_SUB: | |
3175 | case BINOP_MUL: | |
3176 | case BINOP_DIV: | |
3177 | case BINOP_REM: | |
3178 | case BINOP_MOD: | |
3179 | case BINOP_CONCAT: | |
3180 | case BINOP_BITWISE_AND: | |
3181 | case BINOP_BITWISE_IOR: | |
3182 | case BINOP_BITWISE_XOR: | |
3183 | case BINOP_EQUAL: | |
3184 | case BINOP_NOTEQUAL: | |
3185 | case BINOP_LESS: | |
3186 | case BINOP_GTR: | |
3187 | case BINOP_LEQ: | |
3188 | case BINOP_GEQ: | |
3189 | case BINOP_EXP: | |
3190 | case UNOP_NEG: | |
3191 | case UNOP_PLUS: | |
3192 | case UNOP_LOGICAL_NOT: | |
3193 | case UNOP_ABS: | |
3194 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 PH |
3195 | { |
3196 | struct ada_symbol_info *candidates; | |
3197 | int n_candidates; | |
3198 | ||
3199 | n_candidates = | |
3200 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
3201 | (struct block *) NULL, VAR_DOMAIN, | |
3202 | &candidates); | |
3203 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, | |
76a01679 | 3204 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3205 | if (i < 0) |
3206 | break; | |
3207 | ||
76a01679 JB |
3208 | replace_operator_with_call (expp, pc, nargs, 1, |
3209 | candidates[i].sym, candidates[i].block); | |
4c4b4cd2 PH |
3210 | exp = *expp; |
3211 | } | |
14f9c5c9 | 3212 | break; |
4c4b4cd2 PH |
3213 | |
3214 | case OP_TYPE: | |
b3dbf008 | 3215 | case OP_REGISTER: |
4c4b4cd2 | 3216 | return NULL; |
14f9c5c9 AS |
3217 | } |
3218 | ||
3219 | *pos = pc; | |
3220 | return evaluate_subexp_type (exp, pos); | |
3221 | } | |
3222 | ||
3223 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3224 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3225 | a non-pointer. */ |
14f9c5c9 | 3226 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3227 | liberal. */ |
14f9c5c9 AS |
3228 | |
3229 | static int | |
4dc81987 | 3230 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3231 | { |
61ee279c PH |
3232 | ftype = ada_check_typedef (ftype); |
3233 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3234 | |
3235 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3236 | ftype = TYPE_TARGET_TYPE (ftype); | |
3237 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3238 | atype = TYPE_TARGET_TYPE (atype); | |
3239 | ||
d2e4a39e | 3240 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3241 | { |
3242 | default: | |
5b3d5b7d | 3243 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3244 | case TYPE_CODE_PTR: |
3245 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3246 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3247 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3248 | else |
1265e4aa JB |
3249 | return (may_deref |
3250 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3251 | case TYPE_CODE_INT: |
3252 | case TYPE_CODE_ENUM: | |
3253 | case TYPE_CODE_RANGE: | |
3254 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3255 | { |
3256 | case TYPE_CODE_INT: | |
3257 | case TYPE_CODE_ENUM: | |
3258 | case TYPE_CODE_RANGE: | |
3259 | return 1; | |
3260 | default: | |
3261 | return 0; | |
3262 | } | |
14f9c5c9 AS |
3263 | |
3264 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3265 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3266 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3267 | |
3268 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3269 | if (ada_is_array_descriptor_type (ftype)) |
3270 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3271 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3272 | else |
4c4b4cd2 PH |
3273 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3274 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3275 | |
3276 | case TYPE_CODE_UNION: | |
3277 | case TYPE_CODE_FLT: | |
3278 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3279 | } | |
3280 | } | |
3281 | ||
3282 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3283 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3284 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3285 | argument function. */ |
14f9c5c9 AS |
3286 | |
3287 | static int | |
d2e4a39e | 3288 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3289 | { |
3290 | int i; | |
d2e4a39e | 3291 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3292 | |
1265e4aa JB |
3293 | if (SYMBOL_CLASS (func) == LOC_CONST |
3294 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3295 | return (n_actuals == 0); |
3296 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3297 | return 0; | |
3298 | ||
3299 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3300 | return 0; | |
3301 | ||
3302 | for (i = 0; i < n_actuals; i += 1) | |
3303 | { | |
4c4b4cd2 | 3304 | if (actuals[i] == NULL) |
76a01679 JB |
3305 | return 0; |
3306 | else | |
3307 | { | |
5b4ee69b MS |
3308 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, |
3309 | i)); | |
df407dfe | 3310 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3311 | |
76a01679 JB |
3312 | if (!ada_type_match (ftype, atype, 1)) |
3313 | return 0; | |
3314 | } | |
14f9c5c9 AS |
3315 | } |
3316 | return 1; | |
3317 | } | |
3318 | ||
3319 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3320 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3321 | FUNC_TYPE is not a valid function type with a non-null return type | |
3322 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3323 | ||
3324 | static int | |
d2e4a39e | 3325 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3326 | { |
d2e4a39e | 3327 | struct type *return_type; |
14f9c5c9 AS |
3328 | |
3329 | if (func_type == NULL) | |
3330 | return 1; | |
3331 | ||
4c4b4cd2 | 3332 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
18af8284 | 3333 | return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); |
4c4b4cd2 | 3334 | else |
18af8284 | 3335 | return_type = get_base_type (func_type); |
14f9c5c9 AS |
3336 | if (return_type == NULL) |
3337 | return 1; | |
3338 | ||
18af8284 | 3339 | context_type = get_base_type (context_type); |
14f9c5c9 AS |
3340 | |
3341 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3342 | return context_type == NULL || return_type == context_type; | |
3343 | else if (context_type == NULL) | |
3344 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3345 | else | |
3346 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3347 | } | |
3348 | ||
3349 | ||
4c4b4cd2 | 3350 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3351 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3352 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3353 | that returns that type, then eliminate matches that don't. If | |
3354 | CONTEXT_TYPE is void and there is at least one match that does not | |
3355 | return void, eliminate all matches that do. | |
3356 | ||
14f9c5c9 AS |
3357 | Asks the user if there is more than one match remaining. Returns -1 |
3358 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3359 | solely for messages. May re-arrange and modify SYMS in |
3360 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3361 | |
4c4b4cd2 PH |
3362 | static int |
3363 | ada_resolve_function (struct ada_symbol_info syms[], | |
3364 | int nsyms, struct value **args, int nargs, | |
3365 | const char *name, struct type *context_type) | |
14f9c5c9 | 3366 | { |
30b15541 | 3367 | int fallback; |
14f9c5c9 | 3368 | int k; |
4c4b4cd2 | 3369 | int m; /* Number of hits */ |
14f9c5c9 | 3370 | |
d2e4a39e | 3371 | m = 0; |
30b15541 UW |
3372 | /* In the first pass of the loop, we only accept functions matching |
3373 | context_type. If none are found, we add a second pass of the loop | |
3374 | where every function is accepted. */ | |
3375 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3376 | { |
3377 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3378 | { |
61ee279c | 3379 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); |
4c4b4cd2 PH |
3380 | |
3381 | if (ada_args_match (syms[k].sym, args, nargs) | |
30b15541 | 3382 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3383 | { |
3384 | syms[m] = syms[k]; | |
3385 | m += 1; | |
3386 | } | |
3387 | } | |
14f9c5c9 AS |
3388 | } |
3389 | ||
3390 | if (m == 0) | |
3391 | return -1; | |
3392 | else if (m > 1) | |
3393 | { | |
323e0a4a | 3394 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3395 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3396 | return 0; |
3397 | } | |
3398 | return 0; | |
3399 | } | |
3400 | ||
4c4b4cd2 PH |
3401 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3402 | in a listing of choices during disambiguation (see sort_choices, below). | |
3403 | The idea is that overloadings of a subprogram name from the | |
3404 | same package should sort in their source order. We settle for ordering | |
3405 | such symbols by their trailing number (__N or $N). */ | |
3406 | ||
14f9c5c9 | 3407 | static int |
4c4b4cd2 | 3408 | encoded_ordered_before (char *N0, char *N1) |
14f9c5c9 AS |
3409 | { |
3410 | if (N1 == NULL) | |
3411 | return 0; | |
3412 | else if (N0 == NULL) | |
3413 | return 1; | |
3414 | else | |
3415 | { | |
3416 | int k0, k1; | |
5b4ee69b | 3417 | |
d2e4a39e | 3418 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3419 | ; |
d2e4a39e | 3420 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3421 | ; |
d2e4a39e | 3422 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3423 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3424 | { | |
3425 | int n0, n1; | |
5b4ee69b | 3426 | |
4c4b4cd2 PH |
3427 | n0 = k0; |
3428 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3429 | n0 -= 1; | |
3430 | n1 = k1; | |
3431 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3432 | n1 -= 1; | |
3433 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3434 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3435 | } | |
14f9c5c9 AS |
3436 | return (strcmp (N0, N1) < 0); |
3437 | } | |
3438 | } | |
d2e4a39e | 3439 | |
4c4b4cd2 PH |
3440 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3441 | encoded names. */ | |
3442 | ||
d2e4a39e | 3443 | static void |
4c4b4cd2 | 3444 | sort_choices (struct ada_symbol_info syms[], int nsyms) |
14f9c5c9 | 3445 | { |
4c4b4cd2 | 3446 | int i; |
5b4ee69b | 3447 | |
d2e4a39e | 3448 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3449 | { |
4c4b4cd2 | 3450 | struct ada_symbol_info sym = syms[i]; |
14f9c5c9 AS |
3451 | int j; |
3452 | ||
d2e4a39e | 3453 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 PH |
3454 | { |
3455 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), | |
3456 | SYMBOL_LINKAGE_NAME (sym.sym))) | |
3457 | break; | |
3458 | syms[j + 1] = syms[j]; | |
3459 | } | |
d2e4a39e | 3460 | syms[j + 1] = sym; |
14f9c5c9 AS |
3461 | } |
3462 | } | |
3463 | ||
4c4b4cd2 PH |
3464 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3465 | by asking the user (if necessary), returning the number selected, | |
3466 | and setting the first elements of SYMS items. Error if no symbols | |
3467 | selected. */ | |
14f9c5c9 AS |
3468 | |
3469 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3470 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3471 | |
3472 | int | |
4c4b4cd2 | 3473 | user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3474 | { |
3475 | int i; | |
d2e4a39e | 3476 | int *chosen = (int *) alloca (sizeof (int) * nsyms); |
14f9c5c9 AS |
3477 | int n_chosen; |
3478 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3479 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3480 | |
3481 | if (max_results < 1) | |
323e0a4a | 3482 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3483 | if (nsyms <= 1) |
3484 | return nsyms; | |
3485 | ||
717d2f5a JB |
3486 | if (select_mode == multiple_symbols_cancel) |
3487 | error (_("\ | |
3488 | canceled because the command is ambiguous\n\ | |
3489 | See set/show multiple-symbol.")); | |
3490 | ||
3491 | /* If select_mode is "all", then return all possible symbols. | |
3492 | Only do that if more than one symbol can be selected, of course. | |
3493 | Otherwise, display the menu as usual. */ | |
3494 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3495 | return nsyms; | |
3496 | ||
323e0a4a | 3497 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3498 | if (max_results > 1) |
323e0a4a | 3499 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3500 | |
4c4b4cd2 | 3501 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3502 | |
3503 | for (i = 0; i < nsyms; i += 1) | |
3504 | { | |
4c4b4cd2 PH |
3505 | if (syms[i].sym == NULL) |
3506 | continue; | |
3507 | ||
3508 | if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) | |
3509 | { | |
76a01679 JB |
3510 | struct symtab_and_line sal = |
3511 | find_function_start_sal (syms[i].sym, 1); | |
5b4ee69b | 3512 | |
323e0a4a AC |
3513 | if (sal.symtab == NULL) |
3514 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3515 | i + first_choice, | |
3516 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3517 | sal.line); | |
3518 | else | |
3519 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
3520 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3521 | sal.symtab->filename, sal.line); | |
4c4b4cd2 PH |
3522 | continue; |
3523 | } | |
d2e4a39e | 3524 | else |
4c4b4cd2 PH |
3525 | { |
3526 | int is_enumeral = | |
3527 | (SYMBOL_CLASS (syms[i].sym) == LOC_CONST | |
3528 | && SYMBOL_TYPE (syms[i].sym) != NULL | |
3529 | && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); | |
6f38eac8 | 3530 | struct symtab *symtab = syms[i].sym->symtab; |
4c4b4cd2 PH |
3531 | |
3532 | if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) | |
323e0a4a | 3533 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 PH |
3534 | i + first_choice, |
3535 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3536 | symtab->filename, SYMBOL_LINE (syms[i].sym)); | |
76a01679 JB |
3537 | else if (is_enumeral |
3538 | && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) | |
4c4b4cd2 | 3539 | { |
a3f17187 | 3540 | printf_unfiltered (("[%d] "), i + first_choice); |
76a01679 JB |
3541 | ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, |
3542 | gdb_stdout, -1, 0); | |
323e0a4a | 3543 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
4c4b4cd2 PH |
3544 | SYMBOL_PRINT_NAME (syms[i].sym)); |
3545 | } | |
3546 | else if (symtab != NULL) | |
3547 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3548 | ? _("[%d] %s in %s (enumeral)\n") |
3549 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 PH |
3550 | i + first_choice, |
3551 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3552 | symtab->filename); | |
3553 | else | |
3554 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3555 | ? _("[%d] %s (enumeral)\n") |
3556 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 PH |
3557 | i + first_choice, |
3558 | SYMBOL_PRINT_NAME (syms[i].sym)); | |
3559 | } | |
14f9c5c9 | 3560 | } |
d2e4a39e | 3561 | |
14f9c5c9 | 3562 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3563 | "overload-choice"); |
14f9c5c9 AS |
3564 | |
3565 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3566 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3567 | |
3568 | return n_chosen; | |
3569 | } | |
3570 | ||
3571 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3572 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3573 | order in CHOICES[0 .. N-1], and return N. |
3574 | ||
3575 | The user types choices as a sequence of numbers on one line | |
3576 | separated by blanks, encoding them as follows: | |
3577 | ||
4c4b4cd2 | 3578 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3579 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3580 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3581 | ||
4c4b4cd2 | 3582 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3583 | |
3584 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3585 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3586 | |
3587 | int | |
d2e4a39e | 3588 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3589 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3590 | { |
d2e4a39e | 3591 | char *args; |
0bcd0149 | 3592 | char *prompt; |
14f9c5c9 AS |
3593 | int n_chosen; |
3594 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3595 | |
14f9c5c9 AS |
3596 | prompt = getenv ("PS2"); |
3597 | if (prompt == NULL) | |
0bcd0149 | 3598 | prompt = "> "; |
14f9c5c9 | 3599 | |
0bcd0149 | 3600 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3601 | |
14f9c5c9 | 3602 | if (args == NULL) |
323e0a4a | 3603 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3604 | |
3605 | n_chosen = 0; | |
76a01679 | 3606 | |
4c4b4cd2 PH |
3607 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3608 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3609 | while (1) |
3610 | { | |
d2e4a39e | 3611 | char *args2; |
14f9c5c9 AS |
3612 | int choice, j; |
3613 | ||
3614 | while (isspace (*args)) | |
4c4b4cd2 | 3615 | args += 1; |
14f9c5c9 | 3616 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3617 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3618 | else if (*args == '\0') |
4c4b4cd2 | 3619 | break; |
14f9c5c9 AS |
3620 | |
3621 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3622 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3623 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3624 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3625 | args = args2; |
3626 | ||
d2e4a39e | 3627 | if (choice == 0) |
323e0a4a | 3628 | error (_("cancelled")); |
14f9c5c9 AS |
3629 | |
3630 | if (choice < first_choice) | |
4c4b4cd2 PH |
3631 | { |
3632 | n_chosen = n_choices; | |
3633 | for (j = 0; j < n_choices; j += 1) | |
3634 | choices[j] = j; | |
3635 | break; | |
3636 | } | |
14f9c5c9 AS |
3637 | choice -= first_choice; |
3638 | ||
d2e4a39e | 3639 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3640 | { |
3641 | } | |
14f9c5c9 AS |
3642 | |
3643 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3644 | { |
3645 | int k; | |
5b4ee69b | 3646 | |
4c4b4cd2 PH |
3647 | for (k = n_chosen - 1; k > j; k -= 1) |
3648 | choices[k + 1] = choices[k]; | |
3649 | choices[j + 1] = choice; | |
3650 | n_chosen += 1; | |
3651 | } | |
14f9c5c9 AS |
3652 | } |
3653 | ||
3654 | if (n_chosen > max_results) | |
323e0a4a | 3655 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3656 | |
14f9c5c9 AS |
3657 | return n_chosen; |
3658 | } | |
3659 | ||
4c4b4cd2 PH |
3660 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3661 | on the function identified by SYM and BLOCK, and taking NARGS | |
3662 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3663 | |
3664 | static void | |
d2e4a39e | 3665 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 PH |
3666 | int oplen, struct symbol *sym, |
3667 | struct block *block) | |
14f9c5c9 AS |
3668 | { |
3669 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3670 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3671 | struct expression *newexp = (struct expression *) |
8c1a34e7 | 3672 | xzalloc (sizeof (struct expression) |
4c4b4cd2 | 3673 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3674 | struct expression *exp = *expp; |
14f9c5c9 AS |
3675 | |
3676 | newexp->nelts = exp->nelts + 7 - oplen; | |
3677 | newexp->language_defn = exp->language_defn; | |
3489610d | 3678 | newexp->gdbarch = exp->gdbarch; |
14f9c5c9 | 3679 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); |
d2e4a39e | 3680 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3681 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3682 | |
3683 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3684 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3685 | ||
3686 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3687 | newexp->elts[pc + 4].block = block; | |
3688 | newexp->elts[pc + 5].symbol = sym; | |
3689 | ||
3690 | *expp = newexp; | |
aacb1f0a | 3691 | xfree (exp); |
d2e4a39e | 3692 | } |
14f9c5c9 AS |
3693 | |
3694 | /* Type-class predicates */ | |
3695 | ||
4c4b4cd2 PH |
3696 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3697 | or FLOAT). */ | |
14f9c5c9 AS |
3698 | |
3699 | static int | |
d2e4a39e | 3700 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3701 | { |
3702 | if (type == NULL) | |
3703 | return 0; | |
d2e4a39e AS |
3704 | else |
3705 | { | |
3706 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3707 | { |
3708 | case TYPE_CODE_INT: | |
3709 | case TYPE_CODE_FLT: | |
3710 | return 1; | |
3711 | case TYPE_CODE_RANGE: | |
3712 | return (type == TYPE_TARGET_TYPE (type) | |
3713 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3714 | default: | |
3715 | return 0; | |
3716 | } | |
d2e4a39e | 3717 | } |
14f9c5c9 AS |
3718 | } |
3719 | ||
4c4b4cd2 | 3720 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3721 | |
3722 | static int | |
d2e4a39e | 3723 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3724 | { |
3725 | if (type == NULL) | |
3726 | return 0; | |
d2e4a39e AS |
3727 | else |
3728 | { | |
3729 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3730 | { |
3731 | case TYPE_CODE_INT: | |
3732 | return 1; | |
3733 | case TYPE_CODE_RANGE: | |
3734 | return (type == TYPE_TARGET_TYPE (type) | |
3735 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
3736 | default: | |
3737 | return 0; | |
3738 | } | |
d2e4a39e | 3739 | } |
14f9c5c9 AS |
3740 | } |
3741 | ||
4c4b4cd2 | 3742 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
3743 | |
3744 | static int | |
d2e4a39e | 3745 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
3746 | { |
3747 | if (type == NULL) | |
3748 | return 0; | |
d2e4a39e AS |
3749 | else |
3750 | { | |
3751 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3752 | { |
3753 | case TYPE_CODE_INT: | |
3754 | case TYPE_CODE_RANGE: | |
3755 | case TYPE_CODE_ENUM: | |
3756 | case TYPE_CODE_FLT: | |
3757 | return 1; | |
3758 | default: | |
3759 | return 0; | |
3760 | } | |
d2e4a39e | 3761 | } |
14f9c5c9 AS |
3762 | } |
3763 | ||
4c4b4cd2 | 3764 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
3765 | |
3766 | static int | |
d2e4a39e | 3767 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
3768 | { |
3769 | if (type == NULL) | |
3770 | return 0; | |
d2e4a39e AS |
3771 | else |
3772 | { | |
3773 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3774 | { |
3775 | case TYPE_CODE_INT: | |
3776 | case TYPE_CODE_RANGE: | |
3777 | case TYPE_CODE_ENUM: | |
872f0337 | 3778 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
3779 | return 1; |
3780 | default: | |
3781 | return 0; | |
3782 | } | |
d2e4a39e | 3783 | } |
14f9c5c9 AS |
3784 | } |
3785 | ||
4c4b4cd2 PH |
3786 | /* Returns non-zero if OP with operands in the vector ARGS could be |
3787 | a user-defined function. Errs on the side of pre-defined operators | |
3788 | (i.e., result 0). */ | |
14f9c5c9 AS |
3789 | |
3790 | static int | |
d2e4a39e | 3791 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 3792 | { |
76a01679 | 3793 | struct type *type0 = |
df407dfe | 3794 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 3795 | struct type *type1 = |
df407dfe | 3796 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 3797 | |
4c4b4cd2 PH |
3798 | if (type0 == NULL) |
3799 | return 0; | |
3800 | ||
14f9c5c9 AS |
3801 | switch (op) |
3802 | { | |
3803 | default: | |
3804 | return 0; | |
3805 | ||
3806 | case BINOP_ADD: | |
3807 | case BINOP_SUB: | |
3808 | case BINOP_MUL: | |
3809 | case BINOP_DIV: | |
d2e4a39e | 3810 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
3811 | |
3812 | case BINOP_REM: | |
3813 | case BINOP_MOD: | |
3814 | case BINOP_BITWISE_AND: | |
3815 | case BINOP_BITWISE_IOR: | |
3816 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 3817 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3818 | |
3819 | case BINOP_EQUAL: | |
3820 | case BINOP_NOTEQUAL: | |
3821 | case BINOP_LESS: | |
3822 | case BINOP_GTR: | |
3823 | case BINOP_LEQ: | |
3824 | case BINOP_GEQ: | |
d2e4a39e | 3825 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
3826 | |
3827 | case BINOP_CONCAT: | |
ee90b9ab | 3828 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
3829 | |
3830 | case BINOP_EXP: | |
d2e4a39e | 3831 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3832 | |
3833 | case UNOP_NEG: | |
3834 | case UNOP_PLUS: | |
3835 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
3836 | case UNOP_ABS: |
3837 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
3838 | |
3839 | } | |
3840 | } | |
3841 | \f | |
4c4b4cd2 | 3842 | /* Renaming */ |
14f9c5c9 | 3843 | |
aeb5907d JB |
3844 | /* NOTES: |
3845 | ||
3846 | 1. In the following, we assume that a renaming type's name may | |
3847 | have an ___XD suffix. It would be nice if this went away at some | |
3848 | point. | |
3849 | 2. We handle both the (old) purely type-based representation of | |
3850 | renamings and the (new) variable-based encoding. At some point, | |
3851 | it is devoutly to be hoped that the former goes away | |
3852 | (FIXME: hilfinger-2007-07-09). | |
3853 | 3. Subprogram renamings are not implemented, although the XRS | |
3854 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
3855 | ||
3856 | /* If SYM encodes a renaming, | |
3857 | ||
3858 | <renaming> renames <renamed entity>, | |
3859 | ||
3860 | sets *LEN to the length of the renamed entity's name, | |
3861 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
3862 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 3863 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
3864 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
3865 | are undefined). Otherwise, returns a value indicating the category | |
3866 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
3867 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
3868 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
3869 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
3870 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
3871 | may be NULL, in which case they are not assigned. | |
3872 | ||
3873 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
3874 | ||
3875 | enum ada_renaming_category | |
3876 | ada_parse_renaming (struct symbol *sym, | |
3877 | const char **renamed_entity, int *len, | |
3878 | const char **renaming_expr) | |
3879 | { | |
3880 | enum ada_renaming_category kind; | |
3881 | const char *info; | |
3882 | const char *suffix; | |
3883 | ||
3884 | if (sym == NULL) | |
3885 | return ADA_NOT_RENAMING; | |
3886 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 3887 | { |
aeb5907d JB |
3888 | default: |
3889 | return ADA_NOT_RENAMING; | |
3890 | case LOC_TYPEDEF: | |
3891 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
3892 | renamed_entity, len, renaming_expr); | |
3893 | case LOC_LOCAL: | |
3894 | case LOC_STATIC: | |
3895 | case LOC_COMPUTED: | |
3896 | case LOC_OPTIMIZED_OUT: | |
3897 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
3898 | if (info == NULL) | |
3899 | return ADA_NOT_RENAMING; | |
3900 | switch (info[5]) | |
3901 | { | |
3902 | case '_': | |
3903 | kind = ADA_OBJECT_RENAMING; | |
3904 | info += 6; | |
3905 | break; | |
3906 | case 'E': | |
3907 | kind = ADA_EXCEPTION_RENAMING; | |
3908 | info += 7; | |
3909 | break; | |
3910 | case 'P': | |
3911 | kind = ADA_PACKAGE_RENAMING; | |
3912 | info += 7; | |
3913 | break; | |
3914 | case 'S': | |
3915 | kind = ADA_SUBPROGRAM_RENAMING; | |
3916 | info += 7; | |
3917 | break; | |
3918 | default: | |
3919 | return ADA_NOT_RENAMING; | |
3920 | } | |
14f9c5c9 | 3921 | } |
4c4b4cd2 | 3922 | |
aeb5907d JB |
3923 | if (renamed_entity != NULL) |
3924 | *renamed_entity = info; | |
3925 | suffix = strstr (info, "___XE"); | |
3926 | if (suffix == NULL || suffix == info) | |
3927 | return ADA_NOT_RENAMING; | |
3928 | if (len != NULL) | |
3929 | *len = strlen (info) - strlen (suffix); | |
3930 | suffix += 5; | |
3931 | if (renaming_expr != NULL) | |
3932 | *renaming_expr = suffix; | |
3933 | return kind; | |
3934 | } | |
3935 | ||
3936 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
3937 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
3938 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
3939 | ADA_NOT_RENAMING otherwise. */ | |
3940 | static enum ada_renaming_category | |
3941 | parse_old_style_renaming (struct type *type, | |
3942 | const char **renamed_entity, int *len, | |
3943 | const char **renaming_expr) | |
3944 | { | |
3945 | enum ada_renaming_category kind; | |
3946 | const char *name; | |
3947 | const char *info; | |
3948 | const char *suffix; | |
14f9c5c9 | 3949 | |
aeb5907d JB |
3950 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
3951 | || TYPE_NFIELDS (type) != 1) | |
3952 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 3953 | |
aeb5907d JB |
3954 | name = type_name_no_tag (type); |
3955 | if (name == NULL) | |
3956 | return ADA_NOT_RENAMING; | |
3957 | ||
3958 | name = strstr (name, "___XR"); | |
3959 | if (name == NULL) | |
3960 | return ADA_NOT_RENAMING; | |
3961 | switch (name[5]) | |
3962 | { | |
3963 | case '\0': | |
3964 | case '_': | |
3965 | kind = ADA_OBJECT_RENAMING; | |
3966 | break; | |
3967 | case 'E': | |
3968 | kind = ADA_EXCEPTION_RENAMING; | |
3969 | break; | |
3970 | case 'P': | |
3971 | kind = ADA_PACKAGE_RENAMING; | |
3972 | break; | |
3973 | case 'S': | |
3974 | kind = ADA_SUBPROGRAM_RENAMING; | |
3975 | break; | |
3976 | default: | |
3977 | return ADA_NOT_RENAMING; | |
3978 | } | |
14f9c5c9 | 3979 | |
aeb5907d JB |
3980 | info = TYPE_FIELD_NAME (type, 0); |
3981 | if (info == NULL) | |
3982 | return ADA_NOT_RENAMING; | |
3983 | if (renamed_entity != NULL) | |
3984 | *renamed_entity = info; | |
3985 | suffix = strstr (info, "___XE"); | |
3986 | if (renaming_expr != NULL) | |
3987 | *renaming_expr = suffix + 5; | |
3988 | if (suffix == NULL || suffix == info) | |
3989 | return ADA_NOT_RENAMING; | |
3990 | if (len != NULL) | |
3991 | *len = suffix - info; | |
3992 | return kind; | |
3993 | } | |
52ce6436 | 3994 | |
14f9c5c9 | 3995 | \f |
d2e4a39e | 3996 | |
4c4b4cd2 | 3997 | /* Evaluation: Function Calls */ |
14f9c5c9 | 3998 | |
4c4b4cd2 | 3999 | /* Return an lvalue containing the value VAL. This is the identity on |
40bc484c JB |
4000 | lvalues, and otherwise has the side-effect of allocating memory |
4001 | in the inferior where a copy of the value contents is copied. */ | |
14f9c5c9 | 4002 | |
d2e4a39e | 4003 | static struct value * |
40bc484c | 4004 | ensure_lval (struct value *val) |
14f9c5c9 | 4005 | { |
40bc484c JB |
4006 | if (VALUE_LVAL (val) == not_lval |
4007 | || VALUE_LVAL (val) == lval_internalvar) | |
c3e5cd34 | 4008 | { |
df407dfe | 4009 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
40bc484c JB |
4010 | const CORE_ADDR addr = |
4011 | value_as_long (value_allocate_space_in_inferior (len)); | |
c3e5cd34 | 4012 | |
40bc484c | 4013 | set_value_address (val, addr); |
a84a8a0d | 4014 | VALUE_LVAL (val) = lval_memory; |
40bc484c | 4015 | write_memory (addr, value_contents (val), len); |
c3e5cd34 | 4016 | } |
14f9c5c9 AS |
4017 | |
4018 | return val; | |
4019 | } | |
4020 | ||
4021 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4022 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4023 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4024 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4025 | |
a93c0eb6 | 4026 | struct value * |
40bc484c | 4027 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4028 | { |
df407dfe | 4029 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4030 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
4031 | struct type *formal_target = |
4032 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 4033 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
4034 | struct type *actual_target = |
4035 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 4036 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4037 | |
4c4b4cd2 | 4038 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 4039 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 4040 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
4041 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
4042 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 4043 | { |
a84a8a0d | 4044 | struct value *result; |
5b4ee69b | 4045 | |
14f9c5c9 | 4046 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 4047 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4048 | result = desc_data (actual); |
14f9c5c9 | 4049 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
4050 | { |
4051 | if (VALUE_LVAL (actual) != lval_memory) | |
4052 | { | |
4053 | struct value *val; | |
5b4ee69b | 4054 | |
df407dfe | 4055 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 4056 | val = allocate_value (actual_type); |
990a07ab | 4057 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 4058 | (char *) value_contents (actual), |
4c4b4cd2 | 4059 | TYPE_LENGTH (actual_type)); |
40bc484c | 4060 | actual = ensure_lval (val); |
4c4b4cd2 | 4061 | } |
a84a8a0d | 4062 | result = value_addr (actual); |
4c4b4cd2 | 4063 | } |
a84a8a0d JB |
4064 | else |
4065 | return actual; | |
4066 | return value_cast_pointers (formal_type, result); | |
14f9c5c9 AS |
4067 | } |
4068 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
4069 | return ada_value_ind (actual); | |
4070 | ||
4071 | return actual; | |
4072 | } | |
4073 | ||
438c98a1 JB |
4074 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4075 | type TYPE. This is usually an inefficient no-op except on some targets | |
4076 | (such as AVR) where the representation of a pointer and an address | |
4077 | differs. */ | |
4078 | ||
4079 | static CORE_ADDR | |
4080 | value_pointer (struct value *value, struct type *type) | |
4081 | { | |
4082 | struct gdbarch *gdbarch = get_type_arch (type); | |
4083 | unsigned len = TYPE_LENGTH (type); | |
4084 | gdb_byte *buf = alloca (len); | |
4085 | CORE_ADDR addr; | |
4086 | ||
4087 | addr = value_address (value); | |
4088 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
4089 | addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); | |
4090 | return addr; | |
4091 | } | |
4092 | ||
14f9c5c9 | 4093 | |
4c4b4cd2 PH |
4094 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4095 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4096 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4097 | to-descriptor type rather than a descriptor type), a struct value * |
4098 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4099 | |
d2e4a39e | 4100 | static struct value * |
40bc484c | 4101 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4102 | { |
d2e4a39e AS |
4103 | struct type *bounds_type = desc_bounds_type (type); |
4104 | struct type *desc_type = desc_base_type (type); | |
4105 | struct value *descriptor = allocate_value (desc_type); | |
4106 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4107 | int i; |
d2e4a39e | 4108 | |
0963b4bd MS |
4109 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4110 | i > 0; i -= 1) | |
14f9c5c9 | 4111 | { |
19f220c3 JK |
4112 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4113 | ada_array_bound (arr, i, 0), | |
4114 | desc_bound_bitpos (bounds_type, i, 0), | |
4115 | desc_bound_bitsize (bounds_type, i, 0)); | |
4116 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4117 | ada_array_bound (arr, i, 1), | |
4118 | desc_bound_bitpos (bounds_type, i, 1), | |
4119 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4120 | } |
d2e4a39e | 4121 | |
40bc484c | 4122 | bounds = ensure_lval (bounds); |
d2e4a39e | 4123 | |
19f220c3 JK |
4124 | modify_field (value_type (descriptor), |
4125 | value_contents_writeable (descriptor), | |
4126 | value_pointer (ensure_lval (arr), | |
4127 | TYPE_FIELD_TYPE (desc_type, 0)), | |
4128 | fat_pntr_data_bitpos (desc_type), | |
4129 | fat_pntr_data_bitsize (desc_type)); | |
4130 | ||
4131 | modify_field (value_type (descriptor), | |
4132 | value_contents_writeable (descriptor), | |
4133 | value_pointer (bounds, | |
4134 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4135 | fat_pntr_bounds_bitpos (desc_type), | |
4136 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4137 | |
40bc484c | 4138 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4139 | |
4140 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4141 | return value_addr (descriptor); | |
4142 | else | |
4143 | return descriptor; | |
4144 | } | |
14f9c5c9 | 4145 | \f |
963a6417 | 4146 | /* Dummy definitions for an experimental caching module that is not |
0963b4bd | 4147 | * used in the public sources. */ |
96d887e8 | 4148 | |
96d887e8 PH |
4149 | static int |
4150 | lookup_cached_symbol (const char *name, domain_enum namespace, | |
2570f2b7 | 4151 | struct symbol **sym, struct block **block) |
96d887e8 PH |
4152 | { |
4153 | return 0; | |
4154 | } | |
4155 | ||
4156 | static void | |
4157 | cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, | |
2570f2b7 | 4158 | struct block *block) |
96d887e8 PH |
4159 | { |
4160 | } | |
4c4b4cd2 PH |
4161 | \f |
4162 | /* Symbol Lookup */ | |
4163 | ||
4164 | /* Return the result of a standard (literal, C-like) lookup of NAME in | |
4165 | given DOMAIN, visible from lexical block BLOCK. */ | |
4166 | ||
4167 | static struct symbol * | |
4168 | standard_lookup (const char *name, const struct block *block, | |
4169 | domain_enum domain) | |
4170 | { | |
4171 | struct symbol *sym; | |
4c4b4cd2 | 4172 | |
2570f2b7 | 4173 | if (lookup_cached_symbol (name, domain, &sym, NULL)) |
4c4b4cd2 | 4174 | return sym; |
2570f2b7 UW |
4175 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
4176 | cache_symbol (name, domain, sym, block_found); | |
4c4b4cd2 PH |
4177 | return sym; |
4178 | } | |
4179 | ||
4180 | ||
4181 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4182 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4183 | since they contend in overloading in the same way. */ | |
4184 | static int | |
4185 | is_nonfunction (struct ada_symbol_info syms[], int n) | |
4186 | { | |
4187 | int i; | |
4188 | ||
4189 | for (i = 0; i < n; i += 1) | |
4190 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC | |
4191 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM | |
4192 | || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) | |
14f9c5c9 AS |
4193 | return 1; |
4194 | ||
4195 | return 0; | |
4196 | } | |
4197 | ||
4198 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4199 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4200 | |
4201 | static int | |
d2e4a39e | 4202 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4203 | { |
d2e4a39e | 4204 | if (type0 == type1) |
14f9c5c9 | 4205 | return 1; |
d2e4a39e | 4206 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4207 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4208 | return 0; | |
d2e4a39e | 4209 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4210 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4211 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4212 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4213 | return 1; |
d2e4a39e | 4214 | |
14f9c5c9 AS |
4215 | return 0; |
4216 | } | |
4217 | ||
4218 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4219 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4220 | |
4221 | static int | |
d2e4a39e | 4222 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4223 | { |
4224 | if (sym0 == sym1) | |
4225 | return 1; | |
176620f1 | 4226 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4227 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4228 | return 0; | |
4229 | ||
d2e4a39e | 4230 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4231 | { |
4232 | case LOC_UNDEF: | |
4233 | return 1; | |
4234 | case LOC_TYPEDEF: | |
4235 | { | |
4c4b4cd2 PH |
4236 | struct type *type0 = SYMBOL_TYPE (sym0); |
4237 | struct type *type1 = SYMBOL_TYPE (sym1); | |
4238 | char *name0 = SYMBOL_LINKAGE_NAME (sym0); | |
4239 | char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4240 | int len0 = strlen (name0); | |
5b4ee69b | 4241 | |
4c4b4cd2 PH |
4242 | return |
4243 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4244 | && (equiv_types (type0, type1) | |
4245 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
4246 | && strncmp (name1 + len0, "___XV", 5) == 0)); | |
14f9c5c9 AS |
4247 | } |
4248 | case LOC_CONST: | |
4249 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4250 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4251 | default: |
4252 | return 0; | |
14f9c5c9 AS |
4253 | } |
4254 | } | |
4255 | ||
4c4b4cd2 PH |
4256 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info |
4257 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ | |
14f9c5c9 AS |
4258 | |
4259 | static void | |
76a01679 JB |
4260 | add_defn_to_vec (struct obstack *obstackp, |
4261 | struct symbol *sym, | |
2570f2b7 | 4262 | struct block *block) |
14f9c5c9 AS |
4263 | { |
4264 | int i; | |
4c4b4cd2 | 4265 | struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4266 | |
529cad9c PH |
4267 | /* Do not try to complete stub types, as the debugger is probably |
4268 | already scanning all symbols matching a certain name at the | |
4269 | time when this function is called. Trying to replace the stub | |
4270 | type by its associated full type will cause us to restart a scan | |
4271 | which may lead to an infinite recursion. Instead, the client | |
4272 | collecting the matching symbols will end up collecting several | |
4273 | matches, with at least one of them complete. It can then filter | |
4274 | out the stub ones if needed. */ | |
4275 | ||
4c4b4cd2 PH |
4276 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4277 | { | |
4278 | if (lesseq_defined_than (sym, prevDefns[i].sym)) | |
4279 | return; | |
4280 | else if (lesseq_defined_than (prevDefns[i].sym, sym)) | |
4281 | { | |
4282 | prevDefns[i].sym = sym; | |
4283 | prevDefns[i].block = block; | |
4c4b4cd2 | 4284 | return; |
76a01679 | 4285 | } |
4c4b4cd2 PH |
4286 | } |
4287 | ||
4288 | { | |
4289 | struct ada_symbol_info info; | |
4290 | ||
4291 | info.sym = sym; | |
4292 | info.block = block; | |
4c4b4cd2 PH |
4293 | obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); |
4294 | } | |
4295 | } | |
4296 | ||
4297 | /* Number of ada_symbol_info structures currently collected in | |
4298 | current vector in *OBSTACKP. */ | |
4299 | ||
76a01679 JB |
4300 | static int |
4301 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 PH |
4302 | { |
4303 | return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); | |
4304 | } | |
4305 | ||
4306 | /* Vector of ada_symbol_info structures currently collected in current | |
4307 | vector in *OBSTACKP. If FINISH, close off the vector and return | |
4308 | its final address. */ | |
4309 | ||
76a01679 | 4310 | static struct ada_symbol_info * |
4c4b4cd2 PH |
4311 | defns_collected (struct obstack *obstackp, int finish) |
4312 | { | |
4313 | if (finish) | |
4314 | return obstack_finish (obstackp); | |
4315 | else | |
4316 | return (struct ada_symbol_info *) obstack_base (obstackp); | |
4317 | } | |
4318 | ||
96d887e8 PH |
4319 | /* Return a minimal symbol matching NAME according to Ada decoding |
4320 | rules. Returns NULL if there is no such minimal symbol. Names | |
4321 | prefixed with "standard__" are handled specially: "standard__" is | |
4322 | first stripped off, and only static and global symbols are searched. */ | |
4c4b4cd2 | 4323 | |
96d887e8 PH |
4324 | struct minimal_symbol * |
4325 | ada_lookup_simple_minsym (const char *name) | |
4c4b4cd2 | 4326 | { |
4c4b4cd2 | 4327 | struct objfile *objfile; |
96d887e8 PH |
4328 | struct minimal_symbol *msymbol; |
4329 | int wild_match; | |
4c4b4cd2 | 4330 | |
96d887e8 | 4331 | if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) |
4c4b4cd2 | 4332 | { |
96d887e8 | 4333 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4334 | wild_match = 0; |
4c4b4cd2 PH |
4335 | } |
4336 | else | |
96d887e8 | 4337 | wild_match = (strstr (name, "__") == NULL); |
4c4b4cd2 | 4338 | |
96d887e8 PH |
4339 | ALL_MSYMBOLS (objfile, msymbol) |
4340 | { | |
40658b94 | 4341 | if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match) |
96d887e8 PH |
4342 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
4343 | return msymbol; | |
4344 | } | |
4c4b4cd2 | 4345 | |
96d887e8 PH |
4346 | return NULL; |
4347 | } | |
4c4b4cd2 | 4348 | |
96d887e8 PH |
4349 | /* For all subprograms that statically enclose the subprogram of the |
4350 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4351 | and their blocks to the list of data in OBSTACKP, as for | |
4352 | ada_add_block_symbols (q.v.). If WILD, treat as NAME with a | |
4353 | wildcard prefix. */ | |
4c4b4cd2 | 4354 | |
96d887e8 PH |
4355 | static void |
4356 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
76a01679 | 4357 | const char *name, domain_enum namespace, |
96d887e8 PH |
4358 | int wild_match) |
4359 | { | |
96d887e8 | 4360 | } |
14f9c5c9 | 4361 | |
96d887e8 PH |
4362 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4363 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4364 | |
96d887e8 PH |
4365 | static int |
4366 | is_nondebugging_type (struct type *type) | |
4367 | { | |
4368 | char *name = ada_type_name (type); | |
5b4ee69b | 4369 | |
96d887e8 PH |
4370 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4371 | } | |
4c4b4cd2 | 4372 | |
8f17729f JB |
4373 | /* Return nonzero if TYPE1 and TYPE2 are two enumeration types |
4374 | that are deemed "identical" for practical purposes. | |
4375 | ||
4376 | This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM | |
4377 | types and that their number of enumerals is identical (in other | |
4378 | words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */ | |
4379 | ||
4380 | static int | |
4381 | ada_identical_enum_types_p (struct type *type1, struct type *type2) | |
4382 | { | |
4383 | int i; | |
4384 | ||
4385 | /* The heuristic we use here is fairly conservative. We consider | |
4386 | that 2 enumerate types are identical if they have the same | |
4387 | number of enumerals and that all enumerals have the same | |
4388 | underlying value and name. */ | |
4389 | ||
4390 | /* All enums in the type should have an identical underlying value. */ | |
4391 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
4392 | if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i)) | |
4393 | return 0; | |
4394 | ||
4395 | /* All enumerals should also have the same name (modulo any numerical | |
4396 | suffix). */ | |
4397 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
4398 | { | |
4399 | char *name_1 = TYPE_FIELD_NAME (type1, i); | |
4400 | char *name_2 = TYPE_FIELD_NAME (type2, i); | |
4401 | int len_1 = strlen (name_1); | |
4402 | int len_2 = strlen (name_2); | |
4403 | ||
4404 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1); | |
4405 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2); | |
4406 | if (len_1 != len_2 | |
4407 | || strncmp (TYPE_FIELD_NAME (type1, i), | |
4408 | TYPE_FIELD_NAME (type2, i), | |
4409 | len_1) != 0) | |
4410 | return 0; | |
4411 | } | |
4412 | ||
4413 | return 1; | |
4414 | } | |
4415 | ||
4416 | /* Return nonzero if all the symbols in SYMS are all enumeral symbols | |
4417 | that are deemed "identical" for practical purposes. Sometimes, | |
4418 | enumerals are not strictly identical, but their types are so similar | |
4419 | that they can be considered identical. | |
4420 | ||
4421 | For instance, consider the following code: | |
4422 | ||
4423 | type Color is (Black, Red, Green, Blue, White); | |
4424 | type RGB_Color is new Color range Red .. Blue; | |
4425 | ||
4426 | Type RGB_Color is a subrange of an implicit type which is a copy | |
4427 | of type Color. If we call that implicit type RGB_ColorB ("B" is | |
4428 | for "Base Type"), then type RGB_ColorB is a copy of type Color. | |
4429 | As a result, when an expression references any of the enumeral | |
4430 | by name (Eg. "print green"), the expression is technically | |
4431 | ambiguous and the user should be asked to disambiguate. But | |
4432 | doing so would only hinder the user, since it wouldn't matter | |
4433 | what choice he makes, the outcome would always be the same. | |
4434 | So, for practical purposes, we consider them as the same. */ | |
4435 | ||
4436 | static int | |
4437 | symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms) | |
4438 | { | |
4439 | int i; | |
4440 | ||
4441 | /* Before performing a thorough comparison check of each type, | |
4442 | we perform a series of inexpensive checks. We expect that these | |
4443 | checks will quickly fail in the vast majority of cases, and thus | |
4444 | help prevent the unnecessary use of a more expensive comparison. | |
4445 | Said comparison also expects us to make some of these checks | |
4446 | (see ada_identical_enum_types_p). */ | |
4447 | ||
4448 | /* Quick check: All symbols should have an enum type. */ | |
4449 | for (i = 0; i < nsyms; i++) | |
4450 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM) | |
4451 | return 0; | |
4452 | ||
4453 | /* Quick check: They should all have the same value. */ | |
4454 | for (i = 1; i < nsyms; i++) | |
4455 | if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym)) | |
4456 | return 0; | |
4457 | ||
4458 | /* Quick check: They should all have the same number of enumerals. */ | |
4459 | for (i = 1; i < nsyms; i++) | |
4460 | if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym)) | |
4461 | != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym))) | |
4462 | return 0; | |
4463 | ||
4464 | /* All the sanity checks passed, so we might have a set of | |
4465 | identical enumeration types. Perform a more complete | |
4466 | comparison of the type of each symbol. */ | |
4467 | for (i = 1; i < nsyms; i++) | |
4468 | if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym), | |
4469 | SYMBOL_TYPE (syms[0].sym))) | |
4470 | return 0; | |
4471 | ||
4472 | return 1; | |
4473 | } | |
4474 | ||
96d887e8 PH |
4475 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4476 | duplicate other symbols in the list (The only case I know of where | |
4477 | this happens is when object files containing stabs-in-ecoff are | |
4478 | linked with files containing ordinary ecoff debugging symbols (or no | |
4479 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4480 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4481 | |
96d887e8 PH |
4482 | static int |
4483 | remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) | |
4484 | { | |
4485 | int i, j; | |
4c4b4cd2 | 4486 | |
8f17729f JB |
4487 | /* We should never be called with less than 2 symbols, as there |
4488 | cannot be any extra symbol in that case. But it's easy to | |
4489 | handle, since we have nothing to do in that case. */ | |
4490 | if (nsyms < 2) | |
4491 | return nsyms; | |
4492 | ||
96d887e8 PH |
4493 | i = 0; |
4494 | while (i < nsyms) | |
4495 | { | |
a35ddb44 | 4496 | int remove_p = 0; |
339c13b6 JB |
4497 | |
4498 | /* If two symbols have the same name and one of them is a stub type, | |
4499 | the get rid of the stub. */ | |
4500 | ||
4501 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym)) | |
4502 | && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL) | |
4503 | { | |
4504 | for (j = 0; j < nsyms; j++) | |
4505 | { | |
4506 | if (j != i | |
4507 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym)) | |
4508 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4509 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
4510 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0) | |
a35ddb44 | 4511 | remove_p = 1; |
339c13b6 JB |
4512 | } |
4513 | } | |
4514 | ||
4515 | /* Two symbols with the same name, same class and same address | |
4516 | should be identical. */ | |
4517 | ||
4518 | else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL | |
96d887e8 PH |
4519 | && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC |
4520 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) | |
4521 | { | |
4522 | for (j = 0; j < nsyms; j += 1) | |
4523 | { | |
4524 | if (i != j | |
4525 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4526 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
76a01679 | 4527 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 |
96d887e8 PH |
4528 | && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) |
4529 | && SYMBOL_VALUE_ADDRESS (syms[i].sym) | |
4530 | == SYMBOL_VALUE_ADDRESS (syms[j].sym)) | |
a35ddb44 | 4531 | remove_p = 1; |
4c4b4cd2 | 4532 | } |
4c4b4cd2 | 4533 | } |
339c13b6 | 4534 | |
a35ddb44 | 4535 | if (remove_p) |
339c13b6 JB |
4536 | { |
4537 | for (j = i + 1; j < nsyms; j += 1) | |
4538 | syms[j - 1] = syms[j]; | |
4539 | nsyms -= 1; | |
4540 | } | |
4541 | ||
96d887e8 | 4542 | i += 1; |
14f9c5c9 | 4543 | } |
8f17729f JB |
4544 | |
4545 | /* If all the remaining symbols are identical enumerals, then | |
4546 | just keep the first one and discard the rest. | |
4547 | ||
4548 | Unlike what we did previously, we do not discard any entry | |
4549 | unless they are ALL identical. This is because the symbol | |
4550 | comparison is not a strict comparison, but rather a practical | |
4551 | comparison. If all symbols are considered identical, then | |
4552 | we can just go ahead and use the first one and discard the rest. | |
4553 | But if we cannot reduce the list to a single element, we have | |
4554 | to ask the user to disambiguate anyways. And if we have to | |
4555 | present a multiple-choice menu, it's less confusing if the list | |
4556 | isn't missing some choices that were identical and yet distinct. */ | |
4557 | if (symbols_are_identical_enums (syms, nsyms)) | |
4558 | nsyms = 1; | |
4559 | ||
96d887e8 | 4560 | return nsyms; |
14f9c5c9 AS |
4561 | } |
4562 | ||
96d887e8 PH |
4563 | /* Given a type that corresponds to a renaming entity, use the type name |
4564 | to extract the scope (package name or function name, fully qualified, | |
4565 | and following the GNAT encoding convention) where this renaming has been | |
4566 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 4567 | |
96d887e8 PH |
4568 | static char * |
4569 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 4570 | { |
96d887e8 | 4571 | /* The renaming types adhere to the following convention: |
0963b4bd | 4572 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
4573 | So, to extract the scope, we search for the "___XR" extension, |
4574 | and then backtrack until we find the first "__". */ | |
76a01679 | 4575 | |
96d887e8 PH |
4576 | const char *name = type_name_no_tag (renaming_type); |
4577 | char *suffix = strstr (name, "___XR"); | |
4578 | char *last; | |
4579 | int scope_len; | |
4580 | char *scope; | |
14f9c5c9 | 4581 | |
96d887e8 PH |
4582 | /* Now, backtrack a bit until we find the first "__". Start looking |
4583 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 4584 | |
96d887e8 PH |
4585 | for (last = suffix - 3; last > name; last--) |
4586 | if (last[0] == '_' && last[1] == '_') | |
4587 | break; | |
76a01679 | 4588 | |
96d887e8 | 4589 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 4590 | |
96d887e8 PH |
4591 | scope_len = last - name; |
4592 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 4593 | |
96d887e8 PH |
4594 | strncpy (scope, name, scope_len); |
4595 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 4596 | |
96d887e8 | 4597 | return scope; |
4c4b4cd2 PH |
4598 | } |
4599 | ||
96d887e8 | 4600 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 4601 | |
96d887e8 PH |
4602 | static int |
4603 | is_package_name (const char *name) | |
4c4b4cd2 | 4604 | { |
96d887e8 PH |
4605 | /* Here, We take advantage of the fact that no symbols are generated |
4606 | for packages, while symbols are generated for each function. | |
4607 | So the condition for NAME represent a package becomes equivalent | |
4608 | to NAME not existing in our list of symbols. There is only one | |
4609 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 4610 | |
96d887e8 | 4611 | char *fun_name; |
76a01679 | 4612 | |
96d887e8 PH |
4613 | /* If it is a function that has not been defined at library level, |
4614 | then we should be able to look it up in the symbols. */ | |
4615 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
4616 | return 0; | |
14f9c5c9 | 4617 | |
96d887e8 PH |
4618 | /* Library-level function names start with "_ada_". See if function |
4619 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 4620 | |
96d887e8 | 4621 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 4622 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
4623 | if (strstr (name, "__") != NULL) |
4624 | return 0; | |
4c4b4cd2 | 4625 | |
b435e160 | 4626 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 4627 | |
96d887e8 PH |
4628 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
4629 | } | |
14f9c5c9 | 4630 | |
96d887e8 | 4631 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 4632 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 4633 | |
96d887e8 | 4634 | static int |
aeb5907d | 4635 | old_renaming_is_invisible (const struct symbol *sym, char *function_name) |
96d887e8 | 4636 | { |
aeb5907d JB |
4637 | char *scope; |
4638 | ||
4639 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
4640 | return 0; | |
4641 | ||
4642 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
d2e4a39e | 4643 | |
96d887e8 | 4644 | make_cleanup (xfree, scope); |
14f9c5c9 | 4645 | |
96d887e8 PH |
4646 | /* If the rename has been defined in a package, then it is visible. */ |
4647 | if (is_package_name (scope)) | |
aeb5907d | 4648 | return 0; |
14f9c5c9 | 4649 | |
96d887e8 PH |
4650 | /* Check that the rename is in the current function scope by checking |
4651 | that its name starts with SCOPE. */ | |
76a01679 | 4652 | |
96d887e8 PH |
4653 | /* If the function name starts with "_ada_", it means that it is |
4654 | a library-level function. Strip this prefix before doing the | |
4655 | comparison, as the encoding for the renaming does not contain | |
4656 | this prefix. */ | |
4657 | if (strncmp (function_name, "_ada_", 5) == 0) | |
4658 | function_name += 5; | |
f26caa11 | 4659 | |
aeb5907d | 4660 | return (strncmp (function_name, scope, strlen (scope)) != 0); |
f26caa11 PH |
4661 | } |
4662 | ||
aeb5907d JB |
4663 | /* Remove entries from SYMS that corresponds to a renaming entity that |
4664 | is not visible from the function associated with CURRENT_BLOCK or | |
4665 | that is superfluous due to the presence of more specific renaming | |
4666 | information. Places surviving symbols in the initial entries of | |
4667 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
4668 | |
4669 | Rationale: | |
aeb5907d JB |
4670 | First, in cases where an object renaming is implemented as a |
4671 | reference variable, GNAT may produce both the actual reference | |
4672 | variable and the renaming encoding. In this case, we discard the | |
4673 | latter. | |
4674 | ||
4675 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
4676 | entity. Unfortunately, STABS currently does not support the definition |
4677 | of types that are local to a given lexical block, so all renamings types | |
4678 | are emitted at library level. As a consequence, if an application | |
4679 | contains two renaming entities using the same name, and a user tries to | |
4680 | print the value of one of these entities, the result of the ada symbol | |
4681 | lookup will also contain the wrong renaming type. | |
f26caa11 | 4682 | |
96d887e8 PH |
4683 | This function partially covers for this limitation by attempting to |
4684 | remove from the SYMS list renaming symbols that should be visible | |
4685 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
4686 | method with the current information available. The implementation | |
4687 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
4688 | ||
4689 | - When the user tries to print a rename in a function while there | |
4690 | is another rename entity defined in a package: Normally, the | |
4691 | rename in the function has precedence over the rename in the | |
4692 | package, so the latter should be removed from the list. This is | |
4693 | currently not the case. | |
4694 | ||
4695 | - This function will incorrectly remove valid renames if | |
4696 | the CURRENT_BLOCK corresponds to a function which symbol name | |
4697 | has been changed by an "Export" pragma. As a consequence, | |
4698 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 4699 | |
14f9c5c9 | 4700 | static int |
aeb5907d JB |
4701 | remove_irrelevant_renamings (struct ada_symbol_info *syms, |
4702 | int nsyms, const struct block *current_block) | |
4c4b4cd2 PH |
4703 | { |
4704 | struct symbol *current_function; | |
4705 | char *current_function_name; | |
4706 | int i; | |
aeb5907d JB |
4707 | int is_new_style_renaming; |
4708 | ||
4709 | /* If there is both a renaming foo___XR... encoded as a variable and | |
4710 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 4711 | First, zero out such symbols, then compress. */ |
aeb5907d JB |
4712 | is_new_style_renaming = 0; |
4713 | for (i = 0; i < nsyms; i += 1) | |
4714 | { | |
4715 | struct symbol *sym = syms[i].sym; | |
4716 | struct block *block = syms[i].block; | |
4717 | const char *name; | |
4718 | const char *suffix; | |
4719 | ||
4720 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4721 | continue; | |
4722 | name = SYMBOL_LINKAGE_NAME (sym); | |
4723 | suffix = strstr (name, "___XR"); | |
4724 | ||
4725 | if (suffix != NULL) | |
4726 | { | |
4727 | int name_len = suffix - name; | |
4728 | int j; | |
5b4ee69b | 4729 | |
aeb5907d JB |
4730 | is_new_style_renaming = 1; |
4731 | for (j = 0; j < nsyms; j += 1) | |
4732 | if (i != j && syms[j].sym != NULL | |
4733 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), | |
4734 | name_len) == 0 | |
4735 | && block == syms[j].block) | |
4736 | syms[j].sym = NULL; | |
4737 | } | |
4738 | } | |
4739 | if (is_new_style_renaming) | |
4740 | { | |
4741 | int j, k; | |
4742 | ||
4743 | for (j = k = 0; j < nsyms; j += 1) | |
4744 | if (syms[j].sym != NULL) | |
4745 | { | |
4746 | syms[k] = syms[j]; | |
4747 | k += 1; | |
4748 | } | |
4749 | return k; | |
4750 | } | |
4c4b4cd2 PH |
4751 | |
4752 | /* Extract the function name associated to CURRENT_BLOCK. | |
4753 | Abort if unable to do so. */ | |
76a01679 | 4754 | |
4c4b4cd2 PH |
4755 | if (current_block == NULL) |
4756 | return nsyms; | |
76a01679 | 4757 | |
7f0df278 | 4758 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
4759 | if (current_function == NULL) |
4760 | return nsyms; | |
4761 | ||
4762 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
4763 | if (current_function_name == NULL) | |
4764 | return nsyms; | |
4765 | ||
4766 | /* Check each of the symbols, and remove it from the list if it is | |
4767 | a type corresponding to a renaming that is out of the scope of | |
4768 | the current block. */ | |
4769 | ||
4770 | i = 0; | |
4771 | while (i < nsyms) | |
4772 | { | |
aeb5907d JB |
4773 | if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) |
4774 | == ADA_OBJECT_RENAMING | |
4775 | && old_renaming_is_invisible (syms[i].sym, current_function_name)) | |
4c4b4cd2 PH |
4776 | { |
4777 | int j; | |
5b4ee69b | 4778 | |
aeb5907d | 4779 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 4780 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
4781 | nsyms -= 1; |
4782 | } | |
4783 | else | |
4784 | i += 1; | |
4785 | } | |
4786 | ||
4787 | return nsyms; | |
4788 | } | |
4789 | ||
339c13b6 JB |
4790 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
4791 | whose name and domain match NAME and DOMAIN respectively. | |
4792 | If no match was found, then extend the search to "enclosing" | |
4793 | routines (in other words, if we're inside a nested function, | |
4794 | search the symbols defined inside the enclosing functions). | |
4795 | ||
4796 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
4797 | ||
4798 | static void | |
4799 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
4800 | struct block *block, domain_enum domain, | |
4801 | int wild_match) | |
4802 | { | |
4803 | int block_depth = 0; | |
4804 | ||
4805 | while (block != NULL) | |
4806 | { | |
4807 | block_depth += 1; | |
4808 | ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match); | |
4809 | ||
4810 | /* If we found a non-function match, assume that's the one. */ | |
4811 | if (is_nonfunction (defns_collected (obstackp, 0), | |
4812 | num_defns_collected (obstackp))) | |
4813 | return; | |
4814 | ||
4815 | block = BLOCK_SUPERBLOCK (block); | |
4816 | } | |
4817 | ||
4818 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
4819 | enclosing subprogram. */ | |
4820 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
4821 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match); | |
4822 | } | |
4823 | ||
ccefe4c4 | 4824 | /* An object of this type is used as the user_data argument when |
40658b94 | 4825 | calling the map_matching_symbols method. */ |
ccefe4c4 | 4826 | |
40658b94 | 4827 | struct match_data |
ccefe4c4 | 4828 | { |
40658b94 | 4829 | struct objfile *objfile; |
ccefe4c4 | 4830 | struct obstack *obstackp; |
40658b94 PH |
4831 | struct symbol *arg_sym; |
4832 | int found_sym; | |
ccefe4c4 TT |
4833 | }; |
4834 | ||
40658b94 PH |
4835 | /* A callback for add_matching_symbols that adds SYM, found in BLOCK, |
4836 | to a list of symbols. DATA0 is a pointer to a struct match_data * | |
4837 | containing the obstack that collects the symbol list, the file that SYM | |
4838 | must come from, a flag indicating whether a non-argument symbol has | |
4839 | been found in the current block, and the last argument symbol | |
4840 | passed in SYM within the current block (if any). When SYM is null, | |
4841 | marking the end of a block, the argument symbol is added if no | |
4842 | other has been found. */ | |
ccefe4c4 | 4843 | |
40658b94 PH |
4844 | static int |
4845 | aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0) | |
ccefe4c4 | 4846 | { |
40658b94 PH |
4847 | struct match_data *data = (struct match_data *) data0; |
4848 | ||
4849 | if (sym == NULL) | |
4850 | { | |
4851 | if (!data->found_sym && data->arg_sym != NULL) | |
4852 | add_defn_to_vec (data->obstackp, | |
4853 | fixup_symbol_section (data->arg_sym, data->objfile), | |
4854 | block); | |
4855 | data->found_sym = 0; | |
4856 | data->arg_sym = NULL; | |
4857 | } | |
4858 | else | |
4859 | { | |
4860 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
4861 | return 0; | |
4862 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
4863 | data->arg_sym = sym; | |
4864 | else | |
4865 | { | |
4866 | data->found_sym = 1; | |
4867 | add_defn_to_vec (data->obstackp, | |
4868 | fixup_symbol_section (sym, data->objfile), | |
4869 | block); | |
4870 | } | |
4871 | } | |
4872 | return 0; | |
4873 | } | |
4874 | ||
4875 | /* Compare STRING1 to STRING2, with results as for strcmp. | |
4876 | Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0 | |
4877 | implies compare_names (STRING1, STRING2) (they may differ as to | |
4878 | what symbols compare equal). */ | |
5b4ee69b | 4879 | |
40658b94 PH |
4880 | static int |
4881 | compare_names (const char *string1, const char *string2) | |
4882 | { | |
4883 | while (*string1 != '\0' && *string2 != '\0') | |
4884 | { | |
4885 | if (isspace (*string1) || isspace (*string2)) | |
4886 | return strcmp_iw_ordered (string1, string2); | |
4887 | if (*string1 != *string2) | |
4888 | break; | |
4889 | string1 += 1; | |
4890 | string2 += 1; | |
4891 | } | |
4892 | switch (*string1) | |
4893 | { | |
4894 | case '(': | |
4895 | return strcmp_iw_ordered (string1, string2); | |
4896 | case '_': | |
4897 | if (*string2 == '\0') | |
4898 | { | |
052874e8 | 4899 | if (is_name_suffix (string1)) |
40658b94 PH |
4900 | return 0; |
4901 | else | |
1a1d5513 | 4902 | return 1; |
40658b94 | 4903 | } |
dbb8534f | 4904 | /* FALLTHROUGH */ |
40658b94 PH |
4905 | default: |
4906 | if (*string2 == '(') | |
4907 | return strcmp_iw_ordered (string1, string2); | |
4908 | else | |
4909 | return *string1 - *string2; | |
4910 | } | |
ccefe4c4 TT |
4911 | } |
4912 | ||
339c13b6 JB |
4913 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
4914 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
4915 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
4916 | ||
4917 | static void | |
40658b94 PH |
4918 | add_nonlocal_symbols (struct obstack *obstackp, const char *name, |
4919 | domain_enum domain, int global, | |
4920 | int is_wild_match) | |
339c13b6 JB |
4921 | { |
4922 | struct objfile *objfile; | |
40658b94 | 4923 | struct match_data data; |
339c13b6 | 4924 | |
6475f2fe | 4925 | memset (&data, 0, sizeof data); |
ccefe4c4 | 4926 | data.obstackp = obstackp; |
339c13b6 | 4927 | |
ccefe4c4 | 4928 | ALL_OBJFILES (objfile) |
40658b94 PH |
4929 | { |
4930 | data.objfile = objfile; | |
4931 | ||
4932 | if (is_wild_match) | |
4933 | objfile->sf->qf->map_matching_symbols (name, domain, objfile, global, | |
4934 | aux_add_nonlocal_symbols, &data, | |
4935 | wild_match, NULL); | |
4936 | else | |
4937 | objfile->sf->qf->map_matching_symbols (name, domain, objfile, global, | |
4938 | aux_add_nonlocal_symbols, &data, | |
4939 | full_match, compare_names); | |
4940 | } | |
4941 | ||
4942 | if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) | |
4943 | { | |
4944 | ALL_OBJFILES (objfile) | |
4945 | { | |
4946 | char *name1 = alloca (strlen (name) + sizeof ("_ada_")); | |
4947 | strcpy (name1, "_ada_"); | |
4948 | strcpy (name1 + sizeof ("_ada_") - 1, name); | |
4949 | data.objfile = objfile; | |
0963b4bd MS |
4950 | objfile->sf->qf->map_matching_symbols (name1, domain, |
4951 | objfile, global, | |
4952 | aux_add_nonlocal_symbols, | |
4953 | &data, | |
40658b94 PH |
4954 | full_match, compare_names); |
4955 | } | |
4956 | } | |
339c13b6 JB |
4957 | } |
4958 | ||
4c4b4cd2 PH |
4959 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing |
4960 | scope and in global scopes, returning the number of matches. Sets | |
6c9353d3 | 4961 | *RESULTS to point to a vector of (SYM,BLOCK) tuples, |
4c4b4cd2 PH |
4962 | indicating the symbols found and the blocks and symbol tables (if |
4963 | any) in which they were found. This vector are transient---good only to | |
4964 | the next call of ada_lookup_symbol_list. Any non-function/non-enumeral | |
4965 | symbol match within the nest of blocks whose innermost member is BLOCK0, | |
4966 | is the one match returned (no other matches in that or | |
4967 | enclosing blocks is returned). If there are any matches in or | |
4968 | surrounding BLOCK0, then these alone are returned. Otherwise, the | |
4969 | search extends to global and file-scope (static) symbol tables. | |
4970 | Names prefixed with "standard__" are handled specially: "standard__" | |
4971 | is first stripped off, and only static and global symbols are searched. */ | |
14f9c5c9 AS |
4972 | |
4973 | int | |
4c4b4cd2 | 4974 | ada_lookup_symbol_list (const char *name0, const struct block *block0, |
76a01679 JB |
4975 | domain_enum namespace, |
4976 | struct ada_symbol_info **results) | |
14f9c5c9 AS |
4977 | { |
4978 | struct symbol *sym; | |
14f9c5c9 | 4979 | struct block *block; |
4c4b4cd2 | 4980 | const char *name; |
4c4b4cd2 | 4981 | int wild_match; |
14f9c5c9 | 4982 | int cacheIfUnique; |
4c4b4cd2 | 4983 | int ndefns; |
14f9c5c9 | 4984 | |
4c4b4cd2 PH |
4985 | obstack_free (&symbol_list_obstack, NULL); |
4986 | obstack_init (&symbol_list_obstack); | |
14f9c5c9 | 4987 | |
14f9c5c9 AS |
4988 | cacheIfUnique = 0; |
4989 | ||
4990 | /* Search specified block and its superiors. */ | |
4991 | ||
4c4b4cd2 PH |
4992 | wild_match = (strstr (name0, "__") == NULL); |
4993 | name = name0; | |
76a01679 JB |
4994 | block = (struct block *) block0; /* FIXME: No cast ought to be |
4995 | needed, but adding const will | |
4996 | have a cascade effect. */ | |
339c13b6 JB |
4997 | |
4998 | /* Special case: If the user specifies a symbol name inside package | |
4999 | Standard, do a non-wild matching of the symbol name without | |
5000 | the "standard__" prefix. This was primarily introduced in order | |
5001 | to allow the user to specifically access the standard exceptions | |
5002 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
5003 | is ambiguous (due to the user defining its own Constraint_Error | |
5004 | entity inside its program). */ | |
4c4b4cd2 PH |
5005 | if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) |
5006 | { | |
5007 | wild_match = 0; | |
5008 | block = NULL; | |
5009 | name = name0 + sizeof ("standard__") - 1; | |
5010 | } | |
5011 | ||
339c13b6 | 5012 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 5013 | |
339c13b6 JB |
5014 | ada_add_local_symbols (&symbol_list_obstack, name, block, namespace, |
5015 | wild_match); | |
4c4b4cd2 | 5016 | if (num_defns_collected (&symbol_list_obstack) > 0) |
14f9c5c9 | 5017 | goto done; |
d2e4a39e | 5018 | |
339c13b6 JB |
5019 | /* No non-global symbols found. Check our cache to see if we have |
5020 | already performed this search before. If we have, then return | |
5021 | the same result. */ | |
5022 | ||
14f9c5c9 | 5023 | cacheIfUnique = 1; |
2570f2b7 | 5024 | if (lookup_cached_symbol (name0, namespace, &sym, &block)) |
4c4b4cd2 PH |
5025 | { |
5026 | if (sym != NULL) | |
2570f2b7 | 5027 | add_defn_to_vec (&symbol_list_obstack, sym, block); |
4c4b4cd2 PH |
5028 | goto done; |
5029 | } | |
14f9c5c9 | 5030 | |
339c13b6 JB |
5031 | /* Search symbols from all global blocks. */ |
5032 | ||
40658b94 PH |
5033 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1, |
5034 | wild_match); | |
d2e4a39e | 5035 | |
4c4b4cd2 | 5036 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 5037 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 5038 | |
4c4b4cd2 | 5039 | if (num_defns_collected (&symbol_list_obstack) == 0) |
40658b94 PH |
5040 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0, |
5041 | wild_match); | |
14f9c5c9 | 5042 | |
4c4b4cd2 PH |
5043 | done: |
5044 | ndefns = num_defns_collected (&symbol_list_obstack); | |
5045 | *results = defns_collected (&symbol_list_obstack, 1); | |
5046 | ||
5047 | ndefns = remove_extra_symbols (*results, ndefns); | |
5048 | ||
d2e4a39e | 5049 | if (ndefns == 0) |
2570f2b7 | 5050 | cache_symbol (name0, namespace, NULL, NULL); |
14f9c5c9 | 5051 | |
4c4b4cd2 | 5052 | if (ndefns == 1 && cacheIfUnique) |
2570f2b7 | 5053 | cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); |
14f9c5c9 | 5054 | |
aeb5907d | 5055 | ndefns = remove_irrelevant_renamings (*results, ndefns, block0); |
14f9c5c9 | 5056 | |
14f9c5c9 AS |
5057 | return ndefns; |
5058 | } | |
5059 | ||
f8eba3c6 TT |
5060 | /* If NAME is the name of an entity, return a string that should |
5061 | be used to look that entity up in Ada units. This string should | |
5062 | be deallocated after use using xfree. | |
5063 | ||
5064 | NAME can have any form that the "break" or "print" commands might | |
5065 | recognize. In other words, it does not have to be the "natural" | |
5066 | name, or the "encoded" name. */ | |
5067 | ||
5068 | char * | |
5069 | ada_name_for_lookup (const char *name) | |
5070 | { | |
5071 | char *canon; | |
5072 | int nlen = strlen (name); | |
5073 | ||
5074 | if (name[0] == '<' && name[nlen - 1] == '>') | |
5075 | { | |
5076 | canon = xmalloc (nlen - 1); | |
5077 | memcpy (canon, name + 1, nlen - 2); | |
5078 | canon[nlen - 2] = '\0'; | |
5079 | } | |
5080 | else | |
5081 | canon = xstrdup (ada_encode (ada_fold_name (name))); | |
5082 | return canon; | |
5083 | } | |
5084 | ||
5085 | /* Implementation of the la_iterate_over_symbols method. */ | |
5086 | ||
5087 | static void | |
5088 | ada_iterate_over_symbols (const struct block *block, | |
5089 | const char *name, domain_enum domain, | |
5090 | int (*callback) (struct symbol *, void *), | |
5091 | void *data) | |
5092 | { | |
5093 | int ndefs, i; | |
5094 | struct ada_symbol_info *results; | |
5095 | ||
5096 | ndefs = ada_lookup_symbol_list (name, block, domain, &results); | |
5097 | for (i = 0; i < ndefs; ++i) | |
5098 | { | |
5099 | if (! (*callback) (results[i].sym, data)) | |
5100 | break; | |
5101 | } | |
5102 | } | |
5103 | ||
d2e4a39e | 5104 | struct symbol * |
aeb5907d | 5105 | ada_lookup_encoded_symbol (const char *name, const struct block *block0, |
21b556f4 | 5106 | domain_enum namespace, struct block **block_found) |
14f9c5c9 | 5107 | { |
4c4b4cd2 | 5108 | struct ada_symbol_info *candidates; |
14f9c5c9 AS |
5109 | int n_candidates; |
5110 | ||
aeb5907d | 5111 | n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates); |
14f9c5c9 AS |
5112 | |
5113 | if (n_candidates == 0) | |
5114 | return NULL; | |
4c4b4cd2 | 5115 | |
aeb5907d JB |
5116 | if (block_found != NULL) |
5117 | *block_found = candidates[0].block; | |
4c4b4cd2 | 5118 | |
21b556f4 | 5119 | return fixup_symbol_section (candidates[0].sym, NULL); |
aeb5907d JB |
5120 | } |
5121 | ||
5122 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
5123 | scope and in global scopes, or NULL if none. NAME is folded and | |
5124 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
0963b4bd | 5125 | choosing the first symbol if there are multiple choices. |
aeb5907d JB |
5126 | *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol |
5127 | table in which the symbol was found (in both cases, these | |
5128 | assignments occur only if the pointers are non-null). */ | |
5129 | struct symbol * | |
5130 | ada_lookup_symbol (const char *name, const struct block *block0, | |
21b556f4 | 5131 | domain_enum namespace, int *is_a_field_of_this) |
aeb5907d JB |
5132 | { |
5133 | if (is_a_field_of_this != NULL) | |
5134 | *is_a_field_of_this = 0; | |
5135 | ||
5136 | return | |
5137 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), | |
21b556f4 | 5138 | block0, namespace, NULL); |
4c4b4cd2 | 5139 | } |
14f9c5c9 | 5140 | |
4c4b4cd2 PH |
5141 | static struct symbol * |
5142 | ada_lookup_symbol_nonlocal (const char *name, | |
76a01679 | 5143 | const struct block *block, |
21b556f4 | 5144 | const domain_enum domain) |
4c4b4cd2 | 5145 | { |
94af9270 | 5146 | return ada_lookup_symbol (name, block_static_block (block), domain, NULL); |
14f9c5c9 AS |
5147 | } |
5148 | ||
5149 | ||
4c4b4cd2 PH |
5150 | /* True iff STR is a possible encoded suffix of a normal Ada name |
5151 | that is to be ignored for matching purposes. Suffixes of parallel | |
5152 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 5153 | are given by any of the regular expressions: |
4c4b4cd2 | 5154 | |
babe1480 JB |
5155 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
5156 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
9ac7f98e | 5157 | TKB [subprogram suffix for task bodies] |
babe1480 | 5158 | _E[0-9]+[bs]$ [protected object entry suffixes] |
61ee279c | 5159 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
5160 | |
5161 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
5162 | match is performed. This sequence is used to differentiate homonyms, | |
5163 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 5164 | |
14f9c5c9 | 5165 | static int |
d2e4a39e | 5166 | is_name_suffix (const char *str) |
14f9c5c9 AS |
5167 | { |
5168 | int k; | |
4c4b4cd2 PH |
5169 | const char *matching; |
5170 | const int len = strlen (str); | |
5171 | ||
babe1480 JB |
5172 | /* Skip optional leading __[0-9]+. */ |
5173 | ||
4c4b4cd2 PH |
5174 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
5175 | { | |
babe1480 JB |
5176 | str += 3; |
5177 | while (isdigit (str[0])) | |
5178 | str += 1; | |
4c4b4cd2 | 5179 | } |
babe1480 JB |
5180 | |
5181 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 5182 | |
babe1480 | 5183 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 5184 | { |
babe1480 | 5185 | matching = str + 1; |
4c4b4cd2 PH |
5186 | while (isdigit (matching[0])) |
5187 | matching += 1; | |
5188 | if (matching[0] == '\0') | |
5189 | return 1; | |
5190 | } | |
5191 | ||
5192 | /* ___[0-9]+ */ | |
babe1480 | 5193 | |
4c4b4cd2 PH |
5194 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
5195 | { | |
5196 | matching = str + 3; | |
5197 | while (isdigit (matching[0])) | |
5198 | matching += 1; | |
5199 | if (matching[0] == '\0') | |
5200 | return 1; | |
5201 | } | |
5202 | ||
9ac7f98e JB |
5203 | /* "TKB" suffixes are used for subprograms implementing task bodies. */ |
5204 | ||
5205 | if (strcmp (str, "TKB") == 0) | |
5206 | return 1; | |
5207 | ||
529cad9c PH |
5208 | #if 0 |
5209 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
5210 | with a N at the end. Unfortunately, the compiler uses the same |
5211 | convention for other internal types it creates. So treating | |
529cad9c | 5212 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
5213 | some regressions. For instance, consider the case of an enumerated |
5214 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
5215 | name ends with N. |
5216 | Having a single character like this as a suffix carrying some | |
0963b4bd | 5217 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
5218 | to be something like "_N" instead. In the meantime, do not do |
5219 | the following check. */ | |
5220 | /* Protected Object Subprograms */ | |
5221 | if (len == 1 && str [0] == 'N') | |
5222 | return 1; | |
5223 | #endif | |
5224 | ||
5225 | /* _E[0-9]+[bs]$ */ | |
5226 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
5227 | { | |
5228 | matching = str + 3; | |
5229 | while (isdigit (matching[0])) | |
5230 | matching += 1; | |
5231 | if ((matching[0] == 'b' || matching[0] == 's') | |
5232 | && matching [1] == '\0') | |
5233 | return 1; | |
5234 | } | |
5235 | ||
4c4b4cd2 PH |
5236 | /* ??? We should not modify STR directly, as we are doing below. This |
5237 | is fine in this case, but may become problematic later if we find | |
5238 | that this alternative did not work, and want to try matching | |
5239 | another one from the begining of STR. Since we modified it, we | |
5240 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
5241 | if (str[0] == 'X') |
5242 | { | |
5243 | str += 1; | |
d2e4a39e | 5244 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
5245 | { |
5246 | if (str[0] != 'n' && str[0] != 'b') | |
5247 | return 0; | |
5248 | str += 1; | |
5249 | } | |
14f9c5c9 | 5250 | } |
babe1480 | 5251 | |
14f9c5c9 AS |
5252 | if (str[0] == '\000') |
5253 | return 1; | |
babe1480 | 5254 | |
d2e4a39e | 5255 | if (str[0] == '_') |
14f9c5c9 AS |
5256 | { |
5257 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 5258 | return 0; |
d2e4a39e | 5259 | if (str[2] == '_') |
4c4b4cd2 | 5260 | { |
61ee279c PH |
5261 | if (strcmp (str + 3, "JM") == 0) |
5262 | return 1; | |
5263 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
5264 | the LJM suffix in favor of the JM one. But we will | |
5265 | still accept LJM as a valid suffix for a reasonable | |
5266 | amount of time, just to allow ourselves to debug programs | |
5267 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
5268 | if (strcmp (str + 3, "LJM") == 0) |
5269 | return 1; | |
5270 | if (str[3] != 'X') | |
5271 | return 0; | |
1265e4aa JB |
5272 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
5273 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
5274 | return 1; |
5275 | if (str[4] == 'R' && str[5] != 'T') | |
5276 | return 1; | |
5277 | return 0; | |
5278 | } | |
5279 | if (!isdigit (str[2])) | |
5280 | return 0; | |
5281 | for (k = 3; str[k] != '\0'; k += 1) | |
5282 | if (!isdigit (str[k]) && str[k] != '_') | |
5283 | return 0; | |
14f9c5c9 AS |
5284 | return 1; |
5285 | } | |
4c4b4cd2 | 5286 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 5287 | { |
4c4b4cd2 PH |
5288 | for (k = 2; str[k] != '\0'; k += 1) |
5289 | if (!isdigit (str[k]) && str[k] != '_') | |
5290 | return 0; | |
14f9c5c9 AS |
5291 | return 1; |
5292 | } | |
5293 | return 0; | |
5294 | } | |
d2e4a39e | 5295 | |
aeb5907d JB |
5296 | /* Return non-zero if the string starting at NAME and ending before |
5297 | NAME_END contains no capital letters. */ | |
529cad9c PH |
5298 | |
5299 | static int | |
5300 | is_valid_name_for_wild_match (const char *name0) | |
5301 | { | |
5302 | const char *decoded_name = ada_decode (name0); | |
5303 | int i; | |
5304 | ||
5823c3ef JB |
5305 | /* If the decoded name starts with an angle bracket, it means that |
5306 | NAME0 does not follow the GNAT encoding format. It should then | |
5307 | not be allowed as a possible wild match. */ | |
5308 | if (decoded_name[0] == '<') | |
5309 | return 0; | |
5310 | ||
529cad9c PH |
5311 | for (i=0; decoded_name[i] != '\0'; i++) |
5312 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
5313 | return 0; | |
5314 | ||
5315 | return 1; | |
5316 | } | |
5317 | ||
73589123 PH |
5318 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
5319 | that could start a simple name. Assumes that *NAMEP points into | |
5320 | the string beginning at NAME0. */ | |
4c4b4cd2 | 5321 | |
14f9c5c9 | 5322 | static int |
73589123 | 5323 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 5324 | { |
73589123 | 5325 | const char *name = *namep; |
5b4ee69b | 5326 | |
5823c3ef | 5327 | while (1) |
14f9c5c9 | 5328 | { |
aa27d0b3 | 5329 | int t0, t1; |
73589123 PH |
5330 | |
5331 | t0 = *name; | |
5332 | if (t0 == '_') | |
5333 | { | |
5334 | t1 = name[1]; | |
5335 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
5336 | { | |
5337 | name += 1; | |
5338 | if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0) | |
5339 | break; | |
5340 | else | |
5341 | name += 1; | |
5342 | } | |
aa27d0b3 JB |
5343 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
5344 | || name[2] == target0)) | |
73589123 PH |
5345 | { |
5346 | name += 2; | |
5347 | break; | |
5348 | } | |
5349 | else | |
5350 | return 0; | |
5351 | } | |
5352 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
5353 | name += 1; | |
5354 | else | |
5823c3ef | 5355 | return 0; |
73589123 PH |
5356 | } |
5357 | ||
5358 | *namep = name; | |
5359 | return 1; | |
5360 | } | |
5361 | ||
5362 | /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any | |
5363 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
5364 | true). Assumes that PATN is a lower-cased Ada simple name. */ | |
5365 | ||
5366 | static int | |
5367 | wild_match (const char *name, const char *patn) | |
5368 | { | |
5369 | const char *p, *n; | |
5370 | const char *name0 = name; | |
5371 | ||
5372 | while (1) | |
5373 | { | |
5374 | const char *match = name; | |
5375 | ||
5376 | if (*name == *patn) | |
5377 | { | |
5378 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
5379 | if (*p != *name) | |
5380 | break; | |
5381 | if (*p == '\0' && is_name_suffix (name)) | |
5382 | return match != name0 && !is_valid_name_for_wild_match (name0); | |
5383 | ||
5384 | if (name[-1] == '_') | |
5385 | name -= 1; | |
5386 | } | |
5387 | if (!advance_wild_match (&name, name0, *patn)) | |
5388 | return 1; | |
96d887e8 | 5389 | } |
96d887e8 PH |
5390 | } |
5391 | ||
40658b94 PH |
5392 | /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from |
5393 | informational suffix. */ | |
5394 | ||
c4d840bd PH |
5395 | static int |
5396 | full_match (const char *sym_name, const char *search_name) | |
5397 | { | |
40658b94 | 5398 | return !match_name (sym_name, search_name, 0); |
c4d840bd PH |
5399 | } |
5400 | ||
5401 | ||
96d887e8 PH |
5402 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
5403 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
0963b4bd | 5404 | (if necessary). If WILD, treat as NAME with a wildcard prefix. |
96d887e8 PH |
5405 | OBJFILE is the section containing BLOCK. |
5406 | SYMTAB is recorded with each symbol added. */ | |
5407 | ||
5408 | static void | |
5409 | ada_add_block_symbols (struct obstack *obstackp, | |
76a01679 | 5410 | struct block *block, const char *name, |
96d887e8 | 5411 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 5412 | int wild) |
96d887e8 PH |
5413 | { |
5414 | struct dict_iterator iter; | |
5415 | int name_len = strlen (name); | |
5416 | /* A matching argument symbol, if any. */ | |
5417 | struct symbol *arg_sym; | |
5418 | /* Set true when we find a matching non-argument symbol. */ | |
5419 | int found_sym; | |
5420 | struct symbol *sym; | |
5421 | ||
5422 | arg_sym = NULL; | |
5423 | found_sym = 0; | |
5424 | if (wild) | |
5425 | { | |
c4d840bd PH |
5426 | for (sym = dict_iter_match_first (BLOCK_DICT (block), name, |
5427 | wild_match, &iter); | |
5428 | sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter)) | |
76a01679 | 5429 | { |
5eeb2539 AR |
5430 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5431 | SYMBOL_DOMAIN (sym), domain) | |
73589123 | 5432 | && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0) |
76a01679 | 5433 | { |
2a2d4dc3 AS |
5434 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
5435 | continue; | |
5436 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5437 | arg_sym = sym; | |
5438 | else | |
5439 | { | |
76a01679 JB |
5440 | found_sym = 1; |
5441 | add_defn_to_vec (obstackp, | |
5442 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 5443 | block); |
76a01679 JB |
5444 | } |
5445 | } | |
5446 | } | |
96d887e8 PH |
5447 | } |
5448 | else | |
5449 | { | |
c4d840bd | 5450 | for (sym = dict_iter_match_first (BLOCK_DICT (block), name, |
40658b94 | 5451 | full_match, &iter); |
c4d840bd | 5452 | sym != NULL; sym = dict_iter_match_next (name, full_match, &iter)) |
76a01679 | 5453 | { |
5eeb2539 AR |
5454 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5455 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 | 5456 | { |
c4d840bd PH |
5457 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5458 | { | |
5459 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5460 | arg_sym = sym; | |
5461 | else | |
2a2d4dc3 | 5462 | { |
c4d840bd PH |
5463 | found_sym = 1; |
5464 | add_defn_to_vec (obstackp, | |
5465 | fixup_symbol_section (sym, objfile), | |
5466 | block); | |
2a2d4dc3 | 5467 | } |
c4d840bd | 5468 | } |
76a01679 JB |
5469 | } |
5470 | } | |
96d887e8 PH |
5471 | } |
5472 | ||
5473 | if (!found_sym && arg_sym != NULL) | |
5474 | { | |
76a01679 JB |
5475 | add_defn_to_vec (obstackp, |
5476 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 5477 | block); |
96d887e8 PH |
5478 | } |
5479 | ||
5480 | if (!wild) | |
5481 | { | |
5482 | arg_sym = NULL; | |
5483 | found_sym = 0; | |
5484 | ||
5485 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5486 | { |
5eeb2539 AR |
5487 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5488 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5489 | { |
5490 | int cmp; | |
5491 | ||
5492 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
5493 | if (cmp == 0) | |
5494 | { | |
5495 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); | |
5496 | if (cmp == 0) | |
5497 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
5498 | name_len); | |
5499 | } | |
5500 | ||
5501 | if (cmp == 0 | |
5502 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
5503 | { | |
2a2d4dc3 AS |
5504 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5505 | { | |
5506 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5507 | arg_sym = sym; | |
5508 | else | |
5509 | { | |
5510 | found_sym = 1; | |
5511 | add_defn_to_vec (obstackp, | |
5512 | fixup_symbol_section (sym, objfile), | |
5513 | block); | |
5514 | } | |
5515 | } | |
76a01679 JB |
5516 | } |
5517 | } | |
76a01679 | 5518 | } |
96d887e8 PH |
5519 | |
5520 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
5521 | They aren't parameters, right? */ | |
5522 | if (!found_sym && arg_sym != NULL) | |
5523 | { | |
5524 | add_defn_to_vec (obstackp, | |
76a01679 | 5525 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 5526 | block); |
96d887e8 PH |
5527 | } |
5528 | } | |
5529 | } | |
5530 | \f | |
41d27058 JB |
5531 | |
5532 | /* Symbol Completion */ | |
5533 | ||
5534 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
5535 | name in a form that's appropriate for the completion. The result | |
5536 | does not need to be deallocated, but is only good until the next call. | |
5537 | ||
5538 | TEXT_LEN is equal to the length of TEXT. | |
5539 | Perform a wild match if WILD_MATCH is set. | |
5540 | ENCODED should be set if TEXT represents the start of a symbol name | |
5541 | in its encoded form. */ | |
5542 | ||
5543 | static const char * | |
5544 | symbol_completion_match (const char *sym_name, | |
5545 | const char *text, int text_len, | |
5546 | int wild_match, int encoded) | |
5547 | { | |
41d27058 JB |
5548 | const int verbatim_match = (text[0] == '<'); |
5549 | int match = 0; | |
5550 | ||
5551 | if (verbatim_match) | |
5552 | { | |
5553 | /* Strip the leading angle bracket. */ | |
5554 | text = text + 1; | |
5555 | text_len--; | |
5556 | } | |
5557 | ||
5558 | /* First, test against the fully qualified name of the symbol. */ | |
5559 | ||
5560 | if (strncmp (sym_name, text, text_len) == 0) | |
5561 | match = 1; | |
5562 | ||
5563 | if (match && !encoded) | |
5564 | { | |
5565 | /* One needed check before declaring a positive match is to verify | |
5566 | that iff we are doing a verbatim match, the decoded version | |
5567 | of the symbol name starts with '<'. Otherwise, this symbol name | |
5568 | is not a suitable completion. */ | |
5569 | const char *sym_name_copy = sym_name; | |
5570 | int has_angle_bracket; | |
5571 | ||
5572 | sym_name = ada_decode (sym_name); | |
5573 | has_angle_bracket = (sym_name[0] == '<'); | |
5574 | match = (has_angle_bracket == verbatim_match); | |
5575 | sym_name = sym_name_copy; | |
5576 | } | |
5577 | ||
5578 | if (match && !verbatim_match) | |
5579 | { | |
5580 | /* When doing non-verbatim match, another check that needs to | |
5581 | be done is to verify that the potentially matching symbol name | |
5582 | does not include capital letters, because the ada-mode would | |
5583 | not be able to understand these symbol names without the | |
5584 | angle bracket notation. */ | |
5585 | const char *tmp; | |
5586 | ||
5587 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
5588 | if (*tmp != '\0') | |
5589 | match = 0; | |
5590 | } | |
5591 | ||
5592 | /* Second: Try wild matching... */ | |
5593 | ||
5594 | if (!match && wild_match) | |
5595 | { | |
5596 | /* Since we are doing wild matching, this means that TEXT | |
5597 | may represent an unqualified symbol name. We therefore must | |
5598 | also compare TEXT against the unqualified name of the symbol. */ | |
5599 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
5600 | ||
5601 | if (strncmp (sym_name, text, text_len) == 0) | |
5602 | match = 1; | |
5603 | } | |
5604 | ||
5605 | /* Finally: If we found a mach, prepare the result to return. */ | |
5606 | ||
5607 | if (!match) | |
5608 | return NULL; | |
5609 | ||
5610 | if (verbatim_match) | |
5611 | sym_name = add_angle_brackets (sym_name); | |
5612 | ||
5613 | if (!encoded) | |
5614 | sym_name = ada_decode (sym_name); | |
5615 | ||
5616 | return sym_name; | |
5617 | } | |
5618 | ||
2ba95b9b JB |
5619 | DEF_VEC_P (char_ptr); |
5620 | ||
41d27058 JB |
5621 | /* A companion function to ada_make_symbol_completion_list(). |
5622 | Check if SYM_NAME represents a symbol which name would be suitable | |
5623 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
5624 | it is appended at the end of the given string vector SV. | |
5625 | ||
5626 | ORIG_TEXT is the string original string from the user command | |
5627 | that needs to be completed. WORD is the entire command on which | |
5628 | completion should be performed. These two parameters are used to | |
5629 | determine which part of the symbol name should be added to the | |
5630 | completion vector. | |
5631 | if WILD_MATCH is set, then wild matching is performed. | |
5632 | ENCODED should be set if TEXT represents a symbol name in its | |
5633 | encoded formed (in which case the completion should also be | |
5634 | encoded). */ | |
5635 | ||
5636 | static void | |
d6565258 | 5637 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
5638 | const char *sym_name, |
5639 | const char *text, int text_len, | |
5640 | const char *orig_text, const char *word, | |
5641 | int wild_match, int encoded) | |
5642 | { | |
5643 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
5644 | wild_match, encoded); | |
5645 | char *completion; | |
5646 | ||
5647 | if (match == NULL) | |
5648 | return; | |
5649 | ||
5650 | /* We found a match, so add the appropriate completion to the given | |
5651 | string vector. */ | |
5652 | ||
5653 | if (word == orig_text) | |
5654 | { | |
5655 | completion = xmalloc (strlen (match) + 5); | |
5656 | strcpy (completion, match); | |
5657 | } | |
5658 | else if (word > orig_text) | |
5659 | { | |
5660 | /* Return some portion of sym_name. */ | |
5661 | completion = xmalloc (strlen (match) + 5); | |
5662 | strcpy (completion, match + (word - orig_text)); | |
5663 | } | |
5664 | else | |
5665 | { | |
5666 | /* Return some of ORIG_TEXT plus sym_name. */ | |
5667 | completion = xmalloc (strlen (match) + (orig_text - word) + 5); | |
5668 | strncpy (completion, word, orig_text - word); | |
5669 | completion[orig_text - word] = '\0'; | |
5670 | strcat (completion, match); | |
5671 | } | |
5672 | ||
d6565258 | 5673 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
5674 | } |
5675 | ||
ccefe4c4 | 5676 | /* An object of this type is passed as the user_data argument to the |
7b08b9eb | 5677 | expand_partial_symbol_names method. */ |
ccefe4c4 TT |
5678 | struct add_partial_datum |
5679 | { | |
5680 | VEC(char_ptr) **completions; | |
5681 | char *text; | |
5682 | int text_len; | |
5683 | char *text0; | |
5684 | char *word; | |
5685 | int wild_match; | |
5686 | int encoded; | |
5687 | }; | |
5688 | ||
7b08b9eb JK |
5689 | /* A callback for expand_partial_symbol_names. */ |
5690 | static int | |
f8eba3c6 TT |
5691 | ada_expand_partial_symbol_name (const struct language_defn *language, |
5692 | const char *name, void *user_data) | |
ccefe4c4 TT |
5693 | { |
5694 | struct add_partial_datum *data = user_data; | |
7b08b9eb JK |
5695 | |
5696 | return symbol_completion_match (name, data->text, data->text_len, | |
5697 | data->wild_match, data->encoded) != NULL; | |
ccefe4c4 TT |
5698 | } |
5699 | ||
41d27058 JB |
5700 | /* Return a list of possible symbol names completing TEXT0. The list |
5701 | is NULL terminated. WORD is the entire command on which completion | |
5702 | is made. */ | |
5703 | ||
5704 | static char ** | |
5705 | ada_make_symbol_completion_list (char *text0, char *word) | |
5706 | { | |
5707 | char *text; | |
5708 | int text_len; | |
5709 | int wild_match; | |
5710 | int encoded; | |
2ba95b9b | 5711 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 JB |
5712 | struct symbol *sym; |
5713 | struct symtab *s; | |
41d27058 JB |
5714 | struct minimal_symbol *msymbol; |
5715 | struct objfile *objfile; | |
5716 | struct block *b, *surrounding_static_block = 0; | |
5717 | int i; | |
5718 | struct dict_iterator iter; | |
5719 | ||
5720 | if (text0[0] == '<') | |
5721 | { | |
5722 | text = xstrdup (text0); | |
5723 | make_cleanup (xfree, text); | |
5724 | text_len = strlen (text); | |
5725 | wild_match = 0; | |
5726 | encoded = 1; | |
5727 | } | |
5728 | else | |
5729 | { | |
5730 | text = xstrdup (ada_encode (text0)); | |
5731 | make_cleanup (xfree, text); | |
5732 | text_len = strlen (text); | |
5733 | for (i = 0; i < text_len; i++) | |
5734 | text[i] = tolower (text[i]); | |
5735 | ||
5736 | encoded = (strstr (text0, "__") != NULL); | |
5737 | /* If the name contains a ".", then the user is entering a fully | |
5738 | qualified entity name, and the match must not be done in wild | |
5739 | mode. Similarly, if the user wants to complete what looks like | |
5740 | an encoded name, the match must not be done in wild mode. */ | |
5741 | wild_match = (strchr (text0, '.') == NULL && !encoded); | |
5742 | } | |
5743 | ||
5744 | /* First, look at the partial symtab symbols. */ | |
41d27058 | 5745 | { |
ccefe4c4 TT |
5746 | struct add_partial_datum data; |
5747 | ||
5748 | data.completions = &completions; | |
5749 | data.text = text; | |
5750 | data.text_len = text_len; | |
5751 | data.text0 = text0; | |
5752 | data.word = word; | |
5753 | data.wild_match = wild_match; | |
5754 | data.encoded = encoded; | |
7b08b9eb | 5755 | expand_partial_symbol_names (ada_expand_partial_symbol_name, &data); |
41d27058 JB |
5756 | } |
5757 | ||
5758 | /* At this point scan through the misc symbol vectors and add each | |
5759 | symbol you find to the list. Eventually we want to ignore | |
5760 | anything that isn't a text symbol (everything else will be | |
5761 | handled by the psymtab code above). */ | |
5762 | ||
5763 | ALL_MSYMBOLS (objfile, msymbol) | |
5764 | { | |
5765 | QUIT; | |
d6565258 | 5766 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol), |
41d27058 JB |
5767 | text, text_len, text0, word, wild_match, encoded); |
5768 | } | |
5769 | ||
5770 | /* Search upwards from currently selected frame (so that we can | |
5771 | complete on local vars. */ | |
5772 | ||
5773 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
5774 | { | |
5775 | if (!BLOCK_SUPERBLOCK (b)) | |
5776 | surrounding_static_block = b; /* For elmin of dups */ | |
5777 | ||
5778 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5779 | { | |
d6565258 | 5780 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5781 | text, text_len, text0, word, |
5782 | wild_match, encoded); | |
5783 | } | |
5784 | } | |
5785 | ||
5786 | /* Go through the symtabs and check the externs and statics for | |
5787 | symbols which match. */ | |
5788 | ||
5789 | ALL_SYMTABS (objfile, s) | |
5790 | { | |
5791 | QUIT; | |
5792 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
5793 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5794 | { | |
d6565258 | 5795 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5796 | text, text_len, text0, word, |
5797 | wild_match, encoded); | |
5798 | } | |
5799 | } | |
5800 | ||
5801 | ALL_SYMTABS (objfile, s) | |
5802 | { | |
5803 | QUIT; | |
5804 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
5805 | /* Don't do this block twice. */ | |
5806 | if (b == surrounding_static_block) | |
5807 | continue; | |
5808 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5809 | { | |
d6565258 | 5810 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5811 | text, text_len, text0, word, |
5812 | wild_match, encoded); | |
5813 | } | |
5814 | } | |
5815 | ||
5816 | /* Append the closing NULL entry. */ | |
2ba95b9b | 5817 | VEC_safe_push (char_ptr, completions, NULL); |
41d27058 | 5818 | |
2ba95b9b JB |
5819 | /* Make a copy of the COMPLETIONS VEC before we free it, and then |
5820 | return the copy. It's unfortunate that we have to make a copy | |
5821 | of an array that we're about to destroy, but there is nothing much | |
5822 | we can do about it. Fortunately, it's typically not a very large | |
5823 | array. */ | |
5824 | { | |
5825 | const size_t completions_size = | |
5826 | VEC_length (char_ptr, completions) * sizeof (char *); | |
dc19db01 | 5827 | char **result = xmalloc (completions_size); |
2ba95b9b JB |
5828 | |
5829 | memcpy (result, VEC_address (char_ptr, completions), completions_size); | |
5830 | ||
5831 | VEC_free (char_ptr, completions); | |
5832 | return result; | |
5833 | } | |
41d27058 JB |
5834 | } |
5835 | ||
963a6417 | 5836 | /* Field Access */ |
96d887e8 | 5837 | |
73fb9985 JB |
5838 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
5839 | for tagged types. */ | |
5840 | ||
5841 | static int | |
5842 | ada_is_dispatch_table_ptr_type (struct type *type) | |
5843 | { | |
5844 | char *name; | |
5845 | ||
5846 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
5847 | return 0; | |
5848 | ||
5849 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
5850 | if (name == NULL) | |
5851 | return 0; | |
5852 | ||
5853 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
5854 | } | |
5855 | ||
963a6417 PH |
5856 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
5857 | to be invisible to users. */ | |
96d887e8 | 5858 | |
963a6417 PH |
5859 | int |
5860 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 5861 | { |
963a6417 PH |
5862 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
5863 | return 1; | |
73fb9985 JB |
5864 | |
5865 | /* Check the name of that field. */ | |
5866 | { | |
5867 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
5868 | ||
5869 | /* Anonymous field names should not be printed. | |
5870 | brobecker/2007-02-20: I don't think this can actually happen | |
5871 | but we don't want to print the value of annonymous fields anyway. */ | |
5872 | if (name == NULL) | |
5873 | return 1; | |
5874 | ||
5875 | /* A field named "_parent" is internally generated by GNAT for | |
5876 | tagged types, and should not be printed either. */ | |
5877 | if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) | |
5878 | return 1; | |
5879 | } | |
5880 | ||
5881 | /* If this is the dispatch table of a tagged type, then ignore. */ | |
5882 | if (ada_is_tagged_type (type, 1) | |
5883 | && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))) | |
5884 | return 1; | |
5885 | ||
5886 | /* Not a special field, so it should not be ignored. */ | |
5887 | return 0; | |
963a6417 | 5888 | } |
96d887e8 | 5889 | |
963a6417 | 5890 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 5891 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 5892 | |
963a6417 PH |
5893 | int |
5894 | ada_is_tagged_type (struct type *type, int refok) | |
5895 | { | |
5896 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
5897 | } | |
96d887e8 | 5898 | |
963a6417 | 5899 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 5900 | |
963a6417 PH |
5901 | int |
5902 | ada_is_tag_type (struct type *type) | |
5903 | { | |
5904 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) | |
5905 | return 0; | |
5906 | else | |
96d887e8 | 5907 | { |
963a6417 | 5908 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 5909 | |
963a6417 PH |
5910 | return (name != NULL |
5911 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 5912 | } |
96d887e8 PH |
5913 | } |
5914 | ||
963a6417 | 5915 | /* The type of the tag on VAL. */ |
76a01679 | 5916 | |
963a6417 PH |
5917 | struct type * |
5918 | ada_tag_type (struct value *val) | |
96d887e8 | 5919 | { |
df407dfe | 5920 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 5921 | } |
96d887e8 | 5922 | |
963a6417 | 5923 | /* The value of the tag on VAL. */ |
96d887e8 | 5924 | |
963a6417 PH |
5925 | struct value * |
5926 | ada_value_tag (struct value *val) | |
5927 | { | |
03ee6b2e | 5928 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
5929 | } |
5930 | ||
963a6417 PH |
5931 | /* The value of the tag on the object of type TYPE whose contents are |
5932 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 5933 | ADDRESS. */ |
96d887e8 | 5934 | |
963a6417 | 5935 | static struct value * |
10a2c479 | 5936 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 5937 | const gdb_byte *valaddr, |
963a6417 | 5938 | CORE_ADDR address) |
96d887e8 | 5939 | { |
b5385fc0 | 5940 | int tag_byte_offset; |
963a6417 | 5941 | struct type *tag_type; |
5b4ee69b | 5942 | |
963a6417 | 5943 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 5944 | NULL, NULL, NULL)) |
96d887e8 | 5945 | { |
fc1a4b47 | 5946 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
5947 | ? NULL |
5948 | : valaddr + tag_byte_offset); | |
963a6417 | 5949 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 5950 | |
963a6417 | 5951 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 5952 | } |
963a6417 PH |
5953 | return NULL; |
5954 | } | |
96d887e8 | 5955 | |
963a6417 PH |
5956 | static struct type * |
5957 | type_from_tag (struct value *tag) | |
5958 | { | |
5959 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 5960 | |
963a6417 PH |
5961 | if (type_name != NULL) |
5962 | return ada_find_any_type (ada_encode (type_name)); | |
5963 | return NULL; | |
5964 | } | |
96d887e8 | 5965 | |
963a6417 PH |
5966 | struct tag_args |
5967 | { | |
5968 | struct value *tag; | |
5969 | char *name; | |
5970 | }; | |
4c4b4cd2 | 5971 | |
529cad9c PH |
5972 | |
5973 | static int ada_tag_name_1 (void *); | |
5974 | static int ada_tag_name_2 (struct tag_args *); | |
5975 | ||
4c4b4cd2 | 5976 | /* Wrapper function used by ada_tag_name. Given a struct tag_args* |
0963b4bd | 5977 | value ARGS, sets ARGS->name to the tag name of ARGS->tag. |
4c4b4cd2 PH |
5978 | The value stored in ARGS->name is valid until the next call to |
5979 | ada_tag_name_1. */ | |
5980 | ||
5981 | static int | |
5982 | ada_tag_name_1 (void *args0) | |
5983 | { | |
5984 | struct tag_args *args = (struct tag_args *) args0; | |
5985 | static char name[1024]; | |
76a01679 | 5986 | char *p; |
4c4b4cd2 | 5987 | struct value *val; |
5b4ee69b | 5988 | |
4c4b4cd2 | 5989 | args->name = NULL; |
03ee6b2e | 5990 | val = ada_value_struct_elt (args->tag, "tsd", 1); |
529cad9c PH |
5991 | if (val == NULL) |
5992 | return ada_tag_name_2 (args); | |
03ee6b2e | 5993 | val = ada_value_struct_elt (val, "expanded_name", 1); |
529cad9c PH |
5994 | if (val == NULL) |
5995 | return 0; | |
5996 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5997 | for (p = name; *p != '\0'; p += 1) | |
5998 | if (isalpha (*p)) | |
5999 | *p = tolower (*p); | |
6000 | args->name = name; | |
6001 | return 0; | |
6002 | } | |
6003 | ||
e802dbe0 JB |
6004 | /* Return the "ada__tags__type_specific_data" type. */ |
6005 | ||
6006 | static struct type * | |
6007 | ada_get_tsd_type (struct inferior *inf) | |
6008 | { | |
6009 | struct ada_inferior_data *data = get_ada_inferior_data (inf); | |
6010 | ||
6011 | if (data->tsd_type == 0) | |
6012 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
6013 | return data->tsd_type; | |
6014 | } | |
6015 | ||
529cad9c PH |
6016 | /* Utility function for ada_tag_name_1 that tries the second |
6017 | representation for the dispatch table (in which there is no | |
6018 | explicit 'tsd' field in the referent of the tag pointer, and instead | |
0963b4bd | 6019 | the tsd pointer is stored just before the dispatch table. */ |
529cad9c PH |
6020 | |
6021 | static int | |
6022 | ada_tag_name_2 (struct tag_args *args) | |
6023 | { | |
6024 | struct type *info_type; | |
6025 | static char name[1024]; | |
6026 | char *p; | |
6027 | struct value *val, *valp; | |
6028 | ||
6029 | args->name = NULL; | |
e802dbe0 | 6030 | info_type = ada_get_tsd_type (current_inferior()); |
529cad9c PH |
6031 | if (info_type == NULL) |
6032 | return 0; | |
6033 | info_type = lookup_pointer_type (lookup_pointer_type (info_type)); | |
6034 | valp = value_cast (info_type, args->tag); | |
6035 | if (valp == NULL) | |
6036 | return 0; | |
2497b498 | 6037 | val = value_ind (value_ptradd (valp, -1)); |
4c4b4cd2 PH |
6038 | if (val == NULL) |
6039 | return 0; | |
03ee6b2e | 6040 | val = ada_value_struct_elt (val, "expanded_name", 1); |
4c4b4cd2 PH |
6041 | if (val == NULL) |
6042 | return 0; | |
6043 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
6044 | for (p = name; *p != '\0'; p += 1) | |
6045 | if (isalpha (*p)) | |
6046 | *p = tolower (*p); | |
6047 | args->name = name; | |
6048 | return 0; | |
6049 | } | |
6050 | ||
6051 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
e802dbe0 | 6052 | a C string. */ |
4c4b4cd2 PH |
6053 | |
6054 | const char * | |
6055 | ada_tag_name (struct value *tag) | |
6056 | { | |
6057 | struct tag_args args; | |
5b4ee69b | 6058 | |
df407dfe | 6059 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 6060 | return NULL; |
76a01679 | 6061 | args.tag = tag; |
4c4b4cd2 PH |
6062 | args.name = NULL; |
6063 | catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL); | |
6064 | return args.name; | |
6065 | } | |
6066 | ||
6067 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 6068 | |
d2e4a39e | 6069 | struct type * |
ebf56fd3 | 6070 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
6071 | { |
6072 | int i; | |
6073 | ||
61ee279c | 6074 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6075 | |
6076 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
6077 | return NULL; | |
6078 | ||
6079 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6080 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
6081 | { |
6082 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
6083 | ||
6084 | /* If the _parent field is a pointer, then dereference it. */ | |
6085 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
6086 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
6087 | /* If there is a parallel XVS type, get the actual base type. */ | |
6088 | parent_type = ada_get_base_type (parent_type); | |
6089 | ||
6090 | return ada_check_typedef (parent_type); | |
6091 | } | |
14f9c5c9 AS |
6092 | |
6093 | return NULL; | |
6094 | } | |
6095 | ||
4c4b4cd2 PH |
6096 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
6097 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
6098 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6099 | |
6100 | int | |
ebf56fd3 | 6101 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 6102 | { |
61ee279c | 6103 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 6104 | |
4c4b4cd2 PH |
6105 | return (name != NULL |
6106 | && (strncmp (name, "PARENT", 6) == 0 | |
6107 | || strncmp (name, "_parent", 7) == 0)); | |
14f9c5c9 AS |
6108 | } |
6109 | ||
4c4b4cd2 | 6110 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 6111 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 6112 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 6113 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 6114 | structures. */ |
14f9c5c9 AS |
6115 | |
6116 | int | |
ebf56fd3 | 6117 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 6118 | { |
d2e4a39e | 6119 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6120 | |
d2e4a39e | 6121 | return (name != NULL |
4c4b4cd2 PH |
6122 | && (strncmp (name, "PARENT", 6) == 0 |
6123 | || strcmp (name, "REP") == 0 | |
6124 | || strncmp (name, "_parent", 7) == 0 | |
6125 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
14f9c5c9 AS |
6126 | } |
6127 | ||
4c4b4cd2 PH |
6128 | /* True iff field number FIELD_NUM of structure or union type TYPE |
6129 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
6130 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6131 | |
6132 | int | |
ebf56fd3 | 6133 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 6134 | { |
d2e4a39e | 6135 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 6136 | |
14f9c5c9 | 6137 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 6138 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
6139 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
6140 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
6141 | } |
6142 | ||
6143 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 6144 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
6145 | returns the type of the controlling discriminant for the variant. |
6146 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 6147 | |
d2e4a39e | 6148 | struct type * |
ebf56fd3 | 6149 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 6150 | { |
d2e4a39e | 6151 | char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 6152 | |
7c964f07 | 6153 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 AS |
6154 | } |
6155 | ||
4c4b4cd2 | 6156 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 6157 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 6158 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
6159 | |
6160 | int | |
ebf56fd3 | 6161 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 6162 | { |
d2e4a39e | 6163 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6164 | |
14f9c5c9 AS |
6165 | return (name != NULL && name[0] == 'O'); |
6166 | } | |
6167 | ||
6168 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
6169 | returns the name of the discriminant controlling the variant. |
6170 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 6171 | |
d2e4a39e | 6172 | char * |
ebf56fd3 | 6173 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 6174 | { |
d2e4a39e | 6175 | static char *result = NULL; |
14f9c5c9 | 6176 | static size_t result_len = 0; |
d2e4a39e AS |
6177 | struct type *type; |
6178 | const char *name; | |
6179 | const char *discrim_end; | |
6180 | const char *discrim_start; | |
14f9c5c9 AS |
6181 | |
6182 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
6183 | type = TYPE_TARGET_TYPE (type0); | |
6184 | else | |
6185 | type = type0; | |
6186 | ||
6187 | name = ada_type_name (type); | |
6188 | ||
6189 | if (name == NULL || name[0] == '\000') | |
6190 | return ""; | |
6191 | ||
6192 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
6193 | discrim_end -= 1) | |
6194 | { | |
4c4b4cd2 PH |
6195 | if (strncmp (discrim_end, "___XVN", 6) == 0) |
6196 | break; | |
14f9c5c9 AS |
6197 | } |
6198 | if (discrim_end == name) | |
6199 | return ""; | |
6200 | ||
d2e4a39e | 6201 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
6202 | discrim_start -= 1) |
6203 | { | |
d2e4a39e | 6204 | if (discrim_start == name + 1) |
4c4b4cd2 | 6205 | return ""; |
76a01679 | 6206 | if ((discrim_start > name + 3 |
4c4b4cd2 PH |
6207 | && strncmp (discrim_start - 3, "___", 3) == 0) |
6208 | || discrim_start[-1] == '.') | |
6209 | break; | |
14f9c5c9 AS |
6210 | } |
6211 | ||
6212 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
6213 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 6214 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
6215 | return result; |
6216 | } | |
6217 | ||
4c4b4cd2 PH |
6218 | /* Scan STR for a subtype-encoded number, beginning at position K. |
6219 | Put the position of the character just past the number scanned in | |
6220 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
6221 | Return 1 if there was a valid number at the given position, and 0 | |
6222 | otherwise. A "subtype-encoded" number consists of the absolute value | |
6223 | in decimal, followed by the letter 'm' to indicate a negative number. | |
6224 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
6225 | |
6226 | int | |
d2e4a39e | 6227 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
6228 | { |
6229 | ULONGEST RU; | |
6230 | ||
d2e4a39e | 6231 | if (!isdigit (str[k])) |
14f9c5c9 AS |
6232 | return 0; |
6233 | ||
4c4b4cd2 | 6234 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 6235 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 6236 | LONGEST. */ |
14f9c5c9 AS |
6237 | RU = 0; |
6238 | while (isdigit (str[k])) | |
6239 | { | |
d2e4a39e | 6240 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
6241 | k += 1; |
6242 | } | |
6243 | ||
d2e4a39e | 6244 | if (str[k] == 'm') |
14f9c5c9 AS |
6245 | { |
6246 | if (R != NULL) | |
4c4b4cd2 | 6247 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
6248 | k += 1; |
6249 | } | |
6250 | else if (R != NULL) | |
6251 | *R = (LONGEST) RU; | |
6252 | ||
4c4b4cd2 | 6253 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
6254 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
6255 | number representable as a LONGEST (although either would probably work | |
6256 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 6257 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
6258 | |
6259 | if (new_k != NULL) | |
6260 | *new_k = k; | |
6261 | return 1; | |
6262 | } | |
6263 | ||
4c4b4cd2 PH |
6264 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
6265 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
6266 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 6267 | |
d2e4a39e | 6268 | int |
ebf56fd3 | 6269 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 6270 | { |
d2e4a39e | 6271 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
6272 | int p; |
6273 | ||
6274 | p = 0; | |
6275 | while (1) | |
6276 | { | |
d2e4a39e | 6277 | switch (name[p]) |
4c4b4cd2 PH |
6278 | { |
6279 | case '\0': | |
6280 | return 0; | |
6281 | case 'S': | |
6282 | { | |
6283 | LONGEST W; | |
5b4ee69b | 6284 | |
4c4b4cd2 PH |
6285 | if (!ada_scan_number (name, p + 1, &W, &p)) |
6286 | return 0; | |
6287 | if (val == W) | |
6288 | return 1; | |
6289 | break; | |
6290 | } | |
6291 | case 'R': | |
6292 | { | |
6293 | LONGEST L, U; | |
5b4ee69b | 6294 | |
4c4b4cd2 PH |
6295 | if (!ada_scan_number (name, p + 1, &L, &p) |
6296 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
6297 | return 0; | |
6298 | if (val >= L && val <= U) | |
6299 | return 1; | |
6300 | break; | |
6301 | } | |
6302 | case 'O': | |
6303 | return 1; | |
6304 | default: | |
6305 | return 0; | |
6306 | } | |
6307 | } | |
6308 | } | |
6309 | ||
0963b4bd | 6310 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
6311 | |
6312 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
6313 | ARG_TYPE, extract and return the value of one of its (non-static) | |
6314 | fields. FIELDNO says which field. Differs from value_primitive_field | |
6315 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 6316 | |
4c4b4cd2 | 6317 | static struct value * |
d2e4a39e | 6318 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 6319 | struct type *arg_type) |
14f9c5c9 | 6320 | { |
14f9c5c9 AS |
6321 | struct type *type; |
6322 | ||
61ee279c | 6323 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
6324 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
6325 | ||
4c4b4cd2 | 6326 | /* Handle packed fields. */ |
14f9c5c9 AS |
6327 | |
6328 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
6329 | { | |
6330 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
6331 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 6332 | |
0fd88904 | 6333 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
6334 | offset + bit_pos / 8, |
6335 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
6336 | } |
6337 | else | |
6338 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
6339 | } | |
6340 | ||
52ce6436 PH |
6341 | /* Find field with name NAME in object of type TYPE. If found, |
6342 | set the following for each argument that is non-null: | |
6343 | - *FIELD_TYPE_P to the field's type; | |
6344 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
6345 | an object of that type; | |
6346 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
6347 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
6348 | 0 otherwise; | |
6349 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
6350 | fields up to but not including the desired field, or by the total | |
6351 | number of fields if not found. A NULL value of NAME never | |
6352 | matches; the function just counts visible fields in this case. | |
6353 | ||
0963b4bd | 6354 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 6355 | |
4c4b4cd2 | 6356 | static int |
76a01679 JB |
6357 | find_struct_field (char *name, struct type *type, int offset, |
6358 | struct type **field_type_p, | |
52ce6436 PH |
6359 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
6360 | int *index_p) | |
4c4b4cd2 PH |
6361 | { |
6362 | int i; | |
6363 | ||
61ee279c | 6364 | type = ada_check_typedef (type); |
76a01679 | 6365 | |
52ce6436 PH |
6366 | if (field_type_p != NULL) |
6367 | *field_type_p = NULL; | |
6368 | if (byte_offset_p != NULL) | |
d5d6fca5 | 6369 | *byte_offset_p = 0; |
52ce6436 PH |
6370 | if (bit_offset_p != NULL) |
6371 | *bit_offset_p = 0; | |
6372 | if (bit_size_p != NULL) | |
6373 | *bit_size_p = 0; | |
6374 | ||
6375 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
6376 | { |
6377 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
6378 | int fld_offset = offset + bit_pos / 8; | |
6379 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
76a01679 | 6380 | |
4c4b4cd2 PH |
6381 | if (t_field_name == NULL) |
6382 | continue; | |
6383 | ||
52ce6436 | 6384 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
6385 | { |
6386 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 6387 | |
52ce6436 PH |
6388 | if (field_type_p != NULL) |
6389 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
6390 | if (byte_offset_p != NULL) | |
6391 | *byte_offset_p = fld_offset; | |
6392 | if (bit_offset_p != NULL) | |
6393 | *bit_offset_p = bit_pos % 8; | |
6394 | if (bit_size_p != NULL) | |
6395 | *bit_size_p = bit_size; | |
76a01679 JB |
6396 | return 1; |
6397 | } | |
4c4b4cd2 PH |
6398 | else if (ada_is_wrapper_field (type, i)) |
6399 | { | |
52ce6436 PH |
6400 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
6401 | field_type_p, byte_offset_p, bit_offset_p, | |
6402 | bit_size_p, index_p)) | |
76a01679 JB |
6403 | return 1; |
6404 | } | |
4c4b4cd2 PH |
6405 | else if (ada_is_variant_part (type, i)) |
6406 | { | |
52ce6436 PH |
6407 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
6408 | fixed type?? */ | |
4c4b4cd2 | 6409 | int j; |
52ce6436 PH |
6410 | struct type *field_type |
6411 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 6412 | |
52ce6436 | 6413 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6414 | { |
76a01679 JB |
6415 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
6416 | fld_offset | |
6417 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6418 | field_type_p, byte_offset_p, | |
52ce6436 | 6419 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 6420 | return 1; |
4c4b4cd2 PH |
6421 | } |
6422 | } | |
52ce6436 PH |
6423 | else if (index_p != NULL) |
6424 | *index_p += 1; | |
4c4b4cd2 PH |
6425 | } |
6426 | return 0; | |
6427 | } | |
6428 | ||
0963b4bd | 6429 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 6430 | |
52ce6436 PH |
6431 | static int |
6432 | num_visible_fields (struct type *type) | |
6433 | { | |
6434 | int n; | |
5b4ee69b | 6435 | |
52ce6436 PH |
6436 | n = 0; |
6437 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
6438 | return n; | |
6439 | } | |
14f9c5c9 | 6440 | |
4c4b4cd2 | 6441 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
6442 | and search in it assuming it has (class) type TYPE. |
6443 | If found, return value, else return NULL. | |
6444 | ||
4c4b4cd2 | 6445 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 6446 | |
4c4b4cd2 | 6447 | static struct value * |
d2e4a39e | 6448 | ada_search_struct_field (char *name, struct value *arg, int offset, |
4c4b4cd2 | 6449 | struct type *type) |
14f9c5c9 AS |
6450 | { |
6451 | int i; | |
14f9c5c9 | 6452 | |
5b4ee69b | 6453 | type = ada_check_typedef (type); |
52ce6436 | 6454 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 AS |
6455 | { |
6456 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
6457 | ||
6458 | if (t_field_name == NULL) | |
4c4b4cd2 | 6459 | continue; |
14f9c5c9 AS |
6460 | |
6461 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 6462 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
6463 | |
6464 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 6465 | { |
0963b4bd | 6466 | struct value *v = /* Do not let indent join lines here. */ |
06d5cf63 JB |
6467 | ada_search_struct_field (name, arg, |
6468 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6469 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 6470 | |
4c4b4cd2 PH |
6471 | if (v != NULL) |
6472 | return v; | |
6473 | } | |
14f9c5c9 AS |
6474 | |
6475 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 6476 | { |
0963b4bd | 6477 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 6478 | int j; |
5b4ee69b MS |
6479 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
6480 | i)); | |
4c4b4cd2 PH |
6481 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
6482 | ||
52ce6436 | 6483 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6484 | { |
0963b4bd MS |
6485 | struct value *v = ada_search_struct_field /* Force line |
6486 | break. */ | |
06d5cf63 JB |
6487 | (name, arg, |
6488 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6489 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 6490 | |
4c4b4cd2 PH |
6491 | if (v != NULL) |
6492 | return v; | |
6493 | } | |
6494 | } | |
14f9c5c9 AS |
6495 | } |
6496 | return NULL; | |
6497 | } | |
d2e4a39e | 6498 | |
52ce6436 PH |
6499 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
6500 | int, struct type *); | |
6501 | ||
6502 | ||
6503 | /* Return field #INDEX in ARG, where the index is that returned by | |
6504 | * find_struct_field through its INDEX_P argument. Adjust the address | |
6505 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 6506 | * If found, return value, else return NULL. */ |
52ce6436 PH |
6507 | |
6508 | static struct value * | |
6509 | ada_index_struct_field (int index, struct value *arg, int offset, | |
6510 | struct type *type) | |
6511 | { | |
6512 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
6513 | } | |
6514 | ||
6515 | ||
6516 | /* Auxiliary function for ada_index_struct_field. Like | |
6517 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 6518 | * *INDEX_P. */ |
52ce6436 PH |
6519 | |
6520 | static struct value * | |
6521 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
6522 | struct type *type) | |
6523 | { | |
6524 | int i; | |
6525 | type = ada_check_typedef (type); | |
6526 | ||
6527 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6528 | { | |
6529 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
6530 | continue; | |
6531 | else if (ada_is_wrapper_field (type, i)) | |
6532 | { | |
0963b4bd | 6533 | struct value *v = /* Do not let indent join lines here. */ |
52ce6436 PH |
6534 | ada_index_struct_field_1 (index_p, arg, |
6535 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6536 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 6537 | |
52ce6436 PH |
6538 | if (v != NULL) |
6539 | return v; | |
6540 | } | |
6541 | ||
6542 | else if (ada_is_variant_part (type, i)) | |
6543 | { | |
6544 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
0963b4bd | 6545 | find_struct_field. */ |
52ce6436 PH |
6546 | error (_("Cannot assign this kind of variant record")); |
6547 | } | |
6548 | else if (*index_p == 0) | |
6549 | return ada_value_primitive_field (arg, offset, i, type); | |
6550 | else | |
6551 | *index_p -= 1; | |
6552 | } | |
6553 | return NULL; | |
6554 | } | |
6555 | ||
4c4b4cd2 PH |
6556 | /* Given ARG, a value of type (pointer or reference to a)* |
6557 | structure/union, extract the component named NAME from the ultimate | |
6558 | target structure/union and return it as a value with its | |
f5938064 | 6559 | appropriate type. |
14f9c5c9 | 6560 | |
4c4b4cd2 PH |
6561 | The routine searches for NAME among all members of the structure itself |
6562 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
6563 | (e.g., '_parent'). |
6564 | ||
03ee6b2e PH |
6565 | If NO_ERR, then simply return NULL in case of error, rather than |
6566 | calling error. */ | |
14f9c5c9 | 6567 | |
d2e4a39e | 6568 | struct value * |
03ee6b2e | 6569 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 6570 | { |
4c4b4cd2 | 6571 | struct type *t, *t1; |
d2e4a39e | 6572 | struct value *v; |
14f9c5c9 | 6573 | |
4c4b4cd2 | 6574 | v = NULL; |
df407dfe | 6575 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
6576 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6577 | { | |
6578 | t1 = TYPE_TARGET_TYPE (t); | |
6579 | if (t1 == NULL) | |
03ee6b2e | 6580 | goto BadValue; |
61ee279c | 6581 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6582 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 6583 | { |
994b9211 | 6584 | arg = coerce_ref (arg); |
76a01679 JB |
6585 | t = t1; |
6586 | } | |
4c4b4cd2 | 6587 | } |
14f9c5c9 | 6588 | |
4c4b4cd2 PH |
6589 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
6590 | { | |
6591 | t1 = TYPE_TARGET_TYPE (t); | |
6592 | if (t1 == NULL) | |
03ee6b2e | 6593 | goto BadValue; |
61ee279c | 6594 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6595 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
6596 | { |
6597 | arg = value_ind (arg); | |
6598 | t = t1; | |
6599 | } | |
4c4b4cd2 | 6600 | else |
76a01679 | 6601 | break; |
4c4b4cd2 | 6602 | } |
14f9c5c9 | 6603 | |
4c4b4cd2 | 6604 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 6605 | goto BadValue; |
14f9c5c9 | 6606 | |
4c4b4cd2 PH |
6607 | if (t1 == t) |
6608 | v = ada_search_struct_field (name, arg, 0, t); | |
6609 | else | |
6610 | { | |
6611 | int bit_offset, bit_size, byte_offset; | |
6612 | struct type *field_type; | |
6613 | CORE_ADDR address; | |
6614 | ||
76a01679 JB |
6615 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
6616 | address = value_as_address (arg); | |
4c4b4cd2 | 6617 | else |
0fd88904 | 6618 | address = unpack_pointer (t, value_contents (arg)); |
14f9c5c9 | 6619 | |
1ed6ede0 | 6620 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
6621 | if (find_struct_field (name, t1, 0, |
6622 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 6623 | &bit_size, NULL)) |
76a01679 JB |
6624 | { |
6625 | if (bit_size != 0) | |
6626 | { | |
714e53ab PH |
6627 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6628 | arg = ada_coerce_ref (arg); | |
6629 | else | |
6630 | arg = ada_value_ind (arg); | |
76a01679 JB |
6631 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
6632 | bit_offset, bit_size, | |
6633 | field_type); | |
6634 | } | |
6635 | else | |
f5938064 | 6636 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
6637 | } |
6638 | } | |
6639 | ||
03ee6b2e PH |
6640 | if (v != NULL || no_err) |
6641 | return v; | |
6642 | else | |
323e0a4a | 6643 | error (_("There is no member named %s."), name); |
14f9c5c9 | 6644 | |
03ee6b2e PH |
6645 | BadValue: |
6646 | if (no_err) | |
6647 | return NULL; | |
6648 | else | |
0963b4bd MS |
6649 | error (_("Attempt to extract a component of " |
6650 | "a value that is not a record.")); | |
14f9c5c9 AS |
6651 | } |
6652 | ||
6653 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
6654 | If DISPP is non-null, add its byte displacement from the beginning of a |
6655 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
6656 | work for packed fields). |
6657 | ||
6658 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 6659 | followed by "___". |
14f9c5c9 | 6660 | |
0963b4bd | 6661 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
6662 | be a (pointer or reference)+ to a struct or union, and the |
6663 | ultimate target type will be searched. | |
14f9c5c9 AS |
6664 | |
6665 | Looks recursively into variant clauses and parent types. | |
6666 | ||
4c4b4cd2 PH |
6667 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
6668 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 6669 | |
4c4b4cd2 | 6670 | static struct type * |
76a01679 JB |
6671 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
6672 | int noerr, int *dispp) | |
14f9c5c9 AS |
6673 | { |
6674 | int i; | |
6675 | ||
6676 | if (name == NULL) | |
6677 | goto BadName; | |
6678 | ||
76a01679 | 6679 | if (refok && type != NULL) |
4c4b4cd2 PH |
6680 | while (1) |
6681 | { | |
61ee279c | 6682 | type = ada_check_typedef (type); |
76a01679 JB |
6683 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
6684 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
6685 | break; | |
6686 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 6687 | } |
14f9c5c9 | 6688 | |
76a01679 | 6689 | if (type == NULL |
1265e4aa JB |
6690 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
6691 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 6692 | { |
4c4b4cd2 | 6693 | if (noerr) |
76a01679 | 6694 | return NULL; |
4c4b4cd2 | 6695 | else |
76a01679 JB |
6696 | { |
6697 | target_terminal_ours (); | |
6698 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6699 | if (type == NULL) |
6700 | error (_("Type (null) is not a structure or union type")); | |
6701 | else | |
6702 | { | |
6703 | /* XXX: type_sprint */ | |
6704 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6705 | type_print (type, "", gdb_stderr, -1); | |
6706 | error (_(" is not a structure or union type")); | |
6707 | } | |
76a01679 | 6708 | } |
14f9c5c9 AS |
6709 | } |
6710 | ||
6711 | type = to_static_fixed_type (type); | |
6712 | ||
6713 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6714 | { | |
6715 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
6716 | struct type *t; | |
6717 | int disp; | |
d2e4a39e | 6718 | |
14f9c5c9 | 6719 | if (t_field_name == NULL) |
4c4b4cd2 | 6720 | continue; |
14f9c5c9 AS |
6721 | |
6722 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
6723 | { |
6724 | if (dispp != NULL) | |
6725 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
61ee279c | 6726 | return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 | 6727 | } |
14f9c5c9 AS |
6728 | |
6729 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
6730 | { |
6731 | disp = 0; | |
6732 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
6733 | 0, 1, &disp); | |
6734 | if (t != NULL) | |
6735 | { | |
6736 | if (dispp != NULL) | |
6737 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6738 | return t; | |
6739 | } | |
6740 | } | |
14f9c5c9 AS |
6741 | |
6742 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
6743 | { |
6744 | int j; | |
5b4ee69b MS |
6745 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
6746 | i)); | |
4c4b4cd2 PH |
6747 | |
6748 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
6749 | { | |
b1f33ddd JB |
6750 | /* FIXME pnh 2008/01/26: We check for a field that is |
6751 | NOT wrapped in a struct, since the compiler sometimes | |
6752 | generates these for unchecked variant types. Revisit | |
0963b4bd | 6753 | if the compiler changes this practice. */ |
b1f33ddd | 6754 | char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
4c4b4cd2 | 6755 | disp = 0; |
b1f33ddd JB |
6756 | if (v_field_name != NULL |
6757 | && field_name_match (v_field_name, name)) | |
6758 | t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j)); | |
6759 | else | |
0963b4bd MS |
6760 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, |
6761 | j), | |
b1f33ddd JB |
6762 | name, 0, 1, &disp); |
6763 | ||
4c4b4cd2 PH |
6764 | if (t != NULL) |
6765 | { | |
6766 | if (dispp != NULL) | |
6767 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6768 | return t; | |
6769 | } | |
6770 | } | |
6771 | } | |
14f9c5c9 AS |
6772 | |
6773 | } | |
6774 | ||
6775 | BadName: | |
d2e4a39e | 6776 | if (!noerr) |
14f9c5c9 AS |
6777 | { |
6778 | target_terminal_ours (); | |
6779 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6780 | if (name == NULL) |
6781 | { | |
6782 | /* XXX: type_sprint */ | |
6783 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6784 | type_print (type, "", gdb_stderr, -1); | |
6785 | error (_(" has no component named <null>")); | |
6786 | } | |
6787 | else | |
6788 | { | |
6789 | /* XXX: type_sprint */ | |
6790 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6791 | type_print (type, "", gdb_stderr, -1); | |
6792 | error (_(" has no component named %s"), name); | |
6793 | } | |
14f9c5c9 AS |
6794 | } |
6795 | ||
6796 | return NULL; | |
6797 | } | |
6798 | ||
b1f33ddd JB |
6799 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6800 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
6801 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 6802 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
6803 | |
6804 | static int | |
6805 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
6806 | { | |
6807 | char *discrim_name = ada_variant_discrim_name (var_type); | |
5b4ee69b | 6808 | |
b1f33ddd JB |
6809 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) |
6810 | == NULL); | |
6811 | } | |
6812 | ||
6813 | ||
14f9c5c9 AS |
6814 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6815 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
6816 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
6817 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 6818 | |
d2e4a39e | 6819 | int |
ebf56fd3 | 6820 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 6821 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
6822 | { |
6823 | int others_clause; | |
6824 | int i; | |
d2e4a39e | 6825 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
6826 | struct value *outer; |
6827 | struct value *discrim; | |
14f9c5c9 AS |
6828 | LONGEST discrim_val; |
6829 | ||
0c281816 JB |
6830 | outer = value_from_contents_and_address (outer_type, outer_valaddr, 0); |
6831 | discrim = ada_value_struct_elt (outer, discrim_name, 1); | |
6832 | if (discrim == NULL) | |
14f9c5c9 | 6833 | return -1; |
0c281816 | 6834 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
6835 | |
6836 | others_clause = -1; | |
6837 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
6838 | { | |
6839 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 6840 | others_clause = i; |
14f9c5c9 | 6841 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 6842 | return i; |
14f9c5c9 AS |
6843 | } |
6844 | ||
6845 | return others_clause; | |
6846 | } | |
d2e4a39e | 6847 | \f |
14f9c5c9 AS |
6848 | |
6849 | ||
4c4b4cd2 | 6850 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
6851 | |
6852 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
6853 | (i.e., a size that is not statically recorded in the debugging | |
6854 | data) does not accurately reflect the size or layout of the value. | |
6855 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 6856 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
6857 | |
6858 | /* There is a subtle and tricky problem here. In general, we cannot | |
6859 | determine the size of dynamic records without its data. However, | |
6860 | the 'struct value' data structure, which GDB uses to represent | |
6861 | quantities in the inferior process (the target), requires the size | |
6862 | of the type at the time of its allocation in order to reserve space | |
6863 | for GDB's internal copy of the data. That's why the | |
6864 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 6865 | rather than struct value*s. |
14f9c5c9 AS |
6866 | |
6867 | However, GDB's internal history variables ($1, $2, etc.) are | |
6868 | struct value*s containing internal copies of the data that are not, in | |
6869 | general, the same as the data at their corresponding addresses in | |
6870 | the target. Fortunately, the types we give to these values are all | |
6871 | conventional, fixed-size types (as per the strategy described | |
6872 | above), so that we don't usually have to perform the | |
6873 | 'to_fixed_xxx_type' conversions to look at their values. | |
6874 | Unfortunately, there is one exception: if one of the internal | |
6875 | history variables is an array whose elements are unconstrained | |
6876 | records, then we will need to create distinct fixed types for each | |
6877 | element selected. */ | |
6878 | ||
6879 | /* The upshot of all of this is that many routines take a (type, host | |
6880 | address, target address) triple as arguments to represent a value. | |
6881 | The host address, if non-null, is supposed to contain an internal | |
6882 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 6883 | target at the target address. */ |
14f9c5c9 AS |
6884 | |
6885 | /* Assuming that VAL0 represents a pointer value, the result of | |
6886 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 6887 | dynamic-sized types. */ |
14f9c5c9 | 6888 | |
d2e4a39e AS |
6889 | struct value * |
6890 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 6891 | { |
d2e4a39e | 6892 | struct value *val = unwrap_value (value_ind (val0)); |
5b4ee69b | 6893 | |
4c4b4cd2 | 6894 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
6895 | } |
6896 | ||
6897 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
6898 | qualifiers on VAL0. */ |
6899 | ||
d2e4a39e AS |
6900 | static struct value * |
6901 | ada_coerce_ref (struct value *val0) | |
6902 | { | |
df407dfe | 6903 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
6904 | { |
6905 | struct value *val = val0; | |
5b4ee69b | 6906 | |
994b9211 | 6907 | val = coerce_ref (val); |
d2e4a39e | 6908 | val = unwrap_value (val); |
4c4b4cd2 | 6909 | return ada_to_fixed_value (val); |
d2e4a39e AS |
6910 | } |
6911 | else | |
14f9c5c9 AS |
6912 | return val0; |
6913 | } | |
6914 | ||
6915 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 6916 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
6917 | |
6918 | static unsigned int | |
ebf56fd3 | 6919 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
6920 | { |
6921 | return (off + alignment - 1) & ~(alignment - 1); | |
6922 | } | |
6923 | ||
4c4b4cd2 | 6924 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
6925 | |
6926 | static unsigned int | |
ebf56fd3 | 6927 | field_alignment (struct type *type, int f) |
14f9c5c9 | 6928 | { |
d2e4a39e | 6929 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 6930 | int len; |
14f9c5c9 AS |
6931 | int align_offset; |
6932 | ||
64a1bf19 JB |
6933 | /* The field name should never be null, unless the debugging information |
6934 | is somehow malformed. In this case, we assume the field does not | |
6935 | require any alignment. */ | |
6936 | if (name == NULL) | |
6937 | return 1; | |
6938 | ||
6939 | len = strlen (name); | |
6940 | ||
4c4b4cd2 PH |
6941 | if (!isdigit (name[len - 1])) |
6942 | return 1; | |
14f9c5c9 | 6943 | |
d2e4a39e | 6944 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
6945 | align_offset = len - 2; |
6946 | else | |
6947 | align_offset = len - 1; | |
6948 | ||
4c4b4cd2 | 6949 | if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) |
14f9c5c9 AS |
6950 | return TARGET_CHAR_BIT; |
6951 | ||
4c4b4cd2 PH |
6952 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
6953 | } | |
6954 | ||
6955 | /* Find a symbol named NAME. Ignores ambiguity. */ | |
6956 | ||
6957 | struct symbol * | |
6958 | ada_find_any_symbol (const char *name) | |
6959 | { | |
6960 | struct symbol *sym; | |
6961 | ||
6962 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
6963 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
6964 | return sym; | |
6965 | ||
6966 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); | |
6967 | return sym; | |
14f9c5c9 AS |
6968 | } |
6969 | ||
dddfab26 UW |
6970 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
6971 | solely for types defined by debug info, it will not search the GDB | |
6972 | primitive types. */ | |
4c4b4cd2 | 6973 | |
d2e4a39e | 6974 | struct type * |
ebf56fd3 | 6975 | ada_find_any_type (const char *name) |
14f9c5c9 | 6976 | { |
4c4b4cd2 | 6977 | struct symbol *sym = ada_find_any_symbol (name); |
14f9c5c9 | 6978 | |
14f9c5c9 | 6979 | if (sym != NULL) |
dddfab26 | 6980 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 6981 | |
dddfab26 | 6982 | return NULL; |
14f9c5c9 AS |
6983 | } |
6984 | ||
aeb5907d JB |
6985 | /* Given NAME and an associated BLOCK, search all symbols for |
6986 | NAME suffixed with "___XR", which is the ``renaming'' symbol | |
4c4b4cd2 PH |
6987 | associated to NAME. Return this symbol if found, return |
6988 | NULL otherwise. */ | |
6989 | ||
6990 | struct symbol * | |
6991 | ada_find_renaming_symbol (const char *name, struct block *block) | |
aeb5907d JB |
6992 | { |
6993 | struct symbol *sym; | |
6994 | ||
6995 | sym = find_old_style_renaming_symbol (name, block); | |
6996 | ||
6997 | if (sym != NULL) | |
6998 | return sym; | |
6999 | ||
0963b4bd | 7000 | /* Not right yet. FIXME pnh 7/20/2007. */ |
aeb5907d JB |
7001 | sym = ada_find_any_symbol (name); |
7002 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) | |
7003 | return sym; | |
7004 | else | |
7005 | return NULL; | |
7006 | } | |
7007 | ||
7008 | static struct symbol * | |
7009 | find_old_style_renaming_symbol (const char *name, struct block *block) | |
4c4b4cd2 | 7010 | { |
7f0df278 | 7011 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
7012 | char *rename; |
7013 | ||
7014 | if (function_sym != NULL) | |
7015 | { | |
7016 | /* If the symbol is defined inside a function, NAME is not fully | |
7017 | qualified. This means we need to prepend the function name | |
7018 | as well as adding the ``___XR'' suffix to build the name of | |
7019 | the associated renaming symbol. */ | |
7020 | char *function_name = SYMBOL_LINKAGE_NAME (function_sym); | |
529cad9c PH |
7021 | /* Function names sometimes contain suffixes used |
7022 | for instance to qualify nested subprograms. When building | |
7023 | the XR type name, we need to make sure that this suffix is | |
7024 | not included. So do not include any suffix in the function | |
7025 | name length below. */ | |
69fadcdf | 7026 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
7027 | const int rename_len = function_name_len + 2 /* "__" */ |
7028 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 7029 | |
529cad9c | 7030 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
7031 | ada_remove_trailing_digits (function_name, &function_name_len); |
7032 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
7033 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 7034 | |
4c4b4cd2 PH |
7035 | /* Library-level functions are a special case, as GNAT adds |
7036 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 7037 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
7038 | have this prefix, so we need to skip this prefix if present. */ |
7039 | if (function_name_len > 5 /* "_ada_" */ | |
7040 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
7041 | { |
7042 | function_name += 5; | |
7043 | function_name_len -= 5; | |
7044 | } | |
4c4b4cd2 PH |
7045 | |
7046 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
7047 | strncpy (rename, function_name, function_name_len); |
7048 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
7049 | "__%s___XR", name); | |
4c4b4cd2 PH |
7050 | } |
7051 | else | |
7052 | { | |
7053 | const int rename_len = strlen (name) + 6; | |
5b4ee69b | 7054 | |
4c4b4cd2 | 7055 | rename = (char *) alloca (rename_len * sizeof (char)); |
88c15c34 | 7056 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
7057 | } |
7058 | ||
7059 | return ada_find_any_symbol (rename); | |
7060 | } | |
7061 | ||
14f9c5c9 | 7062 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 7063 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 7064 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
7065 | otherwise return 0. */ |
7066 | ||
14f9c5c9 | 7067 | int |
d2e4a39e | 7068 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
7069 | { |
7070 | if (type1 == NULL) | |
7071 | return 1; | |
7072 | else if (type0 == NULL) | |
7073 | return 0; | |
7074 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
7075 | return 1; | |
7076 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
7077 | return 0; | |
4c4b4cd2 PH |
7078 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
7079 | return 1; | |
ad82864c | 7080 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 7081 | return 1; |
4c4b4cd2 PH |
7082 | else if (ada_is_array_descriptor_type (type0) |
7083 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 7084 | return 1; |
aeb5907d JB |
7085 | else |
7086 | { | |
7087 | const char *type0_name = type_name_no_tag (type0); | |
7088 | const char *type1_name = type_name_no_tag (type1); | |
7089 | ||
7090 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
7091 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
7092 | return 1; | |
7093 | } | |
14f9c5c9 AS |
7094 | return 0; |
7095 | } | |
7096 | ||
7097 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
7098 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
7099 | ||
d2e4a39e AS |
7100 | char * |
7101 | ada_type_name (struct type *type) | |
14f9c5c9 | 7102 | { |
d2e4a39e | 7103 | if (type == NULL) |
14f9c5c9 AS |
7104 | return NULL; |
7105 | else if (TYPE_NAME (type) != NULL) | |
7106 | return TYPE_NAME (type); | |
7107 | else | |
7108 | return TYPE_TAG_NAME (type); | |
7109 | } | |
7110 | ||
b4ba55a1 JB |
7111 | /* Search the list of "descriptive" types associated to TYPE for a type |
7112 | whose name is NAME. */ | |
7113 | ||
7114 | static struct type * | |
7115 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
7116 | { | |
7117 | struct type *result; | |
7118 | ||
7119 | /* If there no descriptive-type info, then there is no parallel type | |
7120 | to be found. */ | |
7121 | if (!HAVE_GNAT_AUX_INFO (type)) | |
7122 | return NULL; | |
7123 | ||
7124 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
7125 | while (result != NULL) | |
7126 | { | |
7127 | char *result_name = ada_type_name (result); | |
7128 | ||
7129 | if (result_name == NULL) | |
7130 | { | |
7131 | warning (_("unexpected null name on descriptive type")); | |
7132 | return NULL; | |
7133 | } | |
7134 | ||
7135 | /* If the names match, stop. */ | |
7136 | if (strcmp (result_name, name) == 0) | |
7137 | break; | |
7138 | ||
7139 | /* Otherwise, look at the next item on the list, if any. */ | |
7140 | if (HAVE_GNAT_AUX_INFO (result)) | |
7141 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
7142 | else | |
7143 | result = NULL; | |
7144 | } | |
7145 | ||
7146 | /* If we didn't find a match, see whether this is a packed array. With | |
7147 | older compilers, the descriptive type information is either absent or | |
7148 | irrelevant when it comes to packed arrays so the above lookup fails. | |
7149 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 7150 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
7151 | return ada_find_any_type (name); |
7152 | ||
7153 | return result; | |
7154 | } | |
7155 | ||
7156 | /* Find a parallel type to TYPE with the specified NAME, using the | |
7157 | descriptive type taken from the debugging information, if available, | |
7158 | and otherwise using the (slower) name-based method. */ | |
7159 | ||
7160 | static struct type * | |
7161 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
7162 | { | |
7163 | struct type *result = NULL; | |
7164 | ||
7165 | if (HAVE_GNAT_AUX_INFO (type)) | |
7166 | result = find_parallel_type_by_descriptive_type (type, name); | |
7167 | else | |
7168 | result = ada_find_any_type (name); | |
7169 | ||
7170 | return result; | |
7171 | } | |
7172 | ||
7173 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 7174 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 7175 | |
d2e4a39e | 7176 | struct type * |
ebf56fd3 | 7177 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 7178 | { |
b4ba55a1 | 7179 | char *name, *typename = ada_type_name (type); |
14f9c5c9 | 7180 | int len; |
d2e4a39e | 7181 | |
14f9c5c9 AS |
7182 | if (typename == NULL) |
7183 | return NULL; | |
7184 | ||
7185 | len = strlen (typename); | |
7186 | ||
b4ba55a1 | 7187 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 AS |
7188 | |
7189 | strcpy (name, typename); | |
7190 | strcpy (name + len, suffix); | |
7191 | ||
b4ba55a1 | 7192 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
7193 | } |
7194 | ||
14f9c5c9 | 7195 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 7196 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 7197 | |
d2e4a39e AS |
7198 | static struct type * |
7199 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 7200 | { |
61ee279c | 7201 | type = ada_check_typedef (type); |
14f9c5c9 AS |
7202 | |
7203 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 7204 | || ada_type_name (type) == NULL) |
14f9c5c9 | 7205 | return NULL; |
d2e4a39e | 7206 | else |
14f9c5c9 AS |
7207 | { |
7208 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 7209 | |
4c4b4cd2 PH |
7210 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
7211 | return type; | |
14f9c5c9 | 7212 | else |
4c4b4cd2 | 7213 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
7214 | } |
7215 | } | |
7216 | ||
7217 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 7218 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 7219 | |
d2e4a39e AS |
7220 | static int |
7221 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
7222 | { |
7223 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 7224 | |
d2e4a39e | 7225 | return name != NULL |
14f9c5c9 AS |
7226 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
7227 | && strstr (name, "___XVL") != NULL; | |
7228 | } | |
7229 | ||
4c4b4cd2 PH |
7230 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
7231 | represent a variant record type. */ | |
14f9c5c9 | 7232 | |
d2e4a39e | 7233 | static int |
4c4b4cd2 | 7234 | variant_field_index (struct type *type) |
14f9c5c9 AS |
7235 | { |
7236 | int f; | |
7237 | ||
4c4b4cd2 PH |
7238 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
7239 | return -1; | |
7240 | ||
7241 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
7242 | { | |
7243 | if (ada_is_variant_part (type, f)) | |
7244 | return f; | |
7245 | } | |
7246 | return -1; | |
14f9c5c9 AS |
7247 | } |
7248 | ||
4c4b4cd2 PH |
7249 | /* A record type with no fields. */ |
7250 | ||
d2e4a39e | 7251 | static struct type * |
e9bb382b | 7252 | empty_record (struct type *template) |
14f9c5c9 | 7253 | { |
e9bb382b | 7254 | struct type *type = alloc_type_copy (template); |
5b4ee69b | 7255 | |
14f9c5c9 AS |
7256 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
7257 | TYPE_NFIELDS (type) = 0; | |
7258 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 7259 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
7260 | TYPE_NAME (type) = "<empty>"; |
7261 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
7262 | TYPE_LENGTH (type) = 0; |
7263 | return type; | |
7264 | } | |
7265 | ||
7266 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
7267 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
7268 | the beginning of this section) VAL according to GNAT conventions. | |
7269 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 7270 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
7271 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
7272 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 7273 | of the variant. |
14f9c5c9 | 7274 | |
4c4b4cd2 PH |
7275 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
7276 | length are not statically known are discarded. As a consequence, | |
7277 | VALADDR, ADDRESS and DVAL0 are ignored. | |
7278 | ||
7279 | NOTE: Limitations: For now, we assume that dynamic fields and | |
7280 | variants occupy whole numbers of bytes. However, they need not be | |
7281 | byte-aligned. */ | |
7282 | ||
7283 | struct type * | |
10a2c479 | 7284 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 7285 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
7286 | CORE_ADDR address, struct value *dval0, |
7287 | int keep_dynamic_fields) | |
14f9c5c9 | 7288 | { |
d2e4a39e AS |
7289 | struct value *mark = value_mark (); |
7290 | struct value *dval; | |
7291 | struct type *rtype; | |
14f9c5c9 | 7292 | int nfields, bit_len; |
4c4b4cd2 | 7293 | int variant_field; |
14f9c5c9 | 7294 | long off; |
d94e4f4f | 7295 | int fld_bit_len; |
14f9c5c9 AS |
7296 | int f; |
7297 | ||
4c4b4cd2 PH |
7298 | /* Compute the number of fields in this record type that are going |
7299 | to be processed: unless keep_dynamic_fields, this includes only | |
7300 | fields whose position and length are static will be processed. */ | |
7301 | if (keep_dynamic_fields) | |
7302 | nfields = TYPE_NFIELDS (type); | |
7303 | else | |
7304 | { | |
7305 | nfields = 0; | |
76a01679 | 7306 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
7307 | && !ada_is_variant_part (type, nfields) |
7308 | && !is_dynamic_field (type, nfields)) | |
7309 | nfields++; | |
7310 | } | |
7311 | ||
e9bb382b | 7312 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
7313 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
7314 | INIT_CPLUS_SPECIFIC (rtype); | |
7315 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 7316 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
7317 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
7318 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
7319 | TYPE_NAME (rtype) = ada_type_name (type); | |
7320 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7321 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 7322 | |
d2e4a39e AS |
7323 | off = 0; |
7324 | bit_len = 0; | |
4c4b4cd2 PH |
7325 | variant_field = -1; |
7326 | ||
14f9c5c9 AS |
7327 | for (f = 0; f < nfields; f += 1) |
7328 | { | |
6c038f32 PH |
7329 | off = align_value (off, field_alignment (type, f)) |
7330 | + TYPE_FIELD_BITPOS (type, f); | |
14f9c5c9 | 7331 | TYPE_FIELD_BITPOS (rtype, f) = off; |
d2e4a39e | 7332 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 7333 | |
d2e4a39e | 7334 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
7335 | { |
7336 | variant_field = f; | |
d94e4f4f | 7337 | fld_bit_len = 0; |
4c4b4cd2 | 7338 | } |
14f9c5c9 | 7339 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 7340 | { |
284614f0 JB |
7341 | const gdb_byte *field_valaddr = valaddr; |
7342 | CORE_ADDR field_address = address; | |
7343 | struct type *field_type = | |
7344 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
7345 | ||
4c4b4cd2 | 7346 | if (dval0 == NULL) |
b5304971 JG |
7347 | { |
7348 | /* rtype's length is computed based on the run-time | |
7349 | value of discriminants. If the discriminants are not | |
7350 | initialized, the type size may be completely bogus and | |
0963b4bd | 7351 | GDB may fail to allocate a value for it. So check the |
b5304971 JG |
7352 | size first before creating the value. */ |
7353 | check_size (rtype); | |
7354 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7355 | } | |
4c4b4cd2 PH |
7356 | else |
7357 | dval = dval0; | |
7358 | ||
284614f0 JB |
7359 | /* If the type referenced by this field is an aligner type, we need |
7360 | to unwrap that aligner type, because its size might not be set. | |
7361 | Keeping the aligner type would cause us to compute the wrong | |
7362 | size for this field, impacting the offset of the all the fields | |
7363 | that follow this one. */ | |
7364 | if (ada_is_aligner_type (field_type)) | |
7365 | { | |
7366 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
7367 | ||
7368 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
7369 | field_address = cond_offset_target (field_address, field_offset); | |
7370 | field_type = ada_aligned_type (field_type); | |
7371 | } | |
7372 | ||
7373 | field_valaddr = cond_offset_host (field_valaddr, | |
7374 | off / TARGET_CHAR_BIT); | |
7375 | field_address = cond_offset_target (field_address, | |
7376 | off / TARGET_CHAR_BIT); | |
7377 | ||
7378 | /* Get the fixed type of the field. Note that, in this case, | |
7379 | we do not want to get the real type out of the tag: if | |
7380 | the current field is the parent part of a tagged record, | |
7381 | we will get the tag of the object. Clearly wrong: the real | |
7382 | type of the parent is not the real type of the child. We | |
7383 | would end up in an infinite loop. */ | |
7384 | field_type = ada_get_base_type (field_type); | |
7385 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
7386 | field_address, dval, 0); | |
27f2a97b JB |
7387 | /* If the field size is already larger than the maximum |
7388 | object size, then the record itself will necessarily | |
7389 | be larger than the maximum object size. We need to make | |
7390 | this check now, because the size might be so ridiculously | |
7391 | large (due to an uninitialized variable in the inferior) | |
7392 | that it would cause an overflow when adding it to the | |
7393 | record size. */ | |
7394 | check_size (field_type); | |
284614f0 JB |
7395 | |
7396 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 | 7397 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
7398 | /* The multiplication can potentially overflow. But because |
7399 | the field length has been size-checked just above, and | |
7400 | assuming that the maximum size is a reasonable value, | |
7401 | an overflow should not happen in practice. So rather than | |
7402 | adding overflow recovery code to this already complex code, | |
7403 | we just assume that it's not going to happen. */ | |
d94e4f4f | 7404 | fld_bit_len = |
4c4b4cd2 PH |
7405 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; |
7406 | } | |
14f9c5c9 | 7407 | else |
4c4b4cd2 | 7408 | { |
9f0dec2d JB |
7409 | struct type *field_type = TYPE_FIELD_TYPE (type, f); |
7410 | ||
720d1a40 JB |
7411 | /* If our field is a typedef type (most likely a typedef of |
7412 | a fat pointer, encoding an array access), then we need to | |
7413 | look at its target type to determine its characteristics. | |
7414 | In particular, we would miscompute the field size if we took | |
7415 | the size of the typedef (zero), instead of the size of | |
7416 | the target type. */ | |
7417 | if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) | |
7418 | field_type = ada_typedef_target_type (field_type); | |
7419 | ||
9f0dec2d | 7420 | TYPE_FIELD_TYPE (rtype, f) = field_type; |
4c4b4cd2 PH |
7421 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
7422 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
d94e4f4f | 7423 | fld_bit_len = |
4c4b4cd2 PH |
7424 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
7425 | else | |
d94e4f4f | 7426 | fld_bit_len = |
9f0dec2d | 7427 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; |
4c4b4cd2 | 7428 | } |
14f9c5c9 | 7429 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 7430 | bit_len = off + fld_bit_len; |
d94e4f4f | 7431 | off += fld_bit_len; |
4c4b4cd2 PH |
7432 | TYPE_LENGTH (rtype) = |
7433 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 7434 | } |
4c4b4cd2 PH |
7435 | |
7436 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 7437 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
7438 | the record. This can happen in the presence of representation |
7439 | clauses. */ | |
7440 | if (variant_field >= 0) | |
7441 | { | |
7442 | struct type *branch_type; | |
7443 | ||
7444 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
7445 | ||
7446 | if (dval0 == NULL) | |
7447 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7448 | else | |
7449 | dval = dval0; | |
7450 | ||
7451 | branch_type = | |
7452 | to_fixed_variant_branch_type | |
7453 | (TYPE_FIELD_TYPE (type, variant_field), | |
7454 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
7455 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
7456 | if (branch_type == NULL) | |
7457 | { | |
7458 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
7459 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
7460 | TYPE_NFIELDS (rtype) -= 1; | |
7461 | } | |
7462 | else | |
7463 | { | |
7464 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
7465 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7466 | fld_bit_len = | |
7467 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
7468 | TARGET_CHAR_BIT; | |
7469 | if (off + fld_bit_len > bit_len) | |
7470 | bit_len = off + fld_bit_len; | |
7471 | TYPE_LENGTH (rtype) = | |
7472 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
7473 | } | |
7474 | } | |
7475 | ||
714e53ab PH |
7476 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
7477 | should contain the alignment of that record, which should be a strictly | |
7478 | positive value. If null or negative, then something is wrong, most | |
7479 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 7480 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
7481 | the current RTYPE length might be good enough for our purposes. */ |
7482 | if (TYPE_LENGTH (type) <= 0) | |
7483 | { | |
323e0a4a AC |
7484 | if (TYPE_NAME (rtype)) |
7485 | warning (_("Invalid type size for `%s' detected: %d."), | |
7486 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
7487 | else | |
7488 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
7489 | TYPE_LENGTH (type)); | |
714e53ab PH |
7490 | } |
7491 | else | |
7492 | { | |
7493 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
7494 | TYPE_LENGTH (type)); | |
7495 | } | |
14f9c5c9 AS |
7496 | |
7497 | value_free_to_mark (mark); | |
d2e4a39e | 7498 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 7499 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7500 | return rtype; |
7501 | } | |
7502 | ||
4c4b4cd2 PH |
7503 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
7504 | of 1. */ | |
14f9c5c9 | 7505 | |
d2e4a39e | 7506 | static struct type * |
fc1a4b47 | 7507 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
7508 | CORE_ADDR address, struct value *dval0) |
7509 | { | |
7510 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
7511 | address, dval0, 1); | |
7512 | } | |
7513 | ||
7514 | /* An ordinary record type in which ___XVL-convention fields and | |
7515 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
7516 | static approximations, containing all possible fields. Uses | |
7517 | no runtime values. Useless for use in values, but that's OK, | |
7518 | since the results are used only for type determinations. Works on both | |
7519 | structs and unions. Representation note: to save space, we memorize | |
7520 | the result of this function in the TYPE_TARGET_TYPE of the | |
7521 | template type. */ | |
7522 | ||
7523 | static struct type * | |
7524 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
7525 | { |
7526 | struct type *type; | |
7527 | int nfields; | |
7528 | int f; | |
7529 | ||
4c4b4cd2 PH |
7530 | if (TYPE_TARGET_TYPE (type0) != NULL) |
7531 | return TYPE_TARGET_TYPE (type0); | |
7532 | ||
7533 | nfields = TYPE_NFIELDS (type0); | |
7534 | type = type0; | |
14f9c5c9 AS |
7535 | |
7536 | for (f = 0; f < nfields; f += 1) | |
7537 | { | |
61ee279c | 7538 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); |
4c4b4cd2 | 7539 | struct type *new_type; |
14f9c5c9 | 7540 | |
4c4b4cd2 PH |
7541 | if (is_dynamic_field (type0, f)) |
7542 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
14f9c5c9 | 7543 | else |
f192137b | 7544 | new_type = static_unwrap_type (field_type); |
4c4b4cd2 PH |
7545 | if (type == type0 && new_type != field_type) |
7546 | { | |
e9bb382b | 7547 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); |
4c4b4cd2 PH |
7548 | TYPE_CODE (type) = TYPE_CODE (type0); |
7549 | INIT_CPLUS_SPECIFIC (type); | |
7550 | TYPE_NFIELDS (type) = nfields; | |
7551 | TYPE_FIELDS (type) = (struct field *) | |
7552 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
7553 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
7554 | sizeof (struct field) * nfields); | |
7555 | TYPE_NAME (type) = ada_type_name (type0); | |
7556 | TYPE_TAG_NAME (type) = NULL; | |
876cecd0 | 7557 | TYPE_FIXED_INSTANCE (type) = 1; |
4c4b4cd2 PH |
7558 | TYPE_LENGTH (type) = 0; |
7559 | } | |
7560 | TYPE_FIELD_TYPE (type, f) = new_type; | |
7561 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
14f9c5c9 | 7562 | } |
14f9c5c9 AS |
7563 | return type; |
7564 | } | |
7565 | ||
4c4b4cd2 | 7566 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
7567 | whose address in memory is ADDRESS, returns a revision of TYPE, |
7568 | which should be a non-dynamic-sized record, in which the variant | |
7569 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
7570 | for discriminant values in DVAL0, which can be NULL if the record |
7571 | contains the necessary discriminant values. */ | |
7572 | ||
d2e4a39e | 7573 | static struct type * |
fc1a4b47 | 7574 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 7575 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 7576 | { |
d2e4a39e | 7577 | struct value *mark = value_mark (); |
4c4b4cd2 | 7578 | struct value *dval; |
d2e4a39e | 7579 | struct type *rtype; |
14f9c5c9 AS |
7580 | struct type *branch_type; |
7581 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 7582 | int variant_field = variant_field_index (type); |
14f9c5c9 | 7583 | |
4c4b4cd2 | 7584 | if (variant_field == -1) |
14f9c5c9 AS |
7585 | return type; |
7586 | ||
4c4b4cd2 PH |
7587 | if (dval0 == NULL) |
7588 | dval = value_from_contents_and_address (type, valaddr, address); | |
7589 | else | |
7590 | dval = dval0; | |
7591 | ||
e9bb382b | 7592 | rtype = alloc_type_copy (type); |
14f9c5c9 | 7593 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
7594 | INIT_CPLUS_SPECIFIC (rtype); |
7595 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
7596 | TYPE_FIELDS (rtype) = |
7597 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
7598 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 7599 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
7600 | TYPE_NAME (rtype) = ada_type_name (type); |
7601 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7602 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
7603 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
7604 | ||
4c4b4cd2 PH |
7605 | branch_type = to_fixed_variant_branch_type |
7606 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 7607 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
7608 | TYPE_FIELD_BITPOS (type, variant_field) |
7609 | / TARGET_CHAR_BIT), | |
d2e4a39e | 7610 | cond_offset_target (address, |
4c4b4cd2 PH |
7611 | TYPE_FIELD_BITPOS (type, variant_field) |
7612 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 7613 | if (branch_type == NULL) |
14f9c5c9 | 7614 | { |
4c4b4cd2 | 7615 | int f; |
5b4ee69b | 7616 | |
4c4b4cd2 PH |
7617 | for (f = variant_field + 1; f < nfields; f += 1) |
7618 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 7619 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
7620 | } |
7621 | else | |
7622 | { | |
4c4b4cd2 PH |
7623 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
7624 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7625 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 7626 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 7627 | } |
4c4b4cd2 | 7628 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 7629 | |
4c4b4cd2 | 7630 | value_free_to_mark (mark); |
14f9c5c9 AS |
7631 | return rtype; |
7632 | } | |
7633 | ||
7634 | /* An ordinary record type (with fixed-length fields) that describes | |
7635 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
7636 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
7637 | should be in DVAL, a record value; it may be NULL if the object |
7638 | at ADDR itself contains any necessary discriminant values. | |
7639 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
7640 | values from the record are needed. Except in the case that DVAL, | |
7641 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
7642 | unchecked) is replaced by a particular branch of the variant. | |
7643 | ||
7644 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
7645 | is questionable and may be removed. It can arise during the | |
7646 | processing of an unconstrained-array-of-record type where all the | |
7647 | variant branches have exactly the same size. This is because in | |
7648 | such cases, the compiler does not bother to use the XVS convention | |
7649 | when encoding the record. I am currently dubious of this | |
7650 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 7651 | |
d2e4a39e | 7652 | static struct type * |
fc1a4b47 | 7653 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7654 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 7655 | { |
d2e4a39e | 7656 | struct type *templ_type; |
14f9c5c9 | 7657 | |
876cecd0 | 7658 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7659 | return type0; |
7660 | ||
d2e4a39e | 7661 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
7662 | |
7663 | if (templ_type != NULL) | |
7664 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
7665 | else if (variant_field_index (type0) >= 0) |
7666 | { | |
7667 | if (dval == NULL && valaddr == NULL && address == 0) | |
7668 | return type0; | |
7669 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
7670 | dval); | |
7671 | } | |
14f9c5c9 AS |
7672 | else |
7673 | { | |
876cecd0 | 7674 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
7675 | return type0; |
7676 | } | |
7677 | ||
7678 | } | |
7679 | ||
7680 | /* An ordinary record type (with fixed-length fields) that describes | |
7681 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
7682 | union type. Any necessary discriminants' values should be in DVAL, | |
7683 | a record value. That is, this routine selects the appropriate | |
7684 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 7685 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 7686 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 7687 | |
d2e4a39e | 7688 | static struct type * |
fc1a4b47 | 7689 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7690 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
7691 | { |
7692 | int which; | |
d2e4a39e AS |
7693 | struct type *templ_type; |
7694 | struct type *var_type; | |
14f9c5c9 AS |
7695 | |
7696 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
7697 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 7698 | else |
14f9c5c9 AS |
7699 | var_type = var_type0; |
7700 | ||
7701 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
7702 | ||
7703 | if (templ_type != NULL) | |
7704 | var_type = templ_type; | |
7705 | ||
b1f33ddd JB |
7706 | if (is_unchecked_variant (var_type, value_type (dval))) |
7707 | return var_type0; | |
d2e4a39e AS |
7708 | which = |
7709 | ada_which_variant_applies (var_type, | |
0fd88904 | 7710 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
7711 | |
7712 | if (which < 0) | |
e9bb382b | 7713 | return empty_record (var_type); |
14f9c5c9 | 7714 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 7715 | return to_fixed_record_type |
d2e4a39e AS |
7716 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
7717 | valaddr, address, dval); | |
4c4b4cd2 | 7718 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
7719 | return |
7720 | to_fixed_record_type | |
7721 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
7722 | else |
7723 | return TYPE_FIELD_TYPE (var_type, which); | |
7724 | } | |
7725 | ||
7726 | /* Assuming that TYPE0 is an array type describing the type of a value | |
7727 | at ADDR, and that DVAL describes a record containing any | |
7728 | discriminants used in TYPE0, returns a type for the value that | |
7729 | contains no dynamic components (that is, no components whose sizes | |
7730 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
7731 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 7732 | varsize_limit. */ |
14f9c5c9 | 7733 | |
d2e4a39e AS |
7734 | static struct type * |
7735 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 7736 | int ignore_too_big) |
14f9c5c9 | 7737 | { |
d2e4a39e AS |
7738 | struct type *index_type_desc; |
7739 | struct type *result; | |
ad82864c | 7740 | int constrained_packed_array_p; |
14f9c5c9 | 7741 | |
b0dd7688 | 7742 | type0 = ada_check_typedef (type0); |
284614f0 | 7743 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 7744 | return type0; |
14f9c5c9 | 7745 | |
ad82864c JB |
7746 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
7747 | if (constrained_packed_array_p) | |
7748 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 7749 | |
14f9c5c9 | 7750 | index_type_desc = ada_find_parallel_type (type0, "___XA"); |
28c85d6c | 7751 | ada_fixup_array_indexes_type (index_type_desc); |
14f9c5c9 AS |
7752 | if (index_type_desc == NULL) |
7753 | { | |
61ee279c | 7754 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 7755 | |
14f9c5c9 | 7756 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
7757 | depend on the contents of the array in properly constructed |
7758 | debugging data. */ | |
529cad9c PH |
7759 | /* Create a fixed version of the array element type. |
7760 | We're not providing the address of an element here, | |
e1d5a0d2 | 7761 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7762 | the conversion. This should not be a problem, since arrays of |
7763 | unconstrained objects are not allowed. In particular, all | |
7764 | the elements of an array of a tagged type should all be of | |
7765 | the same type specified in the debugging info. No need to | |
7766 | consult the object tag. */ | |
1ed6ede0 | 7767 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 7768 | |
284614f0 JB |
7769 | /* Make sure we always create a new array type when dealing with |
7770 | packed array types, since we're going to fix-up the array | |
7771 | type length and element bitsize a little further down. */ | |
ad82864c | 7772 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 7773 | result = type0; |
14f9c5c9 | 7774 | else |
e9bb382b | 7775 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 7776 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
7777 | } |
7778 | else | |
7779 | { | |
7780 | int i; | |
7781 | struct type *elt_type0; | |
7782 | ||
7783 | elt_type0 = type0; | |
7784 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 7785 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
7786 | |
7787 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
7788 | depend on the contents of the array in properly constructed |
7789 | debugging data. */ | |
529cad9c PH |
7790 | /* Create a fixed version of the array element type. |
7791 | We're not providing the address of an element here, | |
e1d5a0d2 | 7792 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7793 | the conversion. This should not be a problem, since arrays of |
7794 | unconstrained objects are not allowed. In particular, all | |
7795 | the elements of an array of a tagged type should all be of | |
7796 | the same type specified in the debugging info. No need to | |
7797 | consult the object tag. */ | |
1ed6ede0 JB |
7798 | result = |
7799 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
7800 | |
7801 | elt_type0 = type0; | |
14f9c5c9 | 7802 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
7803 | { |
7804 | struct type *range_type = | |
28c85d6c | 7805 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 7806 | |
e9bb382b | 7807 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 7808 | result, range_type); |
1ce677a4 | 7809 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 7810 | } |
d2e4a39e | 7811 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 7812 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7813 | } |
7814 | ||
ad82864c | 7815 | if (constrained_packed_array_p) |
284614f0 JB |
7816 | { |
7817 | /* So far, the resulting type has been created as if the original | |
7818 | type was a regular (non-packed) array type. As a result, the | |
7819 | bitsize of the array elements needs to be set again, and the array | |
7820 | length needs to be recomputed based on that bitsize. */ | |
7821 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
7822 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
7823 | ||
7824 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
7825 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
7826 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
7827 | TYPE_LENGTH (result)++; | |
7828 | } | |
7829 | ||
876cecd0 | 7830 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 7831 | return result; |
d2e4a39e | 7832 | } |
14f9c5c9 AS |
7833 | |
7834 | ||
7835 | /* A standard type (containing no dynamically sized components) | |
7836 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
7837 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 7838 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
7839 | ADDRESS or in VALADDR contains these discriminants. |
7840 | ||
1ed6ede0 JB |
7841 | If CHECK_TAG is not null, in the case of tagged types, this function |
7842 | attempts to locate the object's tag and use it to compute the actual | |
7843 | type. However, when ADDRESS is null, we cannot use it to determine the | |
7844 | location of the tag, and therefore compute the tagged type's actual type. | |
7845 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 7846 | |
f192137b JB |
7847 | static struct type * |
7848 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 7849 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 7850 | { |
61ee279c | 7851 | type = ada_check_typedef (type); |
d2e4a39e AS |
7852 | switch (TYPE_CODE (type)) |
7853 | { | |
7854 | default: | |
14f9c5c9 | 7855 | return type; |
d2e4a39e | 7856 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 7857 | { |
76a01679 | 7858 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
7859 | struct type *fixed_record_type = |
7860 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 7861 | |
529cad9c PH |
7862 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
7863 | then we can determine its tag, and compute the object's actual | |
0963b4bd | 7864 | type from there. Note that we have to use the fixed record |
1ed6ede0 JB |
7865 | type (the parent part of the record may have dynamic fields |
7866 | and the way the location of _tag is expressed may depend on | |
7867 | them). */ | |
529cad9c | 7868 | |
1ed6ede0 | 7869 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 JB |
7870 | { |
7871 | struct type *real_type = | |
1ed6ede0 JB |
7872 | type_from_tag (value_tag_from_contents_and_address |
7873 | (fixed_record_type, | |
7874 | valaddr, | |
7875 | address)); | |
5b4ee69b | 7876 | |
76a01679 | 7877 | if (real_type != NULL) |
1ed6ede0 | 7878 | return to_fixed_record_type (real_type, valaddr, address, NULL); |
76a01679 | 7879 | } |
4af88198 JB |
7880 | |
7881 | /* Check to see if there is a parallel ___XVZ variable. | |
7882 | If there is, then it provides the actual size of our type. */ | |
7883 | else if (ada_type_name (fixed_record_type) != NULL) | |
7884 | { | |
7885 | char *name = ada_type_name (fixed_record_type); | |
7886 | char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */); | |
7887 | int xvz_found = 0; | |
7888 | LONGEST size; | |
7889 | ||
88c15c34 | 7890 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
4af88198 JB |
7891 | size = get_int_var_value (xvz_name, &xvz_found); |
7892 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
7893 | { | |
7894 | fixed_record_type = copy_type (fixed_record_type); | |
7895 | TYPE_LENGTH (fixed_record_type) = size; | |
7896 | ||
7897 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
7898 | observed this when the debugging info is STABS, and | |
7899 | apparently it is something that is hard to fix. | |
7900 | ||
7901 | In practice, we don't need the actual type definition | |
7902 | at all, because the presence of the XVZ variable allows us | |
7903 | to assume that there must be a XVS type as well, which we | |
7904 | should be able to use later, when we need the actual type | |
7905 | definition. | |
7906 | ||
7907 | In the meantime, pretend that the "fixed" type we are | |
7908 | returning is NOT a stub, because this can cause trouble | |
7909 | when using this type to create new types targeting it. | |
7910 | Indeed, the associated creation routines often check | |
7911 | whether the target type is a stub and will try to replace | |
0963b4bd | 7912 | it, thus using a type with the wrong size. This, in turn, |
4af88198 JB |
7913 | might cause the new type to have the wrong size too. |
7914 | Consider the case of an array, for instance, where the size | |
7915 | of the array is computed from the number of elements in | |
7916 | our array multiplied by the size of its element. */ | |
7917 | TYPE_STUB (fixed_record_type) = 0; | |
7918 | } | |
7919 | } | |
1ed6ede0 | 7920 | return fixed_record_type; |
4c4b4cd2 | 7921 | } |
d2e4a39e | 7922 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 7923 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
7924 | case TYPE_CODE_UNION: |
7925 | if (dval == NULL) | |
4c4b4cd2 | 7926 | return type; |
d2e4a39e | 7927 | else |
4c4b4cd2 | 7928 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 7929 | } |
14f9c5c9 AS |
7930 | } |
7931 | ||
f192137b JB |
7932 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
7933 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
7934 | |
7935 | The typedef layer needs be preserved in order to differentiate between | |
7936 | arrays and array pointers when both types are implemented using the same | |
7937 | fat pointer. In the array pointer case, the pointer is encoded as | |
7938 | a typedef of the pointer type. For instance, considering: | |
7939 | ||
7940 | type String_Access is access String; | |
7941 | S1 : String_Access := null; | |
7942 | ||
7943 | To the debugger, S1 is defined as a typedef of type String. But | |
7944 | to the user, it is a pointer. So if the user tries to print S1, | |
7945 | we should not dereference the array, but print the array address | |
7946 | instead. | |
7947 | ||
7948 | If we didn't preserve the typedef layer, we would lose the fact that | |
7949 | the type is to be presented as a pointer (needs de-reference before | |
7950 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
7951 | |
7952 | struct type * | |
7953 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
7954 | CORE_ADDR address, struct value *dval, int check_tag) | |
7955 | ||
7956 | { | |
7957 | struct type *fixed_type = | |
7958 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
7959 | ||
96dbd2c1 JB |
7960 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
7961 | then preserve the typedef layer. | |
7962 | ||
7963 | Implementation note: We can only check the main-type portion of | |
7964 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
7965 | from TYPE now returns a type that has the same instance flags | |
7966 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
7967 | target type is a "struct", then the typedef elimination will return | |
7968 | a "const" version of the target type. See check_typedef for more | |
7969 | details about how the typedef layer elimination is done. | |
7970 | ||
7971 | brobecker/2010-11-19: It seems to me that the only case where it is | |
7972 | useful to preserve the typedef layer is when dealing with fat pointers. | |
7973 | Perhaps, we could add a check for that and preserve the typedef layer | |
7974 | only in that situation. But this seems unecessary so far, probably | |
7975 | because we call check_typedef/ada_check_typedef pretty much everywhere. | |
7976 | */ | |
f192137b | 7977 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF |
720d1a40 | 7978 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 7979 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
7980 | return type; |
7981 | ||
7982 | return fixed_type; | |
7983 | } | |
7984 | ||
14f9c5c9 | 7985 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 7986 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 7987 | |
d2e4a39e AS |
7988 | static struct type * |
7989 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 7990 | { |
d2e4a39e | 7991 | struct type *type; |
14f9c5c9 AS |
7992 | |
7993 | if (type0 == NULL) | |
7994 | return NULL; | |
7995 | ||
876cecd0 | 7996 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7997 | return type0; |
7998 | ||
61ee279c | 7999 | type0 = ada_check_typedef (type0); |
d2e4a39e | 8000 | |
14f9c5c9 AS |
8001 | switch (TYPE_CODE (type0)) |
8002 | { | |
8003 | default: | |
8004 | return type0; | |
8005 | case TYPE_CODE_STRUCT: | |
8006 | type = dynamic_template_type (type0); | |
d2e4a39e | 8007 | if (type != NULL) |
4c4b4cd2 PH |
8008 | return template_to_static_fixed_type (type); |
8009 | else | |
8010 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
8011 | case TYPE_CODE_UNION: |
8012 | type = ada_find_parallel_type (type0, "___XVU"); | |
8013 | if (type != NULL) | |
4c4b4cd2 PH |
8014 | return template_to_static_fixed_type (type); |
8015 | else | |
8016 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
8017 | } |
8018 | } | |
8019 | ||
4c4b4cd2 PH |
8020 | /* A static approximation of TYPE with all type wrappers removed. */ |
8021 | ||
d2e4a39e AS |
8022 | static struct type * |
8023 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
8024 | { |
8025 | if (ada_is_aligner_type (type)) | |
8026 | { | |
61ee279c | 8027 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 8028 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 8029 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
8030 | |
8031 | return static_unwrap_type (type1); | |
8032 | } | |
d2e4a39e | 8033 | else |
14f9c5c9 | 8034 | { |
d2e4a39e | 8035 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 8036 | |
d2e4a39e | 8037 | if (raw_real_type == type) |
4c4b4cd2 | 8038 | return type; |
14f9c5c9 | 8039 | else |
4c4b4cd2 | 8040 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
8041 | } |
8042 | } | |
8043 | ||
8044 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 8045 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
8046 | type Foo; |
8047 | type FooP is access Foo; | |
8048 | V: FooP; | |
8049 | type Foo is array ...; | |
4c4b4cd2 | 8050 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
8051 | cross-references to such types, we instead substitute for FooP a |
8052 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 8053 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
8054 | |
8055 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
8056 | exists, otherwise TYPE. */ |
8057 | ||
d2e4a39e | 8058 | struct type * |
61ee279c | 8059 | ada_check_typedef (struct type *type) |
14f9c5c9 | 8060 | { |
727e3d2e JB |
8061 | if (type == NULL) |
8062 | return NULL; | |
8063 | ||
720d1a40 JB |
8064 | /* If our type is a typedef type of a fat pointer, then we're done. |
8065 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is | |
8066 | what allows us to distinguish between fat pointers that represent | |
8067 | array types, and fat pointers that represent array access types | |
8068 | (in both cases, the compiler implements them as fat pointers). */ | |
8069 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
8070 | && is_thick_pntr (ada_typedef_target_type (type))) | |
8071 | return type; | |
8072 | ||
14f9c5c9 AS |
8073 | CHECK_TYPEDEF (type); |
8074 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM | |
529cad9c | 8075 | || !TYPE_STUB (type) |
14f9c5c9 AS |
8076 | || TYPE_TAG_NAME (type) == NULL) |
8077 | return type; | |
d2e4a39e | 8078 | else |
14f9c5c9 | 8079 | { |
d2e4a39e AS |
8080 | char *name = TYPE_TAG_NAME (type); |
8081 | struct type *type1 = ada_find_any_type (name); | |
5b4ee69b | 8082 | |
05e522ef JB |
8083 | if (type1 == NULL) |
8084 | return type; | |
8085 | ||
8086 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
8087 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
8088 | types, only for the typedef-to-array types). If that's the case, |
8089 | strip the typedef layer. */ | |
8090 | if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) | |
8091 | type1 = ada_check_typedef (type1); | |
8092 | ||
8093 | return type1; | |
14f9c5c9 AS |
8094 | } |
8095 | } | |
8096 | ||
8097 | /* A value representing the data at VALADDR/ADDRESS as described by | |
8098 | type TYPE0, but with a standard (static-sized) type that correctly | |
8099 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
8100 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 8101 | creation of struct values]. */ |
14f9c5c9 | 8102 | |
4c4b4cd2 PH |
8103 | static struct value * |
8104 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
8105 | struct value *val0) | |
14f9c5c9 | 8106 | { |
1ed6ede0 | 8107 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 8108 | |
14f9c5c9 AS |
8109 | if (type == type0 && val0 != NULL) |
8110 | return val0; | |
d2e4a39e | 8111 | else |
4c4b4cd2 PH |
8112 | return value_from_contents_and_address (type, 0, address); |
8113 | } | |
8114 | ||
8115 | /* A value representing VAL, but with a standard (static-sized) type | |
8116 | that correctly describes it. Does not necessarily create a new | |
8117 | value. */ | |
8118 | ||
0c3acc09 | 8119 | struct value * |
4c4b4cd2 PH |
8120 | ada_to_fixed_value (struct value *val) |
8121 | { | |
df407dfe | 8122 | return ada_to_fixed_value_create (value_type (val), |
42ae5230 | 8123 | value_address (val), |
4c4b4cd2 | 8124 | val); |
14f9c5c9 | 8125 | } |
d2e4a39e | 8126 | \f |
14f9c5c9 | 8127 | |
14f9c5c9 AS |
8128 | /* Attributes */ |
8129 | ||
4c4b4cd2 PH |
8130 | /* Table mapping attribute numbers to names. |
8131 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 8132 | |
d2e4a39e | 8133 | static const char *attribute_names[] = { |
14f9c5c9 AS |
8134 | "<?>", |
8135 | ||
d2e4a39e | 8136 | "first", |
14f9c5c9 AS |
8137 | "last", |
8138 | "length", | |
8139 | "image", | |
14f9c5c9 AS |
8140 | "max", |
8141 | "min", | |
4c4b4cd2 PH |
8142 | "modulus", |
8143 | "pos", | |
8144 | "size", | |
8145 | "tag", | |
14f9c5c9 | 8146 | "val", |
14f9c5c9 AS |
8147 | 0 |
8148 | }; | |
8149 | ||
d2e4a39e | 8150 | const char * |
4c4b4cd2 | 8151 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 8152 | { |
4c4b4cd2 PH |
8153 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
8154 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
8155 | else |
8156 | return attribute_names[0]; | |
8157 | } | |
8158 | ||
4c4b4cd2 | 8159 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 8160 | |
4c4b4cd2 PH |
8161 | static LONGEST |
8162 | pos_atr (struct value *arg) | |
14f9c5c9 | 8163 | { |
24209737 PH |
8164 | struct value *val = coerce_ref (arg); |
8165 | struct type *type = value_type (val); | |
14f9c5c9 | 8166 | |
d2e4a39e | 8167 | if (!discrete_type_p (type)) |
323e0a4a | 8168 | error (_("'POS only defined on discrete types")); |
14f9c5c9 AS |
8169 | |
8170 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8171 | { | |
8172 | int i; | |
24209737 | 8173 | LONGEST v = value_as_long (val); |
14f9c5c9 | 8174 | |
d2e4a39e | 8175 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
4c4b4cd2 PH |
8176 | { |
8177 | if (v == TYPE_FIELD_BITPOS (type, i)) | |
8178 | return i; | |
8179 | } | |
323e0a4a | 8180 | error (_("enumeration value is invalid: can't find 'POS")); |
14f9c5c9 AS |
8181 | } |
8182 | else | |
24209737 | 8183 | return value_as_long (val); |
4c4b4cd2 PH |
8184 | } |
8185 | ||
8186 | static struct value * | |
3cb382c9 | 8187 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 8188 | { |
3cb382c9 | 8189 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
8190 | } |
8191 | ||
4c4b4cd2 | 8192 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 8193 | |
d2e4a39e AS |
8194 | static struct value * |
8195 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 8196 | { |
d2e4a39e | 8197 | if (!discrete_type_p (type)) |
323e0a4a | 8198 | error (_("'VAL only defined on discrete types")); |
df407dfe | 8199 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 8200 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
8201 | |
8202 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8203 | { | |
8204 | long pos = value_as_long (arg); | |
5b4ee69b | 8205 | |
14f9c5c9 | 8206 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 8207 | error (_("argument to 'VAL out of range")); |
d2e4a39e | 8208 | return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos)); |
14f9c5c9 AS |
8209 | } |
8210 | else | |
8211 | return value_from_longest (type, value_as_long (arg)); | |
8212 | } | |
14f9c5c9 | 8213 | \f |
d2e4a39e | 8214 | |
4c4b4cd2 | 8215 | /* Evaluation */ |
14f9c5c9 | 8216 | |
4c4b4cd2 PH |
8217 | /* True if TYPE appears to be an Ada character type. |
8218 | [At the moment, this is true only for Character and Wide_Character; | |
8219 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 8220 | |
d2e4a39e AS |
8221 | int |
8222 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 8223 | { |
7b9f71f2 JB |
8224 | const char *name; |
8225 | ||
8226 | /* If the type code says it's a character, then assume it really is, | |
8227 | and don't check any further. */ | |
8228 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
8229 | return 1; | |
8230 | ||
8231 | /* Otherwise, assume it's a character type iff it is a discrete type | |
8232 | with a known character type name. */ | |
8233 | name = ada_type_name (type); | |
8234 | return (name != NULL | |
8235 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
8236 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
8237 | && (strcmp (name, "character") == 0 | |
8238 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 8239 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 8240 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
8241 | } |
8242 | ||
4c4b4cd2 | 8243 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
8244 | |
8245 | int | |
ebf56fd3 | 8246 | ada_is_string_type (struct type *type) |
14f9c5c9 | 8247 | { |
61ee279c | 8248 | type = ada_check_typedef (type); |
d2e4a39e | 8249 | if (type != NULL |
14f9c5c9 | 8250 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
8251 | && (ada_is_simple_array_type (type) |
8252 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
8253 | && ada_array_arity (type) == 1) |
8254 | { | |
8255 | struct type *elttype = ada_array_element_type (type, 1); | |
8256 | ||
8257 | return ada_is_character_type (elttype); | |
8258 | } | |
d2e4a39e | 8259 | else |
14f9c5c9 AS |
8260 | return 0; |
8261 | } | |
8262 | ||
5bf03f13 JB |
8263 | /* The compiler sometimes provides a parallel XVS type for a given |
8264 | PAD type. Normally, it is safe to follow the PAD type directly, | |
8265 | but older versions of the compiler have a bug that causes the offset | |
8266 | of its "F" field to be wrong. Following that field in that case | |
8267 | would lead to incorrect results, but this can be worked around | |
8268 | by ignoring the PAD type and using the associated XVS type instead. | |
8269 | ||
8270 | Set to True if the debugger should trust the contents of PAD types. | |
8271 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
8272 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
8273 | |
8274 | /* True if TYPE is a struct type introduced by the compiler to force the | |
8275 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 8276 | distinctive name. */ |
14f9c5c9 AS |
8277 | |
8278 | int | |
ebf56fd3 | 8279 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 8280 | { |
61ee279c | 8281 | type = ada_check_typedef (type); |
714e53ab | 8282 | |
5bf03f13 | 8283 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
8284 | return 0; |
8285 | ||
14f9c5c9 | 8286 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
8287 | && TYPE_NFIELDS (type) == 1 |
8288 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
8289 | } |
8290 | ||
8291 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 8292 | the parallel type. */ |
14f9c5c9 | 8293 | |
d2e4a39e AS |
8294 | struct type * |
8295 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 8296 | { |
d2e4a39e AS |
8297 | struct type *real_type_namer; |
8298 | struct type *raw_real_type; | |
14f9c5c9 AS |
8299 | |
8300 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
8301 | return raw_type; | |
8302 | ||
284614f0 JB |
8303 | if (ada_is_aligner_type (raw_type)) |
8304 | /* The encoding specifies that we should always use the aligner type. | |
8305 | So, even if this aligner type has an associated XVS type, we should | |
8306 | simply ignore it. | |
8307 | ||
8308 | According to the compiler gurus, an XVS type parallel to an aligner | |
8309 | type may exist because of a stabs limitation. In stabs, aligner | |
8310 | types are empty because the field has a variable-sized type, and | |
8311 | thus cannot actually be used as an aligner type. As a result, | |
8312 | we need the associated parallel XVS type to decode the type. | |
8313 | Since the policy in the compiler is to not change the internal | |
8314 | representation based on the debugging info format, we sometimes | |
8315 | end up having a redundant XVS type parallel to the aligner type. */ | |
8316 | return raw_type; | |
8317 | ||
14f9c5c9 | 8318 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 8319 | if (real_type_namer == NULL |
14f9c5c9 AS |
8320 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
8321 | || TYPE_NFIELDS (real_type_namer) != 1) | |
8322 | return raw_type; | |
8323 | ||
f80d3ff2 JB |
8324 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
8325 | { | |
8326 | /* This is an older encoding form where the base type needs to be | |
8327 | looked up by name. We prefer the newer enconding because it is | |
8328 | more efficient. */ | |
8329 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
8330 | if (raw_real_type == NULL) | |
8331 | return raw_type; | |
8332 | else | |
8333 | return raw_real_type; | |
8334 | } | |
8335 | ||
8336 | /* The field in our XVS type is a reference to the base type. */ | |
8337 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 8338 | } |
14f9c5c9 | 8339 | |
4c4b4cd2 | 8340 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 8341 | |
d2e4a39e AS |
8342 | struct type * |
8343 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
8344 | { |
8345 | if (ada_is_aligner_type (type)) | |
8346 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
8347 | else | |
8348 | return ada_get_base_type (type); | |
8349 | } | |
8350 | ||
8351 | ||
8352 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 8353 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 8354 | |
fc1a4b47 AC |
8355 | const gdb_byte * |
8356 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 8357 | { |
d2e4a39e | 8358 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 8359 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
8360 | valaddr + |
8361 | TYPE_FIELD_BITPOS (type, | |
8362 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
8363 | else |
8364 | return valaddr; | |
8365 | } | |
8366 | ||
4c4b4cd2 PH |
8367 | |
8368 | ||
14f9c5c9 | 8369 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 8370 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
8371 | const char * |
8372 | ada_enum_name (const char *name) | |
14f9c5c9 | 8373 | { |
4c4b4cd2 PH |
8374 | static char *result; |
8375 | static size_t result_len = 0; | |
d2e4a39e | 8376 | char *tmp; |
14f9c5c9 | 8377 | |
4c4b4cd2 PH |
8378 | /* First, unqualify the enumeration name: |
8379 | 1. Search for the last '.' character. If we find one, then skip | |
177b42fe | 8380 | all the preceding characters, the unqualified name starts |
76a01679 | 8381 | right after that dot. |
4c4b4cd2 | 8382 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
8383 | translates dots into "__". Search forward for double underscores, |
8384 | but stop searching when we hit an overloading suffix, which is | |
8385 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 8386 | |
c3e5cd34 PH |
8387 | tmp = strrchr (name, '.'); |
8388 | if (tmp != NULL) | |
4c4b4cd2 PH |
8389 | name = tmp + 1; |
8390 | else | |
14f9c5c9 | 8391 | { |
4c4b4cd2 PH |
8392 | while ((tmp = strstr (name, "__")) != NULL) |
8393 | { | |
8394 | if (isdigit (tmp[2])) | |
8395 | break; | |
8396 | else | |
8397 | name = tmp + 2; | |
8398 | } | |
14f9c5c9 AS |
8399 | } |
8400 | ||
8401 | if (name[0] == 'Q') | |
8402 | { | |
14f9c5c9 | 8403 | int v; |
5b4ee69b | 8404 | |
14f9c5c9 | 8405 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
8406 | { |
8407 | if (sscanf (name + 2, "%x", &v) != 1) | |
8408 | return name; | |
8409 | } | |
14f9c5c9 | 8410 | else |
4c4b4cd2 | 8411 | return name; |
14f9c5c9 | 8412 | |
4c4b4cd2 | 8413 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 8414 | if (isascii (v) && isprint (v)) |
88c15c34 | 8415 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 8416 | else if (name[1] == 'U') |
88c15c34 | 8417 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 8418 | else |
88c15c34 | 8419 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
8420 | |
8421 | return result; | |
8422 | } | |
d2e4a39e | 8423 | else |
4c4b4cd2 | 8424 | { |
c3e5cd34 PH |
8425 | tmp = strstr (name, "__"); |
8426 | if (tmp == NULL) | |
8427 | tmp = strstr (name, "$"); | |
8428 | if (tmp != NULL) | |
4c4b4cd2 PH |
8429 | { |
8430 | GROW_VECT (result, result_len, tmp - name + 1); | |
8431 | strncpy (result, name, tmp - name); | |
8432 | result[tmp - name] = '\0'; | |
8433 | return result; | |
8434 | } | |
8435 | ||
8436 | return name; | |
8437 | } | |
14f9c5c9 AS |
8438 | } |
8439 | ||
14f9c5c9 AS |
8440 | /* Evaluate the subexpression of EXP starting at *POS as for |
8441 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 8442 | expression. */ |
14f9c5c9 | 8443 | |
d2e4a39e AS |
8444 | static struct value * |
8445 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 8446 | { |
4b27a620 | 8447 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
8448 | } |
8449 | ||
8450 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 8451 | value it wraps. */ |
14f9c5c9 | 8452 | |
d2e4a39e AS |
8453 | static struct value * |
8454 | unwrap_value (struct value *val) | |
14f9c5c9 | 8455 | { |
df407dfe | 8456 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 8457 | |
14f9c5c9 AS |
8458 | if (ada_is_aligner_type (type)) |
8459 | { | |
de4d072f | 8460 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 8461 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 8462 | |
14f9c5c9 | 8463 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 8464 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
8465 | |
8466 | return unwrap_value (v); | |
8467 | } | |
d2e4a39e | 8468 | else |
14f9c5c9 | 8469 | { |
d2e4a39e | 8470 | struct type *raw_real_type = |
61ee279c | 8471 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 8472 | |
5bf03f13 JB |
8473 | /* If there is no parallel XVS or XVE type, then the value is |
8474 | already unwrapped. Return it without further modification. */ | |
8475 | if ((type == raw_real_type) | |
8476 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
8477 | return val; | |
14f9c5c9 | 8478 | |
d2e4a39e | 8479 | return |
4c4b4cd2 PH |
8480 | coerce_unspec_val_to_type |
8481 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 8482 | value_address (val), |
1ed6ede0 | 8483 | NULL, 1)); |
14f9c5c9 AS |
8484 | } |
8485 | } | |
d2e4a39e AS |
8486 | |
8487 | static struct value * | |
8488 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
8489 | { |
8490 | LONGEST val; | |
8491 | ||
df407dfe | 8492 | if (type == value_type (arg)) |
14f9c5c9 | 8493 | return arg; |
df407dfe | 8494 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 8495 | val = ada_float_to_fixed (type, |
df407dfe | 8496 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 8497 | value_as_long (arg))); |
d2e4a39e | 8498 | else |
14f9c5c9 | 8499 | { |
a53b7a21 | 8500 | DOUBLEST argd = value_as_double (arg); |
5b4ee69b | 8501 | |
14f9c5c9 AS |
8502 | val = ada_float_to_fixed (type, argd); |
8503 | } | |
8504 | ||
8505 | return value_from_longest (type, val); | |
8506 | } | |
8507 | ||
d2e4a39e | 8508 | static struct value * |
a53b7a21 | 8509 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 8510 | { |
df407dfe | 8511 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 8512 | value_as_long (arg)); |
5b4ee69b | 8513 | |
a53b7a21 | 8514 | return value_from_double (type, val); |
14f9c5c9 AS |
8515 | } |
8516 | ||
4c4b4cd2 PH |
8517 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
8518 | return the converted value. */ | |
8519 | ||
d2e4a39e AS |
8520 | static struct value * |
8521 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 8522 | { |
df407dfe | 8523 | struct type *type2 = value_type (val); |
5b4ee69b | 8524 | |
14f9c5c9 AS |
8525 | if (type == type2) |
8526 | return val; | |
8527 | ||
61ee279c PH |
8528 | type2 = ada_check_typedef (type2); |
8529 | type = ada_check_typedef (type); | |
14f9c5c9 | 8530 | |
d2e4a39e AS |
8531 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
8532 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
8533 | { |
8534 | val = ada_value_ind (val); | |
df407dfe | 8535 | type2 = value_type (val); |
14f9c5c9 AS |
8536 | } |
8537 | ||
d2e4a39e | 8538 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
8539 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
8540 | { | |
8541 | if (TYPE_LENGTH (type2) != TYPE_LENGTH (type) | |
4c4b4cd2 PH |
8542 | || TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) |
8543 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type2))) | |
323e0a4a | 8544 | error (_("Incompatible types in assignment")); |
04624583 | 8545 | deprecated_set_value_type (val, type); |
14f9c5c9 | 8546 | } |
d2e4a39e | 8547 | return val; |
14f9c5c9 AS |
8548 | } |
8549 | ||
4c4b4cd2 PH |
8550 | static struct value * |
8551 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
8552 | { | |
8553 | struct value *val; | |
8554 | struct type *type1, *type2; | |
8555 | LONGEST v, v1, v2; | |
8556 | ||
994b9211 AC |
8557 | arg1 = coerce_ref (arg1); |
8558 | arg2 = coerce_ref (arg2); | |
18af8284 JB |
8559 | type1 = get_base_type (ada_check_typedef (value_type (arg1))); |
8560 | type2 = get_base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 8561 | |
76a01679 JB |
8562 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
8563 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
8564 | return value_binop (arg1, arg2, op); |
8565 | ||
76a01679 | 8566 | switch (op) |
4c4b4cd2 PH |
8567 | { |
8568 | case BINOP_MOD: | |
8569 | case BINOP_DIV: | |
8570 | case BINOP_REM: | |
8571 | break; | |
8572 | default: | |
8573 | return value_binop (arg1, arg2, op); | |
8574 | } | |
8575 | ||
8576 | v2 = value_as_long (arg2); | |
8577 | if (v2 == 0) | |
323e0a4a | 8578 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
8579 | |
8580 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
8581 | return value_binop (arg1, arg2, op); | |
8582 | ||
8583 | v1 = value_as_long (arg1); | |
8584 | switch (op) | |
8585 | { | |
8586 | case BINOP_DIV: | |
8587 | v = v1 / v2; | |
76a01679 JB |
8588 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
8589 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
8590 | break; |
8591 | case BINOP_REM: | |
8592 | v = v1 % v2; | |
76a01679 JB |
8593 | if (v * v1 < 0) |
8594 | v -= v2; | |
4c4b4cd2 PH |
8595 | break; |
8596 | default: | |
8597 | /* Should not reach this point. */ | |
8598 | v = 0; | |
8599 | } | |
8600 | ||
8601 | val = allocate_value (type1); | |
990a07ab | 8602 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
8603 | TYPE_LENGTH (value_type (val)), |
8604 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
8605 | return val; |
8606 | } | |
8607 | ||
8608 | static int | |
8609 | ada_value_equal (struct value *arg1, struct value *arg2) | |
8610 | { | |
df407dfe AC |
8611 | if (ada_is_direct_array_type (value_type (arg1)) |
8612 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 8613 | { |
f58b38bf JB |
8614 | /* Automatically dereference any array reference before |
8615 | we attempt to perform the comparison. */ | |
8616 | arg1 = ada_coerce_ref (arg1); | |
8617 | arg2 = ada_coerce_ref (arg2); | |
8618 | ||
4c4b4cd2 PH |
8619 | arg1 = ada_coerce_to_simple_array (arg1); |
8620 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
8621 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
8622 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 8623 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 8624 | /* FIXME: The following works only for types whose |
76a01679 JB |
8625 | representations use all bits (no padding or undefined bits) |
8626 | and do not have user-defined equality. */ | |
8627 | return | |
df407dfe | 8628 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 8629 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 8630 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
8631 | } |
8632 | return value_equal (arg1, arg2); | |
8633 | } | |
8634 | ||
52ce6436 PH |
8635 | /* Total number of component associations in the aggregate starting at |
8636 | index PC in EXP. Assumes that index PC is the start of an | |
0963b4bd | 8637 | OP_AGGREGATE. */ |
52ce6436 PH |
8638 | |
8639 | static int | |
8640 | num_component_specs (struct expression *exp, int pc) | |
8641 | { | |
8642 | int n, m, i; | |
5b4ee69b | 8643 | |
52ce6436 PH |
8644 | m = exp->elts[pc + 1].longconst; |
8645 | pc += 3; | |
8646 | n = 0; | |
8647 | for (i = 0; i < m; i += 1) | |
8648 | { | |
8649 | switch (exp->elts[pc].opcode) | |
8650 | { | |
8651 | default: | |
8652 | n += 1; | |
8653 | break; | |
8654 | case OP_CHOICES: | |
8655 | n += exp->elts[pc + 1].longconst; | |
8656 | break; | |
8657 | } | |
8658 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
8659 | } | |
8660 | return n; | |
8661 | } | |
8662 | ||
8663 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
8664 | component of LHS (a simple array or a record), updating *POS past | |
8665 | the expression, assuming that LHS is contained in CONTAINER. Does | |
8666 | not modify the inferior's memory, nor does it modify LHS (unless | |
8667 | LHS == CONTAINER). */ | |
8668 | ||
8669 | static void | |
8670 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
8671 | struct expression *exp, int *pos) | |
8672 | { | |
8673 | struct value *mark = value_mark (); | |
8674 | struct value *elt; | |
5b4ee69b | 8675 | |
52ce6436 PH |
8676 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) |
8677 | { | |
22601c15 UW |
8678 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
8679 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 8680 | |
52ce6436 PH |
8681 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
8682 | } | |
8683 | else | |
8684 | { | |
8685 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
8686 | elt = ada_to_fixed_value (unwrap_value (elt)); | |
8687 | } | |
8688 | ||
8689 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
8690 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
8691 | else | |
8692 | value_assign_to_component (container, elt, | |
8693 | ada_evaluate_subexp (NULL, exp, pos, | |
8694 | EVAL_NORMAL)); | |
8695 | ||
8696 | value_free_to_mark (mark); | |
8697 | } | |
8698 | ||
8699 | /* Assuming that LHS represents an lvalue having a record or array | |
8700 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
8701 | of that aggregate's value to LHS, advancing *POS past the | |
8702 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
8703 | lvalue containing LHS (possibly LHS itself). Does not modify | |
8704 | the inferior's memory, nor does it modify the contents of | |
0963b4bd | 8705 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ |
52ce6436 PH |
8706 | |
8707 | static struct value * | |
8708 | assign_aggregate (struct value *container, | |
8709 | struct value *lhs, struct expression *exp, | |
8710 | int *pos, enum noside noside) | |
8711 | { | |
8712 | struct type *lhs_type; | |
8713 | int n = exp->elts[*pos+1].longconst; | |
8714 | LONGEST low_index, high_index; | |
8715 | int num_specs; | |
8716 | LONGEST *indices; | |
8717 | int max_indices, num_indices; | |
8718 | int is_array_aggregate; | |
8719 | int i; | |
52ce6436 PH |
8720 | |
8721 | *pos += 3; | |
8722 | if (noside != EVAL_NORMAL) | |
8723 | { | |
52ce6436 PH |
8724 | for (i = 0; i < n; i += 1) |
8725 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
8726 | return container; | |
8727 | } | |
8728 | ||
8729 | container = ada_coerce_ref (container); | |
8730 | if (ada_is_direct_array_type (value_type (container))) | |
8731 | container = ada_coerce_to_simple_array (container); | |
8732 | lhs = ada_coerce_ref (lhs); | |
8733 | if (!deprecated_value_modifiable (lhs)) | |
8734 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
8735 | ||
8736 | lhs_type = value_type (lhs); | |
8737 | if (ada_is_direct_array_type (lhs_type)) | |
8738 | { | |
8739 | lhs = ada_coerce_to_simple_array (lhs); | |
8740 | lhs_type = value_type (lhs); | |
8741 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
8742 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
8743 | is_array_aggregate = 1; | |
8744 | } | |
8745 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
8746 | { | |
8747 | low_index = 0; | |
8748 | high_index = num_visible_fields (lhs_type) - 1; | |
8749 | is_array_aggregate = 0; | |
8750 | } | |
8751 | else | |
8752 | error (_("Left-hand side must be array or record.")); | |
8753 | ||
8754 | num_specs = num_component_specs (exp, *pos - 3); | |
8755 | max_indices = 4 * num_specs + 4; | |
8756 | indices = alloca (max_indices * sizeof (indices[0])); | |
8757 | indices[0] = indices[1] = low_index - 1; | |
8758 | indices[2] = indices[3] = high_index + 1; | |
8759 | num_indices = 4; | |
8760 | ||
8761 | for (i = 0; i < n; i += 1) | |
8762 | { | |
8763 | switch (exp->elts[*pos].opcode) | |
8764 | { | |
1fbf5ada JB |
8765 | case OP_CHOICES: |
8766 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
8767 | &num_indices, max_indices, | |
8768 | low_index, high_index); | |
8769 | break; | |
8770 | case OP_POSITIONAL: | |
8771 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
52ce6436 PH |
8772 | &num_indices, max_indices, |
8773 | low_index, high_index); | |
1fbf5ada JB |
8774 | break; |
8775 | case OP_OTHERS: | |
8776 | if (i != n-1) | |
8777 | error (_("Misplaced 'others' clause")); | |
8778 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
8779 | num_indices, low_index, high_index); | |
8780 | break; | |
8781 | default: | |
8782 | error (_("Internal error: bad aggregate clause")); | |
52ce6436 PH |
8783 | } |
8784 | } | |
8785 | ||
8786 | return container; | |
8787 | } | |
8788 | ||
8789 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
8790 | construct at *POS, updating *POS past the construct, given that | |
8791 | the positions are relative to lower bound LOW, where HIGH is the | |
8792 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
8793 | updating *NUM_INDICES as needed. CONTAINER is as for | |
0963b4bd | 8794 | assign_aggregate. */ |
52ce6436 PH |
8795 | static void |
8796 | aggregate_assign_positional (struct value *container, | |
8797 | struct value *lhs, struct expression *exp, | |
8798 | int *pos, LONGEST *indices, int *num_indices, | |
8799 | int max_indices, LONGEST low, LONGEST high) | |
8800 | { | |
8801 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
8802 | ||
8803 | if (ind - 1 == high) | |
e1d5a0d2 | 8804 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
8805 | if (ind <= high) |
8806 | { | |
8807 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
8808 | *pos += 3; | |
8809 | assign_component (container, lhs, ind, exp, pos); | |
8810 | } | |
8811 | else | |
8812 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8813 | } | |
8814 | ||
8815 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
8816 | construct at *POS, updating *POS past the construct, given that | |
8817 | the allowable indices are LOW..HIGH. Record the indices assigned | |
8818 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
0963b4bd | 8819 | needed. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
8820 | static void |
8821 | aggregate_assign_from_choices (struct value *container, | |
8822 | struct value *lhs, struct expression *exp, | |
8823 | int *pos, LONGEST *indices, int *num_indices, | |
8824 | int max_indices, LONGEST low, LONGEST high) | |
8825 | { | |
8826 | int j; | |
8827 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
8828 | int choice_pos, expr_pc; | |
8829 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
8830 | ||
8831 | choice_pos = *pos += 3; | |
8832 | ||
8833 | for (j = 0; j < n_choices; j += 1) | |
8834 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8835 | expr_pc = *pos; | |
8836 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8837 | ||
8838 | for (j = 0; j < n_choices; j += 1) | |
8839 | { | |
8840 | LONGEST lower, upper; | |
8841 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 8842 | |
52ce6436 PH |
8843 | if (op == OP_DISCRETE_RANGE) |
8844 | { | |
8845 | choice_pos += 1; | |
8846 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8847 | EVAL_NORMAL)); | |
8848 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8849 | EVAL_NORMAL)); | |
8850 | } | |
8851 | else if (is_array) | |
8852 | { | |
8853 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
8854 | EVAL_NORMAL)); | |
8855 | upper = lower; | |
8856 | } | |
8857 | else | |
8858 | { | |
8859 | int ind; | |
8860 | char *name; | |
5b4ee69b | 8861 | |
52ce6436 PH |
8862 | switch (op) |
8863 | { | |
8864 | case OP_NAME: | |
8865 | name = &exp->elts[choice_pos + 2].string; | |
8866 | break; | |
8867 | case OP_VAR_VALUE: | |
8868 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
8869 | break; | |
8870 | default: | |
8871 | error (_("Invalid record component association.")); | |
8872 | } | |
8873 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
8874 | ind = 0; | |
8875 | if (! find_struct_field (name, value_type (lhs), 0, | |
8876 | NULL, NULL, NULL, NULL, &ind)) | |
8877 | error (_("Unknown component name: %s."), name); | |
8878 | lower = upper = ind; | |
8879 | } | |
8880 | ||
8881 | if (lower <= upper && (lower < low || upper > high)) | |
8882 | error (_("Index in component association out of bounds.")); | |
8883 | ||
8884 | add_component_interval (lower, upper, indices, num_indices, | |
8885 | max_indices); | |
8886 | while (lower <= upper) | |
8887 | { | |
8888 | int pos1; | |
5b4ee69b | 8889 | |
52ce6436 PH |
8890 | pos1 = expr_pc; |
8891 | assign_component (container, lhs, lower, exp, &pos1); | |
8892 | lower += 1; | |
8893 | } | |
8894 | } | |
8895 | } | |
8896 | ||
8897 | /* Assign the value of the expression in the OP_OTHERS construct in | |
8898 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
8899 | have not been previously assigned. The index intervals already assigned | |
8900 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
0963b4bd | 8901 | OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
8902 | static void |
8903 | aggregate_assign_others (struct value *container, | |
8904 | struct value *lhs, struct expression *exp, | |
8905 | int *pos, LONGEST *indices, int num_indices, | |
8906 | LONGEST low, LONGEST high) | |
8907 | { | |
8908 | int i; | |
5ce64950 | 8909 | int expr_pc = *pos + 1; |
52ce6436 PH |
8910 | |
8911 | for (i = 0; i < num_indices - 2; i += 2) | |
8912 | { | |
8913 | LONGEST ind; | |
5b4ee69b | 8914 | |
52ce6436 PH |
8915 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
8916 | { | |
5ce64950 | 8917 | int localpos; |
5b4ee69b | 8918 | |
5ce64950 MS |
8919 | localpos = expr_pc; |
8920 | assign_component (container, lhs, ind, exp, &localpos); | |
52ce6436 PH |
8921 | } |
8922 | } | |
8923 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8924 | } | |
8925 | ||
8926 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
8927 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
8928 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
8929 | MAX_SIZE. The resulting intervals do not overlap. */ | |
8930 | static void | |
8931 | add_component_interval (LONGEST low, LONGEST high, | |
8932 | LONGEST* indices, int *size, int max_size) | |
8933 | { | |
8934 | int i, j; | |
5b4ee69b | 8935 | |
52ce6436 PH |
8936 | for (i = 0; i < *size; i += 2) { |
8937 | if (high >= indices[i] && low <= indices[i + 1]) | |
8938 | { | |
8939 | int kh; | |
5b4ee69b | 8940 | |
52ce6436 PH |
8941 | for (kh = i + 2; kh < *size; kh += 2) |
8942 | if (high < indices[kh]) | |
8943 | break; | |
8944 | if (low < indices[i]) | |
8945 | indices[i] = low; | |
8946 | indices[i + 1] = indices[kh - 1]; | |
8947 | if (high > indices[i + 1]) | |
8948 | indices[i + 1] = high; | |
8949 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
8950 | *size -= kh - i - 2; | |
8951 | return; | |
8952 | } | |
8953 | else if (high < indices[i]) | |
8954 | break; | |
8955 | } | |
8956 | ||
8957 | if (*size == max_size) | |
8958 | error (_("Internal error: miscounted aggregate components.")); | |
8959 | *size += 2; | |
8960 | for (j = *size-1; j >= i+2; j -= 1) | |
8961 | indices[j] = indices[j - 2]; | |
8962 | indices[i] = low; | |
8963 | indices[i + 1] = high; | |
8964 | } | |
8965 | ||
6e48bd2c JB |
8966 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
8967 | is different. */ | |
8968 | ||
8969 | static struct value * | |
8970 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
8971 | { | |
8972 | if (type == ada_check_typedef (value_type (arg2))) | |
8973 | return arg2; | |
8974 | ||
8975 | if (ada_is_fixed_point_type (type)) | |
8976 | return (cast_to_fixed (type, arg2)); | |
8977 | ||
8978 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 8979 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
8980 | |
8981 | return value_cast (type, arg2); | |
8982 | } | |
8983 | ||
284614f0 JB |
8984 | /* Evaluating Ada expressions, and printing their result. |
8985 | ------------------------------------------------------ | |
8986 | ||
21649b50 JB |
8987 | 1. Introduction: |
8988 | ---------------- | |
8989 | ||
284614f0 JB |
8990 | We usually evaluate an Ada expression in order to print its value. |
8991 | We also evaluate an expression in order to print its type, which | |
8992 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
8993 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
8994 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
8995 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
8996 | similar. | |
8997 | ||
8998 | Evaluating expressions is a little more complicated for Ada entities | |
8999 | than it is for entities in languages such as C. The main reason for | |
9000 | this is that Ada provides types whose definition might be dynamic. | |
9001 | One example of such types is variant records. Or another example | |
9002 | would be an array whose bounds can only be known at run time. | |
9003 | ||
9004 | The following description is a general guide as to what should be | |
9005 | done (and what should NOT be done) in order to evaluate an expression | |
9006 | involving such types, and when. This does not cover how the semantic | |
9007 | information is encoded by GNAT as this is covered separatly. For the | |
9008 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
9009 | in the GNAT sources. | |
9010 | ||
9011 | Ideally, we should embed each part of this description next to its | |
9012 | associated code. Unfortunately, the amount of code is so vast right | |
9013 | now that it's hard to see whether the code handling a particular | |
9014 | situation might be duplicated or not. One day, when the code is | |
9015 | cleaned up, this guide might become redundant with the comments | |
9016 | inserted in the code, and we might want to remove it. | |
9017 | ||
21649b50 JB |
9018 | 2. ``Fixing'' an Entity, the Simple Case: |
9019 | ----------------------------------------- | |
9020 | ||
284614f0 JB |
9021 | When evaluating Ada expressions, the tricky issue is that they may |
9022 | reference entities whose type contents and size are not statically | |
9023 | known. Consider for instance a variant record: | |
9024 | ||
9025 | type Rec (Empty : Boolean := True) is record | |
9026 | case Empty is | |
9027 | when True => null; | |
9028 | when False => Value : Integer; | |
9029 | end case; | |
9030 | end record; | |
9031 | Yes : Rec := (Empty => False, Value => 1); | |
9032 | No : Rec := (empty => True); | |
9033 | ||
9034 | The size and contents of that record depends on the value of the | |
9035 | descriminant (Rec.Empty). At this point, neither the debugging | |
9036 | information nor the associated type structure in GDB are able to | |
9037 | express such dynamic types. So what the debugger does is to create | |
9038 | "fixed" versions of the type that applies to the specific object. | |
9039 | We also informally refer to this opperation as "fixing" an object, | |
9040 | which means creating its associated fixed type. | |
9041 | ||
9042 | Example: when printing the value of variable "Yes" above, its fixed | |
9043 | type would look like this: | |
9044 | ||
9045 | type Rec is record | |
9046 | Empty : Boolean; | |
9047 | Value : Integer; | |
9048 | end record; | |
9049 | ||
9050 | On the other hand, if we printed the value of "No", its fixed type | |
9051 | would become: | |
9052 | ||
9053 | type Rec is record | |
9054 | Empty : Boolean; | |
9055 | end record; | |
9056 | ||
9057 | Things become a little more complicated when trying to fix an entity | |
9058 | with a dynamic type that directly contains another dynamic type, | |
9059 | such as an array of variant records, for instance. There are | |
9060 | two possible cases: Arrays, and records. | |
9061 | ||
21649b50 JB |
9062 | 3. ``Fixing'' Arrays: |
9063 | --------------------- | |
9064 | ||
9065 | The type structure in GDB describes an array in terms of its bounds, | |
9066 | and the type of its elements. By design, all elements in the array | |
9067 | have the same type and we cannot represent an array of variant elements | |
9068 | using the current type structure in GDB. When fixing an array, | |
9069 | we cannot fix the array element, as we would potentially need one | |
9070 | fixed type per element of the array. As a result, the best we can do | |
9071 | when fixing an array is to produce an array whose bounds and size | |
9072 | are correct (allowing us to read it from memory), but without having | |
9073 | touched its element type. Fixing each element will be done later, | |
9074 | when (if) necessary. | |
9075 | ||
9076 | Arrays are a little simpler to handle than records, because the same | |
9077 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 9078 | the amount of space actually used by each element differs from element |
21649b50 | 9079 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
9080 | |
9081 | type Rec_Array is array (1 .. 2) of Rec; | |
9082 | ||
1b536f04 JB |
9083 | The actual amount of memory occupied by each element might be different |
9084 | from element to element, depending on the value of their discriminant. | |
21649b50 | 9085 | But the amount of space reserved for each element in the array remains |
1b536f04 | 9086 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
9087 | the debugging information available, from which we can then determine |
9088 | the array size (we multiply the number of elements of the array by | |
9089 | the size of each element). | |
9090 | ||
9091 | The simplest case is when we have an array of a constrained element | |
9092 | type. For instance, consider the following type declarations: | |
9093 | ||
9094 | type Bounded_String (Max_Size : Integer) is | |
9095 | Length : Integer; | |
9096 | Buffer : String (1 .. Max_Size); | |
9097 | end record; | |
9098 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
9099 | ||
9100 | In this case, the compiler describes the array as an array of | |
9101 | variable-size elements (identified by its XVS suffix) for which | |
9102 | the size can be read in the parallel XVZ variable. | |
9103 | ||
9104 | In the case of an array of an unconstrained element type, the compiler | |
9105 | wraps the array element inside a private PAD type. This type should not | |
9106 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
9107 | that we also use the adjective "aligner" in our code to designate |
9108 | these wrapper types. | |
9109 | ||
1b536f04 | 9110 | In some cases, the size allocated for each element is statically |
21649b50 JB |
9111 | known. In that case, the PAD type already has the correct size, |
9112 | and the array element should remain unfixed. | |
9113 | ||
9114 | But there are cases when this size is not statically known. | |
9115 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
9116 | |
9117 | type Dynamic is array (1 .. Five) of Integer; | |
9118 | type Wrapper (Has_Length : Boolean := False) is record | |
9119 | Data : Dynamic; | |
9120 | case Has_Length is | |
9121 | when True => Length : Integer; | |
9122 | when False => null; | |
9123 | end case; | |
9124 | end record; | |
9125 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
9126 | ||
9127 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
9128 | Data => (others => 17), | |
9129 | Length => 1)); | |
9130 | ||
9131 | ||
9132 | The debugging info would describe variable Hello as being an | |
9133 | array of a PAD type. The size of that PAD type is not statically | |
9134 | known, but can be determined using a parallel XVZ variable. | |
9135 | In that case, a copy of the PAD type with the correct size should | |
9136 | be used for the fixed array. | |
9137 | ||
21649b50 JB |
9138 | 3. ``Fixing'' record type objects: |
9139 | ---------------------------------- | |
9140 | ||
9141 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
9142 | record types. In this case, in order to compute the associated |
9143 | fixed type, we need to determine the size and offset of each of | |
9144 | its components. This, in turn, requires us to compute the fixed | |
9145 | type of each of these components. | |
9146 | ||
9147 | Consider for instance the example: | |
9148 | ||
9149 | type Bounded_String (Max_Size : Natural) is record | |
9150 | Str : String (1 .. Max_Size); | |
9151 | Length : Natural; | |
9152 | end record; | |
9153 | My_String : Bounded_String (Max_Size => 10); | |
9154 | ||
9155 | In that case, the position of field "Length" depends on the size | |
9156 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 9157 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
9158 | we need to fix the type of field Str. Therefore, fixing a variant |
9159 | record requires us to fix each of its components. | |
9160 | ||
9161 | However, if a component does not have a dynamic size, the component | |
9162 | should not be fixed. In particular, fields that use a PAD type | |
9163 | should not fixed. Here is an example where this might happen | |
9164 | (assuming type Rec above): | |
9165 | ||
9166 | type Container (Big : Boolean) is record | |
9167 | First : Rec; | |
9168 | After : Integer; | |
9169 | case Big is | |
9170 | when True => Another : Integer; | |
9171 | when False => null; | |
9172 | end case; | |
9173 | end record; | |
9174 | My_Container : Container := (Big => False, | |
9175 | First => (Empty => True), | |
9176 | After => 42); | |
9177 | ||
9178 | In that example, the compiler creates a PAD type for component First, | |
9179 | whose size is constant, and then positions the component After just | |
9180 | right after it. The offset of component After is therefore constant | |
9181 | in this case. | |
9182 | ||
9183 | The debugger computes the position of each field based on an algorithm | |
9184 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
9185 | preceding it. Let's now imagine that the user is trying to print |
9186 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
9187 | end up computing the offset of field After based on the size of the |
9188 | fixed version of field First. And since in our example First has | |
9189 | only one actual field, the size of the fixed type is actually smaller | |
9190 | than the amount of space allocated to that field, and thus we would | |
9191 | compute the wrong offset of field After. | |
9192 | ||
21649b50 JB |
9193 | To make things more complicated, we need to watch out for dynamic |
9194 | components of variant records (identified by the ___XVL suffix in | |
9195 | the component name). Even if the target type is a PAD type, the size | |
9196 | of that type might not be statically known. So the PAD type needs | |
9197 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
9198 | we might end up with the wrong size for our component. This can be | |
9199 | observed with the following type declarations: | |
284614f0 JB |
9200 | |
9201 | type Octal is new Integer range 0 .. 7; | |
9202 | type Octal_Array is array (Positive range <>) of Octal; | |
9203 | pragma Pack (Octal_Array); | |
9204 | ||
9205 | type Octal_Buffer (Size : Positive) is record | |
9206 | Buffer : Octal_Array (1 .. Size); | |
9207 | Length : Integer; | |
9208 | end record; | |
9209 | ||
9210 | In that case, Buffer is a PAD type whose size is unset and needs | |
9211 | to be computed by fixing the unwrapped type. | |
9212 | ||
21649b50 JB |
9213 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
9214 | ---------------------------------------------------------- | |
9215 | ||
9216 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
9217 | thus far, be actually fixed? |
9218 | ||
9219 | The answer is: Only when referencing that element. For instance | |
9220 | when selecting one component of a record, this specific component | |
9221 | should be fixed at that point in time. Or when printing the value | |
9222 | of a record, each component should be fixed before its value gets | |
9223 | printed. Similarly for arrays, the element of the array should be | |
9224 | fixed when printing each element of the array, or when extracting | |
9225 | one element out of that array. On the other hand, fixing should | |
9226 | not be performed on the elements when taking a slice of an array! | |
9227 | ||
9228 | Note that one of the side-effects of miscomputing the offset and | |
9229 | size of each field is that we end up also miscomputing the size | |
9230 | of the containing type. This can have adverse results when computing | |
9231 | the value of an entity. GDB fetches the value of an entity based | |
9232 | on the size of its type, and thus a wrong size causes GDB to fetch | |
9233 | the wrong amount of memory. In the case where the computed size is | |
9234 | too small, GDB fetches too little data to print the value of our | |
9235 | entiry. Results in this case as unpredicatble, as we usually read | |
9236 | past the buffer containing the data =:-o. */ | |
9237 | ||
9238 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
9239 | for the Ada language. */ | |
9240 | ||
52ce6436 | 9241 | static struct value * |
ebf56fd3 | 9242 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 9243 | int *pos, enum noside noside) |
14f9c5c9 AS |
9244 | { |
9245 | enum exp_opcode op; | |
b5385fc0 | 9246 | int tem; |
14f9c5c9 AS |
9247 | int pc; |
9248 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; | |
9249 | struct type *type; | |
52ce6436 | 9250 | int nargs, oplen; |
d2e4a39e | 9251 | struct value **argvec; |
14f9c5c9 | 9252 | |
d2e4a39e AS |
9253 | pc = *pos; |
9254 | *pos += 1; | |
14f9c5c9 AS |
9255 | op = exp->elts[pc].opcode; |
9256 | ||
d2e4a39e | 9257 | switch (op) |
14f9c5c9 AS |
9258 | { |
9259 | default: | |
9260 | *pos -= 1; | |
6e48bd2c JB |
9261 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
9262 | arg1 = unwrap_value (arg1); | |
9263 | ||
9264 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
9265 | then we need to perform the conversion manually, because | |
9266 | evaluate_subexp_standard doesn't do it. This conversion is | |
9267 | necessary in Ada because the different kinds of float/fixed | |
9268 | types in Ada have different representations. | |
9269 | ||
9270 | Similarly, we need to perform the conversion from OP_LONG | |
9271 | ourselves. */ | |
9272 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
9273 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
9274 | ||
9275 | return arg1; | |
4c4b4cd2 PH |
9276 | |
9277 | case OP_STRING: | |
9278 | { | |
76a01679 | 9279 | struct value *result; |
5b4ee69b | 9280 | |
76a01679 JB |
9281 | *pos -= 1; |
9282 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
9283 | /* The result type will have code OP_STRING, bashed there from | |
9284 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
9285 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
9286 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 9287 | return result; |
4c4b4cd2 | 9288 | } |
14f9c5c9 AS |
9289 | |
9290 | case UNOP_CAST: | |
9291 | (*pos) += 2; | |
9292 | type = exp->elts[pc + 1].type; | |
9293 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
9294 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9295 | goto nosideret; |
6e48bd2c | 9296 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
9297 | return arg1; |
9298 | ||
4c4b4cd2 PH |
9299 | case UNOP_QUAL: |
9300 | (*pos) += 2; | |
9301 | type = exp->elts[pc + 1].type; | |
9302 | return ada_evaluate_subexp (type, exp, pos, noside); | |
9303 | ||
14f9c5c9 AS |
9304 | case BINOP_ASSIGN: |
9305 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
9306 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
9307 | { | |
9308 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
9309 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
9310 | return arg1; | |
9311 | return ada_value_assign (arg1, arg1); | |
9312 | } | |
003f3813 JB |
9313 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
9314 | except if the lhs of our assignment is a convenience variable. | |
9315 | In the case of assigning to a convenience variable, the lhs | |
9316 | should be exactly the result of the evaluation of the rhs. */ | |
9317 | type = value_type (arg1); | |
9318 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
9319 | type = NULL; | |
9320 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 9321 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 9322 | return arg1; |
df407dfe AC |
9323 | if (ada_is_fixed_point_type (value_type (arg1))) |
9324 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
9325 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 9326 | error |
323e0a4a | 9327 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 9328 | else |
df407dfe | 9329 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 9330 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
9331 | |
9332 | case BINOP_ADD: | |
9333 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9334 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9335 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9336 | goto nosideret; |
2ac8a782 JB |
9337 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
9338 | return (value_from_longest | |
9339 | (value_type (arg1), | |
9340 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
9341 | if ((ada_is_fixed_point_type (value_type (arg1)) |
9342 | || ada_is_fixed_point_type (value_type (arg2))) | |
9343 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 9344 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
9345 | /* Do the addition, and cast the result to the type of the first |
9346 | argument. We cannot cast the result to a reference type, so if | |
9347 | ARG1 is a reference type, find its underlying type. */ | |
9348 | type = value_type (arg1); | |
9349 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
9350 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 9351 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 9352 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
9353 | |
9354 | case BINOP_SUB: | |
9355 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9356 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9357 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9358 | goto nosideret; |
2ac8a782 JB |
9359 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
9360 | return (value_from_longest | |
9361 | (value_type (arg1), | |
9362 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
9363 | if ((ada_is_fixed_point_type (value_type (arg1)) |
9364 | || ada_is_fixed_point_type (value_type (arg2))) | |
9365 | && value_type (arg1) != value_type (arg2)) | |
0963b4bd MS |
9366 | error (_("Operands of fixed-point subtraction " |
9367 | "must have the same type")); | |
b7789565 JB |
9368 | /* Do the substraction, and cast the result to the type of the first |
9369 | argument. We cannot cast the result to a reference type, so if | |
9370 | ARG1 is a reference type, find its underlying type. */ | |
9371 | type = value_type (arg1); | |
9372 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
9373 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 9374 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 9375 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
9376 | |
9377 | case BINOP_MUL: | |
9378 | case BINOP_DIV: | |
e1578042 JB |
9379 | case BINOP_REM: |
9380 | case BINOP_MOD: | |
14f9c5c9 AS |
9381 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9382 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9383 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9384 | goto nosideret; |
e1578042 | 9385 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
9386 | { |
9387 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9388 | return value_zero (value_type (arg1), not_lval); | |
9389 | } | |
14f9c5c9 | 9390 | else |
4c4b4cd2 | 9391 | { |
a53b7a21 | 9392 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 9393 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 9394 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 9395 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 9396 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 9397 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
9398 | return ada_value_binop (arg1, arg2, op); |
9399 | } | |
9400 | ||
4c4b4cd2 PH |
9401 | case BINOP_EQUAL: |
9402 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 9403 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 9404 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 9405 | if (noside == EVAL_SKIP) |
76a01679 | 9406 | goto nosideret; |
4c4b4cd2 | 9407 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9408 | tem = 0; |
4c4b4cd2 | 9409 | else |
f44316fa UW |
9410 | { |
9411 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9412 | tem = ada_value_equal (arg1, arg2); | |
9413 | } | |
4c4b4cd2 | 9414 | if (op == BINOP_NOTEQUAL) |
76a01679 | 9415 | tem = !tem; |
fbb06eb1 UW |
9416 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9417 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
9418 | |
9419 | case UNOP_NEG: | |
9420 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9421 | if (noside == EVAL_SKIP) | |
9422 | goto nosideret; | |
df407dfe AC |
9423 | else if (ada_is_fixed_point_type (value_type (arg1))) |
9424 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 9425 | else |
f44316fa UW |
9426 | { |
9427 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
9428 | return value_neg (arg1); | |
9429 | } | |
4c4b4cd2 | 9430 | |
2330c6c6 JB |
9431 | case BINOP_LOGICAL_AND: |
9432 | case BINOP_LOGICAL_OR: | |
9433 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
9434 | { |
9435 | struct value *val; | |
9436 | ||
9437 | *pos -= 1; | |
9438 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
9439 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9440 | return value_cast (type, val); | |
000d5124 | 9441 | } |
2330c6c6 JB |
9442 | |
9443 | case BINOP_BITWISE_AND: | |
9444 | case BINOP_BITWISE_IOR: | |
9445 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
9446 | { |
9447 | struct value *val; | |
9448 | ||
9449 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
9450 | *pos = pc; | |
9451 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
9452 | ||
9453 | return value_cast (value_type (arg1), val); | |
9454 | } | |
2330c6c6 | 9455 | |
14f9c5c9 AS |
9456 | case OP_VAR_VALUE: |
9457 | *pos -= 1; | |
6799def4 | 9458 | |
14f9c5c9 | 9459 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
9460 | { |
9461 | *pos += 4; | |
9462 | goto nosideret; | |
9463 | } | |
9464 | else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
9465 | /* Only encountered when an unresolved symbol occurs in a |
9466 | context other than a function call, in which case, it is | |
52ce6436 | 9467 | invalid. */ |
323e0a4a | 9468 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 9469 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
14f9c5c9 | 9470 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 9471 | { |
0c1f74cf | 9472 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
9473 | /* Check to see if this is a tagged type. We also need to handle |
9474 | the case where the type is a reference to a tagged type, but | |
9475 | we have to be careful to exclude pointers to tagged types. | |
9476 | The latter should be shown as usual (as a pointer), whereas | |
9477 | a reference should mostly be transparent to the user. */ | |
9478 | if (ada_is_tagged_type (type, 0) | |
9479 | || (TYPE_CODE(type) == TYPE_CODE_REF | |
9480 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) | |
0c1f74cf JB |
9481 | { |
9482 | /* Tagged types are a little special in the fact that the real | |
9483 | type is dynamic and can only be determined by inspecting the | |
9484 | object's tag. This means that we need to get the object's | |
9485 | value first (EVAL_NORMAL) and then extract the actual object | |
9486 | type from its tag. | |
9487 | ||
9488 | Note that we cannot skip the final step where we extract | |
9489 | the object type from its tag, because the EVAL_NORMAL phase | |
9490 | results in dynamic components being resolved into fixed ones. | |
9491 | This can cause problems when trying to print the type | |
9492 | description of tagged types whose parent has a dynamic size: | |
9493 | We use the type name of the "_parent" component in order | |
9494 | to print the name of the ancestor type in the type description. | |
9495 | If that component had a dynamic size, the resolution into | |
9496 | a fixed type would result in the loss of that type name, | |
9497 | thus preventing us from printing the name of the ancestor | |
9498 | type in the type description. */ | |
b79819ba JB |
9499 | struct type *actual_type; |
9500 | ||
0c1f74cf | 9501 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); |
b79819ba JB |
9502 | actual_type = type_from_tag (ada_value_tag (arg1)); |
9503 | if (actual_type == NULL) | |
9504 | /* If, for some reason, we were unable to determine | |
9505 | the actual type from the tag, then use the static | |
9506 | approximation that we just computed as a fallback. | |
9507 | This can happen if the debugging information is | |
9508 | incomplete, for instance. */ | |
9509 | actual_type = type; | |
9510 | ||
9511 | return value_zero (actual_type, not_lval); | |
0c1f74cf JB |
9512 | } |
9513 | ||
4c4b4cd2 PH |
9514 | *pos += 4; |
9515 | return value_zero | |
9516 | (to_static_fixed_type | |
9517 | (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))), | |
9518 | not_lval); | |
9519 | } | |
d2e4a39e | 9520 | else |
4c4b4cd2 | 9521 | { |
284614f0 JB |
9522 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
9523 | arg1 = unwrap_value (arg1); | |
4c4b4cd2 PH |
9524 | return ada_to_fixed_value (arg1); |
9525 | } | |
9526 | ||
9527 | case OP_FUNCALL: | |
9528 | (*pos) += 2; | |
9529 | ||
9530 | /* Allocate arg vector, including space for the function to be | |
9531 | called in argvec[0] and a terminating NULL. */ | |
9532 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
9533 | argvec = | |
9534 | (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); | |
9535 | ||
9536 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 9537 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 9538 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
9539 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
9540 | else | |
9541 | { | |
9542 | for (tem = 0; tem <= nargs; tem += 1) | |
9543 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9544 | argvec[tem] = 0; | |
9545 | ||
9546 | if (noside == EVAL_SKIP) | |
9547 | goto nosideret; | |
9548 | } | |
9549 | ||
ad82864c JB |
9550 | if (ada_is_constrained_packed_array_type |
9551 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 9552 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
9553 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
9554 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
9555 | /* This is a packed array that has already been fixed, and | |
9556 | therefore already coerced to a simple array. Nothing further | |
9557 | to do. */ | |
9558 | ; | |
df407dfe AC |
9559 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF |
9560 | || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
76a01679 | 9561 | && VALUE_LVAL (argvec[0]) == lval_memory)) |
4c4b4cd2 PH |
9562 | argvec[0] = value_addr (argvec[0]); |
9563 | ||
df407dfe | 9564 | type = ada_check_typedef (value_type (argvec[0])); |
720d1a40 JB |
9565 | |
9566 | /* Ada allows us to implicitly dereference arrays when subscripting | |
8f465ea7 JB |
9567 | them. So, if this is an array typedef (encoding use for array |
9568 | access types encoded as fat pointers), strip it now. */ | |
720d1a40 JB |
9569 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
9570 | type = ada_typedef_target_type (type); | |
9571 | ||
4c4b4cd2 PH |
9572 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
9573 | { | |
61ee279c | 9574 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
9575 | { |
9576 | case TYPE_CODE_FUNC: | |
61ee279c | 9577 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
9578 | break; |
9579 | case TYPE_CODE_ARRAY: | |
9580 | break; | |
9581 | case TYPE_CODE_STRUCT: | |
9582 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
9583 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 9584 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
9585 | break; |
9586 | default: | |
323e0a4a | 9587 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 9588 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
9589 | break; |
9590 | } | |
9591 | } | |
9592 | ||
9593 | switch (TYPE_CODE (type)) | |
9594 | { | |
9595 | case TYPE_CODE_FUNC: | |
9596 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9597 | return allocate_value (TYPE_TARGET_TYPE (type)); | |
9598 | return call_function_by_hand (argvec[0], nargs, argvec + 1); | |
9599 | case TYPE_CODE_STRUCT: | |
9600 | { | |
9601 | int arity; | |
9602 | ||
4c4b4cd2 PH |
9603 | arity = ada_array_arity (type); |
9604 | type = ada_array_element_type (type, nargs); | |
9605 | if (type == NULL) | |
323e0a4a | 9606 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 9607 | if (arity != nargs) |
323e0a4a | 9608 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 9609 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 9610 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9611 | return |
9612 | unwrap_value (ada_value_subscript | |
9613 | (argvec[0], nargs, argvec + 1)); | |
9614 | } | |
9615 | case TYPE_CODE_ARRAY: | |
9616 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9617 | { | |
9618 | type = ada_array_element_type (type, nargs); | |
9619 | if (type == NULL) | |
323e0a4a | 9620 | error (_("element type of array unknown")); |
4c4b4cd2 | 9621 | else |
0a07e705 | 9622 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9623 | } |
9624 | return | |
9625 | unwrap_value (ada_value_subscript | |
9626 | (ada_coerce_to_simple_array (argvec[0]), | |
9627 | nargs, argvec + 1)); | |
9628 | case TYPE_CODE_PTR: /* Pointer to array */ | |
9629 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); | |
9630 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9631 | { | |
9632 | type = ada_array_element_type (type, nargs); | |
9633 | if (type == NULL) | |
323e0a4a | 9634 | error (_("element type of array unknown")); |
4c4b4cd2 | 9635 | else |
0a07e705 | 9636 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9637 | } |
9638 | return | |
9639 | unwrap_value (ada_value_ptr_subscript (argvec[0], type, | |
9640 | nargs, argvec + 1)); | |
9641 | ||
9642 | default: | |
e1d5a0d2 PH |
9643 | error (_("Attempt to index or call something other than an " |
9644 | "array or function")); | |
4c4b4cd2 PH |
9645 | } |
9646 | ||
9647 | case TERNOP_SLICE: | |
9648 | { | |
9649 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9650 | struct value *low_bound_val = | |
9651 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
9652 | struct value *high_bound_val = |
9653 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9654 | LONGEST low_bound; | |
9655 | LONGEST high_bound; | |
5b4ee69b | 9656 | |
994b9211 AC |
9657 | low_bound_val = coerce_ref (low_bound_val); |
9658 | high_bound_val = coerce_ref (high_bound_val); | |
714e53ab PH |
9659 | low_bound = pos_atr (low_bound_val); |
9660 | high_bound = pos_atr (high_bound_val); | |
963a6417 | 9661 | |
4c4b4cd2 PH |
9662 | if (noside == EVAL_SKIP) |
9663 | goto nosideret; | |
9664 | ||
4c4b4cd2 PH |
9665 | /* If this is a reference to an aligner type, then remove all |
9666 | the aligners. */ | |
df407dfe AC |
9667 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
9668 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
9669 | TYPE_TARGET_TYPE (value_type (array)) = | |
9670 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 9671 | |
ad82864c | 9672 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 9673 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
9674 | |
9675 | /* If this is a reference to an array or an array lvalue, | |
9676 | convert to a pointer. */ | |
df407dfe AC |
9677 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
9678 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
9679 | && VALUE_LVAL (array) == lval_memory)) |
9680 | array = value_addr (array); | |
9681 | ||
1265e4aa | 9682 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 9683 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 9684 | (value_type (array)))) |
0b5d8877 | 9685 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
9686 | |
9687 | array = ada_coerce_to_simple_array_ptr (array); | |
9688 | ||
714e53ab PH |
9689 | /* If we have more than one level of pointer indirection, |
9690 | dereference the value until we get only one level. */ | |
df407dfe AC |
9691 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
9692 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
9693 | == TYPE_CODE_PTR)) |
9694 | array = value_ind (array); | |
9695 | ||
9696 | /* Make sure we really do have an array type before going further, | |
9697 | to avoid a SEGV when trying to get the index type or the target | |
9698 | type later down the road if the debug info generated by | |
9699 | the compiler is incorrect or incomplete. */ | |
df407dfe | 9700 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 9701 | error (_("cannot take slice of non-array")); |
714e53ab | 9702 | |
828292f2 JB |
9703 | if (TYPE_CODE (ada_check_typedef (value_type (array))) |
9704 | == TYPE_CODE_PTR) | |
4c4b4cd2 | 9705 | { |
828292f2 JB |
9706 | struct type *type0 = ada_check_typedef (value_type (array)); |
9707 | ||
0b5d8877 | 9708 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
828292f2 | 9709 | return empty_array (TYPE_TARGET_TYPE (type0), low_bound); |
4c4b4cd2 PH |
9710 | else |
9711 | { | |
9712 | struct type *arr_type0 = | |
828292f2 | 9713 | to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); |
5b4ee69b | 9714 | |
f5938064 JG |
9715 | return ada_value_slice_from_ptr (array, arr_type0, |
9716 | longest_to_int (low_bound), | |
9717 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
9718 | } |
9719 | } | |
9720 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9721 | return array; | |
9722 | else if (high_bound < low_bound) | |
df407dfe | 9723 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 9724 | else |
529cad9c PH |
9725 | return ada_value_slice (array, longest_to_int (low_bound), |
9726 | longest_to_int (high_bound)); | |
4c4b4cd2 | 9727 | } |
14f9c5c9 | 9728 | |
4c4b4cd2 PH |
9729 | case UNOP_IN_RANGE: |
9730 | (*pos) += 2; | |
9731 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 9732 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 9733 | |
14f9c5c9 | 9734 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 9735 | goto nosideret; |
14f9c5c9 | 9736 | |
4c4b4cd2 PH |
9737 | switch (TYPE_CODE (type)) |
9738 | { | |
9739 | default: | |
e1d5a0d2 PH |
9740 | lim_warning (_("Membership test incompletely implemented; " |
9741 | "always returns true")); | |
fbb06eb1 UW |
9742 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9743 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
9744 | |
9745 | case TYPE_CODE_RANGE: | |
030b4912 UW |
9746 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
9747 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
9748 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9749 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
9750 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9751 | return | |
9752 | value_from_longest (type, | |
4c4b4cd2 PH |
9753 | (value_less (arg1, arg3) |
9754 | || value_equal (arg1, arg3)) | |
9755 | && (value_less (arg2, arg1) | |
9756 | || value_equal (arg2, arg1))); | |
9757 | } | |
9758 | ||
9759 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 9760 | (*pos) += 2; |
4c4b4cd2 PH |
9761 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9762 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 9763 | |
4c4b4cd2 PH |
9764 | if (noside == EVAL_SKIP) |
9765 | goto nosideret; | |
14f9c5c9 | 9766 | |
4c4b4cd2 | 9767 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
9768 | { |
9769 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
9770 | return value_zero (type, not_lval); | |
9771 | } | |
14f9c5c9 | 9772 | |
4c4b4cd2 | 9773 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 9774 | |
1eea4ebd UW |
9775 | type = ada_index_type (value_type (arg2), tem, "range"); |
9776 | if (!type) | |
9777 | type = value_type (arg1); | |
14f9c5c9 | 9778 | |
1eea4ebd UW |
9779 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
9780 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 9781 | |
f44316fa UW |
9782 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9783 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9784 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9785 | return |
fbb06eb1 | 9786 | value_from_longest (type, |
4c4b4cd2 PH |
9787 | (value_less (arg1, arg3) |
9788 | || value_equal (arg1, arg3)) | |
9789 | && (value_less (arg2, arg1) | |
9790 | || value_equal (arg2, arg1))); | |
9791 | ||
9792 | case TERNOP_IN_RANGE: | |
9793 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9794 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9795 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9796 | ||
9797 | if (noside == EVAL_SKIP) | |
9798 | goto nosideret; | |
9799 | ||
f44316fa UW |
9800 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9801 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9802 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9803 | return |
fbb06eb1 | 9804 | value_from_longest (type, |
4c4b4cd2 PH |
9805 | (value_less (arg1, arg3) |
9806 | || value_equal (arg1, arg3)) | |
9807 | && (value_less (arg2, arg1) | |
9808 | || value_equal (arg2, arg1))); | |
9809 | ||
9810 | case OP_ATR_FIRST: | |
9811 | case OP_ATR_LAST: | |
9812 | case OP_ATR_LENGTH: | |
9813 | { | |
76a01679 | 9814 | struct type *type_arg; |
5b4ee69b | 9815 | |
76a01679 JB |
9816 | if (exp->elts[*pos].opcode == OP_TYPE) |
9817 | { | |
9818 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
9819 | arg1 = NULL; | |
5bc23cb3 | 9820 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
9821 | } |
9822 | else | |
9823 | { | |
9824 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9825 | type_arg = NULL; | |
9826 | } | |
9827 | ||
9828 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 9829 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
9830 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
9831 | *pos += 4; | |
9832 | ||
9833 | if (noside == EVAL_SKIP) | |
9834 | goto nosideret; | |
9835 | ||
9836 | if (type_arg == NULL) | |
9837 | { | |
9838 | arg1 = ada_coerce_ref (arg1); | |
9839 | ||
ad82864c | 9840 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
9841 | arg1 = ada_coerce_to_simple_array (arg1); |
9842 | ||
1eea4ebd UW |
9843 | type = ada_index_type (value_type (arg1), tem, |
9844 | ada_attribute_name (op)); | |
9845 | if (type == NULL) | |
9846 | type = builtin_type (exp->gdbarch)->builtin_int; | |
76a01679 JB |
9847 | |
9848 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 9849 | return allocate_value (type); |
76a01679 JB |
9850 | |
9851 | switch (op) | |
9852 | { | |
9853 | default: /* Should never happen. */ | |
323e0a4a | 9854 | error (_("unexpected attribute encountered")); |
76a01679 | 9855 | case OP_ATR_FIRST: |
1eea4ebd UW |
9856 | return value_from_longest |
9857 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 9858 | case OP_ATR_LAST: |
1eea4ebd UW |
9859 | return value_from_longest |
9860 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 9861 | case OP_ATR_LENGTH: |
1eea4ebd UW |
9862 | return value_from_longest |
9863 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
9864 | } |
9865 | } | |
9866 | else if (discrete_type_p (type_arg)) | |
9867 | { | |
9868 | struct type *range_type; | |
9869 | char *name = ada_type_name (type_arg); | |
5b4ee69b | 9870 | |
76a01679 JB |
9871 | range_type = NULL; |
9872 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 9873 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
9874 | if (range_type == NULL) |
9875 | range_type = type_arg; | |
9876 | switch (op) | |
9877 | { | |
9878 | default: | |
323e0a4a | 9879 | error (_("unexpected attribute encountered")); |
76a01679 | 9880 | case OP_ATR_FIRST: |
690cc4eb | 9881 | return value_from_longest |
43bbcdc2 | 9882 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 9883 | case OP_ATR_LAST: |
690cc4eb | 9884 | return value_from_longest |
43bbcdc2 | 9885 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 9886 | case OP_ATR_LENGTH: |
323e0a4a | 9887 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
9888 | } |
9889 | } | |
9890 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 9891 | error (_("unimplemented type attribute")); |
76a01679 JB |
9892 | else |
9893 | { | |
9894 | LONGEST low, high; | |
9895 | ||
ad82864c JB |
9896 | if (ada_is_constrained_packed_array_type (type_arg)) |
9897 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 9898 | |
1eea4ebd | 9899 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); |
76a01679 | 9900 | if (type == NULL) |
1eea4ebd UW |
9901 | type = builtin_type (exp->gdbarch)->builtin_int; |
9902 | ||
76a01679 JB |
9903 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9904 | return allocate_value (type); | |
9905 | ||
9906 | switch (op) | |
9907 | { | |
9908 | default: | |
323e0a4a | 9909 | error (_("unexpected attribute encountered")); |
76a01679 | 9910 | case OP_ATR_FIRST: |
1eea4ebd | 9911 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
9912 | return value_from_longest (type, low); |
9913 | case OP_ATR_LAST: | |
1eea4ebd | 9914 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
9915 | return value_from_longest (type, high); |
9916 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
9917 | low = ada_array_bound_from_type (type_arg, tem, 0); |
9918 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
9919 | return value_from_longest (type, high - low + 1); |
9920 | } | |
9921 | } | |
14f9c5c9 AS |
9922 | } |
9923 | ||
4c4b4cd2 PH |
9924 | case OP_ATR_TAG: |
9925 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9926 | if (noside == EVAL_SKIP) | |
76a01679 | 9927 | goto nosideret; |
4c4b4cd2 PH |
9928 | |
9929 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 9930 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
9931 | |
9932 | return ada_value_tag (arg1); | |
9933 | ||
9934 | case OP_ATR_MIN: | |
9935 | case OP_ATR_MAX: | |
9936 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9937 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9938 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9939 | if (noside == EVAL_SKIP) | |
76a01679 | 9940 | goto nosideret; |
d2e4a39e | 9941 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 9942 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 9943 | else |
f44316fa UW |
9944 | { |
9945 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9946 | return value_binop (arg1, arg2, | |
9947 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
9948 | } | |
14f9c5c9 | 9949 | |
4c4b4cd2 PH |
9950 | case OP_ATR_MODULUS: |
9951 | { | |
31dedfee | 9952 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 9953 | |
5b4ee69b | 9954 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
9955 | if (noside == EVAL_SKIP) |
9956 | goto nosideret; | |
4c4b4cd2 | 9957 | |
76a01679 | 9958 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 9959 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 9960 | |
76a01679 JB |
9961 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
9962 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
9963 | } |
9964 | ||
9965 | ||
9966 | case OP_ATR_POS: | |
9967 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9968 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9969 | if (noside == EVAL_SKIP) | |
76a01679 | 9970 | goto nosideret; |
3cb382c9 UW |
9971 | type = builtin_type (exp->gdbarch)->builtin_int; |
9972 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9973 | return value_zero (type, not_lval); | |
14f9c5c9 | 9974 | else |
3cb382c9 | 9975 | return value_pos_atr (type, arg1); |
14f9c5c9 | 9976 | |
4c4b4cd2 PH |
9977 | case OP_ATR_SIZE: |
9978 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
9979 | type = value_type (arg1); |
9980 | ||
9981 | /* If the argument is a reference, then dereference its type, since | |
9982 | the user is really asking for the size of the actual object, | |
9983 | not the size of the pointer. */ | |
9984 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
9985 | type = TYPE_TARGET_TYPE (type); | |
9986 | ||
4c4b4cd2 | 9987 | if (noside == EVAL_SKIP) |
76a01679 | 9988 | goto nosideret; |
4c4b4cd2 | 9989 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 9990 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 9991 | else |
22601c15 | 9992 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 9993 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
9994 | |
9995 | case OP_ATR_VAL: | |
9996 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 9997 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 9998 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 9999 | if (noside == EVAL_SKIP) |
76a01679 | 10000 | goto nosideret; |
4c4b4cd2 | 10001 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10002 | return value_zero (type, not_lval); |
4c4b4cd2 | 10003 | else |
76a01679 | 10004 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
10005 | |
10006 | case BINOP_EXP: | |
10007 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10008 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10009 | if (noside == EVAL_SKIP) | |
10010 | goto nosideret; | |
10011 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 10012 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 10013 | else |
f44316fa UW |
10014 | { |
10015 | /* For integer exponentiation operations, | |
10016 | only promote the first argument. */ | |
10017 | if (is_integral_type (value_type (arg2))) | |
10018 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10019 | else | |
10020 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10021 | ||
10022 | return value_binop (arg1, arg2, op); | |
10023 | } | |
4c4b4cd2 PH |
10024 | |
10025 | case UNOP_PLUS: | |
10026 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10027 | if (noside == EVAL_SKIP) | |
10028 | goto nosideret; | |
10029 | else | |
10030 | return arg1; | |
10031 | ||
10032 | case UNOP_ABS: | |
10033 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10034 | if (noside == EVAL_SKIP) | |
10035 | goto nosideret; | |
f44316fa | 10036 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 10037 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 10038 | return value_neg (arg1); |
14f9c5c9 | 10039 | else |
4c4b4cd2 | 10040 | return arg1; |
14f9c5c9 AS |
10041 | |
10042 | case UNOP_IND: | |
6b0d7253 | 10043 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 10044 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 10045 | goto nosideret; |
df407dfe | 10046 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 10047 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
10048 | { |
10049 | if (ada_is_array_descriptor_type (type)) | |
10050 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10051 | { | |
10052 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 10053 | |
4c4b4cd2 | 10054 | if (arrType == NULL) |
323e0a4a | 10055 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 10056 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
10057 | } |
10058 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
10059 | || TYPE_CODE (type) == TYPE_CODE_REF | |
10060 | /* In C you can dereference an array to get the 1st elt. */ | |
10061 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab PH |
10062 | { |
10063 | type = to_static_fixed_type | |
10064 | (ada_aligned_type | |
10065 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
10066 | check_size (type); | |
10067 | return value_zero (type, lval_memory); | |
10068 | } | |
4c4b4cd2 | 10069 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
10070 | { |
10071 | /* GDB allows dereferencing an int. */ | |
10072 | if (expect_type == NULL) | |
10073 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10074 | lval_memory); | |
10075 | else | |
10076 | { | |
10077 | expect_type = | |
10078 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
10079 | return value_zero (expect_type, lval_memory); | |
10080 | } | |
10081 | } | |
4c4b4cd2 | 10082 | else |
323e0a4a | 10083 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 10084 | } |
0963b4bd | 10085 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 10086 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 10087 | |
96967637 JB |
10088 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
10089 | /* GDB allows dereferencing an int. If we were given | |
10090 | the expect_type, then use that as the target type. | |
10091 | Otherwise, assume that the target type is an int. */ | |
10092 | { | |
10093 | if (expect_type != NULL) | |
10094 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
10095 | arg1)); | |
10096 | else | |
10097 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
10098 | (CORE_ADDR) value_as_address (arg1)); | |
10099 | } | |
6b0d7253 | 10100 | |
4c4b4cd2 PH |
10101 | if (ada_is_array_descriptor_type (type)) |
10102 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10103 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 10104 | else |
4c4b4cd2 | 10105 | return ada_value_ind (arg1); |
14f9c5c9 AS |
10106 | |
10107 | case STRUCTOP_STRUCT: | |
10108 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
10109 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
10110 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10111 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10112 | goto nosideret; |
14f9c5c9 | 10113 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10114 | { |
df407dfe | 10115 | struct type *type1 = value_type (arg1); |
5b4ee69b | 10116 | |
76a01679 JB |
10117 | if (ada_is_tagged_type (type1, 1)) |
10118 | { | |
10119 | type = ada_lookup_struct_elt_type (type1, | |
10120 | &exp->elts[pc + 2].string, | |
10121 | 1, 1, NULL); | |
10122 | if (type == NULL) | |
10123 | /* In this case, we assume that the field COULD exist | |
10124 | in some extension of the type. Return an object of | |
10125 | "type" void, which will match any formal | |
0963b4bd | 10126 | (see ada_type_match). */ |
30b15541 UW |
10127 | return value_zero (builtin_type (exp->gdbarch)->builtin_void, |
10128 | lval_memory); | |
76a01679 JB |
10129 | } |
10130 | else | |
10131 | type = | |
10132 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
10133 | 0, NULL); | |
10134 | ||
10135 | return value_zero (ada_aligned_type (type), lval_memory); | |
10136 | } | |
14f9c5c9 | 10137 | else |
284614f0 JB |
10138 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); |
10139 | arg1 = unwrap_value (arg1); | |
10140 | return ada_to_fixed_value (arg1); | |
10141 | ||
14f9c5c9 | 10142 | case OP_TYPE: |
4c4b4cd2 PH |
10143 | /* The value is not supposed to be used. This is here to make it |
10144 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
10145 | (*pos) += 2; |
10146 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10147 | goto nosideret; |
14f9c5c9 | 10148 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 10149 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 10150 | else |
323e0a4a | 10151 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
10152 | |
10153 | case OP_AGGREGATE: | |
10154 | case OP_CHOICES: | |
10155 | case OP_OTHERS: | |
10156 | case OP_DISCRETE_RANGE: | |
10157 | case OP_POSITIONAL: | |
10158 | case OP_NAME: | |
10159 | if (noside == EVAL_NORMAL) | |
10160 | switch (op) | |
10161 | { | |
10162 | case OP_NAME: | |
10163 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 10164 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
10165 | case OP_AGGREGATE: |
10166 | error (_("Aggregates only allowed on the right of an assignment")); | |
10167 | default: | |
0963b4bd MS |
10168 | internal_error (__FILE__, __LINE__, |
10169 | _("aggregate apparently mangled")); | |
52ce6436 PH |
10170 | } |
10171 | ||
10172 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
10173 | *pos += oplen - 1; | |
10174 | for (tem = 0; tem < nargs; tem += 1) | |
10175 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
10176 | goto nosideret; | |
14f9c5c9 AS |
10177 | } |
10178 | ||
10179 | nosideret: | |
22601c15 | 10180 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); |
14f9c5c9 | 10181 | } |
14f9c5c9 | 10182 | \f |
d2e4a39e | 10183 | |
4c4b4cd2 | 10184 | /* Fixed point */ |
14f9c5c9 AS |
10185 | |
10186 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
10187 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 10188 | Otherwise, return NULL. */ |
14f9c5c9 | 10189 | |
d2e4a39e | 10190 | static const char * |
ebf56fd3 | 10191 | fixed_type_info (struct type *type) |
14f9c5c9 | 10192 | { |
d2e4a39e | 10193 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
10194 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
10195 | ||
d2e4a39e AS |
10196 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
10197 | { | |
14f9c5c9 | 10198 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 10199 | |
14f9c5c9 | 10200 | if (tail == NULL) |
4c4b4cd2 | 10201 | return NULL; |
d2e4a39e | 10202 | else |
4c4b4cd2 | 10203 | return tail + 5; |
14f9c5c9 AS |
10204 | } |
10205 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
10206 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
10207 | else | |
10208 | return NULL; | |
10209 | } | |
10210 | ||
4c4b4cd2 | 10211 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
10212 | |
10213 | int | |
ebf56fd3 | 10214 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
10215 | { |
10216 | return fixed_type_info (type) != NULL; | |
10217 | } | |
10218 | ||
4c4b4cd2 PH |
10219 | /* Return non-zero iff TYPE represents a System.Address type. */ |
10220 | ||
10221 | int | |
10222 | ada_is_system_address_type (struct type *type) | |
10223 | { | |
10224 | return (TYPE_NAME (type) | |
10225 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
10226 | } | |
10227 | ||
14f9c5c9 AS |
10228 | /* Assuming that TYPE is the representation of an Ada fixed-point |
10229 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 10230 | delta cannot be determined. */ |
14f9c5c9 AS |
10231 | |
10232 | DOUBLEST | |
ebf56fd3 | 10233 | ada_delta (struct type *type) |
14f9c5c9 AS |
10234 | { |
10235 | const char *encoding = fixed_type_info (type); | |
facc390f | 10236 | DOUBLEST num, den; |
14f9c5c9 | 10237 | |
facc390f JB |
10238 | /* Strictly speaking, num and den are encoded as integer. However, |
10239 | they may not fit into a long, and they will have to be converted | |
10240 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
10241 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
10242 | &num, &den) < 2) | |
14f9c5c9 | 10243 | return -1.0; |
d2e4a39e | 10244 | else |
facc390f | 10245 | return num / den; |
14f9c5c9 AS |
10246 | } |
10247 | ||
10248 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 10249 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
10250 | |
10251 | static DOUBLEST | |
ebf56fd3 | 10252 | scaling_factor (struct type *type) |
14f9c5c9 AS |
10253 | { |
10254 | const char *encoding = fixed_type_info (type); | |
facc390f | 10255 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 10256 | int n; |
d2e4a39e | 10257 | |
facc390f JB |
10258 | /* Strictly speaking, num's and den's are encoded as integer. However, |
10259 | they may not fit into a long, and they will have to be converted | |
10260 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
10261 | n = sscanf (encoding, | |
10262 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
10263 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
10264 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
10265 | |
10266 | if (n < 2) | |
10267 | return 1.0; | |
10268 | else if (n == 4) | |
facc390f | 10269 | return num1 / den1; |
d2e4a39e | 10270 | else |
facc390f | 10271 | return num0 / den0; |
14f9c5c9 AS |
10272 | } |
10273 | ||
10274 | ||
10275 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 10276 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
10277 | |
10278 | DOUBLEST | |
ebf56fd3 | 10279 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 10280 | { |
d2e4a39e | 10281 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
10282 | } |
10283 | ||
4c4b4cd2 PH |
10284 | /* The representation of a fixed-point value of type TYPE |
10285 | corresponding to the value X. */ | |
14f9c5c9 AS |
10286 | |
10287 | LONGEST | |
ebf56fd3 | 10288 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
10289 | { |
10290 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
10291 | } | |
10292 | ||
14f9c5c9 | 10293 | \f |
d2e4a39e | 10294 | |
4c4b4cd2 | 10295 | /* Range types */ |
14f9c5c9 AS |
10296 | |
10297 | /* Scan STR beginning at position K for a discriminant name, and | |
10298 | return the value of that discriminant field of DVAL in *PX. If | |
10299 | PNEW_K is not null, put the position of the character beyond the | |
10300 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 10301 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
10302 | |
10303 | static int | |
07d8f827 | 10304 | scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 10305 | int *pnew_k) |
14f9c5c9 AS |
10306 | { |
10307 | static char *bound_buffer = NULL; | |
10308 | static size_t bound_buffer_len = 0; | |
10309 | char *bound; | |
10310 | char *pend; | |
d2e4a39e | 10311 | struct value *bound_val; |
14f9c5c9 AS |
10312 | |
10313 | if (dval == NULL || str == NULL || str[k] == '\0') | |
10314 | return 0; | |
10315 | ||
d2e4a39e | 10316 | pend = strstr (str + k, "__"); |
14f9c5c9 AS |
10317 | if (pend == NULL) |
10318 | { | |
d2e4a39e | 10319 | bound = str + k; |
14f9c5c9 AS |
10320 | k += strlen (bound); |
10321 | } | |
d2e4a39e | 10322 | else |
14f9c5c9 | 10323 | { |
d2e4a39e | 10324 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); |
14f9c5c9 | 10325 | bound = bound_buffer; |
d2e4a39e AS |
10326 | strncpy (bound_buffer, str + k, pend - (str + k)); |
10327 | bound[pend - (str + k)] = '\0'; | |
10328 | k = pend - str; | |
14f9c5c9 | 10329 | } |
d2e4a39e | 10330 | |
df407dfe | 10331 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
10332 | if (bound_val == NULL) |
10333 | return 0; | |
10334 | ||
10335 | *px = value_as_long (bound_val); | |
10336 | if (pnew_k != NULL) | |
10337 | *pnew_k = k; | |
10338 | return 1; | |
10339 | } | |
10340 | ||
10341 | /* Value of variable named NAME in the current environment. If | |
10342 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
10343 | otherwise causes an error with message ERR_MSG. */ |
10344 | ||
d2e4a39e AS |
10345 | static struct value * |
10346 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 10347 | { |
4c4b4cd2 | 10348 | struct ada_symbol_info *syms; |
14f9c5c9 AS |
10349 | int nsyms; |
10350 | ||
4c4b4cd2 PH |
10351 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
10352 | &syms); | |
14f9c5c9 AS |
10353 | |
10354 | if (nsyms != 1) | |
10355 | { | |
10356 | if (err_msg == NULL) | |
4c4b4cd2 | 10357 | return 0; |
14f9c5c9 | 10358 | else |
8a3fe4f8 | 10359 | error (("%s"), err_msg); |
14f9c5c9 AS |
10360 | } |
10361 | ||
4c4b4cd2 | 10362 | return value_of_variable (syms[0].sym, syms[0].block); |
14f9c5c9 | 10363 | } |
d2e4a39e | 10364 | |
14f9c5c9 | 10365 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
10366 | no such variable found, returns 0, and sets *FLAG to 0. If |
10367 | successful, sets *FLAG to 1. */ | |
10368 | ||
14f9c5c9 | 10369 | LONGEST |
4c4b4cd2 | 10370 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 10371 | { |
4c4b4cd2 | 10372 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 10373 | |
14f9c5c9 AS |
10374 | if (var_val == 0) |
10375 | { | |
10376 | if (flag != NULL) | |
4c4b4cd2 | 10377 | *flag = 0; |
14f9c5c9 AS |
10378 | return 0; |
10379 | } | |
10380 | else | |
10381 | { | |
10382 | if (flag != NULL) | |
4c4b4cd2 | 10383 | *flag = 1; |
14f9c5c9 AS |
10384 | return value_as_long (var_val); |
10385 | } | |
10386 | } | |
d2e4a39e | 10387 | |
14f9c5c9 AS |
10388 | |
10389 | /* Return a range type whose base type is that of the range type named | |
10390 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 10391 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
10392 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
10393 | corresponding range type from debug information; fall back to using it | |
10394 | if symbol lookup fails. If a new type must be created, allocate it | |
10395 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
10396 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 10397 | |
d2e4a39e | 10398 | static struct type * |
28c85d6c | 10399 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 10400 | { |
28c85d6c | 10401 | char *name; |
14f9c5c9 | 10402 | struct type *base_type; |
d2e4a39e | 10403 | char *subtype_info; |
14f9c5c9 | 10404 | |
28c85d6c JB |
10405 | gdb_assert (raw_type != NULL); |
10406 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 10407 | |
1ce677a4 | 10408 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
10409 | base_type = TYPE_TARGET_TYPE (raw_type); |
10410 | else | |
10411 | base_type = raw_type; | |
10412 | ||
28c85d6c | 10413 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
10414 | subtype_info = strstr (name, "___XD"); |
10415 | if (subtype_info == NULL) | |
690cc4eb | 10416 | { |
43bbcdc2 PH |
10417 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
10418 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 10419 | |
690cc4eb PH |
10420 | if (L < INT_MIN || U > INT_MAX) |
10421 | return raw_type; | |
10422 | else | |
28c85d6c | 10423 | return create_range_type (alloc_type_copy (raw_type), raw_type, |
43bbcdc2 PH |
10424 | ada_discrete_type_low_bound (raw_type), |
10425 | ada_discrete_type_high_bound (raw_type)); | |
690cc4eb | 10426 | } |
14f9c5c9 AS |
10427 | else |
10428 | { | |
10429 | static char *name_buf = NULL; | |
10430 | static size_t name_len = 0; | |
10431 | int prefix_len = subtype_info - name; | |
10432 | LONGEST L, U; | |
10433 | struct type *type; | |
10434 | char *bounds_str; | |
10435 | int n; | |
10436 | ||
10437 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
10438 | strncpy (name_buf, name, prefix_len); | |
10439 | name_buf[prefix_len] = '\0'; | |
10440 | ||
10441 | subtype_info += 5; | |
10442 | bounds_str = strchr (subtype_info, '_'); | |
10443 | n = 1; | |
10444 | ||
d2e4a39e | 10445 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
10446 | { |
10447 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
10448 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
10449 | return raw_type; | |
10450 | if (bounds_str[n] == '_') | |
10451 | n += 2; | |
0963b4bd | 10452 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
4c4b4cd2 PH |
10453 | n += 1; |
10454 | subtype_info += 1; | |
10455 | } | |
d2e4a39e | 10456 | else |
4c4b4cd2 PH |
10457 | { |
10458 | int ok; | |
5b4ee69b | 10459 | |
4c4b4cd2 PH |
10460 | strcpy (name_buf + prefix_len, "___L"); |
10461 | L = get_int_var_value (name_buf, &ok); | |
10462 | if (!ok) | |
10463 | { | |
323e0a4a | 10464 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
10465 | L = 1; |
10466 | } | |
10467 | } | |
14f9c5c9 | 10468 | |
d2e4a39e | 10469 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
10470 | { |
10471 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
10472 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
10473 | return raw_type; | |
10474 | } | |
d2e4a39e | 10475 | else |
4c4b4cd2 PH |
10476 | { |
10477 | int ok; | |
5b4ee69b | 10478 | |
4c4b4cd2 PH |
10479 | strcpy (name_buf + prefix_len, "___U"); |
10480 | U = get_int_var_value (name_buf, &ok); | |
10481 | if (!ok) | |
10482 | { | |
323e0a4a | 10483 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
10484 | U = L; |
10485 | } | |
10486 | } | |
14f9c5c9 | 10487 | |
28c85d6c | 10488 | type = create_range_type (alloc_type_copy (raw_type), base_type, L, U); |
d2e4a39e | 10489 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
10490 | return type; |
10491 | } | |
10492 | } | |
10493 | ||
4c4b4cd2 PH |
10494 | /* True iff NAME is the name of a range type. */ |
10495 | ||
14f9c5c9 | 10496 | int |
d2e4a39e | 10497 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
10498 | { |
10499 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 10500 | } |
14f9c5c9 | 10501 | \f |
d2e4a39e | 10502 | |
4c4b4cd2 PH |
10503 | /* Modular types */ |
10504 | ||
10505 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 10506 | |
14f9c5c9 | 10507 | int |
d2e4a39e | 10508 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 10509 | { |
18af8284 | 10510 | struct type *subranged_type = get_base_type (type); |
14f9c5c9 AS |
10511 | |
10512 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 10513 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 10514 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
10515 | } |
10516 | ||
0056e4d5 JB |
10517 | /* Try to determine the lower and upper bounds of the given modular type |
10518 | using the type name only. Return non-zero and set L and U as the lower | |
10519 | and upper bounds (respectively) if successful. */ | |
10520 | ||
10521 | int | |
10522 | ada_modulus_from_name (struct type *type, ULONGEST *modulus) | |
10523 | { | |
10524 | char *name = ada_type_name (type); | |
10525 | char *suffix; | |
10526 | int k; | |
10527 | LONGEST U; | |
10528 | ||
10529 | if (name == NULL) | |
10530 | return 0; | |
10531 | ||
10532 | /* Discrete type bounds are encoded using an __XD suffix. In our case, | |
10533 | we are looking for static bounds, which means an __XDLU suffix. | |
10534 | Moreover, we know that the lower bound of modular types is always | |
10535 | zero, so the actual suffix should start with "__XDLU_0__", and | |
10536 | then be followed by the upper bound value. */ | |
10537 | suffix = strstr (name, "__XDLU_0__"); | |
10538 | if (suffix == NULL) | |
10539 | return 0; | |
10540 | k = 10; | |
10541 | if (!ada_scan_number (suffix, k, &U, NULL)) | |
10542 | return 0; | |
10543 | ||
10544 | *modulus = (ULONGEST) U + 1; | |
10545 | return 1; | |
10546 | } | |
10547 | ||
4c4b4cd2 PH |
10548 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
10549 | ||
61ee279c | 10550 | ULONGEST |
0056e4d5 | 10551 | ada_modulus (struct type *type) |
14f9c5c9 | 10552 | { |
43bbcdc2 | 10553 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 10554 | } |
d2e4a39e | 10555 | \f |
f7f9143b JB |
10556 | |
10557 | /* Ada exception catchpoint support: | |
10558 | --------------------------------- | |
10559 | ||
10560 | We support 3 kinds of exception catchpoints: | |
10561 | . catchpoints on Ada exceptions | |
10562 | . catchpoints on unhandled Ada exceptions | |
10563 | . catchpoints on failed assertions | |
10564 | ||
10565 | Exceptions raised during failed assertions, or unhandled exceptions | |
10566 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
10567 | However, we can easily differentiate these two special cases, and having | |
10568 | the option to distinguish these two cases from the rest can be useful | |
10569 | to zero-in on certain situations. | |
10570 | ||
10571 | Exception catchpoints are a specialized form of breakpoint, | |
10572 | since they rely on inserting breakpoints inside known routines | |
10573 | of the GNAT runtime. The implementation therefore uses a standard | |
10574 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
10575 | of breakpoint_ops. | |
10576 | ||
0259addd JB |
10577 | Support in the runtime for exception catchpoints have been changed |
10578 | a few times already, and these changes affect the implementation | |
10579 | of these catchpoints. In order to be able to support several | |
10580 | variants of the runtime, we use a sniffer that will determine | |
28010a5d | 10581 | the runtime variant used by the program being debugged. */ |
f7f9143b JB |
10582 | |
10583 | /* The different types of catchpoints that we introduced for catching | |
10584 | Ada exceptions. */ | |
10585 | ||
10586 | enum exception_catchpoint_kind | |
10587 | { | |
10588 | ex_catch_exception, | |
10589 | ex_catch_exception_unhandled, | |
10590 | ex_catch_assert | |
10591 | }; | |
10592 | ||
3d0b0fa3 JB |
10593 | /* Ada's standard exceptions. */ |
10594 | ||
10595 | static char *standard_exc[] = { | |
10596 | "constraint_error", | |
10597 | "program_error", | |
10598 | "storage_error", | |
10599 | "tasking_error" | |
10600 | }; | |
10601 | ||
0259addd JB |
10602 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
10603 | ||
10604 | /* A structure that describes how to support exception catchpoints | |
10605 | for a given executable. */ | |
10606 | ||
10607 | struct exception_support_info | |
10608 | { | |
10609 | /* The name of the symbol to break on in order to insert | |
10610 | a catchpoint on exceptions. */ | |
10611 | const char *catch_exception_sym; | |
10612 | ||
10613 | /* The name of the symbol to break on in order to insert | |
10614 | a catchpoint on unhandled exceptions. */ | |
10615 | const char *catch_exception_unhandled_sym; | |
10616 | ||
10617 | /* The name of the symbol to break on in order to insert | |
10618 | a catchpoint on failed assertions. */ | |
10619 | const char *catch_assert_sym; | |
10620 | ||
10621 | /* Assuming that the inferior just triggered an unhandled exception | |
10622 | catchpoint, this function is responsible for returning the address | |
10623 | in inferior memory where the name of that exception is stored. | |
10624 | Return zero if the address could not be computed. */ | |
10625 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
10626 | }; | |
10627 | ||
10628 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
10629 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
10630 | ||
10631 | /* The following exception support info structure describes how to | |
10632 | implement exception catchpoints with the latest version of the | |
10633 | Ada runtime (as of 2007-03-06). */ | |
10634 | ||
10635 | static const struct exception_support_info default_exception_support_info = | |
10636 | { | |
10637 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
10638 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10639 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
10640 | ada_unhandled_exception_name_addr | |
10641 | }; | |
10642 | ||
10643 | /* The following exception support info structure describes how to | |
10644 | implement exception catchpoints with a slightly older version | |
10645 | of the Ada runtime. */ | |
10646 | ||
10647 | static const struct exception_support_info exception_support_info_fallback = | |
10648 | { | |
10649 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
10650 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10651 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
10652 | ada_unhandled_exception_name_addr_from_raise | |
10653 | }; | |
10654 | ||
f17011e0 JB |
10655 | /* Return nonzero if we can detect the exception support routines |
10656 | described in EINFO. | |
10657 | ||
10658 | This function errors out if an abnormal situation is detected | |
10659 | (for instance, if we find the exception support routines, but | |
10660 | that support is found to be incomplete). */ | |
10661 | ||
10662 | static int | |
10663 | ada_has_this_exception_support (const struct exception_support_info *einfo) | |
10664 | { | |
10665 | struct symbol *sym; | |
10666 | ||
10667 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
10668 | that should be compiled with debugging information. As a result, we | |
10669 | expect to find that symbol in the symtabs. */ | |
10670 | ||
10671 | sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN); | |
10672 | if (sym == NULL) | |
a6af7abe JB |
10673 | { |
10674 | /* Perhaps we did not find our symbol because the Ada runtime was | |
10675 | compiled without debugging info, or simply stripped of it. | |
10676 | It happens on some GNU/Linux distributions for instance, where | |
10677 | users have to install a separate debug package in order to get | |
10678 | the runtime's debugging info. In that situation, let the user | |
10679 | know why we cannot insert an Ada exception catchpoint. | |
10680 | ||
10681 | Note: Just for the purpose of inserting our Ada exception | |
10682 | catchpoint, we could rely purely on the associated minimal symbol. | |
10683 | But we would be operating in degraded mode anyway, since we are | |
10684 | still lacking the debugging info needed later on to extract | |
10685 | the name of the exception being raised (this name is printed in | |
10686 | the catchpoint message, and is also used when trying to catch | |
10687 | a specific exception). We do not handle this case for now. */ | |
10688 | if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL)) | |
10689 | error (_("Your Ada runtime appears to be missing some debugging " | |
10690 | "information.\nCannot insert Ada exception catchpoint " | |
10691 | "in this configuration.")); | |
10692 | ||
10693 | return 0; | |
10694 | } | |
f17011e0 JB |
10695 | |
10696 | /* Make sure that the symbol we found corresponds to a function. */ | |
10697 | ||
10698 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
10699 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
10700 | SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym)); | |
10701 | ||
10702 | return 1; | |
10703 | } | |
10704 | ||
0259addd JB |
10705 | /* Inspect the Ada runtime and determine which exception info structure |
10706 | should be used to provide support for exception catchpoints. | |
10707 | ||
3eecfa55 JB |
10708 | This function will always set the per-inferior exception_info, |
10709 | or raise an error. */ | |
0259addd JB |
10710 | |
10711 | static void | |
10712 | ada_exception_support_info_sniffer (void) | |
10713 | { | |
3eecfa55 | 10714 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
0259addd JB |
10715 | struct symbol *sym; |
10716 | ||
10717 | /* If the exception info is already known, then no need to recompute it. */ | |
3eecfa55 | 10718 | if (data->exception_info != NULL) |
0259addd JB |
10719 | return; |
10720 | ||
10721 | /* Check the latest (default) exception support info. */ | |
f17011e0 | 10722 | if (ada_has_this_exception_support (&default_exception_support_info)) |
0259addd | 10723 | { |
3eecfa55 | 10724 | data->exception_info = &default_exception_support_info; |
0259addd JB |
10725 | return; |
10726 | } | |
10727 | ||
10728 | /* Try our fallback exception suport info. */ | |
f17011e0 | 10729 | if (ada_has_this_exception_support (&exception_support_info_fallback)) |
0259addd | 10730 | { |
3eecfa55 | 10731 | data->exception_info = &exception_support_info_fallback; |
0259addd JB |
10732 | return; |
10733 | } | |
10734 | ||
10735 | /* Sometimes, it is normal for us to not be able to find the routine | |
10736 | we are looking for. This happens when the program is linked with | |
10737 | the shared version of the GNAT runtime, and the program has not been | |
10738 | started yet. Inform the user of these two possible causes if | |
10739 | applicable. */ | |
10740 | ||
ccefe4c4 | 10741 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
10742 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
10743 | ||
10744 | /* If the symbol does not exist, then check that the program is | |
10745 | already started, to make sure that shared libraries have been | |
10746 | loaded. If it is not started, this may mean that the symbol is | |
10747 | in a shared library. */ | |
10748 | ||
10749 | if (ptid_get_pid (inferior_ptid) == 0) | |
10750 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
10751 | ||
10752 | /* At this point, we know that we are debugging an Ada program and | |
10753 | that the inferior has been started, but we still are not able to | |
0963b4bd | 10754 | find the run-time symbols. That can mean that we are in |
0259addd JB |
10755 | configurable run time mode, or that a-except as been optimized |
10756 | out by the linker... In any case, at this point it is not worth | |
10757 | supporting this feature. */ | |
10758 | ||
7dda8cff | 10759 | error (_("Cannot insert Ada exception catchpoints in this configuration.")); |
0259addd JB |
10760 | } |
10761 | ||
f7f9143b JB |
10762 | /* True iff FRAME is very likely to be that of a function that is |
10763 | part of the runtime system. This is all very heuristic, but is | |
10764 | intended to be used as advice as to what frames are uninteresting | |
10765 | to most users. */ | |
10766 | ||
10767 | static int | |
10768 | is_known_support_routine (struct frame_info *frame) | |
10769 | { | |
4ed6b5be | 10770 | struct symtab_and_line sal; |
f7f9143b | 10771 | char *func_name; |
692465f1 | 10772 | enum language func_lang; |
f7f9143b | 10773 | int i; |
f7f9143b | 10774 | |
4ed6b5be JB |
10775 | /* If this code does not have any debugging information (no symtab), |
10776 | This cannot be any user code. */ | |
f7f9143b | 10777 | |
4ed6b5be | 10778 | find_frame_sal (frame, &sal); |
f7f9143b JB |
10779 | if (sal.symtab == NULL) |
10780 | return 1; | |
10781 | ||
4ed6b5be JB |
10782 | /* If there is a symtab, but the associated source file cannot be |
10783 | located, then assume this is not user code: Selecting a frame | |
10784 | for which we cannot display the code would not be very helpful | |
10785 | for the user. This should also take care of case such as VxWorks | |
10786 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 10787 | |
9bbc9174 | 10788 | if (symtab_to_fullname (sal.symtab) == NULL) |
f7f9143b JB |
10789 | return 1; |
10790 | ||
4ed6b5be JB |
10791 | /* Check the unit filename againt the Ada runtime file naming. |
10792 | We also check the name of the objfile against the name of some | |
10793 | known system libraries that sometimes come with debugging info | |
10794 | too. */ | |
10795 | ||
f7f9143b JB |
10796 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
10797 | { | |
10798 | re_comp (known_runtime_file_name_patterns[i]); | |
10799 | if (re_exec (sal.symtab->filename)) | |
10800 | return 1; | |
4ed6b5be JB |
10801 | if (sal.symtab->objfile != NULL |
10802 | && re_exec (sal.symtab->objfile->name)) | |
10803 | return 1; | |
f7f9143b JB |
10804 | } |
10805 | ||
4ed6b5be | 10806 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 10807 | |
e9e07ba6 | 10808 | find_frame_funname (frame, &func_name, &func_lang, NULL); |
f7f9143b JB |
10809 | if (func_name == NULL) |
10810 | return 1; | |
10811 | ||
10812 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
10813 | { | |
10814 | re_comp (known_auxiliary_function_name_patterns[i]); | |
10815 | if (re_exec (func_name)) | |
10816 | return 1; | |
10817 | } | |
10818 | ||
10819 | return 0; | |
10820 | } | |
10821 | ||
10822 | /* Find the first frame that contains debugging information and that is not | |
10823 | part of the Ada run-time, starting from FI and moving upward. */ | |
10824 | ||
0ef643c8 | 10825 | void |
f7f9143b JB |
10826 | ada_find_printable_frame (struct frame_info *fi) |
10827 | { | |
10828 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
10829 | { | |
10830 | if (!is_known_support_routine (fi)) | |
10831 | { | |
10832 | select_frame (fi); | |
10833 | break; | |
10834 | } | |
10835 | } | |
10836 | ||
10837 | } | |
10838 | ||
10839 | /* Assuming that the inferior just triggered an unhandled exception | |
10840 | catchpoint, return the address in inferior memory where the name | |
10841 | of the exception is stored. | |
10842 | ||
10843 | Return zero if the address could not be computed. */ | |
10844 | ||
10845 | static CORE_ADDR | |
10846 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
10847 | { |
10848 | return parse_and_eval_address ("e.full_name"); | |
10849 | } | |
10850 | ||
10851 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
10852 | should be used when the inferior uses an older version of the runtime, | |
10853 | where the exception name needs to be extracted from a specific frame | |
10854 | several frames up in the callstack. */ | |
10855 | ||
10856 | static CORE_ADDR | |
10857 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
10858 | { |
10859 | int frame_level; | |
10860 | struct frame_info *fi; | |
3eecfa55 | 10861 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
f7f9143b JB |
10862 | |
10863 | /* To determine the name of this exception, we need to select | |
10864 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
10865 | at least 3 levels up, so we simply skip the first 3 frames | |
10866 | without checking the name of their associated function. */ | |
10867 | fi = get_current_frame (); | |
10868 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
10869 | if (fi != NULL) | |
10870 | fi = get_prev_frame (fi); | |
10871 | ||
10872 | while (fi != NULL) | |
10873 | { | |
692465f1 JB |
10874 | char *func_name; |
10875 | enum language func_lang; | |
10876 | ||
e9e07ba6 | 10877 | find_frame_funname (fi, &func_name, &func_lang, NULL); |
f7f9143b | 10878 | if (func_name != NULL |
3eecfa55 | 10879 | && strcmp (func_name, data->exception_info->catch_exception_sym) == 0) |
f7f9143b JB |
10880 | break; /* We found the frame we were looking for... */ |
10881 | fi = get_prev_frame (fi); | |
10882 | } | |
10883 | ||
10884 | if (fi == NULL) | |
10885 | return 0; | |
10886 | ||
10887 | select_frame (fi); | |
10888 | return parse_and_eval_address ("id.full_name"); | |
10889 | } | |
10890 | ||
10891 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
10892 | (of any type), return the address in inferior memory where the name | |
10893 | of the exception is stored, if applicable. | |
10894 | ||
10895 | Return zero if the address could not be computed, or if not relevant. */ | |
10896 | ||
10897 | static CORE_ADDR | |
10898 | ada_exception_name_addr_1 (enum exception_catchpoint_kind ex, | |
10899 | struct breakpoint *b) | |
10900 | { | |
3eecfa55 JB |
10901 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
10902 | ||
f7f9143b JB |
10903 | switch (ex) |
10904 | { | |
10905 | case ex_catch_exception: | |
10906 | return (parse_and_eval_address ("e.full_name")); | |
10907 | break; | |
10908 | ||
10909 | case ex_catch_exception_unhandled: | |
3eecfa55 | 10910 | return data->exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
10911 | break; |
10912 | ||
10913 | case ex_catch_assert: | |
10914 | return 0; /* Exception name is not relevant in this case. */ | |
10915 | break; | |
10916 | ||
10917 | default: | |
10918 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10919 | break; | |
10920 | } | |
10921 | ||
10922 | return 0; /* Should never be reached. */ | |
10923 | } | |
10924 | ||
10925 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
10926 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
10927 | When an error is intercepted, a warning with the error message is printed, | |
10928 | and zero is returned. */ | |
10929 | ||
10930 | static CORE_ADDR | |
10931 | ada_exception_name_addr (enum exception_catchpoint_kind ex, | |
10932 | struct breakpoint *b) | |
10933 | { | |
10934 | struct gdb_exception e; | |
10935 | CORE_ADDR result = 0; | |
10936 | ||
10937 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
10938 | { | |
10939 | result = ada_exception_name_addr_1 (ex, b); | |
10940 | } | |
10941 | ||
10942 | if (e.reason < 0) | |
10943 | { | |
10944 | warning (_("failed to get exception name: %s"), e.message); | |
10945 | return 0; | |
10946 | } | |
10947 | ||
10948 | return result; | |
10949 | } | |
10950 | ||
28010a5d PA |
10951 | static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind, |
10952 | char *, char **, | |
c0a91b2b | 10953 | const struct breakpoint_ops **); |
28010a5d PA |
10954 | static char *ada_exception_catchpoint_cond_string (const char *excep_string); |
10955 | ||
10956 | /* Ada catchpoints. | |
10957 | ||
10958 | In the case of catchpoints on Ada exceptions, the catchpoint will | |
10959 | stop the target on every exception the program throws. When a user | |
10960 | specifies the name of a specific exception, we translate this | |
10961 | request into a condition expression (in text form), and then parse | |
10962 | it into an expression stored in each of the catchpoint's locations. | |
10963 | We then use this condition to check whether the exception that was | |
10964 | raised is the one the user is interested in. If not, then the | |
10965 | target is resumed again. We store the name of the requested | |
10966 | exception, in order to be able to re-set the condition expression | |
10967 | when symbols change. */ | |
10968 | ||
10969 | /* An instance of this type is used to represent an Ada catchpoint | |
10970 | breakpoint location. It includes a "struct bp_location" as a kind | |
10971 | of base class; users downcast to "struct bp_location *" when | |
10972 | needed. */ | |
10973 | ||
10974 | struct ada_catchpoint_location | |
10975 | { | |
10976 | /* The base class. */ | |
10977 | struct bp_location base; | |
10978 | ||
10979 | /* The condition that checks whether the exception that was raised | |
10980 | is the specific exception the user specified on catchpoint | |
10981 | creation. */ | |
10982 | struct expression *excep_cond_expr; | |
10983 | }; | |
10984 | ||
10985 | /* Implement the DTOR method in the bp_location_ops structure for all | |
10986 | Ada exception catchpoint kinds. */ | |
10987 | ||
10988 | static void | |
10989 | ada_catchpoint_location_dtor (struct bp_location *bl) | |
10990 | { | |
10991 | struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl; | |
10992 | ||
10993 | xfree (al->excep_cond_expr); | |
10994 | } | |
10995 | ||
10996 | /* The vtable to be used in Ada catchpoint locations. */ | |
10997 | ||
10998 | static const struct bp_location_ops ada_catchpoint_location_ops = | |
10999 | { | |
11000 | ada_catchpoint_location_dtor | |
11001 | }; | |
11002 | ||
11003 | /* An instance of this type is used to represent an Ada catchpoint. | |
11004 | It includes a "struct breakpoint" as a kind of base class; users | |
11005 | downcast to "struct breakpoint *" when needed. */ | |
11006 | ||
11007 | struct ada_catchpoint | |
11008 | { | |
11009 | /* The base class. */ | |
11010 | struct breakpoint base; | |
11011 | ||
11012 | /* The name of the specific exception the user specified. */ | |
11013 | char *excep_string; | |
11014 | }; | |
11015 | ||
11016 | /* Parse the exception condition string in the context of each of the | |
11017 | catchpoint's locations, and store them for later evaluation. */ | |
11018 | ||
11019 | static void | |
11020 | create_excep_cond_exprs (struct ada_catchpoint *c) | |
11021 | { | |
11022 | struct cleanup *old_chain; | |
11023 | struct bp_location *bl; | |
11024 | char *cond_string; | |
11025 | ||
11026 | /* Nothing to do if there's no specific exception to catch. */ | |
11027 | if (c->excep_string == NULL) | |
11028 | return; | |
11029 | ||
11030 | /* Same if there are no locations... */ | |
11031 | if (c->base.loc == NULL) | |
11032 | return; | |
11033 | ||
11034 | /* Compute the condition expression in text form, from the specific | |
11035 | expection we want to catch. */ | |
11036 | cond_string = ada_exception_catchpoint_cond_string (c->excep_string); | |
11037 | old_chain = make_cleanup (xfree, cond_string); | |
11038 | ||
11039 | /* Iterate over all the catchpoint's locations, and parse an | |
11040 | expression for each. */ | |
11041 | for (bl = c->base.loc; bl != NULL; bl = bl->next) | |
11042 | { | |
11043 | struct ada_catchpoint_location *ada_loc | |
11044 | = (struct ada_catchpoint_location *) bl; | |
11045 | struct expression *exp = NULL; | |
11046 | ||
11047 | if (!bl->shlib_disabled) | |
11048 | { | |
11049 | volatile struct gdb_exception e; | |
11050 | char *s; | |
11051 | ||
11052 | s = cond_string; | |
11053 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
11054 | { | |
11055 | exp = parse_exp_1 (&s, block_for_pc (bl->address), 0); | |
11056 | } | |
11057 | if (e.reason < 0) | |
11058 | warning (_("failed to reevaluate internal exception condition " | |
11059 | "for catchpoint %d: %s"), | |
11060 | c->base.number, e.message); | |
11061 | } | |
11062 | ||
11063 | ada_loc->excep_cond_expr = exp; | |
11064 | } | |
11065 | ||
11066 | do_cleanups (old_chain); | |
11067 | } | |
11068 | ||
11069 | /* Implement the DTOR method in the breakpoint_ops structure for all | |
11070 | exception catchpoint kinds. */ | |
11071 | ||
11072 | static void | |
11073 | dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
11074 | { | |
11075 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
11076 | ||
11077 | xfree (c->excep_string); | |
348d480f | 11078 | |
2060206e | 11079 | bkpt_breakpoint_ops.dtor (b); |
28010a5d PA |
11080 | } |
11081 | ||
11082 | /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops | |
11083 | structure for all exception catchpoint kinds. */ | |
11084 | ||
11085 | static struct bp_location * | |
11086 | allocate_location_exception (enum exception_catchpoint_kind ex, | |
11087 | struct breakpoint *self) | |
11088 | { | |
11089 | struct ada_catchpoint_location *loc; | |
11090 | ||
11091 | loc = XNEW (struct ada_catchpoint_location); | |
11092 | init_bp_location (&loc->base, &ada_catchpoint_location_ops, self); | |
11093 | loc->excep_cond_expr = NULL; | |
11094 | return &loc->base; | |
11095 | } | |
11096 | ||
11097 | /* Implement the RE_SET method in the breakpoint_ops structure for all | |
11098 | exception catchpoint kinds. */ | |
11099 | ||
11100 | static void | |
11101 | re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
11102 | { | |
11103 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
11104 | ||
11105 | /* Call the base class's method. This updates the catchpoint's | |
11106 | locations. */ | |
2060206e | 11107 | bkpt_breakpoint_ops.re_set (b); |
28010a5d PA |
11108 | |
11109 | /* Reparse the exception conditional expressions. One for each | |
11110 | location. */ | |
11111 | create_excep_cond_exprs (c); | |
11112 | } | |
11113 | ||
11114 | /* Returns true if we should stop for this breakpoint hit. If the | |
11115 | user specified a specific exception, we only want to cause a stop | |
11116 | if the program thrown that exception. */ | |
11117 | ||
11118 | static int | |
11119 | should_stop_exception (const struct bp_location *bl) | |
11120 | { | |
11121 | struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; | |
11122 | const struct ada_catchpoint_location *ada_loc | |
11123 | = (const struct ada_catchpoint_location *) bl; | |
11124 | volatile struct gdb_exception ex; | |
11125 | int stop; | |
11126 | ||
11127 | /* With no specific exception, should always stop. */ | |
11128 | if (c->excep_string == NULL) | |
11129 | return 1; | |
11130 | ||
11131 | if (ada_loc->excep_cond_expr == NULL) | |
11132 | { | |
11133 | /* We will have a NULL expression if back when we were creating | |
11134 | the expressions, this location's had failed to parse. */ | |
11135 | return 1; | |
11136 | } | |
11137 | ||
11138 | stop = 1; | |
11139 | TRY_CATCH (ex, RETURN_MASK_ALL) | |
11140 | { | |
11141 | struct value *mark; | |
11142 | ||
11143 | mark = value_mark (); | |
11144 | stop = value_true (evaluate_expression (ada_loc->excep_cond_expr)); | |
11145 | value_free_to_mark (mark); | |
11146 | } | |
11147 | if (ex.reason < 0) | |
11148 | exception_fprintf (gdb_stderr, ex, | |
11149 | _("Error in testing exception condition:\n")); | |
11150 | return stop; | |
11151 | } | |
11152 | ||
11153 | /* Implement the CHECK_STATUS method in the breakpoint_ops structure | |
11154 | for all exception catchpoint kinds. */ | |
11155 | ||
11156 | static void | |
11157 | check_status_exception (enum exception_catchpoint_kind ex, bpstat bs) | |
11158 | { | |
11159 | bs->stop = should_stop_exception (bs->bp_location_at); | |
11160 | } | |
11161 | ||
f7f9143b JB |
11162 | /* Implement the PRINT_IT method in the breakpoint_ops structure |
11163 | for all exception catchpoint kinds. */ | |
11164 | ||
11165 | static enum print_stop_action | |
348d480f | 11166 | print_it_exception (enum exception_catchpoint_kind ex, bpstat bs) |
f7f9143b | 11167 | { |
79a45e25 | 11168 | struct ui_out *uiout = current_uiout; |
348d480f PA |
11169 | struct breakpoint *b = bs->breakpoint_at; |
11170 | ||
956a9fb9 | 11171 | annotate_catchpoint (b->number); |
f7f9143b | 11172 | |
956a9fb9 | 11173 | if (ui_out_is_mi_like_p (uiout)) |
f7f9143b | 11174 | { |
956a9fb9 JB |
11175 | ui_out_field_string (uiout, "reason", |
11176 | async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); | |
11177 | ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition)); | |
f7f9143b JB |
11178 | } |
11179 | ||
00eb2c4a JB |
11180 | ui_out_text (uiout, |
11181 | b->disposition == disp_del ? "\nTemporary catchpoint " | |
11182 | : "\nCatchpoint "); | |
956a9fb9 JB |
11183 | ui_out_field_int (uiout, "bkptno", b->number); |
11184 | ui_out_text (uiout, ", "); | |
f7f9143b | 11185 | |
f7f9143b JB |
11186 | switch (ex) |
11187 | { | |
11188 | case ex_catch_exception: | |
f7f9143b | 11189 | case ex_catch_exception_unhandled: |
956a9fb9 JB |
11190 | { |
11191 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
11192 | char exception_name[256]; | |
11193 | ||
11194 | if (addr != 0) | |
11195 | { | |
11196 | read_memory (addr, exception_name, sizeof (exception_name) - 1); | |
11197 | exception_name [sizeof (exception_name) - 1] = '\0'; | |
11198 | } | |
11199 | else | |
11200 | { | |
11201 | /* For some reason, we were unable to read the exception | |
11202 | name. This could happen if the Runtime was compiled | |
11203 | without debugging info, for instance. In that case, | |
11204 | just replace the exception name by the generic string | |
11205 | "exception" - it will read as "an exception" in the | |
11206 | notification we are about to print. */ | |
967cff16 | 11207 | memcpy (exception_name, "exception", sizeof ("exception")); |
956a9fb9 JB |
11208 | } |
11209 | /* In the case of unhandled exception breakpoints, we print | |
11210 | the exception name as "unhandled EXCEPTION_NAME", to make | |
11211 | it clearer to the user which kind of catchpoint just got | |
11212 | hit. We used ui_out_text to make sure that this extra | |
11213 | info does not pollute the exception name in the MI case. */ | |
11214 | if (ex == ex_catch_exception_unhandled) | |
11215 | ui_out_text (uiout, "unhandled "); | |
11216 | ui_out_field_string (uiout, "exception-name", exception_name); | |
11217 | } | |
11218 | break; | |
f7f9143b | 11219 | case ex_catch_assert: |
956a9fb9 JB |
11220 | /* In this case, the name of the exception is not really |
11221 | important. Just print "failed assertion" to make it clearer | |
11222 | that his program just hit an assertion-failure catchpoint. | |
11223 | We used ui_out_text because this info does not belong in | |
11224 | the MI output. */ | |
11225 | ui_out_text (uiout, "failed assertion"); | |
11226 | break; | |
f7f9143b | 11227 | } |
956a9fb9 JB |
11228 | ui_out_text (uiout, " at "); |
11229 | ada_find_printable_frame (get_current_frame ()); | |
f7f9143b JB |
11230 | |
11231 | return PRINT_SRC_AND_LOC; | |
11232 | } | |
11233 | ||
11234 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
11235 | for all exception catchpoint kinds. */ | |
11236 | ||
11237 | static void | |
11238 | print_one_exception (enum exception_catchpoint_kind ex, | |
a6d9a66e | 11239 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11240 | { |
79a45e25 | 11241 | struct ui_out *uiout = current_uiout; |
28010a5d | 11242 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45b7d TT |
11243 | struct value_print_options opts; |
11244 | ||
11245 | get_user_print_options (&opts); | |
11246 | if (opts.addressprint) | |
f7f9143b JB |
11247 | { |
11248 | annotate_field (4); | |
5af949e3 | 11249 | ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
11250 | } |
11251 | ||
11252 | annotate_field (5); | |
a6d9a66e | 11253 | *last_loc = b->loc; |
f7f9143b JB |
11254 | switch (ex) |
11255 | { | |
11256 | case ex_catch_exception: | |
28010a5d | 11257 | if (c->excep_string != NULL) |
f7f9143b | 11258 | { |
28010a5d PA |
11259 | char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string); |
11260 | ||
f7f9143b JB |
11261 | ui_out_field_string (uiout, "what", msg); |
11262 | xfree (msg); | |
11263 | } | |
11264 | else | |
11265 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
11266 | ||
11267 | break; | |
11268 | ||
11269 | case ex_catch_exception_unhandled: | |
11270 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); | |
11271 | break; | |
11272 | ||
11273 | case ex_catch_assert: | |
11274 | ui_out_field_string (uiout, "what", "failed Ada assertions"); | |
11275 | break; | |
11276 | ||
11277 | default: | |
11278 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11279 | break; | |
11280 | } | |
11281 | } | |
11282 | ||
11283 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
11284 | for all exception catchpoint kinds. */ | |
11285 | ||
11286 | static void | |
11287 | print_mention_exception (enum exception_catchpoint_kind ex, | |
11288 | struct breakpoint *b) | |
11289 | { | |
28010a5d | 11290 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45e25 | 11291 | struct ui_out *uiout = current_uiout; |
28010a5d | 11292 | |
00eb2c4a JB |
11293 | ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ") |
11294 | : _("Catchpoint ")); | |
11295 | ui_out_field_int (uiout, "bkptno", b->number); | |
11296 | ui_out_text (uiout, ": "); | |
11297 | ||
f7f9143b JB |
11298 | switch (ex) |
11299 | { | |
11300 | case ex_catch_exception: | |
28010a5d | 11301 | if (c->excep_string != NULL) |
00eb2c4a JB |
11302 | { |
11303 | char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string); | |
11304 | struct cleanup *old_chain = make_cleanup (xfree, info); | |
11305 | ||
11306 | ui_out_text (uiout, info); | |
11307 | do_cleanups (old_chain); | |
11308 | } | |
f7f9143b | 11309 | else |
00eb2c4a | 11310 | ui_out_text (uiout, _("all Ada exceptions")); |
f7f9143b JB |
11311 | break; |
11312 | ||
11313 | case ex_catch_exception_unhandled: | |
00eb2c4a | 11314 | ui_out_text (uiout, _("unhandled Ada exceptions")); |
f7f9143b JB |
11315 | break; |
11316 | ||
11317 | case ex_catch_assert: | |
00eb2c4a | 11318 | ui_out_text (uiout, _("failed Ada assertions")); |
f7f9143b JB |
11319 | break; |
11320 | ||
11321 | default: | |
11322 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11323 | break; | |
11324 | } | |
11325 | } | |
11326 | ||
6149aea9 PA |
11327 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
11328 | for all exception catchpoint kinds. */ | |
11329 | ||
11330 | static void | |
11331 | print_recreate_exception (enum exception_catchpoint_kind ex, | |
11332 | struct breakpoint *b, struct ui_file *fp) | |
11333 | { | |
28010a5d PA |
11334 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
11335 | ||
6149aea9 PA |
11336 | switch (ex) |
11337 | { | |
11338 | case ex_catch_exception: | |
11339 | fprintf_filtered (fp, "catch exception"); | |
28010a5d PA |
11340 | if (c->excep_string != NULL) |
11341 | fprintf_filtered (fp, " %s", c->excep_string); | |
6149aea9 PA |
11342 | break; |
11343 | ||
11344 | case ex_catch_exception_unhandled: | |
78076abc | 11345 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
11346 | break; |
11347 | ||
11348 | case ex_catch_assert: | |
11349 | fprintf_filtered (fp, "catch assert"); | |
11350 | break; | |
11351 | ||
11352 | default: | |
11353 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11354 | } | |
d9b3f62e | 11355 | print_recreate_thread (b, fp); |
6149aea9 PA |
11356 | } |
11357 | ||
f7f9143b JB |
11358 | /* Virtual table for "catch exception" breakpoints. */ |
11359 | ||
28010a5d PA |
11360 | static void |
11361 | dtor_catch_exception (struct breakpoint *b) | |
11362 | { | |
11363 | dtor_exception (ex_catch_exception, b); | |
11364 | } | |
11365 | ||
11366 | static struct bp_location * | |
11367 | allocate_location_catch_exception (struct breakpoint *self) | |
11368 | { | |
11369 | return allocate_location_exception (ex_catch_exception, self); | |
11370 | } | |
11371 | ||
11372 | static void | |
11373 | re_set_catch_exception (struct breakpoint *b) | |
11374 | { | |
11375 | re_set_exception (ex_catch_exception, b); | |
11376 | } | |
11377 | ||
11378 | static void | |
11379 | check_status_catch_exception (bpstat bs) | |
11380 | { | |
11381 | check_status_exception (ex_catch_exception, bs); | |
11382 | } | |
11383 | ||
f7f9143b | 11384 | static enum print_stop_action |
348d480f | 11385 | print_it_catch_exception (bpstat bs) |
f7f9143b | 11386 | { |
348d480f | 11387 | return print_it_exception (ex_catch_exception, bs); |
f7f9143b JB |
11388 | } |
11389 | ||
11390 | static void | |
a6d9a66e | 11391 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11392 | { |
a6d9a66e | 11393 | print_one_exception (ex_catch_exception, b, last_loc); |
f7f9143b JB |
11394 | } |
11395 | ||
11396 | static void | |
11397 | print_mention_catch_exception (struct breakpoint *b) | |
11398 | { | |
11399 | print_mention_exception (ex_catch_exception, b); | |
11400 | } | |
11401 | ||
6149aea9 PA |
11402 | static void |
11403 | print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) | |
11404 | { | |
11405 | print_recreate_exception (ex_catch_exception, b, fp); | |
11406 | } | |
11407 | ||
2060206e | 11408 | static struct breakpoint_ops catch_exception_breakpoint_ops; |
f7f9143b JB |
11409 | |
11410 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
11411 | ||
28010a5d PA |
11412 | static void |
11413 | dtor_catch_exception_unhandled (struct breakpoint *b) | |
11414 | { | |
11415 | dtor_exception (ex_catch_exception_unhandled, b); | |
11416 | } | |
11417 | ||
11418 | static struct bp_location * | |
11419 | allocate_location_catch_exception_unhandled (struct breakpoint *self) | |
11420 | { | |
11421 | return allocate_location_exception (ex_catch_exception_unhandled, self); | |
11422 | } | |
11423 | ||
11424 | static void | |
11425 | re_set_catch_exception_unhandled (struct breakpoint *b) | |
11426 | { | |
11427 | re_set_exception (ex_catch_exception_unhandled, b); | |
11428 | } | |
11429 | ||
11430 | static void | |
11431 | check_status_catch_exception_unhandled (bpstat bs) | |
11432 | { | |
11433 | check_status_exception (ex_catch_exception_unhandled, bs); | |
11434 | } | |
11435 | ||
f7f9143b | 11436 | static enum print_stop_action |
348d480f | 11437 | print_it_catch_exception_unhandled (bpstat bs) |
f7f9143b | 11438 | { |
348d480f | 11439 | return print_it_exception (ex_catch_exception_unhandled, bs); |
f7f9143b JB |
11440 | } |
11441 | ||
11442 | static void | |
a6d9a66e UW |
11443 | print_one_catch_exception_unhandled (struct breakpoint *b, |
11444 | struct bp_location **last_loc) | |
f7f9143b | 11445 | { |
a6d9a66e | 11446 | print_one_exception (ex_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
11447 | } |
11448 | ||
11449 | static void | |
11450 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
11451 | { | |
11452 | print_mention_exception (ex_catch_exception_unhandled, b); | |
11453 | } | |
11454 | ||
6149aea9 PA |
11455 | static void |
11456 | print_recreate_catch_exception_unhandled (struct breakpoint *b, | |
11457 | struct ui_file *fp) | |
11458 | { | |
11459 | print_recreate_exception (ex_catch_exception_unhandled, b, fp); | |
11460 | } | |
11461 | ||
2060206e | 11462 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops; |
f7f9143b JB |
11463 | |
11464 | /* Virtual table for "catch assert" breakpoints. */ | |
11465 | ||
28010a5d PA |
11466 | static void |
11467 | dtor_catch_assert (struct breakpoint *b) | |
11468 | { | |
11469 | dtor_exception (ex_catch_assert, b); | |
11470 | } | |
11471 | ||
11472 | static struct bp_location * | |
11473 | allocate_location_catch_assert (struct breakpoint *self) | |
11474 | { | |
11475 | return allocate_location_exception (ex_catch_assert, self); | |
11476 | } | |
11477 | ||
11478 | static void | |
11479 | re_set_catch_assert (struct breakpoint *b) | |
11480 | { | |
11481 | return re_set_exception (ex_catch_assert, b); | |
11482 | } | |
11483 | ||
11484 | static void | |
11485 | check_status_catch_assert (bpstat bs) | |
11486 | { | |
11487 | check_status_exception (ex_catch_assert, bs); | |
11488 | } | |
11489 | ||
f7f9143b | 11490 | static enum print_stop_action |
348d480f | 11491 | print_it_catch_assert (bpstat bs) |
f7f9143b | 11492 | { |
348d480f | 11493 | return print_it_exception (ex_catch_assert, bs); |
f7f9143b JB |
11494 | } |
11495 | ||
11496 | static void | |
a6d9a66e | 11497 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11498 | { |
a6d9a66e | 11499 | print_one_exception (ex_catch_assert, b, last_loc); |
f7f9143b JB |
11500 | } |
11501 | ||
11502 | static void | |
11503 | print_mention_catch_assert (struct breakpoint *b) | |
11504 | { | |
11505 | print_mention_exception (ex_catch_assert, b); | |
11506 | } | |
11507 | ||
6149aea9 PA |
11508 | static void |
11509 | print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) | |
11510 | { | |
11511 | print_recreate_exception (ex_catch_assert, b, fp); | |
11512 | } | |
11513 | ||
2060206e | 11514 | static struct breakpoint_ops catch_assert_breakpoint_ops; |
f7f9143b | 11515 | |
f7f9143b JB |
11516 | /* Return a newly allocated copy of the first space-separated token |
11517 | in ARGSP, and then adjust ARGSP to point immediately after that | |
11518 | token. | |
11519 | ||
11520 | Return NULL if ARGPS does not contain any more tokens. */ | |
11521 | ||
11522 | static char * | |
11523 | ada_get_next_arg (char **argsp) | |
11524 | { | |
11525 | char *args = *argsp; | |
11526 | char *end; | |
11527 | char *result; | |
11528 | ||
11529 | /* Skip any leading white space. */ | |
11530 | ||
11531 | while (isspace (*args)) | |
11532 | args++; | |
11533 | ||
11534 | if (args[0] == '\0') | |
11535 | return NULL; /* No more arguments. */ | |
11536 | ||
11537 | /* Find the end of the current argument. */ | |
11538 | ||
11539 | end = args; | |
11540 | while (*end != '\0' && !isspace (*end)) | |
11541 | end++; | |
11542 | ||
11543 | /* Adjust ARGSP to point to the start of the next argument. */ | |
11544 | ||
11545 | *argsp = end; | |
11546 | ||
11547 | /* Make a copy of the current argument and return it. */ | |
11548 | ||
11549 | result = xmalloc (end - args + 1); | |
11550 | strncpy (result, args, end - args); | |
11551 | result[end - args] = '\0'; | |
11552 | ||
11553 | return result; | |
11554 | } | |
11555 | ||
11556 | /* Split the arguments specified in a "catch exception" command. | |
11557 | Set EX to the appropriate catchpoint type. | |
28010a5d | 11558 | Set EXCEP_STRING to the name of the specific exception if |
f7f9143b JB |
11559 | specified by the user. */ |
11560 | ||
11561 | static void | |
11562 | catch_ada_exception_command_split (char *args, | |
11563 | enum exception_catchpoint_kind *ex, | |
28010a5d | 11564 | char **excep_string) |
f7f9143b JB |
11565 | { |
11566 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
11567 | char *exception_name; | |
11568 | ||
11569 | exception_name = ada_get_next_arg (&args); | |
11570 | make_cleanup (xfree, exception_name); | |
11571 | ||
11572 | /* Check that we do not have any more arguments. Anything else | |
11573 | is unexpected. */ | |
11574 | ||
11575 | while (isspace (*args)) | |
11576 | args++; | |
11577 | ||
11578 | if (args[0] != '\0') | |
11579 | error (_("Junk at end of expression")); | |
11580 | ||
11581 | discard_cleanups (old_chain); | |
11582 | ||
11583 | if (exception_name == NULL) | |
11584 | { | |
11585 | /* Catch all exceptions. */ | |
11586 | *ex = ex_catch_exception; | |
28010a5d | 11587 | *excep_string = NULL; |
f7f9143b JB |
11588 | } |
11589 | else if (strcmp (exception_name, "unhandled") == 0) | |
11590 | { | |
11591 | /* Catch unhandled exceptions. */ | |
11592 | *ex = ex_catch_exception_unhandled; | |
28010a5d | 11593 | *excep_string = NULL; |
f7f9143b JB |
11594 | } |
11595 | else | |
11596 | { | |
11597 | /* Catch a specific exception. */ | |
11598 | *ex = ex_catch_exception; | |
28010a5d | 11599 | *excep_string = exception_name; |
f7f9143b JB |
11600 | } |
11601 | } | |
11602 | ||
11603 | /* Return the name of the symbol on which we should break in order to | |
11604 | implement a catchpoint of the EX kind. */ | |
11605 | ||
11606 | static const char * | |
11607 | ada_exception_sym_name (enum exception_catchpoint_kind ex) | |
11608 | { | |
3eecfa55 JB |
11609 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
11610 | ||
11611 | gdb_assert (data->exception_info != NULL); | |
0259addd | 11612 | |
f7f9143b JB |
11613 | switch (ex) |
11614 | { | |
11615 | case ex_catch_exception: | |
3eecfa55 | 11616 | return (data->exception_info->catch_exception_sym); |
f7f9143b JB |
11617 | break; |
11618 | case ex_catch_exception_unhandled: | |
3eecfa55 | 11619 | return (data->exception_info->catch_exception_unhandled_sym); |
f7f9143b JB |
11620 | break; |
11621 | case ex_catch_assert: | |
3eecfa55 | 11622 | return (data->exception_info->catch_assert_sym); |
f7f9143b JB |
11623 | break; |
11624 | default: | |
11625 | internal_error (__FILE__, __LINE__, | |
11626 | _("unexpected catchpoint kind (%d)"), ex); | |
11627 | } | |
11628 | } | |
11629 | ||
11630 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
11631 | of the EX kind. */ | |
11632 | ||
c0a91b2b | 11633 | static const struct breakpoint_ops * |
4b9eee8c | 11634 | ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex) |
f7f9143b JB |
11635 | { |
11636 | switch (ex) | |
11637 | { | |
11638 | case ex_catch_exception: | |
11639 | return (&catch_exception_breakpoint_ops); | |
11640 | break; | |
11641 | case ex_catch_exception_unhandled: | |
11642 | return (&catch_exception_unhandled_breakpoint_ops); | |
11643 | break; | |
11644 | case ex_catch_assert: | |
11645 | return (&catch_assert_breakpoint_ops); | |
11646 | break; | |
11647 | default: | |
11648 | internal_error (__FILE__, __LINE__, | |
11649 | _("unexpected catchpoint kind (%d)"), ex); | |
11650 | } | |
11651 | } | |
11652 | ||
11653 | /* Return the condition that will be used to match the current exception | |
11654 | being raised with the exception that the user wants to catch. This | |
11655 | assumes that this condition is used when the inferior just triggered | |
11656 | an exception catchpoint. | |
11657 | ||
11658 | The string returned is a newly allocated string that needs to be | |
11659 | deallocated later. */ | |
11660 | ||
11661 | static char * | |
28010a5d | 11662 | ada_exception_catchpoint_cond_string (const char *excep_string) |
f7f9143b | 11663 | { |
3d0b0fa3 JB |
11664 | int i; |
11665 | ||
0963b4bd | 11666 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 | 11667 | runtime units that have been compiled without debugging info; if |
28010a5d | 11668 | EXCEP_STRING is the not-fully-qualified name of a standard |
3d0b0fa3 JB |
11669 | exception (e.g. "constraint_error") then, during the evaluation |
11670 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 11671 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
11672 | may then be set only on user-defined exceptions which have the |
11673 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
11674 | ||
11675 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 11676 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
11677 | exception constraint_error" is rewritten into "catch exception |
11678 | standard.constraint_error". | |
11679 | ||
11680 | If an exception named contraint_error is defined in another package of | |
11681 | the inferior program, then the only way to specify this exception as a | |
11682 | breakpoint condition is to use its fully-qualified named: | |
11683 | e.g. my_package.constraint_error. */ | |
11684 | ||
11685 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
11686 | { | |
28010a5d | 11687 | if (strcmp (standard_exc [i], excep_string) == 0) |
3d0b0fa3 JB |
11688 | { |
11689 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
28010a5d | 11690 | excep_string); |
3d0b0fa3 JB |
11691 | } |
11692 | } | |
28010a5d | 11693 | return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string); |
f7f9143b JB |
11694 | } |
11695 | ||
11696 | /* Return the symtab_and_line that should be used to insert an exception | |
11697 | catchpoint of the TYPE kind. | |
11698 | ||
28010a5d PA |
11699 | EXCEP_STRING should contain the name of a specific exception that |
11700 | the catchpoint should catch, or NULL otherwise. | |
f7f9143b | 11701 | |
28010a5d PA |
11702 | ADDR_STRING returns the name of the function where the real |
11703 | breakpoint that implements the catchpoints is set, depending on the | |
11704 | type of catchpoint we need to create. */ | |
f7f9143b JB |
11705 | |
11706 | static struct symtab_and_line | |
28010a5d | 11707 | ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string, |
c0a91b2b | 11708 | char **addr_string, const struct breakpoint_ops **ops) |
f7f9143b JB |
11709 | { |
11710 | const char *sym_name; | |
11711 | struct symbol *sym; | |
f7f9143b | 11712 | |
0259addd JB |
11713 | /* First, find out which exception support info to use. */ |
11714 | ada_exception_support_info_sniffer (); | |
11715 | ||
11716 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b | 11717 | the Ada exceptions requested by the user. */ |
f7f9143b JB |
11718 | sym_name = ada_exception_sym_name (ex); |
11719 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
11720 | ||
f17011e0 JB |
11721 | /* We can assume that SYM is not NULL at this stage. If the symbol |
11722 | did not exist, ada_exception_support_info_sniffer would have | |
11723 | raised an exception. | |
f7f9143b | 11724 | |
f17011e0 JB |
11725 | Also, ada_exception_support_info_sniffer should have already |
11726 | verified that SYM is a function symbol. */ | |
11727 | gdb_assert (sym != NULL); | |
11728 | gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK); | |
f7f9143b JB |
11729 | |
11730 | /* Set ADDR_STRING. */ | |
f7f9143b JB |
11731 | *addr_string = xstrdup (sym_name); |
11732 | ||
f7f9143b | 11733 | /* Set OPS. */ |
4b9eee8c | 11734 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b | 11735 | |
f17011e0 | 11736 | return find_function_start_sal (sym, 1); |
f7f9143b JB |
11737 | } |
11738 | ||
11739 | /* Parse the arguments (ARGS) of the "catch exception" command. | |
11740 | ||
f7f9143b JB |
11741 | If the user asked the catchpoint to catch only a specific |
11742 | exception, then save the exception name in ADDR_STRING. | |
11743 | ||
11744 | See ada_exception_sal for a description of all the remaining | |
11745 | function arguments of this function. */ | |
11746 | ||
9ac4176b | 11747 | static struct symtab_and_line |
f7f9143b | 11748 | ada_decode_exception_location (char *args, char **addr_string, |
28010a5d | 11749 | char **excep_string, |
c0a91b2b | 11750 | const struct breakpoint_ops **ops) |
f7f9143b JB |
11751 | { |
11752 | enum exception_catchpoint_kind ex; | |
11753 | ||
28010a5d PA |
11754 | catch_ada_exception_command_split (args, &ex, excep_string); |
11755 | return ada_exception_sal (ex, *excep_string, addr_string, ops); | |
11756 | } | |
11757 | ||
11758 | /* Create an Ada exception catchpoint. */ | |
11759 | ||
11760 | static void | |
11761 | create_ada_exception_catchpoint (struct gdbarch *gdbarch, | |
11762 | struct symtab_and_line sal, | |
11763 | char *addr_string, | |
11764 | char *excep_string, | |
c0a91b2b | 11765 | const struct breakpoint_ops *ops, |
28010a5d PA |
11766 | int tempflag, |
11767 | int from_tty) | |
11768 | { | |
11769 | struct ada_catchpoint *c; | |
11770 | ||
11771 | c = XNEW (struct ada_catchpoint); | |
11772 | init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string, | |
11773 | ops, tempflag, from_tty); | |
11774 | c->excep_string = excep_string; | |
11775 | create_excep_cond_exprs (c); | |
3ea46bff | 11776 | install_breakpoint (0, &c->base, 1); |
f7f9143b JB |
11777 | } |
11778 | ||
9ac4176b PA |
11779 | /* Implement the "catch exception" command. */ |
11780 | ||
11781 | static void | |
11782 | catch_ada_exception_command (char *arg, int from_tty, | |
11783 | struct cmd_list_element *command) | |
11784 | { | |
11785 | struct gdbarch *gdbarch = get_current_arch (); | |
11786 | int tempflag; | |
11787 | struct symtab_and_line sal; | |
11788 | char *addr_string = NULL; | |
28010a5d | 11789 | char *excep_string = NULL; |
c0a91b2b | 11790 | const struct breakpoint_ops *ops = NULL; |
9ac4176b PA |
11791 | |
11792 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
11793 | ||
11794 | if (!arg) | |
11795 | arg = ""; | |
28010a5d PA |
11796 | sal = ada_decode_exception_location (arg, &addr_string, &excep_string, &ops); |
11797 | create_ada_exception_catchpoint (gdbarch, sal, addr_string, | |
11798 | excep_string, ops, tempflag, from_tty); | |
9ac4176b PA |
11799 | } |
11800 | ||
11801 | static struct symtab_and_line | |
f7f9143b | 11802 | ada_decode_assert_location (char *args, char **addr_string, |
c0a91b2b | 11803 | const struct breakpoint_ops **ops) |
f7f9143b JB |
11804 | { |
11805 | /* Check that no argument where provided at the end of the command. */ | |
11806 | ||
11807 | if (args != NULL) | |
11808 | { | |
11809 | while (isspace (*args)) | |
11810 | args++; | |
11811 | if (*args != '\0') | |
11812 | error (_("Junk at end of arguments.")); | |
11813 | } | |
11814 | ||
28010a5d | 11815 | return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops); |
f7f9143b JB |
11816 | } |
11817 | ||
9ac4176b PA |
11818 | /* Implement the "catch assert" command. */ |
11819 | ||
11820 | static void | |
11821 | catch_assert_command (char *arg, int from_tty, | |
11822 | struct cmd_list_element *command) | |
11823 | { | |
11824 | struct gdbarch *gdbarch = get_current_arch (); | |
11825 | int tempflag; | |
11826 | struct symtab_and_line sal; | |
11827 | char *addr_string = NULL; | |
c0a91b2b | 11828 | const struct breakpoint_ops *ops = NULL; |
9ac4176b PA |
11829 | |
11830 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
11831 | ||
11832 | if (!arg) | |
11833 | arg = ""; | |
11834 | sal = ada_decode_assert_location (arg, &addr_string, &ops); | |
28010a5d PA |
11835 | create_ada_exception_catchpoint (gdbarch, sal, addr_string, |
11836 | NULL, ops, tempflag, from_tty); | |
9ac4176b | 11837 | } |
4c4b4cd2 PH |
11838 | /* Operators */ |
11839 | /* Information about operators given special treatment in functions | |
11840 | below. */ | |
11841 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
11842 | ||
11843 | #define ADA_OPERATORS \ | |
11844 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
11845 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
11846 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
11847 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
11848 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
11849 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
11850 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
11851 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
11852 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
11853 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
11854 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
11855 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
11856 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
11857 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
11858 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
11859 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
11860 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
11861 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
11862 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
11863 | |
11864 | static void | |
554794dc SDJ |
11865 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
11866 | int *argsp) | |
4c4b4cd2 PH |
11867 | { |
11868 | switch (exp->elts[pc - 1].opcode) | |
11869 | { | |
76a01679 | 11870 | default: |
4c4b4cd2 PH |
11871 | operator_length_standard (exp, pc, oplenp, argsp); |
11872 | break; | |
11873 | ||
11874 | #define OP_DEFN(op, len, args, binop) \ | |
11875 | case op: *oplenp = len; *argsp = args; break; | |
11876 | ADA_OPERATORS; | |
11877 | #undef OP_DEFN | |
52ce6436 PH |
11878 | |
11879 | case OP_AGGREGATE: | |
11880 | *oplenp = 3; | |
11881 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
11882 | break; | |
11883 | ||
11884 | case OP_CHOICES: | |
11885 | *oplenp = 3; | |
11886 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
11887 | break; | |
4c4b4cd2 PH |
11888 | } |
11889 | } | |
11890 | ||
c0201579 JK |
11891 | /* Implementation of the exp_descriptor method operator_check. */ |
11892 | ||
11893 | static int | |
11894 | ada_operator_check (struct expression *exp, int pos, | |
11895 | int (*objfile_func) (struct objfile *objfile, void *data), | |
11896 | void *data) | |
11897 | { | |
11898 | const union exp_element *const elts = exp->elts; | |
11899 | struct type *type = NULL; | |
11900 | ||
11901 | switch (elts[pos].opcode) | |
11902 | { | |
11903 | case UNOP_IN_RANGE: | |
11904 | case UNOP_QUAL: | |
11905 | type = elts[pos + 1].type; | |
11906 | break; | |
11907 | ||
11908 | default: | |
11909 | return operator_check_standard (exp, pos, objfile_func, data); | |
11910 | } | |
11911 | ||
11912 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
11913 | ||
11914 | if (type && TYPE_OBJFILE (type) | |
11915 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
11916 | return 1; | |
11917 | ||
11918 | return 0; | |
11919 | } | |
11920 | ||
4c4b4cd2 PH |
11921 | static char * |
11922 | ada_op_name (enum exp_opcode opcode) | |
11923 | { | |
11924 | switch (opcode) | |
11925 | { | |
76a01679 | 11926 | default: |
4c4b4cd2 | 11927 | return op_name_standard (opcode); |
52ce6436 | 11928 | |
4c4b4cd2 PH |
11929 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
11930 | ADA_OPERATORS; | |
11931 | #undef OP_DEFN | |
52ce6436 PH |
11932 | |
11933 | case OP_AGGREGATE: | |
11934 | return "OP_AGGREGATE"; | |
11935 | case OP_CHOICES: | |
11936 | return "OP_CHOICES"; | |
11937 | case OP_NAME: | |
11938 | return "OP_NAME"; | |
4c4b4cd2 PH |
11939 | } |
11940 | } | |
11941 | ||
11942 | /* As for operator_length, but assumes PC is pointing at the first | |
11943 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 11944 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
11945 | |
11946 | static void | |
76a01679 JB |
11947 | ada_forward_operator_length (struct expression *exp, int pc, |
11948 | int *oplenp, int *argsp) | |
4c4b4cd2 | 11949 | { |
76a01679 | 11950 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
11951 | { |
11952 | default: | |
11953 | *oplenp = *argsp = 0; | |
11954 | break; | |
52ce6436 | 11955 | |
4c4b4cd2 PH |
11956 | #define OP_DEFN(op, len, args, binop) \ |
11957 | case op: *oplenp = len; *argsp = args; break; | |
11958 | ADA_OPERATORS; | |
11959 | #undef OP_DEFN | |
52ce6436 PH |
11960 | |
11961 | case OP_AGGREGATE: | |
11962 | *oplenp = 3; | |
11963 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
11964 | break; | |
11965 | ||
11966 | case OP_CHOICES: | |
11967 | *oplenp = 3; | |
11968 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
11969 | break; | |
11970 | ||
11971 | case OP_STRING: | |
11972 | case OP_NAME: | |
11973 | { | |
11974 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 11975 | |
52ce6436 PH |
11976 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
11977 | *argsp = 0; | |
11978 | break; | |
11979 | } | |
4c4b4cd2 PH |
11980 | } |
11981 | } | |
11982 | ||
11983 | static int | |
11984 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
11985 | { | |
11986 | enum exp_opcode op = exp->elts[elt].opcode; | |
11987 | int oplen, nargs; | |
11988 | int pc = elt; | |
11989 | int i; | |
76a01679 | 11990 | |
4c4b4cd2 PH |
11991 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
11992 | ||
76a01679 | 11993 | switch (op) |
4c4b4cd2 | 11994 | { |
76a01679 | 11995 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
11996 | case OP_ATR_FIRST: |
11997 | case OP_ATR_LAST: | |
11998 | case OP_ATR_LENGTH: | |
11999 | case OP_ATR_IMAGE: | |
12000 | case OP_ATR_MAX: | |
12001 | case OP_ATR_MIN: | |
12002 | case OP_ATR_MODULUS: | |
12003 | case OP_ATR_POS: | |
12004 | case OP_ATR_SIZE: | |
12005 | case OP_ATR_TAG: | |
12006 | case OP_ATR_VAL: | |
12007 | break; | |
12008 | ||
12009 | case UNOP_IN_RANGE: | |
12010 | case UNOP_QUAL: | |
323e0a4a AC |
12011 | /* XXX: gdb_sprint_host_address, type_sprint */ |
12012 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
12013 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
12014 | fprintf_filtered (stream, " ("); | |
12015 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
12016 | fprintf_filtered (stream, ")"); | |
12017 | break; | |
12018 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
12019 | fprintf_filtered (stream, " (%d)", |
12020 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
12021 | break; |
12022 | case TERNOP_IN_RANGE: | |
12023 | break; | |
12024 | ||
52ce6436 PH |
12025 | case OP_AGGREGATE: |
12026 | case OP_OTHERS: | |
12027 | case OP_DISCRETE_RANGE: | |
12028 | case OP_POSITIONAL: | |
12029 | case OP_CHOICES: | |
12030 | break; | |
12031 | ||
12032 | case OP_NAME: | |
12033 | case OP_STRING: | |
12034 | { | |
12035 | char *name = &exp->elts[elt + 2].string; | |
12036 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 12037 | |
52ce6436 PH |
12038 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
12039 | break; | |
12040 | } | |
12041 | ||
4c4b4cd2 PH |
12042 | default: |
12043 | return dump_subexp_body_standard (exp, stream, elt); | |
12044 | } | |
12045 | ||
12046 | elt += oplen; | |
12047 | for (i = 0; i < nargs; i += 1) | |
12048 | elt = dump_subexp (exp, stream, elt); | |
12049 | ||
12050 | return elt; | |
12051 | } | |
12052 | ||
12053 | /* The Ada extension of print_subexp (q.v.). */ | |
12054 | ||
76a01679 JB |
12055 | static void |
12056 | ada_print_subexp (struct expression *exp, int *pos, | |
12057 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 12058 | { |
52ce6436 | 12059 | int oplen, nargs, i; |
4c4b4cd2 PH |
12060 | int pc = *pos; |
12061 | enum exp_opcode op = exp->elts[pc].opcode; | |
12062 | ||
12063 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
12064 | ||
52ce6436 | 12065 | *pos += oplen; |
4c4b4cd2 PH |
12066 | switch (op) |
12067 | { | |
12068 | default: | |
52ce6436 | 12069 | *pos -= oplen; |
4c4b4cd2 PH |
12070 | print_subexp_standard (exp, pos, stream, prec); |
12071 | return; | |
12072 | ||
12073 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
12074 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
12075 | return; | |
12076 | ||
12077 | case BINOP_IN_BOUNDS: | |
323e0a4a | 12078 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12079 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12080 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 12081 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12082 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 12083 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
12084 | fprintf_filtered (stream, "(%ld)", |
12085 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
12086 | return; |
12087 | ||
12088 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 12089 | if (prec >= PREC_EQUAL) |
76a01679 | 12090 | fputs_filtered ("(", stream); |
323e0a4a | 12091 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12092 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12093 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
12094 | print_subexp (exp, pos, stream, PREC_EQUAL); |
12095 | fputs_filtered (" .. ", stream); | |
12096 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
12097 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
12098 | fputs_filtered (")", stream); |
12099 | return; | |
4c4b4cd2 PH |
12100 | |
12101 | case OP_ATR_FIRST: | |
12102 | case OP_ATR_LAST: | |
12103 | case OP_ATR_LENGTH: | |
12104 | case OP_ATR_IMAGE: | |
12105 | case OP_ATR_MAX: | |
12106 | case OP_ATR_MIN: | |
12107 | case OP_ATR_MODULUS: | |
12108 | case OP_ATR_POS: | |
12109 | case OP_ATR_SIZE: | |
12110 | case OP_ATR_TAG: | |
12111 | case OP_ATR_VAL: | |
4c4b4cd2 | 12112 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
12113 | { |
12114 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
12115 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0); | |
12116 | *pos += 3; | |
12117 | } | |
4c4b4cd2 | 12118 | else |
76a01679 | 12119 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
12120 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
12121 | if (nargs > 1) | |
76a01679 JB |
12122 | { |
12123 | int tem; | |
5b4ee69b | 12124 | |
76a01679 JB |
12125 | for (tem = 1; tem < nargs; tem += 1) |
12126 | { | |
12127 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
12128 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
12129 | } | |
12130 | fputs_filtered (")", stream); | |
12131 | } | |
4c4b4cd2 | 12132 | return; |
14f9c5c9 | 12133 | |
4c4b4cd2 | 12134 | case UNOP_QUAL: |
4c4b4cd2 PH |
12135 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
12136 | fputs_filtered ("'(", stream); | |
12137 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
12138 | fputs_filtered (")", stream); | |
12139 | return; | |
14f9c5c9 | 12140 | |
4c4b4cd2 | 12141 | case UNOP_IN_RANGE: |
323e0a4a | 12142 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12143 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12144 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
12145 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0); |
12146 | return; | |
52ce6436 PH |
12147 | |
12148 | case OP_DISCRETE_RANGE: | |
12149 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12150 | fputs_filtered ("..", stream); | |
12151 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12152 | return; | |
12153 | ||
12154 | case OP_OTHERS: | |
12155 | fputs_filtered ("others => ", stream); | |
12156 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12157 | return; | |
12158 | ||
12159 | case OP_CHOICES: | |
12160 | for (i = 0; i < nargs-1; i += 1) | |
12161 | { | |
12162 | if (i > 0) | |
12163 | fputs_filtered ("|", stream); | |
12164 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12165 | } | |
12166 | fputs_filtered (" => ", stream); | |
12167 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12168 | return; | |
12169 | ||
12170 | case OP_POSITIONAL: | |
12171 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12172 | return; | |
12173 | ||
12174 | case OP_AGGREGATE: | |
12175 | fputs_filtered ("(", stream); | |
12176 | for (i = 0; i < nargs; i += 1) | |
12177 | { | |
12178 | if (i > 0) | |
12179 | fputs_filtered (", ", stream); | |
12180 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12181 | } | |
12182 | fputs_filtered (")", stream); | |
12183 | return; | |
4c4b4cd2 PH |
12184 | } |
12185 | } | |
14f9c5c9 AS |
12186 | |
12187 | /* Table mapping opcodes into strings for printing operators | |
12188 | and precedences of the operators. */ | |
12189 | ||
d2e4a39e AS |
12190 | static const struct op_print ada_op_print_tab[] = { |
12191 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
12192 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
12193 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
12194 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
12195 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
12196 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
12197 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
12198 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
12199 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
12200 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
12201 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
12202 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
12203 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
12204 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
12205 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
12206 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
12207 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
12208 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
12209 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
12210 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
12211 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
12212 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
12213 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
12214 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
12215 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
12216 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
12217 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
12218 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
12219 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
12220 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
12221 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
d2e4a39e | 12222 | {NULL, 0, 0, 0} |
14f9c5c9 AS |
12223 | }; |
12224 | \f | |
72d5681a PH |
12225 | enum ada_primitive_types { |
12226 | ada_primitive_type_int, | |
12227 | ada_primitive_type_long, | |
12228 | ada_primitive_type_short, | |
12229 | ada_primitive_type_char, | |
12230 | ada_primitive_type_float, | |
12231 | ada_primitive_type_double, | |
12232 | ada_primitive_type_void, | |
12233 | ada_primitive_type_long_long, | |
12234 | ada_primitive_type_long_double, | |
12235 | ada_primitive_type_natural, | |
12236 | ada_primitive_type_positive, | |
12237 | ada_primitive_type_system_address, | |
12238 | nr_ada_primitive_types | |
12239 | }; | |
6c038f32 PH |
12240 | |
12241 | static void | |
d4a9a881 | 12242 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
12243 | struct language_arch_info *lai) |
12244 | { | |
d4a9a881 | 12245 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 12246 | |
72d5681a | 12247 | lai->primitive_type_vector |
d4a9a881 | 12248 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 12249 | struct type *); |
e9bb382b UW |
12250 | |
12251 | lai->primitive_type_vector [ada_primitive_type_int] | |
12252 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12253 | 0, "integer"); | |
12254 | lai->primitive_type_vector [ada_primitive_type_long] | |
12255 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
12256 | 0, "long_integer"); | |
12257 | lai->primitive_type_vector [ada_primitive_type_short] | |
12258 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
12259 | 0, "short_integer"); | |
12260 | lai->string_char_type | |
12261 | = lai->primitive_type_vector [ada_primitive_type_char] | |
12262 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); | |
12263 | lai->primitive_type_vector [ada_primitive_type_float] | |
12264 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
12265 | "float", NULL); | |
12266 | lai->primitive_type_vector [ada_primitive_type_double] | |
12267 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
12268 | "long_float", NULL); | |
12269 | lai->primitive_type_vector [ada_primitive_type_long_long] | |
12270 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
12271 | 0, "long_long_integer"); | |
12272 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
12273 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
12274 | "long_long_float", NULL); | |
12275 | lai->primitive_type_vector [ada_primitive_type_natural] | |
12276 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12277 | 0, "natural"); | |
12278 | lai->primitive_type_vector [ada_primitive_type_positive] | |
12279 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12280 | 0, "positive"); | |
12281 | lai->primitive_type_vector [ada_primitive_type_void] | |
12282 | = builtin->builtin_void; | |
12283 | ||
12284 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
12285 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void")); | |
72d5681a PH |
12286 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
12287 | = "system__address"; | |
fbb06eb1 | 12288 | |
47e729a8 | 12289 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 12290 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 12291 | } |
6c038f32 PH |
12292 | \f |
12293 | /* Language vector */ | |
12294 | ||
12295 | /* Not really used, but needed in the ada_language_defn. */ | |
12296 | ||
12297 | static void | |
6c7a06a3 | 12298 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 12299 | { |
6c7a06a3 | 12300 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
12301 | } |
12302 | ||
12303 | static int | |
12304 | parse (void) | |
12305 | { | |
12306 | warnings_issued = 0; | |
12307 | return ada_parse (); | |
12308 | } | |
12309 | ||
12310 | static const struct exp_descriptor ada_exp_descriptor = { | |
12311 | ada_print_subexp, | |
12312 | ada_operator_length, | |
c0201579 | 12313 | ada_operator_check, |
6c038f32 PH |
12314 | ada_op_name, |
12315 | ada_dump_subexp_body, | |
12316 | ada_evaluate_subexp | |
12317 | }; | |
12318 | ||
12319 | const struct language_defn ada_language_defn = { | |
12320 | "ada", /* Language name */ | |
12321 | language_ada, | |
6c038f32 PH |
12322 | range_check_off, |
12323 | type_check_off, | |
12324 | case_sensitive_on, /* Yes, Ada is case-insensitive, but | |
12325 | that's not quite what this means. */ | |
6c038f32 | 12326 | array_row_major, |
9a044a89 | 12327 | macro_expansion_no, |
6c038f32 PH |
12328 | &ada_exp_descriptor, |
12329 | parse, | |
12330 | ada_error, | |
12331 | resolve, | |
12332 | ada_printchar, /* Print a character constant */ | |
12333 | ada_printstr, /* Function to print string constant */ | |
12334 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 12335 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 12336 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
12337 | ada_val_print, /* Print a value using appropriate syntax */ |
12338 | ada_value_print, /* Print a top-level value */ | |
12339 | NULL, /* Language specific skip_trampoline */ | |
2b2d9e11 | 12340 | NULL, /* name_of_this */ |
6c038f32 PH |
12341 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
12342 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
12343 | ada_la_decode, /* Language specific symbol demangler */ | |
0963b4bd MS |
12344 | NULL, /* Language specific |
12345 | class_name_from_physname */ | |
6c038f32 PH |
12346 | ada_op_print_tab, /* expression operators for printing */ |
12347 | 0, /* c-style arrays */ | |
12348 | 1, /* String lower bound */ | |
6c038f32 | 12349 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 12350 | ada_make_symbol_completion_list, |
72d5681a | 12351 | ada_language_arch_info, |
e79af960 | 12352 | ada_print_array_index, |
41f1b697 | 12353 | default_pass_by_reference, |
ae6a3a4c | 12354 | c_get_string, |
f8eba3c6 TT |
12355 | compare_names, |
12356 | ada_iterate_over_symbols, | |
6c038f32 PH |
12357 | LANG_MAGIC |
12358 | }; | |
12359 | ||
2c0b251b PA |
12360 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
12361 | extern initialize_file_ftype _initialize_ada_language; | |
12362 | ||
5bf03f13 JB |
12363 | /* Command-list for the "set/show ada" prefix command. */ |
12364 | static struct cmd_list_element *set_ada_list; | |
12365 | static struct cmd_list_element *show_ada_list; | |
12366 | ||
12367 | /* Implement the "set ada" prefix command. */ | |
12368 | ||
12369 | static void | |
12370 | set_ada_command (char *arg, int from_tty) | |
12371 | { | |
12372 | printf_unfiltered (_(\ | |
12373 | "\"set ada\" must be followed by the name of a setting.\n")); | |
12374 | help_list (set_ada_list, "set ada ", -1, gdb_stdout); | |
12375 | } | |
12376 | ||
12377 | /* Implement the "show ada" prefix command. */ | |
12378 | ||
12379 | static void | |
12380 | show_ada_command (char *args, int from_tty) | |
12381 | { | |
12382 | cmd_show_list (show_ada_list, from_tty, ""); | |
12383 | } | |
12384 | ||
2060206e PA |
12385 | static void |
12386 | initialize_ada_catchpoint_ops (void) | |
12387 | { | |
12388 | struct breakpoint_ops *ops; | |
12389 | ||
12390 | initialize_breakpoint_ops (); | |
12391 | ||
12392 | ops = &catch_exception_breakpoint_ops; | |
12393 | *ops = bkpt_breakpoint_ops; | |
12394 | ops->dtor = dtor_catch_exception; | |
12395 | ops->allocate_location = allocate_location_catch_exception; | |
12396 | ops->re_set = re_set_catch_exception; | |
12397 | ops->check_status = check_status_catch_exception; | |
12398 | ops->print_it = print_it_catch_exception; | |
12399 | ops->print_one = print_one_catch_exception; | |
12400 | ops->print_mention = print_mention_catch_exception; | |
12401 | ops->print_recreate = print_recreate_catch_exception; | |
12402 | ||
12403 | ops = &catch_exception_unhandled_breakpoint_ops; | |
12404 | *ops = bkpt_breakpoint_ops; | |
12405 | ops->dtor = dtor_catch_exception_unhandled; | |
12406 | ops->allocate_location = allocate_location_catch_exception_unhandled; | |
12407 | ops->re_set = re_set_catch_exception_unhandled; | |
12408 | ops->check_status = check_status_catch_exception_unhandled; | |
12409 | ops->print_it = print_it_catch_exception_unhandled; | |
12410 | ops->print_one = print_one_catch_exception_unhandled; | |
12411 | ops->print_mention = print_mention_catch_exception_unhandled; | |
12412 | ops->print_recreate = print_recreate_catch_exception_unhandled; | |
12413 | ||
12414 | ops = &catch_assert_breakpoint_ops; | |
12415 | *ops = bkpt_breakpoint_ops; | |
12416 | ops->dtor = dtor_catch_assert; | |
12417 | ops->allocate_location = allocate_location_catch_assert; | |
12418 | ops->re_set = re_set_catch_assert; | |
12419 | ops->check_status = check_status_catch_assert; | |
12420 | ops->print_it = print_it_catch_assert; | |
12421 | ops->print_one = print_one_catch_assert; | |
12422 | ops->print_mention = print_mention_catch_assert; | |
12423 | ops->print_recreate = print_recreate_catch_assert; | |
12424 | } | |
12425 | ||
d2e4a39e | 12426 | void |
6c038f32 | 12427 | _initialize_ada_language (void) |
14f9c5c9 | 12428 | { |
6c038f32 PH |
12429 | add_language (&ada_language_defn); |
12430 | ||
2060206e PA |
12431 | initialize_ada_catchpoint_ops (); |
12432 | ||
5bf03f13 JB |
12433 | add_prefix_cmd ("ada", no_class, set_ada_command, |
12434 | _("Prefix command for changing Ada-specfic settings"), | |
12435 | &set_ada_list, "set ada ", 0, &setlist); | |
12436 | ||
12437 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
12438 | _("Generic command for showing Ada-specific settings."), | |
12439 | &show_ada_list, "show ada ", 0, &showlist); | |
12440 | ||
12441 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
12442 | &trust_pad_over_xvs, _("\ | |
12443 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
12444 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
12445 | _("\ | |
12446 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
12447 | should normally trust the contents of PAD types, but certain older versions\n\ | |
12448 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
12449 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
12450 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
12451 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
12452 | this option to \"off\" unless necessary."), | |
12453 | NULL, NULL, &set_ada_list, &show_ada_list); | |
12454 | ||
9ac4176b PA |
12455 | add_catch_command ("exception", _("\ |
12456 | Catch Ada exceptions, when raised.\n\ | |
12457 | With an argument, catch only exceptions with the given name."), | |
12458 | catch_ada_exception_command, | |
12459 | NULL, | |
12460 | CATCH_PERMANENT, | |
12461 | CATCH_TEMPORARY); | |
12462 | add_catch_command ("assert", _("\ | |
12463 | Catch failed Ada assertions, when raised.\n\ | |
12464 | With an argument, catch only exceptions with the given name."), | |
12465 | catch_assert_command, | |
12466 | NULL, | |
12467 | CATCH_PERMANENT, | |
12468 | CATCH_TEMPORARY); | |
12469 | ||
6c038f32 | 12470 | varsize_limit = 65536; |
6c038f32 PH |
12471 | |
12472 | obstack_init (&symbol_list_obstack); | |
12473 | ||
12474 | decoded_names_store = htab_create_alloc | |
12475 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
12476 | NULL, xcalloc, xfree); | |
6b69afc4 | 12477 | |
e802dbe0 JB |
12478 | /* Setup per-inferior data. */ |
12479 | observer_attach_inferior_exit (ada_inferior_exit); | |
12480 | ada_inferior_data | |
12481 | = register_inferior_data_with_cleanup (ada_inferior_data_cleanup); | |
14f9c5c9 | 12482 | } |